Sample records for action potential parameters

  1. Population of computational rabbit-specific ventricular action potential models for investigating sources of variability in cellular repolarisation.

    PubMed

    Gemmell, Philip; Burrage, Kevin; Rodriguez, Blanca; Quinn, T Alexander

    2014-01-01

    Variability is observed at all levels of cardiac electrophysiology. Yet, the underlying causes and importance of this variability are generally unknown, and difficult to investigate with current experimental techniques. The aim of the present study was to generate populations of computational ventricular action potential models that reproduce experimentally observed intercellular variability of repolarisation (represented by action potential duration) and to identify its potential causes. A systematic exploration of the effects of simultaneously varying the magnitude of six transmembrane current conductances (transient outward, rapid and slow delayed rectifier K(+), inward rectifying K(+), L-type Ca(2+), and Na(+)/K(+) pump currents) in two rabbit-specific ventricular action potential models (Shannon et al. and Mahajan et al.) at multiple cycle lengths (400, 600, 1,000 ms) was performed. This was accomplished with distributed computing software specialised for multi-dimensional parameter sweeps and grid execution. An initial population of 15,625 parameter sets was generated for both models at each cycle length. Action potential durations of these populations were compared to experimentally derived ranges for rabbit ventricular myocytes. 1,352 parameter sets for the Shannon model and 779 parameter sets for the Mahajan model yielded action potential duration within the experimental range, demonstrating that a wide array of ionic conductance values can be used to simulate a physiological rabbit ventricular action potential. Furthermore, by using clutter-based dimension reordering, a technique that allows visualisation of multi-dimensional spaces in two dimensions, the interaction of current conductances and their relative importance to the ventricular action potential at different cycle lengths were revealed. Overall, this work represents an important step towards a better understanding of the role that variability in current conductances may play in experimentally observed intercellular variability of rabbit ventricular action potential repolarisation.

  2. Population of Computational Rabbit-Specific Ventricular Action Potential Models for Investigating Sources of Variability in Cellular Repolarisation

    PubMed Central

    Gemmell, Philip; Burrage, Kevin; Rodriguez, Blanca; Quinn, T. Alexander

    2014-01-01

    Variability is observed at all levels of cardiac electrophysiology. Yet, the underlying causes and importance of this variability are generally unknown, and difficult to investigate with current experimental techniques. The aim of the present study was to generate populations of computational ventricular action potential models that reproduce experimentally observed intercellular variability of repolarisation (represented by action potential duration) and to identify its potential causes. A systematic exploration of the effects of simultaneously varying the magnitude of six transmembrane current conductances (transient outward, rapid and slow delayed rectifier K+, inward rectifying K+, L-type Ca2+, and Na+/K+ pump currents) in two rabbit-specific ventricular action potential models (Shannon et al. and Mahajan et al.) at multiple cycle lengths (400, 600, 1,000 ms) was performed. This was accomplished with distributed computing software specialised for multi-dimensional parameter sweeps and grid execution. An initial population of 15,625 parameter sets was generated for both models at each cycle length. Action potential durations of these populations were compared to experimentally derived ranges for rabbit ventricular myocytes. 1,352 parameter sets for the Shannon model and 779 parameter sets for the Mahajan model yielded action potential duration within the experimental range, demonstrating that a wide array of ionic conductance values can be used to simulate a physiological rabbit ventricular action potential. Furthermore, by using clutter-based dimension reordering, a technique that allows visualisation of multi-dimensional spaces in two dimensions, the interaction of current conductances and their relative importance to the ventricular action potential at different cycle lengths were revealed. Overall, this work represents an important step towards a better understanding of the role that variability in current conductances may play in experimentally observed intercellular variability of rabbit ventricular action potential repolarisation. PMID:24587229

  3. The effects of gentamicin and penicillin/streptomycin on the electrophysiology of human induced pluripotent stem cell-derived cardiomyocytes in manual patch clamp and multi-electrode array system.

    PubMed

    Hyun, Soo-Wang; Kim, Bo-Ram; Lin, Dan; Hyun, Sung-Ae; Yoon, Seong Shoon; Seo, Joung-Wook

    Cell culture media usually contains antibiotics including gentamicin or penicillin/streptomycin (PS) to protect cells from bacterial contamination. However, little is known about the effects of antibiotics on action potential and field potential parameters in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The present study examined the effects of gentamicin (10, 25, and 50μg/ml) and PS (50, 100, and 200U/μg/ml) on electrophysiological activity in spontaneously beating hiPSC-CMs using manual patch clamp and multi-electrode array. We also measured mRNA expression of cardiac ion channels in hiPSC-CMs grown in media with or without gentamicin (25μg/ml) using reverse transcription-polymerase chain reaction. We recorded action potential and field potential of hiPSC-CMs grown in the presence or absence of gentamicin or PS. We also observed action potential parameters in hiPSC-CMs after short-term treatment with these antibiotics. Changes in action potential and field potential parameters were observed in hiPSC-CMs grown in media containing gentamicin or PS. Treatment with PS also affected action potential parameters in hiPSC-CMs. In addition, the mRNA expression of cardiac sodium and potassium ion channels was significantly attenuated in hiPSC-CMs grown in the presence of gentamicin (25μg/ml). The present findings suggested that gentamicin should not be used in the culture media of hiPSC-CMs used for the measurement of electrophysiological parameters. Our findings also suggest that 100U/100μg/ml of PS are the maximum appropriate concentrations of these antibiotics for recording action potential waveform, because they did not influence action potential parameters in these cells. Copyright © 2017. Published by Elsevier Inc.

  4. Beta Function Quintessence Cosmological Parameters and Fundamental Constants I: Power and Inverse Power Law Dark Energy Potentials

    NASA Astrophysics Data System (ADS)

    Thompson, Rodger I.

    2018-04-01

    This investigation explores using the beta function formalism to calculate analytic solutions for the observable parameters in rolling scalar field cosmologies. The beta function in this case is the derivative of the scalar ϕ with respect to the natural log of the scale factor a, β (φ )=d φ /d ln (a). Once the beta function is specified, modulo a boundary condition, the evolution of the scalar ϕ as a function of the scale factor is completely determined. A rolling scalar field cosmology is defined by its action which can contain a range of physically motivated dark energy potentials. The beta function is chosen so that the associated "beta potential" is an accurate, but not exact, representation of the appropriate dark energy model potential. The basic concept is that the action with the beta potential is so similar to the action with the model potential that solutions using the beta action are accurate representations of solutions using the model action. The beta function provides an extra equation to calculate analytic functions of the cosmologies parameters as a function of the scale factor that are that are not calculable using only the model action. As an example this investigation uses a quintessence cosmology to demonstrate the method for power and inverse power law dark energy potentials. An interesting result of the investigation is that the Hubble parameter H is almost completely insensitive to the power of the potentials and that ΛCDM is part of the family of quintessence cosmology power law potentials with a power of zero.

  5. Beta function quintessence cosmological parameters and fundamental constants - I. Power and inverse power law dark energy potentials

    NASA Astrophysics Data System (ADS)

    Thompson, Rodger I.

    2018-07-01

    This investigation explores using the beta function formalism to calculate analytic solutions for the observable parameters in rolling scalar field cosmologies. The beta function in this case is the derivative of the scalar φ with respect to the natural log of the scale factor a, β (φ)=d φ/d ln (a). Once the beta function is specified, modulo a boundary condition, the evolution of the scalar φ as a function of the scale factor is completely determined. A rolling scalar field cosmology is defined by its action which can contain a range of physically motivated dark energy potentials. The beta function is chosen so that the associated `beta potential' is an accurate, but not exact, representation of the appropriate dark energy model potential. The basic concept is that the action with the beta potential is so similar to the action with the model potential that solutions using the beta action are accurate representations of solutions using the model action. The beta function provides an extra equation to calculate analytic functions of the cosmologies parameters as a function of the scale factor that are not calculable using only the model action. As an example, this investigation uses a quintessence cosmology to demonstrate the method for power and inverse power law dark energy potentials. An interesting result of the investigation is that the Hubble parameter H is almost completely insensitive to the power of the potentials and that Λ cold dark matter is part of the family of quintessence cosmology power-law potentials with a power of zero.

  6. The optimal distance between two electrode tips during recording of compound nerve action potentials in the rat median nerve

    PubMed Central

    Li, Yongping; Lao, Jie; Zhao, Xin; Tian, Dong; Zhu, Yi; Wei, Xiaochun

    2014-01-01

    The distance between the two electrode tips can greatly influence the parameters used for recording compound nerve action potentials. To investigate the optimal parameters for these recordings in the rat median nerve, we dissociated the nerve using different methods and compound nerve action potentials were orthodromically or antidromically recorded with different electrode spacings. Compound nerve action potentials could be consistently recorded using a method in which the middle part of the median nerve was intact, with both ends dissociated from the surrounding fascia and a ground wire inserted into the muscle close to the intact part. When the distance between two stimulating electrode tips was increased, the threshold and supramaximal stimulating intensity of compound nerve action potentials were gradually decreased, but the amplitude was not changed significantly. When the distance between two recording electrode tips was increased, the amplitude was gradually increased, but the threshold and supramaximal stimulating intensity exhibited no significant change. Different distances between recording and stimulating sites did not produce significant effects on the aforementioned parameters. A distance of 5 mm between recording and stimulating electrodes and a distance of 10 mm between recording and stimulating sites were found to be optimal for compound nerve action potential recording in the rat median nerve. In addition, the orthodromic compound action potential, with a biphasic waveform that was more stable and displayed less interference (however also required a higher threshold and higher supramaximal stimulus), was found to be superior to the antidromic compound action potential. PMID:25206798

  7. Strategies for improving neural signal detection using a neural-electronic interface.

    PubMed

    Szlavik, Robert B

    2003-03-01

    There have been various theoretical and experimental studies presented in the literature that focus on interfacing neurons with discrete electronic devices, such as transistors. From both a theoretical and experimental perspective, these studies have emphasized the variability in the characteristics of the detected action potential from the nerve cell. The demonstrated lack of reproducible fidelity of the nerve cell action potential at the device junction would make it impractical to implement these devices in any neural prosthetic application where reliable detection of the action potential was a prerequisite. In this study, the effects of several different physical parameters on the fidelity of the detected action potential at the device junction are investigated and discussed. The impact of variations in the extracellular resistivity, which directly affects the junction seal resistance, is studied along with the impact of variable nerve cell membrane capacitance and variations in the injected charge. These parameters are discussed in the context of their suitability to design manipulation for the purpose of improving the fidelity of the detected neural action potential. In addition to investigating the effects of variations in these parameters, the applicability of the linear equivalent circuit approach to calculating the junction potential is investigated.

  8. Path integrals with higher order actions: Application to realistic chemical systems

    NASA Astrophysics Data System (ADS)

    Lindoy, Lachlan P.; Huang, Gavin S.; Jordan, Meredith J. T.

    2018-02-01

    Quantum thermodynamic parameters can be determined using path integral Monte Carlo (PIMC) simulations. These simulations, however, become computationally demanding as the quantum nature of the system increases, although their efficiency can be improved by using higher order approximations to the thermal density matrix, specifically the action. Here we compare the standard, primitive approximation to the action (PA) and three higher order approximations, the Takahashi-Imada action (TIA), the Suzuki-Chin action (SCA) and the Chin action (CA). The resulting PIMC methods are applied to two realistic potential energy surfaces, for H2O and HCN-HNC, both of which are spectroscopically accurate and contain three-body interactions. We further numerically optimise, for each potential, the SCA parameter and the two free parameters in the CA, obtaining more significant improvements in efficiency than seen previously in the literature. For both H2O and HCN-HNC, accounting for all required potential and force evaluations, the optimised CA formalism is approximately twice as efficient as the TIA formalism and approximately an order of magnitude more efficient than the PA. The optimised SCA formalism shows similar efficiency gains to the CA for HCN-HNC but has similar efficiency to the TIA for H2O at low temperature. In H2O and HCN-HNC systems, the optimal value of the a1 CA parameter is approximately 1/3 , corresponding to an equal weighting of all force terms in the thermal density matrix, and similar to previous studies, the optimal α parameter in the SCA was ˜0.31. Importantly, poor choice of parameter significantly degrades the performance of the SCA and CA methods. In particular, for the CA, setting a1 = 0 is not efficient: the reduction in convergence efficiency is not offset by the lower number of force evaluations. We also find that the harmonic approximation to the CA parameters, whilst providing a fourth order approximation to the action, is not optimal for these realistic potentials: numerical optimisation leads to better approximate cancellation of the fifth order terms, with deviation between the harmonic and numerically optimised parameters more marked in the more quantum H2O system. This suggests that numerically optimising the CA or SCA parameters, which can be done at high temperature, will be important in fully realising the efficiency gains of these formalisms for realistic potentials.

  9. Determination of cable parameters in skeletal muscle fibres during repetitive firing of action potentials.

    PubMed

    Riisager, Anders; Duehmke, Rudy; Nielsen, Ole Bækgaard; Huang, Christopher L; Pedersen, Thomas Holm

    2014-10-15

    Recent studies in rat muscle fibres show that repetitive firing of action potentials causes changes in fibre resting membrane conductance (Gm) that reflect regulation of ClC-1 Cl(-) and KATP K(+) ion channels. Methodologically, these findings were obtained by inserting two microelectrodes at close proximity in the same fibres enabling measurements of fibre input resistance (Rin) in between action potential trains. Since the fibre length constant (λ) could not be determined, however, the calculation of Gm relied on the assumptions that the specific cytosolic resistivity (Ri) and muscle fibre volume remained constant during the repeated action potential firing. Here we present a three-microelectrode technique that enables determinations of multiple cable parameters in action potential-firing fibres including Rin and λ as well as waveform and conduction velocities of fully propagating action potentials. It is shown that in both rat and mouse extensor digitorum longus (EDL) fibres, action potential firing leads to substantial changes in both muscle fibre volume and Ri. The analysis also showed, however, that regardless of these changes, rat and mouse EDL fibres both exhibited initial decreases in Gm that were eventually followed by a ∼3-fold, fully reversible increase in Gm after the firing of 1450-1800 action potentials. Using this three-electrode method we further show that the latter rise in Gm was closely associated with excitation failures and loss of action potential signal above -20 mV. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  10. Determination of cable parameters in skeletal muscle fibres during repetitive firing of action potentials

    PubMed Central

    Riisager, Anders; Duehmke, Rudy; Nielsen, Ole Bækgaard; Huang, Christopher L; Pedersen, Thomas Holm

    2014-01-01

    Recent studies in rat muscle fibres show that repetitive firing of action potentials causes changes in fibre resting membrane conductance (Gm) that reflect regulation of ClC-1 Cl− and KATP K+ ion channels. Methodologically, these findings were obtained by inserting two microelectrodes at close proximity in the same fibres enabling measurements of fibre input resistance (Rin) in between action potential trains. Since the fibre length constant (λ) could not be determined, however, the calculation of Gm relied on the assumptions that the specific cytosolic resistivity (Ri) and muscle fibre volume remained constant during the repeated action potential firing. Here we present a three-microelectrode technique that enables determinations of multiple cable parameters in action potential-firing fibres including Rin and λ as well as waveform and conduction velocities of fully propagating action potentials. It is shown that in both rat and mouse extensor digitorum longus (EDL) fibres, action potential firing leads to substantial changes in both muscle fibre volume and Ri. The analysis also showed, however, that regardless of these changes, rat and mouse EDL fibres both exhibited initial decreases in Gm that were eventually followed by a ∼3-fold, fully reversible increase in Gm after the firing of 1450–1800 action potentials. Using this three-electrode method we further show that the latter rise in Gm was closely associated with excitation failures and loss of action potential signal above −20 mV. PMID:25128573

  11. Effects of ethyl chloride spray on pain and parameters of needle electromyography in the upper extremity.

    PubMed

    Moon, Young-Eun; Kim, Sang-Hyun

    2014-10-01

    The aim of this study was to compare the effects of ethyl chloride and placebo sprays for reducing pain induced by needle electromyography and changes in parameters of the motor unit action potential during needle electromyography of the upper extremity. Sixty patients were randomized into the ethyl chloride or placebo spray groups. In both groups, spray was applied just before needle electromyography of the flexor carpi radialis, and a visual analog scale to evaluate the pain of needle electromyography and a five-point Likert scale for patient satisfaction and preference for reexamination were compared between the two groups. Then, changes in the amplitude, phases, turns, and duration of the motor unit action potential during needle electromyography of the biceps brachii were compared before and after spraying in each group. The visual analog scale was significantly lower, and patient satisfaction and preference for reexamination were significantly higher in the ethyl chloride spray group. Among the parameters of the motor unit action potential, there were no significant changes except for an increased duration after spraying with ethyl chloride. Ethyl chloride spray can effectively reduce pain, but it must be used with caution because it may affect parameters of the motor unit action potential during needle electromyography.

  12. [Patterns of action potential firing in cortical neurons of neonatal mice and their electrophysiological property].

    PubMed

    Furong, Liu; Shengtian, L I

    2016-05-25

    To investigate patterns of action potential firing in cortical heurons of neonatal mice and their electrophysiological properties. The passive and active membrane properties of cortical neurons from 3-d neonatal mice were observed by whole-cell patch clamp with different voltage and current mode. Three patterns of action potential firing were identified in response to depolarized current injection. The effects of action potential firing patterns on voltage-dependent inward and outward current were found. Neurons with three different firing patterns had different thresholds of depolarized current. In the morphology analysis of action potential, the three type neurons were different in rise time, duration, amplitude and threshold of the first action potential evoked by 80 pA current injection. The passive properties were similar in three patterns of action potential firing. These results indicate that newborn cortical neurons exhibit different patterns of action potential firing with different action potential parameters such as shape and threshold.

  13. [Loudness optimized registration of compound action potential in cochlear implant recipients].

    PubMed

    Berger, Klaus; Hocke, Thomas; Hessel, Horst

    2017-11-01

    Background Postoperative measurements of compound action potentials are not always possible due to the insufficient acceptance of the CI-recipients. This study investigated the impact of different parameters on the acceptance of the measurements. Methods Compound action potentials of 16 CI recipients were measured with different pulse-widths. Recipients performed a loudness rating at the potential thresholds with the different sequences. Results Compound action potentials obtained with higher pulse-widths were rated softer than those obtained with smaller pulse-widths. Conclusions Compound action potentials measured with higher pulse-widths generate a gap between loudest acceptable presentation level and potential threshold. This gap contributes to a higher acceptance of postoperative measurements. Georg Thieme Verlag KG Stuttgart · New York.

  14. Gravitational effective action at second order in curvature and gravitational waves

    NASA Astrophysics Data System (ADS)

    Calmet, Xavier; Capozziello, Salvatore; Pryer, Daniel

    2017-09-01

    We consider the full effective theory for quantum gravity at second order in curvature including non-local terms. We show that the theory contains two new degrees of freedom beyond the massless graviton: namely a massive spin-2 ghost and a massive scalar field. Furthermore, we show that it is impossible to fine-tune the parameters of the effective action to eliminate completely the classical spin-2 ghost because of the non-local terms in the effective action. Being a classical field, it is not clear anyway that this ghost is problematic. It simply implies a repulsive contribution to Newton's potential. We then consider how to extract the parameters of the effective action and show that it is possible to measure, at least in principle, the parameters of the local terms independently of each other using a combination of observations of gravitational waves and measurements performed by pendulum type experiments searching for deviations of Newton's potential.

  15. [Effects of dauricine on action potentials and slow inward currents of guinea pig ventricular papillary muscles].

    PubMed

    Li, S N; Zhang, K Y

    1992-11-01

    Effects of dauricine (Dau) on the action potentials (AP), the slow action potentials (SAP), and the slow inward currents (Isi) of guinea pig ventricular papillary muscles were observed by means of intracellular microelectrode and single sucrose gap voltage clamp technique. In the early stage, Dau shortened action potential duration 100 (APD100) and effective refractory period (ERP) (ERP/APD < 1; P < 0.01), but did not affect APD20 and other parameters. In the late stage, Dau prolonged APD100, ERP, and APD20, significantly decreased action potential amplitude (APA), maximum velocity (Vmax), and overshot (OS) (ERP/APD > 1; P < 0.01), greatly diminished APA and OS of SAP induced by isoprenaline (P < 0.01), and remarkably inhibited Isi (P < 0.01). The results suggested that Dau exerted an inhibitory effect on Na+, Ca2+, and K+ channels.

  16. Optimization Methods for Spiking Neurons and Networks

    PubMed Central

    Russell, Alexander; Orchard, Garrick; Dong, Yi; Mihalaş, Ştefan; Niebur, Ernst; Tapson, Jonathan; Etienne-Cummings, Ralph

    2011-01-01

    Spiking neurons and spiking neural circuits are finding uses in a multitude of tasks such as robotic locomotion control, neuroprosthetics, visual sensory processing, and audition. The desired neural output is achieved through the use of complex neuron models, or by combining multiple simple neurons into a network. In either case, a means for configuring the neuron or neural circuit is required. Manual manipulation of parameters is both time consuming and non-intuitive due to the nonlinear relationship between parameters and the neuron’s output. The complexity rises even further as the neurons are networked and the systems often become mathematically intractable. In large circuits, the desired behavior and timing of action potential trains may be known but the timing of the individual action potentials is unknown and unimportant, whereas in single neuron systems the timing of individual action potentials is critical. In this paper, we automate the process of finding parameters. To configure a single neuron we derive a maximum likelihood method for configuring a neuron model, specifically the Mihalas–Niebur Neuron. Similarly, to configure neural circuits, we show how we use genetic algorithms (GAs) to configure parameters for a network of simple integrate and fire with adaptation neurons. The GA approach is demonstrated both in software simulation and hardware implementation on a reconfigurable custom very large scale integration chip. PMID:20959265

  17. Calcium-Induced Calcium Release during Action Potential Firing in Developing Inner Hair Cells

    PubMed Central

    Iosub, Radu; Avitabile, Daniele; Grant, Lisa; Tsaneva-Atanasova, Krasimira; Kennedy, Helen J.

    2015-01-01

    In the mature auditory system, inner hair cells (IHCs) convert sound-induced vibrations into electrical signals that are relayed to the central nervous system via auditory afferents. Before the cochlea can respond to normal sound levels, developing IHCs fire calcium-based action potentials that disappear close to the onset of hearing. Action potential firing triggers transmitter release from the immature IHC that in turn generates experience-independent firing in auditory neurons. These early signaling events are thought to be essential for the organization and development of the auditory system and hair cells. A critical component of the action potential is the rise in intracellular calcium that activates both small conductance potassium channels essential during membrane repolarization, and triggers transmitter release from the cell. Whether this calcium signal is generated by calcium influx or requires calcium-induced calcium release (CICR) is not yet known. IHCs can generate CICR, but to date its physiological role has remained unclear. Here, we used high and low concentrations of ryanodine to block or enhance CICR to determine whether calcium release from intracellular stores affected action potential waveform, interspike interval, or changes in membrane capacitance during development of mouse IHCs. Blocking CICR resulted in mixed action potential waveforms with both brief and prolonged oscillations in membrane potential and intracellular calcium. This mixed behavior is captured well by our mathematical model of IHC electrical activity. We perform two-parameter bifurcation analysis of the model that predicts the dependence of IHCs firing patterns on the level of activation of two parameters, the SK2 channels activation and CICR rate. Our data show that CICR forms an important component of the calcium signal that shapes action potentials and regulates firing patterns, but is not involved directly in triggering exocytosis. These data provide important insights into the calcium signaling mechanisms involved in early developmental processes. PMID:25762313

  18. Calcium-Induced calcium release during action potential firing in developing inner hair cells.

    PubMed

    Iosub, Radu; Avitabile, Daniele; Grant, Lisa; Tsaneva-Atanasova, Krasimira; Kennedy, Helen J

    2015-03-10

    In the mature auditory system, inner hair cells (IHCs) convert sound-induced vibrations into electrical signals that are relayed to the central nervous system via auditory afferents. Before the cochlea can respond to normal sound levels, developing IHCs fire calcium-based action potentials that disappear close to the onset of hearing. Action potential firing triggers transmitter release from the immature IHC that in turn generates experience-independent firing in auditory neurons. These early signaling events are thought to be essential for the organization and development of the auditory system and hair cells. A critical component of the action potential is the rise in intracellular calcium that activates both small conductance potassium channels essential during membrane repolarization, and triggers transmitter release from the cell. Whether this calcium signal is generated by calcium influx or requires calcium-induced calcium release (CICR) is not yet known. IHCs can generate CICR, but to date its physiological role has remained unclear. Here, we used high and low concentrations of ryanodine to block or enhance CICR to determine whether calcium release from intracellular stores affected action potential waveform, interspike interval, or changes in membrane capacitance during development of mouse IHCs. Blocking CICR resulted in mixed action potential waveforms with both brief and prolonged oscillations in membrane potential and intracellular calcium. This mixed behavior is captured well by our mathematical model of IHC electrical activity. We perform two-parameter bifurcation analysis of the model that predicts the dependence of IHCs firing patterns on the level of activation of two parameters, the SK2 channels activation and CICR rate. Our data show that CICR forms an important component of the calcium signal that shapes action potentials and regulates firing patterns, but is not involved directly in triggering exocytosis. These data provide important insights into the calcium signaling mechanisms involved in early developmental processes. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Estimating the duration of intracellular action potentials in muscle fibres from single-fibre extracellular potentials.

    PubMed

    Rodríguez, Javier; Navallas, Javier; Gila, Luis; Dimitrova, Nonna Alexandrovna; Malanda, Armando

    2011-04-30

    In situ recording of the intracellular action potential (IAP) of human muscle fibres is not yet possible, and consequently, knowledge concerning certain IAP characteristics is still limited. According to the core-conductor theory, close to a fibre, a single fibre action potential (SFAP) can be assumed to be proportional to the IAP second derivative. Thus, we might expect to be able to derive some characteristics of the IAP, such as the duration of its spike, from the SFAP waveform. However, SFAP properties not only depend on the IAP shape but also on the fibre-to-electrode (radial) distance and other physiological properties of the fibre. In this paper we, first, propose an SFAP parameter (the negative phase duration, NPD) appropriate for estimating the IAP spike duration and, second, show that this parameter is largely independent of changes in radial distance and muscle fibre propagation velocity. Estimation of the IAP spike duration from a direct measurement taken from the SFAP waveform provides a possible way to enhance the accuracy of SFAP models. Because IAP spike duration is known to be sensitive to the effects of fatigue and calcium accumulation, the proposed SFAP parameter, the NPD, has potential value in electrodiagnosis and as an indicator of IAP profile changes due to peripheral fatigue. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Surface deformation during an action potential in pearled cells

    NASA Astrophysics Data System (ADS)

    Mussel, Matan; Fillafer, Christian; Ben-Porath, Gal; Schneider, Matthias F.

    2017-11-01

    Electric pulses in biological cells (action potentials) have been reported to be accompanied by a propagating cell-surface deformation with a nanoscale amplitude. Typically, this cell surface is covered by external layers of polymer material (extracellular matrix, cell wall material, etc.). It was recently demonstrated in excitable plant cells (Chara braunii) that the rigid external layer (cell wall) hinders the underlying deformation. When the cell membrane was separated from the cell wall by osmosis, a mechanical deformation, in the micrometer range, was observed upon excitation of the cell. The underlying mechanism of this mechanical pulse has, to date, remained elusive. Herein we report that Chara cells can undergo a pearling instability, and when the pearled fragments were excited even larger and more regular cell shape changes were observed (˜10 -100 μ m in amplitude). These transient cellular deformations were captured by a curvature model that is based on three parameters: surface tension, bending rigidity, and pressure difference across the surface. In this paper these parameters are extracted by curve-fitting to the experimental cellular shapes at rest and during excitation. This is a necessary step to identify the mechanical parameters that change during an action potential.

  1. ParamAP: Standardized Parameterization of Sinoatrial Node Myocyte Action Potentials.

    PubMed

    Rickert, Christian; Proenza, Catherine

    2017-08-22

    Sinoatrial node myocytes act as cardiac pacemaker cells by generating spontaneous action potentials (APs). Much information is encoded in sinoatrial AP waveforms, but both the analysis and the comparison of AP parameters between studies is hindered by the lack of standardized parameter definitions and the absence of automated analysis tools. Here we introduce ParamAP, a standalone cross-platform computational tool that uses a template-free detection algorithm to automatically identify and parameterize APs from text input files. ParamAP employs a graphic user interface with automatic and user-customizable input modes, and it outputs data files in text and PDF formats. ParamAP returns a total of 16 AP waveform parameters including time intervals such as the AP duration, membrane potentials such as the maximum diastolic potential, and rates of change of the membrane potential such as the diastolic depolarization rate. ParamAP provides a robust AP detection algorithm in combination with a standardized AP parameter analysis over a wide range of AP waveforms and firing rates, owing in part to the use of an iterative algorithm for the determination of the threshold potential and the diastolic depolarization rate that is independent of the maximum upstroke velocity, a parameter that can vary significantly among sinoatrial APs. Because ParamAP is implemented in Python 3, it is also highly customizable and extensible. In conclusion, ParamAP is a powerful computational tool that facilitates quantitative analysis and enables comparison of sinoatrial APs by standardizing parameter definitions and providing an automated work flow. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Fitting membrane resistance along with action potential shape in cardiac myocytes improves convergence: application of a multi-objective parallel genetic algorithm.

    PubMed

    Kaur, Jaspreet; Nygren, Anders; Vigmond, Edward J

    2014-01-01

    Fitting parameter sets of non-linear equations in cardiac single cell ionic models to reproduce experimental behavior is a time consuming process. The standard procedure is to adjust maximum channel conductances in ionic models to reproduce action potentials (APs) recorded in isolated cells. However, vastly different sets of parameters can produce similar APs. Furthermore, even with an excellent AP match in case of single cell, tissue behaviour may be very different. We hypothesize that this uncertainty can be reduced by additionally fitting membrane resistance (Rm). To investigate the importance of Rm, we developed a genetic algorithm approach which incorporated Rm data calculated at a few points in the cycle, in addition to AP morphology. Performance was compared to a genetic algorithm using only AP morphology data. The optimal parameter sets and goodness of fit as computed by the different methods were compared. First, we fit an ionic model to itself, starting from a random parameter set. Next, we fit the AP of one ionic model to that of another. Finally, we fit an ionic model to experimentally recorded rabbit action potentials. Adding the extra objective (Rm, at a few voltages) to the AP fit, lead to much better convergence. Typically, a smaller MSE (mean square error, defined as the average of the squared error between the target AP and AP that is to be fitted) was achieved in one fifth of the number of generations compared to using only AP data. Importantly, the variability in fit parameters was also greatly reduced, with many parameters showing an order of magnitude decrease in variability. Adding Rm to the objective function improves the robustness of fitting, better preserving tissue level behavior, and should be incorporated.

  3. Quantum action for time-dependent Ginzburg-Landau equations

    NASA Astrophysics Data System (ADS)

    Thompson, R. S.

    1994-02-01

    A gauge-invariant formula is derived for the quantum action of a dirty superconductor with strong pair breaking. The major complication is the coupling between the order parameter and the electro-chemical potential, which is most simply expressed as an imaginary time integral. The perturbative modes of excitation are identified.

  4. Ephaptic conduction in a cardiac strand model with 3D electrodiffusion

    PubMed Central

    Mori, Yoichiro; Fishman, Glenn I.; Peskin, Charles S.

    2008-01-01

    We study cardiac action potential propagation under severe reduction in gap junction conductance. We use a mathematical model of cellular electrical activity that takes into account both three-dimensional geometry and ionic concentration effects. Certain anatomical and biophysical parameters are varied to see their impact on cardiac action potential conduction velocity. This study uncovers quantitative features of ephaptic propagation that differ from previous studies based on one-dimensional models. We also identify a mode of cardiac action potential propagation in which the ephaptic and gap-junction-mediated mechanisms alternate. Our study demonstrates the usefulness of this modeling approach for electrophysiological systems especially when detailed membrane geometry plays an important role. PMID:18434544

  5. A physical action potential generator: design, implementation and evaluation.

    PubMed

    Latorre, Malcolm A; Chan, Adrian D C; Wårdell, Karin

    2015-01-01

    The objective was to develop a physical action potential generator (Paxon) with the ability to generate a stable, repeatable, programmable, and physiological-like action potential. The Paxon has an equivalent of 40 nodes of Ranvier that were mimicked using resin embedded gold wires (Ø = 20 μm). These nodes were software controlled and the action potentials were initiated by a start trigger. Clinically used Ag-AgCl electrodes were coupled to the Paxon for functional testing. The Paxon's action potential parameters were tunable using a second order mathematical equation to generate physiologically relevant output, which was accomplished by varying the number of nodes involved (1-40 in incremental steps of 1) and the node drive potential (0-2.8 V in 0.7 mV steps), while keeping a fixed inter-nodal timing and test electrode configuration. A system noise floor of 0.07 ± 0.01 μV was calculated over 50 runs. A differential test electrode recorded a peak positive amplitude of 1.5 ± 0.05 mV (gain of 40x) at time 196.4 ± 0.06 ms, including a post trigger delay. The Paxon's programmable action potential like signal has the possibility to be used as a validation test platform for medical surface electrodes and their attached systems.

  6. [Effect of pazufloxacin mesilate, a new quinolone antibacterial agent, for intravenous use on QT interval].

    PubMed

    Fukuda, Hitoshi; Morita, Yukie; Shiotani, Norio; Mizuo, Midori; Komae, Norihisa

    2004-08-01

    The potential for QT interval prolongation of pazufloxacin mesilate (PZFX mesilate), a new quinolone antibacterial agent for intravenous use, was investigated by in vitro and in vivo electrophysiology studies. Following results were obtained. In vitro electrophysiology study using guinea pig papillary muscles: PZFX mesilate (30-300 microM) had no effects on resting membrane potential (RMP), action potential amplitude (APA) and action potential duration (APD). Reference quinolones, sparfloxacin (3-30 microM) and moxifloxacin (10-100 microM), had no effects on RMP and APA, but significantly prolonged APD at more than 3 and 10 microM, respectively, while ciprofloxacin (10-100 microM) had no effect on each parameter. In vivo electrophysiology study using anesthetized dogs: PZFX mesilate had no effects on electrocardiograph parameter (PR interval, QRS interval, QT interval and QTc) after intravenous administration of 3-30 mg/kg. These results suggest that PZFX mesilate has low potential for QT interval prolongation.

  7. ACTION-SPACE CLUSTERING OF TIDAL STREAMS TO INFER THE GALACTIC POTENTIAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanderson, Robyn E.; Helmi, Amina; Hogg, David W., E-mail: robyn@astro.columbia.edu

    2015-03-10

    We present a new method for constraining the Milky Way halo gravitational potential by simultaneously fitting multiple tidal streams. This method requires three-dimensional positions and velocities for all stars to be fit, but does not require identification of any specific stream or determination of stream membership for any star. We exploit the principle that the action distribution of stream stars is most clustered when the potential used to calculate the actions is closest to the true potential. Clustering is quantified with the Kullback-Leibler Divergence (KLD), which also provides conditional uncertainties for our parameter estimates. We show, for toy Gaia-like datamore » in a spherical isochrone potential, that maximizing the KLD of the action distribution relative to a smoother distribution recovers the input potential. The precision depends on the observational errors and number of streams; using K III giants as tracers, we measure the enclosed mass at the average radius of the sample stars accurate to 3% and precise to 20%-40%. Recovery of the scale radius is precise to 25%, biased 50% high by the small galactocentric distance range of stars in our mock sample (1-25 kpc, or about three scale radii, with mean 6.5 kpc). 20-25 streams with at least 100 stars each are required for a stable confidence interval. With radial velocities (RVs) to 100 kpc, all parameters are determined with ∼10% accuracy and 20% precision (1.3% accuracy for the enclosed mass), underlining the need to complete the RV catalog for faint halo stars observed by Gaia.« less

  8. The assessment of electrophysiological activity in human-induced pluripotent stem cell-derived cardiomyocytes exposed to dimethyl sulfoxide and ethanol by manual patch clamp and multi-electrode array system.

    PubMed

    Hyun, Soo-Wang; Kim, Bo-Ram; Hyun, Sung-Ae; Seo, Joung-Wook

    2017-09-01

    Recently, electrophysiological activity has been effectively measured in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to predict drug-induced arrhythmia. Dimethyl sulfoxide (DMSO) and ethanol have been used as diluting agents in many experiments. However, the maximum DMSO and ethanol concentrations that can be effectively used in the measurement of electrophysiological parameters in hiPSC-CMs-based patch clamp and multi-electrode array (MEA) have not been fully elucidated. We investigated the effects of varying concentrations of DMSO and ethanol used as diluting agents on several electrophysiological parameters in hiPSC-CMs using patch clamp and MEA. Both DMSO and ethanol at concentrations>1% in external solution resulted in osmolality >400mOsmol/kg, but pH was not affected by either agent. Neither DMSO nor ethanol led to cell death at the concentrations examined. However, resting membrane potential, action potential amplitude, action potential duration at 90% and 40%, and corrected field potential duration were decreased significantly at 1% ethanol concentration. DMSO at 1% also significantly decreased the sodium spike amplitude. In addition, the waveform of action potential and field potential was recorded as irregular at 3% concentrations of both DMSO and ethanol. Concentrations of up to 0.3% of either agent did not affect osmolality, pH, cell death, or electrophysiological parameters in hiPSC-CMs. Our findings suggest that 0.3% is the maximum concentration at which DMSO or ethanol should be used for dilution purposes in hiPSC-CMs-based patch clamp and MEA. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Modified screening interaction potential on dust lattice waves in dusty plasma ring

    NASA Astrophysics Data System (ADS)

    He, Kerong; Chen, Hui; Liu, Sanqiu

    2017-05-01

    In the present paper, the modified screening interaction potential was adopted to investigate the dust lattice waves in dusty ring. Firstly, the influence of parameter ε on the modified screening interaction potential was analyzed; and it was found that the parameter ε has a long-range effect on the pairwise interaction between the particles. Secondly, the dispersion relations of longitudinal and transverse waves are obtained, and the effect of long-range action parameter ε, dimensionless lattice parameter α and dimensionless shielding parameter \\tilde{κ } on the dust lattice waves propagation in dusty ring are studied. Some interesting phenomena, such as the coupling of longitudinal and transverse waves, and instabilities of transverse waves are found, which are in good agreement with some previous works. Finally, the transverse wave instabilities and the relevant critical lattice parameter αc are presented and discussed.

  10. Action potentials in retinal ganglion cells are initiated at the site of maximal curvature of the extracellular potential.

    PubMed

    Eickenscheidt, Max; Zeck, Günther

    2014-06-01

    The initiation of an action potential by extracellular stimulation occurs after local depolarization of the neuronal membrane above threshold. Although the technique shows remarkable clinical success, the site of action and the relevant stimulation parameters are not completely understood. Here we identify the site of action potential initiation in rabbit retinal ganglion cells (RGCs) interfaced to an array of extracellular capacitive stimulation electrodes. We determine which feature of the extracellular potential governs action potential initiation by simultaneous stimulation and recording RGCs interfaced in epiretinal configuration. Stimulation electrodes were combined to areas of different size and were presented at different positions with respect to the RGC. Based on stimulation by electrodes beneath the RGC soma and simultaneous sub-millisecond latency measurement we infer axonal initiation at the site of maximal curvature of the extracellular potential. Stimulation by electrodes at different positions along the axon reveals a nearly constant threshold current density except for a narrow region close to the cell soma. These findings are explained by the concept of the activating function modified to consider a region of lower excitability close to the cell soma. We present a framework how to estimate the site of action potential initiation and the stimulus required to cross threshold in neurons tightly interfaced to capacitive stimulation electrodes. Our results underscore the necessity of rigorous electrical characterization of the stimulation electrodes and of the interfaced neural tissue.

  11. Optimal parameters uncoupling vibration modes of oscillators

    NASA Astrophysics Data System (ADS)

    Le, K. C.; Pieper, A.

    2017-07-01

    This paper proposes a novel optimization concept for an oscillator with two degrees of freedom. By using specially defined motion ratios, we control the action of springs to each degree of freedom of the oscillator. We aim at showing that, if the potential action of the springs in one period of vibration, used as the payoff function for the conservative oscillator, is maximized among all admissible parameters and motions satisfying Lagrange's equations, then the optimal motion ratios uncouple vibration modes. A similar result holds true for the dissipative oscillator having dampers. The application to optimal design of vehicle suspension is discussed.

  12. An Action Learning Approach to the Question: Are Ambulance Response Time Targets Achievable?

    ERIC Educational Resources Information Center

    Slater, Alan

    2017-01-01

    In recent years, NHS Ambulance Trusts throughout the UK have consistently failed to achieve their response time targets for both actual and potential life-threatening calls. To avoid a media and public outcry, the NHS response has been to change the basic parameters upon which the response time targets are calculated. An action learning study,…

  13. Gravity, antigravity and gravitational shielding in (2+1) dimensions

    NASA Astrophysics Data System (ADS)

    Accioly, Antonio; Helayël-Neto, José; Lobo, Matheus

    2009-07-01

    Higher-derivative terms are introduced into three-dimensional gravity, thereby allowing for a dynamical theory. The resulting system, viewed as a classical field model, is endowed with a novel and peculiar feature: its nonrelativistic potential describes three gravitational regimes. Depending on the choice of the parameters in the action functional, one obtains gravity, antigravity or gravitational shielding. Interesting enough, this potential is very similar, mutatis mutandis, to the potential for the interaction of two superconducting vortices. Furthermore, the gravitational deflection angle of a light ray, unlike that of Einstein gravity in (2+1) dimensions, is dependent on the impact parameter.

  14. Auditory steady-state evoked potentials vs. compound action potentials for the measurement of suppression tuning curves in the sedated dog puppy.

    PubMed

    Markessis, Emily; Poncelet, Luc; Colin, Cécile; Hoonhorst, Ingrid; Collet, Grégory; Deltenre, Paul; Moore, Brian C J

    2010-06-01

    Auditory steady-state evoked potential (ASSEP) tuning curves were compared to compound action potential (CAP) tuning curves, both measured at 2 Hz, using sedated beagle puppies. The effect of two types of masker (narrowband noise and sinusoidal) on the tuning curve parameters was assessed. Whatever the masker type, CAP tuning curve parameters were qualitatively and quantitatively similar to the ASSEP ones, with a similar inter-subject variability, but with a greater incidence of upward tip displacement. Whatever the procedure, sinusoidal maskers produced sharper tuning curves than narrow-band maskers. Although these differences are not likely to have significant implications for clinical work, from a fundamental point of view, their origin requires further investigations. The same amount of time was needed to record a CAP and an ASSEP 13-point tuning curve. The data further validate the ASSEP technique, which has the advantages of having a smaller tendency to produce upward tip shifts than the CAP technique. Moreover, being non invasive, ASSEP tuning curves can be easily repeated over time in the same subject for clinical and research purposes.

  15. Analysis of compound action potentials elicited with specific current stimulating pulses in an isolated rat sciatic nerve.

    PubMed

    Žužek, Monika C; Rozman, Janez; Pečlin, Polona; Vrecl, Milka; Frangež, Robert

    2017-02-01

    The ability to selectively stimulate Aα, Aβ-fibers and Aδ-fibers in an isolated rat sciatic nerve (SNR) was assessed. The stimulus used was a current, biphasic pulse with a quasitrapezoidal cathodic phase and rectangular anodic phase where parameters were systematically varied: intensity of the cathodic phase (ic); width of the cathodic phase (tc); width of the cathodic exponential decay (texp) and time constant of the exponential decay (τexp). A SNR was stimulated using a pair of hook electrodes while conduction velocity (CV) and compound action potentials (CAP) were measured at two sites along the SNR using another two pairs of electrodes. Results showed that the highest CAP1 (8.5-9 mV), shall be expected when parameters of the stimulus were within the following range: ic=3.8-4 mA, tc=350-400 μs and texp=330-440 μs. Results also showed that with ascending tc and texp, CV of the corresponding superficial region of the SNR was reduced in both, conduction velocity of CAP1 and conduction velocity of CAP2. It was concluded that action potentials (APs) were activated in the Aβ-fibers and Aδ-fibers along with a slight AP inhibition in the Aβ-fibers. The obtained results, could serve as a tool for developing multi-electrode systems that potentially enable fiber-type selective stimulation of nerve fibers.

  16. Effects of Sulbutiamine on Diabetic Polyneuropathy: An Open Randomised Controlled Study in Type 2 Diabetics

    PubMed Central

    Kiew, K.K.; Wan Mohamad, W.B.; Ridzuan, A.; Mafauzy, M.

    2002-01-01

    Thirty patients with diabetic polyneuropathy were recruited from the diabetic clinic in Hospital Universiti Sains Malaysia from 1996 to 1998. They were randomly assigned either sulbutiamine (Arcalion®) (15 patients) or no treatment (control group; 15 patients). Glycaemic control was assessed by blood glucose and HbA1. Severity of neuropathy was assessed by symptom and sign score, and electrophysiological parameters (nerve conduction velocity and compound muscle action potential) at entry to the study and after 6 weeks. There were improvements in the electrophysiological parameters in the treatment group when compared to the controls with significant improvement in the median nerve conduction velocity (p<0.001), median compound muscle action potential (p<0.001), peroneal nerve conduction velocity (p<0.001), and peroneal compound muscle action potential (p<0.001). No significant improvement in symptom and sign scores were noted between the groups but a significant improvement compared to base line was noted for the sulbutiamine treated group. (p< 0.05). The glycaemic control in both groups was not significantly different at base line and was stable throughout the study. Sulbutiamine objectively improved peripheral nerve function in diabetic polyneuropathy although the symptom score did not improve, possibly due to the short duration of the study. PMID:22969314

  17. Effects of sulbutiamine on diabetic polyneuropathy: an open randomised controlled study in type 2 diabetics.

    PubMed

    Kiew, K K; Wan Mohamad, W B; Ridzuan, A; Mafauzy, M

    2002-01-01

    Thirty patients with diabetic polyneuropathy were recruited from the diabetic clinic in Hospital Universiti Sains Malaysia from 1996 to 1998. They were randomly assigned either sulbutiamine (Arcalion(®)) (15 patients) or no treatment (control group; 15 patients). Glycaemic control was assessed by blood glucose and HbA1. Severity of neuropathy was assessed by symptom and sign score, and electrophysiological parameters (nerve conduction velocity and compound muscle action potential) at entry to the study and after 6 weeks. There were improvements in the electrophysiological parameters in the treatment group when compared to the controls with significant improvement in the median nerve conduction velocity (p<0.001), median compound muscle action potential (p<0.001), peroneal nerve conduction velocity (p<0.001), and peroneal compound muscle action potential (p<0.001). No significant improvement in symptom and sign scores were noted between the groups but a significant improvement compared to base line was noted for the sulbutiamine treated group. (p< 0.05). The glycaemic control in both groups was not significantly different at base line and was stable throughout the study. Sulbutiamine objectively improved peripheral nerve function in diabetic polyneuropathy although the symptom score did not improve, possibly due to the short duration of the study.

  18. Conducting processes in simulated chronic inflammatory demyelinating polyneuropathy at 20°C-42°C.

    PubMed

    Stephanova, D I; Daskalova, M; Mladenov, M

    2015-03-01

    Decreased conducting processes leading usually to conduction block and increased weakness of limbs during cold (cold paresis) or warmth (heat paresis) have been reported in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). To explore the mechanisms of these symptoms, the effects of temperature (from 20°C to 42°C) on nodal action potentials and their current kinetics in previously simulated case of 70% CIDP are investigated, using our temperature dependent multi-layered model of the myelinated human motor nerve fiber. The results show that potential amplitudes have a bifid form at 20°C. As in the normal case, for the CIDP case, the nodal action potentials are determined mainly by the nodal sodium currents (I Na ) for the temperature range of 20-39°C, as the contribution of nodal fast and slow potassium currents (I Kf and I Ks ) to the total ionic current (Ii) is negligible. Also, the contribution of I Kf and I Ks to the membrane repolarization is enhanced at temperatures higher than 39°C. However, in the temperature range of 20-42°C, all potential parameters in the CIDP case, except for the conduction block during hyperthermia (≥ 40°C) which is again at 45°C, worsen: (i) conduction velocities and potential amplitudes are decreased; (ii) afterpotentials and threshold stimulus currents for the potential generation are increased; (iii) the current kinetics of action potentials is slowed and (iv) the conduction block during hypothermia (≤ 25°C) is at temperatures lower than 20°C. These potential parameters are more altered during hyperthermia and are most altered during hypothermia. The present results suggest that the conducting processes in patients with CIDP are in higher risk during hypothermia than hyperthermia.

  19. Construction of non-Abelian gauge theories on noncommutative spaces

    NASA Astrophysics Data System (ADS)

    Jurčo, B.; Möller, L.; Schraml, S.; Schupp, P.; Wess, J.

    We present a formalism to explicitly construct non-Abelian gauge theories on noncommutative spaces (induced via a star product with a constant Poisson tensor) from a consistency relation. This results in an expansion of the gauge parameter, the noncommutative gauge potential and fields in the fundamental representation, in powers of a parameter of the noncommutativity. This allows the explicit construction of actions for these gauge theories.

  20. [Effect of plasma membrane ion permeability modulators on respiration and heat output of wheat roots].

    PubMed

    Alekseeva, V A; Gordon, L Kh; Loseva, N L; Rakhimova, G G; Tsentsevitskiĭ, A N

    2006-01-01

    A study was made of changes in the rates of respiration, heat production, and membrane characteristics in cells of excised roots of wheat seedlings under the modulation of plasma membrane ion permeability by two membrane active compounds: valinomycin (20 microM (V50)) and chlorpromazine (50 microM (CP50) and 100 microM (CP100)). Both compounds increased the loss of potassium ions, which correlated with the lowering of membrane potential, rate of respiration, and heat production after a 2 h exposure. The differences in alteration of these parameters were due to specific action of either compound on the membrane and to the extent of ion homeostasis disturbance. V20 had a weak effect on the studied parameters. V50 caused an increase of the rate of respiration and heat production, which enhanced following a prolonged action (5 h) and were associated with ion homeostatis restoration. The extent of alteration of membrane characteristics (an increase of potassium loss by roots, and lowering of cell membrane potential) as well as energy expense under the action of CP50 during the first period were more pronounced than in the presence of V50. During a prolonged action of CP50, the increase of respiration intensity and heat production correlated with partial recovery of ion homeostatis in cells. Essential lowering of membrane potential and substantial loss of potassium by cells, starting from the early stages of their response reaction, were followed by inhibition of respiration rate and heat production. Alterations of the structure and functional characteristics of excised root cells indicate the intensification of the membrane-tropic effect of a prolonged action of CP100, and the lack of cell energy resources.

  1. An infrared optical pacing system for high-throughput screening of cardiac electrophysiology in human cardiomyocytes (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    McPheeters, Matt T.; Wang, Yves T.; Laurita, Kenneth R.; Jenkins, Michael W.

    2017-02-01

    Cardiomyocytes derived from human induced pluripotent stem cells (hiPS-HCM) have the potential to provide individualized therapies for patients and to test drug candidates for cardiac toxicity. In order for hiPS-CM to be useful for such applications, there is a need for high-throughput technology to rapidly assess cardiac electrophysiology parameters. Here, we designed and tested a fully contactless optical mapping (OM) and optical pacing (OP) system capable of imaging and point stimulation of hiPS-CM in small wells. OM allowed us to characterize cardiac electrophysiological parameters (conduction velocity, action potential duration, etc.) using voltage-sensitive dyes with high temporal and spatial resolution over the entire well. To improve OM signal-to-noise ratio, we tested a new voltage-sensitive dye (Fluovolt) for accuracy and phototoxicity. Stimulation is essential because most electrophysiological parameters are rate dependent; however, traditional methods utilizing electrical stimulation is difficult in small wells. To overcome this limitation, we utilized OP (λ = 1464 nm) to precisely control heart rate with spatial precision without the addition of exogenous agents. We optimized OP parameters (e.g., well size, pulse width, spot size) to achieve robust pacing and minimize the threshold radiant exposure. Finally, we tested system sensitivity using Flecainide, a drug with well described action on multiple electrophysiological properties.

  2. Power-Law Dynamics of Membrane Conductances Increase Spiking Diversity in a Hodgkin-Huxley Model.

    PubMed

    Teka, Wondimu; Stockton, David; Santamaria, Fidel

    2016-03-01

    We studied the effects of non-Markovian power-law voltage dependent conductances on the generation of action potentials and spiking patterns in a Hodgkin-Huxley model. To implement slow-adapting power-law dynamics of the gating variables of the potassium, n, and sodium, m and h, conductances we used fractional derivatives of order η≤1. The fractional derivatives were used to solve the kinetic equations of each gate. We systematically classified the properties of each gate as a function of η. We then tested if the full model could generate action potentials with the different power-law behaving gates. Finally, we studied the patterns of action potential that emerged in each case. Our results show the model produces a wide range of action potential shapes and spiking patterns in response to constant current stimulation as a function of η. In comparison with the classical model, the action potential shapes for power-law behaving potassium conductance (n gate) showed a longer peak and shallow hyperpolarization; for power-law activation of the sodium conductance (m gate), the action potentials had a sharp rise time; and for power-law inactivation of the sodium conductance (h gate) the spikes had wider peak that for low values of η replicated pituitary- and cardiac-type action potentials. With all physiological parameters fixed a wide range of spiking patterns emerged as a function of the value of the constant input current and η, such as square wave bursting, mixed mode oscillations, and pseudo-plateau potentials. Our analyses show that the intrinsic memory trace of the fractional derivative provides a negative feedback mechanism between the voltage trace and the activity of the power-law behaving gate variable. As a consequence, power-law behaving conductances result in an increase in the number of spiking patterns a neuron can generate and, we propose, expand the computational capacity of the neuron.

  3. Kinematic constraints associated with the acquisition of overarm throwing part II: upper extremity actions.

    PubMed

    Stodden, David F; Langendorfer, Stephen J; Fleisig, Glenn S; Andrews, James R

    2006-12-01

    The purposes of this study were to: (a) examine the differences within 11 specific kinematic variables and an outcome measure (ball velocity) associated with component developmental levels of humerus and forearm action (Roberton & Halverson, 1984), and (b) if the differences in kinematic variables were significantly associated with the differences in component levels, determine potential kinematic constraints associated with skilled throwing acquisition. Significant differences among component levels in five of six humerus kinematic variables (p <.01) and all five forearm kinematic variables (p < .01) were identified using multivariate analysis of variance. These kinematic variables represent potential control parameters and, therefore, constraints on overarm throwing acquisition.

  4. Force Management Methods Task II. Volume III. Attack/Fighter/Trainer Aircraft Evaluation of Potential Improved Methods

    DTIC Science & Technology

    1980-11-01

    structural manager. The designation "ASIMISH is used in the subsequent discussions to avoid the impression that a new organization must be created to...mission changes on the structural integrity of the airframe. New maintenance action schedules are created to conform with the operational realities of... created to further divide this information. In fact, the ASIP maintenance action parameters and data for the A-7D ( and other airplanes) is being

  5. Block of voltage-gated potassium channels by Pacific ciguatoxin-1 contributes to increased neuronal excitability in rat sensory neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birinyi-Strachan, Liesl C.; Gunning, Simon J.; Lewis, Richard J.

    2005-04-15

    The present study investigated the actions of the polyether marine toxin Pacific ciguatoxin-1 (P-CTX-1) on neuronal excitability in rat dorsal root ganglion (DRG) neurons using patch-clamp recording techniques. Under current-clamp conditions, bath application of 2-20 nM P-CTX-1 caused a rapid, concentration-dependent depolarization of the resting membrane potential in neurons expressing tetrodotoxin (TTX)-sensitive voltage-gated sodium (Na{sub v}) channels. This action was completely suppressed by the addition of 200 nM TTX to the external solution, indicating that this effect was mediated through TTX-sensitive Na{sub v} channels. In addition, P-CTX-1 also prolonged action potential and afterhyperpolarization (AHP) duration. In a subpopulation of neurons,more » P-CTX-1 also produced tonic action potential firing, an effect that was not accompanied by significant oscillation of the resting membrane potential. Conversely, in neurons expressing TTX-resistant Na{sub v} currents, P-CTX-1 failed to alter any parameter of neuronal excitability examined in this study. Under voltage-clamp conditions in rat DRG neurons, P-CTX-1 inhibited both delayed-rectifier and 'A-type' potassium currents in a dose-dependent manner, actions that occurred in the absence of alterations to the voltage dependence of activation. These actions appear to underlie the prolongation of the action potential and AHP, and contribute to repetitive firing. These data indicate that a block of potassium channels contributes to the increase in neuronal excitability, associated with a modulation of Na{sub v} channel gating, observed clinically in response to ciguatera poisoning.« less

  6. Influence of asymmetric attenuation of single and paired dendritic inputs on summation of synaptic potentials and initiation of action potentials.

    PubMed

    Fortier, Pierre A; Bray, Chelsea

    2013-04-16

    Previous studies revealed mechanisms of dendritic inputs leading to action potential initiation at the axon initial segment and backpropagation into the dendritic tree. This interest has recently expanded toward the communication between different parts of the dendritic tree which could preprocess information before reaching the soma. This study tested for effects of asymmetric voltage attenuation between different sites in the dendritic tree on summation of synaptic inputs and action potential initiation using the NEURON simulation environment. Passive responses due to the electrical equivalent circuit of the three-dimensional neuron architecture with leak channels were examined first, followed by the responses after adding voltage-gated channels and finally synaptic noise. Asymmetric attenuation of voltage, which is a function of asymmetric input resistance, was seen between all pairs of dendritic sites but the transfer voltages (voltage recorded at the opposite site from stimulation among a pair of dendritic sites) were equal and also summed linearly with local voltage responses during simultaneous stimulation of both sites. In neurons with voltage-gated channels, we reproduced the observations where a brief stimulus to the proximal ascending dendritic branch of a pyramidal cell triggers a local action potential but a long stimulus triggers a somal action potential. Combined stimulation of a pair of sites in this proximal dendrite did not alter this pattern. The attraction of the action potential onset toward the soma with a long stimulus in the absence of noise was due to the higher density of voltage-gated sodium channels at the axon initial segment. This attraction was, however, negligible at the most remote distal dendritic sites and was replaced by an effect due to high input resistance. Action potential onset occurred at the dendritic site of higher input resistance among a pair of remote dendritic sites, irrespective of which of these two sites received the synaptic input. Exploration of the parameter space showed how the gradient of voltage-gated channel densities and input resistances along a dendrite could draw the action potential onset away from the stimulation site. The attraction of action potential onset toward the higher density of voltage-gated channels in the soma during stimulation of the proximal dendrite was, however, reduced after the addition of synaptic noise. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Hawking-Moss instanton in nonlinear massive gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ying-li; Saito, Ryo; Sasaki, Misao, E-mail: yingli@yukawa.kyoto-u.ac.jp, E-mail: rsaito@yukawa.kyoto-u.ac.jp, E-mail: misao@yukawa.kyoto-u.ac.jp

    2013-02-01

    As a first step toward understanding a lanscape of vacua in a theory of non-linear massive gravity, we consider a landscape of a single scalar field and study tunneling between a pair of adjacent vacua. We study the Hawking-Moss (HM) instanton that sits at a local maximum of the potential, and evaluate the dependence of the tunneling rate on the parameters of the theory. It is found that provided with the same physical HM Hubble parameter H{sub HM}, depending on the values of parameters α{sub 3} and α{sub 4} in the action (2.2), the corresponding tunneling rate can be eithermore » enhanced or suppressed when compared to the one in the context of General Relativity (GR). Furthermore, we find the constraint on the ratio of the physical Hubble parameter to the fiducial one, which constrains the form of potential. This result is in sharp contrast to GR where there is no bound on the minimum value of the potential.« less

  8. Mechanoelectric feedback in a model of the passively inflated left ventricle.

    PubMed

    Vetter, F J; McCulloch, A D

    2001-05-01

    Mechanoelectric feedback has been described in isolated cells and intact ventricular myocardium, but the mechanical stimulus that governs mechanosensitive channel activity in intact tissue is unknown. To study the interaction of myocardial mechanics and electrophysiology in multiple dimensions, we used a finite element model of the rabbit ventricles to simulate electrical propagation through passively loaded myocardium. Electrical propagation was simulated using the collocation-Galerkin finite element method. A stretch-dependent current was added in parallel to the ionic currents in the Beeler-Reuter ventricular action potential model. We investigated different mechanical coupling parameters to simulate stretch-dependent conductance modulated by either fiber strain, cross-fiber strain, or a combination of the two. In response to pressure loading, the conductance model governed by fiber strain alone reproduced the epicardial decrease in action potential amplitude as observed in experimental preparations of the passively loaded rabbit heart. The model governed by only cross-fiber strain reproduced the transmural gradient in action potential amplitude as observed in working canine heart experiments, but failed to predict a sufficient decrease in amplitude at the epicardium. Only the model governed by both fiber and cross-fiber strain reproduced the epicardial and transmural changes in action potential amplitude similar to experimental observations. In addition, dispersion of action potential duration nearly doubled with the same model. These results suggest that changes in action potential characteristics may be due not only to length changes along the long axis direction of the myofiber, but also due to deformation in the plane transverse to the fiber axis. The model provides a framework for investigating how cellular biophysics affect the function of the intact ventricles.

  9. A distributed real-time model of degradation in a solid oxide fuel cell, part II: Analysis of fuel cell performance and potential failures

    NASA Astrophysics Data System (ADS)

    Zaccaria, V.; Tucker, D.; Traverso, A.

    2016-09-01

    Solid oxide fuel cells are characterized by very high efficiency, low emissions level, and large fuel flexibility. Unfortunately, their elevated costs and relatively short lifetimes reduce the economic feasibility of these technologies at the present time. Several mechanisms contribute to degrade fuel cell performance during time, and the study of these degradation modes and potential mitigation actions is critical to ensure the durability of the fuel cell and their long-term stability. In this work, localized degradation of a solid oxide fuel cell is modeled in real-time and its effects on various cell parameters are analyzed. Profile distributions of overpotential, temperature, heat generation, and temperature gradients in the stack are investigated during degradation. Several causes of failure could occur in the fuel cell if no proper control actions are applied. A local analysis of critical parameters conducted shows where the issues are and how they could be mitigated in order to extend the life of the cell.

  10. A two-channel action-potential generator for testing neurophysiologic data acquisition/analysis systems.

    PubMed

    Lisiecki, R S; Voigt, H F

    1995-08-01

    A 2-channel action-potential generator system was designed for use in testing neurophysiologic data acquisition/analysis systems. The system consists of a personal computer controlling an external hardware unit. This system is capable of generating 2 channels of simulated action potential (AP) waveshapes. The AP waveforms are generated from the linear combination of 2 principal-component template functions. Each channel generates randomly occurring APs with a specified rate ranging from 1 to 200 events per second. The 2 trains may be independent of one another or the second channel may be made to be excited or inhibited by the events from the first channel with user-specified probabilities. A third internal channel may be made to excite or inhibit events in both of the 2 output channels with user-specified rate parameters and probabilities. The system produces voltage waveforms that may be used to test neurophysiologic data acquisition systems for recording from 2 spike trains simultaneously and for testing multispike-train analysis (e.g., cross-correlation) software.

  11. Recording evoked potentials during deep brain stimulation: development and validation of instrumentation to suppress the stimulus artefact.

    PubMed

    Kent, A R; Grill, W M

    2012-06-01

    The clinical efficacy of deep brain stimulation (DBS) for the treatment of movement disorders depends on the identification of appropriate stimulation parameters. Since the mechanisms of action of DBS remain unclear, programming sessions can be time consuming, costly and result in sub-optimal outcomes. Measurement of electrically evoked compound action potentials (ECAPs) during DBS, generated by activated neurons in the vicinity of the stimulating electrode, could offer insight into the type and spatial extent of neural element activation and provide a potential feedback signal for the rational selection of stimulation parameters and closed-loop DBS. However, recording ECAPs presents a significant technical challenge due to the large stimulus artefact, which can saturate recording amplifiers and distort short latency ECAP signals. We developed DBS-ECAP recording instrumentation combining commercial amplifiers and circuit elements in a serial configuration to reduce the stimulus artefact and enable high fidelity recording. We used an electrical circuit equivalent model of the instrumentation to understand better the sources of the stimulus artefact and the mechanisms of artefact reduction by the circuit elements. In vitro testing validated the capability of the instrumentation to suppress the stimulus artefact and increase gain by a factor of 1000 to 5000 compared to a conventional biopotential amplifier. The distortion of mock ECAP (mECAP) signals was measured across stimulation parameters, and the instrumentation enabled high fidelity recording of mECAPs with latencies of only 0.5 ms for DBS pulse widths of 50 to 100 µs/phase. Subsequently, the instrumentation was used to record in vivo ECAPs, without contamination by the stimulus artefact, during thalamic DBS in an anesthetized cat. The characteristics of the physiological ECAP were dependent on stimulation parameters. The novel instrumentation enables high fidelity ECAP recording and advances the potential use of the ECAP as a feedback signal for the tuning of DBS parameters.

  12. Tibolone protects T98G cells from glucose deprivation.

    PubMed

    Ávila Rodriguez, Marco; Garcia-Segura, Luis Miguel; Cabezas, Ricardo; Torrente, Daniel; Capani, Francisco; Gonzalez, Janneth; Barreto, George E

    2014-10-01

    The steroidal drug Tibolone is used for the treatment of climacteric symptoms and osteoporosis in post-menopausal women. Although Tibolone has been shown to exert neuroprotective actions after middle cerebral artery occlusion, its specific actions on glial cells have received very little attention. In the present study we have assessed whether Tibolone exerts protective actions in a human astrocyte cell model, the T98G cells, subjected to glucose deprivation. Our findings indicate that Tibolone decreases the effects of glucose deprivation on cell death, nuclear fragmentation, superoxide ion production, mitochondrial membrane potential, cytoplasmic calcium concentration and morphological parameters. These findings suggest that glial cells may participate in the neuroprotective actions of Tibolone in the brain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Effects of redox and sulfhydryl reagents on the bioelectric properties of the giant axon of the squid.

    PubMed

    Huneeus-Cox, F; Fernandez, H L; Smith, B H

    1966-09-01

    The effects of internally and externally applied sulfhydryl reagents on the bioelectric properties of the giant axon of the squid Loligo pealeii and Dosidicus gigas were studied. Cysteine-HCl (400 mM, pH 7.3) was used to remove axoplasm from the perfusion channel. Oxidizing agents (1 to 60 mM) tended to increase the duration of the action potential and had a slow, irreversible blocking effect when perfused internally; the membrane potential was little affected. Reducing agents applied internally caused a decrease in the spike duration without affecting its height or the membrane potential, although at high concentrations there was reversible deterioration of the action potential. Both external and internal perfusion of mercaptide-forming reagents caused deterioration in the action and membrane potentials with conduction block occurring in 5 to 45 min. 2-mercaptoethanol reversed the effects. Thiol alkylating reagents, iodoacetate and iodoacetamide, were without effect. N-ethylmaleimide did, however, block. Tests with chelating agents for nonheme iron in the membrane brought about no change in the electrical parameters. The implications of the present findings with regard to the macromolecular mechanism of excitation are discussed.

  14. Effects of Redox and Sulfhydryl Reagents on the Bioelectric Properties of the Giant Axon of the Squid

    PubMed Central

    Huneeus-Cox, F.; Fernandez, H. L.; Smith, B. H.

    1966-01-01

    The effects of internally and externally applied sulfhydryl reagents on the bioelectric properties of the giant axon of the squid Loligo pealeii and Dosidicus gigas were studied. Cysteine-HCl (400 mM, pH 7.3) was used to remove axoplasm from the perfusion channel. Oxidizing agents (1 to 60 mM) tended to increase the duration of the action potential and had a slow, irreversible blocking effect when perfused internally; the membrane potential was little affected. Reducing agents applied internally caused a decrease in the spike duration without affecting its height or the membrane potential, although at high concentrations there was reversible deterioration of the action potential. Both external and internal perfusion of mercaptide-forming reagents caused deterioration in the action and membrane potentials with conduction block occurring in 5 to 45 min. 2-mercaptoethanol reversed the effects. Thiol alkylating reagents, iodoacetate and iodoacetamide, were without effect. N-ethylmaleimide did, however, block. Tests with chelating agents for nonheme iron in the membrane brought about no change in the electrical parameters. The implications of the present findings with regard to the macromolecular mechanism of excitation are discussed. ImagesFigure 1 PMID:5970570

  15. Variability of acute extracellular action potential measurements with multisite silicon probes

    PubMed Central

    Scott, Kimberly M.; Du, Jiangang; Lester, Henry A.; Masmanidis, Sotiris C.

    2012-01-01

    Device miniaturization technologies have led to significant advances in sensors for extracellular measurements of electrical activity in the brain. Multisite, silicon-based probes containing implantable electrode arrays afford greater coverage of neuronal activity than single electrodes and therefore potentially offer a more complete view of how neuronal ensembles encode information. However, scaling up the number of sites is not sufficient to ensure capture of multiple neurons, as action potential signals from extracellular electrodes may vary due to numerous factors. In order to understand the large-scale recording capabilities and potential limitations of multisite probes, it is important to quantify this variability, and to determine whether certain key device parameters influence the recordings. Here we investigate the effect of four parameters, namely, electrode surface, width of the structural support shafts, shaft number, and position of the recording site relative to the shaft tip. This study employs acutely implanted silicon probes containing up to 64 recording sites, whose performance is evaluated by the metrics of noise, spike amplitude, and spike detection probability. On average, we find no significant effect of device geometry on spike amplitude and detection probability but we find significant differences among individual experiments, with the likelihood of detecting spikes varying by a factor of approximately three across trials. PMID:22971352

  16. On the continuous differentiability of inter-spike intervals of synaptically connected cortical spiking neurons in a neuronal network.

    PubMed

    Kumar, Gautam; Kothare, Mayuresh V

    2013-12-01

    We derive conditions for continuous differentiability of inter-spike intervals (ISIs) of spiking neurons with respect to parameters (decision variables) of an external stimulating input current that drives a recurrent network of synaptically connected neurons. The dynamical behavior of individual neurons is represented by a class of discontinuous single-neuron models. We report here that ISIs of neurons in the network are continuously differentiable with respect to decision variables if (1) a continuously differentiable trajectory of the membrane potential exists between consecutive action potentials with respect to time and decision variables and (2) the partial derivative of the membrane potential of spiking neurons with respect to time is not equal to the partial derivative of their firing threshold with respect to time at the time of action potentials. Our theoretical results are supported by showing fulfillment of these conditions for a class of known bidimensional spiking neuron models.

  17. Biological Effects of Nonionizing Electromagnetic Radiation. Volume IV. Number 4.

    DTIC Science & Technology

    1980-06-01

    absorbed power levels. The effect of EMR on CCAs will be evaluated using the following parameters: beat rate, maximum diastolic potential, action 0591...cerebral forma- superior olive were similar to those evoked by tions examined. The swelling of the cytoplasm was acoustic pulses presented binaurally at a

  18. Real-Time Kinetic Modeling of Voltage-Gated Ion Channels Using Dynamic Clamp

    PubMed Central

    Milescu, Lorin S.; Yamanishi, Tadashi; Ptak, Krzysztof; Mogri, Murtaza Z.; Smith, Jeffrey C.

    2008-01-01

    We propose what to our knowledge is a new technique for modeling the kinetics of voltage-gated ion channels in a functional context, in neurons or other excitable cells. The principle is to pharmacologically block the studied channel type, and to functionally replace it with dynamic clamp, on the basis of a computational model. Then, the parameters of the model are modified in real time (manually or automatically), with the objective of matching the dynamical behavior of the cell (e.g., action potential shape and spiking frequency), but also the transient and steady-state properties of the model (e.g., those derived from voltage-clamp recordings). Through this approach, one may find a model and parameter values that explain both the observed cellular dynamics and the biophysical properties of the channel. We extensively tested the method, focusing on Nav models. Complex Markov models (10–12 states or more) could be accurately integrated in real time at >50 kHz using the transition probability matrix, but not the explicit Euler method. The practicality of the technique was tested with experiments in raphe pacemaker neurons. Through automated real-time fitting, a Hodgkin-Huxley model could be found that reproduced well the action potential shape and the spiking frequency. Adding a virtual axonal compartment with a high density of Nav channels further improved the action potential shape. The computational procedure was implemented in the free QuB software, running under Microsoft Windows and featuring a friendly graphical user interface. PMID:18375511

  19. A computational framework for testing arrhythmia marker sensitivities to model parameters in functionally calibrated populations of atrial cells

    NASA Astrophysics Data System (ADS)

    Vagos, Márcia R.; Arevalo, Hermenegild; de Oliveira, Bernardo Lino; Sundnes, Joakim; Maleckar, Mary M.

    2017-09-01

    Models of cardiac cell electrophysiology are complex non-linear systems which can be used to gain insight into mechanisms of cardiac dynamics in both healthy and pathological conditions. However, the complexity of cardiac models can make mechanistic insight difficult. Moreover, these are typically fitted to averaged experimental data which do not incorporate the variability in observations. Recently, building populations of models to incorporate inter- and intra-subject variability in simulations has been combined with sensitivity analysis (SA) to uncover novel ionic mechanisms and potentially clarify arrhythmogenic behaviors. We used the Koivumäki human atrial cell model to create two populations, representing normal Sinus Rhythm (nSR) and chronic Atrial Fibrillation (cAF), by varying 22 key model parameters. In each population, 14 biomarkers related to the action potential and dynamic restitution were extracted. Populations were calibrated based on distributions of biomarkers to obtain reasonable physiological behavior, and subjected to SA to quantify correlations between model parameters and pro-arrhythmia markers. The two populations showed distinct behaviors under steady state and dynamic pacing. The nSR population revealed greater variability, and more unstable dynamic restitution, as compared to the cAF population, suggesting that simulated cAF remodeling rendered cells more stable to parameter variation and rate adaptation. SA revealed that the biomarkers depended mainly on five ionic currents, with noted differences in sensitivities to these between nSR and cAF. Also, parameters could be selected to produce a model variant with no alternans and unaltered action potential morphology, highlighting that unstable dynamical behavior may be driven by specific cell parameter settings. These results ultimately suggest that arrhythmia maintenance in cAF may not be due to instability in cell membrane excitability, but rather due to tissue-level effects which promote initiation and maintenance of reentrant arrhythmia.

  20. Differential roles of two delayed rectifier potassium currents in regulation of ventricular action potential duration and arrhythmia susceptibility.

    PubMed

    Devenyi, Ryan A; Ortega, Francis A; Groenendaal, Willemijn; Krogh-Madsen, Trine; Christini, David J; Sobie, Eric A

    2017-04-01

    Arrhythmias result from disruptions to cardiac electrical activity, although the factors that control cellular action potentials are incompletely understood. We combined mathematical modelling with experiments in heart cells from guinea pigs to determine how cellular electrical activity is regulated. A mismatch between modelling predictions and the experimental results allowed us to construct an improved, more predictive mathematical model. The balance between two particular potassium currents dictates how heart cells respond to perturbations and their susceptibility to arrhythmias. Imbalances of ionic currents can destabilize the cardiac action potential and potentially trigger lethal cardiac arrhythmias. In the present study, we combined mathematical modelling with information-rich dynamic clamp experiments to determine the regulation of action potential morphology in guinea pig ventricular myocytes. Parameter sensitivity analysis was used to predict how changes in ionic currents alter action potential duration, and these were tested experimentally using dynamic clamp, a technique that allows for multiple perturbations to be tested in each cell. Surprisingly, we found that a leading mathematical model, developed with traditional approaches, systematically underestimated experimental responses to dynamic clamp perturbations. We then re-parameterized the model using a genetic algorithm, which allowed us to estimate ionic current levels in each of the cells studied. This unbiased model adjustment consistently predicted an increase in the rapid delayed rectifier K + current and a drastic decrease in the slow delayed rectifier K + current, and this prediction was validated experimentally. Subsequent simulations with the adjusted model generated the clinically relevant prediction that the slow delayed rectifier is better able to stabilize the action potential and suppress pro-arrhythmic events than the rapid delayed rectifier. In summary, iterative coupling of simulations and experiments enabled novel insight into how the balance between cardiac K + currents influences ventricular arrhythmia susceptibility. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  1. Mechanical bioeffects of pulsed high intensity focused ultrasound on a simple neural model.

    PubMed

    Wahab, Radia Abdul; Choi, Mina; Liu, Yunbo; Krauthamer, Victor; Zderic, Vesna; Myers, Matthew R

    2012-07-01

    To study how pressure pulses affect nerves through mechanisms that are neither thermal nor cavitational, and investigate how the effects are related to cumulative radiation-force impulse (CRFI). Applications include traumatic brain injury and acoustic neuromodulation. A simple neural model consisting of the giant axon of a live earthworm was exposed to trains of pressure pulses produced by an 825 kHz focused ultrasound transducer. The peak negative pressure of the pulses and duty cycle of the pulse train were controlled so that neither cavitation nor significant temperature rise occurred. The amplitude and conduction velocity of action-potentials triggered in the worm were measured as the magnitude of the pulses and number of pulses in the pulse trains were varied. The functionality of the axons decreased when sufficient pulse energy was applied. The level of CRFI at which the observed effects occur is consistent with the lower levels of injury observed in this study relative to blast tubes. The relevant CRFI values are also comparable to CRFI values in other studies showing measureable changes in action-potential amplitudes and velocities. Plotting the measured action-potential amplitudes and conduction velocities from different experiments with widely varying exposure regimens against the single parameter of CRFI yielded values that agreed within 21% in terms of amplitude and 5% in velocity. A predictive model based on the assumption that the temporal rate of decay of action-potential amplitude and velocity is linearly proportional the radiation force experienced by the axon predicted the experimental amplitudes and conduction velocities to within about 20% agreement. The functionality of axons decreased due to noncavitational mechanical effects. The radiation force, possibly by inducing changes in ion-channel permeability, appears to be a possible mechanism for explaining the observed degradation. The CRFI is also a promising parameter for quantifying neural bioeffects during exposure to pressure waves, and for predicting axon functionality.

  2. Electrophysiological effects of haloperidol on isolated rabbit Purkinje fibers and guinea pigs papillary muscles under normal and simulated ischemia.

    PubMed

    Yan, Dong; Cheng, Lu-feng; Song, Hong-Yan; Turdi, Subat; Kerram, Parhat

    2007-08-01

    Overdoses of haloperidol are associated with major ventricular arrhythmias, cardiac conduction block, and sudden death. The aim of this experiment was to study the effect of haloperidol on the action potentials in cardiac Purkinje fibers and papillary muscles under normal and simulated ischemia conditions in rabbits and guinea pigs. Using the standard intracellular microelectrode technique, we examined the effects of haloperidol on the action potential parameters [action potential amplitude (APA), phase 0 maximum upstroke velocity (V(max)), action potential amplitude at 90% of repolarization (APD(90)), and effective refractory period (ERP)] in rabbit cardiac Purkinje fibers and guinea pig cardiac papillary cells, in which both tissues were under simulated ischemic conditions. Under ischemic conditions, different concentrations of haloperidol depressed APA and prolonged APD(90) in a concentration-dependent manner in rabbit Purkinje fibers. Haloperidol (3 micromol/L) significantly depressed APA and prolonged APD(90), and from 1 micromol/L, haloperidol showed significant depression on V(max); ERP was not significantly affected. In guinea pig cardiac papillary muscles, the thresholds of significant reduction in APA, V(max), EPR, and APD(90) were 10, 0.3, 1, and 1 mumol/L, respectively, for haloperidol. Compared with cardiac conductive tissues, papillary muscles were more sensitive to ischemic conditions. Under ischemia, haloperidol prolonged ERP and APD(90) in a concentration-dependent manner and precipitated the decrease in V(max) induced by ischemia. The shortening of ERP and APD(90) in papillary muscle action potentials may be inhibited by haloperidol.

  3. Effects of the new imidazopyridine CL 86-02-01 on isolated papillary muscle of guinea-pig hearts.

    PubMed

    Studenik, C; Lemmens-Gruber, R; Heistracher, P

    1998-06-01

    Inotropic activity and the effect of CL 86-02-01 (2-(3-methoxy-5-methylsulfinyl-2-thienyl)-1H-imidazo[4,5-c]pyridine hydrochloride, CAS 109 792-24-7) on membrane resting and action potentials were studied in isolated guinea-pig papillary muscles. Membrane resting potential and action potential parameters were not significantly changed, while CL 86-02-01 exerted a concentration-dependent inotropic effect by increasing the maximum rate of force development and maximum rate of force relaxation. Time to peak force, relaxation time and total contraction time were reduced. These effects are similar to those of beta-adrenergic drugs and phosphodiesterase inhibitors, but markedly differ from those described for other positive inotropic agents like cardiac glycosides, calcium agonists, alpha-adrenergic drugs or increased extracellular calcium concentration.

  4. Nonlinear oscillations in a muscle pacemaker cell model

    NASA Astrophysics Data System (ADS)

    González-Miranda, J. M.

    2017-02-01

    This article presents a numerical simulation study of the nonlinear oscillations displayed by the Morris-Lecar model [Biophys. J. 35 (1981) 193] for the oscillations experimentally observed in the transmembrane potential of a muscle fiber subject to an external electrical stimulus. We consider the model in the case when there is no external stimulation, aiming to establish the ability of the model to display biophysically reasonable pacemaker dynamics. We obtain 2D bifurcation diagrams showing that indeed the model presents oscillatory dynamics, displaying the two main types of action potentials that are observed in muscle fibers. The results obtained are shown to be structurally stable; that is, robust against changes in the values of system parameters. Moreover, it is demonstrated how the model is appropriate to analyze the action potentials observed in terms of the transmembrane currents creating them.

  5. Effects of Trichothecenes on Cardiac Cell Electrical Function

    DTIC Science & Technology

    1985-12-13

    Figure 8 illustrate the typical effects of trichothecene mycotoxins in canine ventricular cells. T-2 tetraol, for example, reduced the total duration of...potentials from false tendon cells and ventricular muscle cells (shown in Figure 8) illustrate the typical effects of trichothecene mycotoxins in canine...the plateau (arrow) from 14 my to 4 my. Table 6 summarizes the effects of T-2 mycotoxin on the action potential parameters of false tendon cells and

  6. Human stem cell-derived cardiomyocytes detect drug-mediated changes in action potentials and ion currents.

    PubMed

    Gibson, John K; Yue, Yimei; Bronson, Jared; Palmer, Cassie; Numann, Randy

    2014-01-01

    It has been proposed that proarrhythmia assessment for safety pharmacology testing includes the use of human pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) to detect drug-induced changes in cardiac electrophysiology. This study measured the actions of diverse agents on action potentials (AP) and ion currents recorded from hiPSC-CM. During AP experiments, the hiPSC-CM were paced at 1Hz during a baseline period, and when increasing concentrations of test compound were administered at 4-minute intervals. AP parameters, including duration (APD60 and APD90), resting membrane potential, rate of rise, and amplitude, were measured throughout the entire experiment. Voltage clamp experiments with E-4031 and nifedipine were similarly conducted. E-4031 produced a dose-dependent prolongation of cardiac action potential and blocked the hERG/IKr current with an IC50 of 17nM. At 3nM, dofetilide significantly increased APD90. Astemizole significantly increased APD60 and APD90 at 30nM. Terfenadine significantly increased APD90 at concentrations greater than 10nM. Fexofenadine, a metabolite of terfenadine, did not produce any electrophysiologic changes in cardiac action potentials. Flecainide produced a dose-dependent prolongation of the cardiac action potential at 1 and 3μM. Acute exposure to nifedipine significantly decreased APD60 and APD90 and produced a dose-dependent block of calcium current with an IC50 of 0.039μM. Verapamil first shortened APD60 and APD90 in a dose-dependent manner, until a compensating increase in APD90, presumably via hERG blockade, was observed at 1 and 3μM. Following a chronic exposure (20-24h) to clinically relevant levels of pentamidine, a significant increase in action potential duration was accompanied by early afterdepolarizations (EADs). These experiments show the ability of AP measured from hiPSC-CM to record the interactions of various ion channels via AP recording and avoid the limitations of using several single ion channel assays in a noncardiac tissue. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Conduction velocity of antigravity muscle action potentials.

    PubMed

    Christova, L; Kosarov, D; Christova, P

    1992-01-01

    The conduction velocity of the impulses along the muscle fibers is one of the parameters of the extraterritorial potentials of the motor units allowing for the evaluation of the functional state of the muscles. There are no data about the conduction velocities of antigravity muscleaction potentials. In this paper we offer a method for measuring conduction velocity of potentials of single MUs and the averaged potentials of the interference electromiogram (IEMG) lead-off by surface electrodes from mm. sternocleidomastoideus, trapezius, deltoideus (caput laterale) and vastus medialis. The measured mean values of the conduction velocity of antigravity muscles potentials can be used for testing the functional state of the muscles.

  8. Flexible graphene transistors for recording cell action potentials

    NASA Astrophysics Data System (ADS)

    Blaschke, Benno M.; Lottner, Martin; Drieschner, Simon; Bonaccini Calia, Andrea; Stoiber, Karolina; Rousseau, Lionel; Lissourges, Gaëlle; Garrido, Jose A.

    2016-06-01

    Graphene solution-gated field-effect transistors (SGFETs) are a promising platform for the recording of cell action potentials due to the intrinsic high signal amplification of graphene transistors. In addition, graphene technology fulfills important key requirements for in-vivo applications, such as biocompability, mechanical flexibility, as well as ease of high density integration. In this paper we demonstrate the fabrication of flexible arrays of graphene SGFETs on polyimide, a biocompatible polymeric substrate. We investigate the transistor’s transconductance and intrinsic electronic noise which are key parameters for the device sensitivity, confirming that the obtained values are comparable to those of rigid graphene SGFETs. Furthermore, we show that the devices do not degrade during repeated bending and the transconductance, governed by the electronic properties of graphene, is unaffected by bending. After cell culture, we demonstrate the recording of cell action potentials from cardiomyocyte-like cells with a high signal-to-noise ratio that is higher or comparable to competing state of the art technologies. Our results highlight the great capabilities of flexible graphene SGFETs in bioelectronics, providing a solid foundation for in-vivo experiments and, eventually, for graphene-based neuroprosthetics.

  9. Hamiltonian thermodynamics of charged three-dimensional dilatonic black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dias, Goncalo A. S.; Lemos, Jose P. S.; Centro Multidisciplinar de Astrofisica-CENTRA, Departamento de Fisica, Instituto Superior Tecnico-IST, Universidade Tecnica de Lisboa-UTL, Avenida Rovisco Pais 1, 1049-001 Lisboa

    2008-10-15

    The action for a class of three-dimensional dilaton-gravity theories, with an electromagnetic Maxwell field and a cosmological constant, can be recast in a Brans-Dicke-Maxwell type action, with its free {omega} parameter. For a negative cosmological constant, these theories have static, electrically charged, and spherically symmetric black hole solutions. Those theories with well formulated asymptotics are studied through a Hamiltonian formalism, and their thermodynamical properties are found out. The theories studied are general relativity ({omega}{yields}{+-}{infinity}), a dimensionally reduced cylindrical four-dimensional general relativity theory ({omega}=0), and a theory representing a class of theories ({omega}=-3), all with a Maxwell term. The Hamiltonian formalismmore » is set up in three dimensions through foliations on the right region of the Carter-Penrose diagram, with the bifurcation 1-sphere as the left boundary, and anti-de Sitter infinity as the right boundary. The metric functions on the foliated hypersurfaces and the radial component of the vector potential one-form are the canonical coordinates. The Hamiltonian action is written, the Hamiltonian being a sum of constraints. One finds a new action which yields an unconstrained theory with two pairs of canonical coordinates (M,P{sub M};Q,P{sub Q}), where M is the mass parameter, which for {omega}<-(3/2) and for {omega}={+-}{infinity} needs a careful renormalization, P{sub M} is the conjugate momenta of M, Q is the charge parameter, and P{sub Q} is its conjugate momentum. The resulting Hamiltonian is a sum of boundary terms only. A quantization of the theory is performed. The Schroedinger evolution operator is constructed, the trace is taken, and the partition function of the grand canonical ensemble is obtained, where the chemical potential is the scalar electric field {phi}. Like the uncharged cases studied previously, the charged black hole entropies differ, in general, from the usual quarter of the horizon area due to the dilaton.« less

  10. Evaluation of higher order statistics parameters for multi channel sEMG using different force levels.

    PubMed

    Naik, Ganesh R; Kumar, Dinesh K

    2011-01-01

    The electromyograpy (EMG) signal provides information about the performance of muscles and nerves. The shape of the muscle signal and motor unit action potential (MUAP) varies due to the movement of the position of the electrode or due to changes in contraction level. This research deals with evaluating the non-Gaussianity in Surface Electromyogram signal (sEMG) using higher order statistics (HOS) parameters. To achieve this, experiments were conducted for four different finger and wrist actions at different levels of Maximum Voluntary Contractions (MVCs). Our experimental analysis shows that at constant force and for non-fatiguing contractions, probability density functions (PDF) of sEMG signals were non-Gaussian. For lesser MVCs (below 30% of MVC) PDF measures tends to be Gaussian process. The above measures were verified by computing the Kurtosis values for different MVCs.

  11. Interpretation of field potentials measured on a multi electrode array in pharmacological toxicity screening on primary and human pluripotent stem cell-derived cardiomyocytes.

    PubMed

    Tertoolen, L G J; Braam, S R; van Meer, B J; Passier, R; Mummery, C L

    2018-03-18

    Multi electrode arrays (MEAs) are increasingly used to detect external field potentials in electrically active cells. Recently, in combination with cardiomyocytes derived from human (induced) pluripotent stem cells they have started to become a preferred tool to examine newly developed drugs for potential cardiac toxicity in pre-clinical safety pharmacology. The most important risk parameter is proarrhythmic activity in cardiomyocytes which can cause sudden cardiac death. Whilst MEAs can provide medium- to high- throughput noninvasive assay platform, the translation of a field potential to cardiac action potential (normally measured by low-throughput patch clamp) is complex so that accurate assessment of drug risk to the heart is in practice still challenging. To address this, we used computational simulation to study the theoretical relationship between aspects of the field potential and the underlying cardiac action potential. We then validated the model in both primary mouse- and human pluripotent (embryonic) stem cell-derived cardiomyocytes showing that field potentials measured in MEAs could be converted to action potentials that were essentially identical to those determined directly by electrophysiological patch clamp. The method significantly increased the amount of information that could be extracted from MEA measurements and thus combined the advantages of medium/high throughput with more informative readouts. We believe that this will benefit the analysis of drug toxicity screening of cardiomyocytes using in time and accuracy. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Enhanced functional expression of transient outward current in hypertrophied feline myocytes.

    PubMed

    Ten Eick, R E; Zhang, K; Harvey, R D; Bassett, A L

    1993-08-01

    Cardiac hypertrophy can decrease myocardial contractility and alter the electrophysiological activity of the heart. It is well documented that action potentials recorded from hypertrophied feline ventricular cells can exhibit depressed plateau voltages and prolonged durations. Similar findings have been made by others in rabbit, rat, guinea pig, and human heart. Whole-cell patch voltage-clamp studies designed to explain these changes in the action potential suggest that the only component of the membrane current recorded from feline right ventricular (RV) myocytes found to be substantially different from normal is the 4-amino-pyridine-sensitive transient outward current (I(to)). However, it was not clear if the change in I(to) could explain the changes in the action potential of hypertrophied cardiocytes, nor was it clear if these changes reflect an alteration in the electrophysiological character of the channels underlying I(to). A kinetic comparison of I(to) elicited by hypertrophied RV myocytes with that elicited by comparable normal RV myocytes previously revealed no differences, suggesting that the increased magnitude of the peak I(to) recorded from hypertrophied myocytes arises because the current density increases and not because of any alteration in the kinetic parameters governing the current. This finding suggests that in hypertrophy additional normal channels are expressed rather than a kinetically different channel subtype emerging. Investigations designed to determine if enhancement of I(to) could explain the hypertrophy-induced changes in plateau voltage and action potential duration suggest that a change in I(to) density can indeed explain the entire effect of hypertrophy on RV action potentials. If this notion is correct, the likelihood of "sudden death" in patients with myocardial hypertrophy might be decreased by a blocker selective for cardiac I(to).

  13. Dynamin phosphorylation controls optimization of endocytosis for brief action potential bursts

    PubMed Central

    Armbruster, Moritz; Messa, Mirko; Ferguson, Shawn M; De Camilli, Pietro; Ryan, Timothy A

    2013-01-01

    Modulation of synaptic vesicle retrieval is considered to be potentially important in steady-state synaptic performance. Here we show that at physiological temperature endocytosis kinetics at hippocampal and cortical nerve terminals show a bi-phasic dependence on electrical activity. Endocytosis accelerates for the first 15–25 APs during bursts of action potential firing, after which it slows with increasing burst length creating an optimum stimulus for this kinetic parameter. We show that activity-dependent acceleration is only prominent at physiological temperature and that the mechanism of this modulation is based on the dephosphorylation of dynamin 1. Nerve terminals in which dynamin 1 and 3 have been replaced with dynamin 1 harboring dephospho- or phospho-mimetic mutations in the proline-rich domain eliminate the acceleration phase by either setting endocytosis at an accelerated state or a decelerated state, respectively. DOI: http://dx.doi.org/10.7554/eLife.00845.001 PMID:23908769

  14. [Functional organization and structure of the serotonergic neuronal network of terrestrial snail].

    PubMed

    Nikitin, E S; Balaban, P M

    2011-01-01

    The extension of knowledge how the brain works requires permanent improvement of methods of recording of neuronal activity and increase in the number of neurons recorded simultaneously to better understand the collective work of neuronal networks and assemblies. Conventional methods allow simultaneous intracellular recording up to 2-5 neurons and their membrane potentials, currents or monosynaptic connections or observation of spiking of neuronal groups with subsequent discrimination of individual spikes with loss of details of the dynamics of membrane potential. We recorded activity of a compact group of serotonergic neurons (up to 56 simultaneously) in the ganglion of a terrestrial mollusk using the method of optical recording of membrane potential that allowed to record individual action potentials in details with action potential parameters and to reveal morphology of the neurons rcorded. We demonstrated clear clustering in the group in relation with the dynamics of action potentials and phasic or tonic components in the neuronal responses to external electrophysiological and tactile stimuli. Also, we showed that identified neuron Pd2 could induce activation of a significant number of neurons in the group whereas neuron Pd4 did not induce any activation. However, its activation is delayed with regard to activation of the reacting group of neurons. Our data strongly support the concept of possible delegation of the integrative function by the network to a single neuron.

  15. Easy Method to Examine Single Nerve Fiber Excitability and Conduction Parameters Using Intact Nonanesthetized Earthworms

    ERIC Educational Resources Information Center

    Bähring, Robert; Bauer, Christiane K.

    2014-01-01

    The generation and conduction of neuronal action potentials (APs) were the subjects of a cell physiology exercise for first-year medical students. In this activity, students demonstrated the all-or-none nature of AP generation, measured conduction velocity, and examined the dependence of the threshold stimulus amplitude on stimulus duration. For…

  16. The effective hyper-Kähler potential in the N = 2 supersymmetric QCD

    NASA Astrophysics Data System (ADS)

    Ketov, Sergei V.

    1997-02-01

    The effective low-energy hyper-Kähler potential for a massive N = 2 matter in N = 2 super-QCD is investigated. TheN = 2 extended supersymmetry severely restricts the N = 2 matter self-couplings so that their exact form can be fixed by a few parameters, which is apparent in the N = 2 harmonic superspace. In the N = 2 QED with a single matter hypermultiplet, the one-loop perturbative calculations lead to the Taub-NUT hyper-Kähler metric in the massive case, and a free metric in the massless case. It is remarkable that the naive non-renormalization `theorem' does not apply. There exists a manifestly N = 2 supersymmetric duality transformation converting the low-energy effective action for the N = 2 QED hypermultiplet into a sum of the quadratic and the improved (non-polynomial) actions for an N = 2 tensor multiplet. The duality transformation also gives a simple connection between the low-energy effective action in the N = 2 harmonic superspace and the component results.

  17. Kinematic constraints associated with the acquisition of overarm throwing part I: step and trunk actions.

    PubMed

    Stodden, David F; Langendorfer, Stephen J; Fleisig, Glenn S; Andrews, James R

    2006-12-01

    The purposes of this study were to: (a) examine differences within specific kinematic variables and ball velocity associated with developmental component levels of step and trunk action (Roberton & Halverson, 1984), and (b) if the differences in kinematic variables were significantly associated with the differences in component levels, determine potential kinematic constraints associated with skilled throwing acquisition. Results indicated stride length (69.3 %) and time from stride foot contact to ball release (39. 7%) provided substantial contributions to ball velocity (p < .001). All trunk kinematic measures increased significantly with increasing component levels (p < .001). Results suggest that trunk linear and rotational velocities, degree of trunk tilt, time from stride foot contact to ball release, and ball velocity represented potential control parameters and, therefore, constraints on overarm throwing acquisition.

  18. Markov Decision Process Measurement Model.

    PubMed

    LaMar, Michelle M

    2018-03-01

    Within-task actions can provide additional information on student competencies but are challenging to model. This paper explores the potential of using a cognitive model for decision making, the Markov decision process, to provide a mapping between within-task actions and latent traits of interest. Psychometric properties of the model are explored, and simulation studies report on parameter recovery within the context of a simple strategy game. The model is then applied to empirical data from an educational game. Estimates from the model are found to correlate more strongly with posttest results than a partial-credit IRT model based on outcome data alone.

  19. AGAMA: Action-based galaxy modeling framework

    NASA Astrophysics Data System (ADS)

    Vasiliev, Eugene

    2018-05-01

    The AGAMA library models galaxies. It computes gravitational potential and forces, performs orbit integration and analysis, and can convert between position/velocity and action/angle coordinates. It offers a framework for finding best-fit parameters of a model from data and self-consistent multi-component galaxy models, and contains useful auxiliary utilities such as various mathematical routines. The core of the library is written in C++, and there are Python and Fortran interfaces. AGAMA may be used as a plugin for the stellar-dynamical software packages galpy (ascl:1411.008), AMUSE (ascl:1107.007), and NEMO (ascl:1010.051).

  20. Synchronous monitoring of muscle dynamics and electromyogram

    NASA Astrophysics Data System (ADS)

    Zakir Hossain, M.; Grill, Wolfgang

    2011-04-01

    A non-intrusive novel detection scheme has been implemented to detect the lateral muscle extension, force of the skeletal muscle and the motor action potential (EMG) synchronously. This allows the comparison of muscle dynamics and EMG signals as a basis for modeling and further studies to determine which architectural parameters are most sensitive to changes in muscle activity. For this purpose the transmission time for ultrasonic chirp signal in the frequency range of 100 kHz to 2.5 MHz passing through the muscle under observation and respective motor action potentials are recorded synchronously to monitor and quantify biomechanical parameters related to muscle performance. Additionally an ultrasonic force sensor has been employed for monitoring. Ultrasonic traducers are placed on the skin to monitor muscle expansion. Surface electrodes are placed suitably to pick up the potential for activation of the monitored muscle. Isometric contraction of the monitored muscle is ensured by restricting the joint motion with the ultrasonic force sensor. Synchronous monitoring was initiated by a software activated audio beep starting at zero time of the subsequent data acquisition interval. Computer controlled electronics are used to generate and detect the ultrasonic signals and monitor the EMG signals. Custom developed software and data analysis is employed to analyze and quantify the monitored data. Reaction time, nerve conduction speed, latent period between the on-set of EMG signals and muscle response, degree of muscle activation and muscle fatigue development, rate of energy expenditure and motor neuron recruitment rate in isometric contraction, and other relevant parameters relating to muscle performance have been quantified with high spatial and temporal resolution.

  1. An Extreme-Value Approach to Anomaly Vulnerability Identification

    NASA Technical Reports Server (NTRS)

    Everett, Chris; Maggio, Gaspare; Groen, Frank

    2010-01-01

    The objective of this paper is to present a method for importance analysis in parametric probabilistic modeling where the result of interest is the identification of potential engineering vulnerabilities associated with postulated anomalies in system behavior. In the context of Accident Precursor Analysis (APA), under which this method has been developed, these vulnerabilities, designated as anomaly vulnerabilities, are conditions that produce high risk in the presence of anomalous system behavior. The method defines a parameter-specific Parameter Vulnerability Importance measure (PVI), which identifies anomaly risk-model parameter values that indicate the potential presence of anomaly vulnerabilities, and allows them to be prioritized for further investigation. This entails analyzing each uncertain risk-model parameter over its credible range of values to determine where it produces the maximum risk. A parameter that produces high system risk for a particular range of values suggests that the system is vulnerable to the modeled anomalous conditions, if indeed the true parameter value lies in that range. Thus, PVI analysis provides a means of identifying and prioritizing anomaly-related engineering issues that at the very least warrant improved understanding to reduce uncertainty, such that true vulnerabilities may be identified and proper corrective actions taken.

  2. Force sensor in simulated skin and neural model mimic tactile SAI afferent spiking response to ramp and hold stimuli

    PubMed Central

    2012-01-01

    Background The next generation of prosthetic limbs will restore sensory feedback to the nervous system by mimicking how skin mechanoreceptors, innervated by afferents, produce trains of action potentials in response to compressive stimuli. Prior work has addressed building sensors within skin substitutes for robotics, modeling skin mechanics and neural dynamics of mechanotransduction, and predicting response timing of action potentials for vibration. The effort here is unique because it accounts for skin elasticity by measuring force within simulated skin, utilizes few free model parameters for parsimony, and separates parameter fitting and model validation. Additionally, the ramp-and-hold, sustained stimuli used in this work capture the essential features of the everyday task of contacting and holding an object. Methods This systems integration effort computationally replicates the neural firing behavior for a slowly adapting type I (SAI) afferent in its temporally varying response to both intensity and rate of indentation force by combining a physical force sensor, housed in a skin-like substrate, with a mathematical model of neuronal spiking, the leaky integrate-and-fire. Comparison experiments were then conducted using ramp-and-hold stimuli on both the spiking-sensor model and mouse SAI afferents. The model parameters were iteratively fit against recorded SAI interspike intervals (ISI) before validating the model to assess its performance. Results Model-predicted spike firing compares favorably with that observed for single SAI afferents. As indentation magnitude increases (1.2, 1.3, to 1.4 mm), mean ISI decreases from 98.81 ± 24.73, 54.52 ± 6.94, to 41.11 ± 6.11 ms. Moreover, as rate of ramp-up increases, ISI during ramp-up decreases from 21.85 ± 5.33, 19.98 ± 3.10, to 15.42 ± 2.41 ms. Considering first spikes, the predicted latencies exhibited a decreasing trend as stimulus rate increased, as is observed in afferent recordings. Finally, the SAI afferent’s characteristic response of producing irregular ISIs is shown to be controllable via manipulating the output filtering from the sensor or adding stochastic noise. Conclusions This integrated engineering approach extends prior works focused upon neural dynamics and vibration. Future efforts will perfect measures of performance, such as first spike latency and irregular ISIs, and link the generation of characteristic features within trains of action potentials with current pulse waveforms that stimulate single action potentials at the peripheral afferent. PMID:22824523

  3. Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh-Nagumo model

    NASA Astrophysics Data System (ADS)

    Berglund, Nils; Landon, Damien

    2012-08-01

    We study the stochastic FitzHugh-Nagumo equations, modelling the dynamics of neuronal action potentials in parameter regimes characterized by mixed-mode oscillations. The interspike time interval is related to the random number of small-amplitude oscillations separating consecutive spikes. We prove that this number has an asymptotically geometric distribution, whose parameter is related to the principal eigenvalue of a substochastic Markov chain. We provide rigorous bounds on this eigenvalue in the small-noise regime and derive an approximation of its dependence on the system's parameters for a large range of noise intensities. This yields a precise description of the probability distribution of observed mixed-mode patterns and interspike intervals.

  4. [A functional statistical analysis of the action potentials in the brain multineuronal activity of waking cats].

    PubMed

    Merzhanova, G Kh; Porada, I

    1990-01-01

    In the present work a method is substantiated of the correction of singled out impulses series by identification of parameters of neurones discharges (PD) during a long period of recording (up to 120 days) of the neuronal activity by means of chronically implanted nichrome semimicroelectrode in different brain part of alert cats.

  5. [Repetitive transcranial magnetic stimulation: A potential therapy for cognitive disorders?

    PubMed

    Nouhaud, C; Sherrard, R M; Belmin, J

    2017-03-01

    Considering the limited effectiveness of drugs treatments in cognitive disorders, the emergence of noninvasive techniques to modify brain function is very interesting. Among these techniques, repetitive transcranial magnetic stimulation (rTMS) can modulate cortical excitability and have potential therapeutic effects on cognition and behaviour. These effects are due to physiological modifications in the stimulated cortical tissue and their associated circuits, which depend on the parameters of stimulation. The objective of this article is to specify current knowledge and efficacy of rTMS in cognitive disorders. Previous studies found very encouraging results with significant improvement of higher brain functions. Nevertheless, these few studies have limits: a few patients were enrolled, the lack of control of the mechanisms of action by brain imaging, insufficiently formalized technique and variability of cognitive tests. It is therefore necessary to perform more studies, which identify statistical significant improvement and to specify underlying mechanisms of action and the parameters of use of the rTMS to offer rTMS as a routine therapy for cognitive dysfunction. Copyright © 2016 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  6. What makes a reach movement effortful? Physical effort discounting supports common minimization principles in decision making and motor control

    PubMed Central

    Ulbrich, Philipp; Gail, Alexander

    2017-01-01

    When deciding between alternative options, a rational agent chooses on the basis of the desirability of each outcome, including associated costs. As different options typically result in different actions, the effort associated with each action is an essential cost parameter. How do humans discount physical effort when deciding between movements? We used an action-selection task to characterize how subjective effort depends on the parameters of arm transport movements and controlled for potential confounding factors such as delay discounting and performance. First, by repeatedly asking subjects to choose between 2 arm movements of different amplitudes or durations, performed against different levels of force, we identified parameter combinations that subjects experienced as identical in effort (isoeffort curves). Movements with a long duration were judged more effortful than short-duration movements against the same force, while movement amplitudes did not influence effort. Biomechanics of the movements also affected effort, as movements towards the body midline were preferred to movements away from it. Second, by introducing movement repetitions, we further determined that the cost function for choosing between effortful movements had a quadratic relationship with force, while choices were made on the basis of the logarithm of these costs. Our results show that effort-based action selection during reaching cannot easily be explained by metabolic costs. Instead, force-loaded reaches, a widely occurring natural behavior, imposed an effort cost for decision making similar to cost functions in motor control. Our results thereby support the idea that motor control and economic choice are governed by partly overlapping optimization principles. PMID:28586347

  7. Ranolazine effectively suppresses atrial fibrillation in the setting of heart failure.

    PubMed

    Burashnikov, Alexander; Di Diego, José M; Barajas-Martínez, Hector; Hu, Dan; Zygmunt, Andrew C; Cordeiro, Jonathan M; Moise, N Sydney; Kornreich, Bruce G; Belardinelli, Luiz; Antzelevitch, Charles

    2014-07-01

    There is a critical need for safer and more effective pharmacological management of atrial fibrillation (AF) in the setting of heart failure (HF). This study investigates the electrophysiological, antiarrhythmic, and proarrhythmic effects of a clinically relevant concentration of ranolazine (5 μmol/L) in coronary-perfused right atrial and left ventricular preparations isolated from the hearts of HF dogs. HF was induced by ventricular tachypacing (2-6 weeks at 200-240 beats per minute; n=17). Transmembrane action potentials were recorded using standard microelectrode techniques. In atria, ranolazine slightly prolonged action potential duration but significantly depressed sodium channel current-dependent parameters causing a reduction of maximum rate of rise of the action potential upstroke, a prolongation of the effective refractory period secondary to the development of postrepolarization refractoriness, and an increase in diastolic threshold of excitation and atrial conduction time. Ranolazine did not significantly alter these parameters or promote arrhythmias in the ventricles. Ranolazine produced greater inhibition of peak sodium channel current in atrial cells isolated from HF versus normal dogs. A single premature beat reproducibly induced self-terminating AF in 10 of 17 atria. Ranolazine (5 μmol/L) suppressed induction of AF in 7 of 10 (70%) atria. In the remaining 3 atria, ranolazine reduced frequency and duration of AF. Our results demonstrate more potent suppression of AF by ranolazine in the setting of HF than previously demonstrated in nonfailing hearts and absence of ventricular proarrhythmia. The data suggest that ranolazine may be of benefit as an alternative to amiodarone and dofetilide in the management of AF in patients with HF. © 2014 American Heart Association, Inc.

  8. Nanopore formation in neuroblastoma cells following ultrashort electric pulse exposure

    NASA Astrophysics Data System (ADS)

    Roth, Caleb C.; Payne, Jason A.; Wilmink, Gerald J.; Ibey, Bennett L.

    2011-03-01

    Ultrashort or nanosecond electrical pulses (USEP) cause repairable damage to the plasma membranes of cells through formation of nanopores. These nanopores are able to pass small ions such as sodium, calcium, and potassium, but remain impermeable to larger molecules like trypan blue and propidium iodide. What remains uncertain is whether generation of nanopores by ultrashort electrical pulses can inhibit action potentials in excitable cells. In this paper, we explored the sensitivity of excitable cells to USEP using Calcium Green AM 1 ester fluorescence to measure calcium uptake indicative of nanopore formation in the plasma membrane. We determined the threshold for nanopore formation in neuroblastoma cells for three pulse parameters (amplitude, pulse width, and pulse number). Measurement of such thresholds will guide future studies to determine if USEP can inhibit action potentials without causing irreversible membrane damage.

  9. Application of optical action potentials in human induced pluripotent stem cells-derived cardiomyocytes to predict drug-induced cardiac arrhythmias.

    PubMed

    Lu, H R; Hortigon-Vinagre, M P; Zamora, V; Kopljar, I; De Bondt, A; Gallacher, D J; Smith, G

    2017-09-01

    Human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) are emerging as new and human-relevant source in vitro model for cardiac safety assessment that allow us to investigate a set of 20 reference drugs for predicting cardiac arrhythmogenic liability using optical action potential (oAP) assay. Here, we describe our examination of the oAP measurement using a voltage sensitive dye (Di-4-ANEPPS) to predict adverse compound effects using hiPS-CMs and 20 cardioactive reference compounds. Fluorescence signals were digitized at 10kHz and the records subsequently analyzed off-line. Cells were exposed to 30min incubation to vehicle or compound (n=5/dose, 4 doses/compound) that were blinded to the investigating laboratory. Action potential parameters were measured, including rise time (T rise ) of the optical action potential duration (oAPD). Significant effects on oAPD were sensitively detected with 11 QT-prolonging drugs, while oAPD shortening was observed with I Ca -antagonists, I Kr -activator or ATP-sensitive K + channel (K ATP )-opener. Additionally, the assay detected varied effects induced by 6 different sodium channel blockers. The detection threshold for these drug effects was at or below the published values of free effective therapeutic plasma levels or effective concentrations by other studies. The results of this blinded study indicate that OAP is a sensitive method to accurately detect drug-induced effects (i.e., duration/QT-prolongation, shortening, beat rate, and incidence of early after depolarizations) in hiPS-CMs; therefore, this technique will potentially be useful in predicting drug-induced arrhythmogenic liabilities in early de-risking within the drug discovery phase. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Action potential-based MEA platform for in vitro screening of drug-induced cardiotoxicity using human iPSCs and rat neonatal myocytes.

    PubMed

    Jans, Danny; Callewaert, Geert; Krylychkina, Olga; Hoffman, Luis; Gullo, Francesco; Prodanov, Dimiter; Braeken, Dries

    2017-09-01

    Drug-induced cardiotoxicity poses a negative impact on public health and drug development. Cardiac safety pharmacology issues urged for the preclinical assessment of drug-induced ventricular arrhythmia leading to the design of several in vitro electrophysiological screening assays. In general, patch clamp systems allow for intracellular recordings, while multi-electrode array (MEA) technology detect extracellular activity. Here, we demonstrate a complementary metal oxide semiconductor (CMOS)-based MEA system as a reliable platform for non-invasive, long-term intracellular recording of cardiac action potentials at high resolution. Quinidine (8 concentrations from 10 -7 to 2.10 -5 M) and verapamil (7 concentrations from 10 -11 to 10 -5 M) were tested for dose-dependent responses in a network of cardiomyocytes. Electrophysiological parameters, such as the action potential duration (APD), rates of depolarization and repolarization and beating frequency were assessed. In hiPSC, quinidine prolonged APD with EC 50 of 2.2·10 -6 M. Further analysis indicated a multifactorial action potential prolongation by quinidine: (1) decreasing fast repolarization with IC 50 of 1.1·10 -6 M; (2) reducing maximum upstroke velocity with IC 50 of 2.6·10 -6 M; and (3) suppressing spontaneous activity with EC 50 of 3.8·10 -6 M. In rat neonatal cardiomyocytes, verapamil blocked spontaneous activity with EC 50 of 5.3·10 -8 M and prolonged the APD with EC 50 of 2.5·10 -8 M. Verapamil reduced rates of fast depolarization and repolarization with IC 50 s of 1.8 and 2.2·10 -7 M, respectively. In conclusion, the proposed action potential-based MEA platform offers high quality and stable long-term recordings with high information content allowing to characterize multi-ion channel blocking drugs. We anticipate application of the system as a screening platform to efficiently and cost-effectively test drugs for cardiac safety. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Development and modulation of intrinsic membrane properties control the temporal precision of auditory brain stem neurons.

    PubMed

    Franzen, Delwen L; Gleiss, Sarah A; Berger, Christina; Kümpfbeck, Franziska S; Ammer, Julian J; Felmy, Felix

    2015-01-15

    Passive and active membrane properties determine the voltage responses of neurons. Within the auditory brain stem, refinements in these intrinsic properties during late postnatal development usually generate short integration times and precise action-potential generation. This developmentally acquired temporal precision is crucial for auditory signal processing. How the interactions of these intrinsic properties develop in concert to enable auditory neurons to transfer information with high temporal precision has not yet been elucidated in detail. Here, we show how the developmental interaction of intrinsic membrane parameters generates high firing precision. We performed in vitro recordings from neurons of postnatal days 9-28 in the ventral nucleus of the lateral lemniscus of Mongolian gerbils, an auditory brain stem structure that converts excitatory to inhibitory information with high temporal precision. During this developmental period, the input resistance and capacitance decrease, and action potentials acquire faster kinetics and enhanced precision. Depending on the stimulation time course, the input resistance and capacitance contribute differentially to action-potential thresholds. The decrease in input resistance, however, is sufficient to explain the enhanced action-potential precision. Alterations in passive membrane properties also interact with a developmental change in potassium currents to generate the emergence of the mature firing pattern, characteristic of coincidence-detector neurons. Cholinergic receptor-mediated depolarizations further modulate this intrinsic excitability profile by eliciting changes in the threshold and firing pattern, irrespective of the developmental stage. Thus our findings reveal how intrinsic membrane properties interact developmentally to promote temporally precise information processing. Copyright © 2015 the American Physiological Society.

  12. Wavefronts, actions and caustics determined by the probability density of an Airy beam

    NASA Astrophysics Data System (ADS)

    Espíndola-Ramos, Ernesto; Silva-Ortigoza, Gilberto; Sosa-Sánchez, Citlalli Teresa; Julián-Macías, Israel; de Jesús Cabrera-Rosas, Omar; Ortega-Vidals, Paula; Alejandro Juárez-Reyes, Salvador; González-Juárez, Adriana; Silva-Ortigoza, Ramón

    2018-07-01

    The main contribution of the present work is to use the probability density of an Airy beam to identify its maxima with the family of caustics associated with the wavefronts determined by the level curves of a one-parameter family of solutions to the Hamilton–Jacobi equation with a given potential. To this end, we give a classical mechanics characterization of a solution of the one-dimensional Schrödinger equation in free space determined by a complete integral of the Hamilton–Jacobi and Laplace equations in free space. That is, with this type of solution, we associate a two-parameter family of wavefronts in the spacetime, which are the level curves of a one-parameter family of solutions to the Hamilton–Jacobi equation with a determined potential, and a one-parameter family of caustics. The general results are applied to an Airy beam to show that the maxima of its probability density provide a discrete set of: caustics, wavefronts and potentials. The results presented here are a natural generalization of those obtained by Berry and Balazs in 1979 for an Airy beam. Finally, we remark that, in a natural manner, each maxima of the probability density of an Airy beam determines a Hamiltonian system.

  13. Sprint training shortens prolonged action potential duration in postinfarction rat myocyte: mechanisms.

    PubMed

    Zhang, X Q; Zhang, L Q; Palmer, B M; Ng, Y C; Musch, T I; Moore, R L; Cheung, J Y

    2001-05-01

    Two electrophysiological manifestations of myocardial infarction (MI)-induced myocyte hypertrophy are prolongation of action potential duration (APD) and reduction of transient outward current (I(to)) density. Because high-intensity sprint training (HIST) ameliorated myocyte hypertrophy and improved myocyte Ca(2+) homeostasis and contractility after MI, the present study evaluated whether 6-8 wk of HIST would shorten the prolonged APD and improve the depressed I(to) in post-MI myocytes. There were no differences in resting membrane potential and action potential amplitude (APA) measured in myocytes isolated from sham-sedentary (Sed), MI-Sed, and MI-HIST groups. Times required for repolarization to 50 and 90% APA were significantly (P < 0.001) prolonged in MI-Sed myocytes. HIST reduced times required for repolarization to 50 and 90% APA to values observed in Sham-Sed myocytes. The fast and slow components of I(to) were significantly (P < 0.0001) reduced in MI-Sed myocytes. HIST significantly (P < 0.001) enhanced the fast and slow components of I(to) in MI myocytes, although not to levels observed in Sham-Sed myocytes. There were no significant differences in steady-state I(to) inactivation and activation parameters among Sham-Sed, MI-Sed, and MI-HIST myocytes. Likewise, recovery from time-dependent inactivation was also similar among the three groups. We suggest that normalization of APD after MI by HIST may be mediated by restoration of I(to) toward normal levels.

  14. Computational study of some benzamidine-based inhibitors of thrombin-like snake venom proteinases

    NASA Astrophysics Data System (ADS)

    Henriques, Elsa S.; Nascimento, Marco A. C.; Ramos, Maria João

    Pit viper venoms contain a number of serine proteinases that, despite their observed coagulant thrombin-like action in vitro, exhibit a paradoxical benign defibrinogenating (anticoagulant) action in vivo, with clinical applications in preventing thrombi and improved blood circulation. Considering that several benzamidine-based inhibitors, some highly selective to thrombin, also inhibit the enzymatic activity of such venombins, the modeling of their enzyme-inhibitor interactions could provide valuable information on the topological factors that determine the divergences in activity. The first step, and the object of the present study, was to derive the necessary set of parameters, consistent with the CHARMM force field, and to perform molecular dynamics (MD) simulations on a few selected representatives of the inhibitors in question under physiological conditions. Bonding and van der Waals parameters were derived by analogy to similar ones in the existing force field. Net atomic charges were obtained with a restrained fitting to the molecular electrostatic potential generated at B3LYP/6-31G(d) level. The parameters were refined to reproduce the available experimental geometries and crystal data, and the MD simulations of the free inhibitors in aqueous solution at 298 K provided an insightful description of their available conformational space.

  15. Functional identification of spike-processing neural circuits.

    PubMed

    Lazar, Aurel A; Slutskiy, Yevgeniy B

    2014-02-01

    We introduce a novel approach for a complete functional identification of biophysical spike-processing neural circuits. The circuits considered accept multidimensional spike trains as their input and comprise a multitude of temporal receptive fields and conductance-based models of action potential generation. Each temporal receptive field describes the spatiotemporal contribution of all synapses between any two neurons and incorporates the (passive) processing carried out by the dendritic tree. The aggregate dendritic current produced by a multitude of temporal receptive fields is encoded into a sequence of action potentials by a spike generator modeled as a nonlinear dynamical system. Our approach builds on the observation that during any experiment, an entire neural circuit, including its receptive fields and biophysical spike generators, is projected onto the space of stimuli used to identify the circuit. Employing the reproducing kernel Hilbert space (RKHS) of trigonometric polynomials to describe input stimuli, we quantitatively describe the relationship between underlying circuit parameters and their projections. We also derive experimental conditions under which these projections converge to the true parameters. In doing so, we achieve the mathematical tractability needed to characterize the biophysical spike generator and identify the multitude of receptive fields. The algorithms obviate the need to repeat experiments in order to compute the neurons' rate of response, rendering our methodology of interest to both experimental and theoretical neuroscientists.

  16. Theoretical Studies Applied to the Evaluation of the DFPase Bioremediation Potential against Chemical Warfare Agents Intoxication

    PubMed Central

    Soares, Flávia V.; de Castro, Alexandre A.; Pereira, Ander F.; Leal, Daniel H. S.; Mancini, Daiana T.; da Cunha, Elaine F. F.; Kuca, Kamil

    2018-01-01

    Organophosphorus compounds (OP) are part of a group of compounds that may be hazardous to health. They are called neurotoxic agents because of their action on the nervous system, inhibiting the acetylcholinesterase (AChE) enzyme and resulting in a cholinergic crisis. Their high toxicity and rapid action lead to irreversible damage to the nervous system, drawing attention to developing new treatment methods. The diisopropyl fluorophosphatase (DFPase) enzyme has been considered as a potent biocatalyst for the hydrolysis of toxic OP and has potential for bioremediation of this kind of intoxication. In order to investigate the degradation process of the nerve agents Tabun, Cyclosarin and Soman through the wild-type DFPase, and taking into account their stereochemistry, theoretical studies were carried out. The intermolecular interaction energy and other parameters obtained from the molecular docking calculations were used to construct a data matrix, which were posteriorly treated by statistical analyzes of chemometrics, using the PCA (Principal Components Analysis) multivariate analysis. The analyzed parameters seem to be quite important for the reaction mechanisms simulation (QM/MM). Our findings showed that the wild-type DFPase enzyme is stereoselective in hydrolysis, showing promising results for the catalytic degradation of the neurotoxic agents under study, with the degradation mechanism performed through two proposed pathways. PMID:29690585

  17. Theoretical Studies Applied to the Evaluation of the DFPase Bioremediation Potential against Chemical Warfare Agents Intoxication.

    PubMed

    Soares, Flávia V; de Castro, Alexandre A; Pereira, Ander F; Leal, Daniel H S; Mancini, Daiana T; Krejcar, Ondrej; Ramalho, Teodorico C; da Cunha, Elaine F F; Kuca, Kamil

    2018-04-23

    Organophosphorus compounds (OP) are part of a group of compounds that may be hazardous to health. They are called neurotoxic agents because of their action on the nervous system, inhibiting the acetylcholinesterase (AChE) enzyme and resulting in a cholinergic crisis. Their high toxicity and rapid action lead to irreversible damage to the nervous system, drawing attention to developing new treatment methods. The diisopropyl fluorophosphatase (DFPase) enzyme has been considered as a potent biocatalyst for the hydrolysis of toxic OP and has potential for bioremediation of this kind of intoxication. In order to investigate the degradation process of the nerve agents Tabun, Cyclosarin and Soman through the wild-type DFPase, and taking into account their stereochemistry, theoretical studies were carried out. The intermolecular interaction energy and other parameters obtained from the molecular docking calculations were used to construct a data matrix, which were posteriorly treated by statistical analyzes of chemometrics, using the PCA (Principal Components Analysis) multivariate analysis. The analyzed parameters seem to be quite important for the reaction mechanisms simulation (QM/MM). Our findings showed that the wild-type DFPase enzyme is stereoselective in hydrolysis, showing promising results for the catalytic degradation of the neurotoxic agents under study, with the degradation mechanism performed through two proposed pathways.

  18. Effect of 12-monoketocholic acid on modulation of analgesic action of morphine and tramadol.

    PubMed

    Kuhajda, Ivan; Posa, Mihalj; Jakovljević, Vida; Ivetić, Vesna; Mikov, Momir

    2009-01-01

    This work is concerned with the potential promotive action of 12-monoketocholic acid (12-MKC) on the analgesic effect of morphine and tramadol. The investigation was carried out on laboratory Wistar rats divided into five test groups, each treated with either morphine (2 mg/kg), tramadol (9.6 mg/kg), 12-MKC (2 mg/kg), morphine + 12-MKC, or tramadol + 12-MKC, the control group receiving physiological solution (2 mg/kg). The effect of 12-MKC on the analgesic action of morphine and tramadol was determined by radiation heat method. Morphine and tramadol, given in equimolar doses, did not show significant difference in the degree of analgesia. In combination with morphine, 12-MKC increased significantly the analgesic effect compared with the group treated with morphine alone. However, 12-MKC caused no change in the action of tramadol. The 5-day intravenous application of 12-MKC in combination with the two analgesics caused no changes in the biochemical parameters nor pathohistological changes in the liver parenchyma of tested animals.

  19. Potential formulation of sleep dynamics

    NASA Astrophysics Data System (ADS)

    Phillips, A. J. K.; Robinson, P. A.

    2009-02-01

    A physiologically based model of the mechanisms that control the human sleep-wake cycle is formulated in terms of an equivalent nonconservative mechanical potential. The potential is analytically simplified and reduced to a quartic two-well potential, matching the bifurcation structure of the original model. This yields a dynamics-based model that is analytically simpler and has fewer parameters than the original model, allowing easier fitting to experimental data. This model is first demonstrated to semiquantitatively match the dynamics of the physiologically based model from which it is derived, and is then fitted directly to a set of experimentally derived criteria. These criteria place rigorous constraints on the parameter values, and within these constraints the model is shown to reproduce normal sleep-wake dynamics and recovery from sleep deprivation. Furthermore, this approach enables insights into the dynamics by direct analogies to phenomena in well studied mechanical systems. These include the relation between friction in the mechanical system and the timecourse of neurotransmitter action, and the possible relation between stochastic resonance and napping behavior. The model derived here also serves as a platform for future investigations of sleep-wake phenomena from a dynamical perspective.

  20. Azadirachtin, a neem-derived biopesticide, impairs behavioral and hematological parameters in carp (Cyprinus carpio).

    PubMed

    Murussi, Camila R; Menezes, Charlene C; Nunes, Mauro E M; Araújo, Maria do Carmo S; Quadros, Vanessa A; Rosemberg, Denis B; Loro, Vania L

    2016-11-01

    Azadirachtin (Aza) is a promisor biopesticide used in organic production and aquaculture. Although this compound is apparently safe, there is evidence that it may have deleterious effects on fish. Behavioral and hematological tests are grouped into a set of parameters that may predict potential toxicity of chemical compounds. Here, we investigate the effects of Aza, in the commercial formulation Neenmax ™ , on carp (Cyprinus carpio) by defining LC 50 (96 h), and testing behavioral and hematological parameters. In our study, LC 50 was estimated at 80 μL/L. We exposed carp to Aza at 20, 40, and 60 μL/L, values based on 25, 50, and 75% of LC 50 , respectively. At 60 μL/L, Aza promoted significant changes in several parameters, increasing the distance traveled and absolute turn angle. In addition, the same concentration decreased the time spent immobile and the number of immobile episodes. Hematological parameters, such as hematocrit, hemoglobin, hematimetrics index, and red cell distribution, were decreased at 60 μL/L Aza exposure. In conclusion, our study demonstrates that 60 μL/L Aza altered locomotor activity, motor pattern, and hematological parameters, suggesting potential toxicity to carp after acute exposure. In addition, this is the first report that evaluates the actions of a chemical contaminant using automated behavioral tracking of carp, which may be a useful tool for assessing the potential toxicity of biopesticides in conjunction with hematological tests. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1381-1388, 2016. © 2015 Wiley Periodicals, Inc.

  1. Control of clustered action potential firing in a mathematical model of entorhinal cortex stellate cells.

    PubMed

    Tait, Luke; Wedgwood, Kyle; Tsaneva-Atanasova, Krasimira; Brown, Jon T; Goodfellow, Marc

    2018-07-14

    The entorhinal cortex is a crucial component of our memory and spatial navigation systems and is one of the first areas to be affected in dementias featuring tau pathology, such as Alzheimer's disease and frontotemporal dementia. Electrophysiological recordings from principle cells of medial entorhinal cortex (layer II stellate cells, mEC-SCs) demonstrate a number of key identifying properties including subthreshold oscillations in the theta (4-12 Hz) range and clustered action potential firing. These single cell properties are correlated with network activity such as grid firing and coupling between theta and gamma rhythms, suggesting they are important for spatial memory. As such, experimental models of dementia have revealed disruption of organised dorsoventral gradients in clustered action potential firing. To better understand the mechanisms underpinning these different dynamics, we study a conductance based model of mEC-SCs. We demonstrate that the model, driven by extrinsic noise, can capture quantitative differences in clustered action potential firing patterns recorded from experimental models of tau pathology and healthy animals. The differential equation formulation of our model allows us to perform numerical bifurcation analyses in order to uncover the dynamic mechanisms underlying these patterns. We show that clustered dynamics can be understood as subcritical Hopf/homoclinic bursting in a fast-slow system where the slow sub-system is governed by activation of the persistent sodium current and inactivation of the slow A-type potassium current. In the full system, we demonstrate that clustered firing arises via flip bifurcations as conductance parameters are varied. Our model analyses confirm the experimentally suggested hypothesis that the breakdown of clustered dynamics in disease occurs via increases in AHP conductance. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Toward rational design of electrical stimulation strategies for epilepsy control

    PubMed Central

    Sunderam, Sridhar; Gluckman, Bruce; Reato, Davide; Bikson, Marom

    2009-01-01

    Electrical stimulation is emerging as a viable alternative for epilepsy patients whose seizures are not alleviated by drugs or surgery. Its attractions are temporal and spatial specificity of action, flexibility of waveform parameters and timing, and the perception that its effects are reversible unlike resective surgery. However, despite significant advances in our understanding of mechanisms of neural electrical stimulation, clinical electrotherapy for seizures relies heavily on empirical tuning of parameters and protocols. We highlight concurrent treatment goals with potentially conflicting design constraints that must be resolved when formulating rational strategies for epilepsy electrotherapy: namely seizure reduction versus cognitive impairment, stimulation efficacy versus tissue safety, and mechanistic insight versus clinical pragmatism. First, treatment markers, objectives, and metrics relevant to electrical stimulation for epilepsy are discussed from a clinical perspective. Then the experimental perspective is presented, with the biophysical mechanisms and modalities of open-loop electrical stimulation, and the potential benefits of closed-loop control for epilepsy. PMID:19926525

  3. Prolonged intra-myocardial growth hormone administration ameliorates post-infarction electrophysiologic remodeling in rats.

    PubMed

    Kontonika, Marianthi; Barka, Eleonora; Roumpi, Maria; La Rocca, Vassilios; Lekkas, Panagiotis; Daskalopoulos, Evangelos P; Vilaeti, Agapi D; Baltogiannis, Giannis G; Vlahos, Antonios P; Agathopoulos, Simeon; Kolettis, Theofilos M

    2017-02-01

    Experimental studies indicate improved ventricular function after treatment with growth hormone (GH) post-myocardial infarction, but its effect on arrhythmogenesis is unknown. Here, we assessed the medium-term electrophysiologic remodeling after intra-myocardial GH administration in (n = 33) rats. GH was released from an alginate scaffold, injected around the ischemic myocardium after coronary ligation. Two weeks thereafter, ventricular tachyarrhythmias were induced by programmed electrical stimulation. Monophasic action potentials were recorded from the infarct border, coupled with evaluation of electrical conduction and repolarization from a multi-electrode array. The arrhythmia score was lower in GH-treated rats than in alginate-treated rats or controls. The shape and the duration of the action potential at the infarct border were preserved, and repolarization-dispersion was attenuated after GH; moreover, voltage rise was higher and activation delay was shorter. GH normalized also right ventricular parameters. Intra-myocardial GH preserved electrical conduction and repolarization-dispersion at the infarct border and decreased the incidence of induced tachyarrhythmias in rats post-ligation. The long-term antiarrhythmic potential of GH merits further study.

  4. Changes in contractile properties and action potentials of motor units in the rat medial gastrocnemius muscle during maturation.

    PubMed

    Dobrzynska, Z; Celichowski, J

    2016-02-01

    The early phase of development of muscles stops following the disappearance of embryonic and neonatal myosin and the elimination of polyneuronal innervation of muscle fibres with the formation of motor units (MUs), but later the muscle mass still considerably increases. It is unknown whether the three types are visible among newly formed MUs soon after the early postnatal period and whether their proportion is similar to that in adult muscle. Moreover, the processes responsible for MU-force regulation by changes in motoneuronal firing rate as well as properties of motor unit action potentials (MUAPs) during maturation are unknown. Three groups of Wistar rats were investigated - 1 month old, 2 months old and the adult, 9 months old. The basic contractile properties and action potentials of MUs in the medial gastrocnemius (MG) muscle were analysed. The three types of MUs were distinguishable in all age groups, but higher proportion of slow MUs was noticed in young rats (29%, 18% and 11% in 1, 2 and 9 months rats, respectively). The fatigue index for fast fatigable MUs in 1 month old rats was about 2 times higher than in 9 months old rats. The twitch time parameters of fast MUs were shortened during the maturation; for these units, the force-frequency curves in young rats were shifted towards lower frequencies, which suggested that fast motoneurons of young animals generate lower firing rates. Higher twitch-to-tetanus ratios noted for the three MU types in young rats suggested the smaller role of rate coding in force regulation processes, and the higher role of MU recruitment in young rats. No significant differences in MUAP parameters between two groups of young and adult animals were observed. Concluding, the maturation process evokes deeper changes in fast MUs than in slow ones.

  5. Action potentials in primary osteoblasts and in the MG-63 osteoblast-like cell line.

    PubMed

    Pangalos, Maria; Bintig, Willem; Schlingmann, Barbara; Feyerabend, Frank; Witte, Frank; Begandt, Daniela; Heisterkamp, Alexander; Ngezahayo, Anaclet

    2011-06-01

    Whole-cell patch-clamp analysis revealed a resting membrane potential of -60 mV in primary osteoblasts and in the MG-63 osteoblast-like cells. Depolarization-induced action potentials were characterized by duration of 60 ms, a minimal peak-to-peak distance of 180 ms, a threshold value of -20 mV and a repolarization between the spikes to -45 mV. Expressed channels were characterized by application of voltage pulses between -150 mV and 90 mV in 10 mV steps, from a holding potential of -40 mV. Voltages below -60 mV induced an inward current. Depolarizing voltages above -30 mV evoked two currents: (a) a fast activated and inactivated inward current at voltages between -30 and 30 mV, and (b) a delayed-activated outward current that was induced by voltages above -30 mV. Electrophysiological and pharmacological parameters indicated that hyperpolarization activated strongly rectifying K(+) (K(ir)) channels, whereas depolarization activated tetrodotoxin sensitive voltage gated Na(+) (Na(v)) channels as well as delayed, slowly activated, non-inactivating, and tetraethylammonium sensitive voltage gated K(+) (K(v)) channels. In addition, RT-PCR showed expression of Na(v)1.3, Na(v)1.4, Na(v)1.5, Na(v)1.6, Na(v)1.7, and K(ir)2.1, K(ir)2.3, and K(ir)2.4 as well as K(v)2.1. We conclude that osteoblasts express channels that allow firing of action potentials.

  6. Proactive inhibitory control: A general biasing account☆

    PubMed Central

    Elchlepp, Heike; Lavric, Aureliu; Chambers, Christopher D.; Verbruggen, Frederick

    2016-01-01

    Flexible behavior requires a control system that can inhibit actions in response to changes in the environment. Recent studies suggest that people proactively adjust response parameters in anticipation of a stop signal. In three experiments, we tested the hypothesis that proactive inhibitory control involves adjusting both attentional and response settings, and we explored the relationship with other forms of proactive and anticipatory control. Subjects responded to the color of a stimulus. On some trials, an extra signal occurred. The response to this signal depended on the task context subjects were in: in the ‘ignore’ context, they ignored it; in the ‘stop’ context, they had to withhold their response; and in the ‘double-response’ context, they had to execute a secondary response. An analysis of event-related brain potentials for no-signal trials in the stop context revealed that proactive inhibitory control works by biasing the settings of lower-level systems that are involved in stimulus detection, action selection, and action execution. Furthermore, subjects made similar adjustments in the double-response and stop-signal contexts, indicating an overlap between various forms of proactive action control. The results of Experiment 1 also suggest an overlap between proactive inhibitory control and preparatory control in task-switching studies: both require reconfiguration of task-set parameters to bias or alter subordinate processes. We conclude that much of the top-down control in response inhibition tasks takes place before the inhibition signal is presented. PMID:26859519

  7. Concepts, challenges, and successes in modeling thermodynamics of metabolism.

    PubMed

    Cannon, William R

    2014-01-01

    The modeling of the chemical reactions involved in metabolism is a daunting task. Ideally, the modeling of metabolism would use kinetic simulations, but these simulations require knowledge of the thousands of rate constants involved in the reactions. The measurement of rate constants is very labor intensive, and hence rate constants for most enzymatic reactions are not available. Consequently, constraint-based flux modeling has been the method of choice because it does not require the use of the rate constants of the law of mass action. However, this convenience also limits the predictive power of constraint-based approaches in that the law of mass action is used only as a constraint, making it difficult to predict metabolite levels or energy requirements of pathways. An alternative to both of these approaches is to model metabolism using simulations of states rather than simulations of reactions, in which the state is defined as the set of all metabolite counts or concentrations. While kinetic simulations model reactions based on the likelihood of the reaction derived from the law of mass action, states are modeled based on likelihood ratios of mass action. Both approaches provide information on the energy requirements of metabolic reactions and pathways. However, modeling states rather than reactions has the advantage that the parameters needed to model states (chemical potentials) are much easier to determine than the parameters needed to model reactions (rate constants). Herein, we discuss recent results, assumptions, and issues in using simulations of state to model metabolism.

  8. Recording evoked potentials during deep brain stimulation: development and validation of instrumentation to suppress the stimulus artefact

    PubMed Central

    Kent, A R; Grill, W M

    2012-01-01

    Deep brain stimulation (DBS) is an effective treatment for movement disorders, but the selection of stimulus parameters is a clinical burden and often yields sub-optimal outcomes for patients. Measurement of electrically evoked compound action potentials (ECAPs) during DBS could offer insight into the type and spatial extent of neural element activation and provide a potential feedback signal for the rational selection of stimulus parameters and closed-loop DBS. However, recording ECAPs presents a significant technical challenge due to the large stimulus artefact, which can saturate recording amplifiers and distort short latency ECAP signals. We developed DBS-ECAP recording instrumentation combining commercial amplifiers and circuit elements in a serial configuration to reduce the stimulus artefact and enable high fidelity recording. We used an electrical circuit equivalent model of the instrumentation to understand better the sources of the stimulus artefact and the mechanisms of artefact reduction by the circuit elements. In vitro testing validated the capability of the instrumentation to suppress the stimulus artefact and increase gain by a factor of 1,000 to 5,000 compared to a conventional biopotential amplifier. The distortion of mock ECAP (mECAP) signals was measured across stimulation parameters, and the instrumentation enabled high fidelity recording of mECAPs with latencies of only 0.5 ms for DBS pulse widths of 50 to 100 μs/phase. Subsequently, the instrumentation was used to record in vivo ECAPs, without contamination by the stimulus artefact, during thalamic DBS in an anesthetized cat. The characteristics of the physiological ECAP were dependent on stimulation parameters. The novel instrumentation enables high fidelity ECAP recording and advances the potential use of the ECAP as a feedback signal for the tuning of DBS parameters. PMID:22510375

  9. The effect of recording site on extracted features of motor unit action potential.

    PubMed

    Artuğ, N Tuğrul; Goker, Imran; Bolat, Bülent; Osman, Onur; Kocasoy Orhan, Elif; Baslo, M Baris

    2016-06-01

    Motor unit action potential (MUAP), which consists of individual muscle fiber action potentials (MFAPs), represents the electrical activity of the motor unit. The values of the MUAP features are changed by denervation and reinnervation in neurogenic involvement as well as muscle fiber loss with increased diameter variability in myopathic diseases. The present study is designed to investigate how increased muscle fiber diameter variability affects MUAP parameters in simulated motor units. In order to detect this variation, simulated MUAPs were calculated both at the innervation zone where the MFAPs are more synchronized, and near the tendon, where they show increased temporal dispersion. Reinnervation in neurogenic state increases MUAP amplitude for the recordings at both the innervation zone and near the tendon. However, MUAP duration and the number of peaks significantly increased in a case of myopathy for recordings near the tendon. Furthermore, of the new features, "number of peaks×spike duration" was found as the strongest indicator of MFAP dispersion in myopathy. MUAPs were also recorded from healthy participants in order to investigate the biological counterpart of the simulation data. MUAPs which were recorded near to tendon revealed significantly prolonged duration and decreased amplitude. Although the number of peaks was increased by moving the needle near to tendon, this was not significant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. An infrared optical pacing system for screening cardiac electrophysiology in human cardiomyocytes.

    PubMed

    McPheeters, Matthew T; Wang, Yves T; Werdich, Andreas A; Jenkins, Michael W; Laurita, Kenneth R

    2017-01-01

    Human cardiac myocytes derived from pluripotent stem cells (hCM) have invigorated interest in genetic disease mechanisms and cardiac safety testing; however, the technology to fully assess electrophysiological function in an assay that is amenable to high throughput screening has lagged. We describe a fully contactless system using optical pacing with an infrared (IR) laser and multi-site high fidelity fluorescence imaging to assess multiple electrophysiological parameters from hCM monolayers in a standard 96-well plate. Simultaneous multi-site action potentials (FluoVolt) or Ca2+ transients (Fluo4-AM) were measured, from which high resolution maps of conduction velocity and action potential duration (APD) were obtained in a single well. Energy thresholds for optical pacing were determined for cell plating density, laser spot size, pulse width, and wavelength and found to be within ranges reported previously for reliable pacing. Action potentials measured using FluoVolt and a microelectrode exhibited the same morphology and rate of depolarization. Importantly, we show that this can be achieved accurately with minimal damage to hCM due to optical pacing or fluorescence excitation. Finally, using this assay we demonstrate that hCM exhibit reproducible changes in repolarization and impulse conduction velocity for Flecainide and Quinidine, two well described reference compounds. In conclusion, we demonstrate a high fidelity electrophysiological screening assay that incorporates optical pacing with IR light to control beating rate of hCM monolayers.

  11. Electrophysiological effects of Chinese medicine Shen song Yang xin (SSYX) on Chinese miniature swine heart and isolated guinea pig ventricular myocytes.

    PubMed

    Feng, Li; Gong, Jing; Jin, Zhen-yi; Li, Ning; Sun, Li-ping; Wu, Yi-ling; Pu, Jie-lin

    2009-07-05

    Shen song Yang xin (SSYX) is a compound of Chinese medicine with the effect of increasing heart rate (HR). This study aimed to evaluate its electrophysiological properties at heart and cellular levels. The Chinese miniature swines were randomly assigned to two groups, administered with SSYX or placebo for 4 weeks (n = 8 per group). Cardiac electrophysiological study (EPS) was performed before and after drug administration. The guinea pig ventricular myocytes were enzymatically isolated and whole cell voltage-clamp technique was used to evaluate the effect of SSYX on cardiac action potential (AP). SSYX treatment accelerated the HR from (141.8 +/- 36.0) beats per minute to (163.0 +/- 38.0) beats per minute (P = 0.013) without changing the other parameters in surface electrocardiogram. After blockage of the autonomic nervous system with metoprolol and atropin, SSYX had no effect on intrinsic HR (IHR), but decreased corrected sinus node recovery time (CSNRT) and sinus atrium conducting time (SACT). Intra cardiac EPS showed that SSYX significantly decreased the A-H and A-V intervals as well as shortened the atrial (A), atrioventricular node (AVN) and ventricular (V) effective refractory period (ERP). In isolated guinea pig ventricular myocytes, the most obvious effect of SSYX on action potential was a shortening of the action potential duration (APD) without change in shape of action potential. The shortening rates of APD(30), APD(50) and APD(90) were 19.5%, 17.8% and 15.3%, respectively. The resting potential (Em) and the interval between the end of APD(30) and APD(90) did not significantly change. The present study demonstrates that SSYX increases the HR and enhances the conducting capacity of the heart in the condition of the intact autonomic nervous system. SSYX homogenously decreases the ERP of the heart and shortens the APD of the myocytes, suggesting its antiarrhythmic effect without proarrhythmia.

  12. Action potentials reliably invade axonal arbors of rat neocortical neurons

    PubMed Central

    Cox, Charles L.; Denk, Winfried; Tank, David W.; Svoboda, Karel

    2000-01-01

    Neocortical pyramidal neurons have extensive axonal arborizations that make thousands of synapses. Action potentials can invade these arbors and cause calcium influx that is required for neurotransmitter release and excitation of postsynaptic targets. Thus, the regulation of action potential invasion in axonal branches might shape the spread of excitation in cortical neural networks. To measure the reliability and extent of action potential invasion into axonal arbors, we have used two-photon excitation laser scanning microscopy to directly image action-potential-mediated calcium influx in single varicosities of layer 2/3 pyramidal neurons in acute brain slices. Our data show that single action potentials or bursts of action potentials reliably invade axonal arbors over a range of developmental ages (postnatal 10–24 days) and temperatures (24°C-30°C). Hyperpolarizing current steps preceding action potential initiation, protocols that had previously been observed to produce failures of action potential propagation in cultured preparations, were ineffective in modulating the spread of action potentials in acute slices. Our data show that action potentials reliably invade the axonal arbors of neocortical pyramidal neurons. Failures in synaptic transmission must therefore originate downstream of action potential invasion. We also explored the function of modulators that inhibit presynaptic calcium influx. Consistent with previous studies, we find that adenosine reduces action-potential-mediated calcium influx in presynaptic terminals. This reduction was observed in all terminals tested, suggesting that some modulatory systems are expressed homogeneously in most terminals of the same neuron. PMID:10931955

  13. Motor unit action potential conduction velocity estimated from surface electromyographic signals using image processing techniques.

    PubMed

    Soares, Fabiano Araujo; Carvalho, João Luiz Azevedo; Miosso, Cristiano Jacques; de Andrade, Marcelino Monteiro; da Rocha, Adson Ferreira

    2015-09-17

    In surface electromyography (surface EMG, or S-EMG), conduction velocity (CV) refers to the velocity at which the motor unit action potentials (MUAPs) propagate along the muscle fibers, during contractions. The CV is related to the type and diameter of the muscle fibers, ion concentration, pH, and firing rate of the motor units (MUs). The CV can be used in the evaluation of contractile properties of MUs, and of muscle fatigue. The most popular methods for CV estimation are those based on maximum likelihood estimation (MLE). This work proposes an algorithm for estimating CV from S-EMG signals, using digital image processing techniques. The proposed approach is demonstrated and evaluated, using both simulated and experimentally-acquired multichannel S-EMG signals. We show that the proposed algorithm is as precise and accurate as the MLE method in typical conditions of noise and CV. The proposed method is not susceptible to errors associated with MUAP propagation direction or inadequate initialization parameters, which are common with the MLE algorithm. Image processing -based approaches may be useful in S-EMG analysis to extract different physiological parameters from multichannel S-EMG signals. Other new methods based on image processing could also be developed to help solving other tasks in EMG analysis, such as estimation of the CV for individual MUs, localization and tracking of innervation zones, and study of MU recruitment strategies.

  14. Modeling the Gravitational Potential of a Cosmological Dark Matter Halo with Stellar Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanderson, Robyn E.; Hartke, Johanna; Helmi, Amina, E-mail: robyn@astro.columbia.edu

    2017-02-20

    Stellar streams result from the tidal disruption of satellites and star clusters as they orbit a host galaxy, and can be very sensitive probes of the gravitational potential of the host system. We select and study narrow stellar streams formed in a Milky-Way-like dark matter halo of the Aquarius suite of cosmological simulations, to determine if these streams can be used to constrain the present day characteristic parameters of the halo’s gravitational potential. We find that orbits integrated in both spherical and triaxial static Navarro–Frenk–White potentials reproduce the locations and kinematics of the various streams reasonably well. To quantify thismore » further, we determine the best-fit potential parameters by maximizing the amount of clustering of the stream stars in the space of their actions. We show that using our set of Aquarius streams, we recover a mass profile that is consistent with the spherically averaged dark matter profile of the host halo, although we ignored both triaxiality and time evolution in the fit. This gives us confidence that such methods can be applied to the many streams that will be discovered by the Gaia mission to determine the gravitational potential of our Galaxy.« less

  15. Bursting Regimes in a Reaction-Diffusion System with Action Potential-Dependent Equilibrium

    PubMed Central

    Meier, Stephen R.; Lancaster, Jarrett L.; Starobin, Joseph M.

    2015-01-01

    The equilibrium Nernst potential plays a critical role in neural cell dynamics. A common approximation used in studying electrical dynamics of excitable cells is that the ionic concentrations inside and outside the cell membranes act as charge reservoirs and remain effectively constant during excitation events. Research into brain electrical activity suggests that relaxing this assumption may provide a better understanding of normal and pathophysiological functioning of the brain. In this paper we explore time-dependent ionic concentrations by allowing the ion-specific Nernst potentials to vary with developing transmembrane potential. As a specific implementation, we incorporate the potential-dependent Nernst shift into a one-dimensional Morris-Lecar reaction-diffusion model. Our main findings result from a region in parameter space where self-sustaining oscillations occur without external forcing. Studying the system close to the bifurcation boundary, we explore the vulnerability of the system with respect to external stimulations which disrupt these oscillations and send the system to a stable equilibrium. We also present results for an extended, one-dimensional cable of excitable tissue tuned to this parameter regime and stimulated, giving rise to complex spatiotemporal pattern formation. Potential applications to the emergence of neuronal bursting in similar two-variable systems and to pathophysiological seizure-like activity are discussed. PMID:25823018

  16. Biological activities of phthalocyanines. XIV. Effect of hydrophobic phthalimidomethyl groups on the in vivo phototoxicity and mechanism of photodynamic action of sulphonated aluminium phthalocyanines.

    PubMed Central

    Boyle, R. W.; Paquette, B.; van Lier, J. E.

    1992-01-01

    Aluminium phthalocyanines substituted to different degrees with hydrophilic sulphonic acid and hydrophobic phthalimidomethyl groups were investigated in vivo as new agents for the photodynamic therapy of malignant tumours. Parameters studied included the photodynamic action on EMT-6 mammary tumours in BALB/c mice, the therapeutic window and the potential for direct cell killing, assayed via an in vivo/in vitro test. Although the efficiency of photoinactivation of the EMT-6 tumour increases by a factor of ten with reduction of the number of sulphonic acid groups from four to two, no further effect was seen with the addition of the hydrophobic phthalimidomethyl groups. Addition of the latter groups however increased the potential for direct cell killing by a factor of two and expanded the therapeutic window by a factor of four, thus improving the usefulness of the dye as a photosensitiser for the photodynamic therapy of cancer. PMID:1616852

  17. Quantitative anal sphincter electromyography in primiparous women with anal incontinence

    PubMed Central

    Gregory, W. Thomas; Lou, Jau-Shin; Simmons, Kimberly; Clark, Amanda L.

    2010-01-01

    OBJECTIVE The purpose of this study was to determine whether evidence of denervation/reinnervation of the external anal sphincter is associated with anal incontinence symptoms immediately after delivery. STUDY DESIGN After a first vaginal delivery, 42 women completed an anal incontinence questionnaire. They also underwent concentric needle electromyography of the external anal sphincter. For each subject, motor unit action potential and interference pattern parameters were determined. RESULTS For the motor unit action potential, no difference was observed between patients with and without anal incontinence symptoms (t-test). For the interference pattern, the amplitude/turn was greater in subjects with fecal urgency (318 ± 48 [SD] μV) and fecal incontinence (332 ± 48 μV), compared with those without fecal urgency (282 ± 38 μV) and fecal incontinence (286 ± 41 μV; P = .02, t-test). CONCLUSION In this group of postpartum women with mild anal incontinence symptoms, interference pattern analysis shows evidence of denervation and subsequent reinnervation. PMID:18455531

  18. Drugs for stroke: action of nitrone (Z)-N-(2-bromo-5-hydroxy-4-methoxybenzylidene)-2-methylpropan-2-amine oxide on rat cortical neurons in culture subjected to oxygen-glucose-deprivation.

    PubMed

    Arce, Carmen; Diaz-Castroverde, Sabela; Canales, María J; Marco-Contelles, José; Samadi, Abdelouahid; Oset-Gasque, María J; González, María P

    2012-09-01

    The action of (Z)-N-(2-bromo-5-hydroxy-4-methoxybenzylidene)-2-methylpropan-2-amine oxide (RP6) on rat cortical neurons in culture, under oxygen-glucose-deprivation conditions, is reported. Cortical neurons in culture were treated during 1 h with OGD. After, they were placed under normal conditions during 24 h (reperfusion) in absence and presence of RP6. Different parameters were measured under each condition (control, 1 h OGD and 1 h OGD + reperfusion in absence and presence of RP6). RP6 protects neurons against ROS generation, lipid peroxidation levels, LDH release and mitochondrial membrane potential alteration, when administered during reperfusion after the OGD damage. Consequently, these results show that nitrone RP6 protects cells against ischemia injury produced during the reoxygenation, and could be a potential drug for the ictus therapy. Copyright © 2012. Published by Elsevier Masson SAS.

  19. Optimal Cytoplasmic Transport in Viral Infections

    PubMed Central

    D'Orsogna, Maria R.; Chou, Tom

    2009-01-01

    For many viruses, the ability to infect eukaryotic cells depends on their transport through the cytoplasm and across the nuclear membrane of the host cell. During this journey, viral contents are biochemically processed into complexes capable of both nuclear penetration and genomic integration. We develop a stochastic model of viral entry that incorporates all relevant aspects of transport, including convection along microtubules, biochemical conversion, degradation, and nuclear entry. Analysis of the nuclear infection probabilities in terms of the transport velocity, degradation, and biochemical conversion rates shows how certain values of key parameters can maximize the nuclear entry probability of the viral material. The existence of such “optimal” infection scenarios depends on the details of the biochemical conversion process and implies potentially counterintuitive effects in viral infection, suggesting new avenues for antiviral treatment. Such optimal parameter values provide a plausible transport-based explanation of the action of restriction factors and of experimentally observed optimal capsid stability. Finally, we propose a new interpretation of how genetic mutations unrelated to the mechanism of drug action may nonetheless confer novel types of overall drug resistance. PMID:20046829

  20. From Spiking Neuron Models to Linear-Nonlinear Models

    PubMed Central

    Ostojic, Srdjan; Brunel, Nicolas

    2011-01-01

    Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN) cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF), exponential integrate-and-fire (EIF) and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates. PMID:21283777

  1. From spiking neuron models to linear-nonlinear models.

    PubMed

    Ostojic, Srdjan; Brunel, Nicolas

    2011-01-20

    Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN) cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF), exponential integrate-and-fire (EIF) and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates.

  2. Static Magnetic Field Therapy for Carpal Tunnel Syndrome: A Feasibility Study

    PubMed Central

    Colbert, Agatha P.; Markov, Marko S.; Carlson, Nels; Gregory, William L.; Carlson, Hans; Elmer, Patricia J.

    2010-01-01

    Objectives To assess the feasibility of conducting trials of static magnetic field (SMF) therapy for carpal tunnel syndrome (CTS), to collect preliminary data on the effectiveness of two SMF dosages and to explore the influence of a SMF on median nerve conduction. Design Randomized, double blind, sham controlled trial with 6-week intervention and 12-week follow-up. Setting University hospital outpatient clinics Participants Women and men (N=60), ages 21–65, with electrophysiologically-confirmed CTS diagnosis, recruited from the general population. Interventions Participants wore nightly either neodymium magnets that delivered either 15 or 45mTesla (mT) to the contents of the carpal canal, or a non-magnetic disk. Main Outcome Measures Symptom Severity Scale (SSS) and Function Severity Scale (FSS) of the Boston Carpal Tunnel Questionnaire (BCTQ) and 4 median nerve parameters: sensory distal latency, sensory nerve action potential amplitude, motor distal latency and compound motor action potential amplitude). Results 58 of 60 randomized participants completed the study. There were no significant between-group differences for change in the primary endpoint SSS or for FSS or median nerve conduction parameters. For the SSS and the FSS each group showed a reduction at 6-weeks indicating improvement in symptoms. Conclusions This study demonstrated the feasibility and safety of testing SMF therapy for CTS. There were no between-group differences observed for the BCTQ or median nerve parameters following 6 weeks of SMF therapy. Significant within-group, symptomatic improvements of the same magnitude were experienced by participants in both active and sham magnet groups. Future studies are needed to optimize SMF dosimetry and resolve issues related to the use of sham controls in SMF trials. PMID:20599049

  3. Role of action potential configuration and the contribution of Ca2+ and K+ currents to isoprenaline-induced changes in canine ventricular cells

    PubMed Central

    Szentandrássy, N; Farkas, V; Bárándi, L; Hegyi, B; Ruzsnavszky, F; Horváth, B; Bányász, T; Magyar, J; Márton, I; Nánási, PP

    2012-01-01

    BACKGROUND AND PURPOSE Although isoprenaline (ISO) is known to activate several ion currents in mammalian myocardium, little is known about the role of action potential morphology in the ISO-induced changes in ion currents. Therefore, the effects of ISO on action potential configuration, L-type Ca2+ current (ICa), slow delayed rectifier K+ current (IKs) and fast delayed rectifier K+ current (IKr) were studied and compared in a frequency-dependent manner using canine isolated ventricular myocytes from various transmural locations. EXPERIMENTAL APPROACH Action potentials were recorded with conventional sharp microelectrodes; ion currents were measured using conventional and action potential voltage clamp techniques. KEY RESULTS In myocytes displaying a spike-and-dome action potential configuration (epicardial and midmyocardial cells), ISO caused reversible shortening of action potentials accompanied by elevation of the plateau. ISO-induced action potential shortening was absent in endocardial cells and in myocytes pretreated with 4-aminopyridine. Application of the IKr blocker E-4031 failed to modify the ISO effect, while action potentials were lengthened by ISO in the presence of the IKs blocker HMR-1556. Both action potential shortening and elevation of the plateau were prevented by pretreatment with the ICa blocker nisoldipine. Action potential voltage clamp experiments revealed a prominent slowly inactivating ICa followed by a rise in IKs, both currents increased with increasing the cycle length. CONCLUSIONS AND IMPLICATIONS The effect of ISO in canine ventricular cells depends critically on action potential configuration, and the ISO-induced activation of IKs– but not IKr– may be responsible for the observed shortening of action potentials. PMID:22563726

  4. Role of action potential configuration and the contribution of C²⁺a and K⁺ currents to isoprenaline-induced changes in canine ventricular cells.

    PubMed

    Szentandrássy, N; Farkas, V; Bárándi, L; Hegyi, B; Ruzsnavszky, F; Horváth, B; Bányász, T; Magyar, J; Márton, I; Nánási, P P

    2012-10-01

    Although isoprenaline (ISO) is known to activate several ion currents in mammalian myocardium, little is known about the role of action potential morphology in the ISO-induced changes in ion currents. Therefore, the effects of ISO on action potential configuration, L-type Ca²⁺ current (I(Ca)), slow delayed rectifier K⁺ current (I(Ks)) and fast delayed rectifier K⁺ current (I(Kr)) were studied and compared in a frequency-dependent manner using canine isolated ventricular myocytes from various transmural locations. Action potentials were recorded with conventional sharp microelectrodes; ion currents were measured using conventional and action potential voltage clamp techniques. In myocytes displaying a spike-and-dome action potential configuration (epicardial and midmyocardial cells), ISO caused reversible shortening of action potentials accompanied by elevation of the plateau. ISO-induced action potential shortening was absent in endocardial cells and in myocytes pretreated with 4-aminopyridine. Application of the I(Kr) blocker E-4031 failed to modify the ISO effect, while action potentials were lengthened by ISO in the presence of the I(Ks) blocker HMR-1556. Both action potential shortening and elevation of the plateau were prevented by pretreatment with the I(Ca) blocker nisoldipine. Action potential voltage clamp experiments revealed a prominent slowly inactivating I(Ca) followed by a rise in I(Ks) , both currents increased with increasing the cycle length. The effect of ISO in canine ventricular cells depends critically on action potential configuration, and the ISO-induced activation of I(Ks) - but not I(Kr) - may be responsible for the observed shortening of action potentials. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  5. Potential description of charmonium and charmed-strange mesons from lattice QCD

    NASA Astrophysics Data System (ADS)

    Kawanai, Taichi; Sasaki, Shoichi

    2015-11-01

    We present spin-independent and spin-spin interquark potentials for the charmonium and charmed-strange mesons, which are calculated in 2 +1 flavor lattice QCD simulations using the PACS-CS gauge configurations generated at the lightest pion mass (Mπ≈156 (7 ) MeV ) with a lattice cutoff of a-1≈2.2 GeV and a spatial volume of (3 fm )3 . For the charm quark, we use a relativistic heavy quark (RHQ) action with fine tuned RHQ parameters, which closely reproduce both the experimental spin-averaged mass and hyperfine splitting of the 1 S charmonium. The interquark potential and the quark kinetic mass, both of which are key ingredients within the potential description of heavy-heavy and heavy-light mesons, are determined from the equal-time Bethe-Salpeter (BS) amplitude. The charmonium potentials are obtained from the BS wave function of 1 S charmonia (ηc and J /ψ mesons), while the charmed-strange potential are calculated from the Ds and Ds* heavy-light mesons. We then use resulting potentials and quark masses as purely theoretical inputs so as to solve the nonrelativistic Schrödinger equation for calculating accessible energy levels of charmonium and charmed-strange mesons without unknown parameters. The resultant spectra below the D D ¯ and D K thresholds excellently agree with well-established experimental data.

  6. Characteristics of action potentials and their underlying outward currents in rat taste receptor cells.

    PubMed

    Chen, Y; Sun, X D; Herness, S

    1996-02-01

    1. Taste receptor cells produce action potentials as a result of transduction mechanisms that occur when these cells are stimulated with tastants. These action potentials are thought to be key signaling events in relaying information to the central nervous system. We explored the ionic basis of action potentials from dissociated posterior rat taste cells using the patch-clamp recording technique in both voltage-clamp and current-clamp modes. 2. Action potentials were evoked by intracellular injection of depolarizing current pulses from a holding potential of -80 mV. The threshold potential for firing of action potentials was approximately -35 mV; the input resistance of these cells averaged 6.9 G omega. With long depolarizing pulses, two or three action potentials could be elicited with successive attenuation of the spike height. Afterhyperpolarizations were observed often. 3. Both sodium and calcium currents contribute to depolarizing phases of the action potential. Action potentials were blocked completely in the presence of the sodium channel blocker tetrodotoxin. Calcium contributions could be visualized as prolonged calcium plateaus when repolarizing potassium currents were blocked and barium was used as a charge carrier. 4. Outward currents were composed of sustained delayed rectifier current, transient potassium current, and calcium-activated potassium current. Transient and sustained potassium currents activated close to -30 mV and increased monotonically with further depolarization. Up to half the outward current inactivated with decay constants on the order of seconds. Sustained and transient currents displayed steep voltage dependence in conductance and inactivation curves. Half inactivation occurred at -20 +/- 3.1 mV (mean +/- SE) with a decrease of 11.2 +/- 0.5 mV per e-fold. Half maximal conductance occurred at 3.6 +/- 1.8 mV and increased 12.2 +/- 0.6 mV per e-fold. Calcium-activated potassium current was evidenced by application of apamin and the use of calcium-free bathing solution. It was most obvious at more depolarized holding potentials that inactivated much of the transient and sustained outward currents. 5. Potassium currents contribute to both the repolarization and afterhyperpolarization phases of the action potential. These currents were blocked by bath application of tetraethylammonium, which also substantially broadened the action potential. Application of 4-aminopyridine was able to selectively block transient potassium currents without affecting sustained currents. This also broadened the action potential as well as eliminated the afterhyperpolarization. 6. A second type of action potential was observed that differed in duration. These slow action potentials had t1/2 durations of 9.6 ms compared with 1.4 ms for fast action potentials. Input resistances of the two groups were indistinguishable. Approximately one-fourth of the cells eliciting action potentials were of the slow type. 7. Cells eliciting fast action potentials had large outward currents capable of producing a quick repolarization, whereas cells with slow action potentials had small outward currents by comparison. The average values of fast cells were 2,563 pA and 1.4 ms compared with 373 pA and 9.6 ms for slow cells. Current and duration values were related exponentially. No significant difference was noted for inward currents. 8. These results suggest that many taste receptor cells conduct action potentials, which may be classified broadly into two groups on the basis of action potential duration and potassium current magnitude. These groups may be related to cell turnover. The physiological role of action potentials remains to be elucidated but may be important for communication within the taste bud as well as to the afferent nerve.

  7. A Decision Support Framework for Evaluation of Engineered ...

    EPA Pesticide Factsheets

    Engineered nanomaterials (ENM) are currently being developed and applied at rates that far exceed our ability to evaluate their potential for environmental or human health risks. The gap between material development and capacity for assessment grows wider every day. Transformative approaches are required that enhance our ability to forecast potential exposure and adverse health risks based on limited information such as the physical and chemical parameters of ENM, their proposed uses, and functional assays reflective of key ENM - environmental interactions. We are developing a framework that encompasses the potential for release of nanomaterials across a product life cycle, environmental transport, transformations and fate, exposure to sensitive species, including humans, and the potential for causing adverse effects. Each component of the framework is conceive of as a sequential segmented model depicting the movement, transformations and actions of ENM through environmental or biological compartments, and along which targeted functional assays can be developed that are indicative of projected rates of ENM movement or action. The eventual goal is to allow simple predictive models to be built that incorporate the data from key functional assays and thereby allow rapid screening of the projected margin of exposure for proposed applications of ENM enabled products. In this way, cases where a substantially safe margin of exposure is forecast can be reduced in

  8. High-throughput cardiac science on the Grid.

    PubMed

    Abramson, David; Bernabeu, Miguel O; Bethwaite, Blair; Burrage, Kevin; Corrias, Alberto; Enticott, Colin; Garic, Slavisa; Gavaghan, David; Peachey, Tom; Pitt-Francis, J; Pueyo, E; Rodriguez, Blanca; Sher, Anna; Tan, Jefferson

    2010-08-28

    Cardiac electrophysiology is a mature discipline, with the first model of a cardiac cell action potential having been developed in 1962. Current models range from single ion channels, through very complex models of individual cardiac cells, to geometrically and anatomically detailed models of the electrical activity in whole ventricles. A critical issue for model developers is how to choose parameters that allow the model to faithfully reproduce observed physiological effects without over-fitting. In this paper, we discuss the use of a parametric modelling toolkit, called Nimrod, that makes it possible both to explore model behaviour as parameters are changed and also to tune parameters by optimizing model output. Importantly, Nimrod leverages computers on the Grid, accelerating experiments by using available high-performance platforms. We illustrate the use of Nimrod with two case studies, one at the cardiac tissue level and one at the cellular level.

  9. A summary of recent developments in transportation hazard classification activities for ammonium perchlorate

    NASA Technical Reports Server (NTRS)

    Koller, A. M., Jr.; Hannum, J. A. E.

    1983-01-01

    The transportation hazard classification of Ammonium Perchlorate is discussed. A test program was completed and data were forwarded to retain a Class 5.1 designation (oxidizer) for AP which is shipped internationally. As a follow-on to the initial team effort to conduct AP tests existing data were examined and a matrix which catalogs test parameters and findings was compiled. A collection of test protocols is developed to standardize test methods for energetic materials of all types. The actions to date are summarized; the participating organizations and their roles as presently understood; specific findings on AP (matrix); and issues, lessons learned, and potential actions of particular interest to the propulsion community which may evolve as a result of future U.N. propellant transportation classification activities.

  10. Multidimensional Skyrme-density-functional study of the spontaneous fission of 238U

    DOE PAGES

    Sadhukhan, J.; Mazurek, K.; Dobaczewski, J.; ...

    2015-01-01

    We determined the spontaneous fission lifetime of 238U by a minimization of the action integral in a three-dimensional space of collective variables. Apart from the mass-distribution multipole moments Q 20 (elongation) and Q 30 (left–right asymmetry), we also considered the pairing-fluctuation parameter λ 2 as a collective coordinate. The collective potential was obtained self-consistently using the Skyrme energy density functional SkM*. The inertia tensor was obtained within the nonperturbative cranking approximation to the adiabatic time-dependent Hartree–Fock–Bogoliubov approach. As a result, the pairing-fluctuation parameter λ 2 allowed us to control the pairing gap along the fission path, which significantly changed themore » spontaneous fission lifetime.« less

  11. Ergodicity breaking and ageing of underdamped Brownian dynamics with quenched disorder

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Li, Yong; Song, Wen-Hua; Du, Lu-Chun

    2018-03-01

    The dynamics of an underdamped Brownian particle moving in one-dimensional quenched disorder under the action of an external force is investigated. Within the tailored parameter regime, the transiently anomalous diffusion and ergodicity breaking, spanning several orders of magnitude in time, have been obtained. The ageing nature of the system weakens as the dissipation of the system increases for other given parameters. Its origin is ascribed to the highly local heterogeneity of the disorder. Two kinds of approximations (in the stationary state), respectively, for large bias and large damping are derived. These results may be helpful in further understanding the nontrivial response of nonlinear dynamics, and also have potential applications to experiments and activities of biological processes.

  12. State and location dependence of action potential metabolic cost in cortical pyramidal neurons.

    PubMed

    Hallermann, Stefan; de Kock, Christiaan P J; Stuart, Greg J; Kole, Maarten H P

    2012-06-03

    Action potential generation and conduction requires large quantities of energy to restore Na(+) and K(+) ion gradients. We investigated the subcellular location and voltage dependence of this metabolic cost in rat neocortical pyramidal neurons. Using Na(+)/K(+) charge overlap as a measure of action potential energy efficiency, we found that action potential initiation in the axon initial segment (AIS) and forward propagation into the axon were energetically inefficient, depending on the resting membrane potential. In contrast, action potential backpropagation into dendrites was efficient. Computer simulations predicted that, although the AIS and nodes of Ranvier had the highest metabolic cost per membrane area, action potential backpropagation into the dendrites and forward propagation into axon collaterals dominated energy consumption in cortical pyramidal neurons. Finally, we found that the high metabolic cost of action potential initiation and propagation down the axon is a trade-off between energy minimization and maximization of the conduction reliability of high-frequency action potentials.

  13. Voltage-gated sodium channel expression and action potential generation in differentiated NG108-15 cells.

    PubMed

    Liu, Jinxu; Tu, Huiyin; Zhang, Dongze; Zheng, Hong; Li, Yu-Long

    2012-10-25

    The generation of action potential is required for stimulus-evoked neurotransmitter release in most neurons. Although various voltage-gated ion channels are involved in action potential production, the initiation of the action potential is mainly mediated by voltage-gated Na+ channels. In the present study, differentiation-induced changes of mRNA and protein expression of Na+ channels, Na+ currents, and cell membrane excitability were investigated in NG108-15 cells. Whole-cell patch-clamp results showed that differentiation (9 days) didn't change cell membrane excitability, compared to undifferentiated state. But differentiation (21 days) induced the action potential generation in 45.5% of NG108-15 cells (25/55 cells). In 9-day-differentiated cells, Na+ currents were mildly increased, which was also found in 21-day differentiated cells without action potential. In 21-day differentiated cells with action potential, Na+ currents were significantly enhanced. Western blot data showed that the expression of Na+ channels was increased with differentiated-time dependent manner. Single-cell real-time PCR data demonstrated that the expression of Na+ channel mRNA was increased by 21 days of differentiation in NG108-15 cells. More importantly, the mRNA level of Na+ channels in cells with action potential was higher than that in cells without action potential. Differentiation induces expression of voltage-gated Na+ channels and action potential generation in NG108-15 cells. A high level of the Na+ channel density is required for differentiation-triggered action potential generation.

  14. Generation Mechanism of Alternans in Luo-Rudy Model

    NASA Astrophysics Data System (ADS)

    Kitajima, Hiroyuki; Ioka, Eri; Yazawa, Toru

    Electrical alternans is the alternating amplitude from beat to beat in the action potential of the cardiac cell. It has been associated with ventricular arrhythmias in many clinical studies; however, its dynamical mechanisms remain unknown. The reason is that we do not have realistic network models of the heart system. Recently, Yazawa clarified the network structure of the heart and the central nerve system in the crustacean heart. In this study, we construct a simple model of the heart system based on Yazawa’s experimental data. Using this model, we clarify that two parameters (the conductance of sodium ions and free concentration of potassium ions in the extracellular compartment) play the key roles of generating alternans. In particular, we clarify that the inactivation gate of the time-independent potassium channel is the most important parameter. Moreover, interaction between the membrane potential and potassium ionic currents is significant for generating alternate rhythms. This result indicates that if the muscle cell has problems such as channelopathies, there is great risk of generating alternans.

  15. Confinement and Mayer cluster expansions

    NASA Astrophysics Data System (ADS)

    Bourgine, Jean-Emile

    2014-05-01

    In this paper, we study a class of grand-canonical partition functions with a kernel depending on a small parameter ɛ. This class is directly relevant to Nekrasov partition functions of 𝒩 = 2 SUSY gauge theories on the 4d Ω-background, for which ɛ is identified with one of the equivariant deformation parameter. In the Nekrasov-Shatashvili limit ɛ→0, we show that the free energy is given by an on-shell effective action. The equations of motion take the form of a TBA equation. The free energy is identified with the Yang-Yang functional of the corresponding system of Bethe roots. We further study the associated canonical model that takes the form of a generalized matrix model. Confinement of the eigenvalues by the short-range potential is observed. In the limit where this confining potential becomes weak, the collective field theory formulation is recovered. Finally, we discuss the connection with the alternative expression of instanton partition functions as sums over Young tableaux.

  16. Integrated wetland management for waterfowl and shorebirds at Mattamuskeet National Wildlife Refuge, North Carolina

    USGS Publications Warehouse

    Tavernia, Brian G.; Stanton, John D.; Lyons, James E.

    2017-11-22

    Mattamuskeet National Wildlife Refuge (MNWR) offers a mix of open water, marsh, forest, and cropland habitats on 20,307 hectares in coastal North Carolina. In 1934, Federal legislation (Executive Order 6924) established MNWR to benefit wintering waterfowl and other migratory bird species. On an annual basis, the refuge staff decide how to manage 14 impoundments to benefit not only waterfowl during the nonbreeding season, but also shorebirds during fall and spring migration. In making these decisions, the challenge is to select a portfolio, or collection, of management actions for the impoundments that optimizes use by the three groups of birds while respecting budget constraints. In this study, a decision support tool was developed for these annual management decisions.Within the decision framework, there are three different management objectives: shorebird-use days during fall and spring migrations, and waterfowl-use days during the nonbreeding season. Sixteen potential management actions were identified for impoundments; each action represents a combination of hydroperiod and vegetation manipulation. Example hydroperiods include semi-permanent and seasonal drawdowns, and vegetation manipulations include mechanical-chemical treatment, burning, disking, and no action. Expert elicitation was used to build a Bayesian Belief Network (BBN) model that predicts shorebird- and waterfowl-use days for each potential management action. The BBN was parameterized for a representative impoundment, MI-9, and predictions were re-scaled for this impoundment to predict outcomes at other impoundments on the basis of size. Parameter estimates in the BBN model can be updated using observations from ongoing monitoring that is part of the Integrated Waterbird Management and Monitoring (IWMM) program.The optimal portfolio of management actions depends on the importance, that is, weights, assigned to the three objectives, as well as the budget. Five scenarios with a variety of objective weights and budgets were developed. Given the large number of possible portfolios (1614), a heuristic genetic algorithm was used to identify a management action portfolio that maximized use-day objectives while respecting budget constraints. The genetic algorithm identified a portfolio of management actions for each of the five scenarios, enabling refuge staff to explore the sensitivity of their management decisions to objective weights and budget constraints.The decision framework developed here provides a transparent, defensible, and testable foundation for decision making at MNWR. The BBN model explicitly structures and parameterizes a mental model previously used by an expert to assign management actions to the impoundments. With ongoing IWMM monitoring, predictions from the model can be tested, and model parameters updated, to reflect empirical observations. This framework is intended to be a living document that can be updated to reflect changes in the decision context (for example, new objectives or constraints, or new models to compete with the current BBN model). Rather than a mandate to refuge staff, this framework is intended to be a decision support tool; tool outputs can become part of the deliberations of refuge staff when making difficult management decisions for multiple objectives.

  17. Effects of premature stimulation on HERG K+ channels

    PubMed Central

    Lu, Yu; Mahaut-Smith, Martyn P; Varghese, Anthony; Huang, Christopher L-H; Kemp, Paul R; Vandenberg, Jamie I

    2001-01-01

    The unusual kinetics of human ether-à-go-go-related gene (HERG) K+ channels are consistent with a role in the suppression of arrhythmias initiated by premature beats. Action potential clamp protocols were used to investigate the effect of premature stimulation on HERG K+ channels, transfected in Chinese hamster ovary cells, at 37 °C. HERG K+ channel currents peaked during the terminal repolarization phase of normally paced action potential waveforms. However, the magnitude of the current and the time point at which conductance was maximal depended on the type of action potential waveform used (epicardial, endocardial, Purkinje fibre or atrial). HERG K+ channel currents recorded during premature action potentials consisted of an early transient outward current followed by a sustained outward current. The magnitude of the transient current component showed a biphasic dependence on the coupling interval between the normally paced and premature action potentials and was maximal at a coupling interval equivalent to 90% repolarization (APD90) for ventricular action potentials. The largest transient current response occurred at shorter coupling intervals for Purkinje fibre (APD90– 20 ms) and atrial (APD90– 30 ms) action potentials. The magnitude of the sustained current response following premature stimulation was similar to that recorded during the first action potential for ventricular action potential waveforms. However, for Purkinje and atrial action potentials the sustained current response was significantly larger during the premature action potential than during the normally paced action potential. A Markov model that included three closed states, one open and one inactivated state with transitions permitted between the pre-open closed state and the inactivated state, successfully reproduced our results for the effects of premature stimuli, both during square pulse and action potential clamp waveforms. These properties of HERG K+ channels may help to suppress arrhythmias initiated by early afterdepolarizations and premature beats in the ventricles, Purkinje fibres or atria. PMID:11744759

  18. Analysis of beat fluctuations and oxygen consumption in cardiomyocytes by scanning electrochemical microscopy.

    PubMed

    Hirano, Yu; Kodama, Mikie; Shibuya, Masahiro; Maki, Yoshiyuki; Komatsu, Yasuo

    2014-02-15

    The contractile behavior of cardiomyocytes can be monitored by measuring their action potentials, and the analysis is essential for screening the safety of potential drugs. However, immobilizing cardiac cells on a specific electrode is considerably complicated. In this study, we demonstrate that scanning electrochemical microscopy (SECM) can be used to analyze rapid topographic changes in beating cardiomyocytes in a standard culture dish. Various cardiomyocyte contraction parameters and oxygen consumption based on cell respiration could be determined from SECM data. We also confirmed that cellular changes induced by adding the cardiotonic agent digoxin were conveniently monitored by this SECM system. These results show that SECM can be a potentially powerful tool for use in drug development for cardiovascular diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Effect of low-level monochromatic radiations on some morphological and physiological parameters of plants.

    PubMed

    Siposan, Dan Georgel

    2011-01-01

    Studying the behavior of living organisms under the action of some physical or chemical factors (corpuscular or electromagnetic radiation, magnetic or electric field, sound waves, salinity, stimulants etc.) is enjoying major interest nowadays.(1,2)) The main goal is to understand the mechanisms of action of these factors on biological tissues, and use this knowledge for applications in biology and medicine. A special place in modern medicine is occupied by the therapeutic applications of laser radiation. In the current study we are attempting to determine whether the therapeutic lasers used in medicine have the potential to produce changes of some morphological and physiological parameters of plants. If these changes actually occur, the next task is to determine whether they are due to laser action on water used for watering by changing its properties, or by the direct action of laser radiation on the plants cells. Matcrials and Mcthods: We used as samples two groups of wheat seeds, planted in cotton. In the first group we only irradiated irrigation water, while in the second group only plants. We used as sources of radiation lasers and LEDs, with wavelengths between 455 nm and 850 nm. Power density was P = 50 mW/cm(2) for all samples, the exposure time ranged between 1s and 80s, and energy density (or fluence) between 0 and 4J/cm(2). We measured modifications of some morphological and physiological parameters (the biomass quantity, germination rate of seeds, number and height of the seedlings etc.) as a function of fluence. When only irrigation water was irradiated, we have found for all wavelength used a strong inhibitory effect on germination (between 30% and 50% for samples grown in the ground and between 13% and 40% for those grown in cotton). Regarding the other parameters determined, a stimulating effect, but less pronounced than if the plant was only irradiated, was noticed. When only plant was irradiated, the effects are altered depending on the wavelength and fluence. Although apparently different, plant and animal cells have some similar characteristics, the differences between them not being essential, involving mainly the quantitative aspect. In these circumstances the study of the monochromatic radiation effects on plants is useful to characterize the action of those radiations on the animal and human tissues. Studies on plants exhibit a series of advantages: they are cheap, easily reproduced and suitable for producing good statistics etc. It can also be verified as to which extent the laws of classic photobiology show modifications when low level lasers are utilized.

  20. [Pharmacologic action profile of crataegus extract in comparison to epinephrine, amirinone, milrinone and digoxin in the isolated perfused guinea pig heart].

    PubMed

    Joseph, G; Zhao, Y; Klaus, W

    1995-12-01

    Using isolated perfused guinea pig hearts experiments were performed to investigate the influence of crataegus extract LI 132 (Faros 300, CRA) in comparison to other inotropic drugs--epinephrine (adrenaline, ADR), amrinone (AM), milrinone (MIL) and digoxin (DIG)--on different functional parameters, with special emphasis on the effective refractory period of the myocardium. The simultaneous registration of appropriate parameters allowed to relate the effect on the refractory period to the inotropic, chronotropic, dromotropic and coronary actions of these compounds at each concentration level. All substances--with the exception of CRA--shortened the effective refractory period concentration-dependently besides their known other functional effects (max.: 1 x 10(-5) mol/l ADR by 38%, 7 x 10(-7) mol/l DIG by 26%, 1 x 10(-4) mol/l MIL by 13% and 5 x 10(-4) mol/l AM by 1.6%). Related to the positive inotropy the shortening was most effective under MIL (1.32 ms/mN), followed by AM (0.65 ms/mN), DIG (0.40 ms/mN) and ADR (0.28 ms/mN). On the contrary, CRA produced a prolongation of the effective refractory period by maximally 10% resp. by 2.54 ms/mN. Thus, the pharmacologic profile of CRA differs from that of other inotropic compounds mainly in this parameter (with potentially reduced arrhythmogenic risk).

  1. The adequate stimulus for avian short latency vestibular responses to linear translation

    NASA Technical Reports Server (NTRS)

    Jones, T. A.; Jones, S. M.; Colbert, S.

    1998-01-01

    Transient linear acceleration stimuli have been shown to elicit eighth nerve vestibular compound action potentials in birds and mammals. The present study was undertaken to better define the nature of the adequate stimulus for neurons generating the response in the chicken (Gallus domesticus). In particular, the study evaluated the question of whether the neurons studied are most sensitive to the maximum level of linear acceleration achieved or to the rate of change in acceleration (da/dt, or jerk). To do this, vestibular response thresholds were measured as a function of stimulus onset slope. Traditional computer signal averaging was used to record responses to pulsed linear acceleration stimuli. Stimulus onset slope was systematically varied. Acceleration thresholds decreased with increasing stimulus onset slope (decreasing stimulus rise time). When stimuli were expressed in units of jerk (g/ms), thresholds were virtually constant for all stimulus rise times. Moreover, stimuli having identical jerk magnitudes but widely varying peak acceleration levels produced virtually identical responses. Vestibular response thresholds, latencies and amplitudes appear to be determined strictly by stimulus jerk magnitudes. Stimulus attributes such as peak acceleration or rise time alone do not provide sufficient information to predict response parameter quantities. Indeed, the major response parameters were shown to be virtually independent of peak acceleration levels or rise time when these stimulus features were isolated and considered separately. It is concluded that the neurons generating short latency vestibular evoked potentials do so as "jerk encoders" in the chicken. Primary afferents classified as "irregular", and which traditionally fall into the broad category of "dynamic" or "phasic" neurons, would seem to be the most likely candidates for the neural generators of short latency vestibular compound action potentials.

  2. Light bullets in coupled nonlinear Schrödinger equations with variable coefficients and a trapping potential.

    PubMed

    Xu, Si-Liu; Zhao, Guo-Peng; Belić, Milivoj R; He, Jun-Rong; Xue, Li

    2017-04-17

    We analyze three-dimensional (3D) vector solitary waves in a system of coupled nonlinear Schrödinger equations with spatially modulated diffraction and nonlinearity, under action of a composite self-consistent trapping potential. Exact vector solitary waves, or light bullets (LBs), are found using the self-similarity method. The stability of vortex 3D LB pairs is examined by direct numerical simulations; the results show that only low-order vortex soliton pairs with the mode parameter values n ≤ 1, l ≤ 1 and m = 0 can be supported by the spatially modulated interaction in the composite trap. Higher-order LBs are found unstable over prolonged distances.

  3. State estimation bias induced by optimization under uncertainty and error cost asymmetry is likely reflected in perception.

    PubMed

    Shimansky, Y P

    2011-05-01

    It is well known from numerous studies that perception can be significantly affected by intended action in many everyday situations, indicating that perception and related decision-making is not a simple, one-way sequence, but a complex iterative cognitive process. However, the underlying functional mechanisms are yet unclear. Based on an optimality approach, a quantitative computational model of one such mechanism has been developed in this study. It is assumed in the model that significant uncertainty about task-related parameters of the environment results in parameter estimation errors and an optimal control system should minimize the cost of such errors in terms of the optimality criterion. It is demonstrated that, if the cost of a parameter estimation error is significantly asymmetrical with respect to error direction, the tendency to minimize error cost creates a systematic deviation of the optimal parameter estimate from its maximum likelihood value. Consequently, optimization of parameter estimate and optimization of control action cannot be performed separately from each other under parameter uncertainty combined with asymmetry of estimation error cost, thus making the certainty equivalence principle non-applicable under those conditions. A hypothesis that not only the action, but also perception itself is biased by the above deviation of parameter estimate is supported by ample experimental evidence. The results provide important insights into the cognitive mechanisms of interaction between sensory perception and planning an action under realistic conditions. Implications for understanding related functional mechanisms of optimal control in the CNS are discussed.

  4. The effect of polarized polychromatic noncoherent light (bioptron) therapy on patients with carpal tunnel syndrome.

    PubMed

    Raeissadat, Seyed Ahmad; Rayegani, Seyed Mansoor; Rezaei, Sajad; Sedighipour, Leyla; Bahrami, Mohammad Hasan; Eliaspour, Dariush; Karimzadeh, Afshin

    2014-01-01

    To study the effects of Polarized Polychromatic Noncoherent Light (Bioptron) therapy on patients with carpal tunnel syndrome (CTS). This study was designed as a randomized clinical trial. Forty four patients with mild or moderate CTS (confirmed by clinical and electrodiagnostic studies) were assigned randomly into two groups (intervention and control goups). At the beginning of the study, both groups received wrist splinting for 8 weeks. Bioptron light was applied for the intervention group (eight sessions, for 3/weeks). Bioptron was applied perpendicularly to the wrist from a 10 centimeter sdistance. Pain severity and electrodiagnostic measurements were compared from before to 8 weeks after initiating each treatment. Eight weeks after starting the treatments, the mean of pain severity based on Visual Analogue Scale (VAS) scores decreased significantly in both groups. Median Sensory Nerve Action Potential (SNAP) latency decreased significantly in both groups. However, other electrophysiological findings (median Compound Motor Action Potential (CMAP) latency and amplitude, also SNAP amplitude) did not change after the therapy in both groups. There was no meaningful difference between two groups regarding the changes in the pain severity. Bioptron with the above mentioned parameters led to therapeutic effects equal to splinting alone in patients with carpal tunnel syndrome. However, applying Bioptron with different therapeutic protocols and light parameters other than used in this study, perhaps longer duration of therapy and long term assessment may reveal different results favoring Bioptron therapy.

  5. The Effect of Polarized Polychromatic Noncoherent Light (Bioptron) Therapy on Patients with Carpal Tunnel Syndrome

    PubMed Central

    Raeissadat, Seyed Ahmad; Rayegani, Seyed Mansoor; Rezaei, Sajad; Bahrami, Mohammad Hasan; Eliaspour, Dariush; Karimzadeh, Afshin

    2014-01-01

    Introduction: To study the effects of Polarized Polychromatic Noncoherent Light (Bioptron) therapy on patients with carpal tunnel syndrome (CTS). Methods: This study was designed as a randomized clinical trial. Forty four patients with mild or moderate CTS (confirmed by clinical and electrodiagnostic studies) were assigned randomly into two groups (intervention and control goups). At the beginning of the study, both groups received wrist splinting for 8 weeks. Bioptron light was applied for the intervention group (eight sessions, for 3/weeks). Bioptron was applied perpendicularly to the wrist from a 10 centimeter sdistance. Pain severity and electrodiagnostic measurements were compared from before to 8 weeks after initiating each treatment. Results: Eight weeks after starting the treatments, the mean of pain severity based on Visual Analogue Scale (VAS) scores decreased significantly in both groups. Median Sensory Nerve Action Potential (SNAP) latency decreased significantly in both groups. However, other electrophysiological findings (median Compound Motor Action Potential (CMAP) latency and amplitude, also SNAP amplitude) did not change after the therapy in both groups. There was no meaningful difference between two groups regarding the changes in the pain severity. Conclusion: Bioptron with the above mentioned parameters led to therapeutic effects equal to splinting alone in patients with carpal tunnel syndrome. However, applying Bioptron with different therapeutic protocols and light parameters other than used in this study, perhaps longer duration of therapy and long term assessment may reveal different results favoring Bioptron therapy. PMID:25606338

  6. Electrophysiology of neurones of the inferior mesenteric ganglion of the cat.

    PubMed Central

    Julé, Y; Szurszewski, J H

    1983-01-01

    Intracellular recordings were obtained from cells in vitro in the inferior mesenteric ganglia of the cat. Neurones could be classified into three types: non-spontaneous, irregular discharging and regular discharging neurones. Non-spontaneous neurones had a stable resting membrane potential and responded with action potentials to indirect preganglionic nerve stimulation and to intracellular injection of depolarizing current. Irregular discharging neurones were characterized by a discharge of excitatory post-synaptic potentials (e.p.s.p.s.) which sometimes gave rise to action potentials. This activity was abolished by hexamethonium bromide, chlorisondamine and d-tubocurarine chloride. Tetrodotoxin and a low Ca2+ -high Mg2+ solution also blocked on-going activity in irregular discharging neurones. Regular discharging neurones were characterized by a rhythmic discharge of action potentials. Each action potential was preceded by a gradual depolarization of the intracellularly recorded membrane potential. Intracellular injection of hyperpolarizing current abolished the regular discharge of action potential. No synaptic potentials were observed during hyperpolarization of the membrane potential. Nicotinic, muscarinic and adrenergic receptor blocking drugs did not modify the discharge of action potentials in regular discharging neurones. A low Ca2+ -high Mg2+ solution also had no effect on the regular discharge of action potentials. Interpolation of an action potential between spontaneous action potentials in regular discharging neurones reset the rhythm of discharge. It is suggested that regular discharging neurones were endogenously active and that these neurones provided synaptic input to irregular discharging neurones. PMID:6140310

  7. Electrophysiology of neurones of the inferior mesenteric ganglion of the cat.

    PubMed

    Julé, Y; Szurszewski, J H

    1983-11-01

    Intracellular recordings were obtained from cells in vitro in the inferior mesenteric ganglia of the cat. Neurones could be classified into three types: non-spontaneous, irregular discharging and regular discharging neurones. Non-spontaneous neurones had a stable resting membrane potential and responded with action potentials to indirect preganglionic nerve stimulation and to intracellular injection of depolarizing current. Irregular discharging neurones were characterized by a discharge of excitatory post-synaptic potentials (e.p.s.p.s.) which sometimes gave rise to action potentials. This activity was abolished by hexamethonium bromide, chlorisondamine and d-tubocurarine chloride. Tetrodotoxin and a low Ca2+ -high Mg2+ solution also blocked on-going activity in irregular discharging neurones. Regular discharging neurones were characterized by a rhythmic discharge of action potentials. Each action potential was preceded by a gradual depolarization of the intracellularly recorded membrane potential. Intracellular injection of hyperpolarizing current abolished the regular discharge of action potential. No synaptic potentials were observed during hyperpolarization of the membrane potential. Nicotinic, muscarinic and adrenergic receptor blocking drugs did not modify the discharge of action potentials in regular discharging neurones. A low Ca2+ -high Mg2+ solution also had no effect on the regular discharge of action potentials. Interpolation of an action potential between spontaneous action potentials in regular discharging neurones reset the rhythm of discharge. It is suggested that regular discharging neurones were endogenously active and that these neurones provided synaptic input to irregular discharging neurones.

  8. Dynamics of action potential initiation in the GABAergic thalamic reticular nucleus in vivo.

    PubMed

    Muñoz, Fabián; Fuentealba, Pablo

    2012-01-01

    Understanding the neural mechanisms of action potential generation is critical to establish the way neural circuits generate and coordinate activity. Accordingly, we investigated the dynamics of action potential initiation in the GABAergic thalamic reticular nucleus (TRN) using in vivo intracellular recordings in cats in order to preserve anatomically-intact axo-dendritic distributions and naturally-occurring spatiotemporal patterns of synaptic activity in this structure that regulates the thalamic relay to neocortex. We found a wide operational range of voltage thresholds for action potentials, mostly due to intrinsic voltage-gated conductances and not synaptic activity driven by network oscillations. Varying levels of synchronous synaptic inputs produced fast rates of membrane potential depolarization preceding the action potential onset that were associated with lower thresholds and increased excitability, consistent with TRN neurons performing as coincidence detectors. On the other hand the presence of action potentials preceding any given spike was associated with more depolarized thresholds. The phase-plane trajectory of the action potential showed somato-dendritic propagation, but no obvious axon initial segment component, prominent in other neuronal classes and allegedly responsible for the high onset speed. Overall, our results suggest that TRN neurons could flexibly integrate synaptic inputs to discharge action potentials over wide voltage ranges, and perform as coincidence detectors and temporal integrators, supported by a dynamic action potential threshold.

  9. Motion in a modified Chermnykh's restricted three-body problem with oblateness

    NASA Astrophysics Data System (ADS)

    Singh, Jagadish; Leke, Oni

    2014-03-01

    In this paper, the restricted problem of three bodies is generalized to include a case when the passively gravitating test particle is an oblate spheroid under effect of small perturbations in the Coriolis and centrifugal forces when the first primary is a source of radiation and the second one an oblate spheroid, coupled with the influence of the gravitational potential from the belt. The equilibrium points are found and it is seen that, in addition to the usual three collinear equilibrium points, there appear two new ones due to the potential from the belt and the mass ratio. Two triangular equilibrium points exist. These equilibria are affected by radiation of the first primary, small perturbation in the centrifugal force, oblateness of both the test particle and second primary and the effect arising from the mass of the belt. The linear stability of the equilibrium points is explored and the stability outcome of the collinear equilibrium points remains unstable. In the case of the triangular points, motion is stable with respect to some conditions which depend on the critical mass parameter; influenced by the small perturbations, radiating effect of the first primary, oblateness of the test body and second primary and the gravitational potential from the belt. The effects of each of the imposed free parameters are analyzed. The potential from the belt and small perturbation in the Coriolis force are stabilizing parameters while radiation, small perturbation in the centrifugal force and oblateness reduce the stable regions. The overall effect is that the region of stable motion increases under the combine action of these parameters. We have also found the frequencies of the long and short periodic motion around stable triangular points. Illustrative numerical exploration is rendered in the Sun-Jupiter and Sun-Earth systems where we show that in reality, for some values of the system parameters, the additional equilibrium points do not in general exist even when there is a belt to interact with.

  10. Mechanisms and consequences of action potential burst firing in rat neocortical pyramidal neurons

    PubMed Central

    Williams, Stephen R; Stuart, Greg J

    1999-01-01

    Electrophysiological recordings and pharmacological manipulations were used to investigate the mechanisms underlying the generation of action potential burst firing and its postsynaptic consequences in visually identified rat layer 5 pyramidal neurons in vitro.Based upon repetitive firing properties and subthreshold membrane characteristics, layer 5 pyramidal neurons were separated into three classes: regular firing and weak and strong intrinsically burst firing.High frequency (330 ± 10 Hz) action potential burst firing was abolished or greatly weakened by the removal of Ca2+ (n = 5) from, or by the addition of the Ca2+ channel antagonist Ni2+ (250–500 μm; n = 8) to, the perfusion medium.The blockade of apical dendritic sodium channels by the local dendritic application of TTX (100 nm; n = 5) abolished or greatly weakened action potential burst firing, as did the local apical dendritic application of Ni2+ (1 mm; n = 5).Apical dendritic depolarisation resulted in low frequency (157 ± 26 Hz; n = 6) action potential burst firing in regular firing neurons, as classified by somatic current injection. The intensity of action potential burst discharges in intrinsically burst firing neurons was facilitated by dendritic depolarisation (n = 11).Action potential amplitude decreased throughout a burst when recorded somatically, suggesting that later action potentials may fail to propagate axonally. Axonal recordings demonstrated that each action potential in a burst is axonally initiated and that no decrement in action potential amplitude is apparent in the axon > 30 μm from the soma.Paired recordings (n = 16) from synaptically coupled neurons indicated that each action potential in a burst could cause transmitter release. EPSPs or EPSCs evoked by a presynaptic burst of action potentials showed use-dependent synaptic depression.A postsynaptic, TTX-sensitive voltage-dependent amplification process ensured that later EPSPs in a burst were amplified when generated from membrane potentials positive to -60 mV, providing a postsynaptic mechanism that counteracts use-dependent depression at synapses between layer 5 pyramidal neurons. PMID:10581316

  11. Corrective Action Investigation Plan for Corrective Action Unit 428: Area 3 Septic Waste Systems 1 and 5, Tonopah Test Range, Nevada, REVISION 0, march 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ITLV.

    1999-03-01

    The Corrective Action Investigation Plan for Corrective Action Unit 428, Area 3 Septic Waste Systems 1 and 5, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U. S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U. S. Department of Defense. Corrective Action Unit 428 consists of Corrective Action Sites 03- 05- 002- SW01 and 03- 05- 002- SW05, respectively known as Area 3 Septic Waste System 1 and Septic Waste System 5. This Corrective Action Investigation Plan is used inmore » combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada , Rev. 1 (DOE/ NV, 1998c). The Leachfield Work Plan was developed to streamline investigations at leachfield Corrective Action Units by incorporating management, technical, quality assurance, health and safety, public involvement, field sampling, and waste management information common to a set of Corrective Action Units with similar site histories and characteristics into a single document that can be referenced. This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 428. A system of leachfields and associated collection systems was used for wastewater disposal at Area 3 of the Tonopah Test Range until a consolidated sewer system was installed in 1990 to replace the discrete septic waste systems. Operations within various buildings at Area 3 generated sanitary and industrial wastewaters potentially contaminated with contaminants of potential concern and disposed of in septic tanks and leachfields. Corrective Action Unit 428 is composed of two leachfield systems in the northern portion of Area 3. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern for the site include oil/ diesel range total petroleum hydrocarbons, and Resource Conservation and Recovery Act characteristic volatile organic compounds, semivolatile organic compounds, and metals. A limited number of samples will be analyzed for gamma- emitting radionuclides and isotopic uranium from four of the septic tanks and if radiological field screening levels are exceeded. Additional samples will be analyzed for geotechnical and hydrological properties and a bioassessment may be performed. The technical approach for investigating this Corrective Action Unit consists of the following activities: Perform video surveys of the discharge and outfall lines. Collect samples of material in the septic tanks. Conduct exploratory trenching to locate and inspect subsurface components. Collect subsurface soil samples in areas of the collection system including the septic tanks and outfall end of distribution boxes. Collect subsurface soil samples underlying the leachfield distribution pipes via trenching. Collect surface and near- surface samples near potential locations of the Acid Sewer Outfall if Septic Waste System 5 Leachfield cannot be located. Field screen samples for volatile organic compounds, total petroleum hydrocarbons, and radiological activity. Drill boreholes and collect subsurface soil samples if required. Analyze samples for total volatile organic compounds, total semivolatile organic compounds, total Resource Conservation and Recovery Act metals, and total petroleum hydrocarbons (oil/ diesel range organics). Limited number of samples will be analyzed for gamma- emitting radionuclides and isotopic uranium from particular septic tanks and if radiological field screening levels are exceeded. Collect samples from native soils beneath the distribution system and analyze for geotechnical/ hydrologic parameters. Collect and analyze bioassessment samples at the discretion of the Site Supervisor if total petroleum hydrocarbons exceed field- screening levels.« less

  12. Effect of action potential duration on Tpeak-Tend interval, T-wave area and T-wave amplitude as indices of dispersion of repolarization: Theoretical and simulation study in the rabbit heart.

    PubMed

    Arteyeva, Natalia V; Azarov, Jan E

    The aim of the study was to differentiate the effect of dispersion of repolarization (DOR) and action potential duration (APD) on T-wave parameters being considered as indices of DOR, namely, Tpeak-Tend interval, T-wave amplitude and T-wave area. T-wave was simulated in a wide physiological range of DOR and APD using a realistic rabbit model based on experimental data. A simplified mathematical formulation of T-wave formation was conducted. Both the simulations and the mathematical formulation showed that Tpeak-Tend interval and T-wave area are linearly proportional to DOR irrespectively of APD range, while T-wave amplitude is non-linearly proportional to DOR and inversely proportional to the minimal repolarization time, or minimal APD value. Tpeak-Tend interval and T-wave area are the most accurate DOR indices independent of APD. T-wave amplitude can be considered as an index of DOR when the level of APD is taken into account. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Early universe with modified scalar-tensor theory of gravity

    NASA Astrophysics Data System (ADS)

    Mandal, Ranajit; Sarkar, Chandramouli; Sanyal, Abhik Kumar

    2018-05-01

    Scalar-tensor theory of gravity with non-minimal coupling is a fairly good candidate for dark energy, required to explain late-time cosmic evolution. Here we study the very early stage of evolution of the universe with a modified version of the theory, which includes scalar curvature squared term. One of the key aspects of the present study is that, the quantum dynamics of the action under consideration ends up generically with de-Sitter expansion under semiclassical approximation, rather than power-law. This justifies the analysis of inflationary regime with de-Sitter expansion. The other key aspect is that, while studying gravitational perturbation, the perturbed generalized scalar field equation obtained from the perturbed action, when matched with the perturbed form of the background scalar field equation, relates the coupling parameter and the potential exactly in the same manner as the solution of classical field equations does, assuming de-Sitter expansion. The study also reveals that the quantum theory is well behaved, inflationary parameters fall well within the observational limit and quantum perturbation analysis shows that the power-spectrum does not deviate considerably from the standard one obtained from minimally coupled theory.

  14. Automatic classification of visual evoked potentials based on wavelet decomposition

    NASA Astrophysics Data System (ADS)

    Stasiakiewicz, Paweł; Dobrowolski, Andrzej P.; Tomczykiewicz, Kazimierz

    2017-04-01

    Diagnosis of part of the visual system, that is responsible for conducting compound action potential, is generally based on visual evoked potentials generated as a result of stimulation of the eye by external light source. The condition of patient's visual path is assessed by set of parameters that describe the time domain characteristic extremes called waves. The decision process is compound therefore diagnosis significantly depends on experience of a doctor. The authors developed a procedure - based on wavelet decomposition and linear discriminant analysis - that ensures automatic classification of visual evoked potentials. The algorithm enables to assign individual case to normal or pathological class. The proposed classifier has a 96,4% sensitivity at 10,4% probability of false alarm in a group of 220 cases and area under curve ROC equals to 0,96 which, from the medical point of view, is a very good result.

  15. The human ether-a-go-go-related gene (hERG) current inhibition selectively prolongs action potential of midmyocardial cells to augment transmural dispersion.

    PubMed

    Yasuda, C; Yasuda, S; Yamashita, H; Okada, J; Hisada, T; Sugiura, S

    2015-08-01

    The majority of drug induced arrhythmias are related to the prolongation of action potential duration following inhibition of rapidly activating delayed rectifier potassium current (I(Kr)) mediated by the hERG channel. However, for arrhythmias to develop and be sustained, not only the prolongation of action potential duration but also its transmural dispersion are required. Herein, we evaluated the effect of hERG inhibition on transmural dispersion of action potential duration using the action potential clamp technique that combined an in silico myocyte model with the actual I(Kr) measurement. Whole cell I(Kr) current was measured in Chinese hamster ovary cells stably expressing the hERG channel. The measured current was coupled with models of ventricular endocardial, M-, and epicardial cells to calculate the action potentials. Action potentials were evaluated under control condition and in the presence of 1, 10, or 100 μM disopyramide, an hERG inhibitor. Disopyramide dose-dependently increased the action potential durations of the three cell types. However, action potential duration of M-cells increased disproportionately at higher doses, and was significantly different from that of epicardial and endocardial cells (dispersion of repolarization). By contrast, the effects of disopyramide on peak I(Kr) and instantaneous current-voltage relation were similar in all cell types. Simulation study suggested that the reduced repolarization reserve of M-cell with smaller amount of slowly activating delayed rectifier potassium current levels off at longer action potential duration to make such differences. The action potential clamp technique is useful for studying the mechanism of arrhythmogenesis by hERG inhibition through the transmural dispersion of repolarization.

  16. ACUDIN - ACUpuncture and laser acupuncture for treatment of DIabetic peripheral Neuropathy: a randomized, placebo-controlled, partially double-blinded trial.

    PubMed

    Meyer-Hamme, Gesa; Friedemann, Thomas; Greten, Henry Johannes; Plaetke, Rosemarie; Gerloff, Christian; Schroeder, Sven

    2018-04-13

    Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus with significant clinical sequelae that can affect a patient's quality of life. Metabolic and microvascular factors are responsible for nerve damage, causing loss of nerve function, numbness, painful sensory symptoms, and muscle weakness. Therapy is limited to anti-convulsant or anti-depressant drugs for neuropathic pain and paresthesia. However, reduced sensation, balance and gait problems are insufficiently covered by this treatment. Previous data suggests that acupuncture, which has been in use in Traditional Chinese Medicine for many years, may potentially complement the treatment options for peripheral neuropathy. Nevertheless, more objective data on clinical outcome is necessary to generally recommend acupuncture to the public. We developed a study design for a prospective, randomized (RCT), placebo-controlled, partially double-blinded trial for investigating the effect of acupuncture on DPN as determined by nerve conduction studies (NCS) with the sural sensory nerve action potential amplitude as the primary outcome. The sural sensory nerve conduction velocity, tibial motor nerve action potential amplitude, tibial motor nerve conduction velocity, the neuropathy deficit score, neuropathy symptom score, and numeric rating scale questionnaires are defined as secondary outcomes. One hundred and eighty patients with type 2 diabetes mellitus will be randomized into three groups (needle acupuncture, verum laser acupuncture, and placebo laser acupuncture). We hypothesize that needle and laser acupuncture have beneficial effects on electrophysiological parameters and clinical and subjective symptoms in relation to DPN in comparison with placebo. The ACUDIN trial aims at investigating whether classical needle acupuncture and/or laser acupuncture are efficacious in the treatment of DPN. For the purpose of an objective parameter, NCS were chosen as outcome measures. Acupuncture treatment may potentially improve patients' quality of life and reduce the socio-economic burden caused by DPN. German Clinical Trial Register (DRKS), No. DRKS00008562 , trial search portal of the WHO ( http://apps.who.int/trialsearch/ ).

  17. Opioids and the immune system: what is their mechanism of action?

    PubMed

    Eisenstein, Toby K

    2011-12-01

    There is a significant amount of literature showing that morphine and other opioids modulate immune responses. The findings support many mechanisms by which this may occur. In vitro experiments provide evidence for direct actions of opioids on immune cells using a variety of functional end points. When these drugs are given in vivo, a plethora of immune parameters are also altered. The paper in this issue of the journal by Zhang et al. provides new information on morphine alteration of immune cell subsets in the spleen and thymus of mice and the potential role of glucocorticoids in these observed phenomena. This Commentary reviews the in vitro activities of morphine on leucocytes, as well as other documented mechanisms by which morphine can alter immune function in vivo. © 2011 The Author. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  18. Dynamics of Action Potential Initiation in the GABAergic Thalamic Reticular Nucleus In Vivo

    PubMed Central

    Muñoz, Fabián; Fuentealba, Pablo

    2012-01-01

    Understanding the neural mechanisms of action potential generation is critical to establish the way neural circuits generate and coordinate activity. Accordingly, we investigated the dynamics of action potential initiation in the GABAergic thalamic reticular nucleus (TRN) using in vivo intracellular recordings in cats in order to preserve anatomically-intact axo-dendritic distributions and naturally-occurring spatiotemporal patterns of synaptic activity in this structure that regulates the thalamic relay to neocortex. We found a wide operational range of voltage thresholds for action potentials, mostly due to intrinsic voltage-gated conductances and not synaptic activity driven by network oscillations. Varying levels of synchronous synaptic inputs produced fast rates of membrane potential depolarization preceding the action potential onset that were associated with lower thresholds and increased excitability, consistent with TRN neurons performing as coincidence detectors. On the other hand the presence of action potentials preceding any given spike was associated with more depolarized thresholds. The phase-plane trajectory of the action potential showed somato-dendritic propagation, but no obvious axon initial segment component, prominent in other neuronal classes and allegedly responsible for the high onset speed. Overall, our results suggest that TRN neurons could flexibly integrate synaptic inputs to discharge action potentials over wide voltage ranges, and perform as coincidence detectors and temporal integrators, supported by a dynamic action potential threshold. PMID:22279567

  19. Decision making and action implementation: evidence for an early visually triggered motor activation specific to potential actions.

    PubMed

    Tandonnet, Christophe; Garry, Michael I; Summers, Jeffery J

    2013-07-01

    To make a decision may rely on accumulating evidence in favor of one alternative until a threshold is reached. Sequential-sampling models differ by the way of accumulating evidence and the link with action implementation. Here, we tested a model's prediction of an early action implementation specific to potential actions. We assessed the dynamics of action implementation in go/no-go and between-hand choice tasks by transcranial magnetic stimulation of the motor cortex (single- or paired-pulse TMS; 3-ms interstimulus interval). Prior to implementation of the selected action, the amplitude of the motor evoked potential first increased whatever the visual stimulus but only for the hand potentially involved in the to-be-produced action. These findings suggest that visual stimuli can trigger an early motor activation specific to potential actions, consistent with race-like models with continuous transmission between decision making and action implementation. Copyright © 2013 Society for Psychophysiological Research.

  20. Essential oil of Croton zehntneri and its main constituent anethole block excitability of rat peripheral nerve.

    PubMed

    da Silva-Alves, Kerly Shamyra; Ferreira-da-Silva, Francisco Walber; Coelho-de-Souza, Andrelina Noronha; Albuquerque, Aline Alice Cavalcante; do Vale, Otoni Cardoso; Leal-Cardoso, José Henrique

    2015-03-01

    Croton zehntneri is an aromatic plant native to Northeast Brazil and employed by local people to treat various diseases. The leaves of this plant have a rich content of essential oil. The essential oil of C. zehntneri samples, with anethole as the major constituent and anethole itself, have been reported to have several pharmacological activities such as antispasmodic, cardiovascular, and gastroprotective effects and inducing the blockade of neuromuscular transmission and antinociception. Since several works have demonstrated that essential oils and their constituents block cell excitability and in view of the multiple effects of C. zehntneri essential oil and anethole on biological tissues, we undertook this investigation aiming to characterize and compare the effects of this essential oil and its major constituent on nerve excitability. Sciatic nerves of Wistar rats were used. They were mounted in a moist chamber, and evoked compound action potentials were recorded. Nerves were exposed in vitro to the essential oil of C. zehntneri and anethole (0.1-1 mg/mL) up to 180 min, and alterations in excitability (rheobase and chronaxie) and conductibility (peak-to-peak amplitude and conduction velocity) parameters of the compound action potentials were evaluated. The essential oil of C. zehntneri and anethole blocked, in a concentration-dependent manner with similar pharmacological potencies (IC50: 0.32 ± 0.07 and 0.22 ± 0.11 mg/mL, respectively), rat sciatic nerve compound action potentials. Strength-duration curves for both agents were shifted upward and to the right compared to the control curve, and the rheobase and chronaxie were increased following essential oil and anethole exposure. The time courses of the essential oil of C. zehntneri and anethole effects on peak-to-peak amplitude of compound action potentials followed an exponential decay and reached a steady state. The essential oil of C. zehntneri and anethole caused a similar reduction in conduction velocities of the compound action potential waves investigated. In conclusion, we demonstrated here that the essential oil of C. zehntneri blocks neuronal excitability and that this effect, which can be predominantly attributable to its major constituent, anethole, is important since these agents have several pharmacological effects likely related to the alteration of excitability. This finding is relevant due to the use of essential oils in aromatherapy and the low acute toxicity of this agent, which exhibits other effects of potential therapeutic usefulness. Georg Thieme Verlag KG Stuttgart · New York.

  1. The effects of saxitoxin and tetrodotoxin on nerve conduction in the presence of lithium ions and of magnesium ions

    PubMed Central

    Evans, M. H.

    1969-01-01

    1. It has been shown that nerve fibres from rat cauda equina will conduct action potentials after immersion in saline in which lithium chloride is substituted for sodium chloride. 2. Both saxitoxin and tetrodotoxin inhibit lithium-generated action potentials. The concentration of toxin needed to inhibit the lithium-generated action potentials is similar to that needed to inhibit sodium-generated action potentials. 3. If magnesium chloride is added to the saline to give a concentration of 10-15 mM there is usually a slight fall in amplitude of the compound action potential. Saxitoxin and tetrodotoxin now inhibit the action potential to a greater degree than in the absence of magnesium ions. PMID:5789802

  2. The impact of hepatitis A virus infection on hepatitis C virus infection: a competitive exclusion hypothesis.

    PubMed

    Amaku, Marcos; Coutinho, Francisco Antonio Bezerra; Chaib, Eleazar; Massad, Eduardo

    2013-01-01

    We address the observation that, in some cases, patients infected with the hepatitis C virus (HCV) are cleared of HCV when super-infected with the hepatitis A virus (HAV). We hypothesise that this phenomenon can be explained by the competitive exclusion principle, including the action of the immune system, and show that the inclusion of the immune system explains both the elimination of one virus and the co-existence of both infections for a certain range of parameters. We discuss the potential clinical implications of our findings.

  3. Air Vehicle Integration and Technology Research (AVIATR). Task Order 0003: Condition-Based Maintenance Plus Structural Integrity (CBM+SI) Demonstration (September 2011 to March 2012)

    DTIC Science & Technology

    2012-03-01

    the potential maintenance plans are compared via the TPMs , which are related to the cost of ownership of the fleet and to aircraft availability. 7...due to maintenance of the wing system is reported because this measure has a straightforward interpretation. This TPM is referred to as Fleet DT...3.2.2. Maintenance Parameters The F-15 Program has indicated that, in practice , maintenance actions are generally performed on multiples of 200 FH. For

  4. Actions and mechanisms of action of novel analogues of sotalol on guinea-pig and rabbit ventricular cells.

    PubMed Central

    Connors, S. P.; Gill, E. W.; Terrar, D. A.

    1992-01-01

    1. The actions and mechanisms of action of novel analogues of sotalol which prolong cardiac action potentials were investigated in guinea-pig and rabbit isolated ventricular cells. 2. In guinea-pig and rabbit cells the compounds significantly prolonged action potential duration at 20% and 90% repolarization levels without affecting resting membrane potential. In guinea-pig but not rabbit cells there was an increase in action potential amplitude and in rabbit cells there was no change in the shape or position of the 'notch' in the action potential. 3. Possible mechanisms of action were studied in more detail in the case of compound II (1-(4-methanesulphonamidophenoxy)-3-(N-methyl 3,4 dichlorophenylethylamino)-2-propanol). Prolongation of action potential duration continued to occur in the presence of nisoldipine, and calcium currents recorded under voltage-clamp conditions were not reduced by compound II (1 microM). Action potential prolongation by compound II was also unaffected in the presence of 10 microM tetrodotoxin. 4. Compound II (1 microM) did not influence IK1 assessed from the current during ramp changes in membrane potential (20 mV s-1) over the range -90 to -10 mV. 5. Compound II (1 microM) blocked time-dependent delayed rectifier potassium current (IK) activated by step depolarizations and recorded as an outward tail following repolarization. When a submaximal concentration (50 nM) was applied there was no change in the apparent reversal potential of IK.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1393293

  5. Development of a Kinetic Assay for Late Endosome Movement.

    PubMed

    Esner, Milan; Meyenhofer, Felix; Kuhn, Michael; Thomas, Melissa; Kalaidzidis, Yannis; Bickle, Marc

    2014-08-01

    Automated imaging screens are performed mostly on fixed and stained samples to simplify the workflow and increase throughput. Some processes, such as the movement of cells and organelles or measuring membrane integrity and potential, can be measured only in living cells. Developing such assays to screen large compound or RNAi collections is challenging in many respects. Here, we develop a live-cell high-content assay for tracking endocytic organelles in medium throughput. We evaluate the added value of measuring kinetic parameters compared with measuring static parameters solely. We screened 2000 compounds in U-2 OS cells expressing Lamp1-GFP to label late endosomes. All hits have phenotypes in both static and kinetic parameters. However, we show that the kinetic parameters enable better discrimination of the mechanisms of action. Most of the compounds cause a decrease of motility of endosomes, but we identify several compounds that increase endosomal motility. In summary, we show that kinetic data help to better discriminate phenotypes and thereby obtain more subtle phenotypic clustering. © 2014 Society for Laboratory Automation and Screening.

  6. Alteration of neural action potential patterns by axonal stimulation: the importance of stimulus location.

    PubMed

    Crago, Patrick E; Makowski, Nathaniel S

    2014-10-01

    Stimulation of peripheral nerves is often superimposed on ongoing motor and sensory activity in the same axons, without a quantitative model of the net action potential train at the axon endpoint. We develop a model of action potential patterns elicited by superimposing constant frequency axonal stimulation on the action potentials arriving from a physiologically activated neural source. The model includes interactions due to collision block, resetting of the neural impulse generator, and the refractory period of the axon at the point of stimulation. Both the mean endpoint firing rate and the probability distribution of the action potential firing periods depend strongly on the relative firing rates of the two sources and the intersite conduction time between them. When the stimulus rate exceeds the neural rate, neural action potentials do not reach the endpoint and the rate of endpoint action potentials is the same as the stimulus rate, regardless of the intersite conduction time. However, when the stimulus rate is less than the neural rate, and the intersite conduction time is short, the two rates partially sum. Increases in stimulus rate produce non-monotonic increases in endpoint rate and continuously increasing block of neurally generated action potentials. Rate summation is reduced and more neural action potentials are blocked as the intersite conduction time increases. At long intersite conduction times, the endpoint rate simplifies to being the maximum of either the neural or the stimulus rate. This study highlights the potential of increasing the endpoint action potential rate and preserving neural information transmission by low rate stimulation with short intersite conduction times. Intersite conduction times can be decreased with proximal stimulation sites for muscles and distal stimulation sites for sensory endings. The model provides a basis for optimizing experiments and designing neuroprosthetic interventions involving motor or sensory stimulation.

  7. The role of Na-Ca exchange current in the cardiac action potential.

    PubMed

    Janvier, N C; Boyett, M R

    1996-07-01

    Since 1981, when Mullins published his provocative book proposing that the Na-Ca exchanger is electrogenic, it has been shown, first by computer simulation by Noble and later by experiment by various investigators, that inward iNaCa triggered by the Ca2+ transient is responsible for the low plateau of the atrial action potential and contributes to the high plateau of the ventricular action potential. Reduction or complete block of inward iNaCa by buffering intracellular Ca2+ with EGTA or BAPTA, by blocking SR Ca2+ release or by substituting extracellular Na+ with Li+ can result in a shortening of the action potential. The effect of block of outward iNaCa or complete block of both inward and outward iNaCa on the action potential has not been investigated experimentally, because of the lack of a suitable blocker, and remains a goal for the future. An increase in the intracellular Na+ concentration (after the application of cardiac glycoside or an increase in heart rate) or an increase in extracellular Ca2+ are believed to lead to an outward shift in iNaCa at plateau potentials and a shortening of the action potential. Changes in the Ca2+ transient are expected to result in changes in inward iNaCa and thus the action potential. This may explain the shortening of the premature action potential as well as the prolongation of the action potential when a muscle is allowed to shorten during the action potential. Inward iNaCa may play an important role in both normal and abnormal pacemaker activity in the heart.

  8. Simulation of action potential propagation in plants.

    PubMed

    Sukhov, Vladimir; Nerush, Vladimir; Orlova, Lyubov; Vodeneev, Vladimir

    2011-12-21

    Action potential is considered to be one of the primary responses of a plant to action of various environmental factors. Understanding plant action potential propagation mechanisms requires experimental investigation and simulation; however, a detailed mathematical model of plant electrical signal transmission is absent. Here, the mathematical model of action potential propagation in plants has been worked out. The model is a two-dimensional system of excitable cells; each of them is electrically coupled with four neighboring ones. Ion diffusion between excitable cell apoplast areas is also taken into account. The action potential generation in a single cell has been described on the basis of our previous model. The model simulates active and passive signal transmission well enough. It has been used to analyze theoretically the influence of cell to cell electrical conductivity and H(+)-ATPase activity on the signal transmission in plants. An increase in cell to cell electrical conductivity has been shown to stimulate an increase in the length constant, the action potential propagation velocity and the temperature threshold, while the membrane potential threshold being weakly changed. The growth of H(+)-ATPase activity has been found to induce the increase of temperature and membrane potential thresholds and the reduction of the length constant and the action potential propagation velocity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Labor management evidence update: potential to minimize risk of cesarean birth in healthy women.

    PubMed

    Simpson, Kathleen Rice

    2014-01-01

    New evidence regarding normal parameters of labor progress for healthy women has the potential to minimize risk of cesarean birth and thereby enhance current and future maternal well-being if clinicians apply the research findings to obstetric practice. The economic and reproductive health consequences of the increasing cesarean birth rate in the United States are considerable; therefore, action on this issue by all stakeholders is necessary. Review and integration of the recent recommendations for labor management from experts convened by the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the American College of Obstetricians and Gynecologists, and the Society for Maternal-Fetal Medicine are required to make maternity care in the United States as safe as possible.

  10. Effect of specific antibodies on the excitability of internally perfused squid axons.

    PubMed

    Huneeus, F C; Fernandez, H L

    1967-11-01

    Giant axons from the squid Dosidicus gigas were internally perfused with rabbit antiaxoplasm antibodies and their effect upon the action potential and the membrane potential was studied. Necessary requirements for the antibodies to affect these parameters in a consistent manner were: (a) removal of the bulk of axoplasm from the perfused zone, accomplished by initially perfusing with a cysteine-rich (400 mM) solution, and (b) addition of small amounts of cysteine (30 mM) to the antibody-containing solution. When these experimental conditions were met, conduction block ensued generally within 3 hr of the first contact of the axon inner surface with the antibody Antineurofilament antibodies and nonspecific antibodies had no effect. External application of antiaxoplasm antibodies had no effect.

  11. Response coding and visuomotor transformation in the Simon task: the role of action goals.

    PubMed

    Buhlmann, Ivonne; Umiltà, Carlo; Wascher, Edmund

    2007-12-01

    Manual responses can be defined by differing response parameters. Any of them may generate a Simon effect. For all those response parameters, the same implementation of the Simon effect (in terms of subserving mechanism) is assumed. In 3 experiments, subjects had to respond with either fingers or sticks. Temporal properties of the Simon effect changed with response parameters relevant in a task. The Simon effect for manual responses decayed. For stick responses, in which the action goal differed from the anatomical mapping of the acting hand, a sustained Simon effect was observed. However, if the action goal for stick responses was not instrumental for selecting the correct response, the Simon effect decayed. The findings are consistent with the notion of different mechanisms involved in generating a Simon effect.

  12. Inducing repetitive action potential firing in neurons via synthesized photoresponsive nanoscale cellular prostheses.

    PubMed

    Lu, Siyuan; Madhukar, Anupam

    2013-02-01

    Recently we reported an analysis that examined the potential of synthesized photovoltaic functional abiotic nanosystems (PVFANs) to modulate membrane potential and activate action potential firing in neurons. Here we extend the analysis to delineate the requirements on the electronic energy levels and the attendant photophysical properties of the PVFANs to induce repetitive action potential under continuous light, a capability essential for the proposed potential application of PVFANs as retinal cellular prostheses to compensate for loss of photoreceptors. We find that repetitive action potential firing demands two basic characteristics in the electronic response of the PVFANs: an exponential dependence of the PVFAN excited state decay rate on the membrane potential and a three-state system such that, following photon absorption, the electron decay from the excited state to the ground state is via intermediate state(s) whose lifetime is comparable to the refractory time following an action potential. In this study, the potential of synthetic photovoltaic functional abiotic nanosystems (PVFANs) is examined under continuous light to modulate membrane potential and activate action potential firing in neurons with the proposed potential application of PVFANs as retinal cellular prostheses. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Inferring the gravitational potential of the Milky Way with a few precisely measured stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price-Whelan, Adrian M.; Johnston, Kathryn V.; Hendel, David

    2014-10-10

    The dark matter halo of the Milky Way is expected to be triaxial and filled with substructure. It is hoped that streams or shells of stars produced by tidal disruption of stellar systems will provide precise measures of the gravitational potential to test these predictions. We develop a method for inferring the Galactic potential with tidal streams based on the idea that the stream stars were once close in phase space. Our method can flexibly adapt to any form for the Galactic potential: it works in phase-space rather than action-space and hence relies neither on our ability to derive actionsmore » nor on the integrability of the potential. Our model is probabilistic, with a likelihood function and priors on the parameters. The method can properly account for finite observational uncertainties and missing data dimensions. We test our method on synthetic data sets generated from N-body simulations of satellite disruption in a static, multi-component Milky Way, including a triaxial dark matter halo with observational uncertainties chosen to mimic current and near-future surveys of various stars. We find that with just eight well-measured stream stars, we can infer properties of a triaxial potential with precisions of the order of 5%-7%. Without proper motions, we obtain 10% constraints on most potential parameters and precisions around 5%-10% for recovering missing phase-space coordinates. These results are encouraging for the goal of using flexible, time-dependent potential models combined with larger data sets to unravel the detailed shape of the dark matter distribution around the Milky Way.« less

  14. The electrophysiological response to immunoglobulin therapy in chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Otto, M; Markvardsen, L; Tankisi, H; Jakobsen, J; Fuglsang-Frederiksen, A

    2017-06-01

    To characterize changes in motor nerve conduction studies (MNCS) and motor unit number index (MUNIX) following treatment with subcutaneous immunoglobulin and to assess whether these changes are related to muscle strength. Data from 23 patients participating in a randomized, controlled trial were analyzed. MNCS and MUNIX were performed before and after 12 weeks of treatment. Isokinetic strength (IMS) was measured in various muscles together with grip strength (GS). Proximally evoked compound muscle action potential (CMAP) amplitudes and MUNIX tended to be better preserved in treated patients (P=.049 and .045). Changes in other parameters did not differ between groups. There was no correlation between changes in electrophysiological parameters and IMS. Changes in GS were related to median nerve motor conduction velocity, distal motor latency, CMAP amplitudes, and distally evoked CMAP duration (P=.013-.035). Proximally evoked CMAP amplitudes appear to be the best MNCS parameter to assess treatment outcome in chronic inflammatory demyelinating polyneuropathy. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Instrumentation to Record Evoked Potentials for Closed-Loop Control of Deep Brain Stimulation

    PubMed Central

    Kent, Alexander R.; Grill, Warren M.

    2012-01-01

    Closed-loop deep brain stimulation (DBS) systems offer promise in relieving the clinical burden of stimulus parameter selection and improving treatment outcomes. In such a system, a feedback signal is used to adjust automatically stimulation parameters and optimize the efficacy of stimulation. We explored the feasibility of recording electrically evoked compound action potentials (ECAPs) during DBS for use as a feedback control signal. A novel instrumentation system was developed to suppress the stimulus artifact and amplify the small magnitude, short latency ECAP response during DBS with clinically relevant parameters. In vitro testing demonstrated the capabilities to increase the gain by a factor of 1,000x over a conventional amplifier without saturation, reduce distortion of mock ECAP signals, and make high fidelity recordings of mock ECAPs at latencies of only 0.5 ms following DBS pulses of 50 to 100 μs duration. Subsequently, the instrumentation was used to make in vivo recordings of ECAPs during thalamic DBS in cats, without contamination by the stimulus artifact. The signal characteristics were similar across three experiments, suggesting common neural activation patterns. The ECAP recordings enabled with this novel instrumentation may provide insight into the type and spatial extent of neural elements activated during DBS, and could serve as feedback control signals for closed-loop systems. PMID:22255894

  16. Effects of K(+) channel openers on spontaneous action potentials in detrusor smooth muscle of the guinea-pig urinary bladder.

    PubMed

    Takagi, Hiroaki; Hashitani, Hikaru

    2016-10-15

    The modulation of spontaneous excitability in detrusor smooth muscle (DSM) upon the pharmacological activation of different populations of K(+) channels was investigated. Effects of distinct K(+) channel openers on spontaneous action potentials in DSM of the guinea-pig bladder were examined using intracellular microelectrode techniques. NS1619 (10μM), a large conductance Ca(2+)-activated K(+) (BK) channel opener, transiently increased action potential frequency and then prevented their generation without hyperpolarizing the membrane in a manner sensitive to iberiotoxin (IbTX, 100nM). A higher concentration of NS1619 (30μM) hyperpolarized the membrane and abolished action potential firing. NS309 (10μM) and SKA31 (100μM), small conductance Ca(2+)-activated K(+) (SK) channel openers, dramatically increased the duration of the after-hyperpolarization and then abolished action potential firing in an apamin (100nM)-sensitive manner. Flupirtine (10μM), a Kv7 channel opener, inhibited action potential firing without hyperpolarizing the membrane in a manner sensitive to XE991 (10μM), a Kv7 channel blocker. BRL37344 (10μM), a β3-adrenceptor agonist, or rolipram (10nM), a phosphodiesterase 4 inhibitor, also inhibited action potential firing. A higher concentration of rolipram (100nM) hyperpolarized the DSM and abolished the action potentials. IbTX (100nM) prevented the rolipram-induced blockade of action potentials but not the hyperpolarization. BK and Kv7 channels appear to predominantly contribute to the stabilization of DSM excitability. Spare SK channels could be pharmacologically activated to suppress DSM excitability. BK channels appear to be involved in the cyclic AMP-induced inhibition of action potentials but not the membrane hyperpolarization. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Combination treatment with T4 and T3: toward personalized replacement therapy in hypothyroidism?

    PubMed

    Biondi, Bernadette; Wartofsky, Leonard

    2012-07-01

    Levothyroxine therapy is the traditional lifelong replacement therapy for hypothyroid patients. Over the last several years, new evidence has led clinicians to evaluate the option of combined T(3) and T(4) treatment to improve the quality of life, cognition, and peripheral parameters of thyroid hormone action in hypothyroidism. The aim of this review is to assess the physiological basis and the results of current studies on this topic. We searched Medline for reports published with the following search terms: hypothyroidism, levothyroxine, triiodothyronine, thyroid, guidelines, treatment, deiodinases, clinical symptoms, quality of life, cognition, mood, depression, body weight, heart rate, cholesterol, bone markers, SHBG, and patient preference for combined therapy. The search was restricted to reports published in English since 1970, but some reports published before 1970 were also incorporated. We supplemented the search with records from personal files and references of relevant articles and textbooks. Parameters analyzed included the rationale for combination treatment, the type of patients to be selected, the optimal T(4)/T(3) ratio, and the potential benefits of this therapy on symptoms of hypothyroidism, quality of life, mood, cognition, and peripheral parameters of thyroid hormone action. The outcome of our analysis suggests that it may be time to consider a personalized regimen of thyroid hormone replacement therapy in hypothyroid patients. Further prospective randomized controlled studies are needed to clarify this important issue. Innovative formulations of the thyroid hormones will be required to mimic a more perfect thyroid hormone replacement therapy than is currently available.

  18. Imaging Action Potential in Single Mammalian Neurons by Tracking the Accompanying Sub-Nanometer Mechanical Motion.

    PubMed

    Yang, Yunze; Liu, Xian-Wei; Wang, Hui; Yu, Hui; Guan, Yan; Wang, Shaopeng; Tao, Nongjian

    2018-03-28

    Action potentials in neurons have been studied traditionally by intracellular electrophysiological recordings and more recently by the fluorescence detection methods. Here we describe a label-free optical imaging method that can measure mechanical motion in single cells with a sub-nanometer detection limit. Using the method, we have observed sub-nanometer mechanical motion accompanying the action potential in single mammalian neurons by averaging the repeated action potential spikes. The shape and width of the transient displacement are similar to those of the electrically recorded action potential, but the amplitude varies from neuron to neuron, and from one region of a neuron to another, ranging from 0.2-0.4 nm. The work indicates that action potentials may be studied noninvasively in single mammalian neurons by label-free imaging of the accompanying sub-nanometer mechanical motion.

  19. Pathological prolongation of action potential duration as a cause of the reduced alpha-adrenoceptor-mediated negative inotropy in streptozotocin-induced diabetic mice myocardium.

    PubMed

    Kanae, Haruna; Hamaguchi, Shogo; Wakasugi, Yumi; Kusakabe, Taichi; Kato, Keisuke; Namekata, Iyuki; Tanaka, Hikaru

    2017-11-01

    Effect of pathological prolongation of action potential duration on the α-adrenoceptor-mediated negative inotropy was studied in streptozotocin-induced diabetic mice myocardium. In streptozotocin-treated mouse ventricular myocardium, which had longer duration of action potential than that in control mice, the negative inotropic response induced by phenylephrine was smaller than that in control mice. 4-Aminopyridine prolonged the action potential duration and decreased the negative inotropy in control mice. Cromakalim shortened the action potential duration and increased the negative inotropy in streptozotocin-treated mice. These results suggest that the reduced α-adrenoceptor-mediated inotropy in the diabetic mouse myocardium is partly due to its prolonged action potential. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  20. Studies of stimulus parameters for seizure disruption using neural network simulations.

    PubMed

    Anderson, William S; Kudela, Pawel; Cho, Jounhong; Bergey, Gregory K; Franaszczuk, Piotr J

    2007-08-01

    A large scale neural network simulation with realistic cortical architecture has been undertaken to investigate the effects of external electrical stimulation on the propagation and evolution of ongoing seizure activity. This is an effort to explore the parameter space of stimulation variables to uncover promising avenues of research for this therapeutic modality. The model consists of an approximately 800 mum x 800 mum region of simulated cortex, and includes seven neuron classes organized by cortical layer, inhibitory or excitatory properties, and electrophysiological characteristics. The cell dynamics are governed by a modified version of the Hodgkin-Huxley equations in single compartment format. Axonal connections are patterned after histological data and published models of local cortical wiring. Stimulation induced action potentials take place at the axon initial segments, according to threshold requirements on the applied electric field distribution. Stimulation induced action potentials in horizontal axonal branches are also separately simulated. The calculations are performed on a 16 node distributed 32-bit processor system. Clear differences in seizure evolution are presented for stimulated versus the undisturbed rhythmic activity. Data is provided for frequency dependent stimulation effects demonstrating a plateau effect of stimulation efficacy as the applied frequency is increased from 60 to 200 Hz. Timing of the stimulation with respect to the underlying rhythmic activity demonstrates a phase dependent sensitivity. Electrode height and position effects are also presented. Using a dipole stimulation electrode arrangement, clear orientation effects of the dipole with respect to the model connectivity is also demonstrated. A sensitivity analysis of these results as a function of the stimulation threshold is also provided.

  1. Synaptic depolarization is more effective than back-propagating action potentials during induction of associative long-term potentiation in hippocampal pyramidal neurons.

    PubMed

    Hardie, Jason; Spruston, Nelson

    2009-03-11

    Long-term potentiation (LTP) requires postsynaptic depolarization that can result from EPSPs paired with action potentials or larger EPSPs that trigger dendritic spikes. We explored the relative contribution of these sources of depolarization to LTP induction during synaptically driven action potential firing in hippocampal CA1 pyramidal neurons. Pairing of a weak test input with a strong input resulted in large LTP (approximately 75% increase) when the weak and strong inputs were both located in the apical dendrites. This form of LTP did not require somatic action potentials. When the strong input was located in the basal dendrites, the resulting LTP was smaller (< or =25% increase). Pairing the test input with somatically evoked action potentials mimicked this form of LTP. Thus, back-propagating action potentials may contribute to modest LTP, but local synaptic depolarization and/or dendritic spikes mediate a stronger form of LTP that requires spatial proximity of the associated synaptic inputs.

  2. Cationic influences upon synaptic transmission at the hair cell-afferent fiber synapse of the frog

    NASA Technical Reports Server (NTRS)

    Cochran, S. L.

    1995-01-01

    The concentrations of inorganic cations (K+, Na+, and Ca2+) bathing the isolated frog labyrinth were varied in order to assess their role in influencing and mediating synaptic transmission at the hair cell-afferent fiber synapse. Experiments employed intracellular recordings of synaptic activity from VIIIth nerve afferents. Recordings were digitized continuously at 50 kHz, and excitatory postsynaptic potentials were detected and parameters quantified by computer algorithms. Particular attention was focused on cationic effects upon excitatory postsynaptic potential frequency of occurrence and excitatory postsynaptic potential amplitude, in order to discriminate between pre- and postsynaptic actions. Because the small size of afferents preclude long term stable recordings, alterations in cationic concentrations were applied transiently and their peak effects on synaptic activity were assessed. Increases in extracellular K+ concentration of a few millimolar produced a large increase in the frequency of occurrence of excitatory postsynaptic potentials with little change in amplitude, indicating that release of transmitter from the hair cell is tightly coupled to its membrane potential. Increasing extracellular Na+ concentration resulted in an increase in excitatory postsynaptic potential amplitude with no significant change in excitatory postsynaptic potential frequency of occurrence, suggesting that the transmitter-gated subsynaptic channel conducts Na+ ions. Decreases in extracellular Ca2+ concentration had little effect upon excitatory postsynaptic potential frequency, but increased excitatory postsynaptic potential frequency and amplitude. These findings suggest that at higher concentrations Ca2+ act presynaptically to prevent transmitter release and postsynaptically to prevent Na+ influx during the generation of the excitatory postsynaptic potential. The influences of these ions on synaptic activity at this synapse are remarkably similar to those reported at the vertebrate neuromuscular junction. The major differences between these two synapses are the neurotransmitters and the higher resting release rate and higher sensitivity of release to increased K+ concentrations of the hair cells over that of motor nerve terminals. These differences reflect the functional roles of the two synapses: the motor nerve terminal response in an all-or-nothing signal consequent from action potential invasion, while the hair cell releases transmitter in a graded fashion, proportionate to the extent of stereocilial deflection. Despite these differences between the two junctions, the similar actions of these elemental cations upon synaptic function at each implies that these ions may participate similarly in the operations of other synapses, independent of the neurotransmitter type.(ABSTRACT TRUNCATED AT 400 WORDS).

  3. Rebelling against the (Insulin) Resistance: A Review of the Proposed Insulin-Sensitizing Actions of Soybeans, Chickpeas, and Their Bioactive Compounds

    PubMed Central

    Zahradka, Peter

    2018-01-01

    Insulin resistance is a major risk factor for diseases such as type 2 diabetes and metabolic syndrome. Current methods for management of insulin resistance include pharmacological therapies and lifestyle modifications. Several clinical studies have shown that leguminous plants such as soybeans and pulses (dried beans, dried peas, chickpeas, lentils) are able to reduce insulin resistance and related type 2 diabetes parameters. However, to date, no one has summarized the evidence supporting a mechanism of action for soybeans and pulses that explains their ability to lower insulin resistance. While it is commonly assumed that the biological activities of soybeans and pulses are due to their antioxidant activities, these bioactive compounds may operate independent of their antioxidant properties and, thus, their ability to potentially improve insulin sensitivity via alternative mechanisms needs to be acknowledged. Based on published studies using in vivo and in vitro models representing insulin resistant states, the proposed mechanisms of action for insulin-sensitizing actions of soybeans, chickpeas, and their bioactive compounds include increasing glucose transporter-4 levels, inhibiting adipogenesis by down-regulating peroxisome proliferator-activated receptor-γ, reducing adiposity, positively affecting adipokines, and increasing short-chain fatty acid-producing bacteria in the gut. Therefore, this review will discuss the current evidence surrounding the proposed mechanisms of action for soybeans and certain pulses, and their bioactive compounds, to effectively reduce insulin resistance. PMID:29601521

  4. Using global sensitivity analysis of demographic models for ecological impact assessment.

    PubMed

    Aiello-Lammens, Matthew E; Akçakaya, H Resit

    2017-02-01

    Population viability analysis (PVA) is widely used to assess population-level impacts of environmental changes on species. When combined with sensitivity analysis, PVA yields insights into the effects of parameter and model structure uncertainty. This helps researchers prioritize efforts for further data collection so that model improvements are efficient and helps managers prioritize conservation and management actions. Usually, sensitivity is analyzed by varying one input parameter at a time and observing the influence that variation has over model outcomes. This approach does not account for interactions among parameters. Global sensitivity analysis (GSA) overcomes this limitation by varying several model inputs simultaneously. Then, regression techniques allow measuring the importance of input-parameter uncertainties. In many conservation applications, the goal of demographic modeling is to assess how different scenarios of impact or management cause changes in a population. This is challenging because the uncertainty of input-parameter values can be confounded with the effect of impacts and management actions. We developed a GSA method that separates model outcome uncertainty resulting from parameter uncertainty from that resulting from projected ecological impacts or simulated management actions, effectively separating the 2 main questions that sensitivity analysis asks. We applied this method to assess the effects of predicted sea-level rise on Snowy Plover (Charadrius nivosus). A relatively small number of replicate models (approximately 100) resulted in consistent measures of variable importance when not trying to separate the effects of ecological impacts from parameter uncertainty. However, many more replicate models (approximately 500) were required to separate these effects. These differences are important to consider when using demographic models to estimate ecological impacts of management actions. © 2016 Society for Conservation Biology.

  5. Cardiac action potential imaging

    NASA Astrophysics Data System (ADS)

    Tian, Qinghai; Lipp, Peter; Kaestner, Lars

    2013-06-01

    Action potentials in cardiac myocytes have durations in the order of magnitude of 100 milliseconds. In biomedical investigations the documentation of the occurrence of action potentials is often not sufficient, but a recording of the shape of an action potential allows a functional estimation of several molecular players. Therefore a temporal resolution of around 500 images per second is compulsory. In the past such measurements have been performed with photometric approaches limiting the measurement to one cell at a time. In contrast, imaging allows reading out several cells at a time with additional spatial information. Recent developments in camera technologies allow the acquisition with the required speed and sensitivity. We performed action potential imaging on isolated adult cardiomyocytes of guinea pigs utilizing the fluorescent membrane potential sensor di-8-ANEPPS and latest electron-multiplication CCD as well as scientific CMOS cameras of several manufacturers. Furthermore, we characterized the signal to noise ratio of action potential signals of varying sets of cameras, dye concentrations and objective lenses. We ensured that di-8-ANEPPS itself did not alter action potentials by avoiding concentrations above 5 μM. Based on these results we can conclude that imaging is a reliable method to read out action potentials. Compared to conventional current-clamp experiments, this optical approach allows a much higher throughput and due to its contact free concept leaving the cell to a much higher degree undisturbed. Action potential imaging based on isolated adult cardiomyocytes can be utilized in pharmacological cardiac safety screens bearing numerous advantages over approaches based on heterologous expression of hERG channels in cell lines.

  6. A simple model for the generation of the vestibular evoked myogenic potential (VEMP).

    PubMed

    Wit, Hero P; Kingma, Charlotte M

    2006-06-01

    To describe the mechanism by which the vestibular evoked myogenic potential is generated. Vestibular evoked myogenic potential generation is modeled by adding a large number of muscle motor unit action potentials. These action potentials occur randomly in time along a 100 ms long time axis. But because between approximately 15 and 20 ms after a loud short sound stimulus (almost) no action potentials are generated during VEMP measurements in human subjects, no action potentials are present in the model during this time. The evoked potential is the result of the lack of amplitude cancellation in the averaged surface electromyogram at the edges of this 5 ms long time interval. The relatively simple model describes generation and some properties of the vestibular evoked myogenic potential very well. It is shown that, in contrast with other evoked potentials (BAEPs, VERs), the vestibular evoked myogenic potential is the result of an interruption of activity and not that of summed synchronized neural action potentials.

  7. Minimal supergravity models of inflation

    NASA Astrophysics Data System (ADS)

    Ferrara, Sergio; Kallosh, Renata; Linde, Andrei; Porrati, Massimo

    2013-10-01

    We present a superconformal master action for a class of supergravity models with one arbitrary function defining the Jordan frame. It leads to a gauge-invariant action for a real vector multiplet, which upon gauge fixing describes a massive vector multiplet, or to a dual formulation with a linear multiplet and a massive tensor field. In both cases the models have one real scalar, the inflaton, naturally suited for single-field inflation. Vectors and tensors required by supersymmetry to complement a single real scalar do not acquire vacuum expectation values during inflation, so there is no need to stabilize the extra scalars that are always present in the theories with chiral matter multiplets. The new class of models can describe any inflaton potential that vanishes at its minimum and grows monotonically away from the minimum. In this class of supergravity models, one can fit any desirable choice of inflationary parameters ns and r.

  8. 6,7-dimethoxy-1,2,3,4-tetrahydro-isoquinoline-3-carboxylic acid attenuates heptatocellular carcinoma in rats with NMR-based metabolic perturbations.

    PubMed

    Kumar, Pranesh; Singh, Ashok K; Raj, Vinit; Rai, Amit; Maity, Siddhartha; Rawat, Atul; Kumar, Umesh; Kumar, Dinesh; Prakash, Anand; Guleria, Anupam; Saha, Sudipta

    2017-08-01

    6,7-dimethoxy-1,2,3,4-tetrahydro-isoquinoline-3-carboxylic acid (M1) was synthesized and evaluated for in-vivo antiproliferative action in diethylnitrosamine-induced hepatocarcinogenic rats. The antiproliferative effect of M1 was assessed by various biochemical parameters, histopathology of liver and HPLC analysis. Proton nuclear magnetic resonance-based serum metabolic study was implemented on rat sera to explore the effects of M1 on hepatocellular carcinoma-induced metabolic alterations. M1 showed protective action on liver and restored the arrangement of liver tissues in normal proportion. HPLC analysis displayed a good plasma drug concentration after its oral administration. Score plots of partial least squares discriminate analysis models exhibited that M1 therapy ameliorated hepatocellular carcinoma-induced metabolic alterations which signified its antiproliferative potential. M1 manifested notable antiproliferative profile, and warrants further investigation for future anticancer therapy.

  9. A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates.

    PubMed

    Mahajan, Aman; Shiferaw, Yohannes; Sato, Daisuke; Baher, Ali; Olcese, Riccardo; Xie, Lai-Hua; Yang, Ming-Jim; Chen, Peng-Sheng; Restrepo, Juan G; Karma, Alain; Garfinkel, Alan; Qu, Zhilin; Weiss, James N

    2008-01-15

    Mathematical modeling of the cardiac action potential has proven to be a powerful tool for illuminating various aspects of cardiac function, including cardiac arrhythmias. However, no currently available detailed action potential model accurately reproduces the dynamics of the cardiac action potential and intracellular calcium (Ca(i)) cycling at rapid heart rates relevant to ventricular tachycardia and fibrillation. The aim of this study was to develop such a model. Using an existing rabbit ventricular action potential model, we modified the L-type calcium (Ca) current (I(Ca,L)) and Ca(i) cycling formulations based on new experimental patch-clamp data obtained in isolated rabbit ventricular myocytes, using the perforated patch configuration at 35-37 degrees C. Incorporating a minimal seven-state Markovian model of I(Ca,L) that reproduced Ca- and voltage-dependent kinetics in combination with our previously published dynamic Ca(i) cycling model, the new model replicates experimentally observed action potential duration and Ca(i) transient alternans at rapid heart rates, and accurately reproduces experimental action potential duration restitution curves obtained by either dynamic or S1S2 pacing.

  10. Typical gray matter axons in mammalian brain fail to conduct action potentials faithfully at fever-like temperatures.

    PubMed

    Pekala, Dobromila; Szkudlarek, Hanna; Raastad, Morten

    2016-10-01

    We studied the ability of typical unmyelinated cortical axons to conduct action potentials at fever-like temperatures because fever often gives CNS symptoms. We investigated such axons in cerebellar and hippocampal slices from 10 to 25 days old rats at temperatures between 30 and 43°C. By recording with two electrodes along axonal pathways, we confirmed that the axons were able to initiate action potentials, but at temperatures >39°C, the propagation of the action potentials to a more distal recording site was reduced. This temperature-sensitive conduction may be specific for the very thin unmyelinated axons because similar recordings from myelinated CNS axons did not show conduction failures. We found that the conduction fidelity improved with 1 mmol/L TEA in the bath, probably due to block of voltage-sensitive potassium channels responsible for the fast repolarization of action potentials. Furthermore, by recording electrically activated antidromic action potentials from the soma of cerebellar granule cells, we showed that the axons failed less if they were triggered 10-30 msec after another action potential. This was because individual action potentials were followed by a depolarizing after-potential, of constant amplitude and shape, which facilitated conduction of the following action potentials. The temperature-sensitive conduction failures above, but not below, normal body temperature, and the failure-reducing effect of the spike's depolarizing after-potential, are two intrinsic mechanisms in normal gray matter axons that may help us understand how the hyperthermic brain functions. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  11. Discrete element weld model, phase 2

    NASA Technical Reports Server (NTRS)

    Prakash, C.; Samonds, M.; Singhal, A. K.

    1987-01-01

    A numerical method was developed for analyzing the tungsten inert gas (TIG) welding process. The phenomena being modeled include melting under the arc and the flow in the melt under the action of buoyancy, surface tension, and electromagnetic forces. The latter entails the calculation of the electric potential and the computation of electric current and magnetic field therefrom. Melting may occur at a single temperature or over a temperature range, and the electrical and thermal conductivities can be a function of temperature. Results of sample calculations are presented and discussed at length. A major research contribution has been the development of numerical methodology for the calculation of phase change problems in a fixed grid framework. The model has been implemented on CHAM's general purpose computer code PHOENICS. The inputs to the computer model include: geometric parameters, material properties, and weld process parameters.

  12. Neural theory for the perception of causal actions.

    PubMed

    Fleischer, Falk; Christensen, Andrea; Caggiano, Vittorio; Thier, Peter; Giese, Martin A

    2012-07-01

    The efficient prediction of the behavior of others requires the recognition of their actions and an understanding of their action goals. In humans, this process is fast and extremely robust, as demonstrated by classical experiments showing that human observers reliably judge causal relationships and attribute interactive social behavior to strongly simplified stimuli consisting of simple moving geometrical shapes. While psychophysical experiments have identified critical visual features that determine the perception of causality and agency from such stimuli, the underlying detailed neural mechanisms remain largely unclear, and it is an open question why humans developed this advanced visual capability at all. We created pairs of naturalistic and abstract stimuli of hand actions that were exactly matched in terms of their motion parameters. We show that varying critical stimulus parameters for both stimulus types leads to very similar modulations of the perception of causality. However, the additional form information about the hand shape and its relationship with the object supports more fine-grained distinctions for the naturalistic stimuli. Moreover, we show that a physiologically plausible model for the recognition of goal-directed hand actions reproduces the observed dependencies of causality perception on critical stimulus parameters. These results support the hypothesis that selectivity for abstract action stimuli might emerge from the same neural mechanisms that underlie the visual processing of natural goal-directed action stimuli. Furthermore, the model proposes specific detailed neural circuits underlying this visual function, which can be evaluated in future experiments.

  13. 78 FR 39968 - Flight Data Recorder Airplane Parameter Specification Omissions and Corrections

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-03

    ... comprise the adoption of a different standard that will affect airplanes operating under these regulations...), DOT. ACTION: Final rule; request for comments. SUMMARY: This action amends the operating regulations... technical questions concerning this action contact Chris Parfitt, Flight Standards Service, Aircraft...

  14. Equivalence between the Lovelock-Cartan action and a constrained gauge theory

    NASA Astrophysics Data System (ADS)

    Junqueira, O. C.; Pereira, A. D.; Sadovski, G.; Santos, T. R. S.; Sobreiro, R. F.; Tomaz, A. A.

    2017-04-01

    We show that the four-dimensional Lovelock-Cartan action can be derived from a massless gauge theory for the SO(1, 3) group with an additional BRST trivial part. The model is originally composed of a topological sector and a BRST exact piece and has no explicit dependence on the metric, the vierbein or a mass parameter. The vierbein is introduced together with a mass parameter through some BRST trivial constraints. The effect of the constraints is to identify the vierbein with some of the additional fields, transforming the original action into the Lovelock-Cartan one. In this scenario, the mass parameter is identified with Newton's constant, while the gauge field is identified with the spin connection. The symmetries of the model are also explored. Moreover, the extension of the model to a quantum version is qualitatively discussed.

  15. Alteration of neural action potential patterns by axonal stimulation: the importance of stimulus location

    PubMed Central

    Crago, Patrick E; Makowski, Nathan S

    2014-01-01

    Objective Stimulation of peripheral nerves is often superimposed on ongoing motor and sensory activity in the same axons, without a quantitative model of the net action potential train at the axon endpoint. Approach We develop a model of action potential patterns elicited by superimposing constant frequency axonal stimulation on the action potentials arriving from a physiologically activated neural source. The model includes interactions due to collision block, resetting of the neural impulse generator, and the refractory period of the axon at the point of stimulation. Main Results Both the mean endpoint firing rate and the probability distribution of the action potential firing periods depend strongly on the relative firing rates of the two sources and the intersite conduction time between them. When the stimulus rate exceeds the neural rate, neural action potentials do not reach the endpoint and the rate of endpoint action potentials is the same as the stimulus rate, regardless of the intersite conduction time. However, when the stimulus rate is less than the neural rate, and the intersite conduction time is short, the two rates partially sum. Increases in stimulus rate produce non-monotonic increases in endpoint rate and continuously increasing block of neurally generated action potentials. Rate summation is reduced and more neural action potentials are blocked as the intersite conduction time increases.. At long intersite conduction times, the endpoint rate simplifies to being the maximum of either the neural or the stimulus rate. Significance This study highlights the potential of increasing the endpoint action potential rate and preserving neural information transmission by low rate stimulation with short intersite conduction times. Intersite conduction times can be decreased with proximal stimulation sites for muscles and distal stimulation sites for sensory endings. The model provides a basis for optimizing experiments and designing neuroprosthetic interventions involving motor or sensory stimulation. PMID:25161163

  16. Alteration of neural action potential patterns by axonal stimulation: the importance of stimulus location

    NASA Astrophysics Data System (ADS)

    Crago, Patrick E.; Makowski, Nathaniel S.

    2014-10-01

    Objective. Stimulation of peripheral nerves is often superimposed on ongoing motor and sensory activity in the same axons, without a quantitative model of the net action potential train at the axon endpoint. Approach. We develop a model of action potential patterns elicited by superimposing constant frequency axonal stimulation on the action potentials arriving from a physiologically activated neural source. The model includes interactions due to collision block, resetting of the neural impulse generator, and the refractory period of the axon at the point of stimulation. Main results. Both the mean endpoint firing rate and the probability distribution of the action potential firing periods depend strongly on the relative firing rates of the two sources and the intersite conduction time between them. When the stimulus rate exceeds the neural rate, neural action potentials do not reach the endpoint and the rate of endpoint action potentials is the same as the stimulus rate, regardless of the intersite conduction time. However, when the stimulus rate is less than the neural rate, and the intersite conduction time is short, the two rates partially sum. Increases in stimulus rate produce non-monotonic increases in endpoint rate and continuously increasing block of neurally generated action potentials. Rate summation is reduced and more neural action potentials are blocked as the intersite conduction time increases. At long intersite conduction times, the endpoint rate simplifies to being the maximum of either the neural or the stimulus rate. Significance. This study highlights the potential of increasing the endpoint action potential rate and preserving neural information transmission by low rate stimulation with short intersite conduction times. Intersite conduction times can be decreased with proximal stimulation sites for muscles and distal stimulation sites for sensory endings. The model provides a basis for optimizing experiments and designing neuroprosthetic interventions involving motor or sensory stimulation.

  17. Effect of an educational game on university students' learning about action potentials.

    PubMed

    Luchi, Kelly Cristina Gaviao; Montrezor, Luís Henrique; Marcondes, Fernanda K

    2017-06-01

    The aim of this study was to evaluate the effect of an educational game that is used for teaching the mechanisms of the action potentials in cell membranes. The game was composed of pieces representing the intracellular and extracellular environments, ions, ion channels, and the Na + -K + -ATPase pump. During the game activity, the students arranged the pieces to demonstrate how the ions move through the membrane in a resting state and during an action potential, linking the ion movement with a graph of the action potential. To test the effect of the game activity on student understanding, first-year dental students were given the game to play at different times in a series of classes teaching resting membrane potential and action potentials. In all experiments, students who played the game performed better in assessments. According to 98% of the students, the game supported the learning process. The data confirm the students' perception, indicating that the educational game improved their understanding about action potentials. Copyright © 2017 the American Physiological Society.

  18. Understanding the electrical behavior of the action potential in terms of elementary electrical sources.

    PubMed

    Rodriguez-Falces, Javier

    2015-03-01

    A concept of major importance in human electrophysiology studies is the process by which activation of an excitable cell results in a rapid rise and fall of the electrical membrane potential, the so-called action potential. Hodgkin and Huxley proposed a model to explain the ionic mechanisms underlying the formation of action potentials. However, this model is unsuitably complex for teaching purposes. In addition, the Hodgkin and Huxley approach describes the shape of the action potential only in terms of ionic currents, i.e., it is unable to explain the electrical significance of the action potential or describe the electrical field arising from this source using basic concepts of electromagnetic theory. The goal of the present report was to propose a new model to describe the electrical behaviour of the action potential in terms of elementary electrical sources (in particular, dipoles). The efficacy of this model was tested through a closed-book written exam. The proposed model increased the ability of students to appreciate the distributed character of the action potential and also to recognize that this source spreads out along the fiber as function of space. In addition, the new approach allowed students to realize that the amplitude and sign of the extracellular electrical potential arising from the action potential are determined by the spatial derivative of this intracellular source. The proposed model, which incorporates intuitive graphical representations, has improved students' understanding of the electrical potentials generated by bioelectrical sources and has heightened their interest in bioelectricity. Copyright © 2015 The American Physiological Society.

  19. Selective activation of heteromeric SK channels contributes to action potential repolarization in mouse atrial myocytes.

    PubMed

    Hancock, Jane M; Weatherall, Kate L; Choisy, Stéphanie C; James, Andrew F; Hancox, Jules C; Marrion, Neil V

    2015-05-01

    Activation of small conductance calcium-activated potassium (SK) channels is proposed to contribute to repolarization of the action potential in atrial myocytes. This role is controversial, as these cardiac SK channels appear to exhibit an uncharacteristic pharmacology. The objectives of this study were to resolve whether activation of SK channels contributes to atrial action potential repolarization and to determine the likely subunit composition of the channel. The effect of 2 SK channel inhibitors was assessed on outward current evoked in voltage clamp and on action potential duration in perforated patch and whole-cell current clamp recording from acutely isolated mouse atrial myocytes. The presence of SK channel subunits was assessed using immunocytochemistry. A significant component of outward current was reduced by the SK channel blockers apamin and UCL1684. Block by apamin displayed a sensitivity indicating that this current was carried by homomeric SK2 channels. Action potential duration was significantly prolonged by UCL1684, but not by apamin. This effect was accompanied by an increase in beat-to-beat variability and action potential triangulation. This pharmacology was matched by that of expressed heteromeric SK2-SK3 channels in HEK293 cells. Immunocytochemistry showed that atrial myocytes express both SK2 and SK3 channels with an overlapping expression pattern. Only proposed heteromeric SK2-SK3 channels are physiologically activated to contribute to action potential repolarization, which is indicated by the difference in pharmacology of evoked outward current and prolongation of atrial action potential duration. The effect of blocking this channel on the action potential suggests that SK channel inhibition during cardiac function has the potential to be proarrhythmic. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  20. Urocortin2 prolongs action potential duration and modulates potassium currents in guinea pig myocytes and HEK293 cells.

    PubMed

    Yang, Li-Zhen; Zhu, Yi-Chun

    2015-07-05

    We previously reported that activation of corticotropin releasing factor receptor type 2 by urocortin2 up-regulates both L-type Ca(2+) channels and intracellular Ca(2+) concentration in ventricular myocytes and plays an important role in cardiac contractility and arrhythmogenesis. This study goal was to further test the hypothesis that urocortin2 may modulate action potentials as well as rapidly and slowly activating delayed rectifier potassium currents. With whole cell patch-clamp techniques, action potentials and slowly activating delayed rectifier potassium currents were recorded in isolated guinea pig ventricular myocytes, respectively. And rapidly activating delayed rectifier potassium currents were tested in hERG-HEK293 cells. Urocortin2 produced a time- and concentration-dependent prolongation of action potential duration. The EC50 values of action potential duration and action potential duration at 90% of repolarization were 14.73 and 24.3nM respectively. The prolongation of action potential duration of urocortin2 was almost completely or partly abolished by H-89 (protein kinase A inhibitor) or KB-R7943 (Na(+)/Ca(2+) exchange inhibitor) pretreatment respectively. And urocortin2 caused reduction of rapidly activating delayed rectifier potassium currents in hERG-HEK293 cells. In addition, urocortin2 slowed the rate of slowly activating delayed rectifier potassium channel activation, and rightward shifted the threshold of slowly activating delayed rectifier potassium currents to more positive potentials. Urocortin2 prolonged action potential duration via activation of protein kinase A and Na(+)/ Ca(2+) exchange in isolated guinea pig ventricular myocytes in a time- and concentration- dependent manner. In hERG-HEK293 cells, urocortin2 reduced rapidly activating delayed rectifier potassium current density which may contribute to action potential duration prolongation. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Action potential propagation: ion current or intramembrane electric field?

    PubMed

    Martí, Albert; Pérez, Juan J; Madrenas, Jordi

    2018-01-01

    The established action potential propagation mechanisms do not satisfactorily explain propagation on myelinated axons given the current knowledge of biological channels and membranes. The flow across ion channels presents two possible effects: the electric potential variations across the lipid bilayers (action potential) and the propagation of an electric field through the membrane inner part. The proposed mechanism is based on intra-membrane electric field propagation, this propagation can explain the action potential saltatory propagation and its constant delay independent of distance between Ranvier nodes in myelinated axons.

  2. Antidromic propagation of action potentials in branched axons: implications for the mechanisms of action of deep brain stimulation.

    PubMed

    Grill, Warren M; Cantrell, Meredith B; Robertson, Matthew S

    2008-02-01

    Electrical stimulation of the central nervous system creates both orthodromically propagating action potentials, by stimulation of local cells and passing axons, and antidromically propagating action potentials, by stimulation of presynaptic axons and terminals. Our aim was to understand how antidromic action potentials navigate through complex arborizations, such as those of thalamic and basal ganglia afferents-sites of electrical activation during deep brain stimulation. We developed computational models to study the propagation of antidromic action potentials past the bifurcation in branched axons. In both unmyelinated and myelinated branched axons, when the diameters of each axon branch remained under a specific threshold (set by the antidromic geometric ratio), antidromic propagation occurred robustly; action potentials traveled both antidromically into the primary segment as well as "re-orthodromically" into the terminal secondary segment. Propagation occurred across a broad range of stimulation frequencies, axon segment geometries, and concentrations of extracellular potassium, but was strongly dependent on the geometry of the node of Ranvier at the axonal bifurcation. Thus, antidromic activation of axon terminals can, through axon collaterals, lead to widespread activation or inhibition of targets remote from the site of stimulation. These effects should be included when interpreting the results of functional imaging or evoked potential studies on the mechanisms of action of DBS.

  3. Minocycline inhibits D-amphetamine-elicited action potential bursts in a central snail neuron.

    PubMed

    Chen, Y-H; Lin, P-L; Wong, R-W; Wu, Y-T; Hsu, H-Y; Tsai, M-C; Lin, M-J; Hsu, Y-C; Lin, C-H

    2012-10-25

    Minocycline is a second-generation tetracycline that has been reported to have powerful neuroprotective properties. In our previous studies, we found that d-amphetamine (AMPH) elicited action potential bursts in an identifiable RP4 neuron of the African snail, Achatina fulica Ferussac. This study sought to determine the effects of minocycline on the AMPH-elicited action potential pattern changes in the central snail neuron, using the two-electrode voltage clamping method. Extracellular application of AMPH at 300 μM elicited action potential bursts in the RP4 neuron. Minocycline dose-dependently (300-900 μM) inhibited the action potential bursts elicited by AMPH. The inhibitory effects of minocycline on AMPH-elicited action potential bursts were restored by forskolin (50 μM), an adenylate cyclase activator, and by dibutyryl cAMP (N(6),2'-O-Dibutyryladenosine 3',5'-cyclic monophosphate; 1mM), a membrane-permeable cAMP analog. Co-administration of forskolin (50 μM) plus tetraethylammonium chloride (TEA; 5mM) or co-administration of TEA (5mM) plus dibutyryl cAMP (1mM) also elicited action potential bursts, which were prevented and inhibited by minocycline. In addition, minocycline prevented and inhibited forskolin (100 μM)-elicited action potential bursts. Notably, TEA (50mM)-elicited action potential bursts in the RP4 neuron were not affected by minocycline. Minocycline did not affect steady-state outward currents of the RP4 neuron. However, minocycline did decrease the AMPH-elicited steady-state current changes. Similarly, minocycline decreased the effects of forskolin-elicited steady-state current changes. Pretreatment with H89 (N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride; 10 μM), a protein kinase A inhibitor, inhibited AMPH-elicited action potential bursts and decreased AMPH-elicited steady-state current changes. These results suggest that the cAMP-protein kinase A signaling pathway and the steady-state current are involved in the inhibitory effects of minocycline upon AMPH-elicited action potential bursts. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Differential inhibitory action of apixaban on platelet and fibrin components of forming thrombi: Studies with circulating blood and in a platelet-based model of thrombin generation.

    PubMed

    Pujadas-Mestres, Lluis; Lopez-Vilchez, Irene; Arellano-Rodrigo, Eduardo; Reverter, Joan Carles; Lopez-Farre, Antonio; Diaz-Ricart, Maribel; Badimon, Juan Jose; Escolar, Gines

    2017-01-01

    Mechanisms of action of direct oral anticoagulants (DOAC) suggest a potential therapeutic use in the prevention of thrombotic complications in arterial territories. However, effects of DOACs on platelet activation and aggregation have not been explored in detail. We have investigated the effects of apixaban on platelet and fibrin components of thrombus formation under static and flow conditions. We assessed the effects of apixaban (10, 40 and 160 ng/mL) on: 1) platelet deposition and fibrin formation onto a thrombogenic surface, with blood circulating at arterial shear-rates; 2) viscoelastic properties of forming clots, and 3) thrombin generation in a cell-model of coagulation primed by platelets. In studies with flowing blood, only the highest concentration of apixaban, equivalent to the therapeutic Cmax, was capable to significantly reduce thrombus formation, fibrin association and platelet-aggregate formation. Apixaban significantly prolonged thromboelastometry parameters, but did not affect clot firmness. Interestingly, results in a platelet-based model of thrombin generation under more static conditions, revealed a dose dependent persistent inhibitory action by apixaban, with concentrations 4 to 16 times below the therapeutic Cmax significantly prolonging kinetic parameters and reducing the total amount of thrombin generated. Our studies demonstrate the critical impact of rheological conditions on the antithrombotic effects of apixaban. Studies under flow conditions combined with modified thrombin generation assays could help discriminating concentrations of apixaban that prevent excessive platelet accumulation, from those that deeply impair fibrin formation and may unnecessarily compromise hemostasis.

  5. Differential inhibitory action of apixaban on platelet and fibrin components of forming thrombi: Studies with circulating blood and in a platelet-based model of thrombin generation

    PubMed Central

    Arellano-Rodrigo, Eduardo; Reverter, Joan Carles; Lopez-Farre, Antonio; Diaz-Ricart, Maribel; Badimon, Juan Jose; Escolar, Gines

    2017-01-01

    Introduction Mechanisms of action of direct oral anticoagulants (DOAC) suggest a potential therapeutic use in the prevention of thrombotic complications in arterial territories. However, effects of DOACs on platelet activation and aggregation have not been explored in detail. We have investigated the effects of apixaban on platelet and fibrin components of thrombus formation under static and flow conditions. Methods We assessed the effects of apixaban (10, 40 and 160 ng/mL) on: 1) platelet deposition and fibrin formation onto a thrombogenic surface, with blood circulating at arterial shear-rates; 2) viscoelastic properties of forming clots, and 3) thrombin generation in a cell-model of coagulation primed by platelets. Results In studies with flowing blood, only the highest concentration of apixaban, equivalent to the therapeutic Cmax, was capable to significantly reduce thrombus formation, fibrin association and platelet-aggregate formation. Apixaban significantly prolonged thromboelastometry parameters, but did not affect clot firmness. Interestingly, results in a platelet-based model of thrombin generation under more static conditions, revealed a dose dependent persistent inhibitory action by apixaban, with concentrations 4 to 16 times below the therapeutic Cmax significantly prolonging kinetic parameters and reducing the total amount of thrombin generated. Conclusions Our studies demonstrate the critical impact of rheological conditions on the antithrombotic effects of apixaban. Studies under flow conditions combined with modified thrombin generation assays could help discriminating concentrations of apixaban that prevent excessive platelet accumulation, from those that deeply impair fibrin formation and may unnecessarily compromise hemostasis. PMID:28192448

  6. Selective effects of an octopus toxin on action potentials

    PubMed Central

    Dulhunty, Angela; Gage, Peter W.

    1971-01-01

    1. A lethal, water soluble toxin (Maculotoxin, MTX) with a molecular weight less than 540, can be extracted from the salivary glands of an octopus (Hapalochlaena maculosa). 2. MTX blocks action potentials in sartorius muscle fibres of toads without affecting the membrane potential. Delayed rectification is not inhibited by the toxin. 3. At low concentrations (10-6-10-5 g/ml.) MTX blocks action potentials only after a certain number have been elicited. The number of action potentials, which can be defined accurately, depends on the concentration of MTX and the concentration of sodium ions in the extracellular solution. 4. The toxin has no post-synaptic effect at the neuromuscular junction and it is concluded that it blocks neuromuscular transmission by inhibiting action potentials in motor nerve terminals. PMID:4330930

  7. Symmetrical Josephson vortex interferometer as an advanced ballistic single-shot detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soloviev, I. I., E-mail: isol@phys.msu.ru; Lukin Scientific Research Institute of Physical Problems, 124460 Zelenograd, Moscow; Laboratory of Cryogenic Nanoelectronics, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 603950 Nizhny Novgorod

    2014-11-17

    We consider a ballistic detector formed in an interferometer manner which operational principle relies on Josephson vortex scattering at a measurement potential. We propose an approach to symmetrize the detector scheme and explore arising advantages in the signal-to-noise ratio and in the back-action on a measured object by means of recently presented numerical and analytical methods for modeling of a soliton scattering dynamics in the presence of thermal fluctuations. The obtained characteristics for experimentally relevant parameters reveal practical applicability of the considered schemes including possibility of coupling with standard digital rapid single flux quantum circuits.

  8. Evoking prescribed spike times in stochastic neurons

    NASA Astrophysics Data System (ADS)

    Doose, Jens; Lindner, Benjamin

    2017-09-01

    Single cell stimulation in vivo is a powerful tool to investigate the properties of single neurons and their functionality in neural networks. We present a method to determine a cell-specific stimulus that reliably evokes a prescribed spike train with high temporal precision of action potentials. We test the performance of this stimulus in simulations for two different stochastic neuron models. For a broad range of parameters and a neuron firing with intermediate firing rates (20-40 Hz) the reliability in evoking the prescribed spike train is close to its theoretical maximum that is mainly determined by the level of intrinsic noise.

  9. [Value of condensation and rarefaction click evoked action potential latency difference in the diagnosis of Meniere's disease].

    PubMed

    Wang, Z; Shao, X; Yan, W; Lin, H

    2000-06-01

    To study the value of condensation and rarefaction clicks evoked action potential (AP) latency difference (LD) in diagnosis of Meniere's disease. AP was recorded with ECochG in controls (50 ears) and patients with Meniere's disease(90 ears) and sensorineural hearing loss(SNHL) of other origins(60 ears). LD was calculated and analyzed. LD in patients with Meniere's disease was (0.30 +/- 0.15) ms, which was significantly larger than that of controls(0.18 +/- 0.07) ms and of patients with SNHL of other origins(0.20 +/- 0.10) ms (P < 0.01). In the group of Meniere's disease, LD in patients with the mild and moderate hearing impairment was larger than those with severe hearing loss(P < 0.01) and LD in patients with low tone or high tone auditory sensation curve was larger than those with flat auditory sensation curve(P < 0.01). Positive rate was 4/60(6.7%) in other SNHL patients and 58/90(64.0%) in Meniere's disease group respectively. The increase in condensation and rarefaction click evoked AP latency difference can be an objective parameter in diagnosis of Meniere's disease.

  10. Input-output mapping reconstruction of spike trains at dorsal horn evoked by manual acupuncture

    NASA Astrophysics Data System (ADS)

    Wei, Xile; Shi, Dingtian; Yu, Haitao; Deng, Bin; Lu, Meili; Han, Chunxiao; Wang, Jiang

    2016-12-01

    In this study, a generalized linear model (GLM) is used to reconstruct mapping from acupuncture stimulation to spike trains driven by action potential data. The electrical signals are recorded in spinal dorsal horn after manual acupuncture (MA) manipulations with different frequencies being taken at the “Zusanli” point of experiment rats. Maximum-likelihood method is adopted to estimate the parameters of GLM and the quantified value of assumed model input. Through validating the accuracy of firings generated from the established GLM, it is found that the input-output mapping of spike trains evoked by acupuncture can be successfully reconstructed for different frequencies. Furthermore, via comparing the performance of several GLMs based on distinct inputs, it suggests that input with the form of half-sine with noise can well describe the generator potential induced by acupuncture mechanical action. Particularly, the comparison of reproducing the experiment spikes for five selected inputs is in accordance with the phenomenon found in Hudgkin-Huxley (H-H) model simulation, which indicates the mapping from half-sine with noise input to experiment spikes meets the real encoding scheme to some extent. These studies provide us a new insight into coding processes and information transfer of acupuncture.

  11. Relationship between size and latency of action potentials in human muscle sympathetic nerve activity.

    PubMed

    Salmanpour, Aryan; Brown, Lyndon J; Steinback, Craig D; Usselman, Charlotte W; Goswami, Ruma; Shoemaker, J Kevin

    2011-06-01

    We employed a novel action potential detection and classification technique to study the relationship between the recruitment of sympathetic action potentials (i.e., neurons) and the size of integrated sympathetic bursts in human muscle sympathetic nerve activity (MSNA). Multifiber postganglionic sympathetic nerve activity from the common fibular nerve was collected using microneurography in 10 healthy subjects at rest and during activation of sympathetic outflow using lower body negative pressure (LBNP). Burst occurrence increased with LBNP. Integrated burst strength (size) varied from 0.22 ± 0.07 V at rest to 0.28 ± 0.09 V during LBNP. Sympathetic burst size (i.e., peak height) was directly related to the number of action potentials within a sympathetic burst both at baseline (r = 0.75 ± 0.13; P < 0.001) and LBNP (r = 0.75 ± 0.12; P < 0.001). Also, the amplitude of detected action potentials within sympathetic bursts was directly related to the increased burst size at both baseline (r = 0.59 ± 0.16; P < 0.001) and LBNP (r = 0.61 ± 0.12; P < 0.001). In addition, the number of detected action potentials and the number of distinct action potential clusters within a given sympathetic burst were correlated at baseline (r = 0.7 ± 0.1; P < 0.001) and during LBNP (r = 0.74 ± 0.03; P < 0.001). Furthermore, action potential latency (i.e., an inverse index of neural conduction velocity) was decreased as a function of action potential size at baseline and LBNP. LBNP did not change the number of action potentials and unique clusters per sympathetic burst. It was concluded that there exists a hierarchical pattern of recruitment of additional faster conducting neurons of larger amplitude as the sympathetic bursts become stronger (i.e., larger amplitude bursts). This fundamental pattern was evident at rest and was not altered by the level of baroreceptor unloading applied in this study.

  12. Human Reliability Assessments: Using the Past (Shuttle) to Predict the Future (ORION)

    NASA Technical Reports Server (NTRS)

    Mott, Diana L.; Bigler, Mark A.

    2017-01-01

    NASA uses two HRA assessment methodologies. The first is a simplified method which is based on how much time is available to complete the action, with consideration included for environmental and personal factors that could influence the human's reliability. This method is expected to provide a conservative value or placeholder as a preliminary estimate. This preliminary estimate is used to determine which placeholder needs a more detailed assessment. The second methodology is used to develop a more detailed human reliability assessment on the performance of critical human actions. This assessment needs to consider more than the time available, this would include factors such as: the importance of the action, the context, environmental factors, potential human stresses, previous experience, training, physical design interfaces, available procedures/checklists and internal human stresses. The more detailed assessment is still expected to be more realistic than that based primarily on time available. When performing an HRA on a system or process that has an operational history, we have information specific to the task based on this history and experience. In the case of a PRA model that is based on a new design and has no operational history, providing a "reasonable" assessment of potential crew actions becomes more problematic. In order to determine what is expected of future operational parameters, the experience from individuals who had relevant experience and were familiar with the system and process previously implemented by NASA was used to provide the "best" available data. Personnel from Flight Operations, Flight Directors, Launch Test Directors, Control Room Console Operators and Astronauts were all interviewed to provide a comprehensive picture of previous NASA operations. Verification of the assumptions and expectations expressed in the assessments will be needed when the procedures, flight rules and operational requirements are developed and then finalized.

  13. High Doses of Amphetamine Augment, Rather Than Disrupt, Exocytotic Dopamine Release in the Dorsal and Ventral Striatum of the Anesthetized Rat

    PubMed Central

    Ramsson, Eric S.; Howard, Christopher D.; Covey, Dan P.; Garris, Paul A.

    2011-01-01

    High doses of amphetamine (AMPH) are thought to disrupt normal patterns of action potential-dependent dopaminergic neurotransmission by depleting vesicular stores of dopamine (DA) and inducing robust non-exocytotic DA release or efflux via dopamine transporter (DAT) reversal. However, these cardinal AMPH actions have been difficult to establish definitively in vivo. Here, we use fast-scan cyclic voltammetry (FSCV) in the urethane-anesthetized rat to evaluate the effects of 10 and 20 mg/kg AMPH on vesicular DA release and DAT function in dorsal and ventral striata. An equivalent high dose of cocaine (40 mg/kg) was also examined for comparison to psychostimulants acting preferentially by DAT inhibition. Parameters describing exocytotic DA release and neuronal DA uptake were determined from dynamic DA signals evoked by mild electrical stimulation previously established to be reinforcing. High-sensitivity FSCV with nanomolar detection was used to monitor changes in the background voltammetric signal as an index of DA efflux. Both doses of AMPH and cocaine markedly elevated evoked DA levels over the entire 2-h time course in the dorsal and ventral striatum. These increases were mediated by augmented vesicular DA release and diminished DA uptake typically acting concurrently. AMPH, but not cocaine, induced a slow, DA-like rise in some baseline recordings. However, this effect was highly variable in amplitude and duration, modest, and generally not present at all. These data thus describe a mechanistically similar activation of action potential-dependent dopaminergic neurotransmission by AMPH and cocaine in vivo. Moreover, DA efflux appears to be a unique, but secondary, AMPH action. PMID:21806614

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehghani, M.H.; Research Institute for Astrophysics and Astronomy of Maragha; Khodam-Mohammadi, A.

    First, we construct the Taub-NUT/bolt solutions of (2k+2)-dimensional Einstein-Maxwell gravity, when all the factor spaces of 2k-dimensional base space B have positive curvature. These solutions depend on two extra parameters, other than the mass and the NUT charge. These are electric charge q and electric potential at infinity V. We investigate the existence of Taub-NUT solutions and find that in addition to the two conditions of uncharged NUT solutions, there exist two extra conditions. These two extra conditions come from the regularity of vector potential at r=N and the fact that the horizon at r=N should be the outer horizonmore » of the NUT charged black hole. We find that the NUT solutions in 2k+2 dimensions have no curvature singularity at r=N, when the 2k-dimensional base space is chosen to be CP{sup 2k}. For bolt solutions, there exists an upper limit for the NUT parameter which decreases as the potential parameter increases. Second, we study the thermodynamics of these spacetimes. We compute temperature, entropy, charge, electric potential, action and mass of the black hole solutions, and find that these quantities satisfy the first law of thermodynamics. We perform a stability analysis by computing the heat capacity, and show that the NUT solutions are not thermally stable for even k's, while there exists a stable phase for odd k's, which becomes increasingly narrow with increasing dimensionality and wide with increasing V. We also study the phase behavior of the 4 and 6 dimensional bolt solutions in canonical ensemble and find that these solutions have a stable phase, which becomes smaller as V increases.« less

  15. All optical experimental design for neuron excitation, inhibition, and action potential detection

    NASA Astrophysics Data System (ADS)

    Walsh, Alex J.; Tolstykh, Gleb; Martens, Stacey; Sedelnikova, Anna; Ibey, Bennett L.; Beier, Hope T.

    2016-03-01

    Recently, infrared light has been shown to both stimulate and inhibit excitatory cells. However, studies of infrared light for excitatory cell inhibition have been constrained by the use of invasive and cumbersome electrodes for cell excitation and action potential recording. Here, we present an all optical experimental design for neuronal excitation, inhibition, and action potential detection. Primary rat neurons were transfected with plasmids containing the light sensitive ion channel CheRiff. CheRiff has a peak excitation around 450 nm, allowing excitation of transfected neurons with pulsed blue light. Additionally, primary neurons were transfected with QuasAr2, a fast and sensitive fluorescent voltage indicator. QuasAr2 is excited with yellow or red light and therefore does not spectrally overlap CheRiff, enabling imaging and action potential activation, simultaneously. Using an optic fiber, neurons were exposed to blue light sequentially to generate controlled action potentials. A second optic fiber delivered a single pulse of 1869nm light to the neuron causing inhibition of the evoked action potentials (by the blue light). When used in concert, these optical techniques enable electrode free neuron excitation, inhibition, and action potential recording, allowing research into neuronal behaviors with high spatial fidelity.

  16. Three-Dimensional Computer Model of the Right Atrium Including the Sinoatrial and Atrioventricular Nodes Predicts Classical Nodal Behaviours

    PubMed Central

    Li, Jue; Inada, Shin; Schneider, Jurgen E.; Zhang, Henggui; Dobrzynski, Halina; Boyett, Mark R.

    2014-01-01

    The aim of the study was to develop a three-dimensional (3D) anatomically-detailed model of the rabbit right atrium containing the sinoatrial and atrioventricular nodes to study the electrophysiology of the nodes. A model was generated based on 3D images of a rabbit heart (atria and part of ventricles), obtained using high-resolution magnetic resonance imaging. Segmentation was carried out semi-manually. A 3D right atrium array model (∼3.16 million elements), including eighteen objects, was constructed. For description of cellular electrophysiology, the Rogers-modified FitzHugh-Nagumo model was further modified to allow control of the major characteristics of the action potential with relatively low computational resource requirements. Model parameters were chosen to simulate the action potentials in the sinoatrial node, atrial muscle, inferior nodal extension and penetrating bundle. The block zone was simulated as passive tissue. The sinoatrial node, crista terminalis, main branch and roof bundle were considered as anisotropic. We have simulated normal and abnormal electrophysiology of the two nodes. In accordance with experimental findings: (i) during sinus rhythm, conduction occurs down the interatrial septum and into the atrioventricular node via the fast pathway (conduction down the crista terminalis and into the atrioventricular node via the slow pathway is slower); (ii) during atrial fibrillation, the sinoatrial node is protected from overdrive by its long refractory period; and (iii) during atrial fibrillation, the atrioventricular node reduces the frequency of action potentials reaching the ventricles. The model is able to simulate ventricular echo beats. In summary, a 3D anatomical model of the right atrium containing the cardiac conduction system is able to simulate a wide range of classical nodal behaviours. PMID:25380074

  17. Menthol-induced action potentials in Conocephalum conicum as a result of unspecific interactions between menthol and the lipid phase of the plasma membrane.

    PubMed

    Kupisz, Kamila; Trebacz, Kazimierz; Gruszecki, Wiesław I

    2015-07-01

    Our previous study has shown that the liverwort Conocephalum conicum generates action potentials (APs) in response to both temperature drop and menthol, which are also activators of the TRPM8 (transient receptor potential melastatin 8) receptor in animals. Not only similarities but also differences between electrical reactions to menthol and cooling observed in the liverwort aroused our interest in the action of menthol at the molecular level. Patch-clamp investigations have shown that menthol causes a reduction of current flowing through slow vacuolar (SV) channels to 29 ± 10% of the initial value (n = 9); simultaneously, it does not influence magnitudes of currents passing through a single SV channel. This may point to an unspecific interaction between menthol and the lipid phase of the membrane. An influence of menthol on lipid organization in membranes was investigated in two-component monomolecular layers formed with menthol and dipalmitoylphosphatidylcholine (DPPC) at the argon-water interface. Analyses of the mean molecular area parameters vs the molar fraction of the menthol component have shown over-additivity (approximately 20 Å(2) ) in the region of high molar fractions of menthol. Infrared absorption spectroscopy studies have shown that menthol, most probably, induces breaking of a hydrogen bond network formed by ester carbonyl groups and water bridges in the lipid membrane and binds to the polar head group region of DPPC. We conclude that the disruption in the lipid phase of the membrane influences ion channels and/or pumps and subsequently causes generation of APs in excitable plants such as C. conicum. © 2014 Scandinavian Plant Physiology Society.

  18. Gesture Based Control and EMG Decomposition

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Chang, Mindy H.; Knuth, Kevin H.

    2005-01-01

    This paper presents two probabilistic developments for use with Electromyograms (EMG). First described is a new-electric interface for virtual device control based on gesture recognition. The second development is a Bayesian method for decomposing EMG into individual motor unit action potentials. This more complex technique will then allow for higher resolution in separating muscle groups for gesture recognition. All examples presented rely upon sampling EMG data from a subject's forearm. The gesture based recognition uses pattern recognition software that has been trained to identify gestures from among a given set of gestures. The pattern recognition software consists of hidden Markov models which are used to recognize the gestures as they are being performed in real-time from moving averages of EMG. Two experiments were conducted to examine the feasibility of this interface technology. The first replicated a virtual joystick interface, and the second replicated a keyboard. Moving averages of EMG do not provide easy distinction between fine muscle groups. To better distinguish between different fine motor skill muscle groups we present a Bayesian algorithm to separate surface EMG into representative motor unit action potentials. The algorithm is based upon differential Variable Component Analysis (dVCA) [l], [2] which was originally developed for Electroencephalograms. The algorithm uses a simple forward model representing a mixture of motor unit action potentials as seen across multiple channels. The parameters of this model are iteratively optimized for each component. Results are presented on both synthetic and experimental EMG data. The synthetic case has additive white noise and is compared with known components. The experimental EMG data was obtained using a custom linear electrode array designed for this study.

  19. Effect of mental challenge induced by movie clips on action potential duration in normal human subjects independent of heart rate

    PubMed Central

    Child, Nicholas; Hanson, Ben; Bishop, Martin; Rinaldi, Christopher A; Bostock, Julian; Western, David; Cooklin, Michael; O’Neil, Mark; Wright, Matthew; Razavi, Reza; Gill, Jaswinder; Taggart, Peter

    2014-01-01

    Background Mental stress and emotion have long been associated with ventricular arrhythmias and sudden death in animal models and humans. The effect of mental challenge on ventricular action potential duration (APD) in conscious healthy humans has not been reported. Methods and Results Activation recovery intervals (ARI) measured from unipolar electrograms as a surrogate for APD (n=19) were recorded from right and left ventricular endocardium during steady state pacing while subjects watched an emotionally charged film clip. To assess the possible modulating role of altered respiration on APD, the subjects then repeated the same breathing pattern they had during the stress, but without the movie clip. Haemodynamic parameters (mean, systolic, and diastolic blood pressure, and rate of pressure increase) and respiration rate increased during the stressful part of the film clip (p=0.001). APD decreased during the stressful parts of the film clip, eg for global RV ARI at end of film clip 193.8ms (SD 14) vs 198.0ms (SD13) during the matched breathing control (end film LV 199.8ms (SD16) vs control 201.6ms (SD15), p=0.004. Respiration rate increased during the stressful part of the film clip (by 2 breaths/minute), and was well matched in the respective control period without any haemodynamic or ARI changes. Conclusions Our results document for the first time direct recordings of the effect of a mental challenge protocol on ventricular action potential duration in conscious humans. The effect of mental challenge on APD was not secondary to emotionally-induced altered respiration or heart rate. PMID:24833641

  20. QCD at finite isospin chemical potential

    NASA Astrophysics Data System (ADS)

    Brandt, Bastian B.; Endrődi, Gergely; Schmalzbauer, Sebastian

    2018-03-01

    We investigate the properties of QCD at finite isospin chemical potential at zero and non-zero temperatures. This theory is not affected by the sign problem and can be simulated using Monte-Carlo techniques. With increasing isospin chemical potential and temperatures below the deconfinement transition the system changes into a phase where charged pions condense, accompanied by an accumulation of low modes of the Dirac operator. The simulations are enabled by the introduction of a pionic source into the action, acting as an infrared regulator for the theory, and physical results are obtained by removing the regulator via an extrapolation. We present an update of our study concerning the associated phase diagram using 2+1 flavours of staggered fermions with physical quark masses and the comparison to Taylor expansion. We also present first results for our determination of the equation of state at finite isospin chemical potential and give an example for a cosmological application. The results can also be used to gain information about QCD at small baryon chemical potentials using reweighting with respect to the pionic source parameter and the chemical potential and we present first steps in this direction.

  1. Cortical Action Potential Backpropagation Explains Spike Threshold Variability and Rapid-Onset Kinetics

    PubMed Central

    Yu, Yuguo; Shu, Yousheng; McCormick, David A.

    2008-01-01

    Neocortical action potential responses in vivo are characterized by considerable threshold variability, and thus timing and rate variability, even under seemingly identical conditions. This finding suggests that cortical ensembles are required for accurate sensorimotor integration and processing. Intracellularly, trial-to-trial variability results not only from variation in synaptic activities, but also in the transformation of these into patterns of action potentials. Through simultaneous axonal and somatic recordings and computational simulations, we demonstrate that the initiation of action potentials in the axon initial segment followed by backpropagation of these spikes throughout the neuron results in a distortion of the relationship between the timing of synaptic and action potential events. In addition, this backpropagation also results in an unusually high rate of rise of membrane potential at the foot of the action potential. The distortion of the relationship between the amplitude time course of synaptic inputs and action potential output caused by spike back-propagation results in the appearance of high spike threshold variability at the level of the soma. At the point of spike initiation, the axon initial segment, threshold variability is considerably less. Our results indicate that spike generation in cortical neurons is largely as expected by Hodgkin—Huxley theory and is more precise than previously thought. PMID:18632930

  2. Median and ulnar muscle and sensory evoked potentials.

    PubMed

    Felsenthal, G

    1978-08-01

    The medical literature was reviewed to find suggested clinical applications of the study of the amplitude of evoked muscle action potentials (MAP) and sensory action potentials (SAP). In addition, the literature was reviewed to ascertain the normal amplitude and duration of the evoked MAP and SAP as well as the factors affecting the amplitude: age, sex, temperature, ischemia. The present study determined the normal amplitude and duration of the median and ulnar MAP and SAP in fifty normal subjects. The amplitude of evoked muscle or sensory action potentials depends on multiple factors. Increased skin resistance, capacitance, and impedance at the surface of the recording electrode diminishes the amplitude. Similarly, increased distance from the source of the action potential diminishes its amplitude. Increased interelectrode distance increases the amplitude of the bipolarly recorded sensory action potential until a certain interelectrode distance is exceeded and the diphasic response becomes tri- or tetraphasic. Artifact or poor technique may reduce the potential difference between the recording electrodes or obscure the late positive phase of the action potential and thus diminish the peak to peak amplitude measurement. Intraindividual comparison indicated a marked difference of amplitude in opposite hands. The range of the MAP of the abductor pollicis brevis in one hand was 40.0--100% of the response in the opposite hand. For the abductor digiti minimi, the MAP was 58.5--100% of the response of the opposite hand. The median and ulnar SAP was between 50--100% of the opposite SAP. Consequent to these findings the effect of hand dominance on the amplitude of median and ulnar evoked muscle and sensory action potentials was studied in 41 right handed volunteers. The amplitudes of the median muscle action potential (p less than 0.02) and the median and ulnar sensory action potentials (p less than 0.001) were significantly less in the dominant hand. There was no significant difference between the ulnar muscle action potentials or for the median and ulnar distal motor and sensory latencies in the right and left hands of this group of volunteers.

  3. Ionotropic glutamate receptor GluA4 and T-type calcium channel Cav 3.1 subunits control key aspects of synaptic transmission at the mouse L5B-POm giant synapse.

    PubMed

    Seol, Min; Kuner, Thomas

    2015-12-01

    The properties and molecular determinants of synaptic transmission at giant synapses connecting layer 5B (L5B) neurons of the somatosensory cortex (S1) with relay neurons of the posteriomedial nucleus (POm) of the thalamus have not been investigated in mice. We addressed this by using direct electrical stimulation of fluorescently labelled single corticothalamic terminals combined with molecular perturbations and whole-cell recordings from POm relay neurons. Consistent with their function as drivers, we found large-amplitude excitatory postsynaptic currents (EPSCs) and multiple postsynaptic action potentials triggered by a single presynaptic action potential. To study the molecular basis of these two features, ionotropic glutamate receptors and low voltage-gated T-type calcium channels were probed by virus-mediated genetic perturbation. Loss of GluA4 almost abolished the EPSC amplitude, strongly delaying the onset of action potential generation, but maintaining the number of action potentials generated per presynaptic action potential. In contrast, knockdown of the Cav 3.1 subunit abrogated the driver function of the synapse at a typical resting membrane potential of -70 mV. However, when depolarizing the membrane potential to -60 mV, the synapse relayed single action potentials. Hence, GluA4 subunits are required to produce an EPSC sufficiently large to trigger postsynaptic action potentials within a defined time window after the presynaptic action potential, while Cav 3.1 expression is essential to establish the driver function of L5B-POm synapses at hyperpolarized membrane potentials. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Low concentrations of procaine and diethylaminoethanol reduce the excitability but not the action potential amplitude of hippocampal pyramidal cells.

    PubMed

    Butterworth, J F; Cole, L R

    1990-10-01

    To determine whether concentrations of diethylaminoethanol (DEAE) and procaine below those that reduce the amplitude of action potentials might alter the excitability of brain cells, a single microelectrode intracellular recording technique was used to measure firing threshold and action potential amplitude of pyramidal cells in rat hippocampal slices. At low concentrations of both DEAE (less than or equal to 5 mM) and procaine (less than or equal to 0.5 mM), firing threshold was significantly increased (P less than 0.01), whereas action potential spike amplitude was minimally altered. At higher concentrations, both drugs significantly decreased action potential spike amplitude (P less than 0.025) as well as increased firing threshold (P less than 0.001). Diethylaminoethanol tended to increase threshold relatively more than procaine, when drug concentrations that similarly reduced action potential amplitude were compared. All actions of DEAE and procaine were reversible. Inhibition of action potentials by DEAE and procaine was clearly concentration-dependent (P less than or equal to 0.015). Diethylaminoethanol effects on threshold were marginally concentration-dependent (P = 0.08); procaine did not demonstrate clear concentration-dependent effects (P = 0.33) over the concentrations tested in this study. These similar actions of procaine and DEAE on brain cells suggest a mechanism by which intravenous local anesthetics may contribute to the general anesthetic state. Moreover, it appears possible that procaine metabolism and DEAE accumulation may underlie the prolonged effects sometimes seen after intravenous procaine administration.

  5. On Gravitational Effects in the Schrödinger Equation

    NASA Astrophysics Data System (ADS)

    Pollock, M. D.

    2014-04-01

    The Schrödinger equation for a particle of rest mass and electrical charge interacting with a four-vector potential can be derived as the non-relativistic limit of the Klein-Gordon equation for the wave function , where and , or equivalently from the one-dimensional action for the corresponding point particle in the semi-classical approximation , both methods yielding the equation in Minkowski space-time , where and . We show that these two methods generally yield equations that differ in a curved background space-time , although they coincide when if is replaced by the effective mass in both the Klein-Gordon action and , allowing for non-minimal coupling to the gravitational field, where is the Ricci scalar and is a constant. In this case , where and , the correctness of the gravitational contribution to the potential having been verified to linear order in the thermal-neutron beam interferometry experiment due to Colella et al. Setting and regarding as the quasi-particle wave function, or order parameter, we obtain the generalization of the fundamental macroscopic Ginzburg-Landau equation of superconductivity to curved space-time. Conservation of probability and electrical current requires both electromagnetic gauge and space-time coordinate conditions to be imposed, which exemplifies the gravito-electromagnetic analogy, particularly in the stationary case, when div, where and . The quantum-cosmological Schrödinger (Wheeler-DeWitt) equation is also discussed in the -dimensional mini-superspace idealization, with particular regard to the vacuum potential and the characteristics of the ground state, assuming a gravitational Lagrangian which contains higher-derivative terms up to order . For the heterotic superstring theory , consists of an infinite series in , where is the Regge slope parameter, and in the perturbative approximation , is positive semi-definite for . The maximally symmetric ground state satisfying the field equations is Minkowski space for and anti-de Sitter space for.

  6. 78 FR 34031 - Burned Area Emergency Response, Forest Service

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ...) Evaluate potential threats to critical values; (2) determine the risk level for each threat; (3) identify... actions that meet the objectives; (6) evaluate potential response actions on likelihood for timely... stabilization actions. Improved the descriptive guidelines for employing response actions involving...

  7. Conduction velocity of action potentials measured from unidimensional latency-topography in human and frog skeletal muscle fibers.

    PubMed

    Homma, S; Nakajima, Y; Hayashi, K; Toma, S

    1986-01-01

    Conduction of an action potential along skeletal muscle fibers was graphically displayed by unidimensional latency-topography, UDLT. Since the slopes of the equipotential line were linear and the width of the line was constant, it was possible to calculate conduction velocity from the slope. To determine conduction direction of the muscle action potential elicited by electric stimulation applied directly to the muscle, surface recording electrodes were placed on a two-dimensional plane over a human muscle. Thus a bi-dimensional topography was obtained. Then, twelve or sixteen surface electrodes were placed linearly along the longitudinal direction of the action potential conduction which was disclosed by the bi-dimensional topography. Thus conduction velocity of muscle action potential in man, calculated from the slope, was for m. brachioradialis, 3.9 +/- 0.4 m/s; for m. biceps brachii, 3.6 +/- 0.2 m/s; for m. sternocleidomastoideus, 3.6 +/- 0.4 m/s. By using a tungsten microelectrode to stimulate the motor axons, a convex-like equipotential line of an action potential in UDLT was obtained from human muscle fibers. Since a similar pattern of UDLT was obtained from experiments on isolated frog muscles, in which the muscle action potential was elicited by stimulating the motor axon, it was assumed that the maximum of the curve corresponds to the end-plate region, and that the slopes on both sides indicate bi-directional conduction of the action potential.

  8. Active action potential propagation but not initiation in thalamic interneuron dendrites

    PubMed Central

    Casale, Amanda E.; McCormick, David A.

    2012-01-01

    Inhibitory interneurons of the dorsal lateral geniculate nucleus of the thalamus modulate the activity of thalamocortical cells in response to excitatory input through the release of inhibitory neurotransmitter from both axons and dendrites. The exact mechanisms by which release can occur from dendrites are, however, not well understood. Recent experiments using calcium imaging have suggested that Na/K based action potentials can evoke calcium transients in dendrites via local active conductances, making the back-propagating action potential a candidate for dendritic neurotransmitter release. In this study, we employed high temporal and spatial resolution voltage-sensitive dye imaging to assess the characteristics of dendritic voltage deflections in response to Na/K action potentials in interneurons of the mouse dorsal lateral geniculate nucleus. We found that trains or single action potentials elicited by somatic current injection or local synaptic stimulation led to action potentials that rapidly and actively back-propagated throughout the entire dendritic arbor and into the fine filiform dendritic appendages known to release GABAergic vesicles. Action potentials always appeared first in the soma or proximal dendrite in response to somatic current injection or local synaptic stimulation, and the rapid back-propagation into the dendritic arbor depended upon voltage-gated sodium and TEA-sensitive potassium channels. Our results indicate that thalamic interneuron dendrites integrate synaptic inputs that initiate action potentials, most likely in the axon initial segment, that then back-propagate with high-fidelity into the dendrites, resulting in a nearly synchronous release of GABA from both axonal and dendritic compartments. PMID:22171033

  9. Corrective Action Investigation Plan for Corrective Action Unit 428: Area 3 Septic Waste Systems 1 and 5, Tonopah Test Range, Nevada, REVISION 0, march 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DOE /NV

    1999-03-26

    The Corrective Action Investigation Plan for Corrective Action Unit 428, Area 3 Septic Waste Systems 1 and 5, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U. S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U. S. Department of Defense. Corrective Action Unit 428 consists of Corrective Action Sites 03- 05- 002- SW01 and 03- 05- 002- SW05, respectively known as Area 3 Septic Waste System 1 and Septic Waste System 5. This Corrective Action Investigation Plan is used inmore » combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada , Rev. 1 (DOE/ NV, 1998c). The Leachfield Work Plan was developed to streamline investigations at leachfield Corrective Action Units by incorporating management, technical, quality assurance, health and safety, public involvement, field sampling, and waste management information common to a set of Corrective Action Units with similar site histories and characteristics into a single document that can be referenced. This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 428. A system of leachfields and associated collection systems was used for wastewater disposal at Area 3 of the Tonopah Test Range until a consolidated sewer system was installed in 1990 to replace the discrete septic waste systems. Operations within various buildings at Area 3 generated sanitary and industrial wastewaters potentially contaminated with contaminants of potential concern and disposed of in septic tanks and leachfields. Corrective Action Unit 428 is composed of two leachfield systems in the northern portion of Area 3. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern for the site include oil/ diesel range total petroleum hydrocarbons, and Resource Conservation and Recovery Act characteristic volatile organic compounds, semivolatile organic compounds, and metals. A limited number of samples will be analyzed for gamma- emitting radionuclides and isotopic uranium from four of the septic tanks and if radiological field screening levels are exceeded. Additional samples will be analyzed for geotechnical and hydrological properties and a bioassessment may be performed. The technical approach for investigating this Corrective Action Unit consists of the following activities: (1) Perform video surveys of the discharge and outfall lines. (2) Collect samples of material in the septic tanks. (3) Conduct exploratory trenching to locate and inspect subsurface components. (4) Collect subsurface soil samples in areas of the collection system including the septic tanks and outfall end of distribution boxes. (5) Collect subsurface soil samples underlying the leachfield distribution pipes via trenching. (6) Collect surface and near- surface samples near potential locations of the Acid Sewer Outfall if Septic Waste System 5 Leachfield cannot be located. (7) Field screen samples for volatile organic compounds, total petroleum hydrocarbons, and radiological activity. (8) Drill boreholes and collect subsurface soil samples if required. (9) Analyze samples for total volatile organic compounds, total semivolatile organic compounds, total Resource Conservation and Recovery Act metals, and total petroleum hydrocarbons (oil/ diesel range organics). Limited number of samples will be analyzed for gamma- emitting radionuclides and isotopic uranium from particular septic tanks and if radiological field screening levels are exceeded. (10) Collect samples from native soils beneath the distribution system and analyze for geotechnical/ hydrologic parameters. (11) Collect and analyze bioassessment samples at the discretion of the Site Supervisor if total petroleum hydrocarbons exceed field- screening levels.« less

  10. Event-Related Potentials Discriminate Familiar and Unusual Goal Outcomes in 5-Month-Olds and Adults

    ERIC Educational Resources Information Center

    Michel, Christine; Kaduk, Katharina; Ní Choisdealbha, Áine; Reid, Vincent M.

    2017-01-01

    Previous event-related potential (ERP) work has indicated that the neural processing of action sequences develops with age. Although adults and 9-month-olds use a semantic processing system, perceiving actions activates attentional processes in 7-month-olds. However, presenting a sequence of action context, action execution and action conclusion…

  11. Monte Carlo simulation of parameter confidence intervals for non-linear regression analysis of biological data using Microsoft Excel.

    PubMed

    Lambert, Ronald J W; Mytilinaios, Ioannis; Maitland, Luke; Brown, Angus M

    2012-08-01

    This study describes a method to obtain parameter confidence intervals from the fitting of non-linear functions to experimental data, using the SOLVER and Analysis ToolPaK Add-In of the Microsoft Excel spreadsheet. Previously we have shown that Excel can fit complex multiple functions to biological data, obtaining values equivalent to those returned by more specialized statistical or mathematical software. However, a disadvantage of using the Excel method was the inability to return confidence intervals for the computed parameters or the correlations between them. Using a simple Monte-Carlo procedure within the Excel spreadsheet (without recourse to programming), SOLVER can provide parameter estimates (up to 200 at a time) for multiple 'virtual' data sets, from which the required confidence intervals and correlation coefficients can be obtained. The general utility of the method is exemplified by applying it to the analysis of the growth of Listeria monocytogenes, the growth inhibition of Pseudomonas aeruginosa by chlorhexidine and the further analysis of the electrophysiological data from the compound action potential of the rodent optic nerve. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Bifurcation and Spike Adding Transition in Chay-Keizer Model

    NASA Astrophysics Data System (ADS)

    Lu, Bo; Liu, Shenquan; Liu, Xuanliang; Jiang, Xiaofang; Wang, Xiaohui

    Electrical bursting is an activity which is universal in excitable cells such as neurons and various endocrine cells, and it encodes rich physiological information. As burst delay identifies that the signal integration has reached the threshold at which it can generate an action potential, the number of spikes in a burst may have essential physiological implications, and the transition of bursting in excitable cells is associated with the bifurcation phenomenon closely. In this paper, we focus on the transition of the spike count per burst of the pancreatic β-cells within a mathematical model and bifurcation phenomenon in the Chay-Keizer model, which is utilized to simulate the pancreatic β-cells. By the fast-slow dynamical bifurcation analysis and the bi-parameter bifurcation analysis, the local dynamics of the Chay-Keizer system around the Bogdanov-Takens bifurcation is illustrated. Then the variety of the number of spikes per burst is discussed by changing the settings of a single parameter and bi-parameter. Moreover, results on the number of spikes within a burst are summarized in ISIs (interspike intervals) sequence diagrams, maximum and minimum, and the number of spikes under bi-parameter value changes.

  13. Sensory cortex hyperexcitability predicts short survival in amyotrophic lateral sclerosis.

    PubMed

    Shimizu, Toshio; Bokuda, Kota; Kimura, Hideki; Kamiyama, Tsutomu; Nakayama, Yuki; Kawata, Akihiro; Isozaki, Eiji; Ugawa, Yoshikazu

    2018-05-01

    To investigate somatosensory cortex excitability and its relationship to survival prognosis in patients with amyotrophic lateral sclerosis (ALS). A total of 145 patients with sporadic ALS and 73 healthy control participants were studied. We recorded compound muscle action potential and sensory nerve action potential of the median nerve and the median nerve somatosensory evoked potential (SEP), and we measured parameters, including onset-to-peak amplitude of N13 and N20 and peak-to-peak amplitude between N20 and P25 (N20p-P25p). Clinical prognostic factors, including ALS Functional Rating Scale-Revised, were evaluated. We followed up patients until the endpoints (death or tracheostomy) and analyzed factors associated with survival using multivariate analysis in the Cox proportional hazard model. Compared to controls, patients with ALS showed a larger amplitude of N20p-P25p in the median nerve SEP. Median survival time after examination was shorter in patients with N20p-P25p ≥8 μV (0.82 years) than in those with N20p-P25p <8 μV (1.68 years, p = 0.0002, log-rank test). Multivariate analysis identified a larger N20p-P25p amplitude as a factor that was independently associated with shorter survival ( p = 0.002). Sensory cortex hyperexcitability predicts short survival in patients with ALS. © 2018 American Academy of Neurology.

  14. 40 CFR 63.2998 - What records must I maintain?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Records of maintenance and inspections performed on the control devices. (e) If an operating parameter... which corrective actions were initiated and completed; (4) A brief description of the corrective actions...

  15. Understanding the Electrical Behavior of the Action Potential in Terms of Elementary Electrical Sources

    ERIC Educational Resources Information Center

    Rodriguez-Falces, Javier

    2015-01-01

    A concept of major importance in human electrophysiology studies is the process by which activation of an excitable cell results in a rapid rise and fall of the electrical membrane potential, the so-called action potential. Hodgkin and Huxley proposed a model to explain the ionic mechanisms underlying the formation of action potentials. However,…

  16. Detachable glass microelectrodes for recording action potentials in active moving organs.

    PubMed

    Barbic, Mladen; Moreno, Angel; Harris, Tim D; Kay, Matthew W

    2017-06-01

    Here, we describe new detachable floating glass micropipette electrode devices that provide targeted action potential recordings in active moving organs without requiring constant mechanical constraint or pharmacological inhibition of tissue motion. The technology is based on the concept of a glass micropipette electrode that is held firmly during cell targeting and intracellular insertion, after which a 100-µg glass microelectrode, a "microdevice," is gently released to remain within the moving organ. The microdevices provide long-term recordings of action potentials, even during millimeter-scale movement of tissue in which the device is embedded. We demonstrate two different glass micropipette electrode holding and detachment designs appropriate for the heart (sharp glass microdevices for cardiac myocytes in rats, guinea pigs, and humans) and the brain (patch glass microdevices for neurons in rats). We explain how microdevices enable measurements of multiple cells within a moving organ that are typically difficult with other technologies. Using sharp microdevices, action potential duration was monitored continuously for 15 min in unconstrained perfused hearts during global ischemia-reperfusion, providing beat-to-beat measurements of changes in action potential duration. Action potentials from neurons in the hippocampus of anesthetized rats were measured with patch microdevices, which provided stable base potentials during long-term recordings. Our results demonstrate that detachable microdevices are an elegant and robust tool to record electrical activity with high temporal resolution and cellular level localization without disturbing the physiological working conditions of the organ. NEW & NOTEWORTHY Cellular action potential measurements within tissue using glass micropipette electrodes usually require tissue immobilization, potentially influencing the physiological relevance of the measurement. Here, we addressed this limitation with novel 100-µg detachable glass microelectrodes that can be precisely positioned to provide long-term measurements of action potential duration during unconstrained tissue movement. Copyright © 2017 the American Physiological Society.

  17. Electrically evoked compound action potentials are different depending on the site of cochlear stimulation.

    PubMed

    van de Heyning, Paul; Arauz, Santiago L; Atlas, Marcus; Baumgartner, Wolf-Dieter; Caversaccio, Marco; Chester-Browne, Ronel; Estienne, Patricia; Gavilan, Javier; Godey, Benoit; Gstöttner, Wolfgang; Han, Demin; Hagen, Rudolph; Kompis, Martin; Kuzovkov, Vlad; Lassaletta, Luis; Lefevre, Franc; Li, Yongxin; Müller, Joachim; Parnes, Lorne; Kleine Punte, Andrea; Raine, Christopher; Rajan, Gunesh; Rivas, Adriana; Rivas, José Antonio; Royle, Nicola; Sprinzl, Georg; Stephan, Kurt; Walkowiak, Adam; Yanov, Yuri; Zimmermann, Kim; Zorowka, Patrick; Skarzynski, Henryk

    2016-11-01

    One of the many parameters that can affect cochlear implant (CI) users' performance is the site of presentation of electrical stimulation, from the CI, to the auditory nerve. Evoked compound action potential (ECAP) measurements are commonly used to verify nerve function by stimulating one electrode contact in the cochlea and recording the resulting action potentials on the other contacts of the electrode array. The present study aimed to determine if the ECAP amplitude differs between the apical, middle, and basal region of the cochlea, if double peak potentials were more likely in the apex than the basal region of the cochlea, and if there were differences in the ECAP threshold and recovery function across the cochlea. ECAP measurements were performed in the apical, middle, and basal region of the cochlea at fixed sites of stimulation with varying recording electrodes. One hundred and forty one adult subjects with severe to profound sensorineural hearing loss fitted with a Standard or FLEX SOFT electrode were included in this study. ECAP responses were captured using MAESTRO System Software (MED-EL). The ECAP amplitude, threshold, and slope were determined using amplitude growth sequences. The 50% recovery rate was assessed using independent single sequences that have two stimulation pulses (a masker and a probe pulse) separated by a variable inter-pulse interval. For all recordings, ECAP peaks were annotated semi-automatically. ECAP amplitudes were greater upon stimulation of the apical region compared to the basal region of the cochlea. ECAP slopes were steeper in the apical region compared to the basal region of the cochlea and ECAP thresholds were lower in the middle region compared to the basal region of the cochlea. The incidence of double peaks was greater upon stimulation of the apical region compared to the basal region of the cochlea. This data indicates that the site and intensity of cochlear stimulation affect ECAP properties.

  18. Multi-Objective Reinforcement Learning-based Deep Neural Networks for Cognitive Space Communications

    NASA Technical Reports Server (NTRS)

    Ferreria, Paulo; Paffenroth, Randy; Wyglinski, Alexander M.; Hackett, Timothy; Bilen, Sven; Reinhart, Richard; Mortensen, Dale

    2017-01-01

    Future communication subsystems of space exploration missions can potentially benefit from software-defined radios (SDRs) controlled by machine learning algorithms. In this paper, we propose a novel hybrid radio resource allocation management control algorithm that integrates multi-objective reinforcement learning and deep artificial neural networks. The objective is to efficiently manage communications system resources by monitoring performance functions with common dependent variables that result in conflicting goals. The uncertainty in the performance of thousands of different possible combinations of radio parameters makes the trade-off between exploration and exploitation in reinforcement learning (RL) much more challenging for future critical space-based missions. Thus, the system should spend as little time as possible on exploring actions, and whenever it explores an action, it should perform at acceptable levels most of the time. The proposed approach enables on-line learning by interactions with the environment and restricts poor resource allocation performance through virtual environment exploration. Improvements in the multiobjective performance can be achieved via transmitter parameter adaptation on a packet-basis, with poorly predicted performance promptly resulting in rejected decisions. Simulations presented in this work considered the DVB-S2 standard adaptive transmitter parameters and additional ones expected to be present in future adaptive radio systems. Performance results are provided by analysis of the proposed hybrid algorithm when operating across a satellite communication channel from Earth to GEO orbit during clear sky conditions. The proposed approach constitutes part of the core cognitive engine proof-of-concept to be delivered to the NASA Glenn Research Center SCaN Testbed located onboard the International Space Station.

  19. Multi-Objective Reinforcement Learning-Based Deep Neural Networks for Cognitive Space Communications

    NASA Technical Reports Server (NTRS)

    Ferreria, Paulo Victor R.; Paffenroth, Randy; Wyglinski, Alexander M.; Hackett, Timothy M.; Bilen, Sven G.; Reinhart, Richard C.; Mortensen, Dale J.

    2017-01-01

    Future communication subsystems of space exploration missions can potentially benefit from software-defined radios (SDRs) controlled by machine learning algorithms. In this paper, we propose a novel hybrid radio resource allocation management control algorithm that integrates multi-objective reinforcement learning and deep artificial neural networks. The objective is to efficiently manage communications system resources by monitoring performance functions with common dependent variables that result in conflicting goals. The uncertainty in the performance of thousands of different possible combinations of radio parameters makes the trade-off between exploration and exploitation in reinforcement learning (RL) much more challenging for future critical space-based missions. Thus, the system should spend as little time as possible on exploring actions, and whenever it explores an action, it should perform at acceptable levels most of the time. The proposed approach enables on-line learning by interactions with the environment and restricts poor resource allocation performance through virtual environment exploration. Improvements in the multiobjective performance can be achieved via transmitter parameter adaptation on a packet-basis, with poorly predicted performance promptly resulting in rejected decisions. Simulations presented in this work considered the DVB-S2 standard adaptive transmitter parameters and additional ones expected to be present in future adaptive radio systems. Performance results are provided by analysis of the proposed hybrid algorithm when operating across a satellite communication channel from Earth to GEO orbit during clear sky conditions. The proposed approach constitutes part of the core cognitive engine proof-of-concept to be delivered to the NASA Glenn Research Center SCaN Testbed located onboard the International Space Station.

  20. An Affect-Centered Model of the Psyche and its Consequences for a New Understanding of Nonlinear Psychodynamics

    NASA Astrophysics Data System (ADS)

    Ciompi, Luc

    At variance with a purely cognitivistic approach, an affect-centered model of mental functioning called `fractal affect-logic' is presented on the basis of current emotional-psychological and neurobiological research. Functionally integrated feeling-thinking-behaving programs generated by action appear in this model as the basic `building blocks' of the psyche. Affects are understood as the essential source of energy that mobilises and organises both linear and nonlinear affective-cognitive dynamics, under the influence of appropriate control parameters and order parameters. Global patterns of affective-cognitive functioning form dissipative structures in the sense of Prigogine, with affect-specific attractors and repulsors, bifurcations, high sensitivity for initial conditions and a fractal overall structure that may be represented in a complex potential landscape of variable configuration. This concept opens new possibilities of understanding normal and pathological psychodynamics and sociodynamics, with numerous practical and theoretical implications.

  1. Constraints on the synchronization of entorhinal cortex stellate cells

    NASA Astrophysics Data System (ADS)

    Crotty, Patrick; Lasker, Eric; Cheng, Sen

    2012-07-01

    Synchronized oscillations of large numbers of central neurons are believed to be important for a wide variety of cognitive functions, including long-term memory recall and spatial navigation. It is therefore plausible that evolution has optimized the biophysical properties of central neurons in some way for synchronized oscillations to occur. Here, we use computational models to investigate the relationships between the presumably genetically determined parameters of stellate cells in layer II of the entorhinal cortex and the ability of coupled populations of these cells to synchronize their intrinsic oscillations: in particular, we calculate the time it takes circuits of two or three cells with initially randomly distributed phases to synchronize their oscillations to within one action potential width, and the metabolic energy they consume in doing so. For recurrent circuit topologies, we find that parameters giving low intrinsic firing frequencies close to those actually observed are strongly advantageous for both synchronization time and metabolic energy consumption.

  2. In vivo effects of metaldehyde on Pacific oyster, Crassostrea gigas: comparing hemocyte parameters in two oyster families.

    PubMed

    Moreau, Pierrick; Burgeot, Thierry; Renault, Tristan

    2015-06-01

    Pollutants via run-off into the ocean represent a potential threat to marine organisms, especially bivalves such as oysters living in coastal environments. These organisms filter large volumes of seawater and may accumulate contaminants within their tissues. Pesticide contamination in water could have a direct or indirect toxic action on tissues or cells and could induce alteration of immune system. Bivalve immunity is mainly supported by hemocytes and participates directly by phagocytosis to eliminate pathogens. Some studies have shown that pesticides can reduce immune defences and/or modify genomes in vertebrates and invertebrates. Metaldehyde is used to kill slugs, snails and other terrestrial gastropods. Although metaldehyde has been detected in surface waters, its effects on marine bivalves including the Pacific oyster, Crassostrea gigas, have never been studied. Given the mode of action of this molecule and its targets (molluscs), it could be potentially more toxic to oysters than other pesticides (herbicides, fungicides, insecticides, etc.). Effects of metaldehyde on oyster hemocyte parameters were thus monitored through in vivo experiments based on a short-term exposure. In this work, metaldehyde at 0.1 μg/L, which corresponds to an average concentration detected in the environment, modulated hemocyte activities of Pacific oysters after an in vivo short-term contact. Individuals belonging to two families showed different behaviours for some hemocyte activities after contamination by metaldehyde. These results suggested that effects of pollutants on oysters may differ from an individual to another in relation to genetic diversity. Finally, it appears essential to take an interest in the effects of metaldehyde on a wide variety of aquatic invertebrates including those that have a significant economic impact.

  3. Multicentre investigation on electrically evoked compound action potential and stapedius reflex: how do these objective measures relate to implant programming parameters?

    PubMed

    Van Den Abbeele, Thierry; Noël-Petroff, Nathalie; Akin, Istemihan; Caner, Gül; Olgun, Levent; Guiraud, Jeanne; Truy, Eric; Attias, Josef; Raveh, Eyal; Belgin, Erol; Sennaroglu, Gonca; Basta, Dietmar; Ernst, Arneborg; Martini, Alessandro; Rosignoli, Monica; Levi, Haya; Elidan, Joseph; Benghalem, Abdelhamid; Amstutz-Montadert, Isabelle; Lerosey, Yannick; De Vel, Eddy; Dhooge, Ingeborg; Hildesheimer, Minka; Kronenberg, Jona; Arnold, Laure

    2012-02-01

    The aims of this study were to collect data on electrically evoked compound action potential (eCAP) and electrically evoked stapedius reflex thresholds (eSRT) in HiResolution(TM) cochlear implant (CI) users, and to explore the relationships between these objective measures and behavioural measures of comfort levels (M-levels). A prospective study on newly implanted subjects was designed. The eCAP was measured intra-operatively and at first fitting through neural response imaging (NRI), using the SoundWave(TM) fitting software. The eSRT was measured intra-operatively by visual monitoring of the stapes, using both single-electrode stimulation and speech bursts (four electrodes stimulated at the same time). Measures of M-levels were performed according to standard clinical practice and collected at first fitting, 3 and 6 months of CI use. One hundred seventeen subjects from 14 centres, all implanted unilaterally with a HiResolution CII Bionic Ear(®) or HiRes 90K(®), were included in the study. Speech burst stimulation elicited a significantly higher eSRT success rate than single-electrode stimulation, 84 vs. 64% respectively. The NRI success rate was 81% intra-operatively, significantly increasing to 96% after 6 months. Fitting guidelines were defined on the basis of a single NRI measurement. Correlations, analysis of variance, and multiple regression analysis were applied to generate a predictive model for the M-levels. Useful insights were produced into the behaviour of objective measures according to time, electrode location, and fitting parameters. They may usefully assist in programming the CI when no reliable feedback is obtained through standard behavioural procedures.

  4. Electroconvulsive therapy (ECT) in schizophrenia: a review of recent literature.

    PubMed

    Sanghani, Sohag N; Petrides, Georgios; Kellner, Charles H

    2018-05-01

    ECT remains an important, yet underutilized, treatment for schizophrenia. Recent research shows that medication-resistant patients with schizophrenia, including those resistant to clozapine, respond well to ECT augmentation. The purpose of this article is to review recent studies of the use of ECT in the treatment of schizophrenia. We performed an electronic database search for articles on ECT and schizophrenia, published in 2017. The main themes of these articles are: epidemiological data on ECT use from various countries; retrospective studies, prospective studies and meta-analyses focusing on efficacy and cognitive side-effects of ECT in schizophrenia; ECT technical parameters and potential biomarkers. There is growing evidence to support the use of ECT for augmentation of antipsychotic response in the treatment of schizophrenia. Cognitive side-effects are generally mild and transient. In fact, many studies show improvement in cognition, possibly related to the improvement in symptoms. There is wide variation among countries in the use of ECT for the treatment of schizophrenia. There are also variations in the choice of ECT electrode placement, parameters and schedules. These technical differences are likely minor and should not interfere with the treatment being offered to patients. Further, long-term studies are needed to optimize ECT treatment parameters, to examine the effect of maintenance ECT and to investigate neuroimaging/biomarkers to understand the mechanism of action and identify potential response predictors to ECT.

  5. Quadratic adaptive algorithm for solving cardiac action potential models.

    PubMed

    Chen, Min-Hung; Chen, Po-Yuan; Luo, Ching-Hsing

    2016-10-01

    An adaptive integration method is proposed for computing cardiac action potential models accurately and efficiently. Time steps are adaptively chosen by solving a quadratic formula involving the first and second derivatives of the membrane action potential. To improve the numerical accuracy, we devise an extremum-locator (el) function to predict the local extremum when approaching the peak amplitude of the action potential. In addition, the time step restriction (tsr) technique is designed to limit the increase in time steps, and thus prevent the membrane potential from changing abruptly. The performance of the proposed method is tested using the Luo-Rudy phase 1 (LR1), dynamic (LR2), and human O'Hara-Rudy dynamic (ORd) ventricular action potential models, and the Courtemanche atrial model incorporating a Markov sodium channel model. Numerical experiments demonstrate that the action potential generated using the proposed method is more accurate than that using the traditional Hybrid method, especially near the peak region. The traditional Hybrid method may choose large time steps near to the peak region, and sometimes causes the action potential to become distorted. In contrast, the proposed new method chooses very fine time steps in the peak region, but large time steps in the smooth region, and the profiles are smoother and closer to the reference solution. In the test on the stiff Markov ionic channel model, the Hybrid blows up if the allowable time step is set to be greater than 0.1ms. In contrast, our method can adjust the time step size automatically, and is stable. Overall, the proposed method is more accurate than and as efficient as the traditional Hybrid method, especially for the human ORd model. The proposed method shows improvement for action potentials with a non-smooth morphology, and it needs further investigation to determine whether the method is helpful during propagation of the action potential. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Evaluation of Optogenetic Electrophysiology Tools in Human Stem Cell-Derived Cardiomyocytes.

    PubMed

    Björk, Susann; Ojala, Elina A; Nordström, Tommy; Ahola, Antti; Liljeström, Mikko; Hyttinen, Jari; Kankuri, Esko; Mervaala, Eero

    2017-01-01

    Current cardiac drug safety assessments focus on hERG channel block and QT prolongation for evaluating arrhythmic risks, whereas the optogenetic approach focuses on the action potential (AP) waveform generated by a monolayer of human cardiomyocytes beating synchronously, thus assessing the contribution of several ion channels on the overall drug effect. This novel tool provides arrhythmogenic sensitizing by light-induced pacing in combination with non-invasive, all-optical measurements of cardiomyocyte APs and will improve assessment of drug-induced electrophysiological aberrancies. With the help of patch clamp electrophysiology measurements, we aimed to investigate whether the optogenetic modifications alter human cardiomyocytes' electrophysiology and how well the optogenetic analyses perform against this gold standard. Patch clamp electrophysiology measurements of non-transduced stem cell-derived cardiomyocytes compared to cells expressing the commercially available optogenetic constructs Optopatch and CaViar revealed no significant changes in action potential duration (APD) parameters. Thus, inserting the optogenetic constructs into cardiomyocytes does not significantly affect the cardiomyocyte's electrophysiological properties. When comparing the two methods against each other (patch clamp vs. optogenetic imaging) we found no significant differences in APD parameters for the Optopatch transduced cells, whereas the CaViar transduced cells exhibited modest increases in APD-values measured with optogenetic imaging. Thus, to broaden the screen, we combined optogenetic measurements of membrane potential and calcium transients with contractile motion measured by video motion tracking. Furthermore, to assess how optogenetic measurements can predict changes in membrane potential, or early afterdepolarizations (EADs), cells were exposed to cumulating doses of E-4031, a hERG potassium channel blocker, and drug effects were measured at both spontaneous and paced beating rates (1, 2 Hz). Cumulating doses of E-4031 produced prolonged APDs, followed by EADs and drug-induced quiescence. These observations were corroborated by patch clamp and contractility measurements. Similar responses, although more modest were seen with the I Ks potassium channel blocker JNJ-303. In conclusion, optogenetic measurements of AP waveforms combined with optical pacing compare well with the patch clamp gold standard. Combined with video motion contractile measurements, optogenetic imaging provides an appealing alternative for electrophysiological screening of human cardiomyocyte responses in pharmacological efficacy and safety testings.

  7. Evaluation of Optogenetic Electrophysiology Tools in Human Stem Cell-Derived Cardiomyocytes

    PubMed Central

    Björk, Susann; Ojala, Elina A.; Nordström, Tommy; Ahola, Antti; Liljeström, Mikko; Hyttinen, Jari; Kankuri, Esko; Mervaala, Eero

    2017-01-01

    Current cardiac drug safety assessments focus on hERG channel block and QT prolongation for evaluating arrhythmic risks, whereas the optogenetic approach focuses on the action potential (AP) waveform generated by a monolayer of human cardiomyocytes beating synchronously, thus assessing the contribution of several ion channels on the overall drug effect. This novel tool provides arrhythmogenic sensitizing by light-induced pacing in combination with non-invasive, all-optical measurements of cardiomyocyte APs and will improve assessment of drug-induced electrophysiological aberrancies. With the help of patch clamp electrophysiology measurements, we aimed to investigate whether the optogenetic modifications alter human cardiomyocytes' electrophysiology and how well the optogenetic analyses perform against this gold standard. Patch clamp electrophysiology measurements of non-transduced stem cell-derived cardiomyocytes compared to cells expressing the commercially available optogenetic constructs Optopatch and CaViar revealed no significant changes in action potential duration (APD) parameters. Thus, inserting the optogenetic constructs into cardiomyocytes does not significantly affect the cardiomyocyte's electrophysiological properties. When comparing the two methods against each other (patch clamp vs. optogenetic imaging) we found no significant differences in APD parameters for the Optopatch transduced cells, whereas the CaViar transduced cells exhibited modest increases in APD-values measured with optogenetic imaging. Thus, to broaden the screen, we combined optogenetic measurements of membrane potential and calcium transients with contractile motion measured by video motion tracking. Furthermore, to assess how optogenetic measurements can predict changes in membrane potential, or early afterdepolarizations (EADs), cells were exposed to cumulating doses of E-4031, a hERG potassium channel blocker, and drug effects were measured at both spontaneous and paced beating rates (1, 2 Hz). Cumulating doses of E-4031 produced prolonged APDs, followed by EADs and drug-induced quiescence. These observations were corroborated by patch clamp and contractility measurements. Similar responses, although more modest were seen with the IKs potassium channel blocker JNJ-303. In conclusion, optogenetic measurements of AP waveforms combined with optical pacing compare well with the patch clamp gold standard. Combined with video motion contractile measurements, optogenetic imaging provides an appealing alternative for electrophysiological screening of human cardiomyocyte responses in pharmacological efficacy and safety testings. PMID:29163220

  8. A New Approach for Resolving Conflicts in Actionable Behavioral Rules

    PubMed Central

    Zhu, Dan; Zeng, Daniel

    2014-01-01

    Knowledge is considered actionable if users can take direct actions based on such knowledge to their advantage. Among the most important and distinctive actionable knowledge are actionable behavioral rules that can directly and explicitly suggest specific actions to take to influence (restrain or encourage) the behavior in the users' best interest. However, in mining such rules, it often occurs that different rules may suggest the same actions with different expected utilities, which we call conflicting rules. To resolve the conflicts, a previous valid method was proposed. However, inconsistency of the measure for rule evaluating may hinder its performance. To overcome this problem, we develop a new method that utilizes rule ranking procedure as the basis for selecting the rule with the highest utility prediction accuracy. More specifically, we propose an integrative measure, which combines the measures of the support and antecedent length, to evaluate the utility prediction accuracies of conflicting rules. We also introduce a tunable weight parameter to allow the flexibility of integration. We conduct several experiments to test our proposed approach and evaluate the sensitivity of the weight parameter. Empirical results indicate that our approach outperforms those from previous research. PMID:25162054

  9. CCSDS Mission Operations Action Service Core Capabilities

    NASA Technical Reports Server (NTRS)

    Reynolds, Walter F.; Lucord, Steven A.; Stevens, John E.

    2009-01-01

    This slide presentation reviews the operations concepts of the command (action) services. Since the consequences of sending the wrong command are unacceptable, the command system provides a collaborative and distributed work environment for flight controllers and operators. The system prescribes a review and approval process where each command is viewed by other individuals before being sent to the vehicle. The action service needs additional capabilities to support he operations concepts of manned space flight. These are : (1) Action Service methods (2) Action attributes (3) Action parameter/argument attributes (4 ) Support for dynamically maintained action data. (5) Publish subscri be capabilities.

  10. Effects of tacrolimus on action potential configuration and transmembrane ion currents in canine ventricular cells.

    PubMed

    Szabó, László; Szentandrássy, Norbert; Kistamás, Kornél; Hegyi, Bence; Ruzsnavszky, Ferenc; Váczi, Krisztina; Horváth, Balázs; Magyar, János; Bányász, Tamás; Pál, Balázs; Nánási, Péter P

    2013-03-01

    Tacrolimus is a commonly used immunosuppressive agent which causes cardiovascular complications, e.g., hypertension and hypertrophic cardiomyopathy. In spite of it, there is little information on the cellular cardiac effects of the immunosuppressive agent tacrolimus in larger mammals. In the present study, therefore, the concentration-dependent effects of tacrolimus on action potential morphology and the underlying ion currents were studied in canine ventricular cardiomyocytes. Standard microelectrode, conventional whole cell patch clamp, and action potential voltage clamp techniques were applied in myocytes enzymatically dispersed from canine ventricular myocardium. Tacrolimus (3-30 μM) caused a concentration-dependent reduction of maximum velocity of depolarization and repolarization, action potential amplitude, phase-1 repolarization, action potential duration, and plateau potential, while no significant change in the resting membrane potential was observed. Conventional voltage clamp experiments revealed that tacrolimus concentrations ≥3 μM blocked a variety of ion currents, including I(Ca), I(to), I(K1), I(Kr), and I(Ks). Similar results were obtained under action potential voltage clamp conditions. These effects of tacrolimus developed rapidly and were fully reversible upon washout. The blockade of inward currents with the concomitant shortening of action potential duration in canine myocytes is the opposite of those observed previously with tacrolimus in small rodents. It is concluded that although tacrolimus blocks several ion channels at higher concentrations, there is no risk of direct interaction with cardiac ion channels when applying tacrolimus in therapeutic concentrations.

  11. TRPM4 non-selective cation channels influence action potentials in rabbit Purkinje fibres.

    PubMed

    Hof, Thomas; Sallé, Laurent; Coulbault, Laurent; Richer, Romain; Alexandre, Joachim; Rouet, René; Manrique, Alain; Guinamard, Romain

    2016-01-15

    The transient receptor potential melastatin 4 (TRPM4) inhibitor 9-phenanthrol reduces action potential duration in rabbit Purkinje fibres but not in ventricle. TRPM4-like single channel activity is observed in isolated rabbit Purkinje cells but not in ventricular cells. The TRPM4-like current develops during the notch and early repolarization phases of the action potential in Purkinje cells. Transient receptor potential melastatin 4 (TRPM4) Ca(2+)-activated non-selective cation channel activity has been recorded in cardiomyocytes and sinus node cells from mammals. In addition, TRPM4 gene mutations are associated with human diseases of cardiac conduction, suggesting that TRPM4 plays a role in this aspect of cardiac function. Here we evaluate the TRPM4 contribution to cardiac electrophysiology of Purkinje fibres. Ventricular strips with Purkinje fibres were isolated from rabbit hearts. Intracellular microelectrodes recorded Purkinje fibre activity and the TRPM4 inhibitor 9-phenanthrol was applied to unmask potential TRPM4 contributions to the action potential. 9-Phenanthrol reduced action potential duration measured at the point of 50 and 90% repolarization with an EC50 of 32.8 and 36.1×10(-6) mol l(-1), respectively, but did not modulate ventricular action potentials. Inside-out patch-clamp recordings were used to monitor TRPM4 activity in isolated Purkinje cells. TRPM4-like single channel activity (conductance = 23.8 pS; equal permeability for Na(+) and K(+); sensitivity to voltage, Ca(2+) and 9-phenanthrol) was observed in 43% of patches from Purkinje cells but not from ventricular cells (0/16). Action potential clamp experiments performed in the whole-cell configuration revealed a transient inward 9-phenanthrol-sensitive current (peak density = -0.65 ± 0.15 pA pF(-1); n = 5) during the plateau phases of the Purkinje fibre action potential. These results show that TRPM4 influences action potential characteristics in rabbit Purkinje fibres and thus could modulate cardiac conduction and be involved in triggering arrhythmias. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  12. 14 CFR 1216.306 - Actions normally requiring an EIS.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... normally requiring an EIS. (a) NASA will prepare an EIS for actions with the potential to significantly... action or mitigation of its potentially significant impacts. (b) Typical NASA actions normally requiring... material greater than the quantity for which the NASA Nuclear Flight Safety Assurance Manager may grant...

  13. Caffeine and the olfactory bulb.

    PubMed

    Hadfield, M G

    1997-08-01

    Caffeine, a popular CNS stimulant, is the most widely used neuroactive drug. Present in coffee, tea, chocolate, and soft drinks as well as over-the-counter and prescription medications, it influences millions of users. This agent has achieved recent notoriety because its dependency consequences and addictive potential have been re-examined and emphasized. Caffeine's central actions are thought to be mediated through adenosine (A) receptors and monoamine neurotransmitters. The present article suggests that the olfactory bulb (OB) may be an important site in the brain that is responsible for caffeine's central actions in several species. This conclusion is based on the extraordinarily robust and selective effects of caffeine on norepinephrine (NE), dopamine (DA), and particularly serotonin (5HT) utilization in the OB of mice. We believe that these phenomena should be given appropriate consideration as a basis for caffeine's central actions, even in primates. Concurrently, we review a rich rodent literature concerned with A, 5HT, NE, and DA receptors in the OB and related structures along with other monoamine parameters. We also review a more limited literature concerned with the primate OB. Finally, we cite the literature that treats the dependency and addictive effects of caffeine in humans, and relate the findings to possible olfactory mechanisms.

  14. Cell-type-dependent action potentials and voltage-gated currents in mouse fungiform taste buds.

    PubMed

    Kimura, Kenji; Ohtubo, Yoshitaka; Tateno, Katsumi; Takeuchi, Keita; Kumazawa, Takashi; Yoshii, Kiyonori

    2014-01-01

    Taste receptor cells fire action potentials in response to taste substances to trigger non-exocytotic neurotransmitter release in type II cells and exocytotic release in type III cells. We investigated possible differences between these action potentials fired by mouse taste receptor cells using in situ whole-cell recordings, and subsequently we identified their cell types immunologically with cell-type markers, an IP3 receptor (IP3 R3) for type II cells and a SNARE protein (SNAP-25) for type III cells. Cells not immunoreactive to these antibodies were examined as non-IRCs. Here, we show that type II cells and type III cells fire action potentials using different ionic mechanisms, and that non-IRCs also fire action potentials with either of the ionic mechanisms. The width of action potentials was significantly narrower and their afterhyperpolarization was deeper in type III cells than in type II cells. Na(+) current density was similar in type II cells and type III cells, but it was significantly smaller in non-IRCs than in the others. Although outwardly rectifying current density was similar between type II cells and type III cells, tetraethylammonium (TEA) preferentially suppressed the density in type III cells and the majority of non-IRCs. Our mathematical model revealed that the shape of action potentials depended on the ratio of TEA-sensitive current density and TEA-insensitive current one. The action potentials of type II cells and type III cells under physiological conditions are discussed. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Modulation of hERG potassium channel gating normalizes action potential duration prolonged by dysfunctional KCNQ1 potassium channel

    PubMed Central

    Zhang, Hongkang; Zou, Beiyan; Yu, Haibo; Moretti, Alessandra; Wang, Xiaoying; Yan, Wei; Babcock, Joseph J.; Bellin, Milena; McManus, Owen B.; Tomaselli, Gordon; Nan, Fajun; Laugwitz, Karl-Ludwig; Li, Min

    2012-01-01

    Long QT syndrome (LQTS) is a genetic disease characterized by a prolonged QT interval in an electrocardiogram (ECG), leading to higher risk of sudden cardiac death. Among the 12 identified genes causal to heritable LQTS, ∼90% of affected individuals harbor mutations in either KCNQ1 or human ether-a-go-go related genes (hERG), which encode two repolarizing potassium currents known as IKs and IKr. The ability to quantitatively assess contributions of different current components is therefore important for investigating disease phenotypes and testing effectiveness of pharmacological modulation. Here we report a quantitative analysis by simulating cardiac action potentials of cultured human cardiomyocytes to match the experimental waveforms of both healthy control and LQT syndrome type 1 (LQT1) action potentials. The quantitative evaluation suggests that elevation of IKr by reducing voltage sensitivity of inactivation, not via slowing of deactivation, could more effectively restore normal QT duration if IKs is reduced. Using a unique specific chemical activator for IKr that has a primary effect of causing a right shift of V1/2 for inactivation, we then examined the duration changes of autonomous action potentials from differentiated human cardiomyocytes. Indeed, this activator causes dose-dependent shortening of the action potential durations and is able to normalize action potentials of cells of patients with LQT1. In contrast, an IKr chemical activator of primary effects in slowing channel deactivation was not effective in modulating action potential durations. Our studies provide both the theoretical basis and experimental support for compensatory normalization of action potential duration by a pharmacological agent. PMID:22745159

  16. Short infrared laser pulses block action potentials in neurons

    NASA Astrophysics Data System (ADS)

    Walsh, Alex J.; Tolstykh, Gleb P.; Martens, Stacey L.; Ibey, Bennett L.; Beier, Hope T.

    2017-02-01

    Short infrared laser pulses have many physiological effects on cells including the ability to stimulate action potentials in neurons. Here we show that short infrared laser pulses can also reversibly block action potentials. Primary rat hippocampal neurons were transfected with the Optopatch2 plasmid, which contains both a blue-light activated channel rhodopsin (CheRiff) and a red-light fluorescent membrane voltage reporter (QuasAr2). This optogenetic platform allows robust stimulation and recording of action potential activity in neurons in a non-contact, low noise manner. For all experiments, QuasAr2 was imaged continuously on a wide-field fluorescent microscope using a Krypton laser (647 nm) as the excitation source and an EMCCD camera operating at 1000 Hz to collect emitted fluorescence. A co-aligned Argon laser (488 nm, 5 ms at 10Hz) provided activation light for CheRiff. A 200 mm fiber delivered infrared light locally to the target neuron. Reversible action potential block in neurons was observed following a short infrared laser pulse (0.26-0.96 J/cm2; 1.37-5.01 ms; 1869 nm), with the block persisting for more than 1 s with exposures greater than 0.69 J/cm2. Action potential block was sustained for 30 s with the short infrared laser pulsed at 1-7 Hz. Full recovery of neuronal activity was observed 5-30s post-infrared exposure. These results indicate that optogenetics provides a robust platform for the study of action potential block and that short infrared laser pulses can be used for non-contact, reversible action potential block.

  17. Action potentials and ion conductances in wild-type and CALHM1-knockout type II taste cells

    PubMed Central

    Saung, Wint Thu; Foskett, J. Kevin

    2017-01-01

    Taste bud type II cells fire action potentials in response to tastants, triggering nonvesicular ATP release to gustatory neurons via voltage-gated CALHM1-associated ion channels. Whereas CALHM1 regulates mouse cortical neuron excitability, its roles in regulating type II cell excitability are unknown. In this study, we compared membrane conductances and action potentials in single identified TRPM5-GFP-expressing circumvallate papillae type II cells acutely isolated from wild-type (WT) and Calhm1 knockout (KO) mice. The activation kinetics of large voltage-gated outward currents were accelerated in cells from Calhm1 KO mice, and their associated nonselective tail currents, previously shown to be highly correlated with ATP release, were completely absent in Calhm1 KO cells, suggesting that CALHM1 contributes to all of these currents. Calhm1 deletion did not significantly alter resting membrane potential or input resistance, the amplitudes and kinetics of Na+ currents either estimated from action potentials or recorded from steady-state voltage pulses, or action potential threshold, overshoot peak, afterhyperpolarization, and firing frequency. However, Calhm1 deletion reduced the half-widths of action potentials and accelerated the deactivation kinetics of transient outward currents, suggesting that the CALHM1-associated conductance becomes activated during the repolarization phase of action potentials. NEW & NOTEWORTHY CALHM1 is an essential ion channel component of the ATP neurotransmitter release mechanism in type II taste bud cells. Its contribution to type II cell resting membrane properties and excitability is unknown. Nonselective voltage-gated currents, previously associated with ATP release, were absent in cells lacking CALHM1. Calhm1 deletion was without effects on resting membrane properties or voltage-gated Na+ and K+ channels but contributed modestly to the kinetics of action potentials. PMID:28202574

  18. Somatic spikes regulate dendritic signaling in small neurons in the absence of backpropagating action potentials.

    PubMed

    Myoga, Michael H; Beierlein, Michael; Regehr, Wade G

    2009-06-17

    Somatic spiking is known to regulate dendritic signaling and associative synaptic plasticity in many types of large neurons, but it is unclear whether somatic action potentials play similar roles in small neurons. Here we ask whether somatic action potentials can also influence dendritic signaling in an electrically compact neuron, the cerebellar stellate cell (SC). Experiments were conducted in rat brain slices using a combination of imaging and electrophysiology. We find that somatic action potentials elevate dendritic calcium levels in SCs. There was little attenuation of calcium signals with distance from the soma in SCs from postnatal day 17 (P17)-P19 rats, which had dendrites that averaged 60 microm in length, and in short SC dendrites from P30-P33 rats. Somatic action potentials evoke dendritic calcium increases that are not affected by blocking dendritic sodium channels. This indicates that dendritic signals in SCs do not rely on dendritic sodium channels, which differs from many types of large neurons, in which dendritic sodium channels and backpropagating action potentials allow somatic spikes to control dendritic calcium signaling. Despite the lack of active backpropagating action potentials, we find that trains of somatic action potentials elevate dendritic calcium sufficiently to release endocannabinoids and retrogradely suppress parallel fiber to SC synapses in P17-P19 rats. Prolonged SC firing at physiologically realistic frequencies produces retrograde suppression when combined with low-level group I metabotropic glutamate receptor activation. Somatic spiking also interacts with synaptic stimulation to promote associative plasticity. These findings indicate that in small neurons the passive spread of potential within dendrites can allow somatic spiking to regulate dendritic calcium signaling and synaptic plasticity.

  19. Action potentials and ion conductances in wild-type and CALHM1-knockout type II taste cells.

    PubMed

    Ma, Zhongming; Saung, Wint Thu; Foskett, J Kevin

    2017-05-01

    Taste bud type II cells fire action potentials in response to tastants, triggering nonvesicular ATP release to gustatory neurons via voltage-gated CALHM1-associated ion channels. Whereas CALHM1 regulates mouse cortical neuron excitability, its roles in regulating type II cell excitability are unknown. In this study, we compared membrane conductances and action potentials in single identified TRPM5-GFP-expressing circumvallate papillae type II cells acutely isolated from wild-type (WT) and Calhm1 knockout (KO) mice. The activation kinetics of large voltage-gated outward currents were accelerated in cells from Calhm1 KO mice, and their associated nonselective tail currents, previously shown to be highly correlated with ATP release, were completely absent in Calhm1 KO cells, suggesting that CALHM1 contributes to all of these currents. Calhm1 deletion did not significantly alter resting membrane potential or input resistance, the amplitudes and kinetics of Na + currents either estimated from action potentials or recorded from steady-state voltage pulses, or action potential threshold, overshoot peak, afterhyperpolarization, and firing frequency. However, Calhm1 deletion reduced the half-widths of action potentials and accelerated the deactivation kinetics of transient outward currents, suggesting that the CALHM1-associated conductance becomes activated during the repolarization phase of action potentials. NEW & NOTEWORTHY CALHM1 is an essential ion channel component of the ATP neurotransmitter release mechanism in type II taste bud cells. Its contribution to type II cell resting membrane properties and excitability is unknown. Nonselective voltage-gated currents, previously associated with ATP release, were absent in cells lacking CALHM1. Calhm1 deletion was without effects on resting membrane properties or voltage-gated Na + and K + channels but contributed modestly to the kinetics of action potentials. Copyright © 2017 the American Physiological Society.

  20. Diadenosine tetraphosphate (Ap4A) and triphosphate (Ap3A) signaling of human sperm motility.

    PubMed

    Chan, P J; Su, B C; Tredway, D R

    1991-01-01

    The ubiquitous dinucleotide polyphosphate, diadenosine tetraphosphate (Ap4A), has been shown to be a signal molecule for DNA replication in mammalian cells. In this study, Ap4A and a related compound, diadenosine triphosphate (Ap3A), were tested for possible signaling functions in human spermatozoa. A computerized automated semen analyzer was used to detect changes in spermatozoa motility parameters. Cryopreserved-thawed donor spermatozoa were washed and incubated in 0.1 mM Ap4A, 0.1 mM Ap3A, or control medium. The data indicated that both Ap4A and Ap3A decreased the percentage of motile spermatozoa after 4 or more hours of incubation in vitro. The two dinucleotide polyphosphates caused an increase in the amplitude of lateral spermatozoa head displacement parameter only at the start of incubation. The other spermatozoa kinematic parameters were unaffected. No opposing ying-yang dual actions of Ap4A to Ap3A were seen. From the results, Ap4A and Ap3A were observed to be potential inhibitory signals of spermatozoa motility after prolonged exposure.

  1. Continent women have better urethral neuromuscular function than those with stress incontinence

    PubMed Central

    Mueller, Elizabeth; Brubaker, Linda

    2012-01-01

    Introduction and hypothesis The objective of this study is to describe urethral neuromuscular function using concentric needle electromyography (EMG) in stress incontinent (SUI) and asymptomatic women. Methods Following Institutional Review Board approval, we recruited SUI and asymptomatic women without urinary incontinence. Participants underwent quantitative urethral EMG and urodynamic testing. Results Sixty-seven women (37 SUI, 30 continent) with mean±SD age of 44±12 years participated. Nearly all EMG parameters showed significant differences between continent and SUI women consistent with better motor unit recruitment in continent women. Continent women had larger-amplitude, longer-duration motor unit action potentials (MUP) with increased turns and better MUP recruitment during bladder filling (P<.05). Increasing age was inversely correlated with nearly all MUP parameters (P<.05), suggesting MUP to be consistent with neuropathy. Conclusions We found significant differences in multiple MUP parameters in urethral sphincter between continent and stress incontinent women, suggesting continent women have better urethral innervation. We also found significant neuropathic MUP changes with advancing age, regardless of continence status. PMID:21979386

  2. Which nerve conduction parameters can predict spontaneous electromyographic activity in carpal tunnel syndrome?

    PubMed

    Chang, Chia-Wei; Lee, Wei-Ju; Liao, Yi-Chu; Chang, Ming-Hong

    2013-11-01

    We investigate electrodiagnostic markers to determine which parameters are the best predictors of spontaneous electromyographic (EMG) activity in carpal tunnel syndrome (CTS). We enrolled 229 patients with clinically proven and nerve conduction study (NCS)-proven CTS, as well as 100 normal control subjects. All subjects were evaluated using electrodiagnostic techniques, including median distal sensory latencies (DSLs), sensory nerve action potentials (SNAPs), distal motor latencies (DMLs), compound muscle action potentials (CMAPs), forearm median nerve conduction velocities (FMCVs) and wrist-palm motor conduction velocities (W-P MCVs). All CTS patients underwent EMG examination of the abductor pollicis brevis (APB) muscle, and the presence or absence of spontaneous EMG activities was recorded. Normal limits were determined by calculating the means ± 2 standard deviations from the control data. Associations between parameters from the NCS and EMG findings were investigated. In patients with clinically diagnosed CTS, abnormal median CMAP amplitudes were the best predictors of spontaneous activity during EMG examination (p<0.001; OR 36.58; 95% CI 15.85-84.43). If the median CMAP amplitude was ≤ 2.1 mV, the rate of occurrence of spontaneous EMG activity was >95% (positive predictive rate >95%). If the median CMAP amplitude was higher than the normal limit (>4.9 mV), the rate of no spontaneous EMG activity was >94% (negative predictive rate >94%). An abnormal SNAP amplitude was the second best predictor of spontaneous EMG activity (p<0.001; OR 4.13; 95% CI 2.16-7.90), and an abnormal FMCV was the third best predictor (p=0.01; OR 2.10; 95% CI 1.20-3.67). No other nerve conduction parameters had significant power to predict spontaneous activity upon EMG examination. The CMAP amplitudes of the APB are the most powerful predictors of the occurrence of spontaneous EMG activity. Low CMAP amplitudes are strongly associated with spontaneous activity, whereas high CMAP amplitude are less associated with spontaneous activity, implying that needle EMG examination should be recommended for the detection of spontaneous activity in those CTS patients whose NCS reveals CMAP amplitudes between 2.1 mV and the lower normal limit (4.9mV in the present study). Using NCS, electromyographers can predict the presence of spontaneous EMG activity in CTS patients. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. The activity of spontaneous action potentials in developing hair cells is regulated by Ca(2+)-dependence of a transient K+ current.

    PubMed

    Levic, Snezana; Lv, Ping; Yamoah, Ebenezer N

    2011-01-01

    Spontaneous action potentials have been described in developing sensory systems. These rhythmic activities may have instructional roles for the functional development of synaptic connections. The importance of spontaneous action potentials in the developing auditory system is underpinned by the stark correlation between the time of auditory system functional maturity, and the cessation of spontaneous action potentials. A prominent K(+) current that regulates patterning of action potentials is I(A). This current undergoes marked changes in expression during chicken hair cell development. Although the properties of I(A) are not normally classified as Ca(2+)-dependent, we demonstrate that throughout the development of chicken hair cells, I(A) is greatly reduced by acute alterations of intracellular Ca(2+). As determinants of spike timing and firing frequency, intracellular Ca(2+) buffers shift the activation and inactivation properties of the current to more positive potentials. Our findings provide evidence to demonstrate that the kinetics and functional expression of I(A) are tightly regulated by intracellular Ca(2+). Such feedback mechanism between the functional expression of I(A) and intracellular Ca(2+) may shape the activity of spontaneous action potentials, thus potentially sculpting synaptic connections in an activity-dependent manner in the developing cochlea. © 2011 Levic et al.

  4. Electro-osmotic flow in a rotating rectangular microchannel

    PubMed Central

    Ng, Chiu-On; Qi, Cheng

    2015-01-01

    An analytical model is presented for low-Rossby-number electro-osmotic flow in a rectangular channel rotating about an axis perpendicular to its own. The flow is driven under the combined action of Coriolis, pressure, viscous and electric forces. Analytical solutions in the form of eigenfunction expansions are developed for the problem, which is controlled by the rotation parameter (or the inverse Ekman number), the Debye parameter, the aspect ratio of the channel and the distribution of zeta potentials on the channel walls. Under the conditions of fast rotation and a thin electric double layer (EDL), an Ekman–EDL develops on the horizontal walls. This is essentially an Ekman layer subjected to electrokinetic effects. The flow structure of this boundary layer as a function of the Ekman layer thickness normalized by the Debye length is investigated in detail in this study. It is also shown that the channel rotation may have qualitatively different effects on the flow rate, depending on the channel width and the zeta potential distributions. Axial and secondary flows are examined in detail to reveal how the development of a geostrophic core may lead to a rise or fall of the mean flow. PMID:26345088

  5. Measurement of IR optics with linear coupling's action-angle parametrization

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Bai, M.; Pilat, F.; Satogata, T.; Trbojevic, D.

    2005-08-01

    Linear coupling’s action-angle parametrization is convenient for interpretation of turn-by-turn beam position monitor (BPM) data. We demonstrate how to apply this parametrization to extract Twiss and coupling parameters in interaction regions (IRs), using BPMs on each side of a long IR drift region. Example data were acquired at the Relativistic Heavy Ion Collider, using an ac dipole to excite a single transverse eigenmode. We have measured the waist of the β function and its Twiss and coupling parameters.

  6. 78 FR 23740 - Notice of Availability of a Swine Brucellosis and Pseudorabies Proposed Action Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    ...] Notice of Availability of a Swine Brucellosis and Pseudorabies Proposed Action Plan AGENCY: Animal and... proposed action plan describing a potential new approach to managing swine brucellosis and pseudorabies...-0086) a notice that made a proposed action plan describing a potential new approach to managing swine...

  7. Liability of professional and volunteer mental health practitioners in the wake of disasters: a framework for further considerations.

    PubMed

    Abdel-Monem, Tarik; Bulling, Denise

    2005-01-01

    Qualified immunity from civil liability exists for acts of disaster mental health (DMH) practitioners responding to disasters or acts of terrorism. This article reviews current legal regimens dictating civil liability for potentially wrongful acts of DMH professionals and volunteers responding to disasters. Criteria are proposed to inform determinations of civil liability for DMH workers in disaster response, given current legal parameters and established tort law in relevant areas. Specific considerations are examined that potentially implicate direct liability of DMH professionals and volunteers, and vicarious liability of DMH supervisors for actions of volunteer subordinates. The relevance of pre-event DMH planning and operationalization of the plan post-event is linked to considerations of liability. This article concludes with recommendations to minimize liability exposure for DMH workers in response efforts.

  8. Nonimaging detectors in drug development and approval.

    PubMed

    Wagner, H N

    2001-07-01

    Regulatory applications for imaging biomarkers will expand in proportion to the validation of specific parameters as they apply to individual questions in the management of disease. This validation is likely to be applicable only to a particular class of drug or a single mechanism of action. Awareness among the world's regulatory authorities of the potential for these emerging technologies is high, but so is the cost to the sponsor (including the logistics of including images in a dossier), and therefore the pharmaceutical industry must evaluate carefully the potential benefit of each technology for its drug development programs, just as the authorities must consider carefully the extent to which the method is valid for the use to which the applicant has put it. For well-characterized tracer systems, it may be possible to design inexpensive cameras that make rapid assessments.

  9. Modulating anosognosia for hemiplegia: The role of dangerous actions in emergent awareness.

    PubMed

    D'Imperio, Daniela; Bulgarelli, Cristina; Bertagnoli, Sara; Avesani, Renato; Moro, Valentina

    2017-07-01

    Anosognosia for hemiplegia is a lack of awareness of motor deficits following a right hemisphere lesion. Residual forms of awareness co-occur with an explicit denial of hemiplegia. The term emergent awareness refers to a condition in which awareness of motor deficits is reported verbally during the actual performance of an action involving the affected body part. In this study, two tasks were used to explore the potential effects of i) attempting actions which are impossible for sufferers of hemiplegia and ii) attempting actions which are potentially dangerous. Sixteen hemiplegic patients (8 anosognosic, and 8 non-anosognosic) were asked to perform both potentially dangerous and neutral actions. Our results confirm an increase in emergent awareness in anosognosic patients during the execution of both of these types of action. Moreover, actions that are potentially dangerous improved the degree of awareness. However, lesions in the fronto-temporal areas appear to be associated with a reduced effect of action execution (emergent awareness) while lesions in the basal ganglia and amygdale and the white matter underlying the insula and fronto-temporal areas are associated with a lesser degree of improvement resulting from attempting to perform dangerous actions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Electrophysiological characteristics of IB4-negative TRPV1-expressing muscle afferent DRG neurons.

    PubMed

    Lin, Yi-Wen; Chen, Chih-Cheng

    2015-01-01

    Muscle afferent neurons that express transient receptor potential vanilloid type I (TRPV1) are responsible for muscle pain associated with tissue acidosis. We have previously found that TRPV1 of isolectin B4 (IB4)-negative muscle nociceptors plays an important role in the acid-induced hyperalgesic priming and the development of chronic hyperalgesia in a mouse model of fibromyalgia. To understand the electrophysiological properties of the TRPV1-expressing muscle afferent neurons, we used whole-cell patch clamp recording to study the acid responsiveness and action potential (AP) configuration of capsaicin-sensitive neurons innervating to gastrocnemius muscle. Here we showed that IB4-negative TRPV1-expressing muscle afferent neurons are heterogeneous in terms of cell size, resting membrane potential, AP configuration, tetrodotoxin (TTX)-resistance, and acid-induced current (I acid), as well as capsaicin-induced current (I cap). TRPV1-expressing neurons were all acid-sensitive and could be divided into two acid-sensitive groups depending on an acid-induced sustained current (type I) or an acid-induced biphasic ASIC3-like current (type II). Type I TRPV1-expressing neurons were distinguishable from type II TRPV1-expressing neurons in AP overshoot, after-hyperpolarization duration, and all I acid parameters, but not in AP threshold, TTX-resistance, resting membrane potential, and I cap parameters. These differential biophysical properties of TRPV1-expressing neurons might partially annotate their different roles involved in the development and maintenance of chronic muscle pain.

  11. Synchrony in Joint Action Is Directed by Each Participant’s Motor Control System

    PubMed Central

    Noy, Lior; Weiser, Netta; Friedman, Jason

    2017-01-01

    In this work, we ask how the probability of achieving synchrony in joint action is affected by the choice of motion parameters of each individual. We use the mirror game paradigm to study how changes in leader’s motion parameters, specifically frequency and peak velocity, affect the probability of entering the state of co-confidence (CC) motion: a dyadic state of synchronized, smooth and co-predictive motions. In order to systematically study this question, we used a one-person version of the mirror game, where the participant mirrored piece-wise rhythmic movements produced by a computer on a graphics tablet. We systematically varied the frequency and peak velocity of the movements to determine how these parameters affect the likelihood of synchronized joint action. To assess synchrony in the mirror game we used the previously developed marker of co-confident (CC) motions: smooth, jitter-less and synchronized motions indicative of co-predicative control. We found that when mirroring movements with low frequencies (i.e., long duration movements), the participants never showed CC, and as the frequency of the stimuli increased, the probability of observing CC also increased. This finding is discussed in the framework of motor control studies showing an upper limit on the duration of smooth motion. We confirmed the relationship between motion parameters and the probability to perform CC with three sets of data of open-ended two-player mirror games. These findings demonstrate that when performing movements together, there are optimal movement frequencies to use in order to maximize the possibility of entering a state of synchronized joint action. It also shows that the ability to perform synchronized joint action is constrained by the properties of our motor control systems. PMID:28443047

  12. [Effect of pulse magnetic field on distribution of neuronal action potential].

    PubMed

    Zheng, Yu; Cai, Di; Wang, Jin-Hai; Li, Gang; Lin, Ling

    2014-08-25

    The biological effect on the organism generated by magnetic field is widely studied. The present study was aimed to observe the change of sodium channel under magnetic field in neurons. Cortical neurons of Kunming mice were isolated, subjected to 15 Hz, 1 mT pulse magnetic stimulation, and then the currents of neurons were recorded by whole-cell patch clamp. The results showed that, under magnetic stimulation, the activation process of Na(+) channel was delayed, and the inactivation process was accelerated. Given the classic three-layer model, the polarization diagram of cell membrane potential distribution under pulse magnetic field was simulated, and it was found that the membrane potential induced was associated with the frequency and intensity of magnetic field. Also the effect of magnetic field-induced current on action potential was simulated by Hodgkin-Huxley (H-H) model. The result showed that the generation of action potential was delayed, and frequency and the amplitudes were decreased when working current was between -1.32 μA and 0 μA. When the working current was higher than 0 μA, the generation frequency of action potential was increased, and the change of amplitudes was not obvious, and when the working current was lower than -1.32 μA, the time of rising edge and amplitudes of action potential were decreased drastically, and the action potential was unable to generate. These results suggest that the magnetic field simulation can affect the distribution frequency and amplitude of action potential of neuron via sodium channel mediation.

  13. The roles of mid-myocardial and epicardial cells in T-wave alternans development: a simulation study.

    PubMed

    Janusek, D; Svehlikova, J; Zelinka, J; Weigl, W; Zaczek, R; Opolski, G; Tysler, M; Maniewski, R

    2018-05-08

    The occurrence of T-wave alternans in electrocardiographic signals was recently linked to susceptibility to ventricular arrhythmias and sudden cardiac death. Thus, by detecting and comprehending the origins of T-wave alternans, it might be possible to prevent such events. Here, we simulated T-wave alternans in a computer-generated human heart model by modulating the action potential duration and amplitude during the first part of the repolarization phase. We hypothesized that changes in the intracardiac alternans patterns of action potential properties would differentially influence T-wave alternans measurements at the body surface. Specifically, changes were simulated globally in the whole left and right ventricles to simulate concordant T-wave alternans, and locally in selected regions to simulate discordant and regional discordant, hereinafter referred to as "regional", T-wave alternans. Body surface potential maps and 12-lead electrocardiographic signals were then computed. In depth discrimination, the influence of epicardial layers on T-wave alternans development was significantly higher than that of mid-myocardial cells. Meanwhile, spatial discrimination revealed that discordant and regional action potential property changes had a higher influence on T-wave alternans amplitude than concordant changes. Notably, varying T-wave alternans sources yielded distinct body surface potential map patterns for T-wave alternans amplitude, which can be used for location of regions within hearts exhibiting impaired repolarization. The highest ability for T-wave alternans detection was achieved in lead V1. Ultimately, we proposed new parameters Vector Magnitude Alternans and Vector Angle Alternans, with higher ability for T-wave alternans detection when using multi-lead electrocardiographic signals processing than for single leads. Finally, QT alternans was found to be associated with the process of T-wave alternans generation. The distributions of the body surface T-wave alternans amplitude have been shown to have unique patterns depending on the type of alternans (concordant, discordant or regional) and the location of the disturbance in the heart. The influence of epicardial cells on T-wave alternans development is significantly higher than that of mid-myocardial cells, among which the sub-endocardial layer exerted the highest influence. QT interval alternans is identified as a phenomenon that correlate with T-wave alternans.

  14. Imaging when acting: picture but not word cues induce action-related biases of visual attention.

    PubMed

    Wykowska, Agnieszka; Hommel, Bernhard; Schubö, Anna

    2012-01-01

    In line with the Theory of Event Coding (Hommel et al., 2001a), action planning has been shown to affect perceptual processing - an effect that has been attributed to a so-called intentional weighting mechanism (Wykowska et al., 2009; Memelink and Hommel, 2012), whose functional role is to provide information for open parameters of online action adjustment (Hommel, 2010). The aim of this study was to test whether different types of action representations induce intentional weighting to various degrees. To meet this aim, we introduced a paradigm in which participants performed a visual search task while preparing to grasp or to point. The to-be performed movement was signaled either by a picture of a required action or a word cue. We reasoned that picture cues might trigger a more concrete action representation that would be more likely to activate the intentional weighting of perceptual dimensions that provide information for online action control. In contrast, word cues were expected to trigger a more abstract action representation that would be less likely to induce intentional weighting. In two experiments, preparing for an action facilitated the processing of targets in an unrelated search task if they differed from distractors on a dimension that provided information for online action control. As predicted, however, this effect was observed only if action preparation was signaled by picture cues but not if it was signaled by word cues. We conclude that picture cues are more efficient than word cues in activating the intentional weighting of perceptual dimensions, presumably by specifying not only invariant characteristics of the planned action but also the dimensions of action-specific parameters.

  15. Imaging When Acting: Picture but Not Word Cues Induce Action-Related Biases of Visual Attention

    PubMed Central

    Wykowska, Agnieszka; Hommel, Bernhard; Schubö, Anna

    2012-01-01

    In line with the Theory of Event Coding (Hommel et al., 2001a), action planning has been shown to affect perceptual processing – an effect that has been attributed to a so-called intentional weighting mechanism (Wykowska et al., 2009; Memelink and Hommel, 2012), whose functional role is to provide information for open parameters of online action adjustment (Hommel, 2010). The aim of this study was to test whether different types of action representations induce intentional weighting to various degrees. To meet this aim, we introduced a paradigm in which participants performed a visual search task while preparing to grasp or to point. The to-be performed movement was signaled either by a picture of a required action or a word cue. We reasoned that picture cues might trigger a more concrete action representation that would be more likely to activate the intentional weighting of perceptual dimensions that provide information for online action control. In contrast, word cues were expected to trigger a more abstract action representation that would be less likely to induce intentional weighting. In two experiments, preparing for an action facilitated the processing of targets in an unrelated search task if they differed from distractors on a dimension that provided information for online action control. As predicted, however, this effect was observed only if action preparation was signaled by picture cues but not if it was signaled by word cues. We conclude that picture cues are more efficient than word cues in activating the intentional weighting of perceptual dimensions, presumably by specifying not only invariant characteristics of the planned action but also the dimensions of action-specific parameters. PMID:23087656

  16. Intracellular recording of action potentials by nanopillar electroporation.

    PubMed

    Xie, Chong; Lin, Ziliang; Hanson, Lindsey; Cui, Yi; Cui, Bianxiao

    2012-02-12

    Action potentials have a central role in the nervous system and in many cellular processes, notably those involving ion channels. The accurate measurement of action potentials requires efficient coupling between the cell membrane and the measuring electrodes. Intracellular recording methods such as patch clamping involve measuring the voltage or current across the cell membrane by accessing the cell interior with an electrode, allowing both the amplitude and shape of the action potentials to be recorded faithfully with high signal-to-noise ratios. However, the invasive nature of intracellular methods usually limits the recording time to a few hours, and their complexity makes it difficult to simultaneously record more than a few cells. Extracellular recording methods, such as multielectrode arrays and multitransistor arrays, are non-invasive and allow long-term and multiplexed measurements. However, extracellular recording sacrifices the one-to-one correspondence between the cells and electrodes, and also suffers from significantly reduced signal strength and quality. Extracellular techniques are not, therefore, able to record action potentials with the accuracy needed to explore the properties of ion channels. As a result, the pharmacological screening of ion-channel drugs is usually performed by low-throughput intracellular recording methods. The use of nanowire transistors, nanotube-coupled transistors and micro gold-spine and related electrodes can significantly improve the signal strength of recorded action potentials. Here, we show that vertical nanopillar electrodes can record both the extracellular and intracellular action potentials of cultured cardiomyocytes over a long period of time with excellent signal strength and quality. Moreover, it is possible to repeatedly switch between extracellular and intracellular recording by nanoscale electroporation and resealing processes. Furthermore, vertical nanopillar electrodes can detect subtle changes in action potentials induced by drugs that target ion channels.

  17. Intracellular recording of action potentials by nanopillar electroporation

    NASA Astrophysics Data System (ADS)

    Xie, Chong; Lin, Ziliang; Hanson, Lindsey; Cui, Yi; Cui, Bianxiao

    2012-03-01

    Action potentials have a central role in the nervous system and in many cellular processes, notably those involving ion channels. The accurate measurement of action potentials requires efficient coupling between the cell membrane and the measuring electrodes. Intracellular recording methods such as patch clamping involve measuring the voltage or current across the cell membrane by accessing the cell interior with an electrode, allowing both the amplitude and shape of the action potentials to be recorded faithfully with high signal-to-noise ratios. However, the invasive nature of intracellular methods usually limits the recording time to a few hours, and their complexity makes it difficult to simultaneously record more than a few cells. Extracellular recording methods, such as multielectrode arrays and multitransistor arrays, are non-invasive and allow long-term and multiplexed measurements. However, extracellular recording sacrifices the one-to-one correspondence between the cells and electrodes, and also suffers from significantly reduced signal strength and quality. Extracellular techniques are not, therefore, able to record action potentials with the accuracy needed to explore the properties of ion channels. As a result, the pharmacological screening of ion-channel drugs is usually performed by low-throughput intracellular recording methods. The use of nanowire transistors, nanotube-coupled transistors and micro gold-spine and related electrodes can significantly improve the signal strength of recorded action potentials. Here, we show that vertical nanopillar electrodes can record both the extracellular and intracellular action potentials of cultured cardiomyocytes over a long period of time with excellent signal strength and quality. Moreover, it is possible to repeatedly switch between extracellular and intracellular recording by nanoscale electroporation and resealing processes. Furthermore, vertical nanopillar electrodes can detect subtle changes in action potentials induced by drugs that target ion channels.

  18. Action potential bursts in central snail neurons elicited by paeonol: roles of ionic currents

    PubMed Central

    Chen, Yi-hung; Lin, Pei-lin; Hsu, Hui-yu; Wu, Ya-ting; Yang, Han-yin; Lu, Dah-yuu; Huang, Shiang-suo; Hsieh, Ching-liang; Lin, Jaung-geng

    2010-01-01

    Aim: To investigate the effects of 2′-hydroxy-4′-methoxyacetophenone (paeonol) on the electrophysiological behavior of a central neuron (right parietal 4; RP4) of the giant African snail (Achatina fulica Ferussac). Methods: Intracellular recordings and the two-electrode voltage clamp method were used to study the effects of paeonol on the RP4 neuron. Results: The RP4 neuron generated spontaneous action potentials. Bath application of paeonol at a concentration of ≥500 μmol/L reversibly elicited action potential bursts in a concentration-dependent manner. Immersing the neurons in Co2+-substituted Ca2+-free solution did not block paeonol-elicited bursting. Pretreatment with the protein kinase A (PKA) inhibitor KT-5720 or the protein kinase C (PKC) inhibitor Ro 31-8220 did not affect the action potential bursts. Voltage-clamp studies revealed that paeonol at a concentration of 500 μmol/L had no remarkable effects on the total inward currents, whereas paeonol decreased the delayed rectifying K+ current (IKD) and the fast-inactivating K+ current (IA). Application of 4-aminopyridine (4-AP 5 mmol/L), an inhibitor of IA, or charybdotoxin 250 nmol/L, an inhibitor of the Ca2+-activated K+ current (IK(Ca)), failed to elicit action potential bursts, whereas tetraethylammonium chloride (TEA 50 mmol/L), an IKD blocker, successfully elicited action potential bursts. At a lower concentration of 5 mmol/L, TEA facilitated the induction of action potential bursts elicited by paeonol. Conclusion: Paeonol elicited a bursting firing pattern of action potentials in the RP4 neuron and this activity relates closely to the inhibitory effects of paeonol on the IKD. PMID:21042287

  19. Consequences of converting graded to action potentials upon neural information coding and energy efficiency.

    PubMed

    Sengupta, Biswa; Laughlin, Simon Barry; Niven, Jeremy Edward

    2014-01-01

    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na(+) and K(+) channels, with generator potential and graded potential models lacking voltage-gated Na(+) channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na(+) channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a 'footprint' in the generator potential that obscures incoming signals. These three processes reduce information rates by ∼50% in generator potentials, to ∼3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation.

  20. Consequences of Converting Graded to Action Potentials upon Neural Information Coding and Energy Efficiency

    PubMed Central

    Sengupta, Biswa; Laughlin, Simon Barry; Niven, Jeremy Edward

    2014-01-01

    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a ‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ∼50% in generator potentials, to ∼3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation. PMID:24465197

  1. Innovative parameters obtained for digital analysis of microscopic images to evaluate in vitro hemorheological action of anesthetics

    NASA Astrophysics Data System (ADS)

    Alet, Analía. I.; Basso, Sabrina; Delannoy, Marcela; Alet, Nicolás. A.; D'Arrigo, Mabel; Castellini, Horacio V.; Riquelme, Bibiana D.

    2015-06-01

    Drugs used during anesthesia could enhance microvascular flow disturbance, not only for their systemic cardiovascular actions but also by a direct effect on the microcirculation and in particular on hemorheology. This is particularly important in high-risk surgical patients such as those with vascular disease (diabetes, hypertension, etc.). Therefore, in this work we propose a set of innovative parameters obtained by digital analysis of microscopic images to study the in vitro hemorheological effect of propofol and vecuronium on red blood cell from type 2 diabetic patients compared to healthy donors. Obtained innovative parameters allow quantifying alterations in erythrocyte aggregation, which can increase the in vivo risk of microcapillary obstruction.

  2. 6,7-dimethoxy-1,2,3,4-tetrahydro-isoquinoline-3-carboxylic acid attenuates heptatocellular carcinoma in rats with NMR-based metabolic perturbations

    PubMed Central

    Kumar, Pranesh; Singh, Ashok K; Raj, Vinit; Rai, Amit; Maity, Siddhartha; Rawat, Atul; Kumar, Umesh; Kumar, Dinesh; Prakash, Anand; Guleria, Anupam; Saha, Sudipta

    2017-01-01

    Aim: 6,7-dimethoxy-1,2,3,4-tetrahydro-isoquinoline-3-carboxylic acid (M1) was synthesized and evaluated for in-vivo antiproliferative action in diethylnitrosamine-induced hepatocarcinogenic rats. Materials & methods: The antiproliferative effect of M1 was assessed by various biochemical parameters, histopathology of liver and HPLC analysis. Proton nuclear magnetic resonance-based serum metabolic study was implemented on rat sera to explore the effects of M1 on hepatocellular carcinoma-induced metabolic alterations. Results: M1 showed protective action on liver and restored the arrangement of liver tissues in normal proportion. HPLC analysis displayed a good plasma drug concentration after its oral administration. Score plots of partial least squares discriminate analysis models exhibited that M1 therapy ameliorated hepatocellular carcinoma-induced metabolic alterations which signified its antiproliferative potential. Conclusion: M1 manifested notable antiproliferative profile, and warrants further investigation for future anticancer therapy. PMID:28884001

  3. Opioids and the immune system: what is their mechanism of action?

    PubMed Central

    Eisenstein, Toby K

    2011-01-01

    There is a significant amount of literature showing that morphine and other opioids modulate immune responses. The findings support many mechanisms by which this may occur. In vitro experiments provide evidence for direct actions of opioids on immune cells using a variety of functional end points. When these drugs are given in vivo, a plethora of immune parameters are also altered. The paper in this issue of the journal by Zhang et al. provides new information on morphine alteration of immune cell subsets in the spleen and thymus of mice and the potential role of glucocorticoids in these observed phenomena. This Commentary reviews the in vitro activities of morphine on leucocytes, as well as other documented mechanisms by which morphine can alter immune function in vivo. LINKED ARTICLE This article is a commentary on Zhang et al., pp. 1829–1844 of this issue. To view this paper visit http://dx.doi.org/10.1111/j.1476-5381.2011.01475.x PMID:21627636

  4. Synchronization of action potentials during low-magnesium-induced bursting

    PubMed Central

    Johnson, Sarah E.; Hudson, John L.

    2015-01-01

    The relationship between mono- and polysynaptic strength and action potential synchronization was explored using a reduced external Mg2+ model. Single and dual whole cell patch-clamp recordings were performed in hippocampal cultures in three concentrations of external Mg2+. In decreased Mg2+ medium, the individual cells transitioned to spontaneous bursting behavior. In lowered Mg2+ media the larger excitatory synaptic events were observed more frequently and fewer transmission failures occurred, suggesting strengthened synaptic transmission. The event synchronization was calculated for the neural action potentials of the cell pairs, and it increased in media where Mg2+ concentration was lowered. Analysis of surrogate data where bursting was present, but no direct or indirect connections existed between the neurons, showed minimal action potential synchronization. This suggests the synchronization of action potentials is a product of the strengthening synaptic connections within neuronal networks. PMID:25609103

  5. Synchronization of action potentials during low-magnesium-induced bursting.

    PubMed

    Johnson, Sarah E; Hudson, John L; Kapur, Jaideep

    2015-04-01

    The relationship between mono- and polysynaptic strength and action potential synchronization was explored using a reduced external Mg(2+) model. Single and dual whole cell patch-clamp recordings were performed in hippocampal cultures in three concentrations of external Mg(2+). In decreased Mg(2+) medium, the individual cells transitioned to spontaneous bursting behavior. In lowered Mg(2+) media the larger excitatory synaptic events were observed more frequently and fewer transmission failures occurred, suggesting strengthened synaptic transmission. The event synchronization was calculated for the neural action potentials of the cell pairs, and it increased in media where Mg(2+) concentration was lowered. Analysis of surrogate data where bursting was present, but no direct or indirect connections existed between the neurons, showed minimal action potential synchronization. This suggests the synchronization of action potentials is a product of the strengthening synaptic connections within neuronal networks. Copyright © 2015 the American Physiological Society.

  6. Millisecond infrared laser pulses depolarize and elicit action potentials on in-vitro dorsal root ganglion neurons

    PubMed Central

    Paris, Lambert; Marc, Isabelle; Charlot, Benoit; Dumas, Michel; Valmier, Jean; Bardin, Fabrice

    2017-01-01

    This work focuses on the optical stimulation of dorsal root ganglion (DRG) neurons through infrared laser light stimulation. We show that a few millisecond laser pulse at 1875 nm induces a membrane depolarization, which was observed by the patch-clamp technique. This stimulation led to action potentials firing on a minority of neurons beyond an energy threshold. A depolarization without action potential was observed for the majority of DRG neurons, even beyond the action potential energy threshold. The use of ruthenium red, a thermal channel blocker, stops the action potential generation, but has no effects on membrane depolarization. Local temperature measurements reveal that the depolarization amplitude is sensitive to the amplitude of the temperature rise as well as to the time rate of change of temperature, but in a way which may not fully follow a photothermal capacitive mechanism, suggesting that more complex mechanisms are involved. PMID:29082085

  7. Simulation of axonal excitability using a Spreadsheet template created in Microsoft Excel.

    PubMed

    Brown, A M

    2000-08-01

    The objective of this present study was to implement an established simulation protocol (A.M. Brown, A methodology for simulating biological systems using Microsoft Excel, Comp. Methods Prog. Biomed. 58 (1999) 181-90) to model axonal excitability. The simulation protocol involves the use of in-cell formulas directly typed into a spreadsheet and does not require any programming skills or use of the macro language. Once the initial spreadsheet template has been set up the simulations described in this paper can be executed with a few simple keystrokes. The model axon contained voltage-gated ion channels that were modeled using Hodgkin Huxley style kinetics. The basic properties of axonal excitability modeled were: (1) threshold of action potential firing, demonstrating that not only are the stimulus amplitude and duration critical in the generation of an action potential, but also the resting membrane potential; (2) refractoriness, the phenomenon of reduced excitability immediately following an action potential. The difference between the absolute refractory period, when no amount of stimulus will elicit an action potential, and relative refractory period, when an action potential may be generated by applying increased stimulus, was demonstrated with regard to the underlying state of the Na(+) and K(+) channels; (3) temporal summation, a process by which two sub-threshold stimuli can unite to elicit an action potential was shown to be due to conductance changes outlasting the first stimulus and summing with the second stimulus-induced conductance changes to drive the membrane potential past threshold; (4) anode break excitation, where membrane hyperpolarization was shown to produce an action potential by removing Na(+) channel inactivation that is present at resting membrane potential. The simulations described in this paper provide insights into mechanisms of axonal excitation that can be carried out by following an easily understood protocol.

  8. Biological mode of action of a nitrophenolates-based biostimulant: case study

    PubMed Central

    Przybysz, Arkadiusz; Gawrońska, Helena; Gajc-Wolska, Janina

    2014-01-01

    The challenges facing modern plant production involve (i) responding to the demand for food and resources of plant origin from the world's rapidly growing population, (ii) coping with the negative impact of stressful conditions mainly due to anthropopressure, and (iii) meeting consumers' new requirements and preferences for food that is high in nutritive value, natural, and free from harmful chemical additives. Despite employing the most modern plant cultivation technologies and the progress that has been made in breeding programs, the genetically-determined crop potential is still far from being fully exploited. Consequently yield and quality are often reduced, making production less, both profitable and attractive. There is an increasing desire to reduce the chemical input in agriculture and there has been a change toward integrated plant management and sustainable, environmentally-friendly systems. Biostimulants are a category of relatively new products of diverse formulations that positively affect a plant's vital processes and whose impact is usually more evident under stressful conditions. In this paper, information is provided on the mode of action of a nitrophenolates-based biostimulant, Atonik, in model species and economically important crops grown under both field and controlled conditions in a growth chamber. The effects of Atonik on plant morphology, physiology, biochemistry (crops and model plant) and yield and yield parameters (crops) is demonstrated. Effects of other biostimulants on studied in this work processes/parameters are also presented in discussion. PMID:25566287

  9. Biological mode of action of a nitrophenolates-based biostimulant: case study.

    PubMed

    Przybysz, Arkadiusz; Gawrońska, Helena; Gajc-Wolska, Janina

    2014-01-01

    The challenges facing modern plant production involve (i) responding to the demand for food and resources of plant origin from the world's rapidly growing population, (ii) coping with the negative impact of stressful conditions mainly due to anthropopressure, and (iii) meeting consumers' new requirements and preferences for food that is high in nutritive value, natural, and free from harmful chemical additives. Despite employing the most modern plant cultivation technologies and the progress that has been made in breeding programs, the genetically-determined crop potential is still far from being fully exploited. Consequently yield and quality are often reduced, making production less, both profitable and attractive. There is an increasing desire to reduce the chemical input in agriculture and there has been a change toward integrated plant management and sustainable, environmentally-friendly systems. Biostimulants are a category of relatively new products of diverse formulations that positively affect a plant's vital processes and whose impact is usually more evident under stressful conditions. In this paper, information is provided on the mode of action of a nitrophenolates-based biostimulant, Atonik, in model species and economically important crops grown under both field and controlled conditions in a growth chamber. The effects of Atonik on plant morphology, physiology, biochemistry (crops and model plant) and yield and yield parameters (crops) is demonstrated. Effects of other biostimulants on studied in this work processes/parameters are also presented in discussion.

  10. Study of a quadratic redshift-based correction in f(R) gravity with Baryonic matter

    NASA Astrophysics Data System (ADS)

    Masoudi, Mozhgan; Saffari, Reza

    2015-08-01

    This paper is considered as a second-order redshift-based corrections in derivative of modified gravitational action, f(R), to explain the late time acceleration which is appeared by Supernova Type Ia (SNeIa) without considering the dark components. Here, we obtained the cosmological dynamic parameters of universe for this redshift depended corrections. Next, we used the recent data of SNeIa Union2, shift parameter of the cosmic background radiation, Baryon acoustic oscillation from sloan digital sky survey (SDSS), and combined analysis of these observations to put constraints on the parameters of the selected F(z) model. It is very interesting that the well-known age problem of the three old objects for combined observations can be alleviated in this model. Finally, the reference action will be constructed in terms of its Taylor expansion. Also, we show that the reconstructed action definitely pass the solar system and stability of the cosmological solution tests.

  11. Optical mapping of optogenetically shaped cardiac action potentials.

    PubMed

    Park, Sarah A; Lee, Shin-Rong; Tung, Leslie; Yue, David T

    2014-08-19

    Light-mediated silencing and stimulation of cardiac excitability, an important complement to electrical stimulation, promises important discoveries and therapies. To date, cardiac optogenetics has been studied with patch-clamp, multielectrode arrays, video microscopy, and an all-optical system measuring calcium transients. The future lies in achieving simultaneous optical acquisition of excitability signals and optogenetic control, both with high spatio-temporal resolution. Here, we make progress by combining optical mapping of action potentials with concurrent activation of channelrhodopsin-2 (ChR2) or halorhodopsin (eNpHR3.0), via an all-optical system applied to monolayers of neonatal rat ventricular myocytes (NRVM). Additionally, we explore the capability of ChR2 and eNpHR3.0 to shape action-potential waveforms, potentially aiding the study of short/long QT syndromes that result from abnormal changes in action potential duration (APD). These results show the promise of an all-optical system to acquire action potentials with precise temporal optogenetics control, achieving a long-sought flexibility beyond the means of conventional electrical stimulation.

  12. Optical mapping of optogenetically shaped cardiac action potentials

    PubMed Central

    Park, Sarah A.; Lee, Shin-Rong; Tung, Leslie; Yue, David T.

    2014-01-01

    Light-mediated silencing and stimulation of cardiac excitability, an important complement to electrical stimulation, promises important discoveries and therapies. To date, cardiac optogenetics has been studied with patch-clamp, multielectrode arrays, video microscopy, and an all-optical system measuring calcium transients. The future lies in achieving simultaneous optical acquisition of excitability signals and optogenetic control, both with high spatio-temporal resolution. Here, we make progress by combining optical mapping of action potentials with concurrent activation of channelrhodopsin-2 (ChR2) or halorhodopsin (eNpHR3.0), via an all-optical system applied to monolayers of neonatal rat ventricular myocytes (NRVM). Additionally, we explore the capability of ChR2 and eNpHR3.0 to shape action-potential waveforms, potentially aiding the study of short/long QT syndromes that result from abnormal changes in action potential duration (APD). These results show the promise of an all-optical system to acquire action potentials with precise temporal optogenetics control, achieving a long-sought flexibility beyond the means of conventional electrical stimulation. PMID:25135113

  13. Injury risk associated with playing actions during competitive soccer

    PubMed Central

    Rahnama, N; Reilly, T; Lees, A

    2002-01-01

    Objective: To assess the exposure of players to injury risk during English Premier League soccer matches in relation to selected factors. Methods: Injury risk was assessed by rating the injury potential of playing actions during competition with respect to (a) type of playing action, (b) period of the game, (c) zone of the pitch, and (d) playing either at home or away. In all, 10 games from the English Premier League 1999–2000 were chosen for analysis. A notation system was used whereby 16 soccer specific playing actions were classified into three categories: those inducing actual injury, those with a potential for injury (graded as mild, moderate, or high), and those deemed to have no potential for injury. The pitch was divided into 18 zones, and the position of each event was recorded along with time elapsed in the game, enabling six 15 minute periods to be defined. Results: Close to 18 000 actions were notated. On average (mean (SD)), 1788 (73) events (one every three seconds), 767 (99) events with injury potential (one every six seconds), and 2 (1) injuries (one every 45 minutes) per game were recorded. An overall injury incidence of 53 per 1000 playing hours was calculated. Receiving a tackle, receiving a "charge", and making a tackle were categorised as having a substantial injury risk, and goal catch, goal punch, kicking the ball, shot on goal, set kick, and heading the ball were all categorised as having a significant injury risk. All other actions were deemed low in risk. The first 15 minutes of each half contained the highest number of actions with mild injury potential, the last 15 minutes having the highest number of actions with moderate injury potential (p<0.01). The first and last 15 minutes of the game had the highest number of actions with high injury potential, although not significant. More actions with mild injury potential occurred in the goal area, and more actions with moderate and high injury potential occurred in the zone adjacent to the goal area (p<0.001). There was no significant difference between home and away with regard to injury potential. Conclusions: Playing actions with high injury risk were linked to contesting possession. Injury risk was highest in the first and last 15 minutes of the game, reflecting the intense engagements in the opening period and the possible effect of fatigue in the closing period. Injury risk was concentrated in the areas of the pitch where possession of the ball is most vigorously contested, which were specific attacking and defending zones close to the goal. Injury potential was no greater in away matches than at home. PMID:12351333

  14. Formation of correlated states and tunneling for a low energy and controlled pulsed action on particles

    NASA Astrophysics Data System (ADS)

    Vysotskii, V. I.; Vysotskyy, M. V.

    2017-08-01

    We consider a method for optimizing the tunnel effect for low-energy particles by using coherent correlated states formed under controllable pulsed action on these particles. Typical examples of such actions are the effect of a pulsed magnetic field on charged particles in a gas or plasma. Coherent correlated states are characterized most comprehensively by the correlation coefficient r( t); an increase of this factor elevates the probability of particle tunneling through a high potential barrier by several orders of magnitude without an appreciable increase in their energy. It is shown for the first time that the formation of coherent correlated states, as well as maximal | r( t)|max and time-averaged 〈| r( t)|〉 amplitudes of the correlation coefficient and the corresponding tunneling probability are characterized by a nonmonotonic (oscillating) dependence on the forming pulse duration and amplitude. This result makes it possible to optimize experiments on the realization of low-energy nuclear fusion and demonstrates the incorrectness of the intuitive idea that the tunneling probability always increases with the amplitude of an external action on a particle. Our conclusions can be used, in particular, for explaining random (unpredictable and low-repeatability) experimental results on optimization of energy release from nuclear reactions occurring under a pulsed action with fluctuations of the amplitude and duration. We also consider physical premises for the observed dependences and obtain optimal relations between the aforementioned parameters, which ensure the formation of an optimal coherent correlated state and optimal low-energy tunneling in various physical systems with allowance for the dephasing action of a random force. The results of theoretical analysis are compared with the data of successful experiments on the generation of neutrons and alpha particles in an electric discharge in air and gaseous deuterium.

  15. Effective action for stochastic partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hochberg, David; Centro de Astrobiologia, INTA, Carratera Ajalvir, Km. 4, 28850 Torrejon, Madrid,; Molina-Paris, Carmen

    Stochastic partial differential equations (SPDEs) are the basic tool for modeling systems where noise is important. SPDEs are used for models of turbulence, pattern formation, and the structural development of the universe itself. It is reasonably well known that certain SPDEs can be manipulated to be equivalent to (nonquantum) field theories that nevertheless exhibit deep and important relationships with quantum field theory. In this paper we systematically extend these ideas: We set up a functional integral formalism and demonstrate how to extract all the one-loop physics for an arbitrary SPDE subject to arbitrary Gaussian noise. It is extremely important tomore » realize that Gaussian noise does not imply that the field variables undergo Gaussian fluctuations, and that these nonquantum field theories are fully interacting. The limitation to one loop is not as serious as might be supposed: Experience with quantum field theories (QFTs) has taught us that one-loop physics is often quite adequate to give a good description of the salient issues. The limitation to one loop does, however, offer marked technical advantages: Because at one loop almost any field theory can be rendered finite using zeta function technology, we can sidestep the complications inherent in the Martin-Siggia-Rose formalism (the SPDE analog of the Becchi-Rouet-Stora-Tyutin formalism used in QFT) and instead focus attention on a minimalist approach that uses only the physical fields (this ''direct approach'' is the SPDE analog of canonical quantization using physical fields). After setting up the general formalism for the characteristic functional (partition function), we show how to define the effective action to all loops, and then focus on the one-loop effective action and its specialization to constant fields: the effective potential. The physical interpretation of the effective action and effective potential for SPDEs is addressed and we show that key features carry over from QFT to the case of SPDEs. An important result is that the amplitude of the two-point function governing the noise acts as the loop-counting parameter and is the analog of Planck's constant ({Dirac_h}/2{pi}) in this SPDE context. We derive a general expression for the one-loop effective potential of an arbitrary SPDE subject to translation-invariant Gaussian noise, and compare this with the one-loop potential for QFT. (c) 1999 The American Physical Society.« less

  16. Position and mode dependent optical detection back-action in cantilever beam resonators

    NASA Astrophysics Data System (ADS)

    Larsen, T.; Schmid, S.; Dohn, S.; Sader, J. E.; Boisen, A.; Villanueva, L. G.

    2017-03-01

    Optical detection back-action in cantilever resonant or static detection presents a challenge when striving for state-of-the-art performance. The origin and possible routes for minimizing optical back-action have received little attention in literature. Here, we investigate the position and mode dependent optical back-action on cantilever beam resonators. A high power heating laser (100 µW) is scanned across a silicon nitride cantilever while its effect on the first three resonance modes is detected via a low-power readout laser (1 µW) positioned at the cantilever tip. We find that the measured effect of back-action is not only dependent on position but also the shape of the resonance mode. Relevant silicon nitride material parameters are extracted by fitting finite element (FE) simulations to the temperature-dependent frequency response of the first three modes. In a second round of simulations, using the extracted parameters, we successfully fit the FEM results with the measured mode and position dependent back-action. From the simulations, we can conclude that the observed frequency tuning is due to temperature induced changes in stress. Effects of changes in material properties and dimensions are negligible. Finally, different routes for minimizing the effect of this optical detection back-action are described, allowing further improvements of cantilever-based sensing in general.

  17. Royal Sun Culinary-Medicinal Mushroom, Agaricus brasiliensis (Agaricomycetes), Supplement in Training Capacity Improvement Parameters.

    PubMed

    Silva, Flávio F; de Oliveira, Guilherme A C; Costa, Hugo C Martins; Regis, Wiliam C B

    2017-01-01

    People seek a greater quality of life and healthy aging that culminates in improved self-esteem and vitality in the performance of daily activities; this is generating a growing number of people enrolled in gyms in search of quick results. However, this training can result in physical and metabolic damage. During physical exercise, under conditions of oxidative stress, changes take place that lead to the onset of fatigue. The Agaricus brasiliensis mushroom is native to Brazil and has therapeutic potential, with widely studied antioxidant and immunomodulatory capabilities. However, little is known about its potential benefits regarding muscular strength. Therefore, this study evaluated the possible effects of supplementation with this mushroom with respect to strength performance before and after a resistance training session. A blinded randomized trial was performed with male volunteers (n = 5) randomly divided into 2 groups (placebo and treatment with A. brasiliensis). Perceptions of muscle soreness and performance were assessed before and after high-intensity resistance training sessions. The study was executed over a 24-day period. Promising results were found related to intrasession rapid strength, most likely a result of antioxidant action and redox balance. The bioactive compounds in A. brasiliensis revealed the potential to improve conditions of muscle fatigue without altering other parameters. Thus, this mushroom has become a target of great expectations in the fields of fitness and athletics.

  18. Laser-driven two-electron quantum dot in plasmas

    NASA Astrophysics Data System (ADS)

    Bahar, M. K.; Soylu, A.

    2018-06-01

    We have investigated the energies of two-electron parabolic quantum dots (TEPQdots) embedded in plasmas characterized by more general exponential cosine screened Coulomb (MGECSC) potential under the action of a monochromatic, linearly polarized laser field by solving the corresponding Schrödinger equation numerically via the asymptotic iteration method. The four different cases of the MGECSC potential constituted by various sets of the potential parameters are reckoned in modeling of the interactions in the plasma environments which are Debye and quantum plasmas. The plasma environment is a remarkable experimental argument for the quantum dots and the interactions in plasma environments are different compared to the interactions in an environment without plasma and the screening specifications of the plasmas can be controlled through the plasma parameters. These findings constitute our major motivation in consideration of the plasma environments. An appreciable confinement effect is made up by implementing the laser field on the TEPQdot. The influences of the laser field on the system are included by using the Ehlotzky approximation, and then Kramers-Henneberger transformation is carried out for the corresponding Schrödinger equation. The influences of the ponderomotive force on two-electron quantum dots embedded in plasmas are investigated. The behaviours, the similarities and the functionalities of the laser field, the plasma environment, and the quantum dot confinement are also scrutinized. In addition, the role of the plasma environments in the mentioned analysis is also discussed in detail.

  19. Spontaneous action potentials and neural coding in unmyelinated axons.

    PubMed

    O'Donnell, Cian; van Rossum, Mark C W

    2015-04-01

    The voltage-gated Na and K channels in neurons are responsible for action potential generation. Because ion channels open and close in a stochastic fashion, spontaneous (ectopic) action potentials can result even in the absence of stimulation. While spontaneous action potentials have been studied in detail in single-compartment models, studies on spatially extended processes have been limited. The simulations and analysis presented here show that spontaneous rate in unmyelinated axon depends nonmonotonically on the length of the axon, that the spontaneous activity has sub-Poisson statistics, and that neural coding can be hampered by the spontaneous spikes by reducing the probability of transmitting the first spike in a train.

  20. Improving Cardiac Action Potential Measurements: 2D and 3D Cell Culture.

    PubMed

    Daily, Neil J; Yin, Yue; Kemanli, Pinar; Ip, Brian; Wakatsuki, Tetsuro

    2015-11-01

    Progress in the development of assays for measuring cardiac action potential is crucial for the discovery of drugs for treating cardiac disease and assessing cardiotoxicity. Recently, high-throughput methods for assessing action potential using induced pluripotent stem cell (iPSC) derived cardiomyocytes in both two-dimensional monolayer cultures and three-dimensional tissues have been developed. We describe an improved method for assessing cardiac action potential using an ultra-fast cost-effective plate reader with commercially available dyes. Our methods improve dramatically the detection of the fluorescence signal from these dyes and make way for the development of more high-throughput methods for cardiac drug discovery and cardiotoxicity.

  1. Origins of intracellular calcium mobilization evoked by infrared laser stimulation

    NASA Astrophysics Data System (ADS)

    Olsovsky, Cory A.; Tolstykh, Gleb P.; Ibey, Bennett L.; Beier, Hope T.

    2015-03-01

    Cellular delivery of pulsed IR laser energy has been shown to stimulate action potentials in neurons. The mechanism for this stimulation is not completely understood. Certain hypotheses suggest the rise in temperature from IR exposure could activate temperature- or pressure-sensitive channels, or create pores in the cellular outer membrane. Studies using intensity-based Ca2+-responsive dyes show changes in Ca2+ levels after various IR stimulation parameters; however, determination of the origin of this signal proved difficult. An influx of larger, typically plasma-membrane-impermeant ions has been demonstrated, which suggests that Ca2+ may originate from the external solution. However, activation of intracellular signaling pathways, possibly indicating a more complex role of increasing Ca2+ concentration, has also been shown. By usingCa2+ sensitive dye Fura-2 and a high-speed ratiometric imaging system that rapidly alternates the excitation wavelengths, we have quantified the Ca2+ mobilization in terms of influx from the external solution and efflux from intracellular organelles. CHO-K1 cells, which lack voltage-gated Ca2+ channels, and NG-108 neuroblastoma cells, which do not produce action potentials in an early undifferentiated state, are used to determine the origin of the Ca2+ signals and investigate the role these mechanisms may play in IR neural stimulation.

  2. Polycrystalline structures formed in evaporating droplets as a parameter to test the action of Zincum metallicum 30c in a wheat seed model.

    PubMed

    Kokornaczyk, Maria Olga; Baumgartner, Stephan; Betti, Lucietta

    2016-05-01

    Polycrystalline structures formed inside evaporating droplets of different biological fluids have been shown sensitive towards various influences, including ultra high dilutions (UHDs), representing so a new approach potentially useful for basic research in homeopathy. In the present study we tested on a wheat seed model Zincum metallicum 30c efficacy versus lactose 30c and water. Stressed and non-stressed wheat seeds were watered with the three treatments. Seed-leakage droplets were evaporated and the polycrystalline structures formed inside the droplet residues were analyzed for their local connected fractal dimensions (LCFDs) (measure of complexity) using the software ImageJ. We have found significant differences in LCFD values of polycrystalline structures obtained from stressed seeds following the treatments (p<0.0001); Zincum metallicum 30c lowered the structures' complexity compared to lactose 30c and water. In non-stressed seeds no significant differences were found. The droplet evaporation method (DEM) might represent a potentially useful tool in basic research in homeopathy. Furthermore our results suggest a sensitization of the stressed model towards the treatment action, which is conforming to previous findings. Copyright © 2015 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  3. Tympanal mechanics and neural responses in the ears of a noctuid moth

    NASA Astrophysics Data System (ADS)

    Ter Hofstede, Hannah M.; Goerlitz, Holger R.; Montealegre-Z, Fernando; Robert, Daniel; Holderied, Marc W.

    2011-12-01

    Ears evolved in many groups of moths to detect the echolocation calls of predatory bats. Although the neurophysiology of bat detection has been intensively studied in moths for decades, the relationship between sound-induced movement of the noctuid tympanic membrane and action potentials in the auditory sensory cells (A1 and A2) has received little attention. Using laser Doppler vibrometry, we measured the velocity and displacement of the tympanum in response to pure tone pulses for moths that were intact or prepared for neural recording. When recording from the auditory nerve, the displacement of the tympanum at the neural threshold remained constant across frequencies, whereas velocity varied with frequency. This suggests that the key biophysical parameter for triggering action potentials in the sensory cells of noctuid moths is tympanum displacement, not velocity. The validity of studies on the neurophysiology of moth hearing rests on the assumption that the dissection and recording procedures do not affect the biomechanics of the ear. There were no consistent differences in tympanal velocity or displacement when moths were intact or prepared for neural recordings for sound levels close to neural threshold, indicating that this and other neurophysiological studies provide good estimates of what intact moths hear at threshold.

  4. Neuromonitoring of cochlea and auditory nerve with multiple extracted parameters during induced hypoxia and nerve manipulation

    NASA Astrophysics Data System (ADS)

    Bohórquez, Jorge; Özdamar, Özcan; Morawski, Krzysztof; Telischi, Fred F.; Delgado, Rafael E.; Yavuz, Erdem

    2005-06-01

    A system capable of comprehensive and detailed monitoring of the cochlea and the auditory nerve during intraoperative surgery was developed. The cochlear blood flow (CBF) and the electrocochleogram (ECochGm) were recorded at the round window (RW) niche using a specially designed otic probe. The ECochGm was further processed to obtain cochlear microphonics (CM) and compound action potentials (CAP).The amplitude and phase of the CM were used to quantify the activity of outer hair cells (OHC); CAP amplitude and latency were used to describe the auditory nerve and the synaptic activity of the inner hair cells (IHC). In addition, concurrent monitoring with a second electrophysiological channel was achieved by recording compound nerve action potential (CNAP) obtained directly from the auditory nerve. Stimulation paradigms, instrumentation and signal processing methods were developed to extract and differentiate the activity of the OHC and the IHC in response to three different frequencies. Narrow band acoustical stimuli elicited CM signals indicating mainly nonlinear operation of the mechano-electrical transduction of the OHCs. Special envelope detectors were developed and applied to the ECochGm to extract the CM fundamental component and its harmonics in real time. The system was extensively validated in experimental animal surgeries by performing nerve compressions and manipulations.

  5. Action potentials contribute to epileptic high-frequency oscillations recorded with electrodes remote from neurons.

    PubMed

    Kobayashi, Katsuhiro; Akiyama, Tomoyuki; Ohmori, Iori; Yoshinaga, Harumi; Gotman, Jean

    2015-05-01

    The importance of epileptic high-frequency oscillations (HFOs) in electroencephalogram (EEG) is growing. Action potentials generating some HFOs are observed in the vicinity of neurons in experimental animals. However electrodes that are remote from neurons, as in case of clinical situations, should not record action potentials. We propose to resolve this question by a realistic simulation of epileptic neuronal network. The rat dentate gyrus with sclerosis was simulated in silico. We computed the current dipole moment generated by each granule cell and the field potentials in a measurement area far from neurons. The dentate gyrus was stimulated through synaptic input to evoke discharges resembling interictal epileptiform discharges, which had superimposed HFOs⩽295Hz that were recordable with remote electrodes and represented bursts of action potentials of granule cells. The increase in power of HFOs was associated with the progression of sclerosis, the reduction of GABAergic inhibition, and the increase in cell connectivity. Spectral frequency of HFOs had similar tendencies. HFOs recorded with electrodes remote from neurons could actually be generated by clusters of action potentials. The phenomenon of action potentials recorded with remote electrodes can possibly extend the clinical meaning of EEG. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Analysis of Tonguing and Blowing Actions During Clarinet Performance.

    PubMed

    Pàmies-Vilà, Montserrat; Hofmann, Alex; Chatziioannou, Vasileios

    2018-01-01

    Articulation on the clarinet is achieved by a combination of precise actions taking place inside the player's mouth. With the aim to analyse the effects of tonguing and blowing actions during playing, several physical variables are measured and parameters related to articulation are studied. Mouth pressure, mouthpiece pressure and reed displacement are recorded in an experiment with clarinet players to evaluate the influence of the player's actions on the selected parameters and on the sound. The results show that different combinations of tongue and blowing actions are used during performance. Portato and legato playing show constant blowing throughout the musical phrase, which varies according to the dynamic level. In portato, short tongue-reed interaction is used homogeneously among players and playing conditions. In staccato playing, where the tongue-reed contact is longer, the mouth pressure is reduced significantly between notes. Such a mouth-pressure decrease might be used to stop the note in slow staccato playing. It is hereby shown that when the note is stopped by the action of the tongue both the attack and release transients are shorter compared to the case where the vibration of the reed is stopped by a decrease of mouth pressure.

  7. Direct detection of a single evoked action potential with MRS in Lumbricus terrestris.

    PubMed

    Poplawsky, Alexander J; Dingledine, Raymond; Hu, Xiaoping P

    2012-01-01

    Functional MRI (fMRI) measures neural activity indirectly by detecting the signal change associated with the hemodynamic response following brain activation. In order to alleviate the temporal and spatial specificity problems associated with fMRI, a number of attempts have been made to detect neural magnetic fields (NMFs) with MRI directly, but have thus far provided conflicting results. In this study, we used MR to detect axonal NMFs in the median giant fiber of the earthworm, Lumbricus terrestris, by examining the free induction decay (FID) with a sampling interval of 0.32 ms. The earthworm nerve cords were isolated from the vasculature and stimulated at the threshold of action potential generation. FIDs were acquired shortly after the stimulation, and simultaneous field potential recordings identified the presence or absence of single evoked action potentials. FIDs acquired when the stimulus did not evoke an action potential were summed as background. The phase of the background-subtracted FID exhibited a systematic change, with a peak phase difference of (-1.2 ± 0.3) × 10(-5) radians occurring at a time corresponding to the timing of the action potential. In addition, we calculated the possible changes in the FID magnitude and phase caused by a simulated action potential using a volume conductor model. The measured phase difference matched the theoretical prediction well in both amplitude and temporal characteristics. This study provides the first evidence for the direct detection of a magnetic field from an evoked action potential using MR. Copyright © 2011 John Wiley & Sons, Ltd.

  8. The Direct Detection of a Single Evoked Action Potential with Magnetic Resonance Spectroscopy in Lumbricus Terrestris

    PubMed Central

    Poplawsky, Alexander J.; Dingledine, Raymond

    2011-01-01

    Functional MRI (fMRI) indirectly measures neural activity by detecting the signal change associated with the hemodynamic response following brain activation. In order to alleviate the temporal and spatial specificity problems associated with fMRI, a number of attempts have been made to detect neural magnetic fields (NMFs) with MRI directly, but have thus far provided conflicting results. In the present study, we used magnetic resonance to detect axonal NMFs in the median giant fiber of the earthworm, Lumbricus terrestris, by examining the free-induction decay (FID) with a sampling interval of 0.32 ms. The earthworm nerve cords were isolated from the vasculature and stimulated at the threshold of action potential generation. FIDs were acquired shortly after the stimulation and simultaneous field potential recordings identified the presence or absence of single evoked action potentials. FIDs acquired when the stimulus did not evoke an action potential were summed as background. The phase of the background-subtracted FID exhibited a systematic change, with a peak phase difference of [-1.2 ± 0.3] ×10-5 radians occurring at a time corresponding to the timing of the action potential. In addition, we calculated the possible changes in the FID magnitude and phase due to a simulated action potential using a volume conductor model. The measured phase difference matched the theoretical prediction well in both amplitude and temporal characteristics. This study provides the first evidence for the direct detection of a magnetic field from an evoked action potential using magnetic resonance. PMID:21728204

  9. Channel sialic acids limit hERG channel activity during the ventricular action potential.

    PubMed

    Norring, Sarah A; Ednie, Andrew R; Schwetz, Tara A; Du, Dongping; Yang, Hui; Bennett, Eric S

    2013-02-01

    Activity of human ether-a-go-go-related gene (hERG) 1 voltage-gated K(+) channels is responsible for portions of phase 2 and phase 3 repolarization of the human ventricular action potential. Here, we questioned whether and how physiologically and pathophysiologically relevant changes in surface N-glycosylation modified hERG channel function. Voltage-dependent hERG channel gating and activity were evaluated as expressed in a set of Chinese hamster ovary (CHO) cell lines under conditions of full glycosylation, no sialylation, no complex N-glycans, and following enzymatic deglycosylation of surface N-glycans. For each condition of reduced glycosylation, hERG channel steady-state activation and inactivation relationships were shifted linearly by significant depolarizing ∼9 and ∼18 mV, respectively. The hERG window current increased significantly by 50-150%, and the peak shifted by a depolarizing ∼10 mV. There was no significant change in maximum hERG current density. Deglycosylated channels were significantly more active (20-80%) than glycosylated controls during phases 2 and 3 of action potential clamp protocols. Simulations of hERG current and ventricular action potentials corroborated experimental data and predicted reduced sialylation leads to a 50-70-ms decrease in action potential duration. The data describe a novel mechanism by which hERG channel gating is modulated through physiologically and pathophysiologically relevant changes in N-glycosylation; reduced channel sialylation increases hERG channel activity during the action potential, thereby increasing the rate of action potential repolarization.

  10. Sodium and calcium currents shape action potentials in immature mouse inner hair cells

    PubMed Central

    Marcotti, Walter; Johnson, Stuart L; Rüsch, Alfons; Kros, Corné J

    2003-01-01

    Before the onset of hearing at postnatal day 12, mouse inner hair cells (IHCs) produce spontaneous and evoked action potentials. These spikes are likely to induce neurotransmitter release onto auditory nerve fibres. Since immature IHCs express both α1D (Cav1.3) Ca2+ and Na+ currents that activate near the resting potential, we examined whether these two conductances are involved in shaping the action potentials. Both had extremely rapid activation kinetics, followed by fast and complete voltage-dependent inactivation for the Na+ current, and slower, partially Ca2+-dependent inactivation for the Ca2+ current. Only the Ca2+ current is necessary for spontaneous and induced action potentials, and 29 % of cells lacked a Na+ current. The Na+ current does, however, shorten the time to reach the action-potential threshold, whereas the Ca2+ current is mainly involved, together with the K+ currents, in determining the speed and size of the spikes. Both currents increased in size up to the end of the first postnatal week. After this, the Ca2+ current reduced to about 30 % of its maximum size and persisted in mature IHCs. The Na+ current was downregulated around the onset of hearing, when the spiking is also known to disappear. Although the Na+ current was observed as early as embryonic day 16.5, its role in action-potential generation was only evident from just after birth, when the resting membrane potential became sufficiently negative to remove a sizeable fraction of the inactivation (half inactivation was at −71 mV). The size of both currents was positively correlated with the developmental change in action-potential frequency. PMID:12937295

  11. Gold Nanoparticles as a Photothermal Agent in Cancer Therapy: The Thermal Ablation Characteristic Length.

    PubMed

    Grosges, Thomas; Barchiesi, Dominique

    2018-05-31

    In cancer therapy, the thermal ablation of diseased cells by embedded nanoparticles is one of the known therapies. It is based on the absorption of the energy of the illuminating laser by nanoparticles. The resulting heating of nanoparticles kills the cell where these photothermal agents are embedded. One of the main constraints of this therapy is preserving the surrounding healthy cells. Therefore, two parameters are of interest. The first one is the thermal ablation characteristic length, which corresponds to an action distance around the nanoparticles for which the temperature exceeds the ablation threshold. This critical geometric parameter is related to the expected conservation of the body temperature in the surroundings of the diseased cell. The second parameter is the temperature that should be reached to achieve active thermal agents. The temperature depends on the power of the illuminating laser, on the size of nanoparticles and on their physical properties. The purpose of this paper is to propose behavior laws under the constraints of both the body temperature at the boundary of the cell to preserve surrounding cells and an acceptable range of temperature in the target cell. The behavior laws are deduced from the finite element method, which is able to model aggregates of nanoparticles. We deduce sensitivities to the laser power and to the particle size. We show that the tuning of the temperature elevation and of the distance of action of a single nanoparticle is not significantly affected by variations of the particle size and of the laser power. Aggregates of nanoparticles are much more efficient, but represent a potential risk to the surrounding cells. Fortunately, by tuning the laser power, the thermal ablation characteristic length can be controlled.

  12. Rapid Sensitization of Physiological, Neuronal, and Locomotor Effects of Nicotine: Critical Role of Peripheral Drug Actions

    PubMed Central

    Lenoir, Magalie; Tang, Jeremy S.; Woods, Amina S.

    2013-01-01

    Repeated exposure to nicotine and other psychostimulant drugs produces persistent increases in their psychomotor and physiological effects (sensitization), a phenomenon related to the drugs' reinforcing properties and abuse potential. Here we examined the role of peripheral actions of nicotine in nicotine-induced sensitization of centrally mediated physiological parameters (brain, muscle, and skin temperatures), cortical and VTA EEG, neck EMG activity, and locomotion in freely moving rats. Repeated injections of intravenous nicotine (30 μg/kg) induced sensitization of the drug's effects on all these measures. In contrast, repeated injections of the peripherally acting analog of nicotine, nicotine pyrrolidine methiodide (nicotinePM, 30 μg/kg, i.v.) resulted in habituation (tolerance) of the same physiological, neuronal, and behavioral measures. However, after repeated nicotine exposure, acute nicotinePM injections induced nicotine-like physiological responses: powerful cortical and VTA EEG desynchronization, EMG activation, a large brain temperature increase, but weaker hyperlocomotion. Additionally, both the acute locomotor response to nicotine and nicotine-induced locomotor sensitization were attenuated by blockade of peripheral nicotinic receptors by hexamethonium (3 mg/kg, i.v.). These data suggest that the peripheral actions of nicotine, which precede its direct central actions, serve as a conditioned interoceptive cue capable of eliciting nicotine-like physiological and neural responses after repeated nicotine exposure. Thus, by providing a neural signal to the CNS that is repeatedly paired with the direct central effects of nicotine, the drug's peripheral actions play a critical role in the development of nicotine-induced physiological, neural, and behavioral sensitization. PMID:23761889

  13. Rapid sensitization of physiological, neuronal, and locomotor effects of nicotine: critical role of peripheral drug actions.

    PubMed

    Lenoir, Magalie; Tang, Jeremy S; Woods, Amina S; Kiyatkin, Eugene A

    2013-06-12

    Repeated exposure to nicotine and other psychostimulant drugs produces persistent increases in their psychomotor and physiological effects (sensitization), a phenomenon related to the drugs' reinforcing properties and abuse potential. Here we examined the role of peripheral actions of nicotine in nicotine-induced sensitization of centrally mediated physiological parameters (brain, muscle, and skin temperatures), cortical and VTA EEG, neck EMG activity, and locomotion in freely moving rats. Repeated injections of intravenous nicotine (30 μg/kg) induced sensitization of the drug's effects on all these measures. In contrast, repeated injections of the peripherally acting analog of nicotine, nicotine pyrrolidine methiodide (nicotine(PM), 30 μg/kg, i.v.) resulted in habituation (tolerance) of the same physiological, neuronal, and behavioral measures. However, after repeated nicotine exposure, acute nicotine(PM) injections induced nicotine-like physiological responses: powerful cortical and VTA EEG desynchronization, EMG activation, a large brain temperature increase, but weaker hyperlocomotion. Additionally, both the acute locomotor response to nicotine and nicotine-induced locomotor sensitization were attenuated by blockade of peripheral nicotinic receptors by hexamethonium (3 mg/kg, i.v.). These data suggest that the peripheral actions of nicotine, which precede its direct central actions, serve as a conditioned interoceptive cue capable of eliciting nicotine-like physiological and neural responses after repeated nicotine exposure. Thus, by providing a neural signal to the CNS that is repeatedly paired with the direct central effects of nicotine, the drug's peripheral actions play a critical role in the development of nicotine-induced physiological, neural, and behavioral sensitization.

  14. The dependence of the action potential of the frog's heart on the external and intracellular sodium concentration

    PubMed Central

    Niedergerke, R.; Orkand, R. K.

    1966-01-01

    1. The overshoot of the action potential of the frog's heart was reduced when external sodium chloride was replaced by sucrose. However, the potential decrement was only 17·3 mV for a 10-fold reduction of sodium as compared with 58 mV expected on the basis of the sodium hypothesis of excitation. 2. Replacement of up to 75% of the external sodium by choline did not reduce the overshoot, provided atropine was present in sufficient concentrations to suppress any parasympathomimetic action. 3. The maximum rate of rise of the action potential markedly declined in low sodium fluids whether sucrose or choline chloride was used to replace sodium chloride. 4. The maximum rate of rise was reduced to only a small extent when external sodium was replaced by lithium. 5. Increasing the intracellular sodium concentration in exchange for lost potassium caused overshoots to decline. The effects resembled those obtained in similar experiments with skeletal muscle fibres (Desmedt, 1953). 6. Action potentials occurring under certain conditions even in the presence of very low external sodium concentrations (≤ 5% normal) also declined in height when the intracellular sodium concentration was increased. 7. The behaviour of the action potential in low external sodium concentrations may be explained by an action of calcium on the excitable membrane. PMID:5921833

  15. Sensitivity analysis of environmental changes associated with riverscape evolutions following sediment reintroduction: Application to the Drôme River network, France

    NASA Astrophysics Data System (ADS)

    Piégay, H.; Bertrand, M.; Liébault, F.; Pont, D.; Sauquet, E.

    2011-12-01

    The present contribution aims to put into practice the conceptual framework defined in Pont et al. (2009) to the Drôme River Basin (France) in order to test the capacity of functional reach concept to be used to assess risks in environmental changes. The methodology is illustrated by examples focusing on the potential changes in functional reach diversity as a proxy of habitat diversity, and on potential impact on trout distribution at a network scale due to actions of sediment reintroduction. We used remote sensing and GIS methods to provide original data and to analyze them. A cluster analysis performed on the components of a PCA has been done to establish a functional reach typology based on planform parameters, used as a proxy of habitat typology following a review of literature. We calculated for the entire channel network an index of present and 1948 states of the functional reach types diversity to highlight past evolution. Various options of changes in functional reach types diversity were compared in relation to various increases in bedload delivery following planned deforestation. A similar risk assessment procedure is proposed in relation to changes in canopy cover and associated changes in summer temperature to evaluate impacts on brown trout distribution. Two practical examples are used as pilots for evaluating the risk assessment approach based on functional reach typology and its potential applicability for testing management actions for improving aquatic ecology. Limitations and improvements are then discussed.

  16. Low Intensity and Frequency Pulsed Electromagnetic Fields Selectively Impair Breast Cancer Cell Viability

    PubMed Central

    Crocetti, Sara; Beyer, Christian; Schade, Grit; Egli, Marcel; Fröhlich, Jürg; Franco-Obregón, Alfredo

    2013-01-01

    Introduction A common drawback of many anticancer therapies is non-specificity in action of killing. We investigated the potential of ultra-low intensity and frequency pulsed electromagnetic fields (PEMFs) to kill breast cancer cells. Our criteria to accept this technology as a potentially valid therapeutic approach were: 1) cytotoxicity to breast cancer cells and; 2) that the designed fields proved innocuous to healthy cell classes that would be exposed to the PEMFs during clinical treatment. Methods MCF7 breast cancer cells and their normal counterparts, MCF10 cells, were exposed to PEMFs and cytotoxic indices measured in order to design PEMF paradigms that best kill breast cancer cells. The PEMF parameters tested were: 1) frequencies ranging from 20 to 50 Hz; 2) intensities ranging from 2 mT to 5 mT and; 3) exposure durations ranging from 30 to 90 minutes per day for up to three days to determine the optimum parameters for selective cancer cell killing. Results We observed a discrete window of vulnerability of MCF7 cells to PEMFs of 20 Hz frequency, 3 mT magnitude and exposure duration of 60 minutes per day. The cell damage accrued in response to PEMFs increased with time and gained significance after three days of consecutive daily exposure. By contrast, the PEMFs parameters determined to be most cytotoxic to breast cancer MCF-7 cells were not damaging to normal MCF-10 cells. Conclusion Based on our data it appears that PEMF-based anticancer strategies may represent a new therapeutic approach to treat breast cancer without affecting normal tissues in a manner that is non-invasive and can be potentially combined with existing anti-cancer treatments. PMID:24039828

  17. Alcohol modulation of BK channel gating depends on β subunit composition

    PubMed Central

    Kuntamallappanavar, Guruprasad

    2016-01-01

    In most mammalian tissues, Ca2+i/voltage-gated, large conductance K+ (BK) channels consist of channel-forming slo1 and auxiliary (β1–β4) subunits. When Ca2+i (3–20 µM) reaches the vicinity of BK channels and increases their activity at physiological voltages, β1- and β4-containing BK channels are, respectively, inhibited and potentiated by intoxicating levels of ethanol (50 mM). Previous studies using different slo1s, lipid environments, and Ca2+i concentrations—all determinants of the BK response to ethanol—made it impossible to determine the specific contribution of β subunits to ethanol action on BK activity. Furthermore, these studies measured ethanol action on ionic current under a limited range of stimuli, rendering no information on the gating processes targeted by alcohol and their regulation by βs. Here, we used identical experimental conditions to obtain single-channel and macroscopic currents of the same slo1 channel (“cbv1” from rat cerebral artery myocytes) in the presence and absence of 50 mM ethanol. First, we assessed the role five different β subunits (1,2,2-IR, 3-variant d, and 4) in ethanol action on channel function. Thus, two phenotypes were identified: (1) ethanol potentiated cbv1-, cbv1+β3-, and cbv1+β4-mediated currents at low Ca2+i while inhibiting current at high Ca2+i, the potentiation–inhibition crossover occurring at 20 µM Ca2+i; (2) for cbv1+β1, cbv1+wt β2, and cbv1+β2-IR, this crossover was shifted to ∼3 µM Ca2+i. Second, applying Horrigan–Aldrich gating analysis on both phenotypes, we show that ethanol fails to modify intrinsic gating and the voltage-dependent parameters under examination. For cbv1, however, ethanol (a) drastically increases the channel’s apparent Ca2+ affinity (nine-times decrease in Kd) and (b) very mildly decreases allosteric coupling between Ca2+ binding and channel opening (C). The decreased Kd leads to increased channel activity. For cbv1+β1, ethanol (a) also decreases Kd, yet this decrease (two times) is much smaller than that of cbv1; (b) reduces C; and (c) decreases coupling between Ca2+ binding and voltage sensing (parameter E). Decreased allosteric coupling leads to diminished BK activity. Thus, we have identified critical gating modifications that lead to the differential actions of ethanol on slo1 with and without different β subunits. PMID:27799321

  18. Rapid Ca2+ flux through the transverse tubular membrane, activated by individual action potentials in mammalian skeletal muscle

    PubMed Central

    Launikonis, Bradley S; Stephenson, D George; Friedrich, Oliver

    2009-01-01

    Periods of low frequency stimulation are known to increase the net Ca2+ uptake in skeletal muscle but the mechanism responsible for this Ca2+ entry is not known. In this study a novel high-resolution fluorescence microscopy approach allowed the detection of an action potential-induced Ca2+ flux across the tubular (t-) system of rat extensor digitorum longus muscle fibres that appears to be responsible for the net uptake of Ca2+ in working muscle. Action potentials were triggered in the t-system of mechanically skinned fibres from rat by brief field stimulation and t-system [Ca2+] ([Ca2+]t-sys) and cytoplasmic [Ca2+] ([Ca2+]cyto) were simultaneously resolved on a confocal microscope. When initial [Ca2+]t-sys was ≥ 0.2 mm a Ca2+ flux from t-system to the cytoplasm was observed following a single action potential. The action potential-induced Ca2+ flux and associated t-system Ca2+ permeability decayed exponentially and displayed inactivation characteristics such that further Ca2+ entry across the t-system could not be observed after 2–3 action potentials at 10 Hz stimulation rate. When [Ca2+]t-sys was closer to 0.1 mm, a transient rise in [Ca2+]t-sys was observed almost concurrently with the increase in [Ca2+]cyto following the action potential. The change in direction of Ca2+ flux was consistent with changes in the direction of the driving force for Ca2+. This is the first demonstration of a rapid t-system Ca2+ flux associated with a single action potential in mammalian skeletal muscle. The properties of this channel are inconsistent with a flux through the L-type Ca2+ channel suggesting that an as yet unidentified t-system protein is conducting this current. This action potential-activated Ca2+ flux provides an explanation for the previously described Ca2+ entry and accumulation observed with prolonged, intermittent muscle activity. PMID:19332499

  19. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Spectroscopic investigation of thermodynamic parameters of a plasma plume formed by the action of cw CO2 laser radiation on a metal substrate

    NASA Astrophysics Data System (ADS)

    Vasil'chenko, Zh V.; Azharonok, V. V.; Filatova, I. I.; Shimanovich, V. D.; Golubev, V. S.; Zabelin, A. M.

    1996-09-01

    Emission spectroscopy methods were used in an investigation of thermodynamic parameters of a surface plasma formed by the action of cw CO2 laser radiation of (2-5)×106 W cm-2 intensity on stainless steel in a protective He or Ar atmosphere. The spatiotemporal structure and pulsation characteristics of the plasma plume were used to determine the fields of the plasma electron density and temperature.

  20. 29 CFR 1990.147 - Final action.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) IDENTIFICATION, CLASSIFICATION, AND REGULATION OF POTENTIAL OCCUPATIONAL CARCINOGENS Regulation of Potential Occupational Carcinogens § 1990.147 Final action. (a) Within one hundred twenty (120) days from the last day of... is classified as a Category I Potential Carcinogen or as a Category II Potential Carcinogen. If the...

  1. 29 CFR 1990.147 - Final action.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) IDENTIFICATION, CLASSIFICATION, AND REGULATION OF POTENTIAL OCCUPATIONAL CARCINOGENS Regulation of Potential Occupational Carcinogens § 1990.147 Final action. (a) Within one hundred twenty (120) days from the last day of... is classified as a Category I Potential Carcinogen or as a Category II Potential Carcinogen. If the...

  2. 29 CFR 1990.147 - Final action.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) IDENTIFICATION, CLASSIFICATION, AND REGULATION OF POTENTIAL OCCUPATIONAL CARCINOGENS Regulation of Potential Occupational Carcinogens § 1990.147 Final action. (a) Within one hundred twenty (120) days from the last day of... is classified as a Category I Potential Carcinogen or as a Category II Potential Carcinogen. If the...

  3. 29 CFR 1990.147 - Final action.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) IDENTIFICATION, CLASSIFICATION, AND REGULATION OF POTENTIAL OCCUPATIONAL CARCINOGENS Regulation of Potential Occupational Carcinogens § 1990.147 Final action. (a) Within one hundred twenty (120) days from the last day of... is classified as a Category I Potential Carcinogen or as a Category II Potential Carcinogen. If the...

  4. Effect of Exogenous Extracellular Nicotinamide Adenine Dinucleotide (NAD⁺) on Bioelectric Activity of the Pacemaker and Conduction System of the Heart.

    PubMed

    Pustovit, K B; Kuz'min, V S; Sukhova, G S

    2015-06-01

    In rat sinoatrial node, NAD(+) (10 μM) reduced the rate of spontaneous action potentials, duration of action potentials, and the velocity of slow diastolic depolarization, but the rate of action potential front propagation increases. In passed rabbit Purkinje fibers, NAD(+) (10 μM) reduced the duration of action potentials. Under conditions of spontaneous activity of Purkinje fibers, NAD(+) reduced the fi ring rate and the rate of slow diastolic depolarization. The effects of extracellular NAD(+) on bioelectric activity of the pacemaker (sinoatrial node) and conduction system of the heart (Purkinje fibers) are probably related to activation of P1 and P2 purinoceptors.

  5. Extension of the PC version of VEPFIT with input and output routines running under Windows

    NASA Astrophysics Data System (ADS)

    Schut, H.; van Veen, A.

    1995-01-01

    The fitting program VEPFIT has been extended with applications running under the Microsoft-Windows environment facilitating the input and output of the VEPFIT fitting module. We have exploited the Microsoft-Windows graphical users interface by making use of dialog windows, scrollbars, command buttons, etc. The user communicates with the program simply by clicking and dragging with the mouse pointing device. Keyboard actions are limited to a minimum. Upon changing one or more input parameters the results of the modeling of the S-parameter and Ps fractions versus positron implantation energy are updated and displayed. This action can be considered as the first step in the fitting procedure upon which the user can decide to further adapt the input parameters or to forward these parameters as initial values to the fitting routine. The modeling step has proven to be helpful for designing positron beam experiments.

  6. Calibration parameters used to simulate streamflow from application of the Hydrologic Simulation Program-FORTRAN Model (HSPF) to mountainous basins containing coal mines in West Virginia

    USGS Publications Warehouse

    Atkins, John T.; Wiley, Jeffrey B.; Paybins, Katherine S.

    2005-01-01

    This report presents the Hydrologic Simulation Program-FORTRAN Model (HSPF) parameters for eight basins in the coal-mining region of West Virginia. The magnitude and characteristics of model parameters from this study will assist users of HSPF in simulating streamflow at other basins in the coal-mining region of West Virginia. The parameter for nominal capacity of the upper-zone storage, UZSN, increased from south to north. The increase in UZSN with the increase in basin latitude could be due to decreasing slopes, decreasing rockiness of the soils, and increasing soil depths from south to north. A special action was given to the parameter for fraction of ground-water inflow that flows to inactive ground water, DEEPFR. The basis for this special action was related to the seasonal movement of the water table and transpiration from trees. The models were most sensitive to DEEPFR and the parameter for interception storage capacity, CEPSC. The models were also fairly sensitive to the parameter for an index representing the infiltration capacity of the soil, INFILT; the parameter for indicating the behavior of the ground-water recession flow, KVARY; the parameter for the basic ground-water recession rate, AGWRC; the parameter for nominal capacity of the upper zone storage, UZSN; the parameter for the interflow inflow, INTFW; the parameter for the interflow recession constant, IRC; and the parameter for lower zone evapotranspiration, LZETP.

  7. Rapid time course of action potentials in spines and remote dendrites of mouse visual cortex neurons.

    PubMed

    Holthoff, Knut; Zecevic, Dejan; Konnerth, Arthur

    2010-04-01

    Axonally initiated action potentials back-propagate into spiny dendrites of central mammalian neurons and thereby regulate plasticity at excitatory synapses on individual spines as well as linear and supralinear integration of synaptic inputs along dendritic branches. Thus, the electrical behaviour of individual dendritic spines and terminal dendritic branches is critical for the integrative function of nerve cells. The actual dynamics of action potentials in spines and terminal branches, however, are not entirely clear, mostly because electrode recording from such small structures is not feasible. Additionally, the available membrane potential imaging techniques are limited in their sensitivity and require substantial signal averaging for the detection of electrical events at the spatial scale of individual spines. We made a critical improvement in the voltage-sensitive dye imaging technique to achieve multisite recordings of backpropagating action potentials from individual dendritic spines at a high frame rate. With this approach, we obtained direct evidence that in layer 5 pyramidal neurons from the visual cortex of juvenile mice, the rapid time course of somatic action potentials is preserved throughout all cellular compartments, including dendritic spines and terminal branches of basal and apical dendrites. The rapid time course of the action potential in spines may be a critical determinant for the precise regulation of spike timing-dependent synaptic plasticity within a narrow time window.

  8. 22 CFR 161.8 - General description of the Department's NEPA process.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... § 161.8 General description of the Department's NEPA process. In reviewing proposed actions for potential environmental effects in the United States responsible action officers will follow the procedural... review the action to determine if it may cause potential significant environmental effects on the...

  9. Sensor Control of Robot Arc Welding

    NASA Technical Reports Server (NTRS)

    Sias, F. R., Jr.

    1983-01-01

    The potential for using computer vision as sensory feedback for robot gas-tungsten arc welding is investigated. The basic parameters that must be controlled while directing the movement of an arc welding torch are defined. The actions of a human welder are examined to aid in determining the sensory information that would permit a robot to make reproducible high strength welds. Special constraints imposed by both robot hardware and software are considered. Several sensory modalities that would potentially improve weld quality are examined. Special emphasis is directed to the use of computer vision for controlling gas-tungsten arc welding. Vendors of available automated seam tracking arc welding systems and of computer vision systems are surveyed. An assessment is made of the state of the art and the problems that must be solved in order to apply computer vision to robot controlled arc welding on the Space Shuttle Main Engine.

  10. Virtual Antiparticle Pairs, the Unit of Charge Epsilon and the QCD Coupling Alpha(sub s)

    NASA Technical Reports Server (NTRS)

    Batchelor, David

    2001-01-01

    New semi-classical models of virtual antiparticle pairs are used to compute the pair lifetimes, and good agreement with the Heisenberg lifetimes from quantum field theory (QFT) is found. When the results of the new models and QFT are combined, formulae for e and alpha(sub s)(q) are derived in terms of only h and c. The modeling method applies to both the electromagnetic and color forces. Evaluation of the action integral of potential field fluctuation for each interaction potential yields approx. = h/2 for both electromagnetic and color fluctuations, in agreement with QFT. Thus each model is a quantized semiclassical representation for such virtual antiparticle pairs, to good approximation. This work reduces the number of arbitrary parameters of the Standard Model by two from 18 to 16. These are remarkable, unexpected results from a basically classical method.

  11. Prolonged action potential duration in cardiac ablation of PDK1 mice.

    PubMed

    Han, Zhonglin; Jiang, Yu; Yang, Zhongzhou; Cao, Kejiang; Wang, Dao W

    2015-01-01

    The involvement of the AGC protein kinase family in regulating arrhythmia has drawn considerable attention, but the underlying mechanisms are still not clear. The aim of this study is to explore the role of 3-phosphoinositide-dependent protein kinase-1 (PDK1), one of upstream protein kinases of the AGC protein kinase family, in the pathogenesis of dysregulated electrophysiological basis. PDK1(F/F) αMHC-Cre mice and PDK1(F/F) mice were divided into experiment group and control group. Using patch clamping technology, we explored action potential duration in both groups, and investigated the functions of transient outward potassium channel and L-type Ca(2+) channel to explain the abnormal action potential duration. Significant prolongation action potential duration was found in mice with PDK1 deletion. Further, the peak current of transient outward potassium current and L-type Ca(2+) current were decreased by 84% and 49% respectively. In addition, dysregulation of channel kinetics lead to action potential duration prolongation further. In conclusion, we have demonstrated that PDK1 participates in action potential prolongation in cardiac ablation of PDK1 mice. This effect is likely to be mediated largely through downregulation of transient outward potassium current. These findings indicate the modulation of the PDK1 pathway could provide a new mechanism for abnormal electrophysiological basis.

  12. Back-Propagation of Physiological Action Potential Output in Dendrites of Slender-Tufted L5A Pyramidal Neurons

    PubMed Central

    Grewe, Benjamin F.; Bonnan, Audrey; Frick, Andreas

    2009-01-01

    Pyramidal neurons of layer 5A are a major neocortical output type and clearly distinguished from layer 5B pyramidal neurons with respect to morphology, in vivo firing patterns, and connectivity; yet knowledge of their dendritic properties is scant. We used a combination of whole-cell recordings and Ca2+ imaging techniques in vitro to explore the specific dendritic signaling role of physiological action potential patterns recorded in vivo in layer 5A pyramidal neurons of the whisker-related ‘barrel cortex’. Our data provide evidence that the temporal structure of physiological action potential patterns is crucial for an effective invasion of the main apical dendrites up to the major branch point. Both the critical frequency enabling action potential trains to invade efficiently and the dendritic calcium profile changed during postnatal development. In contrast to the main apical dendrite, the more passive properties of the short basal and apical tuft dendrites prevented an efficient back-propagation. Various Ca2+ channel types contributed to the enhanced calcium signals during high-frequency firing activity, whereas A-type K+ and BKCa channels strongly suppressed it. Our data support models in which the interaction of synaptic input with action potential output is a function of the timing, rate and pattern of action potentials, and dendritic location. PMID:20508744

  13. A phantom axon setup for validating models of action potential recordings.

    PubMed

    Rossel, Olivier; Soulier, Fabien; Bernard, Serge; Guiraud, David; Cathébras, Guy

    2016-08-01

    Electrode designs and strategies for electroneurogram recordings are often tested first by computer simulations and then by animal models, but they are rarely implanted for long-term evaluation in humans. The models show that the amplitude of the potential at the surface of an axon is higher in front of the nodes of Ranvier than at the internodes; however, this has not been investigated through in vivo measurements. An original experimental method is presented to emulate a single fiber action potential in an infinite conductive volume, allowing the potential of an axon to be recorded at both the nodes of Ranvier and the internodes, for a wide range of electrode-to-fiber radial distances. The paper particularly investigates the differences in the action potential amplitude along the longitudinal axis of an axon. At a short radial distance, the action potential amplitude measured in front of a node of Ranvier is two times larger than in the middle of two nodes. Moreover, farther from the phantom axon, the measured action potential amplitude is almost constant along the longitudinal axis. The results of this new method confirm the computer simulations, with a correlation of 97.6 %.

  14. Autonomous initiation and propagation of action potentials in neurons of the subthalamic nucleus.

    PubMed

    Atherton, Jeremy F; Wokosin, David L; Ramanathan, Sankari; Bevan, Mark D

    2008-12-01

    The activity of the subthalamic nucleus (STN) is intimately related to movement and is generated, in part, by voltage-dependent Na(+) (Na(v)) channels that drive autonomous firing. In order to determine the principles underlying the initiation and propagation of action potentials in STN neurons, 2-photon laser scanning microscopy was used to guide tight-seal whole-cell somatic and loose-seal cell-attached axonal/dendritic patch-clamp recordings and compartment-selective ion channel manipulation in rat brain slices. Action potentials were first detected in a region that corresponded most closely to the unmyelinated axon initial segment, as defined by Golgi and ankyrin G labelling. Following initiation, action potentials propagated reliably into axonal and somatodendritic compartments with conduction velocities of approximately 5 m s(-1) and approximately 0.7 m s(-1), respectively. Action potentials generated by neurons with axons truncated within or beyond the axon initial segment were not significantly different. However, axon initial segment and somatic but not dendritic or more distal axonal application of low [Na(+)] ACSF or the selective Na(v) channel blocker tetrodotoxin consistently depolarized action potential threshold. Finally, somatodendritic but not axonal application of GABA evoked large, rapid inhibitory currents in concordance with electron microscopic analyses, which revealed that the somatodendritic compartment was the principal target of putative inhibitory inputs. Together the data are consistent with the conclusions that in STN neurons the axon initial segment and soma express an excess of Na(v) channels for the generation of autonomous activity, while synaptic activation of somatodendritic GABA(A) receptors regulates the axonal initiation of action potentials.

  15. Autonomous initiation and propagation of action potentials in neurons of the subthalamic nucleus

    PubMed Central

    Atherton, Jeremy F; Wokosin, David L; Ramanathan, Sankari; Bevan, Mark D

    2008-01-01

    The activity of the subthalamic nucleus (STN) is intimately related to movement and is generated, in part, by voltage-dependent Na+ (Nav) channels that drive autonomous firing. In order to determine the principles underlying the initiation and propagation of action potentials in STN neurons, 2-photon laser scanning microscopy was used to guide tight-seal whole-cell somatic and loose-seal cell-attached axonal/dendritic patch-clamp recordings and compartment-selective ion channel manipulation in rat brain slices. Action potentials were first detected in a region that corresponded most closely to the unmyelinated axon initial segment, as defined by Golgi and ankyrin G labelling. Following initiation, action potentials propagated reliably into axonal and somatodendritic compartments with conduction velocities of ∼5 m s−1 and ∼0.7 m s−1, respectively. Action potentials generated by neurons with axons truncated within or beyond the axon initial segment were not significantly different. However, axon initial segment and somatic but not dendritic or more distal axonal application of low [Na+] ACSF or the selective Nav channel blocker tetrodotoxin consistently depolarized action potential threshold. Finally, somatodendritic but not axonal application of GABA evoked large, rapid inhibitory currents in concordance with electron microscopic analyses, which revealed that the somatodendritic compartment was the principal target of putative inhibitory inputs. Together the data are consistent with the conclusions that in STN neurons the axon initial segment and soma express an excess of Nav channels for the generation of autonomous activity, while synaptic activation of somatodendritic GABAA receptors regulates the axonal initiation of action potentials. PMID:18832425

  16. Human Reliability Assessments: Using the Past (Shuttle) to Predict the Future (Orion)

    NASA Technical Reports Server (NTRS)

    DeMott, Diana L.; Bigler, Mark A.

    2017-01-01

    NASA (National Aeronautics and Space Administration) Johnson Space Center (JSC) Safety and Mission Assurance (S&MA) uses two human reliability analysis (HRA) methodologies. The first is a simplified method which is based on how much time is available to complete the action, with consideration included for environmental and personal factors that could influence the human's reliability. This method is expected to provide a conservative value or placeholder as a preliminary estimate. This preliminary estimate or screening value is used to determine which placeholder needs a more detailed assessment. The second methodology is used to develop a more detailed human reliability assessment on the performance of critical human actions. This assessment needs to consider more than the time available, this would include factors such as: the importance of the action, the context, environmental factors, potential human stresses, previous experience, training, physical design interfaces, available procedures/checklists and internal human stresses. The more detailed assessment is expected to be more realistic than that based primarily on time available. When performing an HRA on a system or process that has an operational history, we have information specific to the task based on this history and experience. In the case of a Probabilistic Risk Assessment (PRA) that is based on a new design and has no operational history, providing a "reasonable" assessment of potential crew actions becomes more challenging. To determine what is expected of future operational parameters, the experience from individuals who had relevant experience and were familiar with the system and process previously implemented by NASA was used to provide the "best" available data. Personnel from Flight Operations, Flight Directors, Launch Test Directors, Control Room Console Operators, and Astronauts were all interviewed to provide a comprehensive picture of previous NASA operations. Verification of the assumptions and expectations expressed in the assessments will be needed when the procedures, flight rules, and operational requirements are developed and then finalized.

  17. Human Reliability Assessments: Using the Past (Shuttle) to Predict the Future (Orion)

    NASA Technical Reports Server (NTRS)

    DeMott, Diana; Bigler, Mark

    2016-01-01

    NASA (National Aeronautics and Space Administration) Johnson Space Center (JSC) Safety and Mission Assurance (S&MA) uses two human reliability analysis (HRA) methodologies. The first is a simplified method which is based on how much time is available to complete the action, with consideration included for environmental and personal factors that could influence the human's reliability. This method is expected to provide a conservative value or placeholder as a preliminary estimate. This preliminary estimate or screening value is used to determine which placeholder needs a more detailed assessment. The second methodology is used to develop a more detailed human reliability assessment on the performance of critical human actions. This assessment needs to consider more than the time available, this would include factors such as: the importance of the action, the context, environmental factors, potential human stresses, previous experience, training, physical design interfaces, available procedures/checklists and internal human stresses. The more detailed assessment is expected to be more realistic than that based primarily on time available. When performing an HRA on a system or process that has an operational history, we have information specific to the task based on this history and experience. In the case of a Probabilistic Risk Assessment (PRA) that is based on a new design and has no operational history, providing a "reasonable" assessment of potential crew actions becomes more challenging. In order to determine what is expected of future operational parameters, the experience from individuals who had relevant experience and were familiar with the system and process previously implemented by NASA was used to provide the "best" available data. Personnel from Flight Operations, Flight Directors, Launch Test Directors, Control Room Console Operators and Astronauts were all interviewed to provide a comprehensive picture of previous NASA operations. Verification of the assumptions and expectations expressed in the assessments will be needed when the procedures, flight rules and operational requirements are developed and then finalized.

  18. Ling's Adsorption Theory as a Mechanism of Membrane Potential Generation Observed in Both Living and Nonliving Systems.

    PubMed

    Tamagawa, Hirohisa; Funatani, Makoto; Ikeda, Kota

    2016-01-26

    The potential between two electrolytic solutions separated by a membrane impermeable to ions was measured and the generation mechanism of potential measured was investigated. From the physiological point of view, a nonzero membrane potential or action potential cannot be observed across the impermeable membrane. However, a nonzero membrane potential including action potential-like potential was clearly observed. Those observations gave rise to a doubt concerning the validity of currently accepted generation mechanism of membrane potential and action potential of cell. As an alternative theory, we found that the long-forgotten Ling's adsorption theory was the most plausible theory. Ling's adsorption theory suggests that the membrane potential and action potential of a living cell is due to the adsorption of mobile ions onto the adsorption site of cell, and this theory is applicable even to nonliving (or non-biological) system as well as living system. Through this paper, the authors emphasize that it is necessary to reconsider the validity of current membrane theory and also would like to urge the readers to pay keen attention to the Ling's adsorption theory which has for long years been forgotten in the history of physiology.

  19. Effects of acetylcholine and noradrenalin on action potentials of isolated rabbit sinoatrial and atrial myocytes.

    PubMed

    Verkerk, Arie O; Geuzebroek, Guillaume S C; Veldkamp, Marieke W; Wilders, Ronald

    2012-01-01

    The autonomic nervous system controls heart rate and contractility through sympathetic and parasympathetic inputs to the cardiac tissue, with acetylcholine (ACh) and noradrenalin (NA) as the chemical transmitters. In recent years, it has become clear that specific Regulators of G protein Signaling proteins (RGS proteins) suppress muscarinic sensitivity and parasympathetic tone, identifying RGS proteins as intriguing potential therapeutic targets. In the present study, we have identified the effects of 1 μM ACh and 1 μM NA on the intrinsic action potentials of sinoatrial (SA) nodal and atrial myocytes. Single cells were enzymatically isolated from the SA node or from the left atrium of rabbit hearts. Action potentials were recorded using the amphotericin-perforated patch-clamp technique in the absence and presence of ACh, NA, or a combination of both. In SA nodal myocytes, ACh increased cycle length and decreased diastolic depolarization rate, whereas NA decreased cycle length and increased diastolic depolarization rate. Both ACh and NA increased maximum upstroke velocity. Furthermore, ACh hyperpolarized the maximum diastolic potential. In atrial myocytes stimulated at 2 Hz, both ACh and NA hyperpolarized the maximum diastolic potential, increased the action potential amplitude, and increased the maximum upstroke velocity. Action potential duration at 50 and 90% repolarization was decreased by ACh, but increased by NA. The effects of both ACh and NA on action potential duration showed a dose dependence in the range of 1-1000 nM, while a clear-cut frequency dependence in the range of 1-4 Hz was absent. Intermediate results were obtained in the combined presence of ACh and NA in both SA nodal and atrial myocytes. Our data uncover the extent to which SA nodal and atrial action potentials are intrinsically dependent on ACh, NA, or a combination of both and may thus guide further experiments with RGS proteins.

  20. Effects of Acetylcholine and Noradrenalin on Action Potentials of Isolated Rabbit Sinoatrial and Atrial Myocytes

    PubMed Central

    Verkerk, Arie O.; Geuzebroek, Guillaume S. C.; Veldkamp, Marieke W.; Wilders, Ronald

    2012-01-01

    The autonomic nervous system controls heart rate and contractility through sympathetic and parasympathetic inputs to the cardiac tissue, with acetylcholine (ACh) and noradrenalin (NA) as the chemical transmitters. In recent years, it has become clear that specific Regulators of G protein Signaling proteins (RGS proteins) suppress muscarinic sensitivity and parasympathetic tone, identifying RGS proteins as intriguing potential therapeutic targets. In the present study, we have identified the effects of 1 μM ACh and 1 μM NA on the intrinsic action potentials of sinoatrial (SA) nodal and atrial myocytes. Single cells were enzymatically isolated from the SA node or from the left atrium of rabbit hearts. Action potentials were recorded using the amphotericin-perforated patch-clamp technique in the absence and presence of ACh, NA, or a combination of both. In SA nodal myocytes, ACh increased cycle length and decreased diastolic depolarization rate, whereas NA decreased cycle length and increased diastolic depolarization rate. Both ACh and NA increased maximum upstroke velocity. Furthermore, ACh hyperpolarized the maximum diastolic potential. In atrial myocytes stimulated at 2 Hz, both ACh and NA hyperpolarized the maximum diastolic potential, increased the action potential amplitude, and increased the maximum upstroke velocity. Action potential duration at 50 and 90% repolarization was decreased by ACh, but increased by NA. The effects of both ACh and NA on action potential duration showed a dose dependence in the range of 1–1000 nM, while a clear-cut frequency dependence in the range of 1–4 Hz was absent. Intermediate results were obtained in the combined presence of ACh and NA in both SA nodal and atrial myocytes. Our data uncover the extent to which SA nodal and atrial action potentials are intrinsically dependent on ACh, NA, or a combination of both and may thus guide further experiments with RGS proteins. PMID:22754533

  1. Pulsed magnetic stimulation modifies amplitude of action potentials in vitro via ionic channels-dependent mechanism.

    PubMed

    Ahmed, Zaghloul; Wieraszko, Andrzej

    2015-07-01

    This paper investigates the influence of pulsed magnetic fields (PMFs) on amplitude of evoked, compound action potential (CAP) recorded from the segments of sciatic nerve in vitro. PMFs were applied for 30 min at frequency of 0.16 Hz and intensity of 15 mT. In confirmation of our previous reports, PMF exposure enhanced amplitude of CAPs. The effect persisted beyond PMF activation period. As expected, CAP amplitude was attenuated by antagonists of sodium channel, lidocaine, and tetrodotoxin. Depression of the potential by sodium channels antagonists was reversed by subsequent exposure to PMFs. The effect of elevated potassium concentration and veratridine on the action potential was modified by exposure to PMFs as well. Neither inhibitors of protein kinase C and protein kinase A, nor known free radicals scavengers had any effects on PMF action. Possible mechanisms of PMF action are discussed. © 2015 Wiley Periodicals, Inc.

  2. Effects of methotrexate on the viscoelastic properties of single cells probed by atomic force microscopy.

    PubMed

    Li, Mi; Liu, Lianqing; Xiao, Xiubin; Xi, Ning; Wang, Yuechao

    2016-10-01

    Methotrexate is a commonly used anti-cancer chemotherapy drug. Cellular mechanical properties are fundamental parameters that reflect the physiological state of a cell. However, so far the role of cellular mechanical properties in the actions of methotrexate is still unclear. In recent years, probing the behaviors of single cells with the use of atomic force microscopy (AFM) has contributed much to the field of cell biomechanics. In this work, with the use of AFM, the effects of methotrexate on the viscoelastic properties of four types of cells were quantitatively investigated. The inhibitory and cytotoxic effects of methotrexate on the proliferation of cells were observed by optical and fluorescence microscopy. AFM indenting was used to measure the changes of cellular viscoelastic properties (Young's modulus and relaxation time) by using both conical tip and spherical tip, quantitatively showing that the stimulation of methotrexate resulted in a significant decrease of both cellular Young's modulus and relaxation times. The morphological changes of cells induced by methotrexate were visualized by AFM imaging. The study improves our understanding of methotrexate action and offers a novel way to quantify drug actions at the single-cell level by measuring cellular viscoelastic properties, which may have potential impacts on developing label-free methods for drug evaluation.

  3. Na and Ca components of action potentials in amphioxus muscle cells

    PubMed Central

    Hagiwara, S.; Kidokoro, Y.

    1971-01-01

    1. The ionic mechanism of the action potential produced in lamella-like muscle cells of amphioxus, Branchiostoma californiense, was investigated with intracellular recording and polarization techniques. 2. The resting potential and action potential overshoot in normal saline are -53±5 mV (S.D.) and +29±10 mV (S.D.) respectively. 3. The action potential is eliminated by tetrodotoxin (3 μM) and by replacing NaCl in the saline with Tris-chloride but maintained by replacing Na with Li. 4. After elimination of the normal action potential by tetrodotoxin or replacing Na with Tris, the addition of procaine (7·3 mM) to the external saline makes the membrane capable of producing a regenerative potential change. 5. The peak potential of the regenerative response depends on external Ca concentration in a manner predicted by the Nernst equation with Ca concentrations close to normal. 6. The Ca dependent response is reversibly suppressed by Co or La ions. 7. Similar regenerative responses are obtained when Ca is substituted with Sr or Ba. 8. It is concluded that two independent mechanisms of ionic permeability increase occur in the membrane of amphioxus muscle cell, one to Na and the other to Ca. PMID:5158595

  4. Operational models of pharmacological agonism.

    PubMed

    Black, J W; Leff, P

    1983-12-22

    The traditional receptor-stimulus model of agonism began with a description of drug action based on the law of mass action and has developed by a series of modifications, each accounting for new experimental evidence. By contrast, in this paper an approach to modelling agonism is taken that begins with the observation that experimental agonist-concentration effect, E/[A], curves are commonly hyperbolic and develops using the deduction that the relation between occupancy and effect must be hyperbolic if the law of mass action applies at the agonist-receptor level. The result is a general model that explicitly describes agonism by three parameters: an agonist-receptor dissociation constant, KA; the total receptor concentration, [R0]; and a parameter, KE, defining the transduction of agonist-receptor complex, AR, into pharmacological effect. The ratio, [R0]/KE, described here as the 'transducer ratio', tau, is a logical definition for the efficacy of an agonist in a system. The model may be extended to account for non-hyperbolic E/[A] curves with no loss of meaning. Analysis shows that an explicit formulation of the traditional receptor-stimulus model is one particular form of the general model but that it is not the simplest. An alternative model is proposed, representing the cognitive and transducer functions of a receptor, that describes agonist action with one fewer parameter than the traditional model. In addition, this model provides a chemical definition of intrinsic efficacy making this parameter experimentally accessible in principle. The alternative models are compared and contrasted with regard to their practical and conceptual utilities in experimental pharmacology.

  5. 7 CFR 1945.19 - Reporting potential natural disasters and initial actions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 13 2012-01-01 2012-01-01 false Reporting potential natural disasters and initial... Assistance-General § 1945.19 Reporting potential natural disasters and initial actions. (a) Purpose. The purpose of reporting potential natural disasters is to provide a systematic procedure for rapid reporting...

  6. 7 CFR 1945.19 - Reporting potential natural disasters and initial actions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 13 2011-01-01 2009-01-01 true Reporting potential natural disasters and initial... Assistance-General § 1945.19 Reporting potential natural disasters and initial actions. (a) Purpose. The purpose of reporting potential natural disasters is to provide a systematic procedure for rapid reporting...

  7. 7 CFR 1945.19 - Reporting potential natural disasters and initial actions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 13 2010-01-01 2009-01-01 true Reporting potential natural disasters and initial... Assistance-General § 1945.19 Reporting potential natural disasters and initial actions. (a) Purpose. The purpose of reporting potential natural disasters is to provide a systematic procedure for rapid reporting...

  8. Action potentials recorded from bundles of very thin, gray matter axons in rat cerebellar slices using a grease-gap method.

    PubMed

    Palani, Damodharan; Pekala, Dobromila; Baginskas, Armantas; Szkudlarek, Hanna; Raastad, Morten

    2012-07-15

    We investigated the ability of a grease-gap method to record fast and slow changes of the membrane potential from bundles of gray matter axons. Their membrane potentials are of particular interest because these axons are different from most axons that have been investigated using intra-axonal or gap techniques. One of the main differences is that gray matter axons typically have closely spaced presynaptic specializations, called boutons or varicosities, distributed along their entire paths. In response to electrical activation of bundles of parallel fiber axons we were able to record small (128-416μV) but stable signals that we show most likely represented a fraction of the trans-membrane action potentials. A less-than 100% fraction prevents measurements of absolute values for membrane potentials, but the good signal-to-noise ratio (typically 10-16) allows detection of changes in resting membrane potential, action potentials and their after-potentials. Because very little is known about the shape of action potentials and after-potentials in these axons we used several independent methods to make it likely that the grease-gap signal was of intra-axonal origin. We demonstrate the utility of the method by showing that the action potentials in cerebellar parallel fibers and hippocampal Schaffer collaterals had a slowly decaying, depolarized after-potential. The method is ideal for pharmacological tests, which we demonstrate by showing that the slow after-potential was sensitive to 4-AP, and that the membrane potential was reduced by 200μM Ba(2+). Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Low-level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 2: proposed applications and treatment protocols

    PubMed Central

    Zecha, Judith A. E. M.; Raber-Durlacher, Judith E.; Nair, Raj G.; Epstein, Joel B.; Elad, Sharon; Hamblin, Michael R.; Barasch, Andrei; Migliorati, Cesar A.; Milstein, Dan M. J.; Genot, Marie-Thérèse; Lansaat, Liset; van der Brink, Ron; Arnabat-Dominguez, Josep; van der Molen, Lisette; Jacobi, Irene; van Diessen, Judi; de Lange, Jan; Smeele, Ludi E.; Schubert, Mark M.

    2016-01-01

    Purpose There is a large body of evidence supporting the efficacy of low-level laser therapy (LLLT), more recently termed photobiomodulation (PBM) for the management of oral mucositis (OM) in patients undergoing radiotherapy for head and neck cancer (HNC). Recent advances in PBM technology, together with a better understanding of mechanisms involved and dosimetric parameters may lead to the management of a broader range of complications associated with HNC treatment. This could enhance patient adherence to cancer therapy, and improve quality of life and treatment outcomes. The mechanisms of action, dosimetric, and safety considerations for PBM have been reviewed in part 1. Part 2 discusses the head and neck treatment side effects for which PBM may prove to be effective. In addition, PBM parameters for each of these complications are suggested and future research directions are discussed. Methods Narrative review and presentation of PBM parameters are based on current evidence and expert opinion. Results PBM may have potential applications in the management of a broad range of side effects of (chemo)radiation therapy (CRT) in patients being treated for HNC. For OM management, optimal PBM parameters identified were as follows: wavelength, typically between 633 and 685 nm or 780–830 nm; energy density, laser or light-emitting diode (LED) output between 10 and 150 mW; dose, 2–3 J (J/cm2), and no more than 6 J/cm2 on the tissue surface treated; treatment schedule, two to three times a week up to daily; emission type, pulsed (<100 Hz); and route of delivery, intraorally and/or transcutaneously. To facilitate further studies, we propose potentially effective PBM parameters for prophylactic and therapeutic use in supportive care for dermatitis, dysphagia, dry mouth, dysgeusia, trismus, necrosis, lymphedema, and voice/speech alterations. Conclusion PBM may have a role in supportive care for a broad range of complications associated with the treatment of HNC with CRT. The suggested PBM irradiation and dosimetric parameters, which are potentially effective for these complications, are intended to provide guidance for well-designed future studies. It is imperative that such studies include elucidating the effects of PBM on oncology treatment outcomes. PMID:26984249

  10. Low-level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 2: proposed applications and treatment protocols.

    PubMed

    Zecha, Judith A E M; Raber-Durlacher, Judith E; Nair, Raj G; Epstein, Joel B; Elad, Sharon; Hamblin, Michael R; Barasch, Andrei; Migliorati, Cesar A; Milstein, Dan M J; Genot, Marie-Thérèse; Lansaat, Liset; van der Brink, Ron; Arnabat-Dominguez, Josep; van der Molen, Lisette; Jacobi, Irene; van Diessen, Judi; de Lange, Jan; Smeele, Ludi E; Schubert, Mark M; Bensadoun, René-Jean

    2016-06-01

    There is a large body of evidence supporting the efficacy of low-level laser therapy (LLLT), more recently termed photobiomodulation (PBM) for the management of oral mucositis (OM) in patients undergoing radiotherapy for head and neck cancer (HNC). Recent advances in PBM technology, together with a better understanding of mechanisms involved and dosimetric parameters may lead to the management of a broader range of complications associated with HNC treatment. This could enhance patient adherence to cancer therapy, and improve quality of life and treatment outcomes. The mechanisms of action, dosimetric, and safety considerations for PBM have been reviewed in part 1. Part 2 discusses the head and neck treatment side effects for which PBM may prove to be effective. In addition, PBM parameters for each of these complications are suggested and future research directions are discussed. Narrative review and presentation of PBM parameters are based on current evidence and expert opinion. PBM may have potential applications in the management of a broad range of side effects of (chemo)radiation therapy (CRT) in patients being treated for HNC. For OM management, optimal PBM parameters identified were as follows: wavelength, typically between 633 and 685 nm or 780-830 nm; energy density, laser or light-emitting diode (LED) output between 10 and 150 mW; dose, 2-3 J (J/cm(2)), and no more than 6 J/cm(2) on the tissue surface treated; treatment schedule, two to three times a week up to daily; emission type, pulsed (<100 Hz); and route of delivery, intraorally and/or transcutaneously. To facilitate further studies, we propose potentially effective PBM parameters for prophylactic and therapeutic use in supportive care for dermatitis, dysphagia, dry mouth, dysgeusia, trismus, necrosis, lymphedema, and voice/speech alterations. PBM may have a role in supportive care for a broad range of complications associated with the treatment of HNC with CRT. The suggested PBM irradiation and dosimetric parameters, which are potentially effective for these complications, are intended to provide guidance for well-designed future studies. It is imperative that such studies include elucidating the effects of PBM on oncology treatment outcomes.

  11. New operator assistance features in the CMS Run Control System

    NASA Astrophysics Data System (ADS)

    Andre, J.-M.; Behrens, U.; Branson, J.; Brummer, P.; Chaze, O.; Cittolin, S.; Contescu, C.; Craigs, B. G.; Darlea, G.-L.; Deldicque, C.; Demiragli, Z.; Dobson, M.; Doualot, N.; Erhan, S.; Fulcher, J. R.; Gigi, D.; Gładki, M.; Glege, F.; Gomez-Ceballos, G.; Hegeman, J.; Holzner, A.; Janulis, M.; Jimenez-Estupiñán, R.; Masetti, L.; Meijers, F.; Meschi, E.; Mommsen, R. K.; Morovic, S.; O'Dell, V.; Orsini, L.; Paus, C.; Petrova, P.; Pieri, M.; Racz, A.; Reis, T.; Sakulin, H.; Schwick, C.; Simelevicius, D.; Vougioukas, M.; Zejdl, P.

    2017-10-01

    During Run-1 of the LHC, many operational procedures have been automated in the run control system of the Compact Muon Solenoid (CMS) experiment. When detector high voltages are ramped up or down or upon certain beam mode changes of the LHC, the DAQ system is automatically partially reconfigured with new parameters. Certain types of errors such as errors caused by single-event upsets may trigger an automatic recovery procedure. Furthermore, the top-level control node continuously performs cross-checks to detect sub-system actions becoming necessary because of changes in configuration keys, changes in the set of included front-end drivers or because of potential clock instabilities. The operator is guided to perform the necessary actions through graphical indicators displayed next to the relevant command buttons in the user interface. Through these indicators, consistent configuration of CMS is ensured. However, manually following the indicators can still be inefficient at times. A new assistant to the operator has therefore been developed that can automatically perform all the necessary actions in a streamlined order. If additional problems arise, the new assistant tries to automatically recover from these. With the new assistant, a run can be started from any state of the sub-systems with a single click. An ongoing run may be recovered with a single click, once the appropriate recovery action has been selected. We review the automation features of CMS Run Control and discuss the new assistant in detail including first operational experience.

  12. A specific deficit of imitation in autism spectrum disorder.

    PubMed

    Stewart, Hannah J; McIntosh, Rob D; Williams, Justin H G

    2013-12-01

    Imitation is a potentially crucial aspect of social cognitive development. Although deficits in imitation ability have been widely demonstrated in autism spectrum disorder (ASD), the specificity and significance of the findings is unclear, due largely to methodological limitations. We developed a novel assessment of imitation ability, using objective movement parameters (path length and action duration) derived from a touch-sensitive tablet laptop during drawing actions on an identical tablet. By direct comparison of the kinematics of a model's actions with those of the participant who observed them, measures of imitation accuracy were obtained. By replaying the end-point of the movement as a spot on the screen, imitation accuracy was compared against a "ghost control" condition, with no human actor but only the end-point of the movement seen [object movement reenactment (OMR)]. Hence, demands of the control task were closely matched to the experimental task with respect to motor, memory, and attentional abilities. Adolescents with ASD showed poorer accuracy for copying object size and action duration on both the imitation and OMR tasks, but were significantly more impaired for imitation of object size. Our results provide evidence that some of the imitation deficit in ASD is specific to a self-other mapping problem, and cannot be explained by general factors such as memory, spatial reasoning, motor control, or attention, nor related to the social demands of the testing situation. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.

  13. A device for emulating cuff recordings of action potentials propagating along peripheral nerves.

    PubMed

    Rieger, Robert; Schuettler, Martin; Chuang, Sheng-Chih

    2014-09-01

    This paper describes a device that emulates propagation of action potentials along a peripheral nerve, suitable for reproducible testing of bio-potential recording systems using nerve cuff electrodes. The system is a microcontroller-based stand-alone instrument which uses established nerve and electrode models to represent neural activity of real nerves recorded with a nerve cuff interface, taking into consideration electrode impedance, voltages picked up by the electrodes, and action potential propagation characteristics. The system emulates different scenarios including compound action potentials with selectable propagation velocities and naturally occurring nerve traffic from different velocity fiber populations. Measured results from a prototype implementation are reported and compared with in vitro recordings from Xenopus Laevis frog sciatic nerve, demonstrating that the electrophysiological setting is represented to a satisfactory degree, useful for the development, optimization and characterization of future recording systems.

  14. Resveratrol and Alzheimer's Disease: Mechanistic Insights.

    PubMed

    Ahmed, Touqeer; Javed, Sehrish; Javed, Sana; Tariq, Ameema; Šamec, Dunja; Tejada, Silvia; Nabavi, Seyed Fazel; Braidy, Nady; Nabavi, Seyed Mohammad

    2017-05-01

    Alzheimer's disease (AD) is the leading cause of dementia in the elderly and is characterized by progressive cognitive and memory deficits. The pathological hallmarks of AD include extracellular senile plaques and intracellular neurofibrillary tangles. Although several mechanisms have been used to explain the underlying pathogenesis of AD, current treatment regimens remain inadequate. The neuroprotective effects of the polyphenolic stilbene resveratrol (3,5,4'-trihydroxy-trans-stilbene) have been investigated in several in vitro and in vivo models of AD. The current review discusses the multiple potential mechanisms of action of resveratrol on the pathobiology of AD. Moreover, due to the limited pharmacokinetic parameters of resveratrol, multiple strategies aimed at increasing the bioavailability of resveratrol have also been addressed.

  15. Multiphysics of bio-hybrid systems: shape control and electro-induced motion

    NASA Astrophysics Data System (ADS)

    Lucantonio, Alessandro; Nardinocchi, Paola; Pezzulla, Matteo; Teresi, Luciano

    2014-04-01

    We discuss the control of the bending pattern of a bio-hybrid system made using the muscular thin film technique. We study the medusoid presented in Nawroth et al (2012 Nature Biotechnol. 30 792-7) as a prototypical bio-hybrid system. Specifically, we evaluate the contraction field within the biological layer that is necessary to produce a target curvature of the system, and determine an admissible range of the design parameters that correspond to the same bending solution. We also propose an electromechanical model of the bio-hybrid system and study the propagation of the action potential. Our results compare well with the experimental data reported in Nawroth et al (2012 Nature Biotechnol. 30 792-7).

  16. Squids in the Study of Cerebral Magnetic Field

    NASA Astrophysics Data System (ADS)

    Romani, G. L.; Narici, L.

    The following sections are included: * INTRODUCTION * HISTORICAL OVERVIEW * NEUROMAGNETIC FIELDS AND AMBIENT NOISE * DETECTORS * Room temperature sensors * SQUIDs * DETECTION COILS * Magnetometers * Gradiometers * Balancing * Planar gradiometers * Choice of the gradiometer parameters * MODELING * Current pattern due to neural excitations * Action potentials and postsynaptic currents * The current dipole model * Neural population and detected fields * Spherically bounded medium * SPATIAL CONFIGURATION OF THE SENSORS * SOURCE LOCALIZATION * Localization procedure * Experimental accuracy and reproducibility * SIGNAL PROCESSING * Analog Filtering * Bandpass filters * Line rejection filters * DATA ANALYSIS * Analysis of evoked/event-related responses * Simple average * Selected average * Recursive techniques * Similarity analysis * Analysis of spontaneous activity * Mapping and localization * EXAMPLES OF NEUROMAGNETIC STUDIES * Neuromagnetic measurements * Studies on the normal brain * Clinical applications * Epilepsy * Tinnitus * CONCLUSIONS * ACKNOWLEDGEMENTS * REFERENCES

  17. Methods to examine reproductive biology in free-ranging, fully-marine mammals.

    PubMed

    Lanyon, Janet M; Burgess, Elizabeth A

    2014-01-01

    Historical overexploitation of marine mammals, combined with present-day pressures, has resulted in severely depleted populations, with many species listed as threatened or endangered. Understanding breeding patterns of threatened marine mammals is crucial to assessing population viability, potential recovery and conservation actions. However, determining reproductive parameters of wild fully-marine mammals (cetaceans and sirenians) is challenging due to their wide distributions, high mobility, inaccessible habitats, cryptic lifestyles and in many cases, large body size and intractability. Consequently, reproductive biologists employ an innovative suite of methods to collect useful information from these species. This chapter reviews historic, recent and state-of-the-art methods to examine diverse aspects of reproduction in fully-aquatic mammals.

  18. Effect of yerba mate (Ilex paraguariensis) extract on the metabolism of diabetic rats.

    PubMed

    Rocha, Débora Santos; Casagrande, Lucas; Model, Jorge Felipe Argenta; Dos Santos, Jordana Tres; Hoefel, Ana Lúcia; Kucharski, Luiz Carlos

    2018-06-01

    The relationship between metabolic disturbances and clinical events related to diabetes is well known. Yerba mate has presented a potential use as preventive and therapeutic agent on diabetes. The aim of this study was to evaluate the effect of yerba mate on different tissues of diabetic rats, focusing on energetic metabolism. Diabetes was induced by streptozotocin, followed by daily yerba mate treatment. After 30 days, the animals were euthanized to evaluate metabolic parameters on liver, adipose tissue, muscle and serum. The results showed mate treatment promoted a decrease in retroperitoneal adipose tissue in healthy animals. Muscle weight returned to control levels in diabetic rats treated with mate. There was improvement on serum glucose, creatinine, urea and total protein levels associated with mate treatment. Muscle parameters, such as glucose uptake and carbon dioxide production, were improved by mate treatment to control levels. The results evidenced the beneficial actions mate can have on metabolic disturbances of diabetes. Copyright © 2018. Published by Elsevier Masson SAS.

  19. Differential aging of median and ulnar sensory nerve parameters.

    PubMed

    Werner, Robert A; Franzblau, Alfred; D'Arcy, Hannah J S; Evanoff, Bradley A; Tong, Henry C

    2012-01-01

    Nerve conduction velocity slows and amplitude declines with aging. Median and ulnar sensory nerves were tested at the annual meetings of the American Dental Association. Seven hundred four subjects had at least two observations. The rate of change in the nerve parameters was estimated while controlling for gender, age, change in hand temperature, baseline body mass index (BMI), and change in BMI. Amplitudes of the median sensory nerve action potentials decreased by 0.58 μV per year, whereas conduction velocity decreased at a rate of 0.41 m/s per year. Corresponding values for the ulnar nerve were 0.89 μV and 0.29 m/s per year. The rates of change in amplitudes did not differ, but the median nerve demonstrated a more rapid loss of conduction velocity. The rate of change for the median conduction velocity was higher than previously reported. The rate of change of median conduction velocity was significantly greater than for the ulnar nerve. Copyright © 2011 Wiley Periodicals, Inc.

  20. Presymptomatic electrophysiological tests predict clinical onset and survival in SOD1(G93A) ALS mice.

    PubMed

    Mancuso, Renzo; Osta, Rosario; Navarro, Xavier

    2014-12-01

    We assessed the predictive value of electrophysiological tests as a marker of clinical disease onset and survival in superoxide-dismutase 1 (SOD1)(G93A) mice. We evaluated the accuracy of electrophysiological tests in differentiating transgenic versus wild-type mice. We made a correlation analysis of electrophysiological parameters and the onset of symptoms, survival, and number of spinal motoneurons. Presymptomatic electrophysiological tests show great accuracy in differentiating transgenic versus wild-type mice, with the most sensitive parameter being the tibialis anterior compound muscle action potential (CMAP) amplitude. The CMAP amplitude at age 10 weeks correlated significantly with clinical disease onset and survival. Electrophysiological tests increased their survival prediction accuracy when evaluated at later stages of the disease and also predicted the amount of lumbar spinal motoneuron preservation. Electrophysiological tests predict clinical disease onset, survival, and spinal motoneuron preservation in SOD1(G93A) mice. This is a methodological improvement for preclinical studies. © 2014 Wiley Periodicals, Inc.

  1. Nerve Impulses in Plants

    ERIC Educational Resources Information Center

    Blatt, F. J.

    1974-01-01

    Summarizes research done on the resting and action potential of nerve impulses, electrical excitation of nerve cells, electrical properties of Nitella, and temperature effects on action potential. (GS)

  2. Tackle mechanisms and match characteristics in women's elite football tournaments.

    PubMed

    Tscholl, P; O'Riordan, D; Fuller, C W; Dvorak, J; Junge, A

    2007-08-01

    Several tools have been used for assessing risk situations and for gathering tackle information from international football matches for men but not for women. To analyse activities in women's football and to identify the characteristics and risk potentials of tackles. Retrospective video analysis. Video recordings of 24 representative matches from six women's top-level tournaments were analysed for tackle parameters and their risk potential. 3531 tackles were recorded. Tackles in which the tackling player came from the side and stayed on her feet accounted for nearly half of all challenges for the ball in which body contact occurred. 2.7% of all tackles were classified as risk situations, with sliding-in tackles from behind and the side having the highest risk potential. Match referees sanctioned sliding-in tackles more often than other tackles (20% v 17%, respectively). Tackle parameters did not change in the duration of a match; however, there was an increase in the number of injury risk situations and foul plays towards the end of each half. Match properties provide valuable information for a better understanding of injury situations in football. Staying on feet and jumping vertically tackle actions leading to injury were sanctioned significantly more times by the referee than those not leading to injury (p<0.001), but no such difference was seen for sliding-in tackles (previously reported to have the highest injury potential in women's football). Therefore, either the laws of the game are not adequate or match referees in women's football are not able to distinguish between sliding-in tackles leading to and those not leading to injury.

  3. The External Quality Assessment Scheme (EQAS): Experiences of a medium sized accredited laboratory.

    PubMed

    Bhat, Vivek; Chavan, Preeti; Naresh, Chital; Poladia, Pratik

    2015-06-15

    We put forth our experiences of EQAS, analyzed the result discrepancies, reviewed the corrective actions and also put forth strategies for risk identification and prevention of potential errors in a medical laboratory. For hematology, EQAS samples - blood, peripheral and reticulocyte smears - were received quarterly every year. All the blood samples were processed on HMX hematology analyzer by Beckman-Coulter. For clinical chemistry, lyophilized samples were received and were processed on Siemens Dimension Xpand and RXL analyzers. For microbiology, EQAS samples were received quarterly every year as lyophilized strains along with smears and serological samples. In hematology no outliers were noted for reticulocyte and peripheral smear examination. Only one outlier was noted for CBC. In clinical chemistry outliers (SDI ≥ 2) were noted in 7 samples (23 parameters) out of total 36 samples (756 parameters) processed. Thirteen of these parameters were analyzed as random errors, 3 as transcriptional errors and seven instances of systemic error were noted. In microbiology, one discrepancy was noted in isolate identification and in the grading of smears for AFB by Ziehl Neelsen stain. EQAS along with IQC is a very important tool for maintaining optimal quality of services. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Dynamics of a modified Hindmarsh-Rose neural model with random perturbations: Moment analysis and firing activities

    NASA Astrophysics Data System (ADS)

    Mondal, Argha; Upadhyay, Ranjit Kumar

    2017-11-01

    In this paper, an attempt has been made to understand the activity of mean membrane voltage and subsidiary system variables with moment equations (i.e., mean, variance and covariance's) under noisy environment. We consider a biophysically plausible modified Hindmarsh-Rose (H-R) neural system injected by an applied current exhibiting spiking-bursting phenomenon. The effects of predominant parameters on the dynamical behavior of a modified H-R system are investigated. Numerically, it exhibits period-doubling, period halving bifurcation and chaos phenomena. Further, a nonlinear system has been analyzed for the first and second order moments with additive stochastic perturbations. It has been solved using fourth order Runge-Kutta method and noisy systems by Euler's scheme. It has been demonstrated that the firing properties of neurons to evoke an action potential in a certain parameter space of the large exact systems can be estimated using an approximated model. Strong stimulation can cause a change in increase or decrease of the firing patterns. Corresponding to a fixed set of parameter values, the firing behavior and dynamical differences of the collective variables of a large, exact and approximated systems are investigated.

  5. Central Nervous System-Toxic Lidocaine Concentrations Unmask L-Type Ca²⁺ Current-Mediated Action Potentials in Rat Thalamocortical Neurons: An In Vitro Mechanism of Action Study.

    PubMed

    Putrenko, Igor; Ghavanini, Amer A; Meyer Schöniger, Katrin S; Schwarz, Stephan K W

    2016-05-01

    High systemic lidocaine concentrations exert well-known toxic effects on the central nervous system (CNS), including seizures, coma, and death. The underlying mechanisms are still largely obscure, and the actions of lidocaine on supraspinal neurons have received comparatively little study. We recently found that lidocaine at clinically neurotoxic concentrations increases excitability mediated by Na-independent, high-threshold (HT) action potential spikes in rat thalamocortical neurons. Our goal in this study was to characterize these spikes and test the hypothesis that they are generated by HT Ca currents, previously implicated in neurotoxicity. We also sought to identify and isolate the specific underlying subtype of Ca current. We investigated the actions of lidocaine in the CNS-toxic concentration range (100 μM-1 mM) on ventrobasal thalamocortical neurons in rat brain slices in vitro, using whole-cell patch-clamp recordings aided by differential interference contrast infrared videomicroscopy. Drugs were bath applied; action potentials were generated using current clamp protocols, and underlying currents were identified and isolated with ion channel blockers and electrolyte substitution. Lidocaine (100 μM-1 mM) abolished Na-dependent tonic firing in all neurons tested (n = 46). However, in 39 of 46 (85%) neurons, lidocaine unmasked evoked HT action potentials with lower amplitudes and rates of de-/repolarization compared with control. These HT action potentials remained during the application of tetrodotoxin (600 nM), were blocked by Cd (50 μM), and disappeared after superfusion with an extracellular solution deprived of Ca. These features implied that the unmasked potentials were generated by high-voltage-activated Ca channels and not by Na channels. Application of the L-type Ca channel blocker, nifedipine (5 μM), completely blocked the HT potentials, whereas the N-type Ca channel blocker, ω-conotoxin GVIA (1 μM), had little effect. At clinically CNS-toxic concentrations, lidocaine unmasked in thalamocortical neurons evoked HT action potentials mediated by the L-type Ca current while substantially suppressing Na-dependent excitability. On the basis of the known role of an increase in intracellular Ca in the pathogenesis of local anesthetic neurotoxicity, this novel action represents a plausible contributing candidate mechanism for lidocaine's CNS toxicity in vivo.

  6. An intracellular analysis of the visual responses of neurones in cat visual cortex.

    PubMed Central

    Douglas, R J; Martin, K A; Whitteridge, D

    1991-01-01

    1. Extracellular and intracellular recordings were made from neurones in the visual cortex of the cat in order to compare the subthreshold membrane potentials, reflecting the input to the neurone, with the output from the neurone seen as action potentials. 2. Moving bars and edges, generated under computer control, were used to stimulate the neurones. The membrane potential was digitized and averaged for a number of trials after stripping the action potentials. Comparison of extracellular and intracellular discharge patterns indicated that the intracellular impalement did not alter the neurones' properties. Input resistance of the neurone altered little during stable intracellular recordings (30 min-2 h 50 min). 3. Intracellular recordings showed two distinct patterns of membrane potential changes during optimal visual stimulation. The patterns corresponded closely to the division of S-type (simple) and C-type (complex) receptive fields. Simple cells had a complex pattern of membrane potential fluctuations, involving depolarizations alternating with hyperpolarizations. Complex cells had a simple single sustained plateau of depolarization that was often followed but not preceded by a hyperpolarization. In both simple and complex cells the depolarizations led to action potential discharges. The hyperpolarizations were associated with inhibition of action potential discharge. 4. Stimulating simple cells with non-optimal directions of motion produced little or no hyperpolarization of the membrane in most cases, despite a lack of action potential output. Directional complex cells always produced a single plateau of depolarization leading to action potential discharge in both the optimal and non-optimal directions of motion. The directionality could not be predicted on the basis of the position of the hyperpolarizing inhibitory potentials found in the optimal direction. 5. Stimulation of simple cells with non-optimal orientations occasionally produced slight hyperpolarizations and inhibition of action potential discharge. Complex cells, which had broader orientation tuning than simple cells, could show marked hyperpolarization for non-optimal orientations, but this was not generally the case. 6. The data do not support models of directionality and orientation that rely solely on strong inhibitory mechanisms to produce stimulus selectivity. PMID:1804981

  7. Teaching and learning the Hodgkin-Huxley model based on software developed in NEURON's programming language hoc.

    PubMed

    Hernández, Oscar E; Zurek, Eduardo E

    2013-05-15

    We present a software tool called SENB, which allows the geometric and biophysical neuronal properties in a simple computational model of a Hodgkin-Huxley (HH) axon to be changed. The aim of this work is to develop a didactic and easy-to-use computational tool in the NEURON simulation environment, which allows graphical visualization of both the passive and active conduction parameters and the geometric characteristics of a cylindrical axon with HH properties. The SENB software offers several advantages for teaching and learning electrophysiology. First, SENB offers ease and flexibility in determining the number of stimuli. Second, SENB allows immediate and simultaneous visualization, in the same window and time frame, of the evolution of the electrophysiological variables. Third, SENB calculates parameters such as time and space constants, stimuli frequency, cellular area and volume, sodium and potassium equilibrium potentials, and propagation velocity of the action potentials. Furthermore, it allows the user to see all this information immediately in the main window. Finally, with just one click SENB can save an image of the main window as evidence. The SENB software is didactic and versatile, and can be used to improve and facilitate the teaching and learning of the underlying mechanisms in the electrical activity of an axon using the biophysical properties of the squid giant axon.

  8. Staff Handbook on Natural Gas.

    ERIC Educational Resources Information Center

    Gorges, H. A., Ed.; Raine, L. P., Ed.

    The Department of Commerce created a Natural Gas Action Group early in the fall of 1975 to assist industrial firms and the communities they serve to cope with the effects of potentially severe and crippling curtailment situations. This action group was trained to assess a specific local situation, review the potential for remedial action and…

  9. 75 FR 43072 - Trichoderma Hamatum Isolate 382; Exemption from the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... Information A. Does this Action Apply to Me? You may be potentially affected by this action if you are an agricultural producer, food manufacturer, or pesticide manufacturer. Potentially affected entities may include... exhaustive, but rather provides a guide for readers regarding entities likely to be affected by this action...

  10. Remodelling of action potential and intracellular calcium cycling dynamics during subacute myocardial infarction promotes ventricular arrhythmias in Langendorff-perfused rabbit hearts

    PubMed Central

    Chou, Chung-Chuan; Zhou, Shengmei; Hayashi, Hideki; Nihei, Motoki; Liu, Yen-Bin; Wen, Ming-Shien; Yeh, San-Jou; Fishbein, Michael C; Weiss, James N; Lin, Shien-Fong; Wu, Delon; Chen, Peng-Sheng

    2007-01-01

    We hypothesize that remodelling of action potential and intracellular calcium (Cai) dynamics in the peri-infarct zone contributes to ventricular arrhythmogenesis in the postmyocardial infarction setting. To test this hypothesis, we performed simultaneous optical mapping of Cai and membrane potential (Vm) in the left ventricle in 15 rabbit hearts with myocardial infarction for 1 week. Ventricular premature beats frequently originated from the peri-infarct zone, and 37% showed elevation of Cai prior to Vm depolarization, suggesting reverse excitation–contraction coupling as their aetiology. During electrically induced ventricular fibrillation, the highest dominant frequency was in the peri-infarct zone in 61 of 70 episodes. The site of highest dominant frequency had steeper action potential duration restitution and was more susceptible to pacing-induced Cai alternans than sites remote from infarct. Wavebreaks during ventricular fibrillation tended to occur at sites of persistently elevated Cai. Infusion of propranolol flattened action potential duration restitution, reduced wavebreaks and converted ventricular fibrillation to ventricular tachycardia. We conclude that in the subacute phase of myocardial infarction, the peri-infarct zone exhibits regions with steep action potential duration restitution slope and unstable Cai dynamics. These changes may promote ventricular extrasystoles and increase the incidence of wavebreaks during ventricular fibrillation. Whereas increased tissue heterogeneity after subacute myocardial infarction creates a highly arrhythmogenic substrate, dynamic action potential and Cai cycling remodelling also contribute to the initiation and maintenance of ventricular fibrillation in this setting. PMID:17272354

  11. Components of action potential repolarization in cerebellar parallel fibres.

    PubMed

    Pekala, Dobromila; Baginskas, Armantas; Szkudlarek, Hanna J; Raastad, Morten

    2014-11-15

    Repolarization of the presynaptic action potential is essential for transmitter release, excitability and energy expenditure. Little is known about repolarization in thin, unmyelinated axons forming en passant synapses, which represent the most common type of axons in the mammalian brain's grey matter.We used rat cerebellar parallel fibres, an example of typical grey matter axons, to investigate the effects of K(+) channel blockers on repolarization. We show that repolarization is composed of a fast tetraethylammonium (TEA)-sensitive component, determining the width and amplitude of the spike, and a slow margatoxin (MgTX)-sensitive depolarized after-potential (DAP). These two components could be recorded at the granule cell soma as antidromic action potentials and from the axons with a newly developed miniaturized grease-gap method. A considerable proportion of fast repolarization remained in the presence of TEA, MgTX, or both. This residual was abolished by the addition of quinine. The importance of proper control of fast repolarization was demonstrated by somatic recordings of antidromic action potentials. In these experiments, the relatively broad K(+) channel blocker 4-aminopyridine reduced the fast repolarization, resulting in bursts of action potentials forming on top of the DAP. We conclude that repolarization of the action potential in parallel fibres is supported by at least three groups of K(+) channels. Differences in their temporal profiles allow relatively independent control of the spike and the DAP, whereas overlap of their temporal profiles provides robust control of axonal bursting properties.

  12. Effects of pioglitazone on cardiac ion currents and action potential morphology in canine ventricular myocytes.

    PubMed

    Kistamás, Kornél; Szentandrássy, Norbert; Hegyi, Bence; Ruzsnavszky, Ferenc; Váczi, Krisztina; Bárándi, László; Horváth, Balázs; Szebeni, Andrea; Magyar, János; Bányász, Tamás; Kecskeméti, Valéria; Nánási, Péter P

    2013-06-15

    Despite its widespread therapeutical use there is little information on the cellular cardiac effects of the antidiabetic drug pioglitazone in larger mammals. In the present study, therefore, the concentration-dependent effects of pioglitazone on ion currents and action potential configuration were studied in isolated canine ventricular myocytes using standard microelectrode, conventional whole cell patch clamp, and action potential voltage clamp techniques. Pioglitazone decreased the maximum velocity of depolarization and the amplitude of phase-1 repolarization at concentrations ≥3 μM. Action potentials were shortened by pioglitazone at concentrations ≥10 μM, which effect was accompanied with significant reduction of beat-to-beat variability of action potential duration. Several transmembrane ion currents, including the transient outward K(+) current (Ito), the L-type Ca(2+) current (ICa), the rapid and slow components of the delayed rectifier K(+) current (IKr and IKs, respectively), and the inward rectifier K(+) current (IK1) were inhibited by pioglitazone under conventional voltage clamp conditions. Ito was blocked significantly at concentrations ≥3 μM, ICa, IKr, IKs at concentrations ≥10 μM, while IK1 at concentrations ≥30 μM. Suppression of Ito, ICa, IKr, and IK1 has been confirmed also under action potential voltage clamp conditions. ATP-sensitive K(+) current, when activated by lemakalim, was effectively blocked by pioglitazone. Accordingly, action potentials were prolonged by 10 μM pioglitazone when the drug was applied in the presence of lemakalim. All these effects developed rapidly and were readily reversible upon washout. In conclusion, pioglitazone seems to be a harmless agent at usual therapeutic concentrations. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Using Perturbative Least Action to Reconstruct Redshift-Space Distortions

    NASA Astrophysics Data System (ADS)

    Goldberg, David M.

    2001-05-01

    In this paper, we present a redshift-space reconstruction scheme that is analogous to and extends the perturbative least action (PLA) method described by Goldberg & Spergel. We first show that this scheme is effective in reconstructing even nonlinear observations. We then suggest that by varying the cosmology to minimize the quadrupole moment of a reconstructed density field, it may be possible to lower the error bars on the redshift distortion parameter, β, as well as to break the degeneracy between the linear bias parameter, b, and ΩM. Finally, we discuss how PLA might be applied to realistic redshift surveys.

  14. Activation of cannabinoid CB1 receptors modulates evoked action potentials in rat retinal ganglion cells.

    PubMed

    Jiang, Shu-Xia; Li, Qian; Wang, Xiao-Han; Li, Fang; Wang, Zhong-Feng

    2013-08-25

    Activation of cannabinoid CB1 receptors (CB1Rs) regulates a variety of physiological functions in the vertebrate retina through modulating various types of ion channels. The aim of the present study was to investigate the effects of this receptor on cell excitability of rat retinal ganglion cells (RGCs) in retinal slices using whole-cell patch-clamp techniques. The results showed that under current-clamped condition perfusing WIN55212-2 (WIN, 5 μmol/L), a CB1R agonist, did not significantly change the spontaneous firing frequency and resting membrane potential of RGCs. In the presence of cocktail synaptic blockers, including excitatory postsynaptic receptor blockers CNQX and D-APV, and inhibitory receptor blockers bicuculline and strychnine, perfusion of WIN (5 μmol/L) hardly changed the frequencies of evoked action potentials by a series of positive current injection (from +10 to +100 pA). Phase-plane plot analysis showed that both average threshold voltage for triggering action potential and delay time to reach threshold voltage were not affected by WIN. However, WIN significantly decreased +dV/dtmax and -dV/dtmax of action potentials, suggestive of reduced rising and descending velocities of action potentials. The effects of WIN were reversed by co-application of SR141716, a CB1R selective antagonist. Moreover, WIN did not influence resting membrane potential of RGCs with synaptic inputs being blocked. These results suggest that activation of CB1Rs may regulate intrinsic excitability of rat RGCs through modulating evoked action potentials.

  15. Simulation of action potentials from metabolically impaired cardiac myocytes. Role of ATP-sensitive K+ current.

    PubMed

    Ferrero, J M; Sáiz, J; Ferrero, J M; Thakor, N V

    1996-08-01

    The role of the ATP-sensitive K+ current (IK-ATP) and its contribution to electrophysiological changes that occur during metabolic impairment in cardiac ventricular myocytes is still being discussed. The aim of this work was to quantitatively study this issue by using computer modeling. A model of IK-ATP is formulated and incorporated into the Luo-Rudy ionic model of the ventricular action potential. Action potentials under different degrees of activation of IK-ATP are simulated. Our results show that in normal ionic concentrations, only approximately 0.6% of the KATP channels, when open, should account for a 50% reduction in action potential duration. However, increased levels of intracellular Mg2+ counteract this shortening. Under conditions of high [K+]0, such as those found in early ischemia, the activation of only approximately 0.4% of the KATP channels could account for a 50% reduction in action potential duration. Thus, our results suggest that opening of IK-ATP channels should play a significant role in action potential shortening during hypoxic/ischemic episodes, with the fraction of open channels involved being very low ( < 1%). However, the results of the model suggest that activation of IK-ATP alone does not quantitatively account for the observed K+ efflux in metabolically impaired cardiac myocytes. Mechanisms other than KATP channel activation should be responsible for a significant part of the K+ efflux measured in hypoxic/ischemic situations.

  16. Peripheral nerve recruitment curve using near-infrared stimulation

    NASA Astrophysics Data System (ADS)

    Dautrebande, Marie; Doguet, Pascal; Gorza, Simon-Pierre; Delbeke, Jean; Nonclercq, Antoine

    2018-02-01

    In the context of near-infrared neurostimulation, we report on an experimental hybrid electrode allowing for simultaneous photonic or electrical neurostimulation and for electrical recording of evoked action potentials. The electrode includes three contacts and one optrode. The optrode is an opening in the cuff through which the tip of an optical fibre is held close to the epineurium. Two contacts provide action potential recording. The remaining contact, together with a remote subcutaneous electrode, is used for electric stimulation which allows periodical assessment of the viability of the nerve during the experiment. A 1470 nm light source was used to stimulate a mouse sciatic nerve. Neural action potentials were not successfully recorded because of the electrical noise so muscular activity was used to reflect the motor fibres stimulation. A recruitment curve was obtained by stimulating with photonic pulses of same power and increasing duration and recording the evoked muscular action potentials. Motor fibres can be recruited with radiant exposures between 0.05 and 0.23 J/cm2 for pulses in the 100 to 500 μs range. Successful stimulation at short duration and at a commercial wavelength is encouraging in the prospect of miniaturisation and practical applications. Motor fibres recruitment curve is a first step in an ongoing research work. Neural action potential acquisition will be improved, with aim to shed light on the mechanism of action potential initiation under photonic stimulation.

  17. Human ex-vivo action potential model for pro-arrhythmia risk assessment.

    PubMed

    Page, Guy; Ratchada, Phachareeya; Miron, Yannick; Steiner, Guido; Ghetti, Andre; Miller, Paul E; Reynolds, Jack A; Wang, Ken; Greiter-Wilke, Andrea; Polonchuk, Liudmila; Traebert, Martin; Gintant, Gary A; Abi-Gerges, Najah

    2016-01-01

    While current S7B/E14 guidelines have succeeded in protecting patients from QT-prolonging drugs, the absence of a predictive paradigm identifying pro-arrhythmic risks has limited the development of valuable drug programs. We investigated if a human ex-vivo action potential (AP)-based model could provide a more predictive approach for assessing pro-arrhythmic risk in man. Human ventricular trabeculae from ethically consented organ donors were used to evaluate the effects of dofetilide, d,l-sotalol, quinidine, paracetamol and verapamil on AP duration (APD) and recognized pro-arrhythmia predictors (short-term variability of APD at 90% repolarization (STV(APD90)), triangulation (ADP90-APD30) and incidence of early afterdepolarizations at 1 and 2Hz to quantitatively identify the pro-arrhythmic risk. Each drug was blinded and tested separately with 3 concentrations in triplicate trabeculae from 5 hearts, with one vehicle time control per heart. Electrophysiological stability of the model was not affected by sequential applications of vehicle (0.1% dimethyl sulfoxide). Paracetamol and verapamil did not significantly alter anyone of the AP parameters and were classified as devoid of pro-arrhythmic risk. Dofetilide, d,l-sotalol and quinidine exhibited an increase in the manifestation of pro-arrhythmia markers. The model provided quantitative and actionable activity flags and the relatively low total variability in tissue response allowed for the identification of pro-arrhythmic signals. Power analysis indicated that a total of 6 trabeculae derived from 2 hearts are sufficient to identify drug-induced pro-arrhythmia. Thus, the human ex-vivo AP-based model provides an integrative translational assay assisting in shaping clinical development plans that could be used in conjunction with the new CiPA-proposed approach. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Human ex-vivo action potential model for pro-arrhythmia risk assessment

    PubMed Central

    Page, Guy; Ratchada, Phachareeya; Miron, Yannick; Steiner, Guido; Ghetti, Andre; Miller, Paul E; Reynolds, Jack A; Wang, Ken; Greiter-Wilke, Andrea; Polonchuk, Liudmila; Traebert, Martin; Gintant, Gary A; Abi-Gerges, Najah

    2016-01-01

    While current S7B/E14 guidelines have succeeded in protecting patients from QT-prolonging drugs, the absence of a predictive paradigm identifying pro-arrhythmic risks has limited the development of valuable drug programs. We investigated if a human ex-vivo action potential (AP)-based model could provide a more predictive approach for assessing pro-arrhythmic risk in man. Human ventricular trabeculae from ethically consented organ donors were used to evaluate the effects of dofetilide, d,l-sotalol, quinidine, paracetamol and verapamil on AP duration (APD) and recognized pro-arrhythmia predictors (short-term variability of APD at 90% repolarization (STV(APD90)), triangulation (ADP90-APD30) and incidence of early afterdepolarizations at 1 and 2 Hz to quantitatively identify the pro-arrhythmic risk. Each drug was blinded and tested separately with 3 concentrations in triplicate trabeculae from 5 hearts, with one vehicle time control per heart. Electrophysiological stability of the model was not affected by sequential applications of vehicle (0.1% dimethyl sulfoxide). Paracetamol and verapamil did not significantly alter anyone of the AP parameters and were classified as devoid of pro-arrhythmic risk. Dofetilide, d,l-sotalol and quinidine exhibited an increase in the manifestation of pro-arrhythmia markers. The model provided quantitative and actionable activity flags and the relatively low total variability in tissue response allowed for the identification of pro-arrhythmic signals. Power analysis indicated that a total of 6 trabeculae derived from 2 hearts are sufficient to identify drug-induced pro-arrhythmia. Thus, the human ex-vivo AP-based model provides an integrative translational assay assisting in shaping clinical development plans that could be used in conjunction with the new CiPA-proposed approach. PMID:27235787

  19. Simplicial Palatini action

    NASA Astrophysics Data System (ADS)

    Khatsymovsky, V. M.

    2018-01-01

    We consider the piecewise flat spacetime and a simplicial analog of the Palatini form of the general relativity (GR) action where the discrete Christoffel symbols are given on the tetrahedra as variables that are independent of the metric. Excluding these variables with the help of the equations of motion gives exactly the Regge action. This paper continues our previous work. Now, we include the parity violation term and the analog of the Barbero-Immirzi parameter introduced in the orthogonal connection form of GR. We consider the path integral and the functional integration over the connection. The result of the latter (for certain limiting cases of some parameters) is compared with the earlier found result of the functional integration over the connection for the analogous orthogonal connection representation of Regge action. These results, mainly as some measures on the lengths/areas, are discussed for the possibility of the diagram technique where the perturbative diagrams for the Regge action calculated using the measure obtained are finite. This finiteness is due to these measures providing elementary lengths being mostly bounded and separated from zero, just as the finiteness of a theory on a lattice with an analogous probability distribution of spacings.

  20. The Multi-Parameter Wireless Sensing System (MPwise): Its Description and Application to Earthquake Risk Mitigation.

    PubMed

    Boxberger, Tobias; Fleming, Kevin; Pittore, Massimiliano; Parolai, Stefano; Pilz, Marco; Mikulla, Stefan

    2017-10-20

    The Multi-Parameter Wireless Sensing (MPwise) system is an innovative instrumental design that allows different sensor types to be combined with relatively high-performance computing and communications components. These units, which incorporate off-the-shelf components, can undertake complex information integration and processing tasks at the individual unit or node level (when used in a network), allowing the establishment of networks that are linked by advanced, robust and rapid communications routing and network topologies. The system (and its predecessors) was originally designed for earthquake risk mitigation, including earthquake early warning (EEW), rapid response actions, structural health monitoring, and site-effect characterization. For EEW, MPwise units are capable of on-site, decentralized, independent analysis of the recorded ground motion and based on this, may issue an appropriate warning, either by the unit itself or transmitted throughout a network by dedicated alarming procedures. The multi-sensor capabilities of the system allow it to be instrumented with standard strong- and weak-motion sensors, broadband sensors, MEMS (namely accelerometers), cameras, temperature and humidity sensors, and GNSS receivers. In this work, the MPwise hardware, software and communications schema are described, as well as an overview of its possible applications. While focusing on earthquake risk mitigation actions, the aim in the future is to expand its capabilities towards a more multi-hazard and risk mitigation role. Overall, MPwise offers considerable flexibility and has great potential in contributing to natural hazard risk mitigation.

  1. The Multi-Parameter Wireless Sensing System (MPwise): Its Description and Application to Earthquake Risk Mitigation

    PubMed Central

    Boxberger, Tobias; Fleming, Kevin; Pittore, Massimiliano; Parolai, Stefano; Pilz, Marco; Mikulla, Stefan

    2017-01-01

    The Multi-Parameter Wireless Sensing (MPwise) system is an innovative instrumental design that allows different sensor types to be combined with relatively high-performance computing and communications components. These units, which incorporate off-the-shelf components, can undertake complex information integration and processing tasks at the individual unit or node level (when used in a network), allowing the establishment of networks that are linked by advanced, robust and rapid communications routing and network topologies. The system (and its predecessors) was originally designed for earthquake risk mitigation, including earthquake early warning (EEW), rapid response actions, structural health monitoring, and site-effect characterization. For EEW, MPwise units are capable of on-site, decentralized, independent analysis of the recorded ground motion and based on this, may issue an appropriate warning, either by the unit itself or transmitted throughout a network by dedicated alarming procedures. The multi-sensor capabilities of the system allow it to be instrumented with standard strong- and weak-motion sensors, broadband sensors, MEMS (namely accelerometers), cameras, temperature and humidity sensors, and GNSS receivers. In this work, the MPwise hardware, software and communications schema are described, as well as an overview of its possible applications. While focusing on earthquake risk mitigation actions, the aim in the future is to expand its capabilities towards a more multi-hazard and risk mitigation role. Overall, MPwise offers considerable flexibility and has great potential in contributing to natural hazard risk mitigation. PMID:29053608

  2. Deconvolution of the vestibular evoked myogenic potential.

    PubMed

    Lütkenhöner, Bernd; Basel, Türker

    2012-02-07

    The vestibular evoked myogenic potential (VEMP) and the associated variance modulation can be understood by a convolution model. Two functions of time are incorporated into the model: the motor unit action potential (MUAP) of an average motor unit, and the temporal modulation of the MUAP rate of all contributing motor units, briefly called rate modulation. The latter is the function of interest, whereas the MUAP acts as a filter that distorts the information contained in the measured data. Here, it is shown how to recover the rate modulation by undoing the filtering using a deconvolution approach. The key aspects of our deconvolution algorithm are as follows: (1) the rate modulation is described in terms of just a few parameters; (2) the MUAP is calculated by Wiener deconvolution of the VEMP with the rate modulation; (3) the model parameters are optimized using a figure-of-merit function where the most important term quantifies the difference between measured and model-predicted variance modulation. The effectiveness of the algorithm is demonstrated with simulated data. An analysis of real data confirms the view that there are basically two components, which roughly correspond to the waves p13-n23 and n34-p44 of the VEMP. The rate modulation corresponding to the first, inhibitory component is much stronger than that corresponding to the second, excitatory component. But the latter is more extended so that the two modulations have almost the same equivalent rectangular duration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Reconstruction of Cell Surface Densities of Ion Pumps, Exchangers, and Channels from mRNA Expression, Conductance Kinetics, Whole-Cell Calcium, and Current-Clamp Voltage Recordings, with an Application to Human Uterine Smooth Muscle Cells

    PubMed Central

    Atia, Jolene; McCloskey, Conor; Shmygol, Anatoly S.; Rand, David A.; van den Berg, Hugo A.; Blanks, Andrew M.

    2016-01-01

    Uterine smooth muscle cells remain quiescent throughout most of gestation, only generating spontaneous action potentials immediately prior to, and during, labor. This study presents a method that combines transcriptomics with biophysical recordings to characterise the conductance repertoire of these cells, the ‘conductance repertoire’ being the total complement of ion channels and transporters expressed by an electrically active cell. Transcriptomic analysis provides a set of potential electrogenic entities, of which the conductance repertoire is a subset. Each entity within the conductance repertoire was modeled independently and its gating parameter values were fixed using the available biophysical data. The only remaining free parameters were the surface densities for each entity. We characterise the space of combinations of surface densities (density vectors) consistent with experimentally observed membrane potential and calcium waveforms. This yields insights on the functional redundancy of the system as well as its behavioral versatility. Our approach couples high-throughput transcriptomic data with physiological behaviors in health and disease, and provides a formal method to link genotype to phenotype in excitable systems. We accurately predict current densities and chart functional redundancy. For example, we find that to evoke the observed voltage waveform, the BK channel is functionally redundant whereas hERG is essential. Furthermore, our analysis suggests that activation of calcium-activated chloride conductances by intracellular calcium release is the key factor underlying spontaneous depolarisations. PMID:27105427

  4. Action Learning: Avoiding Conflict or Enabling Action

    ERIC Educational Resources Information Center

    Corley, Aileen; Thorne, Ann

    2006-01-01

    Action learning is based on the premise that action and learning are inextricably entwined and it is this potential, to enable action, which has contributed to the growth of action learning within education and management development programmes. However has this growth in action learning lead to an evolution or a dilution of Revan's classical…

  5. Sex-specific ecophysiological responses to environmental fluctuations of free-ranging Hermann's tortoises: implication for conservation.

    PubMed

    Sibeaux, Adélaïde; Michel, Catherine Louise; Bonnet, Xavier; Caron, Sébastien; Fournière, Kévin; Gagno, Stephane; Ballouard, Jean-Marie

    2016-01-01

    Physiological parameters provide indicators to evaluate how organisms respond to conservation actions. For example, individuals translocated during reinforcement programmes may not adapt to their novel host environment and may exhibit elevated chronic levels of stress hormones and/or decreasing body condition. Conversely, successful conservation actions should be associated with a lack of detrimental physiological perturbation. However, physiological references fluctuate over time and are influenced by various factors (e.g. sex, age, reproductive status). It is therefore necessary to determine the range of natural variations of the selected physiological metrics to establish useful baselines. This study focuses on endangered free-ranging Hermann's tortoises ( Testudo hermanni hermanni ), where conservation actions have been preconized to prevent extinction of French mainland populations. The influence of sex and of environmental factors (site, year and season) on eight physiological parameters (e.g. body condition, corticosterone concentrations) was assessed in 82 individuals from two populations living in different habitats. Daily displacements were monitored by radio-tracking. Most parameters varied between years and seasons and exhibited contrasting sex patterns but with no or limited effect of site. By combining behavioural and physiological traits, this study provides sex-specific seasonal baselines that can be used to monitor the health status of Hermann's tortoises facing environmental threats (e.g. habitat changes) or during conservation actions (e.g. translocation). These results might also assist in selection of the appropriate season for translocation.

  6. Action Learning: Potential for Inner City Youth

    ERIC Educational Resources Information Center

    Epps, Edgar G.

    1974-01-01

    Working class and minority participation in action-learning poses potential problems likely to be overlooked by program planners. This presentation reveals the trouble spots and offers constructive suggestions. (Editor)

  7. Onset dynamics of action potentials in rat neocortical neurons and identified snail neurons: quantification of the difference.

    PubMed

    Volgushev, Maxim; Malyshev, Aleksey; Balaban, Pavel; Chistiakova, Marina; Volgushev, Stanislav; Wolf, Fred

    2008-04-09

    The generation of action potentials (APs) is a key process in the operation of nerve cells and the communication between neurons. Action potentials in mammalian central neurons are characterized by an exceptionally fast onset dynamics, which differs from the typically slow and gradual onset dynamics seen in identified snail neurons. Here we describe a novel method of analysis which provides a quantitative measure of the onset dynamics of action potentials. This method captures the difference between the fast, step-like onset of APs in rat neocortical neurons and the gradual, exponential-like AP onset in identified snail neurons. The quantitative measure of the AP onset dynamics, provided by the method, allows us to perform quantitative analyses of factors influencing the dynamics.

  8. Onset Dynamics of Action Potentials in Rat Neocortical Neurons and Identified Snail Neurons: Quantification of the Difference

    PubMed Central

    Volgushev, Maxim; Malyshev, Aleksey; Balaban, Pavel; Chistiakova, Marina; Volgushev, Stanislav; Wolf, Fred

    2008-01-01

    The generation of action potentials (APs) is a key process in the operation of nerve cells and the communication between neurons. Action potentials in mammalian central neurons are characterized by an exceptionally fast onset dynamics, which differs from the typically slow and gradual onset dynamics seen in identified snail neurons. Here we describe a novel method of analysis which provides a quantitative measure of the onset dynamics of action potentials. This method captures the difference between the fast, step-like onset of APs in rat neocortical neurons and the gradual, exponential-like AP onset in identified snail neurons. The quantitative measure of the AP onset dynamics, provided by the method, allows us to perform quantitative analyses of factors influencing the dynamics. PMID:18398478

  9. Bridging the gaps between non-invasive genetic sampling and population parameter estimation

    Treesearch

    Francesca Marucco; Luigi Boitani; Daniel H. Pletscher; Michael K. Schwartz

    2011-01-01

    Reliable estimates of population parameters are necessary for effective management and conservation actions. The use of genetic data for capture­recapture (CR) analyses has become an important tool to estimate population parameters for elusive species. Strong emphasis has been placed on the genetic analysis of non-invasive samples, or on the CR analysis; however,...

  10. Effect of Detergent on Electrical Properties of Squid Axon Membrane

    PubMed Central

    Kishimoto, Uichiro; Adelman, William J.

    1964-01-01

    The effects of detergents on squid giant axon action and resting potentials as well as membrane conductances in the voltage clamp have been studied. Anionic detergents (sodium lauryl sulfate, 0.1 to 1.0 mM; dimethyl benzene sulfonate, 1 to 20 mM, pH 7.6) cause a temporary increase and a later decrease of action potential height and the value of the resting potential. Cationic detergent (cetyl trimethyl ammonium chloride, 6 x 10-5 M or more, pH 7.6) generally brings about immediate and irreversible decreases in the action and resting potentials. Non-ionic detergent (tween 80, 0.1 M, pH 7.6) causes a slight reversible reduction of action potential height without affecting the value of the resting potential. Both anionic and cationic detergents generally decrease the sodium and potassium conductances irreversibly. The effect of non-ionic detergent is to decrease the sodium conductance reversibly, leaving the potassium conductance almost unchanged. PMID:14158665

  11. The influence of action observation on action execution: Dissociating the contribution of action on perception, perception on action, and resolving conflict.

    PubMed

    Deschrijver, Eliane; Wiersema, Jan R; Brass, Marcel

    2017-04-01

    For more than 15 years, motor interference paradigms have been used to investigate the influence of action observation on action execution. Most research on so-called automatic imitation has focused on variables that play a modulating role or investigated potential confounding factors. Interestingly, furthermore, a number of functional magnetic resonance imaging (fMRI) studies have tried to shed light on the functional mechanisms and neural correlates involved in imitation inhibition. However, these fMRI studies, presumably due to poor temporal resolution, have primarily focused on high-level processes and have neglected the potential role of low-level motor and perceptual processes. In the current EEG study, we therefore aimed to disentangle the influence of low-level perceptual and motoric mechanisms from high-level cognitive mechanisms. We focused on potential congruency differences in the visual N190 - a component related to the processing of biological motion, the Readiness Potential - a component related to motor preparation, and the high-level P3 component. Interestingly, we detected congruency effects in each of these components, suggesting that the interference effect in an automatic imitation paradigm is not only related to high-level processes such as self-other distinction but also to more low-level influences of perception on action and action on perception. Moreover, we documented relationships of the neural effects with (autistic) behavior.

  12. Slow and fast fatigable frog muscle fibres: electrophysiological and histochemical characteristics.

    PubMed

    Vydevska-Chichova, M; Mileva, K; Todorova, R; Dimitrova, M; Radicheva, N

    2005-12-01

    Continuous activity of isolated frog gastrocnemius muscle fibres provoked by repetitive stimulation of 5 Hz was used as an experimental model for fatigue development in different fibre types. Parameter changes of the elicited intracellular action potentials and mechanical twitches during the period of uninterrupted activity were used as criteria for fatigue evaluation. Slow fatigable muscle fibre (SMF) and fast fatigable muscle fibre (FMF) types were distinguished depending on the duration of their uninterrupted activity, which was significantly longer in SMFs than in FMFs. The normalized changes of action potential amplitude and duration were significantly smaller in FMFs than in SMFs. The average twitch force and velocity of contraction and relaxation were significantly higher in FMFs than in SMFs. Myosin ATPase (mATPase) and succinate dehydrogenase activity were studied by histochemical assessment in order to validate the fibre type classification based on their electrophysiological characteristics. Based on the relative mATPase reactivity, the fibres of the studied muscle were classified as one of five different types (1-2, 2, 2-3, 3 and tonic). Smaller sized fibres (tonic and type 3) expressed higher succinate dehydrogenase activity than larger sized fibres (type 1-2, 2), which is related to the fatigue resistance. The differences between fatigue development in SMFs and FMFs during continuous activity were associated with fibre-type specific mATPase and succinate dehydrogenase activity.

  13. A Phenomenological Synapse Model for Asynchronous Neurotransmitter Release

    PubMed Central

    Wang, Tao; Yin, Luping; Zou, Xiaolong; Shu, Yousheng; Rasch, Malte J.; Wu, Si

    2016-01-01

    Neurons communicate with each other via synapses. Action potentials cause release of neurotransmitters at the axon terminal. Typically, this neurotransmitter release is tightly time-locked to the arrival of an action potential and is thus called synchronous release. However, neurotransmitter release is stochastic and the rate of release of small quanta of neurotransmitters can be considerably elevated even long after the ceasing of spiking activity, leading to asynchronous release of neurotransmitters. Such asynchronous release varies for tissue and neuron types and has been shown recently to be pronounced in fast-spiking neurons. Notably, it was found that asynchronous release is enhanced in human epileptic tissue implicating a possibly important role in generating abnormal neural activity. Current neural network models for simulating and studying neural activity virtually only consider synchronous release and ignore asynchronous transmitter release. Here, we develop a phenomenological model for asynchronous neurotransmitter release, which, on one hand, captures the fundamental features of the asynchronous release process, and, on the other hand, is simple enough to be incorporated in large-size network simulations. Our proposed model is based on the well-known equations for short-term dynamical synaptic interactions and includes an additional stochastic term for modeling asynchronous release. We use experimental data obtained from inhibitory fast-spiking synapses of human epileptic tissue to fit the model parameters, and demonstrate that our model reproduces the characteristics of realistic asynchronous transmitter release. PMID:26834617

  14. Effects of ECT in treatment of depression: study protocol for a prospective neuroradiological study of acute and longitudinal effects on brain structure and function.

    PubMed

    Oltedal, Leif; Kessler, Ute; Ersland, Lars; Grüner, Renate; Andreassen, Ole A; Haavik, Jan; Hoff, Per Ivar; Hammar, Åsa; Dale, Anders M; Hugdahl, Kenneth; Oedegaard, Ketil J

    2015-05-01

    Major depression can be a serious and debilitating condition. For some patients in a treatment resistant depressive episode, electroconvulsive treatment (ECT) is the only treatment that is effective. Although ECT has shown efficacy in randomized controlled trials, the treatment is still controversial and stigmatized. This can in part be attributed to our lack of knowledge of the mechanisms of action. Some reports also suggest potential harmful effects of ECT treatment and memory related side effects have been documented. The present study will apply state of the art radiology through advanced magnetic resonance imaging (MRI) techniques to investigate structural and functional brain effects of ECT. As a multi-disciplinary collaboration, imaging findings will be correlated to psychiatric response parameters, neuropsychological functioning as well as neurochemical and genetic biomarkers that can elucidate the underlying mechanisms. The aim is to document both treatment effects and potential harmful effects of ECT. n = 40 patients in a major depressive episode (bipolar and major depressive disorder). Two control groups with n = 15 in each group: age and gender matched healthy volunteers not receiving ECT and patients undergoing electrical cardioversion (ECV) for atrial fibrillation (AF). Observation time: six months. The study will contribute to our understanding of the pathophysiology of major depression as well as mechanisms of action for the most effective treatment for the disorder; ECT.

  15. Establishment of alternative potency test for botulinum toxin type A using compound muscle action potential (CMAP) in rats.

    PubMed

    Torii, Yasushi; Goto, Yoshitaka; Nakahira, Shinji; Ginnaga, Akihiro

    2014-11-01

    The biological activity of botulinum toxin type A has been evaluated using the mouse intraperitoneal (ip) LD50 test. This method requires a large number of mice to precisely determine toxin activity, and, as such, poses problems with regard to animal welfare. We previously developed a compound muscle action potential (CMAP) assay using rats as an alternative method to the mouse ip LD50 test. In this study, to evaluate this quantitative method of measuring toxin activity using CMAP, we assessed the parameters necessary for quantitative tests according to ICH Q2 (R1). This assay could be used to evaluate the activity of the toxin, even when inactive toxin was mixed with the sample. To reduce the number of animals needed, this assay was set to measure two samples per animal. Linearity was detected over a range of 0.1-12.8 U/mL, and the measurement range was set at 0.4-6.4 U/mL. The results for accuracy and precision showed low variability. The body weight was selected as a variable factor, but it showed no effect on the CMAP amplitude. In this study, potency tests using the rat CMAP assay of botulinum toxin type A demonstrated that it met the criteria for a quantitative analysis method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Caffeine depression of spontaneous activity in rabbit sino-atrial node cells.

    PubMed

    Satoh, H

    1993-05-01

    1. Effects of caffeine on the action potentials and the membrane currents in spontaneously beating rabbit sino-atrial (SA) node cells were examined using a two-microelectrode technique. 2. Cumulative administrations of caffeine (1-10 mM) caused a negative chronotropic effect in a concentration-dependent manner, which was not modified by atropine (0.1 microM). At 10 mM, caffeine increased the amplitude and prolonged the duration of action potentials significantly; the other parameters were unaffected. 3. In 3 of 16 preparations, caffeine (5 mM) elicited arrhythmia. At high Ca2+ (8.1 mM), caffeine (5 mM) increased the incidence of arrhythmia. 4. Caffeine (0.5-10 mM) enhanced the slow inward current, but at 10 mM decreased the enhanced peak current by 5 mM. The hyperpolarization-activated inward current was also enhanced by caffeine, but 10 mM caffeine decreased the current peak as compared with that at 5 mM. In addition, caffeine inhibited the delayed rectifying outward current in a concentration-dependent manner, accompanied by a depressed activation curve without any shift in the half-maximum activation voltage. 5. Caffeine elevated the cytoplasmic Ca2+ level in the SA node cells loaded with Ca(2+)-sensitive fluorescent dye (fura-2). 6. These results suggest that caffeine enhances and/or inhibits the ionic currents and elicits arrhythmia due to the induction of cellular calcium overload.

  17. Simultaneous mapping of membrane voltage and calcium in zebrafish heart in vivo reveals chamber-specific developmental transitions in ionic currents

    PubMed Central

    Hou, Jennifer H.; Kralj, Joel M.; Douglass, Adam D.; Engert, Florian; Cohen, Adam E.

    2014-01-01

    The cardiac action potential (AP) and the consequent cytosolic Ca2+ transient are key indicators of cardiac function. Natural developmental processes, as well as many drugs and pathologies change the waveform, propagation, or variability (between cells or over time) of these parameters. Here we apply a genetically encoded dual-function calcium and voltage reporter (CaViar) to study the development of the zebrafish heart in vivo between 1.5 and 4 days post fertilization (dpf). We developed a high-sensitivity spinning disk confocal microscope and associated software for simultaneous three-dimensional optical mapping of voltage and calcium. We produced a transgenic zebrafish line expressing CaViar under control of the heart-specific cmlc2 promoter, and applied ion channel blockers at a series of developmental stages to map the maturation of the action potential in vivo. Early in development, the AP initiated via a calcium current through L-type calcium channels. Between 90 and 102 h post fertilization (hpf), the ventricular AP switched to a sodium-driven upswing, while the atrial AP remained calcium driven. In the adult zebrafish heart, a sodium current drives the AP in both the atrium and ventricle. Simultaneous voltage and calcium imaging with genetically encoded reporters provides a new approach for monitoring cardiac development, and the effects of drugs on cardiac function. PMID:25309445

  18. Simultaneous mapping of membrane voltage and calcium in zebrafish heart in vivo reveals chamber-specific developmental transitions in ionic currents.

    PubMed

    Hou, Jennifer H; Kralj, Joel M; Douglass, Adam D; Engert, Florian; Cohen, Adam E

    2014-01-01

    The cardiac action potential (AP) and the consequent cytosolic Ca(2+) transient are key indicators of cardiac function. Natural developmental processes, as well as many drugs and pathologies change the waveform, propagation, or variability (between cells or over time) of these parameters. Here we apply a genetically encoded dual-function calcium and voltage reporter (CaViar) to study the development of the zebrafish heart in vivo between 1.5 and 4 days post fertilization (dpf). We developed a high-sensitivity spinning disk confocal microscope and associated software for simultaneous three-dimensional optical mapping of voltage and calcium. We produced a transgenic zebrafish line expressing CaViar under control of the heart-specific cmlc2 promoter, and applied ion channel blockers at a series of developmental stages to map the maturation of the action potential in vivo. Early in development, the AP initiated via a calcium current through L-type calcium channels. Between 90 and 102 h post fertilization (hpf), the ventricular AP switched to a sodium-driven upswing, while the atrial AP remained calcium driven. In the adult zebrafish heart, a sodium current drives the AP in both the atrium and ventricle. Simultaneous voltage and calcium imaging with genetically encoded reporters provides a new approach for monitoring cardiac development, and the effects of drugs on cardiac function.

  19. A Parsimonious Model of the Rabbit Action Potential Elucidates the Minimal Physiological Requirements for Alternans and Spiral Wave Breakup

    PubMed Central

    2016-01-01

    Elucidating the underlying mechanisms of fatal cardiac arrhythmias requires a tight integration of electrophysiological experiments, models, and theory. Existing models of transmembrane action potential (AP) are complex (resulting in over parameterization) and varied (leading to dissimilar predictions). Thus, simpler models are needed to elucidate the “minimal physiological requirements” to reproduce significant observable phenomena using as few parameters as possible. Moreover, models have been derived from experimental studies from a variety of species under a range of environmental conditions (for example, all existing rabbit AP models incorporate a formulation of the rapid sodium current, INa, based on 30 year old data from chick embryo cell aggregates). Here we develop a simple “parsimonious” rabbit AP model that is mathematically identifiable (i.e., not over parameterized) by combining a novel Hodgkin-Huxley formulation of INa with a phenomenological model of repolarization similar to the voltage dependent, time-independent rectifying outward potassium current (IK). The model was calibrated using the following experimental data sets measured from the same species (rabbit) under physiological conditions: dynamic current-voltage (I-V) relationships during the AP upstroke; rapid recovery of AP excitability during the relative refractory period; and steady-state INa inactivation via voltage clamp. Simulations reproduced several important “emergent” phenomena including cellular alternans at rates > 250 bpm as observed in rabbit myocytes, reentrant spiral waves as observed on the surface of the rabbit heart, and spiral wave breakup. Model variants were studied which elucidated the minimal requirements for alternans and spiral wave break up, namely the kinetics of INa inactivation and the non-linear rectification of IK.The simplicity of the model, and the fact that its parameters have physiological meaning, make it ideal for engendering generalizable mechanistic insight and should provide a solid “building-block” to generate more detailed ionic models to represent complex rabbit electrophysiology. PMID:27749895

  20. A Parsimonious Model of the Rabbit Action Potential Elucidates the Minimal Physiological Requirements for Alternans and Spiral Wave Breakup.

    PubMed

    Gray, Richard A; Pathmanathan, Pras

    2016-10-01

    Elucidating the underlying mechanisms of fatal cardiac arrhythmias requires a tight integration of electrophysiological experiments, models, and theory. Existing models of transmembrane action potential (AP) are complex (resulting in over parameterization) and varied (leading to dissimilar predictions). Thus, simpler models are needed to elucidate the "minimal physiological requirements" to reproduce significant observable phenomena using as few parameters as possible. Moreover, models have been derived from experimental studies from a variety of species under a range of environmental conditions (for example, all existing rabbit AP models incorporate a formulation of the rapid sodium current, INa, based on 30 year old data from chick embryo cell aggregates). Here we develop a simple "parsimonious" rabbit AP model that is mathematically identifiable (i.e., not over parameterized) by combining a novel Hodgkin-Huxley formulation of INa with a phenomenological model of repolarization similar to the voltage dependent, time-independent rectifying outward potassium current (IK). The model was calibrated using the following experimental data sets measured from the same species (rabbit) under physiological conditions: dynamic current-voltage (I-V) relationships during the AP upstroke; rapid recovery of AP excitability during the relative refractory period; and steady-state INa inactivation via voltage clamp. Simulations reproduced several important "emergent" phenomena including cellular alternans at rates > 250 bpm as observed in rabbit myocytes, reentrant spiral waves as observed on the surface of the rabbit heart, and spiral wave breakup. Model variants were studied which elucidated the minimal requirements for alternans and spiral wave break up, namely the kinetics of INa inactivation and the non-linear rectification of IK.The simplicity of the model, and the fact that its parameters have physiological meaning, make it ideal for engendering generalizable mechanistic insight and should provide a solid "building-block" to generate more detailed ionic models to represent complex rabbit electrophysiology.

  1. Threat evaluation for impact assessment in situation analysis systems

    NASA Astrophysics Data System (ADS)

    Roy, Jean; Paradis, Stephane; Allouche, Mohamad

    2002-07-01

    Situation analysis is defined as a process, the examination of a situation, its elements, and their relations, to provide and maintain a product, i.e., a state of situation awareness, for the decision maker. Data fusion is a key enabler to meeting the demanding requirements of military situation analysis support systems. According to the data fusion model maintained by the Joint Directors of Laboratories' Data Fusion Group, impact assessment estimates the effects on situations of planned or estimated/predicted actions by the participants, including interactions between action plans of multiple players. In this framework, the appraisal of actual or potential threats is a necessary capability for impact assessment. This paper reviews and discusses in details the fundamental concepts of threat analysis. In particular, threat analysis generally attempts to compute some threat value, for the individual tracks, that estimates the degree of severity with which engagement events will potentially occur. Presenting relevant tracks to the decision maker in some threat list, sorted from the most threatening to the least, is clearly in-line with the cognitive demands associated with threat evaluation. A key parameter in many threat value evaluation techniques is the Closest Point of Approach (CPA). Along this line of thought, threatening tracks are often prioritized based upon which ones will reach their CPA first. Hence, the Time-to-CPA (TCPA), i.e., the time it will take for a track to reach its CPA, is also a key factor. Unfortunately, a typical assumption for the computation of the CPA/TCPA parameters is that the track velocity will remain constant. When a track is maneuvering, the CPA/TCPA values will change accordingly. These changes will in turn impact the threat value computations and, ultimately, the resulting threat list. This is clearly undesirable from a command decision-making perspective. In this regard, the paper briefly discusses threat value stabilization approaches based on neural networks and other mathematical techniques.

  2. Transmural ultrasound imaging of thermal lesion and action potential changes in perfused canine cardiac wedge preparations by high intensity focused ultrasound ablation.

    PubMed

    Wu, Ziqi; Gudur, Madhu S R; Deng, Cheri X

    2013-01-01

    Intra-procedural imaging is important for guiding cardiac arrhythmia ablation. It is difficult to obtain intra-procedural correlation of thermal lesion formation with action potential (AP) changes in the transmural plane during ablation. This study tested parametric ultrasound imaging for transmural imaging of lesion and AP changes in high intensity focused ultrasound (HIFU) ablation using coronary perfused canine ventricular wedge preparations (n = 13). The preparations were paced from epi/endocardial surfaces and subjected to HIFU application (3.5 MHz, 11 Hz pulse-repetition-frequency, 70% duty cycle, duration 4 s, 3500 W/cm(2)), during which simultaneous optical mapping (1 kframes/s) using di-4-ANEPPS and ultrasound imaging (30 MHz) of the same transmural surface of the wedge were performed. Spatiotemporally correlated AP measurements and ultrasound imaging allowed quantification of the reduction of AP amplitude (APA), shortening of AP duration at 50% repolarization, AP triangulation, decrease of optical AP rise, and change of conduction velocity along tissue depth direction within and surrounding HIFU lesions. The threshold of irreversible change in APA correlating to lesions was determined to be 43 ± 1% with a receiver operating characteristic (ROC) area under curve (AUC) of 0.96 ± 0.01 (n = 13). Ultrasound imaging parameters such as integrated backscatter, Rayleigh (α) and log-normal (σ) parameters, cumulative extrema of σ were tested, with the cumulative extrema of σ performing the best in detecting lesion (ROC AUC 0.89 ± 0.01, n = 13) and change of APA (ROC AUC 0.79 ± 0.03, n = 13). In conclusion, characteristic tissue and AP changes in HIFU ablation were identified and spatiotemporally correlated using optical mapping and ultrasound imaging. Parametric ultrasound imaging using cumulative extrema of σ can detect HIFU lesion and APA reduction.

  3. Transmural Ultrasound Imaging of Thermal Lesion and Action Potential Changes in Perfused Canine Cardiac Wedge Preparations by High Intensity Focused Ultrasound Ablation

    PubMed Central

    Wu, Ziqi; Gudur, Madhu S. R.; Deng, Cheri X.

    2013-01-01

    Intra-procedural imaging is important for guiding cardiac arrhythmia ablation. It is difficult to obtain intra-procedural correlation of thermal lesion formation with action potential (AP) changes in the transmural plane during ablation. This study tested parametric ultrasound imaging for transmural imaging of lesion and AP changes in high intensity focused ultrasound (HIFU) ablation using coronary perfused canine ventricular wedge preparations (n = 13). The preparations were paced from epi/endocardial surfaces and subjected to HIFU application (3.5 MHz, 11 Hz pulse-repetition-frequency, 70% duty cycle, duration 4 s, 3500 W/cm2), during which simultaneous optical mapping (1 kframes/s) using di-4-ANEPPS and ultrasound imaging (30 MHz) of the same transmural surface of the wedge were performed. Spatiotemporally correlated AP measurements and ultrasound imaging allowed quantification of the reduction of AP amplitude (APA), shortening of AP duration at 50% repolarization, AP triangulation, decrease of optical AP rise, and change of conduction velocity along tissue depth direction within and surrounding HIFU lesions. The threshold of irreversible change in APA correlating to lesions was determined to be 43±1% with a receiver operating characteristic (ROC) area under curve (AUC) of 0.96±0.01 (n = 13). Ultrasound imaging parameters such as integrated backscatter, Rayleigh (α) and log-normal (σ) parameters, cumulative extrema of σ were tested, with the cumulative extrema of σ performing the best in detecting lesion (ROC AUC 0.89±0.01, n = 13) and change of APA (ROC AUC 0.79±0.03, n = 13). In conclusion, characteristic tissue and AP changes in HIFU ablation were identified and spatiotemporally correlated using optical mapping and ultrasound imaging. Parametric ultrasound imaging using cumulative extrema of σ can detect HIFU lesion and APA reduction. PMID:24349337

  4. Associative, Bidirectional Changes in Neural Signaling Utilizing NMDA Receptor- and Endocannabinoid-Dependent Mechanisms

    ERIC Educational Resources Information Center

    Li, Qin; Burrell, Brian D.

    2011-01-01

    Persistent, bidirectional changes in synaptic signaling (that is, potentiation and depression of the synapse) can be induced by the precise timing of individual pre- and postsynaptic action potentials. However, far less attention has been paid to the ability of paired trains of action potentials to elicit persistent potentiation or depression. We…

  5. Final Environmental Assessment: Addressing An Army and Air Force Exchange Service (AAFES) Lifestyle Center at Eglin Air Force Base, Florida

    DTIC Science & Technology

    2008-11-01

    the proposed site has the potential for adverse effects on surface water bodies in the event of a spill or uncontrolled erosion. Implementation of...inclusion of a No Action Alternative against which potential effects can be compared. While the No Action Alternative would not satisfy the purpose... potential effects on project site and adjacent land uses. The foremost factor affecting a proposed action in terms of land use is its compliance

  6. Localization of effective actions in open superstring field theory

    NASA Astrophysics Data System (ADS)

    Maccaferri, Carlo; Merlano, Alberto

    2018-03-01

    We consider the construction of the algebraic part of D-branes tree-level effective action from Berkovits open superstring field theory. Applying this construction to the quartic potential of massless fields carrying a specific worldsheet charge, we show that the full contribution to the potential localizes at the boundary of moduli space, reducing to elementary two-point functions. As examples of this general mechanism, we show how the Yang-Mills quartic potential and the instanton effective action of a Dp/D( p - 4) system are reproduced.

  7. Systematic review of compound action potentials as predictors for cochlear implant performance.

    PubMed

    van Eijl, Ruben H M; Buitenhuis, Patrick J; Stegeman, Inge; Klis, Sjaak F L; Grolman, Wilko

    2017-02-01

    The variability in speech perception between cochlear implant users is thought to result from the degeneration of the auditory nerve. Degeneration of the auditory nerve, histologically assessed, correlates with electrophysiologically acquired measures, such as electrically evoked compound action potentials (eCAPs) in experimental animals. To predict degeneration of the auditory nerve in humans, where histology is impossible, this paper reviews the correlation between speech perception and eCAP recordings in cochlear implant patients. PubMed and Embase. We performed a systematic search for articles containing the following major themes: cochlear implants, evoked potentials, and speech perception. Two investigators independently conducted title-abstract screening, full-text screening, and critical appraisal. Data were extracted from the remaining articles. Twenty-five of 1,429 identified articles described a correlation between speech perception and eCAP attributes. Due to study heterogeneity, a meta-analysis was not feasible, and studies were descriptively analyzed. Several studies investigating presence of the eCAP, recovery time constant, slope of the amplitude growth function, and spatial selectivity showed significant correlations with speech perception. In contrast, neural adaptation, eCAP threshold, and change with varying interphase gap did not significantly correlate with speech perception in any of the identified studies. Significant correlations between speech perception and parameters obtained through eCAP recordings have been documented in literature; however, reporting was ambiguous. There is insufficient evidence for eCAPs as a predictive factor for speech perception. More research is needed to further investigate this relation. Laryngoscope, 2016 127:476-487, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  8. Patch-Clamp Recording from Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Improving Action Potential Characteristics through Dynamic Clamp

    PubMed Central

    Veerman, Christiaan C.; Zegers, Jan G.; Mengarelli, Isabella; Bezzina, Connie R.

    2017-01-01

    Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) hold great promise for studying inherited cardiac arrhythmias and developing drug therapies to treat such arrhythmias. Unfortunately, until now, action potential (AP) measurements in hiPSC-CMs have been hampered by the virtual absence of the inward rectifier potassium current (IK1) in hiPSC-CMs, resulting in spontaneous activity and altered function of various depolarising and repolarising membrane currents. We assessed whether AP measurements in “ventricular-like” and “atrial-like” hiPSC-CMs could be improved through a simple, highly reproducible dynamic clamp approach to provide these cells with a substantial IK1 (computed in real time according to the actual membrane potential and injected through the patch-clamp pipette). APs were measured at 1 Hz using perforated patch-clamp methodology, both in control cells and in cells treated with all-trans retinoic acid (RA) during the differentiation process to increase the number of cells with atrial-like APs. RA-treated hiPSC-CMs displayed shorter APs than control hiPSC-CMs and this phenotype became more prominent upon addition of synthetic IK1 through dynamic clamp. Furthermore, the variability of several AP parameters decreased upon IK1 injection. Computer simulations with models of ventricular-like and atrial-like hiPSC-CMs demonstrated the importance of selecting an appropriate synthetic IK1. In conclusion, the dynamic clamp-based approach of IK1 injection has broad applicability for detailed AP measurements in hiPSC-CMs. PMID:28867785

  9. Total Economic Consequences of an Influenza Outbreak in the United States.

    PubMed

    Prager, Fynnwin; Wei, Dan; Rose, Adam

    2017-01-01

    Pandemic influenza represents a serious threat not only to the population of the United States, but also to its economy. In this study, we analyze the total economic consequences of potential influenza outbreaks in the United States for four cases based on the distinctions between disease severity and the presence/absence of vaccinations. The analysis is based on data and parameters on influenza obtained from the Centers for Disease Control and the general literature. A state-of-the-art economic impact modeling approach, computable general equilibrium, is applied to analyze a wide range of potential impacts stemming from the outbreaks. This study examines the economic impacts from changes in medical expenditures and workforce participation, and also takes into consideration different types of avoidance behavior and resilience actions not previously fully studied. Our results indicate that, in the absence of avoidance and resilience effects, a pandemic influenza outbreak could result in a loss in U.S. GDP of $25.4 billion, but that vaccination could reduce the losses to $19.9 billion. When behavioral and resilience factors are taken into account, a pandemic influenza outbreak could result in GDP losses of $45.3 billion without vaccination and $34.4 billion with vaccination. These results indicate the importance of including a broader set of causal factors to achieve more accurate estimates of the total economic impacts of not just pandemic influenza but biothreats in general. The results also highlight a number of actionable items that government policymakers and public health officials can use to help reduce potential economic losses from the outbreaks. © 2016 Society for Risk Analysis.

  10. 77 FR 45535 - Aldicarb; Proposed Tolerance Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... Aldicarb; Proposed Tolerance Actions AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule... Information A. Does this action apply to me? You may be potentially affected by this action if you are an... exhaustive, but rather provides a guide for readers regarding entities likely to be affected by this action...

  11. Individual vision and peak distribution in collective actions

    NASA Astrophysics Data System (ADS)

    Lu, Peng

    2017-06-01

    People make decisions on whether they should participate as participants or not as free riders in collective actions with heterogeneous visions. Besides of the utility heterogeneity and cost heterogeneity, this work includes and investigates the effect of vision heterogeneity by constructing a decision model, i.e. the revised peak model of participants. In this model, potential participants make decisions under the joint influence of utility, cost, and vision heterogeneities. The outcomes of simulations indicate that vision heterogeneity reduces the values of peaks, and the relative variance of peaks is stable. Under normal distributions of vision heterogeneity and other factors, the peaks of participants are normally distributed as well. Therefore, it is necessary to predict distribution traits of peaks based on distribution traits of related factors such as vision heterogeneity and so on. We predict the distribution of peaks with parameters of both mean and standard deviation, which provides the confident intervals and robust predictions of peaks. Besides, we validate the peak model of via the Yuyuan Incident, a real case in China (2014), and the model works well in explaining the dynamics and predicting the peak of real case.

  12. TANDI: threat assessment of network data and information

    NASA Astrophysics Data System (ADS)

    Holsopple, Jared; Yang, Shanchieh Jay; Sudit, Moises

    2006-04-01

    Current practice for combating cyber attacks typically use Intrusion Detection Sensors (IDSs) to passively detect and block multi-stage attacks. This work leverages Level-2 fusion that correlates IDS alerts belonging to the same attacker, and proposes a threat assessment algorithm to predict potential future attacker actions. The algorithm, TANDI, reduces the problem complexity by separating the models of the attacker's capability and opportunity, and fuse the two to determine the attacker's intent. Unlike traditional Bayesian-based approaches, which require assigning a large number of edge probabilities, the proposed Level-3 fusion procedure uses only 4 parameters. TANDI has been implemented and tested with randomly created attack sequences. The results demonstrate that TANDI predicts future attack actions accurately as long as the attack is not part of a coordinated attack and contains no insider threats. In the presence of abnormal attack events, TANDI will alarm the network analyst for further analysis. The attempt to evaluate a threat assessment algorithm via simulation is the first in the literature, and shall open up a new avenue in the area of high level fusion.

  13. Sodium and potassium conductance changes during a membrane action potential.

    PubMed

    Bezanilla, F; Rojas, E; Taylor, R E

    1970-12-01

    1. A method for turning a membrane potential control system on and off in less than 10 musec is described. This method was used to record membrane currents in perfused giant axons from Dosidicus gigas and Loligo forbesi after turning on the voltage clamp system at various times during the course of a membrane action potential.2. The membrane current measured just after the capacity charging transient was found to have an almost linear relation to the controlled membrane potential.3. The total membrane conductance taken from these current-voltage curves was found to have a time course during the action potential similar to that found by Cole & Curtis (1939).4. The instantaneous current voltage curves were linear enough to make it possible to obtain a good estimate of the individual sodium and potassium channel conductances, either algebraically or by clamping to the sodium, or potassium, reversal potentials. Good general agreement was obtained with the predictions of the Hodgkin-Huxley equations.5. We consider these results to constitute the first direct experimental demonstration of the conductance changes to sodium and potassium during the course of an action potential.

  14. The role of impulse parameters in force variability

    NASA Technical Reports Server (NTRS)

    Carlton, L. G.; Newell, K. M.

    1986-01-01

    One of the principle limitations of the human motor system is the ability to produce consistent motor responses. When asked to repeatedly make the same movement, performance outcomes are characterized by a considerable amount of variability. This occurs whether variability is expressed in terms of kinetics or kinematics. Variability in performance is of considerable importance because for tasks requiring accuracy it is a critical variable in determining the skill of the performer. What has long been sought is a description of the parameter or parameters that determine the degree of variability. Two general experimental protocals were used. One protocal is to use dynamic actions and record variability in kinematic parameters such as spatial or temporal error. A second strategy was to use isometric actions and record kinetic variables such as peak force produced. What might be the important force related factors affecting variability is examined and an experimental approach to examine the influence of each of these variables is provided.

  15. Post-Newtonian parameter γ in generalized non-local gravity

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Wu, YaBo; Yang, WeiQiang; Zhang, ChengYuan; Chen, BoHai; Zhang, Nan

    2017-10-01

    We investigate the post-Newtonian parameter γ and derive its formalism in generalized non-local (GNL) gravity, which is the modified theory of general relativity (GR) obtained by adding a term m 2 n-2 R☐-n R to the Einstein-Hilbert action. Concretely, based on parametrizing the generalized non-local action in which gravity is described by a series of dynamical scalar fields ϕ i in addition to the metric tensor g μν, the post-Newtonian limit is computed, and the effective gravitational constant as well as the post-Newtonian parameters are directly obtained from the generalized non-local gravity. Moreover, by discussing the values of the parametrized post-Newtonian parameters γ, we can compare our expressions and results with those in Hohmann and Järv et al. (2016), as well as current observational constraints on the values of γ in Will (2006). Hence, we draw restrictions on the nonminimal coupling terms F̅ around their background values.

  16. Improved outcomes in auditory brainstem implantation with the use of near-field electrical compound action potentials.

    PubMed

    Mandalà, Marco; Colletti, Liliana; Colletti, Giacomo; Colletti, Vittorio

    2014-12-01

    To compare the outcomes (auditory threshold and open-set speech perception at 48-month follow-up) of a new near-field monitoring procedure, electrical compound action potential, on positioning the auditory brainstem implant electrode array on the surface of the cochlear nuclei versus the traditional far-field electrical auditory brainstem response. Retrospective study. Tertiary referral center. Among the 202 patients with auditory brainstem implants fitted and monitored with electrical auditory brainstem response during implant fitting, 9 also underwent electrical compound action potential recording. These subjects were matched retrospectively with a control group of 9 patients in whom only the electrical auditory brainstem response was recorded. Electrical compound action potentials were obtained using a cotton-wick recording electrode located near the surface of the cochlear nuclei and on several cranial nerves. Significantly lower potential thresholds were observed with the recording electrode located on the cochlear nuclei surface compared with the electrical auditory brainstem response (104.4 ± 32.5 vs 158.9 ± 24.2, P = .0030). Electrical brainstem response and compound action potentials identified effects on the neighboring cranial nerves on 3.2 ± 2.4 and 7.8 ± 3.2 electrodes, respectively (P = .0034). Open-set speech perception outcomes at 48-month follow-up had improved significantly in the near- versus far-field recording groups (78.9% versus 56.7%; P = .0051). Electrical compound action potentials during auditory brainstem implantation significantly improved the definition of the potential threshold and the number of auditory and extra-auditory waves generated. It led to the best coupling between the electrode array and cochlear nuclei, significantly improving the overall open-set speech perception. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  17. Dofetilide promotes repolarization abnormalities in perfused Guinea-pig heart.

    PubMed

    Osadchii, Oleg E

    2012-12-01

    Dofetilide is class III antiarrhythmic agent which prolongs cardiac action potential duration because of selective inhibition of I (Kr), the rapid component of the delayed rectifier K(+) current. Although clinical studies reported on proarrhythmic risk associated with dofetilide treatment, the contributing electrophysiological mechanisms remain poorly understood. This study was designed to determine if dofetilide-induced proarrhythmia may be attributed to abnormalities in ventricular repolarization and refractoriness. The monophasic action potential duration and effective refractory periods (ERP) were assessed at distinct epicardial and endocardial sites along with volume-conducted ECG recordings in isolated, perfused guinea-pig heart preparations. Dofetilide was found to produce the reverse rate-dependent prolongation of ventricular repolarization, increased the steepness of action potential duration rate adaptation, and amplified transepicardial variability in electrical restitution kinetics. Dofetilide also prolonged the T peak-to-end interval on ECG, and elicited a greater prolongation of endocardial than epicardial ERP, thereby increasing transmural dispersion of refractoriness. At epicardium, dofetilide prolonged action potential duration to a greater extent than ERP, thus extending the critical interval for ventricular re-excitation. This change was associated with triangulation of epicardial action potential because of greater dofetilide-induced prolonging effect at 90 % than 30 % repolarization. Premature ectopic beats and spontaneous short-lasting episodes of monomorphic ventricular tachycardia were observed in 44 % of dofetilide-treated heart preparations. Proarrhythmic potential of dofetilide in guinea-pig heart is attributed to steepened electrical restitution, increased transepicardial variability in electrical restitution kinetics, amplified transmural dispersion of refractoriness, increased critical interval for ventricular re-excitation, and triangulation of epicardial action potential.

  18. Quantifying potential health impacts of cadmium in cigarettes on smoker risk of lung cancer: a portfolio-of-mechanisms approach.

    PubMed

    Cox, Louis Anthony Tony

    2006-12-01

    This article introduces an approach to estimating the uncertain potential effects on lung cancer risk of removing a particular constituent, cadmium (Cd), from cigarette smoke, given the useful but incomplete scientific information available about its modes of action. The approach considers normal cell proliferation; DNA repair inhibition in normal cells affected by initiating events; proliferation, promotion, and progression of initiated cells; and death or sparing of initiated and malignant cells as they are further transformed to become fully tumorigenic. Rather than estimating unmeasured model parameters by curve fitting to epidemiological or animal experimental tumor data, we attempt rough estimates of parameters based on their biological interpretations and comparison to corresponding genetic polymorphism data. The resulting parameter estimates are admittedly uncertain and approximate, but they suggest a portfolio approach to estimating impacts of removing Cd that gives usefully robust conclusions. This approach views Cd as creating a portfolio of uncertain health impacts that can be expressed as biologically independent relative risk factors having clear mechanistic interpretations. Because Cd can act through many distinct biological mechanisms, it appears likely (subjective probability greater than 40%) that removing Cd from cigarette smoke would reduce smoker risks of lung cancer by at least 10%, although it is possible (consistent with what is known) that the true effect could be much larger or smaller. Conservative estimates and assumptions made in this calculation suggest that the true impact could be greater for some smokers. This conclusion appears to be robust to many scientific uncertainties about Cd and smoking effects.

  19. The effect of epoch length on time and frequency domain parameters of electromyographic and mechanomyographic signals.

    PubMed

    Keller, Joshua L; Housh, Terry J; Camic, Clayton L; Bergstrom, Haley C; Smith, Doug B; Smith, Cory M; Hill, Ethan C; Schmidt, Richard J; Johnson, Glen O; Zuniga, Jorge M

    2018-06-01

    The selection of epoch lengths affects the time and frequency resolution of electromyographic (EMG) and mechanomyographic (MMG) signals, as well as decisions regarding the signal processing techniques to use for determining the power density spectrum. No previous studies, however, have examined the effects of epoch length on parameters of the MMG signal. The purpose of this study was to examine the differences between epoch lengths for EMG amplitude, EMG mean power frequency (MPF), MMG amplitude, and MMG MPF from the VL and VM muscles during MVIC muscle actions as well as at each 10% of the time to exhaustion (TTE) during a continuous isometric muscle action of the leg extensors at 50% of MVIC. During the MVIC trial, there were no significant (p > 0.05) differences between epoch lengths (0.25, 0.50, 1.00, and 2.00-s) for mean absolute values for any of the EMG or MMG parameters. During the submaximal, sustained muscle action, however, absolute MMG amplitude and MMG MPF were affected by the length of epoch. All epoch related differences were eliminated by normalizing the absolute values to MVIC. These findings supported normalizing EMG and MMG parameter values to MVIC and utilizing epoch lengths that ranged from 0.25 to 2.00-s. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Four-parameter potential box with inverse square singular boundaries

    NASA Astrophysics Data System (ADS)

    Alhaidari, A. D.; Taiwo, T. J.

    2018-03-01

    Using the Tridiagonal Representation Approach (TRA), we obtain solutions (energy spectrum and corresponding wavefunctions) for a four-parameter potential box with inverse square singularity at the boundaries. It could be utilized in physical applications to replace the widely used one-parameter infinite square potential well (ISPW). The four parameters of the potential provide an added flexibility over the one-parameter ISPW to control the physical features of the system. The two potential parameters that give the singularity strength at the boundaries are naturally constrained to avoid the inherent quantum anomalies associated with the inverse square potential.

  1. DBI potential, DBI inflation action and general Lagrangian relative to phantom, K-essence and quintessence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qing; Huang, Yong-Chang, E-mail: ychuang@bjut.edu.cn

    We derive a Dirac-Born-Infeld (DBI) potential and DBI inflation action by rescaling the metric. The determinant of the induced metric naturally includes the kinetic energy and the potential energy. In particular, the potential energy and kinetic energy can convert into each other in any order, which is in agreement with the limit of classical physics. This is quite different from the usual DBI action. We show that the Taylor expansion of the DBI action can be reduced into the form in the non-linear classical physics. These investigations are the support for the statement that the results of string theory aremore » consistent with quantum mechanics and classical physics. We deduce the Phantom, K-essence, Quintessence and Generalized Klein-Gordon Equation from the DBI model.« less

  2. An Integrated Circuit for Simultaneous Extracellular Electrophysiology Recording and Optogenetic Neural Manipulation.

    PubMed

    Chen, Chang Hao; McCullagh, Elizabeth A; Pun, Sio Hang; Mak, Peng Un; Vai, Mang I; Mak, Pui In; Klug, Achim; Lei, Tim C

    2017-03-01

    The ability to record and to control action potential firing in neuronal circuits is critical to understand how the brain functions. The objective of this study is to develop a monolithic integrated circuit (IC) to record action potentials and simultaneously control action potential firing using optogenetics. A low-noise and high input impedance (or low input capacitance) neural recording amplifier is combined with a high current laser/light-emitting diode (LED) driver in a single IC. The low input capacitance of the amplifier (9.7 pF) was achieved by adding a dedicated unity gain stage optimized for high impedance metal electrodes. The input referred noise of the amplifier is [Formula: see text], which is lower than the estimated thermal noise of the metal electrode. Thus, the action potentials originating from a single neuron can be recorded with a signal-to-noise ratio of at least 6.6. The LED/laser current driver delivers a maximum current of 330 mA, which is adequate for optogenetic control. The functionality of the IC was tested with an anesthetized Mongolian gerbil and auditory stimulated action potentials were recorded from the inferior colliculus. Spontaneous firings of fifth (trigeminal) nerve fibers were also inhibited using the optogenetic protein Halorhodopsin. Moreover, a noise model of the system was derived to guide the design. A single IC to measure and control action potentials using optogenetic proteins is realized so that more complicated behavioral neuroscience research and the translational neural disorder treatments become possible in the future.

  3. Action Potential Dynamics in Fine Axons Probed with an Axonally Targeted Optical Voltage Sensor.

    PubMed

    Ma, Yihe; Bayguinov, Peter O; Jackson, Meyer B

    2017-01-01

    The complex and malleable conduction properties of axons determine how action potentials propagate through extensive axonal arbors to reach synaptic terminals. The excitability of axonal membranes plays a major role in neural circuit function, but because most axons are too thin for conventional electrical recording, their properties remain largely unexplored. To overcome this obstacle, we used a genetically encoded hybrid voltage sensor (hVOS) harboring an axonal targeting motif. Expressing this probe in transgenic mice enabled us to monitor voltage changes optically in two populations of axons in hippocampal slices, the large axons of dentate granule cells (mossy fibers) in the stratum lucidum of the CA3 region and the much finer axons of hilar mossy cells in the inner molecular layer of the dentate gyrus. Action potentials propagated with distinct velocities in each type of axon. Repetitive firing broadened action potentials in both populations, but at an intermediate frequency the degree of broadening differed. Repetitive firing also attenuated action potential amplitudes in both mossy cell and granule cell axons. These results indicate that the features of use-dependent action potential broadening, and possible failure, observed previously in large nerve terminals also appear in much finer unmyelinated axons. Subtle differences in the frequency dependences could influence the propagation of activity through different pathways to excite different populations of neurons. The axonally targeted hVOS probe used here opens up the diverse repertoire of neuronal processes to detailed biophysical study.

  4. The marketing potential of corporate social responsibility activities: the case of the alcohol industry in Latin America and the Caribbean.

    PubMed

    Pantani, Daniela; Peltzer, Raquel; Cremonte, Mariana; Robaina, Katherine; Babor, Thomas; Pinsky, Ilana

    2017-01-01

    The aims were to: (1) identify, monitor and analyse the Corporate Social Responsibility (CSR) practices of the alcohol industry in Latin America and the Caribbean (LAC) and (2) examine whether the alcohol industry is using these actions to market their products and brands. Nine health experts from Argentina, Brazil and Uruguay conducted a content analysis of 218 CSR activities using a standardized protocol. A content rating procedure was used to evaluate the marketing potential of CSR activities as well as their probable population reach and effectiveness. The LEAD procedure (longitudinal, expert and all data) was applied to verify the accuracy of industry-reported descriptions. A total of 55.8% of the actions were found to have a marketing potential, based on evidence that they are likely to promote brands and products. Actions with marketing potential were more likely to reach a larger audience than actions classified with no marketing potential. Most actions did not fit into any category recommended by the World Health Organization; 50% of the actions involving classroom and college education for young people were found to have marketing potential; 62.3% were classified as meeting the definition of risk management CSR. Alcohol industry Corporate Social Responsibility activities in Latin America and the Caribbean appear to have a strategic marketing role beyond their stated philanthropic and public health purpose. © 2016 Society for the Study of Addiction.

  5. Discrete wavelet approach to multifractality

    NASA Astrophysics Data System (ADS)

    Isaacson, Susana I.; Gabbanelli, Susana C.; Busch, Jorge R.

    2000-12-01

    The use of wavelet techniques for the multifractal analysis generalizes the box counting approach, and in addition provides information on eventual deviations of multifractal behavior. By the introduction of a wavelet partition function Wq and its corresponding free energy (beta) (q), the discrepancies between (beta) (q) and the multifractal free energy r(q) are shown to be indicative of these deviations. We study with Daubechies wavelets (D4) some 1D examples previously treated with Haar wavelets, and we apply the same ideas to some 2D Monte Carlo configurations, that simulate a solution under the action of an attractive potential. In this last case, we study the influence in the multifractal spectra and partition functions of four physical parameters: the intensity of the pairwise potential, the temperature, the range of the model potential, and the concentration of the solution. The wavelet partition function Wq carries more information about the cluster statistics than the multifractal partition function Zq, and the location of its peaks contributes to the determination of characteristic sales of the measure. In our experiences, the information provided by Daubechies wavelet sis slightly more accurate than the one obtained by Haar wavelets.

  6. Changes in intrinsic excitability of ganglion cells in degenerated retinas of RCS rats.

    PubMed

    Ren, Yi-Ming; Weng, Chuan-Huang; Zhao, Cong-Jian; Yin, Zheng-Qin

    2018-01-01

    To evaluate the intrinsic excitability of retinal ganglion cells (RGCs) in degenerated retinas. The intrinsic excitability of various morphologically defined RGC types using a combination of patch-clamp recording and the Lucifer yellow tracer in retinal whole-mount preparations harvested from Royal College of Surgeons (RCS) rats, a common retinitis pigmentosa (RP) model, in a relatively late stage of retinal degeneration (P90) were investigated. Several parameters of RGC morphologies and action potentials (APs) were measured and compared to those of non-dystrophic control rats, including dendritic stratification, dendritic field diameter, peak amplitude, half width, resting membrane potential, AP threshold, depolarization to threshold, and firing rates. Compared with non-dystrophic control RGCs, more depolarizations were required to reach the AP threshold in RCS RGCs with low spontaneous spike rates and in RCS OFF cells (especially A2o cells), and RCS RGCs maintained their dendritic morphologies, resting membrane potentials and capabilities to generate APs. RGCs are relatively well preserved morphologically and functionally, and some cells are more susceptible to decreased excitability during retinal degeneration. These findings provide valuable considerations for optimizing RP therapeutic strategies.

  7. Actions, Objectives & Concerns. Human Parameters for Architectural Design.

    ERIC Educational Resources Information Center

    Lasswell, Thomas E.; And Others

    An experiment conducted at California State College, Los Angeles, to test the value of social-psychological research in defining building needs is described. The problems of how to identify and synthesize the disparate objectives, concerns and actions of the groups who use or otherwise have an interest in large and complex buildings is discussed.…

  8. Perceiving and Reenacting Spatiotemporal Characteristics of Walking Sounds

    ERIC Educational Resources Information Center

    Young, William; Rodger, Matthew; Craig, Cathy M.

    2013-01-01

    Many studies have examined the processes involved in recognizing types of human action through sound, but little is known about whether the physical characteristics of an action (such as kinetic and kinematic parameters) can be perceived and imitated from sound. Twelve young healthy adults listened to recordings of footsteps on a gravel path taken…

  9. 76 FR 40811 - Maneb; Tolerance Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ...; Tolerance Actions AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is... established a docket for this action under docket identification (ID) number EPA-HQ-OPP-2010-0327. All... . SUPPLEMENTARY INFORMATION: I. General Information A. Does this action apply to me? You may be potentially...

  10. Through a Feminist Poststructuralist Lens: Embodied Subjectivites and Participatory Action Research

    ERIC Educational Resources Information Center

    Chesnay, Catherine T.

    2016-01-01

    An emerging literature has been building bridges between poststructuralism and participatory action research, highlighting the latter's potential for transformative action. Using examples from participative action research projects with incarcerated or previously incarcerated women, this article discusses how participatory action research is a…

  11. 77 FR 18748 - Dicloran and Formetanate; Proposed Tolerance Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... Dicloran and Formetanate; Proposed Tolerance Actions AGENCY: Environmental Protection Agency (EPA). ACTION... . SUPPLEMENTARY INFORMATION: I. General Information A. Does this action apply to me? You may be potentially affected by this action if you are an agricultural producer, food manufacturer, or pesticide manufacturer...

  12. Differential regulation of GnRH secretion in the preoptic area (POA) and the median eminence (ME) in male mice.

    PubMed

    Glanowska, Katarzyna M; Moenter, Suzanne M

    2015-01-01

    GnRH release in the median eminence (ME) is the central output for control of reproduction. GnRH processes in the preoptic area (POA) also release GnRH. We examined region-specific regulation of GnRH secretion using fast-scan cyclic voltammetry to detect GnRH release in brain slices from adult male mice. Blocking endoplasmic reticulum calcium reuptake to elevate intracellular calcium evokes GnRH release in both the ME and POA. This release is action potential dependent in the ME but not the POA. Locally applied kisspeptin induced GnRH secretion in both the ME and POA. Local blockade of inositol triphospate-mediated calcium release inhibited kisspeptin-induced GnRH release in the ME, but broad blockade was required in the POA. In contrast, kisspeptin-evoked secretion in the POA was blocked by local gonadotropin-inhibitory hormone, but broad gonadotropin-inhibitory hormone application was required in the ME. Although action potentials are required for GnRH release induced by pharmacologically-increased intracellular calcium in the ME and kisspeptin-evoked release requires inositol triphosphate-mediated calcium release, blocking action potentials did not inhibit kisspeptin-induced GnRH release in the ME. Kisspeptin-induced GnRH release was suppressed after blocking both action potentials and plasma membrane Ca(2+) channels. This suggests that kisspeptin action in the ME requires both increased intracellular calcium and influx from the outside of the cell but not action potentials. Local interactions among kisspeptin and GnRH processes in the ME could thus stimulate GnRH release without involving perisomatic regions of GnRH neurons. Coupling between action potential generation and hormone release in GnRH neurons is thus likely physiologically labile and may vary with region.

  13. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids

    PubMed Central

    Covey, Dan P.; Bunner, Kendra D.; Schuweiler, Douglas R.; Cheer, Joseph F.; Garris, Paul A.

    2018-01-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement. PMID:27038339

  14. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids.

    PubMed

    Covey, Dan P; Bunner, Kendra D; Schuweiler, Douglas R; Cheer, Joseph F; Garris, Paul A

    2016-06-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Naturalistic stimulation changes the dynamic response of action potential encoding in a mechanoreceptor

    PubMed Central

    Pfeiffer, Keram; French, Andrew S.

    2015-01-01

    Naturalistic signals were created from vibrations made by locusts walking on a Sansevieria plant. Both naturalistic and Gaussian noise signals were used to mechanically stimulate VS-3 slit-sense mechanoreceptor neurons of the spider, Cupiennius salei, with stimulus amplitudes adjusted to give similar firing rates for either stimulus. Intracellular microelectrodes recorded action potentials, receptor potential, and receptor current, using current clamp and voltage clamp. Frequency response analysis showed that naturalistic stimulation contained relatively more power at low frequencies, and caused increased neuronal sensitivity to higher frequencies. In contrast, varying the amplitude of Gaussian stimulation did not change neuronal dynamics. Naturalistic stimulation contained less entropy than Gaussian, but signal entropy was higher than stimulus in the resultant receptor current, indicating addition of uncorrelated noise during transduction. The presence of added noise was supported by measuring linear information capacity in the receptor current. Total entropy and information capacity in action potentials produced by either stimulus were much lower than in earlier stages, and limited to the maximum entropy of binary signals. We conclude that the dynamics of action potential encoding in VS-3 neurons are sensitive to the form of stimulation, but entropy and information capacity of action potentials are limited by firing rate. PMID:26578975

  16. Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance.

    PubMed

    Onorato, Irene; D'Alessandro, Giuseppina; Di Castro, Maria Amalia; Renzi, Massimiliano; Dobrowolny, Gabriella; Musarò, Antonio; Salvetti, Marco; Limatola, Cristina; Crisanti, Andrea; Grassi, Francesca

    2016-01-01

    Noise can enhance perception of tactile and proprioceptive stimuli by stochastic resonance processes. However, the mechanisms underlying this general phenomenon remain to be characterized. Here we studied how externally applied noise influences action potential firing in mouse primary sensory neurons of dorsal root ganglia, modelling a basic process in sensory perception. Since noisy mechanical stimuli may cause stochastic fluctuations in receptor potential, we examined the effects of sub-threshold depolarizing current steps with superimposed random fluctuations. We performed whole cell patch clamp recordings in cultured neurons of mouse dorsal root ganglia. Noise was added either before and during the step, or during the depolarizing step only, to focus onto the specific effects of external noise on action potential generation. In both cases, step + noise stimuli triggered significantly more action potentials than steps alone. The normalized power norm had a clear peak at intermediate noise levels, demonstrating that the phenomenon is driven by stochastic resonance. Spikes evoked in step + noise trials occur earlier and show faster rise time as compared to the occasional ones elicited by steps alone. These data suggest that external noise enhances, via stochastic resonance, the recruitment of transient voltage-gated Na channels, responsible for action potential firing in response to rapid step-wise depolarizing currents.

  17. Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance

    PubMed Central

    Onorato, Irene; D'Alessandro, Giuseppina; Di Castro, Maria Amalia; Renzi, Massimiliano; Dobrowolny, Gabriella; Musarò, Antonio; Salvetti, Marco; Limatola, Cristina; Crisanti, Andrea; Grassi, Francesca

    2016-01-01

    Noise can enhance perception of tactile and proprioceptive stimuli by stochastic resonance processes. However, the mechanisms underlying this general phenomenon remain to be characterized. Here we studied how externally applied noise influences action potential firing in mouse primary sensory neurons of dorsal root ganglia, modelling a basic process in sensory perception. Since noisy mechanical stimuli may cause stochastic fluctuations in receptor potential, we examined the effects of sub-threshold depolarizing current steps with superimposed random fluctuations. We performed whole cell patch clamp recordings in cultured neurons of mouse dorsal root ganglia. Noise was added either before and during the step, or during the depolarizing step only, to focus onto the specific effects of external noise on action potential generation. In both cases, step + noise stimuli triggered significantly more action potentials than steps alone. The normalized power norm had a clear peak at intermediate noise levels, demonstrating that the phenomenon is driven by stochastic resonance. Spikes evoked in step + noise trials occur earlier and show faster rise time as compared to the occasional ones elicited by steps alone. These data suggest that external noise enhances, via stochastic resonance, the recruitment of transient voltage-gated Na channels, responsible for action potential firing in response to rapid step-wise depolarizing currents. PMID:27525414

  18. Spin foam models for quantum gravity from lattice path integrals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonzom, Valentin

    2009-09-15

    Spin foam models for quantum gravity are derived from lattice path integrals. The setting involves variables from both lattice BF theory and Regge calculus. The action consists in a Regge action, which depends on areas, dihedral angles and includes the Immirzi parameter. In addition, a measure is inserted to ensure a consistent gluing of simplices, so that the amplitude is dominated by configurations that satisfy the parallel transport relations. We explicitly compute the path integral as a sum over spin foams for a generic measure. The Freidel-Krasnov and Engle-Pereira-Rovelli models correspond to a special choice of gluing. In this case,more » the equations of motion describe genuine geometries, where the constraints of area-angle Regge calculus are satisfied. Furthermore, the Immirzi parameter drops out of the on-shell action, and stationarity with respect to area variations requires spacetime geometry to be flat.« less

  19. Air-Breathing Hypersonic Vehicle Tracking Control Based on Adaptive Dynamic Programming.

    PubMed

    Mu, Chaoxu; Ni, Zhen; Sun, Changyin; He, Haibo

    2017-03-01

    In this paper, we propose a data-driven supplementary control approach with adaptive learning capability for air-breathing hypersonic vehicle tracking control based on action-dependent heuristic dynamic programming (ADHDP). The control action is generated by the combination of sliding mode control (SMC) and the ADHDP controller to track the desired velocity and the desired altitude. In particular, the ADHDP controller observes the differences between the actual velocity/altitude and the desired velocity/altitude, and then provides a supplementary control action accordingly. The ADHDP controller does not rely on the accurate mathematical model function and is data driven. Meanwhile, it is capable to adjust its parameters online over time under various working conditions, which is very suitable for hypersonic vehicle system with parameter uncertainties and disturbances. We verify the adaptive supplementary control approach versus the traditional SMC in the cruising flight, and provide three simulation studies to illustrate the improved performance with the proposed approach.

  20. Dimensional regularization of the IR divergences in the Fokker action of point-particle binaries at the fourth post-Newtonian order

    NASA Astrophysics Data System (ADS)

    Bernard, Laura; Blanchet, Luc; Bohé, Alejandro; Faye, Guillaume; Marsat, Sylvain

    2017-11-01

    The Fokker action of point-particle binaries at the fourth post-Newtonian (4PN) approximation of general relativity has been determined previously. However two ambiguity parameters associated with infrared (IR) divergencies of spatial integrals had to be introduced. These two parameters were fixed by comparison with gravitational self-force (GSF) calculations of the conserved energy and periastron advance for circular orbits in the test-mass limit. In the present paper together with a companion paper, we determine both these ambiguities from first principle, by means of dimensional regularization. Our computation is thus entirely defined within the dimensional regularization scheme, for treating at once the IR and ultra-violet (UV) divergencies. In particular, we obtain crucial contributions coming from the Einstein-Hilbert part of the action and from the nonlocal tail term in arbitrary dimensions, which resolve the ambiguities.

  1. Generation of action potentials in a mathematical model of corticotrophs.

    PubMed Central

    LeBeau, A P; Robson, A B; McKinnon, A E; Donald, R A; Sneyd, J

    1997-01-01

    Corticotropin-releasing hormone (CRH) is an important regulator of adrenocorticotropin (ACTH) secretion from pituitary corticotroph cells. The intracellular signaling system that underlies this process involves modulation of voltage-sensitive Ca2+ channel activity, which leads to the generation of Ca2+ action potentials and influx of Ca2+. However, the mechanisms by which Ca2+ channel activity is modulated in corticotrophs are not currently known. We investigated this process in a Hodgkin-Huxley-type mathematical model of corticotroph plasma membrane electrical responses. We found that an increase in the L-type Ca2+ current was sufficient to generate action potentials from a previously resting state of the model. The increase in the L-type current could be elicited by either a shift in the voltage dependence of the current toward more negative potentials, or by an increase in the conductance of the current. Although either of these mechanisms is potentially responsible for the generation of action potentials, previous experimental evidence favors the former mechanism, with the magnitude of the shift required being consistent with the experimental findings. The model also shows that the T-type Ca2+ current plays a role in setting the excitability of the plasma membrane, but does not appear to contribute in a dynamic manner to action potential generation. Inhibition of a K+ conductance that is active at rest also affects the excitability of the plasma membrane. PMID:9284294

  2. Thermodynamically Feasible Kinetic Models of Reaction Networks

    PubMed Central

    Ederer, Michael; Gilles, Ernst Dieter

    2007-01-01

    The dynamics of biological reaction networks are strongly constrained by thermodynamics. An holistic understanding of their behavior and regulation requires mathematical models that observe these constraints. However, kinetic models may easily violate the constraints imposed by the principle of detailed balance, if no special care is taken. Detailed balance demands that in thermodynamic equilibrium all fluxes vanish. We introduce a thermodynamic-kinetic modeling (TKM) formalism that adapts the concepts of potentials and forces from irreversible thermodynamics to kinetic modeling. In the proposed formalism, the thermokinetic potential of a compound is proportional to its concentration. The proportionality factor is a compound-specific parameter called capacity. The thermokinetic force of a reaction is a function of the potentials. Every reaction has a resistance that is the ratio of thermokinetic force and reaction rate. For mass-action type kinetics, the resistances are constant. Since it relies on the thermodynamic concept of potentials and forces, the TKM formalism structurally observes detailed balance for all values of capacities and resistances. Thus, it provides an easy way to formulate physically feasible, kinetic models of biological reaction networks. The TKM formalism is useful for modeling large biological networks that are subject to many detailed balance relations. PMID:17208985

  3. Punishment induced behavioural and neurophysiological variability reveals dopamine-dependent selection of kinematic movement parameters

    PubMed Central

    Galea, Joseph M.; Ruge, Diane; Buijink, Arthur; Bestmann, Sven; Rothwell, John C.

    2013-01-01

    Action selection describes the high-level process which selects between competing movements. In animals, behavioural variability is critical for the motor exploration required to select the action which optimizes reward and minimizes cost/punishment, and is guided by dopamine (DA). The aim of this study was to test in humans whether low-level movement parameters are affected by punishment and reward in ways similar to high-level action selection. Moreover, we addressed the proposed dependence of behavioural and neurophysiological variability on DA, and whether this may underpin the exploration of kinematic parameters. Participants performed an out-and-back index finger movement and were instructed that monetary reward and punishment were based on its maximal acceleration (MA). In fact, the feedback was not contingent on the participant’s behaviour but pre-determined. Blocks highly-biased towards punishment were associated with increased MA variability relative to blocks with either reward or without feedback. This increase in behavioural variability was positively correlated with neurophysiological variability, as measured by changes in cortico-spinal excitability with transcranial magnetic stimulation over the primary motor cortex. Following the administration of a DA-antagonist, the variability associated with punishment diminished and the correlation between behavioural and neurophysiological variability no longer existed. Similar changes in variability were not observed when participants executed a pre-determined MA, nor did DA influence resting neurophysiological variability. Thus, under conditions of punishment, DA-dependent processes influence the selection of low-level movement parameters. We propose that the enhanced behavioural variability reflects the exploration of kinematic parameters for less punishing, or conversely more rewarding, outcomes. PMID:23447607

  4. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor

    PubMed Central

    St-Pierre, François; Marshall, Jesse D; Yang, Ying; Gong, Yiyang; Schnitzer, Mark J; Lin, Michael Z

    2015-01-01

    Accurate optical reporting of electrical activity in genetically defined neuronal populations is a long-standing goal in neuroscience. Here we describe Accelerated Sensor of Action Potentials 1 (ASAP1), a novel voltage sensor design in which a circularly permuted green fluorescent protein is inserted within an extracellular loop of a voltage-sensing domain, rendering fluorescence responsive to membrane potential. ASAP1 demonstrates on- and off- kinetics of 2.1 and 2.0 ms, reliably detects single action potentials and subthreshold potential changes, and tracks trains of action potential waveforms up to 200 Hz in single trials. With a favorable combination of brightness, dynamic range, and speed, ASAP1 enables continuous monitoring of membrane potential in neurons at KHz frame rates using standard epifluorescence microscopy. PMID:24755780

  5. Classical conformal blocks and accessory parameters from isomonodromic deformations

    NASA Astrophysics Data System (ADS)

    Lencsés, Máté; Novaes, Fábio

    2018-04-01

    Classical conformal blocks appear in the large central charge limit of 2D Virasoro conformal blocks. In the AdS3 /CFT2 correspondence, they are related to classical bulk actions and used to calculate entanglement entropy and geodesic lengths. In this work, we discuss the identification of classical conformal blocks and the Painlevé VI action showing how isomonodromic deformations naturally appear in this context. We recover the accessory parameter expansion of Heun's equation from the isomonodromic τ -function. We also discuss how the c = 1 expansion of the τ -function leads to a novel approach to calculate the 4-point classical conformal block.

  6. Stimulus waveform determines the characteristics of sensory nerve action potentials.

    PubMed

    Pereira, Pedro; Leote, João; Cabib, Christopher; Casanova-Molla, Jordi; Valls-Sole, Josep

    2016-03-01

    In routine nerve conduction studies supramaximal electrical stimuli generate sensory nerve action potentials by depolarization of nerve fibers under the cathode. However, stimuli of submaximal intensity may give rise to action potentials generated under the anode. We tested if this phenomenon depends on the characteristics of stimulus ending. We added a circuit to our stimulation device that allowed us to modify the end of the stimulus by increasing the time constant of the decay phase. Increasing the fall time caused a reduction of anode action potential (anAP) amplitude, and eventually abolished it, in all tested subjects. We subsequently examined the stimulus waveform in a series of available electromyographs stimulators and found that the anAP could only be obtained with stimulators that issued stimuli ending sharply. Our results prove that the anAP is generated at stimulus end, and depends on the sharpness of current shut down. Electromyographs produce stimuli of varying characteristics, which limits the reproducibility of anAP results by interested researchers. The study of anodal action potentials might be a useful tool to have a quick appraisal of distal human sensory nerve excitability. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Effects of Muscle Atrophy on Motor Control: Cage-size Effects

    NASA Technical Reports Server (NTRS)

    Stuart, D. G.

    1985-01-01

    Two populations of male Sprague-Dawley rats were raised either in conventional minimum-specification cages or in a larger cage. When the animals were mature (125 to 150 d), the physiological status of the soleus (SOL) and extensor digitorum longus (EDL) muscles of the small- and large-cage animals were compared. Analysis of whole-muscle properties including the performance of the test muscle during a standardized fatigue test in which the nerve to the test muscle was subjected to supramaximal intermittent stimulation shows: (1) the amplitude, area, mean amplitude, and peak-to-peak rate of the compound muscle action potential decreased per the course of the fatigue test; (2) cage size did not affect the profile of changes for any of the action-potential measurements; (3) changes exhibited in the compound muscle action potential by SOL and EDL were substantially different; and (4) except for SOL of the large-cage rats, there was a high correlation between all four measures of the compound muscle action potential and the peak tetanic force during the fatigue test; i.e., either the electrical activity largely etermines the force profile during the fatigue test or else contractile-related activity substantially affects the compound muscle action potential.

  8. Electromyography (image)

    MedlinePlus

    ... inserted through the skin into the muscle. Each muscle fiber that contracts will produce an action potential. The presence, size, and shape of the wave form of the action potential ... the ability of the muscle to respond to nervous stimulation.

  9. Do metric fluctuations affect the Higgs dynamics during inflation?

    NASA Astrophysics Data System (ADS)

    Markkanen, Tommi; Nurmi, Sami; Rajantie, Arttu

    2017-12-01

    We show that the dynamics of the Higgs field during inflation is not affected by metric fluctuations if the Higgs is an energetically subdominant light spectator. For Standard Model parameters we find that couplings between Higgs and metric fluctuations are suppressed by Script O(10‑7). They are negligible compared to both pure Higgs terms in the effective potential and the unavoidable non-minimal Higgs coupling to background scalar curvature. The question of the electroweak vacuum instability during high energy scale inflation can therefore be studied consistently using the Jordan frame action in a Friedmann-Lemaître-Robertson-Walker metric, where the Higgs-curvature coupling enters as an effective mass contribution. Similar results apply for other light spectator scalar fields during inflation.

  10. Amplified fermion production from overpopulated Bose fields

    NASA Astrophysics Data System (ADS)

    Berges, J.; Gelfand, D.; Sexty, D.

    2014-01-01

    We study the real-time dynamics of fermions coupled to scalar fields in a linear sigma model, which is often employed in the context of preheating after inflation or as a low-energy effective model for quantum chromodynamics. We find a dramatic amplification of fermion production in the presence of highly occupied bosonic quanta for weak as well as strong effective couplings. For this we consider the range of validity of different methods: lattice simulations with male/female fermions, the mode functions approach and the quantum 2PI effective action with its associated kinetic theory. For strongly coupled fermions we find a rapid approach to a Fermi-Dirac distribution with time-dependent temperature and chemical potential parameters, while the bosons are still far from equilibrium.

  11. The impact of size on particulate vaccine adjuvants.

    PubMed

    Shah, Ruchi R; O'Hagan, Derek T; Amiji, Mansoor M; Brito, Luis A

    2014-12-01

    Particulate adjuvants have been successful at inducing increased immune responses against many poorly immunogenic antigens. However, the mechanism of action of these adjuvants often remains unclear. As more potential vaccine targets are emerging, it is becoming necessary to broaden our knowledge on the factors involved in generating potent immune responses to recombinant antigens with adjuvants. While composition of adjuvants is integral in defining the overall performance of an adjuvant, some physical parameters such as particle size, surface charge and surface modification may also contribute to the potency. In this review, we will try to highlight the role of particle size in controlling the immune responses to adjuvanted vaccines, with a focus on insoluble aluminum salts, oil-in-water emulsions, polymeric particles and liposomes.

  12. Modeling the action-potential-sensitive nonlinear-optical response of myelinated nerve fibers and short-term memory

    NASA Astrophysics Data System (ADS)

    Shneider, M. N.; Voronin, A. A.; Zheltikov, A. M.

    2011-11-01

    The Goldman-Albus treatment of the action-potential dynamics is combined with a phenomenological description of molecular hyperpolarizabilities into a closed-form model of the action-potential-sensitive second-harmonic response of myelinated nerve fibers with nodes of Ranvier. This response is shown to be sensitive to nerve demyelination, thus enabling an optical diagnosis of various demyelinating diseases, including multiple sclerosis. The model is applied to examine the nonlinear-optical response of a three-neuron reverberating circuit—the basic element of short-term memory.

  13. Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells

    PubMed Central

    Johnson, Stuart L.; Eckrich, Tobias; Kuhn, Stephanie; Zampini, Valeria; Franz, Christoph; Ranatunga, Kishani M.; Roberts, Terri P.; Masetto, Sergio; Knipper, Marlies; Kros, Corné J.; Marcotti, Walter

    2011-01-01

    Spontaneous action potential activity is crucial for mammalian sensory system development. In the auditory system, patterned firing activity has been observed in immature spiral ganglion cells and brain-stem neurons and is likely to depend on cochlear inner hair cell (IHC) action potentials. It remains uncertain whether spiking activity is intrinsic to developing IHCs and whether it shows patterning. We found that action potentials are intrinsically generated by immature IHCs of altricial rodents and that apical IHCs exhibit bursting activity as opposed to more sustained firing in basal cells. We show that the efferent neurotransmitter ACh, by fine-tuning the IHC’s resting membrane potential (Vm), is crucial for the bursting pattern in apical cells. Endogenous extracellular ATP also contributes to the Vm of apical and basal IHCs by activating SK2 channels. We hypothesize that the difference in firing pattern along the cochlea instructs the tonotopic differentiation of IHCs and auditory pathway. PMID:21572434

  14. Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells.

    PubMed

    Johnson, Stuart L; Eckrich, Tobias; Kuhn, Stephanie; Zampini, Valeria; Franz, Christoph; Ranatunga, Kishani M; Roberts, Terri P; Masetto, Sergio; Knipper, Marlies; Kros, Corné J; Marcotti, Walter

    2011-06-01

    Spontaneous action potential activity is crucial for mammalian sensory system development. In the auditory system, patterned firing activity has been observed in immature spiral ganglion and brain-stem neurons and is likely to depend on cochlear inner hair cell (IHC) action potentials. It remains uncertain whether spiking activity is intrinsic to developing IHCs and whether it shows patterning. We found that action potentials were intrinsically generated by immature IHCs of altricial rodents and that apical IHCs showed bursting activity as opposed to more sustained firing in basal cells. We show that the efferent neurotransmitter acetylcholine fine-tunes the IHC's resting membrane potential (V(m)), and as such is crucial for the bursting pattern in apical cells. Endogenous extracellular ATP also contributes to the V(m) of apical and basal IHCs by triggering small-conductance Ca(2+)-activated K(+) (SK2) channels. We propose that the difference in firing pattern along the cochlea instructs the tonotopic differentiation of IHCs and auditory pathway.

  15. Theoretical Calculations of XeF Ground State Kinetics.

    DTIC Science & Technology

    1988-03-01

    potential parameters for XeF are taken from Tellinghuisen et al. 3 The values of the Lennard - Jones parameters for HeF...parameters for the Morse potential and the Lennard - Jones potentials are listed in Table 1. These parameters for the Lennard - Jones potentials produce the...relaxation and dissociation. 13 ~ o Table 1. Potential Parameters. Morse Function (XeF)3 De = 3.35 kcal/mol ae=1.726 a.u.-1 re =4.367 a.u. Lennard Jones

  16. Examination of a demyelinated fiber by action-potential-encoded second harmonic generation

    NASA Astrophysics Data System (ADS)

    Chen, Xin-guang; Luo, Zhi-hui; Yang, Hong-qin; Huang, Yi-mei; Xie, Shu-sen

    2012-03-01

    Axonal demyelination is a common phenomenon in the nervous system in human. Conventional measured approaches such as surface recording electrode and diffusion tensor imaging, are hard to fast and accurately determine the demyelinated status of a fiber. In this study, we first presented a mathematical model of nerve fiber demyelination, and it was combined with second harmonic generation(SHG) technique to study the characteristics of action-potential-encoded SHG and analyze the sensitivity of SHG signals responded to membrane potential. And then, we used this approach to fast examine the injured myelin sheaths resulted from demyelination. Each myelin sheath of a fiber was examined simultaneously by this approach. The results showed that fiber demyelination led to observable attenuation of action potential amplitude. The delay of action potential conduction would be markedly observed when the fiber demyelination was more than 80%. Furthermore, the normal and injured myelin sheaths of a myelinated fiber could be distinguished via the changes of SHG signals, which revealed the possibility of SHG technique in the examination of a demyelinated fiber. Our study shows that this approach may have potential application values in clinic.

  17. Expeditionary Readiness Training (ExpeRT) Course Expansion Final Environmental Assessment Creech Air Force Base

    DTIC Science & Technology

    2006-07-01

    potential environmental consequences of the proposed action and no-action alternative and are addressed for: air quality, soils and water resources...evaluated in detail to identify potential environmental consequences: air quality; soils and water resources; biological resources; and cultural resources...significance. Therefore, this proposed action would not constitute a significant impact and would conform to regional standards. Soils and Water Resources

  18. Fish acute toxicity syndromes and their use in the QSAR approach to hazard assessment.

    PubMed Central

    McKim, J M; Bradbury, S P; Niemi, G J

    1987-01-01

    Implementation of the Toxic Substances Control Act of 1977 creates the need to reliably establish testing priorities because laboratory resources are limited and the number of industrial chemicals requiring evaluation is overwhelming. The use of quantitative structure activity relationship (QSAR) models as rapid and predictive screening tools to select more potentially hazardous chemicals for in-depth laboratory evaluation has been proposed. Further implementation and refinement of quantitative structure-toxicity relationships in aquatic toxicology and hazard assessment requires the development of a "mode-of-action" database. With such a database, a qualitative structure-activity relationship can be formulated to assign the proper mode of action, and respective QSAR, to a given chemical structure. In this review, the development of fish acute toxicity syndromes (FATS), which are toxic-response sets based on various behavioral and physiological-biochemical measurements, and their projected use in the mode-of-action database are outlined. Using behavioral parameters monitored in the fathead minnow during acute toxicity testing, FATS associated with acetylcholinesterase (AChE) inhibitors and narcotics could be reliably predicted. However, compounds classified as oxidative phosphorylation uncouplers or stimulants could not be resolved. Refinement of this approach by using respiratory-cardiovascular responses in the rainbow trout, enabled FATS associated with AChE inhibitors, convulsants, narcotics, respiratory blockers, respiratory membrane irritants, and uncouplers to be correctly predicted. PMID:3297660

  19. [Age-related features of neuromuscular function in rats with hyperthyroidism].

    PubMed

    Nerush, P O; Makiĭ, Ie A; Rodyns'kyĭ, O H

    2001-01-01

    Studied features of functioning of nervous-muscular system at white rats of two age groups: preadolescent (5 weeks) and puberal (24 weeks), in conditions experimental hyperthyroidism (HT). It is established, that in conditions HT at action of the raised concentration thyroxine characteristics of excitation gastrocnemius muscles essentially changed at irritation of a sciatic nerve in groups preadolescent and puberal animals. In all age groups in conditions HT increase of a threshold of excitation gastrocnemius muscles is marked at indirect stimulation and decrease at direct stimulation; also in all age groups in conditions HT reduction of time chronaxy muscles is fixed, both at direct, and at indirect irritation. At preadolescent animals, as against puberal in conditions HT at action of the raised concentration thyroxine on nervous-muscular system it is not revealed authentic change of the latent period and amplitude of potential of action (PA). The conclusion is made, that in conditions HT change of a threshold of excitation and chronaxy gastrocnemius muscles both at direct, and at indirect irritation do not carry age specificity and have an identical orientation, both at preadolescent, and at puberal rats. At preadolescent animals in conditions HT, as against puberal the parameter of amplitude and latent period PA authentically did not change, that can testify to smaller sensitivity of the caused answers gastrocnemius muscles to the raised concentration thyroxine, probably, by virtue of immaturity peripheral neuromotor the device.

  20. Voltage-gated currents in identified rat olfactory receptor neurons.

    PubMed

    Trombley, P Q; Westbrook, G L

    1991-02-01

    Whole-cell recording techniques were used to characterize voltage-gated membrane currents in neonatal rat olfactory receptor neurons (ORNs) in cell culture. Mature ORNs were identified in culture by their characteristic bipolar morphology, by retrograde labeling techniques, and by olfactory marker protein (OMP) immunoreactivity. ORNs did not have spontaneous activity, but fired action potentials to depolarizing current pulses. Action potentials were blocked by tetrodotoxin (TTX), which contrasts with the TTX-resistant action potentials in salamander olfactory receptor cells (e.g., Firestein and Werblin, 1987). Prolonged, suprathreshold current pulses evoked only a single action potential; however, repetitive firing up to 35 Hz could be elicited by a series of brief depolarizing pulses. Under voltage clamp, the TTX-sensitive sodium current had activation and inactivation properties similar to other excitable cells. In TTX and 20 mM barium, sustained inward current were evoked by voltage steps positive to -30 mV. This current was blocked by Cd (100 microM) and by nifedipine (IC50 = 368 nM) consistent with L-type calcium channels in other neurons. No T-type calcium current was observed. Voltage steps positive to -20 mV also evoked an outward current that did not inactivate during 100-msec depolarizations. Tail current analysis of this current was consistent with a selective potassium conductance. The outward current was blocked by external tetraethylammonium but was unaffected by Cd or 4-aminopyridine (4-AP) or by removal of external calcium. A transient outward current was not observed. The 3 voltage-dependent conductances in cultured rat ORNs appear to be sufficient for 2 essential functions: action potential generation and transmitter release. As a single odorant-activated channel can trigger an action potential (e.g., Lynch and Barry, 1989), the repetitive firing seen with brief depolarizing pulses suggests that ORNs do not integrate sensory input, but rather act as high-fidelity relays such that each opening of an odorant-activated channel reaches the olfactory bulb glomeruli as an action potential.

  1. 11.72 sq cm SiC Wafer-scale Interconnected 64 kA PiN Diode

    DTIC Science & Technology

    2012-01-30

    drop of 10.3 V. The dissipated energy was 382 J and the calculated action exceeded 1.7 MA2 -s. Preliminary development of high voltage interconnection...scale diode action (surge current integral), a key reliability parameter, exceeded 1.7 MA2 -s. Figure 6: The wafer-scale interconnected diode...scale diode was 382 J and the calculated action exceeded 1.7 MA2 -sec. High voltage operation of PiN diodes, thyristors, and other semiconductor

  2. Physical limitations in sensors for a drag-free deep space probe

    NASA Technical Reports Server (NTRS)

    Juillerat, R.

    1971-01-01

    The inner perturbing forces acting on sensors were analyzed, taking into account the technological limitations imposed on the proof mass position pickup and proof mass acquisition system. The resulting perturbing accelerations are evaluated as a function of the drag-free sensor parameters. Perturbations included gravitational attraction, electrical action, magnetic action, pressure effects, radiation effects, and action of the position pickup. These data can be used to study the laws of guidance, providing an optimization of the space probe as a whole.

  3. The Potential of Deweyan-Inspired Action Research

    ERIC Educational Resources Information Center

    Stark, Jody L.

    2014-01-01

    In its broadest sense, pragmatism could be said to be the philosophical orientation of all action research. Action research is characterized by research, action, and participation grounded in democratic principles and guided by the aim of social improvement. Furthermore, action research is an active process of inquiry that does not admit…

  4. Meteorological Decision Assistance.

    DTIC Science & Technology

    1981-08-01

    500 for labor and materials. The most economical course of action can be determined by computing the cost/loss ratio (C/L) and comparing it to the...interest, a clima - tology of these parameters, the impact of these parameters on the customer’s mission, and the techniques for assessing the probability of

  5. 40 CFR 258.54 - Detection monitoring program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.54 Detection... indicator parameters for a MSWLF unit, in lieu of some or all of the heavy metals (constituents 1-15 in... parameters, waste constituents, and reaction products in the ground water; and (iv) The concentration or...

  6. 40 CFR 258.54 - Detection monitoring program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.54 Detection... indicator parameters for a MSWLF unit, in lieu of some or all of the heavy metals (constituents 1-15 in... parameters, waste constituents, and reaction products in the ground water; and (iv) The concentration or...

  7. 40 CFR 258.54 - Detection monitoring program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.54 Detection... indicator parameters for a MSWLF unit, in lieu of some or all of the heavy metals (constituents 1-15 in... parameters, waste constituents, and reaction products in the ground water; and (iv) The concentration or...

  8. 40 CFR 258.54 - Detection monitoring program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.54 Detection... indicator parameters for a MSWLF unit, in lieu of some or all of the heavy metals (constituents 1-15 in... parameters, waste constituents, and reaction products in the ground water; and (iv) The concentration or...

  9. Signal propagation along the axon.

    PubMed

    Rama, Sylvain; Zbili, Mickaël; Debanne, Dominique

    2018-03-08

    Axons link distant brain regions and are usually considered as simple transmission cables in which reliable propagation occurs once an action potential has been generated. Safe propagation of action potentials relies on specific ion channel expression at strategic points of the axon such as nodes of Ranvier or axonal branch points. However, while action potentials are generally considered as the quantum of neuronal information, their signaling is not entirely digital. In fact, both their shape and their conduction speed have been shown to be modulated by activity, leading to regulations of synaptic latency and synaptic strength. We report here newly identified mechanisms of (1) safe spike propagation along the axon, (2) compartmentalization of action potential shape in the axon, (3) analog modulation of spike-evoked synaptic transmission and (4) alteration in conduction time after persistent regulation of axon morphology in central neurons. We discuss the contribution of these regulations in information processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Action potentials drive body wall muscle contractions in Caenorhabditis elegans

    PubMed Central

    Gao, Shangbang; Zhen, Mei

    2011-01-01

    The sinusoidal locomotion exhibited by Caenorhabditis elegans predicts a tight regulation of contractions and relaxations of its body wall muscles. Vertebrate skeletal muscle contractions are driven by voltage-gated sodium channel–dependent action potentials. How coordinated motor outputs are regulated in C. elegans, which does not have voltage-gated sodium channels, remains unknown. Here, we show that C. elegans body wall muscles fire all-or-none, calcium-dependent action potentials that are driven by the L-type voltage-gated calcium and Kv1 voltage-dependent potassium channels. We further demonstrate that the excitatory and inhibitory motoneuron activities regulate the frequency of action potentials to coordinate muscle contraction and relaxation, respectively. This study provides direct evidence for the dual-modulatory model of the C. elegans motor circuit; moreover, it reveals a mode of motor control in which muscle cells integrate graded inputs of the nervous system and respond with all-or-none electrical signals. PMID:21248227

  11. A Parametric Computational Model of the Action Potential of Pacemaker Cells.

    PubMed

    Ai, Weiwei; Patel, Nitish D; Roop, Partha S; Malik, Avinash; Andalam, Sidharta; Yip, Eugene; Allen, Nathan; Trew, Mark L

    2018-01-01

    A flexible, efficient, and verifiable pacemaker cell model is essential to the design of real-time virtual hearts that can be used for closed-loop validation of cardiac devices. A new parametric model of pacemaker action potential is developed to address this need. The action potential phases are modeled using hybrid automaton with one piecewise-linear continuous variable. The model can capture rate-dependent dynamics, such as action potential duration restitution, conduction velocity restitution, and overdrive suppression by incorporating nonlinear update functions. Simulated dynamics of the model compared well with previous models and clinical data. The results show that the parametric model can reproduce the electrophysiological dynamics of a variety of pacemaker cells, such as sinoatrial node, atrioventricular node, and the His-Purkinje system, under varying cardiac conditions. This is an important contribution toward closed-loop validation of cardiac devices using real-time heart models.

  12. Initiation and blocking of the action potential in an axon in weak ultrasonic or microwave fields

    NASA Astrophysics Data System (ADS)

    Shneider, M. N.; Pekker, M.

    2014-05-01

    In this paper, we analyze the effect of the redistribution of the transmembrane ion channels in an axon caused by longitudinal acoustic vibrations of the membrane. These oscillations can be excited by an external source of ultrasound and weak microwave radiation interacting with the charges sitting on the surface of the lipid membrane. It is shown, using the Hodgkin-Huxley model of the axon, that the density redistribution of transmembrane sodium channels may reduce the threshold of the action potential, up to its spontaneous initiation. At the significant redistribution of sodium channels in the membrane, the rarefaction zones of the transmembrane channel density are formed, blocking the propagation of the action potential. Blocking the action potential propagation along the axon is shown to cause anesthesia in the example case of a squid axon. Various approaches to experimental observation of the effects considered in this paper are discussed.

  13. A Mechatronic System for Quantitative Application and Assessment of Massage-Like Actions in Small Animals

    PubMed Central

    Wang, Qian; Zeng, Hansong; Best, Thomas M.; Haas, Caroline; Heffner, Ned T.; Agarwal, Sudha; Zhao, Yi

    2013-01-01

    Massage therapy has a long history and has been widely believed effective in restoring tissue function, relieving pain and stress, and promoting overall well-being. However, the application of massage-like actions and the efficacy of massage are largely based on anecdotal experiences that are difficult to define and measure. This leads to a somewhat limited evidence-based interface of massage therapy with modern medicine. In this study, we introduce a mechatronic device that delivers highly reproducible massage-like mechanical loads to the hind limbs of small animals (rats and rabbits), where various massage-like actions are quantified by the loading parameters (magnitude, frequency and duration) of the compressive and transverse forces on the subject tissues. The effect of massage is measured by the difference in passive viscoelastic properties of the subject tissues before and after mechanical loading, both obtained by the same device. Results show that this device is useful in identifying the loading parameters that are most conducive to a change in tissue mechanical properties, and can determine the range of loading parameters that result in sustained changes in tissue mechanical properties and function. This device presents the first step in our effort for quantifying the application of massage-like actions used clinically and measurement of their efficacy that can readily be combined with various quantitative measures (e.g., active mechanical properties and physiological assays) for determining the therapeutic and mechanistic effects of massage therapies. PMID:23943071

  14. Reliability of directional information in unsorted spikes and local field potentials recorded in human motor cortex.

    PubMed

    Perge, János A; Zhang, Shaomin; Malik, Wasim Q; Homer, Mark L; Cash, Sydney; Friehs, Gerhard; Eskandar, Emad N; Donoghue, John P; Hochberg, Leigh R

    2014-08-01

    Action potentials and local field potentials (LFPs) recorded in primary motor cortex contain information about the direction of movement. LFPs are assumed to be more robust to signal instabilities than action potentials, which makes LFPs, along with action potentials, a promising signal source for brain-computer interface applications. Still, relatively little research has directly compared the utility of LFPs to action potentials in decoding movement direction in human motor cortex. We conducted intracortical multi-electrode recordings in motor cortex of two persons (T2 and [S3]) as they performed a motor imagery task. We then compared the offline decoding performance of LFPs and spiking extracted from the same data recorded across a one-year period in each participant. We obtained offline prediction accuracy of movement direction and endpoint velocity in multiple LFP bands, with the best performance in the highest (200-400 Hz) LFP frequency band, presumably also containing low-pass filtered action potentials. Cross-frequency correlations of preferred directions and directional modulation index showed high similarity of directional information between action potential firing rates (spiking) and high frequency LFPs (70-400 Hz), and increasing disparity with lower frequency bands (0-7, 10-40 and 50-65 Hz). Spikes predicted the direction of intended movement more accurately than any individual LFP band, however combined decoding of all LFPs was statistically indistinguishable from spike-based performance. As the quality of spiking signals (i.e. signal amplitude) and the number of significantly modulated spiking units decreased, the offline decoding performance decreased 3.6[5.65]%/month (for T2 and [S3] respectively). The decrease in the number of significantly modulated LFP signals and their decoding accuracy followed a similar trend (2.4[2.85]%/month, ANCOVA, p = 0.27[0.03]). Field potentials provided comparable offline decoding performance to unsorted spikes. Thus, LFPs may provide useful external device control using current human intracortical recording technology. ( NCT00912041.).

  15. Sodium and potassium conductance changes during a membrane action potential

    PubMed Central

    Bezanilla, Francisco; Rojas, Eduardo; Taylor, Robert E.

    1970-01-01

    1. A method for turning a membrane potential control system on and off in less than 10 μsec is described. This method was used to record membrane currents in perfused giant axons from Dosidicus gigas and Loligo forbesi after turning on the voltage clamp system at various times during the course of a membrane action potential. 2. The membrane current measured just after the capacity charging transient was found to have an almost linear relation to the controlled membrane potential. 3. The total membrane conductance taken from these current—voltage curves was found to have a time course during the action potential similar to that found by Cole & Curtis (1939). 4. The instantaneous current voltage curves were linear enough to make it possible to obtain a good estimate of the individual sodium and potassium channel conductances, either algebraically or by clamping to the sodium, or potassium, reversal potentials. Good general agreement was obtained with the predictions of the Hodgkin—Huxley equations. 5. We consider these results to constitute the first direct experimental demonstration of the conductance changes to sodium and potassium during the course of an action potential. PMID:5505231

  16. GABAergic excitation of spider mechanoreceptors increases information capacity by increasing entropy rather than decreasing jitter.

    PubMed

    Pfeiffer, Keram; French, Andrew S

    2009-09-02

    Neurotransmitter chemicals excite or inhibit a range of sensory afferents and sensory pathways. These changes in firing rate or static sensitivity can also be associated with changes in dynamic sensitivity or membrane noise and thus action potential timing. We measured action potential firing produced by random mechanical stimulation of spider mechanoreceptor neurons during long-duration excitation by the GABAA agonist muscimol. Information capacity was estimated from signal-to-noise ratio by averaging responses to repeated identical stimulation sequences. Information capacity was also estimated from the coherence function between input and output signals. Entropy rate was estimated by a data compression algorithm and maximum entropy rate from the firing rate. Action potential timing variability, or jitter, was measured as normalized interspike interval distance. Muscimol increased firing rate, information capacity, and entropy rate, but jitter was unchanged. We compared these data with the effects of increasing firing rate by current injection. Our results indicate that the major increase in information capacity by neurotransmitter action arose from the increased entropy rate produced by increased firing rate, not from reduction in membrane noise and action potential jitter.

  17. Mechanisms of action of ligands of potential-dependent sodium channels.

    PubMed

    Tikhonov, D B

    2008-06-01

    Potential-dependent sodium channels play a leading role in generating action potentials in excitable cells. Sodium channels are the site of action of a variety of modulator ligands. Despite numerous studies, the mechanisms of action of many modulators remain incompletely understood. The main reason that many important questions cannot be resolved is that there is a lack of precise data on the structures of the channels themselves. Structurally, potential-dependent sodium channels are members of the P-loop channel superfamily, which also include potassium and calcium channels and glutamate receptor channels. Crystallization of a series of potassium channels showed that it was possible to analyze the structures of different members of the superfamily using the "homologous modeling" method. The present study addresses model investigations of the actions of ligands of sodium channels, including tetrodotoxin and batrachotoxin, as well as local anesthetics. Comparison of experimental data on sodium channel ligands with x-ray analysis data allowed us to reach a new level of understanding of the mechanisms of channel modulation and to propose a series of experimentally verifiable hypotheses.

  18. Last-position elimination-based learning automata.

    PubMed

    Zhang, Junqi; Wang, Cheng; Zhou, MengChu

    2014-12-01

    An update scheme of the state probability vector of actions is critical for learning automata (LA). The most popular is the pursuit scheme that pursues the estimated optimal action and penalizes others. This paper proposes a reverse philosophy that leads to last-position elimination-based learning automata (LELA). The action graded last in terms of the estimated performance is penalized by decreasing its state probability and is eliminated when its state probability becomes zero. All active actions, that is, actions with nonzero state probability, equally share the penalized state probability from the last-position action at each iteration. The proposed LELA is characterized by the relaxed convergence condition for the optimal action, the accelerated step size of the state probability update scheme for the estimated optimal action, and the enriched sampling for the estimated nonoptimal actions. The proof of the ϵ-optimal property for the proposed algorithm is presented. Last-position elimination is a widespread philosophy in the real world and has proved to be also helpful for the update scheme of the learning automaton via the simulations of well-known benchmark environments. In the simulations, two versions of the LELA, using different selection strategies of the last action, are compared with the classical pursuit algorithms Discretized Pursuit Reward-Inaction (DP(RI)) and Discretized Generalized Pursuit Algorithm (DGPA). Simulation results show that the proposed schemes achieve significantly faster convergence and higher accuracy than the classical ones. Specifically, the proposed schemes reduce the interval to find the best parameter for a specific environment in the classical pursuit algorithms. Thus, they can have their parameter tuning easier to perform and can save much more time when applied to a practical case. Furthermore, the convergence curves and the corresponding variance coefficient curves of the contenders are illustrated to characterize their essential differences and verify the analysis results of the proposed algorithms.

  19. Fine-tuning free paradigm of two-measures theory: k-essence, absence of initial singularity of the curvature, and inflation with graceful exit to the zero cosmological constant state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guendelman, E. I.; Kaganovich, A. B.

    2007-04-15

    The dilaton-gravity sector of the two-measures field theory (TMT) is explored in detail in the context of spatially flat Friedman-Robertson-Walker (FRW) cosmology. The model possesses scale invariance which is spontaneously broken due to the intrinsic features of the TMT dynamics. The dilaton {phi} dependence of the effective Lagrangian appears only as a result of the spontaneous breakdown of the scale invariance. If no fine-tuning is made, the effective {phi}-Lagrangian p({phi},X) depends quadratically upon the kinetic term X. Hence TMT represents an explicit example of the effective k-essence resulting from first principles without any exotic term in the underlying action intendedmore » for obtaining this result. Depending of the choice of regions in the parameter space (but without fine-tuning), TMT exhibits different possible outputs for cosmological dynamics: (a) Absence of initial singularity of the curvature while its time derivative is singular. This is a sort of sudden singularities studied by Barrow on purely kinematic grounds. (b) Power law inflation in the subsequent stage of evolution. Depending on the region in the parameter space the inflation ends with a graceful exit either into the state with zero cosmological constant (CC) or into the state driven by both a small CC and the field {phi} with a quintessencelike potential. (c) Possibility of resolution of the old CC problem. From the point of view of TMT, it becomes clear why the old CC problem cannot be solved (without fine-tuning) in conventional field theories. (d) TMT enables two ways for achieving small CC without fine-tuning of dimensionful parameters: either by a seesaw type mechanism or due to a correspondence principle between TMT and conventional field theories (i.e. theories with only the measure of integration {radical}(-g) in the action). (e) There is a wide range of the parameters such that in the late time universe: the equation of state w=p/{rho}<-1; w asymptotically (as t{yields}{infinity}) approaches -1 from below; {rho} approaches a constant, the smallness of which does not require fine-tuning of dimensionful parameters.« less

  20. Modeling Perceptual Decision Processes

    DTIC Science & Technology

    2014-09-17

    Ratcliff, & Wagenmakers, in press). Previous research suggests that playing action video games improves performance on sensory, perceptual, and...estimate the contribution of several underlying psychological processes. Their analysis indicated that playing action video games leads to faster...third condition in which no video games were played at all. Behavioral data and diffusion model parameters showed similar practice effects for the

  1. Rate dependency of delayed rectifier currents during the guinea-pig ventricular action potential

    PubMed Central

    Rocchetti, Marcella; Besana, Alessandra; Gurrola, Georgina B; Possani, Lourival D; Zaza, Antonio

    2001-01-01

    The action potential clamp technique was exploited to evaluate the rate dependency of delayed rectifier currents (IKr and IKs) during physiological electrical activity. IKr and IKs were measured in guinea-pig ventricular myocytes at pacing cycle lengths (CL) of 1000 and 250 ms.A shorter CL, with the attendant changes in action potential shape, was associated with earlier activation and increased magnitude of both IKr and IKs. Nonetheless, the relative contributions of IKr and IKs to total transmembrane current were independent of CL.Shortening of diastolic interval only (constant action potential shape) enhanced IKs, but not IKr.IKr was increased by a change in the action potential shape only (constant diastolic interval).In ramp clamp experiments, IKr amplitude was directly proportional to repolarization rate at values within the low physiological range (< 1.0 V s−1); at higher repolarization rates proportionality became shallower and finally reversed.When action potential duration (APD) was modulated by constant current injection (I-clamp), repolarization rates > 1.0 V s−1 were associated with a reduced effect of IKr block on APD. The effect of changes in repolarization rate was independent of CL and occurred in the presence of IKs blockade.In spite of its complexity, the behaviour of IKr was accurately predicted by a numerical model based entirely on known kinetic properties of the current.Both IKr and IKs may be increased at fast heart rates, but this may occur through completely different mechanisms. The mechanisms identified are such as to contribute to abnormal rate dependency of repolarization in prolonged repolarization syndromes. PMID:11483703

  2. Electrophysiological, vasoactive, and gastromodulatory effects of stevia in healthy Wistar rats.

    PubMed

    Yesmine, Saquiba; Connolly, Kylie; Hill, Nicholas; Coulson, Fiona R; Fenning, Andrew S

    2013-07-01

    Antihypertensive and antidiabetic effects of stevia, Stevia rebaudiana (Asteraceae), have been demonstrated in several human and animal models. The current study aims to define stevia's role in modifying the electrophysiological and mechanical properties of cardiomyocytes, blood vessels, and gastrointestinal smooth muscle. Tissues from thoracic aorta, mesenteric arteries, ileum, and left ventricular papillary muscles were excised from 8-week-old healthy Wistar rats. The effects of stevia (1 × 10-9 M to 1 × 10-4 M) were measured on these tissues. Stevia's effects in the presence of verapamil, 4-AP, and L-NAME were also assessed. In cardiomyocytes, stevia attenuated the force of contraction, decreased the average peak amplitude, and shortened the repolarisation phase of action potential - repolarisation phase of action potential20 by 25 %, repolarisation phase of action potential50 by 34 %, and repolarisation phase of action potential90 by 36 %. Stevia caused relaxation of aortic tissues which was significantly potentiated in the presence of verapamil. In mesenteric arteries, incubation with L-NAME failed to block stevia-induced relaxation indicating the mechanism of action may not be fully via nitric oxide-dependent pathways. Stevia concentration-dependently reduced electrical field stimulated and carbachol-induced contractions in the isolated ileum. This study is the first to show the effectiveness of stevia in reducing cardiac action potential duration at 20 %, 50 %, and 90 % of repolarisation. Stevia also showed beneficial modulatory effects on cardiovascular and gastrointestinal tissues via calcium channel antagonism, activation of the M2 muscarinic receptor function, and enhanced nitric oxide release. Georg Thieme Verlag KG Stuttgart · New York.

  3. Oxidation and Destruction of Polyvinyl Alcohol under the Combined Action of Ozone-Oxygen Mixture and Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Zimin, Yu. S.; Kutlugil'dina, G. G.; Mustafin, A. G.

    2018-03-01

    The oxidative transformations of a polyvinyl alcohol in aqueous solutions are studied under the simultaneous action of the two oxidizing agents, an ozone-oxygen mixture and a hydrogen peroxide. Effective parameters a and b, which characterize the first and second channels of carboxyl group accumulation, respectively, grow linearly upon an increase in the initial concentration of H2O2. After the temperature dependence of a and b parameters (331-363 K) in a PVA + O3 + O2 + H2O2 + H2O reaction system is studied, the parameters of the activation of COOH group accumulation are found (where PVA is a polyvinyl alcohol). New data on the effect process conditions (length of oxidation, temperature, and hydrogen peroxide concentration) have on the degree of destructive transformations of polyvinyl alcohol in the investigated reaction system are obtained.

  4. Connection dynamics of a gauge theory of gravity coupled with matter

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Banerjee, Kinjal; Ma, Yongge

    2013-10-01

    We study the coupling of the gravitational action, which is a linear combination of the Hilbert-Palatini term and the quadratic torsion term, to the action of Dirac fermions. The system possesses local Poincare invariance and hence belongs to Poincare gauge theory (PGT) with matter. The complete Hamiltonian analysis of the theory is carried out without gauge fixing but under certain ansatz on the coupling parameters, which leads to a consistent connection dynamics with second-class constraints and torsion. After performing a partial gauge fixing, all second-class constraints can be solved, and a SU(2)-connection dynamical formalism of the theory can be obtained. Hence, the techniques of loop quantum gravity (LQG) can be employed to quantize this PGT with non-zero torsion. Moreover, the Barbero-Immirzi parameter in LQG acquires its physical meaning as the coupling parameter between the Hilbert-Palatini term and the quadratic torsion term in this gauge theory of gravity.

  5. Measuring dynamic kidney function in an undergraduate physiology laboratory.

    PubMed

    Medler, Scott; Harrington, Frederick

    2013-12-01

    Most undergraduate physiology laboratories are very limited in how they treat renal physiology. It is common to find teaching laboratories equipped with the capability for high-resolution digital recordings of physiological functions (muscle twitches, ECG, action potentials, respiratory responses, etc.), but most urinary laboratories still rely on a "dipstick" approach of urinalysis. Although this technique can provide some basic insights into the functioning of the kidneys, it overlooks the dynamic processes of filtration, reabsorption, and secretion. In the present article, we provide a straightforward approach of using renal clearance measurements to estimate glomerular filtration rate, fractional water reabsorption, glucose clearance, and other physiologically relevant parameters. The estimated values from our measurements in laboratory are in close agreement with those anticipated based on textbook parameters. For example, we found glomerular filtration rate to average 124 ± 45 ml/min, serum creatinine to be 1.23 ± 0.4 mg/dl, and fractional water reabsorption to be ∼96.8%. Furthermore, analyses for the class data revealed significant correlations between parameters like fractional water reabsorption and urine concentration, providing opportunities to discuss urine concentrating mechanisms and other physiological processes. The procedures outlined here are general enough that most undergraduate physiology laboratory courses should be able to implement them without difficulty.

  6. Structure-activity relationships for serotonin transporter and dopamine receptor selectivity.

    PubMed

    Agatonovic-Kustrin, Snezana; Davies, Paul; Turner, Joseph V

    2009-05-01

    Antipsychotic medications have a diverse pharmacology with affinity for serotonergic, dopaminergic, adrenergic, histaminergic and cholinergic receptors. Their clinical use now also includes the treatment of mood disorders, thought to be mediated by serotonergic receptor activity. The aim of our study was to characterise the molecular properties of antipsychotic agents, and to develop a model that would indicate molecular specificity for the dopamine (D(2)) receptor and the serotonin (5-HT) transporter. Back-propagation artificial neural networks (ANNs) were trained on a dataset of 47 ligands categorically assigned antidepressant or antipsychotic utility. The structure of each compound was encoded with 63 calculated molecular descriptors. ANN parameters including hidden neurons and input descriptors were optimised based on sensitivity analyses, with optimum models containing between four and 14 descriptors. Predicted binding preferences were in excellent agreement with clinical antipsychotic or antidepressant utility. Validated models were further tested by use of an external prediction set of five drugs with unknown mechanism of action. The SAR models developed revealed the importance of simple molecular characteristics for differential binding to the D(2) receptor and the 5-HT transporter. These included molecular size and shape, solubility parameters, hydrogen donating potential, electrostatic parameters, stereochemistry and presence of nitrogen. The developed models and techniques employed are expected to be useful in the rational design of future therapeutic agents.

  7. Short-term effects of benzalkonium chloride and atrazine on Elodea canadensis using a miniaturised microbioreactor system for an online monitoring of physiologic parameters.

    PubMed

    Vervliet-Scheebaum, Marco; Ritzenthaler, Raphael; Normann, Johannes; Wagner, Edgar

    2008-02-01

    The study evaluated the effects of benzalkonium chloride (BAC) and atrazine on the macrophyte Elodea canadensis (Michaux) using a miniaturised monitoring test system consisting of a microbioreactor of reduced volume and integrated sensors for the online measurement of physiologic parameters, like oxygen production and different parameters of fluorescence. Different concentrations of both chemicals were applied to leaves of E. canadensis and the physiologic endpoints evaluated after 1h. A concentration-dependent reduction of the oxygen production and of the effective quantum yield of energy conversion was recorded. The mini-PAM technique implemented in the presented system allowed for a clear monitoring of the kinetic of BAC and atrazine, showing their distinct mode of action. No observable adverse effects were recorded up to concentrations of 2.5 mg/L and 10 microg/L, for BAC and atrazine, respectively. These values are in accordance with available results in the literature, hence indicating that the microbioreactor test system might be suitable, on the one hand, for the laboratory screening of potential short-term toxicity of contaminants on aquatic plants, and on the other hand, serve as an in situ field biomonitoring system for the rapid detection of pollutants in water.

  8. Rosewood oil induces sedation and inhibits compound action potential in rodents.

    PubMed

    de Almeida, Reinaldo Nóbrega; Araújo, Demétrius Antonio Machado; Gonçalves, Juan Carlos Ramos; Montenegro, Fabrícia Costa; de Sousa, Damião Pergentino; Leite, José Roberto; Mattei, Rita; Benedito, Marco Antonio Campana; de Carvalho, José Gilberto Barbosa; Cruz, Jader Santos; Maia, José Guilherme Soares

    2009-07-30

    Aniba rosaeodora is an aromatic plant which has been used in Brazil folk medicine due to its sedative effect. Therefore, the purpose of the present study was to evaluate the sedative effect of linalool-rich rosewood oil in mice. In addition we sought to investigate the linalool-rich oil effects on the isolated nerve using the single sucrose-gap technique. Sedative effect was determined by measuring the potentiation of the pentobarbital-induced sleeping time. The compound action potential amplitude was evaluated as a way to detect changes in excitability of the isolated nerve. The results showed that administration of rosewood oil at the doses of 200 and 300 mg/kg significantly decreased latency and increased the duration of sleeping time. On the other hand, the dose of 100 mg/kg potentiated significantly the pentobarbital action decreasing pentobarbital latency time and increasing pentobarbital sleeping time. In addition, the effect of linalool-rich rosewood oil on the isolated nerve of the rat was also investigated through the single sucrose-gap technique. The amplitude of the action potential decreased almost 100% when it was incubated for 30 min at 100 microg/ml. From this study, it is suggested a sedative effect of linalool-rich rosewood oil that could, at least in part, be explained by the reduction in action potential amplitude that provokes a decrease in neuronal excitability.

  9. A Fossilized Energy Distribution of Lightning.

    PubMed

    Pasek, Matthew A; Hurst, Marc

    2016-07-28

    When lightning strikes soil, it may generate a cylindrical tube of glass known as a fulgurite. The morphology of a fulgurite is ultimately a consequence of the energy of the lightning strike that formed it, and hence fulgurites may be useful in elucidating the energy distribution frequency of cloud-to-ground lightning. Fulgurites from sand mines in Polk County, Florida, USA were collected and analyzed to determine morphologic properties. Here we show that the energy per unit length of lightning strikes within quartz sand has a geometric mean of ~1.0 MJ/m, and that the distribution is lognormal with respect to energy per length and frequency. Energy per length is determined from fulgurites as a function of diameter, and frequency is determined both by cumulative number and by cumulative length. This distribution parallels those determined for a number of lightning parameters measured in actual atmospheric discharge events, such as charge transferred, voltage, and action integral. This methodology suggests a potential useful pathway for elucidating lightning energy and damage potential of strikes.

  10. A Fossilized Energy Distribution of Lightning

    PubMed Central

    Pasek, Matthew A.; Hurst, Marc

    2016-01-01

    When lightning strikes soil, it may generate a cylindrical tube of glass known as a fulgurite. The morphology of a fulgurite is ultimately a consequence of the energy of the lightning strike that formed it, and hence fulgurites may be useful in elucidating the energy distribution frequency of cloud-to-ground lightning. Fulgurites from sand mines in Polk County, Florida, USA were collected and analyzed to determine morphologic properties. Here we show that the energy per unit length of lightning strikes within quartz sand has a geometric mean of ~1.0 MJ/m, and that the distribution is lognormal with respect to energy per length and frequency. Energy per length is determined from fulgurites as a function of diameter, and frequency is determined both by cumulative number and by cumulative length. This distribution parallels those determined for a number of lightning parameters measured in actual atmospheric discharge events, such as charge transferred, voltage, and action integral. This methodology suggests a potential useful pathway for elucidating lightning energy and damage potential of strikes. PMID:27466230

  11. Effects of herbicides on Behr's metalmark butterfly, a surrogate species for the endangered butterfly, Lange's metalmark.

    PubMed

    Stark, John D; Chen, Xue Dong; Johnson, Catherine S

    2012-05-01

    Lange's metalmark butterfly, Apodemia mormo langei Comstock, is in danger of extinction due to loss of habitat caused by invasive exotic plants which are eliminating its food, naked stem buckwheat. Herbicides are being used to remove invasive weeds from the dunes; however, little is known about the potential effects of herbicides on butterflies. To address this concern we evaluated potential toxic effects of three herbicides on Behr's metalmark, a close relative of Lange's metalmark. First instars were exposed to recommended field rates of triclopyr, sethoxydim, and imazapyr. Life history parameters were recorded after exposure. These herbicides reduced the number of adults that emerged from pupation (24-36%). Each herbicide has a different mode of action. Therefore, we speculate that effects are due to inert ingredients or indirect effects on food plant quality. If these herbicides act the same in A. mormo langei, they may contribute to the decline of this species. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Analysis and Chemistry of Novel Protein Oxidation Markers in Vivo.

    PubMed

    Henning, Christian; Liehr, Kristin; Girndt, Matthias; Ulrich, Christof; Glomb, Marcus A

    2018-05-09

    Proteins continually undergo spontaneous oxidation reactions, which lead to changes in structure and function. The quantitative assessment of protein oxidation adducts provides information on the level of exposure to reactive precursor compounds with a high oxidizing potential and reactive oxygen species (ROS). In the present work, we introduce N 6 -(2-hydroxyethyl)lysine as a novel marker based on the ratio of glycolaldehyde and its oxidized form glyoxal. The high analytical potential was proven with a first set of patients undergoing hemodialysis versus healthy controls, in comparison with well-established parameters for oxidative stress. In vitro experiments with N 1 - t-BOC-lysine and N 1 - t-BOC-arginine enlightened the mechanistic relationship of glycolaldehyde and glyoxal. Oxidation was strongly dependent on the catalytic action of the ε-amino moiety of lysine. Investigations on the formation of N 6 -carboxymethyl lysine revealed glycolaldehyde-imine as the more reactive precursor, even though an additional oxidative step is required. As a result, a novel and very effective alternative mechanism was unraveled.

  13. An Updated Comprehensive Risk Analysis for Radioisotopes Identified of High Risk to National Security in the Event of a Radiological Dispersion Device Scenario

    NASA Astrophysics Data System (ADS)

    Robinson, Alexandra R.

    An updated global survey of radioisotope production and distribution was completed and subjected to a revised "down-selection methodology" to determine those radioisotopes that should be classified as potential national security risks based on availability and key physical characteristics that could be exploited in a hypothetical radiological dispersion device. The potential at-risk radioisotopes then were used in a modeling software suite known as Turbo FRMAC, developed by Sandia National Laboratories, to characterize plausible contamination maps known as Protective Action Guideline Zone Maps. This software also was used to calculate the whole body dose equivalent for exposed individuals based on various dispersion parameters and scenarios. Derived Response Levels then were determined for each radioisotope using: 1) target doses to members of the public provided by the U.S. EPA, and 2) occupational dose limits provided by the U.S. Nuclear Regulatory Commission. The limiting Derived Response Level for each radioisotope also was determined.

  14. Curative effect of Amorphophallus paeoniifolius tuber on experimental hemorrhoids in rats.

    PubMed

    Dey, Yadu Nandan; Wanjari, Manish M; Kumar, Dharmendra; Lomash, Vinay; Jadhav, Ankush D

    2016-11-04

    Amorphophallus paeoniifolius (Dennst.) Nicolson (Family- Araceae) is a crop of south East Asian origin. In India, its tuber is widely used in ethnomedicinal practices by different tribes for the treatment of piles (hemorrhoids). The present study evaluated the effect of methanolic and aqueous extract of Amorphophallus paeoniifolius tuber on croton oil induced hemorrhoids in rats. The methanolic extract was standardized with the major phenolic compound, betulinic acid, by HPLC. The hemorrhoids were induced by applying 6% croton oil preparation in the ano-rectal region. Rats were orally administered methanolic and aqueous extract at doses of 250 and 500mg/kg, each for 7 days. Pilex (200mg/kg) was used as reference anti-hemorrhoidal drug. Hemorrhoids were assessed on eighth day by measuring hemorrhoidal and biochemical parameters along with histology of ano-rectal tissue. Croton oil application caused induction of hemorrhoids as indicated by significant (p<0.001) increase in plasma exudation of Evans blue in ano-rectal tissue, macroscopic severity score and ano-rectal coefficient as compared to normal rats. It significantly (p<0.001) elevated lactate dehydrogenase and cytokines (TNF-α and IL-6) levels in serum and increased myeloperoxidase activity and lipid peroxidation in ano-rectal tissue along with marked histological damage as compared to normal rats. Treatment with tuber extracts and pilex significantly (p<0.05-p<0.001) ameliorated Evans blue exudation, hemorrhoidal parameters and other biochemical parameters with attenuation of tissue damage compared to hemorrhoid control rats. The results indicate that tuber extracts exhibited curative action on hemorrhoids. The aqueous extract showed more pronounced effect than methanolic extract. The effects may be attributed to anti-inflammatory and antioxidant properties. Results indicate that tuber of Amorphophallus paeoniifolius exhibited curative action on hemorrhoids through anti-inflammatory and antioxidant properties. The study validates the ethnomedicinal use of tuber in hemorrhoids and implicates its therapeutic potential as an anti-hemorrhoidal agent. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Modeling the response of small myelinated axons in a compound nerve to kilohertz frequency signals

    NASA Astrophysics Data System (ADS)

    Pelot, N. A.; Behrend, C. E.; Grill, W. M.

    2017-08-01

    Objective. There is growing interest in electrical neuromodulation of peripheral nerves, particularly autonomic nerves, to treat various diseases. Electrical signals in the kilohertz frequency (KHF) range can produce different responses, including conduction block. For example, EnteroMedics’ vBloc® therapy for obesity delivers 5 kHz stimulation to block the abdominal vagus nerves, but the mechanisms of action are unclear. Approach. We developed a two-part computational model, coupling a 3D finite element model of a cuff electrode around the human abdominal vagus nerve with biophysically-realistic electrical circuit equivalent (cable) model axons (1, 2, and 5.7 µm in diameter). We developed an automated algorithm to classify conduction responses as subthreshold (transmission), KHF-evoked activity (excitation), or block. We quantified neural responses across kilohertz frequencies (5-20 kHz), amplitudes (1-8 mA), and electrode designs. Main results. We found heterogeneous conduction responses across the modeled nerve trunk, both for a given parameter set and across parameter sets, although most suprathreshold responses were excitation, rather than block. The firing patterns were irregular near transmission and block boundaries, but otherwise regular, and mean firing rates varied with electrode-fibre distance. Further, we identified excitation responses at amplitudes above block threshold, termed ‘re-excitation’, arising from action potentials initiated at virtual cathodes. Excitation and block thresholds decreased with smaller electrode-fibre distances, larger fibre diameters, and lower kilohertz frequencies. A point source model predicted a larger fraction of blocked fibres and greater change of threshold with distance as compared to the realistic cuff and nerve model. Significance. Our findings of widespread asynchronous KHF-evoked activity suggest that conduction block in the abdominal vagus nerves is unlikely with current clinical parameters. Our results indicate that compound neural or downstream muscle force recordings may be unreliable as quantitative measures of neural activity for in vivo studies or as biomarkers in closed-loop clinical devices.

  16. Sensitivity of river fishes to climate change: The role of hydrological stressors on habitat range shifts.

    PubMed

    Segurado, Pedro; Branco, Paulo; Jauch, Eduardo; Neves, Ramiro; Ferreira, M Teresa

    2016-08-15

    Climate change will predictably change hydrological patterns and processes at the catchment scale, with impacts on habitat conditions for fish. The main goal of this study is to assess how shifts in fish habitat favourability under climate change scenarios are affected by hydrological stressors. The interplay between climate and hydrological stressors has important implications in river management under climate change because management actions to control hydrological parameters are more feasible than controlling climate. This study was carried out in the Tamega catchment of the Douro basin. A set of hydrological stressor variables were generated through a process-based modelling based on current climate data (2008-2014) and also considering a high-end future climate change scenario. The resulting parameters, along with climatic and site-descriptor variables were used as explanatory variables in empirical habitat models for nine fish species using boosted regression trees. Models were calibrated for the whole Douro basin using 254 fish sampling sites and predictions under future climate change scenarios were made for the Tamega catchment. Results show that models using climatic variables but not hydrological stressors produce more stringent predictions of future favourability, predicting more distribution contractions or stronger range shifts. The use of hydrological stressors strongly influences projections of habitat favourability shifts; the integration of these stressors in the models thinned shifts in range due to climate change. Hydrological stressors were retained in the models for most species and had a high importance, demonstrating that it is important to integrate hydrology in studies of impacts of climate change on freshwater fishes. This is a relevant result because it means that management actions to control hydrological parameters in rivers will have an impact on the effects of climate change and may potentially be helpful to mitigate its negative effects on fish populations and assemblages. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Modeling the response of small myelinated axons in a compound nerve to kilohertz frequency signals.

    PubMed

    Pelot, N A; Behrend, C E; Grill, W M

    2017-08-01

    There is growing interest in electrical neuromodulation of peripheral nerves, particularly autonomic nerves, to treat various diseases. Electrical signals in the kilohertz frequency (KHF) range can produce different responses, including conduction block. For example, EnteroMedics' vBloc ® therapy for obesity delivers 5 kHz stimulation to block the abdominal vagus nerves, but the mechanisms of action are unclear. We developed a two-part computational model, coupling a 3D finite element model of a cuff electrode around the human abdominal vagus nerve with biophysically-realistic electrical circuit equivalent (cable) model axons (1, 2, and 5.7 µm in diameter). We developed an automated algorithm to classify conduction responses as subthreshold (transmission), KHF-evoked activity (excitation), or block. We quantified neural responses across kilohertz frequencies (5-20 kHz), amplitudes (1-8 mA), and electrode designs. We found heterogeneous conduction responses across the modeled nerve trunk, both for a given parameter set and across parameter sets, although most suprathreshold responses were excitation, rather than block. The firing patterns were irregular near transmission and block boundaries, but otherwise regular, and mean firing rates varied with electrode-fibre distance. Further, we identified excitation responses at amplitudes above block threshold, termed 're-excitation', arising from action potentials initiated at virtual cathodes. Excitation and block thresholds decreased with smaller electrode-fibre distances, larger fibre diameters, and lower kilohertz frequencies. A point source model predicted a larger fraction of blocked fibres and greater change of threshold with distance as compared to the realistic cuff and nerve model. Our findings of widespread asynchronous KHF-evoked activity suggest that conduction block in the abdominal vagus nerves is unlikely with current clinical parameters. Our results indicate that compound neural or downstream muscle force recordings may be unreliable as quantitative measures of neural activity for in vivo studies or as biomarkers in closed-loop clinical devices.

  18. Outcome producing potential influences twelve-month-olds' interpretation of a novel action as goal-directed.

    PubMed

    Biro, Szilvia; Verschoor, Stephan; Coalter, Esther; Leslie, Alan M

    2014-11-01

    Learning about a novel, goal-directed action is a complex process. It requires identifying the outcome of the action and linking the action to its outcome for later use in new situations to predict the action or to anticipate its outcome. We investigated the hypothesis that linking a novel action to a salient change in the environment is critical for infants to assign a goal to the novel action. We report a study in which we show that 12-month-old infants, who were provided with prior experience with a novel action accompanied with a salient visible outcome in one context, can interpret the same action as goal-directed even in the absence of the outcome in another context. Our control condition shows that prior experience with the action, but without the salient effect, does not lead to goal-directed interpretation of the novel action. We also found that, for the case of 9-month-olds infants, prior experience with the outcome producing potential of the novel action does not facilitate a goal-directed interpretation of the action. However, this failure was possibly due to difficulties with generalizing the learnt association to another context rather than with linking the action to its outcome. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Critical Action Research and Third Wave Feminism: A Meeting of Paradigms

    ERIC Educational Resources Information Center

    Weiner, Gaby

    2004-01-01

    Critical action research emphasises participation, democracy and social critique, and thus has had considerable potential for feminist scholarship and action. Feminist action research, in turn, has gained a foothold in education, for example, through the work of Hollingsworth, Miller, Lather and others, although much action research might still be…

  20. Enhancing Postgraduate Learning and Development: A Participatory Action Learning and Action Research Approach through Conferences

    ERIC Educational Resources Information Center

    Wood, Lesley; Louw, Ina; Zuber-Skerritt, Ortrun

    2017-01-01

    As supervisors who advocate the transformational potential of research both to generate theory and practical and emancipatory outcomes, we practice participatory action learning and action research (PALAR). This paper offers an illustrative case of how supervision practices based on action learning can foster emancipatory and lifelong learning…

Top