Science.gov

Sample records for action potential recording

  1. Flexible graphene transistors for recording cell action potentials

    NASA Astrophysics Data System (ADS)

    Blaschke, Benno M.; Lottner, Martin; Drieschner, Simon; Bonaccini Calia, Andrea; Stoiber, Karolina; Rousseau, Lionel; Lissourges, Gaëlle; Garrido, Jose A.

    2016-06-01

    Graphene solution-gated field-effect transistors (SGFETs) are a promising platform for the recording of cell action potentials due to the intrinsic high signal amplification of graphene transistors. In addition, graphene technology fulfills important key requirements for in-vivo applications, such as biocompability, mechanical flexibility, as well as ease of high density integration. In this paper we demonstrate the fabrication of flexible arrays of graphene SGFETs on polyimide, a biocompatible polymeric substrate. We investigate the transistor’s transconductance and intrinsic electronic noise which are key parameters for the device sensitivity, confirming that the obtained values are comparable to those of rigid graphene SGFETs. Furthermore, we show that the devices do not degrade during repeated bending and the transconductance, governed by the electronic properties of graphene, is unaffected by bending. After cell culture, we demonstrate the recording of cell action potentials from cardiomyocyte-like cells with a high signal-to-noise ratio that is higher or comparable to competing state of the art technologies. Our results highlight the great capabilities of flexible graphene SGFETs in bioelectronics, providing a solid foundation for in-vivo experiments and, eventually, for graphene-based neuroprosthetics.

  2. A phantom axon setup for validating models of action potential recordings.

    PubMed

    Rossel, Olivier; Soulier, Fabien; Bernard, Serge; Guiraud, David; Cathébras, Guy

    2016-08-01

    Electrode designs and strategies for electroneurogram recordings are often tested first by computer simulations and then by animal models, but they are rarely implanted for long-term evaluation in humans. The models show that the amplitude of the potential at the surface of an axon is higher in front of the nodes of Ranvier than at the internodes; however, this has not been investigated through in vivo measurements. An original experimental method is presented to emulate a single fiber action potential in an infinite conductive volume, allowing the potential of an axon to be recorded at both the nodes of Ranvier and the internodes, for a wide range of electrode-to-fiber radial distances. The paper particularly investigates the differences in the action potential amplitude along the longitudinal axis of an axon. At a short radial distance, the action potential amplitude measured in front of a node of Ranvier is two times larger than in the middle of two nodes. Moreover, farther from the phantom axon, the measured action potential amplitude is almost constant along the longitudinal axis. The results of this new method confirm the computer simulations, with a correlation of 97.6 %.

  3. A phantom axon setup for validating models of action potential recordings.

    PubMed

    Rossel, Olivier; Soulier, Fabien; Bernard, Serge; Guiraud, David; Cathébras, Guy

    2016-08-01

    Electrode designs and strategies for electroneurogram recordings are often tested first by computer simulations and then by animal models, but they are rarely implanted for long-term evaluation in humans. The models show that the amplitude of the potential at the surface of an axon is higher in front of the nodes of Ranvier than at the internodes; however, this has not been investigated through in vivo measurements. An original experimental method is presented to emulate a single fiber action potential in an infinite conductive volume, allowing the potential of an axon to be recorded at both the nodes of Ranvier and the internodes, for a wide range of electrode-to-fiber radial distances. The paper particularly investigates the differences in the action potential amplitude along the longitudinal axis of an axon. At a short radial distance, the action potential amplitude measured in front of a node of Ranvier is two times larger than in the middle of two nodes. Moreover, farther from the phantom axon, the measured action potential amplitude is almost constant along the longitudinal axis. The results of this new method confirm the computer simulations, with a correlation of 97.6 %. PMID:27016364

  4. In-vitro characterization of a cochlear implant system for recording of evoked compound action potentials

    PubMed Central

    2012-01-01

    Background Modern cochlear implants have integrated recording systems for measuring electrically evoked compound action potentials of the auditory nerve. The characterization of such recording systems is important for establishing a reliable basis for the interpretation of signals acquired in vivo. In this study we investigated the characteristics of the recording system integrated into the MED-EL PULSARCI100 cochlear implant, especially its linearity and resolution, in order to develop a mathematical model describing the recording system. Methods In-vitro setup: The cochlear implant, including all attached electrodes, was fixed in a tank of physiologic saline solution. Sinusoidal signals of the same frequency but with different amplitudes were delivered via a signal generator for measuring and recording on a single electrode. Computer simulations: A basic mathematical model including the main elements of the recording system, i.e. amplification and digitalization stage, was developed. For this, digital output for sinusoidal input signals of different amplitudes were calculated using in-vitro recordings as reference. Results Using an averaging of 100 measurements the recording system behaved linearly down to approximately -60 dB of the input signal range. Using the same method, a system resolution of 10 μV was determined for sinusoidal signals. The simulation results were in very good agreement with the results obtained from in-vitro experiments. Conclusions The recording system implemented in the MED-EL PULSARCI100 cochlear implant for measuring the evoked compound action potential of the auditory nerve operates reliably. The developed mathematical model provides a good approximation of the recording system. PMID:22531599

  5. Compound action potentials recorded in the human spinal cord during neurostimulation for pain relief.

    PubMed

    Parker, John L; Karantonis, Dean M; Single, Peter S; Obradovic, Milan; Cousins, Michael J

    2012-03-01

    Electrical stimulation of the spinal cord provides effective pain relief to hundreds of thousands of chronic neuropathic pain sufferers. The therapy involves implantation of an electrode array into the epidural space of the subject and then stimulation of the dorsal column with electrical pulses. The stimulation depolarises axons and generates propagating action potentials that interfere with the perception of pain. Despite the long-term clinical experience with spinal cord stimulation, the mechanism of action is not understood, and no direct evidence of the properties of neurons being stimulated has been presented. Here we report novel measurements of evoked compound action potentials from the spinal cords of patients undergoing stimulation for pain relief. The results reveal that Aβ sensory nerve fibres are recruited at therapeutic stimulation levels and the Aβ potential amplitude correlates with the degree of coverage of the painful area. Aβ-evoked responses are not measurable below a threshold stimulation level, and their amplitude increases with increasing stimulation current. At high currents, additional late responses are observed. Our results contribute towards efforts to define the mechanism of spinal cord stimulation. The minimally invasive recording technique we have developed provides data previously obtained only through microelectrode techniques in spinal cords of animals. Our observations also allow the development of systems that use neuronal recording in a feedback loop to control neurostimulation on a continuous basis and deliver more effective pain relief. This is one of numerous benefits that in vivo electrophysiological recording can bring to a broad range of neuromodulation therapies. PMID:22188868

  6. In vivo neuronal action potential recordings via three-dimensional microscale needle-electrode arrays

    NASA Astrophysics Data System (ADS)

    Fujishiro, Akifumi; Kaneko, Hidekazu; Kawashima, Takahiro; Ishida, Makoto; Kawano, Takeshi

    2014-05-01

    Very fine needle-electrode arrays potentially offer both low invasiveness and high spatial resolution of electrophysiological neuronal recordings in vivo. Herein we report the penetrating and recording capabilities of silicon-growth-based three-dimensional microscale-diameter needle-electrodes arrays. The fabricated needles exhibit a circular-cone shape with a 3-μm-diameter tip and a 210-μm length. Due to the microscale diameter, our silicon needles are more flexible than other microfabricated silicon needles with larger diameters. Coating the microscale-needle-tip with platinum black results in an impedance of ~600 kΩ in saline with output/input signal amplitude ratios of more than 90% at 40 Hz-10 kHz. The needles can penetrate into the whisker barrel area of a rat's cerebral cortex, and the action potentials recorded from some neurons exhibit peak-to-peak amplitudes of ~300 μVpp. These results demonstrate the feasibility of in vivo neuronal action potential recordings with a microscale needle-electrode array fabricated using silicon growth technology.

  7. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor

    PubMed Central

    Duan, Xiaojie; Gao, Ruixuan; Xie, Ping; Cohen-Karni, Tzahi; Qing, Quan; Choe, Hwan Sung; Tian, Bozhi; Jiang, Xiaocheng; Lieber, Charles M.

    2012-01-01

    The ability to make electrical measurements inside cells has led to many important advances in electrophysiology1-6. The patch clamp technique, in which a glass micropipette filled with electrolyte is inserted into a cell, offers both high signal-to-noise ratio and temporal resolution1,2. Ideally the micropipette should be as small as possible to increase the spatial resolution and reduce the invasiveness of the measurement, but the overall performance of the technique depends on the impedance of the interface between the micropipette and the cell interior1,2, which limits how small the micropipette can be. Techniques that involve inserting metal or carbon microelectrodes into cells are subject to similar constraints4,7-9. Field-effect transistors (FETs) can also record electric potentials inside cells10, and since their performance does not depend on impedance11,12, they can be made much smaller than micropipettes and microelectrodes. Moreover, FET arrays are better suited for multiplexed measurements. Previously we have demonstrated FET-based intracellular recording with kinked nanowire structures10, but the kink configuration and device design places limits on the probe size and the potential for multiplexing. Here we report a new approach where a SiO2 nanotube is synthetically integrated on top of a nanoscale FET. After penetrating the cell membrane, the SiO2 nanotube brings the cell cytosol into contact with the FET and enables the recording of intracellular transmembrane potential. Simulations show that the bandwidth of this branched intracellular nanotube FET (BIT-FET) is high enough for it to record fast action potentials even when the nanotube diameter is decreased to 3 nm, a length scale which is well below that accessible with other methods1,2,4. Studies of cardiomyocyte cells demonstrate that when brought close, the nanotubes of phospholipid-modified BIT-FETs spontaneously penetrate the cell membrane to yield stable, full-amplitude intracellular action

  8. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor.

    PubMed

    Duan, Xiaojie; Gao, Ruixuan; Xie, Ping; Cohen-Karni, Tzahi; Qing, Quan; Choe, Hwan Sung; Tian, Bozhi; Jiang, Xiaocheng; Lieber, Charles M

    2012-03-01

    The ability to make electrical measurements inside cells has led to many important advances in electrophysiology. The patch clamp technique, in which a glass micropipette filled with electrolyte is inserted into a cell, offers both high signal-to-noise ratio and temporal resolution. Ideally, the micropipette should be as small as possible to increase the spatial resolution and reduce the invasiveness of the measurement, but the overall performance of the technique depends on the impedance of the interface between the micropipette and the cell interior, which limits how small the micropipette can be. Techniques that involve inserting metal or carbon microelectrodes into cells are subject to similar constraints. Field-effect transistors (FETs) can also record electric potentials inside cells, and because their performance does not depend on impedance, they can be made much smaller than micropipettes and microelectrodes. Moreover, FET arrays are better suited for multiplexed measurements. Previously, we have demonstrated FET-based intracellular recording with kinked nanowire structures, but the kink configuration and device design places limits on the probe size and the potential for multiplexing. Here, we report a new approach in which a SiO2 nanotube is synthetically integrated on top of a nanoscale FET. This nanotube penetrates the cell membrane, bringing the cell cytosol into contact with the FET, which is then able to record the intracellular transmembrane potential. Simulations show that the bandwidth of this branched intracellular nanotube FET (BIT-FET) is high enough for it to record fast action potentials even when the nanotube diameter is decreased to 3 nm, a length scale well below that accessible with other methods. Studies of cardiomyocyte cells demonstrate that when phospholipid-modified BIT-FETs are brought close to cells, the nanotubes can spontaneously penetrate the cell membrane to allow the full-amplitude intracellular action potential to be

  9. Monophasic action potential recordings during acute changes in ventricular loading induced by the Valsalva manoeuvre.

    PubMed Central

    Taggart, P; Sutton, P; John, R; Lab, M; Swanton, H

    1992-01-01

    OBJECTIVE--The strong association between ventricular arrhythmia and ventricular dysfunction is unexplained. This study was designed to investigate a mechanism by which a change in ventricular loading could alter the time course of repolarisation and hence refractoriness. A possible mechanism may be a direct effect of an altered pattern of contraction on ventricular repolarisation and hence refractoriness. This relation has been termed contraction-excitation feedback or mechano-electric feedback. METHODS--Monophasic action potentials were recorded from the left ventricular endocardium as a measure of the time course of local repolarisation. The Valsalva manoeuvre was used to change ventricular loading by increasing the intrathoracic pressure and impeding venous return, and hence reducing ventricular pressure and volume (ventricular unloading). PATIENTS--23 patients undergoing routine cardiac catheterisation procedures: seven with no angiographic evidence of abnormal wall motion or history of myocardial infarction (normal), five with a history of myocardial infarction but with normal wall motion, and 10 with angiographic evidence of abnormal wall motion--with or without previous infarction. One patient was a transplant recipient and was analysed separately. SETTING--Tertiary referral centre for cardiology. RESULTS--In patients with normal ventricles during the unloading phase of the Valsalva manoeuvre (mean (SD)) monophasic action potential duration shortened from 311 (47) ms to 295 (47) ms (p less than 0.001). After release of the forced expiration as venous return was restored the monophasic action potential duration lengthened from 285 (44) ms to 304 (44) ms (p less than 0.0001). In the group with evidence of abnormal wall motion the direction of change of action potential duration during the strain phase was normal in 7/21 observations, abnormal in 6/21, and showed no clear change in 8/21. During the release phase 11/20 observations were normal, five abnormal

  10. Multifocal fluorescence microscope for fast optical recordings of neuronal action potentials.

    PubMed

    Shtrahman, Matthew; Aharoni, Daniel B; Hardy, Nicholas F; Buonomano, Dean V; Arisaka, Katsushi; Otis, Thomas S

    2015-02-01

    In recent years, optical sensors for tracking neural activity have been developed and offer great utility. However, developing microscopy techniques that have several kHz bandwidth necessary to reliably capture optically reported action potentials (APs) at multiple locations in parallel remains a significant challenge. To our knowledge, we describe a novel microscope optimized to measure spatially distributed optical signals with submillisecond and near diffraction-limit resolution. Our design uses a spatial light modulator to generate patterned illumination to simultaneously excite multiple user-defined targets. A galvanometer driven mirror in the emission path streaks the fluorescence emanating from each excitation point during the camera exposure, using unused camera pixels to capture time varying fluorescence at rates that are ∼1000 times faster than the camera's native frame rate. We demonstrate that this approach is capable of recording Ca(2+) transients resulting from APs in neurons labeled with the Ca(2+) sensor Oregon Green Bapta-1 (OGB-1), and can localize the timing of these events with millisecond resolution. Furthermore, optically reported APs can be detected with the voltage sensitive dye DiO-DPA in multiple locations within a neuron with a signal/noise ratio up to ∼40, resolving delays in arrival time along dendrites. Thus, the microscope provides a powerful tool for photometric measurements of dynamics requiring submillisecond sampling at multiple locations.

  11. Multifocal fluorescence microscope for fast optical recordings of neuronal action potentials.

    PubMed

    Shtrahman, Matthew; Aharoni, Daniel B; Hardy, Nicholas F; Buonomano, Dean V; Arisaka, Katsushi; Otis, Thomas S

    2015-02-01

    In recent years, optical sensors for tracking neural activity have been developed and offer great utility. However, developing microscopy techniques that have several kHz bandwidth necessary to reliably capture optically reported action potentials (APs) at multiple locations in parallel remains a significant challenge. To our knowledge, we describe a novel microscope optimized to measure spatially distributed optical signals with submillisecond and near diffraction-limit resolution. Our design uses a spatial light modulator to generate patterned illumination to simultaneously excite multiple user-defined targets. A galvanometer driven mirror in the emission path streaks the fluorescence emanating from each excitation point during the camera exposure, using unused camera pixels to capture time varying fluorescence at rates that are ∼1000 times faster than the camera's native frame rate. We demonstrate that this approach is capable of recording Ca(2+) transients resulting from APs in neurons labeled with the Ca(2+) sensor Oregon Green Bapta-1 (OGB-1), and can localize the timing of these events with millisecond resolution. Furthermore, optically reported APs can be detected with the voltage sensitive dye DiO-DPA in multiple locations within a neuron with a signal/noise ratio up to ∼40, resolving delays in arrival time along dendrites. Thus, the microscope provides a powerful tool for photometric measurements of dynamics requiring submillisecond sampling at multiple locations. PMID:25650920

  12. Performance analysis of stationary and discrete wavelet transform for action potential detection from sympathetic nerve recordings in humans.

    PubMed

    Salmanpour, Aryan; Brown, Lyndon J; Shoemaker, J Kevin

    2008-01-01

    Accurate investigation of the sympathetic nervous system is important in the diagnosis and study of various autonomic and cardiovascular control and disorders. Sympathetic function associated with blood pressure regulation in humans can be evaluated by recording muscle sympathetic nerve activity (MSNA), which is characterised by synchronous neuronal discharges separated by periods of neural silence dominated by colored gaussian noise. In this paper two common methods for detecting filtered action potential in MSNA recordings is compared. These methods are based on stationary wavelet transform (SWT) and discrete wavelet transform (DWT). The performance analysis are evaluated using simulated MSNA using templates extracted from real MSNA recorded from three healthy subjects.

  13. The mode of action of quinidine on isolated rabbit atria interpreted from intracellular potential records.

    PubMed

    VAUGHAN WILLIAMS, E M

    1958-09-01

    An attempt has been made to show why quinidine, which has long been known not to lengthen the duration of the cardiac action potential, measured with external electrodes, and also not to lengthen, and sometimes to shorten, the absolute refractory period, nevertheless reduces the maximum frequency at which atria can respond to a stimulus. Simultaneous measurements have been made in electrically driven isolated rabbit atria of contractions, conduction velocity and intracellular potentials before and during exposure to a wide range of concentrations of quinidine sulphate. The resting potential remained undiminished, in contrast to the effect of quinidine on Purkinje fibres. In the therapeutic range of doses, up to 10 mg./l., the half-time for repolarization was either shortened or unchanged, thus providing an explanation for the failure of quinidine to prolong the absolute refractory period. In contrast, even at low concentrations of quinidine, conduction velocity and the rate of rise of the action potential were greatly slowed, and the height of the overshoot was reduced. The terminal phase of the action potential was prolonged. It is known that the rate of rise of the action potential is a function of the level of repolarization at which an impulse takes off (the more negative the take-off point, the faster the rate of rise). Normally, a stimulus introduced when repolarization has proceeded to 2/3 of the resting potential evokes a response with a rate of rise fast enough for propagation, so that the duration of the terminal 1/3 of the phase of repolarization has no influence upon the length of the effective refractory period. In the presence of quinidine, however, the rate of rise itself was directly reduced, thus repolarization had to proceed further before the critical take-off point was reached at which the rate of rise was fast enough for propagation, and the duration of the terminal phase of repolarization thus became significant. It has been concluded that

  14. Overcoming photodamage in second-harmonic generation microscopy: real-time optical recording of neuronal action potentials.

    PubMed

    Sacconi, L; Dombeck, D A; Webb, W W

    2006-02-28

    Second-harmonic generation (SHG) has proven essential for the highest-resolution optical recording of membrane potential (Vm) in intact specimens. Here, we demonstrate single-trial SHG recordings of neuronal somatic action potentials and quantitative recordings of their decay with averaging at multiple sites during propagation along branched neurites at distances up to 350 mum from the soma. We realized these advances by quantifying, analyzing, and thereby minimizing the dynamics of photodamage (PD), a frequent limiting factor in the optical imaging of biological preparations. The optical signal and the PD during SHG imaging of stained cultured Aplysia neurons were examined with intracellular electrode recordings monitoring the resting Vm variations induced by laser-scanning illumination. We found that the PD increased linearly with the dye concentration but grew with the cube of illumination intensity, leading to unanticipated optimization procedures to minimize PD. The addition of appropriate antioxidants in conjunction with an observed Vm recovery after termination of laser scanning further refined the imaging criteria for minimization and control of PD during SHG recording of action potentials. With these advances, the potential of SHG as an effective optical tool for neuroscience investigations is being realized.

  15. Cardiac action potential imaging

    NASA Astrophysics Data System (ADS)

    Tian, Qinghai; Lipp, Peter; Kaestner, Lars

    2013-06-01

    Action potentials in cardiac myocytes have durations in the order of magnitude of 100 milliseconds. In biomedical investigations the documentation of the occurrence of action potentials is often not sufficient, but a recording of the shape of an action potential allows a functional estimation of several molecular players. Therefore a temporal resolution of around 500 images per second is compulsory. In the past such measurements have been performed with photometric approaches limiting the measurement to one cell at a time. In contrast, imaging allows reading out several cells at a time with additional spatial information. Recent developments in camera technologies allow the acquisition with the required speed and sensitivity. We performed action potential imaging on isolated adult cardiomyocytes of guinea pigs utilizing the fluorescent membrane potential sensor di-8-ANEPPS and latest electron-multiplication CCD as well as scientific CMOS cameras of several manufacturers. Furthermore, we characterized the signal to noise ratio of action potential signals of varying sets of cameras, dye concentrations and objective lenses. We ensured that di-8-ANEPPS itself did not alter action potentials by avoiding concentrations above 5 μM. Based on these results we can conclude that imaging is a reliable method to read out action potentials. Compared to conventional current-clamp experiments, this optical approach allows a much higher throughput and due to its contact free concept leaving the cell to a much higher degree undisturbed. Action potential imaging based on isolated adult cardiomyocytes can be utilized in pharmacological cardiac safety screens bearing numerous advantages over approaches based on heterologous expression of hERG channels in cell lines.

  16. Action potentials of HL-1 cells recorded with silicon nanowire transistors

    NASA Astrophysics Data System (ADS)

    Eschermann, Jan Felix; Stockmann, Regina; Hueske, Martin; Vu, Xuan Thang; Ingebrandt, Sven; Offenhäusser, Andreas

    2009-08-01

    Silicon nanowire (NW) transistors were fabricated in a top-down process. These devices were used to record the extracellular potential of the spontaneous activity of cardiac muscle HL-1 cells. Their signals were measured by direct dc sampling of the drain current. An improved signal-to-noise ratio compared to planar field-effect devices was observed. Furthermore the signal shape was evaluated and could be associated to different membrane currents. With these experiments, a qualitative description of the properties of the cell-NW contact was obtained and the suitability of these sensors for electrophysiological measurements in vitro was demonstrated.

  17. Microelectrode array recordings of cardiac action potentials as a high throughput method to evaluate pesticide toxicity.

    PubMed

    Natarajan, A; Molnar, P; Sieverdes, K; Jamshidi, A; Hickman, J J

    2006-04-01

    The threat of environmental pollution, biological warfare agent dissemination and new diseases in recent decades has increased research into cell-based biosensors. The creation of this class of sensors could specifically aid the detection of toxic chemicals and their effects in the environment, such as pyrethroid pesticides. Pyrethroids are synthetic pesticides that have been used increasingly over the last decade to replace other pesticides like DDT. In this study we used a high-throughput method to detect pyrethroids by using multielectrode extracellular recordings from cardiac cells. The data from this cell-electrode hybrid system was compared to published results obtained with patch-clamp electrophysiology and also used as an alternative method to further understand pyrethroid effects. Our biosensor consisted of a confluent monolayer of cardiac myocytes cultured on microelectrode arrays (MEA) composed of 60 substrate-integrated electrodes. Spontaneous activity of these beating cells produced extracellular field potentials in the range of 100 microV to nearly 1200 microV with a beating frequency of 0.5-4 Hz. All of the tested pyrethroids; alpha-Cypermethrin, Tetramethrin and Tefluthrin, produced similar changes in the electrophysiological properties of the cardiac myocytes, namely reduced beating frequency and amplitude. The sensitivity of our toxin detection method was comparable to earlier patch-clamp studies, which indicates that, in specific applications, high-throughput extracellular methods can replace single-cell studies. Moreover, the similar effect of all three pyrethroids on the measured parameters suggests, that not only detection of the toxins but, their classification might also be possible with this method. Overall our results support the idea that whole cell biosensors might be viable alternatives when compared to current toxin detection methods. PMID:16198528

  18. Novel description of ionic currents recorded with the action potential clamp technique: application to excitatory currents in suprachiasmatic nucleus neurons.

    PubMed

    Clay, John R

    2015-07-01

    The traditional method of recording ionic currents in neurons has been with voltage-clamp steps. Other waveforms such as action potentials (APs) can be used. The AP clamp method reveals contributions of ionic currents that underlie excitability during an AP (Bean BP. Nat Rev Neurosci 8: 451-465, 2007). A novel usage of the method is described in this report. An experimental recording of an AP from the literature is digitized and applied computationally to models of ionic currents. These results are compared with experimental AP-clamp recordings for model verification or, if need be, alterations to the model. The method is applied to the tetrodotoxin-sensitive sodium ion current, INa, and the calcium ion current, ICa, from suprachiasmatic nucleus (SCN) neurons (Jackson AC, Yao GL, Bean BP. J Neurosci 24: 7985-7998, 2004). The latter group reported voltage-step and AP-clamp results for both components. A model of INa is constructed from their voltage-step results. The AP clamp computational methodology applied to that model compares favorably with experiment, other than a modest discrepancy close to the peak of the AP that has not yet been resolved. A model of ICa was constructed from both voltage-step and AP-clamp results of this component. The model employs the Goldman-Hodgkin-Katz equation for the current-voltage relation rather than the traditional linear dependence of this aspect of the model on the Ca(2+) driving force. The long-term goal of this work is a mathematical model of the SCN AP. The method is general. It can be applied to any excitable cell.

  19. Recording and analysis of electrically evoked compound action potentials (ECAPs) with MED-EL cochlear implants and different artifact reduction strategies in Matlab.

    PubMed

    Bahmer, Andreas; Peter, Otto; Baumann, Uwe

    2010-08-15

    Electrically evoked compound action potentials (ECAPs) are used in auditory research to evaluate the response of the auditory nerve to electrical stimulation. Animal preparations are typically used for the recording. With the introduction of a new generation of cochlear implants, however it is possible to record the response of the auditory nerve to electrical stimulation in humans as well, which is used in the clinic to test whether the implant works properly and whether the auditory nerve is responsive. Currently, ECAPs are used to estimate thresholds for speech processor programs. In addition, ECAPs recordings allow new research to be addressed, e.g., to evaluate enhanced electrical stimulation patterns. Research platforms are required to test user-defined stimuli and algorithms for the ECAPs analysis. Clinical fitting software that records ECAPs is not flexible enough for this purpose. To enable a larger group of scientists to pursue research in this field, we introduce a flexible setup that allows to change stimulation and recording parameters. ECAP recording and analysis software was developed in Matlab (The Mathworks, Inc.) for standard PC, using a National instruments (PCI-6533, National Instruments, Austin, TX) card and a Research Interface Box 2 (RIB2, Department of Ion Physics and Applied Physics at the University of Innsbruck, Innsbruck, Austria) for MED-EL cochlear implants. ECAP recordings of a human subject with three different artifact reduction methods (alternating, Miller modified masker-probe, triphasic pulses) are presented and compared.

  20. Action potential in charophytes.

    PubMed

    Beilby, Mary Jane

    2007-01-01

    The plant action potential (AP) has been studied for more than half a century. The experimental system was provided mainly by the large charophyte cells, which allowed insertion of early large electrodes, manipulation of cell compartments, and inside and outside media. These early experiments were inspired by the Hodgkin and Huxley (HH) work on the squid axon and its voltage clamp techniques. Later, the patch clamping technique provided information about the ion transporters underlying the excitation transient. The initial models were also influenced by the HH picture of the animal AP. At the turn of the century, the paradigm of the charophyte AP shifted to include several chemical reactions, second messenger-activated channel, and calcium ion liberation from internal stores. Many aspects of this new model await further clarification. The role of the AP in plant movements, wound signaling, and turgor regulation is now well documented. Involvement in invasion by pathogens, chilling injury, light, and gravity sensing are under investigation.

  1. Dual optical recordings for action potentials and calcium handling in induced pluripotent stem cell models of cardiac arrhythmias using genetically encoded fluorescent indicators.

    PubMed

    Song, LouJin; Awari, Daniel W; Han, Elizabeth Y; Uche-Anya, Eugenia; Park, Seon-Hye E; Yabe, Yoko A; Chung, Wendy K; Yazawa, Masayuki

    2015-05-01

    Reprogramming of human somatic cells to pluripotency has been used to investigate disease mechanisms and to identify potential therapeutics. However, the methods used for reprogramming, in vitro differentiation, and phenotyping are still complicated, expensive, and time-consuming. To address the limitations, we first optimized a protocol for reprogramming of human fibroblasts and keratinocytes into pluripotency using single lipofection and the episomal vectors in a 24-well plate format. This method allowed us to generate multiple lines of integration-free and feeder-free induced pluripotent stem cells (iPSCs) from seven patients with cardiac diseases and three controls. Second, we differentiated human iPSCs derived from patients with Timothy syndrome into cardiomyocytes using a monolayer differentiation method. We found that Timothy syndrome cardiomyocytes showed slower, irregular contractions and abnormal calcium handling compared with the controls. The results are consistent with previous reports using a retroviral method for reprogramming and an embryoid body-based method for cardiac differentiation. Third, we developed an efficient approach for recording the action potentials and calcium transients simultaneously in control and patient cardiomyocytes using genetically encoded fluorescent indicators, ArcLight and R-GECO1. The dual optical recordings enabled us to observe prolonged action potentials and abnormal calcium handling in Timothy syndrome cardiomyocytes. We confirmed that roscovitine rescued the phenotypes in Timothy syndrome cardiomyocytes and that these findings were consistent with previous studies using conventional electrophysiological recordings and calcium imaging with dyes. The approaches using our optimized methods and dual optical recordings will improve iPSC applicability for disease modeling to investigate mechanisms underlying cardiac arrhythmias and to test potential therapeutics.

  2. Optimal discrimination and classification of neuronal action potential waveforms from multiunit, multichannel recordings using software-based linear filters.

    PubMed

    Gozani, S N; Miller, J P

    1994-04-01

    We describe advanced protocols for the discrimination and classification of neuronal spike waveforms within multichannel electrophysiological recordings. The programs are capable of detecting and classifying the spikes from multiple, simultaneously active neurons, even in situations where there is a high degree of spike waveform superposition on the recording channels. The protocols are based on the derivation of an optimal linear filter for each individual neuron. Each filter is tuned to selectively respond to the spike waveform generated by the corresponding neuron, and to attenuate noise and the spike waveforms from all other neurons. The protocol is essentially an extension of earlier work [1], [13], [18]. However, the protocols extend the power and utility of the original implementations in two significant respects. First, a general single-pass automatic template estimation algorithm was derived and implemented. Second, the filters were implemented within a software environment providing a greatly enhanced functional organization and user interface. The utility of the analysis approach was demonstrated on samples of multiunit electrophysiological recordings from the cricket abdominal nerve cord.

  3. Simultaneous recording of the action potential and its whole-cell associated ion current on NG108-15 cells cultured over a MWCNT electrode

    NASA Astrophysics Data System (ADS)

    Morales-Reyes, I.; Seseña-Rubfiaro, A.; Acosta-García, M. C.; Batina, N.; Godínez-Fernández, R.

    2016-08-01

    It is well known that, in excitable cells, the dynamics of the ion currents (I i) is extremely important to determine both the magnitude and time course of an action potential (A p). To observe these two processes simultaneously, we cultured NG108-15 cells over a multi-walled carbon nanotubes electrode (MWCNTe) surface and arranged a two independent Patch Clamp system configuration (Bi-Patch Clamp). The first system was used in the voltage or current clamp mode, using a glass micropipette as an electrode. The second system was modified to connect the MWCNTe to virtual ground. While the A p was recorded through the micropipette electrode, the MWCNTe was used to measure the underlying whole-cell current. This configuration allowed us to record both the membrane voltage (V m) and the current changes simultaneously. Images acquired by atomic force microscopy (AFM) and scanning electron microscopy (SEM) indicate that cultured cells developed a complex network of neurites, which served to establish the necessary close contact and strong adhesion to the MWCNTe surface. These features were a key factor to obtain the recording of the whole-cell I i with a high signal to noise ratio (SNR). The experimental results were satisfactorily reproduced by a theoretical model developed to simulate the proposed system. Besides the contribution to a better understanding of the fundamental mechanisms involved in cell communication, the developed method could be useful in cell physiology studies, pharmacology and diseases diagnosis.

  4. Assessing the Relative Integrity of Formed Cardiac Linear Lesions by Recording Both Focal Monophasic Action Potentials and Contact Forces: A Technical Brief

    PubMed Central

    Benscoter, Mark A.

    2015-01-01

    The use of therapeutic ablation in patients with atrial fibrillation has become a mainstay in the treatment of this disease, yet often these individuals require multiple procedures. In other words, successful first time treatments are impacted by challenges, including the generation of linear lesions in certain anatomies like the mitral isthmus of the left atrium. Hence, there is a need to find ways to address the presence of unwanted conduction gaps at the time of lesion creation. In this paper, we describe a novel approach to examine conduction gaps, by using a proof of concept device to examine local electrical activation within the cardiac areas of an applied lesion, i.e., to locate gaps in the lesion set. To accomplish this, both epicardial and endocardial linear ablation lines composed of spot lesions with conduction gaps were created in a porcine model. The forces necessary to elicit monophasic action potentials (MAP) were collected from >200 measurements on the epicardium of the right ventricle. Ablations were then performed on the ventricular epicardium and left atrial mitral isthmus endocardially, while recording MAPs. We were able to successfully demonstrate the use of a proof of concept device to identify conduction gaps in linear lesion sets; furthermore, we were able to determine required contact forces to appropriately determine focal electrical changes of the underlying tissues. New catheter designs that incorporate capabilities to record focal MAPs could be employed clinically to better assess a given lesion quality and/or to determine the existence of an undesired conduction gap. PMID:27170896

  5. Spike potentials recorded from the insect photoreceptor.

    PubMed

    NAKA, K I; EGUCHI, E

    1962-03-01

    Slow and spike potentials were recorded from single cells in the receptor layer of the compound eye of the drone of the honeybee. From electron microscopic observation of the drone ommatidium, it was concluded that the response had been recorded from the retinula cell. The following hypothesis is suggested for the initiation of spike potentials in the drone compound eye: Photic stimulation results in a decrease in the resistance of all or part of the retinula cell membrane, giving rise to the retinal action potential. The retinal action potential causes outflow of the current through the proximal process of the cell. This depolarizing current initiates spike potentials in the proximal process or axon of the retinula cell which are recorded across the soma membrane of the retinula cell.

  6. Action Planning and Recording Achievement.

    ERIC Educational Resources Information Center

    Green, Muriel

    This document examines strategies and procedures that British further education (FE) colleges can use to develop and enhance systems and structures for guiding and supporting learners and learning. It is based on the findings of a field test of the Managing Learning model for planning and recording the process of FE students. First, the importance…

  7. Characteristics of cardiac action potentials in marsupials.

    PubMed

    Campbell, T J

    1989-01-01

    Standard microelectrode techniques were used to record action potentials from single atrial, ventricular and Purkinje fibers of hearts taken from three species of marsupial (Macropus rufus, Macropus robustus and Macropus eugenii) and from dogs, sheep and guinea-pigs. The major electrophysiological parameters of marsupial potentials were qualitatively similar to the values for placental mammals. The grouped data for ventricular action potentials from studies on 6 adult male red kangaroos (Macropus rufus) were (mean +/- SD): Resting potential -69.5 +/- 5.0 mV; action potential amplitude 92.7 +/- 5.7 mV; action potential duration (to 90% repolarization): 182.5 +/- 17.5 ms; maximum rate of depolarization: 196.5 +/- 80.1 V/s. The major point of difference was the short duration of the red kangaroo ventricular action potential compared to those of the placental mammals, and compared to atrial cells from the kangaroos. It is suggested that this explains the short QT interval reported by others for kangaroo electrocardiograms, and that it may also be implicated in the high frequency of sudden death previously noted in these animals.

  8. Screening Action Potentials: The Power of Light

    PubMed Central

    Kaestner, Lars; Lipp, Peter

    2011-01-01

    Action potentials reflect the concerted activity of all electrogenic constituents in the plasma membrane during the excitation of a cell. Therefore, the action potential is an integrated read out and a promising parameter to detect electrophysiological failures or modifications thereof in diagnosis as well as in drug screens. Cellular action potentials can be recorded by optical approaches. To fulfill the pre-requirements to scale up for, e.g., pharmacological screens the following preparatory work has to be provided: (i) model cells under investigation need to represent target cells in the best possible manner; (ii) optical sensors that can be either small molecule dyes or genetically encoded potential probes need to provide a reliable read out with minimal interaction with the naive behavior of the cells and (iii) devices need to be capable to stimulate the cells, read out the signals with the appropriate speed as well as provide the capacity for a sufficient throughput. Here we discuss several scenarios for all three categories in the field of cardiac physiology and pharmacology and provide a perspective to use the power of light in screening cardiac action potentials. PMID:21847381

  9. Action potential initiation and propagation in rat neocortical pyramidal neurons.

    PubMed

    Stuart, G; Schiller, J; Sakmann, B

    1997-12-15

    1. Initiation and propagation of action potentials evoked by extracellular synaptic stimulation was studied using simultaneous dual and triple patch pipette recordings from different locations on neocortical layer 5 pyramidal neurons in brain slices from 4-week-old rats (P26-30) at physiological temperatures. 2. Simultaneous cell-attached and whole-cell voltage recordings from the apical trunk (up to 700 microns distal to the soma) and the soma indicated that proximal synaptic stimulation (layer 4) initiated action potentials first at the soma, whereas distal stimulation (upper layer 2/3) could initiate dendritic regenerative potentials prior to somatic action potentials following stimulation at higher intensity. 3. Somatic action potentials, once initiated, propagated back into the apical dendrites in a decremented manner which was frequency dependent. The half-width of back propagating action potentials increased and their maximum rate of rise decreased with distance from the soma, with the peak of these action potentials propagating with a conduction velocity of approximately 0.5 m s-1. 4. Back-propagation of action potentials into the dendritic tree was associated with dendritic calcium electrogenesis, which was particularly prominent during bursts of somatic action potentials. 5. When dendritic regenerative potentials were evoked prior to somatic action potentials, the more distal the dendritic recording was made from the soma the longer the time between the onset of the dendritic regenerative potential relative to somatic action potential. This suggested that dendritic regenerative potentials were initiated in the distal apical dendrites, possibly in the apical tuft. 6. At any one stimulus intensity, the initiation of dendritic regenerative potentials prior to somatic action potentials could fluctuate, and was modulated by depolarizing somatic or hyperpolarizing dendritic current injection. 7. Dendritic regenerative potentials could be initiated prior to

  10. 47 CFR 0.347 - Record of actions taken.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Record of actions taken. 0.347 Section 0.347 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION Delegations of Authority Administrative Law Judges § 0.347 Record of actions taken. The official record of all actions taken by...

  11. 47 CFR 0.347 - Record of actions taken.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Record of actions taken. 0.347 Section 0.347 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION Delegations of Authority Administrative Law Judges § 0.347 Record of actions taken. The official record of all actions taken by...

  12. 47 CFR 0.347 - Record of actions taken.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Record of actions taken. 0.347 Section 0.347 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION Delegations of Authority Administrative Law Judges § 0.347 Record of actions taken. The official record of all actions taken by...

  13. 47 CFR 0.347 - Record of actions taken.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Record of actions taken. 0.347 Section 0.347 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION Delegations of Authority Administrative Law Judges § 0.347 Record of actions taken. The official record of all actions taken by...

  14. 47 CFR 0.347 - Record of actions taken.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Record of actions taken. 0.347 Section 0.347 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION Delegations of Authority Administrative Law Judges § 0.347 Record of actions taken. The official record of all actions taken by...

  15. Ca channel gating during cardiac action potentials.

    PubMed

    Mazzanti, M; DeFelice, L J

    1990-10-01

    How do Ca channels conduct Ca ions during the cardiac action potential? We attempt to answer this question by applying a two-microelectrode technique, previously used for Na and K currents, in which we record the patch current and the action potential at the same time (Mazzanti, M., and L. J. DeFelice. 1987. Biophys. J. 12:95-100, and 1988. Biophys. J. 54:1139-1148; Wellis, D., L. J. DeFelice, and M. Mazzanti. 1990. Biophys. J. 57:41-48). In this paper, we also compare the action currents obtained by the technique with the step-protocol currents obtained during standard voltage-clamp experiments. Individual Ca channels were measured in 10 mM Ca/1 Ba and 10 mM Ba. To describe part of our results, we use the nomenclature introduced by Hess, P., J. B. Lansman, and R. W. Tsien (1984. Nature (Lond.). 311:538-544). With Ba as the charge carrier, Ca channel kinetics convert rapidly from long to short open times as the patch voltage changes from 20 to -20 mV. This voltage-dependent conversion occurs during action potentials and in step-protocol experiments. With Ca as the charge carrier, the currents are brief at all voltages, and it is difficult to define either the number of channels in the patch or the conductance of the individual channels. Occasionally, however, Ca-conducting channels spontaneously convert to long-open-time kinetics (in Hess et al., 1984, notation, mode 2). When this happens, which is about once in every 100beats, there usually appears to be only one channel in the patch. In this rare configuration, the channel is open long enough to measure its conductance in 10 Ca/ 1 Ba. The value is 8-10 pS, which is about half the conductance in Ba. Because the long openings occur so infrequently with Ca as the charge carrier, they contribute negligibly to the average Ca current at any particular time during an action potential. However, the total number of Ca ions entering during these long openings may be significant when compared to the number entering by the

  16. Ca channel gating during cardiac action potentials.

    PubMed

    Mazzanti, M; DeFelice, L J

    1990-10-01

    How do Ca channels conduct Ca ions during the cardiac action potential? We attempt to answer this question by applying a two-microelectrode technique, previously used for Na and K currents, in which we record the patch current and the action potential at the same time (Mazzanti, M., and L. J. DeFelice. 1987. Biophys. J. 12:95-100, and 1988. Biophys. J. 54:1139-1148; Wellis, D., L. J. DeFelice, and M. Mazzanti. 1990. Biophys. J. 57:41-48). In this paper, we also compare the action currents obtained by the technique with the step-protocol currents obtained during standard voltage-clamp experiments. Individual Ca channels were measured in 10 mM Ca/1 Ba and 10 mM Ba. To describe part of our results, we use the nomenclature introduced by Hess, P., J. B. Lansman, and R. W. Tsien (1984. Nature (Lond.). 311:538-544). With Ba as the charge carrier, Ca channel kinetics convert rapidly from long to short open times as the patch voltage changes from 20 to -20 mV. This voltage-dependent conversion occurs during action potentials and in step-protocol experiments. With Ca as the charge carrier, the currents are brief at all voltages, and it is difficult to define either the number of channels in the patch or the conductance of the individual channels. Occasionally, however, Ca-conducting channels spontaneously convert to long-open-time kinetics (in Hess et al., 1984, notation, mode 2). When this happens, which is about once in every 100beats, there usually appears to be only one channel in the patch. In this rare configuration, the channel is open long enough to measure its conductance in 10 Ca/ 1 Ba. The value is 8-10 pS, which is about half the conductance in Ba. Because the long openings occur so infrequently with Ca as the charge carrier, they contribute negligibly to the average Ca current at any particular time during an action potential. However, the total number of Ca ions entering during these long openings may be significant when compared to the number entering by the

  17. 41 CFR 60-2.32 - Affirmative action records.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 1 2012-07-01 2009-07-01 true Affirmative action records. 60-2.32 Section 60-2.32 Public Contracts and Property Management Other Provisions Relating to... OF LABOR 2-AFFIRMATIVE ACTION PROGRAMS Miscellaneous § 60-2.32 Affirmative action records....

  18. 41 CFR 60-2.32 - Affirmative action records.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Affirmative action records. 60-2.32 Section 60-2.32 Public Contracts and Property Management Other Provisions Relating to... OF LABOR 2-AFFIRMATIVE ACTION PROGRAMS Miscellaneous § 60-2.32 Affirmative action records....

  19. 41 CFR 60-2.32 - Affirmative action records.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 1 2014-07-01 2014-07-01 false Affirmative action records. 60-2.32 Section 60-2.32 Public Contracts and Property Management Other Provisions Relating to... OF LABOR 2-AFFIRMATIVE ACTION PROGRAMS Miscellaneous § 60-2.32 Affirmative action records....

  20. 41 CFR 60-2.32 - Affirmative action records.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 1 2011-07-01 2009-07-01 true Affirmative action records. 60-2.32 Section 60-2.32 Public Contracts and Property Management Other Provisions Relating to... OF LABOR 2-AFFIRMATIVE ACTION PROGRAMS Miscellaneous § 60-2.32 Affirmative action records....

  1. 41 CFR 60-2.32 - Affirmative action records.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 1 2013-07-01 2013-07-01 false Affirmative action records. 60-2.32 Section 60-2.32 Public Contracts and Property Management Other Provisions Relating to... OF LABOR 2-AFFIRMATIVE ACTION PROGRAMS Miscellaneous § 60-2.32 Affirmative action records....

  2. Action potential broadening in a presynaptic channelopathy

    NASA Astrophysics Data System (ADS)

    Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E.; Kullmann, Dimitri M.

    2016-07-01

    Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca2+ influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction.

  3. Action potential broadening in a presynaptic channelopathy

    PubMed Central

    Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E.; Kullmann, Dimitri M.

    2016-01-01

    Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca2+ influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction. PMID:27381274

  4. Action potential broadening in a presynaptic channelopathy.

    PubMed

    Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E; Kullmann, Dimitri M

    2016-01-01

    Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca(2+) influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction. PMID:27381274

  5. Compound muscle action potential cartography of an accessory peroneal nerve.

    PubMed

    Van Dijk, J G; Van der Hoeven, B J

    1998-10-01

    In daily practice, accessory peroneal nerves (APNs) are detected in less than the 18-25% of legs, as revealed by systematic searches. In one APN case, compound muscle action potential cartography showed that the APN was only apparent when the recording electrode was placed over a small lateral region of the extensor digitorum brevis muscle. Effects of recording site can explain why many APNs go unrecognized.

  6. 47 CFR 0.285 - Record of actions taken.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Record of actions taken. 0.285 Section 0.285 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION Delegations of Authority Chief, Media Bureau § 0.285 Record of actions taken. The history card, the station file, and other...

  7. 47 CFR 0.302 - Record of actions taken.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION Delegations of Authority Chief, Wireline Competition Bureau § 0.302 Record of actions taken. The application and authorization files are designated as the Commission's official records of action of the Chief, Wireline Competition Bureau...

  8. Correlation of action potentials in adjacent neurons

    NASA Astrophysics Data System (ADS)

    Shneider, M. N.; Pekker, M.

    2015-12-01

    A possible mechanism for the synchronization of action potential propagation along a bundle of neurons (ephaptic coupling) is considered. It is shown that this mechanism is similar to the salutatory conduction of the action potential between the nodes of Ranvier in myelinated axons. The proposed model allows us to estimate the scale of the correlation, i.e., the distance between neurons in the nervous tissue, wherein their synchronization becomes possible. The possibility for experimental verification of the proposed model of synchronization is discussed.

  9. A physical action potential generator: design, implementation and evaluation

    PubMed Central

    Latorre, Malcolm A.; Chan, Adrian D. C.; Wårdell, Karin

    2015-01-01

    The objective was to develop a physical action potential generator (Paxon) with the ability to generate a stable, repeatable, programmable, and physiological-like action potential. The Paxon has an equivalent of 40 nodes of Ranvier that were mimicked using resin embedded gold wires (Ø = 20 μm). These nodes were software controlled and the action potentials were initiated by a start trigger. Clinically used Ag-AgCl electrodes were coupled to the Paxon for functional testing. The Paxon's action potential parameters were tunable using a second order mathematical equation to generate physiologically relevant output, which was accomplished by varying the number of nodes involved (1–40 in incremental steps of 1) and the node drive potential (0–2.8 V in 0.7 mV steps), while keeping a fixed inter-nodal timing and test electrode configuration. A system noise floor of 0.07 ± 0.01 μV was calculated over 50 runs. A differential test electrode recorded a peak positive amplitude of 1.5 ± 0.05 mV (gain of 40x) at time 196.4 ± 0.06 ms, including a post trigger delay. The Paxon's programmable action potential like signal has the possibility to be used as a validation test platform for medical surface electrodes and their attached systems. PMID:26539072

  10. Introducing the Action Potential to Psychology Students

    ERIC Educational Resources Information Center

    Simon-Dack, Stephanie L.

    2014-01-01

    For this simple active learning technique for teaching, students are assigned "roles" and act out the process of the action potential (AP), including the firing threshold, ion-specific channels for ions to enter and leave the cell, diffusion, and the refractory period. Pre-post test results indicated that students demonstrated increased…

  11. Recording and assessment of evoked potentials with electrode arrays.

    PubMed

    Miljković, N; Malešević, N; Kojić, V; Bijelić, G; Keller, T; Popović, D B

    2015-09-01

    In order to optimize procedure for the assessment of evoked potentials and to provide visualization of the flow of action potentials along the motor systems, we introduced array electrodes for stimulation and recording and developed software for the analysis of the recordings. The system uses a stimulator connected to an electrode array for the generation of evoked potentials, an electrode array connected to the amplifier, A/D converter and computer for the recording of evoked potentials, and a dedicated software application. The method has been tested for the assessment of the H-reflex on the triceps surae muscle in six healthy humans. The electrode array with 16 pads was positioned over the posterior aspect of the thigh, while the recording electrode array with 16 pads was positioned over the triceps surae muscle. The stimulator activated all the pads of the stimulation electrode array asynchronously, while the signals were recorded continuously at all the recording sites. The results are topography maps (spatial distribution of evoked potentials) and matrices (spatial visualization of nerve excitability). The software allows the automatic selection of the lowest stimulation intensity to achieve maximal H-reflex amplitude and selection of the recording/stimulation pads according to predefined criteria. The analysis of results shows that the method provides rich information compared with the conventional recording of the H-reflex with regard the spatial distribution.

  12. The action potential of Dionaea muscipula Ellis.

    PubMed

    Hodick, D; Sievers, A

    1988-04-01

    The intention of this investigation was to acquire more concise information about the nature of the action potential of Dionaea muscipula Ellis and the different types of cells generating and conducting it. It is shown by microelectrode measurements that, besides the sensory cells, all the major tissues of the trap lobes are excitable, firing action potentials with pronounced after-hyperpolarizations. The action potentials are strictly dependent on Ca(2+). Their peak depolarizations are shifted 25-27 mV in a positive direction after a tenfold increase in external Ca(2+) concentration. Perfusions with 1 mM ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) or 1 mM LaCl3 completely inhibit excitability. Magnesium ions only slightly affect the peak depolarizations but considerably prolong action potentials. Sodium azide and 2,4-dinitrophenol also abolish excitation, probably by reducing the intracellular ATP concentration. Furthermore, it is tested whether the sensory cells can be distinguished from the other cells of the trap by their electrical behaviour. The resting potentials of sensory cells (-161±7 mV) and mesophyll cells (-155±8 mV) are of the same magnitude. Changes in external ion concentrations affect resting and action potentials in both cell types in a similar way. Additional freeze-fracture studies of both cell types reveal similar numbers and distributions of intramembrane particles on the fracture faces of the plasma membrane, which is most likely the mechanosensor. These findings stress the view that the high mechanosensitivity of the sensory hair results from its anatomy and not from a specialized perception mechanism. It is proposed that trap closure is triggered by a rise in the cytoplasmic concentration of Ca(2+) or a Ca(2+)-activated regulatory complex, which must exceed a threshold concentration. Since the Ca(2+) influx during a single action potential does not suffice to reach this threshold, at least two stimulations

  13. Mechanical surface waves accompany action potential propagation.

    PubMed

    El Hady, Ahmed; Machta, Benjamin B

    2015-01-01

    Many diverse studies have shown that a mechanical displacement of the axonal membrane accompanies the electrical pulse defining the action potential (AP). We present a model for these mechanical displacements as arising from the driving of surface wave modes in which potential energy is stored in elastic properties of the neuronal membrane and cytoskeleton while kinetic energy is carried by the axoplasmic fluid. In our model, these surface waves are driven by the travelling wave of electrical depolarization characterizing the AP, altering compressive electrostatic forces across the membrane. This driving leads to co-propagating mechanical displacements, which we term Action Waves (AWs). Our model allows us to estimate the shape of the AW that accompanies any travelling wave of voltage, making predictions that are in agreement with results from several experimental systems. Our model can serve as a framework for understanding the physical origins and possible functional roles of these AWs. PMID:25819404

  14. Mechanical surface waves accompany action potential propagation

    NASA Astrophysics Data System (ADS)

    El Hady, Ahmed; Machta, Benjamin B.

    2015-03-01

    Many diverse studies have shown that a mechanical displacement of the axonal membrane accompanies the electrical pulse defining the action potential (AP). We present a model for these mechanical displacements as arising from the driving of surface wave modes in which potential energy is stored in elastic properties of the neuronal membrane and cytoskeleton while kinetic energy is carried by the axoplasmic fluid. In our model, these surface waves are driven by the travelling wave of electrical depolarization characterizing the AP, altering compressive electrostatic forces across the membrane. This driving leads to co-propagating mechanical displacements, which we term Action Waves (AWs). Our model allows us to estimate the shape of the AW that accompanies any travelling wave of voltage, making predictions that are in agreement with results from several experimental systems. Our model can serve as a framework for understanding the physical origins and possible functional roles of these AWs.

  15. Ionic requirements for arterial action potential

    PubMed Central

    Keatinge, W. R.

    1968-01-01

    1. Strips of smooth muscle from common carotid arteries of sheep were electrically quiescent in solution containing Na 148 mM and Ca 2·5 mM. 2. When Ca was removed they became electrically active. Addition of low concentrations of Ca (0·025-0·075 mM) or Mg (0·025-0·750 mM) stopped their activity while ethylenediamine tetra-acetate (EDTA) (1·25 mM) accelerated it. 3. Replacement of Na by Tris or choline stopped the activity in Ca-free solution. After partial replacement of Na electrical activity could be restored by lowering the resting potential but after complete replacement of Na it could not. 4. In the presence of Ca (2·5 mM) small spikes could sometimes be induced after 20 min in Na-free Tris solution by lowering the resting potential by an increase in the external K concentration. 5. The results indicate that the depolarizing current of action potentials in this smooth muscle was largely carried by Na, although a little may have been carried by Ca in Ca-containing solutions. 6. The arteries in general resembled striated muscle rather than intestinal smooth muscle in these respects, but unlike striated muscle their action potentials were not stopped by tetrodotoxin. ImagesFig. 2 PMID:5639765

  16. Sodium and potassium conductance changes during a membrane action potential

    PubMed Central

    Bezanilla, Francisco; Rojas, Eduardo; Taylor, Robert E.

    1970-01-01

    1. A method for turning a membrane potential control system on and off in less than 10 μsec is described. This method was used to record membrane currents in perfused giant axons from Dosidicus gigas and Loligo forbesi after turning on the voltage clamp system at various times during the course of a membrane action potential. 2. The membrane current measured just after the capacity charging transient was found to have an almost linear relation to the controlled membrane potential. 3. The total membrane conductance taken from these current—voltage curves was found to have a time course during the action potential similar to that found by Cole & Curtis (1939). 4. The instantaneous current voltage curves were linear enough to make it possible to obtain a good estimate of the individual sodium and potassium channel conductances, either algebraically or by clamping to the sodium, or potassium, reversal potentials. Good general agreement was obtained with the predictions of the Hodgkin—Huxley equations. 5. We consider these results to constitute the first direct experimental demonstration of the conductance changes to sodium and potassium during the course of an action potential. PMID:5505231

  17. Action prediction based on anticipatory brain potentials during simulated driving

    NASA Astrophysics Data System (ADS)

    Khaliliardali, Zahra; Chavarriaga, Ricardo; Gheorghe, Lucian Andrei; Millán, José del R.

    2015-12-01

    Objective. The ability of an automobile to infer the driver’s upcoming actions directly from neural signals could enrich the interaction of the car with its driver. Intelligent vehicles fitted with an on-board brain-computer interface able to decode the driver’s intentions can use this information to improve the driving experience. In this study we investigate the neural signatures of anticipation of specific actions, namely braking and accelerating. Approach. We investigated anticipatory slow cortical potentials in electroencephalogram recorded from 18 healthy participants in a driving simulator using a variant of the contingent negative variation (CNV) paradigm with Go and No-go conditions: count-down numbers followed by ‘Start’/‘Stop’ cue. We report decoding performance before the action onset using a quadratic discriminant analysis classifier based on temporal features. Main results. (i) Despite the visual and driving related cognitive distractions, we show the presence of anticipatory event related potentials locked to the stimuli onset similar to the widely reported CNV signal (with an average peak value of -8 μV at electrode Cz). (ii) We demonstrate the discrimination between cases requiring to perform an action upon imperative subsequent stimulus (Go condition, e.g. a ‘Red’ traffic light) versus events that do not require such action (No-go condition; e.g. a ‘Yellow’ light); with an average single trial classification performance of 0.83 ± 0.13 for braking and 0.79 ± 0.12 for accelerating (area under the curve). (iii) We show that the centro-medial anticipatory potentials are observed as early as 320 ± 200 ms before the action with a detection rate of 0.77 ± 0.12 in offline analysis. Significance. We show for the first time the feasibility of predicting the driver’s intention through decoding anticipatory related potentials during simulated car driving with high recognition rates.

  18. Recording Action Research in a Classroom: Singing with Chickadees

    ERIC Educational Resources Information Center

    Beatty, Ramona; Bedford, Judy; Both, Peter; Eld, Jennifer; Goitom, Mary; Heinrichs, Lilli; Moran-Bonilla, Laura; Massoud, Mona; Van Ngo, Hieu; Pyrch, Timothy; Rogerson, Marianne; Sitter, Kathleen; Speaker, Casey Eagle; Unrau, Mike

    2008-01-01

    This is a collective interpretive record of a graduate course in Social Work on participatory action research (PAR) offered during the winter of 2007. It is written by 14 individuals including the instructor. It was inspired by the image of a chickadee bird borrowed from Jonathan Lear's (2006) book "Radical Hope." The chickadee is a powerful…

  19. 47 CFR 0.247 - Record of actions taken.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Record of actions taken. 0.247 Section 0.247 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION Delegations of Authority Chief... files of the Office of Engineering and Technology are designated as the official minute entries...

  20. 47 CFR 0.247 - Record of actions taken.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Record of actions taken. 0.247 Section 0.247 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION Delegations of Authority Chief... files of the Office of Engineering and Technology are designated as the official minute entries...

  1. 12 CFR 24.7 - Examination, records, and remedial action.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ECONOMIC DEVELOPMENT ENTITIES, COMMUNITY DEVELOPMENT PROJECTS, AND OTHER PUBLIC WELFARE INVESTMENTS § 24.7 Examination, records, and remedial action. (a) Examination. National bank investments under this part are... its files information adequate to demonstrate that its investments meet the standards set out in §...

  2. 12 CFR 24.7 - Examination, records, and remedial action.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ECONOMIC DEVELOPMENT ENTITIES, COMMUNITY DEVELOPMENT PROJECTS, AND OTHER PUBLIC WELFARE INVESTMENTS § 24.7 Examination, records, and remedial action. (a) Examination. National bank investments under this part are... its files information adequate to demonstrate that its investments meet the standards set out in §...

  3. The characteristics of action potentials in primo vessels and the effects of acetylcholine injection to the action potentials.

    PubMed

    Cho, Seong Jin; Lim, Jaekwan; Yeon, Sun Hee; Kwon, O Sang; Choi, Kwang-Ho; Choi, Sun-Mi; Ryu, Yeon-Hee

    2013-01-01

    In a previous study, we found that Primo vessels generate different action potentials in smooth muscles, but this study compared the pulse shape to distinguish the two tissues. Thus, a more sophisticated extracellular experiment was performed in this study using an acetylcholine injection; we then observed changes in the amplitude, FWHM (full width at half maximum), and period to explore Primo vessel function. A third type of pulse was recorded for Primo vessels. We observed fast depolarizing and repolarizing phases for this pulse. Further, its FWHM was 30 ms between smooth muscles and neurons. Acetylcholine affected only the period. The amplitude and FWHM were consistent after injection. Primo-vessels generated action potentials at twice the frequency after injection. From the results, we speculate that Primo-vessels perform a role in transferring signals in a different manner, which may be relevant for acupuncture treatment.

  4. Atrial action potential heterogeneity measured by unipolar electrograms.

    PubMed

    Vigmond, Edward J; Tsoi, Vincent; Pagé, Pierre

    2006-01-01

    Vagally-induced action potential duration (APD) heterogeneity can lead to the breakdown of atrial flutter into fibrillation. The exact distribution of vagal mediated effects in the atria is unknown, however. This study analyzed canine electrograms in order to determine changes in APD. Electrograms were recorded under control, and left and right vagal nerve stimulation. Simulations in a computer model were first performed in order to determine how local acetylcholine concentrations affect electrograms. Two measures were investigated to assess APD changes. Results indicate that APD is reduced nonuniformly, and contralateral effects were seen.

  5. Recording actions to prevent child morbidity in children's health cards.

    PubMed

    Vieira, Daniele de Souza; Santos, Nathanielly Cristina Carvalho de Brito; Costa, Dayse Kalyne Gomes da; Pereira, Mayara de Melo; Vaz, Elenice Maria Cecchetti; Reichert, Altamira Pereira da Silva

    2016-06-01

    The aim of this study was to analyze the registering of preventative actions in relation to child morbidity using information regarding vaccinations, as well as iron and vitamin A supplements, which are recorded in children's health cards. This transversal study used a quantitative approach and was performed in Family Health Units in the city of João Pessoa, Paraíba; the sampling was by convenience and totaled 116 children's health cards. The data was collected by observing the cards and the analysis was simple, statistical. The highest percentage of children had their vaccination cards up to date (92.2%) and those that did not were aged between 6 and 12 months: 78.9% of the cards did not have records relating to iron and vitamin A supplements and others only had records of one of the supplements being administered. The vaccination status of children in the first year of life was found to be satisfactory; however, discrepancies were observed in the recordings of the administration of iron and vitamin A supplements, which complicates monitoring performed by child health care professionals. It is hoped that this study will contribute to discussions and strategies aimed at improving the monitoring and recording of micronutrients in children's health cards. PMID:27383363

  6. Cortical Interneuron Subtypes Vary in Their Axonal Action Potential Properties

    PubMed Central

    Casale, Amanda E.; Foust, Amanda J.; Bal, Thierry

    2015-01-01

    The role of interneurons in cortical microcircuits is strongly influenced by their passive and active electrical properties. Although different types of interneurons exhibit unique electrophysiological properties recorded at the soma, it is not yet clear whether these differences are also manifested in other neuronal compartments. To address this question, we have used voltage-sensitive dye to image the propagation of action potentials into the fine collaterals of axons and dendrites in two of the largest cortical interneuron subtypes in the mouse: fast-spiking interneurons, which are typically basket or chandelier neurons; and somatostatin containing interneurons, which are typically regular spiking Martinotti cells. We found that fast-spiking and somatostatin-expressing interneurons differed in their electrophysiological characteristics along their entire dendrosomatoaxonal extent. The action potentials generated in the somata and axons, including axon collaterals, of somatostatin-expressing interneurons are significantly broader than those generated in the same compartments of fast-spiking inhibitory interneurons. In addition, action potentials back-propagated into the dendrites of somatostatin-expressing interneurons much more readily than fast-spiking interneurons. Pharmacological investigations suggested that axonal action potential repolarization in both cell types depends critically upon Kv1 channels, whereas the axonal and somatic action potentials of somatostatin-expressing interneurons also depend on BK Ca2+-activated K+ channels. These results indicate that the two broad classes of interneurons studied here have expressly different subcellular physiological properties, allowing them to perform unique computational roles in cortical circuit operations. SIGNIFICANCE STATEMENT Neurons in the cerebral cortex are of two major types: excitatory and inhibitory. The proper balance of excitation and inhibition in the brain is critical for its operation. Neurons

  7. Recording Field Potentials From Zebrafish Larvae During Escape Responses

    PubMed Central

    Monesson-Olson, Bryan D.; Troconis, Eileen L.; Trapani, Josef G.

    2014-01-01

    Among vertebrates, startle responses are a ubiquitous method for alerting, and avoiding or escaping from alarming or dangerous stimuli. In zebrafish larvae, fast escape behavior is easily evoked through either acoustic or tactile stimuli. For example, a light touch to the head will excite trigeminal neurons that in turn excite a large reticulospinal neuron in the hindbrain called the Mauthner cell (M-cell). The M-cell action potential then travels down the contralateral trunk of the larva exciting motoneurons, which subsequently excite the entire axial musculature, producing a large amplitude body bend away from the source of the stimulus. This body conformation is known as the “C-bend” due to the shape of the larva during the behavior. As a result of the semi-synchronized activation of the M-cell, the population of motor neurons, and the axial trunk muscles, a large field potential is generated and can be recorded from free-swimming or fixed-position larvae. Undergraduate laboratories that record field potentials during escape responses in larval zebrafish are relatively simple to setup and allow students to observe and study the escape reflex circuit. Furthermore, by testing hypotheses, analyzing data and writing journal-style laboratory reports, students have multiple opportunities to learn about many neuroscience topics including vertebrate reflexes; sensory transduction; synaptic-, neuro-, and muscle-physiology; the M-cell mediated escape response; and the zebrafish as a model organism. Here, we detail the equipment, software, and recording setup necessary to observe field potentials in an undergraduate teaching lab. Additionally, we discuss potential advanced laboratory exercises and pedagogical outcomes. Finally, we note possible low-cost alternatives for recording field potentials. PMID:25565920

  8. Effect of a prenylamine analog (MG8926) on spontaneous action potentials in isolated rabbit sinoatrial node.

    PubMed

    Nakanishi, H; Matsuoka, I; Ono, T; Yoshida, H; Uchibori, T; Kogi, K

    1996-12-01

    Effects of verapamil, prenylamine and a prenylamine analog, MG8926 on the intracellular spontaneous action potentials recorded from the isolated rabbit sinoatrial (SA) node were studied. Verapamil (1 microM), a selective inhibitor for slow Ca2+ channels, prolonged the cycle length, decreased the rate of diastolic depolarization, the rate of rise of action potential, the amplitude of action potential and the maximal diastolic potential, and usually arrested showing subthreshold fluctuation of the membrane potential within several ten min. Prenylamine (10 microM), a nonselective inhibitor for slow Ca2+ channels, tended to prolong the cycle length to decrease the diastolic depolarization, the rate of rise of action potential, the amplitude of action potential. However, these changes were statistically insignificant. Prenylamine at the concentration of 10 microM had no effect on the maximal diastolic potential. MG8926 (10 microM) prolonged the cycle length, decreased the rate of diastolic depolarization, the rate of rise of action potential and tended to decrease the amplitude of action potential. MG8926 at the concentration of 10 microM had almost no effect on the maximal diastolic potential. The present findings may indicate that replacement of phenyl residue of prenylamine by cyclohexyl residue increases the inhibitory action on the slow Ca2+ channels in rabbit SA node.

  9. Extracellular Recordings of Field Potentials from Single Cardiomyocytes

    PubMed Central

    Klauke, Norbert; Smith, Godfrey L.; Cooper, Jon

    2006-01-01

    Open microfluidic channels were used to separate the extracellular space around a cardiomyocyte into three compartments: the cell ends and a central partition (insulating gap). The microchannels were filled with buffer solution and overlaid with paraffin oil, thus forming the cavities for the cell ends. The central part of the cardiomyocyte rested on the partition between two adjacent microchannels and was entirely surrounded by the paraffin oil. This arrangement increased the extracellular electrical resistance to >20 MΩ and facilitated the recording of the time course of the change in extracellular voltage and current during subthreshold and suprathreshold stimuli. The waveform of the extracellular current and voltage in response to an extracellular depolarizing stimulus comprised an initial monophasic signal followed by a biphasic signal with a delay of 2–15 ms. The latter was associated with a transient contraction and therefore caused by an action potential. The biphasic signal became monophasic after the depolarization of one cell end by raised extracellular [K+]. This form of differential recording revealed the repolarization phase of the action potential. At rest, the sarcomere length within the gap was 12% ± 4.8% longer than outside the gap, but intracellular Ca2+ transients occurred to the same extent as that observed in the outer pools. This data demonstrate the feasibility of the use of a microfluidic bath design to limit the extracellular resistance between two ends of an isolated cardiomyocyte. PMID:16844752

  10. Report of the Tape Recorder Action Plan Committee, 21 March 1972

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A NASA/AF Tape Recorder Action Plan Committee was formed in January 1972 to investigate tape recorder problems and to recommend an action plan to NASA management. The committee collected data on tape recorder failure history, pinpointed problem areas, discussed needed technical and management changes, and proposed an action plan for the recommended approaches.

  11. Dipole characterization of single neurons from their extracellular action potentials

    PubMed Central

    Victor, Jonathan D.

    2011-01-01

    The spatial variation of the extracellular action potentials (EAP) of a single neuron contains information about the size and location of the dominant current source of its action potential generator, which is typically in the vicinity of the soma. Using this dependence in reverse in a three-component realistic probe + brain + source model, we solved the inverse problem of characterizing the equivalent current source of an isolated neuron from the EAP data sampled by an extracellular probe at multiple independent recording locations. We used a dipole for the model source because there is extensive evidence it accurately captures the spatial roll-off of the EAP amplitude, and because, as we show, dipole localization, beyond a minimum cell-probe distance, is a more accurate alternative to approaches based on monopole source models. Dipole characterization is separable into a linear dipole moment optimization where the dipole location is fixed, and a second, nonlinear, global optimization of the source location. We solved the linear optimization on a discrete grid via the lead fields of the probe, which can be calculated for any realistic probe + brain model by the finite element method. The global source location was optimized by means of Tikhonov regularization that jointly minimizes model error and dipole size. The particular strategy chosen reflects the fact that the dipole model is used in the near field, in contrast to the typical prior applications of dipole models to EKG and EEG source analysis. We applied dipole localization to data collected with stepped tetrodes whose detailed geometry was measured via scanning electron microscopy. The optimal dipole could account for 96% of the power in the spatial variation of the EAP amplitude. Among various model error contributions to the residual, we address especially the error in probe geometry, and the extent to which it biases estimates of dipole parameters. This dipole characterization method can be applied to

  12. Conduction velocity of antigravity muscle action potentials.

    PubMed

    Christova, L; Kosarov, D; Christova, P

    1992-01-01

    The conduction velocity of the impulses along the muscle fibers is one of the parameters of the extraterritorial potentials of the motor units allowing for the evaluation of the functional state of the muscles. There are no data about the conduction velocities of antigravity muscleaction potentials. In this paper we offer a method for measuring conduction velocity of potentials of single MUs and the averaged potentials of the interference electromiogram (IEMG) lead-off by surface electrodes from mm. sternocleidomastoideus, trapezius, deltoideus (caput laterale) and vastus medialis. The measured mean values of the conduction velocity of antigravity muscles potentials can be used for testing the functional state of the muscles.

  13. Chronic network stimulation enhances evoked action potentials

    NASA Astrophysics Data System (ADS)

    Ide, A. N.; Andruska, A.; Boehler, M.; Wheeler, B. C.; Brewer, G. J.

    2010-02-01

    Neurons cultured on multielectrode arrays almost always lack external stimulation except during the acute experimental phase. We have investigated the effects of chronic stimulation during the course of development in cultured hippocampal neural networks by applying paired pulses at half of the electrodes for 0, 1 or 3 r/day for 8 days. Spike latencies increased from 4 to 16 ms as the distance from the stimulus increased from 200 to 1700 µm, suggesting an average of four synapses over this distance. Compared to no chronic stimulation, our results indicate that chronic stimulation increased evoked spike counts per stimulus by 50% at recording sites near the stimulating electrode and increased the instantaneous firing rate. On trials where both pulses elicited responses, spike count was 40-80% higher than when only one of the pulses elicited a response. In attempts to identify spike amplitude plasticity, we found mainly amplitude variation with different latencies suggesting recordings from neurons with different identities. These data suggest plastic network changes induced by chronic stimulation that enhance the reliability of information transmission and the efficiency of multisynaptic network communication.

  14. The propagation potential. An axonal response with implications for scalp-recorded EEG.

    PubMed

    Rudell, A P; Fox, S E

    1991-09-01

    An electrophysiological response of axons, referred to as the "propagation potential," was investigated. The propagation potential is a sustained voltage that lasts as long as an action potential propagates between two widely spaced electrodes. The sign of the potential depends on the direction of action potential propagation. The electrode towards which the action potential is propagating is positive with respect to the electrode from which it is receding. For normal frog sciatic nerves the magnitude of the propagation potential was 17% of the peak of the extracellular action potential; TEA increased it to 32%. For normal earthworm median or lateral giant fibers it was 30%. A ripple pattern on the propagation potential was attributed to variation in resistance along the length of the worm. Cooling increased the duration of the propagation potential and attenuated the higher frequency components of the ripple pattern. Differential records from two widely spaced intracellular microelectrodes in the same axon differed from the propagation potential. The amplitude of the plateau relative to the peak was smaller, it decreased as the action potential propagated from one electrode site to the other, and the potential did not return to zero as rapidly as for extracellular records. When propagation was blocked by heat, the propagation potential slowly decayed. There was no ripple pattern during the decay. In a volume conductor, electrodes contacting the worm did not show the typical propagation potential, but electrodes located a few centimeters away from the worm did. Simple core-conductor models based on classical action potential theory did not reproduce the propagation potential. More complex, modified core-conductor models were needed to accurately simulate it. The results suggest that long, slowly conducting fibers can contribute to the scalp-recorded EEG. PMID:1932547

  15. All optical experimental design for neuron excitation, inhibition, and action potential detection

    NASA Astrophysics Data System (ADS)

    Walsh, Alex J.; Tolstykh, Gleb; Martens, Stacey; Sedelnikova, Anna; Ibey, Bennett L.; Beier, Hope T.

    2016-03-01

    Recently, infrared light has been shown to both stimulate and inhibit excitatory cells. However, studies of infrared light for excitatory cell inhibition have been constrained by the use of invasive and cumbersome electrodes for cell excitation and action potential recording. Here, we present an all optical experimental design for neuronal excitation, inhibition, and action potential detection. Primary rat neurons were transfected with plasmids containing the light sensitive ion channel CheRiff. CheRiff has a peak excitation around 450 nm, allowing excitation of transfected neurons with pulsed blue light. Additionally, primary neurons were transfected with QuasAr2, a fast and sensitive fluorescent voltage indicator. QuasAr2 is excited with yellow or red light and therefore does not spectrally overlap CheRiff, enabling imaging and action potential activation, simultaneously. Using an optic fiber, neurons were exposed to blue light sequentially to generate controlled action potentials. A second optic fiber delivered a single pulse of 1869nm light to the neuron causing inhibition of the evoked action potentials (by the blue light). When used in concert, these optical techniques enable electrode free neuron excitation, inhibition, and action potential recording, allowing research into neuronal behaviors with high spatial fidelity.

  16. Selective effects of an octopus toxin on action potentials

    PubMed Central

    Dulhunty, Angela; Gage, Peter W.

    1971-01-01

    1. A lethal, water soluble toxin (Maculotoxin, MTX) with a molecular weight less than 540, can be extracted from the salivary glands of an octopus (Hapalochlaena maculosa). 2. MTX blocks action potentials in sartorius muscle fibres of toads without affecting the membrane potential. Delayed rectification is not inhibited by the toxin. 3. At low concentrations (10-6-10-5 g/ml.) MTX blocks action potentials only after a certain number have been elicited. The number of action potentials, which can be defined accurately, depends on the concentration of MTX and the concentration of sodium ions in the extracellular solution. 4. The toxin has no post-synaptic effect at the neuromuscular junction and it is concluded that it blocks neuromuscular transmission by inhibiting action potentials in motor nerve terminals. PMID:4330930

  17. 36 CFR 1008.12 - Requests for notification of existence of records: Action on.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... existence of records: Action on. 1008.12 Section 1008.12 Parks, Forests, and Public Property PRESIDIO TRUST REQUESTS UNDER THE PRIVACY ACT § 1008.12 Requests for notification of existence of records: Action on. (a... system of records is one which has been excepted from the notification provisions of the Privacy Act...

  18. 36 CFR 1008.12 - Requests for notification of existence of records: Action on.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... existence of records: Action on. 1008.12 Section 1008.12 Parks, Forests, and Public Property PRESIDIO TRUST REQUESTS UNDER THE PRIVACY ACT § 1008.12 Requests for notification of existence of records: Action on. (a... system of records is one which has been excepted from the notification provisions of the Privacy Act...

  19. 36 CFR 1008.12 - Requests for notification of existence of records: Action on.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... existence of records: Action on. 1008.12 Section 1008.12 Parks, Forests, and Public Property PRESIDIO TRUST REQUESTS UNDER THE PRIVACY ACT § 1008.12 Requests for notification of existence of records: Action on. (a... system of records is one which has been excepted from the notification provisions of the Privacy Act...

  20. 36 CFR 1008.12 - Requests for notification of existence of records: Action on.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... existence of records: Action on. 1008.12 Section 1008.12 Parks, Forests, and Public Property PRESIDIO TRUST REQUESTS UNDER THE PRIVACY ACT § 1008.12 Requests for notification of existence of records: Action on. (a... system of records is one which has been excepted from the notification provisions of the Privacy Act...

  1. 36 CFR 1008.12 - Requests for notification of existence of records: Action on.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... existence of records: Action on. 1008.12 Section 1008.12 Parks, Forests, and Public Property PRESIDIO TRUST REQUESTS UNDER THE PRIVACY ACT § 1008.12 Requests for notification of existence of records: Action on. (a... system of records is one which has been excepted from the notification provisions of the Privacy Act...

  2. Iridium Oxide Nanotube Electrodes for Highly Sensitive and Prolonged Intracellular Measurement of Action Potentials

    PubMed Central

    Lin, Ziliang Carter; Xie, Chong; Osakada, Yasuko; Cui, Yi; Cui, Bianxiao

    2014-01-01

    Intracellular recording of action potentials is important to understand electrically-excitable cells. Recently, vertical nanoelectrodes have been developed to achieve highly sensitive, minimally invasive, and large scale intracellular recording. It has been demonstrated that the vertical geometry is crucial for the enhanced signal detection. Here we develop nanoelectrodes made up of nanotubes of iridium oxide. When cardiomyocytes are cultured upon those nanotubes, the cell membrane not only wraps around the vertical tubes but also protrudes deep into the hollow center. We show that this geometry enhances cell-electrode coupling and results in measuring much larger intracellular action potentials. The nanotube electrodes afford much longer intracellular access and are minimally invasive, making it possible to achieve stable recording up to an hour in a single session and more than 8 days of consecutive daily recording. This study suggests that the electrode performance can be significantly improved by optimizing the electrode geometry. PMID:24487777

  3. Detection and classification of raw action potential patterns in human Muscle Sympathetic Nerve Activity.

    PubMed

    Salmanpour, Aryan; Brown, Lyndon J; Shoemaker, J K

    2008-01-01

    The Muscle Sympathetic Nerve Activity (MSNA) consists of synchronous neural discharges separated by periods of neural silence dominated by heavy background noise. During measurement with electrodes, the raw MSNA signal is amplified, band-pass filtered, rectified and integrated. This integration process removes much neurophysiological information. In this paper a method for detecting a raw action potential (before the pre-amplifier) and filtered action potential (after the band-pass filter) is presented. This method is based on stationary wavelet transform (SWT) and a peak detection algorithm. Also, the detected action potentials were clustered using the k-means method and the cluster averages were calculated. The action potential detector and classification algorithm are evaluated using real MSNA recorded from three healthy subjects.

  4. Cell-type-dependent action potentials and voltage-gated currents in mouse fungiform taste buds.

    PubMed

    Kimura, Kenji; Ohtubo, Yoshitaka; Tateno, Katsumi; Takeuchi, Keita; Kumazawa, Takashi; Yoshii, Kiyonori

    2014-01-01

    Taste receptor cells fire action potentials in response to taste substances to trigger non-exocytotic neurotransmitter release in type II cells and exocytotic release in type III cells. We investigated possible differences between these action potentials fired by mouse taste receptor cells using in situ whole-cell recordings, and subsequently we identified their cell types immunologically with cell-type markers, an IP3 receptor (IP3 R3) for type II cells and a SNARE protein (SNAP-25) for type III cells. Cells not immunoreactive to these antibodies were examined as non-IRCs. Here, we show that type II cells and type III cells fire action potentials using different ionic mechanisms, and that non-IRCs also fire action potentials with either of the ionic mechanisms. The width of action potentials was significantly narrower and their afterhyperpolarization was deeper in type III cells than in type II cells. Na(+) current density was similar in type II cells and type III cells, but it was significantly smaller in non-IRCs than in the others. Although outwardly rectifying current density was similar between type II cells and type III cells, tetraethylammonium (TEA) preferentially suppressed the density in type III cells and the majority of non-IRCs. Our mathematical model revealed that the shape of action potentials depended on the ratio of TEA-sensitive current density and TEA-insensitive current one. The action potentials of type II cells and type III cells under physiological conditions are discussed.

  5. Quadratic adaptive algorithm for solving cardiac action potential models.

    PubMed

    Chen, Min-Hung; Chen, Po-Yuan; Luo, Ching-Hsing

    2016-10-01

    An adaptive integration method is proposed for computing cardiac action potential models accurately and efficiently. Time steps are adaptively chosen by solving a quadratic formula involving the first and second derivatives of the membrane action potential. To improve the numerical accuracy, we devise an extremum-locator (el) function to predict the local extremum when approaching the peak amplitude of the action potential. In addition, the time step restriction (tsr) technique is designed to limit the increase in time steps, and thus prevent the membrane potential from changing abruptly. The performance of the proposed method is tested using the Luo-Rudy phase 1 (LR1), dynamic (LR2), and human O'Hara-Rudy dynamic (ORd) ventricular action potential models, and the Courtemanche atrial model incorporating a Markov sodium channel model. Numerical experiments demonstrate that the action potential generated using the proposed method is more accurate than that using the traditional Hybrid method, especially near the peak region. The traditional Hybrid method may choose large time steps near to the peak region, and sometimes causes the action potential to become distorted. In contrast, the proposed new method chooses very fine time steps in the peak region, but large time steps in the smooth region, and the profiles are smoother and closer to the reference solution. In the test on the stiff Markov ionic channel model, the Hybrid blows up if the allowable time step is set to be greater than 0.1ms. In contrast, our method can adjust the time step size automatically, and is stable. Overall, the proposed method is more accurate than and as efficient as the traditional Hybrid method, especially for the human ORd model. The proposed method shows improvement for action potentials with a non-smooth morphology, and it needs further investigation to determine whether the method is helpful during propagation of the action potential. PMID:27639239

  6. 40 CFR 300.815 - Administrative record file for a remedial action.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS SUBSTANCES POLLUTION CONTINGENCY PLAN Administrative Record for Selection of Response Action §...

  7. 40 CFR 300.820 - Administrative record file for a removal action.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS SUBSTANCES POLLUTION CONTINGENCY PLAN Administrative Record for Selection of Response Action §...

  8. 40 CFR 300.815 - Administrative record file for a remedial action.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS SUBSTANCES POLLUTION CONTINGENCY PLAN Administrative Record for Selection of Response Action §...

  9. 40 CFR 300.820 - Administrative record file for a removal action.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS SUBSTANCES POLLUTION CONTINGENCY PLAN Administrative Record for Selection of Response Action §...

  10. 40 CFR 300.820 - Administrative record file for a removal action.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS SUBSTANCES POLLUTION CONTINGENCY PLAN Administrative Record for Selection of Response Action §...

  11. 40 CFR 300.820 - Administrative record file for a removal action.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS SUBSTANCES POLLUTION CONTINGENCY PLAN Administrative Record for Selection of Response Action §...

  12. 40 CFR 300.815 - Administrative record file for a remedial action.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS SUBSTANCES POLLUTION CONTINGENCY PLAN Administrative Record for Selection of Response Action §...

  13. 40 CFR 300.820 - Administrative record file for a removal action.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS SUBSTANCES POLLUTION CONTINGENCY PLAN Administrative Record for Selection of Response Action §...

  14. 40 CFR 300.815 - Administrative record file for a remedial action.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS SUBSTANCES POLLUTION CONTINGENCY PLAN Administrative Record for Selection of Response Action §...

  15. 40 CFR 300.815 - Administrative record file for a remedial action.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS SUBSTANCES POLLUTION CONTINGENCY PLAN Administrative Record for Selection of Response Action §...

  16. Potential Lacustrine Records of Cascadia Great Earthquakes

    NASA Astrophysics Data System (ADS)

    Morey, A. E.; Goldfinger, C.; Briles, C.; Gavin, D. G.; Colombaroli, D.

    2011-12-01

    Lacustrine sediments have been used successfully over the past few decades to develop earthquake chronologies and rupture assessments in a variety of locations and settings, from large lakes in Japan and Chile to Alpine lakes in central Europe. Although inland lakes in the Pacific Northwest have been used extensively for fire and vegetation reconstructions, they have been largely ignored with respect to their tectonic setting. Strong shaking from great earthquakes at subduction zones is known to produce significant environmental disturbance and can result in lake deposits that are distinctive and datable records of these events. Cascadia paleoseismic studies, including those at Lake Washington, Bradley Lake, and Effingham and Saanich Inlets, provide direct evidence that records of Cascadia great earthquakes are preserved in a variety of sedimentary archives. The field of marine turbidite paleoseismology has resulted in advancements which we have now begun to apply to inland lacustrine sediments using the records at Sanger and Bolan Lakes (both spring-fed, alpine cirque lakes), and Upper Squaw Lake (a stream-fed, landslide-dammed lake) located 45-100 km inland from the coast near the California/Oregon border. Inorganic terrigenous layers are visible in these sediments, and physical property data (via CT scans, magnetic susceptibility and gamma density) show characteristics that correlate between lakes, and more surprisingly, correlate great distances to seismogenic offshore turbidite deposits. The highest resolution site is Upper Squaw Lake, a 7.2 ha landslide-dammed lake which drains a 40 km2 watershed. A 10 m core spanning the past 2,000 years was extracted from this site, and is comprised of silty gyttja interbedded with inorganic turbidite deposits. Six major events are observed this core, similar to the number of events in the marine turbidite record in the same time period, with supporting age control. The characteristics of the physical property data are

  17. An experimental study on a function of the cupula. Effect of cupula removal on the ampullary nerve action potential.

    PubMed

    Suzuki, M; Harada, Y; Sugata, Y

    1984-01-01

    We used a posterior semicircular canal that had been isolated from a frog. From the utricular side the ampulla was cut open at a position one third of the way along the long axis. The cupula was removed through this opening using a glass micropipette. The action potential from the posterior ampullary nerve was recorded before and after removal of the cupula. After removal, the action potential disappeared almost completely. When the cupula was put back on the crista, the action potential was restored. When the cupula was put back upside down, the action potential recovered, but to a lesser extent.

  18. Direct detection of a single evoked action potential with MRS in Lumbricus terrestris.

    PubMed

    Poplawsky, Alexander J; Dingledine, Raymond; Hu, Xiaoping P

    2012-01-01

    Functional MRI (fMRI) measures neural activity indirectly by detecting the signal change associated with the hemodynamic response following brain activation. In order to alleviate the temporal and spatial specificity problems associated with fMRI, a number of attempts have been made to detect neural magnetic fields (NMFs) with MRI directly, but have thus far provided conflicting results. In this study, we used MR to detect axonal NMFs in the median giant fiber of the earthworm, Lumbricus terrestris, by examining the free induction decay (FID) with a sampling interval of 0.32 ms. The earthworm nerve cords were isolated from the vasculature and stimulated at the threshold of action potential generation. FIDs were acquired shortly after the stimulation, and simultaneous field potential recordings identified the presence or absence of single evoked action potentials. FIDs acquired when the stimulus did not evoke an action potential were summed as background. The phase of the background-subtracted FID exhibited a systematic change, with a peak phase difference of (-1.2 ± 0.3) × 10(-5) radians occurring at a time corresponding to the timing of the action potential. In addition, we calculated the possible changes in the FID magnitude and phase caused by a simulated action potential using a volume conductor model. The measured phase difference matched the theoretical prediction well in both amplitude and temporal characteristics. This study provides the first evidence for the direct detection of a magnetic field from an evoked action potential using MR. PMID:21728204

  19. Cortical evoked potentials recorded from the guinea pig without averaging.

    PubMed

    Walloch, R A

    1975-01-01

    Potentials evoked by tonal pulses and recorded with a monopolar electrode on the pial surface over the auditory cortex of the guinea pig are presented. These potentials are compared with average potentials recorded in previous studies with an electrode on the dura. The potentials recorded by these two techniques have similar waveforms, peak latencies and thresholds. They appear to be generated within the same region of the cerebral cortex. As can be expected, the amplitude of the evoked potentials recorded from the pial surface is larger than that recorded from the dura. Consequently, averaging is not needed to extract the evoked potential once the dura is removed. The thresholds for the evoked cortical potential are similar to behavioral thresholds for the guinea pig at high frequencies; however, evoked potential thresholds are eleveate over behavioral thresholds at low frequencies. The removal of the dura and the direct recording of the evoked potential appears most appropriate for acute experiments. The recording of an evoked potential with dura electrodes empploying averaging procedures appears most appropriate for chronic studies.

  20. [On the theory of action potential propagation in plant cells].

    PubMed

    Sizonenko, V L; Kovalenko, N I

    2012-01-01

    The distribution of an electric field in plant cells and zooblasts has been investigated at propagation of the action potential. The behavior of ions in the cytoplasm and in the extracellular fluid has been described with the equations of electric charge motion in the electrolytes. It has been shown that the action potential causes an electric potential change not only in the depth of the cytoplasm but also in the extracellular area far from the lipidic bilayer. The biomembrane resistance has been expressed by physical parameters of a cell, such as ionic diffusion coefficient in fluid, Debye-Huckel radius, dielectric conductivity etc. The presence of breakings in the action potential diagrams has been explained as a result of insufficient resolving power of the measuring devices at the instant the sodium ionic canals of the bilayer opens. PMID:23035528

  1. Developmental changes in the inward current of the action potential of Rohon-Beard neurones

    PubMed Central

    Baccaglini, Paola I.; Spitzer, Nicholas C.

    1977-01-01

    1. Rohon-Beard cells in the spinal cord of Xenopus tadpoles have been studied in animals from early neural tube to free-swimming larval stages. The onset and further development of electrical excitability of these neurones has been investigated in different ionic environments, to determine the ionic species carrying the inward current of the action potential. 2. The cells appear inexcitable at early stages (Nieuwkoop & Faber stages 18-20) and do not give action potentials to depolarizing current pulses. 3. The action potential is first recorded at stage 20. (A) The inward current is carried by Ca2+ at stages 20-25, since it is blocked by mm quantitites of La3+, Co2+ or Mn2+ and is unaffected by removal of Na+ or the addition of tetrodotoxin (TTX). (B) The action potential is an elevated plateau of long duration (mean 190 msec at stages 20-22). The duration decreases exponentially with repetitive stimulation. (C) The specific Ca2+ conductance (gCa) at the onset of the plateau of the action potential is 2·6 × 10-4 mho/cm2. Calculations show that a single action potential raises [Ca2+]1 by more than 100-fold. 4. At later times (stages 25-40), the inward current of the action potential is carried by both Na+ and Ca2+: the action potential has two components, an initial spike which is blocked by removal of Na+ or addition of TTX, followed by a plateau which is blocked by La3+, Co2+ or Mn2+. 5. Finally (stages 40-51), the inward current is primarily carried by Na+, since the action potential is blocked only by removal of Na+ or addition of TTX, and the overshoot agrees with the prediction of the Nernst equation for a Na-selective membrane. When the outward current channel is blocked and cells exposed to Na-free solutions, 67% of cells at the latest stages studied were incapable of producing action potentials in which the inward current is carried by divalent cations. 6. The duration of the action potential decreases from a maximum of about 1000 msec to about 1 msec

  2. The metabolic energy cost of action potential velocity

    NASA Astrophysics Data System (ADS)

    Crotty, Patrick; Sangrey, Thomas; Levy, William

    2006-03-01

    Voltage changes in neurons and other active cells are caused by the passage of ions across the cell membrane. These ionic currents depend on the transmembrane ion concentration gradients, which in unmyelinated axons are maintained during rest and restored after electrical activity by an ATPase sodium-potassium exchanger in the membrane. The amount of ATP consumed by this exchanger can be taken as the metabolic energy cost of any electrical activity in the axon. We use this measure, along with biophysical models of voltage-gated sodium and potassium ion channels, to quantify the energy cost of action potentials propagating in squid giant axons. We find that the energy of an action potential can be naturally divided into three separate components associated with different aspects of the action potential. We calculate these energy components as functions of the ion channel densities and axon diameters and find that the component associated with the rising phase and velocity of the action potential achieves a minimum near the biological values of these parameters. This result, which is robust with respect to other parameters such as temperature, suggests that evolution has optimized the axon for the energy of the action potential wavefront.

  3. Toward a system to measure action potential on mice brain slices with local magnetoresistive probes

    SciTech Connect

    Amaral, J.; Cardoso, S.; Freitas, P. P.; Sebastiao, A. M.

    2011-04-01

    This work combines an electrophysiological system with a magnetoresistive chip to measure the magnetic field created by the synaptic/action potential currents. The chip, with 15 spin valve sensors, was designed to be integrated in a recording chamber for submerged mice brain slices used for synaptic potential measurements. Under stimulation (rectangular pulses of 0.1 ms every 10 s) through a concentric electrode placed near the CA3/CA1 border of the hippocampus, the spin valve sensor readout signals with 20 {mu}V amplitude and a pulse length of 20 to 30 ms were recorded only in the pyramidal cell bodies region and can be interpreted as being derived from action potentials/currents.

  4. Toward a system to measure action potential on mice brain slices with local magnetoresistive probes

    NASA Astrophysics Data System (ADS)

    Amaral, J.; Cardoso, S.; Freitas, P. P.; Sebastião, A. M.

    2011-04-01

    This work combines an electrophysiological system with a magnetoresistive chip to measure the magnetic field created by the synaptic/action potential currents. The chip, with 15 spin valve sensors, was designed to be integrated in a recording chamber for submerged mice brain slices used for synaptic potential measurements. Under stimulation (rectangular pulses of 0.1 ms every 10 s) through a concentric electrode placed near the CA3/CA1 border of the hippocampus, the spin valve sensor readout signals with 20 μV amplitude and a pulse length of 20 to 30 ms were recorded only in the pyramidal cell bodies region and can be interpreted as being derived from action potentials/currents.

  5. Dry electrode bio-potential recordings.

    PubMed

    Gargiulo, Gaetano; Bifulco, Paolo; McEwan, Alistair; Nasehi Tehrani, Joubin; Calvo, Rafael A; Romano, Maria; Ruffo, Mariano; Shephard, Richard; Cesarelli, Mario; Jin, Craig; Mohamed, Armin; van Schaik, André

    2010-01-01

    As wireless bio-medical long term monitoring moves towards personal monitoring it demands very high input impedance systems capable to extend the reading of bio-signal during the daily activities offering a kind of "stress free", convenient connection, with no need for skin preparation. In particular we highlight the development and broad applications of our own circuits for wearable bio-potential sensor systems enabled by the use of an FET based amplifier circuit with sufficiently high impedance to allow the use of passive dry electrodes which overcome the significant barrier of gel based contacts. In this paper we present the ability of dry electrodes in long term monitoring of ECG, EEG and fetal ECG.

  6. Transient outward currents and action potential alterations in rabbit ventricular myocytes.

    PubMed

    Kawano, S; Hiraoka, M

    1991-06-01

    To clarify ionic mechanisms underlying successive changes in action potential repolarization upon sudden increase in driving rate or initiation of rapid drive after a rest, membrane potentials and currents were recorded from isolated rabbit ventricular myocytes using the suction-pipette whole-cell clamp method. When 20 action potentials were elicited with a stimulus frequency of 2.0 Hz after a rest period of 20 s, the plateau and action potential duration showed complex changes in successive beats, whereas they were nearly constant with stimulation at 0.1 Hz. There were only weak correlations between changes in action potential parameters and preceding diastolic intervals. The changes were prominent in the first 10 beats but subsided gradually thereafter, attaining nearly steady configurations of action potentials. When depolarizing pulses were applied at a fast rate, under the voltage clamp, the amplitudes of the initial inward current in the presence of tetrodotoxin changed greatly depending on the pulse numbers and diastolic intervals, whereas the delayed outward K+ current changed little. Variations of the initial inward current in successive pulses were caused by different degrees of activation and recovery from inactivation in the Ca2+ current, the Ca(2+)-sensitive and -insensitive transient outward current. While inhibition of either one or two current components decreased the action potential alterations, blocking the three components completely abolished them. These results indicate that alterations of the Ca(2+)-sensitive and -insensitive transient outward current together with the Ca2+ current contribute to the action potential alterations after initiation of rapid drive or an increase in driving rates.

  7. Action potential and contraction of Dionaea muscipula (Venus flytrap).

    PubMed

    DI PALMA, J R; MOHL, R; BEST, W

    1961-03-24

    Observation of the action potential and contraction of the leaf of Dionaea muscipula Ellis revealed several interesting phenomena. Two successive stimuli are generally necessary to cause contraction. The first and ineffective stimulus is associated with slow depolarization. The second stimulus has much more rapid depolarization and initiates contraction.

  8. Passive Responses Resembling Action Potentials: A Device for the Classroom

    ERIC Educational Resources Information Center

    Newman, Ian A.; Pickard, Barbara G.

    1975-01-01

    Describes the construction and operation of a network of entirely passive electrical components that gives a response to an electrical shock similar to an action potential. The network of resistors, capacitors, and diodes was developed to produce responses that would mimic those observed, for example, when a dark-grown pea epicotyl is shocked…

  9. Propagation of Action Potentials: An Active Participation Exercise.

    ERIC Educational Resources Information Center

    Felsten, Gary

    1998-01-01

    Describes an active participation exercise that demonstrates the propagation of action potentials (the ability to transmit information through the neural network, dependent upon chemical interactions in the brain). Students assume the structure and function of the network by lining up around the room and communicating through hand signals and…

  10. Corrective Action Investigation Plan for Corrective Action Unit 516: Septic Systems and Discharge Points, Nevada Test Site, Nevada, Rev. 0, Including Record of Technical Change No. 1

    SciTech Connect

    2003-04-28

    This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Sites Office's (NNSA/NSO's) approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 516, Septic Systems and Discharge Points, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. CAU 516 consists of six Corrective Action Sites: 03-59-01, Building 3C-36 Septic System; 03-59-02, Building 3C-45 Septic System; 06-51-01, Sump Piping, 06-51-02, Clay Pipe and Debris; 06-51-03, Clean Out Box and Piping; and 22-19-04, Vehicle Decontamination Area. Located in Areas 3, 6, and 22 of the NTS, CAU 516 is being investigated because disposed waste may be present without appropriate controls, and hazardous and/or radioactive constituents may be present or migrating at concentrations and locations that could potentially pose a threat to human health and the environment. Existing information and process knowledge on the expected nature and extent of contamination of CAU 516 are insufficient to select preferred corrective action alternatives; therefore, additional information will be obtained by conducting a corrective action investigation. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document. Record of Technical Change No. 1 is dated 3/2004.

  11. Effect of nanomaterials on the compound action potential of the shore crab, Carcinus maenas.

    PubMed

    Windeatt, Kirsten M; Handy, Richard D

    2013-06-01

    Little is known about the effects of manufactured nanomaterials on the function of nerves. The experiment aimed to test the effects of three different nanomaterials (1 mg l⁻¹ of TiO₂ NPs, Ag NPs or SWCNT) on the compound action potential of the shore crab (Carcinus maenas) compared with an appropriate bulk powder or metal salt control (bulk TiO₂ powder, AgNO₃ and carbon black respectively). In single action potential recordings, there were no effects of any of the nanomaterials on the peak amplitude, duration, rate of rise (depolarisation), or rate of decrease (repolarisation) of the compound action potential in crab saline, despite settling of each nanomaterial directly onto the nerve preparation. The ability of the crab nerve to be stimulated to tetanus was also unaffected by exposure to the nanomaterials compared with the appropriate bulk powder or metal salt control. Solvent controls with sodium dodecyl sulfate (SDS) also had no effect on action potentials. Overall, the study concludes that there were no effects of the materials at the concentrations tested on the compound action potential of the shore crab in physiological saline. PMID:22394242

  12. Simultaneously recorded retinal and cerebral potentials to windmill stimulation.

    PubMed

    Dodt, E; Kuba, M

    1995-01-01

    Visual evoked retinal and cerebral potentials were recorded to onset rotation of an isoluminant sectored disc. While the retinal potentials recorded to onset rotation closely resembled the electroretinogram to a checkerboard or stripe pattern of fixed element size, the visual evoked potential changed interindividually and intraindividually from a fast positive wave at high contrasts, velocities and number of windmill segments to a later negative component at low contrasts, velocities and windmill segments. With change in luminance, contrast, speed and extent of rotation field size and number of disc segments, the visual evoked potential was generally less affected than the electroretinogram.

  13. Focused ultrasound effects on nerve action potential in vitro

    PubMed Central

    Colucci, Vincent; Strichartz, Gary; Jolesz, Ferenc; Vykhodtseva, Natalia; Hynynen, Kullervo

    2009-01-01

    Minimally invasive applications of thermal and mechanical energy to selective areas of the human anatomy have led to significant advances in treatment of and recovery from typical surgical interventions. Image-guided focused ultrasound allows energy to be deposited deep into the tissue, completely noninvasively. There has long been interest in using this focal energy delivery to block nerve conduction for pain control and local anesthesia. In this study, we have performed an in vitro study to further extend our knowledge of this potential clinical application. The sciatic nerves from the bullfrog (Rana catesbeiana) were subjected to focused ultrasound (at frequencies of 0.661MHz and 1.986MHz) and to heated Ringer’s solution. The nerve action potential was shown to decrease in the experiments and correlated with temperature elevation measured in the nerve. The action potential recovered either completely, partially, or not at all, depending on the parameters of the ultrasound exposure. The reduction of the baseline nerve temperature by circulating cooling fluid through the sonication chamber did not prevent the collapse of the nerve action potential; but higher power was required to induce the same endpoint as without cooling. These results indicate that a thermal mechanism of focused ultrasound can be used to block nerve conduction, either temporarily or permanently. PMID:19647923

  14. Memantine reduces repetitive action potential firing in spinal cord nerve cell cultures.

    PubMed

    Netzer, R; Bigalke, H

    1990-09-21

    (1) The anticonvulsant effects of memantine were examined and compared with those of baclofen in monolayer primary cultures of murine nerve cells using conventional intracellular recordings. (2) Memantine and baclofen (each 10-100 microM) decreased spontaneous synaptic activity when action potential frequencies exceeded 6 Hz. Neurons firing action potentials at frequencies below 6 Hz (about 90% of all impaled cells), however, were not affected by the drugs. (3) Memantine reduced the duration of strychnine-elicited bursts and the firing rate of action potentials within a burst. In contrast, baclofen lowered the frequency of the bursts without reducing intra-burst firing. The duration of the bursts was increased. (4) Memantine, but not baclofen, reduced the extent of sustained repetitive firing evoked by pulses of depolarizing current. (5) In the presence of memantine, the second of two electrically evoked action potentials increasingly failed to appear as the intervals between successive stimulating pulses were shortened. Such an effect was not seen when baclofen was applied. Thus, both antispastic agents, memantine and baclofen, reduce hyperactivity of spinal cord neurons in culture, although their mechanisms of action are different.

  15. Modelling in vivo action potential propagation along a giant axon.

    PubMed

    George, Stuart; Foster, Jamie M; Richardson, Giles

    2015-01-01

    A partial differential equation model for the three-dimensional current flow in an excitable, unmyelinated axon is considered. Where the axon radius is significantly below a critical value R(crit) (that depends upon intra- and extra-cellular conductivity and ion channel conductance) the resistance of the intracellular space is significantly higher than that of the extracellular space, such that the potential outside the axon is uniformly small whilst the intracellular potential is approximated by the transmembrane potential. In turn, since the current flow is predominantly axial, it can be shown that the transmembrane potential is approximated by a solution to the one-dimensional cable equation. It is noted that the radius of the squid giant axon, investigated by (Hodgkin and Huxley 1952e), lies close to R(crit). This motivates us to apply the three-dimensional model to the squid giant axon and compare the results thus found to those obtained using the cable equation. In the context of the in vitro experiments conducted in (Hodgkin and Huxley 1952e) we find only a small difference between the wave profiles determined using these two different approaches and little difference between the speeds of action potential propagation predicted. This suggests that the cable equation approximation is accurate in this scenario. However when applied to the it in vivo setting, in which the conductivity of the surrounding tissue is considerably lower than that of the axoplasm, there are marked differences in both wave profile and speed of action potential propagation calculated using the two approaches. In particular, the cable equation significantly over predicts the increase in the velocity of propagation as axon radius increases. The consequences of these results are discussed in terms of the evolutionary costs associated with increasing the speed of action potential propagation by increasing axon radius.

  16. Direction of action potential propagation influences calcium increases in distal dendrites of the cricket giant interneurons.

    PubMed

    Ogawa, Hiroto; Baba, Yoshichika; Oka, Kotaro

    2002-10-01

    To understand the relationship between the propagation direction of action potentials and dendritic Ca(2+) elevation, simultaneous measurements of intracellular Ca(2+) concentration ([Ca(2+)](i)) and intradendritic membrane potential were performed in the wind-sensitive giant interneurons of the cricket. The dendritic Ca(2+) transients induced by synaptically-evoked action potentials had larger amplitudes than those induced by backpropagating spikes evoked by antidromic stimulation. The amplitude of the [Ca(2+)](i) changes induced by antidromic stimuli combined with subthreshold synaptic stimulation was not different from that of the Ca(2+) increases evoked by the backpropagating spikes alone. This result means that the synaptically activated Ca(2+) release from intracellular stores does not contribute to enhancement of Ca(2+) elevation induced by backpropagating spikes. On the other hand, the synaptically evoked action potentials were also increased at distal dendrites in which the Ca(2+) elevation was enhanced. When the dendritic and axonal spikes were simultaneously recorded, the delay between dendritic spike and ascending axonal spike depended upon which side of the cercal nerves was stimulated. Further, dual intracellular recording at different dendritic branches illustrated that the dendritic spike at the branch arborizing on the stimulated side preceded the spike recorded at the other side of the dendrite. These results suggest that the spike-initiation site shifts depending on the location of the activated postsynaptic site. It is proposed that the difference of spike propagation manner could change the action potential waveform at the distal dendrite, and could produce synaptic activity-dependent Ca(2+) dynamics in the giant interneurons.

  17. Shockwave-induced compound action potentials in the peripheral nerve.

    PubMed

    Wehner, H D; Sellier, K

    1981-01-01

    To verify a presumed interaction between shockwaves arisen by impacts of high velocity projectiles and nervous tissue an electrophysiological experiment is performed with the following results: In peripheral nerves regular compound action potentials (CAPs) are provoked by shockwaves the amplitudes of which are increased corresponding to the pressure intensity of the shockwaves. The nerve shows no electrical activity below a certain pressure threshold (0.75 bar). Saturation of the CAP amplitude occurs beyond a pressure limit of 8 bar.

  18. Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials

    PubMed Central

    Yu, Yuguo; Hill, Adam P.; McCormick, David A.

    2012-01-01

    The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na+ channel inactivation, resulting in a marked reduction in overlap of the inward Na+, and outward K+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37–42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code. PMID:22511855

  19. 29 CFR 1209.06 - Action necessary to close meetings; record of votes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OBSERVATION OF NATIONAL MEDIATION BOARD MEETINGS § 1209.06 Action necessary to close meetings; record of votes... of the Board who will participate in the meeting vote to take such action. (a) When the meeting... meeting deliberations concerns matters specified in § 1209.05(b), the Board shall vote on whether to...

  20. 75 FR 6702 - Notice of Correction to Notice of Realty Action; Application for Recordable Disclaimer of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    .... SUMMARY: The Bureau of Land Management published a Notice of Realty Action application for Recordable... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management Notice of Correction to Notice of Realty Action; Application for...

  1. Potentiation of antitumor drug action by centrophenoxine: specificity.

    PubMed

    Sladek, N E

    1977-05-01

    The cytotoxic action of certain antitumor agents is potentiated by centrophenoxine although centrophenoxine itself is not an antitumor agent. Previous investigations have suggested that centrophenoxine might potentiate the cytotoxicity produced by antitumor drugs that alkylate, and other modalities that damage, DNA, but that it would not potentiate the cytotoxicity produced by antitumor drugs that inflict cellular damage in other ways. To test this hypothesis, the antitumor effects of X-irradiation UV-irradiation, alkylating agents and antitumor drugs that are not ordinarily considered to be alkylating agents were determined in the presence and absence of centrophenoxine. Mouse P388 lymphoma cells growing in static suspension culture were used as the experimental tumor. The cytotoxic action of most alkylating agents was found to be potentiated by centrophenoxine; Included in this group were several difunctional nitrogen mustards, two ethylenimines, a nitrosourea and mitomycin C. Greatest enhancement, 7-fold, was of chlorambucil antitumor activity. Centrophenoxine did not potentiate the lethality of X- or UV-irradiation or the cytotoxicity of several antineoplastic drugs that are not alkylating agents.

  2. Spatiotemporal pattern of action potential firing in developing inner hair cells of the mouse cochlea.

    PubMed

    Sendin, Gaston; Bourien, Jérôme; Rassendren, François; Puel, Jean-Luc; Nouvian, Régis

    2014-02-01

    Inner hair cells (IHCs) are the primary transducer for sound encoding in the cochlea. In contrast to the graded receptor potential of adult IHCs, immature hair cells fire spontaneous calcium action potentials during the first postnatal week. This spiking activity has been proposed to shape the tonotopic map along the ascending auditory pathway. Using perforated patch-clamp recordings, we show that developing IHCs fire spontaneous bursts of action potentials and that this pattern is indistinguishable along the basoapical gradient of the developing cochlea. In both apical and basal IHCs, the spiking behavior undergoes developmental changes, where the bursts of action potential tend to occur at a regular time interval and have a similar length toward the end of the first postnatal week. Although disruption of purinergic signaling does not interfere with the action potential firing pattern, pharmacological ablation of the α9α10 nicotinic receptor elicits an increase in the discharge rate. We therefore suggest that in addition to carrying place information to the ascending auditory nuclei, the IHCs firing pattern controlled by the α9α10 receptor conveys a temporal signature of the cochlear development. PMID:24429348

  3. Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance

    PubMed Central

    Onorato, Irene; D'Alessandro, Giuseppina; Di Castro, Maria Amalia; Renzi, Massimiliano; Dobrowolny, Gabriella; Musarò, Antonio; Salvetti, Marco; Limatola, Cristina; Crisanti, Andrea; Grassi, Francesca

    2016-01-01

    Noise can enhance perception of tactile and proprioceptive stimuli by stochastic resonance processes. However, the mechanisms underlying this general phenomenon remain to be characterized. Here we studied how externally applied noise influences action potential firing in mouse primary sensory neurons of dorsal root ganglia, modelling a basic process in sensory perception. Since noisy mechanical stimuli may cause stochastic fluctuations in receptor potential, we examined the effects of sub-threshold depolarizing current steps with superimposed random fluctuations. We performed whole cell patch clamp recordings in cultured neurons of mouse dorsal root ganglia. Noise was added either before and during the step, or during the depolarizing step only, to focus onto the specific effects of external noise on action potential generation. In both cases, step + noise stimuli triggered significantly more action potentials than steps alone. The normalized power norm had a clear peak at intermediate noise levels, demonstrating that the phenomenon is driven by stochastic resonance. Spikes evoked in step + noise trials occur earlier and show faster rise time as compared to the occasional ones elicited by steps alone. These data suggest that external noise enhances, via stochastic resonance, the recruitment of transient voltage-gated Na channels, responsible for action potential firing in response to rapid step-wise depolarizing currents. PMID:27525414

  4. Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance.

    PubMed

    Onorato, Irene; D'Alessandro, Giuseppina; Di Castro, Maria Amalia; Renzi, Massimiliano; Dobrowolny, Gabriella; Musarò, Antonio; Salvetti, Marco; Limatola, Cristina; Crisanti, Andrea; Grassi, Francesca

    2016-01-01

    Noise can enhance perception of tactile and proprioceptive stimuli by stochastic resonance processes. However, the mechanisms underlying this general phenomenon remain to be characterized. Here we studied how externally applied noise influences action potential firing in mouse primary sensory neurons of dorsal root ganglia, modelling a basic process in sensory perception. Since noisy mechanical stimuli may cause stochastic fluctuations in receptor potential, we examined the effects of sub-threshold depolarizing current steps with superimposed random fluctuations. We performed whole cell patch clamp recordings in cultured neurons of mouse dorsal root ganglia. Noise was added either before and during the step, or during the depolarizing step only, to focus onto the specific effects of external noise on action potential generation. In both cases, step + noise stimuli triggered significantly more action potentials than steps alone. The normalized power norm had a clear peak at intermediate noise levels, demonstrating that the phenomenon is driven by stochastic resonance. Spikes evoked in step + noise trials occur earlier and show faster rise time as compared to the occasional ones elicited by steps alone. These data suggest that external noise enhances, via stochastic resonance, the recruitment of transient voltage-gated Na channels, responsible for action potential firing in response to rapid step-wise depolarizing currents. PMID:27525414

  5. Naturalistic stimulation changes the dynamic response of action potential encoding in a mechanoreceptor

    PubMed Central

    Pfeiffer, Keram; French, Andrew S.

    2015-01-01

    Naturalistic signals were created from vibrations made by locusts walking on a Sansevieria plant. Both naturalistic and Gaussian noise signals were used to mechanically stimulate VS-3 slit-sense mechanoreceptor neurons of the spider, Cupiennius salei, with stimulus amplitudes adjusted to give similar firing rates for either stimulus. Intracellular microelectrodes recorded action potentials, receptor potential, and receptor current, using current clamp and voltage clamp. Frequency response analysis showed that naturalistic stimulation contained relatively more power at low frequencies, and caused increased neuronal sensitivity to higher frequencies. In contrast, varying the amplitude of Gaussian stimulation did not change neuronal dynamics. Naturalistic stimulation contained less entropy than Gaussian, but signal entropy was higher than stimulus in the resultant receptor current, indicating addition of uncorrelated noise during transduction. The presence of added noise was supported by measuring linear information capacity in the receptor current. Total entropy and information capacity in action potentials produced by either stimulus were much lower than in earlier stages, and limited to the maximum entropy of binary signals. We conclude that the dynamics of action potential encoding in VS-3 neurons are sensitive to the form of stimulation, but entropy and information capacity of action potentials are limited by firing rate. PMID:26578975

  6. Reliability of directional information in unsorted spikes and local field potentials recorded in human motor cortex

    PubMed Central

    Perge, János A.; Zhang, Shaomin; Malik, Wasim Q.; Homer, Mark L.; Cash, Sydney; Friehs, Gerhard; Eskandar, Emad N.; Donoghue, John P.; Hochberg, Leigh R.

    2014-01-01

    Objective Action potentials and local field potentials (LFPs) recorded in primary motor cortex contain information about the direction of movement. LFPs are assumed to be more robust to signal instabilities than action potentials, which makes LFPs along with action potentials a promising signal source for brain-computer interface applications. Still, relatively little research has directly compared the utility of LFPs to action potentials in decoding movement direction in human motor cortex. Approach We conducted intracortical multielectrode recordings in motor cortex of two persons (T2 and [S3]) as they performed a motor imagery task. We then compared the offline decoding performance of LFPs and spiking extracted from the same data recorded across a one-year period in each participant. Main results We obtained offline prediction accuracy of movement direction and endpoint velocity in multiple LFP bands, with the best performance in the highest (200–400Hz) LFP frequency band, presumably also containing low-pass filtered action potentials. Cross-frequency correlations of preferred directions and directional modulation index showed high similarity of directional information between action potential firing rates (spiking) and high frequency LFPs (70–400Hz), and increasing disparity with lower frequency bands (0–7, 10–40 and 50–65Hz). Spikes predicted the direction of intended movement more accurately than any individual LFP band, however combined decoding of all LFPs was statistically indistinguishable from spike based performance. As the quality of spiking signals (i.e. signal amplitude) and the number of significantly modulated spiking units decreased, the offline decoding performance decreased 3.6[5.65]%/month (for T2 and [S3] respectively). The decrease in the number of significantly modulated LFP signals and their decoding accuracy followed a similar trend (2.4[2.85]%/month, ANCOVA, p=0.27[0.03]). Significance Field potentials provided comparable

  7. Inhibition by TRPA1 agonists of compound action potentials in the frog sciatic nerve

    SciTech Connect

    Matsushita, Akitomo; Ohtsubo, Sena; Fujita, Tsugumi; Kumamoto, Eiichi

    2013-04-26

    Highlights: •TRPA1 agonists inhibited compound action potentials in frog sciatic nerves. •This inhibition was not mediated by TRPA1 channels. •This efficacy was comparable to those of lidocaine and cocaine. •We found for the first time an ability of TRPA1 agonists to inhibit nerve conduction. -- Abstract: Although TRPV1 and TRPM8 agonists (vanilloid capsaicin and menthol, respectively) at high concentrations inhibit action potential conduction, it remains to be unknown whether TRPA1 agonists have a similar action. The present study examined the actions of TRPA1 agonists, cinnamaldehyde (CA) and allyl isothiocyanate (AITC), which differ in chemical structure from each other, on compound action potentials (CAPs) recorded from the frog sciatic nerve by using the air-gap method. CA and AITC concentration-dependently reduced the peak amplitude of the CAP with the IC{sub 50} values of 1.2 and 1.5 mM, respectively; these activities were resistant to a non-selective TRP antagonist ruthenium red or a selective TRPA1 antagonist HC-030031. The CA and AITC actions were distinct in property; the latter but not former action was delayed in onset and partially reversible, and CA but not AITC increased thresholds to elicit CAPs. A CAP inhibition was seen by hydroxy-α-sanshool (by 60% at 0.05 mM), which activates both TRPA1 and TRPV1 channels, a non-vanilloid TRPV1 agonist piperine (by 20% at 0.07 mM) and tetrahydrolavandulol (where the six-membered ring of menthol is opened; IC{sub 50} = 0.38 mM). It is suggested that TRPA1 agonists as well as TRPV1 and TRPM8 agonists have an ability to inhibit nerve conduction without TRP activation, although their agonists are quite different in chemical structure from each other.

  8. Electrotonic and action potentials in the Venus flytrap.

    PubMed

    Volkov, Alexander G; Vilfranc, Chrystelle L; Murphy, Veronica A; Mitchell, Colee M; Volkova, Maia I; O'Neal, Lawrence; Markin, Vladislav S

    2013-06-15

    The electrical phenomena and morphing structures in the Venus flytrap have attracted researchers since the nineteenth century. We have observed that mechanical stimulation of trigger hairs on the lobes of the Venus flytrap induces electrotonic potentials in the lower leaf. Electrostimulation of electrical circuits in the Venus flytrap can induce electrotonic potentials propagating along the upper and lower leaves. The instantaneous increase or decrease in voltage of stimulating potential generates a nonlinear electrical response in plant tissues. Any electrostimulation that is not instantaneous, such as sinusoidal or triangular functions, results in linear responses in the form of small electrotonic potentials. The amplitude and sign of electrotonic potentials depend on the polarity and the amplitude of the applied voltage. Electrical stimulation of the lower leaf induces electrical signals, which resemble action potentials, in the trap between the lobes and the midrib. The trap closes if the stimulating voltage is above the threshold level of 4.4V. Electrical responses in the Venus flytrap were analyzed and reproduced in the discrete electrical circuit. The information gained from this study can be used to elucidate the coupling of intracellular and intercellular communications in the form of electrical signals within plants.

  9. A supervised multi-sensor matched filter for the detection of extracellular action potentials.

    PubMed

    Szymanska, Agnieszka F; Doty, Michael; Scannell, Kathryn V; Nenadic, Zoran

    2014-01-01

    Multi-sensor extracellular recording takes advantage of several electrode channels to record from multiple neurons at the same time. However, the resulting low signal-to-noise ratio (SNR) combined with biological noise makes signal detection, the first step of any neurophysiological data analysis, difficult. A matched filter was therefore designed to better detect extracellular action potentials (EAPs) from multi-sensor extracellular recordings. The detector was tested on tetrode data from a locust antennal lobe and assessed against three trained analysts. 25 EAPs and noise samples were selected manually from the data and used for training. To reduce complexity, the filter assumed that the underlying noise in the data was spatially white. The detector performed with an average TP and FP rate of 84.62% and 16.63% respectively. This high level of performance indicates the algorithm is suitable for widespread use.

  10. Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing

    PubMed Central

    Ford, Marc C.; Alexandrova, Olga; Cossell, Lee; Stange-Marten, Annette; Sinclair, James; Kopp-Scheinpflug, Conny; Pecka, Michael; Attwell, David; Grothe, Benedikt

    2015-01-01

    Action potential timing is fundamental to information processing; however, its determinants are not fully understood. Here we report unexpected structural specializations in the Ranvier nodes and internodes of auditory brainstem axons involved in sound localization. Myelination properties deviated significantly from the traditionally assumed structure. Axons responding best to low-frequency sounds had a larger diameter than high-frequency axons but, surprisingly, shorter internodes. Simulations predicted that this geometry helps to adjust the conduction velocity and timing of action potentials within the circuit. Electrophysiological recordings in vitro and in vivo confirmed higher conduction velocities in low-frequency axons. Moreover, internode length decreased and Ranvier node diameter increased progressively along the distal axon segments, which simulations show was essential to ensure precisely timed depolarization of the giant calyx of Held presynaptic terminal. Thus, individual anatomical parameters of myelinated axons can be tuned to optimize pathways involved in temporal processing. PMID:26305015

  11. A web portal for in-silico action potential predictions

    PubMed Central

    Williams, Geoff; Mirams, Gary R.

    2015-01-01

    Introduction Multiple cardiac ion channels are prone to block by pharmaceutical compounds, and this can have large implications for cardiac safety. The effect of a compound on individual ion currents can now be measured in automated patch clamp screening assays. In-silico action potential models are proposed as one way of predicting the integrated compound effects on whole-cell electrophysiology, to provide an improved indication of pro-arrhythmic risk. Methods We have developed open source software to run cardiac electrophysiology simulations to predict the overall effect of compounds that block IKr, ICaL, INa, IKs, IK1 and Ito to varying degrees, using a choice of mathematical electrophysiology models. To enable safety pharmacology teams to run and evaluate these simulations easily, we have also developed an open source web portal interface to this simulator. Results The web portal can be found at https://chaste.cs.ox.ac.uk/ActionPotential. Users can enter details of compound affinities for ion channels in the form of IC50 or pIC50 values, run simulations, store the results for later retrieval, view summary graphs of the results, and export data to a spreadsheet format. Discussion This web portal provides a simple interface to reference versions of mathematical models, and well-tested state-of-the-art equation solvers. It provides safety teams easy access to the emerging technology of cardiac electrophysiology simulations for use in the drug-discovery process. PMID:25963830

  12. Action potential wavelength restitution predicts alternans and arrhythmia in murine Scn5a+/− hearts

    PubMed Central

    Matthews, Gareth D K; Guzadhur, Laila; Sabir, Ian N; Grace, Andrew A; Huang, Christopher L-H

    2013-01-01

    Reductions in cardiac action potential wavelength, and the consequent wavebreak, have been implicated in arrhythmogenesis. Tachyarrhythmias are more common in the Brugada syndrome, particularly following pharmacological challenge, previously modelled using Scn5a+/− murine hearts. Propagation latencies and action potential durations (APDs) from monophasic action potential recordings were used to assess wavelength changes with heart rate in Langendorff-perfused wild-type (WT) and Scn5a+/− hearts. Recordings were obtained from right (RV) and left (LV) ventricular, epicardial and endocardial surfaces during incremental pacing, before and following flecainide or quinidine challenge. Conduction velocities (θ′), action potential wavelengths (λ′= APD ×θ′), and their corresponding alternans depended non-linearly upon diastolic interval (DI). Maximum θ′ was lower in Scn5a+/− RV epicardium than endocardium. Flecainide further reduced θ′, accentuating this RV conduction block. Quinidine reduced maximum θ′ in WT and caused earlier conduction failure in the RV of both Scn5a+/− and WT. Use of recovery wavelengths (λ′0= DI ×θ′) rather than DI, provided novel λ restitution plots of λ′ against λ′0, which sum to a basic cycle distance permitting feedback analysis. λ′ restitution gradient better correlated with alternans magnitude than either APD or θ restitution gradient. The large differences in θ′ and APD restitution contrasted with minor differences in maximum λ′ between epi- and endocardia of untreated hearts, and quinidine-treated WT hearts. Strikingly, all regions and conditions converged to a common instability point, implying a conserved relationship. Flecainide or quinidine decreased the pacing rates at which this occurred, through reducing basic cycle distance, in the Scn5a+/− RV epicardium, directly predictive of its arrhythmic phenotype. PMID:23836691

  13. Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues

    NASA Astrophysics Data System (ADS)

    Dai, Xiaochuan; Zhou, Wei; Gao, Teng; Liu, Jia; Lieber, Charles M.

    2016-09-01

    Real-time mapping and manipulation of electrophysiology in three-dimensional (3D) tissues could have important impacts on fundamental scientific and clinical studies, yet realization is hampered by a lack of effective methods. Here we introduce tissue-scaffold-mimicking 3D nanoelectronic arrays consisting of 64 addressable devices with subcellular dimensions and a submillisecond temporal resolution. Real-time extracellular action potential (AP) recordings reveal quantitative maps of AP propagation in 3D cardiac tissues, enable in situ tracing of the evolving topology of 3D conducting pathways in developing cardiac tissues and probe the dynamics of AP conduction characteristics in a transient arrhythmia disease model and subsequent tissue self-adaptation. We further demonstrate simultaneous multisite stimulation and mapping to actively manipulate the frequency and direction of AP propagation. These results establish new methodologies for 3D spatiotemporal tissue recording and control, and demonstrate the potential to impact regenerative medicine, pharmacology and electronic therapeutics.

  14. Electrophysiological Motor Unit Number Estimation (MUNE) Measuring Compound Muscle Action Potential (CMAP) in Mouse Hindlimb Muscles.

    PubMed

    Arnold, W David; Sheth, Kajri A; Wier, Christopher G; Kissel, John T; Burghes, Arthur H; Kolb, Stephen J

    2015-09-25

    Compound muscle action potential (CMAP) and motor unit number estimation (MUNE) are electrophysiological techniques that can be used to monitor the functional status of a motor unit pool in vivo. These measures can provide insight into the normal development and degeneration of the neuromuscular system. These measures have clear translational potential because they are routinely applied in diagnostic and clinical human studies. We present electrophysiological techniques similar to those employed in humans to allow recordings of mouse sciatic nerve function. The CMAP response represents the electrophysiological output from a muscle or group of muscles following supramaximal stimulation of a peripheral nerve. MUNE is an electrophysiological technique that is based on modifications of the CMAP response. MUNE is a calculated value that represents the estimated number of motor neurons or axons (motor control input) supplying the muscle or group of muscles being tested. We present methods for recording CMAP responses from the proximal leg muscles using surface recording electrodes following the stimulation of the sciatic nerve in mice. An incremental MUNE technique is described using submaximal stimuli to determine the average single motor unit potential (SMUP) size. MUNE is calculated by dividing the CMAP amplitude (peak-to-peak) by the SMUP amplitude (peak-to-peak). These electrophysiological techniques allow repeated measures in both neonatal and adult mice in such a manner that facilitates rapid analysis and data collection while reducing the number of animals required for experimental testing. Furthermore, these measures are similar to those recorded in human studies allowing more direct comparisons.

  15. Electrophysiological Motor Unit Number Estimation (MUNE) Measuring Compound Muscle Action Potential (CMAP) in Mouse Hindlimb Muscles.

    PubMed

    Arnold, W David; Sheth, Kajri A; Wier, Christopher G; Kissel, John T; Burghes, Arthur H; Kolb, Stephen J

    2015-01-01

    Compound muscle action potential (CMAP) and motor unit number estimation (MUNE) are electrophysiological techniques that can be used to monitor the functional status of a motor unit pool in vivo. These measures can provide insight into the normal development and degeneration of the neuromuscular system. These measures have clear translational potential because they are routinely applied in diagnostic and clinical human studies. We present electrophysiological techniques similar to those employed in humans to allow recordings of mouse sciatic nerve function. The CMAP response represents the electrophysiological output from a muscle or group of muscles following supramaximal stimulation of a peripheral nerve. MUNE is an electrophysiological technique that is based on modifications of the CMAP response. MUNE is a calculated value that represents the estimated number of motor neurons or axons (motor control input) supplying the muscle or group of muscles being tested. We present methods for recording CMAP responses from the proximal leg muscles using surface recording electrodes following the stimulation of the sciatic nerve in mice. An incremental MUNE technique is described using submaximal stimuli to determine the average single motor unit potential (SMUP) size. MUNE is calculated by dividing the CMAP amplitude (peak-to-peak) by the SMUP amplitude (peak-to-peak). These electrophysiological techniques allow repeated measures in both neonatal and adult mice in such a manner that facilitates rapid analysis and data collection while reducing the number of animals required for experimental testing. Furthermore, these measures are similar to those recorded in human studies allowing more direct comparisons. PMID:26436455

  16. Electrophysiological Motor Unit Number Estimation (MUNE) Measuring Compound Muscle Action Potential (CMAP) in Mouse Hindlimb Muscles

    PubMed Central

    Arnold, W. David; Sheth, Kajri A.; Wier, Christopher G.; Kissel, John T.; Burghes, Arthur H.; Kolb, Stephen J.

    2015-01-01

    Compound muscle action potential (CMAP) and motor unit number estimation (MUNE) are electrophysiological techniques that can be used to monitor the functional status of a motor unit pool in vivo. These measures can provide insight into the normal development and degeneration of the neuromuscular system. These measures have clear translational potential because they are routinely applied in diagnostic and clinical human studies. We present electrophysiological techniques similar to those employed in humans to allow recordings of mouse sciatic nerve function. The CMAP response represents the electrophysiological output from a muscle or group of muscles following supramaximal stimulation of a peripheral nerve. MUNE is an electrophysiological technique that is based on modifications of the CMAP response. MUNE is a calculated value that represents the estimated number of motor neurons or axons (motor control input) supplying the muscle or group of muscles being tested. We present methods for recording CMAP responses from the proximal leg muscles using surface recording electrodes following the stimulation of the sciatic nerve in mice. An incremental MUNE technique is described using submaximal stimuli to determine the average single motor unit potential (SMUP) size. MUNE is calculated by dividing the CMAP amplitude (peak-to-peak) by the SMUP amplitude (peak-to-peak). These electrophysiological techniques allow repeated measures in both neonatal and adult mice in such a manner that facilitates rapid analysis and data collection while reducing the number of animals required for experimental testing. Furthermore, these measures are similar to those recorded in human studies allowing more direct comparisons. PMID:26436455

  17. The Potential of Deweyan-Inspired Action Research

    ERIC Educational Resources Information Center

    Stark, Jody L.

    2014-01-01

    In its broadest sense, pragmatism could be said to be the philosophical orientation of all action research. Action research is characterized by research, action, and participation grounded in democratic principles and guided by the aim of social improvement. Furthermore, action research is an active process of inquiry that does not admit…

  18. The effect of stimulation frequency on the transmural ventricular monophasic action potential in yellowfin tuna Thunnus albacares.

    PubMed

    Patrick, S M; White, E; Brill, R W; Shiels, H A

    2011-02-01

    Monophasic action potentials (MAPs) were recorded from the spongy and compact layers of the yellowfin tuna Thunnus albacares ventricle as stimulation frequency was increased. MAP duration decreased with increase in stimulation frequency in both the spongy and compact myocardial layers, but no significant difference in MAP duration was observed between the layers. PMID:21284642

  19. Event-related potentials reveal early activation of body part representations in action concept comprehension.

    PubMed

    Lu, Aitao; Liu, Jing; Zhang, John X

    2012-03-01

    With tasks involving action concept comprehension, many fMRI studies have reported brain activations in sensori-motor regions specific to effectors of the referent action. There is relatively less evidence whether such activations reflect early semantic access or late conceptual re-processing. Here we recorded event-related potentials when participants recognized noun-verb pairs. For Congruent pairs, the verb was the one most commonly associated with the noun (e.g., football-kick). Compared with a control condition, verbs in Congruent pairs showed priming effects in the time windows of 100-150 ms and 210-260 ms. Such activation seems to be specific to body part but not other aspects of the action as similar priming effect was also found when the noun and verb involved different actions though sharing the same body part (e.g., football-jump), documenting for the first time the early activation of body part representations in action concept comprehension. PMID:22306088

  20. Event-related potentials reveal early activation of body part representations in action concept comprehension.

    PubMed

    Lu, Aitao; Liu, Jing; Zhang, John X

    2012-03-01

    With tasks involving action concept comprehension, many fMRI studies have reported brain activations in sensori-motor regions specific to effectors of the referent action. There is relatively less evidence whether such activations reflect early semantic access or late conceptual re-processing. Here we recorded event-related potentials when participants recognized noun-verb pairs. For Congruent pairs, the verb was the one most commonly associated with the noun (e.g., football-kick). Compared with a control condition, verbs in Congruent pairs showed priming effects in the time windows of 100-150 ms and 210-260 ms. Such activation seems to be specific to body part but not other aspects of the action as similar priming effect was also found when the noun and verb involved different actions though sharing the same body part (e.g., football-jump), documenting for the first time the early activation of body part representations in action concept comprehension.

  1. Cardiac dynamics: a simplified model for action potential propagation

    PubMed Central

    2012-01-01

    This paper analyzes a new semiphysiological ionic model, used recently to study reexitations and reentry in cardiac tissue [I.R. Cantalapiedra et al, PRE 82 011907 (2010)]. The aim of the model is to reproduce action potencial morphologies and restitution curves obtained, either from experimental data, or from more complex electrophysiological models. The model divides all ion currents into four groups according to their function, thus resulting into fast-slow and inward-outward currents. We show that this simplified model is flexible enough as to accurately capture the electrical properties of cardiac myocytes, having the advantage of being less computational demanding than detailed electrophysiological models. Under some conditions, it has been shown to be amenable to mathematical analysis. The model reproduces the action potential (AP) change with stimulation rate observed both experimentally and in realistic models of healthy human and guinea pig myocytes (TNNP and LRd models, respectively). When simulated in a cable it also gives the right dependence of the conduction velocity (CV) with stimulation rate. Besides reproducing correctly these restitution properties, it also gives a good fit for the morphology of the AP, including the notch typical of phase 1. Finally, we perform simulations in a realistic geometric model of the rabbit’s ventricles, finding a good qualitative agreement in AP propagation and the ECG. Thus, this simplified model represents an alternative to more complex models when studying instabilities in wave propagation. PMID:23194429

  2. Transforming echoes into pseudo-action potentials for classifying plants.

    PubMed

    Kuc, R

    2001-10-01

    Animals perceive their environment by converting sensory stimuli into action potentials, or temporal point processes, that are interpreted by the brain. This paper investigates the information content of point processes extracted from echoes from in situ plants in an effort to understand how bats recognize landmarks in the field. A mobile sonar converts echoes into biologically similar temporal point processes. termed pseudo-action potentials (PAPs), whose inter-PAP interval relates to echo amplitude. The sonar forms a sector scan of an object to produce a spatial-temporal PAP field. Classifier neurons apply delays and coincidence detection to the PAP field to identify three distinct echo types, glints, blobs, and fuzz, which characterize plant features. Glints are large amplitude echoes exhibiting coherence over successive echoes in the sector scan, typically produced by favorably oriented isolated specular reflectors. Blobs are large echoes lacking coherence, typically bordering glints or formed by collections of interfering reflectors. Fuzz represents weak echoes, typically produced by collection of weak scatterers or by reflectors on the beam periphery. A small mirror reflector models a flat leaf surface and motivates the glint criteria. Classifiers are applied to experimental data from two types of tree trunks, a glint-producing sycamore (Platanus occidenatalis) and a glint-absent Norway maple (Acer platanoides) and two plants, a glint-producing rhododendron (Rhododendron maximus) and a glint-absent yew (Taxus media). We speculate that our narrow-band sonar models the activity of a single frequency bin in the frequency-modulated (FM) sweep emitted by bats, and that one function of the frequency bins in the FM sweep is to form a sector scan of the environment.

  3. Final record of decision/remedial action plan, nine sites, Sierra Army Depot, Lassen County, California

    SciTech Connect

    Arroyo, S.L.; Larson, A.M.; Parent, M.M.; Silvers, J.M.; Weaverling, P.H.

    1996-10-01

    This ROD/RAP presents the selected response actions for nine sites at SIAD. The response actions were selected by the US Department of the Army (Army) in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended by the Superfund Amendments Reauthorization Act of 1986 (SARA)(collectively referred to as CERCLA), the National Oil and Hazardous Substances Pollution Contingency Plan (NCP), and Section 6.8 of the California Health and Safety Code. This ROD/RAP includes the factual and legal basis for selecting the response action at each of the nine sites listed above. The data used to support the selected response action are contained in the Administrative Record for each site. The State of California as represented by the Department of Toxic Substances Control (DTSC), and the Lahontan Regional Water Quality Control Board (RWQCB) concur with the selected response action at each site.

  4. Human intestinal potential difference: recording method and biophysical implications.

    PubMed Central

    Gustke, R F; McCormick, P; Ruppin, H; Soergel, K H; Whalen, G E; Wood, C M

    1981-01-01

    1. The transmural electrical potential difference (PD) of the intact human small intestine was recorded with close attention to electrical symmetry, shielding from electro-magnetic waves and correction for junction potentials. 2. The PD is -12 mV (mucosa-negative) in the fasting jejunum and ileum and does not change during perfusion with isotonic NaCl. 3. Absorption of Na and Cl appears to be non-electrogenic and the 'resting' PD is probably generated by active anion secretion of fasting intestinal contents. 4. Diffusion potentials during isotonic D-mannitol perfusion indicated higher cation selectivity in the ileum than in the jejunum. 5. The calculated contribution of a free-solution path to total paracellular permeability is 55% in the jejunum but only 15% in the ileum. 6. No 'streaming' potential was detected during osmotic water flow, suggesting that the cation-selectivity of the channels is temporarily inactivated during dilatation of the lateral intercellular space. PMID:6802960

  5. Noisy unmaskers of multistability of periodic rhythms in a model of the ventricular cardiac action potential

    NASA Astrophysics Data System (ADS)

    Surovyatkina, Elena; Egorchenkov, Roman; Ivanov, Guennady

    2007-06-01

    The coexistence of different dynamical regimes of cardiac cell-model at a fixed set of stimulation parameters, i.e. multistability, revealed by noise is presented in this paper. Numerical simulations are performed using Luo-Rudy (LR1) action potential model. Numerical experiments with LR1 model conducted via noisy periodical stimulation showed the coexistence of several periodic rhythms. Weak noise in period of stimulation causes a hopping process between all the (meta-) stable rhythms of cell-model. This process is reflected in several parallel branches of the bifurcation diagram: noise unveils new, invisible before, stable rhythms which could appear in this model at different initial conditions. The phenomenon of multistability is directly evidenced by other numerical experiments: we have established the multistability property of a cell consisting in the fact that different initial conditions of stimulation (different extrasystole application times) lead to different stable periodic rhythms. We have obtained the shaping of attraction basins on the action potential curves. Such basins of attraction contain a set of initial conditions which determinate a stable periodic rhythm. We have found a close association between the attraction basins of the complex rhythms on the curves of action potential and the cardiac vulnerable windows on ECG record, during which extra stimuli can induce life threatening arrhythmias. Obtained results allow us to make a conclusion that multistability is very important for the electrical conduction system of the heart from the cell level to the integrated function of the heart.

  6. Seasonal variation in conduction velocity of action potentials in squid giant axons.

    PubMed

    Rosenthal, J J; Bezanilla, F

    2000-10-01

    To determine whether the electrical properties of the squid giant axon are seasonally acclimated, action potentials, recorded at different temperatures, were compared between giant axons isolated from Loligo pealei caught in May, from relatively cold waters (approximately 10 degrees-12 degrees C), and in August, from relatively warm waters (approximately 20 degrees C). Parameters relating to the duration of the action potential (e.g., maximum rate of rise, maximum rate of fall, and duration at half-peak) did not change seasonally. The relationship between conduction velocity and temperature remained constant between seasons as well, in spite of the fact that May axons were significantly larger than August axons. When normalized to the fiber diameter, mean May conduction velocities were 83% of the August values at all temperatures tested, and analysis of the rise time of the action potential foot suggested that a change in the axoplasmic resistivity was responsible for this difference. Direct measurements of axoplasmic resistance further supported this hypothesis. Thus seasonal changes in the giant axon's size and resistivity are not consistent with compensatory thermal acclimation, but instead serve to maintain a constant relationship between conduction velocity and temperature.

  7. Corrective Action Investigation Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada (with Record of Technical Change No.1)

    SciTech Connect

    U.S. Department of Energy, Nevada Operations Office

    2000-06-09

    This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 490 under the Federal Facility Agreement and Consent Order. Corrective Active Unit 490 consists of four Corrective Action Sites (CASs): 03-56-001-03BA, Fire Training Area (FTA); RG-56-001-RGBA, Station 44 Burn Area; 03-58-001-03FN, Sandia Service Yard; and 09-54-001-09L2, Gun Propellant Burn Area. These CASs are located at the Tonopah Test Range near Areas 3 and 9. Historically, the FTA was used for training exercises where tires and wood were ignited with diesel fuel. Records indicate that water and carbon dioxide were the only extinguishing agents used during these training exercises. The Station 44 Burn Area was used for fire training exercises and consisted of two wooden structures. The two burn areas (ignition of tires, wood, and wooden structures with diesel fuel and water) were limited to the building footprints (10 ft by 10 ft each). The Sandia Service Yard was used for storage (i.e., wood, tires, metal, electronic and office equipment, construction debris, and drums of oil/grease) from approximately 1979 to 1993. The Gun Propellant Burn Area was used from the 1960s to 1980s to burn excess artillery gun propellant, solid-fuel rocket motors, black powder, and deteriorated explosives; additionally, the area was used for the disposal of experimental explosive items. Based on site history, the focus of the field investigation activities will be to: (1) determine the presence of contaminants of potential concern (COPCs) at each CAS, (2) determine if any COPCs exceed field-screening levels and/or preliminary action levels, and (3) determine the nature and extent of contamination with enough certainty to support selection of corrective action alternatives for each CAS. The scope of this CAIP is to resolve the

  8. 14 CFR 437.73 - Anomaly recording, reporting and implementation of corrective actions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Anomaly recording, reporting and implementation of corrective actions. 437.73 Section 437.73 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS...

  9. 14 CFR 437.73 - Anomaly recording, reporting and implementation of corrective actions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Anomaly recording, reporting and implementation of corrective actions. 437.73 Section 437.73 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Safety Requirements § 437.73 Anomaly...

  10. 14 CFR 437.73 - Anomaly recording, reporting and implementation of corrective actions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Anomaly recording, reporting and implementation of corrective actions. 437.73 Section 437.73 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Safety Requirements § 437.73 Anomaly...

  11. 14 CFR 437.73 - Anomaly recording, reporting and implementation of corrective actions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Anomaly recording, reporting and implementation of corrective actions. 437.73 Section 437.73 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Safety Requirements § 437.73 Anomaly...

  12. 14 CFR 437.73 - Anomaly recording, reporting and implementation of corrective actions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Anomaly recording, reporting and implementation of corrective actions. 437.73 Section 437.73 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Safety Requirements § 437.73 Anomaly...

  13. Potential anti-inflammatory actions of the elmiric (lipoamino) acids

    PubMed Central

    Burstein, Sumner H.; Adams, Jeffrey K.; Bradshaw, Heather B.; Fraioli, Cristian; Rossetti, Ronald G.; Salmonsen, Rebecca A.; Shaw, John W.; Walker, J. Michael; Zipkin, Robert E.; Zurier, Robert B.

    2007-01-01

    A library of amino acid-fatty acid conjugates (elmiric acids) was synthesized and evaluated for activity as potential anti-inflammatory agents. The compounds were tested in vitro for their effects on cell proliferation and prostaglandin production and compared with their effects on in vivo models of inflammation. LPS stimulated RAW 267.4 mouse macrophage cells was the in vitro model and phorbol ester-induced mouse ear edema served as the principal in vivo model. The prostaglandin responses were found to be strongly dependent on the nature of the fatty acid part of the molecule. Polyunsaturated acid conjugates produced a marked increase in media levels of i15-deoxy-PGJ2 with minimal effects on PGE production. It is reported in the literature that prostaglandin ratios in which the J series predominates over the E series promote the resolution of inflammatory conditions. Several of the elmiric acids tested here produced such favorable ratios suggesting that their potential anti-inflammatory activity occurs via a novel mechanism of action. The ear edema assay results were generally in agreement with the prostaglandin assay findings indicating a connection between them. PMID:17383881

  14. Differentiation of the action potential in the smooth muscle of canine gastric antrum using calcium-inhibitory drugs.

    PubMed

    Hohnsbein, J; Golenhofen, K

    1985-03-01

    Electrical and mechanical activity were recorded simultaneously in smooth muscle preparations from the antrum region of canine stomach by means of a single sucrose gap technique (SGT). The SGT was optimized to permit stable recording from multicellular smooth muscle preparations over several hours of electrical and mechanical activity with little disturbance of their normal properties. Acetylcholine (ACh, 10(-8) to 10(-6) M) induced or augmented dose-dependently the electrical and mechanical activity. The plateau of the action potential complex was elevated by ACh, while the contraction was increased in linear correlation to the magnitude of the plateau component. In spontaneously active (or in ACh-stimulated) preparations TEA (5 to 20 mM) magnified the plateau component, induced or strengthened spikes on the plateau ('secondary spikes'), and induced or strengthened phasic contractions. Nifedipine (10(-6) M) abolished secondary spikes, part of the plateau component of the action potential, and suppressed mechanical activity. The complex action potential of canine gastric antrum can be differentiated into (a) a basic action potential, consisting of an initial, primary spike and a plateau depolarization; this basic action potential is resistant to nifedipine and does not trigger any mechanical activity; and (b) a nifedipine-sensitive component (calcium component), which consists of an augmentation of the plateau depolarization and of secondary spikes, and which is responsible for the initiation of mechanical activity.

  15. Urocortin2 prolongs action potential duration and modulates potassium currents in guinea pig myocytes and HEK293 cells.

    PubMed

    Yang, Li-Zhen; Zhu, Yi-Chun

    2015-07-01

    We previously reported that activation of corticotropin releasing factor receptor type 2 by urocortin2 up-regulates both L-type Ca(2+) channels and intracellular Ca(2+) concentration in ventricular myocytes and plays an important role in cardiac contractility and arrhythmogenesis. This study goal was to further test the hypothesis that urocortin2 may modulate action potentials as well as rapidly and slowly activating delayed rectifier potassium currents. With whole cell patch-clamp techniques, action potentials and slowly activating delayed rectifier potassium currents were recorded in isolated guinea pig ventricular myocytes, respectively. And rapidly activating delayed rectifier potassium currents were tested in hERG-HEK293 cells. Urocortin2 produced a time- and concentration-dependent prolongation of action potential duration. The EC50 values of action potential duration and action potential duration at 90% of repolarization were 14.73 and 24.3nM respectively. The prolongation of action potential duration of urocortin2 was almost completely or partly abolished by H-89 (protein kinase A inhibitor) or KB-R7943 (Na(+)/Ca(2+) exchange inhibitor) pretreatment respectively. And urocortin2 caused reduction of rapidly activating delayed rectifier potassium currents in hERG-HEK293 cells. In addition, urocortin2 slowed the rate of slowly activating delayed rectifier potassium channel activation, and rightward shifted the threshold of slowly activating delayed rectifier potassium currents to more positive potentials. Urocortin2 prolonged action potential duration via activation of protein kinase A and Na(+)/ Ca(2+) exchange in isolated guinea pig ventricular myocytes in a time- and concentration- dependent manner. In hERG-HEK293 cells, urocortin2 reduced rapidly activating delayed rectifier potassium current density which may contribute to action potential duration prolongation.

  16. Excitable Membranes and Action Potentials in Paramecia: An Analysis of the Electrophysiology of Ciliates.

    PubMed

    Schlaepfer, Charles H; Wessel, Ralf

    2015-01-01

    The ciliate Paramecium caudatum possesses an excitable cell membrane whose action potentials (APs) modulate the trajectory of the cell swimming through its freshwater environment. While many stimuli affect the membrane potential and trajectory, students can use current injection and extracellular ionic concentration changes to explore how APs cause reversal of the cell's motion. Students examine these stimuli through intracellular recordings, also gaining insight into the practices of electrophysiology. Paramecium's large size of around 150 µm, simple care, and relative ease to penetrate make them ideal model organisms for undergraduate students' laboratory study. The direct link between behavior and excitable membranes has thought provoking evolutionary implications for the study of paramecia. Recording from the cell, students note a small resting potential around -30 mV, differing from animal resting potentials. By manipulating ion concentrations, APs of the relatively long length of 20-30 ms up to several minutes with depolarizations maxing over 0 mV are observed. Through comparative analysis of membrane potentials and the APs induced by either calcium or barium, students can deduce the causative ions for the APs as well as the mechanisms of paramecium APs. Current injection allows students to calculate quantitative electric characteristics of the membrane. Analysis will follow the literature's conclusion in a V-Gated Ca(++) influx and depolarization resulting in feedback from intracellular Ca(++) that inactivates V-Gated Ca(++) channels and activates Ca-Dependent K(+) channels through a secondary messenger cascade that results in the K(+) efflux and repolarization. PMID:26557800

  17. Modelling Action Potential Generation and Propagation in Fibroblastic Cells

    NASA Astrophysics Data System (ADS)

    Torres, J. J.; Cornelisse, L. N.; Harks, E. G. A.; Theuvenet, A. P. R.; Ypey, D. L.

    2003-04-01

    Using a standard Hodgkin-Huxley (HH) formalism, we present a mathematical model for action potential (AP) generation and intercellular AP propagation in quiescent (serum-deprived) normal rat kidney (NRK) fibroblasts [1], based on the recent experimental identification of the ion channels involved [2]. The principal ion channels described are those of an inwardly rectifying K+ conductance (GKIR), an L-type calcium conductance (GCaL), an intracellular calcium activated Cl- conductance (GCl(Ca)), a residual leak conductance Gleak, and gap junctional channels between the cells (Ggj). The role of each one of these components in the particular shape of the AP wave-form has been analyzed and compared with experimental observations. In addition, we have studied the role of subcellular processes like intracellular calcium dynamics and calcium buffering in AP generation. AP propagation between cells was reconstructed in a hexagonal model of cells coupled by Ggj with physiological conductance values. The model revealed an excitability mechanism of quiescent NRK cells with a particular role of intracellular calcium dynamics. It allows further explorations of the mechanism of signal generation and transmission in NRK cell cultures and its dependence on growth conditions.

  18. Pharmacological actions of statins: potential utility in COPD.

    PubMed

    Young, R P; Hopkins, R; Eaton, T E

    2009-12-01

    Chronic obstructive pulmonary disease (COPD) is characterised by minimally reversible airflow limitation and features of systemic inflammation. Current therapies for COPD have been shown to reduce symptoms and infective exacerbations and to improve quality of life. However, these drugs have little effect on the natural history of the disease (progressive decline in lung function and exercise tolerance) and do not improve mortality. The anti-inflammatory effects of statins on both pulmonary and systemic inflammation through inhibition of guanosine triphosphatase and nuclear factor-κB mediated activation of inflammatory and matrix remodelling pathways could have substantial benefits in patients with COPD due to the following. 1) Inhibition of cytokine production (tumour necrosis factor-α, interleukin (IL)-6 and IL-8) and neutrophil infiltration into the lung; 2) inhibition of the fibrotic activity in the lung leading to small airways fibrosis and irreversible airflow limitation; 3) antioxidant and anti-inflammatory (IL-6 mediated) effects on skeletal muscle; 4) reduced inflammatory response to pulmonary infection; and 5) inhibition of the development (or reversal) of epithelial-mesenchymal transition, a precursor event to lung cancer. This review examines the pleiotropic pharmacological action of statins which inhibit key inflammatory and remodelling pathways in COPD and concludes that statins have considerable potential as adjunct therapy in COPD. PMID:20956147

  19. Short latency compound action potentials from mammalian gravity receptor organs

    NASA Technical Reports Server (NTRS)

    Jones, T. A.; Jones, S. M.

    1999-01-01

    Gravity receptor function was characterized in four mammalian species using far-field vestibular evoked potentials (VsEPs). VsEPs are compound action potentials of the vestibular nerve and central relays that are elicited by linear acceleration ramps applied to the cranium. Rats, mice, guinea pigs, and gerbils were studied. In all species, response onset occurred within 1.5 ms of the stimulus onset. Responses persisted during intense (116 dBSPL) wide-band (50 to 50 inverted question mark omitted inverted question mark000 Hz) forward masking, whereas auditory responses to intense clicks (112 dBpeSPL) were eliminated under the same conditions. VsEPs remained after cochlear extirpation but were eliminated following bilateral labyrinthectomy. Responses included a series of positive and negative peaks that occurred within 8 ms of stimulus onset (range of means at +6 dBre: 1.0 g/ms: P1=908 to 1062 micros, N1=1342 to 1475 micros, P2=1632 to 1952 micros, N2=2038 to 2387 micros). Mean response amplitudes at +6 dBre: 1.0 g/ms ranged from 0.14 to 0.99 microV. VsEP input/output functions revealed latency slopes that varied across peaks and species ranging from -19 to -51 micros/dB. Amplitude-intensity slopes also varied ranging from 0.04 to 0.08 microV/dB for rats and mice. Latency values were comparable to those of birds although amplitudes were substantially smaller in mammals. VsEP threshold values were considerably higher in mammals compared to birds and ranged from -8.1 to -10.5 dBre 1.0 g/ms across species. These results support the hypothesis that mammalian gravity receptors are less sensitive to dynamic stimuli than are those of birds.

  20. Effects of troglitazone and pioglitazone on the action potentials and membrane currents of rabbit ventricular myocytes.

    PubMed

    Ikeda, S; Watanabe, T

    1998-09-18

    The effects of the antidiabetic thiazolidinediones troglitazone and pioglitazone on action potentials and membrane currents were studied in rabbit ventricular myocytes. Troglitazone (10 microM) reversibly reduced excitability of the myocytes and modified their action potential configuration. It significantly increased the stimulation threshold required to elicit action potentials and decreased action potential amplitude and the maximum upstroke velocity of the action potentials. The Inhibition of the maximum upstroke velocity by troglitazone was also significant at 1 microM. Voltage-clamp experiments revealed that troglitazone (10 microM) reversibly inhibited both the slow inward Ca2+ current and the steady-state K+ current. In contrast to troglitazone, pioglitazone (1-10 microM) had no significant effect on the excitability, action potential configuration, or membrane currents of myocytes. These results suggest that troglitazone, but not pioglitazone, modulates Na+, Ca2+ and K+ currents, leading to the changes in excitability and action potential configuration of ventricular myocytes. PMID:9797043

  1. Effect of gadolinium on stretch-induced changes in contraction and intracellularly recorded action- and afterpotentials of rat isolated atrium.

    PubMed Central

    Tavi, P.; Laine, M.; Weckström, M.

    1996-01-01

    1. Atrial arrhythmias, like atrial fibrillation and extrasystoles, are common in clinical situations when atrial pressure is increased. Although cardiac mechanoelectrical feedback has been under intensive study for many years, the mechanisms of stretch-induced arrhythmias are not known in detail. This is partly due to methodological difficulties in recording intracellular voltage during stretch stimulation. In this study we investigated the effects of gadolinium (Gd3+), a blocker of stretch-activated (SA) channels, on stretch-induced changes in rat atrial action potentials and contraction force. 2. By intracellular voltage recordings from rat isolated atria we studied the effects of Gd3+ (80 microM) on stretch-induced changes in action potentials. The stretch was induced by increasing pressure inside the atrium (1 mmHg to 7 mmHg). An elastic electrode holder that moved along the atrial tissue was used in the recordings. Thus the mechanical artifacts were eliminated and the cell-electrode contact was made more stable. To examine the influence of Gd3+ on atrial contraction we stretched the atria at different diastolic pressure levels (1 to 7 mmHg) with Gd3+ application of (80 microM) or diltiazem (5.0 microM). Contraction force was monitored by recording the pressure changes generated by the atrial contractions. 3. Our results show that: (1) atrial stretch induces delayed afterdepolarizations (DADs), increase in action potential amplitude and increase in relative conduction speed; (ii) Gd3+ blocks stretch-induced DADs and action potential changes; (iii) Gd3+ inhibits pressure-stimulated increase in the atrial contraction force, while similar inhibition is not observed with diltiazem, a blocker of L-type calcium channels. 4. This study suggests that Gd3+ inhibits stretch-induced changes in cell electrophysiology and contraction in the rat atrial cells and that the effects of gadolinium are due to rather specific block of stretch-activated ion channels with only a

  2. Optophysiological Approach to Resolve Neuronal Action Potentials with High Spatial and Temporal Resolution in Cultured Neurons

    PubMed Central

    Pagès, Stéphane; Côté, Daniel; De Koninck, Paul

    2011-01-01

    Cell to cell communication in the central nervous system is encoded into transient and local membrane potential changes (ΔVm). Deciphering the rules that govern synaptic transmission and plasticity entails to be able to perform Vm recordings throughout the entire neuronal arborization. Classical electrophysiology is, in most cases, not able to do so within small and fragile neuronal subcompartments. Thus, optical techniques based on the use of fluorescent voltage-sensitive dyes (VSDs) have been developed. However, reporting spontaneous or small ΔVm from neuronal ramifications has been challenging, in part due to the limited sensitivity and phototoxicity of VSD-based optical measurements. Here we demonstrate the use of water soluble VSD, ANNINE-6plus, with laser-scanning microscopy to optically record ΔVm in cultured neurons. We show that the sensitivity (>10% of fluorescence change for 100 mV depolarization) and time response (sub millisecond) of the dye allows the robust detection of action potentials (APs) even without averaging, allowing the measurement of spontaneous neuronal firing patterns. In addition, we show that back-propagating APs can be recorded, along distinct dendritic sites and within dendritic spines. Importantly, our approach does not induce any detectable phototoxic effect on cultured neurons. This optophysiological approach provides a simple, minimally invasive, and versatile optical method to measure electrical activity in cultured neurons with high temporal (ms) resolution and high spatial (μm) resolution. PMID:22016723

  3. Stimulation, Recording Potential and Antimicrobial Medical Catheter Coatings

    PubMed Central

    Beard, Richard B.; DeLaurent, Mark; Pourrezaei, Kambiz; Adrian, Sorin

    1994-01-01

    Biocompatibility of electrodes for stimulation are difficult to maintain homeostasis. Noble metal stimulating electrodes which are normally biocompatible on keratinized tissue become very non-biocompatible when they are interfaced with nonkeratinized tissue in an area such as the oral cavity. Composite electrodes have been made biocompatible in the oral cavity even at current densities larger than 1 μA/mm2. Electrodes used in potential readings require that the anodic and cathodic polarization remain minimal. Silver-silver chloride electrodes are minimal. Silver-silver chloride electrodes are not always reversible. The range of pH, voltages and current densities when silver-silver chloride are not reversible are presented. Recently at Drexel University reliable silver coatings inside and outside of medical catheters have been fabricated to act as antimicrobial to a variety of bacteria. Noble and nonnoble metals have been combined in coatings with silver to enhance the antimicrobial action. PMID:18476262

  4. Mathematical model of the neonatal mouse ventricular action potential

    PubMed Central

    Wang, Linda J.; Sobie, Eric A.

    2008-01-01

    Therapies for heart disease are based largely on our understanding of the adult myocardium. The dramatic differences in action potential (AP) shape between neonatal and adult cardiac myocytes, however, indicate that a different set of molecular interactions in neonatal myocytes necessitates different treatment for newborns. Computational modeling is useful for synthesizing data to determine how interactions between components lead to systems-level behavior, but this technique has not been used extensively to study neonatal heart cell function. We created a mathematical model of the neonatal (day 1) mouse myocyte by modifying, based on experimental data, the densities and/or formulations of ion transport mechanisms in an adult cell model. The new model reproduces the characteristic AP shape of neonatal cells, with a brief plateau phase and longer duration than the adult (APD80=60.1 vs. 12.6 ms). The simulation results are consistent with experimental data, including: 1) decreased density, and altered inactivation, of transient outward K+ currents, 2) increased delayed rectifier K+ currents, 3) Ca2+ entry through T-type as well as L-type Ca2+ channels, 4) increased Ca2+ influx through Na+-Ca2+ exchange, and 5) Ca2+ transients resulting from transmembrane Ca2+ entry rather than release from the sarcoplasmic reticulum (SR). Simulations performed with the model generated novel predictions, including increased SR Ca2+ leak and elevated intracellular [Na+] in neonatal compared with adult myocytes. This new model can therefore be used for testing hypotheses and obtaining a better quantitative understanding of differences between neonatal and adult physiology. PMID:18408122

  5. Carbon nanotube multi-electrode array chips for noninvasive real-time measurement of dopamine, action potentials, and postsynaptic potentials.

    PubMed

    Suzuki, Ikuro; Fukuda, Mao; Shirakawa, Keiichi; Jiko, Hideyasu; Gotoh, Masao

    2013-11-15

    Multi-electrode arrays (MEAs) can be used for noninvasive, real-time, and long-term recording of electrophysiological activity and changes in the extracellular chemical microenvironment. Neural network organization, neuronal excitability, synaptic and phenotypic plasticity, and drug responses may be monitored by MEAs, but it is still difficult to measure presynaptic activity, such as neurotransmitter release, from the presynaptic bouton. In this study, we describe the development of planar carbon nanotube (CNT)-MEA chips that can measure both the release of the neurotransmitter dopamine as well as electrophysiological responses such as field postsynaptic potentials (fPSPs) and action potentials (APs). These CNT-MEA chips were fabricated by electroplating the indium-tin oxide (ITO) microelectrode surfaces. The CNT-plated ITO electrode exhibited electrochemical response, having much higher current density compared with the bare ITO electrode. Chronoamperometric measurements using these CNT-MEA chips detected dopamine at nanomolar concentrations. By placing mouse striatal brain slices on the CNT-MEA chip, we successfully measured synaptic dopamine release from spontaneous firings with a high S/N ratio of 62. Furthermore, APs and fPSPs were measured from cultured hippocampal neurons and slices with high temporal resolution and a 100-fold greater S/N ratio. Our CNT-MEA chips made it possible to measure neurotransmitter dopamine (presynaptic activities), postsynaptic potentials, and action potentials, which have a central role in information processing in the neuronal network. CNT-MEA chips could prove useful for in vitro studies of stem cell differentiation, drug screening and toxicity, synaptic plasticity, and pathogenic processes involved in epilepsy, stroke, and neurodegenerative diseases. PMID:23774164

  6. Phasic changes in intracellular pH during action potentials of sheep Purkinje fibres.

    PubMed

    Pressler, M L

    1988-01-01

    Regulation of intracellular pH (pHi) and the relationship between H+ and Ca2+ may vary during activity. Ion-selective microelectrodes were used to record pHi during action potentials of sheep Purkinje fibres prolonged by low temperature (21 degrees C) and elevated CO2 content. Intracellular pH also was measured during changes in extracellular calcium concentration, [Ca2+]o. Cytosolic alkalinization (peak pHi change, 0.03-0.05) was observed during the long action-potential plateau and transient acidification (0.01-0.02 units) upon repolarization. Potassium-induced depolarization to plateau potentials (i.e. to -15 +/- 2 mV) simulated the peak magnitude of the alkalinization. However, compensation for the alkalinization occurred at a faster rate during the action potential (8.9 +/- 4.3 nM/min) than during K+ depolarization (1.2 +/- 0.5 nM/min). In comparison, the cytoplasm acidified in resting fibres (0.06-0.07 log units) during changes of [Ca2+]o thought to increase intracellular calcium concentration. Alterations of pHi were translated into changes of proton concentration ([H+]i). Ten- to twenty-fold elevation of [Ca2+]o evoked a comparable change in [H+]i (mean increase, 5.7 nM) but oppositely directed from that during the plateau (mean decrease, 8.8 nM). The findings in resting fibres seem consistent with displacement of bound protons by Ca2+. In contrast, the initial change in pHi during the plateau is proposed to be consequent to Ca2+-release from sarcoplasmic reticulum and/or phosphocreatine hydrolysis coupled to ATP regeneration.

  7. Interim action record of decision remedial alternative selection: TNX area groundwater operable unit

    SciTech Connect

    Palmer, E.R.

    1994-10-01

    This document presents the selected interim remedial action for the TNX Area Groundwater Operable Unit at the Savannah River Site (SRS), which was developed in accordance with CERCLA of 1980, as amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986, and to the extent practicable, the National Oil and Hazardous Substances Pollution contingency Plan (NCP). This decision is based on the Administrative Record File for this specific CERCLA unit.

  8. Action potential waveform voltage clamp shows significance of different Ca2+ channel types in developing ascidian muscle

    PubMed Central

    Dallman, Julia E; Dorman, Jennie B; Moody, William J

    2000-01-01

    Early in development, ascidian muscle cells generate spontaneous, long-duration action potentials that are mediated by a high-threshold, inactivating Ca2+ current. This spontaneous activity is required for appropriate physiological development.Mature muscle cells generate brief action potentials only in response to motor neuron input. The mature action potential is mediated by a high-threshold sustained Ca2+ current.Action potentials recorded from these two stages were imposed as voltage-clamp commands on cells of the same and different stages from which they were recorded. This strategy allowed us to study how immature and mature Ca2+ currents are optimized to their particular functions.Total Ca2+ entry during an action potential did not change during development. The developmental increase in Ca2+ current density exactly compensated for decreased spike duration. This compensation was a function purely of Ca2+ current density, not of the transition from immature to mature Ca2+ current types.In immature cells, Ca2+ entry was spread out over the entire waveform of spontaneous activity, including the interspike voltage trajectory. This almost continuous Ca2+ entry may be important in triggering Ca2+-dependent developmental programmes, and is a function of the slightly more negative voltage dependence of the immature Ca2+ current.In contrast, Ca2+ entry in mature cells was confined to the action potential itself, because of the slightly more positive voltage dependence of the mature Ca2+ current. This may be important in permitting rapid contraction-relaxation cycles during larval swimming.The inactivation of the immature Ca2+ current serves to limit the frequency and burst duration of spontaneous activity. The sustained kinetics of the mature Ca2+ current permit high-frequency firing during larval swimming. PMID:10766919

  9. Potential Application of Environmental Noise Recordings in Geoarchaeological Site Characterization

    NASA Astrophysics Data System (ADS)

    Di Luzio, E.

    2015-12-01

    Environmental noise recordings are commonly applied in seismic microzonation studies. By calculating the H/V spectral ratio, the fundamental frequency of soft terrains overlying a rigid bedrock can be determined (Nakamura (1989). In such a simple two-layer system, equation f = n Vs/4H (1) links the resonance frequency "f" to the thickness "H" and shear waves velocity "Vs "of the resonating layer. In recent years, this methodology has been applied generally to obtain information on the seismostratigraphy of an investigated site in different environmental context. In this work, its potential application in the characterization of archaeological features hosted in shallow geological levels is discussed. Field cases are identified in the Appia Antica archaeological site which is placed in central Italy. Here, acknowledged targets correspond to: i) empty tanks carved by the Romans into Cretaceous limestone in the IV-III cen. BC and ii): the basaltic stone paving of the ancient road track which is locally buried beneath colluvial deposits. Narrowly-spaced recordings of environmental noise were carried using a portable digital seismograph equipped with three electrodynamic orthogonal sensors (velocimeters) responding in the band 0.1 ÷1024 Hz and adopting a sampling frequency of 256 Hz.. Results are discussed in terms of absolute H/V values and related distribution maps in the very high-frequency interval of 10-40Hz. In the tanks hosting area, interpolation of H/V maximum values around 13Hz matches caves location and alignment, which is also evidenced by clear inversions (H/V<1) at lower frequencies (10-1Hz). Correlation between H/V peaks and the top surface of the buried stone paving along the prosecution of the road track is even more straightforward. Finally, the depth variations of the tank roofs and the basaltic paving were reconstructed combining in equation (1) results of noise recordings with borehole data and geophysical surveys (SASW analysis).

  10. Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons.

    PubMed

    Renganathan, M; Cummins, T R; Waxman, S G

    2001-08-01

    C-type dorsal root ganglion (DRG) neurons can generate tetrodotoxin-resistant (TTX-R) sodium-dependent action potentials. However, multiple sodium channels are expressed in these neurons, and the molecular identity of the TTX-R sodium channels that contribute to action potential production in these neurons has not been established. In this study, we used current-clamp recordings to compare action potential electrogenesis in Na(v)1.8 (+/+) and (-/-) small DRG neurons maintained for 2-8 h in vitro to examine the role of sodium channel Na(v)1.8 (alpha-SNS) in action potential electrogenesis. Although there was no significant difference in resting membrane potential, input resistance, current threshold, or voltage threshold in Na(v)1.8 (+/+) and (-/-) DRG neurons, there were significant differences in action potential electrogenesis. Most Na(v)1.8 (+/+) neurons generate all-or-none action potentials, whereas most of Na(v)1.8 (-/-) neurons produce smaller graded responses. The peak of the response was significantly reduced in Na(v)1.8 (-/-) neurons [31.5 +/- 2.2 (SE) mV] compared with Na(v)1.8 (+/+) neurons (55.0 +/- 4.3 mV). The maximum rise slope was 84.7 +/- 11.2 mV/ms in Na(v)1.8 (+/+) neurons, significantly faster than in Na(v)1.8 (-/-) neurons where it was 47.2 +/- 1.3 mV/ms. Calculations based on the action potential overshoot in Na(v)1.8 (+/+) and (-/-) neurons, following blockade of Ca(2+) currents, indicate that Na(v)1.8 contributes a substantial fraction (80-90%) of the inward membrane current that flows during the rising phase of the action potential. We found that fast TTX-sensitive Na(+) channels can produce all-or-none action potentials in some Na(v)1.8 (-/-) neurons but, presumably as a result of steady-state inactivation of these channels, electrogenesis in Na(v)1.8 (-/-) neurons is more sensitive to membrane depolarization than in Na(v)1.8 (+/+) neurons, and, in the absence of Na(v)1.8, is attenuated with even modest depolarization. These observations

  11. An experimental study on the physical properties of the cupula. Effect of cupular sectioning on the ampullary nerve action potential.

    PubMed

    Suzuki, M; Harada, Y; Kishimoto, A

    1985-01-01

    The frog posterior semicircular canal (PSC) was isolated and a part of the ampullary wall was cut to allow removal of the cupula from the crista. The cupula was replaced on the crista and the PSC ampullary action potential was recorded. The cupula was again removed and was sectioned in half, either in the plane vertical to the crista (vertical sectioning), or in the plane parallel to the crista (horizontal sectioning). The sectioned half of the cupula was then replaced on the crista. The action potentials after replacement of the vertical or horizontal segments of the cupula were compared to those achieved when the entire cupula was replaced. After vertical sectioning, the action potentials were significantly reduced; they were 50.3% of the completely replaced cupula when a small stimulus was used and 79.1% when a large stimulus was used. A reduced attachment surface between the cupular base and the crista is possibly responsible for the decreased action potential in the vertically sectioned specimen. After horizontal sectioning, the action potentials were 64.5% for the small stimulus and 108.2% for the large stimulus. These results indicate that elicited responses are related to the height of the cupula and the deflection angle. This further suggests that the movement of the cupula is represented by that of the elastic system.

  12. A new method for the extraction and classification of single motor unit action potentials from surface EMG signals.

    PubMed

    Gazzoni, Marco; Farina, Dario; Merletti, Roberto

    2004-07-30

    It has been shown that multi-channel surface EMG allows assessment of anatomical and physiological single motor unit (MU) properties. To get this information, the action potentials of single MUs should be extracted from the interference EMG signals. This study describes an automatic system for the detection and classification of MU action potentials from multi-channel surface EMG signals. The methods for the identification and extraction of action potentials from the raw signals and for their clustering into the MUs to which they belong are described. The segmentation phase is based on the matched Continuous Wavelet Transform (CWT) while the classification is performed by a multi-channel neural network that is a modified version of the multi-channel Adaptive Resonance Theory networks. The neural network can adapt to slow changes in the shape of the MU action potentials. The method does not require any interaction of the operator. The technique proposed was validated on simulated signals, at different levels of force, generated by a structure based surface EMG model. The MUs identified from the simulated signals covered almost the entire recruitment curve. Thus, the proposed algorithm was able to identify a MU sample representative of the muscle. Results on experimental signals recorded from different muscles and conditions are reported, showing the possibility of investigating anatomical and physiological properties of the detected MUs in a variety of practical cases. The main limitation of the approach is that complete firing patterns can be obtained only in specific cases due to MU action potential superpositions.

  13. Photometric recording of transmembrane potential in outer hair cells

    NASA Astrophysics Data System (ADS)

    Nakagawa, Takashi; Oghalai, John S.; Saggau, Peter; Rabbitt, Richard D.; Brownell, William E.

    2006-06-01

    Cochlear outer hair cells (OHCs) are polarized epithelial cells that have mechanoelectrical transduction channels within their apical stereocilia and produce electromotile force along their lateral wall. Phase shifts, or time delays, in the transmembrane voltage occurring at different axial locations along the cell may contribute to our understanding of how these cells operate at auditory frequencies. We developed a method to optically measure the phase of the OHC transmembrane potential using the voltage-sensitive dye (VSD) di-8-ANEPPS. The exit aperture of a fibre-optic light source was driven in two dimensions so that a 24 µm spot of excitation light could be positioned along the length of the OHC. We used the whole-cell patch-clamp technique in the current-clamp mode to stimulate the OHC at the base. The photometric response and the voltage response were monitored with a photodetector and patch-clamp amplifier, respectively. The photometric response was used to measure the regional changes in the membrane potential in response to maintained (dc) and sinusoidal (ac) current stimuli applied at the base of the cell. We used a neutral density filter to lower the excitation light intensity and reduce phototoxicity. A sensitive detector and lock-in amplifier were used to measure the small ac VSD signal. This permitted measurements of the ac photometric response below the noise floor of the static fluorescence. The amplitude and phase components of the photometric response were recorded for stimuli up to 800 Hz. VSD data at 400-800 Hz show the presence of a small phase delay between the stimulus voltage at the base of the cell and the local membrane potential measured along the lateral wall. Results are consistent with the hypothesis that OHCs exhibit inhomogeneous membrane potentials that vary with position in analogy with the voltage in nerve axons.

  14. Ontogeny of vestibular compound action potentials in the domestic chicken

    NASA Technical Reports Server (NTRS)

    Jones, S. M.; Jones, T. A.

    2000-01-01

    Compound action potentials of the vestibular nerve were measured from the surface of the scalp in 148 chickens (Gallus domesticus). Ages ranged from incubation day 18 (E18) to 22 days posthatch (P22). Responses were elicited using linear acceleration cranial pulses. Response thresholds decreased at an average rate of -0.45 dB/day. The decrease was best fit by an exponential model with half-maturity time constant of 5.1 days and asymptote of approximately -25.9 dB re:1.0 g/ms. Mean threshold approached within 3 dB of the asymptote by ages P6-P9. Similarly, response latencies decreased exponentially to within 3% of mature values at ages beyond P9. The half-maturity time constant for peripheral response peak latencies P1, N1, and P2 was comparable to thresholds and ranged from approximately 4.6 to 6.2 days, whereas central peaks (N2, P3, and N3) ranged from 2.9 to 3.4 days. Latency-intensity slopes for P1, N1, and P2 tended to decrease with age, reaching mature values within approximately 100 hours of hatching. Amplitudes increased as a function of age with average growth rates for response peaks ranging from 0.04 to 0.09 microV/day. There was no obvious asymptote to the growth of amplitudes over the ages studied. Amplitude-intensity slopes also increased modestly with age. The results show that gravity receptors are responsive to transient cranial stimuli as early as E19 in the chicken embryo. The functional response of gravity receptors continues to develop for many days after all major morphological structures are in place. Distinct maturational processes can be identified in central and peripheral neural relays. Functional improvements during maturation may result from refinements in the receptor epithelia, improvements in central and peripheral synaptic transmission, increased neural myelination, as well as changes in the mechanical coupling between the cranium and receptor organ.

  15. Understanding the Electrical Behavior of the Action Potential in Terms of Elementary Electrical Sources

    ERIC Educational Resources Information Center

    Rodriguez-Falces, Javier

    2015-01-01

    A concept of major importance in human electrophysiology studies is the process by which activation of an excitable cell results in a rapid rise and fall of the electrical membrane potential, the so-called action potential. Hodgkin and Huxley proposed a model to explain the ionic mechanisms underlying the formation of action potentials. However,…

  16. The linear synchronization measures of uterine EMG signals: Evidence of synchronized action potentials during propagation.

    PubMed

    Domino, Malgorzata; Pawlinski, Bartosz; Gajewski, Zdzislaw

    2016-11-01

    Evaluation of synchronization between myoelectric signals can give new insights into the functioning of the complex system of porcine myometrium. We propose a model of uterine contractions according to the hypothesis of action potentials similarity which is possible to detect during propagation in the uterine wall. We introduce similarity measures based on the concept of synchronization as used in matching linear signals such as electromyographic (EMG) time series data. The aim was to present linear measures to assess synchronization between contractions in different topographic regions of the uterus. We use the cross-correlation function (ƒx,y[l], ƒy,z[l]) and the cross-coherence function (Cxy[ƒ], Cyz[ƒ]) to assess synchronization between three data series of a diestral uterine EMG bundles in porcine reproductive tract. Spontaneous uterine activity was recorded using telemetry method directly by three-channel transmitter and three silver bipolar needle electrodes sutured on different topographic regions of the reproductive tract in the sow. The results show the usefulness of the cross-coherence function in that synchronization between uterine horn and corpus uteri for multiple action potentials (bundles) could be observed. The EMG bundles synchronization may be used to investigate the direction and velocity of EMG signals propagation in porcine reproductive tract. PMID:27570104

  17. Synapse-Level Determination of Action Potential Duration by K(+) Channel Clustering in Axons.

    PubMed

    Rowan, Matthew J M; DelCanto, Gina; Yu, Jianqing J; Kamasawa, Naomi; Christie, Jason M

    2016-07-20

    In axons, an action potential (AP) is thought to be broadcast as an unwavering binary pulse over its arbor, driving neurotransmission uniformly at release sites. Yet by recording from axons of cerebellar stellate cell (SC) interneurons, we show that AP width varies between presynaptic bouton sites, even within the same axon branch. The varicose geometry of SC boutons alone does not impose differences in spike duration. Rather, axonal patching revealed heterogeneous peak conductance densities of currents mediated mainly by fast-activating Kv3-type potassium channels, with clustered hotspots at boutons and restricted expression at adjoining shafts. Blockade of Kv channels at individual boutons indicates that currents immediately local to a release site direct spike repolarization at that location. Thus, the clustered arrangement and variable expression density of Kv3 channels at boutons are key determinants underlying compartmentalized control of AP width in a near synapse-by-synapse manner, multiplying the signaling capacity of these structures. PMID:27346528

  18. Instrumentation to record evoked potentials for closed-loop control of deep brain stimulation.

    PubMed

    Kent, Alexander R; Grill, Warren M

    2011-01-01

    Closed-loop deep brain stimulation (DBS) systems offer promise in relieving the clinical burden of stimulus parameter selection and improving treatment outcomes. In such a system, a feedback signal is used to adjust automatically stimulation parameters and optimize the efficacy of stimulation. We explored the feasibility of recording electrically evoked compound action potentials (ECAPs) during DBS for use as a feedback control signal. A novel instrumentation system was developed to suppress the stimulus artifact and amplify the small magnitude, short latency ECAP response during DBS with clinically relevant parameters. In vitro testing demonstrated the capabilities to increase the gain by a factor of 1,000× over a conventional amplifier without saturation, reduce distortion of mock ECAP signals, and make high fidelity recordings of mock ECAPs at latencies of only 0.5 ms following DBS pulses of 50 to 100 μs duration. Subsequently, the instrumentation was used to make in vivo recordings of ECAPs during thalamic DBS in cats, without contamination by the stimulus artifact. The signal characteristics were similar across three experiments, suggesting common neural activation patterns. The ECAP recordings enabled with this novel instrumentation may provide insight into the type and spatial extent of neural elements activated during DBS, and could serve as feedback control signals for closed-loop systems. PMID:22255894

  19. Cell discharge correlates of posterior hypothalamic theta rhythm. Recipe for success in recording stable field potential.

    PubMed

    Bocian, Renata; Kłos-Wojtczak, Paulina; Konopacki, Jan

    2016-09-01

    The theta rhythm discovered in the posterior hypothalamus area (PHa) differs from theta observed in the hippocampal formation. In comparison to hippocampal spontaneous theta, the theta recorded in the PHa is rarely registered, has lower amplitude, often disappears, and sometimes returns after a few minutes. These features indicate that spontaneous theta recorded in the PHa is not an appropriate experimental model to search for the correlation between PHa cell discharges and local field potential. In this paper we present standard experimental conditions necessary to record theta-related cells in the PHa in anesthetized rats. Three pharmacological agents were used in the experiments to induce PHa theta rhythm in urethanized rats: carbachol (CCH), carbenoxolone and kainic acid, which are potent enough to induce well-synchronized PHa theta. However, CCH was found to be the best pharmacological tool to induce PHa theta oscillations, due to its longest duration of action and lack of preliminary epileptogenic effects. It seems that CCH-induced theta can be the most suitable pharmacological model for experiments with the use of protocol of long-lasting recordings of PHa theta-related cell discharges. PMID:27353451

  20. Mechanisms of action and potential therapeutic uses of thalidomide.

    PubMed

    Mujagić, Hamza; Chabner, Bruce A; Mujagić, Zlata

    2002-06-01

    Thalidomide was first introduced to the market in Germany under the brand name of Contergan in 1956, as a non-barbiturate hypnotic, advocated to ensure a good nights sleep and to prevent morning sickness in pregnancy. It was advertised for its prompt action, lack of hangover, and apparent safety. It has been banned from the market since 1963 after it caused the worldwide teratogenic disaster: babies exposed to thalidomide in utero during the first 34-50 days of pregnancy were born with severe life-threatening birth defects. Despite its unfortunate history, thalidomide has attracted scientific interest again because of its recently discovered action against inflammatory diseases and cancer. Its broad range of biological activities stems from its ability to moderate cytokine action in cancer and inflammatory diseases. Early studies examined its anxiolytic, mild hypnotic, antiemetic, and adjuvant analgesic properties. Subsequently, thalidomide was found to be highly effective in managing the cutaneous manifestations of leprosy, being superior to Aspirin in controlling leprosy-associated fever. Recent research has shown promising results with thalidomide in patients with myeloma, myelodysplastic syndrome, a variety of infectious diseases, autoimmune diseases, cancer, and progressive body weight loss related to advanced cancer and AIDS. Here we review the history of its development, pharmacokinetics, metabolism, biologic effects, and the results of clinical trials conducted thus far. Further research in this field should be directed towards better understanding of thalidomide metabolism, its mechanism of action, and the development of less toxic and more active analogs. PMID:12035132

  1. Mechanisms of action and potential therapeutic uses of thalidomide.

    PubMed

    Mujagić, Hamza; Chabner, Bruce A; Mujagić, Zlata

    2002-06-01

    Thalidomide was first introduced to the market in Germany under the brand name of Contergan in 1956, as a non-barbiturate hypnotic, advocated to ensure a good nights sleep and to prevent morning sickness in pregnancy. It was advertised for its prompt action, lack of hangover, and apparent safety. It has been banned from the market since 1963 after it caused the worldwide teratogenic disaster: babies exposed to thalidomide in utero during the first 34-50 days of pregnancy were born with severe life-threatening birth defects. Despite its unfortunate history, thalidomide has attracted scientific interest again because of its recently discovered action against inflammatory diseases and cancer. Its broad range of biological activities stems from its ability to moderate cytokine action in cancer and inflammatory diseases. Early studies examined its anxiolytic, mild hypnotic, antiemetic, and adjuvant analgesic properties. Subsequently, thalidomide was found to be highly effective in managing the cutaneous manifestations of leprosy, being superior to Aspirin in controlling leprosy-associated fever. Recent research has shown promising results with thalidomide in patients with myeloma, myelodysplastic syndrome, a variety of infectious diseases, autoimmune diseases, cancer, and progressive body weight loss related to advanced cancer and AIDS. Here we review the history of its development, pharmacokinetics, metabolism, biologic effects, and the results of clinical trials conducted thus far. Further research in this field should be directed towards better understanding of thalidomide metabolism, its mechanism of action, and the development of less toxic and more active analogs.

  2. Gifted Potential and Poverty: A Call for Extraordinary Action

    ERIC Educational Resources Information Center

    Kitano, Margie K.

    2003-01-01

    Dr. Robinson's proposed action plan will serve the needs of highly achieving gifted students. However, defining giftedness as high academic performance based on traditional assessment procedures could reverse the field's fledgling success in supporting culturally diverse gifted children and youth. Changing the focus of equity in gifted education…

  3. Excitable Membranes and Action Potentials in Paramecia: An Analysis of the Electrophysiology of Ciliates

    PubMed Central

    Schlaepfer, Charles H.; Wessel, Ralf

    2015-01-01

    The ciliate Paramecium caudatum possesses an excitable cell membrane whose action potentials (APs) modulate the trajectory of the cell swimming through its freshwater environment. While many stimuli affect the membrane potential and trajectory, students can use current injection and extracellular ionic concentration changes to explore how APs cause reversal of the cell’s motion. Students examine these stimuli through intracellular recordings, also gaining insight into the practices of electrophysiology. Paramecium’s large size of around 150 µm, simple care, and relative ease to penetrate make them ideal model organisms for undergraduate students’ laboratory study. The direct link between behavior and excitable membranes has thought provoking evolutionary implications for the study of paramecia. Recording from the cell, students note a small resting potential around −30 mV, differing from animal resting potentials. By manipulating ion concentrations, APs of the relatively long length of 20–30 ms up to several minutes with depolarizations maxing over 0 mV are observed. Through comparative analysis of membrane potentials and the APs induced by either calcium or barium, students can deduce the causative ions for the APs as well as the mechanisms of paramecium APs. Current injection allows students to calculate quantitative electric characteristics of the membrane. Analysis will follow the literature’s conclusion in a V-Gated Ca++ influx and depolarization resulting in feedback from intracellular Ca++ that inactivates V-Gated Ca++ channels and activates Ca-Dependent K+ channels through a secondary messenger cascade that results in the K+ efflux and repolarization. PMID:26557800

  4. Evaluating the noise in electrically evoked compound action potential measurements in cochlear implants.

    PubMed

    Undurraga, Jaime A; Carlyon, Robert P; Wouters, Jan; van Wieringen, Astrid

    2012-07-01

    Electrically evoked compound action potentials (ECAPs) are widely used to study the excitability of the auditory nerve and stimulation properties in cochlear implant (CI) users. However, ECAP detection can be difficult and very subjective at near-threshold stimulation levels or in spread of excitation measurements. In this study, we evaluated the statistical properties of the background noise (BN) and the postaverage residual noise (RN) in ECAP measurements in order to determine an objective detection criterion. For the estimation of the BN and the RN, a method currently used in auditory brainstem response measurements was applied. The potential benefit of using weighted (Bayesian) averages was also examined. All estimations were performed with a set of approximately 360 ECAP measurements recorded from five human CI users of the CII or HiRes90K device (advanced bionics). Results demonstrated that the BN was normally distributed and the RN decreased according to the square root of the number of averages. No additional benefit was observed by using weighted averaging. The noise was not significantly different either at different stimulation intensities or across recording electrodes along the cochlea. The analysis of the statistical properties of the noise indicated that a signal-to-noise ratio of 1.7 dB as a detection criterion corresponds to a false positive detection rate of 1% with the used measurement setup.

  5. Novel Transabdominal Motor Action Potential (TaMAP) Neuromonitoring System for Spinal Surgery

    PubMed Central

    Feldman, Erica; Gabel, Brandon C; Taylor, Natalie; Gharib, James; Lee, Yu-Po; Taylor, William

    2016-01-01

    Introduction Minimally invasive lateral lumbar interbody fusion (LLIF) approaches to the lumbar spine reduce patient morbidity compared to anterior or posterior alternatives. This approach, however, decreases direct anatomical visualization, creating the need for highly sensitive and specific neurophysiological monitoring. We seek to determine feasibility in 'transabdominal motor action potential (TaMAP)' monitoring as an assessment for the integrity of the neural elements during lateral-approach surgeries to the lumbar spine.  Methods Cathode and anode leads were placed on the posterior and anterior surfaces of two porcine subjects. Currents of varying degrees were transmitted across, from front to back. Motor responses were monitored and recorded by needle electrodes in specific distal muscle groups of the lower extremity. Lastly, the cathode and anode were placed anterior and posterior to the chest wall and stimulated to the maximum of 1500 mA to determine any effect on cardiac rhythm. Results Responses were seen by measuring vertical height differences between peaks of corresponding evoked potentials. Recruitment began at 200 mA in the lower extremities. Stimulation at 450 mA recruited a reliable and distinguishable electrographic response from most muscle groups. Responses were recorded and reliably measured and increased in proportion to the graduation of transabdominal stimulation current; no responses were seen in the arms or face. 1500 mA across the chest wall failed to stimulate or induce cardiac arrhythmia on repeated stimulation, indicating safety of stimulation. Conclusion TaMAPs seen in the animal model provide a potential alternative to standard transcranial motor evoked potentials done in the lateral approach of LLIFs. TaMAP recordings in most muscle groups were recordable and reliable, though some muscle groups failed to stimulate. Safety of transabdominal motor evoked potentials was confirmed in this porcine study. Future studies

  6. How action selection can be embodied: intracranial gamma band recording shows response competition during the Eriksen flankers test

    PubMed Central

    Caruana, Fausto; Uithol, Sebo; Cantalupo, Gaetano; Sartori, Ivana; Lo Russo, Giorgio; Avanzini, Pietro

    2014-01-01

    Recent findings in monkeys suggest that action selection is based on a competition between various action options that are automatically planned by the motor system. Here we discuss data from intracranial EEG recordings in human premotor cortex (PMC) during a bimanual version of the Eriksen flankers test that suggest that the same principles apply to human action decisions. Recording sites in the dorsal PMC show an early but undifferentiated activation, a delayed response that depends on the experimental conditions and, finally, a movement related activation during action execution. Additionally, we found that the medial part of the PMC show a significant increase in response for ipsilateral trials, suggesting a role in inhibiting the wrong response. The ventral PMC seems to be involved in action execution, rather than action selection. Together these findings suggest that the human PMC is part of a network that specifies, selects, and executes actions. PMID:25206328

  7. Oxidative shift in tissue redox potential increases beat-to-beat variability of action potential duration.

    PubMed

    Kistamás, Kornél; Hegyi, Bence; Váczi, Krisztina; Horváth, Balázs; Bányász, Tamás; Magyar, János; Szentandrássy, Norbert; Nánási, Péter P

    2015-07-01

    Profound changes in tissue redox potential occur in the heart under conditions of oxidative stress frequently associated with cardiac arrhythmias. Since beat-to-beat variability (short term variability, SV) of action potential duration (APD) is a good indicator of arrhythmia incidence, the aim of this work was to study the influence of redox changes on SV in isolated canine ventricular cardiomyocytes using a conventional microelectrode technique. The redox potential was shifted toward a reduced state using a reductive cocktail (containing dithiothreitol, glutathione, and ascorbic acid) while oxidative changes were initiated by superfusion with H2O2. Redox effects were evaluated as changes in "relative SV" determined by comparing SV changes with the concomitant APD changes. Exposure of myocytes to the reductive cocktail decreased SV significantly without any detectable effect on APD. Application of H2O2 increased both SV and APD, but the enhancement of SV was the greater, so relative SV increased. Longer exposure to H2O2 resulted in the development of early afterdepolarizations accompanied by tremendously increased SV. Pretreatment with the reductive cocktail prevented both elevation in relative SV and the development of afterdepolarizations. The results suggest that the increased beat-to-beat variability during an oxidative stress contributes to the generation of cardiac arrhythmias.

  8. Potential effects of intrinsic heart pacemaker cell mechanisms on dysrhythmic cardiac action potential firing

    PubMed Central

    Yaniv, Yael; Tsutsui, Kenta; Lakatta, Edward G.

    2015-01-01

    The heart's regular electrical activity is initiated by specialized cardiac pacemaker cells residing in the sinoatrial node. The rate and rhythm of spontaneous action potential firing of sinoatrial node cells are regulated by stochastic mechanisms that determine the level of coupling of chemical to electrical clocks within cardiac pacemaker cells. This coupled-clock system is modulated by autonomic signaling from the brain via neurotransmitter release from the vagus and sympathetic nerves. Abnormalities in brain-heart clock connections or in any molecular clock activity within pacemaker cells lead to abnormalities in the beating rate and rhythm of the pacemaker tissue that initiates the cardiac impulse. Dysfunction of pacemaker tissue can lead to tachy-brady heart rate alternation or exit block that leads to long atrial pauses and increases susceptibility to other cardiac arrhythmia. Here we review evidence for the idea that disturbances in the intrinsic components of pacemaker cells may be implemented in arrhythmia induction in the heart. PMID:25755643

  9. Ionic differences between somatic and axonal action potentials in snail giant neurones

    PubMed Central

    Wald, Flora

    1972-01-01

    1. The ionic requirements of the somatic and axonal action potentials of `H' neurones of the snail Cryptomphallus aspersa were studied using intracellular micro-electrodes. 2. The overshoot of the somatic action potential increased by 10 mV for a tenfold increase in [Ca2+]o. In calcium-free media the action potential decreased gradually to values of 50 to 90% of the control and they could be completely eliminated with 2 mM-EGTA. The maximum rate of rise also varied with [Ca2+]o. 3. After 2 hr in sodium-free solution the somatic action potential decreased 6% in overshoot and 24% in rate of rise. 4. The somatic action potential was not affected by TTX, 5 × 10-6 g/ml. Procaine, 18 mM, reduced its rate of rise but did not eliminate it whereas 30 mM-CoCl2 did. 5. The size of the axonal action potential increased with increased [Na+]o, but decreased with an increase in [Ca2+]o. 6. Procaine, 18 mM, abolished the axonal action potential whereas it was not affected by TTX, 5 × 10-6 g/ml., nor, usually, by 30 mM-CoCl2. 7. The results obtained by studying the compound action potential of the nerves were similar to those from axonal action potentials. 8. The possibility that the somatic action potential is mainly calcium dependent while the axonal action potential is mainly produced by sodium is discussed. PMID:5014099

  10. Quantitative Assessment of the Distributions of Membrane Conductances Involved in Action Potential Backpropagation Along Basal Dendrites

    PubMed Central

    Acker, Corey D.; Antic, Srdjan D.

    2009-01-01

    Basal dendrites of prefrontal cortical neurons receive strong synaptic drive from recurrent excitatory synaptic inputs. Synaptic integration within basal dendrites is therefore likely to play an important role in cortical information processing. Both synaptic integration and synaptic plasticity depend crucially on dendritic membrane excitability and the backpropagation of action potentials. We carried out multisite voltage-sensitive dye imaging of membrane potential transients from thin basal branches of prefrontal cortical pyramidal neurons before and after application of channel blockers. We found that backpropagating action potentials (bAPs) are predominantly controlled by voltage-gated sodium and A-type potassium channels. In contrast, pharmacologically blocking the delayed rectifier potassium, voltage-gated calcium, or Ih conductance had little effect on dendritic AP propagation. Optically recorded bAP waveforms were quantified and multicompartmental modeling was used to link the observed behavior with the underlying biophysical properties. The best-fit model included a nonuniform sodium channel distribution with decreasing conductance with distance from the soma, together with a nonuniform (increasing) A-type potassium conductance. AP amplitudes decline with distance in this model, but to a lesser extent than previously thought. We used this model to explore the mechanisms underlying two sets of published data involving high-frequency trains of APs and the local generation of sodium spikelets. We also explored the conditions under which IA down-regulation would produce branch strength potentiation in the proposed model. Finally, we discuss the hypothesis that a fraction of basal branches may have different membrane properties compared with sister branches in the same dendritic tree. PMID:19118105

  11. Understanding the electrical behavior of the action potential in terms of elementary electrical sources.

    PubMed

    Rodriguez-Falces, Javier

    2015-03-01

    A concept of major importance in human electrophysiology studies is the process by which activation of an excitable cell results in a rapid rise and fall of the electrical membrane potential, the so-called action potential. Hodgkin and Huxley proposed a model to explain the ionic mechanisms underlying the formation of action potentials. However, this model is unsuitably complex for teaching purposes. In addition, the Hodgkin and Huxley approach describes the shape of the action potential only in terms of ionic currents, i.e., it is unable to explain the electrical significance of the action potential or describe the electrical field arising from this source using basic concepts of electromagnetic theory. The goal of the present report was to propose a new model to describe the electrical behaviour of the action potential in terms of elementary electrical sources (in particular, dipoles). The efficacy of this model was tested through a closed-book written exam. The proposed model increased the ability of students to appreciate the distributed character of the action potential and also to recognize that this source spreads out along the fiber as function of space. In addition, the new approach allowed students to realize that the amplitude and sign of the extracellular electrical potential arising from the action potential are determined by the spatial derivative of this intracellular source. The proposed model, which incorporates intuitive graphical representations, has improved students' understanding of the electrical potentials generated by bioelectrical sources and has heightened their interest in bioelectricity.

  12. Action potential-induced dendritic calcium dynamics correlated with synaptic plasticity in developing hippocampal pyramidal cells.

    PubMed

    Isomura, Y; Kato, N

    1999-10-01

    In hippocampal CA1 pyramidal cells, intracellular calcium increases are required for induction of long-term potentiation (LTP), an activity-dependent synaptic plasticity. LTP is known to develop in magnitude during the second and third postnatal weeks in the rats. Little is known, however, about development of intracellular calcium dynamics during the same postnatal weeks. We investigated postnatal development of intracellular calcium dynamics in the proximal apical dendrites of CA1 pyramidal cells by whole cell patch-clamp recordings and calcium imaging with the Ca(2+) indicator fura-2. Dendritic calcium increases induced by intrasomatically evoked action potentials were slight during the first postnatal week but gradually became robust 3 to 6-fold during the second and third postnatal weeks. These calcium increases were blocked by application of 250 microM CdCl(2), a nonspecific blocker for high-threshold voltage-dependent calcium channels (VDCCs). Under the voltage-clamp condition, both calcium currents and dendritic calcium accumulations induced by depolarization were larger at the late developmental stage (P15-18) than the early stage (P4-7), indicating developmental enhancement of calcium influx mediated by high-threshold VDCCs. Moreover, theta-burst stimulation (TBS), a protocol for LTP induction, induced large intracellular calcium increases at the late developmental stage, in synchrony with maturation of TBS-induced LTP. These results suggest that developmental enhancement of intracellular calcium increases induced by action potentials may underlie maturation of calcium-dependent functions such as synaptic plasticity in hippocampal neurons.

  13. Epidermal laser stimulation of action potentials in the frog sciatic nerve

    NASA Astrophysics Data System (ADS)

    Jindra, Nichole M.; Goddard, Douglas; Imholte, Michelle; Thomas, Robert J.

    2010-01-01

    Measurements of laser-stimulated action potentials in the sciatic nerve of leopard frogs (Rana pipiens) are made using two infrared lasers. The dorsal sides of the frog's hind limbs are exposed to short-pulsed 1540- and 1064-nm wavelengths at three separate spot sizes: 2, 3, and 4 mm. Energy density thresholds are determined for eliciting an action potential at each experimental condition. Results from these exposures show similar evoked potential thresholds for both wavelengths. The 2-mm-diam spot sizes yield action potentials at radiant exposure levels almost double that seen with larger beam sizes.

  14. Corrective Action Investigation Plan for Corrective Action Unit 536: Area 3 Release Site, Nevada Test Site, Nevada (Rev. 0 / June 2003), Including Record of Technical Change No. 1

    SciTech Connect

    2003-06-27

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives (CAAs) appropriate for the closure of Corrective Action Unit (CAU) 536: Area 3 Release Site, Nevada Test Site, Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 536 consists of a single Corrective Action Site (CAS): 03-44-02, Steam Jenny Discharge. The CAU 536 site is being investigated because existing information on the nature and extent of possible contamination is insufficient to evaluate and recommend corrective action alternatives for CAS 03-44-02. The additional information will be obtained by conducting a corrective action investigation (CAI) prior to evaluating CAAs and selecting the appropriate corrective action for this CAS. The results of this field investigation are to be used to support a defensible evaluation of corrective action alternatives in the corrective action decision document. Record of Technical Change No. 1 is dated 3-2004.

  15. Alteration of neural action potential patterns by axonal stimulation: the importance of stimulus location

    NASA Astrophysics Data System (ADS)

    Crago, Patrick E.; Makowski, Nathaniel S.

    2014-10-01

    Objective. Stimulation of peripheral nerves is often superimposed on ongoing motor and sensory activity in the same axons, without a quantitative model of the net action potential train at the axon endpoint. Approach. We develop a model of action potential patterns elicited by superimposing constant frequency axonal stimulation on the action potentials arriving from a physiologically activated neural source. The model includes interactions due to collision block, resetting of the neural impulse generator, and the refractory period of the axon at the point of stimulation. Main results. Both the mean endpoint firing rate and the probability distribution of the action potential firing periods depend strongly on the relative firing rates of the two sources and the intersite conduction time between them. When the stimulus rate exceeds the neural rate, neural action potentials do not reach the endpoint and the rate of endpoint action potentials is the same as the stimulus rate, regardless of the intersite conduction time. However, when the stimulus rate is less than the neural rate, and the intersite conduction time is short, the two rates partially sum. Increases in stimulus rate produce non-monotonic increases in endpoint rate and continuously increasing block of neurally generated action potentials. Rate summation is reduced and more neural action potentials are blocked as the intersite conduction time increases. At long intersite conduction times, the endpoint rate simplifies to being the maximum of either the neural or the stimulus rate. Significance. This study highlights the potential of increasing the endpoint action potential rate and preserving neural information transmission by low rate stimulation with short intersite conduction times. Intersite conduction times can be decreased with proximal stimulation sites for muscles and distal stimulation sites for sensory endings. The model provides a basis for optimizing experiments and designing neuroprosthetic

  16. Alteration of neural action potential patterns by axonal stimulation: the importance of stimulus location

    PubMed Central

    Crago, Patrick E; Makowski, Nathan S

    2014-01-01

    Objective Stimulation of peripheral nerves is often superimposed on ongoing motor and sensory activity in the same axons, without a quantitative model of the net action potential train at the axon endpoint. Approach We develop a model of action potential patterns elicited by superimposing constant frequency axonal stimulation on the action potentials arriving from a physiologically activated neural source. The model includes interactions due to collision block, resetting of the neural impulse generator, and the refractory period of the axon at the point of stimulation. Main Results Both the mean endpoint firing rate and the probability distribution of the action potential firing periods depend strongly on the relative firing rates of the two sources and the intersite conduction time between them. When the stimulus rate exceeds the neural rate, neural action potentials do not reach the endpoint and the rate of endpoint action potentials is the same as the stimulus rate, regardless of the intersite conduction time. However, when the stimulus rate is less than the neural rate, and the intersite conduction time is short, the two rates partially sum. Increases in stimulus rate produce non-monotonic increases in endpoint rate and continuously increasing block of neurally generated action potentials. Rate summation is reduced and more neural action potentials are blocked as the intersite conduction time increases.. At long intersite conduction times, the endpoint rate simplifies to being the maximum of either the neural or the stimulus rate. Significance This study highlights the potential of increasing the endpoint action potential rate and preserving neural information transmission by low rate stimulation with short intersite conduction times. Intersite conduction times can be decreased with proximal stimulation sites for muscles and distal stimulation sites for sensory endings. The model provides a basis for optimizing experiments and designing neuroprosthetic

  17. A clinically applicable approach for detecting spontaneous action potential spikes in amyotrophic lateral sclerosis with a linear electrode array.

    PubMed

    Jahanmiri-Nezhad, Faezeh; Li, Xiaoyan; Barkhaus, Paul E; Rymer, William Z; Zhou, Ping

    2014-02-01

    Examination of spontaneous muscle activity is an important part of the routine electromyogram (EMG) in assessing neuromuscular diseases. The EMG is specifically valuable as a diagnostic test in supporting the diagnosis of amyotrophic lateral sclerosis. High-density surface EMG is a relatively new technique that has until now been used in research but has the potential for clinical application. This study presents a simple high-density surface EMG method for automatic detection of spontaneous action potentials from surface electrode array recordings of patients with amyotrophic lateral sclerosis. To reduce computational complexity while maintaining useful information from the electrode array recording, the multichannel high-density surface EMG was transferred to single-dimensional data by calculating the maximum difference across all channels of the electrode array. A spike detection threshold was then set in the single-dimensional domain to identify the firing times of each spontaneous action potential spike, whereas a spike extraction threshold was used to define the onset and offset of the spontaneous spikes. These data were used to extract the spontaneous spike waveforms from the electrode array EMG. A database of detected spontaneous spikes was thus obtained, including their waveforms, on all channels along with their corresponding firing times. This newly developed method makes use of the information from different channels of the electrode array EMG recording. It also has the primary feature of being simple and fast in implementation, with convenient parameter adjustment and user-computer interaction. Hence, it has good possibilities for clinical application.

  18. Potential synergy of phytochemicals in cancer prevention: mechanism of action.

    PubMed

    Liu, Rui Hai

    2004-12-01

    Epidemiological studies have consistently shown that regular consumption of fruits and vegetables is strongly associated with reduced risk of developing chronic diseases, such as cancer and cardiovascular disease. It is now widely believed that the actions of the antioxidant nutrients alone do not explain the observed health benefits of diets rich in fruits and vegetables, because taken alone, the individual antioxidants studied in clinical trials do not appear to have consistent preventive effects. Work performed by our group and others has shown that fruits and vegetable phytochemical extracts exhibit strong antioxidant and antiproliferative activities and that the major part of total antioxidant activity is from the combination of phytochemicals. We proposed that the additive and synergistic effects of phytochemicals in fruits and vegetables are responsible for these potent antioxidant and anticancer activities and that the benefit of a diet rich in fruits and vegetables is attributed to the complex mixture of phytochemicals present in whole foods. This explains why no single antioxidant can replace the combination of natural phytochemicals in fruits and vegetables to achieve the health benefits. The evidence suggests that antioxidants or bioactive compounds are best acquired through whole-food consumption, not from expensive dietary supplements. We believe that a recommendation that consumers eat 5 to 10 servings of a wide variety of fruits and vegetables daily is an appropriate strategy for significantly reducing the risk of chronic diseases and to meet their nutrient requirements for optimum health.

  19. Recording evoked potentials during deep brain stimulation: development and validation of instrumentation to suppress the stimulus artefact

    NASA Astrophysics Data System (ADS)

    Kent, A. R.; Grill, W. M.

    2012-06-01

    The clinical efficacy of deep brain stimulation (DBS) for the treatment of movement disorders depends on the identification of appropriate stimulation parameters. Since the mechanisms of action of DBS remain unclear, programming sessions can be time consuming, costly and result in sub-optimal outcomes. Measurement of electrically evoked compound action potentials (ECAPs) during DBS, generated by activated neurons in the vicinity of the stimulating electrode, could offer insight into the type and spatial extent of neural element activation and provide a potential feedback signal for the rational selection of stimulation parameters and closed-loop DBS. However, recording ECAPs presents a significant technical challenge due to the large stimulus artefact, which can saturate recording amplifiers and distort short latency ECAP signals. We developed DBS-ECAP recording instrumentation combining commercial amplifiers and circuit elements in a serial configuration to reduce the stimulus artefact and enable high fidelity recording. We used an electrical circuit equivalent model of the instrumentation to understand better the sources of the stimulus artefact and the mechanisms of artefact reduction by the circuit elements. In vitro testing validated the capability of the instrumentation to suppress the stimulus artefact and increase gain by a factor of 1000 to 5000 compared to a conventional biopotential amplifier. The distortion of mock ECAP (mECAP) signals was measured across stimulation parameters, and the instrumentation enabled high fidelity recording of mECAPs with latencies of only 0.5 ms for DBS pulse widths of 50 to 100 µs/phase. Subsequently, the instrumentation was used to record in vivo ECAPs, without contamination by the stimulus artefact, during thalamic DBS in an anesthetized cat. The characteristics of the physiological ECAP were dependent on stimulation parameters. The novel instrumentation enables high fidelity ECAP recording and advances the potential use

  20. Correlation of repolarization of ventricular monophasic action potential with ECG in the murine heart.

    PubMed

    Danik, Stephan; Cabo, Candido; Chiello, Christine; Kang, Sacha; Wit, Andrew L; Coromilas, James

    2002-07-01

    Transgenic mice have become important experimental models in the investigation of mechanisms causing cardiac arrhythmias because of the ability to create strains with alterations in repolarizing membrane currents. It is important to relate alterations in membrane currents in cells to their phenotypic expression on the electrocardiogram (ECG). The murine ECG, however, has unusual characteristics that make interpretation of the phenotypic expression of changes in ventricular repolarization uncertain. The major deflection representing the QRS (referred to as "a") is often followed by a secondary slower deflection ("b") and sometimes a subtle third deflection ("c"). To determine whether the second or third deflections or both represent ventricular repolarization, we recorded the ventricular monophasic action potential (MAP) in open-chest mice and correlated repolarization with the ECG. There was no significant correlation by linear regression, between action potential duration to 50% or 90% repolarization (APD(50) or APD(90)), respectively, of the MAP and either the interval from onset of Q to onset of b (Qb interval) or onset of c (Qc interval). Administration of 4-aminopyridine (4-AP) significantly prolonged APD(50) and APD(90) and the Qb interval, indicating that this deflection on the ECG represents part of ventricular repolarization. After 4-AP, the c wave disappeared, also suggesting that it represents a component of ventricular repolarization. Although it appears that both the b and c waves that follow the Q wave on the ECG represent ventricular repolarization, neither correlates exactly with APD(90) of the MAP. Therefore, an accurate measurement of complete repolarization of the murine ventricle cannot be obtained from the surface ECG. PMID:12063311

  1. Optimisation of Ionic Models to Fit Tissue Action Potentials: Application to 3D Atrial Modelling

    PubMed Central

    Lovell, Nigel H.; Dokos, Socrates

    2013-01-01

    A 3D model of atrial electrical activity has been developed with spatially heterogeneous electrophysiological properties. The atrial geometry, reconstructed from the male Visible Human dataset, included gross anatomical features such as the central and peripheral sinoatrial node (SAN), intra-atrial connections, pulmonary veins, inferior and superior vena cava, and the coronary sinus. Membrane potentials of myocytes from spontaneously active or electrically paced in vitro rabbit cardiac tissue preparations were recorded using intracellular glass microelectrodes. Action potentials of central and peripheral SAN, right and left atrial, and pulmonary vein myocytes were each fitted using a generic ionic model having three phenomenological ionic current components: one time-dependent inward, one time-dependent outward, and one leakage current. To bridge the gap between the single-cell ionic models and the gross electrical behaviour of the 3D whole-atrial model, a simplified 2D tissue disc with heterogeneous regions was optimised to arrive at parameters for each cell type under electrotonic load. Parameters were then incorporated into the 3D atrial model, which as a result exhibited a spontaneously active SAN able to rhythmically excite the atria. The tissue-based optimisation of ionic models and the modelling process outlined are generic and applicable to image-based computer reconstruction and simulation of excitable tissue. PMID:23935704

  2. Electrical Identification and Selective Microstimulation of Neuronal Compartments Based on Features of Extracellular Action Potentials

    PubMed Central

    Radivojevic, Milos; Jäckel, David; Altermatt, Michael; Müller, Jan; Viswam, Vijay; Hierlemann, Andreas; Bakkum, Douglas J.

    2016-01-01

    A detailed, high-spatiotemporal-resolution characterization of neuronal responses to local electrical fields and the capability of precise extracellular microstimulation of selected neurons are pivotal for studying and manipulating neuronal activity and circuits in networks and for developing neural prosthetics. Here, we studied cultured neocortical neurons by using high-density microelectrode arrays and optical imaging, complemented by the patch-clamp technique, and with the aim to correlate morphological and electrical features of neuronal compartments with their responsiveness to extracellular stimulation. We developed strategies to electrically identify any neuron in the network, while subcellular spatial resolution recording of extracellular action potential (AP) traces enabled their assignment to the axon initial segment (AIS), axonal arbor and proximal somatodendritic compartments. Stimulation at the AIS required low voltages and provided immediate, selective and reliable neuronal activation, whereas stimulation at the soma required high voltages and produced delayed and unreliable responses. Subthreshold stimulation at the soma depolarized the somatic membrane potential without eliciting APs. PMID:27510732

  3. Electrical Identification and Selective Microstimulation of Neuronal Compartments Based on Features of Extracellular Action Potentials.

    PubMed

    Radivojevic, Milos; Jäckel, David; Altermatt, Michael; Müller, Jan; Viswam, Vijay; Hierlemann, Andreas; Bakkum, Douglas J

    2016-01-01

    A detailed, high-spatiotemporal-resolution characterization of neuronal responses to local electrical fields and the capability of precise extracellular microstimulation of selected neurons are pivotal for studying and manipulating neuronal activity and circuits in networks and for developing neural prosthetics. Here, we studied cultured neocortical neurons by using high-density microelectrode arrays and optical imaging, complemented by the patch-clamp technique, and with the aim to correlate morphological and electrical features of neuronal compartments with their responsiveness to extracellular stimulation. We developed strategies to electrically identify any neuron in the network, while subcellular spatial resolution recording of extracellular action potential (AP) traces enabled their assignment to the axon initial segment (AIS), axonal arbor and proximal somatodendritic compartments. Stimulation at the AIS required low voltages and provided immediate, selective and reliable neuronal activation, whereas stimulation at the soma required high voltages and produced delayed and unreliable responses. Subthreshold stimulation at the soma depolarized the somatic membrane potential without eliciting APs. PMID:27510732

  4. Human neural tuning estimated from compound action potentials in normal hearing human volunteers

    NASA Astrophysics Data System (ADS)

    Verschooten, Eric; Desloovere, Christian; Joris, Philip X.

    2015-12-01

    The sharpness of cochlear frequency tuning in humans is debated. Evoked otoacoustic emissions and psychophysical measurements suggest sharper tuning in humans than in laboratory animals [15], but this is disputed based on comparisons of behavioral and electrophysiological measurements across species [14]. Here we used evoked mass potentials to electrophysiologically quantify tuning (Q10) in humans. We combined a notched noise forward masking paradigm [9] with the recording of trans tympanic compound action potentials (CAP) from masked probe tones in awake human and anesthetized monkey (Macaca mulatta). We compare our results to data obtained with the same paradigm in cat and chinchilla [16], and find that CAP-Q10values in human are ˜1.6x higher than in cat and chinchilla and ˜1.3x higher than in monkey. To estimate frequency tuning of single auditory nerve fibers (ANFs) in humans, we derive conversion functions from ANFs in cat, chinchilla, and monkey and apply these to the human CAP measurements. The data suggest that sharp cochlear tuning is a feature of old-world primates.

  5. Fabrication of Dry Electrode for Recording Bio-potentials

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Guo, Kai; Pei, Wei-Hua; Gui, Qiang; Li, Xiao-Qian; Chen, Hong-Da; Yang, Jian-Hong

    2011-01-01

    Development of minimally invasive dry electrodes for recording biopotentials is presented. The detailed fabrication process is outlined. A dry electrode is formed by a number of microneedles. The lengths of the microneedles are about 150μm and the diameters are about 50μm. The tips of the microneedles are sharp enough to penetrate into the skin. The silver/silver chloride is grown on microneedle arrays and demonstrates good character. The electrocardiogram shows that the dry electrode is suitable for recording biopotentials.

  6. Is action potential duration of the intact dog heart related to contractility or stimulus rate?

    PubMed

    Drake, A J; Noble, M I; Schouten, V; Seed, A; Ter Keurs, H E; Wohlfart, B

    1982-10-01

    1. The contractility (maximum rate of rise of left ventricular pressure) and action potential duration were measured in intact closed-chest anaesthetized dogs with complete atrioventricular dissociation and beta-adrenergic blockade.2. Measurements were confined to test beats following a 1 sec interval. Prior to the test interval (priming period) a variety of potentiating stimulus trains were introduced.3. When the frequency of stimulation was increased in the priming period (frequency potentiation), there was an inverse relationship between action potential duration and contractility of the test beat.4. When the test beat was potentiated by a single beat terminating the priming period with one short interval (post-extrasystolic potentiation), there was no relationship between the action potential duration and contractility of the test beat.5. Paired pulse stimulation was used for any given frequency to vary contractility by short interval potentiation. For any given frequency of stimulation there was no relationship between action potential duration and contractility of the test beat. For any given value of contractility, action potential duration decreased with increased frequency of stimulation.6. The introduction of a high frequency train caused a step decrease in action potential duration on the first beat of the train. This was followed by a further slow decline in action potential duration with a time course of over 3 min. These two changes could be dissociated by the introduction during the train of one second interval test pulses, which only showed the slow shortening.7. The lack of a consistent relationship between action potential duration and contractility of the test beat disagrees with the hypothesis that repolarization is controlled by the activator calcium responsible for the contractility. The action potential shortening associated with increased frequency is related to the frequency change per se.8. The slow time course of change in action

  7. Consequences of Converting Graded to Action Potentials upon Neural Information Coding and Energy Efficiency

    PubMed Central

    Sengupta, Biswa; Laughlin, Simon Barry; Niven, Jeremy Edward

    2014-01-01

    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a ‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ∼50% in generator potentials, to ∼3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation. PMID:24465197

  8. Consequences of converting graded to action potentials upon neural information coding and energy efficiency.

    PubMed

    Sengupta, Biswa; Laughlin, Simon Barry; Niven, Jeremy Edward

    2014-01-01

    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na(+) and K(+) channels, with generator potential and graded potential models lacking voltage-gated Na(+) channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na(+) channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a 'footprint' in the generator potential that obscures incoming signals. These three processes reduce information rates by ∼50% in generator potentials, to ∼3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation.

  9. The electrovomeronasogram: field potential recordings in the mouse vomeronasal organ.

    PubMed

    Leinders-Zufall, Trese; Zufall, Frank

    2013-01-01

    Mammalian vomeronasal neurons (VSNs) located in the sensory epithelium of the vomeronasal organ (VNO) detect and transduce molecular cues emitted by other individuals and send this information to the olfactory forebrain. The initial steps in the detection of pheromones and other chemosignals by VSNs involve interaction of a ligand with a G protein-coupled receptor and downstream activation of the primary signal transduction cascade, which includes activation of ion channels located in microvilli and the dendritic tip of a VSN. The electrovomeronasogram (EVG) recording technique provides a sensitive means through which ligand-induced activation of populations of VSNs can be recorded from the epithelial surface using an intact, ex vivo preparation of the mouse VNO. We describe methodological aspects of this preparation and the EVG recording technique which, together with single-cell recordings, contributed significantly to our understanding of mammalian vomeronasal function, the identification of pheromonal ligands, and the analysis of mice with targeted deletions in specific signal transduction molecules such as Trpc2, Gαo, V1R, or V2R receptors.

  10. Active C4 Electrodes for Local Field Potential Recording Applications

    PubMed Central

    Wang, Lu; Freedman, David; Sahin, Mesut; Ünlü, M. Selim; Knepper, Ronald

    2016-01-01

    Extracellular neural recording, with multi-electrode arrays (MEAs), is a powerful method used to study neural function at the network level. However, in a high density array, it can be costly and time consuming to integrate the active circuit with the expensive electrodes. In this paper, we present a 4 mm × 4 mm neural recording integrated circuit (IC) chip, utilizing IBM C4 bumps as recording electrodes, which enable a seamless active chip and electrode integration. The IC chip was designed and fabricated in a 0.13 μm BiCMOS process for both in vitro and in vivo applications. It has an input-referred noise of 4.6 μVrms for the bandwidth of 10 Hz to 10 kHz and a power dissipation of 11.25 mW at 2.5 V, or 43.9 μW per input channel. This prototype is scalable for implementing larger number and higher density electrode arrays. To validate the functionality of the chip, electrical testing results and acute in vivo recordings from a rat barrel cortex are presented. PMID:26861324

  11. Active C4 Electrodes for Local Field Potential Recording Applications.

    PubMed

    Wang, Lu; Freedman, David; Sahin, Mesut; Ünlü, M Selim; Knepper, Ronald

    2016-02-04

    Extracellular neural recording, with multi-electrode arrays (MEAs), is a powerful method used to study neural function at the network level. However, in a high density array, it can be costly and time consuming to integrate the active circuit with the expensive electrodes. In this paper, we present a 4 mm × 4 mm neural recording integrated circuit (IC) chip, utilizing IBM C4 bumps as recording electrodes, which enable a seamless active chip and electrode integration. The IC chip was designed and fabricated in a 0.13 μm BiCMOS process for both in vitro and in vivo applications. It has an input-referred noise of 4.6 μV rms for the bandwidth of 10 Hz to 10 kHz and a power dissipation of 11.25 mW at 2.5 V, or 43.9 μW per input channel. This prototype is scalable for implementing larger number and higher density electrode arrays. To validate the functionality of the chip, electrical testing results and acute in vivo recordings from a rat barrel cortex are presented.

  12. The afterhyperpolarizing potential following a train of action potentials is suppressed in an acute epilepsy model in the rat Cornu Ammonis 1 area.

    PubMed

    Kernig, K; Kirschstein, T; Würdemann, T; Rohde, M; Köhling, R

    2012-01-10

    In hippocampal Cornu Ammonis 1 (CA1) neurons, a prolonged depolarization evokes a train of action potentials followed by a prominent afterhyperpolarizing potential (AHP), which critically dampens neuronal excitability. Because it is not known whether epileptiform activity alters the AHP and whether any alteration of the AHP is independent of inhibition, we acutely induced epileptiform activity by bath application of the GABA(A) receptor blocker gabazine (5 μM) in the rat hippocampal slice preparation and studied its impact on the AHP using intracellular recordings. Following 10 min of gabazine wash-in, slices started to develop spontaneous epileptiform discharges. This disinhibition was accompanied by a significant shift of the resting membrane potential of CA1 neurons to more depolarized values. Prolonged depolarizations (600 ms) elicited a train of action potentials, the number of which was not different between baseline and gabazine treatment. However, the AHP following the train of action potentials was significantly reduced after 20 min of gabazine treatment. When the induction of epileptiform activity was prevented by co-application of 6-cyano-7-nitroquinoxaline-2,3-dione disodium (CNQX, 10 μM) and D-(-)-2-amino-5-phosphonopentanoic acid (D-AP5, 50 μM) to block α-amino-3-hydroxy-5-methylisoxazolepropionate (AMPA) and N-methyl-d-aspartate (NMDA) receptors, respectively, the AHP was preserved despite of GABA(A) receptor inhibition suggesting that the epileptiform activity was required to suppress the AHP. Moreover, the AHP was also preserved when the slices were treated with the protein kinase blockers H-9 (100 μM) and H-89 (1 μM). These results demonstrate that the AHP following a train of action potentials is rapidly suppressed by acutely induced epileptiform activity due to a phosphorylation process-presumably involving protein kinase A.

  13. Chloride current in mammalian cardiac myocytes. Novel mechanism for autonomic regulation of action potential duration and resting membrane potential

    PubMed Central

    1990-01-01

    The properties of the autonomically regulated chloride current (ICl) were studied in isolated guinea pig ventricular myocytes. This current was elicited upon exposure to isoproterenol (ISO) and reversed upon concurrent exposure to acetylcholine (ACh). ICl was time independent and exhibited outward rectification. The responses to ISO and ACh could be blocked by propranolol and atropine, respectively, and ICl was also elicited by forskolin, 8-bromoadenosine 3',5'-cyclic monophosphate, and 3-isobutyl-l-methylxanthine, indicating that the current is regulated through a cAMP-dependent pathway. The reversal potential of the ISO- induced current followed the predicted chloride equilibrium potential, consistent with it being carried predominantly by Cl-. Activation of ICl produced changes in the resting membrane potential and action potential duration, which were Cl- gradient dependent. These results indicate that under physiological conditions ICl may play an important role in regulating action potential duration and resting membrane potential in mammalian cardiac myocytes. PMID:2165130

  14. From recording discrete actions to studying continuous goal-directed behaviours in team sports.

    PubMed

    Correia, Vanda; Araújo, Duarte; Vilar, Luís; Davids, Keith

    2013-01-01

    This paper highlights the importance of examining interpersonal interactions in performance analysis of team sports, predicated on the relationship between perception and action, compared to the traditional cataloguing of actions by individual performers. We discuss how ecological dynamics may provide a potential unifying theoretical and empirical framework to achieve this re-emphasis in research. With reference to data from illustrative studies on performance analysis and sport expertise, we critically evaluate some of the main assumptions and methodological approaches with regard to understanding how information influences action and decision-making during team sports performance. Current data demonstrate how the understanding of performance behaviours in team sports by sport scientists and practitioners may be enhanced with a re-emphasis in research on the dynamics of emergent ongoing interactions. Ecological dynamics provides formal and theoretically grounded descriptions of player-environment interactions with respect to key performance goals and the unfolding information of competitive performance. Developing these formal descriptions and explanations of sport performance may provide a significant contribution to the field of performance analysis, supporting design and intervention in both research and practice.

  15. Distinct electrophysiological potentials for intention in action and prior intention for action.

    PubMed

    Vinding, Mikkel C; Jensen, Mads; Overgaard, Morten

    2014-01-01

    The role of conscious intention in relation to motoric movements has become a major topic of investigation in neuroscience. Traditionally, reports of conscious intention have been compared to various features of the readiness-potential (RP)--an electrophysiological signal that appears before voluntary movements. Experiments, however, tend to study intentions in immediate relation to movements (proximal intentions), thus ignoring other aspects of intentions such as planning or deciding in advance of movement (distal intentions). The current study examines the difference in electrophysiological activity between proximal intention and distal intention, using electroencephalography (EEG). Participants had to form an intention to move and then wait 2.5 sec before performing the actual movement. In this way, the electrophysiological activity related to forming a conscious intention was separated from any confounding activity related to automated motor activity. This was compared to conditions in which participants had to act as soon as they had the intention and a condition where participants acted upon an external cue 2.5 sec prior to movement. We examined the RP for the three conditions. No difference was found in early RP, but late RP differed significantly depending on the type of intention. In addition, we analysed signals during a longer time-interval starting before the time of distal intention formation until after the actual movement concluded. Results showed a slow negative electrophysiological "intention potential" above the mid-frontal areas at the time participants formed a distal intention. This potential was only found when the distal intention was self-paced and not when the intention was formed in response to an external cue.

  16. Long-Term Potentiation by Theta-Burst Stimulation Using Extracellular Field Potential Recordings in Acute Hippocampal Slices.

    PubMed

    Abrahamsson, Therese; Lalanne, Txomin; Watt, Alanna J; Sjöström, P Jesper

    2016-01-01

    This protocol describes how to carry out theta-burst long-term potentiation (LTP) with extracellular field recordings in acute rodent hippocampal slices. This method is relatively simple and noninvasive and provides a way to sample many neurons simultaneously, making it suitable for applications requiring higher throughput than whole-cell recording. PMID:27250947

  17. Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal cells.

    PubMed Central

    Rapp, M; Yarom, Y; Segev, I

    1996-01-01

    Simultaneous recordings from the soma and apical dendrite of layer V neocortical pyramidal cells of young rats show that, for any location of current input, an evoked action potential (AP) always starts at the axon and then propagates actively, but decrementally, backward into the dendrites. This back-propagating AP is supported by a low density (-gNa = approximately 4 mS/cm2) of rapidly inactivating voltage-dependent Na+ channels in the soma and the apical dendrite. Investigation of detailed, biophysically constrained, models of reconstructed pyramidal cells shows the following. (i) The initiation of the AP first in the axon cannot be explained solely by morphological considerations; the axon must be more excitable than the soma and dendrites. (ii) The minimal Na+ channel density in the axon that fully accounts for the experimental results is about 20-times that of the soma. If -gNa in the axon hillock and initial segment is the same as in the soma [as recently suggested by Colbert and Johnston [Colbert, C. M. & Johnston, D. (1995) Soc. Neurosci. Abstr. 21, 684.2

  18. Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal cells.

    PubMed

    Rapp, M; Yarom, Y; Segev, I

    1996-10-15

    Simultaneous recordings from the soma and apical dendrite of layer V neocortical pyramidal cells of young rats show that, for any location of current input, an evoked action potential (AP) always starts at the axon and then propagates actively, but decrementally, backward into the dendrites. This back-propagating AP is supported by a low density (-gNa = approximately 4 mS/cm2) of rapidly inactivating voltage-dependent Na+ channels in the soma and the apical dendrite. Investigation of detailed, biophysically constrained, models of reconstructed pyramidal cells shows the following. (i) The initiation of the AP first in the axon cannot be explained solely by morphological considerations; the axon must be more excitable than the soma and dendrites. (ii) The minimal Na+ channel density in the axon that fully accounts for the experimental results is about 20-times that of the soma. If -gNa in the axon hillock and initial segment is the same as in the soma [as recently suggested by Colbert and Johnston [Colbert, C. M. & Johnston, D. (1995) Soc. Neurosci. Abstr. 21, 684.2

  19. Superfund record of decision (EPA Region 10): Harbor Island (Lead), King County, Seattle, WA. (First remedial action), September 30, 1993

    SciTech Connect

    1995-02-01

    The decision document presents the selected final remedial action, for soil and groundwater, for the Harbor Island Site in Seattle, King County, Washington. The decision document excludes three separate operable units on Harbor Island: the Shell, Arco, and Texaco petroleum tank farms; Lockheed Shipyard; and marine sediments. The remedial action described in this Record of Decision represents a final remedy for treatment of Harbor Island soil and groundwater, except for those areas identified above as separate operable units.

  20. Record of decision remedial alternative selection for the Grace Road site (631-22G) operable unit: Final action

    SciTech Connect

    Palmer, E.

    1997-01-01

    This decision document presents the selected remedial action for the Grace Road Site located at the Savannah River Site near Aiken, South Carolina. The selected action was developed in accordance with CERCLA, as amended, and to the extent practicable, the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). The selected remedy satisfies both CERCLA and RCRA 3004 requirements. This decision is based on the Administrative Record File for this specific RCRA/CERCLA unit.

  1. Increased Event-Related Potentials and Alpha-, Beta-, and Gamma-Activity Associated with Intentional Actions

    PubMed Central

    Karch, Susanne; Loy, Fabian; Krause, Daniela; Schwarz, Sandra; Kiesewetter, Jan; Segmiller, Felix; Chrobok, Agnieszka I.; Keeser, Daniel; Pogarell, Oliver

    2016-01-01

    Objective: Internally guided actions are defined as being purposeful, self-generated and offering choices between alternatives. Intentional actions are essential to reach individual goals. In previous empirical studies, internally guided actions were predominantly related to functional responses in frontal and parietal areas. The aim of the present study was to distinguish event-related potentials and oscillatory responses of intentional actions and externally guided actions. In addition, we compared neurobiological findings of the decision which action to perform with those referring to the decision whether or not to perform an action. Methods: Twenty-eight subjects participated in adapted go/nogo paradigms, including a voluntary selection condition allowing participants to (1) freely decide whether to press the response button or (2) to decide whether they wanted to press the response button with the right index finger or the left index finger. Results: The reaction times were increased when participants freely decided whether and how they wanted to respond compared to the go condition. Intentional processes were associated with a fronto-centrally located N2 and P3 potential. N2 and P3 amplitudes were increased during intentional actions compared to instructed responses (go). In addition, increased activity in the alpha-, beta- and gamma-frequency range was shown during voluntary behavior rather than during externally guided responses. Conclusion: These results may indicate that an additional cognitive process is needed for intentional actions compared to instructed behavior. However, the neural responses were comparatively independent of the kind of decision that was made (1) decision which action to perform; (2) decision whether or not to perform an action). Significance: The study demonstrates the importance of fronto-central alpha-, beta-, and gamma oscillations for voluntary behavior. PMID:26834680

  2. Corrective Action Investigation Plan for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada (December 2002, Revision No.: 0), Including Record of Technical Change No. 1

    SciTech Connect

    NNSA /NSO

    2002-12-12

    The Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 204 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 204 is located on the Nevada Test Site approximately 65 miles northwest of Las Vegas, Nevada. This CAU is comprised of six Corrective Action Sites (CASs) which include: 01-34-01, Underground Instrument House Bunker; 02-34-01, Instrument Bunker; 03-34-01, Underground Bunker; 05-18-02, Chemical Explosives Storage; 05-33-01, Kay Blockhouse; 05-99-02, Explosive Storage Bunker. Based on site history, process knowledge, and previous field efforts, contaminants of potential concern for Corrective Action Unit 204 collectively include radionuclides, beryllium, high explosives, lead, polychlorinated biphenyls, total petroleum hydrocarbons, silver, warfarin, and zinc phosphide. The primary question for the investigation is: ''Are existing data sufficient to evaluate appropriate corrective actions?'' To address this question, resolution of two decision statements is required. Decision I is to ''Define the nature of contamination'' by identifying any contamination above preliminary action levels (PALs); Decision II is to ''Determine the extent of contamination identified above PALs. If PALs are not exceeded, the investigation is completed. If PALs are exceeded, then Decision II must be resolved. In addition, data will be obtained to support waste management decisions. Field activities will include radiological land area surveys, geophysical surveys to identify any subsurface metallic and nonmetallic debris, field screening for applicable contaminants of potential concern, collection and analysis of surface and subsurface soil samples from biased locations, and step-out sampling to define the extent of

  3. Record of Technical Change {number_sign}2 for ''Corrective Action Investigation Plan for Corrective Action Unit 261: Test Cell A Leachfield System, Nevada Test Site, Nevada,'' Revision 0

    SciTech Connect

    US DOE Nevada Operations Office

    2000-06-08

    This Record of Technical Change updates the technical information included in ''Corrective Action Investigation Plan for Corrective Action Unit 261: Test Cell A Leachfield System, Nevada Test Site, Nevada,'' Revision 0, DOE/NV--515.

  4. Record of Technical Change {number_sign}1 to ''Corrective Action Investigation Plan for Corrective Action Unit 261: Test Cell A Leachfield System, Nevada Test Site, Nevada,'' Revision 0, DOE/NV-519

    SciTech Connect

    US DOE Nevada Operations Office

    2000-02-25

    This Record of Technical Change provides updates to the technical information included in ''Corrective Action Investigation Plan for Corrective Action Unit 261: Test Cell A Leachfield System, Nevada Test Site, Nevada,'' DOE/NV--519.

  5. 16-Channel Organic Electrochemical Transistor Array for In Vitro Conduction Mapping of Cardiac Action Potential.

    PubMed

    Gu, Xi; Yao, Chunlei; Liu, Ying; Hsing, I-Ming

    2016-09-01

    16-Channel organic electrochemical transistor arrays (OECTs) are developed for mapping the propagation and studying the characteristics of action potentials of primary cardiomyocytes. The physiological activities of a rat cardiomyocyte monolayer during a long-term culturing is revealed by this biocompatible, low-cost, and high transconductance organic electronic device. OECT has great potential to be used in cardiac and neuronal drug screening.

  6. 7 CFR 1945.19 - Reporting potential natural disasters and initial actions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 13 2012-01-01 2012-01-01 false Reporting potential natural disasters and initial... AGENCY, DEPARTMENT OF AGRICULTURE (CONTINUED) PROGRAM REGULATIONS (CONTINUED) EMERGENCY Disaster Assistance-General § 1945.19 Reporting potential natural disasters and initial actions. (a) Purpose....

  7. 7 CFR 1945.19 - Reporting potential natural disasters and initial actions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 13 2011-01-01 2009-01-01 true Reporting potential natural disasters and initial... AGENCY, DEPARTMENT OF AGRICULTURE (CONTINUED) PROGRAM REGULATIONS (CONTINUED) EMERGENCY Disaster Assistance-General § 1945.19 Reporting potential natural disasters and initial actions. (a) Purpose....

  8. 7 CFR 1945.19 - Reporting potential natural disasters and initial actions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 13 2010-01-01 2009-01-01 true Reporting potential natural disasters and initial... AGENCY, DEPARTMENT OF AGRICULTURE (CONTINUED) PROGRAM REGULATIONS (CONTINUED) EMERGENCY Disaster Assistance-General § 1945.19 Reporting potential natural disasters and initial actions. (a) Purpose....

  9. Ionic mechanisms maintaining action potential conduction velocity at high firing frequencies in an unmyelinated axon.

    PubMed

    Cross, Kevin P; Robertson, R Meldrum

    2016-05-01

    The descending contralateral movement detector (DCMD) is a high-performance interneuron in locusts with an axon capable of transmitting action potentials (AP) at more than 500 Hz. We investigated biophysical mechanisms for fidelity of high-frequency transmission in this axon. We measured conduction velocities (CVs) at room temperature during exposure to 10 mmol/L cadmium, a calcium current antagonist, and found significant reduction in CV with reduction at frequencies >200 Hz of ~10%. Higher temperatures induced greater CV reductions during exposure to cadmium across all frequencies of ~20-30%. Intracellular recordings during 15 min of exposure to cadmium or nickel, also a calcium current antagonist, revealed an increase in the magnitude of the afterhyperpolarization potential (AHP) and the time to recover to baseline after the AHP (Medians for Control: -19.8%; Nickel: 167.2%; Cadmium: 387.2%), that could be due to a T-type calcium current. However, the removal of extracellular calcium did not mimic divalent cation exposure suggesting calcium currents are not the cause of the AHP increase. Computational modeling showed that the effects of the divalent cations could be modeled with a persistent sodium current which could be blocked by high concentrations of divalent cations. Persistent sodium current shortened the AHP duration in our models and increased CV for high-frequency APs. We suggest that faithful, high-frequency axonal conduction in the DCMD is enabled by a mechanism that shortens the AHP duration like a persistent or resurgent sodium current. PMID:27225630

  10. Burst analysis tool for developing neuronal networks exhibiting highly varying action potential dynamics.

    PubMed

    Kapucu, Fikret E; Tanskanen, Jarno M A; Mikkonen, Jarno E; Ylä-Outinen, Laura; Narkilahti, Susanna; Hyttinen, Jari A K

    2012-01-01

    In this paper we propose a firing statistics based neuronal network burst detection algorithm for neuronal networks exhibiting highly variable action potential dynamics. Electrical activity of neuronal networks is generally analyzed by the occurrences of spikes and bursts both in time and space. Commonly accepted analysis tools employ burst detection algorithms based on predefined criteria. However, maturing neuronal networks, such as those originating from human embryonic stem cells (hESCs), exhibit highly variable network structure and time-varying dynamics. To explore the developing burst/spike activities of such networks, we propose a burst detection algorithm which utilizes the firing statistics based on interspike interval (ISI) histograms. Moreover, the algorithm calculates ISI thresholds for burst spikes as well as for pre-burst spikes and burst tails by evaluating the cumulative moving average (CMA) and skewness of the ISI histogram. Because of the adaptive nature of the proposed algorithm, its analysis power is not limited by the type of neuronal cell network at hand. We demonstrate the functionality of our algorithm with two different types of microelectrode array (MEA) data recorded from spontaneously active hESC-derived neuronal cell networks. The same data was also analyzed by two commonly employed burst detection algorithms and the differences in burst detection results are illustrated. The results demonstrate that our method is both adaptive to the firing statistics of the network and yields successful burst detection from the data. In conclusion, the proposed method is a potential tool for analyzing of hESC-derived neuronal cell networks and thus can be utilized in studies aiming to understand the development and functioning of human neuronal networks and as an analysis tool for in vitro drug screening and neurotoxicity assays.

  11. Sodium and calcium currents shape action potentials in immature mouse inner hair cells.

    PubMed

    Marcotti, Walter; Johnson, Stuart L; Rusch, Alfons; Kros, Corne J

    2003-11-01

    Before the onset of hearing at postnatal day 12, mouse inner hair cells (IHCs) produce spontaneous and evoked action potentials. These spikes are likely to induce neurotransmitter release onto auditory nerve fibres. Since immature IHCs express both alpha1D (Cav1.3) Ca2+ and Na+ currents that activate near the resting potential, we examined whether these two conductances are involved in shaping the action potentials. Both had extremely rapid activation kinetics, followed by fast and complete voltage-dependent inactivation for the Na+ current, and slower, partially Ca2+-dependent inactivation for the Ca2+ current. Only the Ca2+ current is necessary for spontaneous and induced action potentials, and 29 % of cells lacked a Na+ current. The Na+ current does, however, shorten the time to reach the action-potential threshold, whereas the Ca2+ current is mainly involved, together with the K+ currents, in determining the speed and size of the spikes. Both currents increased in size up to the end of the first postnatal week. After this, the Ca2+ current reduced to about 30 % of its maximum size and persisted in mature IHCs. The Na+ current was downregulated around the onset of hearing, when the spiking is also known to disappear. Although the Na+ current was observed as early as embryonic day 16.5, its role in action-potential generation was only evident from just after birth, when the resting membrane potential became sufficiently negative to remove a sizeable fraction of the inactivation (half inactivation was at -71 mV). The size of both currents was positively correlated with the developmental change in action-potential frequency.

  12. Sodium and calcium currents shape action potentials in immature mouse inner hair cells

    PubMed Central

    Marcotti, Walter; Johnson, Stuart L; Rüsch, Alfons; Kros, Corné J

    2003-01-01

    Before the onset of hearing at postnatal day 12, mouse inner hair cells (IHCs) produce spontaneous and evoked action potentials. These spikes are likely to induce neurotransmitter release onto auditory nerve fibres. Since immature IHCs express both α1D (Cav1.3) Ca2+ and Na+ currents that activate near the resting potential, we examined whether these two conductances are involved in shaping the action potentials. Both had extremely rapid activation kinetics, followed by fast and complete voltage-dependent inactivation for the Na+ current, and slower, partially Ca2+-dependent inactivation for the Ca2+ current. Only the Ca2+ current is necessary for spontaneous and induced action potentials, and 29 % of cells lacked a Na+ current. The Na+ current does, however, shorten the time to reach the action-potential threshold, whereas the Ca2+ current is mainly involved, together with the K+ currents, in determining the speed and size of the spikes. Both currents increased in size up to the end of the first postnatal week. After this, the Ca2+ current reduced to about 30 % of its maximum size and persisted in mature IHCs. The Na+ current was downregulated around the onset of hearing, when the spiking is also known to disappear. Although the Na+ current was observed as early as embryonic day 16.5, its role in action-potential generation was only evident from just after birth, when the resting membrane potential became sufficiently negative to remove a sizeable fraction of the inactivation (half inactivation was at −71 mV). The size of both currents was positively correlated with the developmental change in action-potential frequency. PMID:12937295

  13. Superfund Record of Decision (EPA Region 2): Picatinny Arsenal, NJ. (First remedial action), September 1989

    SciTech Connect

    Not Available

    1989-09-28

    The Picatinny Arsenal is a munitions and weapons research and development installation covering 6,491 acres and containing 1,500 buildings in Morris County, near the city of Dover, New Jersey. Ground water contamination above State and Federal action levels was detected in the vicinity of Building 24, where past waste-water treatment practices resulted in the infiltration of metal-plating waste constituents (i.e., VOCs and heavy metals) into the ground water. Two unlined lagoons alongside Building 24, thought to be a source of contamination, were eliminated during a 1981 action during which the unlined lagoons were demolished, contaminated soil removed, and two concrete lagoons installed. Two additional potential sources of contamination are a dry well at Building 24 and a former drum storage area at Building 31, directly across the street from Building 24. The interim ground-water cleanup remedy is designed to prevent deterioration to Green Pond Brook, a major drainage artery onsite, while the Arsenal a a whole is evaluated. The primary contaminants of concern affecting the ground water are VOCs including TCE and metals.

  14. A 40-Hz Auditory Potential Recorded from the Human Scalp

    NASA Astrophysics Data System (ADS)

    Galambos, Robert; Makeig, Scott; Talmachoff, Peter J.

    1981-04-01

    Computer techniques readily extract from the brainwaves an orderly sequence of brain potentials locked in time to sound stimuli. The potentials that appear 8 to 80 msec after the stimulus resemble 3 or 4 cycles of a 40-Hz sine wave; we show here that these waves combine to form a single, stable, composite wave when the sounds are repeated at rates around 40 per sec. This phenomenon, the 40-Hz event-related potential (ERP), displays several properties of theoretical and practical interest. First, it reportedly disappears with surgical anesthesia, and it resembles similar phenomena in the visual and olfactory system, facts which suggest that adequate processing of sensory information may require cyclical brain events in the 30- to 50-Hz range. Second, latency and amplitude measurements on the 40-Hz ERP indicate it may contain useful information on the number and basilar membrane location of the auditory nerve fibers a given tone excites. Third, the response is present at sound intensities very close to normal adult thresholds for the audiometric frequencies, a fact that could have application in clinical hearing testing.

  15. High-Bandwidth Atomic Force Microscopy Reveals A Mechanical spike Accompanying the Action Potential in mammalian Nerve Terminals

    NASA Astrophysics Data System (ADS)

    Salzberg, Brian M.

    2008-03-01

    Information transfer from neuron to neuron within nervous systems occurs when the action potential arrives at a nerve terminal and initiates the release of a chemical messenger (neurotransmitter). In the mammalian neurohypophysis (posterior pituitary), large and rapid changes in light scattering accompany secretion of transmitter-like neuropeptides. In the mouse, these intrinsic optical signals are intimately related to the arrival of the action potential (E-wave) and the release of arginine vasopressin and oxytocin (S-wave). We have used a high bandwidth (20 kHz) atomic force microscope (AFM) to demonstrate that these light scattering signals are associated with changes in nerve terminal volume, detected as nanometer-scale movements of a cantilever positioned on top of the neurohypophysis. The most rapid mechanical response, the ``spike'', has duration comparable to that of the action potential (˜2 ms) and probably reflects an increase in terminal volume due to H2O movement associated with Na^+-influx. Elementary calculations suggest that two H2O molecules accompanying each Na^+-ion could account for the ˜0.5-1.0 å increase in the diameter of each terminal during the action potential. Distinguishable from the mechanical ``spike'', a slower mechanical event, the ``dip'', represents a decrease in nerve terminal volume, depends upon Ca^2+-entry, as well as on intra-terminal Ca^2+-transients, and appears to monitor events associated with secretion. A simple hypothesis is that this ``dip'' reflects the extrusion of the dense core granule that comprises the secretory products. These dynamic high bandwidth AFM recordings are the first to monitor mechanical events in nervous systems and may provide novel insights into the mechanism(s) by which excitation is coupled to secretion at nerve terminals.

  16. ATP-sensitive potassium channel modulation of the guinea pig ventricular action potential and contraction.

    PubMed

    Nichols, C G; Ripoll, C; Lederer, W J

    1991-01-01

    The role of ATP-sensitive potassium (KATP) channels in modulating the action potential and contraction of guinea pig ventricular myocytes was investigated. Under voltage clamp, the maximum whole-cell KATP channel conductance was estimated (195 +/- 10 nS, n = 6) by exposing the cells to complete metabolic blockade (2 mM cyanide in the presence of 10 mM 2-deoxy-glucose). In isolated inside-out membrane patches, the ATP dependence of KATP channel activity under relevant conditions was measured (half-maximal inhibition at 114 microM). Under current clamp (with intracellular ATP concentration = 5 mM), the effect of graded KATP channel activation on the action potential and the twitch was estimated by injection of a current (proportional to voltage) that simulated the KATP conductance. As this "conductance" was increased, the action potential was shortened, and contractile amplitude declined, as expected. From the results of these experiments, the quantitative dependence of the action potential duration on intracellular ATP concentration was estimated, without relying on a mathematical model of the cell membrane. The results imply that KATP-dependent action potential shortening is likely to occur if ATP concentration falls below normal levels (approximately 5 mM), as may happen regionally, or globally, during myocardial ischemia.

  17. Visual Stimuli Evoked Action Potentials Trigger Rapidly Propagating Dendritic Calcium Transients in the Frog Optic Tectum Layer 6 Neurons

    PubMed Central

    Svirskis, Gytis; Baranauskas, Gytis; Svirskiene, Natasa; Tkatch, Tatiana

    2015-01-01

    The superior colliculus in mammals or the optic tectum in amphibians is a major visual information processing center responsible for generation of orientating responses such as saccades in monkeys or prey catching avoidance behavior in frogs. The conserved structure function of the superior colliculus the optic tectum across distant species such as frogs, birds monkeys permits to draw rather general conclusions after studying a single species. We chose the frog optic tectum because we are able to perform whole-cell voltage-clamp recordings fluorescence imaging of tectal neurons while they respond to a visual stimulus. In the optic tectum of amphibians most visual information is processed by pear-shaped neurons possessing long dendritic branches, which receive the majority of synapses originating from the retinal ganglion cells. Since the first step of the retinal input integration is performed on these dendrites, it is important to know whether this integration is enhanced by active dendritic properties. We demonstrate that rapid calcium transients coinciding with the visual stimulus evoked action potentials in the somatic recordings can be readily detected up to the fine branches of these dendrites. These transients were blocked by calcium channel blockers nifedipine CdCl2 indicating that calcium entered dendrites via voltage-activated L-type calcium channels. The high speed of calcium transient propagation, >300 μm in <10 ms, is consistent with the notion that action potentials, actively propagating along dendrites, open voltage-gated L-type calcium channels causing rapid calcium concentration transients in the dendrites. We conclude that such activation by somatic action potentials of the dendritic voltage gated calcium channels in the close vicinity to the synapses formed by axons of the retinal ganglion cells may facilitate visual information processing in the principal neurons of the frog optic tectum. PMID:26414356

  18. Action!

    ERIC Educational Resources Information Center

    Senese, Joseph

    1998-01-01

    A small group of teachers at one Illinois high school is helping to effect and promote change. Through the Action Research Laboratory (ARL), teams of teachers conduct collaborative action research to improve classroom practices. Data from the first two years of the ARL indicate that teachers are eager to participate in, and have thrived in, their…

  19. 76 FR 20633 - Record of Decision (ROD) for the Base Closure and Realignment (BRAC) 2005 Actions at Fort...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... Department of the Army Record of Decision (ROD) for the Base Closure and Realignment (BRAC) 2005 Actions at... implement property disposal in accordance with the Defense Base Closure and Realignment Act of 1990 (the Base Closure Act), Public Law 101-510, as amended, following the closure of Fort McPherson,...

  20. Molybdenum isotope records as a potential new proxy for paleoceanography

    NASA Astrophysics Data System (ADS)

    Siebert, Christopher; Nägler, Thomas F.; von Blanckenburg, Friedhelm; Kramers, Jan D.

    2003-06-01

    New high-precision isotope ratios of dissolved Mo in seawater from different ocean basins and depths show a homogeneous isotope composition ('mean ocean water 98Mo/ 95Mo' (MOMO)), as expected from its long ocean residence time (800 kyr). This composition appears to have been constant for the past 60 Myr at a 1-3 Myr time resolution as indicated from thick sections of Fe-Mn crusts from the Atlantic and Pacific. These records yield a constant offset from MOMO (average of -3.1 and -2.9‰). They are similar to our new data on recent oxic Mo sinks: pelagic sediments and six Fe-Mn crust surface layers range from -2.7 to -2.9‰ and -2.7 to -3.1‰, respectively. Recent suboxic Mo sinks from open ocean basins display heavier and more variable isotope ratios (-0.7 to -1.6‰ relative to MOMO). Crustal Mo sources were characterized by measuring two granites (and a mild acid leach of one granite), seven volcanic rocks and two clastic sediments. All show a narrow range of compositions (-2.0 to -2.3‰). These data indicate that isotope fractionation by chemical weathering and magmatic processes is insignificant on a global scale. They therefore represent good estimates of the composition of dissolved Mo input to the oceans and that of the average continental crust. Thus, the Mo input into the oceans appears to be distributed into lighter oxic sinks and heavier reducing sinks. This is consistent with steady-state conditions in the modern ocean. The constant isotope offset between oxic sediments and seawater suggests that the relative amounts of oxic and reducing Mo removal fluxes have not varied by more than 10% over the last 60 Myr. An equilibrium fractionation process is proposed assuming that Mo isotope fractionation occurs between (dominant) MoO 42- and (minor) Mo(OH) 6 species in solution, of which the latter is preferentially scavenged.

  1. Initiation and blocking of the action potential in an axon in weak ultrasonic or microwave fields.

    PubMed

    Shneider, M N; Pekker, M

    2014-05-01

    In this paper, we analyze the effect of the redistribution of the transmembrane ion channels in an axon caused by longitudinal acoustic vibrations of the membrane. These oscillations can be excited by an external source of ultrasound and weak microwave radiation interacting with the charges sitting on the surface of the lipid membrane. It is shown, using the Hodgkin-Huxley model of the axon, that the density redistribution of transmembrane sodium channels may reduce the threshold of the action potential, up to its spontaneous initiation. At the significant redistribution of sodium channels in the membrane, the rarefaction zones of the transmembrane channel density are formed, blocking the propagation of the action potential. Blocking the action potential propagation along the axon is shown to cause anesthesia in the example case of a squid axon. Various approaches to experimental observation of the effects considered in this paper are discussed. PMID:25353835

  2. Initiation and blocking of the action potential in an axon in weak ultrasonic or microwave fields

    NASA Astrophysics Data System (ADS)

    Shneider, M. N.; Pekker, M.

    2014-05-01

    In this paper, we analyze the effect of the redistribution of the transmembrane ion channels in an axon caused by longitudinal acoustic vibrations of the membrane. These oscillations can be excited by an external source of ultrasound and weak microwave radiation interacting with the charges sitting on the surface of the lipid membrane. It is shown, using the Hodgkin-Huxley model of the axon, that the density redistribution of transmembrane sodium channels may reduce the threshold of the action potential, up to its spontaneous initiation. At the significant redistribution of sodium channels in the membrane, the rarefaction zones of the transmembrane channel density are formed, blocking the propagation of the action potential. Blocking the action potential propagation along the axon is shown to cause anesthesia in the example case of a squid axon. Various approaches to experimental observation of the effects considered in this paper are discussed.

  3. Optical magnetic detection of single-neuron action potentials using NV-diamond

    NASA Astrophysics Data System (ADS)

    Turner, Matthew; Barry, John; Schloss, Jennifer; Glenn, David; Walsworth, Ron

    2016-05-01

    A key challenge for neuroscience is noninvasive, label-free sensing of action potential dynamics in whole organisms with single-neuron resolution. Here, we report a new approach to this problem: using nitrogen-vacancy (NV) color centers in diamond to measure the time-dependent magnetic fields produced by single-neuron action potentials. We demonstrate our method using excised single neurons from two invertebrate species, marine worm and squid; and then by single-neuron action potential magnetic sensing exterior to whole, live, opaque marine worms for extended periods with no adverse effect. The results lay the groundwork for real-time, noninvasive 3D magnetic mapping of functional mammalian neuronal networks.

  4. Recording the oscillatory potentials of the electroretinogram with the DTL electrode.

    PubMed

    Lachapelle, P; Benoit, J; Little, J M; Lachapelle, B

    1993-01-01

    Suprathreshold photopic oscillatory potentials recorded with a DTL electrode were compared to those obtained with a Lovac corneal electrode. The overall oscillatory potential response (sum of oscillatory potentials) recorded with the DTL electrode was half of that obtained with the Lovac electrode. However, there was no evidence of a selective attenuation (or amplification) of any given oscillatory potential with the DTL electrode. Similarly, the oscillatory potential relative amplitude ratios and the peak times of the oscillatory potentials were identical for both electrodes. Our findings clearly indicate that the DTL electrode is adequate to record the high-frequency oscillatory potentials. Given the low cost and ease of use, as well as the disposable nature of the DTL electrode, we believe that electroretinographic specialists should seriously consider a wider utilization.

  5. Potentiation of the cytotoxic action of melphalan and "activated" cyclophosphamide against cultured tumor cells by centrophenoxine.

    PubMed

    Sladek, N E

    1977-01-01

    Centrophenoxine, without antitumor activity itself, enhanced the cytotoxic action of melphalan and "activated" cyclophosphamide against mouse P388 lymphoma and rat W256 carcinosarcoma cells growing in static suspension culture. The concentration of alkylating agent required for 99% cell-kill was approximately halved when centrophenoxine was also present during exposure to the antitumor drug. Maximum potentiation by centrophenoxine of the cytotoxic action of melphalan occurred when cells were exposed to the two agents simultaneously; little or no potentiation was observed when cells were exposed to centrophenoxine before or after exposure to the alkylating agent.

  6. Contribution of auditory nerve fibers to compound action potential of the auditory nerve.

    PubMed

    Bourien, Jérôme; Tang, Yong; Batrel, Charlène; Huet, Antoine; Lenoir, Marc; Ladrech, Sabine; Desmadryl, Gilles; Nouvian, Régis; Puel, Jean-Luc; Wang, Jing

    2014-09-01

    Sound-evoked compound action potential (CAP), which captures the synchronous activation of the auditory nerve fibers (ANFs), is commonly used to probe deafness in experimental and clinical settings. All ANFs are believed to contribute to CAP threshold and amplitude: low sound pressure levels activate the high-spontaneous rate (SR) fibers, and increasing levels gradually recruit medium- and then low-SR fibers. In this study, we quantitatively analyze the contribution of the ANFs to CAP 6 days after 30-min infusion of ouabain into the round window niche. Anatomic examination showed a progressive ablation of ANFs following increasing concentration of ouabain. CAP amplitude and threshold plotted against loss of ANFs revealed three ANF pools: 1) a highly ouabain-sensitive pool, which does not participate in either CAP threshold or amplitude, 2) a less sensitive pool, which only encoded CAP amplitude, and 3) a ouabain-resistant pool, required for CAP threshold and amplitude. Remarkably, distribution of the three pools was similar to the SR-based ANF distribution (low-, medium-, and high-SR fibers), suggesting that the low-SR fiber loss leaves the CAP unaffected. Single-unit recordings from the auditory nerve confirmed this hypothesis and further showed that it is due to the delayed and broad first spike latency distribution of low-SR fibers. In addition to unraveling the neural mechanisms that encode CAP, our computational simulation of an assembly of guinea pig ANFs generalizes and extends our experimental findings to different species of mammals. Altogether, our data demonstrate that substantial ANF loss can coexist with normal hearing threshold and even unchanged CAP amplitude. PMID:24848461

  7. Disruption of action potential and calcium signaling properties in malformed myofibers from dystrophin-deficient mice

    PubMed Central

    Hernández-Ochoa, Erick O; Pratt, Stephen J P; Garcia-Pelagio, Karla P; Schneider, Martin F; Lovering, Richard M

    2015-01-01

    Duchenne muscular dystrophy (DMD), the most common and severe muscular dystrophy, is caused by the absence of dystrophin. Muscle weakness and fragility (i.e., increased susceptibility to damage) are presumably due to structural instability of the myofiber cytoskeleton, but recent studies suggest that the increased presence of malformed/branched myofibers in dystrophic muscle may also play a role. We have previously studied myofiber morphology in healthy wild-type (WT) and dystrophic (MDX) skeletal muscle. Here, we examined myofiber excitability using high-speed confocal microscopy and the voltage-sensitive indicator di-8-butyl-amino-naphthyl-ethylene-pyridinium-propyl-sulfonate (di-8-ANEPPS) to assess the action potential (AP) properties. We also examined AP-induced Ca2+ transients using high-speed confocal microscopy with rhod-2, and assessed sarcolemma fragility using elastimetry. AP recordings showed an increased width and time to peak in malformed MDX myofibers compared to normal myofibers from both WT and MDX, but no significant change in AP amplitude. Malformed MDX myofibers also exhibited reduced AP-induced Ca2+ transients, with a further Ca2+ transient reduction in the branches of malformed MDX myofibers. Mechanical studies indicated an increased sarcolemma deformability and instability in malformed MDX myofibers. The data suggest that malformed myofibers are functionally different from myofibers with normal morphology. The differences seen in AP properties and Ca2+ signals suggest changes in excitability and remodeling of the global Ca2+ signal, both of which could underlie reported weakness in dystrophic muscle. The biomechanical changes in the sarcolemma support the notion that malformed myofibers are more susceptible to damage. The high prevalence of malformed myofibers in dystrophic muscle may contribute to the progressive strength loss and fragility seen in dystrophic muscles. PMID:25907787

  8. Spatial variation of compound muscle action potentials across human gastrocnemius medialis.

    PubMed

    Vieira, Taian M; Botter, Alberto; Minetto, Marco A; Hodson-Tole, Emma F

    2015-09-01

    The massed action potential (M wave) elicited through nerve stimulation underpins a wide range of physiological and mechanical understanding of skeletal muscle structure and function. Although systematic approaches have evaluated the effect of different factors on M waves, the effect of the location and distribution of activated fibers within the muscle remains unknown. By detecting M waves from the medial gastrocnemius (MG) of 12 participants with a grid of 128 electrodes, we investigated whether different populations of muscle units have different spatial organization within MG. If populations of muscle units occupy discrete MG regions, current pulses of progressively greater intensities applied to the MG nerve branch would be expected to lead to local changes in M-wave amplitudes. Electrical pulses were therefore delivered at 2 pps, with the current pulse amplitude increased every 10 stimuli to elicit different degrees of muscle activation. The localization of MG response to increases in current intensity was determined from the spatial distribution of M-wave amplitude. Key results revealed that increases in M-wave amplitude were detected somewhat locally, by 10-50% of the 128 electrodes. Most importantly, the electrodes detecting greatest increases in M-wave amplitude were localized at different regions in the grid, with a tendency for greater stimulation intensities to elicit M waves in the more distal MG region. The presented results indicate that M waves recorded locally may not provide a representative MG response, with major implications for the estimation of, e.g., the maximal stimulation levels, the number of motor units, and the onset and normalization in H-reflex studies.

  9. The role of action potentials in determining neuron-type-specific responses to nitric oxide.

    PubMed

    Estes, Stephen; Zhong, Lei Ray; Artinian, Liana; Tornieri, Karine; Rehder, Vincent

    2015-05-01

    The electrical activity in developing and mature neurons determines the intracellular calcium concentration ([Ca(2+)]i), which in turn is translated into biochemical activities through various signaling cascades. Electrical activity is under control of neuromodulators, which can alter neuronal responses to incoming signals and increase the fidelity of neuronal communication. Conversely, the effects of neuromodulators can depend on the ongoing electrical activity within target neurons; however, these activity-dependent effects of neuromodulators are less well understood. Here, we present evidence that the neuronal firing frequency and intrinsic properties of the action potential (AP) waveform set the [Ca(2+)]i in growth cones and determine how neurons respond to the neuromodulator nitric oxide (NO). We used two well-characterized neurons from the freshwater snail Helisoma trivolvis that show different growth cone morphological responses to NO: B5 neurons elongate filopodia, while those of B19 neurons do not. Combining whole-cell patch clamp recordings with simultaneous calcium imaging, we show that the duration of an AP contributes to neuron-specific differences in [Ca(2+)]i, with shorter APs in B19 neurons yielding lower growth cone [Ca(2+)]i. Through the partial inhibition of voltage-gated K(+) channels, we increased the B19 AP duration resulting in a significant increase in [Ca(2+)]i that was then sufficient to cause filopodial elongation following NO treatment. Our results demonstrate a neuron-type specific correlation between AP shape, [Ca(2+)]i, and growth cone motility, providing an explanation to how growth cone responses to guidance cues depend on intrinsic electrical properties and helping explain the diverse effects of NO across neuronal populations.

  10. Investigating a Potential Auxin-Related Mode of Hormetic/Inhibitory Action of the Phytotoxin Parthenin.

    PubMed

    Belz, Regina G

    2016-01-01

    Parthenin is a metabolite of Parthenium hysterophorus and is believed to contribute to the weed's invasiveness via allelopathy. Despite the potential of parthenin to suppress competitors, low doses stimulate plant growth. This biphasic action was hypothesized to be auxin-like and, therefore, an auxin-related mode of parthenin action was investigated using two approaches: joint action experiments with Lactuca sativa, and dose-response experiments with auxin/antiauxin-resistant Arabidopsis thaliana genotypes. The joint action approach comprised binary mixtures of subinhibitory doses of the auxin 3-indoleacetic acid (IAA) mixed with parthenin or one of three reference compounds [indole-3-butyric acid (IBA), 2,3,5-triiodobenzoic acid (TIBA), 2-(p-chlorophenoxy)-2-methylpropionic acid (PCIB)]. The reference compounds significantly interacted with IAA at all doses, but parthenin interacted only at low doses indicating that parthenin hormesis may be auxin-related, in contrast to its inhibitory action. The genetic approach investigated the response of four auxin/antiauxin-resistant mutants and a wildtype to parthenin or two reference compounds (IAA, PCIB). The responses of mutant plants to the reference compounds confirmed previous reports, but differed from the responses observed for parthenin. Parthenin stimulated and inhibited all mutants independent of resistance. This provided no indication for an auxin-related action of parthenin. Therefore, the hypothesis of an auxin-related inhibitory action of parthenin was rejected in two independent experimental approaches, while the hypothesis of an auxin-related stimulatory effect could not be rejected.

  11. Investigating a Potential Auxin-Related Mode of Hormetic/Inhibitory Action of the Phytotoxin Parthenin.

    PubMed

    Belz, Regina G

    2016-01-01

    Parthenin is a metabolite of Parthenium hysterophorus and is believed to contribute to the weed's invasiveness via allelopathy. Despite the potential of parthenin to suppress competitors, low doses stimulate plant growth. This biphasic action was hypothesized to be auxin-like and, therefore, an auxin-related mode of parthenin action was investigated using two approaches: joint action experiments with Lactuca sativa, and dose-response experiments with auxin/antiauxin-resistant Arabidopsis thaliana genotypes. The joint action approach comprised binary mixtures of subinhibitory doses of the auxin 3-indoleacetic acid (IAA) mixed with parthenin or one of three reference compounds [indole-3-butyric acid (IBA), 2,3,5-triiodobenzoic acid (TIBA), 2-(p-chlorophenoxy)-2-methylpropionic acid (PCIB)]. The reference compounds significantly interacted with IAA at all doses, but parthenin interacted only at low doses indicating that parthenin hormesis may be auxin-related, in contrast to its inhibitory action. The genetic approach investigated the response of four auxin/antiauxin-resistant mutants and a wildtype to parthenin or two reference compounds (IAA, PCIB). The responses of mutant plants to the reference compounds confirmed previous reports, but differed from the responses observed for parthenin. Parthenin stimulated and inhibited all mutants independent of resistance. This provided no indication for an auxin-related action of parthenin. Therefore, the hypothesis of an auxin-related inhibitory action of parthenin was rejected in two independent experimental approaches, while the hypothesis of an auxin-related stimulatory effect could not be rejected. PMID:26686984

  12. Spontaneous miniature hyperpolarizations affect threshold for action potential generation in mudpuppy cardiac neurons.

    PubMed

    Parsons, Rodney L; Barstow, Karen L; Scornik, Fabiana S

    2002-09-01

    Mudpuppy parasympathetic neurons exhibit spontaneous miniature hyperpolarizations (SMHs) that are generated by potassium currents, which are spontaneous miniature outward currents (SMOCs), flowing through clusters of large conductance voltage- and calcium (Ca(2+))-activated potassium (BK) channels. The underlying SMOCs are initiated by a Ca(2+)-induced Ca(2+) release (CICR) mechanism. Perforated-patch whole cell voltage recordings were used to determine whether activation of SMHs contributed to action potential (AP) repolarization or affected the latency to AP generation. Blockade of BK channels by iberiotoxin (IBX, 100 nM) slowed AP repolarization and increased AP duration. Treatment with omega-conotoxin GVIA (3 microM) or nifedipine (10 microM) to inhibit Ca(2+) influx through N- or L-type voltage-dependent calcium channels (VDCCs), respectively, also decreased the rate of AP repolarization and increased AP duration. Elimination of CICR by treatment with either thapsigargin (1 microM) or ryanodine (10 microM) produced no significant change in AP repolarization or duration. Blockade of BK channels with IBX and inhibition of N-type VDCCs with omega-conotoxin GVIA, but not inhibition of L-type VDCCs with nifedipine, decreased the latency of AP generation. A decrease in latency to AP generation occurred with elimination of SMHs by inhibition of CICR following treatment with thapsigargin. Ryanodine treatment decreased AP latency in three of six cells. Apamin (100 nM) had no affect on AP repolarization, duration, or latency to AP generation, but did decrease the hyperpolarizing afterpotential (HAP). Inhibition of L-type VDCCs by nifedipine also decreased HAP amplitude. Inhibition of CICR by either thapsigargin or ryanodine treatment increased the number of APs generated with long depolarizing current pulses, whereas exposure to IBX or omega-conotoxin GVIA depressed excitability. We conclude that CICR, the process responsible for SMH generation, represents a unique

  13. Sural sensory nerve action potential: A study in healthy Indian subjects

    PubMed Central

    Sreenivasan, Aarthika; Mansukhani, Khushnuma A; Sharma, Alika; Balakrishnan, Lajita

    2016-01-01

    Background: The sural sensory nerve action potential (SNAP) is an important electrodiagnostic study for suspected peripheral neuropathies. Incorrect technique and unavailability of reference data can lead to erroneous conclusions. Objectives: To establish reference data for sural SNAP in age-stratified healthy subjects at three sites of stimulation. Materials and Methods: A prospective study was conducted in 146 nerves from healthy subjects aged between 18 years and 90 years, stratified into six age groups (a = 18-30 years, b = 31–40 years, c = 41–50 years, d = 51–60 years, e = 61–70 years, and f >71 years). Sural SNAP was recorded antidromically, stimulating at three sites at distances of 14 cm, 12 cm, and 10 cm from the recording electrode. Mean – 2 standard deviation (SD) of the transformed data was used to generate reference values for amplitudes. Analysis of variance (ANOVA) test was used for inter-group and between three sites comparisons of amplitudes. Results: The lower limits of amplitude at 14 cm were 12.4 μV, 10.4 μV, 6.5 μV, 5.3 μV, 2.9 μV, and 1.9 μV; at 12 cm were 13.5 μV, 13.6 μV, 8.5 μV, 7.8 μV, 3.5 μV, and 2.8 μV; and at 10 cm were 16.3 μV, 16.3 μV, 11.1 μV, 10.0 μV, 4.8 μV, and 3.7 μV for groups a, b, c, d, e, and f, respectively. A statistically significant difference in amplitudes was noted from the three different sites of stimulation (P < 0.001). The amplitude differed significantly above the age of 60 years (P < 0.01) but not between groups e and f (P > 0.05). Conclusion: This study provides reference data for sural SNAP in Indian population at three different sites of stimulation along the calf in six age groups. It also shows significant variation in amplitude from the three different sites of stimulation. PMID:27570380

  14. Upper Pliocene Diatom Record From Northern Basin, Ross Sea; Potential Correlation to Other Antarctic Continental Shelf Records

    NASA Astrophysics Data System (ADS)

    Sjunneskog, C.; Bart, P.; Chow, J.; Winter, D.; Scherer, R.; Andrill Mis Project Science Team

    2007-12-01

    The Northern Basin seismic record suggests a dynamic East Antarctic Ice Sheet with at least eight Late Neogene glacial expansions. The seismic-stratigraphic record indicates relatively thick late Neogene sequences on the outer continental shelf and upper slope and possibly undisturbed interglacial sequences. In 2003 Nathaniel B. Palmer (NBP03-01) collected 10 piston and jumbo piston cores in a depth transect from Mawson Bank to Drygalski Basin. The sediment cores range from 46 cm to over 4 meters in length, only recovering the surface of upper seismic unit. The lithologies of the cores include diatom mud, bioclastic sediment, silt, sand, clay and diamicton. Diatom analyses reveals that two of these cores, NBP03-01 PC2 and NBP03-01 PC8, have penetrated into undisturbed Upper Pliocene sequences. Upper Pliocene diatomaceous units are also recovered in Prydz Bay ODP sites 742 age ca. 1.8-2.2 Ma, and 1166 ages ca 1.8-2.2 and 2.5-2.8, sandwiched between diamictons. Recovery of Pliocene and Pleistocene sediment records of interglacial events is rare on the Antarctic continental shelf and the obtained records have been difficult to correlate with any certainty. With the recent recovery of the ANDRILL MIS (AND-1 core) the potential for correlation of these records has improved significantly. The sediment record from ANDRILL MIS comprises 13 diatomaceous units, all with their own specific diatom assemblage and key species. Comparison of diatom assemblages using key taxa and PCA show a strong correlation between Northern Basin PC2 and PC8, ODP Site 742 and MIS diatom unit IV placed at the Gauss-Matuyama boundary. Continued multiproxy analyses and independent dating will be performed to further constrain the correlation. The initial results have implications for regional correlation of interglacial events, and suggest that other Pliocene sediment records may be preserved in the Northern Basin region.

  15. 75 FR 51112 - Notice of Realty Action: Application for Recordable Disclaimer of Interest; Oregon

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ..., Oregon. The nature of the cloud on the title the applicant wishes to resolve is a recorded Disclaimer... this recordable disclaimer of interest would remove a cloud on the title to the land. DATES: Interested... interest in the land described and issuance of a Recordable Disclaimer would remove a cloud on the title...

  16. Viewing Objects and Planning Actions: On the Potentiation of Grasping Behaviours by Visual Objects

    ERIC Educational Resources Information Center

    Makris, Stergios; Hadar, Aviad A.; Yarrow, Kielan

    2011-01-01

    How do humans interact with tools? Gibson (1979) suggested that humans perceive directly what tools afford in terms of meaningful actions. This "affordances" hypothesis implies that visual objects can potentiate motor responses even in the absence of an intention to act. Here we explore the temporal evolution of motor plans afforded by common…

  17. 76 FR 21938 - Potential Environmental Impacts of the Proposed Runway 13 Extension and Associated Actions for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ... Federal Aviation Administration Potential Environmental Impacts of the Proposed Runway 13 Extension and... extension and associated actions for Devils Lake Regional Airport in Devils Lake, North Dakota. SUMMARY: The FAA has issued the final EA and FONSI/ROD for the proposed Runway 13 extension and associated...

  18. Youth Participatory Action Research and Educational Transformation: The Potential of Intertextuality as a Methodological Tool

    ERIC Educational Resources Information Center

    Bertrand, Melanie

    2016-01-01

    In this article, Melanie Bertrand explores the potential of using the concept of intertextuality--which captures the way snippets of written or spoken text from one source become incorporated into other sources--in the study and practice of youth participatory action research (YPAR). Though this collective and youth-centered form of research…

  19. Primary cortical representation of sounds by the coordination of action-potential timing

    NASA Astrophysics Data System (ADS)

    Decharms, R. Christopher; Merzenich, Michael M.

    1996-06-01

    CORTICAL population coding could in principle rely on either the mean rate of neuronal action potentials, or the relative timing of action potentials, or both. When a single sensory stimulus drives many neurons to fire at elevated rates, the spikes of these neurons become tightly synchronized1,2, which could be involved in 'binding' together individual firing-rate feature representations into a unified object percept3. Here we demonstrate that the relative timing of cortical action potentials can signal stimulus features themselves, a function even more basic than feature grouping. Populations of neurons in the primary auditory cortex can coordinate the relative timing of their action potentials such that spikes occur closer together in time during continuous stimuli. In this way cortical neurons can signal stimuli even when their firing rates do not change. Population coding based on relative spike timing can systematically signal stimulus features, it is topographically mapped, and it follows the stimulus time course even where mean firing rate does not.

  20. Vestibular evoked potentials with short and middle latencies recorded in humans.

    PubMed

    Leibner, E; Elidan, J; Freeman, S; Sela, M; Nitzan, M; Sohmer, H

    1990-01-01

    Following success in recording short latency vestibular evoked potentials in experimental animals, we have succeeded in our attempts to record such potentials in human subjects. The stimuli were repetitive, short steps of high intensity angular acceleration (10,000 degrees/sec2) with short rise times which would synchronously activate many neurons of the vestibular pathway. Stringent control procedures ensured that the recorded activity was not an artefact. Short latency vestibular evoked potentials were recorded in 10 normal subjects with peak latencies of 3.5, 6.0 and 8.4 msec and amplitudes of 0.5 microV. Middle latency potentials were also recorded with latencies of 8.8, 18.8 and 26.8 msec and amplitudes of 15 microV. These responses were absent in a cadaver and in patients with bilateral dead labyrinths. In normal subjects, these vestibular evoked potentials were not affected by white noise. In conclusion, short and middle latency vestibular evoked potentials were recorded in normal human subjects. PMID:2289418

  1. Superfund Record of Decision (EPA Region 5): Organic Chemicals, Grandville, MI. (First remedial action), September 1991

    SciTech Connect

    Not Available

    1991-09-30

    The 5-acre Organic Chemicals site is an inactive solvent reclamation and chemicals manufacturing facility in Grandville, Kent County, Michigan. The site includes several onsite buildings, structures, above-ground storage tanks and drum storage areas, a boiler facility, a wastewater treatment facility, and a seepage lagoon. Wetlands potentially are located 1,900 feet northwest of the site, and the Grand River is located 0.95 miles to the north of the site. In 1980, discharges to the lagoon ceased, and the company installed a wastewater pretreatment system, which discharged wastes to the sanitary sewer system. Subsequently, in 1981, the seepage lagoon sludge was excavated and disposed of offsite. The selected remedial action for the site includes onsite pumping and treatment of ground water using a treatment system consisting of an equalization/sedimentation basin, two granular activated carbon vessels, and an air stripper polishing unit; discharging the treated water onsite to the Grand River; and disposing of treatment carbon residuals in an offsite landfill.

  2. Pre & Postsynaptic Tuning of Action Potential Timing by Spontaneous GABAergic Activity

    PubMed Central

    Caillard, Olivier

    2011-01-01

    Frequency and timing of action potential discharge are key elements for coding and transfer of information between neurons. The nature and location of the synaptic contacts, the biophysical parameters of the receptor-operated channels and their kinetics of activation are major determinants of the firing behaviour of each individual neuron. Ultimately the intrinsic excitability of each neuron determines the input-output function. Here we evaluate the influence of spontaneous GABAergic synaptic activity on the timing of action potentials in Layer 2/3 pyramidal neurones in acute brain slices from the somatosensory cortex of young rats. Somatic dynamic current injection to mimic synaptic input events was employed, together with a simple computational model that reproduce subthreshold membrane properties. Besides the well-documented control of neuronal excitability, spontaneous background GABAergic activity has a major detrimental effect on spike timing. In fact, GABAA receptors tune the relationship between the excitability and fidelity of pyramidal neurons via a postsynaptic (the reversal potential for GABAA activity) and a presynaptic (the frequency of spontaneous activity) mechanism. GABAergic activity can decrease or increase the excitability of pyramidal neurones, depending on the difference between the reversal potential for GABAA receptors and the threshold for action potential. In contrast, spike time jitter can only be increased proportionally to the difference between these two membrane potentials. Changes in excitability by background GABAergic activity can therefore only be associated with deterioration of the reliability of spike timing. PMID:21789249

  3. Cytoplasmic Ca2+, K+, Cl-, and NO3- Activities in the Liverwort Conocephalum conicum L. at Rest and during Action Potentials.

    PubMed Central

    Trebacz, K.; Simonis, W.; Schonknecht, G.

    1994-01-01

    Intracellular Ca2+, K+, Cl-, and NO3- activities were measured with ion-selective microelectrodes in the liverwort Conocephalum conicum L. at rest, during dark/light changes, and in the course of action potentials triggered by light or electrical stimuli. The average free cytosolic Ca2+ concentration was 231 [plus or minus] 65 nM. We did not observe any light-dependent changes of the free cytosolic Ca2+ concentration as long as no action potential was triggered. During action potentials, on average a 2-fold increase of the free cytoplasmic Ca2+ concentration was recorded. Intracellular K+ activity was 76 [plus or minus] 10 mM. It did not depend on K+ concentration changes in the bath solution between 0.1 and 10 mM. The average equilibrium potential for K+ in the standard medium containing 1 mM K+ was -110 mV, which differed significantly from the resting potential of -151 [plus or minus] 2 mV. During action potentials, either a slight decrease or no changes in intracellular K+ activity were recorded. The average Cl- activity was 7.4 [plus or minus] 0.2 mM in the cytoplasm and 43.5 [plus or minus] 7 mM in the vacuole. The activities of NO3- were 0.63 [plus or minus] 0.05 mM in the cytoplasm and 3.0 [plus or minus] 0.3 mM in the vacuole. For both anions the vacuolar activity was 5 to 6 times higher than the cytoplasmic activity. After the light was switched off both the Cl- and the NO3- activity showed either no change or a slight increase. Illumination caused a gradual return to previous values or no change. During action potentials a slight decrease of intracellular Cl- activity was recorded. It was concluded that in Conocephalum, as in characean cells, chloride channels are involved in the depolarization phase of the action potentials. We discuss a model for the ion fluxes during an action potential in Conocephalum. PMID:12232388

  4. Generation of slow wave type action potentials in the mouse small intestine involves a non-L-type calcium channel.

    PubMed

    Malysz, J; Richardson, D; Farraway, L; Christen, M O; Huizinga, J D

    1995-10-01

    Intrinsic electrical activities in various isolated segments of the mouse small intestine were recorded (i) to characterize action potential generation and (ii) to obtain a profile on the ion channels involved in initiating the slow wave type action potentials (slow waves). Gradients in slow wave frequency, resting membrane potential, and occurrence of spiking activity were found, with the proximal intestine exhibiting the highest frequency, the most hyperpolarized cell membrane, and the greatest occurrence of spikes. The slow waves were only partially sensitive to L-type calcium channel blockers. Nifedipine, verapamil, and pinaverium bromide abolished spikes that occurred on the plateau phase of the slow waves in all tissues. The activity that remained in the presence of L-type calcium channel blockers, the upstroke potential, retained a similar amplitude to the original slow wave and was of identical frequency. The upstroke potential was not sensitive to a reduction in extracellular chloride or to the sodium channel blockers tetrodotoxin and mexiletine. Abolishment of the Na+ gradient by removal of 120 mM extracellular Na+ reduced the upstroke potential frequency by 13 - 18% and its amplitude by 50 - 70% in the ileum. The amplitude was similarly reduced by Ni2+ (up to 5 mM), and by flufenamic acid (100 mu M), a nonspecific cation and chloride channel blocker. Gadolinium, a nonspecific blocker of cation and stretch-activated channels, had no effect. Throughout these pharmacological manipulations, a robust oscillation remained at 5 - 10 mV. This oscillation likely reflects pacemaker activity. It was rapidly abolished by removal of extracellular calcium but not affected by L-type calcium channel blockers. In summary, the mouse small intestine has been established as a model for research into slow wave generation and electrical pacemaker activity. The upstroke part of the slow wave has two components, the pacemaker component involves a non-L-type calcium channel

  5. 'Catching the waves' - slow cortical potentials as moderator of voluntary action.

    PubMed

    Schmidt, Stefan; Jo, Han-Gue; Wittmann, Marc; Hinterberger, Thilo

    2016-09-01

    The readiness potential is an ongoing negativity in the EEG preceding a self-initiated movement by approximately 1.5s. So far it has predominantly been interpreted as a preparatory signal with a causal link to the upcoming movement. Here a different hypothesis is suggested which we call the selective slow cortical potential sampling hypothesis. In this review of recent research results we argue that the initiation of a voluntary action is more likely during negative fluctuations of the slow cortical potential and that the sampling and averaging of many trials leads to the observed negativity. That is, empirical evidence indicates that the early readiness potential is not a neural correlate of preconscious motor preparation and thus a determinant of action. Our hypothesis thereafter challenges the classic interpretation of the Libet experiment which is often taken as proof that there is no free will. We furthermore suggest that slow cortical potentials are related to an urge to act but are not a neural indicator of the decision process of action initiation. PMID:27328786

  6. The DBI action, higher-derivative supergravity, and flattening inflaton potentials

    NASA Astrophysics Data System (ADS)

    Bielleman, Sjoerd; Ibáñez, Luis E.; Pedro, Francisco G.; Valenzuela, Irene; Wieck, Clemens

    2016-05-01

    In string theory compactifications it is common to find an effective Lagrangian for the scalar fields with a non-canonical kinetic term. We study the effective action of the scalar position moduli of Type II D p-branes. In many instances the kinetic terms are in fact modified by a term proportional to the scalar potential itself. This can be linked to the appearance of higher-dimensional supersymmetric operators correcting the Kähler potential. We identify the supersymmetric dimension-eight operators describing the α' corrections captured by the D-brane Dirac-Born-Infeld action. Our analysis then allows an embedding of the D-brane moduli effective action into an {N}=1 supergravity formulation. The effects of the potential-dependent kinetic terms may be very important if one of the scalars is the inflaton, since they lead to a flattening of the scalar potential. We analyze this flattening effect in detail and compute its impact on the CMB observables for single-field inflation with monomial potentials.

  7. 'Catching the waves' - slow cortical potentials as moderator of voluntary action.

    PubMed

    Schmidt, Stefan; Jo, Han-Gue; Wittmann, Marc; Hinterberger, Thilo

    2016-09-01

    The readiness potential is an ongoing negativity in the EEG preceding a self-initiated movement by approximately 1.5s. So far it has predominantly been interpreted as a preparatory signal with a causal link to the upcoming movement. Here a different hypothesis is suggested which we call the selective slow cortical potential sampling hypothesis. In this review of recent research results we argue that the initiation of a voluntary action is more likely during negative fluctuations of the slow cortical potential and that the sampling and averaging of many trials leads to the observed negativity. That is, empirical evidence indicates that the early readiness potential is not a neural correlate of preconscious motor preparation and thus a determinant of action. Our hypothesis thereafter challenges the classic interpretation of the Libet experiment which is often taken as proof that there is no free will. We furthermore suggest that slow cortical potentials are related to an urge to act but are not a neural indicator of the decision process of action initiation.

  8. Loss of Local Astrocyte Support Disrupts Action Potential Propagation and Glutamate Release Synchrony from Unmyelinated Hippocampal Axon Terminals In Vitro

    PubMed Central

    Sobieski, Courtney; Jiang, Xiaoping; Crawford, Devon C.

    2015-01-01

    Neuron–astrocyte interactions are critical for proper CNS development and function. Astrocytes secrete factors that are pivotal for synaptic development and function, neuronal metabolism, and neuronal survival. Our understanding of this relationship, however, remains incomplete due to technical hurdles that have prevented the removal of astrocytes from neuronal circuits without changing other important conditions. Here we overcame this obstacle by growing solitary rat hippocampal neurons on microcultures that were comprised of either an astrocyte bed (+astrocyte) or a collagen bed (−astrocyte) within the same culture dish. −Astrocyte autaptic evoked EPSCs, but not IPSCs, displayed an altered temporal profile, which included increased synaptic delay, increased time to peak, and severe glutamate release asynchrony, distinct from previously described quantal asynchrony. Although we observed minimal alteration of the somatically recorded action potential waveform, action potential propagation was altered. We observed a longer latency between somatic initiation and arrival at distal locations, which likely explains asynchronous EPSC peaks, and we observed broadening of the axonal spike, which likely underlies changes to evoked EPSC onset. No apparent changes in axon structure were observed, suggesting altered axonal excitability. In conclusion, we propose that local astrocyte support has an unappreciated role in maintaining glutamate release synchrony by disturbing axonal signal propagation. SIGNIFICANCE STATEMENT Certain glial cell types (oligodendrocytes, Schwann cells) facilitate the propagation of neuronal electrical signals, but a role for astrocytes has not been identified despite many other functions of astrocytes in supporting and modulating neuronal signaling. Under identical global conditions, we cultured neurons with or without local astrocyte support. Without local astrocytes, glutamate transmission was desynchronized by an alteration of the waveform

  9. Corrective Action Decision Document for Corrective Action Unit 5: Landfills, Nevada Test Site, Nevada: Revision No. 0 (with Record of Technical Change No. 1)

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-10-24

    This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action (CAU) 5: Landfills, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in Areas 5, 6, 12, 20, and 23 of the NTS, CAU 5 is comprised of eight corrective action sites (CASs). The corrective action investigation (CAI) of CAU 5 was conducted from October 7, 2002 through January 30, 2003, with geophysical surveys completed from March 6 through May 8, 2002, and topographic surveys conducted from March 11 through April 29, 2003. Contaminants of concern (COCs) were identified only at CAS 12-15-01. Those COCs included total petroleum hydrocarbons and volatile organic compounds. Based on the evaluation of analytical data from the CAI, review of future and current operations in Areas 5, 6, 12, 20, and 23 of the Nevada Test Site, and the detailed and comparative analysis of the potential CAAs, the following single alternative was developed for consideration. Close in Place with Administrative Controls is the recommended alternative for all of the CASs in CAU 5. This alternative was judged to meet all requirements for the technical components evaluated. Additionally, the alternative meets all applicable state and federal regulations for closure of the sites and will eliminate inadvertent intrusion into landfills at CAU 5.

  10. Analytic treatment of the compound action potential: Estimating the summed post-stimulus time histogram and unit response

    NASA Astrophysics Data System (ADS)

    Chertoff, Mark E.

    2004-11-01

    The convolution of an equation representing a summed post-stimulus time histogram computed across auditory nerve fibers [P(t)] with an equation representing a single-unit wave form [U(t)], resulted in an analytic expression for the compound action potential (CAP). The solution was fit to CAPs recorded to low and high frequency stimuli at various signal levels. The correlation between the CAP and the analytic expression was generally greater than 0.90. At high levels the width of P(t) was broader for low frequency stimuli than for high frequency signals, but delays were comparable. This indicates that at high signal levels there is an overlap in the population of auditory nerve fibers contributing to the CAP for both low and high frequency stimuli but low frequencies include contributions from more apical regions. At low signal levels the width of P(t) decreased for most frequencies and delays increased. The frequency of oscillation of U(t) was largest for high frequency stimuli and decreased for low frequency stimuli. The decay of U(t) was largest at 8 kHz and smallest at 1 kHz. These results indicate that the hair cell or neural mechanisms involved in the generation of action potentials may differ along the cochlear partition. .

  11. Potentiators of Defective ΔF508-CFTR Gating that Do Not Interfere with Corrector Action.

    PubMed

    Phuan, Puay-Wah; Veit, Guido; Tan, Joseph A; Finkbeiner, Walter E; Lukacs, Gergely L; Verkman, A S

    2015-10-01

    Combination drug therapies under development for cystic fibrosis caused by the ∆F508 mutation in cystic fibrosis transmembrane conductance regulator (CFTR) include a "corrector" to improve its cellular processing and a "potentiator" to improve its chloride channel function. Recently, it was reported that the approved potentiator N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (Ivacaftor) reduces ∆F508-CFTR cellular stability and the efficacy of investigational correctors, including 3-(6-[([1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl) amino]-3-methyl-2-pyridinyl)-benzoic acid and 1-(2,2-difluoro-1,3-benzodioxol-5-yl)-N-(1-[(2R)-2,3-dihydroxypropyl]-6-fluoro-2-(2-hydroxy-1,1-dimethylethyl)-1H-indol-5-yl), which might contribute to the modest reported efficacy of combination therapy in clinical trials. Here, we report the identification and characterization of potentiators that do not interfere with ∆F508-CFTR stability or corrector action. High-throughput screening and structure-activity analysis identified several classes of potentiators that do not impair corrector action, including tetrahydrobenzothiophenes, thiooxoaminothiazoles, and pyrazole-pyrrole-isoxazoles. The most potent compounds have an EC(50) for ∆F508-CFTR potentiation down to 18 nM and do not reduce corrector efficacy in heterologous ∆F508-CFTR-expressing cells or primary cultures of ∆F508/∆F508 human bronchial epithelia. The ΔF508-CFTR potentiators also activated wild-type and G551D CFTR, albeit weakly. The efficacy of combination therapy for cystic fibrosis caused by the ∆F508 mutation may be improved by replacement of Ivacaftor with a potentiator that does not interfere with corrector action. PMID:26245207

  12. Action potentials from ventricular mechanoreceptors stimulated by occlusion of the coronary sinus in the dog

    PubMed Central

    Muers, M. F.; Sleight, P.

    1972-01-01

    1. In experiments to determine the type of intra-cardiac receptors which cause the coronary sinus occlusion reflex, recordings were made from sixty-nine single and small multi-fibre preparations of cardiac vagal afferents in open-chest anaesthetized dogs. 2. Thirty-two fibres were stimulated by occlusion of the coronary sinus outflow through an indwelling Morawitz cannula. No receptors were stimulated during occlusions at peak systolic coronary venous pressures below the threshold for reflex cardiovascular depression. At higher pressures, fibre recruitment and further increases in stimulated discharge were demonstrated. 3. The afferent endings of twenty-nine of these fibres were mechanically localized to the epicardium and myocardium of the left ventricle. Three were in the right ventricle. Seventeen single fibres discharged spontaneously at an average of 0·9 impulses/sec. There was cardiac modulation of both resting and stimulated discharge, with most action potentials in systole. Seven of eight fibres conducted at less than 1·0 m/sec. 4. These ventricular receptors and a further twenty-two otherwise like them but not stimulated by occlusions were designated epi-myocardial receptors. 5. 73% of receptors were stimulated by intrapericardial nicotine (50-100 μg). Presumptively superficial receptors were more sensitive to this stimulus. 6. Epi-myocardial receptors were stimulated by intravenous or intracoronary catecholamines, by electrical stimulation of cardiac sympathetic nerves, and by eliciting the carotid sinus occlusion reflex. Aortic occlusion stimulated 66% of fibres tested, but was a less effective stimulus. After all these stimuli, there was a systolic modulation of discharge in more than 70% of fibres. 7. It was concluded that the epi-myocardial receptors are similar to those previously shown to cause the epicardial chemoreflex, and to participate in the coronary chemoreflex. It is suggested that they are responsive to systolic mechanical changes which

  13. Post-tetanic mechanical tension and evoked action potentials in McArdle's disease

    PubMed Central

    Brandt, N. J.; Buchthal, F.; Ebbesen, F.; Kamieniecka, Z.; Krarup, C.

    1977-01-01

    The tension produced by the cramp evoked in the adductor pollicis muscle by repetitive stimuli to the nerve (20/s for 50 s) and by full voluntary effort in the brachial biceps was measured in a patient with McArdle's disease. The contracture was 17% of the peaktetanic tension, and was not associated with action potentials. Twitches superimposed on the contracture were at most diminished to half, as were their action potentials. Both slow and fast muscle fibres participated in the contracture. The contraction time of the twitches elicited after the tetanus was prolonged more in the patient than in a normal subject of the same age. There was evidence of delayed firing, first observed 90 seconds after the peak of the contracture. The patient had electromyographic and histological signs of myopathy. PMID:271684

  14. FHF-independent conduction of action potentials along the leak-resistant cerebellar granule cell axon

    PubMed Central

    Dover, Katarzyna; Marra, Christopher; Solinas, Sergio; Popovic, Marko; Subramaniyam, Sathyaa; Zecevic, Dejan; D'Angelo, Egidio; Goldfarb, Mitchell

    2016-01-01

    Neurons in vertebrate central nervous systems initiate and conduct sodium action potentials in distinct subcellular compartments that differ architecturally and electrically. Here, we report several unanticipated passive and active properties of the cerebellar granule cell's unmyelinated axon. Whereas spike initiation at the axon initial segment relies on sodium channel (Nav)-associated fibroblast growth factor homologous factor (FHF) proteins to delay Nav inactivation, distal axonal Navs show little FHF association or FHF requirement for high-frequency transmission, velocity and waveforms of conducting action potentials. In addition, leak conductance density along the distal axon is estimated as <1% that of somatodendritic membrane. The faster inactivation rate of FHF-free Navs together with very low axonal leak conductance serves to minimize ionic fluxes and energetic demand during repetitive spike conduction and at rest. The absence of FHFs from Navs at nodes of Ranvier in the central nervous system suggests a similar mechanism of current flux minimization along myelinated axons. PMID:27666389

  15. Attention-dependent reductions in burstiness and action potential height in macaque area V4

    PubMed Central

    Anderson, Emily B.; Mitchell, Jude F.; Reynolds, John H.

    2013-01-01

    Attention improves the encoding of visual stimuli. One mechanism that is implicated in facilitating sensory encoding is the firing of action potentials in bursts. We tested the hypothesis that when spatial attention is directed to a stimulus, this causes an increase in burst firing to the attended stimulus. To the contrary, we found an attention-dependent reduction in burstiness among putative pyramidal neurons in macaque area V4. We accounted for this using a conductance-based Hodgkin-Huxley style model in which attentional modulation stems from scaling excitation and inhibition. The model exhibited attention-dependent increases in firing rate and made the surprising and correct prediction that when attention is directed into a neuron’s receptive field, this reduces action potential height. The model thus provided a unified explanation for three distinct forms of attentional modulation, two of them novel, and implicates scaling of the responses of excitatory and inhibitory input populations in mediating attention. PMID:23852114

  16. Real-time imaging of action potentials in nerves using changes in birefringence

    PubMed Central

    Badreddine, Ali H.; Jordan, Tomas; Bigio, Irving J.

    2016-01-01

    Polarized light can be used to measure the electrical activity associated with action potential propagation in nerves, as manifested in simultaneous dynamic changes in their intrinsic optical birefringence. These signals may serve as a tool for minimally invasive neuroimaging in various types of neuroscience research, including the study of neuronal activation patterns with high spatiotemporal resolution. A fast linear photodiode array was used to image propagating action potentials in an excised portion of the lobster walking leg nerve. We show that the crossed-polarized signal (XPS) can be reliably imaged over a ≥2 cm span in our custom nerve chamber, by averaging multiple-stimulation signals, and also in single-scan real-time “movies”. This demonstration paves the way toward utilizing changes in the optical birefringence to image more complex neuronal activity in nerve fibers and other organized neuronal tissue. PMID:27231635

  17. Real-time imaging of action potentials in nerves using changes in birefringence.

    PubMed

    Badreddine, Ali H; Jordan, Tomas; Bigio, Irving J

    2016-05-01

    Polarized light can be used to measure the electrical activity associated with action potential propagation in nerves, as manifested in simultaneous dynamic changes in their intrinsic optical birefringence. These signals may serve as a tool for minimally invasive neuroimaging in various types of neuroscience research, including the study of neuronal activation patterns with high spatiotemporal resolution. A fast linear photodiode array was used to image propagating action potentials in an excised portion of the lobster walking leg nerve. We show that the crossed-polarized signal (XPS) can be reliably imaged over a ≥2 cm span in our custom nerve chamber, by averaging multiple-stimulation signals, and also in single-scan real-time "movies". This demonstration paves the way toward utilizing changes in the optical birefringence to image more complex neuronal activity in nerve fibers and other organized neuronal tissue. PMID:27231635

  18. Neuronal generators of the visual evoked potentials: intracerebral recording in awake humans.

    PubMed

    Ducati, A; Fava, E; Motti, E D

    1988-01-01

    Flash and pattern reversal visual evoked potentials were recorded in awake patients undergoing stereotactic procedures for severe dyskinetic disorders resistant to medical treatment. The nucleus ventralis lateralis thalami was reached via an occipital approach. VEPs were recorded on the scalp at the entrance of the intracerebral electrode, and serially from sites at different depths. A polarity reversal of the surface recorded wave form took place as the intracerebral electrode was advanced beneath the surface cortical layers. As concerns F-VEPs, most of the scalp activity mirrored the potentials recorded down to the depth of 70-65 mm from the thalamus. The largest amplitude of intracerebral F-VEPs was obtained from recording sites at 50-70 mm from the thalamus, i.e., in the depth of the calcarine fissure. A negative wave, peaking around 47-50 msec, became evident in recording sites at 30-40 mm from the thalamus but vanished as the electrode was advanced farther. In only one patient could we record a small negative wave, peaking at 33 msec, in the vicinity of the corpus geniculatum externum. Furthermore, the oscillatory activity recorded from the scalp appeared to be generated in the cortical layers. PR-VEPs also underwent polarity reversal as the electrode traversed the cortex. PR-VEPs disappeared more superficially than F-VEPs. No PR-evoked activity could be recorded in the vicinity of the corpus geniculatum externum. We conclude that slow and fast components of VEPs recorded from the scalp are entirely generated in cortical layers.

  19. Modulatory action of acetylcholine on the Na+-dependent action potentials in Kenyon cells isolated from the mushroom body of the cricket brain.

    PubMed

    Terazima, E; Yoshino, M

    2010-12-01

    Kenyon cells, intrinsic neurons of the insect mushroom body, have been assumed to be a site of conditioning stimulus (CS) and unconditioned stimulus (US) association in olfactory learning and memory. Acetylcholine (ACh) has been implicated to be a neurotransmitter mediating CS reception in Kenyon cells, causing rapid membrane depolarization via nicotinic ACh receptors. However, the long-term effects of ACh on the membrane excitability of Kenyon cells are not fully understood. In this study, we examined the effects of ACh on Na(+) dependent action potentials (Na(+) spikes) elicited by depolarizing current injection and on net membrane currents under the voltage clamp condition in Kenyon cells isolated from the mushroom body of the cricket Gryllus bimaculatus. Current-clamp studies using amphotericin B perforated-patch recordings showed that freshly dispersed cricket Kenyon cells could produce repetitive Na(+) spikes in response to prolonged depolarizing current injection. Bath application of ACh increased both the instantaneous frequency and the amplitudes of Na(+) spikes. This excitatory action of ACh on Kenyon cells is attenuated by the pre-treatment of the cells with the muscarinic receptor antagonists, atropine and scopolamine, but not by the nicotinic receptor antagonist mecamylamine. Voltage-clamp studies further showed that bath application of ACh caused an increase in net inward currents that are sensitive to TTX, whereas outward currents were decreased by this treatment. These results indicate that in order to mediate CS, ACh may modulate the firing properties of Na(+) spikes of Kenyon cells through muscarinic receptor activation, thus increasing Na conductance and decreasing K conductance.

  20. Impaired Action Potential Initiation in GABAergic Interneurons Causes Hyperexcitable Networks in an Epileptic Mouse Model Carrying a Human NaV1.1 Mutation

    PubMed Central

    Hedrich, Ulrike B.S.; Liautard, Camille; Kirschenbaum, Daniel; Pofahl, Martin; Lavigne, Jennifer; Liu, Yuanyuan; Theiss, Stephan; Slotta, Johannes; Escayg, Andrew; Dihné, Marcel; Beck, Heinz

    2014-01-01

    Mutations in SCN1A and other ion channel genes can cause different epileptic phenotypes, but the precise mechanisms underlying the development of hyperexcitable networks are largely unknown. Here, we present a multisystem analysis of an SCN1A mouse model carrying the NaV1.1-R1648H mutation, which causes febrile seizures and epilepsy in humans. We found a ubiquitous hypoexcitability of interneurons in thalamus, cortex, and hippocampus, without detectable changes in excitatory neurons. Interestingly, somatic Na+ channels in interneurons and persistent Na+ currents were not significantly changed. Instead, the key mechanism of interneuron dysfunction was a deficit of action potential initiation at the axon initial segment that was identified by analyzing action potential firing. This deficit increased with the duration of firing periods, suggesting that increased slow inactivation, as recorded for recombinant mutated channels, could play an important role. The deficit in interneuron firing caused reduced action potential-driven inhibition of excitatory neurons as revealed by less frequent spontaneous but not miniature IPSCs. Multiple approaches indicated increased spontaneous thalamocortical and hippocampal network activity in mutant mice, as follows: (1) more synchronous and higher-frequency firing was recorded in primary neuronal cultures plated on multielectrode arrays; (2) thalamocortical slices examined by field potential recordings revealed spontaneous activities and pathological high-frequency oscillations; and (3) multineuron Ca2+ imaging in hippocampal slices showed increased spontaneous neuronal activity. Thus, an interneuron-specific generalized defect in action potential initiation causes multisystem disinhibition and network hyperexcitability, which can well explain the occurrence of seizures in the studied mouse model and in patients carrying this mutation. PMID:25378155

  1. ER Stress-Mediated Signaling: Action Potential and Ca(2+) as Key Players.

    PubMed

    Bahar, Entaz; Kim, Hyongsuk; Yoon, Hyonok

    2016-01-01

    The proper functioning of the endoplasmic reticulum (ER) is crucial for multiple cellular activities and survival. Disturbances in the normal ER functions lead to the accumulation and aggregation of unfolded proteins, which initiates an adaptive response, the unfolded protein response (UPR), in order to regain normal ER functions. Failure to activate the adaptive response initiates the process of programmed cell death or apoptosis. Apoptosis plays an important role in cell elimination, which is essential for embryogenesis, development, and tissue homeostasis. Impaired apoptosis can lead to the development of various pathological conditions, such as neurodegenerative and autoimmune diseases, cancer, or acquired immune deficiency syndrome (AIDS). Calcium (Ca(2+)) is one of the key regulators of cell survival and it can induce ER stress-mediated apoptosis in response to various conditions. Ca(2+) regulates cell death both at the early and late stages of apoptosis. Severe Ca(2+) dysregulation can promote cell death through apoptosis. Action potential, an electrical signal transmitted along the neurons and muscle fibers, is important for conveying information to, from, and within the brain. Upon the initiation of the action potential, increased levels of cytosolic Ca(2+) (depolarization) lead to the activation of the ER stress response involved in the initiation of apoptosis. In this review, we discuss the involvement of Ca(2+) and action potential in ER stress-mediated apoptosis. PMID:27649160

  2. ER Stress-Mediated Signaling: Action Potential and Ca2+ as Key Players

    PubMed Central

    Bahar, Entaz; Kim, Hyongsuk; Yoon, Hyonok

    2016-01-01

    The proper functioning of the endoplasmic reticulum (ER) is crucial for multiple cellular activities and survival. Disturbances in the normal ER functions lead to the accumulation and aggregation of unfolded proteins, which initiates an adaptive response, the unfolded protein response (UPR), in order to regain normal ER functions. Failure to activate the adaptive response initiates the process of programmed cell death or apoptosis. Apoptosis plays an important role in cell elimination, which is essential for embryogenesis, development, and tissue homeostasis. Impaired apoptosis can lead to the development of various pathological conditions, such as neurodegenerative and autoimmune diseases, cancer, or acquired immune deficiency syndrome (AIDS). Calcium (Ca2+) is one of the key regulators of cell survival and it can induce ER stress-mediated apoptosis in response to various conditions. Ca2+ regulates cell death both at the early and late stages of apoptosis. Severe Ca2+ dysregulation can promote cell death through apoptosis. Action potential, an electrical signal transmitted along the neurons and muscle fibers, is important for conveying information to, from, and within the brain. Upon the initiation of the action potential, increased levels of cytosolic Ca2+ (depolarization) lead to the activation of the ER stress response involved in the initiation of apoptosis. In this review, we discuss the involvement of Ca2+ and action potential in ER stress-mediated apoptosis. PMID:27649160

  3. The electrogenic Na+/HCO3− cotransport modulates resting membrane potential and action potential duration in cat ventricular myocytes

    PubMed Central

    Villa-Abrille, María C; Petroff, Martín G Vila; Aiello, Ernesto A

    2007-01-01

    Perforated whole-cell configuration of patch clamp was used to determine the contribution of the electrogenic Na+/HCO3− cotransport (NBC) on the shape of the action potential in cat ventricular myocytes. Switching from Hepes to HCO3− buffer at constant extracellular pH (pHo) hyperpolarized resting membrane potential (RMP) by 2.67 ± 0.42 mV (n = 9, P < 0.05). The duration of action potential measured at 50% of repolarization time (APD50) was 35.8 ± 6.8% shorter in the presence of HCO3− than in its absence (n = 9, P < 0.05). The anion blocker SITS prevented and reversed the HCO3−-induced hyperpolarization and shortening of APD. In addition, no HCO3−-induced hyperpolarization and APD shortening was observed in the absence of extracellular Na+. Quasi-steady-state currents were evoked by 8 s duration voltage-clamped ramps ranging from −130 to +30 mV. A novel component of SITS-sensitive current was observed in the presence of HCO3−. The HCO3−-sensitive current reversed at −87 ± 5 mV (n = 7), a value close to the expected reversal potential of an electrogenic Na+/HCO3− cotransport with a HCO3−:Na+ stoichiometry ratio of 2: 1. The above results allow us to conclude that the cardiac electrogenic Na+/HCO3− cotransport has a relevant influence on RMP and APD of cat ventricular cells. PMID:17138608

  4. Oscillatory behavior of ventricular action potential duration in heart failure patients at respiratory rate and low frequency

    PubMed Central

    Hanson, Ben; Child, Nick; Van Duijvenboden, Stefan; Orini, Michele; Chen, Zhong; Coronel, Ruben; Rinaldi, Christopher A.; Gill, Jaspal S.; Gill, Jaswinder S.; Taggart, Peter

    2014-01-01

    Oscillations of arterial pressure occur spontaneously at a frequency of approximately 0.1 Hz coupled with synchronous oscillations of sympathetic nerve activity (“Mayer waves”). This study investigated the extent to which corresponding oscillations may occur in ventricular action potential duration (APD). Fourteen ambulatory (outpatient) heart failure patients with biventricular pacing devices were studied while seated upright watching movie clips to maintain arousal. Activation recovery intervals (ARI) as a measure of ventricular APD were obtained from unipolar electrograms recorded from the LV epicardial pacing lead during steady state RV pacing from the device. Arterial blood pressure was measured non-invasively (Finapress) and respiration monitored. Oscillations were quantified using time frequency and coherence analysis. Oscillatory behavior of ARI at the respiratory frequency was observed in all subjects. The magnitude of the ARI variation ranged from 2.2 to 6.9 ms (mean 5.0 ms). Coherence analysis showed a correlation with respiratory oscillation for an average of 43% of the recording time at a significance level of p < 0.05. Oscillations in systolic blood pressure in the Mayer wave frequency range were observed in all subjects for whom blood pressure was recorded (n = 13). ARI oscillation in the Mayer wave frequency range was observed in 6/13 subjects (46%) over a range of 2.9 to 9.2 ms. Coherence with Mayer waves at the p < 0.05 significance level was present for an average of 29% of the recording time. In ambulatory patients with heart failure during enhanced mental arousal, left ventricular epicardial APD (ARI) oscillated at the respiratory frequency (approximately 0.25 Hz). In 6 patients (46%) APD oscillated at the slower Mayer wave frequency (approximately 0.1 Hz). These findings may be important in understanding sympathetic activity-related arrhythmogenesis. PMID:25389408

  5. ACTION-SPACE CLUSTERING OF TIDAL STREAMS TO INFER THE GALACTIC POTENTIAL

    SciTech Connect

    Sanderson, Robyn E.; Helmi, Amina; Hogg, David W.

    2015-03-10

    We present a new method for constraining the Milky Way halo gravitational potential by simultaneously fitting multiple tidal streams. This method requires three-dimensional positions and velocities for all stars to be fit, but does not require identification of any specific stream or determination of stream membership for any star. We exploit the principle that the action distribution of stream stars is most clustered when the potential used to calculate the actions is closest to the true potential. Clustering is quantified with the Kullback-Leibler Divergence (KLD), which also provides conditional uncertainties for our parameter estimates. We show, for toy Gaia-like data in a spherical isochrone potential, that maximizing the KLD of the action distribution relative to a smoother distribution recovers the input potential. The precision depends on the observational errors and number of streams; using K III giants as tracers, we measure the enclosed mass at the average radius of the sample stars accurate to 3% and precise to 20%-40%. Recovery of the scale radius is precise to 25%, biased 50% high by the small galactocentric distance range of stars in our mock sample (1-25 kpc, or about three scale radii, with mean 6.5 kpc). 20-25 streams with at least 100 stars each are required for a stable confidence interval. With radial velocities (RVs) to 100 kpc, all parameters are determined with ∼10% accuracy and 20% precision (1.3% accuracy for the enclosed mass), underlining the need to complete the RV catalog for faint halo stars observed by Gaia.

  6. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential.

    PubMed

    Desbois, Andrew P; Smith, Valerie J

    2010-02-01

    Amongst the diverse and potent biological activities of free fatty acids (FFAs) is the ability to kill or inhibit the growth of bacteria. The antibacterial properties of FFAs are used by many organisms to defend against parasitic or pathogenic bacteria. Whilst their antibacterial mode of action is still poorly understood, the prime target of FFA action is the cell membrane, where FFAs disrupt the electron transport chain and oxidative phosphorylation. Besides interfering with cellular energy production, FFA action may also result from the inhibition of enzyme activity, impairment of nutrient uptake, generation of peroxidation and auto-oxidation degradation products or direct lysis of bacterial cells. Their broad spectrum of activity, non-specific mode of action and safety makes them attractive as antibacterial agents for various applications in medicine, agriculture and food preservation, especially where the use of conventional antibiotics is undesirable or prohibited. Moreover, the evolution of inducible FFA-resistant phenotypes is less problematic than with conventional antibiotics. The potential for commercial or biomedical exploitation of antibacterial FFAs, especially for those from natural sources, is discussed.

  7. 5 CFR 2413.5 - Action necessary to close meeting; record of votes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... participate in the meeting vote to take such action. (a) When the meeting deliberations concern matters... deliberations concern matters specified in § 2413.4(b), the Authority shall vote on whether to close such... to a series of meetings at which the deliberations will concern the same particular matters...

  8. 5 CFR 2413.5 - Action necessary to close meeting; record of votes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... participate in the meeting vote to take such action. (a) When the meeting deliberations concern matters... deliberations concern matters specified in § 2413.4(b), the Authority shall vote on whether to close such... to a series of meetings at which the deliberations will concern the same particular matters...

  9. Interim Action Record of Decision Remedial Alternative Selection Met Lab HWMF

    SciTech Connect

    Palmer, E.

    2001-09-25

    The purpose of this interim action for the Metallurgical Laboratory HWMF Operable Unit is to minimize migration of contaminants to groundwater from the Metallurgical Laboratory Basin sediments and sediments associated with the process sewer line while risk assessment activities for the Carolina Bay are being planned and conducted.

  10. A Record of Experience. Catalogue of FFHC/Action for Development Documents, 1971-1976.

    ERIC Educational Resources Information Center

    Freedom from Hunger Campaign, Rome (Italy).

    The FFHC/AD (Freedom From Hunger Campaign/Action for Development) is the Food and Agriculture Organization's (FAO) link with peoples' organizations in the world's poor and rich countries. During its 18 years of activities, FFHC/AD has channelled additional funds collected by private financing agencies in the industrialized countries to rural…

  11. A 3600-year fan delta record of alpine floods: Potentialities of flood hazard assessment

    NASA Astrophysics Data System (ADS)

    Schulte, L.; Peña, J. C.; Burjachs, F.; Pernas, J.; Carvalho, F.; Schmidt, Th.; Baró, M.; Oliva, M.; Barriendos, M.; Veit, H.

    2009-04-01

    During the last decade the significance of flood magnitude, frequency and triggering forces in mountain regions is discussed in the context of Global Change. In the Swiss Alps these variables have also been even more investigated and modeled on a local scale due to the outstanding magnitude of discharges and economic losses (211 million CHF) of the 2005 flood event on August 23rd. With regard to the discussion about future extreme events as a consequence of present day global warming, the key question arises if floods occurred in the past during warmer or cooler climate conditions. The variability of fluvial environments of the Lütschine and Lombach catchments in the Swiss Alps during Late Holocene is traced from a composed 3600-year fan delta record using a multi-proxy approach integrating methods of various disciplines as sedimentology, geochronology, pedology, geomorphology, hydrology, palynology, history and archaeology. Furthermore, the paper examines the potential of fluvial archives with regard to flood hazard assessment. The lithology and geochemical data of the Lütschine and Lombach fan delta records studied in several key sections and cores show several aggradation phases from 3600 cal yr BP to present. The major aggradational pulses of the Lütschine fan delta recorded by coarse grained flood layers occur at intervals from 580 to 200 years, whereas in the Lombach catchment intervals range from 350 to 120 years. At least nineteen minor aggradational pulses indicated by the Ca/Ti ratios and organic carbon content are reported in the Lütschine catchment at a medium recurrence interval around 116 years at least from 3300 yr cal BP until 1100 yr cal BP and in the Lombach basin 10 pulses at an average interval of 105 years from 2800 yr cal BP until 1150 yr cal BP. Despite the different fluvial regimes, glacio-nival regime of the Lütschine river and pluvio-nival of the Lombach river, the following correlation can be pointed out: a) synchronous trends of the

  12. Potentiation of antimalarial drug action by chlorpheniramine against multidrug-resistant Plasmodium falciparum in vitro.

    PubMed

    Nakornchai, Sunan; Konthiang, Phattanapong

    2006-09-01

    Chlorpheniramine, a histamine H1 receptor antagonist, was assayed for in vitro antimalarial activity against multidrug-resistant Plasmodium falciparum K1 strain and chloroquine-resistant P. falciparum T9/94 clone, by measuring the 3H-hypoxanthine incorporation. Chlorphenirame inhibited P. falciparum K1 and T9/94 growth with IC50 values of 136.0+/-40.2 microM and 102.0+/-22.6 microM respectively. A combination of antimalarial drug and chlorpheniramine was tested against resistant P. falciparum in vitro. Isobologram analysis showed that chlorpheniramine exerts marked synergistic action on chloroquine against P. falciparum K1 and T9/94. Chlorpheniramine also potentiated antimalarial action of mefloquine, quinine or pyronaridine against both of the resistant strains of P. falciparum. However, chlorpheniramine antagonism with artesunate was obtained in both P. falciparum K1 and T9/94. The results in this study indicate that antihistaminic drugs may be promising candidates for potentiating antimalarial drug action against drug resistant malarial parasites.

  13. A portable device for recording evoked potentials, optimized for pattern ERG.

    PubMed

    McInturff, Stephen P; Buchser, William J

    2016-02-01

    Recording evoked potentials in un-anesthetized animals and people is a powerful technique to non-invasively measure the function of neurons. As such, the primary output neurons of the eye can be assessed by the pattern electroretinogram (PERG). Currently, electro-physiologic setups to perform PERG or related recordings are costly, complicated, and non-portable. Here, we design a simple steady-state PERG system, based off an Arduino board. The amplifier is built on a shield that fits over a microcontroller board, an Arduino, which digitizes the signal and sends it to a computer that presents stimuli then records and analyzes the evoked potentials. We used the device to record PERG accurately with a sensitivity as low as half a microvolt. The device has also been designed to implement other evoked potential recordings. This simple device can be quickly constructed and used for experiments in moving systems. Additionally, this device can be used to expose students in underserved areas to research technology that they would otherwise not have access to. PMID:26536572

  14. A portable device for recording evoked potentials, optimized for pattern ERG.

    PubMed

    McInturff, Stephen P; Buchser, William J

    2016-02-01

    Recording evoked potentials in un-anesthetized animals and people is a powerful technique to non-invasively measure the function of neurons. As such, the primary output neurons of the eye can be assessed by the pattern electroretinogram (PERG). Currently, electro-physiologic setups to perform PERG or related recordings are costly, complicated, and non-portable. Here, we design a simple steady-state PERG system, based off an Arduino board. The amplifier is built on a shield that fits over a microcontroller board, an Arduino, which digitizes the signal and sends it to a computer that presents stimuli then records and analyzes the evoked potentials. We used the device to record PERG accurately with a sensitivity as low as half a microvolt. The device has also been designed to implement other evoked potential recordings. This simple device can be quickly constructed and used for experiments in moving systems. Additionally, this device can be used to expose students in underserved areas to research technology that they would otherwise not have access to.

  15. Evoked potential recording during echolocation in a false killer whale Pseudorca crassidens (L)

    NASA Astrophysics Data System (ADS)

    Supin, Alexander Ya.; Nachtigall, Paul E.; Pawloski, Jeffrey; Au, Whitlow W. L.

    2003-05-01

    Auditory brainstem responses (ABRs) were recorded in a false killer whale while the animal echolocated a target. The ABR collection was triggered by echolocation clicks of the animal. In these conditions, the recorded ABR pattern contained a duplicate set of waves. A comparison of ABR wave delays recorded during echolocation with those recorded during regular external stimulation with experimenter generated clicks showed that the first set of waves may be a response to the emitted click whereas the second one may be a response to the echo. Both responses, to the emitted click and to the echo, were of comparable amplitude in spite of the intensity difference of these two sounds that may differ by more than 40 dB near the animal's head. This finding indicates the presence of some mechanism of releasing responses to echoes from masking by loud emitted clicks. The evoked-potential method may be productive to investigate these mechanisms.

  16. Superfund Record of Decision (EPA Region 4): Monsanto Superfund Site, Augusta, GA. (First remedial action), December 1990. Final report

    SciTech Connect

    Not Available

    1990-12-07

    The 75-acre Monsanto site is a former industrial plant located three miles southeast of Augusta, Georgia. Land use in the area is predominantly industrial, with a wetland area located approximately 4,570 feet from the site. From 1966 to 1974, approximately 1500 pounds of arsenic were placed in two onsite landfills. The final Record of Decision (ROD) addresses ground water contamination. The primary contaminant of concern affecting the ground water is arsenic, a metal. The selected remedial action for the site includes monitoring ground water to evaluate compliance with Ground Water Protection Achievement Levels (GPALs); pumping and discharging ground water to an offsite publicly owned treatment works. The estimated present worth cost for the remedial action is $600,000.

  17. Xenin-25 Potentiates Glucose-dependent Insulinotropic Polypeptide Action via a Novel Cholinergic Relay Mechanism*

    PubMed Central

    Wice, Burton M.; Wang, Songyan; Crimmins, Dan L.; Diggs-Andrews, Kelly A.; Althage, Matthew C.; Ford, Eric L.; Tran, Hung; Ohlendorf, Matthew; Griest, Terry A.; Wang, Qiuling; Fisher, Simon J.; Ladenson, Jack H.; Polonsky, Kenneth S.

    2010-01-01

    The intestinal peptides GLP-1 and GIP potentiate glucose-mediated insulin release. Agents that increase GLP-1 action are effective therapies in type 2 diabetes mellitus (T2DM). However, GIP action is blunted in T2DM, and GIP-based therapies have not been developed. Thus, it is important to increase our understanding of the mechanisms of GIP action. We developed mice lacking GIP-producing K cells. Like humans with T2DM, “GIP/DT” animals exhibited a normal insulin secretory response to exogenous GLP-1 but a blunted response to GIP. Pharmacologic doses of xenin-25, another peptide produced by K cells, restored the GIP-mediated insulin secretory response and reduced hyperglycemia in GIP/DT mice. Xenin-25 alone had no effect. Studies with islets, insulin-producing cell lines, and perfused pancreata indicated xenin-25 does not enhance GIP-mediated insulin release by acting directly on the β-cell. The in vivo effects of xenin-25 to potentiate insulin release were inhibited by atropine sulfate and atropine methyl bromide but not by hexamethonium. Consistent with this, carbachol potentiated GIP-mediated insulin release from in situ perfused pancreata of GIP/DT mice. In vivo, xenin-25 did not activate c-fos expression in the hind brain or paraventricular nucleus of the hypothalamus indicating that central nervous system activation is not required. These data suggest that xenin-25 potentiates GIP-mediated insulin release by activating non-ganglionic cholinergic neurons that innervate the islets, presumably part of an enteric-neuronal-pancreatic pathway. Xenin-25, or molecules that increase acetylcholine receptor signaling in β-cells, may represent a novel approach to overcome GIP resistance and therefore treat humans with T2DM. PMID:20421298

  18. Xenin-25 potentiates glucose-dependent insulinotropic polypeptide action via a novel cholinergic relay mechanism.

    PubMed

    Wice, Burton M; Wang, Songyan; Crimmins, Dan L; Diggs-Andrews, Kelly A; Althage, Matthew C; Ford, Eric L; Tran, Hung; Ohlendorf, Matthew; Griest, Terry A; Wang, Qiuling; Fisher, Simon J; Ladenson, Jack H; Polonsky, Kenneth S

    2010-06-25

    The intestinal peptides GLP-1 and GIP potentiate glucose-mediated insulin release. Agents that increase GLP-1 action are effective therapies in type 2 diabetes mellitus (T2DM). However, GIP action is blunted in T2DM, and GIP-based therapies have not been developed. Thus, it is important to increase our understanding of the mechanisms of GIP action. We developed mice lacking GIP-producing K cells. Like humans with T2DM, "GIP/DT" animals exhibited a normal insulin secretory response to exogenous GLP-1 but a blunted response to GIP. Pharmacologic doses of xenin-25, another peptide produced by K cells, restored the GIP-mediated insulin secretory response and reduced hyperglycemia in GIP/DT mice. Xenin-25 alone had no effect. Studies with islets, insulin-producing cell lines, and perfused pancreata indicated xenin-25 does not enhance GIP-mediated insulin release by acting directly on the beta-cell. The in vivo effects of xenin-25 to potentiate insulin release were inhibited by atropine sulfate and atropine methyl bromide but not by hexamethonium. Consistent with this, carbachol potentiated GIP-mediated insulin release from in situ perfused pancreata of GIP/DT mice. In vivo, xenin-25 did not activate c-fos expression in the hind brain or paraventricular nucleus of the hypothalamus indicating that central nervous system activation is not required. These data suggest that xenin-25 potentiates GIP-mediated insulin release by activating non-ganglionic cholinergic neurons that innervate the islets, presumably part of an enteric-neuronal-pancreatic pathway. Xenin-25, or molecules that increase acetylcholine receptor signaling in beta-cells, may represent a novel approach to overcome GIP resistance and therefore treat humans with T2DM. PMID:20421298

  19. Action potential characterization of human induced pluripotent stem cell-derived cardiomyocytes using automated patch-clamp technology.

    PubMed

    Scheel, Olaf; Frech, Stefanie; Amuzescu, Bogdan; Eisfeld, Jörg; Lin, Kun-Han; Knott, Thomas

    2014-10-01

    Recent progress in embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) research led to high-purity preparations of human cardiomyocytes (CMs) differentiated from these two sources-suitable for tissue regeneration, in vitro models of disease, and cardiac safety pharmacology screening. We performed a detailed characterization of the effects of nifedipine, cisapride, and tetrodotoxin (TTX) on Cor.4U(®) human iPSC-CM, using automated whole-cell patch-clamp recordings with the CytoPatch™ 2 equipment, within a complex assay combining multiple voltage-clamp and current-clamp protocols in a well-defined sequence, and quantitative analysis of several action potential (AP) parameters. We retrieved three electrical phenotypes based on AP shape: ventricular, atrial/nodal, and S-type (with ventricular-like depolarization and lack of plateau). To suppress spontaneous firing, present in many cells, we injected continuously faint hyperpolarizing currents of -10 or -20 pA. We defined quality criteria (both seal and membrane resistance over 1 GΩ), and focused our study on cells with ventricular-like AP. Nifedipine induced marked decreases in AP duration (APD): APD90 (49.8% and 40.8% of control values at 1 and 10 μM, respectively), APD50 (16.1% and 12%); cisapride 0.1 μM increased APD90 to 176.2%; and tetrodotoxin 10 μM decreased maximum slope of phase to 33.3% of control, peak depolarization potential to 76.3% of control, and shortened APD90 on average to 80.4%. These results prove feasibility of automated voltage- and current-clamp recordings on human iPSC-CM and their potential use for in-depth drug evaluation and proarrhythmic liability assessment, as well as for diagnosis and pharmacology tests for cardiac channelopathy patients. PMID:25353059

  20. First record of Eggplant Mealybug, Coccidohystrix insolita (Hemiptera: Pseudococcidae), on Guam: Potentially a major pest

    PubMed Central

    2014-01-01

    Abstract The eggplant mealybug, Coccidohystrix insolita (Green) (Hemiptera: Pseudococcidae), is recorded from the island of Guam in the Mariana Islands for the first time. Factors indicating that this introduced mealybug has the potential to become a pest of economic importance for agriculture and horticulture on Guam are discussed. PMID:24855439

  1. First record of Eggplant Mealybug, Coccidohystrixinsolita (Hemiptera: Pseudococcidae), on Guam: Potentially a major pest.

    PubMed

    Moore, Aubrey; Watson, Gillian W; Bamba, Jesse

    2014-01-01

    The eggplant mealybug, Coccidohystrixinsolita (Green) (Hemiptera: Pseudococcidae), is recorded from the island of Guam in the Mariana Islands for the first time. Factors indicating that this introduced mealybug has the potential to become a pest of economic importance for agriculture and horticulture on Guam are discussed.

  2. First record of Eggplant Mealybug, Coccidohystrixinsolita (Hemiptera: Pseudococcidae), on Guam: Potentially a major pest.

    PubMed

    Moore, Aubrey; Watson, Gillian W; Bamba, Jesse

    2014-01-01

    The eggplant mealybug, Coccidohystrixinsolita (Green) (Hemiptera: Pseudococcidae), is recorded from the island of Guam in the Mariana Islands for the first time. Factors indicating that this introduced mealybug has the potential to become a pest of economic importance for agriculture and horticulture on Guam are discussed. PMID:24855439

  3. Effects of bath resistance on action potentials in the squid giant axon: myocardial implications.

    PubMed Central

    Wu, J; Wikswo, J P

    1997-01-01

    This study presents a simplified version of the quasi-one-dimensional theory (Wu, J., E. A. Johnson, and J. M. Kootsey. 1996. A quasi-one-dimensional theory for anisotropic propagation of excitation in cardiac muscle. Biophys. J. 71:2427-2439) with two components of the extracellular current, along and perpendicular to the axis, and a simulation and its experimental confirmation for the giant axon of the squid. By extending the one-dimensional core conductor cable equations, this theory predicts, as confirmed by the experiment, that the shapes of the intracellular and the extracellular action potentials are related to the resistance of the bath. Such a result was previously only expected by the field theories. The correlation between the shapes of the intracellular and the extracellular potentials of the giant axon of the squid resembles that observed during the anisotropic propagation of excitation in cardiac muscle. Therefore, this study not only develops a quasi-one-dimensional theory for a squid axon, but also provides one possible factor contributing to the anisotropic propagation of action potentials in cardiac muscle. PMID:9370430

  4. Effects of bath resistance on action potentials in the squid giant axon: myocardial implications.

    PubMed

    Wu, J; Wikswo, J P

    1997-11-01

    This study presents a simplified version of the quasi-one-dimensional theory (Wu, J., E. A. Johnson, and J. M. Kootsey. 1996. A quasi-one-dimensional theory for anisotropic propagation of excitation in cardiac muscle. Biophys. J. 71:2427-2439) with two components of the extracellular current, along and perpendicular to the axis, and a simulation and its experimental confirmation for the giant axon of the squid. By extending the one-dimensional core conductor cable equations, this theory predicts, as confirmed by the experiment, that the shapes of the intracellular and the extracellular action potentials are related to the resistance of the bath. Such a result was previously only expected by the field theories. The correlation between the shapes of the intracellular and the extracellular potentials of the giant axon of the squid resembles that observed during the anisotropic propagation of excitation in cardiac muscle. Therefore, this study not only develops a quasi-one-dimensional theory for a squid axon, but also provides one possible factor contributing to the anisotropic propagation of action potentials in cardiac muscle.

  5. An Excel-based implementation of the spectral method of action potential alternans analysis.

    PubMed

    Pearman, Charles M

    2014-12-01

    Action potential (AP) alternans has been well established as a mechanism of arrhythmogenesis and sudden cardiac death. Proper interpretation of AP alternans requires a robust method of alternans quantification. Traditional methods of alternans analysis neglect higher order periodicities that may have greater pro-arrhythmic potential than classical 2:1 alternans. The spectral method of alternans analysis, already widely used in the related study of microvolt T-wave alternans, has also been used to study AP alternans. Software to meet the specific needs of AP alternans analysis is not currently available in the public domain. An AP analysis tool is implemented here, written in Visual Basic for Applications and using Microsoft Excel as a shell. This performs a sophisticated analysis of alternans behavior allowing reliable distinction of alternans from random fluctuations, quantification of alternans magnitude, and identification of which phases of the AP are most affected. In addition, the spectral method has been adapted to allow detection and quantification of higher order regular oscillations. Analysis of action potential morphology is also performed. A simple user interface enables easy import, analysis, and export of collated results.

  6. Auditory steady-state evoked potentials vs. compound action potentials for the measurement of suppression tuning curves in the sedated dog puppy.

    PubMed

    Markessis, Emily; Poncelet, Luc; Colin, Cécile; Hoonhorst, Ingrid; Collet, Grégory; Deltenre, Paul; Moore, Brian C J

    2010-06-01

    Auditory steady-state evoked potential (ASSEP) tuning curves were compared to compound action potential (CAP) tuning curves, both measured at 2 Hz, using sedated beagle puppies. The effect of two types of masker (narrowband noise and sinusoidal) on the tuning curve parameters was assessed. Whatever the masker type, CAP tuning curve parameters were qualitatively and quantitatively similar to the ASSEP ones, with a similar inter-subject variability, but with a greater incidence of upward tip displacement. Whatever the procedure, sinusoidal maskers produced sharper tuning curves than narrow-band maskers. Although these differences are not likely to have significant implications for clinical work, from a fundamental point of view, their origin requires further investigations. The same amount of time was needed to record a CAP and an ASSEP 13-point tuning curve. The data further validate the ASSEP technique, which has the advantages of having a smaller tendency to produce upward tip shifts than the CAP technique. Moreover, being non invasive, ASSEP tuning curves can be easily repeated over time in the same subject for clinical and research purposes.

  7. Properties of Ca2+ sparks evoked by action potentials in mouse ventricular myocytes.

    PubMed

    Bridge, J H; Ershler, P R; Cannell, M B

    1999-07-15

    1. Calcium sparks were examined in enzymatically dissociated mouse cardiac ventricular cells using the calcium indicator fluo-3 and confocal microscopy. The properties of the mouse cardiac calcium spark are generally similar to those reported for other species. 2. Examination of the temporal relationship between the action potential and the time course of calcium spark production showed that calcium sparks are more likely to occur during the initial repolarization phase of the action potential. The latency of their occurrence varied by less than 1.4 ms (s.d.) and this low variability may be explained by the interaction of the gating of L-type calcium channels with the changes in driving force for calcium entry during the action potential. 3. When fixed sites within the cell are examined, calcium sparks have relatively constant amplitude but the amplitude of the sparks was variable among sites. The low variability of the amplitude of the calcium sparks suggests that more than one sarcoplasmic reticulum (SR) release channel must be involved in their genesis. Noise analysis (with the assumption of independent gating) suggests that > 18 SR calcium release channels may be involved in the generation of the calcium spark. At a fixed site, the response is close to 'all-or-none' behaviour which suggests that calcium sparks are indeed elementary events underlying cardiac excitation-contraction coupling. 4. A method for selecting spark sites for signal averaging is presented which allows the time course of the spark to be examined with high temporal and spatial resolution. Using this method we show the development of the calcium spark at high signal-to-noise levels.

  8. Action potentials and amphetamine release antipsychotic drug from dopamine neuron synaptic VMAT vesicles.

    PubMed

    Tucker, Kristal R; Block, Ethan R; Levitan, Edwin S

    2015-08-11

    Based on lysotracker red imaging in cultured hippocampal neurons, antipsychotic drugs (APDs) were proposed to accumulate in synaptic vesicles by acidic trapping and to be released in response to action potentials. Because many APDs are dopamine (DA) D2 receptor (D2R) antagonists, such a mechanism would be particularly interesting if it operated in midbrain DA neurons. Here, the APD cyamemazine (CYAM) is visualized directly by two-photon microscopy in substantia nigra and striatum brain slices. CYAM accumulated slowly into puncta based on vacuolar H(+)-ATPase activity and dispersed rapidly upon dissipating organelle pH gradients. Thus, CYAM is subject to acidic trapping and released upon deprotonation. In the striatum, Ca(2+)-dependent reduction of the CYAM punctate signal was induced by depolarization or action potentials. Striatal CYAM overlapped with the dopamine transporter (DAT). Furthermore, parachloroamphetamine (pCA), acting via vesicular monoamine transporter (VMAT), and a charged VMAT, substrate 1-methyl-4-phenylpyridinium (MPP(+)), reduced striatal CYAM. In vivo CYAM administration and in vitro experiments confirmed that clinically relevant CYAM concentrations result in vesicular accumulation and pCA-dependent release. These results show that some CYAM is in DA neuron VMAT vesicles and suggests a new drug interaction in which amphetamine induces CYAM deprotonation and release as a consequence of the H(+) countertransport by VMAT that accompanies vesicular uptake, but not by inducing exchange or acting as a weak base. Therefore, in the striatum, APDs are released with DA in response to action potentials and an amphetamine. This synaptic corelease is expected to enhance APD antagonism of D2Rs where and when dopaminergic transmission occurs.

  9. Carbon monoxide effects on human ventricle action potential assessed by mathematical simulations

    PubMed Central

    Trenor, Beatriz; Cardona, Karen; Saiz, Javier; Rajamani, Sridharan; Belardinelli, Luiz; Giles, Wayne R.

    2013-01-01

    Carbon monoxide (CO) that is produced in a number of different mammalian tissues is now known to have significant effects on the cardiovascular system. These include: (i) vasodilation, (ii) changes in heart rate and strength of contractions, and (iii) modulation of autonomic nervous system input to both the primary pacemaker and the working myocardium. Excessive CO in the environment is toxic and can initiate or mediate life threatening cardiac rhythm disturbances. Recent reports link these ventricular arrhythmias to an increase in the slowly inactivating, or “late” component of the Na+ current in the mammalian heart. The main goal of this paper is to explore the basis of this pro-arrhythmic capability of CO by incorporating changes in CO-induced ion channel activity with intracellular signaling pathways in the mammalian heart. To do this, a quite well-documented mathematical model of the action potential and intracellular calcium transient in the human ventricular myocyte has been employed. In silico iterations based on this model provide a useful first step in illustrating the cellular electrophysiological consequences of CO that have been reported from mammalian heart experiments. Specifically, when the Grandi et al. model of the human ventricular action potential is utilized, and after the Na+ and Ca2+ currents in a single myocyte are modified based on the experimental literature, early after-depolarization (EAD) rhythm disturbances appear, and important elements of the underlying causes of these EADs are revealed/illustrated. Our modified mathematical model of the human ventricular action potential also provides a convenient digital platform for designing future experimental work and relating these changes in cellular cardiac electrophysiology to emerging clinical and epidemiological data on CO toxicity. PMID:24146650

  10. Action potentials and amphetamine release antipsychotic drug from dopamine neuron synaptic VMAT vesicles

    PubMed Central

    Tucker, Kristal R.; Block, Ethan R.; Levitan, Edwin S.

    2015-01-01

    Based on lysotracker red imaging in cultured hippocampal neurons, antipsychotic drugs (APDs) were proposed to accumulate in synaptic vesicles by acidic trapping and to be released in response to action potentials. Because many APDs are dopamine (DA) D2 receptor (D2R) antagonists, such a mechanism would be particularly interesting if it operated in midbrain DA neurons. Here, the APD cyamemazine (CYAM) is visualized directly by two-photon microscopy in substantia nigra and striatum brain slices. CYAM accumulated slowly into puncta based on vacuolar H+-ATPase activity and dispersed rapidly upon dissipating organelle pH gradients. Thus, CYAM is subject to acidic trapping and released upon deprotonation. In the striatum, Ca2+-dependent reduction of the CYAM punctate signal was induced by depolarization or action potentials. Striatal CYAM overlapped with the dopamine transporter (DAT). Furthermore, parachloroamphetamine (pCA), acting via vesicular monoamine transporter (VMAT), and a charged VMAT, substrate 1-methyl-4-phenylpyridinium (MPP+), reduced striatal CYAM. In vivo CYAM administration and in vitro experiments confirmed that clinically relevant CYAM concentrations result in vesicular accumulation and pCA-dependent release. These results show that some CYAM is in DA neuron VMAT vesicles and suggests a new drug interaction in which amphetamine induces CYAM deprotonation and release as a consequence of the H+ countertransport by VMAT that accompanies vesicular uptake, but not by inducing exchange or acting as a weak base. Therefore, in the striatum, APDs are released with DA in response to action potentials and an amphetamine. This synaptic corelease is expected to enhance APD antagonism of D2Rs where and when dopaminergic transmission occurs. PMID:26216995

  11. Dynamical speckles patterns of action potential transmission effects in squid giant axon membrane

    NASA Astrophysics Data System (ADS)

    Llovera-González, Juan J.; Moreno-Yeras, Alfredo B.; Muramatsu, Mikiya; Soga, Diogo; Serra-Toledo, Rolando L.; Magalhães, Daniel S. F.

    2013-11-01

    Undoubtedly the most important result of the investigations in physiology and biophysics was the discovery of the electrochemical mechanism of propagation of the action potential in nerves that was made by Hodgkin and Huxley during the first half of the past century. Since some decades ago diverse experiments about the electro optical properties of the axon membrane there was published using the most diverse optical experimental procedures6-10. In this paper some results of a dynamical speckle technique applied for obtaining microscopic images of a section of a squid giant axon membrane during the activation by electrical impulses and his digital process are presented.

  12. Rapid local synchronization of action potentials: toward computation with coupled integrate-and-fire neurons.

    PubMed Central

    Hopfield, J J; Herz, A V

    1995-01-01

    The collective behavior of interconnected spiking nerve cells is investigated. It is shown that a variety of model systems exhibit the same short-time behavior and rapidly converge to (approximately) periodic firing patterns with locally synchronized action potentials. The dynamics of one model can be described by a downhill motion on an abstract energy landscape. Since an energy landscape makes it possible to understand and program computation done by an attractor network, the results will extend our understanding of collective computation from models based on a firing-rate description to biologically more realistic systems with integrate-and-fire neurons. Images Fig. 2 PMID:7624307

  13. Nociception-related somatosensory evoked potentials in awake dogs recorded after intra epidermal electrical stimulation.

    PubMed

    van Oostrom, Hugo; Stienen, Peter J; Doornenbal, Arie; Hellebrekers, Ludo J

    2009-02-01

    At present, the specific neurophysiologic methodology of recording pain-related evoked potentials is considered a most promising approach to objectively quantify pain in man. This study was designed to characterise and evaluate the use of somatosensory evoked potentials to study nociception in a canine model. To this aim, somatosensory evoked potentials were evoked by intra-epidermal electrical stimulation and recorded from the scalp in 8 beagle dogs. Characteristics determined were: (1) the conduction velocities of the peripheral nerve fibres involved, (2) the stimulus intensity response characteristics and (3) the evaluation of possible disturbance of the signals by muscular activity from the hind paw withdrawal reflex (EMG artefact). The results showed (1) the conduction velocities to be in the A-delta fibre range (i.e. fibres involved in nociception), (2) an increase in amplitude and a decrease in latency of the evoked potential following increasing stimulus intensities and (3) the absence of EMG artefact in the signals. These data indicate that the evoked potentials recorded, are related to nociception and thus are suited to quantitatively characterise the perception of noxious stimuli making this model useful for pain- and analgesia-related research.

  14. Noninvasive scalp recording of cortical auditory evoked potentials in the alert macaque monkey.

    PubMed

    Itoh, Kosuke; Nejime, Masafumi; Konoike, Naho; Nakada, Tsutomu; Nakamura, Katsuki

    2015-09-01

    Scalp-recorded evoked potentials (EP) provide researchers and clinicians with irreplaceable means for recording stimulus-related neural activities in the human brain, due to its high temporal resolution, handiness, and, perhaps more importantly, non-invasiveness. This work recorded the scalp cortical auditory EP (CAEP) in unanesthetized monkeys by using methods that are essentially identical to those applied to humans. Young adult rhesus monkeys (Macaca mulatta, 5-7 years old) were seated in a monkey chair, and their head movements were partially restricted by polystyrene blocks and tension poles placed around their head. Individual electrodes were fixated on their scalp using collodion according to the 10-20 system. Pure tone stimuli were presented while electroencephalograms were recorded from up to nineteen channels, including an electrooculogram channel. In all monkeys (n = 3), the recorded CAEP comprised a series of positive and negative deflections, labeled here as macaque P1 (mP1), macaque N1 (mN1), macaque P2 (mP2), and macaque N2 (mN2), and these transient responses to sound onset were followed by a sustained potential that continued for the duration of the sound, labeled the macaque sustained potential (mSP). mP1, mN2 and mSP were the prominent responses, and they had maximal amplitudes over frontal/central midline electrode sites, consistent with generators in auditory cortices. The study represents the first noninvasive scalp recording of CAEP in alert rhesus monkeys, to our knowledge.

  15. Distinguishing hair cell from neural potentials recorded at the round window.

    PubMed

    Forgues, Mathieu; Koehn, Heather A; Dunnon, Askia K; Pulver, Stephen H; Buchman, Craig A; Adunka, Oliver F; Fitzpatrick, Douglas C

    2014-02-01

    Almost all patients who receive cochlear implants have some acoustic hearing prior to surgery. Electrocochleography (ECoG), or electrophysiological measures of cochlear response to sound, can identify remaining auditory nerve activity that is the basis for this residual hearing and can record potentials from hair cells that are no longer functionally connected to nerve fibers. The ECoG signal is therefore complex, being composed of both hair cell and neural signals. To identify signatures of different sources in the recorded potentials, we collected ECoG data across frequency and intensity from the round window of gerbils before and after treatment with kainic acid, a neurotoxin. Distortions in the recorded waveforms were produced by different sources over different ranges of frequency and intensity. In response to tones at low frequencies and low-to-moderate intensities, the major source of distortion was from neural phase-locking that was sensitive to kainic acid. At high intensities at all frequencies, the distortion was not sensitive to kainic acid and was consistent with asymmetric saturation of the hair cell transducer current. In addition to loss of phase-locking, changes in the envelope after kainic acid treatment indicate that sustained neural firing combines with receptor potentials from hair cells to produce the envelope of the response to tones. These results provide baseline data to interpret comparable recordings from human cochlear implant recipients. PMID:24133227

  16. Distinguishing hair cell from neural potentials recorded at the round window

    PubMed Central

    Forgues, Mathieu; Koehn, Heather A.; Dunnon, Askia K.; Pulver, Stephen H.; Buchman, Craig A.; Adunka, Oliver F.

    2013-01-01

    Almost all patients who receive cochlear implants have some acoustic hearing prior to surgery. Electrocochleography (ECoG), or electrophysiological measures of cochlear response to sound, can identify remaining auditory nerve activity that is the basis for this residual hearing and can record potentials from hair cells that are no longer functionally connected to nerve fibers. The ECoG signal is therefore complex, being composed of both hair cell and neural signals. To identify signatures of different sources in the recorded potentials, we collected ECoG data across frequency and intensity from the round window of gerbils before and after treatment with kainic acid, a neurotoxin. Distortions in the recorded waveforms were produced by different sources over different ranges of frequency and intensity. In response to tones at low frequencies and low-to-moderate intensities, the major source of distortion was from neural phase-locking that was sensitive to kainic acid. At high intensities at all frequencies, the distortion was not sensitive to kainic acid and was consistent with asymmetric saturation of the hair cell transducer current. In addition to loss of phase-locking, changes in the envelope after kainic acid treatment indicate that sustained neural firing combines with receptor potentials from hair cells to produce the envelope of the response to tones. These results provide baseline data to interpret comparable recordings from human cochlear implant recipients. PMID:24133227

  17. Project HealthDesign: rethinking the power and potential of personal health records.

    PubMed

    Brennan, Patricia Flatley; Downs, Stephen; Casper, Gail

    2010-10-01

    Project HealthDesign, a multi-year, multi-site project sponsored by the Robert Wood Johnson Foundation with additional support from the California HealthCare Foundation, is designed to stimulate innovation in personal health records (PHRs). Project HealthDesign teams employed user-centered design processes to create designs and prototypes of computer-based applications to support and enhance human health for a wide range of patients, from children with chronic health conditions to elders transitioning from hospital to home. A program design philosophy encouraged designers to envision PHRs as a suite of personal health information management tools, or applications, separate from, but drawing upon, personal health data from a variety of sources. In addition to information contained in one's medical record, these personal health data included patient-supplied clinical parameters such as blood glucose and daily weights; as well as patient-generated observations of daily living (ODLs) - the unique, idiosyncratic cues, such as sleep adequacy or confidence in self care, that inform patients about their abilities to manage health challenges and take healthy action. A common technical platform provided infrastructure services such as data standards and identity-management protocols, and helped to demonstrate a scalable, efficient approach to user-centered design of personal health information management systems. The program's ethical, legal and social issues consultancy identified challenges to acceleration of action-focused PHRs: personal control of privacy choices, management of privacy in home conditions, and rebalancing power structures in shared decision making.

  18. COST Action “EuroTelepath”: digital pathology integration in electronic health record, including primary care centres

    PubMed Central

    2011-01-01

    Introduction Digital pathology includes the information technology that allows for the management of information, including data and images, generated in an anatomic pathology department. COST Action IC0604 The integration of digital slides in the electronic health record is one of the main objectives of COST Action IC0604 “Telepathology Network in Europe” (EURO-TELEPATH). Fostering use of medical informatics standards and adapting them to current needs is needed to manage efficiently extremely large medical images, like digital slide files. Digital slides in Pathology Digital slides can play a role in disease prevention, primary diagnosis, and second opinion. In all these tasks, automated image analysis can also be a most valuable tool. Interoperability in pathology information systems In order to achieve an efficient interoperability between pathology information systems with other clinical information systems, obtaining a seamless integration of pathology images (gross pictures and digital slides) with LIS-Pathology Information system in a web environment is an important task. Primary care information systems should also be included in the integration, since primary care centres play an essential role in the generation of clinical information and specimen collection. A common terminology, based in SNOMED CT is also needed. Conclusions Main barrier in the integration of digital slides in pathology workflow and eHealth record is the cost of current digital slide scanners. Pathology information system vendors should participate in standardization bodies. PMID:21489201

  19. Effect of DSPE-PEG on compound action potential, injury potential and ion concentration following compression in ex vivo spinal cord.

    PubMed

    Wang, Aihua; Huo, Xiaolin; Zhang, Guanghao; Wang, Xiaochen; Zhang, Cheng; Wu, Changzhe; Rong, Wei; Xu, Jing; Song, Tao

    2016-05-01

    It has been shown that polyethylene glycol (PEG) can reseal membrane disruption on the spinal cord, but only high concentrations of PEG have been shown to have this effect. Therefore, the effect of PEG is somewhat limited, and it is necessary to investigate a new approach to repair spinal cord injury. This study assesses the ability of 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(poly (ethylene glycol)) 2000] (DSPE-PEG) to recover physiological function and attenuate the injury-induced influx of extracellular ions in ex vivo spinal cord injury. Isolated spinal cords were subjected to compression injury and treated with PEG or DSPE-PEG immediately after injury. The compound action potential (CAP) was recorded before and after injury to assess the functional recovery. Furthermore, injury potential, the difference in gap potentials before and after compression, and the concentration of intracellular ions were used to evaluate the effect of DSPE-PEG on reducing ion influx. Data showed that the injury potential and ion concentration of the untreated, PEG and DSPE-PEG group, without significant difference among them, are remarkably higher than those of the intact group. Moreover, the CAP recovery of the DSPE-PEG and PEG treated spinal cords was significantly greater than that of the untreated spinal cords. The level of CAP recovery in the DSPE-PEG and PEG treated groups was the same, but the concentration of DSPE-PEG used was much lower than the concentration of PEG. These results suggest that instant application of DSPE-PEG could effectively repair functional disturbance in SCI at a much lower concentration than PEG.

  20. Actions taken in response to the potential for volatile organics in RLWTF influent tanks

    SciTech Connect

    DEL SIGNORE, JOHN C.

    2007-01-01

    Positive USQD-RL W -06.0729-JPS, titled "Potential for Volatile Organics in RLW" was signed Friday, 09-08-06, at 1600. It resulted from a Potentially Inadequate Safety Analysis (PISA) for the Radioactive Liquid Waste Treatment Facility (RLWTF) at Technical Area 50. The PISA posits that an unspecified accident occurs at a generator facility, and that said accident does not ignite the volatile organic liquid, but results instead in the release of a large volume of volatile organic liquid into an RLW drain. Once in the drain, the liquid flows unimpeded into the RLWTF influent tanks. After entering the influent tanks, a spark causes a deflagration or explosion. This report documents actions taken in response to the PISA.

  1. Superfund Record of Decision (EPA Region 1): Tinkham's Garage Site, Londonderry, New Hampshire. (First remedial action), March 10, 1989

    SciTech Connect

    Not Available

    1989-03-10

    The Tinkham's Garage site includes 375 acres of residential and undeveloped land in Londonderry, New Hampshire. EPA site investigations in 1981 revealed onsite soil and ground water contaminated with VOCs resulting from onsite surface dumping of liquids and sludge in 1978 and 1979. The major contaminated soil area is in a field behind Tinkham's Garage. The first remedial action selected for the site was documented in a 1986 Record of Decision (ROD), which included excavation of approximately 10,800 cubic yards of contaminated soil with onsite treatment using either thermal aeration, composting or soil washing. Local wetlands impacted by soil excavating activities and contaminated ground water were also to be remediated. Information generated during a pre-design study led EPA in 1988 to propose the amendment to the 1986 ROD. As a result of the pre-design study findings, the remedial action selected in the 1986 ROD was never implemented. The primary contaminants of concern affecting the soil and ground water are VOCs including TCE and PCE. The selected remedial action for the site is included.

  2. [The record of sensitive nerve action potentials. Interelectrode distance in healthy children].

    PubMed

    Arango-Aguilar, Jaime; Fraire-Martínez, María Inés; Sepúlveda-Vildósola, Ana Ana

    2014-01-01

    INTRODUCCIÓN: estudios en adultos muestran que con 3 o 4 cm de distancia entre los electrodos activo y de referencia se obtienen los valores ma´ximos de amplitud y latencia de los potenciales de accio´n nerviosos sensitivos. El objetivo de este estudio fue identificar en niños sanos, las distancia entre los electrodos con la cual los valores de amplitud y latencia pico no difieren significativamente de los obtenidos con la distancia entre los electrodos a la cual se obtienen los valores máximos. ME´TODOS: se colocaron cuatro electrodos de referencia a 1, 2, 3 y 4 cm del electrodo activo. La señal del electrodo activo se registró simultáneamente con un puente físico entre los cuatro canales. Se analizó una muestra de 66 nervios medianos en niños de cinco a nueve años. Los valores máximos de amplitud y latencia se obtuvieron con 4 cm entre los electrodos. Se compararon los valores obtenidos con 4 cm entre los electrodos y con 1, 2 y 3 cm.

  3. Feasibility and performance evaluation of generating and recording visual evoked potentials using ambulatory Bluetooth based system.

    PubMed

    Ellingson, Roger M; Oken, Barry

    2010-01-01

    Report contains the design overview and key performance measurements demonstrating the feasibility of generating and recording ambulatory visual stimulus evoked potentials using the previously reported custom Complementary and Alternative Medicine physiologic data collection and monitoring system, CAMAS. The methods used to generate visual stimuli on a PDA device and the design of an optical coupling device to convert the display to an electrical waveform which is recorded by the CAMAS base unit are presented. The optical sensor signal, synchronized to the visual stimulus emulates the brain's synchronized EEG signal input to CAMAS normally reviewed for the evoked potential response. Most importantly, the PDA also sends a marker message over the wireless Bluetooth connection to the CAMAS base unit synchronized to the visual stimulus which is the critical averaging reference component to obtain VEP results. Results show the variance in the latency of the wireless marker messaging link is consistent enough to support the generation and recording of visual evoked potentials. The averaged sensor waveforms at multiple CPU speeds are presented and demonstrate suitability of the Bluetooth interface for portable ambulatory visual evoked potential implementation on our CAMAS platform.

  4. Biorealistic cardiac cell culture platforms with integrated monitoring of extracellular action potentials.

    PubMed

    Trantidou, Tatiana; Terracciano, Cesare M; Kontziampasis, Dimitrios; Humphrey, Eleanor J; Prodromakis, Themistoklis

    2015-01-01

    Current platforms for in vitro drug development utilize confluent, unorganized monolayers of heart cells to study the effect on action potential propagation. However, standard cell cultures are of limited use in cardiac research, as they do not preserve important structural and functional properties of the myocardium. Here we present a method to integrate a scaffolding technology with multi-electrode arrays and deliver a compact, off-the-shelf monitoring platform for growing biomimetic cardiac tissue. Our approach produces anisotropic cultures with conduction velocity (CV) profiles that closer resemble native heart tissue; the fastest impulse propagation is along the long axis of the aligned cardiomyocytes (CVL) and the slowest propagation is perpendicular (CVT), in contrast to standard cultures where action potential propagates isotropically (CVL ≈ CVT). The corresponding anisotropy velocity ratios (CVL/CVT = 1.38 - 2.22) are comparable with values for healthy adult rat ventricles (1.98 - 3.63). The main advantages of this approach are that (i) it provides ultimate pattern control, (ii) it is compatible with automated manufacturing steps and (iii) it is utilized through standard cell culturing protocols. Our platform is compatible with existing read-out equipment and comprises a prompt method for more reliable CV studies.

  5. From damage response to action potentials: early evolution of neural and contractile modules in stem eukaryotes.

    PubMed

    Brunet, Thibaut; Arendt, Detlev

    2016-01-01

    Eukaryotic cells convert external stimuli into membrane depolarization, which in turn triggers effector responses such as secretion and contraction. Here, we put forward an evolutionary hypothesis for the origin of the depolarization-contraction-secretion (DCS) coupling, the functional core of animal neuromuscular circuits. We propose that DCS coupling evolved in unicellular stem eukaryotes as part of an 'emergency response' to calcium influx upon membrane rupture. We detail how this initial response was subsequently modified into an ancient mechanosensory-effector arc, present in the last eukaryotic common ancestor, which enabled contractile amoeboid movement that is widespread in extant eukaryotes. Elaborating on calcium-triggered membrane depolarization, we reason that the first action potentials evolved alongside the membrane of sensory-motile cilia, with the first voltage-sensitive sodium/calcium channels (Nav/Cav) enabling a fast and coordinated response of the entire cilium to mechanosensory stimuli. From the cilium, action potentials then spread across the entire cell, enabling global cellular responses such as concerted contraction in several independent eukaryote lineages. In animals, this process led to the invention of mechanosensory contractile cells. These gave rise to mechanosensory receptor cells, neurons and muscle cells by division of labour and can be regarded as the founder cell type of the nervous system.

  6. Biorealistic cardiac cell culture platforms with integrated monitoring of extracellular action potentials

    PubMed Central

    Trantidou, Tatiana; Terracciano, Cesare M.; Kontziampasis, Dimitrios; Humphrey, Eleanor J.; Prodromakis, Themistoklis

    2015-01-01

    Current platforms for in vitro drug development utilize confluent, unorganized monolayers of heart cells to study the effect on action potential propagation. However, standard cell cultures are of limited use in cardiac research, as they do not preserve important structural and functional properties of the myocardium. Here we present a method to integrate a scaffolding technology with multi-electrode arrays and deliver a compact, off-the-shelf monitoring platform for growing biomimetic cardiac tissue. Our approach produces anisotropic cultures with conduction velocity (CV) profiles that closer resemble native heart tissue; the fastest impulse propagation is along the long axis of the aligned cardiomyocytes (CVL) and the slowest propagation is perpendicular (CVT), in contrast to standard cultures where action potential propagates isotropically (CVL ≈ CVT). The corresponding anisotropy velocity ratios (CVL/CVT = 1.38 – 2.22) are comparable with values for healthy adult rat ventricles (1.98 – 3.63). The main advantages of this approach are that (i) it provides ultimate pattern control, (ii) it is compatible with automated manufacturing steps and (iii) it is utilized through standard cell culturing protocols. Our platform is compatible with existing read-out equipment and comprises a prompt method for more reliable CV studies. PMID:26053434

  7. From damage response to action potentials: early evolution of neural and contractile modules in stem eukaryotes

    PubMed Central

    Brunet, Thibaut; Arendt, Detlev

    2016-01-01

    Eukaryotic cells convert external stimuli into membrane depolarization, which in turn triggers effector responses such as secretion and contraction. Here, we put forward an evolutionary hypothesis for the origin of the depolarization–contraction–secretion (DCS) coupling, the functional core of animal neuromuscular circuits. We propose that DCS coupling evolved in unicellular stem eukaryotes as part of an ‘emergency response’ to calcium influx upon membrane rupture. We detail how this initial response was subsequently modified into an ancient mechanosensory–effector arc, present in the last eukaryotic common ancestor, which enabled contractile amoeboid movement that is widespread in extant eukaryotes. Elaborating on calcium-triggered membrane depolarization, we reason that the first action potentials evolved alongside the membrane of sensory-motile cilia, with the first voltage-sensitive sodium/calcium channels (Nav/Cav) enabling a fast and coordinated response of the entire cilium to mechanosensory stimuli. From the cilium, action potentials then spread across the entire cell, enabling global cellular responses such as concerted contraction in several independent eukaryote lineages. In animals, this process led to the invention of mechanosensory contractile cells. These gave rise to mechanosensory receptor cells, neurons and muscle cells by division of labour and can be regarded as the founder cell type of the nervous system. PMID:26598726

  8. Record linkage in Australian epidemiological research: health benefits, privacy safeguards and future potential.

    PubMed

    Sibthorpe, B; Kliewer, E; Smith, L

    1995-06-01

    Epidemiologists are increasingly concerned with the health effects of interventions and of exposure to noninfectious agents, but there may be long periods between exposure and outcome. Collecting information from respondents is a costly and often inefficient way of obtaining the longitudinal data necessary to study these effects. Linking existing data can be an effective and efficient alternative. However, it is often not practicable to obtain informed consent from the individuals whose records are to be linked. This raises important issues relating to protection of privacy. This paper examines the health benefits and privacy issues of epidemiological and health services research involving record linkage in Australia. The future potential for studies based on record linkage is discussed in the context of recent national and international developments in data protection. In the interests of public health and the rational use of health resources a balance must be struck between protecting individual privacy and conducting such health research for the common good.

  9. A Chronic Implant to Record Electroretinogram, Visual Evoked Potentials and Oscillatory Potentials in Awake, Freely Moving Rats for Pharmacological Studies

    PubMed Central

    Guarino, Irene; Loizzo, Stefano; Lopez, Luisa; Fadda, Antonello; Loizzo, Alberto

    2004-01-01

    Electroretinogram (ERG), widely used to study the pharmacological effects of drugs in animal models (e.g., diabetic retinopathy), is usually recorded in anesthetized rats. We report here a novel simple method to obtain chronic implantation of electrodes for simultaneous recording at the retinal and cortical levels in freely moving, unanesthetized animals. We recorded cortical (VEPs) and retinal (ERGs) responses evoked by light (flash) stimuli in awake rats and compared the results in the same rats anesthetized with urethane (0.6 mg/kg) before and after the monocular administration of scopolamine methyl bromide (1‰solution). We also compared the retinal responses with those derived from a classic acute corneal electrode. Anesthesia induced consistent changes of several VEP and ERG parameters like an increase of both latency and amplitude. In particular, the analysis of the variation of latency, amplitude, and spectral content of rapid oscillatory potentials could be important for a functional evaluation of the visual system in unanesthetized versus anesthetized animals. PMID:15656271

  10. Superfund Record of Decision (EPA Region 8): East Helena, MT. (First remedial action), November 1989

    SciTech Connect

    Not Available

    1989-11-22

    The 80-acre East Helena site, in East Helena, Lewis and Clark County, Montana, is a primary lead smelting facility that has been in operation since 1888. Prickly Pear Creek flows near the site and has been found to contain elevated levels of arsenic and lead. A 1984 remedial investigation identified elevated levels of metal contamination in soil, livestock, plants, and ground and surface waters with the sources of onsite contamination being primary and fugitive emissions and seepage from process ponds and process fluid circuitry. The primary contaminants of concern in the process ponds are metals including arsenic and lead. The selected remedial action for this site includes excavating and smelting 55,150 cubic yards of soil and/or sediment from all four process ponds and multi-media monitoring after individual remedial activities are implemented at three of the process pond areas.

  11. Superfund Record of Decision (EPA Region 7): Shenandoah Stables, Missouri (first remedial action), July 1988

    SciTech Connect

    Not Available

    1988-07-28

    The Shenandoah Stables (SS) site is located in a rural area near Moscow Mills, Lincoln County, Missouri, approximately 35 miles northwest of St. Louis, Missouri. The property includes an enclosed arena and horse stables. In May 1971, the area inside the arena was sprayed with dioxin-contaminated waste oil for dust-control purposes. Investigations were conducted by EPA in May 1982, which indicated continued exterior and interior contamination of the facility by dioxin at levels greater than 1,750 micrograms/kg. The selected remedial action for this site includes: excavation of all dioxin-contaminated surface soil exceeding 1 micrograms/kg with continued excavation until a residual concentration of 5 to 10 micrograms/kg at the 2 to 4-foot depth is reached in the arena and slough, or excavation until bedrock is encountered, with backfilling of excavated area.

  12. Comparative investigations of manual action representations: evidence that chimpanzees represent the costs of potential future actions involving tools

    PubMed Central

    Frey, Scott H.; Povinelli, Daniel J.

    2012-01-01

    The ability to adjust one's ongoing actions in the anticipation of forthcoming task demands is considered as strong evidence for the existence of internal action representations. Studies of action selection in tool use reveal that the behaviours that we choose in the present moment differ depending on what we intend to do next. Further, they point to a specialized role for mechanisms within the human cerebellum and dominant left cerebral hemisphere in representing the likely sensory costs of intended future actions. Recently, the question of whether similar mechanisms exist in other primates has received growing, but still limited, attention. Here, we present data that bear on this issue from a species that is a natural user of tools, our nearest living relative, the chimpanzee. In experiment 1, a subset of chimpanzees showed a non-significant tendency for their grip preferences to be affected by anticipation of the demands associated with bringing a tool's baited end to their mouths. In experiment 2, chimpanzees' initial grip preferences were consistently affected by anticipation of the forthcoming movements in a task that involves using a tool to extract a food reward. The partial discrepancy between the results of these two studies is attributed to the ability to accurately represent differences between the motor costs associated with executing the two response alternatives available within each task. These findings suggest that chimpanzees are capable of accurately representing the costs of intended future actions, and using those predictions to select movements in the present even in the context of externally directed tool use. PMID:22106426

  13. Relationship between microelectrode array impedance and chronic recording quality of single units and local field potentials.

    PubMed

    Jiang, JingLe; Willett, Francis R; Taylor, Dawn M

    2014-01-01

    Practical application of intracortical microelectrode technology is currently hindered by the inability to reliably record neuronal signals chronically. The precise mechanism of device failure is still under debate, but most likely includes some combination of tissue reaction, mechanical failure, and chronic material degradation. Impedance is a measure of the ease with which current flows through a working electrode under a driving voltage. Impedance has been hypothesized to provide information about an electrode's surrounding tissue reaction as well as chronic insulation degradation. In this study, we investigated the relationship between an electrode's impedance and its chronic recording performance as measured by the number of isolatable single units and the quality of local field potential recordings. Two 64-channel electrode arrays implanted in separate monkeys were assessed. We found no simple relationship between impedance and recording quality that held for both animals across all time periods. This suggests that future investigations on the topic should adopt a more fine-grained within-day and within-animal analysis. We also found new evidence from local field potential spatial correlation supporting the theory that insulation degradation is an important contributor to electrode failure.

  14. Event related potentials recorded in patients with locked-in syndrome

    PubMed Central

    Onofrj, M.; Thomas, A.; Paci, C.; Scesi, M.; Tombari, R.

    1997-01-01

    OBJECTIVE—To determine the possibility of recording "cognitive" event related potentials (ERPs) in locked-in patients and therefore to determine whether ERPs can have a role in differential diagnosis of coma.
METHODS—ERPs to classic auditory or visual "odd ball paradigms" were recorded three to four days, seven to eight days, and 30 to 60days after admission to the intensive care unit, in four patients affected by basilar artery thrombembolism resulting in locked-in syndrome. Two patients (one 32 year old man, one 31 year old woman) could move the eyes laterally and vertically spontaneously and on command. One patient (a 39 year old man) had a "one and half syndrome", one patient (a 40 year old woman) could only elevate the left eyelid and eye. Results were compared with data from 30 age matched controls. In the last recording session a letter recognition paradigm was applied, in which ERPs were produced by the identification of letters forming a word. Results were compared with five age matched controls. Brainstem lesions extending to the pontomesencephalic junction were found on MRI and CT.
RESULTS—ERPs to the oddball paradigms were recorded in three patients in the first recording session, in all patients in the second recording session. Latency, amplitude, and topographic distribution of ERP components were inside normal limits. With the letter recognition paradigm the patients could emit a P3 component to correspond with target letters, with the same margin of error as controls.
CONCLUSION—It is possible to record ERPs in patients with locked-in syndrome shortly after the acute ischaemic lesion, and therefore to assess objectively cognitive activities. Furthermore the letter recognition paradigm could be implemented to facilitate linguistic communication with patients with locked-in syndrome.

 PMID:9416812

  15. Early detection of hepatic encephalopathy by recording visual evoked potential (VEP).

    PubMed

    Zamir, Doron; Storch, Shimon; Kovach, Ivan; Storch, Rita; Zamir, Chen

    2002-01-01

    The visual evoked potential (VEP) record in response to a pattern stimulus is a non invasive and reliable method of detecting central and peripheral nerve system abnormalities. VEP recording have been used in animals with fulminant hepatic failure, and also in-patients with hepatic encephalopathy and acute severe hepatitis. Our aims were: a. to evaluate the potency of PVEP in assessing hepatic encephalopathy. b. to find the rate of pathologic PVEP in patients with advanced liver cirrhosis. VEP was recorded in 14 chronic liver cirrhotic patients (6 alcoholic, 6 HCV-related, 2 cryptogenic) and 14 controls. Patients with any neurologic abnormalities were excluded from the study. All patients were subjected to the Mental State Score (MSS) test, and venous blood ammonia was measured on the same day of VEP recording. In 10/14 (71%) patients some VEP recording abnormality was detected. In the cirrhotic patients, P100 latency was significantly longer (P < 0.05) than in controls. Low amplitude was observed in 8 patients compared to controls. Marked increase of N75 (3 patients) and marked increase of N145 (2 patients) were observed. Mean blood ammonia and MSS score were normal in all patients. No correlation was found between both MSS score and blood ammonia levels and the P100 delay. Five out of 10 patients with pathologic VEP developed hepatic encephalpathy during a follow-up of one year, compared to one out of 4 patients with no pathology on VEP recording. VEP recording may be a valuable tool in assessing patients with early hepatic encephalopathy and in predicting encephalopathy. PMID:12533959

  16. Stimulus and recording variables and their effects on mammalian vestibular evoked potentials

    NASA Technical Reports Server (NTRS)

    Jones, Sherri M.; Subramanian, Geetha; Avniel, Wilma; Guo, Yuqing; Burkard, Robert F.; Jones, Timothy A.

    2002-01-01

    Linear vestibular evoked potentials (VsEPs) measure the collective neural activity of the gravity receptor organs in the inner ear that respond to linear acceleration transients. The present study examined the effects of electrode placement, analog filtering, stimulus polarity and stimulus rate on linear VsEP thresholds, latencies and amplitudes recorded from mice. Two electrode-recording montages were evaluated, rostral (forebrain) to 'mastoid' and caudal (cerebellum) to 'mastoid'. VsEP thresholds and peak latencies were identical between the two recording sites; however, peak amplitudes were larger for the caudal recording montage. VsEPs were also affected by filtering. Results suggest optimum high pass filter cutoff at 100-300 Hz, and low pass filter cutoff at 10,000 Hz. To evaluate stimulus rate, linear jerk pulses were presented at 9.2, 16, 25, 40 and 80 Hz. At 80 Hz, mean latencies were longer (0.350-0.450 ms) and mean amplitudes reduced (0.8-1.8 microV) for all response peaks. In 50% of animals, late peaks (P3, N3) disappeared at 80 Hz. The results offer options for VsEP recording protocols. Copyright 2002 Elsevier Science B.V.

  17. Population of Computational Rabbit-Specific Ventricular Action Potential Models for Investigating Sources of Variability in Cellular Repolarisation

    PubMed Central

    Gemmell, Philip; Burrage, Kevin; Rodriguez, Blanca; Quinn, T. Alexander

    2014-01-01

    Variability is observed at all levels of cardiac electrophysiology. Yet, the underlying causes and importance of this variability are generally unknown, and difficult to investigate with current experimental techniques. The aim of the present study was to generate populations of computational ventricular action potential models that reproduce experimentally observed intercellular variability of repolarisation (represented by action potential duration) and to identify its potential causes. A systematic exploration of the effects of simultaneously varying the magnitude of six transmembrane current conductances (transient outward, rapid and slow delayed rectifier K+, inward rectifying K+, L-type Ca2+, and Na+/K+ pump currents) in two rabbit-specific ventricular action potential models (Shannon et al. and Mahajan et al.) at multiple cycle lengths (400, 600, 1,000 ms) was performed. This was accomplished with distributed computing software specialised for multi-dimensional parameter sweeps and grid execution. An initial population of 15,625 parameter sets was generated for both models at each cycle length. Action potential durations of these populations were compared to experimentally derived ranges for rabbit ventricular myocytes. 1,352 parameter sets for the Shannon model and 779 parameter sets for the Mahajan model yielded action potential duration within the experimental range, demonstrating that a wide array of ionic conductance values can be used to simulate a physiological rabbit ventricular action potential. Furthermore, by using clutter-based dimension reordering, a technique that allows visualisation of multi-dimensional spaces in two dimensions, the interaction of current conductances and their relative importance to the ventricular action potential at different cycle lengths were revealed. Overall, this work represents an important step towards a better understanding of the role that variability in current conductances may play in experimentally observed

  18. The effects of heart rate on the action potential of guinea-pig and human ventricular muscle.

    PubMed

    Attwell, D; Cohen, I; Eisner, D A

    1981-01-01

    1. On increasing the stimulation frequency of isolated pieces of guinea-pig ventricular muscle, the resting potential depolarizes, and the action potential duration and amplitude are reduced. On termination of the high frequency train of action potentials, these changes are reversed. 2. The resting potential changes are roughly exponential, with a time constant of the order of 10 sec, and are attributable to K+ accumulation in the extracellular space. They are not explicable in terms of known gating variables. 3. The action potential duration and amplitude recover much more slowly than the resting potential, after a high frequency train (half-time approximately 5 min). The time course of these recoveries is not exponential, and is slower after trains which produce more shortening of the action potential. The slow time course suggests that K+ accumulation is not the main cause of the changes in action potential shape. Furthermore, when a certain depolarization of the resting potential is produced by a high frequency train, there is a greater reduction of the action potential duration than that which occurs when the bathing [K+] is raised to produce the same depolarization (Reiter & Stickel, 1968). This is so even when a gradient of extracellular [K+] is induced in the preparation, to mimic non-uniform K+ accumulation. 4. Similarly, the shortening of the action potential produced by toxic doses or cardiotonic steroids is probably not the result of K+ accumulation. 5. The slow changes of the action potential shape produced by a high frequency train are not attributable to the effects of gating variables, nor (solely) to a rise in the intracellular Na concentration stimulating the electrogenic Na/K pump. The dye 3,3'-diethylthiadicarbocyanine, which blocks the Ca2+-activated K conductance in the erythrocyte, has no significant effect on the shape changes. 6. After a sudden change in heart rate, the QT interval of the human electrocardiogram (e.c.g.) changes slowly to a

  19. New records with examples of potential host colonization events for hypopi (Acari: Hypoderatidae) from birds

    USGS Publications Warehouse

    Pence, Danny B.; Spalding, M.G.; Bergan, J.F.; Cole, R.A.

    1997-01-01

    New host, geographic records, or both are established for 14 species of hypoderatid deutonymphs from 14 species of birds in North America. Ten of these records are regarded as examples of a potential host colonization event where these hypopi have become established in hosts other than those with which they are normally associated. Herein, potential host colonization events by hypoderatid deutonymphs are regarded as more of an ecologically determined than physiologically specific phenomenon, often specifically related to sharing of nesting sites in the same rookeries by different host taxa. Neottialges ibisicola Young & Pence is placed as a junior synonym of Neottialges plegadicola Fain. The taxonomic status of Hypodectes propus from columbid versus ardeid hosts needs further study.

  20. Electronic patient records in action: Transforming information into professionally relevant knowledge.

    PubMed

    Winman, Thomas; Rystedt, Hans

    2011-03-01

    The implementation of generic models for organizing information in complex institutions like those in healthcare creates a gap between standardization and the need for locally relevant knowledge. The present study addresses how this gap can be bridged by focusing on the practical work of healthcare staff in transforming information in EPRs into knowledge that is useful for everyday work. Video recording of shift handovers on a rehabilitation ward serves as the empirical case. The results show how extensive selections and reorganizations of information in EPRs are carried out in order to transform information into professionally relevant accounts. We argue that knowledge about the institutional obligations and professional ways of construing information are fundamental for these transitions. The findings point to the need to consider the role of professional knowledge inherent in unpacking information in efforts to develop information systems intended to bridge between institutional and professional boundaries in healthcare.

  1. The Belem Framework for Action: Harnessing the Power and Potential of Adult Learning and Education for a Viable Future

    ERIC Educational Resources Information Center

    Adult Learning, 2012

    2012-01-01

    This article presents the Belem Framework for Action. This framework focuses on harnessing the power and potential of adult learning and education for a viable future. This framework begins with a preamble on adult education and towards lifelong learning.

  2. Superfund Record of Decision (EPA Region 3): Palmerton Zinc Pile, Pennsylvania (second remedial action), September 1988

    SciTech Connect

    Not Available

    1988-05-29

    The Palmerton Zinc site is composed of two locations in the Borough of Palmerton, Carbon County, Pennsylvania. Smelting operations were conducted in the west plant from 1898 to 1987, and in the east plant from 1911 to present. Primary smelting of concentrated zinc sulfide ores, conducted until December 1980, resulted in the emission of large quantities of zinc, lead, cadmium, and sulfer dioxide. This air pollution caused defoliation of over 2,000 acres of vegetation in the vicinity of the east smelter. Between 1898 and 1987 process residue and other plant wastes were disposed of on Cinder Bank, a 2.5-mile, 2,000-acre waste pile. The selected remedial action for the site includes: slope modification, capping, and application of a vegetative cover on Cinder Bank; construction of surface water diversion channels; surface water and leachate collection and treatment using lime-activated filtration lagoons and/or constructed wetlands; implementation of an inspection, monitoring, and maintenance plan; and wetlands restoration measures, if necessary.

  3. Superfund Record of Decision (EPA Region 5): Forest Waste Disposal, MI. (Second remedial action), March 1988

    SciTech Connect

    Not Available

    1988-03-31

    The Forest Waste Disposal site consists of an 11-acre, abandoned municipal and industrial waste landfill and 9 surface impoundments. It is located in Genesee County, Michigan, 20 miles northeast of Flint, and is surrounded by agricultural land and undeveloped woodlands and wetlands. Forest Waste Disposal conducted landfill operations from 1972-1978, receiving limited types of liquid industrial waste, general household refuse, and drummed waste until 1978. Specific waste material found within the landfill includes PBB-contaminated feed, septic sludge, and drums containing primarily solid and liquid VOCs in high concentrations. The primary contaminants of concern affecting the soil and ground water are VOCs including toluene and TCE; other organics including pesticides, PAHs and PBBs; and metals including arsenic and lead. The selected remedial action for the site includes: removal and incineration of contaminated soil; installation of a containment system including a RCRA cap, slurry wall, dewatering system and a leachate collection system; and treatment and disposal of collected leachate; deed restrictions to prevent use of the ground water as a drinking water source; access restrictions; and ground water monitoring.

  4. Recording of auditory middle latency evoked potentials during the practice of meditation with the syllable 'OM'.

    PubMed

    Telles, S; Desiraju, T

    1993-10-01

    Middle latency auditory evoked potentials were examined in 7 proficient subjects during the practice of meditation on the syllable 'OM', to determine whether these potentials would differ significantly from those recorded during the baseline state without practicing mediation. Similar records were also obtained in 7 'naive' subjects, matched for age, before and during a control period which involved sitting with eyes closed, and with no special instructions for focusing their thoughts. There was considerable inter-subject variability in the different components. However, during meditation there was a small but significant reduction in the peak latency of the Nb wave (the maximum negativity occurring between 35 and 65 msec). This reduction was observed consistently during the 3 repeat sessions of each subject, while the 'naive' subjects did not show this change. These results suggest that the inter-subject variability of middle latency auditory evoked potentials precludes using them as the method of choice for assessing the effects of meditation. The small but consistent decrease in the Nb wave peak latency, indicates that the middle latency auditory evoked potentials do change with meditation. However, the variability of the potentials may mask subtle changes.

  5. Superfund Record of Decision (EPA Region 6): Vertac, Inc. , Jacksonville, AR. (First remedial action), September 1990

    SciTech Connect

    Not Available

    1990-09-27

    The Vertac site, a former herbicide and pesticide manufacturing facility in Jacksonville, Arkansas, is comprised of an onsite and offsite area. Production of herbicides and pesticides, including Agent Orange, began in 1948 and resulted in extensive onsite contamination. The offsite contamination, which is the focus of the Record of Decision (ROD), resulted from improper discharge of wastewater generated during onsite operations. Prior to 1960, untreated wastewater was discharged directly into Rocky Branch Creek, which flows into Bayou Metro a few miles south of the site. Beginning in the 1960s, wastewater was discharged to the city's Old Sewage Treatment Plant, which had been upgraded with a pretreatment facility that included an aerated lagoon and oxidation ponds (West Wastewater Treatment Plant). A solvent treatment process was later added to remove dioxin from the product. The process, however, created contaminated liquid and solid waste residues that were drummed and buried or stored onsite until 1987, when pesticide production ceased. The primary contaminant of concern affecting the soil, sediment, and sludge is 2,3,7,8-tetra-chlordibenzo-p-dioxin.

  6. A 10-form gauge potential and an M-9-brane Wess-Zumino action in massive 11D theory

    NASA Astrophysics Data System (ADS)

    Sato, T.

    2000-03-01

    We discuss some properties of an M-9-brane in ``massive 11D theory'' proposed by Bergshoeff, Lozano and Ortin. A 10-form gauge potential is consistently introduced into the massive 11D supergravity, and an M-9-brane Wess-Zumino action is constructed as that of a gauged /σ-model. Using duality relations is crucial in deriving the action, which we learn from the study of a 9-form potential in 10D massive IIA theory. A target space solution of an M-9-brane with a non-vanishing 10-form gauge field is also obtained, whose source is shown to be the M-9-brane effective action.

  7. Potential Mechanisms of Action in the Treatment of Social Impairment and Disorganization in Adolescents with ADHD

    PubMed Central

    Evans, Steven W.; Schultz, Brandon K.; Zoromski, Allison K.

    2014-01-01

    Two important domains that can be impaired in adolescents with ADHD are organization and social functioning; however, the development of interventions to target these areas in adolescents is in the early stages. Currently, small efficacy trials are beginning to be used to conduct preliminary tests on the proposed mechanisms of action for these interventions. These two studies examined the efficacy of organization and social functioning interventions for adolescents with ADHD, as well as the potential mechanisms of action for each intervention. Results from the organization intervention provide support for a significant relationship between performance on the organization checklist and overall GPA; however, there was no meaningful pattern of relationships between achieving mastery of the organization tasks and grades within quarter. Further, results from the social functioning intervention support a moderate relationship between performance on process measures of response to the intervention and outcome measures of social functioning. Results of this study provide implications for modifications to the measures and intervention procedures in future research. PMID:24748901

  8. Eudragit E100® potentiates the bactericidal action of ofloxacin against fluoroquinolone-resistant Pseudomonas aeruginosa.

    PubMed

    Romero, Verónica L; Pons, Patricia; Bocco, José L; Manzo, Rubén H; Alovero, Fabiana L

    2012-09-01

    We report the enhanced bactericidal activity of ofloxacin in drug-containing Eudragit E100(®) dispersions (EuCl-OFX) against Pseudomonas aeruginosa and the effect of the cationic polymer on bacterial membrane. Organisms treated with EuCl-OFX showed changes in cell morphology, altered outer membrane (OM) and cytoplasm with low electrodensity areas. Zeta potential of bacterial surface was shifted to positive. Sensitization to lytic agents was also observed. A profound effect on bacterial size, granularity and membrane depolarization was found by flow cytometry. Cultures exposed to drug-free polymer also showed some damaged bacterial membranes, but there was no significant cell death. Inhibition of P. aeruginosa by EuCl-OFX may involve surface effect and, to some extent, permeation effect. The cationic polymer act to mitigate the electronegativity of cell surface in the process of disorganizing the OM, rendering it more permeable to antibiotic. In addition, cytoplasmic membrane depolarization turns bacterial cell more vulnerable. The effects on membranes combined with the mechanism of action of quinolone explain the improved bactericidal action exhibited by EuCl-OFX. The behavior described for Eudragit E100(®) against P. aeruginosa may be a useful tool to broaden the spectrum of antibiotics whose clinical use is limited by the impermeability of the bacterial OM.

  9. A potential mode of action for Anakinra in patients with arthrofibrosis following total knee arthroplasty

    PubMed Central

    Dixon, David; Coates, Jonathon; del Carpio Pons, Alicia; Horabin, Joanna; Walker, Andrew; Abdul, Nicole; Kalson, Nicholas S.; Brewster, Nigel T.; Weir, David J.; Deehan, David J.; Mann, Derek A.; Borthwick, Lee A.

    2015-01-01

    Arthrofibrosis is a fibroproliferative disease characterised by excessive deposition of extracellular matrix components intra-articularly leading to pain and restricted range of movement. Although frequently observed following total knee arthroplasty (TKA) no therapeutic options exist. A pilot study demonstrated that intra-articular injection of Anakinra, an IL-1R antagonist, improved range of movement and pain in patients with arthrofibrosis however the mechanism of action is unknown. We hypothesise that IL-1α/β will drive an inflammatory phenotype in fibroblasts isolated from the knee, therefore identifying a potential mechanism of action for Anakinra in arthrofibrosis following TKA. Fibroblasts isolated from synovial membranes and infra-patellar fat pad of patients undergoing TKA express high levels of IL-1R1. Stimulation with IL-1α/β induced a pro-inflammatory phenotype characterised by increased secretion of GMCSF, IL-6 and IL-8. No significant difference in the inflammatory response was observed between fibroblasts isolated from synovial membrane or infra-patellar fat pad. IL-1α/β treatments induced a pro-inflammatory phenotype in fibroblasts from both synovial membrane and infra-patellar fat pad and therefore Anakinra can likely have an inhibitory effect on fibroblasts present in both tissues in vivo. It is also likely that fibroblast responses in the tissues are controlled by IL-1α/β availability and not their ability to respond to it. PMID:26553966

  10. Superfund Record of Decision (EPA Region 1): Stamina Mills site, North Smithfield, RI. (First remedial action), September 1990. Final report

    SciTech Connect

    Not Available

    1990-09-28

    The five-acre Stamina Mills site is a former textile weaving and finishing facility in North Smithfield, Providence County, Rhode Island. A portion of the site is within the 100-year floodplain and wetland area of the Branch River. The manufacturing process used cleaning solvents, acids, bases and dyes for coloring, pesticides for moth proofing, and plasticizers to coat fabrics. Mill process wastes were placed in a landfill onsite. EPA initiated three removal actions from 1984 to 1990, including an extension of the municipal water supply to residents obtaining water from the affected aquifer; and treatment of two underground and one above-ground storage tanks, followed by offsite disposal. The Record of Decision (ROD) provides a final remedy and addresses both source control and management of contaminated ground water migration at the site. The primary contaminants of concern affecting the soil, debris, sediment, and ground water are VOCs including TCE and PCE; other organics including pesticides; and metals including chromium.

  11. Superfund Record of Decision (EPA Region 1): Coakley Landfill, North Hampton, New Hampshire (first remedial action), June 28, 1990

    SciTech Connect

    Not Available

    1990-06-28

    The 92-acre Coakley Landfill site is in the towns of Greenland and North Hampton, Rockingham County, New Hampshire. The site includes a 27-acre landfill, and borders farmland, undeveloped woodlands, and wetlands to the north and west and commercial and residential properties to the east and south. In 1979, the State received complaints concerning leachate breakouts in the area and, by 1983 VOC-contamination had been identified in a domestic drinking water well. The Record of Decision (ROD) addresses source control and ground water contamination near the landfill. The selected remedial action for the site includes excavating and consolidating approximately 2,000 cubic yards of wetlands sediment and 30,000 cubic yards of solid waste and depositing the material into the landfill prior to capping; collecting and treating landfill gases using a thermal destruction process; ground water pumping and treatment using chemical precipitation for metals removal, air stripping for VOC removal, and biological treatment.

  12. Cancer Driver Log (CanDL): Catalog of Potentially Actionable Cancer Mutations.

    PubMed

    Damodaran, Senthilkumar; Miya, Jharna; Kautto, Esko; Zhu, Eliot; Samorodnitsky, Eric; Datta, Jharna; Reeser, Julie W; Roychowdhury, Sameek

    2015-09-01

    Massively parallel sequencing technologies have enabled characterization of genomic alterations across multiple tumor types. Efforts have focused on identifying driver mutations because they represent potential targets for therapy. However, because of the presence of driver and passenger mutations, it is often challenging to assign the clinical relevance of specific mutations observed in patients. Currently, there are multiple databases and tools that provide in silico assessment for potential drivers; however, there is no comprehensive resource for mutations with functional characterization. Therefore, we created an expert-curated database of potentially actionable driver mutations for molecular pathologists to facilitate annotation of cancer genomic testing. We reviewed scientific literature to identify variants that have been functionally characterized in vitro or in vivo as driver mutations. We obtained the chromosome location and all possible nucleotide positions for each amino acid change and uploaded them to the Cancer Driver Log (CanDL) database with associated literature reference indicating functional driver evidence. In addition to a simple interface, the database allows users to download all or selected genes as a comma-separated values file for incorporation into their own analysis pipeline. Furthermore, the database includes a mechanism for third-party contributions to support updates for novel driver mutations. Overall, this freely available database will facilitate rapid annotation of cancer genomic testing in molecular pathology laboratories for mutations.

  13. Dynamics of action potential firing in electrically connected striatal fast-spiking interneurons

    PubMed Central

    Russo, Giovanni; Nieus, Thierry R.; Maggi, Silvia; Taverna, Stefano

    2013-01-01

    Fast-spiking interneurons (FSIs) play a central role in organizing the output of striatal neural circuits, yet functional interactions between these cells are still largely unknown. Here we investigated the interplay of action potential (AP) firing between electrically connected pairs of identified FSIs in mouse striatal slices. In addition to a loose coordination of firing activity mediated by membrane potential coupling, gap junctions (GJ) induced a frequency-dependent inhibition of spike discharge in coupled cells. At relatively low firing rates (2–20 Hz), some APs were tightly synchronized whereas others were inhibited. However, burst firing at intermediate frequencies (25–60 Hz) mostly induced spike inhibition, while at frequencies >50–60 Hz FSI pairs tended to synchronize. Spike silencing occurred even in the absence of GABAergic synapses or persisted after a complete block of GABAA receptors. Pharmacological suppression of presynaptic spike afterhyperpolarization (AHP) caused postsynaptic spikelets to become more prone to trigger spikes at near-threshold potentials, leading to a mostly synchronous firing activity. The complex pattern of functional coordination mediated by GJ endows FSIs with peculiar dynamic properties that may be critical in controlling striatal-dependent behavior. PMID:24294191

  14. [Adrenaline potentiates antiepileptic but not sedative action of diazepam in rats].

    PubMed

    Serdiuk, S E; Gmiro, V E

    2012-02-01

    Intramuscular (i.m.) administration ofdiazepam in a dose of 10 mg/kg and adrenaline in a dose of 0.2 mg/kg prevents generalized clonic-tonic pentylenetetrazol (PTZ) seizures in 75-80 % of rats, but only in 35-40 % of rats it prevents local clonic PTZ seizures. In the above mentioned dose, diazepam causes a strong sedation, but adrenaline does not cause a sedative effects. The combined administration of diazepam and adrenaline in threshold independently ineffective doses prevents both clonic-tonic and clonic PTZ seizures in 80 % of rats without a sedation development. The basis for mechanism of potentiation of anticonvulsant action of diazepam is the stimulation of gastric mucosa afferents by adrenaline. PMID:22650067

  15. Boron-doped nanocrystalline diamond microelectrode arrays monitor cardiac action potentials.

    PubMed

    Maybeck, Vanessa; Edgington, Robert; Bongrain, Alexandre; Welch, Joseph O; Scorsone, Emanuel; Bergonzo, Philippe; Jackman, Richard B; Offenhäusser, Andreas

    2014-02-01

    The expansion of diamond-based electronics in the area of biological interfacing has not been as thoroughly explored as applications in electrochemical sensing. However, the biocompatibility of diamond, large safe electrochemical window, stability, and tunable electronic properties provide opportunities to develop new devices for interfacing with electrogenic cells. Here, the fabrication of microelectrode arrays (MEAs) with boron-doped nanocrystalline diamond (BNCD) electrodes and their interfacing with cardiomyocyte-like HL-1 cells to detect cardiac action potentials are presented. A nonreductive means of structuring doped and undoped diamond on the same substrate is shown. The resulting BNCD electrodes show high stability under mechanical stress generated by the cells. It is shown that by fabricating the entire surface of the MEA with NCD, in patterns of conductive doped, and isolating undoped regions, signal detection may be improved up to four-fold over BNCD electrodes passivated with traditional isolators.

  16. Effect of intense sound exposure on cochlear microphonics and whole nerve action potential

    NASA Astrophysics Data System (ADS)

    Yamamura, K.; Yamamoto, N.; Kohyama, A.; Sawada, Y.; Ohno, H.; Saitoh, Y.

    1989-06-01

    An investigation was carried out to determine whether or not the critical band with Temporary Threshold Shift (TTS) is affected by exposure to high frequency sound. The function of the cochlea and the 8th nerve in guinea pigs was estimated by the intensity function and maximum output voltage of cochlear microphonics (CM) and by whole nerve action potential (Ap). Our results showed that both the intensity function and the maximum output voltage of CM and Ap decreased. Ap obtained at the test frequency higher, by half an octave, than the center frequency of the exposure noise was especially lowered. These results suggest that the critical band with TTS of both Ap and CM may be affected in exposure to high frequency sound.

  17. Action potentials occur spontaneously in squid giant axons with moderately alkaline intracellular pH.

    PubMed

    Clay, J R; Shrier, A

    2001-10-01

    This report demonstrates a novel finding from the classic giant axon preparation of the squid. Namely, the axon can be made to fire autonomously (spontaneously occurring action potentials) when the intracellular pH (pH(i)) was increased to about 7.7, or higher. (Physiological pH(i) is 7.3.) The frequency of firing was 33 Hz (T = 5 degrees ). No changes in frequency or in the voltage waveform itself were observed when pH(i) was increased from 7.7 up to 8.5. In other words, the effect has a threshold at a pH(i) of about 7.7. A mathematical model that is sufficient to mimic these results is provided using a modified version of the Clay (1998) description of the axonal ionic currents.

  18. Control and Plasticity of the Presynaptic Action Potential Waveform at Small CNS Nerve Terminals

    PubMed Central

    Hoppa, Michael B.; Gouzer, Geraldine; Armbruster, Moritz; Ryan, Timothy A.

    2014-01-01

    SUMMARY The steep dependence of exocytosis on Ca2+ entry at nerve terminals implies that voltage control of both Ca2+ channel opening and the driving force for Ca2+ entry are powerful levers in sculpting synaptic efficacy. Using fast, genetically encoded voltage indicators in dissociated primary neurons, we show that at small nerve terminals K+ channels constrain the peak voltage of the presynaptic action potential (APSYN) to values much lower than those at cell somas. This key APSYN property additionally shows adaptive plasticity: manipulations that increase presynaptic Ca2+ channel abundance and release probability result in a commensurate lowering of the APSYN peak and narrowing of the waveform, while manipulations that decrease presynaptic Ca2+ channel abundance do the opposite. This modulation is eliminated upon blockade of Kv3.1 and Kv1 channels. Our studies thus reveal that adaptive plasticity in the APSYN waveform serves as an important regulator of synaptic function. PMID:25447742

  19. Mechanism of Action and Clinical Potential of Fingolimod for the Treatment of Stroke.

    PubMed

    Li, Wentao; Xu, Haoliang; Testai, Fernando D

    2016-01-01

    Fingolimod (FTY720) is an orally bio-available immunomodulatory drug currently approved by the FDA for the treatment of multiple sclerosis. Currently, there is a significant interest in the potential benefits of FTY720 on stroke outcomes. FTY720 and the sphingolipid signaling pathway it modulates has a ubiquitous presence in the central nervous system and both rodent models and pilot clinical trials seem to indicate that the drug may improve overall functional recovery in different stroke subtypes. Although the precise mechanisms behind these beneficial effects are yet unclear, there is evidence that FTY720 has a role in regulating cerebrovascular responses, blood-brain barrier permeability, and cell survival in the event of cerebrovascular insult. In this article, we critically review the data obtained from the latest laboratory findings and clinical trials involving both ischemic and hemorrhagic stroke, and attempt to form a cohesive picture of FTY720's mechanisms of action in stroke. PMID:27617002

  20. Effect of Cardiac Tissue Anisotropy on Three-Dimensional Electrical Action Potential Propagation

    NASA Astrophysics Data System (ADS)

    He, Zhi Zhu; Liu, Jing

    A three-dimensional (3D) electrical action potential propagation model is developed to characterize the integrated effect of cardiac tissue structure using a homogenous function with a spatial inhomogeneity. This method may be more effective for bridging the gap between computational models and experimental data for cardiac tissue anisotropy. A generalized 3D eikonal relation considering anisotropy and a self-similar evolution solution of such a relation are derived to identify the effect of anisotropy and predict the anisotropy-induced electrical wave propagation instabilities. Furthermore, the phase field equation is introduced to obtain the complex three-dimensional numerical solution of the new correlation. The present results are expected to be valuable for better understanding the physiological behavior of cardiac tissues.

  1. Mechanism of Action and Clinical Potential of Fingolimod for the Treatment of Stroke

    PubMed Central

    Li, Wentao; Xu, Haoliang; Testai, Fernando D.

    2016-01-01

    Fingolimod (FTY720) is an orally bio-available immunomodulatory drug currently approved by the FDA for the treatment of multiple sclerosis. Currently, there is a significant interest in the potential benefits of FTY720 on stroke outcomes. FTY720 and the sphingolipid signaling pathway it modulates has a ubiquitous presence in the central nervous system and both rodent models and pilot clinical trials seem to indicate that the drug may improve overall functional recovery in different stroke subtypes. Although the precise mechanisms behind these beneficial effects are yet unclear, there is evidence that FTY720 has a role in regulating cerebrovascular responses, blood–brain barrier permeability, and cell survival in the event of cerebrovascular insult. In this article, we critically review the data obtained from the latest laboratory findings and clinical trials involving both ischemic and hemorrhagic stroke, and attempt to form a cohesive picture of FTY720’s mechanisms of action in stroke.

  2. Anthropomorphizing the Mouse Cardiac Action Potential via a Novel Dynamic Clamp Method

    PubMed Central

    Ahrens-Nicklas, Rebecca C.; Christini, David J.

    2009-01-01

    Abstract Interspecies differences can limit the translational value of excitable cells isolated from model organisms. It can be difficult to extrapolate from a drug- or mutation-induced phenotype in mice to human pathophysiology because mouse and human cardiac electrodynamics differ greatly. We present a hybrid computational-experimental technique, the cell-type transforming clamp, which is designed to overcome such differences by using a calculated compensatory current to convert the macroscopic electrical behavior of an isolated cell into that of a different cell type. We demonstrate the technique's utility by evaluating drug arrhythmogenicity in murine cardiomyocytes that are transformed to behave like human myocytes. Whereas we use the cell-type transforming clamp in this work to convert between mouse and human electrodynamics, the technique could be adapted to convert between the action potential morphologies of any two cell types of interest. PMID:19917221

  3. Enhanced Action Potential Passage Through the Node of Ranvier of Myelinated Axons via Proton Hopping.

    PubMed

    Kier, Lemont; Hall, Lowell; Tombes, Robert M

    2015-01-01

    Nerve impulses travel along myelinated axons as much as 300-fold faster than they do along unmyelinated axons. Myelination is essential for normal nervous system behavior in vertebrates as illustrated by leukodystrophies, such as amyotrophic lateral sclerosis (ALS) or multiple sclerosis (MS), where myelin is degenerated or damaged. The increased conduction velocity that occurs in myelinated axons is dependent on gaps in the myelin called Nodes of Ranvier that are enriched in ion channels. These Nodes are separated by long stretches of myelin insulation where no transmembrane ion conductance occurs. It is believed that the action potential jumps or skips between nodes, conserving its information content, while maintaining its speed. In this study, a model is presented that implicates Nodes of Ranvier as responsible for regenerating the proton hopping that is responsible for nerve impulse conductance in myelinated axons.

  4. Mechanism of Action and Clinical Potential of Fingolimod for the Treatment of Stroke

    PubMed Central

    Li, Wentao; Xu, Haoliang; Testai, Fernando D.

    2016-01-01

    Fingolimod (FTY720) is an orally bio-available immunomodulatory drug currently approved by the FDA for the treatment of multiple sclerosis. Currently, there is a significant interest in the potential benefits of FTY720 on stroke outcomes. FTY720 and the sphingolipid signaling pathway it modulates has a ubiquitous presence in the central nervous system and both rodent models and pilot clinical trials seem to indicate that the drug may improve overall functional recovery in different stroke subtypes. Although the precise mechanisms behind these beneficial effects are yet unclear, there is evidence that FTY720 has a role in regulating cerebrovascular responses, blood–brain barrier permeability, and cell survival in the event of cerebrovascular insult. In this article, we critically review the data obtained from the latest laboratory findings and clinical trials involving both ischemic and hemorrhagic stroke, and attempt to form a cohesive picture of FTY720’s mechanisms of action in stroke. PMID:27617002

  5. Effects of lead acetate on guinea pig - cochear microphonics, action potential, and motor nerve conduction velocity

    SciTech Connect

    Yamamura, K.; Maehara, N.; Terayama, K.; Ueno, N.; Kohyama, A.; Sawada, Y.; Kishi, R.

    1987-04-01

    Segmental demyelination and axonal degeneration of motor nerves induced by lead exposure is well known in man, and animals. The effect of lead acetate exposure to man may involve the cranial nerves, since vertigo and sensory neuronal deafness have been reported among lead workers. However, there are few reports concerning the dose-effects of lead acetate both to the peripheral nerve and the cranial VII nerve with measurement of blood lead concentration. The authors investigated the effects of lead acetate to the cochlea and the VIII nerve using CM (cochlear microphonics) and AP (action potential) of the guinea pigs. The effects of lead acetate to the sciatic nerve were measured by MCV of the sciatic nerve with measurement of blood lead concentration.

  6. Single unit action potentials in humans and the effect of seizure activity

    PubMed Central

    Merricks, Edward M.; Smith, Elliot H.; McKhann, Guy M.; Goodman, Robert R.; Bateman, Lisa M.; Emerson, Ronald G.

    2015-01-01

    Spike-sorting algorithms have been used to identify the firing patterns of isolated neurons (‘single units’) from implanted electrode recordings in patients undergoing assessment for epilepsy surgery, but we do not know their potential for providing helpful clinical information. It is important therefore to characterize both the stability of these recordings and also their context. A critical consideration is where the units are located with respect to the focus of the pathology. Recent analyses of neuronal spiking activity, recorded over extended spatial areas using microelectrode arrays, have demonstrated the importance of considering seizure activity in terms of two distinct spatial territories: the ictal core and penumbral territories. The pathological information in these two areas, however, is likely to be very different. We investigated, therefore, whether units could be followed reliably over prolonged periods of times in these two areas, including during seizure epochs. We isolated unit recordings from several hundred neurons from four patients undergoing video-telemetry monitoring for surgical evaluation of focal neocortical epilepsies. Unit stability could last in excess of 40 h, and across multiple seizures. A key finding was that in the penumbra, spike stereotypy was maintained even during the seizure. There was a net tendency towards increased penumbral firing during the seizure, although only a minority of units (10–20%) showed significant changes over the baseline period, and notably, these also included neurons showing significant reductions in firing. In contrast, within the ictal core territories, regions characterized by intense hypersynchronous multi-unit firing, our spike sorting algorithms failed as the units were incorporated into the seizure activity. No spike sorting was possible from that moment until the end of the seizure, but recovery of the spike shape was rapid following seizure termination: some units reappeared within tens of

  7. Mannan Oligosaccharides in Nursery Pig Nutrition and Their Potential Mode of Action

    PubMed Central

    Halas, Veronika; Nochta, Imre

    2012-01-01

    Simple Summary The aim of the paper is to provide a review of mannan oligosaccharide products in relation to their growth promoting effect and mode of action. Mannan oligosaccharide products maintain intestinal integrity and the digestive and absorptive function of the gut in the post-weaning period in pigs and enhance disease resistance by promoting antigen presentation. We find that dietary supplementation has growth promoting effects in pigs kept in a poor hygienic environment, while the positive effect of MOS is not observed in healthy pig herds with high hygienic standards. Abstract Mannan oligosaccharides (MOSs) are often referred to as one of the potential alternatives for antimicrobial growth promoters. The aim of the paper is to provide a review of mannan oligosaccharide products in relation to their growth promoting effect and mode of action based on the latest publications. We discuss the dietary impact of MOSs on (1) microbial changes, (2) morphological changes of gut tissue and digestibility of nutrients, and (3) immune response of pigs after weaning. Dietary MOSs maintain the intestinal integrity and the digestive and absorptive function of the gut in the post-weaning period. Recent results suggest that MOS enhances the disease resistance in swine by promoting antigen presentation facilitating thereby the shift from an innate to an adaptive immune response. Accordingly, dietary MOS supplementation has a potential growth promoting effect in pigs kept in a poor hygienic environment, while the positive effect of MOS is not observed in healthy pig herds with high hygienic standards that are able to maintain a high growth rate after weaning. PMID:26486920

  8. Glutamine and glutamate limit the shortening of action potential duration in anoxia-challenged rabbit hearts

    PubMed Central

    Drake, Kenneth J; Shotwell, Matthew S; Wikswo, John P; Sidorov, Veniamin Y

    2015-01-01

    In clinical conditions, amino acid supplementation is applied to improve contractile function, minimize ischemia/reperfusion injury, and facilitate postoperative recovery. It has been shown that glutamine enhances myocardial ATP/APD (action potential duration) and glutathione/oxidized glutathione ratios, and can increase hexosamine biosynthesis pathway flux, which is believed to play a role in cardioprotection. Here, we studied the effect of glutamine and glutamate on electrical activity in Langendorff-perfused rabbit hearts. The hearts were supplied by Tyrode's media with or without 2.5 mmol/L glutamine and 150 μmol/L glutamate, and exposed to two 6-min anoxias with 20-min recovery in between. Change in APD was detected using a monophasic action potential probe. A nonlinear mixed-effects regression technique was used to evaluate the effect of amino acids on APD over the experiment. Typically, the dynamic of APD change encompasses three phases: short transient increase (more prominent in the first episode), slow decrease, and fast increase (starting with the beginning of recovery). The effect of both anoxic challenge and glutamine/glutamate was cumulative, being more pronounced in the second anoxia. The amino acids' protective effect became largest by the end of anoxia – 20.0% (18.9, 95% CI: [2.6 ms, 35.1 ms]), during the first anoxia and 36.6% (27.1, 95% CI: [7.7 ms, 46.6 ms]), during the second. Following the second anoxia, APD difference between control and supplemented hearts progressively increased, attaining 10.8% (13.6, 95% CI: [4.1 ms, 23.1 ms]) at the experiments' end. Our data reveal APD stabilizing and suggest an antiarrhythmic capacity of amino acid supplementation in anoxic/ischemic conditions. PMID:26333831

  9. Parallel Information Processing in Motor Systems: Intracerebral Recordings of Readiness Potential and CNV in Human Subjects

    PubMed Central

    Rektor, Ivan

    2000-01-01

    We performed intracerebral recordings of Readiness Potential (RP) and Contingent Negative Variation (CNV) with simple repetitive distal limb movement in candidates for epilepsy surgery. In 26 patients (in Paris), depth electrodes were located in various cortical structures; in eight patients (in Brno), in the basal ganglia and the cortex. RPs were displayed in the conteral primary motor cortex, conteral somato-sensory cortex, and bilaterally in the SMA and the caudal part of the anterior cingulate cortices. CNVs were recorded in the same cortical regiom as the RP, as well as in the ipsilateral primary motor cortex, and bilaterally in the premotor fronto-lateral, parietal superior, and middle temporal regions. In the basal ganglia, the RP was recorded in the putamen in six of seven patients, and in the head of the caudate nucleus and the pallidum in the only patient with electrodes in these recording sites. We suggest that our results are consistent with a long-lasting, simultaneous activation of cortical and subcortical structures, before and during self-paced and stimulus-triggered movements. The particular regiom that are simultaneously active may be determined by the task context. PMID:10709215

  10. Slow excitatory synaptic potentials recorded from neurones of guinea-pig submucous plexus.

    PubMed Central

    Surprenant, A

    1984-01-01

    Intracellular recordings made from neurones of guinea-pig submucous plexus revealed three types of synaptic input: cholinergic excitatory synaptic potentials (fast e.p.s.p.s) of 50-80 ms duration, inhibitory synaptic potentials (i.p.s.p.s) of 1 s duration, and non-cholinergic, non-adrenergic slow e.p.s.p.s which lasted for 15-20 s. A single stimulus was sufficient to elicit the slow e.p.s.p. in all neurones in which this synaptic input was present. Slow e.p.s.p.s were recorded in those neurones which also displayed i.p.s.p.s. Both the i.p.s.p. and the slow e.p.s.p. appeared in an all-or-none fashion and were not affected by alterations in the stimulus strength. The inhibitory as well as the slow excitatory synaptic potentials reversed close to the K+ equilibrium potential, indicating that the i.p.s.p. is due to an activation of K+ conductance while the slow e.p.s.p. is due to its inactivation. Evidence is presented which suggests the slow e.p.s.p. may be generated at a synapse located some distance from the soma, presumably at a dendritic location. Only those cells which showed slow e.p.s.p.s responded to substance P with a depolarization which mimicked the slow e.p.s.p. PMID:6205143

  11. 48 CFR 1852.245-79 - Records and disposition reports for Government property with potential historic or significant...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... reports for Government property with potential historic or significant real value. 1852.245-79 Section... Records and disposition reports for Government property with potential historic or significant real value. As prescribed in 1845.107-70(j), insert the following clause. Records and Disposition Reports...

  12. 48 CFR 1852.245-79 - Records and disposition reports for Government property with potential historic or significant...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... reports for Government property with potential historic or significant real value. 1852.245-79 Section... Records and disposition reports for Government property with potential historic or significant real value. As prescribed in 1845.107-70(j), insert the following clause. Records and Disposition Reports...

  13. 48 CFR 1852.245-79 - Records and disposition reports for Government property with potential historic or significant...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... reports for Government property with potential historic or significant real value. 1852.245-79 Section... Records and disposition reports for Government property with potential historic or significant real value. As prescribed in 1845.107-70(j), insert the following clause. Records and Disposition Reports...

  14. Electrophysiological evaluation of nerve function in inferior alveolar nerve injury: relationship between nerve action potentials and histomorphometric observations.

    PubMed

    Murayama, M; Sasaki, K; Shibahara, T

    2015-12-01

    The objective of this study was to improve the accuracy of diagnosis of inferior alveolar nerve (IAN) injury by determining degrees of nerve disturbance using the sensory nerve action potential (SNAP) and sensory nerve conduction velocity (SCV). Crush and partial and complete nerve amputation injuries were applied to the IAN of rabbits, then SNAPs and histomorphometric observations were recorded at 1, 5, and 10 weeks. For crush injury, most nerves were smaller in diameter at 5 weeks than at 1 week, however after 10 weeks, extensive nerve regeneration was observed. The SNAP showed a decrease in SCV at weeks 1 and 5, followed by an increase at week 10. For partial nerve amputation, small to medium-sized nerve fibres were observed at weeks 1 and 5, then larger nerves were seen at week 10. Minimal changes in SCV were observed at weeks 1 and 5, however SCV increased at week 10. For complete nerve amputation, nerve fibres were sparse at week 1, but gradual nerve regeneration was observed at weeks 5 and 10. SNAPs were detectable from week 10, however the SCV was extremely low. This study showed SCV to be an effective factor in the evaluation of nerve injury and regeneration. PMID:26433750

  15. Superfund Record of Decision (EPA Region 2): Endicott Village Wellfield, Broome County, Endicott, NY. (Second remedial action), March 1991

    SciTech Connect

    Not Available

    1991-03-29

    The Endicott Village Well Field site consists of a municipal well, the Ranney Well, and its zone of influence, and is located in Endicott, Broome County, New York. Ground water pumped from the well serves as the primary drinking water source for the area. Land use in the area of concern includes a golf course, a sewage treatment plant, an airport, a few industrial tracts, two inactive landfills, and the Endicott Landfill. A 1987 Record of Decision (ROD) provided for installation of a packed column air stripper to treat water from the Ranney Well. In 1988, EPA identified the landfilled materials in the Endicott Landfill as the probable source of ground water contamination. The primary contaminants of concern affecting the ground water are VOCs including benzene, PCE, and TCE. The selected remedial action for this site includes upgrading the existing purge well system by installing an additional purge well between the landfill and the Ranney Well; pumping ground water from the purge well and discharging the water onsite to the sewage treatment plant, or treating the water prior to discharge and monitoring purge well water. The estimated present worth cost for this remedial action, assuming that no treatment will be required is $376,000.

  16. Superfund Record of Decision (EPA Region 4): Interstate Lead (ILCO), Jefferson County, Leeds, AL. (First remedial action), September 1991

    SciTech Connect

    Not Available

    1991-09-30

    The Interstate Lead (ILCO) site consists of seven subsites located in and around the City of Leeds, Jefferson County, Alabama. The site includes an 8.5-acre active lead smelting facility and its parking lot, a service station; a manufacturing company; a church parking lot; a 1.4-acre residential property; a municipal landfill; and a restaurant. Land use in the area is mixed industrial and residential. Parts of the ILCO site overlie the Fort Payne Chert and Ordovician Undifferentiated aquifers, both of which are sources of drinking water for the City of Leeds. State investigations in 1983 and 1984, and a number of subsequent EPA investigations, identified metal contamination in onsite soil, sediment, ground water, surface water, and air. In 1984, EPA conducted an emergency removal action at the church subsite, and removed and disposed of approximately 5,000 cubic yards of waste material and soil offsite. The Record of Decision (ROD) provides a final remedy for soil contamination at all of the subsites except the main facility portion of subsite No. 1, and ground water contamination at four of the subsites as Operable Unit 1. The primary contaminants of concern affecting the soil, sediment, debris, and ground water are metals including arsenic, chromium, and lead. The selected source control remedial action is included.

  17. Superfund Record of Decision (EPA Region 5): Acme Solvent Reclaiming, Winnebago County, IL. (Second remedial action), December 1990

    SciTech Connect

    Not Available

    1990-12-31

    The 20-acre Acme Solvent Reclaiming site is a former industrial disposal site in Winnebago County, Illinois. Land use in the area is mixed agricultural and residential. From 1960 to 1973, Acme Solvent Reclaiming disposed of paints, oils, and still bottoms onsite from its solvent reclamation plant. Wastes were dumped into depressions created from previous quarrying and landscaping operations, and empty drums also were stored onsite. State investigations in 1981 identified elevated levels of chlorinated organic compounds in ground water. A 1985 Record of Decision (ROD) provided for excavation and onsite incineration of 26,000 cubic yards of contaminated soil and sludge, supplying home carbon treatment units to affected residences, and further study of ground water and bedrock. During illegal removal actions taken by PRPs in 1986, 40,000 tons of soil and sludge were removed from the site. The selected remedial action for the site includes excavating and treating 6,000 tons of soil and sludge from two waste areas, using low-temperature thermal stripping; treating residuals using solidification, if necessary, followed by onsite or offsite disposal; treating the remaining contaminated soil and possibly bedrock using soil/bedrock vapor extraction; consolidating the remaining contaminated soil onsite with any treatment residuals, followed by capping; incinerating offsite 8,000 gallons of liquids and sludge from two remaining tanks, and disposing of the tanks offsite; providing an alternate water supply to residents with contaminated wells; pumping and onsite treatment of VOC-contaminated ground water.

  18. Superfund Record of Decision (EPA Region 5): Laskin/Poplar Oil site, Ashtabula, Ohio, (second remedial action), September 1987

    SciTech Connect

    Not Available

    1987-09-30

    The Laskin/Poplar Oil site, occupying approximately 9 acres, is located in Ashtabula County, Ohio. Approximately 80 years ago a greenhouse operation began. Boilers were installed approximately 30 years ago to heat the greenhouses. During the 1960's, tanks were installed to hold waste oil to fire the boilers. The oils were not analyzed prior to acceptance and oil containing PCBs and other hazardous constituents were accepted. As the greenhouse business deteriorated, the owner began collecting, reselling, and disposing of waste oils containing PCBs and other hazardous constituents. Several emergency actions were taken after the site was discovered and during critical periods such as mudslides and flooding. Between July and October 1982, a planned removal action removed 302,000 gallons of waste oil, solidified 205,000 gallons of sludge and treated and released 430,000 gallons of contaminated water. An August 1984 Record of Decision addressed the incineration of contaminated water, oil above 50 ppm PCB, and oil below 50 ppm PCB.

  19. Extreme Weather Events and ENSO Recorded in Speleothems: Potential for Detailed Paleoclimate and Paleoecological Reconstructions

    NASA Astrophysics Data System (ADS)

    Frappier, A.; Sahagian, D.

    2001-12-01

    Speleothems are carbonate mineral deposits formed in caves by precipitation from rainwater that has percolated through soils and limestone bedrock. They are particularly useful for paleoclimate studies because they are easily collected and preserve detailed evidence of a variety of environmental changes. Analysis and interpretation of long-term speleothem records at interannual to century-scale has been an established technique, but recent work has demonstrated a variety of new proxy data available with more detailed sampling. New microsampling techniques (20-40 micron samples) now make it possible to analyze the stable isotopic composition of tropical stalagmites (~1mm/yr growth rates) at monthly to weekly temporal resolution. The modern record presented here demonstrates the ability of speleothems to act as in situ "weather stations", simultaneously recording changes in a variety of environmental factors through time. Recent speleothem calcite deposits from Belize yielded remarkable climate- and weather- recording ability. The stalagmite d13C record correlates strongly with the Southern Oscillation Index, a primary measure of El Nino and La Nina events. Annual growth band thickness is inversely correlated to annual precipitation. Preliminary analysis suggests that transient extreme events, such as tropical cyclones, also leave a recognizable imprint on the d18O record. Trace element and C-14 analysis can be used to distinguish between the contributions of biospheric and soil isotopic partitioning variability and abiotic factors derived from bedrock dissolution. To gain a more full understanding of the factors controlling complex depositional systems such as speleothems, modern calibration is crucial. Combining stable isotope and trace element analysis of speleothem calcite at high resolution enables a more complete characterization of variability in the karst biogeochemical system. Speleological archives have great potential to yield important inter-annual to sub

  20. Atmospheric composition as a potential taphonomic filter for the fossil leaf record

    NASA Astrophysics Data System (ADS)

    Bacon, Karen; Haworth, Matthew; McElwain, Jennifer

    2016-04-01

    Controlled environment chambers provide a unique opportunity to investigate plant responses to simulated palaeoatmospheric compositions that reflect previous periods of Earth history. One potentially important role of atmospheric composition that has not been considered in detail, is how it may affect plant preservation in the fossil record. Previous work has shown that plants, particularly angiosperms, have a tendency to increase leaf mass per area (LMA) when grown in above-ambient CO2. We tested the response of six nearest living equivalent taxa for Mesozoic floras to a range of simulated Mesozoic palaeoatmospheric treatments in controlled environment chambers. Exposure to high CO2 (~1,500 ppm) led to a statistically significant (p < 0.001) increase in LMA in four out of 6 species and exposure to high CO2 and low O2 (~13%) led to a statistically significant (p < 0.001) increase in LMA in all six species. These findings suggest that atmospheric composition has a highly significant impact on LMA. If this is also the case in fossil floras, then this suggests that atmospheric composition may influence leaf preservation potential in the fossil record. Based on these results, we put forward the hypothesis that atmospheric composition is an important taphonomic filter of the fossil leaf record. Further research is now required to test the significance of atmospheric composition versus other well-known taphonomic filters.

  1. Statistical Modeling and Analysis of Laser-Evoked Potentials of Electrocorticogram Recordings from Awake Humans

    PubMed Central

    Chen, Zhe; Ohara, Shinji; Cao, Jianting; Vialatte, François; Lenz, Fred A.; Cichocki, Andrzej

    2007-01-01

    This article is devoted to statistical modeling and analysis of electrocorticogram (ECoG) signals induced by painful cutaneous laser stimuli, which were recorded from implanted electrodes in awake humans. Specifically, with statistical tools of factor analysis and independent component analysis, the pain-induced laser-evoked potentials (LEPs) were extracted and investigated under different controlled conditions. With the help of wavelet analysis, quantitative and qualitative analyses were conducted regarding the LEPs' attributes of power, amplitude, and latency, in both averaging and single-trial experiments. Statistical hypothesis tests were also applied in various experimental setups. Experimental results reported herein also confirm previous findings in the neurophysiology literature. In addition, single-trial analysis has also revealed many new observations that might be interesting to the neuroscientists or clinical neurophysiologists. These promising results show convincing validation that advanced signal processing and statistical analysis may open new avenues for future studies of such ECoG or other relevant biomedical recordings. PMID:18369410

  2. Slow and spike potentials recorded from retinula cells of the honeybee drone in response to light.

    PubMed

    Baumann, F

    1968-12-01

    Responses to light recorded by means of intracellular microelectrodes in isolated heads kept in oxygenated Ringer solution consist of a slow depolarization. Light adaptation increases the rates of depolarization and repolarization and decreases the amplitude of the response. Qualitatively these changes are similar to those observed in Limulus by Fuortes and Hodgkin. They are rapidly reversible during dark adaptation. In retinula cells of the drone eye a large single spike is recorded superimposed on the rising phase of the slow potential. The spike is a regenerative phenomenon; it can be triggered with electric current and is markedly reduced, sometimes abolished by tetrodotoxin. In rare cases cells were found which responded to light with a train of spikes. This behavior was only found under "unusual" experimental conditions; i.e., towards the end of a long experiment, during impalement, or at the beginning of responses to steps of strongly light-adapted preparations.

  3. Modulation of hERG potassium channel gating normalizes action potential duration prolonged by dysfunctional KCNQ1 potassium channel

    PubMed Central

    Zhang, Hongkang; Zou, Beiyan; Yu, Haibo; Moretti, Alessandra; Wang, Xiaoying; Yan, Wei; Babcock, Joseph J.; Bellin, Milena; McManus, Owen B.; Tomaselli, Gordon; Nan, Fajun; Laugwitz, Karl-Ludwig; Li, Min

    2012-01-01

    Long QT syndrome (LQTS) is a genetic disease characterized by a prolonged QT interval in an electrocardiogram (ECG), leading to higher risk of sudden cardiac death. Among the 12 identified genes causal to heritable LQTS, ∼90% of affected individuals harbor mutations in either KCNQ1 or human ether-a-go-go related genes (hERG), which encode two repolarizing potassium currents known as IKs and IKr. The ability to quantitatively assess contributions of different current components is therefore important for investigating disease phenotypes and testing effectiveness of pharmacological modulation. Here we report a quantitative analysis by simulating cardiac action potentials of cultured human cardiomyocytes to match the experimental waveforms of both healthy control and LQT syndrome type 1 (LQT1) action potentials. The quantitative evaluation suggests that elevation of IKr by reducing voltage sensitivity of inactivation, not via slowing of deactivation, could more effectively restore normal QT duration if IKs is reduced. Using a unique specific chemical activator for IKr that has a primary effect of causing a right shift of V1/2 for inactivation, we then examined the duration changes of autonomous action potentials from differentiated human cardiomyocytes. Indeed, this activator causes dose-dependent shortening of the action potential durations and is able to normalize action potentials of cells of patients with LQT1. In contrast, an IKr chemical activator of primary effects in slowing channel deactivation was not effective in modulating action potential durations. Our studies provide both the theoretical basis and experimental support for compensatory normalization of action potential duration by a pharmacological agent. PMID:22745159

  4. A calcium-activated sodium conductance produces a long-duration action potential in the egg of a nemertean worm.

    PubMed Central

    Jaffe, L A; Kado, R T; Kline, D

    1986-01-01

    1. The egg of the nemertean worm Cerebratulus lacteus produced an action potential having a duration of about 9 min. We investigated the ionic conductances which accounted for this long-duration action potential. 2. The peak of the action potential was about +50 mV and depended on extracellular Ca2+, while the plateau potential was about +25 mV and depended on extracellular Na+. 3. Under voltage-clamp conditions, depolarization produced two temporally separate inward currents: a fast current which reached a peak at about 10 ms, and a slow current which took up to 1 min to reach its peak and lasted for several min. 4. The fast current was independent of extracellular Na+, but was blocked by removal of extracellular Ca2+. 5. The slow current was not seen when extracellular Na+ was replaced by choline+ or K+. 6. The slow current did not develop in Ca2+-free sea water, and was reduced to about half if Ca2+ was removed after the current had been initiated. 7. Microinjection of EGTA blocked the slow current, and reduced the action potential duration to about 1 min. 8. We concluded that a voltage-activated Ca2+ conductance produced the peak of the action potential, while a Ca2+-activated Na+ conductance produced its plateau. PMID:2442351

  5. Corrective Action Investigation Plan for Corrective Action Unit 529: Area 25 Contaminated Materials, Nevada Test Site, Nevada, Rev. 0, Including Record of Technical Change No. 1

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-02-26

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 529, Area 25 Contaminated Materials, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. CAU 529 consists of one Corrective Action Site (25-23-17). For the purpose of this investigation, the Corrective Action Site has been divided into nine parcels based on the separate and distinct releases. A conceptual site model was developed for each parcel to address the translocation of contaminants from each release. The results of this investigation will be used to support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  6. Cardiac action potential duration and contractility in the intact dog heart.

    PubMed

    Drake-Holland, A J; Noble, M I; Pieterse, M; Schouten, V J; Seed, W A; ter Keurs, H E; Wohlfart, B

    1983-12-01

    The maximum rate of rise of left ventricular pressure (DP) and action potential duration (a.p.d.) were measured in closed-chest anaesthetized dogs with atrioventricular dissociation and beta-adrenergic blockade. Right ventricular stimulation was carried out with protocols consisting of a conditioning 'priming' period and a test period. When a single test stimulus was introduced at varying intervals after the priming period, DP was found to be maximal at 800-1000 ms. With this single test stimulus fixed at the optimum, DP was found to be a variable inverse function of the a.p.d. of the same beat; no positive correlation could be found between DP and a.p.d. When a second test stimulus at the optimum interval was introduced after the first, the DP (DP2) was found to be strongly dependent on that elicited by the first test stimulus (DP1); the relationship was positive, linear, independent of the method used to vary DP, and independent of whether DP1 was depressed or potentiated. The slope of the relationship was less than 1.0 and the line passed through the point where DP2 = DP1; this is the point of continuous stimulation at the optimum interval in a steady state. This result is consistent with the hypothesis that the coefficient relating DP1 to DP2, at constant a.p.d. of the first test pulse (AP1), is an index of the proportion of the activator of contraction stored during relaxation of test beat 1 which is released again on beat 2. In order to test the hypothesis that the remaining contractility depended on the action potential of test beat 1, AP1 was varied by changing the intervals between the priming stimuli. In order to determine the relationship between DP2 and AP1 it was necessary to carry out multiple regression analysis because DP2 was already known to be strongly dependent on DP1 (point 3 above), i.e. DP2 = BDP(DP1) + BAP(AP1 - D). This analysis yielded highly significant positive values for the coefficients BDP and BAP. This result is compatible with the

  7. Analogue modulation of back-propagating action potentials enables dendritic hybrid signalling

    PubMed Central

    Brunner, János; Szabadics, János

    2016-01-01

    We report that back-propagating action potentials (bAPs) are not simply digital feedback signals in dendrites but also carry analogue information about the overall state of neurons. Analogue information about the somatic membrane potential within a physiological range (from −78 to −64 mV) is retained by bAPs of dentate gyrus granule cells as different repolarization speeds in proximal dendrites and as different peak amplitudes in distal regions. These location-dependent waveform changes are reflected by local calcium influx, leading to proximal enhancement and distal attenuation during somatic hyperpolarization. The functional link between these retention and readout mechanisms of the analogue content of bAPs critically depends on high-voltage-activated, inactivating calcium channels. The hybrid bAP and calcium mechanisms report the phase of physiological somatic voltage fluctuations and modulate long-term synaptic plasticity in distal dendrites. Thus, bAPs are hybrid signals that relay somatic analogue information, which is detected by the dendrites in a location-dependent manner. PMID:27703164

  8. Compound Muscle Action Potential and Motor Function in Children with Spinal Muscular Atrophy

    PubMed Central

    Lewelt, Aga J.; Krosschell, Kristin J.; Scott, Charles; Sakonju, Ai; Kissel, John T.; Crawford, Thomas O.; Acsadi, Gyula; D'Anjou, Guy; Elsheikh, Bakri; Reyna, Sandra P.; Schroth, Mary K.; Maczulski, Jo Anne; Stoddard, Gregory J.; Elovic, Elie; Swoboda, Kathryn J.

    2010-01-01

    Introduction Reliable outcome measures that reflect the underlying disease process and correlate with motor function in children with SMA are needed for clinical trials. Methods Maximum ulnar compound muscle action potential (CMAP) data were collected at 2 visits over a 4–6 week period in children with SMA types II and III, ages 2–17 years old, at 4 academic centers. Primary functional outcome measures included the Modified Hammersmith Functional Motor Scale (MHFMS) and MHFMS-Extend. Results CMAP negative peak amplitude and area showed excellent discrimination between the ambulatory and non-ambulatory SMA cohorts (ROC=0.88). CMAP had excellent test-retest reliability (ICC=0.96–0.97, n=64) and moderate to strong correlation with the MHFMS and MHFMS-Extend (r=0.61–0.73, n=68, p<0.001). Discussion Maximum ulnar CMAP amplitude and area is a feasible, valid and reliable outcome measure for use in pediatric multicenter clinical trials in SMA. CMAP correlates well with motor function and has potential value as a relevant surrogate for disease status. PMID:20737553

  9. Calcium Transients Closely Reflect Prolonged Action Potentials in iPSC Models of Inherited Cardiac Arrhythmia

    PubMed Central

    Spencer, C. Ian; Baba, Shiro; Nakamura, Kenta; Hua, Ethan A.; Sears, Marie A.F.; Fu, Chi-cheng; Zhang, Jianhua; Balijepalli, Sadguna; Tomoda, Kiichiro; Hayashi, Yohei; Lizarraga, Paweena; Wojciak, Julianne; Scheinman, Melvin M.; Aalto-Setälä, Katriina; Makielski, Jonathan C.; January, Craig T.; Healy, Kevin E.; Kamp, Timothy J.; Yamanaka, Shinya; Conklin, Bruce R.

    2014-01-01

    Summary Long-QT syndrome mutations can cause syncope and sudden death by prolonging the cardiac action potential (AP). Ion channels affected by mutations are various, and the influences of cellular calcium cycling on LQTS cardiac events are unknown. To better understand LQTS arrhythmias, we performed current-clamp and intracellular calcium ([Ca2+]i) measurements on cardiomyocytes differentiated from patient-derived induced pluripotent stem cells (iPS-CM). In myocytes carrying an LQT2 mutation (HERG-A422T), APs and [Ca2+]i transients were prolonged in parallel. APs were abbreviated by nifedipine exposure and further lengthened upon releasing intracellularly stored Ca2+. Validating this model, control iPS-CM treated with HERG-blocking drugs recapitulated the LQT2 phenotype. In LQT3 iPS-CM, expressing NaV1.5-N406K, APs and [Ca2+]i transients were markedly prolonged. AP prolongation was sensitive to tetrodotoxin and to inhibiting Na+-Ca2+ exchange. These results suggest that LQTS mutations act partly on cytosolic Ca2+ cycling, potentially providing a basis for functionally targeted interventions regardless of the specific mutation site. PMID:25254341

  10. Decoding spoken words using local field potentials recorded from the cortical surface

    NASA Astrophysics Data System (ADS)

    Kellis, Spencer; Miller, Kai; Thomson, Kyle; Brown, Richard; House, Paul; Greger, Bradley

    2010-10-01

    Pathological conditions such as amyotrophic lateral sclerosis or damage to the brainstem can leave patients severely paralyzed but fully aware, in a condition known as 'locked-in syndrome'. Communication in this state is often reduced to selecting individual letters or words by arduous residual movements. More intuitive and rapid communication may be restored by directly interfacing with language areas of the cerebral cortex. We used a grid of closely spaced, nonpenetrating micro-electrodes to record local field potentials (LFPs) from the surface of face motor cortex and Wernicke's area. From these LFPs we were successful in classifying a small set of words on a trial-by-trial basis at levels well above chance. We found that the pattern of electrodes with the highest accuracy changed for each word, which supports the idea that closely spaced micro-electrodes are capable of capturing neural signals from independent neural processing assemblies. These results further support using cortical surface potentials (electrocorticography) in brain-computer interfaces. These results also show that LFPs recorded from the cortical surface (micro-electrocorticography) of language areas can be used to classify speech-related cortical rhythms and potentially restore communication to locked-in patients.

  11. Superfund Record of Decision (EPA Region 4): USMC Camp Lejeune Military Reservation, NC. (First remedial action), September 1992. Interim report

    SciTech Connect

    Not Available

    1992-09-23

    The 500-acre Camp Lejeune Military Reservation is located 15 miles southeast of Jacksonville, in Onslow County, North Carolina. Within the site lies the Hadnot Point Industrial Area (HPIA), which was constructed in the late 1930's. It is composed of 75 buildings and facilities, which include gas stations, offices, storage yards, maintenance shops, and a dry cleaning plant. Several areas of the HPIA have been investigated for potential contamination attributed to Marine Corps activities and operations that resulted in a generation of potentially hazardous wastes. The ROD addresses an interim remedial action for the shallow aquifer at the HPIA to protect human health from exposure to VOCs and metals. The primary contaminants of concern affecting the shallow ground water aquifer are VOCs, including benzene and TCE; and metals, including arsenic, chromium, and lead.

  12. Inhibition of the compound action potentials of frog sciatic nerves by aroma oil compounds having various chemical structures

    PubMed Central

    Ohtsubo, Sena; Fujita, Tsugumi; Matsushita, Akitomo; Kumamoto, Eiichi

    2015-01-01

    Plant-derived chemicals including aroma oil compounds have an ability to inhibit nerve conduction and modulate transient receptor potential (TRP) channels. Although applying aroma oils to the skin produces a local anesthetic effect, this has not been yet examined throughly. The aim of the present study was to know how nerve conduction inhibitions by aroma oil compounds are related to their chemical structures and whether these activities are mediated by TRP activation. Compound action potentials (CAPs) were recorded from the frog sciatic nerve by using the air-gap method. Citral (aldehyde), which activates various types of TRP channels, attenuated the peak amplitude of CAP with the half-maximal inhibitory concentration (IC50) value of 0.46 mmol/L. Another aldehyde (citronellal), alcohol (citronellol, geraniol, (±)-linalool, (−)-linalool, (+)-borneol, (−)-borneol, α-terpineol), ester (geranyl acetate, linalyl acetate, bornyl acetate), and oxide (rose oxide) compounds also reduced CAP peak amplitudes (IC50: 0.50, 0.35, 0.53, 1.7, 2.0, 1.5, 2.3, 2.7, 0.51, 0.71, 0.44, and 2.6 mmol/L, respectively). On the other hand, the amplitudes were reduced by a small extent by hydrocarbons (myrcene and p-cymene) and ketone (camphor) at high concentrations (2–5 mmol/L). The activities of citral and other TRP agonists ((+)-borneol and camphor) were resistant to TRP antagonist ruthenium red. An efficacy sequence for the CAP inhibitions was generally aldehydes ≥ esters ≥ alcohols > oxides >> hydrocarbons. The CAP inhibition by the aroma oil compound was not related to its octanol–water partition coefficient. It is suggested that aroma oil compounds inhibit nerve conduction in a manner specific to their chemical structures without TRP activation. PMID:26038703

  13. Synaptic potentials recorded from neurones of the submucous plexus of guinea-pig small intestine.

    PubMed Central

    Hirst, G D; McKirdy, H C

    1975-01-01

    1. Intracellular recordings have been made from neurones lying in the submucous plexus of guinea-pig mid small intestine. 2. Most neurones in this plexus receive an extensive excitatory input which could be abolished by tubocurarine. 3. A proportion of neurones also received a single inhibitory input which was activated by transmural stimulation. 4. Some of the characteristics of the inhibitory potentials evoked by transmural stimulation are described. 5. The observations are discussed in relation to the concept of descending excitation (Hirst, Holman & McKirdy, 1975). Images a b c PMID:1177096

  14. The interactions between potassium and sodium currents in generating action potentials in the rat sympathetic neurone.

    PubMed Central

    Belluzzi, O; Sacchi, O

    1988-01-01

    V, indicating that at these membrane potentials the IA current mainly, if not exclusively, contributes to the action potential falling phase. 5. The basic features of the sympathetic neurone action potential were reconstructed by simulations based on present and previous voltage-clamp characterization of the IA, IK(V) and INa conductances.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2457694

  15. Effects of calcium channel antagonists on action potential conduction and transmitter release in the guinea-pig vas deferens.

    PubMed Central

    Beattie, D. T.; Cunnane, T. C.; Muir, T. C.

    1986-01-01

    The effects of the Ca2+ channel antagonists amlodipine, cobalt, diltiazem, nifedipine and verapamil and the local anaesthetic lignocaine were investigated on action potential conduction in and on evoked transmitter release from sympathetic nerves in the guinea-pig isolated vas deferens. Transmitter release was investigated by measurement of evoked (trains of pulses at 1 and 2 Hz, 0.1-0.5 ms supramaximal voltage) excitatory junction potentials (e.j.ps) using microelectrodes; tension was recorded simultaneously; tritium [3H] overflow from vasa preincubated (37 degrees C, 30 min) in Krebs solution containing either [3H]-noradrenaline (NA, 25 microCi ml-1, 2 X 10(-6) M NA) or [3H]-adenosine (50 microCi ml-1, 1 X 10(-6) M adenosine). Amlodipine (0.5-2 X 10(-4) M), verapamil (0.5-2 X 10(-4) M), diltiazem (1-8 X 10(-4) M), lignocaine (0.1-2 X 10(-3) M) and cobalt (2-6 X 10(-2) M) in descending order of potency, but not nifedipine (1-5 X 10(-3) M), increased the latency and inhibited, then abolished, the amplitude and number of action potentials in a concentration-dependent manner. Amlodipine (0.5-1 X 10(-4) M), verapamil (1-2 X 10(-4) M), diltiazem (1-5 X 10(-4) M) and cobalt (1 X 10(-3) M), in descending order of potency, but not nifedipine (5 X 10(-4) M), inhibited then abolished evoked e.j.ps in a concentration-dependent manner. Cobalt inhibited e.j.ps at a lower concentration than that (2-6 X 10(-2) M) required to block action potential conduction. In unstimulated tissues, the resting [3H] overflow following preincubation with [3H]-NA consisted largely of 4-hydroxy 3-methoxymandelic acid (VMA), 4-hydroxy 3-methoxy phenylglycol (MOPEG), 3,4 dihydroxyphenylglycol (DOPEG) and NA; stimulated tissues (300 pulses at 20 Hz, 0.5 ms supramaximal voltage) released mainly NA. Verapamil (0.1-1 X 10(-4) M), amlodipine (0.05-1 X 10(-4) M) and nifedipine (1-5 X 10(-4) M), but not cobalt (2 X 10(-3) M), increased, significantly, the resting overflow of 3H comprising mainly DOPEG

  16. Differential action potentials and firing patterns in injured and uninjured small dorsal root ganglion neurons after nerve injury.

    PubMed

    Zhang, Xu-Feng; Zhu, Chang Z; Thimmapaya, Rama; Choi, Won S; Honore, Prisca; Scott, Victoria E; Kroeger, Paul E; Sullivan, James P; Faltynek, Connie R; Gopalakrishnan, Murali; Shieh, Char-Chang

    2004-05-29

    The profile of tetrodotoxin sensitive (TTX-S) and resistant (TTX-R) Na(+) channels and their contribution to action potentials and firing patterns were studied in isolated small dorsal root ganglion (DRG) neurons after L5/L6 spinal nerve ligation (SNL). Total TTX-R Na(+) currents and Na(v) 1.8 mRNA were reduced in injured L5 DRG neurons 14 days after SNL. In contrast, TTX-R Na(+)currents and Na(v) 1.8 mRNA were upregulated in uninjured L4 DRG neurons after SNL. Voltage-dependent inactivation of TTX-R Na(+) channels in these neurons was shifted to hyperpolarized potentials by 4 mV. Two types of neurons were identified in injured L5 DRG neurons after SNL. Type I neurons (57%) had significantly lower threshold but exhibited normal resting membrane potential (RMP) and action potential amplitude. Type II neurons (43%) had significantly smaller action potential amplitude but retained similar RMP and threshold to those from sham rats. None of the injured neurons could generate repetitive firing. In the presence of TTX, only 26% of injured neurons could generate action potentials that had smaller amplitude, higher threshold, and higher rheobase compared with sham rats. In contrast, action potentials and firing patterns in uninjured L4 DRG neurons after SNL, in the presence or absence of TTX, were not affected. These results suggest that TTX-R Na(+) channels play important roles in regulating action potentials and firing patterns in small DRG neurons and that downregulation in injured neurons and upregulation in uninjured neurons confer differential roles in shaping electrogenesis, and perhaps pain transmission, in these neurons. PMID:15120592

  17. Direct inhibition of arcuate proopiomelanocortin neurons: a potential mechanism for the orexigenic actions of dynorphin

    PubMed Central

    Zhang, Xiaobing; van den Pol, Anthony N

    2013-01-01

    Dynorphin, an endogenous ligand of kappa (κ) opioid receptors, has multiple roles in the brain, and plays a positive role in energy balance and food intake. However, the mechanism for this is unclear. With immunocytochemistry, we find that axonal dynorphin immunoreactivity in the arcuate nucleus is strong, and that a large number of dynorphin-immunoreactive boutons terminate on or near anorexigenic proopiomelanocortin (POMC) cells. Here we provide evidence from whole-cell patch-clamp recording that dynorphin-A (Dyn-A) directly and dose-dependently inhibits arcuate nucleus POMC neurons. Dyn-A inhibition was eliminated by the κ opioid receptor antagonist nor-BNI, but not by the μ receptor antagonist CTAP. The inhibitory effect was mimicked by the κ2 receptor agonist GR89696, but not by the κ1 receptor agonist U69593. No presynaptic effect of κ2 agonists was found. These results suggest that Dyn-A inhibits POMC neurons through activation of the κ2 opioid receptor. In whole-cell voltage clamp, Dyn-A opened G-protein-coupled inwardly rectifying potassium (GIRK)-like channels on POMC neurons. Dynorphin attenuated glutamate and GABA neurotransmission to POMC neurons. In contrast to the strong inhibition of POMC neurons by Dyn-A, we found a weaker direct inhibitory effect of Dyn-A on arcuate nucleus neuropeptide Y (NPY) neurons mediated by both κ1 and κ2 receptors. Taken together, these results indicate a direct inhibitory effect of Dyn-A on POMC neurons through activation of the κ2 opioid receptor and GIRK channels. A number of orexigenic hypothalamic neurons release dynorphin along with other neuropeptides. The inhibition of anorexigenic POMC neurons may be one mechanism underlying the orexigenic actions of dynorphin. PMID:23318874

  18. Bacteriocins: modes of action and potentials in food preservation and control of food poisoning.

    PubMed

    Abee, T; Krockel, L; Hill, C

    1995-12-01

    Lactic acid bacteria (LAB) play an essential role in the majority of food fermentations, and a wide variety of strains are routinely employed as starter cultures in the manufacture of dairy, meat, vegetable and bakery products. One of the most important contributions of these microorganisms is the extended shelf life of the fermented product by comparison to that of the raw substrate. Growth of spoilage and pathogenic bacteria in these foods is inhibited due to competition for nutrients and the presence of starter-derived inhibitors such as lactic acid, hydrogen peroxide and bacteriocins (Ray and Daeschel, 1992). Bacteriocins, are a heterogenous group of anti-bacterial proteins that vary in spectrum of activity, mode of action, molecular weight, genetic origin and biochemical properties. Currently, artificial chemical preservatives are employed to limit the number of microorganisms capable of growing within foods, but increasing consumer awareness of potential health risks associated with some of these substances has led researchers to examine the possibility of using bacteriocins produced by LAB as biopreservatives. The major classes of bacteriocins produced by LAB include: (I) lantibiotics, (II) small heat stable peptides, (III) large heat labile proteins, and (IV) complex proteins whose activity requires the association of carbohydrate or lipid moieties (Klaenhammer, 1993). Significantly however, the inhibitory activity of these substances is confined to Gram-positive bacteria and inhibition of Gram-negatives by these bacteriocins has not been demonstrated, an observation which can be explained by a detailed analysis and comparison of the composition of Gram-positive and Gram-negative bacterial cell walls (Fig. 1). In both types the cytoplasmic membrane which forms the border between the cytoplasm and the external environment, is surrounded by a layer of peptidoglycan which is significantly thinner in Gram-negative bacteria than in Gram-positive bacteria. Gram

  19. Probing the spatiotemporal relationship between intracellular Ca2+ release and action potential propagation in cardiomyocytes by ultrafast multi-photon random access microscopy

    NASA Astrophysics Data System (ADS)

    Sacconi, L.; Crocini, C.; Coppini, R.; Ferrantini, C.; Tesi, C.; Yan, P.; Loew, L.; Cerbai, E.; Poggesi, C.; Pavone, F. S.

    2013-02-01

    Action potential, via the transverse axial tubular system (TATS), synchronously triggers uniform Ca2+ release throughout the cardiomyocyte. Cardiac diseases associated with TATS structural remodeling preclude a uniform Ca2+ release across the myocyte, contributing to contractile dysfunction. A simultaneous recording of intracellular local Ca2+ release and action potential in tubular network can be useful to unravel the link between TATS abnormality and dysfunctional EC coupling. Here we combine the advantage of an ultrafast random access multi-photon (RAMP) microscope with a double staining approach to optically record AP in several TATS elements and, simultaneously, the corresponding local Ca2+ transient. Isolated rat cardiomyocytes were labeled with a novel voltage sensitive dye (VSD) and a calcium indicator. RAMP microscope rapidly scans between lines drawn across the TATS of the cardiomyocyte to perform a multiplexed measurement of the two fluorescence signals. Although the calcium and voltage indicators can be excited at the same wavelength, the large Stokes shift of the VSD emission allows us to use spectral unmixing to resolve the voltage and calcium responses. In healthy cardiomyocytes, we found uniform AP propagation within the TATS and homogeneous Ca2+ release throughout the whole cell. The capability of our technique in probing spatiotemporal relationship between Ca2+ and electrical activity was then explored in a model of acute detubulation in which failure to conduct AP in disconnected TATS may cause local delay of Ca2+ transient rise leading to non-homogenous Ca2+ release.

  20. Signal averaging technique for noninvasive recording of late potentials in patients with coronary artery disease

    NASA Technical Reports Server (NTRS)

    Abboud, S.; Blatt, C. M.; Lown, B.; Graboys, T. B.; Sadeh, D.; Cohen, R. J.

    1987-01-01

    An advanced non invasive signal averaging technique was used to detect late potentials in two groups of patients: Group A (24 patients) with coronary artery disease (CAD) and without sustained ventricular tachycardia (VT) and Group B (8 patients) with CAD and sustained VT. Recorded analog data were digitized and aligned using a cross correlation function with fast Fourier transform schema, averaged and band pass filtered between 60 and 200 Hz with a non-recursive digital filter. Averaged filtered waveforms were analyzed by computer program for 3 parameters: (1) filtered QRS (fQRS) duration (2) interval between the peak of the R wave peak and the end of fQRS (R-LP) (3) RMS value of last 40 msec of fQRS (RMS). Significant change was found between Groups A and B in fQRS (101 -/+ 13 msec vs 123 -/+ 15 msec; p < .0005) and in R-LP vs 52 -/+ 11 msec vs 71-/+18 msec, p <.002). We conclude that (1) the use of a cross correlation triggering method and non-recursive digital filter enables a reliable recording of late potentials from the body surface; (2) fQRS and R-LP durations are sensitive indicators of CAD patients susceptible to VT.

  1. The late Holocene kauri chronology: assessing the potential of a 4500-year record for palaeoclimate reconstruction

    NASA Astrophysics Data System (ADS)

    Boswijk, G.; Fowler, A. M.; Palmer, J. G.; Fenwick, P.; Hogg, A.; Lorrey, A.; Wunder, J.

    2014-04-01

    Millennial and multi-millennial tree-ring chronologies can provide useful proxy records of past climate, giving insight into a more complete range of natural climate variability prior to the 20th century. Since the 1980s a multi-millennial tree-ring chronology has been developed from kauri (Agathis australis) from the upper North Island, New Zealand. Previous work has demonstrated the sensitivity of kauri to the El Niño-Southern Oscillation (ENSO). Here we present recent additions and extensions to the late Holocene kauri chronology (LHKC), and assess the potential of a composite master chronology, AGAUc13, for palaeoclimate reconstruction. The updated composite kauri chronology now spans 4491 years (2488 BCE-2002 CE) and includes data from 18 modern sites, 25 archaeological sites, and 18 sub-fossil (swamp) kauri sites. Consideration of the composition and statistical quality of AGAUc13 suggests the LHKC has utility for palaeoclimate reconstruction but there are caveats. These include: (a) differences in character between the three assemblages including growth rate and sensitivity; (b) low sample depth and low statistical quality in the 10th-13th century CE, when the record transitions from modern and archaeological material to the swamp kauri; (c) a potential difference in amplitude of the signal in the swamp kauri; (d) a westerly bias in site distribution prior to 911 CE; (e) variable statistical quality across the entire record associated with variable replication; and (f) complex changes in sample depth and tree age and size which may influence centennial scale trends in the data. Further tree ring data are required to improve statistical quality, particularly in the first half of the second millennium CE.

  2. Mechano-perception in Chara cells: the influence of salinity and calcium on touch-activated receptor potentials, action potentials and ion transport.

    PubMed

    Shepherd, Virginia A; Beilby, Mary J; Al Khazaaly, Sabah A S; Shimmen, Teruo

    2008-11-01

    This paper investigates the impact of increased salinity on touch-induced receptor and action potentials of Chara internodal cells. We resolved underlying changes in ion transport by current/voltage analysis. In a saline medium with a low Ca(2+) ion concentration [(Ca(2+))(ext)], the cell background conductance significantly increased and proton pump currents declined to negligible levels, depolarizing the membrane potential difference (PD) to the excitation threshold [action potential (AP)(threshold)]. The onset of spontaneous repetitive action potentials further depolarized the PD, activating K(+) outward rectifying (KOR) channels. K(+) efflux was then sustained and irrevocable, and cells were desensitized to touch. However, when [Ca(2+)](ext) was high, the background conductance increased to a lesser extent and proton pump currents were stimulated, establishing a PD narrowly negative to AP(threshold). Cells did not spontaneously fire, but became hypersensitive to touch. Even slight touch stimulus induced an action potential and further repetitive firing. The duration of each excitation was extended when [Ca(2+)](ext) was low. Cell viability was prolonged in the absence of touch stimulus. Chara cells eventually depolarize and die in the saline media, but touch-stimulated and spontaneous excitation accelerates the process in a Ca(2+)-dependent manner. Our results have broad implications for understanding the interactions between mechano-perception and salinity stress in plants.

  3. Variety of the Wave Change in Compound Muscle Action Potential in an Animal Model

    PubMed Central

    Ito, Zenya; Ando, Kei; Muramoto, Akio; Kobayashi, Kazuyoshi; Hida, Tetsuro; Ito, Kenyu; Ishikawa, Yoshimoto; Tsushima, Mikito; Matsumoto, Akiyuki; Tanaka, Satoshi; Morozumi, Masayoshi; Matsuyama, Yukihiro; Ishiguro, Naoki

    2015-01-01

    Study Design Animal study. Purpose To review the present warning point criteria of the compound muscle action potential (CMAP) and investigate new criteria for spinal surgery safety using an animal model. Overview of Literature Little is known about correlation palesis and amplitude of spinal cord monitoring. Methods After laminectomy of the tenth thoracic spinal lamina, 2-140 g force was delivered to the spinal cord with a tension gage to create a bilateral contusion injury. The study morphology change of the CMAP wave and locomotor scale were evaluated for one month. Results Four different types of wave morphology changes were observed: no change, amplitude decrease only, morphology change only, and amplitude and morphology change. Amplitude and morphology changed simultaneously and significantly as the injury force increased (p<0.05) Locomotor scale in the amplitude and morphology group worsened more than the other groups. Conclusions Amplitude and morphology change of the CMAP wave exists and could be the key of the alarm point in CMAP. PMID:26713129

  4. Action potential propagation imaged with high temporal resolution near-infrared video microscopy and polarized light

    PubMed Central

    Schei, Jennifer L.; McCluskey, Matthew D.; Foust, Amanda J.; Yao, Xin-Cheng; Rector, David M.

    2008-01-01

    To identify the neural constituents responsible for generating polarized light changes, we created spatially resolved movies of propagating action potentials from stimulated lobster leg nerves using both reflection and transmission imaging modalities. Changes in light polarization are associated with membrane depolarization and provide sub-millisecond temporal resolution. Typically, signals are detected using light transmitted through tissue; however, because we eventually would like to apply polarization techniques in-vivo, reflected light is required. In transmission mode, the optical signal was largest throughout the center of the nerve, suggesting that most of the optical signal arose from the inner nerve bundle. In reflection mode, polarization changes were largest near the edges, suggesting that most of the optical signal arose from the outer sheath. In support of these observations, an optical model of the tissue showed that the outer sheath is more reflective while the inner nerve bundle is more transmissive. In order to apply these techniques in-vivo, we must consider that brain tissue does not have a regular orientation of processes as in the lobster nerve. We tested the effect of randomizing cell orientation by tying the nerve in an overhand knot prior to imaging, producing polarization changes that can be imaged even without regular cell orientations. PMID:18272402

  5. Computer Simulations Support a Morphological Contribution to BDNF Enhancement of Action Potential Generation

    PubMed Central

    Hiester, Brian G.; Jones, Kevin R.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) regulates both action potential (AP) generation and neuron morphology. However, whether BDNF-induced changes in neuron morphology directly impact AP generation is unclear. We quantified BDNF’s effect on cultured cortical neuron morphological parameters and found that BDNF stimulates dendrite growth and addition of dendrites while increasing both excitatory and inhibitory presynaptic inputs in a spatially restricted manner. To gain insight into how these combined changes in neuron structure and synaptic input impact AP generation, we used the morphological parameters we gathered to generate computational models. Simulations suggest that BDNF-induced neuron morphologies generate more APs under a wide variety of conditions. Synapse and dendrite addition have the greatest impact on AP generation. However, subtle alterations in excitatory/inhibitory synapse ratio and strength have a significant impact on AP generation when synaptic activity is low. Consistent with these simulations, BDNF rapidly enhances spontaneous activity in cortical cultures. We propose that BDNF promotes neuron morphologies that are intrinsically more efficient at translating barrages of synaptic activity into APs, which is a previously unexplored aspect of BDNF’s function. PMID:27683544

  6. A new three-variable mathematical model of action potential propagation in cardiac tissue.

    NASA Astrophysics Data System (ADS)

    Fenton, Flavio; Karma, Alain

    1996-03-01

    Modeling the electrical activity of the heart, and the complex signaling patterns which underly dangerous arrhythmias such as tachycardia and fibrillation, requires a quantitative model of action potential (AP) propagation. At present, there exist detailed ionic models of the Hodgkin-Huxley form that accurately reproduce dynamical features of the AP at a single cell level (e.g. Luo-Rudy, 1994). However, such models are not computationally tractable to study propagation in two and three-dimensional tissues of many resistively coupled cells. At the other extreme, there exists generic models of excitable media, such as the well-known FitzHugh-Nagumo model, which are only qualitative and do not reproduce essential dynamical features of cardiac AP. A new three-variable model is introduced which bridges the gap between these two types of models. It reproduces quantitatively important `mesoscopic' dynamical properties which are specific to cardiac AP, namely restitution and dispersion. At the same time, it remains computationally tractable and makes it possible to study the effect of these properties on the initiation, dynamics, and stability of complex reentrant excitations in two and three dimensions. Preliminary numerical results of the effect of restitution and dispersion on two-dimensional reentry (i.e. spiral waves) are presented.

  7. Action Potential Energy Efficiency Varies Among Neuron Types in Vertebrates and Invertebrates

    PubMed Central

    Sengupta, Biswa; Stemmler, Martin; Laughlin, Simon B.; Niven, Jeremy E.

    2010-01-01

    The initiation and propagation of action potentials (APs) places high demands on the energetic resources of neural tissue. Each AP forces ATP-driven ion pumps to work harder to restore the ionic concentration gradients, thus consuming more energy. Here, we ask whether the ionic currents underlying the AP can be predicted theoretically from the principle of minimum energy consumption. A long-held supposition that APs are energetically wasteful, based on theoretical analysis of the squid giant axon AP, has recently been overturned by studies that measured the currents contributing to the AP in several mammalian neurons. In the single compartment models studied here, AP energy consumption varies greatly among vertebrate and invertebrate neurons, with several mammalian neuron models using close to the capacitive minimum of energy needed. Strikingly, energy consumption can increase by more than ten-fold simply by changing the overlap of the Na+ and K+ currents during the AP without changing the APs shape. As a consequence, the height and width of the AP are poor predictors of energy consumption. In the Hodgkin–Huxley model of the squid axon, optimizing the kinetics or number of Na+ and K+ channels can whittle down the number of ATP molecules needed for each AP by a factor of four. In contrast to the squid AP, the temporal profile of the currents underlying APs of some mammalian neurons are nearly perfectly matched to the optimized properties of ionic conductances so as to minimize the ATP cost. PMID:20617202

  8. Action potential-like’ ST elevation following pseudo-Wellens' electrocardiogram

    PubMed Central

    Oksuz, Fatih; Sensoy, Baris; Sen, Fatih; Celik, Ethem; Ozeke, Ozcan; Maden, Orhan

    2015-01-01

    Coronary artery vasospasm is an important cause of chest pain syndromes that can lead to myocardial infarction, ventricular arrhythmias, and sudden death. In 1959, Prinzmetal et al described a syndrome of nonexertional chest pain with ST-segment elevation on electrocardiography. Persistent angina is challenging, and repeated coronary angioplasty may be required in this syndrome. Calcium antagonists are extremely effective in treating and preventing coronary spasm, and may provide long-lasting relief for the patient. Whereas the Wellens' syndrome is characterized by symmetrically inverted T-waves with preserved R waves in the precordial leads suggestive of impending myocardial infarction due to a critical proximal left anterior descending stenosis, the pseudo-Wellens' syndrome caused by coronary artery spasm has also rarely been reported in literature. We present a pseudo-Wellens syndrome as a cause of vasospastic angina, and a diffuse ST segment elavation on electrocardiogram resembling the Greek letter lambda, called also 'action potential-like' ECG in a patient with vasospastic-type Printzmetal angina. PMID:26432739

  9. Efficacy of action potential simulation and interferential therapy in the rehabilitation of patients with knee osteoarthritis

    PubMed Central

    Eftekharsadat, Bina; Habibzadeh, Afshin; Kolahi, Babak

    2015-01-01

    Objective: Knee osteoarthritis (OA) is the main cause of pain, physical impairment and chronic disability in older people. Electrotherapeutic modalities such as interferential therapy (IFT) and action potential simulation (APS) are used for the treatment of knee OA. In this study, we aim to evaluate the therapeutic effects of APS and IFT on knee OA. Methods: In this randomized clinical trial, 67 patients (94% female and 6% male with mean age of 52.80 ± 8.16 years) with mild and moderate knee OA were randomly assigned to be treated with APS (n = 34) or IFT (n = 33) for 10 sessions in 4 weeks. Baseline and post-treatment Western Ontario and McMaster Universities Osteoarthritis (WOMAC) subscales, visual analogue scale (VAS) and timed up and go (TUG) test were measured in all patients. Results: VAS and WOMAC subscales were significantly improved after treatment in APS and IFT groups (p < 0.001 for all). TUG was also significantly improved after treatment in APS group (p < 0.001), but TUG changes in IFT was not significant (p = 0.09). There was no significant difference in VAS, TUG and WOMAC subscales values before and after treatment as well as the mean improvement in VAS, TUG and WOMAC subscales during study between groups. Conclusion: Short-term treatment with both APS and IFT could significantly reduce pain and improve physical function in patients with knee OA. PMID:26029268

  10. Wavelet Transform for Real-Time Detection of Action Potentials in Neural Signals

    PubMed Central

    Quotb, Adam; Bornat, Yannick; Renaud, Sylvie

    2011-01-01

    We present a study on wavelet detection methods of neuronal action potentials (APs). Our final goal is to implement the selected algorithms on custom integrated electronics for on-line processing of neural signals; therefore we take real-time computing as a hard specification and silicon area as a price to pay. Using simulated neural signals including APs, we characterize an efficient wavelet method for AP extraction by evaluating its detection rate and its implementation cost. We compare software implementation for three methods: adaptive threshold, discrete wavelet transform (DWT), and stationary wavelet transform (SWT). We evaluate detection rate and implementation cost for detection functions dynamically comparing a signal with an adaptive threshold proportional to its SD, where the signal is the raw neural signal, respectively: (i) non-processed; (ii) processed by a DWT; (iii) processed by a SWT. We also use different mother wavelets and test different data formats to set an optimal compromise between accuracy and silicon cost. Detection accuracy is evaluated together with false negative and false positive detections. Simulation results show that for on-line AP detection implemented on a configurable digital integrated circuit, APs underneath the noise level can be detected using SWT with a well-selected mother wavelet, combined to an adaptive threshold. PMID:21811455

  11. Wavelet transform for real-time detection of action potentials in neural signals.

    PubMed

    Quotb, Adam; Bornat, Yannick; Renaud, Sylvie

    2011-01-01

    We present a study on wavelet detection methods of neuronal action potentials (APs). Our final goal is to implement the selected algorithms on custom integrated electronics for on-line processing of neural signals; therefore we take real-time computing as a hard specification and silicon area as a price to pay. Using simulated neural signals including APs, we characterize an efficient wavelet method for AP extraction by evaluating its detection rate and its implementation cost. We compare software implementation for three methods: adaptive threshold, discrete wavelet transform (DWT), and stationary wavelet transform (SWT). We evaluate detection rate and implementation cost for detection functions dynamically comparing a signal with an adaptive threshold proportional to its SD, where the signal is the raw neural signal, respectively: (i) non-processed; (ii) processed by a DWT; (iii) processed by a SWT. We also use different mother wavelets and test different data formats to set an optimal compromise between accuracy and silicon cost. Detection accuracy is evaluated together with false negative and false positive detections. Simulation results show that for on-line AP detection implemented on a configurable digital integrated circuit, APs underneath the noise level can be detected using SWT with a well-selected mother wavelet, combined to an adaptive threshold.

  12. Action potential duration dispersion and alternans in simulated heterogeneous cardiac tissue with a structural barrier.

    PubMed

    Krogh-Madsen, Trine; Christini, David J

    2007-02-15

    Structural barriers to wave propagation in cardiac tissue are associated with a decreased threshold for repolarization alternans both experimentally and clinically. Using computer simulations, we investigated the effects of a structural barrier on the onset of spatially concordant and discordant alternans. We used two-dimensional tissue geometry with heterogeneity in selected potassium conductances to mimic known apex-base gradients. Although we found that the actual onset of alternans was similar with and without the structural barrier, the increase in alternans magnitude with faster pacing was steeper with the barrier--giving the appearance of an earlier alternans onset in its presence. This is consistent with both experimental structural barrier findings and the clinical observation of T-wave alternans occurring at slower pacing rates in patients with structural heart disease. In ionically homogeneous tissue, discordant alternans induced by the presence of the structural barrier arose at intermediate pacing rates due to a source-sink mismatch behind the barrier. In heterogeneous tissue, discordant alternans occurred during fast pacing due to a barrier-induced decoupling of tissue with different restitution properties. Our results demonstrate a causal relationship between the presence of a structural barrier and increased alternans magnitude and action potential duration dispersion, which may contribute to why patients with structural heart disease are at higher risk for ventricular tachyarrhythmias.

  13. Computer Simulations Support a Morphological Contribution to BDNF Enhancement of Action Potential Generation.

    PubMed

    Galati, Domenico F; Hiester, Brian G; Jones, Kevin R

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) regulates both action potential (AP) generation and neuron morphology. However, whether BDNF-induced changes in neuron morphology directly impact AP generation is unclear. We quantified BDNF's effect on cultured cortical neuron morphological parameters and found that BDNF stimulates dendrite growth and addition of dendrites while increasing both excitatory and inhibitory presynaptic inputs in a spatially restricted manner. To gain insight into how these combined changes in neuron structure and synaptic input impact AP generation, we used the morphological parameters we gathered to generate computational models. Simulations suggest that BDNF-induced neuron morphologies generate more APs under a wide variety of conditions. Synapse and dendrite addition have the greatest impact on AP generation. However, subtle alterations in excitatory/inhibitory synapse ratio and strength have a significant impact on AP generation when synaptic activity is low. Consistent with these simulations, BDNF rapidly enhances spontaneous activity in cortical cultures. We propose that BDNF promotes neuron morphologies that are intrinsically more efficient at translating barrages of synaptic activity into APs, which is a previously unexplored aspect of BDNF's function. PMID:27683544

  14. An Improved Genetically Encoded Red Fluorescent Ca2+ Indicator for Detecting Optically Evoked Action Potentials

    PubMed Central

    Kobayashi, Chiaki; Ikegaya, Yuji; Nakai, Junichi

    2012-01-01

    Genetically encoded Ca2+ indicators (GECIs) are powerful tools to image activities of defined cell populations. Here, we developed an improved red fluorescent GECI, termed R-CaMP1.07, by mutagenizing R-GECO1. In HeLa cell assays, R-CaMP1.07 exhibited a 1.5–2-fold greater fluorescence response compared to R-GECO1. In hippocampal pyramidal neurons, R-CaMP1.07 detected Ca2+ transients triggered by single action potentials (APs) with a probability of 95% and a signal-to-noise ratio >7 at a frame rate of 50 Hz. The amplitudes of Ca2+ transients linearly correlated with the number of APs. The expression of R-CaMP1.07 did not significantly alter the electrophysiological properties or synaptic activity patterns. The co-expression of R-CaMP1.07 and channelrhodpsin-2 (ChR2), a photosensitive cation channel, in pyramidal neurons demonstrated that R-CaMP1.07 was applicable for the monitoring of Ca2+ transients in response to optically evoked APs, because the excitation light for R-CaMP1.07 hardly activated ChR2. These technical advancements provide a novel strategy for monitoring and manipulating neuronal activity with single cell resolution. PMID:22808076

  15. Computer Simulations Support a Morphological Contribution to BDNF Enhancement of Action Potential Generation

    PubMed Central

    Hiester, Brian G.; Jones, Kevin R.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) regulates both action potential (AP) generation and neuron morphology. However, whether BDNF-induced changes in neuron morphology directly impact AP generation is unclear. We quantified BDNF’s effect on cultured cortical neuron morphological parameters and found that BDNF stimulates dendrite growth and addition of dendrites while increasing both excitatory and inhibitory presynaptic inputs in a spatially restricted manner. To gain insight into how these combined changes in neuron structure and synaptic input impact AP generation, we used the morphological parameters we gathered to generate computational models. Simulations suggest that BDNF-induced neuron morphologies generate more APs under a wide variety of conditions. Synapse and dendrite addition have the greatest impact on AP generation. However, subtle alterations in excitatory/inhibitory synapse ratio and strength have a significant impact on AP generation when synaptic activity is low. Consistent with these simulations, BDNF rapidly enhances spontaneous activity in cortical cultures. We propose that BDNF promotes neuron morphologies that are intrinsically more efficient at translating barrages of synaptic activity into APs, which is a previously unexplored aspect of BDNF’s function.

  16. Frequency decoding of periodically timed action potentials through distinct activity patterns in a random neural network

    NASA Astrophysics Data System (ADS)

    Reichenbach, Tobias; Hudspeth, A. J.

    2012-11-01

    Frequency discrimination is a fundamental task of the auditory system. The mammalian inner ear, or cochlea, provides a place code in which different frequencies are detected at different spatial locations. However, a temporal code based on spike timing is also available: action potentials evoked in an auditory-nerve fiber by a low-frequency tone occur at a preferred phase of the stimulus—they exhibit phase locking—and thus provide temporal information about the tone's frequency. Humans employ this temporal information for discrimination of low frequencies. How might such temporal information be read out in the brain? Here we employ statistical and numerical methods to demonstrate that recurrent random neural networks in which connections between neurons introduce characteristic time delays, and in which neurons require temporally coinciding inputs for spike initiation, can perform sharp frequency discrimination when stimulated with phase-locked inputs. Although the frequency resolution achieved by such networks is limited by the noise in phase locking, the resolution for realistic values reaches the tiny frequency difference of 0.2% that has been measured in humans.

  17. Adhesion to carbon nanotube conductive scaffolds forces action-potential appearance in immature rat spinal neurons.

    PubMed

    Fabbro, Alessandra; Sucapane, Antonietta; Toma, Francesca Maria; Calura, Enrica; Rizzetto, Lisa; Carrieri, Claudia; Roncaglia, Paola; Martinelli, Valentina; Scaini, Denis; Masten, Lara; Turco, Antonio; Gustincich, Stefano; Prato, Maurizio; Ballerini, Laura

    2013-01-01

    In the last decade, carbon nanotube growth substrates have been used to investigate neurons and neuronal networks formation in vitro when guided by artificial nano-scaled cues. Besides, nanotube-based interfaces are being developed, such as prosthesis for monitoring brain activity. We recently described how carbon nanotube substrates alter the electrophysiological and synaptic responses of hippocampal neurons in culture. This observation highlighted the exceptional ability of this material in interfering with nerve tissue growth. Here we test the hypothesis that carbon nanotube scaffolds promote the development of immature neurons isolated from the neonatal rat spinal cord, and maintained in vitro. To address this issue we performed electrophysiological studies associated to gene expression analysis. Our results indicate that spinal neurons plated on electro-conductive carbon nanotubes show a facilitated development. Spinal neurons anticipate the expression of functional markers of maturation, such as the generation of voltage dependent currents or action potentials. These changes are accompanied by a selective modulation of gene expression, involving neuronal and non-neuronal components. Our microarray experiments suggest that carbon nanotube platforms trigger reparative activities involving microglia, in the absence of reactive gliosis. Hence, future tissue scaffolds blended with conductive nanotubes may be exploited to promote cell differentiation and reparative pathways in neural regeneration strategies.

  18. Latencies in action potential stimulation in a two-dimensional bidomain: A numerical simulation

    NASA Astrophysics Data System (ADS)

    Barach, John Paul

    1991-05-01

    A numerical simulation is performed in which a uniform planar slab of idealized cardiac tissue is stimulated at the center. The cardiac slab is modeled as an anisotropic bidomain; within each domain current flow is determined by a forced diffusion equation in which the transmembrane current connecting the domains provides the forcing term. An action potential (AP) propagates outward after a time latency dependent upon the stimulus size and the physiological variables. Its isochrones are elliptical with an asymmetry that is a small fraction of the imposed asymmetry in resistivity. External voltages resemble the first derivative of those in the internal domain and tests with continuing stimuli exhibit a relaxation time of about 3 ms and space constants that agree with other work. The AP latency increases very strongly near threshold stimulus and decreases as the log (stimulus) for large stimuli in the ``virtual cathode'' range. Latencies in the longitudinal, transverse, and diagonal directions are found to be the same over a wide range of stimulus size and type.

  19. Improved health and growth of fish fed mannan oligosaccharides: potential mode of action.

    PubMed

    Torrecillas, Silvia; Montero, Daniel; Izquierdo, Marisol

    2014-02-01

    Nowadays, aquaculture industry still confronts several disease-related problems mainly caused by viruses, bacteria and parasites. In the last decade, the use of mannan oligosaccharides (MOS) in fish production has received increased attention due to its beneficial effects on fish performance and disease resistance. This review shows the MOS use in aquaculture with a specific emphasis on the effectiveness of the several MOS forms available in the market related to disease resistance, fish nutrition and the possible mechanisms involved. Among the main beneficial effects attributed to MOS dietary supplementation, enhanced fish performance, feed efficiency and pathogen protection by potentiation of the systemic and local immune system and the reinforcement of the epithelial barrier structure and functionality are some of the most commonly demonstrated benefits. These combined effects suggest that the reinforcement of the intestinal integrity and functionality, together with the stimulation of the innate immune system, are the primary mode of action of MOS in fish. However, the supplementation strategy related to the structure of the MOS added, the correct dose and duration, as well as fish species, size and culture conditions are determinant factors to achieve improvements in health status and growth performance.

  20. Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders.

    PubMed

    Chiu, Chi-Tso; Chuang, De-Maw

    2010-11-01

    Lithium has been used clinically to treat bipolar disorder for over half a century, and remains a fundamental pharmacological therapy for patients with this illness. Although lithium's therapeutic mechanisms are not fully understood, substantial in vitro and in vivo evidence suggests that it has neuroprotective/neurotrophic properties against various insults, and considerable clinical potential for the treatment of several neurodegenerative conditions. Evidence from pharmacological and gene manipulation studies support the notion that glycogen synthase kinase-3 inhibition and induction of brain-derived neurotrophic factor-mediated signaling are lithium's main mechanisms of action, leading to enhanced cell survival pathways and alteration of a wide variety of downstream effectors. By inhibiting N-methyl-D-aspartate receptor-mediated calcium influx, lithium also contributes to calcium homeostasis and suppresses calcium-dependent activation of pro-apoptotic signaling pathways. In addition, lithium decreases inositol 1,4,5-trisphosphate by inhibiting phosphoinositol phosphatases, a process recently identified as a novel mechanism for inducing autophagy. Through these mechanisms, therapeutic doses of lithium have been demonstrated to defend neuronal cells against diverse forms of death insults and to improve behavioral as well as cognitive deficits in various animal models of neurodegenerative diseases, including stroke, amyotrophic lateral sclerosis, fragile X syndrome, as well as Huntington's, Alzheimer's, and Parkinson's diseases, among others. Several clinical trials are also underway to assess the therapeutic effects of lithium for treating these disorders. This article reviews the most recent findings regarding the potential targets involved in lithium's neuroprotective effects, and the implication of these findings for the treatment of a variety of diseases.

  1. The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake.

    PubMed

    Böhm, Jennifer; Scherzer, Sönke; Krol, Elzbieta; Kreuzer, Ines; von Meyer, Katharina; Lorey, Christian; Mueller, Thomas D; Shabala, Lana; Monte, Isabel; Solano, Roberto; Al-Rasheid, Khaled A S; Rennenberg, Heinz; Shabala, Sergey; Neher, Erwin; Hedrich, Rainer

    2016-02-01

    Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na(+)-rich animal and nutrition for the plant. PMID:26804557

  2. Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders

    PubMed Central

    Chiu, Chi-Tso; Chuang, De-Maw

    2011-01-01

    Lithium has been used clinically to treat bipolar disorder for over half a century, and remains a fundamental pharmacological therapy for patients with this illness. Although lithium’s therapeutic mechanisms are not fully understood, substantial in vitro and in vivo evidence suggests that it has neuroprotective/neurotrophic properties against various insults, and considerable clinical potential for the treatment of several neurodegenerative conditions. Evidence from pharmacological and gene manipulation studies support the notion that glycogen synthase kinase-3 inhibition and induction of brain-derived neurotrophic factor-mediated signaling are lithium’s main mechanisms of action, leading to enhanced cell survival pathways and alteration of a wide variety of downstream effectors. By inhibiting N-methyl-D-aspartate receptor-mediated calcium influx, lithium also contributes to calcium homeostasis and suppresses calcium-dependent activation of pro-apoptotic signaling pathways. In addition, lithium decreases inositol 1,4,5-trisphosphate by inhibiting phosphoinositol phosphatases, a process recently identified as a novel mechanism for inducing autophagy. Through these mechanisms, therapeutic doses of lithium have been demonstrated to defend neuronal cells against diverse forms of death insults and to improve behavioral as well as cognitive deficits in various animal models of neurodegenerative diseases, including stroke, amyotrophic lateral sclerosis, fragile X syndrome, as well as Huntington’s, Alzheimer’s, and Parkinson’s diseases, among others. Several clinical trials are also underway to assess the therapeutic effects of lithium for treating these disorders. This article reviews the most recent findings regarding the potential targets involved in lithium’s neuroprotective effects, and the implication of these findings for the treatment of a variety of diseases. PMID:20705090

  3. Antifungal potential of Sideroxylon obtusifolium and Syzygium cumini and their mode of action against Candida albicans.

    PubMed

    Pereira, Jozinete Vieira; Freires, Irlan Almeida; Castilho, Aline Rogéria; da Cunha, Marcos Guilherme; Alves, Harley da Silva; Rosalen, Pedro Luiz

    2016-10-01

    Context The emergence of resistant pathogens and toxicity of antifungals have encouraged an active search for novel candidates to manage Candida biofilms. Objective In this study, the little known species Sideroxylon obtusifolium T.D. Penn (Sapotacea) and Syzygium cumini (L.) Skeels (Myrtaceae), from the Caatinga biome in Brazil were chemically characterized and explored for their antifungal potential against C. albicans. Materials and methods We determined the effects of hydroalcoholic extracts/fractions upon fungal growth (minimum inhibitory and fungicidal concentrations, MIC/MFC), biofilm morphology (scanning electron microscopy) and viability (confocal laser scanning microscopy), proposed their mode of action (sorbitol and ergosterol assays), and finally investigated their effects against macrophage and keratinocyte cells in a cell-based assay. Data were analysed using one-way analysis of variance with Tukey-Kramer post-test (α = 0.05). Results The n-butanol (Nb) fraction from S. obtusifolium and S. cumini extract (Sc) showed flavonoids (39.11 ± 6.62 mg/g) and saponins (820.35 ± 225.38 mg/g), respectively, in their chemical composition and demonstrated antifungal activity, with MICs of 62.5 and 125 μg/mL, respectively. Nb and Sc may complex with ergosterol as there was a 4-16-fold increase in MICs in the presence of exogenous ergosterol, leading to disrupted permeability of cell membrane. Deleterious effects were observed on morphology and viability of treated biofilms from concentrations as low as their MICs and higher. Sc was not toxic to macrophages and keratinocytes at these concentrations (p > 0.05), unlike Nb. Conclusions Nb and Sc demonstrated considerable antifungal activity and should be further investigated as potential alternative candidates to treat Candida biofilms. PMID:26987037

  4. The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake

    PubMed Central

    Böhm, Jennifer; Scherzer, Sönke; Krol, Elzbieta; Kreuzer, Ines; von Meyer, Katharina; Lorey, Christian; Mueller, Thomas D.; Shabala, Lana; Monte, Isabel; Solano, Roberto; Al-Rasheid, Khaled A.S.; Rennenberg, Heinz; Shabala, Sergey; Neher, Erwin; Hedrich, Rainer

    2016-01-01

    Summary Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na+-rich animal and nutrition for the plant. Video Abstract PMID:26804557

  5. The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake.

    PubMed

    Böhm, Jennifer; Scherzer, Sönke; Krol, Elzbieta; Kreuzer, Ines; von Meyer, Katharina; Lorey, Christian; Mueller, Thomas D; Shabala, Lana; Monte, Isabel; Solano, Roberto; Al-Rasheid, Khaled A S; Rennenberg, Heinz; Shabala, Sergey; Neher, Erwin; Hedrich, Rainer

    2016-02-01

    Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na(+)-rich animal and nutrition for the plant.

  6. Circadian rhythm of heart rate in the rabbit: prolongation of action potential duration by sustained beta adrenoceptor blockade is not due to associated bradycardia.

    PubMed

    Vaughan Williams, E M; Dennis, P D; Garnham, C

    1986-07-01

    Six litters of six young rabbits were injected intraperitoneally, two per litter, with saline, alinidine, or nadolol once or twice daily for two weeks. In four litters successful radiotransmissions of electrocardiograms were recorded once hourly for four days before and during treatment. Alinidine and nadolol produced an overall mean bradycardia in comparison with saline treated animals, the effect of alinidine exceeding that of nadolol. At 48-70 hours after the end of treatment the hearts were used for in vitro electrophysiological study. Nadolol, but not alinidine, induced a prolongation of action potential duration compared with that of saline treated littermates in both atrial and ventricular muscle. An incidental observation was that heart rate in the rabbit followed a circadian rhythm, heart rates being slower in the morning and faster in late afternoon and evening. The circadian rhythm was attenuated but not abolished by alinidine and nadolol. These results suggest that if prolongation of action potential duration by sustained beta blockade in patients after myocardial infarction contributes to protection against sudden death (by a class III antiarrhythmic action) then alinidine would not be expected to provide a comparable prophylaxis.

  7. A simple circuit for producing vertical arrays of analogue signals and dot raster displays of nerve and muscle action potentials.

    PubMed

    Miles, T S; Woodland, M J

    1986-03-01

    It is often helpful to display analogue signals such as electromyograms, electroencephalograms, nerve action potentials, etc., in a regular vertical array. A special case of this display is the widely-used dot raster. This paper describes a simple circuit which enables up to 31 analogue signals to be thus displayed on an analogue storage oscilloscope screen or X-Y plotter. A modification permits up to 255 trials to be displayed. The same circuit produces a standard, dot raster display from standard pulses representing nerve or muscle cell action potentials.

  8. Modeling the action-potential-sensitive nonlinear-optical response of myelinated nerve fibers and short-term memory

    NASA Astrophysics Data System (ADS)

    Shneider, M. N.; Voronin, A. A.; Zheltikov, A. M.

    2011-11-01

    The Goldman-Albus treatment of the action-potential dynamics is combined with a phenomenological description of molecular hyperpolarizabilities into a closed-form model of the action-potential-sensitive second-harmonic response of myelinated nerve fibers with nodes of Ranvier. This response is shown to be sensitive to nerve demyelination, thus enabling an optical diagnosis of various demyelinating diseases, including multiple sclerosis. The model is applied to examine the nonlinear-optical response of a three-neuron reverberating circuit—the basic element of short-term memory.

  9. Corrective Action Investigation Plan for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada: Revision 0, Including Record of Technical Change No. 1

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-07-16

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives (CAAs) appropriate for the closure of Corrective Action Unit (CAU) 322, Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 322 consists of three Corrective Action Sites (CASs): 01-25-01, AST Release (Area 1); 03-25-03, Mud Plant AST Diesel Release (Area 3); 03-20-05, Injection Wells (Area 3). Corrective Action Unit 322 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. The investigation of three CASs in CAU 322 will determine if hazardous and/or radioactive constituents are present at concentrations and locations that could potentially pose a threat to human health and the environment. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  10. Toxicity, sublethal effects, and potential modes of action of select fungicides on freshwater fish and invertebrates

    USGS Publications Warehouse

    Elskus, Adria A.

    2012-01-01

    Despite decades of agricultural and urban use of fungicides and widespread detection of these pesticides in surface waters, relatively few data are available on the effects of fungicides on fish and invertebrates in the aquatic environment. Nine fungicides are reviewed in this report: azoxystrobin, boscalid, chlorothalonil, fludioxonil, myclobutanil, fenarimol, pyraclostrobin, pyrimethanil, and zoxamide. These fungicides were identified as emerging chemicals of concern because of their high or increasing global use rates, detection frequency in surface waters, or likely persistence in the environment. A review of the literature revealed significant sublethal effects of fungicides on fish, aquatic invertebrates, and ecosystems, including zooplankton and fish reproduction, fish immune function, zooplankton community composition, metabolic enzymes, and ecosystem processes, such as leaf decomposition in streams, among other biological effects. Some of these effects can occur at fungicide concentrations well below single-species acute lethality values (48- or 96-hour concentration that effects a response in 50 percent of the organisms, that is, effective concentration killing 50 percent of the organisms in 48 or 96 hours) and chronic sublethal values (for example, 21-day no observed adverse effects concentration), indicating that single-species toxicity values may dramatically underestimate the toxic potency of some fungicides. Fungicide modes of toxic action in fungi can sometimes reflect the biochemical and (or) physiological effects of fungicides observed in vertebrates and invertebrates; however, far more studies are needed to explore the potential to predict effects in nontarget organisms based on specific fungicide modes of toxic action. Fungicides can also have additive and (or) synergistic effects when used with other fungicides and insecticides, highlighting the need to study pesticide mixtures that occur in surface waters. For fungicides that partition to

  11. Superfund Record of Decision (EPA Region 9): Litchfield Airport/Phoenix, Arizona (first remedial action), September 1987. Final report

    SciTech Connect

    Not Available

    1987-09-29

    The Litchfield/Phoenix-Goodyear Airport (PGA) site is divided into a northern and a southern area by a ground-water divide running under the Yuma Road area. Section 16 (approximately 17 acres) lies in the southern area and includes the Loral Corporation facility (formerly owned by Goodyear Aerospace Corporation) and the Phoenix-Goodyear Airport (formerly owned by U.S. Navy), both being potential sources of VOC contamination. Ground-water contaminant concentrations in Section 16 are at least 100 times greater than down-gradient levels. The Arizona Department of Health Services discovered solvent and chromium contamination in the ground water within the PGA area. Additional sampling in 1982 and 1983 found 18 wells contaminated with TCE. The primary contaminants of concern include: trichloroethene, volatile organic compounds and chromium. Interim remedial action for the site is proposed.

  12. SRperfund record of Decision (EPA Region 9): Atlas Asbestos Mine, Fresno county, CA. (Second remedial action), February 1991. Final report

    SciTech Connect

    Not Available

    1991-02-14

    The 450-acre Atlas Mine Area is part of the Atlas Asbestos Mine site in Fresno County, California. The site consists of four geographically distinct areas (the Atlas Mine Area, the Clear Creek Management Area (CCMA), the Ponding Basin of the California Aqueduct, and the City of Coalinga). The Mine Area includes three open pit asbestos mine surfaces, stockpiles of asbestos waste material, an abandoned mill building, a settling pond, and debris. A 1989 Record of Decision (ROD) for the City of Coalinga Operable Unit addressed cleanup of asbestos-contaminated soil in Coalinga, California by burying the contaminated material in a waste management unit with an impermeable cap. The ROD is designed to control the release of asbestos from the Mine Area. The primary contaminant of concern affecting the soil, sediment, debris, surface water, and air is asbestos, an inorganic. The selected remedial action for the site includes paving the road through the Mine Area or implementing an appropriate road maintenance alternative; constructing stream diversions, sediment trapping dams, and other slope stabilization elements, and conducting a revegetation pilot project.

  13. Superfund Record of Decision (EPA Region 1): Baird and McGuire, Holbrook, Massachusetts (Third remedial action), September 1989

    SciTech Connect

    Not Available

    1989-09-14

    The Baird McGuire site is a former chemical manufacturing facility in northwest Holbrook, Massachusetts, approximately 14 miles south of Boston. From 1912 to 1983 the company operated a chemical manufacturing and batching facility on the property. Manufactured products included herbicides, pesticides, disinfectants, soaps, floor waxes and solvents. Waste disposal methods at the site included direct discharge into the soil, nearby brook and wetlands, and a former gravel pit (now covered) in the eastern portion of the site. Underground disposal systems were also used. EPA also conducted an Initial Remedial Measure at the site from 1985 through 1987 which involved constructing a new water main to direct water away from the site, removing building structures, and installing a temporary cap. In 1986 a Record of Decision (ROD) was signed to address onsite ground water treatment and incineration of contaminated soil. This ROD addresses the Cochato River sediment contamination. The primary contaminants of concern affecting the sediment are organics including PAHs and pesticides, and metals including arsenic. The selected remedial action for the site are included.

  14. Superfund Record of Decision (EPA Region 1): Dover Municipal Landfill, Dover, NH (First remedial action), September 1991. Final report

    SciTech Connect

    Not Available

    1991-09-10

    The 55-acre Dover Municipal Landfill site is an inactive landfill in Dover, Strafford County, New Hampshire. Land use in the area is rural-residential and recreational. The site overlies both an upper and a lower aquifer that are separated by impermeable clay. In 1981, VOC contamination was found in private residential wells screened in the upper aquifer in the vicinity of the landfill. Further analyses identified two contaminant plumes, one migrating to the south and the other moving to the east. The Record of Decision (ROD) addresses both source control and management of migration of contaminated ground water, as a final remedy. The primary contaminants of concern affecting the soil, sediment, sludge, debris, and ground water are VOCs including benzene, PCE, TCE, toluene and vinyl chloride; other organics; and metals including arsenic. The selected remedial action for the site includes excavating and consolidating approximately 300 cubic yards of sediment from the drainage channel, and depositing the material into the landfill prior to capping; recontouring and capping the landfill; ground water pumping and onsite treatment of ground water and leachate using aeration for VOC removal.

  15. Superfund Record of Decision (EPA Region 1): Mottolo Pig Farm, Raymond, NH. (First remedial action), March 1991. Final report

    SciTech Connect

    Not Available

    1991-03-29

    The 50-acre Mottolo Pig Farm site is in Raymond, New Hampshire. Surrounding land is primarily rural residential and undeveloped. The site includes a wooded area, an inactive piggery area comprised of several structures, a building drum disposal area, and wetlands. An onsite brook (Brook A) originating in the wetlands discharges into the Exeter River. The Record of Decision (ROD) addresses contaminated onsite soil, debris, and the associated ground water plume. The primary contaminants of concern affecting the soil, debris, and ground water are VOCs including TCE, toluene, vinyl chloride, and xylenes; and metals including arsenic. The selected remedial action for the site includes installing a ground water interceptor trench upgradient of the former drum disposal area to reduce migration of contaminants and facilitate treatment of contaminated soil; capping the drum disposal and treating approximately 3,400-4,000 cubic yards of VOC-contaminated soil at these areas using in-situ vacuum extraction and activated carbon to control off-gases.

  16. Superfund Record of Decision (EPA Region 9): Coalinga Asbestos Mine, Fresno County, CA. (Second remedial action), September 1990. Final report

    SciTech Connect

    Not Available

    1990-09-21

    The 557-acre Coalinga Asbestos Mine site, a former asbestos processing area and chromite mine, comprises part of the Johns Manville Coalinga Asbestos Mill site in western Fresno County, California. This rural mountainous area is used primarily for recreational purposes. From 1962 to 1974, asbestos ore from several local mines was processed and sorted onsite, and the resulting asbestos mill tailings were periodically bulldozed into an intermittent stream channel. Subsequently, from 1975 to 1977, a chromite milling operation was conducted onsite. Tailings were often washed downstream during periods of stream flow, and the resuspension of asbestos fibers from the tailings into the air produced a significant inhalation hazard. As a result of these activities, approximately 450,000 cubic yards of mill tailings and asbestos ore remain onsite within a large tailing pile. In 1980 and 1987, State investigations indicated that the site was contributing a significant amount of asbestos into the surface water. The site will be remediated as two Operable Units (OU). The Record of Decision (ROD) addresses the remedial action for OU2, the Johns Manville Coalinga Asbestos Mill Area. The primary contaminant of concern affecting the surface water is asbestos.

  17. Superfund Record of Decision (EPA Region 9): Atlas Asbestos Mine, Fresno County, California (First remedial action), July 1989

    SciTech Connect

    Not Available

    1989-07-19

    The Atlas Asbestos Mine site is in Fresno County, California, and is being remediated concurrently with the Coalinga Asbestos Mine site. The Record of Decision (ROD) does not address the mines, but rather a separate area in the city of Coalinga, where asbestos, from the Atlas-Coalinga mines, was deposited to await handling and shipment. The site consists of four distinct areas: the warehouse which was once a mining waste distribution center and which currently houses 1,600 cubic yards of mining waste; a storage yard which contains asbestos-contaminated stacked pipes; a shipping yard which was used as an asbestos distribution center by the Atlas Asbestos Company; and the U.S. Asbestos Company which currently stores piles of asbestos-contaminated mining waste. Subsequent sampling programs, conducted between 1983 and 1987, revealed that surface water and air also contained elevated levels of asbestos. As a result of these finding, EPA issued an Administrative Order to a major landowner, Southern Pacific Transportation Company (SPTC), requiring SPTC to conduct an additional remedial investigation and a feasibility study and to perform interim measures to stabilize the site. The primary contaminants of concern affecting the soil and debris are metals including nickel, and other inorganics including asbestos and mining wastes. The selected remedial action for this site are included.

  18. Facilitating Youth to Take Sustainability Actions: The Potential of Peer Education

    ERIC Educational Resources Information Center

    de Vreede, Catherine; Warner, Alan; Pitter, Robert

    2014-01-01

    Peer education is an understudied yet valuable strategy for sustainability educators in shifting youth to take action for sustainability. This case study conceptualizes the change process in facilitating youth to take sustainability actions, and explores the benefits, dynamics, and challenges of peer education as a strategy in facilitating change.…

  19. 9-Anthracene carboxylic acid is more suitable than DIDS for characterization of calcium-activated chloride current during canine ventricular action potential.

    PubMed

    Váczi, Krisztina; Hegyi, Bence; Ruzsnavszky, Ferenc; Kistamás, Kornél; Horváth, Balázs; Bányász, Tamás; Nánási, Péter P; Szentandrássy, Norbert; Magyar, János

    2015-01-01

    Understanding the role of ionic currents in shaping the cardiac action potential (AP) has great importance as channel malfunctions can lead to sudden cardiac death by inducing arrhythmias. Therefore, researchers frequently use inhibitors to selectively block a certain ion channel like 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and 9-anthracene carboxylic acid (9-AC) for calcium-activated chloride current (ICl(Ca)). This study aims to explore which blocker is preferable to study ICl(Ca). Whole-cell voltage-clamp technique was used to record ICa,L, IKs, IKr and IK1, while action potentials were measured using sharp microelectrodes. DIDS- (0.2 mM) and 9-AC-sensitive (0.5 mM) currents were identical in voltage-clamp conditions, regardless of intracellular Ca(2+) buffering. DIDS-sensitive current amplitude was larger with the increase of stimulation rate and correlated well with the rate-induced increase of calcium transients. Both drugs increased action potential duration (APD) to the same extent, but the elevation of the plateau potential was more pronounced with 9-AC at fast stimulation rates. On the contrary, 9-AC did not influence either the AP amplitude or the maximal rate of depolarization (V max), but DIDS caused marked reduction of V max. Both inhibitors reduced the magnitude of phase-1, but, at slow stimulation rates, this effect of DIDS was larger. All of these actions on APs were reversible upon washout of the drugs. Increasing concentrations of 9-AC between 0.1 and 0.5 mM in a cumulative manner gradually reduced phase-1 and increased APD. 9-AC at 1 mM had no additional actions upon perfusion after 0.5 mM. The half-effective concentration of 9-AC was approximately 160 μM with a Hill coefficient of 2. The amplitudes of ICa,L, IKs, IKr and IK1 were not changed by 0.5 mM 9-AC. These results suggest that DIDS is equally useful to study ICl(Ca) during voltage-clamp but 9-AC is superior in AP measurements for studying the physiological role of

  20. Effects of Sleep Deprivation on Action Potential and Transient Outward Potassium Current in Ventricular Myocytes in Rats

    PubMed Central

    Fang, Zhou; Ren, Yi-Peng; Lu, Cai-Yi; Li, Yang; Xu, Qiang; Peng, Li; Fan, Yong-Yan

    2015-01-01

    Background Sleep deprivation contributes to the development and recurrence of ventricular arrhythmias. However, the electrophysiological changes in ventricular myocytes in sleep deprivation are still unknown. Material/Methods Sleep deprivation was induced by modified multiple platform technique. Fifty rats were assigned to control and sleep deprivation 1, 3, 5, and 7 days groups, and single ventricular myocytes were enzymatically dissociated from rat hearts. Action potential duration (APD) and transient outward current (Ito) were recorded using whole-cell patch clamp technique. Results Compared with the control group, the phases of APD of ventricular myocytes in 3, 5, and 7 days groups were prolonged and APD at 20% and 50% level of repolarization (APD20 and APD50) was significantly elongated (The APD20 values of control, 1, 3, 5, and 7 days groups: 5.66±0.16 ms, 5.77±0.20 ms, 8.28±0.30 ms, 11.56±0.32 ms, 13.24±0.56 ms. The APD50 values: 50.66±2.16 ms, 52.77±3.20 ms, 65.28±5.30 ms, 83.56±7.32 ms, 89.24±5.56 ms. P<0.01, n=18). The current densities of Ito significantly decreased. The current density-voltage (I–V) curve of Ito was vitally suppressed downward. The steady-state inactivation curve and steady-state activation curve of Ito were shifted to left and right, respectively, in sleep deprivation rats. The inactivation recovery time of Ito was markedly retarded and the time of closed-state inactivation was markedly accelerated in 3, 5, and 7 days groups. Conclusions APD of ventricular myocytes in sleep deprivation rats was significantly prolonged, which could be attributed to decreased activation and accelerated inactivation of Ito. PMID:25694200

  1. Beta-adrenergic stimulation reverses the I Kr-I Ks dominant pattern during cardiac action potential.

    PubMed

    Banyasz, Tamas; Jian, Zhong; Horvath, Balazs; Khabbaz, Shaden; Izu, Leighton T; Chen-Izu, Ye

    2014-11-01

    β-Adrenergic stimulation differentially modulates different K(+) channels and thus fine-tunes cardiac action potential (AP) repolarization. However, it remains unclear how the proportion of I Ks, I Kr, and I K1 currents in the same cell would be altered by β-adrenergic stimulation, which would change the relative contribution of individual K(+) current to the total repolarization reserve. In this study, we used an innovative AP-clamp sequential dissection technique to directly record the dynamic I Ks, I Kr, and I K1 currents during the AP in guinea pig ventricular myocytes under physiologically relevant conditions. Our data provide quantitative measures of the magnitude and time course of I Ks, I Kr, and I K1 currents in the same cell under its own steady-state AP, in a physiological milieu, and with preserved Ca(2+) homeostasis. We found that isoproterenol treatment significantly enhanced I Ks, moderately increased I K1, but slightly decreased I Kr in a dose-dependent manner. The dominance pattern of the K(+) currents was I Kr > I K1 > I Ks at the control condition, but reversed to I Kr < I K1 < I Ks following β-adrenergic stimulation. We systematically determined the changes in the relative contribution of I Ks, I Kr, and I K1 to cardiac repolarization during AP at different adrenergic states. In conclusion, the β-adrenergic stimulation fine-tunes the cardiac AP morphology by shifting the power of different K(+) currents in a dose-dependent manner. This knowledge is important for designing antiarrhythmic drug strategies to treat hearts exposed to various sympathetic tones.

  2. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids.

    PubMed

    Covey, Dan P; Bunner, Kendra D; Schuweiler, Douglas R; Cheer, Joseph F; Garris, Paul A

    2016-06-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement.

  3. Encoding of point of view during action observation in the local field potentials of macaque area F5.

    PubMed

    Caggiano, Vittorio; Giese, Martin; Thier, Peter; Casile, Antonino

    2015-02-01

    The discovery of mirror neurons compellingly shows that the monkey premotor area F5 is active not only during the execution but also during the observation of goal-directed motor acts. Previous studies have addressed the functioning of the mirror-neuron system at the single-unit level. Here, we tackled this research question at the network level by analysing local field potentials in area F5 while the monkey was presented with goal-directed actions executed by a human or monkey actor and observed either from a first-person or third-person perspective. Our analysis showed that rhythmic responses are not only present in area F5 during action observation, but are also modulated by the point of view. Observing an action from a subjective point of view produced significantly higher power in the low-frequency band (2-10 Hz) than observing the same action from a frontal view. Interestingly, an increase in power in the 2-10 Hz band was also produced by the execution of goal-directed motor acts. Independently of the point of view, action observation also produced a significant decrease in power in the 15-40 Hz band and an increase in the 60-100 Hz band. These results suggest that, depending on the point of view, action observation might activate different processes in area F5. Furthermore, they may provide information about the functional architecture of action perception in primates.

  4. Continuous Time Level Crossing Sampling ADC for Bio-Potential Recording Systems

    PubMed Central

    Tang, Wei; Osman, Ahmad; Kim, Dongsoo; Goldstein, Brian; Huang, Chenxi; Martini, Berin; Pieribone, Vincent A.

    2013-01-01

    In this paper we present a fixed window level crossing sampling analog to digital convertor for bio-potential recording sensors. This is the first proposed and fully implemented fixed window level crossing ADC without local DACs and clocks. The circuit is designed to reduce data size, power, and silicon area in future wireless neurophysiological sensor systems. We built a testing system to measure bio-potential signals and used it to evaluate the performance of the circuit. The bio-potential amplifier offers a gain of 53 dB within a bandwidth of 200 Hz-20 kHz. The input-referred rms noise is 2.8 µV. In the asynchronous level crossing ADC, the minimum delta resolution is 4 mV. The input signal frequency of the ADC is up to 5 kHz. The system was fabricated using the AMI 0.5 µm CMOS process. The chip size is 1.5 mm by 1.5 mm. The power consumption of the 4-channel system from a 3.3 V supply is 118.8 µW in the static state and 501.6 µW with a 240 kS/s sampling rate. The conversion efficiency is 1.6 nJ/conversion. PMID:24163640

  5. Simultaneous 3-T fMRI and high-density recording of human auditory evoked potentials.

    PubMed

    Scarff, Carrie J; Reynolds, Angela; Goodyear, Bradley G; Ponton, Curtis W; Dort, Joseph C; Eggermont, Jos J

    2004-11-01

    We acquired simultaneous high-field (3 T) functional magnetic resonance imaging (fMRI) and high-density (64- and 128-channel) EEG using a sparse sampling technique to measure auditory cortical activity generated by right ear stimulus presentation. Using dipole source localization, we showed that the anatomical location of the grand mean equivalent dipole of auditory evoked potentials (AEPs) and the center of gravity of fMRI activity were in good agreement in the horizontal plane. However, the grand mean equivalent dipole was located significantly superior in the cortex compared to fMRI activity. Interhemispheric asymmetry was exhibited by fMRI, whereas neither the AEP dipole moments nor the mean global field power (MGFP) of the AEPs showed significant asymmetry. Increasing the number of recording electrodes from 64 to 128 improved the accuracy of the equivalent dipole source localization but decreased the signal-to-noise ratio (SNR) of MR images. This suggests that 64 electrodes may be optimal for use in simultaneous recording of EEG and fMRI.

  6. Arm and wrist surface potential mapping for wearable ECG rhythm recording devices: a pilot clinical study

    NASA Astrophysics Data System (ADS)

    Lynn, W. D.; Escalona, O. J.; McEneaney, D. J.

    2013-06-01

    This study addresses an important question in the development of a ECG device that enables long term monitoring of cardiac rhythm. This device would utilise edge sensor technologies for dry, non-irritant skin contact suitable for distal limb application and would be supported by embedded ECG denoising processes. Contemporary ECG databases including those provided by MIT-BIH and Physionet are focused on interpretation of cardiac disease and rhythm tracking. The data is recorded using chest leads as in standard clinical practise. For the development of a peripherally located heart rhythm monitor, such data would be of limited use. To provide a useful database adequate for the development of the above mentioned cardiac monitoring device a unipolar body surface potential map from the left arm and wrist was gathered in 37 volunteer patients and characterized in this study. For this, the reference electrode was placed at the wrist. Bipolar far-field electrogram leads were derived and analysed. Factors such as skin variability, 50Hz noise interference, electrode contact noise, motion artifacts and electromyographic noise, presented a challenge. The objective was quantify the signal-to-noise ratio (SNR) at the far-field locations. Preliminary results reveal that an electrogram indicative of the QRS complex can be recorded on the distal portion of the left arm when denoised using signal averaging techniques.

  7. Frequency specificity of simultaneously recorded early and middle latency auditory evoked potentials.

    PubMed

    Scherg, M; Volk, S A

    1983-11-01

    Early and middle latency auditory evoked potentials were recorded simultaneously with a 2-channel wide-band recording technique. Latency and amplitude distributions of components V, Na and Pa were determined in 20 normal hearing adults for 3 different stimuli (click, plop, 500 Hz tone burst) presented at 70, 30 and 20 dB HL. Normative latency data of the middle latency components are presented. The detectability and amplitude of the Na-Pa complex were considerably larger than those of wave V at 20 and 30 dB HL for the two low frequency stimuli. Ten ears exhibiting high frequency sensorineural hearing loss were examined. In these cases, only click-evoked Na and Pa, but not wave V, were observed down to 20 dB HL. Also, the click latency-intensity function of Na-Pa was found to be similar to the normal low frequency latency functions. The results consistently suggested that the low frequency contributions to wave V cancel in phase because of short duration, whereas the duration of the Na-Pa complex allows for a positive superimposition of all frequency bands. Since these differences in frequency specificity of the EAEP and the MAEP affect latency, care is advised for the interpretation of inter-peak latencies.

  8. Bacteriocins: modes of action and potentials in food preservation and control of food poisoning.

    PubMed

    Abee, T; Krockel, L; Hill, C

    1995-12-01

    Lactic acid bacteria (LAB) play an essential role in the majority of food fermentations, and a wide variety of strains are routinely employed as starter cultures in the manufacture of dairy, meat, vegetable and bakery products. One of the most important contributions of these microorganisms is the extended shelf life of the fermented product by comparison to that of the raw substrate. Growth of spoilage and pathogenic bacteria in these foods is inhibited due to competition for nutrients and the presence of starter-derived inhibitors such as lactic acid, hydrogen peroxide and bacteriocins (Ray and Daeschel, 1992). Bacteriocins, are a heterogenous group of anti-bacterial proteins that vary in spectrum of activity, mode of action, molecular weight, genetic origin and biochemical properties. Currently, artificial chemical preservatives are employed to limit the number of microorganisms capable of growing within foods, but increasing consumer awareness of potential health risks associated with some of these substances has led researchers to examine the possibility of using bacteriocins produced by LAB as biopreservatives. The major classes of bacteriocins produced by LAB include: (I) lantibiotics, (II) small heat stable peptides, (III) large heat labile proteins, and (IV) complex proteins whose activity requires the association of carbohydrate or lipid moieties (Klaenhammer, 1993). Significantly however, the inhibitory activity of these substances is confined to Gram-positive bacteria and inhibition of Gram-negatives by these bacteriocins has not been demonstrated, an observation which can be explained by a detailed analysis and comparison of the composition of Gram-positive and Gram-negative bacterial cell walls (Fig. 1). In both types the cytoplasmic membrane which forms the border between the cytoplasm and the external environment, is surrounded by a layer of peptidoglycan which is significantly thinner in Gram-negative bacteria than in Gram-positive bacteria. Gram

  9. Effect of knockout of α2δ-1 on action potentials in mouse sensory neurons

    PubMed Central

    Margas, Wojciech; Ferron, Laurent; Nieto-Rostro, Manuela; Schwartz, Arnold; Dolphin, Annette C.

    2016-01-01

    Gene deletion of the voltage-gated calcium channel auxiliary subunit α2δ-1 has been shown previously to have a cardiovascular phenotype, and a reduction in mechano- and cold sensitivity, coupled with delayed development of neuropathic allodynia. We have also previously shown that dorsal root ganglion (DRG) neuron calcium channel currents were significantly reduced in α2δ-1 knockout mice. To extend our findings in these sensory neurons, we have examined here the properties of action potentials (APs) in DRG neurons from α2δ-1 knockout mice in comparison to their wild-type (WT) littermates, in order to dissect how the calcium channels that are affected by α2δ-1 knockout are involved in setting the duration of individual APs and their firing frequency. Our main findings are that there is reduced Ca2+ entry on single AP stimulation, particularly in the axon proximal segment, reduced AP duration and reduced firing frequency to a 400 ms stimulation in α2δ-1 knockout neurons, consistent with the expected role of voltage-gated calcium channels in these events. Furthermore, lower intracellular Ca2+ buffering also resulted in reduced AP duration, and a lower frequency of AP firing in WT neurons, mimicking the effect of α2δ-1 knockout. By contrast, we did not obtain any consistent evidence for the involvement of Ca2+-activation of large conductance calcium-activated potassium (BK) and small conductance calcium-activated potassium (SK) channels in these events. In conclusion, the reduced Ca2+ elevation as a result of single AP stimulation is likely to result from the reduced duration of the AP in α2δ-1 knockout sensory neurons. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377724

  10. RXP-E: A CX43-BINDING PEPTIDE THAT PREVENTS ACTION POTENTIAL PROPAGATION BLOCK

    PubMed Central

    Lewandowski, Rebecca; Procida, Kristina; Vaidyanathan, Ravi; Coombs, Wanda; Jalife, Jose; Nielsen, Morten S.; Taffet, Steven M.; Delmar, Mario

    2009-01-01

    Gap junctions (GJs) provide a low-resistance pathway for cardiac electrical propagation. The role of GJ regulation in arrhythmia is unclear, partly due to limited availability of pharmacological tools. Recently, we showed that a peptide called “RXP-E” binds to the carboxyl terminal of connexin43 (Cx43) and prevents chemically-induced uncoupling in Cx43-expressing N2a cells. Here, pull-down experiments show RXP-E binding to adult cardiac Cx43. Patch-clamp studies revealed that RXP-E prevented heptanol-induced and acidification-induced uncoupling in pairs of neonatal rat ventricular myocytes (NRVM’s). Separately, RXP-E was concatenated to a cytoplasmic transduction peptide for cytoplasmic translocation (CTP-RXP-E). The effect of RXP-E on action potential (AP) propagation was assessed by high resolution optical mapping in monolayers of NRVM’s, containing ~20% of randomly distributed myofibroblasts. In contrast to control experiments, when heptanol (2 mmol/L) was added to the superfusate of monolayers loaded with CTP-RXP-E, AP propagation was maintained, albeit at a slower velocity. Similarly, intracellular acidification (pHi=6.2) caused a loss of AP propagation in control monolayers; however, propagation was maintained in CTP-RXP-E treated cells, though at a slower rate. Patch clamp experiments revealed that RXP-E did not prevent heptanol-induced block of sodium currents, nor did it alter voltage dependence or amplitude of Kir2.1/Kir2.3 currents. RXP-E is the first synthetic molecule known to: (1) bind cardiac Cx43; (2) prevent heptanol and acidification-induced uncoupling of cardiac GJ’s and 3) preserve AP propagation among cardiac myocytes. RXP-E can be used to characterize the role of GJs in the function of multicellular systems, including the heart. PMID:18669919

  11. Impedance and electrically evoked compound action potential (ECAP) drop within 24 hours after cochlear implantation.

    PubMed

    Chen, Joshua Kuang-Chao; Chuang, Ann Yi-Chiun; Sprinzl, Georg Mathias; Tung, Tao-Hsin; Li, Lieber Po-Hung

    2013-01-01

    Previous animal study revealed that post-implantation electrical detection levels significantly declined within days. The impact of cochlear implant (CI) insertion on human auditory pathway in terms of impedance and electrically evoked compound action potential (ECAP) variation within hours after surgery remains unclear, since at this time frequency mapping can only commence weeks after implantation due to factors associated with wound conditions. The study presented our experiences with regards to initial switch-on within 24 hours, and thus the findings about the milieus inside cochlea within the first few hours after cochlear implantation in terms of impedance/ECAP fluctuations. The charts of fifty-four subjects with profound hearing impairment were studied. A minimal invasive approach was used for cochlear implantation, characterized by a small skin incision (≈ 2.5 cm) and soft techniques for cochleostomy. Impedance/ECAP was measured intro-operatively and within 24 hours post-operatively. Initial mapping within 24 hours post-operatively was performed in all patients without major complications. Impedance/ECAP became significantly lower measured within 24 hours post-operatively as compared with intra-operatively (p<0.001). There were no differences between pre-operative and post-operative threshold for air-conduction hearing. A significant drop of impedance/ECAP in one day after cochlear implantation was revealed for the first time in human beings. Mechanisms could be related to the restoration of neuronal sensitivity to the electrical stimulation, and/or the interaction between the matrix enveloping the electrodes and the electrical stimulation of the initial switch-on. Less wound pain/swelling and soft techniques both contributed to the success of immediate initial mapping, which implied a stable micro-environment inside the cochlea despite electrodes insertion. Our research invites further studies to correlate initial impedance/ECAP changes with long

  12. Impedance and Electrically Evoked Compound Action Potential (ECAP) Drop within 24 Hours after Cochlear Implantation

    PubMed Central

    Chen, Joshua Kuang-Chao; Chuang, Ann Yi-Chiun; Sprinzl, Georg Mathias; Tung, Tao-Hsin; Li, Lieber Po-Hung

    2013-01-01

    Previous animal study revealed that post-implantation electrical detection levels significantly declined within days. The impact of cochlear implant (CI) insertion on human auditory pathway in terms of impedance and electrically evoked compound action potential (ECAP) variation within hours after surgery remains unclear, since at this time frequency mapping can only commence weeks after implantation due to factors associated with wound conditions. The study presented our experiences with regards to initial switch-on within 24 hours, and thus the findings about the milieus inside cochlea within the first few hours after cochlear implantation in terms of impedance/ECAP fluctuations. The charts of fifty-four subjects with profound hearing impairment were studied. A minimal invasive approach was used for cochlear implantation, characterized by a small skin incision (≈2.5 cm) and soft techniques for cochleostomy. Impedance/ECAP was measured intro-operatively and within 24 hours post-operatively. Initial mapping within 24 hours post-operatively was performed in all patients without major complications. Impedance/ECAP became significantly lower measured within 24 hours post-operatively as compared with intra-operatively (p<0.001). There were no differences between pre-operative and post-operative threshold for air-conduction hearing. A significant drop of impedance/ECAP in one day after cochlear implantation was revealed for the first time in human beings. Mechanisms could be related to the restoration of neuronal sensitivity to the electrical stimulation, and/or the interaction between the matrix enveloping the electrodes and the electrical stimulation of the initial switch-on. Less wound pain/swelling and soft techniques both contributed to the success of immediate initial mapping, which implied a stable micro-environment inside the cochlea despite electrodes insertion. Our research invites further studies to correlate initial impedance/ECAP changes with long

  13. Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization

    PubMed Central

    Masoli, Stefano; Solinas, Sergio; D'Angelo, Egidio

    2015-01-01

    The Purkinje cell (PC) is among the most complex neurons in the brain and plays a critical role for cerebellar functioning. PCs operate as fast pacemakers modulated by synaptic inputs but can switch from simple spikes to complex bursts and, in some conditions, show bistability. In contrast to original works emphasizing dendritic Ca-dependent mechanisms, recent experiments have supported a primary role for axonal Na-dependent processing, which could effectively regulate spike generation and transmission to deep cerebellar nuclei (DCN). In order to account for the numerous ionic mechanisms involved (at present including Nav1.6, Cav2.1, Cav3.1, Cav3.2, Cav3.3, Kv1.1, Kv1.5, Kv3.3, Kv3.4, Kv4.3, KCa1.1, KCa2.2, KCa3.1, Kir2.x, HCN1), we have elaborated a multicompartmental model incorporating available knowledge on localization and gating of PC ionic channels. The axon, including initial segment (AIS) and Ranvier nodes (RNs), proved critical to obtain appropriate pacemaking and firing frequency modulation. Simple spikes initiated in the AIS and protracted discharges were stabilized in the soma through Na-dependent mechanisms, while somato-dendritic Ca channels contributed to sustain pacemaking and to generate complex bursting at high discharge regimes. Bistability occurred only following Na and Ca channel down-regulation. In addition, specific properties in RNs K currents were required to limit spike transmission frequency along the axon. The model showed how organized electroresponsive functions could emerge from the molecular complexity of PCs and showed that the axon is fundamental to complement ionic channel compartmentalization enabling action potential processing and transmission of specific spike patterns to DCN. PMID:25759640

  14. Effect of knockout of α2δ-1 on action potentials in mouse sensory neurons.

    PubMed

    Margas, Wojciech; Ferron, Laurent; Nieto-Rostro, Manuela; Schwartz, Arnold; Dolphin, Annette C

    2016-08-01

    Gene deletion of the voltage-gated calcium channel auxiliary subunit α2δ-1 has been shown previously to have a cardiovascular phenotype, and a reduction in mechano- and cold sensitivity, coupled with delayed development of neuropathic allodynia. We have also previously shown that dorsal root ganglion (DRG) neuron calcium channel currents were significantly reduced in α2δ-1 knockout mice. To extend our findings in these sensory neurons, we have examined here the properties of action potentials (APs) in DRG neurons from α2δ-1 knockout mice in comparison to their wild-type (WT) littermates, in order to dissect how the calcium channels that are affected by α2δ-1 knockout are involved in setting the duration of individual APs and their firing frequency. Our main findings are that there is reduced Ca(2+) entry on single AP stimulation, particularly in the axon proximal segment, reduced AP duration and reduced firing frequency to a 400 ms stimulation in α2δ-1 knockout neurons, consistent with the expected role of voltage-gated calcium channels in these events. Furthermore, lower intracellular Ca(2+) buffering also resulted in reduced AP duration, and a lower frequency of AP firing in WT neurons, mimicking the effect of α2δ-1 knockout. By contrast, we did not obtain any consistent evidence for the involvement of Ca(2+)-activation of large conductance calcium-activated potassium (BK) and small conductance calcium-activated potassium (SK) channels in these events. In conclusion, the reduced Ca(2+) elevation as a result of single AP stimulation is likely to result from the reduced duration of the AP in α2δ-1 knockout sensory neurons.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377724

  15. Natural cures for type 1 diabetes: a review of phytochemicals, biological actions, and clinical potential.

    PubMed

    Chang, C L T; Chen, Yi-Ching; Chen, Hui-Ming; Yang, Ning-Sun; Yang, Wen-Chin

    2013-01-01

    Autoimmune diseases are the third largest category of illness in the industrialized world, following cardiovascular diseases and cancers. Among them, type 1 diabetes, also named autoimmune diabetes, afflicts 10 million people worldwide. This disease is caused by autoimmunity-mediated destruction of pancreatic β-cells, leading to insulin deficiency, hyperglycemia and complications. Currently, there is no cure for type 1 diabetes. Insulin injection is the only medication; however, it accompanies serious medical complications. Current strategies to cure type 1 diabetes include immunotherapy, replacement therapy, and combination therapy. Despite recent advances in anti-diabetic strategies, no strategy is clinically successful. How to cure type 1 diabetes without undesirable side effects still remains a formidable challenge in drug research and development. Plants provide an extraordinary source of natural medicines for different diseases. Moreover, secondary metabolites of plant origin serve as an invaluable chemical library for drug discovery and current medicinal chemistry in the pharmaceutical industry. Over the past 25 years, 50% of prescription drugs have been developed from natural products and their derivatives. In this article, we review more than 20 plant compounds and extracts reported in the literature to prevent and treat type-1 diabetes. Emphasis is placed on their chemistry and biology in terms of regulation of immune cells and pancreatic β-cells. We summarize recent progress in understanding the biological actions, mechanisms and therapeutic potential of the compounds and extracts of plant origin in type 1 diabetes. New views on phytocompound-based strategies for prevention and treatment of type 1 diabetes are also discussed. PMID:23210779

  16. A Novel Computational Model of the Human Ventricular Action Potential and Ca Transient

    PubMed Central

    Grandi, Eleonora; Pasqualini, Francesco S.; Bers, Donald M.

    2009-01-01

    We have developed a detailed mathematical model for Ca handling and ionic currents in the human ventricular myocyte. Our aims were to: 1) simulate basic excitation-contraction coupling phenomena; 2) use realistic repolarizing K current densities; 3) reach steady-state. The model relies on the framework of the rabbit myocyte model previously developed by our group, with subsarcolemmal and junctional compartments where ion channels sense higher [Ca] vs. bulk cytosol. Ion channels and transporters have been modeled on the basis of the most recent experimental data from human ventricular myocytes. Rapidly and slowly inactivating components of Ito have been formulated to differentiate between endocardial and epicardial myocytes. Transmural gradients of Ca handling proteins and Na pump were also simulated. The model has been validated against a wide set of experimental data including action potential duration (APD) adaptation and restitution, frequency-dependent increase in Ca transient peak and [Na]i. Interestingly, Na accumulation at fast heart rate is a major determinant of APD shortening, via outward shifts in Na pump and Na-Ca exchange currents. We investigated the effects of blocking K currents on APD and repolarization reserve: IKs block does not affect the former and slightly reduces the latter; IK1 blockade modestly increases APD and more strongly reduces repolarization reserve; IKr blockers significantly prolong APD, an effect exacerbated as pacing frequency is decreased, in good agreement with experimental results in human myocytes. We conclude that this model provides a useful framework to explore excitation-contraction coupling mechanisms and repolarization abnormalities at the single myocyte level. PMID:19835882

  17. Improving immunization data management: an editorial on the potential of Electronic Health Records.

    PubMed

    Abramson, Erika; Kaushal, Rainu; Vest, Joshua

    2014-02-01

    Immunizations are critical for maintaining individual and population health. Yet ensuring that complete immunization histories are available at the point of care is challenging. Currently, immunization information systems (IIS) are used to aggregate data at a regional level, although their value is often limited by incomplete data. The Electronic Health Record (EHR) Incentive Program, which is an unprecedented federal initiative promoting EHR use, is linking financial payments in part to demonstrating ability to transmit EHR data directly to IIS and thus has potential to change immunization data management on a large scale. We believe that EHRs are critical for allowing more complete and timely immunization data capture and will offer many benefits. To achieve these benefits, however, it will be necessary to engage the EHR vendor community in developing EHRs that allow for comprehensive immunization data capture and policy makers to incentivize bidirectional, real-time exchange between IIS and EHRs.

  18. Benefits negotiation: three Swedish hospitals pursuit of potential electronic health record benefits.

    PubMed

    Jeansson, John S

    2013-01-01

    At the very heart of Swedish healthcare digitalisation are large investments in electronic health records (EHRs). These integrated information systems (ISs) carry promises of great benefits and value for organisations. However, realising IS benefits and value has, in general, proven to be a challenging task, and as organisations strive to formalise their realisation efforts a misconception of rationality threatens to emerge. This misconception manifests itself when the formality of analysis threatens to underrate the impact of social processes in deciding which potential benefits to pursue. This paper suggests that these decisions are the result of a social process of negotiation. The purpose of this paper is to observe three benefits analysis projects of three Swedish hospitals to better understand the character and management of proposed benefits negotiations. Findings depict several different categories of benefits negotiations, as well as key factors to consider during the benefits negotiation process. PMID:24191344

  19. Superfund Record of Decision (EPA Region 1): Kearsarge Metallurgical Corporation, Conway, NH. (First remedial action), September 1990. Final report

    SciTech Connect

    Not Available

    1990-09-28

    The nine-acre Kearsarge Metallurgical site is an abandoned foundry in the town of Conway, Carroll County, New Hampshire. The site is located within the 100-year floodplain of the Saco River. Pequawket Pond borders the site to the south. The site contains a drainage pipe with four open-bottomed catch basins, two waste piles, a septic tank and leach field, and forested wetlands. A hydrologic study in 1982 revealed contamination of ground water in the upper aquifer underlying the site, a potential drinking water source. The Record of Decision (ROD) addresses both source control and management of migration of the contaminated ground water plume. The primary contaminants of concern affecting the soil, debris, and ground water are VOCs including TCE; and metals including chromium.

  20. Superfund Record of Decision (EPA Region 5): Bofors-Nobel site, Muskegon, MI. (First remedial action), September 1990

    SciTech Connect

    Not Available

    1990-09-17

    The 85-acre Bofors Nobel site is an active specialty chemical production plant in Edelston Township, Muskegon County, Michigan. An inactive landfill is also located in the eastern portion of the site. Onsite wetlands lie within the floodplain of Big Black Creek, which runs through the southern portion of the site. The site overlies a lacustrine aquifer, a potential drinking water source, which has been contaminated as a result of site activities. During the 1960s and early 1970s, sludge, wastewater, and waste liquids from plant operations were discharged into 10 onsite lagoons. The Record of Decision (ROD) addresses remediation of the lagoons, as well as upgrading the current ground water treatment system. A subsequent final ROD will address other contaminated soil and complete restoration of the aquifer. The primary contaminants of concern affecting the soil, sludge, and ground water are VOCs including benzene.

  1. Comprehensive Chronic Laminar Single-Unit, Multi-Unit, and Local Field Potential Recording Performance With Planar Single Shank Electrode Arrays

    PubMed Central

    Kozai, Takashi D. Y.; Du, Zhanhong; Gugel, Zhannetta V.; Smith, Matthew A.; Chase, Steven M.; Bodily, Lance M; Caparosa, Ellen M.; Friedlander, Robert M.; Cui, X. Tracy

    2015-01-01

    Background Intracortical electrode arrays that can record extracellular action potentials from small, targeted groups of neurons are critical for basic neuroscience research and emerging clinical applications. In general, these electrode devices suffer from reliability and variability issues, which have led to comparative studies of existing and emerging electrode designs to optimize performance. Comparisons of different chronic recording devices have been limited to single-unit (SU) activity and employed a bulk averaging approach treating brain architecture as homogeneous with respect to electrode distribution. New Method In this study, we optimize the methods and parameters to quantify evoked multi-unit (MU) and local field potential (LFP) recordings in 8 mice visual cortices. Results These findings quantify the large recording differences stemming from anatomical differences in depth and the layer dependent relative changes to SU and MU recording performance over 6-months. For example, performance metrics in Layer V and stratum pyramidale were initially higher than Layer II/III, but decrease more rapidly. On the other hand, Layer II/III maintained recording metrics longer. In addition, chronic changes at the level of layer IV are evaluated using visually evoked current source density. Comparison with Existing Method(s) The use of MU and LFP activity for evaluation and tracking biological depth provides a more comprehensive characterization of the electrophysiological performance landscape of microelectrodes. Conclusions A more extensive spatial and temporal insight into the chronic electrophysiological performance over time will help uncover the biological and mechanical failure mechanisms of the neural electrodes and direct future research toward the elucidation of design optimization for specific applications. PMID:25542351

  2. Superfund Record of Decision (EPA Region 9): Selma Pressure Treating Company, California (first remedial action), September 88

    SciTech Connect

    Not Available

    1988-09-24

    The Selma Pressure Treating Company is located in Selma, California, 15 miles south of the City of Fresno. The site encompasses approximately 18 acres, including a 3- to 4-acre wood-treatment facility and 14 acres of adjacent vineyards that were used for site drainage. Wood-preserving activities using pentachlorophenol (PCP) were conducted at the site from 1942 until 1965 under a series of owners. In 1965, a new facility was constructed converting operations to a pressure treating process using chemical preservatives. Prior to 1982, wastes generated from spent retort fluids and sludges were discharged to drainage and percolation ditches, dry wells, and an unlined pond and sludge pit, as well as onto open ground and the adjacent vineyards. An inspection conducted by EPA in 1981 raised concerns about the potential for ground-water contamination, and as a result the company was required to modify its operations to minimize the potential for contamination. The primary contaminants of concern affecting the ground water and soil are organics including dioxin and phenols, and metals including arsenic and chromium. The selected remedial action for the site is included.

  3. XML-BSPM: an XML format for storing Body Surface Potential Map recordings

    PubMed Central

    2010-01-01

    Background The Body Surface Potential Map (BSPM) is an electrocardiographic method, for recording and displaying the electrical activity of the heart, from a spatial perspective. The BSPM has been deemed more accurate for assessing certain cardiac pathologies when compared to the 12-lead ECG. Nevertheless, the 12-lead ECG remains the most popular ECG acquisition method for non-invasively assessing the electrical activity of the heart. Although data from the 12-lead ECG can be stored and shared using open formats such as SCP-ECG, no open formats currently exist for storing and sharing the BSPM. As a result, an innovative format for storing BSPM datasets has been developed within this study. Methods The XML vocabulary was chosen for implementation, as opposed to binary for the purpose of human readability. There are currently no standards to dictate the number of electrodes and electrode positions for recording a BSPM. In fact, there are at least 11 different BSPM electrode configurations in use today. Therefore, in order to support these BSPM variants, the XML-BSPM format was made versatile. Hence, the format supports the storage of custom torso diagrams using SVG graphics. This diagram can then be used in a 2D coordinate system for retaining electrode positions. Results This XML-BSPM format has been successfully used to store the Kornreich-117 BSPM dataset and the Lux-192 BSPM dataset. The resulting file sizes were in the region of 277 kilobytes for each BSPM recording and can be deemed suitable for example, for use with any telemonitoring application. Moreover, there is potential for file sizes to be further reduced using basic compression algorithms, i.e. the deflate algorithm. Finally, these BSPM files have been parsed and visualised within a convenient time period using a web based BSPM viewer. Conclusions This format, if widely adopted could promote BSPM interoperability, knowledge sharing and data mining. This work could also be used to provide conceptual

  4. Extracellular potentials recording in intact olfactory epithelium by microelectrode array for a bioelectronic nose.

    PubMed

    Liu, Qingjun; Ye, Weiwei; Xiao, Lidan; Du, Liping; Hu, Ning; Wang, Ping

    2010-06-15

    Human beings and animals have sensitive olfactory systems that can sense and identify a variety of odors. The purpose of this study is to combine biological cells with micro-chips to establish a novel bioelectronic nose system for odor detection by electrophysiological sensing measurements of olfactory tissue. In our experiments, 36-channel microelectrode arrays (MEAs) with the diameter of 30 microm were fabricated on the glass substrate, and olfactory epithelium was stripped from rats and fixed on the surface of MEA. Electrophysiological activities of olfactory receptor neurons in intact epithelium were measured through the multi-channel recording system. The extracellular potentials of cell networks could be effectively analyzed by correlation analysis between different channels. After being stimulated by odorants, such as acetic acid and butanedione, the olfactory cells generate different firing modes. These firing characteristics can be derived by time-domain and frequency-domain analysis, and they were different from spontaneous potentials. The investigation of olfactory epithelium can provide more information of olfactory system for artificial olfaction biomimetic design.

  5. Explanation of Significant Differences for the Record of Decision for Interim Actions in Zone 1, East Tennessee Technology Park, Oak Ridge, Tennessee

    SciTech Connect

    Bechtel Jacobs

    2011-02-01

    Zone 1 is a 1400-acre area outside the fence of the main plant at The East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. The Record of Decision for Interim Actions in Zone, ETTP (Zone 1 Interim ROD) (DOE 2002) identifies the remedial actions for contaminated soil, buried waste, and subsurface infrastructure necessary to protect human health and to limit further contamination of groundwater. Since the Zone 1 Interim Record of Decision (ROD) was signed, new information has been obtained that requires the remedy to be modified as follows: (1) Change the end use in Contractor's Spoil Area (CSA) from unrestricted industrial to recreational; (2) Remove Exposure Units (EU5) ZI-50, 51, and 52 from the scope of the Zone I Interim ROD; (3) Change the end use of the duct bank corridor from unrestricted industrial to restricted industrial; and (4) Remove restriction for the disturbance of soils below 10 feet in Exposure Unit (EU) Z1-04. In accordance with 40 Code of Federal Regulations (CFR) 300.435, these scope modifications are a 'significant' change to the Zone 1 Interim ROD. In accordance with CERCLA Sect. 117 (c) and 40 CFR 300.435 (c)(2)(i), such a significant change is documented with an Explanation of Significant Differences (ESD). The purpose of this ESD is to make the changes listed above. This ESD is part of the Administrative Record file, and it, and other information supporting the selected remedy, can be found at the DOE Information Center, 475 Oak Ridge Turnpike, Oak Ridge, Tennessee 37830, from 8:00 a.m. to 5:00 p.m., Monday through Friday. The ORR is located in Roane and Anderson counties, within and adjacent to the corporate city limits of Oak Ridge, Tennessee. ETTP is located in Roane County near the northwest corner of the ORR. ETTP began operation during World War II as part of the Manhattan Project. The original mission of ETTP was to produce enriched uranium for use in atomic weapons. The plant produced enriched uranium from 1945 until 1985

  6. Evaluating potential changes in salmonid rearing capacity from alternative sets of rehabilitation actions in the Trinity River, California

    NASA Astrophysics Data System (ADS)

    Beechie, T. J.; Pess, G. R.; Imaki, H.; Martin, A.; Alvarez, J.; Goodman, D.

    2013-12-01

    River restoration plans often propose numerous rehabilitation actions to address key habitat impairments for salmonids. However, restoration plans rarely propose alternative sets of actions or attempt to quantify the potential benefits to targeted biota. In this paper we use geomorphic and biological analyses to estimate restoration potential for each of 37 reaches in a 64-km section of Trinity River, California from the North Fork Trinity River to Lewiston Dam (the focus of habitat rehabilitation efforts under the Trinity River Restoration Program). We first predicted the channel pattern that might develop based in each reach on slope-discharge criteria, and then used these potential patterns along with floodplain width to estimate the maximum sinuosity that restoration actions could likely achieve, as well as a maximum side-channel length that might be created in each reach. For each scenario, we then used existing stream habitat and juvenile salmonid data from previous studies in the Trinity River and other watersheds to determine current and restored carrying capacity. Potential increases in Chinook and steelhead carrying capacity range from 39% for a relatively realistic estimate of increasing habitat quality (more low velocity areas with cover) to 67% for a more optimistic scenario that increases both sinuosity and habitat quality. Only the most optimistic scenario that increases habitat quality, increases sinuosity, and constructs tens of kilometers of side channels more than doubles potential juvenile salmonid production (140% increase). These quantitative predictions provide a frame of reference for evaluating alternative restoration options, and for setting measurable restoration goals.

  7. Stalagmite growth perturbations from the Kumaun Himalaya as potential earthquake recorders

    NASA Astrophysics Data System (ADS)

    Rajendran, C. P.; Sanwal, Jaishri; Morell, Kristin D.; Sandiford, Mike; Kotlia, B. S.; Hellstrom, John; Rajendran, Kusala

    2016-04-01

    The central part of the Himalaya (Kumaun and Garhwal Provinces of India) is noted for its prolonged seismic quiescence, and therefore, developing a longer-term time series of past earthquakes to understand their recurrence pattern in this segment assumes importance. In addition to direct observations of offsets in stratigraphic exposures or other proxies like paleoliquefaction, deformation preserved within stalagmites (speleothems) in karst system can be analyzed to obtain continuous millennial scale time series of earthquakes. The Central Indian Himalaya hosts natural caves between major active thrusts forming potential storehouses for paleoseismological records. Here, we present results from the limestone caves in the Kumaun Himalaya and discuss the implications of growth perturbations identified in the stalagmites as possible earthquake recorders. This article focuses on three stalagmites from the Dharamjali Cave located in the eastern Kumaun Himalaya, although two other caves, one of them located in the foothills, were also examined for their suitability. The growth anomalies in stalagmites include abrupt tilting or rotation of growth axes, growth termination, and breakage followed by regrowth. The U-Th age data from three specimens allow us to constrain the intervals of growth anomalies, and these were dated at 4273 ± 410 years BP (2673-1853 BC), 2782 ± 79 years BP (851-693 BC), 2498 ± 117 years BP (605-371 BC), 1503 ± 245 years BP (262-752 AD), 1346 ± 101 years BP (563-765 AD), and 687 ± 147 years BP (1176-1470 AD). The dates may correspond to the timings of major/great earthquakes in the region and the youngest event (1176-1470 AD) shows chronological correspondence with either one of the great medieval earthquakes (1050-1250 and 1259-1433 AD) evident from trench excavations across the Himalayan Frontal Thrust.

  8. Effect of white noise "masking" on vestibular evoked potentials recorded using different stimulus modalities.

    PubMed

    Freeman, S; Plotnik, M; Elidan, J; Rosen, L J; Sohmer, H

    1999-01-01

    Short latency vestibular evoked potentials (VsEPs) to linear acceleration impulses (L-VsEPs) are initiated in the otolith organs (saccule and utricle). Some of the saccule afferents have been reported to respond not only to linear acceleration, but also to high intensity acoustic stimuli. If so, the L-VsEP recorded from the saccule (elicited with the stimulus orientated relative to the head so as to optimally activate the saccule, i.e. stimulus in the vertical plane, Z-VsEP) should be reduced during high intensity broad band noise (BBN) "masking". Conversely, the utricular afferents have been reported to be less auditory-sensitive. Therefore, an L-VsEP which is mainly utricular in origin (stimulus in the horizontal plane, X-VsEP) should be less affected by this noise "masking". This was investigated in rats by recording X-VsEPs and Z-VsEPs and angular VsEPs (A-VsEPs), originating in the lateral semi-circular canals, before, during and after exposure to short duration, high intensity (113 dB SPL) BBN. This intensity completely masked auditory nerve evoked responses. The Z-VsEP did appear to be slightly more affected by the noise "masking" than the X-VsEP, implying the presence of more auditory-sensitive elements in the saccule. The A-VsEP was also affected by the BBN. The overall effect was relatively small (on average, 10-25% depression of the first wave of the different VsEPs). The responses showed recovery 5 min later. PMID:10380734

  9. μ-Conotoxins that differentially block sodium channels NaV1.1 through 1.8 identify those responsible for action potentials in sciatic nerve

    PubMed Central

    Wilson, Michael J.; Yoshikami, Doju; Azam, Layla; Gajewiak, Joanna; Olivera, Baldomero M.; Bulaj, Grzegorz; Zhang, Min-Min

    2011-01-01

    Voltage-gated sodium channels (VGSCs) are important for action potentials. There are seven major isoforms of the pore-forming and gate-bearing α-subunit (NaV1) of VGSCs in mammalian neurons, and a given neuron can express more than one isoform. Five of the neuronal isoforms, NaV1.1, 1.2, 1.3, 1.6, and 1.7, are exquisitely sensitive to tetrodotoxin (TTX), and a functional differentiation of these presents a serious challenge. Here, we examined a panel of 11 μ-conopeptides for their ability to block rodent NaV1.1 through 1.8 expressed in Xenopus oocytes. Although none blocked NaV1.8, a TTX-resistant isoform, the resulting “activity matrix” revealed that the panel could readily discriminate between the members of all pair-wise combinations of the tested isoforms. To examine the identities of endogenous VGSCs, a subset of the panel was tested on A- and C-compound action potentials recorded from isolated preparations of rat sciatic nerve. The results show that the major subtypes in the corresponding A- and C-fibers were NaV1.6 and 1.7, respectively. Ruled out as major players in both fiber types were NaV1.1, 1.2, and 1.3. These results are consistent with immunohistochemical findings of others. To our awareness this is the first report describing a qualitative pharmacological survey of TTX-sensitive NaV1 isoforms responsible for propagating action potentials in peripheral nerve. The panel of μ-conopeptides should be useful in identifying the functional contributions of NaV1 isoforms in other preparations. PMID:21652775

  10. Assessment of TTX-s and TTX-r Action Potential Conduction along Neurites of NGF and GDNF Cultured Porcine DRG Somata

    PubMed Central

    Jonas, Robin; Klusch, Andreas; Schmelz, Martin; Petersen, Marlen; Carr, Richard W.

    2015-01-01

    Nine isoforms of voltage-gated sodium channels (NaV) have been characterized and in excitable tissues they are responsible for the initiation and conduction of action potentials. For primary afferent neurons residing in dorsal root ganglia (DRG), individual neurons may express multiple NaV isoforms extending the neuron’s functional capabilities. Since expression of NaV isoforms can be differentially regulated by neurotrophic factors we have examined the functional consequences of exposure to either nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF) on action potential conduction in outgrowing cultured porcine neurites of DRG neurons. Calcium signals were recorded using the exogenous intensity based calcium indicator Fluo-8®, AM. In 94 neurons, calcium signals were conducted along neurites in response to electrical stimulation of the soma. At an image acquisition rate of 25 Hz it was possible to discern calcium transients in response to individual electrical stimuli. The peak amplitude of electrically-evoked calcium signals was limited by the ability of the neuron to follow the stimulus frequency. The stimulus frequency required to evoke a half-maximal calcium response was approximately 3 Hz at room temperature. In 13 of 14 (93%) NGF-responsive neurites, TTX-r NaV isoforms alone were sufficient to support propagated signals. In contrast, calcium signals mediated by TTX-r NaVs were evident in only 4 of 11 (36%) neurites from somata cultured in GDNF. This establishes a basis for assessing action potential signaling using calcium imaging techniques in individual cultured neurites and suggests that, in the pig, afferent nociceptor classes relying on the functional properties of TTX-r NaV isoforms, such as cold-nociceptors, most probably derive from NGF-responsive DRG neurons. PMID:26407014

  11. Corrective Action Investigation Plan for Corrective Action Unit 527: Horn Silver Mine, Nevada Test Site, Nevada: Revision 1 (Including Records of Technical Change No.1, 2, 3, and 4)

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office

    2002-12-06

    This Corrective Action Investigation Plan contains the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 527, Horn Silver Mine, Nevada Test Site, Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 527 consists of one Corrective Action Site (CAS): 26-20-01, Contaminated Waste Dump No.1. The site is located in an abandoned mine site in Area 26 (which is the most arid part of the NTS) approximately 65 miles northwest of Las Vegas. Historical documents may refer to this site as CAU 168, CWD-1, the Wingfield mine (or shaft), and the Wahmonie mine (or shaft). Historical documentation indicates that between 1959 and the 1970s, nonliquid classified material and unclassified waste was placed in the Horn Silver Mine's shaft. Some of the waste is known to be radioactive. Documentation indicates that the waste is present from 150 feet to the bottom of the mine (500 ft below ground surface). This CAU is being investigated because hazardous constituents migrating from materials and/or wastes disposed of in the Horn Silver Mine may pose a threat to human health and the environment as well as to assess the potential impacts associated with any potential releases from the waste. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  12. Corrective Action Investigation Plan for Corrective Action Unit 263: Area 25 Building 4839 Leachfields, Nevada Test Site, Revision 0, DOE/NV--535 UPDATED WITH RECORD OF TECHNICAL CHANGE No.1

    SciTech Connect

    US DOE Nevada Operations Office

    1999-04-12

    The Corrective Action Investigation Plan for Corrective Action Unit 263, the Area 25 Building 4839 Leachfield, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the US Department of Energy, Nevada Operations Office; the Nevada Division of Environmental Protection; and the US Department of Defense. Corrective Action Unit 263 is comprised of the Corrective Action Site 25-05-04 sanitary leachfield and associated collection system. This Corrective Action Investigation Plan is used in combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada (DOE/NV, 1998d). The Leachfield Work Plan was developed to streamline investigations at Leachfield Corrective Action Units by incorporating management, technical, quality assurance, health and safety, public involvement, field sampling, and waste management information common to a set of Corrective Action Units with similar site histories and characteristics into a single document that can be referenced. This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 263. Corrective Action Unit 263 is located southwest of Building 4839, in the Central Propellant Storage Area. Operations in Building 4839 from 1968 to 1996 resulted in effluent releases to the leachfield and associated collection system. In general, effluent released to the leachfield consisted of sanitary wastewater from a toilet, urinal, lavatory, and drinking fountain located within Building 4839. The subsurface soils in the vicinity of the collection system and leachfield may have been impacted by effluent containing contaminants of potential concern generated by support activities associated with the Building 4839 operations.

  13. Elastic resistance change and action potential generation of non-faradaic Pt/TiO2/Pt capacitors

    NASA Astrophysics Data System (ADS)

    Lim, Hyungkwang; Jang, Ho Won; Lee, Doh-Kwon; Kim, Inho; Hwang, Cheol Seong; Jeong, Doo Seok

    2013-06-01

    Electric current in the mixed ionic-electronic conductor TiO2 is hysteretic, i.e. history-dependent, and its use is versatile in electronic devices. Nowadays, biologically inspired, analogue-type computing systems, known as neuromorphic systems, are being actively investigated owing to their new and intriguing physical concepts. The realization of artificial synapses is important for constructing neuromorphic systems. In mammalians' brains, the plasticity of synapses between neighbouring nerve cells arises from action potential firing. Emulating action potential firing via inorganic systems has therefore become important in neuromorphic engineering. In this work, the current-voltage hysteresis of TiO2-based non-faradaic capacitors is investigated to primarily focus on the correlation between the blocking contact and the elasticity, i.e. non-plasticity, of the capacitors' resistance change, in experimental and theoretical methods. The similarity between the action potential firing behaviour in nerve cells and the elasticity of the non-faradaic capacitors is addressed.Electric current in the mixed ionic-electronic conductor TiO2 is hysteretic, i.e. history-dependent, and its use is versatile in electronic devices. Nowadays, biologically inspired, analogue-type computing systems, known as neuromorphic systems, are being actively investigated owing to their new and intriguing physical concepts. The realization of artificial synapses is important for constructing neuromorphic systems. In mammalians' brains, the plasticity of synapses between neighbouring nerve cells arises from action potential firing. Emulating action potential firing via inorganic systems has therefore become important in neuromorphic engineering. In this work, the current-voltage hysteresis of TiO2-based non-faradaic capacitors is investigated to primarily focus on the correlation between the blocking contact and the elasticity, i.e. non-plasticity, of the capacitors' resistance change, in

  14. Reactive species modify NaV1.8 channels and affect action potentials in murine dorsal root ganglion neurons.

    PubMed

    Schink, Martin; Leipold, Enrico; Schirmeyer, Jana; Schönherr, Roland; Hoshi, Toshinori; Heinemann, Stefan H

    2016-01-01

    Dorsal root ganglion (DRG) neurons are important relay stations between the periphery and the central nervous system and are essential for somatosensory signaling. Reactive species are produced in a variety of physiological and pathophysiological conditions and are known to alter electric signaling. Here we studied the influence of reactive species on the electrical properties of DRG neurons from mice with the whole-cell patch-clamp method. Even mild stress induced by either low concentrations of chloramine-T (10 μM) or low-intensity blue light irradiation profoundly diminished action potential frequency but prolonged single action potentials in wild-type neurons. The impact on evoked action potentials was much smaller in neurons deficient of the tetrodotoxin (TTX)-resistant voltage-gated sodium channel NaV1.8 (NaV1.8(-/-)), the channel most important for the action potential upstroke in DRG neurons. Low concentrations of chloramine-T caused a significant reduction of NaV1.8 peak current and, at higher concentrations, progressively slowed down inactivation. Blue light had a smaller effect on amplitude but slowed down NaV1.8 channel inactivation. The observed effects were less apparent for TTX-sensitive NaV channels. NaV1.8 is an important reactive-species-sensitive component in the electrical signaling of DRG neurons, potentially giving rise to loss-of-function and gain-of-function phenomena depending on the type of reactive species and their effective concentration and time of exposure. PMID:26383867

  15. Reactive species modify NaV1.8 channels and affect action potentials in murine dorsal root ganglion neurons.

    PubMed

    Schink, Martin; Leipold, Enrico; Schirmeyer, Jana; Schönherr, Roland; Hoshi, Toshinori; Heinemann, Stefan H

    2016-01-01

    Dorsal root ganglion (DRG) neurons are important relay stations between the periphery and the central nervous system and are essential for somatosensory signaling. Reactive species are produced in a variety of physiological and pathophysiological conditions and are known to alter electric signaling. Here we studied the influence of reactive species on the electrical properties of DRG neurons from mice with the whole-cell patch-clamp method. Even mild stress induced by either low concentrations of chloramine-T (10 μM) or low-intensity blue light irradiation profoundly diminished action potential frequency but prolonged single action potentials in wild-type neurons. The impact on evoked action potentials was much smaller in neurons deficient of the tetrodotoxin (TTX)-resistant voltage-gated sodium channel NaV1.8 (NaV1.8(-/-)), the channel most important for the action potential upstroke in DRG neurons. Low concentrations of chloramine-T caused a significant reduction of NaV1.8 peak current and, at higher concentrations, progressively slowed down inactivation. Blue light had a smaller effect on amplitude but slowed down NaV1.8 channel inactivation. The observed effects were less apparent for TTX-sensitive NaV channels. NaV1.8 is an important reactive-species-sensitive component in the electrical signaling of DRG neurons, potentially giving rise to loss-of-function and gain-of-function phenomena depending on the type of reactive species and their effective concentration and time of exposure.

  16. Comparison of electrically evoked whole-nerve action potential and electrically evoked auditory brainstem response thresholds in nucleus CI24R cochlear implant recipients.

    PubMed

    Hay-McCutcheon, Marcia J; Brown, Carolyn J; Clay, Kelly Schmidt; Seyle, Keely

    2002-09-01

    In this study, differences between electrically evoked whole-nerve action potential (EAP) and electrically evoked auditory brainstem response (EABR) measurements within Nucleus CI24R cochlear implant recipients were evaluated. Precurved modiolus-hugging internal electrode arrays, such as the CI24R, are designed to provide more direct stimulation of neural elements of the modiolus. If the electrode array is closer to the modiolus, electrically evoked and behavioral levels might be lower than were previously recorded for the straight electrode array, the CI24M. EAP and EABR growth functions and behavioral levels were obtained for 10 postlingually deafened adults. Results revealed no significant differences between EAP and EABR threshold levels, and these levels were not significantly lower than those obtained using the CI24M. PMID:12371659

  17. The Potential of General Classroom Observation: Turkish EFL Teachers' Perceptions, Sentiments, and Readiness for Action

    ERIC Educational Resources Information Center

    Merç, Ali

    2015-01-01

    The purpose of this study was to determine Turkish EFL teachers' attitudes towards classroom observation. 204 teachers from different school settings responded to an online questionnaire. Data were analyzed according to three types of attitudes towards classroom observation: perceptions, sentiments, and readiness for action. The findings revealed…

  18. Action Learning in Higher Education: An Investigation of Its Potential to Develop Professional Capability

    ERIC Educational Resources Information Center

    Lizzio, Alf; Wilson, Keithia

    2004-01-01

    This study investigated the extent to which a course, designed using peer and action learning principles to function as an 'on campus practicum', can develop the professional capabilities of students. As part of their formal coursework, third year behavioural science students, functioning as 'student consultants', entered into a…

  19. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control.

    PubMed

    Bravo, Alejandra; Gill, Sarjeet S; Soberón, Mario

    2007-03-15

    Bacillus thuringiensis Crystal (Cry) and Cytolitic (Cyt) protein families are a diverse group of proteins with activity against insects of different orders--Lepidoptera, Coleoptera, Diptera and also against other invertebrates such as nematodes. Their primary action is to lyse midgut epithelial cells by inserting into the target membrane and forming pores. Among this group of proteins, members of the 3-Domain Cry family are used worldwide for insect control, and their mode of action has been characterized in some detail. Phylogenetic analyses established that the diversity of the 3-Domain Cry family evolved by the independent evolution of the three domains and by swapping of domain III among toxins. Like other pore-forming toxins (PFT) that affect mammals, Cry toxins interact with specific receptors located on the host cell surface and are activated by host proteases following receptor binding resulting in the formation of a pre-pore oligomeric structure that is insertion competent. In contrast, Cyt toxins directly interact with membrane lipids and insert into the membrane. Recent evidence suggests that Cyt synergize or overcome resistance to mosquitocidal-Cry proteins by functioning as a Cry-membrane bound receptor. In this review we summarize recent findings on the mode of action of Cry and Cyt toxins, and compare them to the mode of action of other bacterial PFT. Also, we discuss their use in the control of agricultural insect pests and insect vectors of human diseases. PMID:17198720

  20. A potential record of Late Holocene natural environmental changes in a cultural landscape

    NASA Astrophysics Data System (ADS)

    Søe, Niels Emil; Vad Odgaard, Bent; Olsen, Jesper; Munch Kristiansen, Søren

    2014-05-01

    The Late Holocene period is in most of Europe characterised by fast developing culture and agricultural techniques with associated changes in land-use, land-cover and landscape processes. Therefore, European Late Holocene natural environmental changes are often difficult to document. A core from Lake Ilsø, Denmark, was obtained to investigate environmental changes in the lake and its catchment during the Late Holocene. This record suggests an environment little disturbed by humans during the Iron Age. Lake Ilsø, situated in the central Jutland, is a small (0.005km2) and wind-protected lake in an east-west directed tunnel valley. The lake has an outlet, now channelised, and its topographical catchment area is 0.2km2. The morphology and size of Lake Ilsø gives it the potential of recording local-scale hydrological, environmental and climatic changes. Five radiocarbon dates on terrestrial material constitute an age-depth model of the 7m core, which was obtained in the central part of Lake Ilsø at maximum water depth (2.5m). The core covers the time interval from 2750 cal yr BP until the present. The core was analysed on an Itrax XRF-core scanner and sampled in 5cm increments for analysis of pollen and isotopes. The XRF-counts of titanium are expected to reflect the amount of detrital material entering the lake and thereby a proxy of the erosion from the catchment. This interpretation is supported by a high correlation between titanium and potassium. The titanium counts indicate a significant and rapid increase in erosion at 1000 cal yr BP, which continues to be high towards the present. Prior to 1000 cal yr BP organic rich sediment was deposited in the lake with short intervals of minor detrital input. The sedimentation rate was approximately 2.3mm/yr, which increased slightly to approximately 2.9mm/yr after 1000 cal yr BP. The marked change in the lake sediment is interpreted to be caused by human induced changes in the catchment during the early medieval period

  1. Scalp-recorded oscillatory potentials evoked by transient pattern-reversal visual stimulation in man.

    PubMed

    Sannita, W G; Lopez, L; Piras, C; Di Bon, G

    1995-05-01

    Replicable oscillatory potentials, time-locked to pattern stimuli (9.0 degrees central; counterphase reversal at 2.13 Hz) were dissociated from conventional, broad-band VEPs recorded in healthy volunteers at occipital scalp locations by high-pass digital filtering at 17.0-20.0 Hz. Nine consecutive wavelets were identified with a 56.4 +/- 8.4 msec mean latency of the first replicable wavelet and mean peak-to-peak amplitude varying between 0.9 and 2.0 muV. The first 2 wavelets had significantly shorter latencies than wave N70 of unfiltered VEP, whereas the last 2 wavelets had longer latencies than N145. Latency and amplitude values varied as a function of contrast and spatial frequency of the stimulus, with shorter latencies and larger amplitudes at 60-90% contrast level and tuning of amplitude at 5.0 c/deg. All wavelets were correlated with wave P100 of unfiltered VEP, while a correlation with N70 of VEP was observed only for those wavelets with latencies in the range of wave P100. Two patients with documented brain lesions involving the visual system are described as examples of oscillatory responses occurring irrespective of filter bandpass and instead of the expected conventional VEP when the generation of these is interfered with by brain pathology. A substantial cortical contribution to the origin of the oscillatory response is conceivable. It is suggested that the oscillatory response to pattern-reversal stimulation reflects events in the visual system that are parallel to, and partly independent of, the conventional VEP, with potential application in research or for clinical purposes. PMID:7750446

  2. The Potential for High-Resolution Palaeoclimate Records of the Pliocene from Speleothems

    NASA Astrophysics Data System (ADS)

    Drysdale, R.; Woodhead, J. D.; Hellstrom, J. C.

    2014-12-01

    The Pliocene is widely regarded as a useful analogue for future greenhouse warming and is thus an important interval for palaeoclimate study. Much of what we know about climate through the Pliocene comes from marine sediments. However, we know relatively little about interannual to interdecadal variability, yet reconstructing Pliocene climate at such resolution has the potential to yield important information for testing climate models. Recent advances in uranium-lead (U-Pb) dating have paved the way for investigating Pliocene (and older) high-resolution palaeoclimate records from speleothems. We present such an example from the Nullarbor Plain, Australia. The Nullabor is an emerged, karstified platform of Eocene to Miocene limestones situated on the arid southern fringe of the Australian continent. Caves developed in the karst preserve a large archive of ancient calcite speleothems, in stark contrast to the virtual lack of calcite speleothems today. U-Pb radiometric dating of these speleothems reveals that most the growth occurred during the Pliocene. The geochemistry of these speleothems suggests that the Nullarbor was a wetter and more-vegetated environment at the time. High-resolution geochemical analyses and fluorescence microscopy show that some of the speleothems are almost certainly annually laminated, and contain multi-proxy signatures similar to Holocene speleothems that are commonly associated with hydrological processes. We present a series of encouraging preliminary results from several specimens.

  3. Hidden plastics of Lake Ontario, Canada and their potential preservation in the sediment record.

    PubMed

    Corcoran, Patricia L; Norris, Todd; Ceccanese, Trevor; Walzak, Mary Jane; Helm, Paul A; Marvin, Chris H

    2015-09-01

    Microplastics are a source of environmental pollution resulting from degradation of plastic products and spillage of resin pellets. We report the amounts of microplastics from various sites of Lake Ontario and evaluate their potential for preservation in the sediment record. A total of 4635 pellets were sampled from the Humber Bay shoreline on three sampling dates. Pellet colours were similar to those from the Humber River bank, suggesting that the river is a pathway for plastics transport into Lake Ontario. Once in the lake, high density microplastics, including mineral-polyethylene and mineral-polypropylene mixtures, sink to the bottom. The minerals may be fillers that were combined with plastics during production, or may have adsorbed to the surfaces of the polymers in the water column or on the lake bottom. Based on sediment depths and accumulation rates, microplastics have accumulated in the offshore region for less than 38 years. Their burial increases the chance of microplastics preservation. Shoreline pellets may not be preserved because they are mingled with organic debris that is reworked during storm events.

  4. Nociceptive Local Field Potentials Recorded from the Human Insula Are Not Specific for Nociception.

    PubMed

    Liberati, Giulia; Klöcker, Anne; Safronova, Marta M; Ferrão Santos, Susana; Ribeiro Vaz, Jose-Geraldo; Raftopoulos, Christian; Mouraux, André

    2016-01-01

    The insula, particularly its posterior portion, is often regarded as a primary cortex for pain. However, this interpretation is largely based on reverse inference, and a specific involvement of the insula in pain has never been demonstrated. Taking advantage of the high spatiotemporal resolution of direct intracerebral recordings, we investigated whether the human insula exhibits local field potentials (LFPs) specific for pain. Forty-seven insular sites were investigated. Participants received brief stimuli belonging to four different modalities (nociceptive, vibrotactile, auditory, and visual). Both nociceptive stimuli and non-nociceptive vibrotactile, auditory, and visual stimuli elicited consistent LFPs in the posterior and anterior insula, with matching spatial distributions. Furthermore, a blind source separation procedure showed that nociceptive LFPs are largely explained by multimodal neural activity also contributing to non-nociceptive LFPs. By revealing that LFPs elicited by nociceptive stimuli reflect activity unrelated to nociception and pain, our results confute the widespread assumption that these brain responses are a signature for pain perception and its modulation. PMID:26734726

  5. The Cassava Mealybug (Phenacoccus manihoti) in Asia: First Records, Potential Distribution, and an Identification Key

    PubMed Central

    Parsa, Soroush; Kondo, Takumasa; Winotai, Amporn

    2012-01-01

    Phenacoccus manihoti Matile-Ferrero (Hemiptera: Pseudococcidae), one of the most serious pests of cassava worldwide, has recently reached Asia, raising significant concern over its potential spread throughout the region. To support management decisions, this article reports recent distribution records, and estimates the climatic suitability for its regional spread using a CLIMEX distribution model. The article also presents a taxonomic key that separates P. manihoti from all other mealybug species associated with the genus Manihot. Model predictions suggest P. manihoti imposes an important, yet differential, threat to cassava production in Asia. Predicted risk is most acute in the southern end of Karnataka in India, the eastern end of the Ninh Thuan province in Vietnam, and in most of West Timor in Indonesia. The model also suggests P. manihoti is likely to be limited by cold stress across Vietnam's northern regions and in the entire Guangxi province in China, and by high rainfall across the wet tropics in Indonesia and the Philippines. Predictions should be particularly important to guide management decisions for high risk areas where P. manihoti is absent (e.g., India), or where it has established but populations remain small and localized (e.g., South Vietnam). Results from this article should help decision-makers assess site-specific risk of invasion, and develop proportional prevention and surveillance programs for early detection and rapid response. PMID:23077659

  6. Blueback herring (Alosa aestivalis) in Lake Ontario: First record, entry route, and colonization potential

    USGS Publications Warehouse

    Owens, Randall W.; O'Gorman, Robert; Mills, Edward L.; Rudstam, Lars G.; Hasse, John J.; Kulik, Brandon H.; MacNeill, David B.

    1998-01-01

    Two juvenile blueback herring (Alosa aestivalis) were caught in Lake Ontario in October 1995, the first record of this anadromous marine clupeid in the Great Lakes. Blueback herring most likely gained entry to Lake Ontario via the Erie Barge Canal, a navigation canal that links the Mohawk-Hudson rivers, which drain to the Atlantic Ocean, to Oneida Lake, which drains to Lake Ontario through the Oneida-Oswego rivers. Blueback herring ascend the Hudson River to spawn and were first reported from the upper Mohawk River in 1978. They currently spawn in several of the upper Mohawk's tributaries, including one about 430 km from the ocean but only 25 km from Oneida Lake. They were first found in Oneida Lake in 1982 and, in fall 1994, large numbers of juvenile blueback herring were found moving down the Oswego River. In the southern United States, blueback herring established self-reproducing populations in several reservoirs, and thus they have the potential to colonize Lake Ontario. If blueback herring became established in Lake Ontario, they could spread to other Great Lakes and impede recovery of depressed populations of indigenous fishes, like lake herring (Coregonus artedi) and lake trout (Salvelinus namaycush), through competition with, or predation on, their larvae.

  7. Superfund Record of Decision (EPA Region 4): City Industries, Winter Park, FL. (First remedial action), March 1990. Final report

    SciTech Connect

    Not Available

    1990-03-29

    The City Industries site is a former hazardous waste recycling and transfer facility in Goldenrod Township, Orange County, Florida, near the cities of Winter Park and Orlando. The city of Winter Park's water supply well field is located approximately 1,900 feet west of the site. These wells draw from the deep Floridan aquifer, which is separated from a surficial aquifer by a 140-foot-thick confining layer. In 1971, a former fuel oil business at the site was developed into a waste-handling facility. Activities at the site included receiving, handling, storing, reclaiming, and disposing of various waste chemicals. Improper disposal practices and intentional dumping led to onsite soil and surficial ground water contamination. The Record of Decision (ROD) addresses contaminated ground water, which is migrating through the surficial aquifer, a potential drinking water source, and prevention of contaminant migration to the deeper Floridan aquifer. The primary contaminants of concern affecting the ground water are VOCs including benzene, PCE, TCE, and toluene.

  8. Action Potential Waveform Variability Limits Multi-Unit Separation in Freely Behaving Rats

    PubMed Central

    Stratton, Peter; Cheung, Allen; Wiles, Janet; Kiyatkin, Eugene; Sah, Pankaj; Windels, François

    2012-01-01

    Extracellular multi-unit recording is a widely used technique to study spontaneous and evoked neuronal activity in awake behaving animals. These recordings are done using either single-wire or mulitwire electrodes such as tetrodes. In this study we have tested the ability of single-wire electrodes to discriminate activity from multiple neurons under conditions of varying noise and neuronal cell density. Using extracellular single-unit recording, coupled with iontophoresis to drive cell activity across a wide dynamic range, we studied spike waveform variability, and explored systematic differences in single-unit spike waveform within and between brain regions as well as the influence of signal-to-noise ratio (SNR) on the similarity of spike waveforms. We also modelled spike misclassification for a range of cell densities based on neuronal recordings obtained at different SNRs. Modelling predictions were confirmed by classifying spike waveforms from multiple cells with various SNRs using a leading commercial spike-sorting system. Our results show that for single-wire recordings, multiple units can only be reliably distinguished under conditions of high recording SNR (≥4) and low neuronal density (≈20,000/ mm3). Physiological and behavioural changes, as well as technical limitations typical of awake animal preparations, reduce the accuracy of single-channel spike classification, resulting in serious classification errors. For SNR <4, the probability of misclassifying spikes approaches 100% in many cases. Our results suggest that in studies where the SNR is low or neuronal density is high, separation of distinct units needs to be evaluated with great caution. PMID:22719894

  9. Determining electrically evoked compound action potential thresholds: A comparison of computer versus human analysis methods

    PubMed Central

    Glassman, E. Katelyn; Hughes, Michelle L.

    2012-01-01

    Objectives Current cochlear implants (CIs) have telemetry capabilities for measuring the electrically evoked compound action potential (ECAP). Neural Response Telemetry (NRT™; Cochlear) and Neural Response Imaging (NRI; Advanced Bionics [AB]) can measure ECAP responses across a range of stimulus levels to obtain an amplitude growth function. Software-specific algorithms automatically mark the leading negative peak, N1, and the following positive peak/plateau, P2, and apply linear regression to estimate ECAP threshold. Alternatively, clinicians may apply expert judgments to modify the peak markers placed by the software algorithms, and/or use visual detection to identify the lowest level yielding a measurable ECAP response. The goals of this study were to: (1) assess the variability between human and computer decisions for (a) marking N1 and P2, and (b) determination of linear regression threshold (LRT) and visual detection threshold (VDT); and (2) compare LRT and VDT methods within and across human and computer decision methods. Design ECAP amplitude growth functions were measured for three electrodes in each of 20 ears (10 Cochlear Nucleus® 24RE/CI512, and 10 AB CII/90K). LRT, defined as the current level yielding an ECAP with zero amplitude, was calculated for both computer- (C-LRT) and human-picked peaks (H-LRT). VDT, defined as the lowest level resulting in a measurable ECAP response, was also calculated for both computer- (C-VDT) and human-picked peaks (H-VDT). Because NRI assigns peak markers to all waveforms but does not include waveforms with amplitudes less than 20 μV in its regression calculation, C-VDT for AB subjects was defined as the lowest current level yielding an amplitude ≥20 μV. Results Overall, there were significant correlations between human and computer decisions for peak-marker placement, LRT, and VDT for both manufacturers (r = 0.78 to 1.00, p < 0.001). For Cochlear devices, LRT and VDT correlated equally well for both computer- and

  10. A Critical Role for Neurofascin in Regulating Action Potential Initiation through Maintenance of the Axon Initial Segment

    PubMed Central

    Zonta, Barbara; Desmazieres, Anne; Rinaldi, Arianna; Tait, Steven; Sherman, Diane L.; Nolan, Matthew F.; Brophy, Peter J.

    2011-01-01

    Summary The axon initial segment (AIS) is critical for the initiation and propagation of action potentials. Assembly of the AIS requires interactions between scaffolding molecules and voltage-gated sodium channels, but the molecular mechanisms that stabilize the AIS are poorly understood. The neuronal isoform of Neurofascin, Nfasc186, clusters voltage-gated sodium channels at nodes of Ranvier in myelinated nerves: here, we investigate its role in AIS assembly and stabilization. Inactivation of the Nfasc gene in cerebellar Purkinje cells of adult mice causes rapid loss of Nfasc186 from the AIS but not from nodes of Ranvier. This causes AIS disintegration, impairment of motor learning and the abolition of the spontaneous tonic discharge typical of Purkinje cells. Nevertheless, action potentials with a modified waveform can still be evoked and basic motor abilities remain intact. We propose that Nfasc186 optimizes communication between mature neurons by anchoring the key elements of the adult AIS complex. PMID:21382554

  11. [Hardware Implementation of Numerical Simulation Function of Hodgkin-Huxley Model Neurons Action Potential Based on Field Programmable Gate Array].

    PubMed

    Wang, Jinlong; Lu, Mai; Hu, Yanwen; Chen, Xiaoqiang; Pan, Qiangqiang

    2015-12-01

    Neuron is the basic unit of the biological neural system. The Hodgkin-Huxley (HH) model is one of the most realistic neuron models on the electrophysiological characteristic description of neuron. Hardware implementation of neuron could provide new research ideas to clinical treatment of spinal cord injury, bionics and artificial intelligence. Based on the HH model neuron and the DSP Builder technology, in the present study, a single HH model neuron hardware implementation was completed in Field Programmable Gate Array (FPGA). The neuron implemented in FPGA was stimulated by different types of current, the action potential response characteristics were analyzed, and the correlation coefficient between numerical simulation result and hardware implementation result were calculated. The results showed that neuronal action potential response of FPGA was highly consistent with numerical simulation result. This work lays the foundation for hardware implementation of neural network. PMID:27079105

  12. Ventricular filling slows epicardial conduction and increases action potential duration in an optical mapping study of the isolated rabbit heart

    NASA Technical Reports Server (NTRS)

    Sung, Derrick; Mills, Robert W.; Schettler, Jan; Narayan, Sanjiv M.; Omens, Jeffrey H.; McCulloch, Andrew D.; McCullough, A. D. (Principal Investigator)

    2003-01-01

    INTRODUCTION: Mechanical stimulation can induce electrophysiologic changes in cardiac myocytes, but how mechanoelectric feedback in the intact heart affects action potential propagation remains unclear. METHODS AND RESULTS: Changes in action potential propagation and repolarization with increased left ventricular end-diastolic pressure from 0 to 30 mmHg were investigated using optical mapping in isolated perfused rabbit hearts. With respect to 0 mmHg, epicardial strain at 30 mmHg in the anterior left ventricle averaged 0.040 +/- 0.004 in the muscle fiber direction and 0.032 +/- 0.006 in the cross-fiber direction. An increase in ventricular loading increased average epicardial activation time by 25%+/- 3% (P < 0.0001) and correspondingly decreased average apparent surface conduction velocity by 16%+/- 7% (P = 0.007). Ventricular loading did not significantly alter action potential duration at 20% repolarization (APD20) but did at 80% repolarization (APD80), from 179 +/- 7 msec to 207 +/- 5 msec (P < 0.0001). The dispersion of APD20 was decreased with loading from 19 +/- 2 msec to 13 +/- 2 msec (P = 0.024), whereas the dispersion of APD80 was not significantly changed. These electrophysiologic changes with ventricular loading were not affected by the nonspecific stretch-activated channel blocker streptomycin (200 microM) and were not attributable to changes in myocardial perfusion or the presence of an electromechanical decoupling agent (butanedione monoxime) during optical mapping. CONCLUSION: Acute loading of the left ventricle of the isolated rabbit heart decreased apparent epicardial conduction velocity and increased action potential duration by a load-dependent mechanism that may not involve stretch-activated channels.

  13. Morphological Characterization of the Action Potential Initiation Segment in GnRH Neuron Dendrites and Axons of Male Mice.

    PubMed

    Herde, Michel K; Herbison, Allan E

    2015-11-01

    GnRH neurons are the final output neurons of the hypothalamic network controlling fertility in mammals. In the present study, we used ankyrin G immunohistochemistry and neurobiotin filling of live GnRH neurons in brain slices from GnRH-green fluorescent protein transgenic male mice to examine in detail the location of action potential initiation in GnRH neurons with somata residing at different locations in the basal forebrain. We found that the vast majority of GnRH neurons are bipolar in morphology, elaborating a thick (primary) and thinner (secondary) dendrite from opposite poles of the soma. In addition, an axon-like process arising predominantly from a proximal dendrite was observed in a subpopulation of GnRH neurons. Ankyrin G immunohistochemistry revealed the presence of a single action potential initiation zone ∼27 μm in length primarily in the secondary dendrite of GnRH neurons and located 30 to 140 μm distant from the cell soma, depending on the type of process and location of the cell body. In addition to dendrites, the GnRH neurons with cell bodies located close to hypothalamic circumventricular organs often elaborated ankyrin G-positive axon-like structures. Almost all GnRH neurons (>90%) had their action potential initiation site in a process that initially, or ultimately after a hairpin loop, was coursing in the direction of the median eminence. These studies indicate that action potentials are initiated in different dendritic and axonal compartments of the GnRH neuron in a manner that is dependent partly on the neuroanatomical location of the cell body.

  14. The invasive New Guinea flatworm Platydemus manokwari in France, the first record for Europe: time for action is now

    PubMed Central

    Winsor, Leigh; Gey, Delphine; Gros, Pierre; Thévenot, Jessica

    2014-01-01

    Non-indigenous terrestrial flatworms (Platyhelminthes) have been recorded in thirteen European countries. They include Bipalium kewense and Dolichoplana striata that are largely restricted to hothouses and may be regarded as non-invasive species. In addition there are species from the southern hemisphere such as the invasive New Zealand flatworm Arthurdendyus triangulatus in the United Kingdom, Eire and the Faroe Islands, the Australian flatworm Australoplana sanguinea alba in Eire and the United Kingdom, and the Australian Blue Garden flatworm Caenoplana coerulea in France, Menorca and the United Kingdom. The United Kingdom has some twelve or more non-indigenous species most of which are Australian and New Zealand species. These species may move to an invasive stage when optimum environmental and other conditions occur, and the flatworms then have the potential to cause economic or environmental harm. In this paper, we report the identification (from morphology and molecular analysis of COI sequences) of non-indigenous terrestrial flatworms found in a hothouse in Caen (France) as the New Guinea flatworm Platydemus manokwari de Beauchamp, 1963 (Platyhelminthes, Continenticola, Geoplanidae, Rhynchodeminae). Platydemus manokwari is among the “100 World’s Worst Invader Alien Species”. Lists of World geographi