Core self-evaluations and work engagement: Testing a perception, action, and development path.
Tims, Maria; Akkermans, Jos
2017-01-01
Core self-evaluations (CSE) have predictive value for important work outcomes such as job satisfaction and job performance. However, little is known about the mechanisms that may explain these relationships. The purpose of the present study is to contribute to CSE theory by proposing and subsequently providing a first test of theoretically relevant mediating paths through which CSE may be related to work engagement. Based on approach/avoidance motivation and Job Demands-Resources theory, we examined a perception (via job characteristics), action (via job crafting), and development path (via career competencies). Two independent samples were obtained from employees working in Germany and The Netherlands (N = 303 and N = 404, respectively). When taking all mediators into account, results showed that the perception path represented by autonomy and social support played a minor role in the relationship between CSE and work engagement. Specifically, autonomy did not function as a mediator in both samples while social support played a marginally significant role in the CSE-work engagement relationship in sample 1 and received full support in sample 2. The action path exemplified by job crafting mediated the relationship between CSE and work engagement in both samples. Finally, the development path operationalized with career competencies mediated the relationship between CSE and work engagement in sample 1. The study presents evidence for an action and development path over and above the often tested perception path to explain how CSE is related to work engagement. This is one of the first studies to propose and show that CSE not only influences perceptions but also triggers employee actions and developmental strategies that relate to work engagement.
Core self-evaluations and work engagement: Testing a perception, action, and development path
Akkermans, Jos
2017-01-01
Core self-evaluations (CSE) have predictive value for important work outcomes such as job satisfaction and job performance. However, little is known about the mechanisms that may explain these relationships. The purpose of the present study is to contribute to CSE theory by proposing and subsequently providing a first test of theoretically relevant mediating paths through which CSE may be related to work engagement. Based on approach/avoidance motivation and Job Demands-Resources theory, we examined a perception (via job characteristics), action (via job crafting), and development path (via career competencies). Two independent samples were obtained from employees working in Germany and The Netherlands (N = 303 and N = 404, respectively). When taking all mediators into account, results showed that the perception path represented by autonomy and social support played a minor role in the relationship between CSE and work engagement. Specifically, autonomy did not function as a mediator in both samples while social support played a marginally significant role in the CSE–work engagement relationship in sample 1 and received full support in sample 2. The action path exemplified by job crafting mediated the relationship between CSE and work engagement in both samples. Finally, the development path operationalized with career competencies mediated the relationship between CSE and work engagement in sample 1. The study presents evidence for an action and development path over and above the often tested perception path to explain how CSE is related to work engagement. This is one of the first studies to propose and show that CSE not only influences perceptions but also triggers employee actions and developmental strategies that relate to work engagement. PMID:28787464
Saab, Rim; Tausch, Nicole; Spears, Russell; Cheung, Wing-Yee
2015-09-01
We examined predictors of collective action among bystander group members in solidarity with a disadvantaged group by extending the dual pathway model of collective action, which proposes one efficacy-based and one emotion-based path to collective action (Van Zomeren, Spears, Fischer, & Leach, 2004). Based on two proposed functions of social identity performance (Klein, Spears, & Reicher, 2007), we distinguished between the efficacy of collective action at consolidating the identity of a protest movement and its efficacy at achieving social change (political efficacy). We expected identity consolidation efficacy to positively predict collective action tendencies directly and indirectly via political efficacy. We also expected collective action tendencies to be positively predicted by moral outrage and by sympathy in response to disadvantaged outgroup's suffering. These hypotheses were supported in two surveys examining intentions to protest for Palestine in Britain (Study 1), and intentions to attend the June 4th vigil in Hong Kong to commemorate the Tiananmen massacre among a sample of Hong Kong citizens (Study 2). The contributions of these findings to research on the dual pathway model of collective action and the different functions of collective action are discussed. © 2014 The British Psychological Society.
Path optimization method for the sign problem
NASA Astrophysics Data System (ADS)
Ohnishi, Akira; Mori, Yuto; Kashiwa, Kouji
2018-03-01
We propose a path optimization method (POM) to evade the sign problem in the Monte-Carlo calculations for complex actions. Among many approaches to the sign problem, the Lefschetz-thimble path-integral method and the complex Langevin method are promising and extensively discussed. In these methods, real field variables are complexified and the integration manifold is determined by the flow equations or stochastically sampled. When we have singular points of the action or multiple critical points near the original integral surface, however, we have a risk to encounter the residual and global sign problems or the singular drift term problem. One of the ways to avoid the singular points is to optimize the integration path which is designed not to hit the singular points of the Boltzmann weight. By specifying the one-dimensional integration-path as z = t +if(t)(f ɛ R) and by optimizing f(t) to enhance the average phase factor, we demonstrate that we can avoid the sign problem in a one-variable toy model for which the complex Langevin method is found to fail. In this proceedings, we propose POM and discuss how we can avoid the sign problem in a toy model. We also discuss the possibility to utilize the neural network to optimize the path.
Action-minimizing solutions of the one-dimensional N-body problem
NASA Astrophysics Data System (ADS)
Yu, Xiang; Zhang, Shiqing
2018-05-01
We supplement the following result of C. Marchal on the Newtonian N-body problem: A path minimizing the Lagrangian action functional between two given configurations is always a true (collision-free) solution when the dimension d of the physical space R^d satisfies d≥2. The focus of this paper is on the fixed-ends problem for the one-dimensional Newtonian N-body problem. We prove that a path minimizing the action functional in the set of paths joining two given configurations and having all the time the same order is always a true (collision-free) solution. Considering the one-dimensional N-body problem with equal masses, we prove that (i) collision instants are isolated for a path minimizing the action functional between two given configurations, (ii) if the particles at two endpoints have the same order, then the path minimizing the action functional is always a true (collision-free) solution and (iii) when the particles at two endpoints have different order, although there must be collisions for any path, we can prove that there are at most N! - 1 collisions for any action-minimizing path.
Gramatica, Ruggero; Di Matteo, T; Giorgetti, Stefano; Barbiani, Massimo; Bevec, Dorian; Aste, Tomaso
2014-01-01
We introduce a methodology to efficiently exploit natural-language expressed biomedical knowledge for repurposing existing drugs towards diseases for which they were not initially intended. Leveraging on developments in Computational Linguistics and Graph Theory, a methodology is defined to build a graph representation of knowledge, which is automatically analysed to discover hidden relations between any drug and any disease: these relations are specific paths among the biomedical entities of the graph, representing possible Modes of Action for any given pharmacological compound. We propose a measure for the likeliness of these paths based on a stochastic process on the graph. This measure depends on the abundance of indirect paths between a peptide and a disease, rather than solely on the strength of the shortest path connecting them. We provide real-world examples, showing how the method successfully retrieves known pathophysiological Mode of Action and finds new ones by meaningfully selecting and aggregating contributions from known bio-molecular interactions. Applications of this methodology are presented, and prove the efficacy of the method for selecting drugs as treatment options for rare diseases.
Metaphysics of the principle of least action
NASA Astrophysics Data System (ADS)
Terekhovich, Vladislav
2018-05-01
Despite the importance of the variational principles of physics, there have been relatively few attempts to consider them for a realistic framework. In addition to the old teleological question, this paper continues the recent discussion regarding the modal involvement of the principle of least action and its relations with the Humean view of the laws of nature. The reality of possible paths in the principle of least action is examined from the perspectives of the contemporary metaphysics of modality and Leibniz's concept of essences or possibles striving for existence. I elaborate a modal interpretation of the principle of least action that replaces a classical representation of a system's motion along a single history in the actual modality by simultaneous motions along an infinite set of all possible histories in the possible modality. This model is based on an intuition that deep ontological connections exist between the possible paths in the principle of least action and possible quantum histories in the Feynman path integral. I interpret the action as a physical measure of the essence of every possible history. Therefore only one actual history has the highest degree of the essence and minimal action. To address the issue of necessity, I assume that the principle of least action has a general physical necessity and lies between the laws of motion with a limited physical necessity and certain laws with a metaphysical necessity.
Generalized Ensemble Sampling of Enzyme Reaction Free Energy Pathways
Wu, Dongsheng; Fajer, Mikolai I.; Cao, Liaoran; Cheng, Xiaolin; Yang, Wei
2016-01-01
Free energy path sampling plays an essential role in computational understanding of chemical reactions, particularly those occurring in enzymatic environments. Among a variety of molecular dynamics simulation approaches, the generalized ensemble sampling strategy is uniquely attractive for the fact that it not only can enhance the sampling of rare chemical events but also can naturally ensure consistent exploration of environmental degrees of freedom. In this review, we plan to provide a tutorial-like tour on an emerging topic: generalized ensemble sampling of enzyme reaction free energy path. The discussion is largely focused on our own studies, particularly ones based on the metadynamics free energy sampling method and the on-the-path random walk path sampling method. We hope that this mini presentation will provide interested practitioners some meaningful guidance for future algorithm formulation and application study. PMID:27498634
High-Frequency Replanning Under Uncertainty Using Parallel Sampling-Based Motion Planning
Sun, Wen; Patil, Sachin; Alterovitz, Ron
2015-01-01
As sampling-based motion planners become faster, they can be re-executed more frequently by a robot during task execution to react to uncertainty in robot motion, obstacle motion, sensing noise, and uncertainty in the robot’s kinematic model. We investigate and analyze high-frequency replanning (HFR), where, during each period, fast sampling-based motion planners are executed in parallel as the robot simultaneously executes the first action of the best motion plan from the previous period. We consider discrete-time systems with stochastic nonlinear (but linearizable) dynamics and observation models with noise drawn from zero mean Gaussian distributions. The objective is to maximize the probability of success (i.e., avoid collision with obstacles and reach the goal) or to minimize path length subject to a lower bound on the probability of success. We show that, as parallel computation power increases, HFR offers asymptotic optimality for these objectives during each period for goal-oriented problems. We then demonstrate the effectiveness of HFR for holonomic and nonholonomic robots including car-like vehicles and steerable medical needles. PMID:26279645
Path Similarity Analysis: A Method for Quantifying Macromolecular Pathways
Seyler, Sean L.; Kumar, Avishek; Thorpe, M. F.; Beckstein, Oliver
2015-01-01
Diverse classes of proteins function through large-scale conformational changes and various sophisticated computational algorithms have been proposed to enhance sampling of these macromolecular transition paths. Because such paths are curves in a high-dimensional space, it has been difficult to quantitatively compare multiple paths, a necessary prerequisite to, for instance, assess the quality of different algorithms. We introduce a method named Path Similarity Analysis (PSA) that enables us to quantify the similarity between two arbitrary paths and extract the atomic-scale determinants responsible for their differences. PSA utilizes the full information available in 3N-dimensional configuration space trajectories by employing the Hausdorff or Fréchet metrics (adopted from computational geometry) to quantify the degree of similarity between piecewise-linear curves. It thus completely avoids relying on projections into low dimensional spaces, as used in traditional approaches. To elucidate the principles of PSA, we quantified the effect of path roughness induced by thermal fluctuations using a toy model system. Using, as an example, the closed-to-open transitions of the enzyme adenylate kinase (AdK) in its substrate-free form, we compared a range of protein transition path-generating algorithms. Molecular dynamics-based dynamic importance sampling (DIMS) MD and targeted MD (TMD) and the purely geometric FRODA (Framework Rigidity Optimized Dynamics Algorithm) were tested along with seven other methods publicly available on servers, including several based on the popular elastic network model (ENM). PSA with clustering revealed that paths produced by a given method are more similar to each other than to those from another method and, for instance, that the ENM-based methods produced relatively similar paths. PSA applied to ensembles of DIMS MD and FRODA trajectories of the conformational transition of diphtheria toxin, a particularly challenging example, showed that the geometry-based FRODA occasionally sampled the pathway space of force field-based DIMS MD. For the AdK transition, the new concept of a Hausdorff-pair map enabled us to extract the molecular structural determinants responsible for differences in pathways, namely a set of conserved salt bridges whose charge-charge interactions are fully modelled in DIMS MD but not in FRODA. PSA has the potential to enhance our understanding of transition path sampling methods, validate them, and to provide a new approach to analyzing conformational transitions. PMID:26488417
Pérez-Garín, Daniel; Molero, Fernando; Bos, Arjan E R
2017-04-01
The goal of this study is to test a model in which personal discrimination predicts internalized stigma, while group discrimination predicts a greater willingness to engage in collective action. Internalized stigma and collective action, in turn, are associated to positive and negative affect. A cross-sectional study with 213 people with mental illness was conducted. The model was tested using path analysis. Although the data supported the model, its fit was not sufficiently good. A respecified model, in which a direct path from collective action to internalized stigma was added, showed a good fit. Personal and group discrimination appear to impact subjective well-being through two different paths: the internalization of stigma and collective action intentions, respectively. These two paths, however, are not completely independent, as collective action predicts a lower internalization of stigma. Thus, collective action appears as an important tool to reduce internalized stigma and improve subjective well-being. Future interventions to reduce the impact of stigma should fight the internalization of stigma and promote collective action are suggested.
Communicating actionable risk for terrorism and other hazards.
Wood, Michele M; Mileti, Dennis S; Kano, Megumi; Kelley, Melissa M; Regan, Rotrease; Bourque, Linda B
2012-04-01
We propose a shift in emphasis when communicating to people when the objective is to motivate household disaster preparedness actions. This shift is to emphasize the communication of preparedness actions (what to do about risk) rather than risk itself. We have called this perspective "communicating actionable risk," and it is grounded in diffusion of innovations and communication theories. A representative sample of households in the nation was analyzed using a path analytic framework. Preparedness information variables (including content, density, and observation), preparedness mediating variables (knowledge, perceived effectiveness, and milling), and preparedness actions taken were modeled. Clear results emerged that provide a strong basis for communicating actionable risk, and for the conclusion both that information observed (seeing preparedness actions that other have taken) and information received (receiving recommendations about what preparedness actions to take) play key, although different, roles in motivating preparedness actions among the people in our nation. © 2011 Society for Risk Analysis.
Model-based choices involve prospective neural activity
Doll, Bradley B.; Duncan, Katherine D.; Simon, Dylan A.; Shohamy, Daphna; Daw, Nathaniel D.
2015-01-01
Decisions may arise via “model-free” repetition of previously reinforced actions, or by “model-based” evaluation, which is widely thought to follow from prospective anticipation of action consequences using a learned map or model. While choices and neural correlates of decision variables sometimes reflect knowledge of their consequences, it remains unclear whether this actually arises from prospective evaluation. Using functional MRI and a sequential reward-learning task in which paths contained decodable object categories, we found that humans’ model-based choices were associated with neural signatures of future paths observed at decision time, suggesting a prospective mechanism for choice. Prospection also covaried with the degree of model-based influences on neural correlates of decision variables, and was inversely related to prediction error signals thought to underlie model-free learning. These results dissociate separate mechanisms underlying model-based and model-free evaluation and support the hypothesis that model-based influences on choices and neural decision variables result from prospection. PMID:25799041
NASA Astrophysics Data System (ADS)
Simone, Gabriele; Cordone, Roberto; Serapioni, Raul Paolo; Lecca, Michela
2017-05-01
Retinex theory estimates the human color sensation at any observed point by correcting its color based on the spatial arrangement of the colors in proximate regions. We revise two recent path-based, edge-aware Retinex implementations: Termite Retinex (TR) and Energy-driven Termite Retinex (ETR). As the original Retinex implementation, TR and ETR scan the neighborhood of any image pixel by paths and rescale their chromatic intensities by intensity levels computed by reworking the colors of the pixels on the paths. Our interest in TR and ETR is due to their unique, content-based scanning scheme, which uses the image edges to define the paths and exploits a swarm intelligence model for guiding the spatial exploration of the image. The exploration scheme of ETR has been showed to be particularly effective: its paths are local minima of an energy functional, designed to favor the sampling of image pixels highly relevant to color sensation. Nevertheless, since its computational complexity makes ETR poorly practicable, here we present a light version of it, named Light Energy-driven TR, and obtained from ETR by implementing a modified, optimized minimization procedure and by exploiting parallel computing.
Converging Towards the Optimal Path to Extinction
2011-01-01
the reproductive rate R0 should be greater than but very close to 1. However, most real diseases have R0 larger than 1.5, which translates into a...can analytically find an expression for the action along the optimal path. The expression for the action is a function of k and the reproductive number...the optimal path for a range of values of the reproductive number R0. In contrast to the prior two examples, here the action must be computed
Co-development of manner and path concepts in language, action, and eye-gaze behavior.
Lohan, Katrin S; Griffiths, Sascha S; Sciutti, Alessandra; Partmann, Tim C; Rohlfing, Katharina J
2014-07-01
In order for artificial intelligent systems to interact naturally with human users, they need to be able to learn from human instructions when actions should be imitated. Human tutoring will typically consist of action demonstrations accompanied by speech. In the following, the characteristics of human tutoring during action demonstration will be examined. A special focus will be put on the distinction between two kinds of motion events: path-oriented actions and manner-oriented actions. Such a distinction is inspired by the literature pertaining to cognitive linguistics, which indicates that the human conceptual system can distinguish these two distinct types of motion. These two kinds of actions are described in language by more path-oriented or more manner-oriented utterances. In path-oriented utterances, the source, trajectory, or goal is emphasized, whereas in manner-oriented utterances the medium, velocity, or means of motion are highlighted. We examined a video corpus of adult-child interactions comprised of three age groups of children-pre-lexical, early lexical, and lexical-and two different tasks, one emphasizing manner more strongly and one emphasizing path more strongly. We analyzed the language and motion of the caregiver and the gazing behavior of the child to highlight the differences between the tutoring and the acquisition of the manner and path concepts. The results suggest that age is an important factor in the development of these action categories. The analysis of this corpus has also been exploited to develop an intelligent robotic behavior-the tutoring spotter system-able to emulate children's behaviors in a tutoring situation, with the aim of evoking in human subjects a natural and effective behavior in teaching to a robot. The findings related to the development of manner and path concepts have been used to implement new effective feedback strategies in the tutoring spotter system, which should provide improvements in human-robot interaction. Copyright © 2014 Cognitive Science Society, Inc.
NASA Technical Reports Server (NTRS)
Thomas, Randy; Stueber, Thomas J.
2013-01-01
The System Identification (SysID) Rack is a real-time hardware-in-the-loop data acquisition (DAQ) and control instrument rack that was designed and built to support inlet testing in the NASA Glenn Research Center 10- by 10-Foot Supersonic Wind Tunnel. This instrument rack is used to support experiments on the Combined-Cycle Engine Large-Scale Inlet for Mode Transition Experiment (CCE? LIMX). The CCE?LIMX is a testbed for an integrated dual flow-path inlet configuration with the two flow paths in an over-and-under arrangement such that the high-speed flow path is located below the lowspeed flow path. The CCE?LIMX includes multiple actuators that are designed to redirect airflow from one flow path to the other; this action is referred to as "inlet mode transition." Multiple phases of experiments have been planned to support research that investigates inlet mode transition: inlet characterization (Phase-1) and system identification (Phase-2). The SysID Rack hardware design met the following requirements to support Phase-1 and Phase-2 experiments: safely and effectively move multiple actuators individually or synchronously; sample and save effector control and position sensor feedback signals; automate control of actuator positioning based on a mode transition schedule; sample and save pressure sensor signals; and perform DAQ and control processes operating at 2.5 KHz. This document describes the hardware components used to build the SysID Rack including their function, specifications, and system interface. Furthermore, provided in this document are a SysID Rack effectors signal list (signal flow); system identification experiment setup; illustrations indicating a typical SysID Rack experiment; and a SysID Rack performance overview for Phase-1 and Phase-2 experiments. The SysID Rack described in this document was a useful tool to meet the project objectives.
Diffusing-wave spectroscopy in a standard dynamic light scattering setup
NASA Astrophysics Data System (ADS)
Fahimi, Zahra; Aangenendt, Frank J.; Voudouris, Panayiotis; Mattsson, Johan; Wyss, Hans M.
2017-12-01
Diffusing-wave spectroscopy (DWS) extends dynamic light scattering measurements to samples with strong multiple scattering. DWS treats the transport of photons through turbid samples as a diffusion process, thereby making it possible to extract the dynamics of scatterers from measured correlation functions. The analysis of DWS data requires knowledge of the path length distribution of photons traveling through the sample. While for flat sample cells this path length distribution can be readily calculated and expressed in analytical form; no such expression is available for cylindrical sample cells. DWS measurements have therefore typically relied on dedicated setups that use flat sample cells. Here we show how DWS measurements, in particular DWS-based microrheology measurements, can be performed in standard dynamic light scattering setups that use cylindrical sample cells. To do so we perform simple random-walk simulations that yield numerical predictions of the path length distribution as a function of both the transport mean free path and the detection angle. This information is used in experiments to extract the mean-square displacement of tracer particles in the material, as well as the corresponding frequency-dependent viscoelastic response. An important advantage of our approach is that by performing measurements at different detection angles, the average path length through the sample can be varied. For measurements performed on a single sample cell, this gives access to a wider range of length and time scales than obtained in a conventional DWS setup. Such angle-dependent measurements also offer an important consistency check, as for all detection angles the DWS analysis should yield the same tracer dynamics, even though the respective path length distributions are very different. We validate our approach by performing measurements both on aqueous suspensions of tracer particles and on solidlike gelatin samples, for which we find our DWS-based microrheology data to be in good agreement with rheological measurements performed on the same samples.
Systems and methods for analyzing liquids under vacuum
Yu, Xiao-Ying; Yang, Li; Cowin, James P.; Iedema, Martin J.; Zhu, Zihua
2013-10-15
Systems and methods for supporting a liquid against a vacuum pressure in a chamber can enable analysis of the liquid surface using vacuum-based chemical analysis instruments. No electrical or fluid connections are required to pass through the chamber walls. The systems can include a reservoir, a pump, and a liquid flow path. The reservoir contains a liquid-phase sample. The pump drives flow of the sample from the reservoir, through the liquid flow path, and back to the reservoir. The flow of the sample is not substantially driven by a differential between pressures inside and outside of the liquid flow path. An aperture in the liquid flow path exposes a stable portion of the liquid-phase sample to the vacuum pressure within the chamber. The radius, or size, of the aperture is less than or equal to a critical value required to support a meniscus of the liquid-phase sample by surface tension.
Priming of reach trajectory when observing actions: Hand-centred effects
Griffiths, Debra; Tipper, Steven P.
2009-01-01
When another person's actions are observed it appears that these actions are simulated, such that similar motor processes are triggered in the observer. Much evidence suggests that such simulation concerns the achievement of behavioural goals, such as grasping a particular object, and is less concerned with the specific nature of the action, such as the path the hand takes to reach the goal object. We demonstrate that when observing another person reach around an obstacle, an observer's subsequent reach has an increased curved trajectory, reflecting motor priming of reach path. This priming of reach trajectory via action observation can take place under a variety of circumstances: with or without a shared goal, and when the action is seen from a variety of perspectives. However, of most importance, the reach path priming effect is only evoked if the obstacle avoided by another person is within the action (peripersonal) space of the observer. PMID:19731190
Wei, Kun; Ren, Bingyin
2018-02-13
In a future intelligent factory, a robotic manipulator must work efficiently and safely in a Human-Robot collaborative and dynamic unstructured environment. Autonomous path planning is the most important issue which must be resolved first in the process of improving robotic manipulator intelligence. Among the path-planning methods, the Rapidly Exploring Random Tree (RRT) algorithm based on random sampling has been widely applied in dynamic path planning for a high-dimensional robotic manipulator, especially in a complex environment because of its probability completeness, perfect expansion, and fast exploring speed over other planning methods. However, the existing RRT algorithm has a limitation in path planning for a robotic manipulator in a dynamic unstructured environment. Therefore, an autonomous obstacle avoidance dynamic path-planning method for a robotic manipulator based on an improved RRT algorithm, called Smoothly RRT (S-RRT), is proposed. This method that targets a directional node extends and can increase the sampling speed and efficiency of RRT dramatically. A path optimization strategy based on the maximum curvature constraint is presented to generate a smooth and curved continuous executable path for a robotic manipulator. Finally, the correctness, effectiveness, and practicability of the proposed method are demonstrated and validated via a MATLAB static simulation and a Robot Operating System (ROS) dynamic simulation environment as well as a real autonomous obstacle avoidance experiment in a dynamic unstructured environment for a robotic manipulator. The proposed method not only provides great practical engineering significance for a robotic manipulator's obstacle avoidance in an intelligent factory, but also theoretical reference value for other type of robots' path planning.
Minimum Action Path Theory Reveals the Details of Stochastic Transitions Out of Oscillatory States
NASA Astrophysics Data System (ADS)
de la Cruz, Roberto; Perez-Carrasco, Ruben; Guerrero, Pilar; Alarcon, Tomas; Page, Karen M.
2018-03-01
Cell state determination is the outcome of intrinsically stochastic biochemical reactions. Transitions between such states are studied as noise-driven escape problems in the chemical species space. Escape can occur via multiple possible multidimensional paths, with probabilities depending nonlocally on the noise. Here we characterize the escape from an oscillatory biochemical state by minimizing the Freidlin-Wentzell action, deriving from it the stochastic spiral exit path from the limit cycle. We also use the minimized action to infer the escape time probability density function.
Minimum Action Path Theory Reveals the Details of Stochastic Transitions Out of Oscillatory States.
de la Cruz, Roberto; Perez-Carrasco, Ruben; Guerrero, Pilar; Alarcon, Tomas; Page, Karen M
2018-03-23
Cell state determination is the outcome of intrinsically stochastic biochemical reactions. Transitions between such states are studied as noise-driven escape problems in the chemical species space. Escape can occur via multiple possible multidimensional paths, with probabilities depending nonlocally on the noise. Here we characterize the escape from an oscillatory biochemical state by minimizing the Freidlin-Wentzell action, deriving from it the stochastic spiral exit path from the limit cycle. We also use the minimized action to infer the escape time probability density function.
Hayabusa Re-Entry: Trajectory Analysis and Observation Mission Design
NASA Technical Reports Server (NTRS)
Cassell, Alan M.; Winter, Michael W.; Allen, Gary A.; Grinstead, Jay H.; Antimisiaris, Manny E.; Albers, James; Jenniskens, Peter
2011-01-01
On June 13th, 2010, the Hayabusa sample return capsule successfully re-entered Earth s atmosphere over the Woomera Prohibited Area in southern Australia in its quest to return fragments from the asteroid 1998 SF36 Itokawa . The sample return capsule entered at a super-orbital velocity of 12.04 km/sec (inertial), making it the second fastest human-made object to traverse the atmosphere. The NASA DC-8 airborne observatory was utilized as an instrument platform to record the luminous portion of the sample return capsule re-entry (60 sec) with a variety of on-board spectroscopic imaging instruments. The predicted sample return capsule s entry state information at 200 km altitude was propagated through the atmosphere to generate aerothermodynamic and trajectory data used for initial observation flight path design and planning. The DC- 8 flight path was designed by considering safety, optimal sample return capsule viewing geometry and aircraft capabilities in concert with key aerothermodynamic events along the predicted trajectory. Subsequent entry state vector updates provided by the Deep Space Network team at NASA s Jet Propulsion Laboratory were analyzed after the planned trajectory correction maneuvers to further refine the DC-8 observation flight path. Primary and alternate observation flight paths were generated during the mission planning phase which required coordination with Australian authorities for pre-mission approval. The final observation flight path was chosen based upon trade-offs between optimal viewing requirements, ground based observer locations (to facilitate post-flight trajectory reconstruction), predicted weather in the Woomera Prohibited Area and constraints imposed by flight path filing deadlines. To facilitate sample return capsule tracking by the instrument operators, a series of two racetrack flight path patterns were performed prior to the observation leg so the instruments could be pointed towards the region in the star background where the sample return capsule was expected to become visible. An overview of the design methodologies and trade-offs used in the Hayabusa re-entry observation campaign are presented.
Yan, Rui; Edwards, Thomas J.; Pankratz, Logan M.; Kuhn, Richard J.; Lanman, Jason K.; Liu, Jun; Jiang, Wen
2015-01-01
Cryo-electron tomography (cryo-ET) is an emerging technique that can elucidate the architecture of macromolecular complexes and cellular ultrastructure in a near-native state. Some important sample parameters, such as thickness and tilt, are needed for 3-D reconstruction. However, these parameters can currently only be determined using trial 3-D reconstructions. Accurate electron mean free path plays a significant role in modeling image formation process essential for simulation of electron microscopy images and model-based iterative 3-D reconstruction methods; however, their values are voltage and sample dependent and have only been experimentally measured for a limited number of sample conditions. Here, we report a computational method, tomoThickness, based on the Beer-Lambert law, to simultaneously determine the sample thickness, tilt and electron inelastic mean free path by solving an overdetermined nonlinear least square optimization problem utilizing the strong constraints of tilt relationships. The method has been extensively tested with both stained and cryo datasets. The fitted electron mean free paths are consistent with reported experimental measurements. The accurate thickness estimation eliminates the need for a generous assignment of Z-dimension size of the tomogram. Interestingly, we have also found that nearly all samples are a few degrees tilted relative to the electron beam. Compensation of the intrinsic sample tilt can result in horizontal structure and reduced Z-dimension of tomograms. Our fast, pre-reconstruction method can thus provide important sample parameters that can help improve performance of tomographic reconstruction of a wide range of samples. PMID:26433027
Yan, Rui; Edwards, Thomas J; Pankratz, Logan M; Kuhn, Richard J; Lanman, Jason K; Liu, Jun; Jiang, Wen
2015-11-01
Cryo-electron tomography (cryo-ET) is an emerging technique that can elucidate the architecture of macromolecular complexes and cellular ultrastructure in a near-native state. Some important sample parameters, such as thickness and tilt, are needed for 3-D reconstruction. However, these parameters can currently only be determined using trial 3-D reconstructions. Accurate electron mean free path plays a significant role in modeling image formation process essential for simulation of electron microscopy images and model-based iterative 3-D reconstruction methods; however, their values are voltage and sample dependent and have only been experimentally measured for a limited number of sample conditions. Here, we report a computational method, tomoThickness, based on the Beer-Lambert law, to simultaneously determine the sample thickness, tilt and electron inelastic mean free path by solving an overdetermined nonlinear least square optimization problem utilizing the strong constraints of tilt relationships. The method has been extensively tested with both stained and cryo datasets. The fitted electron mean free paths are consistent with reported experimental measurements. The accurate thickness estimation eliminates the need for a generous assignment of Z-dimension size of the tomogram. Interestingly, we have also found that nearly all samples are a few degrees tilted relative to the electron beam. Compensation of the intrinsic sample tilt can result in horizontal structure and reduced Z-dimension of tomograms. Our fast, pre-reconstruction method can thus provide important sample parameters that can help improve performance of tomographic reconstruction of a wide range of samples. Copyright © 2015 Elsevier Inc. All rights reserved.
Some Psychometric and Design Implications of Game-Based Learning Analytics
ERIC Educational Resources Information Center
Gibson, David; Clarke-Midura, Jody
2013-01-01
The rise of digital game and simulation-based learning applications has led to new approaches in educational measurement that take account of patterns in time, high resolution paths of action, and clusters of virtual performance artifacts. The new approaches, which depart from traditional statistical analyses, include data mining, machine…
In-Service Evaluation of the Dalmo Victor Active Beacon Collision Avoidance System (BCAS/TCAS).
1982-10-01
expected to make any substantial change to this report on operational performance. Collectively, this report and the additional technical per- fomance...deviation from the recorded flight path, while 10 others might have required some change in flight path, depending on the vertical rate of the TCAS...They are based on data collected with no response by the TCAS aircraft crew and will change when the crew initiates response action to resolution
Accelerated sampling by infinite swapping of path integral molecular dynamics with surface hopping
NASA Astrophysics Data System (ADS)
Lu, Jianfeng; Zhou, Zhennan
2018-02-01
To accelerate the thermal equilibrium sampling of multi-level quantum systems, the infinite swapping limit of a recently proposed multi-level ring polymer representation is investigated. In the infinite swapping limit, the ring polymer evolves according to an averaged Hamiltonian with respect to all possible surface index configurations of the ring polymer and thus connects the surface hopping approach to the mean-field path-integral molecular dynamics. A multiscale integrator for the infinite swapping limit is also proposed to enable efficient sampling based on the limiting dynamics. Numerical results demonstrate the huge improvement of sampling efficiency of the infinite swapping compared with the direct simulation of path-integral molecular dynamics with surface hopping.
Meyer, Robert; Broad, Kenneth; Orlove, Ben; Petrovic, Nada
2013-08-01
This article investigates the use of dynamic laboratory simulations as a tool for studying decisions to prepare for hurricane threats. A prototype web-based simulation named Stormview is described that allows individuals to experience the approach of a hurricane in a computer-based environment. In Stormview participants can gather storm information through various media, hear the opinions of neighbors, and indicate intentions to take protective action. We illustrate how the ability to exert experimental control over the information viewed by participants can be used to provide insights into decision making that would be difficult to gain from field studies, such as how preparedness decisions are affected by the nature of news coverage of prior storms, how a storm's movement is depicted in graphics, and the content of word-of-mouth communications. Data from an initial application involving a sample of Florida residents reveal a number of unexpected findings about hurricane risk response. Participants who viewed forecast graphics, which contained track lines depicting the most likely path of the storm, for example, had higher levels of preparation than those who saw graphics that showed only uncertainty cones-even among those living far from the predicted center path. Similarly, the participants who were most likely to express worry about an approaching storm and fastest to undertake preparatory action were those who, ironically, had never experienced one. Finally, external validity is evidenced by a close rank-order correspondence between patterns of information use revealed in the lab and that found in previous cross-sectional field studies. © 2012 Society for Risk Analysis.
Path Finding on High-Dimensional Free Energy Landscapes
NASA Astrophysics Data System (ADS)
Díaz Leines, Grisell; Ensing, Bernd
2012-07-01
We present a method for determining the average transition path and the free energy along this path in the space of selected collective variables. The formalism is based upon a history-dependent bias along a flexible path variable within the metadynamics framework but with a trivial scaling of the cost with the number of collective variables. Controlling the sampling of the orthogonal modes recovers the average path and the minimum free energy path as the limiting cases. The method is applied to resolve the path and the free energy of a conformational transition in alanine dipeptide.
Hopkins, Carl
2011-05-01
In architectural acoustics, noise control and environmental noise, there are often steady-state signals for which it is necessary to measure the spatial average, sound pressure level inside rooms. This requires using fixed microphone positions, mechanical scanning devices, or manual scanning. In comparison with mechanical scanning devices, the human body allows manual scanning to trace out complex geometrical paths in three-dimensional space. To determine the efficacy of manual scanning paths in terms of an equivalent number of uncorrelated samples, an analytical approach is solved numerically. The benchmark used to assess these paths is a minimum of five uncorrelated fixed microphone positions at frequencies above 200 Hz. For paths involving an operator walking across the room, potential problems exist with walking noise and non-uniform scanning speeds. Hence, paths are considered based on a fixed standing position or rotation of the body about a fixed point. In empty rooms, it is shown that a circle, helix, or cylindrical-type path satisfy the benchmark requirement with the latter two paths being highly efficient at generating large number of uncorrelated samples. In furnished rooms where there is limited space for the operator to move, an efficient path comprises three semicircles with 45°-60° separations.
NASA Astrophysics Data System (ADS)
van den Hoek, Ronald; Brugnach, Marcela; Hoekstra, Arjen
2013-04-01
In the 20th century, flood management was dominated by rigid structures - such as dikes and dams - which intend to strictly regulate and control water systems. Although the application of these rigid structures has been successful in the recent past, their negative implications for ecosystems and natural processes is often not properly taken into account. Therefore, flood management practices are currently moving towards more nature-inclusive approaches. Building with Nature (BwN) is such a new approach of nature-inclusive flood management in the Netherlands, which aims to utilize natural dynamics (e.g., wind and currents) and natural materials (e.g., sediment and vegetation) for the realization of effective flood infrastructure, while providing opportunities for nature development. However, the natural dynamics driving a project based on BwN design principles are inherently unpredictable. Furthermore, our factual knowledge base regarding the socio-ecological system in which the BwN initiative is implemented is incomplete. Moreover, in recent years, it is increasingly aimed for by decision-makers to involve local stakeholders in the development of promising flood management initiatives. These stakeholders and other actors involved can have diverging views regarding the project, can perceive unanticipated implications and could choose unforeseen action paths. In short, while a project based on BwN design principles - like any human intervention - definitely has implications for the socio-ecological system, both the extent to which these particular implications will occur and the response of stakeholders are highly uncertain. In this paper, we study the Safety Buffer Oyster Dam case - a BwN pilot project - and address the interplay between the project's implications, the uncertainties regarding these implications and the action paths chosen by the local stakeholders and project team. We determine how the implications of the Safety Buffer project are viewed by local stakeholders, identify the frames and uncertainties related to these implications, and classify these uncertainties according to their nature and level. We describe which action paths are chosen by the local stakeholders and project team regarding the implications identified. Our research shows that there is a correspondence between the level of uncertainty about the implications identified and the action paths chosen by the actors involved. This suggests that the inherent deep uncertainty in projects based on BwN principles calls for more adaptable and flexible strategies to cope with the implications of these initiatives.
NASA Astrophysics Data System (ADS)
Li, Xiaohui; Sun, Zhenping; Cao, Dongpu; Liu, Daxue; He, Hangen
2017-03-01
This study proposes a novel integrated local trajectory planning and tracking control (ILTPTC) framework for autonomous vehicles driving along a reference path with obstacles avoidance. For this ILTPTC framework, an efficient state-space sampling-based trajectory planning scheme is employed to smoothly follow the reference path. A model-based predictive path generation algorithm is applied to produce a set of smooth and kinematically-feasible paths connecting the initial state with the sampling terminal states. A velocity control law is then designed to assign a speed value at each of the points along the generated paths. An objective function considering both safety and comfort performance is carefully formulated for assessing the generated trajectories and selecting the optimal one. For accurately tracking the optimal trajectory while overcoming external disturbances and model uncertainties, a combined feedforward and feedback controller is developed. Both simulation analyses and vehicle testing are performed to verify the effectiveness of the proposed ILTPTC framework, and future research is also briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Y; Southern Medical University, Guangzhou; Tian, Z
Purpose: Monte Carlo (MC) simulation is an important tool to solve radiotherapy and medical imaging problems. Low computational efficiency hinders its wide applications. Conventionally, MC is performed in a particle-by -particle fashion. The lack of control on particle trajectory is a main cause of low efficiency in some applications. Take cone beam CT (CBCT) projection simulation as an example, significant amount of computations were wasted on transporting photons that do not reach the detector. To solve this problem, we propose an innovative MC simulation scheme with a path-by-path sampling method. Methods: Consider a photon path starting at the x-ray source.more » After going through a set of interactions, it ends at the detector. In the proposed scheme, we sampled an entire photon path each time. Metropolis-Hasting algorithm was employed to accept/reject a sampled path based on a calculated acceptance probability, in order to maintain correct relative probabilities among different paths, which are governed by photon transport physics. We developed a package gMMC on GPU with this new scheme implemented. The performance of gMMC was tested in a sample problem of CBCT projection simulation for a homogeneous object. The results were compared to those obtained using gMCDRR, a GPU-based MC tool with the conventional particle-by-particle simulation scheme. Results: Calculated scattered photon signals in gMMC agreed with those from gMCDRR with a relative difference of 3%. It took 3.1 hr. for gMCDRR to simulate 7.8e11 photons and 246.5 sec for gMMC to simulate 1.4e10 paths. Under this setting, both results attained the same ∼2% statistical uncertainty. Hence, a speed-up factor of ∼45.3 was achieved by this new path-by-path simulation scheme, where all the computations were spent on those photons contributing to the detector signal. Conclusion: We innovatively proposed a novel path-by-path simulation scheme that enabled a significant efficiency enhancement for MC particle transport simulations.« less
Sørbye, Sveinung Wergeland; Pedersen, Mette Kristin; Ekeberg, Bente; Williams, Merete E Johansen; Sauer, Torill; Chen, Ying
2017-01-01
The Norwegian Cervical Cancer Screening Program recommends screening every 3 years for women between 25 and 69 years of age. There is a large difference in the percentage of unsatisfactory samples between laboratories that use different brands of liquid-based cytology. We wished to examine if inadequate ThinPrep samples could be satisfactory by processing them with the SurePath protocol. A total of 187 inadequate ThinPrep specimens from the Department of Clinical Pathology at University Hospital of North Norway were sent to Akershus University Hospital for conversion to SurePath medium. Ninety-one (48.7%) were processed through the automated "gynecologic" application for cervix cytology samples, and 96 (51.3%) were processed with the "nongynecological" automatic program. Out of 187 samples that had been unsatisfactory by ThinPrep, 93 (49.7%) were satisfactory after being converted to SurePath. The rate of satisfactory cytology was 36.6% and 62.5% for samples run through the "gynecology" program and "nongynecology" program, respectively. Of the 93 samples that became satisfactory after conversion from ThinPrep to SurePath, 80 (86.0%) were screened as normal while 13 samples (14.0%) were given an abnormal diagnosis, which included 5 atypical squamous cells of undetermined significance, 5 low-grade squamous intraepithelial lesion, 2 atypical glandular cells not otherwise specified, and 1 atypical squamous cells cannot exclude high-grade squamous intraepithelial lesion. A total of 2.1% (4/187) of the women got a diagnosis of cervical intraepithelial neoplasia 2 or higher at a later follow-up. Converting cytology samples from ThinPrep to SurePath processing can reduce the number of unsatisfactory samples. The samples should be run through the "nongynecology" program to ensure an adequate number of cells.
Cadenas, Germán A; Bernstein, Bianca L; Tracey, Terence J G
2018-05-21
We used the model of critical consciousness (CC; Freire, 1973) to examine college persistence in a sample of Hispanic Deferred Action for Childhood Arrivals (DACA) college students in contrast to Hispanic and non-Hispanic White U.S. citizens. To do this, we looked to social cognitive career theory (Lent, Brown, & Hackett, 1994) to clarify the development of CC and its association with college persistence in students facing marginalization due to immigration status and racial/ethnic identity. The sample consisted of 368 undergraduate college students, including 89 Hispanic DACA recipients, 88 Hispanics with U.S. citizenship, and 191 non-Hispanic Whites with U.S. citizenship. Students completed scales on intent to persist in college, political self-efficacy, political outcome expectations, critical reflection, critical action, and supports and barriers for critical action. The data were examined using multigroup structural equation modeling; goodness of fit indices suggested good model fit for all groups. Tests of structural invariance revealed that 7 relational paths were equal across student groups, while race/ethnicity and immigration status differentiated the strength of 7 paths. Our findings indicate that there are differences in how Hispanic DACA students experience CC in relation to support for their political advocacy and activism. Findings also highlight that political outcome expectations predicted higher intent to persist in college for all students, including Hispanic DACA students. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Rock climbing: A local-global algorithm to compute minimum energy and minimum free energy pathways.
Templeton, Clark; Chen, Szu-Hua; Fathizadeh, Arman; Elber, Ron
2017-10-21
The calculation of minimum energy or minimum free energy paths is an important step in the quantitative and qualitative studies of chemical and physical processes. The computations of these coordinates present a significant challenge and have attracted considerable theoretical and computational interest. Here we present a new local-global approach to study reaction coordinates, based on a gradual optimization of an action. Like other global algorithms, it provides a path between known reactants and products, but it uses a local algorithm to extend the current path in small steps. The local-global approach does not require an initial guess to the path, a major challenge for global pathway finders. Finally, it provides an exact answer (the steepest descent path) at the end of the calculations. Numerical examples are provided for the Mueller potential and for a conformational transition in a solvated ring system.
Path integrals and large deviations in stochastic hybrid systems.
Bressloff, Paul C; Newby, Jay M
2014-04-01
We construct a path-integral representation of solutions to a stochastic hybrid system, consisting of one or more continuous variables evolving according to a piecewise-deterministic dynamics. The differential equations for the continuous variables are coupled to a set of discrete variables that satisfy a continuous-time Markov process, which means that the differential equations are only valid between jumps in the discrete variables. Examples of stochastic hybrid systems arise in biophysical models of stochastic ion channels, motor-driven intracellular transport, gene networks, and stochastic neural networks. We use the path-integral representation to derive a large deviation action principle for a stochastic hybrid system. Minimizing the associated action functional with respect to the set of all trajectories emanating from a metastable state (assuming that such a minimization scheme exists) then determines the most probable paths of escape. Moreover, evaluating the action functional along a most probable path generates the so-called quasipotential used in the calculation of mean first passage times. We illustrate the theory by considering the optimal paths of escape from a metastable state in a bistable neural network.
SensePath: Understanding the Sensemaking Process Through Analytic Provenance.
Nguyen, Phong H; Xu, Kai; Wheat, Ashley; Wong, B L William; Attfield, Simon; Fields, Bob
2016-01-01
Sensemaking is described as the process of comprehension, finding meaning and gaining insight from information, producing new knowledge and informing further action. Understanding the sensemaking process allows building effective visual analytics tools to make sense of large and complex datasets. Currently, it is often a manual and time-consuming undertaking to comprehend this: researchers collect observation data, transcribe screen capture videos and think-aloud recordings, identify recurring patterns, and eventually abstract the sensemaking process into a general model. In this paper, we propose a general approach to facilitate such a qualitative analysis process, and introduce a prototype, SensePath, to demonstrate the application of this approach with a focus on browser-based online sensemaking. The approach is based on a study of a number of qualitative research sessions including observations of users performing sensemaking tasks and post hoc analyses to uncover their sensemaking processes. Based on the study results and a follow-up participatory design session with HCI researchers, we decided to focus on the transcription and coding stages of thematic analysis. SensePath automatically captures user's sensemaking actions, i.e., analytic provenance, and provides multi-linked views to support their further analysis. A number of other requirements elicited from the design session are also implemented in SensePath, such as easy integration with existing qualitative analysis workflow and non-intrusive for participants. The tool was used by an experienced HCI researcher to analyze two sensemaking sessions. The researcher found the tool intuitive and considerably reduced analysis time, allowing better understanding of the sensemaking process.
Study on high-resolution representation of terraces in Shanxi Loess Plateau area
NASA Astrophysics Data System (ADS)
Zhao, Weidong; Tang, Guo'an; Ma, Lei
2008-10-01
A new elevation points sampling method, namely TIN-based Sampling Method (TSM) and a new visual method called Elevation Addition Method (EAM), are put forth for representing the typical terraces in Shanxi loess plateau area. The DEM Feature Points and Lines Classification (DEPLC) put forth by the authors in 2007 is perfected for depicting the main path in the study area. The EAM is used to visualize the terraces and the path in the study area. 406 key elevation points and 15 feature constrained lines sampled by this method are used to construct CD-TINs which can depict the terraces and path correctly and effectively. Our case study shows that the new sampling method called TSM is reasonable and feasible. The complicated micro-terrains like terraces and path can be represented with high resolution and high efficiency successfully by use of the perfected DEPLC, TSM and CD-TINs. And both the terraces and the main path are visualized very well by use of EAM even when the terrace height is not more than 1m.
Structure-guided Protein Transition Modeling with a Probabilistic Roadmap Algorithm.
Maximova, Tatiana; Plaku, Erion; Shehu, Amarda
2016-07-07
Proteins are macromolecules in perpetual motion, switching between structural states to modulate their function. A detailed characterization of the precise yet complex relationship between protein structure, dynamics, and function requires elucidating transitions between functionally-relevant states. Doing so challenges both wet and dry laboratories, as protein dynamics involves disparate temporal scales. In this paper we present a novel, sampling-based algorithm to compute transition paths. The algorithm exploits two main ideas. First, it leverages known structures to initialize its search and define a reduced conformation space for rapid sampling. This is key to address the insufficient sampling issue suffered by sampling-based algorithms. Second, the algorithm embeds samples in a nearest-neighbor graph where transition paths can be efficiently computed via queries. The algorithm adapts the probabilistic roadmap framework that is popular in robot motion planning. In addition to efficiently computing lowest-cost paths between any given structures, the algorithm allows investigating hypotheses regarding the order of experimentally-known structures in a transition event. This novel contribution is likely to open up new venues of research. Detailed analysis is presented on multiple-basin proteins of relevance to human disease. Multiscaling and the AMBER ff14SB force field are used to obtain energetically-credible paths at atomistic detail.
Optical path switching based differential absorption radiometry for substance detection
NASA Technical Reports Server (NTRS)
Sachse, Glen W. (Inventor)
2005-01-01
An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.
Optical path switching based differential absorption radiometry for substance detection
NASA Technical Reports Server (NTRS)
Sachse, Glen W. (Inventor)
2003-01-01
An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.
Resonance fluorescence trajectories in superconducting qubit
NASA Astrophysics Data System (ADS)
Naghiloo, Mahdi; Tan, Dian; Harrington, Patrick; Lewalle, Philippe; Jordan, Andrew; Murch, Kater
We employ phase-sensitive amplification to perform homodyne detection of the resonance fluorescence from a driven superconducting artificial atom. Entanglement between the emitter and its fluorescence allows us to track the individual quantum state trajectories of the emitter. We analyze the ensemble properties of these trajectories by considering paths that connect specific initial and final states. By applying a stochastic path integral formalism, we calculate equations of motion for the most likely path between two quantum states and compare these predicted paths to experimental data. Drawing on the mathematical similarity between the action formalism of the most likely quantum paths and ray optics, we study the emergence of caustics in quantum trajectories-situations where multiple extrema in the stochastic action occur. We observe such multiple most likely paths in experimental data and find these paths to be in reasonable quantitative agreement with theoretical calculations. Supported by the John Templeton Foundation.
Opportunities for State-Level Action to Reduce Firearm Violence: Proceeding From the Evidence
Braga, Anthony A.
2011-01-01
Firearm violence remains an important problem, and a large body of evidence shows that guns used in crime follow generally predictable paths from manufacturer to criminal end user. Policy initiatives based on that evidence have been shown to be effective. A recently published study conducted by a leading policy organization presents new evidence and makes specific recommendations for action by state-level policymakers. Unfortunately, the study's analysis is overly simplified, and the recommendations are therefore misleading. We suggest alternatives that are evidence based. PMID:21778510
Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.
2000-01-01
The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.
Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.
2006-02-21
The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.
Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.
2004-08-24
The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.
Operational Performance Risk Assessment in Support of A Supervisory Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denning, Richard S.; Muhlheim, Michael David; Cetiner, Sacit M.
Supervisory control system (SCS) is developed for multi-unit advanced small modular reactors to minimize human interventions in both normal and abnormal operations. In SCS, control action decisions made based on probabilistic risk assessment approach via Event Trees/Fault Trees. Although traditional PRA tools are implemented, their scope is extended to normal operations and application is reversed; success of non-safety related system instead failure of safety systems this extended PRA approach called as operational performance risk assessment (OPRA). OPRA helps to identify success paths, combination of control actions for transients and to quantify these success paths to provide possible actions without activatingmore » plant protection system. In this paper, a case study of the OPRA in supervisory control system is demonstrated within the context of the ALMR PRISM design, specifically power conversion system. The scenario investigated involved a condition that the feed water control valve is observed to be drifting to the closed position. Alternative plant configurations were identified via OPRA that would allow the plant to continue to operate at full or reduced power. Dynamic analyses were performed with a thermal-hydraulic model of the ALMR PRISM system using Modelica to evaluate remained safety margins. Successful recovery paths for the selected scenario are identified and quantified via SCS.« less
A Lagrangian View of Stratospheric Trace Gas Distributions
NASA Technical Reports Server (NTRS)
Schoeberl, M. R.; Sparling, L.; Dessler, A.; Jackman, C. H.; Fleming, E. L.
1998-01-01
As a result of photochemistry, some relationship between the stratospheric age-of-air and the amount of tracer contained within an air sample is expected. The existence of such a relationship allows inferences about transport history to be made from observations of chemical tracers. This paper lays down the conceptual foundations for the relationship between age and tracer amount, developed within a Lagrangian framework. In general, the photochemical loss depends not only on the age of the parcel but also on its path. We show that under the "average path approximation" that the path variations are less important than parcel age. The average path approximation then allows us to develop a formal relationship between the age spectrum and the tracer spectrum. Using the relation between the tracer and age spectra, tracer-tracer correlations can be interpreted as resulting from mixing which connects parts of the single path photochemistry curve, which is formed purely from the action of photochemistry on an irreducible parcel. This geometric interpretation of mixing gives rise to constraints on trace gas correlations, and explains why some observations are do not fall on rapid mixing curves. This effect is seen in the ATMOS observations.
A Framework for Mining Actionable Navigation Patterns from In-Store RFID Datasets via Indoor Mapping
Shen, Bin; Zheng, Qiuhua; Li, Xingsen; Xu, Libo
2015-01-01
With the quick development of RFID technology and the decreasing prices of RFID devices, RFID is becoming widely used in various intelligent services. Especially in the retail application domain, RFID is increasingly adopted to capture the shopping tracks and behavior of in-store customers. To further enhance the potential of this promising application, in this paper, we propose a unified framework for RFID-based path analytics, which uses both in-store shopping paths and RFID-based purchasing data to mine actionable navigation patterns. Four modules of this framework are discussed, which are: (1) mapping from the physical space to the cyber space, (2) data preprocessing, (3) pattern mining and (4) knowledge understanding and utilization. In the data preprocessing module, the critical problem of how to capture the mainstream shopping path sequences while wiping out unnecessary redundant and repeated details is addressed in detail. To solve this problem, two types of redundant patterns, i.e., loop repeat pattern and palindrome-contained pattern are recognized and the corresponding processing algorithms are proposed. The experimental results show that the redundant pattern filtering functions are effective and scalable. Overall, this work builds a bridge between indoor positioning and advanced data mining technologies, and provides a feasible way to study customers’ shopping behaviors via multi-source RFID data. PMID:25751076
Quantum caustics in resonance-fluorescence trajectories
NASA Astrophysics Data System (ADS)
Naghiloo, M.; Tan, D.; Harrington, P. M.; Lewalle, P.; Jordan, A. N.; Murch, K. W.
2017-11-01
We employ phase-sensitive amplification to perform homodyne detection of the resonance fluorescence from a driven superconducting artificial atom. Entanglement between the emitter and its fluorescence allows us to track the individual quantum state trajectories of the emitter conditioned on the outcomes of the field measurements. We analyze the ensemble properties of these trajectories by considering trajectories that connect specific initial and final states. By applying the stochastic path-integral formalism, we calculate equations of motion for the most-likely path between two quantum states and compare these predicted paths to experimental data. Drawing on the mathematical similarity between the action formalism of the most-likely quantum paths and ray optics, we study the emergence of caustics in quantum trajectories: places where multiple extrema in the stochastic action occur. We observe such multiple most-likely paths in experimental data and find these paths to be in reasonable quantitative agreement with theoretical calculations.
NASA Astrophysics Data System (ADS)
You, Youngjun; Rhee, Key-Pyo; Ahn, Kyoungsoo
2013-06-01
In constructing a collision avoidance system, it is important to determine the time for starting collision avoidance maneuver. Many researchers have attempted to formulate various indices by applying a range of techniques. Among these indices, collision risk obtained by combining Distance to the Closest Point of Approach (DCPA) and Time to the Closest Point of Approach (TCPA) information with fuzzy theory is mostly used. However, the collision risk has a limit, in that membership functions of DCPA and TCPA are empirically determined. In addition, the collision risk is not able to consider several critical collision conditions where the target ship fails to take appropriate actions. It is therefore necessary to design a new concept based on logical approaches. In this paper, a collision ratio is proposed, which is the expected ratio of unavoidable paths to total paths under suitably characterized operation conditions. Total paths are determined by considering categories such as action space and methodology of avoidance. The International Regulations for Preventing Collisions at Sea (1972) and collision avoidance rules (2001) are considered to solve the slower ship's dilemma. Different methods which are based on a constant speed model and simulated speed model are used to calculate the relative positions between own ship and target ship. In the simulated speed model, fuzzy control is applied to determination of command rudder angle. At various encounter situations, the time histories of the collision ratio based on the simulated speed model are compared with those based on the constant speed model.
Sørbye, Sveinung Wergeland; Pedersen, Mette Kristin; Ekeberg, Bente; Williams, Merete E. Johansen; Sauer, Torill; Chen, Ying
2017-01-01
Background: The Norwegian Cervical Cancer Screening Program recommends screening every 3 years for women between 25 and 69 years of age. There is a large difference in the percentage of unsatisfactory samples between laboratories that use different brands of liquid-based cytology. We wished to examine if inadequate ThinPrep samples could be satisfactory by processing them with the SurePath protocol. Materials and Methods: A total of 187 inadequate ThinPrep specimens from the Department of Clinical Pathology at University Hospital of North Norway were sent to Akershus University Hospital for conversion to SurePath medium. Ninety-one (48.7%) were processed through the automated “gynecologic” application for cervix cytology samples, and 96 (51.3%) were processed with the “nongynecological” automatic program. Results: Out of 187 samples that had been unsatisfactory by ThinPrep, 93 (49.7%) were satisfactory after being converted to SurePath. The rate of satisfactory cytology was 36.6% and 62.5% for samples run through the “gynecology” program and “nongynecology” program, respectively. Of the 93 samples that became satisfactory after conversion from ThinPrep to SurePath, 80 (86.0%) were screened as normal while 13 samples (14.0%) were given an abnormal diagnosis, which included 5 atypical squamous cells of undetermined significance, 5 low-grade squamous intraepithelial lesion, 2 atypical glandular cells not otherwise specified, and 1 atypical squamous cells cannot exclude high-grade squamous intraepithelial lesion. A total of 2.1% (4/187) of the women got a diagnosis of cervical intraepithelial neoplasia 2 or higher at a later follow-up. Conclusions: Converting cytology samples from ThinPrep to SurePath processing can reduce the number of unsatisfactory samples. The samples should be run through the “nongynecology” program to ensure an adequate number of cells. PMID:28900466
Using the Prototype/Willingness model to predict smoking behaviour among Norwegian adolescents.
Hukkelberg, Silje Sommer; Dykstra, Jennifer L
2009-03-01
This paper examines cognitive antecedents of non-smoking among adolescents who reported smoking less than 1-2 times a week, and reported non-smoking intentions and willingness, in the framework of the Prototype/Willingness model. Two waves of data were obtained from a nation-wide sample of 760 Norwegian adolescents who responded to a school-based survey on smoking. Structural equation modelling was used to evaluate the predictive power of the social reaction pathway (prototype and willingness) of the P/W model, and in addition, the constructs from the Theory of Reasoned Action (subjective norm, attitude and intention). Results demonstrated the unique importance of the social reaction path when examining smoking behaviour among non-smoking adolescents. Implications of the findings and possible applications are discussed.
Computational path planner for product assembly in complex environments
NASA Astrophysics Data System (ADS)
Shang, Wei; Liu, Jianhua; Ning, Ruxin; Liu, Mi
2013-03-01
Assembly path planning is a crucial problem in assembly related design and manufacturing processes. Sampling based motion planning algorithms are used for computational assembly path planning. However, the performance of such algorithms may degrade much in environments with complex product structure, narrow passages or other challenging scenarios. A computational path planner for automatic assembly path planning in complex 3D environments is presented. The global planning process is divided into three phases based on the environment and specific algorithms are proposed and utilized in each phase to solve the challenging issues. A novel ray test based stochastic collision detection method is proposed to evaluate the intersection between two polyhedral objects. This method avoids fake collisions in conventional methods and degrades the geometric constraint when a part has to be removed with surface contact with other parts. A refined history based rapidly-exploring random tree (RRT) algorithm which bias the growth of the tree based on its planning history is proposed and employed in the planning phase where the path is simple but the space is highly constrained. A novel adaptive RRT algorithm is developed for the path planning problem with challenging scenarios and uncertain environment. With extending values assigned on each tree node and extending schemes applied, the tree can adapts its growth to explore complex environments more efficiently. Experiments on the key algorithms are carried out and comparisons are made between the conventional path planning algorithms and the presented ones. The comparing results show that based on the proposed algorithms, the path planner can compute assembly path in challenging complex environments more efficiently and with higher success. This research provides the references to the study of computational assembly path planning under complex environments.
[Prevention of stress in the workplace].
Vaccani, R
2009-01-01
The chronological/logical path goes from the base distinction that classify the stressing phenomena between the two categories, eu-stress and dis-stress. It is underlined the subjective characteristic of stressing processes, the statement that what might be eu-stress for someone can be dis-stress for others. The organizational setting can be considered as a privileged preventive intervention area. Therefore it is suggested this categorization for the stress organizational causes: Causes connected to the organizational system (Incoherencies or structural understaffing, procedural incoherencies); Causes connected to the wrong alignment of competencies; Causes connected to the wrong alignment of aptitudes; Causes connected to the social dynamics of abuse of power. The categories to differentiate the stress organizational causes are proposed to give a useful glossary to design various preventive actions: Preventive actions on the organizational setting; Preventive actions through education; Preventive actions about role redesign; Preventive actions aimed at sustaining ethical social cohabitation. Finally, it is assessed that the approach to organizational stress requires an holistic, multi disciplinary perspective analysis, able to connect the ethic and qualitative characteristic of the markets (closed and open markets) to the organizational setting, to the subject peculiar character at work and its impact with working roles, to the social dynamics derived from hierarchical roles, to the organizational moods, to the individual perceptions, to the clinical paths.
Sampling-Based Coverage Path Planning for Complex 3D Structures
2012-09-01
one such task, in which a single robot must sweep its end effector over the entirety of a known workspace. For two-dimensional environments, optimal...structures. First, we introduce a new algorithm for planning feasible coverage paths. It is more computationally efficient in problems of complex geometry...iteratively shortens and smooths a feasible coverage path; robot configurations are adjusted without violating any coverage con- straints. Third, we propose
Pal, Krishnendu; Gangopadhyay, Gautam
2016-01-01
ABSTRACT Inactivation path of voltage gated sodium channel has been studied here under various voltage protocols as it is the main governing factor for the periodic occurrence and shape of the action potential. These voltage protocols actually serve as non-equilibrium response spectroscopic tools to study the ion channel in non-equilibrium environment. In contrast to a lot of effort in finding the crystal structure based molecular mechanism of closed-state(CSI) and open-state inactivation(OSI); here our approach is to understand the dynamical characterization of inactivation. The kinetic flux as well as energetic contribution of the closed and open- state inactivation path is compared here for voltage protocols, namely constant, pulsed and oscillating. The non-equilibrium thermodynamic quantities used in response to these voltage protocols serve as improved characterization tools for theoretical understanding which not only agrees with the previously known kinetic measurements but also predict the energetically optimum processes to sustain the auto-regulatory mechanism of action potential and the consequent inactivation steps needed. The time dependent voltage pattern governs the population of the conformational states which when couple with characteristic rate parameters, the CSI and OSI selectivity arise dynamically to control the inactivation path. Using constant, pulsed and continuous oscillating voltage protocols we have shown that during depolarization the OSI path is more favored path of inactivation however, in the hyper-polarized situation the CSI is favored. It is also shown that the re-factorisation of inactivated sodium channel to resting state occurs via CSI path. Here we have shown how the subtle energetic and entropic cost due to the change in the depolarization magnitude determines the optimum path of inactivation. It is shown that an efficient CSI and OSI dynamical profile in principle can characterize the open-state drug blocking phenomena. PMID:27367642
Path Planning for Non-Circular, Non-Holonomic Robots in Highly Cluttered Environments.
Samaniego, Ricardo; Lopez, Joaquin; Vazquez, Fernando
2017-08-15
This paper presents an algorithm for finding a solution to the problem of planning a feasible path for a slender autonomous mobile robot in a large and cluttered environment. The presented approach is based on performing a graph search on a kinodynamic-feasible lattice state space of high resolution; however, the technique is applicable to many search algorithms. With the purpose of allowing the algorithm to consider paths that take the robot through narrow passes and close to obstacles, high resolutions are used for the lattice space and the control set. This introduces new challenges because one of the most computationally expensive parts of path search based planning algorithms is calculating the cost of each one of the actions or steps that could potentially be part of the trajectory. The reason for this is that the evaluation of each one of these actions involves convolving the robot's footprint with a portion of a local map to evaluate the possibility of a collision, an operation that grows exponentially as the resolution is increased. The novel approach presented here reduces the need for these convolutions by using a set of offline precomputed maps that are updated, by means of a partial convolution, as new information arrives from sensors or other sources. Not only does this improve run-time performance, but it also provides support for dynamic search in changing environments. A set of alternative fast convolution methods are also proposed, depending on whether the environment is cluttered with obstacles or not. Finally, we provide both theoretical and experimental results from different experiments and applications.
Quadratic String Method for Locating Instantons in Tunneling Splitting Calculations.
Cvitaš, Marko T
2018-03-13
The ring-polymer instanton (RPI) method is an efficient technique for calculating approximate tunneling splittings in high-dimensional molecular systems. In the RPI method, tunneling splitting is evaluated from the properties of the minimum action path (MAP) connecting the symmetric wells, whereby the extensive sampling of the full potential energy surface of the exact quantum-dynamics methods is avoided. Nevertheless, the search for the MAP is usually the most time-consuming step in the standard numerical procedures. Recently, nudged elastic band (NEB) and string methods, originaly developed for locating minimum energy paths (MEPs), were adapted for the purpose of MAP finding with great efficiency gains [ J. Chem. Theory Comput. 2016 , 12 , 787 ]. In this work, we develop a new quadratic string method for locating instantons. The Euclidean action is minimized by propagating the initial guess (a path connecting two wells) over the quadratic potential energy surface approximated by means of updated Hessians. This allows the algorithm to take many minimization steps between the potential/gradient calls with further reductions in the computational effort, exploiting the smoothness of potential energy surface. The approach is general, as it uses Cartesian coordinates, and widely applicable, with computational effort of finding the instanton usually lower than that of determining the MEP. It can be combined with expensive potential energy surfaces or on-the-fly electronic-structure methods to explore a wide variety of molecular systems.
Measurement of refractive index of photopolymer for holographic gratings
NASA Astrophysics Data System (ADS)
Watanabe, Eriko; Mizuno, Jun; Fujikawa, Chiemi; Kodate, Kashiko
2007-02-01
We have made attempts to measure directly the small-scale variation of optical path lengths in photopolymer samples. For those with uniform thickness, the measured quantity is supposed to be proportional to the refractive index of the photopolymer. The system is based on a Mach-Zehnder interferometer using phase-locking technique and measures the change in optical path length during the sample is scanned across the optical axis. The spatial resolution is estimated to be 2μm, which is limited by the sample thickness. The path length resolution is estimated to be 6nm, which corresponds to the change in refractive index less than 10 -3 for the sample of 10μm thick. The measurement results showed clearly that the refractive index of photopolymer is not simply proportional to the exposure energy, contrary to the conventional photosensitive materials such as silver halide emulsion and dichromated gelatine. They also revealed the refractive index fluctuation in uniformly exposed photopolymer sample, which explains the milky appearance that sometimes observed in thick samples.
Methodology for Augmenting Existing Paths with Additional Parallel Transects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, John E.
2013-09-30
Visual Sample Plan (VSP) is sample planning software that is used, among other purposes, to plan transect sampling paths to detect areas that were potentially used for munition training. This module was developed for application on a large site where existing roads and trails were to be used as primary sampling paths. Gap areas between these primary paths needed to found and covered with parallel transect paths. These gap areas represent areas on the site that are more than a specified distance from a primary path. These added parallel paths needed to optionally be connected together into a single path—themore » shortest path possible. The paths also needed to optionally be attached to existing primary paths, again with the shortest possible path. Finally, the process must be repeatable and predictable so that the same inputs (primary paths, specified distance, and path options) will result in the same set of new paths every time. This methodology was developed to meet those specifications.« less
Paving the Path to Success. Data for Action 2014. Key Findings
ERIC Educational Resources Information Center
Data Quality Campaign, 2014
2014-01-01
Data are more than just test scores, and by effectively accessing and using different types of data--such as attendance, grades, and course-taking--teachers, parents, and school and district leaders can help ensure that every student is on a path for success every day, not just at the end of the school year. The 10 State Actions to Ensure…
Molloy, Kevin; Shehu, Amarda
2013-01-01
Many proteins tune their biological function by transitioning between different functional states, effectively acting as dynamic molecular machines. Detailed structural characterization of transition trajectories is central to understanding the relationship between protein dynamics and function. Computational approaches that build on the Molecular Dynamics framework are in principle able to model transition trajectories at great detail but also at considerable computational cost. Methods that delay consideration of dynamics and focus instead on elucidating energetically-credible conformational paths connecting two functionally-relevant structures provide a complementary approach. Effective sampling-based path planning methods originating in robotics have been recently proposed to produce conformational paths. These methods largely model short peptides or address large proteins by simplifying conformational space. We propose a robotics-inspired method that connects two given structures of a protein by sampling conformational paths. The method focuses on small- to medium-size proteins, efficiently modeling structural deformations through the use of the molecular fragment replacement technique. In particular, the method grows a tree in conformational space rooted at the start structure, steering the tree to a goal region defined around the goal structure. We investigate various bias schemes over a progress coordinate for balance between coverage of conformational space and progress towards the goal. A geometric projection layer promotes path diversity. A reactive temperature scheme allows sampling of rare paths that cross energy barriers. Experiments are conducted on small- to medium-size proteins of length up to 214 amino acids and with multiple known functionally-relevant states, some of which are more than 13Å apart of each-other. Analysis reveals that the method effectively obtains conformational paths connecting structural states that are significantly different. A detailed analysis on the depth and breadth of the tree suggests that a soft global bias over the progress coordinate enhances sampling and results in higher path diversity. The explicit geometric projection layer that biases the exploration away from over-sampled regions further increases coverage, often improving proximity to the goal by forcing the exploration to find new paths. The reactive temperature scheme is shown effective in increasing path diversity, particularly in difficult structural transitions with known high-energy barriers.
NASA Astrophysics Data System (ADS)
Vostrukhin, A. A.; Golovin, D. V.; Kozyrev, A. S.; Litvak, M. L.; Malakhov, A. V.; Mitrofanov, I. G.; Mokrousov, M. I.; Tomilina, T. M.; Bobrovnitskiy, Yu. I.; Grebennikov, A. S.; Laktionova, M. M.; Bakhtin, B. N.; Sotov, A. V.
2018-05-01
The results of testing a number of space-based detectors that contain PMTs or high-voltage electrodes for the noise from the microphonics that occurs in the signal path due to external mechanical action have been presented. A method for the vibration isolation of instruments aboard a spacecraft has been proposed to reduce their responsivity to vibrations.
Cendagorta, Joseph R; Bačić, Zlatko; Tuckerman, Mark E
2018-03-14
We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.
NASA Astrophysics Data System (ADS)
Cendagorta, Joseph R.; Bačić, Zlatko; Tuckerman, Mark E.
2018-03-01
We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akagi, Sheryl; Burling, Ian R.; Mendoza, Albert
We report trace-gas emission factors from three pine-understory prescribed fires in South Carolina, U.S. measured during the fall of 2011. The fires were an attempt to simulate high-intensity burns and the fuels included mature pine stands not frequently subjected to prescribed fire that were lit following a sustained period of drought. In this work we focus on the emission factor measurements made using a fixed open-path gas analyzer Fourier transform infrared (FTIR) system. We compare these emission factors with those measured using a roving, point sampling, land-based FTIR and an airborne FTIR that were deployed on the same fires. Wemore » also compare to emission factors measured by a similar open-path FTIR system deployed on savanna fires in Africa. The data suggest that the method in which the smoke is sampled can strongly influence the relative abundance of the emissions that are observed. The airborne FTIR probed the bulk of the emissions, which were lofted in the convection column and the downwind chemistry while the roving ground-based point sampling FTIR measured the contribution of individual residual smoldering combustion fuel elements scattered throughout the burn site. The open-path FTIR provided a fixed path-integrated sample of emissions produced directly upwind mixed with emissions that were redirected by wind gusts, or right after ignition and before the adjacent plume achieved significant vertical development. It typically probed two distinct combustion regimes, “flaming-like” (immediately after adjacent ignition) and “smoldering-like”, denoted “early” and “late”, respectively. The calculated emission factors from open-path measurements were closer to the airborne than to the point measurements, but this could vary depending on the calculation method or from fire to fire given the changing MCE and dynamics over the duration of a typical burn. The emission factors for species whose emissions are not highly fuel dependent (e.g. CH4 and CH3OH) from all three systems can be plotted versus modified combustion efficiency and fit to a single consistent trend suggesting that differences between the systems for these species may be mainly due to the unique mix of flaming and smoldering that each system sampled. For other more fuel dependent species, the different fuels sampled also likely contributed to platform differences in emission factors. The path-integrated sample of the ground-level smoke layer adjacent to the fire provided by the open-path measurements is important for estimating fire-line exposure to smoke for wildland fire personnel. We provide a table of estimated fire-line exposures for numerous known air toxics based on synthesizing results from several studies. Our data suggest that peak exposures are more likely to challenge permissible exposure limits for wildland fire personnel than shift-average exposures.« less
Path integration of the time-dependent forced oscillator with a two-time quadratic action
NASA Astrophysics Data System (ADS)
Zhang, Tian Rong; Cheng, Bin Kang
1986-03-01
Using the prodistribution theory proposed by DeWitt-Morette [C. DeWitt-Morette, Commun. Math. Phys. 28, 47 (1972); C. DeWitt-Morette, A. Maheshwari, and B. Nelson, Phys. Rep. 50, 257 (1979)], the path integration of a time-dependent forced harmonic oscillator with a two-time quadratic action has been given in terms of the solutions of some integrodifferential equations. We then evaluate explicitly both the classical path and the propagator for the specific kernel introduced by Feynman in the polaron problem. Our results include the previous known results as special cases.
BOOK REVIEW: Advanced Mechanics and General Relativity Advanced Mechanics and General Relativity
NASA Astrophysics Data System (ADS)
Louko, Jorma
2011-04-01
Joel Franklin's textbook `Advanced Mechanics and General Relativity' comprises two partially overlapping, partially complementary introductory paths into general relativity at advanced undergraduate level. Path I starts with the Lagrangian and Hamiltonian formulations of Newtonian point particle motion, emphasising the action principle and the connection between symmetries and conservation laws. The concepts are then adapted to point particle motion in Minkowski space, introducing Lorentz transformations as symmetries of the action. There follows a focused development of tensor calculus, parallel transport and curvature, using examples from Newtonian mechanics and special relativity, culminating in the field equations of general relativity. The Schwarzschild solution is analysed, including a detailed discussion of the tidal forces on a radially infalling observer. Basics of gravitational radiation are examined, highlighting the similarities to and differences from electromagnetic radiation. The final topics in Path I are equatorial geodesics in Kerr and the motion of a relativistic string in Minkowski space. Path II starts by introducing scalar field theory on Minkowski space as a limit of point masses connected by springs, emphasising the action principle, conservation laws and the energy-momentum tensor. The action principle for electromagnetism is introduced, and the coupling of electromagnetism to a complex scalar field is developed in a detailed and pedagogical fashion. A free symmetric second-rank tensor field on Minkowski space is introduced, and the action principle of general relativity is recovered from coupling the second-rank tensor to its own energy-momentum tensor. Path II then merges with Path I and, supplanted with judicious early selections from Path I, can proceed to the Schwarzschild solution. The choice of material in each path is logical and focused. A notable example in Path I is that Lorentz transformations in Minkowki space are introduced efficiently and with a minimum of fuss, as symmetries of a geodesic action principle. Another example is a similarly efficient and hands-on introduction of Killing vectors. A consequence of this focus is that some perhaps traditional material is omitted. For example, Lorentz contraction appears briefly in the incompatibility discussion of special relativity and Newtonian gravity but is not introduced in a more systematic manner. The style is informal and very readable, with detailed explanations, frequent summaries of what has been achieved and pointers to what is about to follow. There are plenty of examples and some 150 well-chosen exercises, and the author's website hosts relevant Maple sample scripts for tensor manipulations and variational problems. The text conveys an enthusiasm for explaining the subject, frequently reminiscent of the Feynman lectures. The presentation emphasises explicit calculations and examples, largely avoiding technical definitions of abstract mathematical concepts. The author negotiates the challenge between readability and technical accuracy with admirable skill, striking a balance that will be much appreciated by the target audience. For example, the notion of spherical symmetry in curved spacetime is introduced informally as a generalisation of a spherically symmetric vector field in Minkowski space, and spherically symmetric vacuum and electrovacuum solutions are then carefully discussed so that a formal definition of spherical symmetry is not required. A rare instance that may border on oversimplification is the brief discussion of curvature scalars versus spacetime singularities. Towards the end of the book, the text mentions with increasing explicitness that inserting a gauge condition or an ansatz in an action before varying may not always give the correct equations of motion. It would be useful to be more explicit about this point already earlier in the book. In particular, the text refers to the reparametrisation-invariant square root action of a relativistic point particle as being `in proper time parametrisation', while the actual calculations of course impose the proper time condition only in the equation of motion after the action has been varied. Two presentational conventions surprised me. First, the speed of light is throughout kept explicitly as c: might advanced undergraduates appreciate being trusted with geometric units, reinstating c by dimensional analysis when desired? Second, in Minkowski space field theory, the overall coefficient in the action is chosen so that the time derivative term is negative, with the consequence that the Hamiltonian is negative (as explicitly noted in an exercise) and the definition of the energy-momentum tensor must include a minus sign to achieve the usual choice T00 > 0. This convention eliminates some minus signs in the computations with the spin two field: does this computational saving outweigh the adjustment awaiting those who continue with the topic at graduate level? Overall, Franklin's book is an excellent addition to the literature, and its readability and explicitness will be appreciated by the target audience. Should I be teaching an introductory undergraduate class in general relativity in the near future, I would seriously consider this book for the main class text.
Educational Pathways through Nanoscience: Nitinol as a Paradigmatic Smart Material
ERIC Educational Resources Information Center
Lisotti, Annamaria; De Renzi, Valentina; Rozzi, Carlo Andrea; Villa, Elena; Albertini, Franca; Goldoni, Guido
2013-01-01
We developed an educational path based on nitinol, a shape memory alloy which conveniently exemplifies the smart material concept, i.e., a material that performs a predetermined, reversible action in response to a change in the environment. Nitinol recovers a given shape, changes its resistivity drastically and modifies its elastic properties if…
Facebook Displays as Predictors of Binge Drinking: From the Virtual to the Visceral
D'Angelo, Jonathan; Kerr, Bradley; Moreno, Megan A
2015-01-01
Given the prevalence of social media, a nascent but important area of research is the effect of social media posting on one's own self. It is possible that an individual's social media posts may have predictive capacity, especially in relation to health behavior. Researchers have long utilized concepts from the Theory of Reasoned Action (TRA) to predict health behaviors. The theory does not account for social media, which may influence or predict health behaviors. The purpose of this study was to test a model including Facebook alcohol displays and constructs from the TRA to predict binge drinking. Incoming college freshmen from two schools (312 participants between the ages of 18 and 19) were interviewed prior to (T1) and one year into college (T2), and their Facebook profiles were evaluated for displayed alcohol content. Path modeling was used to evaluate direct and indirect paths predicting binge drinking. Path analysis suggested that Facebook alcohol displays at T1 directly predict binge drinking at T2, while alcohol attitude both directly and indirectly predicts binge drinking. Based on these results, a preliminary model of social media presentation and action is discussed. PMID:26412923
Facebook Displays as Predictors of Binge Drinking: From the Virtual to the Visceral.
D'Angelo, Jonathan; Kerr, Bradley; Moreno, Megan A
2014-01-01
Given the prevalence of social media, a nascent but important area of research is the effect of social media posting on one's own self. It is possible that an individual's social media posts may have predictive capacity, especially in relation to health behavior. Researchers have long utilized concepts from the Theory of Reasoned Action (TRA) to predict health behaviors. The theory does not account for social media, which may influence or predict health behaviors. The purpose of this study was to test a model including Facebook alcohol displays and constructs from the TRA to predict binge drinking. Incoming college freshmen from two schools (312 participants between the ages of 18 and 19) were interviewed prior to (T1) and one year into college (T2), and their Facebook profiles were evaluated for displayed alcohol content. Path modeling was used to evaluate direct and indirect paths predicting binge drinking. Path analysis suggested that Facebook alcohol displays at T1 directly predict binge drinking at T2, while alcohol attitude both directly and indirectly predicts binge drinking. Based on these results, a preliminary model of social media presentation and action is discussed.
ERIC Educational Resources Information Center
Chiu, Chung-Yi; Lynch, Ruth Torkelson; Chan, Fong; Rose, Lindsey
2012-01-01
The main objective of this study was to evaluate the health action process approach (HAPA) as a motivational model for dietary self-management for people with multiple sclerosis (MS). Quantitative descriptive research design using path analysis was used. Participants were 209 individuals with MS recruited from the National MS Society and a…
Terrain Following Control Based on an Optimized Spline Model of Aircraft Motion
1975-11-01
constraints, a smooth path through the final data points may not satisfy the norma acceleration constraints between sample points. This latter assertion is...for the reference path in the table. Sae copromise betwen the two effects is required. The accelerations given in Table 7-2 are those measured at the
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-29
...-WECC-1 summarizes the nine steps and related actions to address unscheduled flows. 10. NERC states that...] Western Electric Coordinating Council; Qualified Transfer Path Unscheduled Flow Relief Regional... Path Unscheduled Flow Relief) submitted to the Commission for approval by the North American Electric...
Becoming Reactive by Concretization
NASA Technical Reports Server (NTRS)
Prieditis, Armand; Janakiraman, Bhaskar
1992-01-01
One way to build a reactive system is to construct an action table indexed by the current situation or stimulus. The action table describes what course of action to pursue for each situation or stimulus. This paper describes an incremental approach to constructing the action table through achieving goals with a hierarchical search system. These hierarchies are generated with transformations called concretizations, which add constraints to a problem and which can reduce the search space. The basic idea is that an action for a state is looked up in the action table and executed whenever the action table has an entry for that state; otherwise, a path is found to the nearest (cost-wise in a graph with costweighted arcs) state that has a mappring from a state in the next highest hierarchy. For each state along the solution path, the successor state in the path is cached in the action table entry for that state. Without caching, the hierarchical search system can logarithmically reduce search. When the table is complete the system no longer searches: it simply reacts by proceeding to the state listed in the table for each state. Since the cached information is specific only to the nearest state in the next highest hierarchy and not the goal, inter-goal transfer of reactivity is possible. To illustrate our approach, we show how an implemented hierarchical search system can completely reactive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) and its contractor, Rust Geotech, support the Kirtland Area Office by assisting Sandia National Laboratories/New Mexico (Sandia/NM) with remedial action, remedial design, and technical support of its Environmental Restoration Program. To aid in determining groundwater origins and flow paths, the GJPO was tasked to provide interpretation of groundwater geochemical data. The purpose of this investigation was to describe and analyze the groundwater geochemistry of the Sandia/NM Kirtland Air Force Base (KAFB). Interpretations of groundwater origins are made by using these data and the results of {open_quotes}mass balance{close_quotes} and {open_quotes}reactionmore » path{close_quote} modeling. Additional maps and plots were compiled to more fully comprehend the geochemical distributions. A more complete set of these data representations are provided in the appendices. Previous interpretations of groundwater-flow paths that were based on well-head, geologic, and geochemical data are presented in various reports and were used as the basis for developing the models presented in this investigation.« less
Digital micromirror device-based common-path quantitative phase imaging.
Zheng, Cheng; Zhou, Renjie; Kuang, Cuifang; Zhao, Guangyuan; Yaqoob, Zahid; So, Peter T C
2017-04-01
We propose a novel common-path quantitative phase imaging (QPI) method based on a digital micromirror device (DMD). The DMD is placed in a plane conjugate to the objective back-aperture plane for the purpose of generating two plane waves that illuminate the sample. A pinhole is used in the detection arm to filter one of the beams after sample to create a reference beam. Additionally, a transmission-type liquid crystal device, placed at the objective back-aperture plane, eliminates the specular reflection noise arising from all the "off" state DMD micromirrors, which is common in all DMD-based illuminations. We have demonstrated high sensitivity QPI, which has a measured spatial and temporal noise of 4.92 nm and 2.16 nm, respectively. Experiments with calibrated polystyrene beads illustrate the desired phase measurement accuracy. In addition, we have measured the dynamic height maps of red blood cell membrane fluctuations, showing the efficacy of the proposed system for live cell imaging. Most importantly, the DMD grants the system convenience in varying the interference fringe period on the camera to easily satisfy the pixel sampling conditions. This feature also alleviates the pinhole alignment complexity. We envision that the proposed DMD-based common-path QPI system will allow for system miniaturization and automation for a broader adaption.
Digital micromirror device-based common-path quantitative phase imaging
Zheng, Cheng; Zhou, Renjie; Kuang, Cuifang; Zhao, Guangyuan; Yaqoob, Zahid; So, Peter T. C.
2017-01-01
We propose a novel common-path quantitative phase imaging (QPI) method based on a digital micromirror device (DMD). The DMD is placed in a plane conjugate to the objective back-aperture plane for the purpose of generating two plane waves that illuminate the sample. A pinhole is used in the detection arm to filter one of the beams after sample to create a reference beam. Additionally, a transmission-type liquid crystal device, placed at the objective back-aperture plane, eliminates the specular reflection noise arising from all the “off” state DMD micromirrors, which is common in all DMD-based illuminations. We have demonstrated high sensitivity QPI, which has a measured spatial and temporal noise of 4.92 nm and 2.16 nm, respectively. Experiments with calibrated polystyrene beads illustrate the desired phase measurement accuracy. In addition, we have measured the dynamic height maps of red blood cell membrane fluctuations, showing the efficacy of the proposed system for live cell imaging. Most importantly, the DMD grants the system convenience in varying the interference fringe period on the camera to easily satisfy the pixel sampling conditions. This feature also alleviates the pinhole alignment complexity. We envision that the proposed DMD-based common-path QPI system will allow for system miniaturization and automation for a broader adaption. PMID:28362789
Quantum circuit dynamics via path integrals: Is there a classical action for discrete-time paths?
NASA Astrophysics Data System (ADS)
Penney, Mark D.; Enshan Koh, Dax; Spekkens, Robert W.
2017-07-01
It is straightforward to compute the transition amplitudes of a quantum circuit using the sum-over-paths methodology when the gates in the circuit are balanced, where a balanced gate is one for which all non-zero transition amplitudes are of equal magnitude. Here we consider the question of whether, for such circuits, the relative phases of different discrete-time paths through the configuration space can be defined in terms of a classical action, as they are for continuous-time paths. We show how to do so for certain kinds of quantum circuits, namely, Clifford circuits where the elementary systems are continuous-variable systems or discrete systems of odd-prime dimension. These types of circuit are distinguished by having phase-space representations that serve to define their classical counterparts. For discrete systems, the phase-space coordinates are also discrete variables. We show that for each gate in the generating set, one can associate a symplectomorphism on the phase-space and to each of these one can associate a generating function, defined on two copies of the configuration space. For discrete systems, the latter association is achieved using tools from algebraic geometry. Finally, we show that if the action functional for a discrete-time path through a sequence of gates is defined using the sum of the corresponding generating functions, then it yields the correct relative phases for the path-sum expression. These results are likely to be relevant for quantizing physical theories where time is fundamentally discrete, characterizing the classical limit of discrete-time quantum dynamics, and proving complexity results for quantum circuits.
Computation of rare transitions in the barotropic quasi-geostrophic equations
NASA Astrophysics Data System (ADS)
Laurie, Jason; Bouchet, Freddy
2015-01-01
We investigate the theoretical and numerical computation of rare transitions in simple geophysical turbulent models. We consider the barotropic quasi-geostrophic and two-dimensional Navier-Stokes equations in regimes where bistability between two coexisting large-scale attractors exist. By means of large deviations and instanton theory with the use of an Onsager-Machlup path integral formalism for the transition probability, we show how one can directly compute the most probable transition path between two coexisting attractors analytically in an equilibrium (Langevin) framework and numerically otherwise. We adapt a class of numerical optimization algorithms known as minimum action methods to simple geophysical turbulent models. We show that by numerically minimizing an appropriate action functional in a large deviation limit, one can predict the most likely transition path for a rare transition between two states. By considering examples where theoretical predictions can be made, we show that the minimum action method successfully predicts the most likely transition path. Finally, we discuss the application and extension of such numerical optimization schemes to the computation of rare transitions observed in direct numerical simulations and experiments and to other, more complex, turbulent systems.
ERIC Educational Resources Information Center
Hellerstein-Yehezkel, Devora
2017-01-01
This article illustrates the significance of intercultural competence in teaching English as a Foreign Language (EFL) to a multicultural group of students in a matriculation preparation programme in Israel. It is based on an action research using a case study approach to examine the role of cultural background in the acquisition of EFL. Drawing…
Experience of hypertensive patients with self-management of health care.
Balduino, Anice de Fátima Ahmad; Mantovani, Maria de Fátima; Lacerda, Maria Ribeiro; Marin, Maria José Sanches; Wal, Marilene Loewen
2016-11-01
The aim of this study was to interpret how hypertensive patients experience health care self-management. Hypertension is one of the most prevalent chronic diseases worldwide. The involvement of individuals in the management of their health care to treat this disease is fundamental, with aid and advice from healthcare professionals, especially nurses, so that hypertensive patients can effectively self-manage their health care. Qualitative study. Hypertensive patients were recruited using theoretical sampling. The study sample consisted of 28 hypertensive patients aged 18-59 years who were registered in the e-Health programme of the Ministry of Health. Data were collected and analyzed between September 2012-October 2014 using a semi-structured interview based on the methodological framework of the constructivist grounded theory. The participants' statements depicted an outline of their experience with the disease: the beginning of the illness; understanding the disease process; incorporating behaviour for self-management of the disease; experiencing attitudes and actions in the control and treatment of the disease; and being treated in the public healthcare system. A central phenomenon emerged, namely hypertensive patients' experience of self-management of health care. This phenomenon has paths, actions and interactions. When patients discover that they have the disease and become aware of the disease process, they assume the identity of being hypertensive and become proactive in their health care and in living with their families and in communities. © 2016 John Wiley & Sons Ltd.
Packet loss mitigation for biomedical signals in healthcare telemetry.
Garudadri, Harinath; Baheti, Pawan K
2009-01-01
In this work, we propose an effective application layer solution for packet loss mitigation in the context of Body Sensor Networks (BSN) and healthcare telemetry. Packet losses occur due to many reasons including excessive path loss, interference from other wireless systems, handoffs, congestion, system loading, etc. A call for action is in order, as packet losses can have extremely adverse impact on many healthcare applications relying on BAN and WAN technologies. Our approach for packet loss mitigation is based on Compressed Sensing (CS), an emerging signal processing concept, wherein significantly fewer sensor measurements than that suggested by Shannon/Nyquist sampling theorem can be used to recover signals with arbitrarily fine resolution. We present simulation results demonstrating graceful degradation of performance with increasing packet loss rate. We also compare the proposed approach with retransmissions. The CS based packet loss mitigation approach was found to maintain up to 99% beat-detection accuracy at packet loss rates of 20%, with a constant latency of less than 2.5 seconds.
Sensor-Oriented Path Planning for Multiregion Surveillance with a Single Lightweight UAV SAR
Li, Jincheng; Chen, Jie; Wang, Pengbo; Li, Chunsheng
2018-01-01
In the surveillance of interested regions by unmanned aerial vehicle (UAV), system performance relies greatly on the motion control strategy of the UAV and the operation characteristics of the onboard sensors. This paper investigates the 2D path planning problem for the lightweight UAV synthetic aperture radar (SAR) system in an environment of multiple regions of interest (ROIs), the sizes of which are comparable to the radar swath width. Taking into account the special requirements of the SAR system on the motion of the platform, we model path planning for UAV SAR as a constrained multiobjective optimization problem (MOP). Based on the fact that the UAV route can be designed in the map image, an image-based path planner is proposed in this paper. First, the neighboring ROIs are merged by the morphological operation. Then, the parts of routes for data collection of the ROIs can be located according to the geometric features of the ROIs and the observation geometry of UAV SAR. Lastly, the route segments for ROIs surveillance are connected by a path planning algorithm named the sampling-based sparse A* search (SSAS) algorithm. Simulation experiments in real scenarios demonstrate that the proposed sensor-oriented path planner can improve the reconnaissance performance of lightweight UAV SAR greatly compared with the conventional zigzag path planner. PMID:29439447
Sensor-Oriented Path Planning for Multiregion Surveillance with a Single Lightweight UAV SAR.
Li, Jincheng; Chen, Jie; Wang, Pengbo; Li, Chunsheng
2018-02-11
In the surveillance of interested regions by unmanned aerial vehicle (UAV), system performance relies greatly on the motion control strategy of the UAV and the operation characteristics of the onboard sensors. This paper investigates the 2D path planning problem for the lightweight UAV synthetic aperture radar (SAR) system in an environment of multiple regions of interest (ROIs), the sizes of which are comparable to the radar swath width. Taking into account the special requirements of the SAR system on the motion of the platform, we model path planning for UAV SAR as a constrained multiobjective optimization problem (MOP). Based on the fact that the UAV route can be designed in the map image, an image-based path planner is proposed in this paper. First, the neighboring ROIs are merged by the morphological operation. Then, the parts of routes for data collection of the ROIs can be located according to the geometric features of the ROIs and the observation geometry of UAV SAR. Lastly, the route segments for ROIs surveillance are connected by a path planning algorithm named the sampling-based sparse A* search (SSAS) algorithm. Simulation experiments in real scenarios demonstrate that the proposed sensor-oriented path planner can improve the reconnaissance performance of lightweight UAV SAR greatly compared with the conventional zigzag path planner.
2013-01-01
Background Many proteins tune their biological function by transitioning between different functional states, effectively acting as dynamic molecular machines. Detailed structural characterization of transition trajectories is central to understanding the relationship between protein dynamics and function. Computational approaches that build on the Molecular Dynamics framework are in principle able to model transition trajectories at great detail but also at considerable computational cost. Methods that delay consideration of dynamics and focus instead on elucidating energetically-credible conformational paths connecting two functionally-relevant structures provide a complementary approach. Effective sampling-based path planning methods originating in robotics have been recently proposed to produce conformational paths. These methods largely model short peptides or address large proteins by simplifying conformational space. Methods We propose a robotics-inspired method that connects two given structures of a protein by sampling conformational paths. The method focuses on small- to medium-size proteins, efficiently modeling structural deformations through the use of the molecular fragment replacement technique. In particular, the method grows a tree in conformational space rooted at the start structure, steering the tree to a goal region defined around the goal structure. We investigate various bias schemes over a progress coordinate for balance between coverage of conformational space and progress towards the goal. A geometric projection layer promotes path diversity. A reactive temperature scheme allows sampling of rare paths that cross energy barriers. Results and conclusions Experiments are conducted on small- to medium-size proteins of length up to 214 amino acids and with multiple known functionally-relevant states, some of which are more than 13Å apart of each-other. Analysis reveals that the method effectively obtains conformational paths connecting structural states that are significantly different. A detailed analysis on the depth and breadth of the tree suggests that a soft global bias over the progress coordinate enhances sampling and results in higher path diversity. The explicit geometric projection layer that biases the exploration away from over-sampled regions further increases coverage, often improving proximity to the goal by forcing the exploration to find new paths. The reactive temperature scheme is shown effective in increasing path diversity, particularly in difficult structural transitions with known high-energy barriers. PMID:24565158
Spin foam models for quantum gravity from lattice path integrals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonzom, Valentin
2009-09-15
Spin foam models for quantum gravity are derived from lattice path integrals. The setting involves variables from both lattice BF theory and Regge calculus. The action consists in a Regge action, which depends on areas, dihedral angles and includes the Immirzi parameter. In addition, a measure is inserted to ensure a consistent gluing of simplices, so that the amplitude is dominated by configurations that satisfy the parallel transport relations. We explicitly compute the path integral as a sum over spin foams for a generic measure. The Freidel-Krasnov and Engle-Pereira-Rovelli models correspond to a special choice of gluing. In this case,more » the equations of motion describe genuine geometries, where the constraints of area-angle Regge calculus are satisfied. Furthermore, the Immirzi parameter drops out of the on-shell action, and stationarity with respect to area variations requires spacetime geometry to be flat.« less
Optical Path Switching Based Differential Absorption Radiometry for Substance Detection
NASA Technical Reports Server (NTRS)
Sachse, Glen W. (Inventor)
2000-01-01
A system and method are provided for detecting one or more substances. An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. The first wavelength band and second wavelength band are unique. Further, spectral absorption of a substance of interest is different at the first wavelength band as compared to the second wavelength band. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.
Is Transformational Leadership Effective in a System Program Office
1988-09-01
centers around the situational theory of lec;Iership, which suggests that the most effective style of leadership depends on the individual situation the...exception. Contingent reward is based on the principles of the path-goal model of leadership , which, in turn, is based on the expectancy theory of...transactional leadership . According to the expectancy theory of motivation, an expectancy is a belief in the liklihood that a certain action or behavior will
A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents
Goldschmidt, Dennis; Manoonpong, Poramate; Dasgupta, Sakyasingha
2017-01-01
Despite their small size, insect brains are able to produce robust and efficient navigation in complex environments. Specifically in social insects, such as ants and bees, these navigational capabilities are guided by orientation directing vectors generated by a process called path integration. During this process, they integrate compass and odometric cues to estimate their current location as a vector, called the home vector for guiding them back home on a straight path. They further acquire and retrieve path integration-based vector memories globally to the nest or based on visual landmarks. Although existing computational models reproduced similar behaviors, a neurocomputational model of vector navigation including the acquisition of vector representations has not been described before. Here we present a model of neural mechanisms in a modular closed-loop control—enabling vector navigation in artificial agents. The model consists of a path integration mechanism, reward-modulated global learning, random search, and action selection. The path integration mechanism integrates compass and odometric cues to compute a vectorial representation of the agent's current location as neural activity patterns in circular arrays. A reward-modulated learning rule enables the acquisition of vector memories by associating the local food reward with the path integration state. A motor output is computed based on the combination of vector memories and random exploration. In simulation, we show that the neural mechanisms enable robust homing and localization, even in the presence of external sensory noise. The proposed learning rules lead to goal-directed navigation and route formation performed under realistic conditions. Consequently, we provide a novel approach for vector learning and navigation in a simulated, situated agent linking behavioral observations to their possible underlying neural substrates. PMID:28446872
A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents.
Goldschmidt, Dennis; Manoonpong, Poramate; Dasgupta, Sakyasingha
2017-01-01
Despite their small size, insect brains are able to produce robust and efficient navigation in complex environments. Specifically in social insects, such as ants and bees, these navigational capabilities are guided by orientation directing vectors generated by a process called path integration. During this process, they integrate compass and odometric cues to estimate their current location as a vector, called the home vector for guiding them back home on a straight path. They further acquire and retrieve path integration-based vector memories globally to the nest or based on visual landmarks. Although existing computational models reproduced similar behaviors, a neurocomputational model of vector navigation including the acquisition of vector representations has not been described before. Here we present a model of neural mechanisms in a modular closed-loop control-enabling vector navigation in artificial agents. The model consists of a path integration mechanism, reward-modulated global learning, random search, and action selection. The path integration mechanism integrates compass and odometric cues to compute a vectorial representation of the agent's current location as neural activity patterns in circular arrays. A reward-modulated learning rule enables the acquisition of vector memories by associating the local food reward with the path integration state. A motor output is computed based on the combination of vector memories and random exploration. In simulation, we show that the neural mechanisms enable robust homing and localization, even in the presence of external sensory noise. The proposed learning rules lead to goal-directed navigation and route formation performed under realistic conditions. Consequently, we provide a novel approach for vector learning and navigation in a simulated, situated agent linking behavioral observations to their possible underlying neural substrates.
NASA Technical Reports Server (NTRS)
Provost, David E.
1990-01-01
Viewgraphs on flight telerobotic servicer evolution are presented. Topics covered include: paths for FTS evolution; frequently performed actions; primary task states; EPS radiator panel installation; generic task definitions; path planning; non-contact alignment; contact planning and control; and human operator interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hang, E-mail: hangchen@mit.edu; Thill, Peter; Cao, Jianshu
In biochemical systems, intrinsic noise may drive the system switch from one stable state to another. We investigate how kinetic switching between stable states in a bistable network is influenced by dynamic disorder, i.e., fluctuations in the rate coefficients. Using the geometric minimum action method, we first investigate the optimal transition paths and the corresponding minimum actions based on a genetic toggle switch model in which reaction coefficients draw from a discrete probability distribution. For the continuous probability distribution of the rate coefficient, we then consider two models of dynamic disorder in which reaction coefficients undergo different stochastic processes withmore » the same stationary distribution. In one, the kinetic parameters follow a discrete Markov process and in the other they follow continuous Langevin dynamics. We find that regulation of the parameters modulating the dynamic disorder, as has been demonstrated to occur through allosteric control in bistable networks in the immune system, can be crucial in shaping the statistics of optimal transition paths, transition probabilities, and the stationary probability distribution of the network.« less
Sgrignani, Jacopo; Grazioso, Giovanni; De Amici, Marco
2016-09-13
The fast and constant development of drug resistant bacteria represents a serious medical emergency. To overcome this problem, the development of drugs with new structures and modes of action is urgently needed. In this work, we investigated, at the atomistic level, the mechanisms of hydrolysis of Meropenem by OXA-23, a class D β-lactamase, combining unbiased classical molecular dynamics and umbrella sampling simulations with classical force field-based and quantum mechanics/molecular mechanics potentials. Our calculations provide a detailed structural and dynamic picture of the molecular steps leading to the formation of the Meropenem-OXA-23 covalent adduct, the subsequent hydrolysis, and the final release of the inactive antibiotic. In this mechanistic framework, the predicted activation energy is in good agreement with experimental kinetic measurements, validating the expected reaction path.
Quantum identities for the action
NASA Astrophysics Data System (ADS)
Gozzi, E.
2018-04-01
In this paper we derive various identities involving the action functional which enters the path-integral formulation of quantum mechanics. They provide some kind of generalisations of the Ehrenfest theorem giving correlations between powers of the action and its functional derivatives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-04-28
This health and safety plan sets forth the requirements and procedures to protect the personnel involved in the Lead Source Removal Project at the Former YS-86O Firing Ranges. This project will be conducted in a manner that ensures the protection of the safety and health of workers, the public, and the environment. The purpose of this removal action is to address lead contaminated soil and reduce a potential risk to human health and the environment. This site is an operable unit within the Upper East Fork Poplar Creek watershed. The removal action will contribute to early source actions within themore » watershed. The project will accomplish this through the removal of lead-contaminated soil in the target areas of the two small arms firing ranges. This plan covers the removal actions at the Former YS-86O Firing Ranges. These actions involve the excavation of lead-contaminated soils, the removal of the concrete trench and macadam (asphalt) paths, verification/confirmation sampling, grading and revegetation. The primary hazards include temperature extremes, equipment operation, noise, potential lead exposure, uneven and slippery working surfaces, and insects.« less
Developing an Action Concept Inventory
ERIC Educational Resources Information Center
McGinness, Lachlan P.; Savage, C. M.
2016-01-01
We report on progress towards the development of an Action Concept Inventory (ACI), a test that measures student understanding of action principles in introductory mechanics and optics. The ACI also covers key concepts of many-paths quantum mechanics, from which classical action physics arises. We used a multistage iterative development cycle for…
The effects of narrow and elevated path walking on aperture crossing.
Hackney, Amy L; Cinelli, Michael E; Denomme, Luke T; Frank, James S
2015-06-01
The study investigated the impact that action capabilities have on identifying possibilities for action, particularly how postural threat influences the passability of apertures. To do this, the ability to maintain balance was challenged by manipulating the level of postural threat while walking. First, participants walked along a 7m path and passed through two vertical obstacles spaced 1.1-1.5×the shoulder width apart during normal walking. Next, postural threat was manipulated by having participants complete the task either walking on a narrow, ground level path or on an elevated/narrow path. Despite a decrease in walking speed as well as an increase in trunk sway in both the narrow and elevated/narrow walking conditions, the passability of apertures was only affected when the consequence of instability was greatest. In the elevated/narrow walking condition, individuals maintained a larger critical point (rotated their shoulders for larger aperture widths) compared to normal walking. However, this effect was not observed for the narrow path walking suggesting that the level of postural threat was not enough to impose similar changes to the critical point. Therefore, it appears that manipulating action capabilities by increasing postural threat does indeed influence aperture crossing behavior, however the consequence associated with instability must be high before both gait characteristics and the critical point are affected. Copyright © 2015 Elsevier B.V. All rights reserved.
Selective influence of prior allocentric knowledge on the kinesthetic learning of a path.
Lafon, Matthieu; Vidal, Manuel; Berthoz, Alain
2009-04-01
Spatial cognition studies have described two main cognitive strategies involved in the memorization of traveled paths in human navigation. One of these strategies uses the action-based memory (egocentric) of the traveled route or paths, which involves kinesthetic memory, optic flow, and episodic memory, whereas the other strategy privileges a survey memory of cartographic type (allocentric). Most studies have dealt with these two strategies separately, but none has tried to show the interaction between them in spite of the fact that we commonly use a map to imagine our journey and then proceed using egocentric navigation. An interesting question is therefore: how does prior allocentric knowledge of the environment affect the egocentric, purely kinesthetic navigation processes involved in human navigation? We designed an experiment in which blindfolded subjects had first to walk and memorize a path with kinesthetic cues only. They had previously been shown a map of the path, which was either correct or distorted (consistent shrinking or growing). The latter transformations were studied in order to observe what influence a distorted prior knowledge could have on spatial mechanisms. After having completed the first learning travel along the path, they had to perform several spatial tasks during the testing phase: (1) pointing towards the origin and (2) to specific points encountered along the path, (3) a free locomotor reproduction, and (4) a drawing of the memorized path. The results showed that prior cartographic knowledge influences the paths drawn and the spatial inference capacity, whereas neither locomotor reproduction nor spatial updating was disturbed. Our results strongly support the notion that (1) there are two independent neural bases underlying these mechanisms: a map-like representation allowing allocentric spatial inferences, and a kinesthetic memory of self-motion in space; and (2) a common use of, or a switching between, these two strategies is possible. Nevertheless, allocentric representations can emerge from the experience of kinesthetic cues alone.
Electrophoretic sample insertion. [device for uniformly distributing samples in flow path
NASA Technical Reports Server (NTRS)
Mccreight, L. R. (Inventor)
1974-01-01
Two conductive screens located in the flow path of an electrophoresis sample separation apparatus are charged electrically. The sample is introduced between the screens, and the charge is sufficient to disperse and hold the samples across the screens. When the charge is terminated, the samples are uniformly distributed in the flow path. Additionally, a first separation by charged properties has been accomplished.
Lee, Youn Soo; Gong, Gyungyub; Sohn, Jin Hee; Ryu, Ki Sung; Lee, Jung Hun; Khang, Shin Kwang; Cho, Kyung-Ja; Kim, Yong-Man; Kang, Chang Suk
2013-06-01
The objective of this study was to evaluate a newly-developed EASYPREP liquid-based cytology method in cervicovaginal specimens and compare it with SurePath. Cervicovaginal specimens were prospectively collected from 1,000 patients with EASYPREP and SurePath. The specimens were first collected by brushing for SurePath and second for EASYPREP. The specimens of both methods were diagnosed according to the Bethesda System. Additionally, we performed to REBA HPV-ID genotyping and sequencing analysis for human papillomavirus (HPV) on 249 specimens. EASYPREP and SurePath showed even distribution of cells and were equal in cellularity and staining quality. The diagnostic agreement between the two methods was 96.5%. Based on the standard of SurePath, the sensitivity, specificity, positive predictive value, and negative predictive value of EASYPREP were 90.7%, 99.2%, 94.8%, and 98.5%, respectively. The positivity of REBA HPV-ID was 49.4% and 95.1% in normal and abnormal cytological samples, respectively. The result of REBA HPV-ID had high concordance with sequencing analysis. EASYPREP provided comparable results to SurePath in the diagnosis and staining quality of cytology examinations and in HPV testing with REBA HPV-ID. EASYPREP could be another LBC method choice for the cervicovaginal specimens. Additionally, REBA HPV-ID may be a useful method for HPV genotyping.
Extraterrestrial beliefs and experiences: an application of the theory of reasoned action.
Patry, A L; Pelletier, L G
2001-04-01
The authors expanded the applicability of I. Ajzen and M. Fishbein's (1980) theory of reasoned action by assessing the participants' beliefs, attitudes, and experiences related to sightings of unidentified flying objects (UFOs) and to alien abductions. The authors designed and administered a survey on UFO phenomena to 398 Canadian students. The survey contains items relating to each component of Ajzen and Fishbein's model, as well as scales that evaluate paranormal beliefs and social desirability. A majority of the sample believed in UFOs, although most had never seen one. However, only a minority believed in alien abductions--again, most without having had any reported experience. According to path analyses, UFO beliefs originated from societal forces rather than from personal experiences as the model would predict.
Modeling and calculation of impact friction caused by corner contact in gear transmission
NASA Astrophysics Data System (ADS)
Zhou, Changjiang; Chen, Siyu
2014-09-01
Corner contact in gear pair causes vibration and noise, which has attracted many attentions. However, teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechanism of teeth impact friction in the current researches. Based on the mechanism of corner contact, the process of corner contact is divided into two stages of impact and scratch, and the calculation model including gear equivalent error—combined deformation is established along the line of action. According to the distributive law, gear equivalent error is synthesized by base pitch error, normal backlash and tooth profile modification on the line of action. The combined tooth compliance of the first point lying in corner contact before the normal path is inversed along the line of action, on basis of the theory of engagement and the curve of tooth synthetic compliance & load-history. Combined secondarily the equivalent error with the combined deflection, the position standard of the point situated at corner contact is probed. Then the impact positions and forces, from the beginning to the end during corner contact before the normal path, are calculated accurately. Due to the above results, the lash model during corner contact is founded, and the impact force and frictional coefficient are quantified. A numerical example is performed and the averaged impact friction coefficient based on the presented calculation method is validated. This research obtains the results which could be referenced to understand the complex mechanism of teeth impact friction and quantitative calculation of the friction force and coefficient, and to gear exact design for tribology.
Continuous quantum measurements and the action uncertainty principle
NASA Astrophysics Data System (ADS)
Mensky, Michael B.
1992-09-01
The path-integral approach to quantum theory of continuous measurements has been developed in preceding works of the author. According to this approach the measurement amplitude determining probabilities of different outputs of the measurement can be evaluated in the form of a restricted path integral (a path integral “in finite limits”). With the help of the measurement amplitude, maximum deviation of measurement outputs from the classical one can be easily determined. The aim of the present paper is to express this variance in a simpler and transparent form of a specific uncertainty principle (called the action uncertainty principle, AUP). The most simple (but weak) form of AUP is δ S≳ℏ, where S is the action functional. It can be applied for simple derivation of the Bohr-Rosenfeld inequality for measurability of gravitational field. A stronger (and having wider application) form of AUP (for ideal measurements performed in the quantum regime) is |∫{/' t″ }(δ S[ q]/δ q( t))Δ q( t) dt|≃ℏ, where the paths [ q] and [Δ q] stand correspondingly for the measurement output and for the measurement error. It can also be presented in symbolic form as Δ(Equation) Δ(Path) ≃ ℏ. This means that deviation of the observed (measured) motion from that obeying the classical equation of motion is reciprocally proportional to the uncertainty in a path (the latter uncertainty resulting from the measurement error). The consequence of AUP is that improving the measurement precision beyond the threshold of the quantum regime leads to decreasing information resulting from the measurement.
Foundations and latest advances in replica exchange transition interface sampling.
Cabriolu, Raffaela; Skjelbred Refsnes, Kristin M; Bolhuis, Peter G; van Erp, Titus S
2017-10-21
Nearly 20 years ago, transition path sampling (TPS) emerged as an alternative method to free energy based approaches for the study of rare events such as nucleation, protein folding, chemical reactions, and phase transitions. TPS effectively performs Monte Carlo simulations with relatively short molecular dynamics trajectories, with the advantage of not having to alter the actual potential energy surface nor the underlying physical dynamics. Although the TPS approach also introduced a methodology to compute reaction rates, this approach was for a long time considered theoretically attractive, providing the exact same results as extensively long molecular dynamics simulations, but still expensive for most relevant applications. With the increase of computer power and improvements in the algorithmic methodology, quantitative path sampling is finding applications in more and more areas of research. In particular, the transition interface sampling (TIS) and the replica exchange TIS (RETIS) algorithms have, in turn, improved the efficiency of quantitative path sampling significantly, while maintaining the exact nature of the approach. Also, open-source software packages are making these methods, for which implementation is not straightforward, now available for a wider group of users. In addition, a blooming development takes place regarding both applications and algorithmic refinements. Therefore, it is timely to explore the wide panorama of the new developments in this field. This is the aim of this article, which focuses on the most efficient exact path sampling approach, RETIS, as well as its recent applications, extensions, and variations.
Foundations and latest advances in replica exchange transition interface sampling
NASA Astrophysics Data System (ADS)
Cabriolu, Raffaela; Skjelbred Refsnes, Kristin M.; Bolhuis, Peter G.; van Erp, Titus S.
2017-10-01
Nearly 20 years ago, transition path sampling (TPS) emerged as an alternative method to free energy based approaches for the study of rare events such as nucleation, protein folding, chemical reactions, and phase transitions. TPS effectively performs Monte Carlo simulations with relatively short molecular dynamics trajectories, with the advantage of not having to alter the actual potential energy surface nor the underlying physical dynamics. Although the TPS approach also introduced a methodology to compute reaction rates, this approach was for a long time considered theoretically attractive, providing the exact same results as extensively long molecular dynamics simulations, but still expensive for most relevant applications. With the increase of computer power and improvements in the algorithmic methodology, quantitative path sampling is finding applications in more and more areas of research. In particular, the transition interface sampling (TIS) and the replica exchange TIS (RETIS) algorithms have, in turn, improved the efficiency of quantitative path sampling significantly, while maintaining the exact nature of the approach. Also, open-source software packages are making these methods, for which implementation is not straightforward, now available for a wider group of users. In addition, a blooming development takes place regarding both applications and algorithmic refinements. Therefore, it is timely to explore the wide panorama of the new developments in this field. This is the aim of this article, which focuses on the most efficient exact path sampling approach, RETIS, as well as its recent applications, extensions, and variations.
Surface Navigation Using Optimized Waypoints and Particle Swarm Optimization
NASA Technical Reports Server (NTRS)
Birge, Brian
2013-01-01
The design priority for manned space exploration missions is almost always placed on human safety. Proposed manned surface exploration tasks (lunar, asteroid sample returns, Mars) have the possibility of astronauts traveling several kilometers away from a home base. Deviations from preplanned paths are expected while exploring. In a time-critical emergency situation, there is a need to develop an optimal home base return path. The return path may or may not be similar to the outbound path, and what defines optimal may change with, and even within, each mission. A novel path planning algorithm and prototype program was developed using biologically inspired particle swarm optimization (PSO) that generates an optimal path of traversal while avoiding obstacles. Applications include emergency path planning on lunar, Martian, and/or asteroid surfaces, generating multiple scenarios for outbound missions, Earth-based search and rescue, as well as human manual traversal and/or path integration into robotic control systems. The strategy allows for a changing environment, and can be re-tasked at will and run in real-time situations. Given a random extraterrestrial planetary or small body surface position, the goal was to find the fastest (or shortest) path to an arbitrary position such as a safe zone or geographic objective, subject to possibly varying constraints. The problem requires a workable solution 100% of the time, though it does not require the absolute theoretical optimum. Obstacles should be avoided, but if they cannot be, then the algorithm needs to be smart enough to recognize this and deal with it. With some modifications, it works with non-stationary error topologies as well.
Wahid, Rahnuma; Holt, Renee; Hjorth, Richard; Berlanda Scorza, Francesco
2016-10-26
With the support of the Biomedical Advanced Research and Development Authority (BARDA) of the US Department of Health and Human Services, PATH has contributed to the World Health Organization's (WHO's) Global Action Plan for Influenza Vaccines (GAP) by providing technical and clinical assistance to several developing country vaccine manufacturers (DCVMs). GAP builds regionally based independent and sustainable influenza vaccine production capacity to mitigate the overall global shortage of influenza vaccines. The program also ensures adequate influenza vaccine manufacturing capacity in the event of an influenza pandemic. Since 2009, PATH has worked closely with two DCVMs in Vietnam: the Institute of Vaccines and Medical Biologicals (IVAC) and VABIOTECH. Beginning in 2013, PATH also began working with Torlak Institute in Serbia; Instituto Butantan in Brazil; Serum Institute of India Private Ltd. in India; and Changchun BCHT Biotechnology Co. (BCHT) in China. The DCVMs supported under the GAP program all had existing influenza vaccine manufacturing capability and required technical support from PATH to improve vaccine yield, process efficiency, and product formulation. PATH has provided customized technical support for the manufacturing process to each DCVM based on their respective requirements. Additionally, PATH, working with BARDA and WHO, supported several DCVMs in the clinical development of influenza vaccine candidates progressing toward national licensure or WHO prequalification. As a result of the activities outlined in this review, several companies were able to make excellent progress in developing state-of-the-art manufacturing processes and completing early phase clinical trials. Licensure trials are currently ongoing or planned for several DCVMs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kim, Isok
2014-01-01
This study used a path analytic technique to examine associations among critical ethnic awareness, racial discrimination, social support, and depressive symptoms. Using a convenience sample from online survey of Asian American adults (N = 405), the study tested 2 main hypotheses: First, based on the empowerment theory, critical ethnic awareness would be positively associated with racial discrimination experience; and second, based on the social support deterioration model, social support would partially mediate the relationship between racial discrimination and depressive symptoms. The result of the path analysis model showed that the proposed path model was a good fit based on global fit indices, χ²(2) = 4.70, p = .10; root mean square error of approximation = 0.06; comparative fit index = 0.97; Tucker-Lewis index = 0.92; and standardized root mean square residual = 0.03. The examinations of study hypotheses demonstrated that critical ethnic awareness was directly associated (b = .11, p < .05) with the racial discrimination experience, whereas social support had a significant indirect effect (b = .48; bias-corrected 95% confidence interval [0.02, 1.26]) between the racial discrimination experience and depressive symptoms. The proposed path model illustrated that both critical ethnic awareness and social support are important mechanisms for explaining the relationship between racial discrimination and depressive symptoms among this sample of Asian Americans. This study highlights the usefulness of the critical ethnic awareness concept as a way to better understand how Asian Americans might perceive and recognize racial discrimination experiences in relation to its mental health consequences.
Otero, Cassi L.
2007-01-01
The U.S. Geological Survey, in cooperation with the San Antonio Water System, conducted a 4-year study during 2002?06 to identify major flow paths in the Edwards aquifer in northeastern Bexar and southern Comal Counties (study area). In the study area, faulting directs ground water into three hypothesized flow paths that move water, generally, from the southwest to the northeast. These flow paths are identified as the southern Comal flow path, the central Comal flow path, and the northern Comal flow path. Statistical correlations between water levels for six observation wells and between the water levels and discharges from Comal Springs and Hueco Springs yielded evidence for the hypothesized flow paths. Strong linear correlations were evident between the datasets from wells and springs within the same flow path and the datasets from wells in areas where flow between flow paths was suspected. Geochemical data (major ions, stable isotopes, sulfur hexafluoride, and tritium and helium) were used in graphical analyses to obtain evidence of the flow path from which wells or springs derive water. Major-ion geochemistry in samples from selected wells and springs showed relatively little variation. Samples from the southern Comal flow path were characterized by relatively high sulfate and chloride concentrations, possibly indicating that the water in the flow path was mixing with small amounts of saline water from the freshwater/saline-water transition zone. Samples from the central Comal flow path yielded the most varied major-ion geochemistry of the three hypothesized flow paths. Central Comal flow path samples were characterized, in general, by high calcium concentrations and low magnesium concentrations. Samples from the northern Comal flow path were characterized by relatively low sulfate and chloride concentrations and high magnesium concentrations. The high magnesium concentrations characteristic of northern Comal flow path samples from the recharge zone in Comal County might indicate that water from the Trinity aquifer is entering the Edwards aquifer in the subsurface. A graph of the relation between the stable isotopes deuterium and delta-18 oxygen showed that, except for samples collected following an unusually intense rain storm, there was not much variation in stable isotope values among the flow paths. In the study area deuterium ranged from -36.00 to -20.89 per mil and delta-18 oxygen ranged from -6.03 to -3.70 per mil. Excluding samples collected following the intense rain storm, the deuterium range in the study area was -33.00 to -20.89 per mil and the delta-18 oxygen range was -4.60 to -3.70 per mil. Two ground-water age-dating techniques, sulfur hexafluoride concentrations and tritium/helium-3 isotope ratios, were used to compute apparent ages (time since recharge occurred) of water samples collected in the study area. In general, the apparent ages computed by the two methods do not seem to indicate direction of flow. Apparent ages computed for water samples in northeastern Bexar and southern Comal Counties do not vary greatly except for some very young water in the recharge zone in central Comal County.
An adaptive multi-level simulation algorithm for stochastic biological systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lester, C., E-mail: lesterc@maths.ox.ac.uk; Giles, M. B.; Baker, R. E.
2015-01-14
Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, “Multi-level Montemore » Carlo for continuous time Markov chains, with applications in biochemical kinetics,” SIAM Multiscale Model. Simul. 10(1), 146–179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the efficiency of our method using a number of examples.« less
A Design of a Novel Airborne Aerosol Spectrometer for Remote Sensing Validation
NASA Astrophysics Data System (ADS)
Adler, G. A.; Brock, C. A.; Dube, W. P.; Erdesz, F.; Gordon, T.; Law, D. C.; Manfred, K.; Mason, B. J.; McLaughlin, R. J.; Richardson, M.; Wagner, N. L.; Washenfelder, R. A.; Murphy, D. M.
2016-12-01
Aerosols and their effect on the radiative properties of clouds contribute one of the largest sources of uncertainty to the Earth's energy budget. Many current global assessments, of atmospheric aerosol radiative forcing rely heavily on remote sensing observation; therefore, in situ aircraft and ground-based measurements are essential for validation of remote sensing measurements. Cavity ringdown spectrometers (CRD) measure aerosol extinction and are commonly used to validate remote sensing observations. These instruments have been deployed on aircraft based platforms over the years thus providing the opportunity to measure these properties over large areas in various conditions. However, deployment of the CRD on an aircraft platform has drawbacks. Typically, aircraft based CRDs draw sampled aerosol into a cabin based instrument through long lengths of tubing. This limits the ability of the instrument to measure: 1) Course mode aerosols (e.g. dust) 2) Aerosols at high relative humidity (above 90%) Here we describe the design of a novel aircraft based open path CRD. The open path CRD is intended to be mounted external to the cabin and has no sample tubing for aerosol delivery, thus measuring optical properties of all aerosol at the ambient conditions. However, the design of an open path CRD for operation on a wing-mounted aircraft platform has certain design complexities. The instrument's special design features include 2 CRD channels, 2 airfoils around the open Path CRD and a configuration which could be easily aligned and rigid at the same time. This novel implementation of cavity ringdown spectroscopy will provide a better assessment of the accuracy of remote sensing satellite measurements
Path planning in uncertain flow fields using ensemble method
NASA Astrophysics Data System (ADS)
Wang, Tong; Le Maître, Olivier P.; Hoteit, Ibrahim; Knio, Omar M.
2016-10-01
An ensemble-based approach is developed to conduct optimal path planning in unsteady ocean currents under uncertainty. We focus our attention on two-dimensional steady and unsteady uncertain flows, and adopt a sampling methodology that is well suited to operational forecasts, where an ensemble of deterministic predictions is used to model and quantify uncertainty. In an operational setting, much about dynamics, topography, and forcing of the ocean environment is uncertain. To address this uncertainty, the flow field is parametrized using a finite number of independent canonical random variables with known densities, and the ensemble is generated by sampling these variables. For each of the resulting realizations of the uncertain current field, we predict the path that minimizes the travel time by solving a boundary value problem (BVP), based on the Pontryagin maximum principle. A family of backward-in-time trajectories starting at the end position is used to generate suitable initial values for the BVP solver. This allows us to examine and analyze the performance of the sampling strategy and to develop insight into extensions dealing with general circulation ocean models. In particular, the ensemble method enables us to perform a statistical analysis of travel times and consequently develop a path planning approach that accounts for these statistics. The proposed methodology is tested for a number of scenarios. We first validate our algorithms by reproducing simple canonical solutions, and then demonstrate our approach in more complex flow fields, including idealized, steady and unsteady double-gyre flows.
ERIC Educational Resources Information Center
Cason, Jennifer
2016-01-01
This action research study is a mixed methods investigation of doctoral students' preparedness for multiple career paths. PhD students face two challenges preparing for multiple career paths: lack of preparation and limited engagement in conversations about the value of their research across multiple audiences. This study focuses on PhD students'…
ERIC Educational Resources Information Center
Jackson, Fiona
2005-01-01
This paper provides a critical exploration of work in progress to develop a genre based academic support that promotes post-graduate academic literacies among new EIL and EAL Hons and Masters students in the School of Theology, University of Natal, Pietermaritzburg. It traces the path of an action research project, using an eclectic needs analysis…
Energizing the Enterprise: An Incentive-Based Approach to Homeland Security
2010-12-01
participation in efforts to deter terrorists and other malicious actors and mitigate radicalization toward violence38 • Mission 3: Enforcing and...citizens are able in influence homeland security—as explained namely by public choice theory. Both paths lead individuals toward realizing enterprise...in citizen preparedness. A September 2004 survey revealed the following figures: • 58 percent of Americans had taken at least one action toward
Chernesky, Max; Jang, Dan; Gilchrist, Jodi; Elit, Laurie; Lytwyn, Alice; Smieja, Marek; Dockter, Janel; Getman, Damon; Reid, Jennifer; Hill, Craig
2014-06-01
An APTIMA specimen collection and transportation (SCT) kit was developed by Hologic/Gen-Probe. To compare cervical SCT samples to PreservCyt and SurePath samples and self-collected vaginal samples to physician-collected vaginal and cervical SCT samples. To determine ease and comfort of self-collection with the kit. Each woman (n = 580) self-collected a vaginal SCT, then filled out a questionnaire (n = 563) to determine ease and comfort of self-collection. Colposcopy physicians collected a vaginal SCT and cervical PreservCyt, SCT, and SurePath samples. Samples were tested by APTIMA HPV (AHPV) assay. Agreement between testing of cervical SCT and PreservCyt was 91.1% (κ = 0.82), and that of SurePath samples was 86.7% (κ = 0.72). Agreement of self-collected vaginal SCT to physician-collected SCT was 84.7% (κ = 0.68), and that of self-collected vaginal to cervical SCT was 82.0% (κ = 0.63). For 30 patients with CIN2+, AHPV testing of cervical SCT was 100% sensitive and 59.8% specific compared with PreservCyt (96.6% and 66.2%) and SurePath (93.3% and 70.9%). Vaginal SCT sensitivity was 86.7% for self-collection and 80.0% for physician collection. Most patients found that vaginal self-collection was easy, 5.3% reported some difficulty, and 87.6% expressed no discomfort. Cervical samples collected with the new SCT kit compared well to traditional liquid-based samples tested by AHPV. Although there was good agreement between self-collected and physician-collected samples with the SCT, in a limited number of 30 women, vaginal sampling identified fewer with CIN2+ precancerous cervical lesions than cervical SCT sampling. Comfort, ease of use, and detection of high-risk HPV demonstrated that the kit could be used for cervical and vaginal sampling.
Clark, Allan K.; Journey, Celeste A.
2006-01-01
The U.S. Geological Survey, in cooperation with the San Antonio Water System, conducted a 4-year study during 2001– 04 to identify major ground-water flow paths in the Edwards aquifer in northern Medina and northeastern Uvalde Counties, Texas. The study involved use of geologic structure, surfacewater and ground-water data, and geochemistry to identify ground-water flow paths. Relay ramps and associated faulting in northern Medina County appear to channel ground-water flow along four distinct flow paths that move water toward the southwest. The northwestern Medina flow path is bounded on the north by the Woodard Cave fault and on the south by the Parkers Creek fault. Water moves downdip toward the southwest until the flow encounters a cross fault along Seco Creek. This barrier to flow might force part or most of the flow to the south. Departure hydrographs for two wells and discharge departure for a streamflow-gaging station provide evidence for flow in the northwestern Medina flow path. The north-central Medina flow path (northern part) is bounded by the Parkers Creek fault on the north and the Medina Lake fault on the south. The adjacent north-central Medina flow path (southern part) is bounded on the north by the Medina Lake fault and on the south by the Diversion Lake fault. The north-central Medina flow path is separated into a northern and southern part because of water-level differences. Ground water in both parts of the northcentral Medina flow path moves downgradient (and down relay ramp) from eastern Medina County toward the southwest. The north-central Medina flow path is hypothesized to turn south in the vicinity of Seco Creek as it begins to be influenced by structural features. Departure hydrographs for four wells and Medina Lake and discharge departure for a streamflow-gaging station provide evidence for flow in the north-central Medina flow path. The south-central Medina flow path is bounded on the north by the Seco Creek and Diversion Lake faults and on the south by the Haby Crossing fault. Because of bounding faults oriented northeast-southwest and adjacent flow paths directed south by other geologic structures, the south-central Medina flow path follows the configuration of the adjacent flow paths—oriented initially southwest and then south. Immediately after turning south, the south-central Medina flow path turns sharply east. Departure hydrographs for four wells and discharge departure for a streamflow-gaging station provide evidence for flow in the south-central Medina flow path. Statistical correlations between water-level departures for 11 continuously monitored wells provide additional evidence for the hypothesized flow paths. Of the 55 combinations of departure dataset pairs, the stronger correlations (those greater than .6) are all among wells in the same flow path, with one exception. Simulations of compositional differences in water chemistry along a hypothesized flow path in the Edwards aquifer and between ground-water and surface-water systems near Medina Lake were developed using the geochemical model PHREEQC. Ground-water chemistry for samples from five wells in the Edwards aquifer in the northwestern Medina flow path were used to evaluate the evolution of ground-water chemistry in the northwestern Medina flow path. Seven simulations were done for samples from pairs of these wells collected during 2001–03; three of the seven yielded plausible models. Ground-water samples from 13 wells were used to evaluate the evolution of ground-water chemistry in the north-central Medina flow path (northern and southern parts). Five of the wells in the most upgradient part of the flow path were completed in the Trinity aquifer; the remaining eight were completed in the Edwards aquifer. Nineteen simulations were done for samples from well pairs collected during 1995–2003; eight of the 19 yielded plausible models. Ground-water samples from seven wells were used to evaluate the evolution of ground-water chemistry in the south-central Medina flow path. One well was the Trinity aquifer end-member well upgradient from all flow paths, and another was a Trinity aquifer well in the most upgradient part of the flow path; all other wells were completed in the Edwards aquifer. Nine simulations were done for samples from well pairs collected during 1996–2003; seven of the nine yielded plausible models. The plausible models demonstrate that the four hypothesized flow paths can be partially supported geochemically.
Jiang, Zhenhong; He, Fei; Zhang, Ziding
2017-07-01
Through large-scale transcriptional data analyses, we highlighted the importance of plant metabolism in plant immunity and identified 26 metabolic pathways that were frequently influenced by the infection of 14 different pathogens. Reprogramming of plant metabolism is a common phenomenon in plant defense responses. Currently, a large number of transcriptional profiles of infected tissues in Arabidopsis (Arabidopsis thaliana) have been deposited in public databases, which provides a great opportunity to understand the expression patterns of metabolic pathways during plant defense responses at the systems level. Here, we performed a large-scale transcriptome analysis based on 135 previously published expression samples, including 14 different pathogens, to explore the expression pattern of Arabidopsis metabolic pathways. Overall, metabolic genes are significantly changed in expression during plant defense responses. Upregulated metabolic genes are enriched on defense responses, and downregulated genes are enriched on photosynthesis, fatty acid and lipid metabolic processes. Gene set enrichment analysis (GSEA) identifies 26 frequently differentially expressed metabolic pathways (FreDE_Paths) that are differentially expressed in more than 60% of infected samples. These pathways are involved in the generation of energy, fatty acid and lipid metabolism as well as secondary metabolite biosynthesis. Clustering analysis based on the expression levels of these 26 metabolic pathways clearly distinguishes infected and control samples, further suggesting the importance of these metabolic pathways in plant defense responses. By comparing with FreDE_Paths from abiotic stresses, we find that the expression patterns of 26 FreDE_Paths from biotic stresses are more consistent across different infected samples. By investigating the expression correlation between transcriptional factors (TFs) and FreDE_Paths, we identify several notable relationships. Collectively, the current study will deepen our understanding of plant metabolism in plant immunity and provide new insights into disease-resistant crop improvement.
The experimental electron mean-free-path in Si under typical (S)TEM conditions.
Potapov, P L
2014-12-01
The electron mean-free-path in Si was measured by EELS using the test structure with the certified dimensions as a calibration standard. In a good agreement with the previous CBED measurements, the mean-free-path is 150nm for 200keV and 179nm for 300keV energy of primary electrons at large collection angles. These values are accurately predicted by the model of Iakoubovskii et al. while the model of Malis et al. incorporated in common microscopy software underestimates the mean-free-path by 15% at least. Correspondingly, the thickness of TEM samples reported in many studies of the Si-based materials last decades might be noticeably underestimated. Copyright © 2014 Elsevier B.V. All rights reserved.
Claessen, Michiel H G; Visser-Meily, Johanna M A; Meilinger, Tobias; Postma, Albert; de Rooij, Nicolien K; van der Ham, Ineke J M
2017-08-01
In a recent systematic review, Claessen and van der Ham (2017) have analyzed the types of navigation impairment in the single-case study literature. Three dissociable types related to landmarks, locations, and paths were identified. This recent model as well as previous models of navigation impairment have never been verified in a systematic manner. The aim of the current study was thus to investigate the prevalence of landmark-based, location-based, and path-based navigation impairment in a large sample of stroke patients. Navigation ability of 77 stroke patients in the chronic phase and 60 healthy participants was comprehensively evaluated using the Virtual Tübingen test, which contains twelve subtasks addressing various aspects of knowledge about landmarks, locations, and paths based on a newly learned virtual route. Participants also filled out the Wayfinding Questionnaire to allow for making a distinction between stroke patients with and without significant subjective navigation-related complaints. Analysis of responses on the Wayfinding Questionnaire indicated that 33 of the 77 participating stroke patients had significant navigation-related complaints. An examination of their performance on the Virtual Tübingen test established objective evidence for navigation impairment in 27 patients. Both landmark-based and path-based navigation impairment occurred in isolation, while location-based navigation impairment was only found along with the other two types. The current study provides the first empirical support for the distinction between landmark-based, location-based, and path-based navigation impairment. Future research relying on other assessment instruments of navigation ability might be helpful to further validate this distinction. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanizaki, Yuya, E-mail: yuya.tanizaki@riken.jp; Theoretical Research Division, Nishina Center, RIKEN, Wako 351-0198; Koike, Takayuki, E-mail: tkoike@ms.u-tokyo.ac.jp
Picard–Lefschetz theory is applied to path integrals of quantum mechanics, in order to compute real-time dynamics directly. After discussing basic properties of real-time path integrals on Lefschetz thimbles, we demonstrate its computational method in a concrete way by solving three simple examples of quantum mechanics. It is applied to quantum mechanics of a double-well potential, and quantum tunneling is discussed. We identify all of the complex saddle points of the classical action, and their properties are discussed in detail. However a big theoretical difficulty turns out to appear in rewriting the original path integral into a sum of path integralsmore » on Lefschetz thimbles. We discuss generality of that problem and mention its importance. Real-time tunneling processes are shown to be described by those complex saddle points, and thus semi-classical description of real-time quantum tunneling becomes possible on solid ground if we could solve that problem. - Highlights: • Real-time path integral is studied based on Picard–Lefschetz theory. • Lucid demonstration is given through simple examples of quantum mechanics. • This technique is applied to quantum mechanics of the double-well potential. • Difficulty for practical applications is revealed, and we discuss its generality. • Quantum tunneling is shown to be closely related to complex classical solutions.« less
Life-space foam: A medium for motivational and cognitive dynamics
NASA Astrophysics Data System (ADS)
Ivancevic, Vladimir; Aidman, Eugene
2007-08-01
General stochastic dynamics, developed in a framework of Feynman path integrals, have been applied to Lewinian field-theoretic psychodynamics [K. Lewin, Field Theory in Social Science, University of Chicago Press, Chicago, 1951; K. Lewin, Resolving Social Conflicts, and, Field Theory in Social Science, American Psychological Association, Washington, 1997; M. Gold, A Kurt Lewin Reader, the Complete Social Scientist, American Psychological Association, Washington, 1999], resulting in the development of a new concept of life-space foam (LSF) as a natural medium for motivational and cognitive psychodynamics. According to LSF formalisms, the classic Lewinian life space can be macroscopically represented as a smooth manifold with steady force fields and behavioral paths, while at the microscopic level it is more realistically represented as a collection of wildly fluctuating force fields, (loco)motion paths and local geometries (and topologies with holes). A set of least-action principles is used to model the smoothness of global, macro-level LSF paths, fields and geometry. To model the corresponding local, micro-level LSF structures, an adaptive path integral is used, defining a multi-phase and multi-path (multi-field and multi-geometry) transition process from intention to goal-driven action. Application examples of this new approach include (but are not limited to) information processing, motivational fatigue, learning, memory and decision making.
Predictive gaze during observation of irrational actions in adults with autism spectrum conditions.
Marsh, L E; Pearson, A; Ropar, D; Hamilton, A F de C
2015-01-01
Understanding irrational actions may require the observer to make mental state inferences about why an action was performed. Individuals with autism spectrum conditions (ASC) have well documented difficulties with mentalizing; however, the degree to which rationality understanding is impaired in autism is not yet clear. The present study uses eye-tracking to measure online understanding of action rationality in individuals with ASC. Twenty adults with ASC and 20 typically developing controls, matched for age and IQ watched movies of rational and irrational actions while their eye movements were recorded. Measures of looking time, scan path and saccade latency were calculated. Results from looking time and scan path analyses demonstrate that participants with ASC have reduced visual attention to salient action features such as the action goal and the hand performing the action, regardless of action rationality. However, when participants with ASC do attend to these features, they are able to make anticipatory goal saccades as quickly as typically developing controls. Taken together these results indicate that individuals with autism have reduced attention to observed actions, but when attention is maintained, goal prediction is typical. We conclude that the basic mechanisms of action understanding are intact in individuals with ASC although there may be impairment in the top-down, social modulation of eye movements.
Decision paths in complex tasks
NASA Technical Reports Server (NTRS)
Galanter, Eugene
1991-01-01
Complex real world action and its prediction and control has escaped analysis by the classical methods of psychological research. The reason is that psychologists have no procedures to parse complex tasks into their constituents. Where such a division can be made, based say on expert judgment, there is no natural scale to measure the positive or negative values of the components. Even if we could assign numbers to task parts, we lack rules i.e., a theory, to combine them into a total task representation. We compare here two plausible theories for the amalgamation of the value of task components. Both of these theories require a numerical representation of motivation, for motivation is the primary variable that guides choice and action in well-learned tasks. We address this problem of motivational quantification and performance prediction by developing psychophysical scales of the desireability or aversiveness of task components based on utility scaling methods (Galanter 1990). We modify methods used originally to scale sensory magnitudes (Stevens and Galanter 1957), and that have been applied recently to the measure of task 'workload' by Gopher and Braune (1984). Our modification uses utility comparison scaling techniques which avoid the unnecessary assumptions made by Gopher and Braune. Formula for the utility of complex tasks based on the theoretical models are used to predict decision and choice of alternate paths to the same goal.
Baele, Guy; Lemey, Philippe; Vansteelandt, Stijn
2013-03-06
Accurate model comparison requires extensive computation times, especially for parameter-rich models of sequence evolution. In the Bayesian framework, model selection is typically performed through the evaluation of a Bayes factor, the ratio of two marginal likelihoods (one for each model). Recently introduced techniques to estimate (log) marginal likelihoods, such as path sampling and stepping-stone sampling, offer increased accuracy over the traditional harmonic mean estimator at an increased computational cost. Most often, each model's marginal likelihood will be estimated individually, which leads the resulting Bayes factor to suffer from errors associated with each of these independent estimation processes. We here assess the original 'model-switch' path sampling approach for direct Bayes factor estimation in phylogenetics, as well as an extension that uses more samples, to construct a direct path between two competing models, thereby eliminating the need to calculate each model's marginal likelihood independently. Further, we provide a competing Bayes factor estimator using an adaptation of the recently introduced stepping-stone sampling algorithm and set out to determine appropriate settings for accurately calculating such Bayes factors, with context-dependent evolutionary models as an example. While we show that modest efforts are required to roughly identify the increase in model fit, only drastically increased computation times ensure the accuracy needed to detect more subtle details of the evolutionary process. We show that our adaptation of stepping-stone sampling for direct Bayes factor calculation outperforms the original path sampling approach as well as an extension that exploits more samples. Our proposed approach for Bayes factor estimation also has preferable statistical properties over the use of individual marginal likelihood estimates for both models under comparison. Assuming a sigmoid function to determine the path between two competing models, we provide evidence that a single well-chosen sigmoid shape value requires less computational efforts in order to approximate the true value of the (log) Bayes factor compared to the original approach. We show that the (log) Bayes factors calculated using path sampling and stepping-stone sampling differ drastically from those estimated using either of the harmonic mean estimators, supporting earlier claims that the latter systematically overestimate the performance of high-dimensional models, which we show can lead to erroneous conclusions. Based on our results, we argue that highly accurate estimation of differences in model fit for high-dimensional models requires much more computational effort than suggested in recent studies on marginal likelihood estimation.
2013-01-01
Background Accurate model comparison requires extensive computation times, especially for parameter-rich models of sequence evolution. In the Bayesian framework, model selection is typically performed through the evaluation of a Bayes factor, the ratio of two marginal likelihoods (one for each model). Recently introduced techniques to estimate (log) marginal likelihoods, such as path sampling and stepping-stone sampling, offer increased accuracy over the traditional harmonic mean estimator at an increased computational cost. Most often, each model’s marginal likelihood will be estimated individually, which leads the resulting Bayes factor to suffer from errors associated with each of these independent estimation processes. Results We here assess the original ‘model-switch’ path sampling approach for direct Bayes factor estimation in phylogenetics, as well as an extension that uses more samples, to construct a direct path between two competing models, thereby eliminating the need to calculate each model’s marginal likelihood independently. Further, we provide a competing Bayes factor estimator using an adaptation of the recently introduced stepping-stone sampling algorithm and set out to determine appropriate settings for accurately calculating such Bayes factors, with context-dependent evolutionary models as an example. While we show that modest efforts are required to roughly identify the increase in model fit, only drastically increased computation times ensure the accuracy needed to detect more subtle details of the evolutionary process. Conclusions We show that our adaptation of stepping-stone sampling for direct Bayes factor calculation outperforms the original path sampling approach as well as an extension that exploits more samples. Our proposed approach for Bayes factor estimation also has preferable statistical properties over the use of individual marginal likelihood estimates for both models under comparison. Assuming a sigmoid function to determine the path between two competing models, we provide evidence that a single well-chosen sigmoid shape value requires less computational efforts in order to approximate the true value of the (log) Bayes factor compared to the original approach. We show that the (log) Bayes factors calculated using path sampling and stepping-stone sampling differ drastically from those estimated using either of the harmonic mean estimators, supporting earlier claims that the latter systematically overestimate the performance of high-dimensional models, which we show can lead to erroneous conclusions. Based on our results, we argue that highly accurate estimation of differences in model fit for high-dimensional models requires much more computational effort than suggested in recent studies on marginal likelihood estimation. PMID:23497171
Bowen, Gary L; Jensen, Todd M; Martin, James A; Mancini, Jay A
2016-03-01
Anchored in the social organization theory of action and change, we use data from a large sample of active-duty Air Force members to examine the direct and indirect influence of social involvement and social responsibility on willingness to seek help in times of need via trust in formal systems and informal supports. Group comparisons are conducted between junior male, junior female, senior male, and senior female service members. The key mediational path in the model for all groups is the connection between social involvement and willingness to seek help via trust in formal systems. These results can inform both unit- and community-level interventions intended to increase the likelihood that active-duty AF members will seek help in times of need. © Society for Community Research and Action 2016.
Clinical care paths: a role for finance in clinical decision-making.
Abrams, Michael N; Cummings, Simone; Hage, Dana
2012-12-01
Care paths map the critical actions and decision points across a patient's course of medical treatment; their purpose is to guide physicians in the delivery of high-quality care while reducing care costs by avoiding services that do not contribute meaningfully to positive outcomes. Each care path development initiative should be led by a respected physician champion, whose specialty is in the area of the care episode being mapped, with the support of a clinician project manager. Once the care path has been developed and implemented, the finance leader's role begins in earnest with the tracking of financial and clinical data against care paths.
NASA Astrophysics Data System (ADS)
Islam, M. Shahidul; Haque, Md. Rezuanul; Oh, Christian M.; Wang, Yan; Park, B. Hyle
2013-03-01
Current technologies for monitoring neural activity either use different variety of electrodes (electrical recording) or require contrast agents introduced exogenously or through genetic modification (optical imaging). Here we demonstrate an optical method for non-contact and contrast agent free detection of nerve activity using phase-resolved optical coherence tomography (pr-OCT). A common-path variation of the pr-OCT is recently implemented and the developed system demonstrated the capability to detect rapid transient structural changes that accompany neural spike propagation. No averaging over multiple trials was required, indicating its capability of single-shot detection of individual impulses from functionally stimulated Limulus optic nerve. The strength of this OCT-based optical electrode is that it is a contactless method and does not require any exogenous contrast agent. With further improvements in accuracy and sensitivity, this optical electrode will play a complementary role to the existing recording technologies in future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Matthew; Constable, Steve; Ing, Christopher
2014-06-21
We developed and studied the implementation of trial wavefunctions in the newly proposed Langevin equation Path Integral Ground State (LePIGS) method [S. Constable, M. Schmidt, C. Ing, T. Zeng, and P.-N. Roy, J. Phys. Chem. A 117, 7461 (2013)]. The LePIGS method is based on the Path Integral Ground State (PIGS) formalism combined with Path Integral Molecular Dynamics sampling using a Langevin equation based sampling of the canonical distribution. This LePIGS method originally incorporated a trivial trial wavefunction, ψ{sub T}, equal to unity. The present paper assesses the effectiveness of three different trial wavefunctions on three isotopes of hydrogen formore » cluster sizes N = 4, 8, and 13. The trial wavefunctions of interest are the unity trial wavefunction used in the original LePIGS work, a Jastrow trial wavefunction that includes correlations due to hard-core repulsions, and a normal mode trial wavefunction that includes information on the equilibrium geometry. Based on this analysis, we opt for the Jastrow wavefunction to calculate energetic and structural properties for parahydrogen, orthodeuterium, and paratritium clusters of size N = 4 − 19, 33. Energetic and structural properties are obtained and compared to earlier work based on Monte Carlo PIGS simulations to study the accuracy of the proposed approach. The new results for paratritium clusters will serve as benchmark for future studies. This paper provides a detailed, yet general method for optimizing the necessary parameters required for the study of the ground state of a large variety of systems.« less
Speckle imaging through turbulent atmosphere based on adaptable pupil segmentation
NASA Astrophysics Data System (ADS)
Loktev, Mikhail; Soloviev, Oleg; Savenko, Svyatoslav; Vdovin, Gleb
2011-07-01
We report on the first results to our knowledge obtained with adaptable multiaperture imaging through turbulence on a horizontal atmospheric path. We show that the resolution can be improved by adaptively matching the size of the subaperture to the characteristic size of the turbulence. Further improvement is achieved by the deconvolution of a number of subimages registered simultaneously through multiple subapertures. Different implementations of multiaperture geometry, including pupil multiplication, pupil image sampling, and a plenoptic telescope, are considered. Resolution improvement has been demonstrated on a ˜550m horizontal turbulent path, using a combination of aperture sampling, speckle image processing, and, optionally, frame selection.
Common-path biodynamic imaging for dynamic fluctuation spectroscopy of 3D living tissue
NASA Astrophysics Data System (ADS)
Li, Zhe; Turek, John; Nolte, David D.
2017-03-01
Biodynamic imaging is a novel 3D optical imaging technology based on short-coherence digital holography that measures intracellular motions of cells inside their natural microenvironments. Here both common-path and Mach-Zehnder designs are presented. Biological tissues such as tumor spheroids and ex vivo biopsies are used as targets, and backscattered light is collected as signal. Drugs are applied to samples, and their effects are evaluated by identifying biomarkers that capture intracellular dynamics from the reconstructed holograms. Through digital holography and coherence gating, information from different depths of the samples can be extracted, enabling the deep-tissue measurement of the responses to drugs.
Arc initiation in cathodic arc plasma sources
Anders, Andre
2002-01-01
A "triggerless" arc initiation method and apparatus is based on simply switching the arc supply voltage to the electrodes (anode and cathode). Neither a mechanical trigger electrode nor a high voltage flashover from a trigger electrode is required. A conducting path between the anode and cathode is provided, which allows a hot spot to form at a location where the path connects to the cathode. While the conductive path is eroded by the cathode spot action, plasma deposition ensures the ongoing repair of the conducting path. Arc initiation is achieved by simply applying the relatively low voltage of the arc power supply, e.g. 500 V-1 kV, with the insulator between the anode and cathode coated with a conducting layer and the current at the layer-cathode interface concentrated at one or a few contact points. The local power density at these contact points is sufficient for plasma production and thus arc initiation. A conductive surface layer, such as graphite or the material being deposited, is formed on the surface of the insulator which separates the cathode from the anode. The mechanism of plasma production (and arc initiation) is based on explosive destruction of the layer-cathode interface caused by joule heating. The current flow between the thin insulator coating and cathode occurs at only a few contact points so the current density is high.
NASA Astrophysics Data System (ADS)
Park, Sungkyung; Park, Chester Sungchung
2018-03-01
A composite radio receiver back-end and digital front-end, made up of a delta-sigma analogue-to-digital converter (ADC) with a high-speed low-noise sampling clock generator, and a fractional sample rate converter (FSRC), is proposed and designed for a multi-mode reconfigurable radio. The proposed radio receiver architecture contributes to saving the chip area and thus lowering the design cost. To enable inter-radio access technology handover and ultimately software-defined radio reception, a reconfigurable radio receiver consisting of a multi-rate ADC with its sampling clock derived from a local oscillator, followed by a rate-adjustable FSRC for decimation, is designed. Clock phase noise and timing jitter are examined to support the effectiveness of the proposed radio receiver. A FSRC is modelled and simulated with a cubic polynomial interpolator based on Lagrange method, and its spectral-domain view is examined in order to verify its effect on aliasing, nonlinearity and signal-to-noise ratio, giving insight into the design of the decimation chain. The sampling clock path and the radio receiver back-end data path are designed in a 90-nm CMOS process technology with 1.2V supply.
Evaluating the intersection of a regional wildlife connectivity network with highways.
Cushman, Samuel A; Lewis, Jesse S; Landguth, Erin L
2013-01-01
Reliable predictions of regional-scale population connectivity are needed to prioritize conservation actions. However, there have been few examples of regional connectivity models that are empirically derived and validated. The central goals of this paper were to (1) evaluate the effectiveness of factorial least cost path corridor mapping on an empirical resistance surface in reflecting the frequency of highway crossings by American black bear, (2) predict the location and predicted intensity of use of movement corridors for American black bear, and (3) identify where these corridors cross major highways and rank the intensity of these crossings. We used factorial least cost path modeling coupled with resistant kernel analysis to predict a network of movement corridors across a 30.2 million hectare analysis area in Montana and Idaho, USA. Factorial least cost path corridor mapping was associated with the locations of actual bear highway crossings. We identified corridor-highway intersections and ranked these based on corridor strength. We found that a major wildlife crossing overpass structure was located close to one of the most intense predicted corridors, and that the vast majority of the predicted corridor network was "protected" under federal management. However, narrow, linear corridors connecting the Greater Yellowstone Ecosystem to the rest of the analysis area had limited protection by federal ownership, making these additionally vulnerable to habitat loss and fragmentation. Factorial least cost path modeling coupled with resistant kernel analysis provides detailed, synoptic information about connectivity across populations that vary in distribution and density in complex landscapes. Specifically, our results could be used to quantify the structure of the connectivity network, identify critical linkage nodes and core areas, map potential barriers and fracture zones, and prioritize locations for mitigation, restoration and conservation actions.
The Arrow of Time and the Action of the Mind at the Molecular Level
NASA Astrophysics Data System (ADS)
Burns, Jean E.
2006-10-01
A new event is defined as an intervention in the time reversible dynamical trajectories of particles in a system. New events are then assumed to be quantum fluctuations in the spatial and momentum coordinates, and mental action is assumed to work by ordering such fluctuations. It is shown that when the cumulative values of such fluctuations in a mean free path of a molecule are magnified by molecular interaction at the end of that path, the momentum of a molecule can be changed from its original direction to any other direction. In this way mental action can produce effects through the ordering of thermal motions. Examples are given which show that the ordering of 104-105 molecules is sufficient to (a) produce detectible PK results and (b) open sufficient ion channels in the brain to initiate a physical action. The relationship of the above model to the arrow of time is discussed.
Hashihama, Fuminori; Kanda, Jota; Tauchi, Ami; Kodama, Taketoshi; Saito, Hiroaki; Furuya, Ken
2015-10-01
We describe a highly sensitive colorimetric method for the determination of nanomolar concentrations of ammonium in seawater based on the indophenol reaction with o-phenylphenol [(1,1'-biphenyl)-2-ol, abbreviated as OPP]. OPP is available as non-toxic, stable flaky crystals with no caustic odor and has some advantages over phenol in practical use. The method was established by using a gas-segmented continuous flow analyzer equipped with two types of long path liquid waveguide capillary cell, LWCCs (100 cm and 200 cm) and an UltraPath (200 cm), which have inner diameters of 0.55 mm and 2 mm, respectively. The reagent concentrations, flow rates of the pumping tubes, and reaction path and temperature were determined on the basis of a manual indophenol blue method with OPP (Kanda, Water Res. 29 (1995) 2746-2750). The sample mixed with reagents that form indophenol blue dye was measured at 670 nm. Aged subtropical surface water was used as a blank, a matrix of standards, and the carrier. The detection limits of the analytical systems with a 100 cm LWCC, a 200 cm LWCC, and a 200 cm UltraPath were 6, 4, and 4 nM, respectively. These systems had high precision (<4% at 100 nM) and a linear dynamic range up to 200 nM. Non-linear baseline drift did not occur when using the UltraPath system. This is due to the elimination of cell clogging because of the larger inner diameter of the UltraPath compared to the LWCCs. The UltraPath system is thus more suitable for long-term measurements compared with the LWCC systems. The results of the proposed sensitive colorimetry and a conventional colorimetry for the determination of seawater samples showed no significant difference. The proposed analytical systems were applied to underway surface monitoring and vertical observation in the oligotrophic South Pacific. Copyright © 2015 Elsevier B.V. All rights reserved.
Bondas, Terese
2006-07-01
The aim was to explore why nurses enter nursing leadership and apply for a management position in health care. The study is part of a research programme in nursing leadership and evidence-based care. Nursing has not invested enough in the development of nursing leadership for the development of patient care. There is scarce research on nurses' motives and reasons for committing themselves to a career in nursing leadership. A strategic sample of 68 Finnish nurse leaders completed a semistructured questionnaire. Analytic induction was applied in an attempt to generate a theory. A theory, Paths to Nursing Leadership, is proposed for further research. Four different paths were found according to variations between the nurse leaders' education, primary commitment and situational factors. They are called the Path of Ideals, the Path of Chance, the Career Path and the Temporary Path. Situational factors and role models of good but also bad nursing leadership besides motivational and educational factors have played a significant role when Finnish nurses have entered nursing leadership. The educational requirements for nurse leaders and recruitment to nursing management positions need serious attention in order to develop a competent nursing leadership.
Paving the Path to Success. Data for Action 2014. Summary
ERIC Educational Resources Information Center
Data Quality Campaign, 2014
2014-01-01
At the federal level, leaders can promote policies that reduce burdens on states, encourage collaboration across agencies, and help build the capacity of stakeholders to use data while ensuring the privacy of student information. The annual "Data for Action" survey measures states' progress toward achieving the 10 State Actions to Ensure…
Ghisi, Gabriela Lima de Melo; Grace, Sherry L; Thomas, Scott; Oh, Paul
2015-05-01
To (1) test the effect of a health action process approach (HAPA) theory-based education program in cardiac rehabilitation (CR) compared to traditional education on patient knowledge and HAPA constructs; and, (2) investigate the theoretical correlates of exercise behavior among CR patients receiving theory-based education. CR patients were exposed to an existing or HAPA-based 6 month education curriculum in this quasi-experimental study. Participants completed a survey assessing exercise behavior, HAPA constructs, and knowledge pre and post-program. 306 patients consented to participate, of which 146 (47.7%) were exposed to the theory-based educational curriculum. There was a significant improvement in patients' overall knowledge pre- to post-CR, as well as in some HAPA constructs and exercise behavior, regardless of curriculum (p < 0.05). Path analysis revealed that knowledge was significantly related to intention formation, and intentions to engage in exercise were not directly related to behavior, which required action planning. The theoretically-informed education curriculum was not associated with greater knowledge or exercise behavior as expected. Education in CR improves knowledge, and theoretical constructs related to exercise behavior. Educational curricula should be designed to not only increase patients' knowledge, but also enhance intentions, self-efficacy, and action planning. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
A reversible bipolar WORM device based on AlOxNy thin film with Al nano phase embedded
NASA Astrophysics Data System (ADS)
Zhu, W.; Li, J.; Zhang, L.; Hu, X. C.
2017-03-01
An Al-rich AlOxNy thin film based reversible Write-Once-Read-Many-Times (WORM) memory device with MIS structure could transit from high resistance state (HRS, ∼1011 Ω) to low resistance state (LRS, ∼105 Ω) by sweeping voltage up to ∼20 V. The first switching could be recorded as writing process for WORM device which may relate to conductive path are formed through the thin film. The conductive path should be formed by both Al nano phase and oxygen vacancies. Among of them, Al nano phases are not easy to move, but oxygen vacancies could migrate under high E-field or at high temperature environment. Such conductive path is not sensitive to charging effect after it formed, but it could be broken by heating effect, which may relate to the migration of excess Al ions and oxygen vacancies at high temperature. After baking LRS (ON state) WORM device at 200 °C for 2 min, the conductivity will decrease to HRS which indicates conductive path is broken and device back to HRS (OFF state) again. This phenomenon could be recorded as recovery process. Both writing and recovery process related to migration of oxygen vacancies and could be repeated over 10 times in this study. It also indicates that there is no permanent breakdown occurred in MIS structured WORM device operation. We suggest that this conductive path only can be dissolved by a temperature sensitive electro-chemical action. This WORM device could maintain at LRS over 105 s with on-off ratio over 4 orders.
NASA Astrophysics Data System (ADS)
Peter, Emanuel K.
2017-12-01
In this article, we present a novel adaptive enhanced sampling molecular dynamics (MD) method for the accelerated simulation of protein folding and aggregation. We introduce a path-variable L based on the un-biased momenta p and displacements dq for the definition of the bias s applied to the system and derive 3 algorithms: general adaptive bias MD, adaptive path-sampling, and a hybrid method which combines the first 2 methodologies. Through the analysis of the correlations between the bias and the un-biased gradient in the system, we find that the hybrid methodology leads to an improved force correlation and acceleration in the sampling of the phase space. We apply our method on SPC/E water, where we find a conservation of the average water structure. We then use our method to sample dialanine and the folding of TrpCage, where we find a good agreement with simulation data reported in the literature. Finally, we apply our methodologies on the initial stages of aggregation of a hexamer of Alzheimer's amyloid β fragment 25-35 (Aβ 25-35) and find that transitions within the hexameric aggregate are dominated by entropic barriers, while we speculate that especially the conformation entropy plays a major role in the formation of the fibril as a rate limiting factor.
Peter, Emanuel K
2017-12-07
In this article, we present a novel adaptive enhanced sampling molecular dynamics (MD) method for the accelerated simulation of protein folding and aggregation. We introduce a path-variable L based on the un-biased momenta p and displacements dq for the definition of the bias s applied to the system and derive 3 algorithms: general adaptive bias MD, adaptive path-sampling, and a hybrid method which combines the first 2 methodologies. Through the analysis of the correlations between the bias and the un-biased gradient in the system, we find that the hybrid methodology leads to an improved force correlation and acceleration in the sampling of the phase space. We apply our method on SPC/E water, where we find a conservation of the average water structure. We then use our method to sample dialanine and the folding of TrpCage, where we find a good agreement with simulation data reported in the literature. Finally, we apply our methodologies on the initial stages of aggregation of a hexamer of Alzheimer's amyloid β fragment 25-35 (Aβ 25-35) and find that transitions within the hexameric aggregate are dominated by entropic barriers, while we speculate that especially the conformation entropy plays a major role in the formation of the fibril as a rate limiting factor.
ERIC Educational Resources Information Center
Leonard, H. Skipton
2015-01-01
Clients and practitioners alike are often confused about the ultimate purpose of action learning (AL). Because of the title of the method, many believe the primary goal of AL is to generate learning. This article clarifies the relationship between action, learning, and solutions. It also provides historical evidence to support the conclusion that…
Note: A pure-sampling quantum Monte Carlo algorithm with independent Metropolis.
Vrbik, Jan; Ospadov, Egor; Rothstein, Stuart M
2016-07-14
Recently, Ospadov and Rothstein published a pure-sampling quantum Monte Carlo algorithm (PSQMC) that features an auxiliary Path Z that connects the midpoints of the current and proposed Paths X and Y, respectively. When sufficiently long, Path Z provides statistical independence of Paths X and Y. Under those conditions, the Metropolis decision used in PSQMC is done without any approximation, i.e., not requiring microscopic reversibility and without having to introduce any G(x → x'; τ) factors into its decision function. This is a unique feature that contrasts with all competing reptation algorithms in the literature. An example illustrates that dependence of Paths X and Y has adverse consequences for pure sampling.
Note: A pure-sampling quantum Monte Carlo algorithm with independent Metropolis
NASA Astrophysics Data System (ADS)
Vrbik, Jan; Ospadov, Egor; Rothstein, Stuart M.
2016-07-01
Recently, Ospadov and Rothstein published a pure-sampling quantum Monte Carlo algorithm (PSQMC) that features an auxiliary Path Z that connects the midpoints of the current and proposed Paths X and Y, respectively. When sufficiently long, Path Z provides statistical independence of Paths X and Y. Under those conditions, the Metropolis decision used in PSQMC is done without any approximation, i.e., not requiring microscopic reversibility and without having to introduce any G(x → x'; τ) factors into its decision function. This is a unique feature that contrasts with all competing reptation algorithms in the literature. An example illustrates that dependence of Paths X and Y has adverse consequences for pure sampling.
Chandrasekaran, Srinivas Niranj; Das, Jhuma; Dokholyan, Nikolay V.; Carter, Charles W.
2016-01-01
PATH rapidly computes a path and a transition state between crystal structures by minimizing the Onsager-Machlup action. It requires input parameters whose range of values can generate different transition-state structures that cannot be uniquely compared with those generated by other methods. We outline modifications to estimate these input parameters to circumvent these difficulties and validate the PATH transition states by showing consistency between transition-states derived by different algorithms for unrelated protein systems. Although functional protein conformational change trajectories are to a degree stochastic, they nonetheless pass through a well-defined transition state whose detailed structural properties can rapidly be identified using PATH. PMID:26958584
NASA Astrophysics Data System (ADS)
Marhadi, Kun Saptohartyadi
Structural optimization for damage tolerance under various unforeseen damage scenarios is computationally challenging. It couples non-linear progressive failure analysis with sampling-based stochastic analysis of random damage. The goal of this research was to understand the relationship between alternate load paths available in a structure and its damage tolerance, and to use this information to develop computationally efficient methods for designing damage tolerant structures. Progressive failure of a redundant truss structure subjected to small random variability was investigated to identify features that correlate with robustness and predictability of the structure's progressive failure. The identified features were used to develop numerical surrogate measures that permit computationally efficient deterministic optimization to achieve robustness and predictability of progressive failure. Analysis of damage tolerance on designs with robust progressive failure indicated that robustness and predictability of progressive failure do not guarantee damage tolerance. Damage tolerance requires a structure to redistribute its load to alternate load paths. In order to investigate the load distribution characteristics that lead to damage tolerance in structures, designs with varying degrees of damage tolerance were generated using brute force stochastic optimization. A method based on principal component analysis was used to describe load distributions (alternate load paths) in the structures. Results indicate that a structure that can develop alternate paths is not necessarily damage tolerant. The alternate load paths must have a required minimum load capability. Robustness analysis of damage tolerant optimum designs indicates that designs are tailored to specified damage. A design Optimized under one damage specification can be sensitive to other damages not considered. Effectiveness of existing load path definitions and characterizations were investigated for continuum structures. A load path definition using a relative compliance change measure (U* field) was demonstrated to be the most useful measure of load path. This measure provides quantitative information on load path trajectories and qualitative information on the effectiveness of the load path. The use of the U* description of load paths in optimizing structures for effective load paths was investigated.
Buliung, Ron N; Larsen, Kristian; Faulkner, Guy E J; Stone, Michelle R
2013-09-01
School route measurement often involves estimating the shortest network path. We challenged the relatively uncritical adoption of this method in school travel research and tested the route discordance hypothesis that several types of difference exist between shortest network paths and reported school routes. We constructed the mapped and shortest path through network routes for a sample of 759 children aged 9 to 13 years in grades 5 and 6 (boys = 45%, girls = 54%, unreported gender = 1%), in Toronto, Ontario, Canada. We used Wilcoxon signed-rank tests to compare reported with shortest-path route measures including distance, route directness, intersection crossings, and route overlap. Measurement difference was explored by mode and location. We found statistical evidence of route discordance for walkers and children who were driven and detected it more often for inner suburban cases. Evidence of route discordance varied by mode and school location. We found statistically significant differences for route structure and built environment variables measured along reported and geographic information systems-based shortest-path school routes. Uncertainty produced by the shortest-path approach challenges its conceptual and empirical validity in school travel research.
Doi-Peliti path integral methods for stochastic systems with partial exclusion
NASA Astrophysics Data System (ADS)
Greenman, Chris D.
2018-09-01
Doi-Peliti methods are developed for stochastic models with finite maximum occupation numbers per site. We provide a generalized framework for the different Fock spaces reported in the literature. Paragrassmannian techniques are then utilized to construct path integral formulations of factorial moments. We show that for many models of interest, a Magnus expansion is required to construct a suitable action, meaning actions containing a finite number of terms are not always feasible. However, for such systems, perturbative techniques are still viable, and for some examples, including carrying capacity population dynamics, and diffusion with partial exclusion, the expansions are exactly summable.
Jiang, Yanxia; Akkus, Anna; Roperto, Renato; Akkus, Ozan; Li, Bo; Lang, Lisa; Teich, Sorin
2016-09-01
Ceramic and composite resin blocks for CAD/CAM machining of dental restorations are becoming more common. The sample sizes affordable by these blocks are smaller than ideal for stress intensity factor (SIF) based tests. The J-integral measurement calls for full field strain measurement, making it challenging to conduct. Accordingly, the J-integral values of dental restoration materials used in CAD/CAM restorations have not been reported to date. Digital image correlation (DIC) provides full field strain maps, making it possible to calculate the J-integral value. The aim of this study was to measure the J-integral value for CAD/CAM restorative materials. Four types of materials (sintered IPS E-MAX CAD, non-sintered IPS E-MAX CAD, Vita Mark II and Paradigm MZ100) were used to prepare beam samples for three-point bending tests. J-integrals were calculated for different integral path size and locations with respect to the crack tip. J-integral at path 1 for each material was 1.26±0.31×10(-4)MPam for MZ 100, 0.59±0.28×10(-4)MPam for sintered E-MAX, 0.19±0.07×10(-4)MPam for VM II, and 0.21±0.05×10(-4)MPam for non-sintered E-MAX. There were no significant differences between different integral path size, except for the non-sintered E-MAX group. J-integral paths of non-sintered E-MAX located within 42% of the height of the sample provided consistent values whereas outside this range resulted in lower J-integral values. Moreover, no significant difference was found among different integral path locations. The critical SIF was calculated from J-integral (KJ) along with geometry derived SIF values (KI). KI values were comparable with KJ and geometry based SIF values obtained from literature. Therefore, DIC derived J-integral is a reliable way to assess the fracture toughness of small sized specimens for dental CAD/CAM restorative materials; however, with caution applied to the selection of J-integral path. Copyright © 2016 Elsevier Ltd. All rights reserved.
Specialized Binary Analysis for Vetting Android APPS Using GUI Logic
2016-04-01
the use of high- level reasoning based on the GUI design logic of an app to enable a security analyst to diagnose and triage the potentially sensitive...execution paths of an app. Levels of Inconsistency We have identified three- levels of logical inconsistencies: Event- level inconsistency A sensitive...operation (e.g., taking a picture) is not trigged by user action on a GUI component. Layout- level inconsistency A sensitive operation is triggered by
Interactive multi-objective path planning through a palette-based user interface
NASA Astrophysics Data System (ADS)
Shaikh, Meher T.; Goodrich, Michael A.; Yi, Daqing; Hoehne, Joseph
2016-05-01
n a problem where a human uses supervisory control to manage robot path-planning, there are times when human does the path planning, and if satisfied commits those paths to be executed by the robot, and the robot executes that plan. In planning a path, the robot often uses an optimization algorithm that maximizes or minimizes an objective. When a human is assigned the task of path planning for robot, the human may care about multiple objectives. This work proposes a graphical user interface (GUI) designed for interactive robot path-planning when an operator may prefer one objective over others or care about how multiple objectives are traded off. The GUI represents multiple objectives using the metaphor of an artist's palette. A distinct color is used to represent each objective, and tradeoffs among objectives are balanced in a manner that an artist mixes colors to get the desired shade of color. Thus, human intent is analogous to the artist's shade of color. We call the GUI an "Adverb Palette" where the word "Adverb" represents a specific type of objective for the path, such as the adverbs "quickly" and "safely" in the commands: "travel the path quickly", "make the journey safely". The novel interactive interface provides the user an opportunity to evaluate various alternatives (that tradeoff between different objectives) by allowing her to visualize the instantaneous outcomes that result from her actions on the interface. In addition to assisting analysis of various solutions given by an optimization algorithm, the palette has additional feature of allowing the user to define and visualize her own paths, by means of waypoints (guiding locations) thereby spanning variety for planning. The goal of the Adverb Palette is thus to provide a way for the user and robot to find an acceptable solution even though they use very different representations of the problem. Subjective evaluations suggest that even non-experts in robotics can carry out the planning tasks with a great deal of flexibility using the adverb palette.
Few-mode fiber detection for tissue characterization in optical coherence tomography
NASA Astrophysics Data System (ADS)
Eugui, Pablo; Lichtenegger, Antonia; Augustin, Marco; Harper, Danielle J.; Fialová, Stanislava; Wartak, Andreas; Hitzenberger, Christoph K.; Baumann, Bernhard
2017-07-01
A few-mode fiber based detection for OCT systems is presented. The capability of few-mode fibers for delivering light through different fiber paths enables the application of these fibers for angular scattering tissue character- ization. Since the optical path lengths traveled in the fiber change between the fiber modes, the OCT image information will be reconstructed at different depth positions, separating the directly backscattered light from the light scattered at other angles. Using the proposed method, the relation between the angle of reflection from the sample and the respective modal intensity distribution was investigated. The system was demonstrated for imaging ex-vivo brain tissue samples of patients with Alzheimer's disease.
Speckle imaging through turbulent atmosphere based on adaptable pupil segmentation.
Loktev, Mikhail; Soloviev, Oleg; Savenko, Svyatoslav; Vdovin, Gleb
2011-07-15
We report on the first results to our knowledge obtained with adaptable multiaperture imaging through turbulence on a horizontal atmospheric path. We show that the resolution can be improved by adaptively matching the size of the subaperture to the characteristic size of the turbulence. Further improvement is achieved by the deconvolution of a number of subimages registered simultaneously through multiple subapertures. Different implementations of multiaperture geometry, including pupil multiplication, pupil image sampling, and a plenoptic telescope, are considered. Resolution improvement has been demonstrated on a ∼550 m horizontal turbulent path, using a combination of aperture sampling, speckle image processing, and, optionally, frame selection. © 2011 Optical Society of America
Reinventing Your Career: Following the 5 New Paths to Career Fulfillment.
ERIC Educational Resources Information Center
Logan, David C.; Kritzell, Bryan
This book is designed to help individuals reinvent their careers by analyzing the current state of their careers, identifying career objectives suited to their individual and family needs, and developing personal strategic action plans for achieving career fulfillment in five new career path options: corporate climber, new entrepreneur,…
Statistical microeconomics and commodity prices: theory and empirical results.
Baaquie, Belal E
2016-01-13
A review is made of the statistical generalization of microeconomics by Baaquie (Baaquie 2013 Phys. A 392, 4400-4416. (doi:10.1016/j.physa.2013.05.008)), where the market price of every traded commodity, at each instant of time, is considered to be an independent random variable. The dynamics of commodity market prices is given by the unequal time correlation function and is modelled by the Feynman path integral based on an action functional. The correlation functions of the model are defined using the path integral. The existence of the action functional for commodity prices that was postulated to exist in Baaquie (Baaquie 2013 Phys. A 392, 4400-4416. (doi:10.1016/j.physa.2013.05.008)) has been empirically ascertained in Baaquie et al. (Baaquie et al. 2015 Phys. A 428, 19-37. (doi:10.1016/j.physa.2015.02.030)). The model's action functionals for different commodities has been empirically determined and calibrated using the unequal time correlation functions of the market commodity prices using a perturbation expansion (Baaquie et al. 2015 Phys. A 428, 19-37. (doi:10.1016/j.physa.2015.02.030)). Nine commodities drawn from the energy, metal and grain sectors are empirically studied and their auto-correlation for up to 300 days is described by the model to an accuracy of R(2)>0.90-using only six parameters. © 2015 The Author(s).
A Three Dimensional Model of the Feline Hindlimb
Burkholder, Thomas J.; Richard Nichols, T.
2007-01-01
This paper describes a three dimensional musculoskeletal model of the feline hindlimb based on digitized musculoskeletal anatomy. The model consists of seven degrees of freedom: three at the hip and two each at the knee and ankle. Lines of action and via points for 32 major muscles of the limb are described. Interspecimen variability of muscle paths was surprisingly low: most via points displayed a scatter of only a few millimeters. Joint axes identified by mechanical techniques as non-coincident and non-orthogonal were further honed to yield moment arms consistent with previous reports. Interspecimen variability in joint axes was greater than that of muscle paths and highlights the importance of joint axes in kinematic models. The contribution of specific muscles to the direction of endpoint force generation is discussed. PMID:15164372
The embedded operating system project
NASA Technical Reports Server (NTRS)
Campbell, R. H.
1985-01-01
The design and construction of embedded operating systems for real-time advanced aerospace applications was investigated. The applications require reliable operating system support that must accommodate computer networks. Problems that arise in the construction of such operating systems, reconfiguration, consistency and recovery in a distributed system, and the issues of real-time processing are reported. A thesis that provides theoretical foundations for the use of atomic actions to support fault tolerance and data consistency in real-time object-based system is included. The following items are addressed: (1) atomic actions and fault-tolerance issues; (2) operating system structure; (3) program development; (4) a reliable compiler for path Pascal; and (5) mediators, a mechanism for scheduling distributed system processes.
ERIC Educational Resources Information Center
Jax, Steven A.; Rosenbaum, David A.
2007-01-01
According to a prominent theory of human perception and performance (M. A. Goodale & A. D. Milner, 1992), the dorsal, action-related stream only controls visually guided actions in real time. Such a system would be predicted to show little or no action priming from previous experience. The 3 experiments reported here were designed to determine…
Improved graphite furnace atomizer
Siemer, D.D.
1983-05-18
A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.
Quantum robots and environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benioff, P.
1998-08-01
Quantum robots and their interactions with environments of quantum systems are described, and their study justified. A quantum robot is a mobile quantum system that includes an on-board quantum computer and needed ancillary systems. Quantum robots carry out tasks whose goals include specified changes in the state of the environment, or carrying out measurements on the environment. Each task is a sequence of alternating computation and action phases. Computation phase activites include determination of the action to be carried out in the next phase, and recording of information on neighborhood environmental system states. Action phase activities include motion of themore » quantum robot and changes in the neighborhood environment system states. Models of quantum robots and their interactions with environments are described using discrete space and time. A unitary step operator T that gives the single time step dynamics is associated with each task. T=T{sub a}+T{sub c} is a sum of action phase and computation phase step operators. Conditions that T{sub a} and T{sub c} should satisfy are given along with a description of the evolution as a sum over paths of completed phase input and output states. A simple example of a task{emdash}carrying out a measurement on a very simple environment{emdash}is analyzed in detail. A decision tree for the task is presented and discussed in terms of the sums over phase paths. It is seen that no definite times or durations are associated with the phase steps in the tree, and that the tree describes the successive phase steps in each path in the sum over phase paths. {copyright} {ital 1998} {ital The American Physical Society}« less
Mechanical and hydraulic properties of Nankai accretionary prism sediments: Effect of stress path
NASA Astrophysics Data System (ADS)
Kitajima, Hiroko; Chester, Frederick M.; Biscontin, Giovanna
2012-10-01
We have conducted triaxial deformation experiments along different loading paths on prism sediments from the Nankai Trough. Different load paths of isotropic loading, uniaxial strain loading, triaxial compression (at constant confining pressure, Pc), undrained Pc reduction, drained Pc reduction, and triaxial unloading at constant Pc, were used to understand the evolution of mechanical and hydraulic properties under complicated stress states and loading histories in accretionary subduction zones. Five deformation experiments were conducted on three sediment core samples for the Nankai prism, specifically from older accreted sediments at the forearc basin, underthrust slope sediments beneath the megasplay fault, and overthrust Upper Shikoku Basin sediments along the frontal thrust. Yield envelopes for each sample were constructed based on the stress paths of Pc-reduction using the modified Cam-clay model, and in situ stress states of the prism were constrained using the results from the other load paths and accounting for horizontal stress. Results suggest that the sediments in the vicinity of the megasplay fault and frontal thrust are highly overconsolidated, and thus likely to deform brittle rather than ductile. The porosity of sediments decreases as the yield envelope expands, while the reduction in permeability mainly depends on the effective mean stress before yield, and the differential stress after yield. An improved understanding of sediment yield strength and hydromechanical properties along different load paths is necessary to treat accurately the coupling of deformation and fluid flow in accretionary subduction zones.
Upadhyay, Manas V.; Patra, Anirban; Wen, Wei; ...
2018-05-08
In this paper, we propose a multi-scale modeling approach that can simulate the microstructural and mechanical behavior of metal or alloy parts with complex geometries subjected to multi-axial load path changes. The model is used to understand the biaxial load path change behavior of 316L stainless steel cruciform samples. At the macroscale, a finite element approach is used to simulate the cruciform geometry and numerically predict the gauge stresses, which are difficult to obtain analytically. At each material point in the finite element mesh, the anisotropic viscoplastic self-consistent model is used to simulate the role of texture evolution on themore » mechanical response. At the single crystal level, a dislocation density based hardening law that appropriately captures the role of multi-axial load path changes on slip activity is used. The combined approach is experimentally validated using cruciform samples subjected to uniaxial load and unload followed by different biaxial reloads in the angular range [27º, 90º]. Polycrystalline yield surfaces before and after load path changes are generated using the full-field elasto-viscoplastic fast Fourier transform model to study the influence of the deformation history and reloading direction on the mechanical response, including the Bauschinger effect, of these cruciform samples. Results reveal that the Bauschinger effect is strongly dependent on the first loading direction and strain, intergranular and macroscopic residual stresses after first load, and the reloading angle. The microstructural origins of the mechanical response are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, Manas V.; Patra, Anirban; Wen, Wei
In this paper, we propose a multi-scale modeling approach that can simulate the microstructural and mechanical behavior of metal or alloy parts with complex geometries subjected to multi-axial load path changes. The model is used to understand the biaxial load path change behavior of 316L stainless steel cruciform samples. At the macroscale, a finite element approach is used to simulate the cruciform geometry and numerically predict the gauge stresses, which are difficult to obtain analytically. At each material point in the finite element mesh, the anisotropic viscoplastic self-consistent model is used to simulate the role of texture evolution on themore » mechanical response. At the single crystal level, a dislocation density based hardening law that appropriately captures the role of multi-axial load path changes on slip activity is used. The combined approach is experimentally validated using cruciform samples subjected to uniaxial load and unload followed by different biaxial reloads in the angular range [27º, 90º]. Polycrystalline yield surfaces before and after load path changes are generated using the full-field elasto-viscoplastic fast Fourier transform model to study the influence of the deformation history and reloading direction on the mechanical response, including the Bauschinger effect, of these cruciform samples. Results reveal that the Bauschinger effect is strongly dependent on the first loading direction and strain, intergranular and macroscopic residual stresses after first load, and the reloading angle. The microstructural origins of the mechanical response are discussed.« less
Fahland, R A; Kohlmann, T; Hasenbring, M; Feng, Y-S; Schmidt, C O
2012-12-01
Chronic pain and depression are highly comorbid; however, the longitudinal link is only partially understood. This study examined direct and indirect effects of chronic back pain on depression using path analysis in a general population sample, focussing on cognitive mediator variables. Analyses are based on 413 participants (aged 18-75 years) in a population-based postal survey on back pain who reported chronic back pain at baseline. Follow-up data were collected after 1 year. Depression was measured with the Center for Epidemiologic Studies Depression Scale (CES-D). Fear-avoidance-beliefs (FABQ), catastrophizing and helplessness/hopelessness (KRSS) were considered as cognitive mediators. Data were analyzed using path analysis. Chronic back pain had no direct effect on depression at follow-up when controlling for cognitive mediators. A mediating effect emerged for helplessness/hopelessness but not for catastrophizing or fear-avoidance beliefs. These results support the cognitive mediation hypothesis which assumes that psychological variables mediate the association between pain and depression. The importance of helplessness/hopelessness is of relevance for the treatment of patients with chronic back pain.
Lugez, Elodie; Sadjadi, Hossein; Joshi, Chandra P; Akl, Selim G; Fichtinger, Gabor
2017-04-01
Electromagnetic (EM) catheter tracking has recently been introduced in order to enable prompt and uncomplicated reconstruction of catheter paths in various clinical interventions. However, EM tracking is prone to measurement errors which can compromise the outcome of the procedure. Minimizing catheter tracking errors is therefore paramount to improve the path reconstruction accuracy. An extended Kalman filter (EKF) was employed to combine the nonlinear kinematic model of an EM sensor inside the catheter, with both its position and orientation measurements. The formulation of the kinematic model was based on the nonholonomic motion constraints of the EM sensor inside the catheter. Experimental verification was carried out in a clinical HDR suite. Ten catheters were inserted with mean curvatures varying from 0 to [Formula: see text] in a phantom. A miniaturized Ascension (Burlington, Vermont, USA) trakSTAR EM sensor (model 55) was threaded within each catheter at various speeds ranging from 7.4 to [Formula: see text]. The nonholonomic EKF was applied on the tracking data in order to statistically improve the EM tracking accuracy. A sample reconstruction error was defined at each point as the Euclidean distance between the estimated EM measurement and its corresponding ground truth. A path reconstruction accuracy was defined as the root mean square of the sample reconstruction errors, while the path reconstruction precision was defined as the standard deviation of these sample reconstruction errors. The impacts of sensor velocity and path curvature on the nonholonomic EKF method were determined. Finally, the nonholonomic EKF catheter path reconstructions were compared with the reconstructions provided by the manufacturer's filters under default settings, namely the AC wide notch and the DC adaptive filter. With a path reconstruction accuracy of 1.9 mm, the nonholonomic EKF surpassed the performance of the manufacturer's filters (2.4 mm) by 21% and the raw EM measurements (3.5 mm) by 46%. Similarly, with a path reconstruction precision of 0.8 mm, the nonholonomic EKF surpassed the performance of the manufacturer's filters (1.0 mm) by 20% and the raw EM measurements (1.7 mm) by 53%. Path reconstruction accuracies did not follow an apparent trend when varying the path curvature and sensor velocity; instead, reconstruction accuracies were predominantly impacted by the position of the EM field transmitter ([Formula: see text]). The advanced nonholonomic EKF is effective in reducing EM measurement errors when reconstructing catheter paths, is robust to path curvature and sensor speed, and runs in real time. Our approach is promising for a plurality of clinical procedures requiring catheter reconstructions, such as cardiovascular interventions, pulmonary applications (Bender et al. in medical image computing and computer-assisted intervention-MICCAI 99. Springer, Berlin, pp 981-989, 1999), and brachytherapy.
Aircraft path planning for optimal imaging using dynamic cost functions
NASA Astrophysics Data System (ADS)
Christie, Gordon; Chaudhry, Haseeb; Kochersberger, Kevin
2015-05-01
Unmanned aircraft development has accelerated with recent technological improvements in sensing and communications, which has resulted in an "applications lag" for how these aircraft can best be utilized. The aircraft are becoming smaller, more maneuverable and have longer endurance to perform sensing and sampling missions, but operating them aggressively to exploit these capabilities has not been a primary focus in unmanned systems development. This paper addresses a means of aerial vehicle path planning to provide a realistic optimal path in acquiring imagery for structure from motion (SfM) reconstructions and performing radiation surveys. This method will allow SfM reconstructions to occur accurately and with minimal flight time so that the reconstructions can be executed efficiently. An assumption is made that we have 3D point cloud data available prior to the flight. A discrete set of scan lines are proposed for the given area that are scored based on visibility of the scene. Our approach finds a time-efficient path and calculates trajectories between scan lines and over obstacles encountered along those scan lines. Aircraft dynamics are incorporated into the path planning algorithm as dynamic cost functions to create optimal imaging paths in minimum time. Simulations of the path planning algorithm are shown for an urban environment. We also present our approach for image-based terrain mapping, which is able to efficiently perform a 3D reconstruction of a large area without the use of GPS data.
NASA Astrophysics Data System (ADS)
Lipani, Luca; Dupont, Bertrand G. R.; Doungmene, Floriant; Marken, Frank; Tyrrell, Rex M.; Guy, Richard H.; Ilie, Adelina
2018-06-01
Currently, there is no available needle-free approach for diabetics to monitor glucose levels in the interstitial fluid. Here, we report a path-selective, non-invasive, transdermal glucose monitoring system based on a miniaturized pixel array platform (realized either by graphene-based thin-film technology, or screen-printing). The system samples glucose from the interstitial fluid via electroosmotic extraction through individual, privileged, follicular pathways in the skin, accessible via the pixels of the array. A proof of principle using mammalian skin ex vivo is demonstrated for specific and `quantized' glucose extraction/detection via follicular pathways, and across the hypo- to hyper-glycaemic range in humans. Furthermore, the quantification of follicular and non-follicular glucose extraction fluxes is clearly shown. In vivo continuous monitoring of interstitial fluid-borne glucose with the pixel array was able to track blood sugar in healthy human subjects. This approach paves the way to clinically relevant glucose detection in diabetics without the need for invasive, finger-stick blood sampling.
Grand Coulee - Bell 500-kV Transmission Line Project, Draft Environmental Impact Statement
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
2002-08-09
BPA is proposing to construct a 500-kilovolt (kV) transmission line that would extend approximately 84 miles between the Grand Coulee 500-kV Switchyard, near Grand Coulee Dam, and the Bell Substation, in Mead just north of Spokane. The new line would cross portions of Douglas, Grant, Lincoln, and Spokane counties. In addition to the transmission line, new equipment would be installed at the substations at each end of the new line and at other facilities. The proposed action would remove an existing 115-kV transmission line and replace it with the new 500-kV line on existing right-of-way for most of its length.more » Additional right-of-way would be needed in the first 3.5 miles out of the Grand Coulee Switchyard to connect to the existing 115-kV right-of-way. Since the mid-1990s, the transmission path west of Spokane, called the West of Hatwai transmission pathway, has grown increasingly constrained. To date, BPA has been able to manage operation of the path through available operating practices, and customer needed have been met while maintaining the reliability of the path. however, in early 2001, operations showed that the amount of electricity that needs to flow from east to west along this path creates severe transmission congestion. Under these conditions, the system is at risk of overloads and violation of industry safety and reliability standards. The problem is particularly acute in the spring and summer months because of the large amount of power generated by dams east of the path. Large amounts of water cannot be spilled during that time in order for BPA to fulfill its obligation to protect threatened and endangered fish. The amount of power that needs to move through this area during these months at times could exceed the carrying capacity of the existing transmission lines. In additional capacity is not added, BPA will run a significant risk that it will not be able to continue to meet its contractual obligations to deliver power and maintain reliability standards that minimize risks to public safety and to equipment. BPA is considering two construction alternatives, the Agency Proposed Action and the Alternative Action. The Alternative Action would include all the components of the Preferred Action except a double-circuit line would be constructed in the Spokane area between a point about 2 miles west of the Spokane River and Bell Substation, a distance of about 9 miles. BPA is also considering the No Action Alternative.« less
Final Environmental Assessment for Shared Use Paths (SUP), Eglin Air Force Base, Florida
2011-07-01
NEPA; 40 Code of Federal Regulations [CFR] 1500-1508); the USAF environmental impact analysis process as effectuated by 32 CFR Part 989; and DoD...alternatives were considered, but not carried forward for analysis . Alternative B This alternative would consist of constructing a 10’ wide SUP...EA Section 2.3.1, page 12) No-Action Alternative This alternative also was carried forward for analysis . (EA Section 2.4.1, page 16) ENVIRONMENTAL
Larsen, Kristian; Faulkner, Guy E. J.; Stone, Michelle R.
2013-01-01
Objectives. School route measurement often involves estimating the shortest network path. We challenged the relatively uncritical adoption of this method in school travel research and tested the route discordance hypothesis that several types of difference exist between shortest network paths and reported school routes. Methods. We constructed the mapped and shortest path through network routes for a sample of 759 children aged 9 to 13 years in grades 5 and 6 (boys = 45%, girls = 54%, unreported gender = 1%), in Toronto, Ontario, Canada. We used Wilcoxon signed-rank tests to compare reported with shortest-path route measures including distance, route directness, intersection crossings, and route overlap. Measurement difference was explored by mode and location. Results. We found statistical evidence of route discordance for walkers and children who were driven and detected it more often for inner suburban cases. Evidence of route discordance varied by mode and school location. Conclusions. We found statistically significant differences for route structure and built environment variables measured along reported and geographic information systems–based shortest-path school routes. Uncertainty produced by the shortest-path approach challenges its conceptual and empirical validity in school travel research. PMID:23865648
Exact and Approximate Probabilistic Symbolic Execution
NASA Technical Reports Server (NTRS)
Luckow, Kasper; Pasareanu, Corina S.; Dwyer, Matthew B.; Filieri, Antonio; Visser, Willem
2014-01-01
Probabilistic software analysis seeks to quantify the likelihood of reaching a target event under uncertain environments. Recent approaches compute probabilities of execution paths using symbolic execution, but do not support nondeterminism. Nondeterminism arises naturally when no suitable probabilistic model can capture a program behavior, e.g., for multithreading or distributed systems. In this work, we propose a technique, based on symbolic execution, to synthesize schedulers that resolve nondeterminism to maximize the probability of reaching a target event. To scale to large systems, we also introduce approximate algorithms to search for good schedulers, speeding up established random sampling and reinforcement learning results through the quantification of path probabilities based on symbolic execution. We implemented the techniques in Symbolic PathFinder and evaluated them on nondeterministic Java programs. We show that our algorithms significantly improve upon a state-of- the-art statistical model checking algorithm, originally developed for Markov Decision Processes.
Steiner, M. A.; Bunn, J. R.; Einhorn, J. R.; ...
2017-05-16
This study reports an angular diffraction peak shift that scales linearly with the neutron beam path length traveled through a diffracting sample. This shift was observed in the context of mapping the residual stress state of a large U–8 wt% Mo casting, as well as during complementary measurements on a smaller casting of the same material. If uncorrected, this peak shift implies a non-physical level of residual stress. A hypothesis for the origin of this shift is presented, based upon non-ideal focusing of the neutron monochromator in combination with changes to the wavelength distribution reaching the detector due to factorsmore » such as attenuation. The magnitude of the shift is observed to vary linearly with the width of the diffraction peak reaching the detector. Consideration of this shift will be important for strain measurements requiring long path lengths through samples with significant attenuation. This effect can probably be reduced by selecting smaller voxel slit widths.« less
NASA Astrophysics Data System (ADS)
Zhang, Chi; Reufer, Mathias; Gaudino, Danila; Scheffold, Frank
2017-11-01
Diffusing wave spectroscopy (DWS) can be employed as an optical rheology tool with numerous applications for studying the structure, dynamics and linear viscoelastic properties of complex fluids, foams, glasses and gels. To carry out DWS measurements, one first needs to quantify the static optical properties of the sample under investigation, i.e. the transport mean free path l * and the absorption length l a. In the absence of absorption this can be done by comparing the diffuse optical transmission to a calibration sample whose l * is known. Performing this comparison however is cumbersome, time consuming, and prone to mistakes by the operator. Moreover, already weak absorption can lead to significant errors. In this paper, we demonstrate the implementation of an automatized approach, based on which the DWS measurement procedure can be simplified significantly. By comparison with a comprehensive set of calibration measurements we cover the entire parameter space relating measured count rates ( CR t , CR b ) to ( l *, l a). Based on this approach we can determine l * and la of an unknown sample accurately thus making the additional measurement of a calibration sample obsolete. We illustrate the use of this approach by monitoring the coarsening of a commercially available shaving foam with DWS.
Do previous sports experiences influence the effect of an enrichment programme in basketball skills?
Santos, Sara; Mateus, Nuno; Sampaio, Jaime; Leite, Nuno
2017-09-01
The aim of this study was to examine the effect of an enrichment programme in motor, technical and tactical basketball skills, when accounting for the age of youth sport specialisation. Seventy-six college students (age: M = 20.4, SD = 1.9) were allocated according to three different paths: (i) non-structured (n = 14), (ii) early specialisation (n = 34), and (iii) late specialisation (n = 28), according to information previously provided by the participants about the quantity and type of sporting activities performed throughout their sporting careers. Then, the participants of each path were randomly distributed across control and experimental groups. Variables under study included agility, technical skills circuit, as well as tactical actions performed in a 4-on-4 full-court basketball game. The results indicated improvements in the early and late specialisation paths namely in the experimental training groups. However, the late specialisation path revealed larger benefits, in contrast with the non-structured path, which showed less sensitivity to the enrichment programme, mostly sustained in physical literacy and differential learning. Higher improvements were observed in agility, and also in reducing the number of unsuccessful actions performed during the game. Overall, this study provided evidence of how early sports experiences affect basketball skill acquisition and contribute to adapt to new contexts with motor and technical-tactical challenges. In addition, a path supported by late specialisation might present several advantages in sport performance achievement.
Meghdadi, Amir H; Irani, Pourang
2013-12-01
We propose a novel video visual analytics system for interactive exploration of surveillance video data. Our approach consists of providing analysts with various views of information related to moving objects in a video. To do this we first extract each object's movement path. We visualize each movement by (a) creating a single action shot image (a still image that coalesces multiple frames), (b) plotting its trajectory in a space-time cube and (c) displaying an overall timeline view of all the movements. The action shots provide a still view of the moving object while the path view presents movement properties such as speed and location. We also provide tools for spatial and temporal filtering based on regions of interest. This allows analysts to filter out large amounts of movement activities while the action shot representation summarizes the content of each movement. We incorporated this multi-part visual representation of moving objects in sViSIT, a tool to facilitate browsing through the video content by interactive querying and retrieval of data. Based on our interaction with security personnel who routinely interact with surveillance video data, we identified some of the most common tasks performed. This resulted in designing a user study to measure time-to-completion of the various tasks. These generally required searching for specific events of interest (targets) in videos. Fourteen different tasks were designed and a total of 120 min of surveillance video were recorded (indoor and outdoor locations recording movements of people and vehicles). The time-to-completion of these tasks were compared against a manual fast forward video browsing guided with movement detection. We demonstrate how our system can facilitate lengthy video exploration and significantly reduce browsing time to find events of interest. Reports from expert users identify positive aspects of our approach which we summarize in our recommendations for future video visual analytics systems.
Virtual hybrid test control of sinuous crack
NASA Astrophysics Data System (ADS)
Jailin, Clément; Carpiuc, Andreea; Kazymyrenko, Kyrylo; Poncelet, Martin; Leclerc, Hugo; Hild, François; Roux, Stéphane
2017-05-01
The present study aims at proposing a new generation of experimental protocol for analysing crack propagation in quasi brittle materials. The boundary conditions are controlled in real-time to conform to a predefined crack path. Servo-control is achieved through a full-field measurement technique to determine the pre-set fracture path and a simple predictor model based on linear elastic fracture mechanics to prescribe the boundary conditions on the fly so that the actual crack path follows at best the predefined trajectory. The final goal is to identify, for instance, non-local damage models involving internal lengths. The validation of this novel procedure is performed via a virtual test-case based on an enriched damage model with an internal length scale, a prior chosen sinusoidal crack path and a concrete sample. Notwithstanding the fact that the predictor model selected for monitoring the test is a highly simplified picture of the targeted constitutive law, the proposed protocol exhibits a much improved sensitivity to the sought parameters such as internal lengths as assessed from the comparison with other available experimental tests.
Quantum robots plus environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benioff, P.
1998-07-23
A quantum robot is a mobile quantum system, including an on board quantum computer and needed ancillary systems, that interacts with an environment of quantum systems. Quantum robots carry out tasks whose goals include making specified changes in the state of the environment or carrying out measurements on the environment. The environments considered so far, oracles, data bases, and quantum registers, are seen to be special cases of environments considered here. It is also seen that a quantum robot should include a quantum computer and cannot be simply a multistate head. A model of quantum robots and their interactions ismore » discussed in which each task, as a sequence of alternating computation and action phases,is described by a unitary single time step operator T {approx} T{sub a} + T{sub c} (discrete space and time are assumed). The overall system dynamics is described as a sum over paths of completed computation (T{sub c}) and action (T{sub a}) phases. A simple example of a task, measuring the distance between the quantum robot and a particle on a 1D lattice with quantum phase path dispersion present, is analyzed. A decision diagram for the task is presented and analyzed.« less
Empirical microeconomics action functionals
NASA Astrophysics Data System (ADS)
Baaquie, Belal E.; Du, Xin; Tanputraman, Winson
2015-06-01
A statistical generalization of microeconomics has been made in Baaquie (2013), where the market price of every traded commodity, at each instant of time, is considered to be an independent random variable. The dynamics of commodity market prices is modeled by an action functional-and the focus of this paper is to empirically determine the action functionals for different commodities. The correlation functions of the model are defined using a Feynman path integral. The model is calibrated using the unequal time correlation of the market commodity prices as well as their cubic and quartic moments using a perturbation expansion. The consistency of the perturbation expansion is verified by a numerical evaluation of the path integral. Nine commodities drawn from the energy, metal and grain sectors are studied and their market behavior is described by the model to an accuracy of over 90% using only six parameters. The paper empirically establishes the existence of the action functional for commodity prices that was postulated to exist in Baaquie (2013).
Spatiotemporal Path-Matching for Comparisons Between Ground- Based and Satellite Lidar Measurements
NASA Technical Reports Server (NTRS)
Berkoff, Timothy A.; Valencia, Sandra; Welton, Ellsworth J.; Spinhirne, James D.
2005-01-01
The spatiotemporal sampling differences between ground-based and satellite lidar data can contribute to significant errors for direct measurement comparisons. Improvement in sample correspondence is examined by the use of radiosonde wind velocity to vary the time average in ground-based lidar data to spatially match coincident satellite lidar measurements. Results are shown for the 26 February 2004 GLAS/ICESat overflight of a ground-based lidar stationed at NASA GSFC. Statistical analysis indicates that improvement in signal correlation is expected under certain conditions, even when a ground-based observation is mismatched in directional orientation to the satellite track.
Dial-in Topological Metamaterials Based on Bistable Stewart Platform.
Wu, Ying; Chaunsali, Rajesh; Yasuda, Hiromi; Yu, Kaiping; Yang, Jinkyu
2018-01-08
Recently, there have been significant efforts to guide mechanical energy in structures by relying on a novel topological framework popularized by the discovery of topological insulators. Here, we propose a topological metamaterial system based on the design of the Stewart Platform, which can not only guide mechanical waves robustly in a desired path, but also can be tuned in situ to change this wave path at will. Without resorting to any active materials, the current system harnesses bistablilty in its unit cells, such that tuning can be performed simply by a dial-in action. Consequently, a topological transition mechanism inspired by the quantum valley Hall effect can be achieved. We show the possibility of tuning in a variety of topological and traditional waveguides in the same system, and numerically investigate key qualitative and quantitative differences between them. We observe that even though both types of waveguides can lead to significant wave transmission for a certain frequency range, topological waveguides are distinctive as they support robust, back scattering immune, one-way wave propagation.
Comparison of tablet-based strategies for incision planning in laser microsurgery
NASA Astrophysics Data System (ADS)
Schoob, Andreas; Lekon, Stefan; Kundrat, Dennis; Kahrs, Lüder A.; Mattos, Leonardo S.; Ortmaier, Tobias
2015-03-01
Recent research has revealed that incision planning in laser surgery deploying stylus and tablet outperforms state-of-the-art micro-manipulator-based laser control. Providing more detailed quantitation regarding that approach, a comparative study of six tablet-based strategies for laser path planning is presented. Reference strategy is defined by monoscopic visualization and continuous path drawing on a graphics tablet. Further concepts deploying stereoscopic or a synthesized laser view, point-based path definition, real-time teleoperation or a pen display are compared with the reference scenario. Volunteers were asked to redraw and ablate stamped lines on a sample. Performance is assessed by measuring planning accuracy, completion time and ease of use. Results demonstrate that significant differences exist between proposed concepts. The reference strategy provides more accurate incision planning than the stereo or laser view scenario. Real-time teleoperation performs best with respect to completion time without indicating any significant deviation in accuracy and usability. Point-based planning as well as the pen display provide most accurate planning and increased ease of use compared to the reference strategy. As a result, combining the pen display approach with point-based planning has potential to become a powerful strategy because of benefiting from improved hand-eye-coordination on the one hand and from a simple but accurate technique for path definition on the other hand. These findings as well as the overall usability scale indicating high acceptance and consistence of proposed strategies motivate further advanced tablet-based planning in laser microsurgery.
Asadi-Lari, Mohsen; Hassanzadeh, Jafar; Torabinia, Mansour; Vaez-Mahdavi, Mohammad Reza; Montazeri, Ali; Ghaem, Haleh; Menati, Rostam; Niazi, Mohsen; Kassani, Aziz
2016-01-01
Background: Social capital has been defined as norms, networks, and social links that facilitate collective actions. Social capital is related to a number of main social and public health variables. Therefore, the present study aimed to determine the factors associated with social capital among the residents of Tehran, Iran. Methods: In this large cross-sectional population-based study, 31531 residents aged 20 years and above were selected through multi-stage sampling method from 22 districts of Tehran in 2011. The social capital questionnaire, 28-item General Health Questionnaire (GHQ-28), and Short-Form Health Survey (SF-12) were used. Hypothetical causal models were designed to identify the pathways through which different variables influenced the components of social capital. Then, path analysis was conducted for identifying the determinants of social capital. Results: The most influential variables in 'individual trust' were job status (β=0.37, p=0.02), marital status (β=0.32, p=0.01), Physical Component Summary (PCS) (β=0.37, p=0.02), and age (β=0.34, p=0.03). On the other hand, education level (β=0.34, p=0.01), age (β=0.33, p=0.02), marital status (β=0.33, p=0.01), and job status (β=0.32, p=0.01) were effective in 'cohesion and social support'. Additionally, age (β=0.18, p=0.02), PCS (β=0.36, p=0.01), house ownership (β=0.23, p=0.03), and mental health (β=0.26, p=0.01) were influential in 'social trust/collective relations'. Conclusion: Social capital can be improved in communities by planning to improve education and occupation status, paying more attention to strengthening family bonds, and provision of local facilities and neighborhood bonds to reduce migration within the city.
Sample path analysis of contribution and reward in cooperative groups.
Toyoizumi, Hiroshi
2009-02-07
Explaining cooperative behavior is one of the major challenges in both biology and human society. The individual reward in cooperative group depends on how we share the rewards in the group. Thus, the group size dynamics in a cooperative group and reward-allocation rule seem essential to evaluate the emergence of cooperative groups. We apply a sample path-based analysis called an extension of Little's formula to general cooperative group. We show that the expected reward is insensitive to the specific reward-allocation rule and probabilistic structure of group dynamics, and the simple productivity condition guarantees the expected reward to be larger than the average contribution. As an example, we take social queues to see the insensitivity result in detail.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Senate Committee on the Judiciary.
These hearings, focusing on financial support for community-based programs dealing with problems of runaway and homeless youths, explore the scope of the problem, types of activities which are being undertaken, and paths for future action. Testimony and prepared statements are presented by several witnesses including a commissioner of the…
NASA Astrophysics Data System (ADS)
De la Fuente, Maria; Vaunat, Jean; Pedone, Giuseppe; Cotecchia, Federica; Sollecito, Francesca; Casini, Francesca
2015-04-01
Tectonized clays are complex materials characterized by several levels of structures that may evolve during load and wetting/drying processes. Some microstructural patterns, as microfissures, have a particular influence on the value of permeability which is one of the main factors controlling pore pressure regime in slopes. In this work, the pore pressure regime measured in a real slope of tectonized clay in Southern Italy is analyzed by a numerical model that considers changes in permeability induced by microfissure closure and opening during the wetting and drying processes resulting from climatic actions. Permeability model accounts for the changes in Pore Size Distribution observed by Microscopy Intrusion Porosimetry. MIP tests are performed on representative samples of ground in initial conditions ("in situ" conditions) and final conditions (deformed sample after applying a wetting path that aims to reproduce the saturation of the soil under heavy rains). The resulting measurements allow for the characterization at microstructural level of the soil, identifying the distribution of dominant families pores in the sample and its evolution under external actions. Moreover, comparison of pore size density functions allows defining a microstructural parameter that depends on void ratio and degree of saturation and controls the variation of permeability. Model has been implemented in a thermo-hydro-mechanical code provided with a special boundary condition for climatic actions. Tool is used to analyze pore pressure measurements obtained in the tectonized clay slope. Results are analyzed at the light of the effect that permeability changes during wetting and drying have on the pore pressure regime.
Miklós, István; Darling, Aaron E
2009-06-22
Inversions are among the most common mutations acting on the order and orientation of genes in a genome, and polynomial-time algorithms exist to obtain a minimal length series of inversions that transform one genome arrangement to another. However, the minimum length series of inversions (the optimal sorting path) is often not unique as many such optimal sorting paths exist. If we assume that all optimal sorting paths are equally likely, then statistical inference on genome arrangement history must account for all such sorting paths and not just a single estimate. No deterministic polynomial algorithm is known to count the number of optimal sorting paths nor sample from the uniform distribution of optimal sorting paths. Here, we propose a stochastic method that uniformly samples the set of all optimal sorting paths. Our method uses a novel formulation of parallel Markov chain Monte Carlo. In practice, our method can quickly estimate the total number of optimal sorting paths. We introduce a variant of our approach in which short inversions are modeled to be more likely, and we show how the method can be used to estimate the distribution of inversion lengths and breakpoint usage in pathogenic Yersinia pestis. The proposed method has been implemented in a program called "MC4Inversion." We draw comparison of MC4Inversion to the sampler implemented in BADGER and a previously described importance sampling (IS) technique. We find that on high-divergence data sets, MC4Inversion finds more optimal sorting paths per second than BADGER and the IS technique and simultaneously avoids bias inherent in the IS technique.
Hydromechanical behavior of heterogeneous carbonate rock under proportional triaxial loadings
NASA Astrophysics Data System (ADS)
Dautriat, JéRéMie; Gland, Nicolas; Dimanov, Alexandre; Raphanel, Jean
2011-01-01
The influence of stress paths representative of reservoir conditions on the poromechanical behavior and coupled directional permeabilities evolution of a heterogeneous carbonate has been studied. Our experimental methodology is based on performing confined compression tests keeping constant a stress path coefficient K = Δσr/Δσa ratio of the radial and axial stress magnitudes, commonly assumed to be representative of reservoir stress state evolution during production. The experiments are performed in a triaxial cell specially designed to measure the permeability in two orthogonal directions, along and transverse to the direction of maximum stress. The tested rock is a heterogeneous bioclastic carbonate, the Estaillades limestone, with a bimodal porosity, of mean value around 28% and a moderate permeability of mean value 125 mdarcy. Microstructural analyses of initial and deformed samples have been performed combining X-ray tomography and microtomography, scanning electron microscopy (SEM) observations, and mercury injection porosimetry. The microstructural heterogeneity, observable by SEM, is characterized by the arrangement of the micrograins of calcite in either dense or microporous aggregates surrounded by larger pores. The spatial distribution of the two kinds of aggregates is responsible for important density fluctuations throughout the samples, recorded by X-ray tomography, which characterizes the mesoheterogeneity. We show that this mesoheterogeneity is a source of a large directional variability of permeability for a given specimen and also from sample to sample. In addition, the fluctuation of the porosity in the tested set of samples, from 24% to 31%, is an expression of the macroheterogeneity. Macroscopic mechanical data and the stress path dependency of porosity and permeability have been measured in the elastic, brittle, and compaction regimes. No significant effect of the stress path on the evolution of directional permeabilities is observed in the elastic regime. At failure, according to the selected stress path, either a limited or a drastic permeability decrease takes place. From the postmortem observations at different scales, we clearly show the impact of the mesoheterogeneities on the localization of compaction, and we identify the precursor of the shear-enhanced compaction and pore collapse mechanisms (for K ≥ 0.25) as an intense microcracking affecting only the denser aggregates. Applying an effective medium theory adapted to our observations, we propose a porosity scaling to normalize the pressures at failure. It is then found that the normalized critical pressures evolve linearly with the stress path coefficient. Consequently, we put forward a new definition of the yield cap for this type of carbonate, which is parameterized by the stress path coefficient.
Wang, Xiuquan; Huang, Guohe; Zhao, Shan; Guo, Junhong
2015-09-01
This paper presents an open-source software package, rSCA, which is developed based upon a stepwise cluster analysis method and serves as a statistical tool for modeling the relationships between multiple dependent and independent variables. The rSCA package is efficient in dealing with both continuous and discrete variables, as well as nonlinear relationships between the variables. It divides the sample sets of dependent variables into different subsets (or subclusters) through a series of cutting and merging operations based upon the theory of multivariate analysis of variance (MANOVA). The modeling results are given by a cluster tree, which includes both intermediate and leaf subclusters as well as the flow paths from the root of the tree to each leaf subcluster specified by a series of cutting and merging actions. The rSCA package is a handy and easy-to-use tool and is freely available at http://cran.r-project.org/package=rSCA . By applying the developed package to air quality management in an urban environment, we demonstrate its effectiveness in dealing with the complicated relationships among multiple variables in real-world problems.
Ovchinnikov, Victor; Karplus, Martin
2014-01-01
A parallel implementation of the finite-temperature string method is described, which takes into account the invariance of coordinates with respect to rigid-body motions. The method is applied to the complex α-helix↔β-sheet transition in a β-hairpin miniprotein in implicit solvent, which exhibits much of the complexity of conformational changes in proteins. Two transition paths are considered, one derived from a linear interpolant between the endpoint structures and the other derived from a targeted dynamics simulation. Two methods for computing the conformational free energy (FE) along the string are compared, a restrained method, and a tessellation method introduced by E. Vanden-Eijnden and M. Venturoli [J. Chem. Phys. 130, 194103 (2009)]. It is found that obtaining meaningful free energy profiles using the present atom-based coordinates requires restricting sampling to a vicinity of the converged path, where the hyperplanar approximation to the isocommittor surface is sufficiently accurate. This sampling restriction can be easily achieved using restraints or constraints. The endpoint FE differences computed from the FE profiles are validated by comparison with previous calculations using a path-independent confinement method. The FE profiles are decomposed into the enthalpic and entropic contributions, and it is shown that the entropy difference contribution can be as large as 10 kcal/mol for intermediate regions along the path, compared to 15–20 kcal/mol for the enthalpy contribution. This result demonstrates that enthalpic barriers for transitions are offset by entropic contributions arising from the existence of different paths across a barrier. The possibility of using systematically coarse-grained representations of amino acids, in the spirit of multiple interaction site residue models, is proposed as a means to avoid ad hoc sampling restrictions to narrow transition tubes. PMID:24811667
NASA Astrophysics Data System (ADS)
Ovchinnikov, Victor; Karplus, Martin
2014-05-01
A parallel implementation of the finite-temperature string method is described, which takes into account the invariance of coordinates with respect to rigid-body motions. The method is applied to the complex α-helix↔β-sheet transition in a β-hairpin miniprotein in implicit solvent, which exhibits much of the complexity of conformational changes in proteins. Two transition paths are considered, one derived from a linear interpolant between the endpoint structures and the other derived from a targeted dynamics simulation. Two methods for computing the conformational free energy (FE) along the string are compared, a restrained method, and a tessellation method introduced by E. Vanden-Eijnden and M. Venturoli [J. Chem. Phys. 130, 194103 (2009)]. It is found that obtaining meaningful free energy profiles using the present atom-based coordinates requires restricting sampling to a vicinity of the converged path, where the hyperplanar approximation to the isocommittor surface is sufficiently accurate. This sampling restriction can be easily achieved using restraints or constraints. The endpoint FE differences computed from the FE profiles are validated by comparison with previous calculations using a path-independent confinement method. The FE profiles are decomposed into the enthalpic and entropic contributions, and it is shown that the entropy difference contribution can be as large as 10 kcal/mol for intermediate regions along the path, compared to 15-20 kcal/mol for the enthalpy contribution. This result demonstrates that enthalpic barriers for transitions are offset by entropic contributions arising from the existence of different paths across a barrier. The possibility of using systematically coarse-grained representations of amino acids, in the spirit of multiple interaction site residue models, is proposed as a means to avoid ad hoc sampling restrictions to narrow transition tubes.
Wright, James T.
1986-01-01
A bilateral circuit is operable for transmitting signals in two directions without generation of ringing due to feedback caused by the insertion of the circuit. The circuit may include gain for each of the signals to provide a bidirectional amplifier. The signals are passed through two separate paths, with a unidirectional amplifier in each path. A controlled sampling device is provided in each path for sampling the two signals. Any feedback loop between the two signals is disrupted by providing a phase displacement between the control signals for the two sampling devices.
Wright, J.T.
1984-02-02
A bilateral circuit is operable for transmitting signals in two directions without generation of ringing due to feedback caused by the insertion of the circuit. The circuit may include gain for each of the signals to provide a bidirectional amplifier. The signals are passed through two separate paths, with a unidirectional amplifier in each path. A controlled sampling device is provided in each path for sampling the two signals. Any feedback loop between the two signals is disrupted by providing a phase displacement between the control signals for the two sampling devices.
Catching fly balls in virtual reality: a critical test of the outfielder problem.
Fink, Philip W; Foo, Patrick S; Warren, William H
2009-12-14
How does a baseball outfielder know where to run to catch a fly ball? The "outfielder problem" remains unresolved, and its solution would provide a window into the visual control of action. It may seem obvious that human action is based on an internal model of the physical world, such that the fielder predicts the landing point based on a mental model of the ball's trajectory (TP). However, two alternative theories, Optical Acceleration Cancellation (OAC) and Linear Optical Trajectory (LOT), propose that fielders are led to the right place at the right time by coupling their movements to visual information in a continuous "online" manner. All three theories predict successful catches and similar running paths. We provide a critical test by using virtual reality to perturb the vertical motion of the ball in mid-flight. The results confirm the predictions of OAC but are at odds with LOT and TP.
New Spin Foam Models of Quantum Gravity
NASA Astrophysics Data System (ADS)
Miković, A.
We give a brief and a critical review of the Barret-Crane spin foam models of quantum gravity. Then we describe two new spin foam models which are obtained by direct quantization of General Relativity and do not have some of the drawbacks of the Barret-Crane models. These are the model of spin foam invariants for the embedded spin networks in loop quantum gravity and the spin foam model based on the integration of the tetrads in the path integral for the Palatini action.
2004-03-01
When applying experience to new situations, the process is very similar. Faced with a new situation, a human generally looks for ways in which...find the best course of action, the human would compare current goals to those it faced in the previous experiences and choose the path that...154. Saperstein, Alvin (1995) “War and Chaos”. American Scientist, vol. 84. November-December 1995. pp. 548-557. 155. Sargent, Robert G . (1991
Impurity self-energy in the strongly-correlated Bose systems
NASA Astrophysics Data System (ADS)
Panochko, Galyna; Pastukhov, Volodymyr; Vakarchuk, Ivan
2018-02-01
We proposed the nonperturbative scheme for the calculation of the impurity spectrum in the Bose system at zero temperature. The method is based on the path-integral formulation and describes an impurity as a zero-density ideal Fermi gas interacting with Bose system for which the action is written in terms of density fluctuations. On the example of the 3He atom immersed in the liquid helium-4 a good consistency with experimental data and results of Monte Carlo simulations is shown.
Symbolic play and language development.
Orr, Edna; Geva, Ronny
2015-02-01
Symbolic play and language are known to be highly interrelated, but the developmental process involved in this relationship is not clear. Three hypothetical paths were postulated to explore how play and language drive each other: (1) direct paths, whereby initiation of basic forms in symbolic action or babbling, will be directly related to all later emerging language and motor outputs; (2) an indirect interactive path, whereby basic forms in symbolic action will be associated with more complex forms in symbolic play, as well as with babbling, and babbling mediates the relationship between symbolic play and speech; and (3) a dual path, whereby basic forms in symbolic play will be associated with basic forms of language, and complex forms of symbolic play will be associated with complex forms of language. We micro-coded 288 symbolic vignettes gathered during a yearlong prospective bi-weekly examination (N=14; from 6 to 18 months of age). Results showed that the age of initiation of single-object symbolic play correlates strongly with the age of initiation of later-emerging symbolic and vocal outputs; its frequency at initiation is correlated with frequency at initiation of babbling, later-emerging speech, and multi-object play in initiation. Results support the notion that a single-object play relates to the development of other symbolic forms via a direct relationship and an indirect relationship, rather than a dual-path hypothesis. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Patra, Sarbani; Keshavamurthy, Srihari
2018-02-14
It has been known for sometime now that isomerization reactions, classically, are mediated by phase space structures called reactive islands (RI). RIs provide one possible route to correct for the nonstatistical effects in the reaction dynamics. In this work, we map out the reactive islands for the two dimensional Müller-Brown model potential and show that the reactive islands are intimately linked to the issue of rare event sampling. In particular, we establish the sensitivity of the so called committor probabilities, useful quantities in the transition path sampling technique, to the hierarchical RI structures. Mapping out the RI structure for high dimensional systems, however, is a challenging task. Here, we show that the technique of Lagrangian descriptors is able to effectively identify the RI hierarchy in the model system. Based on our results, we suggest that the Lagrangian descriptors can be useful for detecting RIs in high dimensional systems.
Examining Teachers' Conception of and Needs on Action Research
ERIC Educational Resources Information Center
Morales, Marie Paz E.; Abulon, Edna Luz R.; Soriano, Portia R.; David, Adonis P.; Hermosisima, Ma. Victoria C.; Gerundio, Maribel G.
2016-01-01
Action research is viewed as a path towards better student achievement. This track may be attained through the reflective nature instilled in the teacher that sparks initiatives to promote better classroom practices in the aspects of pedagogy, assessment, and parental involvement. This descriptive survey explores Filipino teachers' conceptions of…
How Do Future Life Perspective and Present Action Work in Japanese Youth Development?
ERIC Educational Resources Information Center
Kawai, Toru; Moran, Seana
2017-01-01
"Future life perspective" and "present action," whose interaction affects how one's current activity affects later life, offer a critical crossroads for young adults in Japan as stable career paths have become more uncertain. Past generations benefited from stable institutional pathways, but recent generations must forge their…
Impulsive noise suppression in color images based on the geodesic digital paths
NASA Astrophysics Data System (ADS)
Smolka, Bogdan; Cyganek, Boguslaw
2015-02-01
In the paper a novel filtering design based on the concept of exploration of the pixel neighborhood by digital paths is presented. The paths start from the boundary of a filtering window and reach its center. The cost of transitions between adjacent pixels is defined in the hybrid spatial-color space. Then, an optimal path of minimum total cost, leading from pixels of the window's boundary to its center is determined. The cost of an optimal path serves as a degree of similarity of the central pixel to the samples from the local processing window. If a pixel is an outlier, then all the paths starting from the window's boundary will have high costs and the minimum one will also be high. The filter output is calculated as a weighted mean of the central pixel and an estimate constructed using the information on the minimum cost assigned to each image pixel. So, first the costs of optimal paths are used to build a smoothed image and in the second step the minimum cost of the central pixel is utilized for construction of the weights of a soft-switching scheme. The experiments performed on a set of standard color images, revealed that the efficiency of the proposed algorithm is superior to the state-of-the-art filtering techniques in terms of the objective restoration quality measures, especially for high noise contamination ratios. The proposed filter, due to its low computational complexity, can be applied for real time image denoising and also for the enhancement of video streams.
Quantization of Simple Parametrized Systems
NASA Astrophysics Data System (ADS)
Ruffini, Giulio
1995-01-01
I study the canonical formulation and quantization of some simple parametrized systems using Dirac's formalism and the Becchi-Rouet-Stora-Tyutin (BRST) extended phase space method. These systems include the parametrized particle and minisuperspace. Using Dirac's formalism I first analyze for each case the construction of the classical reduced phase space. There are two separate features of these systems that may make this construction difficult: (a) Because of the boundary conditions used, the actions are not gauge invariant at the boundaries. (b) The constraints may have a disconnected solution space. The relativistic particle and minisuperspace have such complicated constraints, while the non-relativistic particle displays only the first feature. I first show that a change of gauge fixing is equivalent to a canonical transformation in the reduced phase space, thus resolving the problems associated with the first feature above. Then I consider the quantization of these systems using several approaches: Dirac's method, Dirac-Fock quantization, and the BRST formalism. In the cases of the relativistic particle and minisuperspace I consider first the quantization of one branch of the constraint at the time and then discuss the backgrounds in which it is possible to quantize simultaneously both branches. I motivate and define the inner product, and obtain, for example, the Klein-Gordon inner product for the relativistic case. Then I show how to construct phase space path integral representations for amplitudes in these approaches--the Batalin-Fradkin-Vilkovisky (BFV) and the Faddeev path integrals --from which one can then derive the path integrals in coordinate space--the Faddeev-Popov path integral and the geometric path integral. In particular I establish the connection between the Hilbert space representation and the range of the lapse in the path integrals. I also examine the class of paths that contribute in the path integrals and how they affect space-time covariance, concluding that it is consistent to take paths that move forward in time only when there is no electric field. The key elements in this analysis are the space-like paths and the behavior of the action under the non-trivial ( Z_2) element of the reparametrization group.
NASA Astrophysics Data System (ADS)
Maraschek, M.; Gude, A.; Igochine, V.; Zohm, H.; Alessi, E.; Bernert, M.; Cianfarani, C.; Coda, S.; Duval, B.; Esposito, B.; Fietz, S.; Fontana, M.; Galperti, C.; Giannone, L.; Goodman, T.; Granucci, G.; Marelli, L.; Novak, S.; Paccagnella, R.; Pautasso, G.; Piovesan, P.; Porte, L.; Potzel, S.; Rapson, C.; Reich, M.; Sauter, O.; Sheikh, U.; Sozzi, C.; Spizzo, G.; Stober, J.; Treutterer, W.; ZancaP; ASDEX Upgrade Team; TCV Team; the EUROfusion MST1 Team
2018-01-01
Routine reaction to approaching disruptions in tokamaks is currently largely limited to machine protection by mitigating an ongoing disruption, which remains a basic requirement for ITER and DEMO [1]. Nevertheless, a mitigated disruption still generates stress to the device. Additionally, in future fusion devices, high-performance discharge time itself will be very valuable. Instead of reacting only on generic features, occurring shortly before the disruption, the ultimate goal is to actively avoid approaching disruptions at an early stage, sustain the discharges whenever possible and restrict mitigated disruptions to major failures. Knowledge of the most relevant root causes and the corresponding chain of events leading to disruption, the disruption path, is a prerequisite. For each disruption path, physics-based sensors and adequate actuators must be defined and their limitations considered. Early reaction facilitates the efficiency of the actuators and enhances the probability of a full recovery. Thus, sensors that detect potential disruptions in time are to be identified. Once the entrance into a disruption path is detected, we propose a hierarchy of actions consisting of (I) recovery of the discharge to full performance or at least continuation with a less disruption-prone backup scenario, (II) complete avoidance of disruption to sustain the discharge or at least delay it for a controlled termination and, (III), only as last resort, a disruption mitigation. Based on the understanding of disruption paths, a hierarchical and path-specific handling strategy must be developed. Such schemes, testable in present devices, could serve as guidelines for ITER and DEMO operation. For some disruption paths, experiments have been performed at ASDEX Upgrade and TCV. Disruptions were provoked in TCV by impurity injection into ELMy H-mode discharges and in ASDEX Upgrade by forcing a density limit in H-mode discharges. The new approach proposed in this paper is discussed for these cases. For the H-mode density limit sensors used so far react too late. Thus a plasma-state boundary is proposed, that can serve as an adequate early sensor for avoiding density limit disruptions in H-modes and for recovery to full performance.
Data-Based Predictive Control with Multirate Prediction Step
NASA Technical Reports Server (NTRS)
Barlow, Jonathan S.
2010-01-01
Data-based predictive control is an emerging control method that stems from Model Predictive Control (MPC). MPC computes current control action based on a prediction of the system output a number of time steps into the future and is generally derived from a known model of the system. Data-based predictive control has the advantage of deriving predictive models and controller gains from input-output data. Thus, a controller can be designed from the outputs of complex simulation code or a physical system where no explicit model exists. If the output data happens to be corrupted by periodic disturbances, the designed controller will also have the built-in ability to reject these disturbances without the need to know them. When data-based predictive control is implemented online, it becomes a version of adaptive control. One challenge of MPC is computational requirements increasing with prediction horizon length. This paper develops a closed-loop dynamic output feedback controller that minimizes a multi-step-ahead receding-horizon cost function with multirate prediction step. One result is a reduced influence of prediction horizon and the number of system outputs on the computational requirements of the controller. Another result is an emphasis on portions of the prediction window that are sampled more frequently. A third result is the ability to include more outputs in the feedback path than in the cost function.
Interferometric weak measurement of photon polarization
NASA Astrophysics Data System (ADS)
Iinuma, Masataka; Suzuki, Yutaro; Taguchi, Gen; Kadoya, Yutaka; Hofmann, Holger F.
2011-10-01
We realize a minimum back-action quantum non-demolition measurement of variable strength on photon polarization in the diagonal(PM) basis by two-mode path interference. This method uses the phase difference between the positive (P) and negative (M) superpositions in the interference between the horizontal (H) and vertical (V) polarized paths in the input beam. Although the interference can not occur when the H and V polarizations are distinguishable, a well-controlled amount of interference is induced by erasing the H and V information using a coherent rotation of polarization toward a common diagonal polarization. This method is particularly suitable for the realization of weak measurements, where the control of the back-action is essential.
Báscolo, Ernesto Pablo; Yavich, Natalia; Denis, Jean-Louis
2016-01-01
Abstract Background Primary health care (PHC)-based reforms have had different results in Latin America. Little attention has been paid to the enablers of collective action capacities required to produce a comprehensive PHC approach. Objective To analyse the enablers of collective action capacities to transform health systems towards a comprehensive PHC approach in Latin American PHC-based reforms. Methods We conducted a longitudinal, retrospective case study of three municipal PHC-based reforms in Bolivia and Argentina. We used multiple data sources and methodologies: document review; interviews with policymakers, managers and practitioners; and household and services surveys. We used temporal bracketing to analyse how the dynamic of interaction between the institutional reform process and the collective action characteristics enabled or hindered the enablers of collective action capacities required to produce the envisioned changes. Results The institutional structuring dynamics and collective action capacities were different in each case. In Cochabamba, there was an ‘interrupted’ structuring process that achieved the establishment of a primary level with a selective PHC approach. In Vicente López, there was a ‘path-dependency’ structuring process that permitted the consolidation of a ‘primary care’ approach, but with limited influence in hospitals. In Rosario, there was a ‘dialectic’ structuring process that favoured the development of the capacities needed to consolidate a comprehensive PHC approach that permeates the entire system. Conclusion The institutional change processes achieved the development of a primary health care level with different degrees of consolidation and system-wide influence given how the characteristics of each collective action enabled or hindered the ‘structuring’ processes. PMID:27209640
Logistic Regression and Path Analysis Method to Analyze Factors influencing Students’ Achievement
NASA Astrophysics Data System (ADS)
Noeryanti, N.; Suryowati, K.; Setyawan, Y.; Aulia, R. R.
2018-04-01
Students' academic achievement cannot be separated from the influence of two factors namely internal and external factors. The first factors of the student (internal factors) consist of intelligence (X1), health (X2), interest (X3), and motivation of students (X4). The external factors consist of family environment (X5), school environment (X6), and society environment (X7). The objects of this research are eighth grade students of the school year 2016/2017 at SMPN 1 Jiwan Madiun sampled by using simple random sampling. Primary data are obtained by distributing questionnaires. The method used in this study is binary logistic regression analysis that aims to identify internal and external factors that affect student’s achievement and how the trends of them. Path Analysis was used to determine the factors that influence directly, indirectly or totally on student’s achievement. Based on the results of binary logistic regression, variables that affect student’s achievement are interest and motivation. And based on the results obtained by path analysis, factors that have a direct impact on student’s achievement are students’ interest (59%) and students’ motivation (27%). While the factors that have indirect influences on students’ achievement, are family environment (97%) and school environment (37).
Girsanov reweighting for path ensembles and Markov state models
NASA Astrophysics Data System (ADS)
Donati, L.; Hartmann, C.; Keller, B. G.
2017-06-01
The sensitivity of molecular dynamics on changes in the potential energy function plays an important role in understanding the dynamics and function of complex molecules. We present a method to obtain path ensemble averages of a perturbed dynamics from a set of paths generated by a reference dynamics. It is based on the concept of path probability measure and the Girsanov theorem, a result from stochastic analysis to estimate a change of measure of a path ensemble. Since Markov state models (MSMs) of the molecular dynamics can be formulated as a combined phase-space and path ensemble average, the method can be extended to reweight MSMs by combining it with a reweighting of the Boltzmann distribution. We demonstrate how to efficiently implement the Girsanov reweighting in a molecular dynamics simulation program by calculating parts of the reweighting factor "on the fly" during the simulation, and we benchmark the method on test systems ranging from a two-dimensional diffusion process and an artificial many-body system to alanine dipeptide and valine dipeptide in implicit and explicit water. The method can be used to study the sensitivity of molecular dynamics on external perturbations as well as to reweight trajectories generated by enhanced sampling schemes to the original dynamics.
The college journey and academic engagement: how metaphor use enhances identity-based motivation.
Landau, Mark J; Oyserman, Daphna; Keefer, Lucas A; Smith, George C
2014-05-01
People commonly talk about goals metaphorically as destinations on physical paths extending into the future or as contained in future periods. Does metaphor use have consequences for people's motivation to engage in goal-directed action? Three experiments examine the effect of metaphor use on students' engagement with their academic possible identity: their image of themselves as academically successful graduates. Students primed to frame their academic possible identity using the goal-as-journey metaphor reported stronger academic intention, and displayed increased effort on academic tasks, compared to students primed with a nonacademic possible identity, a different metaphoric framing (goal-as-contained-entity), and past academic achievements (Studies 1-2). This motivating effect persisted up to a week later as reflected in final exam performance (Study 3). Four experiments examine the cognitive processes underlying this effect. Conceptual metaphor theory posits that an accessible metaphor transfers knowledge between dissimilar concepts. As predicted in this paradigm, a journey-metaphoric framing of a possible academic identity transferred confidence in the procedure, or action sequence, required to attain that possible identity, which in turn led participants to perceive that possible identity as more connected to their current identity (Study 4). Drawing on identity-based motivation theory, we hypothesized that strengthened current/possible identity connection would mediate the journey framing's motivating effect. This mediational process predicted students' academic engagement (Study 5) and an online sample's engagement with possible identities in other domains (Study 6). Also as predicted, journey framing increased academic engagement particularly among students reporting a weak connection to their academic possible identity (Study 7).
Darling, Aaron E.
2009-01-01
Inversions are among the most common mutations acting on the order and orientation of genes in a genome, and polynomial-time algorithms exist to obtain a minimal length series of inversions that transform one genome arrangement to another. However, the minimum length series of inversions (the optimal sorting path) is often not unique as many such optimal sorting paths exist. If we assume that all optimal sorting paths are equally likely, then statistical inference on genome arrangement history must account for all such sorting paths and not just a single estimate. No deterministic polynomial algorithm is known to count the number of optimal sorting paths nor sample from the uniform distribution of optimal sorting paths. Here, we propose a stochastic method that uniformly samples the set of all optimal sorting paths. Our method uses a novel formulation of parallel Markov chain Monte Carlo. In practice, our method can quickly estimate the total number of optimal sorting paths. We introduce a variant of our approach in which short inversions are modeled to be more likely, and we show how the method can be used to estimate the distribution of inversion lengths and breakpoint usage in pathogenic Yersinia pestis. The proposed method has been implemented in a program called “MC4Inversion.” We draw comparison of MC4Inversion to the sampler implemented in BADGER and a previously described importance sampling (IS) technique. We find that on high-divergence data sets, MC4Inversion finds more optimal sorting paths per second than BADGER and the IS technique and simultaneously avoids bias inherent in the IS technique. PMID:20333186
Yield surface evolution for columnar ice
NASA Astrophysics Data System (ADS)
Zhou, Zhiwei; Ma, Wei; Zhang, Shujuan; Mu, Yanhu; Zhao, Shunpin; Li, Guoyu
A series of triaxial compression tests, which has capable of measuring the volumetric strain of the sample, were conducted on columnar ice. A new testing approach of probing the experimental yield surface was performed from a single sample in order to investigate yield and hardening behaviors of the columnar ice under complex stress states. Based on the characteristic of the volumetric strain, a new method of defined the multiaxial yield strengths of the columnar ice is proposed. The experimental yield surface remains elliptical shape in the stress space of effective stress versus mean stress. The effect of temperature, loading rate and loading path in the initial yield surface and deformation properties of the columnar ice were also studied. Subsequent yield surfaces of the columnar ice have been explored by using uniaxial and hydrostatic paths. The evolution of the subsequent yield surface exhibits significant path-dependent characteristics. The multiaxial hardening law of the columnar ice was established experimentally. A phenomenological yield criterion was presented for multiaxial yield and hardening behaviors of the columnar ice. The comparisons between the theoretical and measured results indicate that this current model is capable of giving a reasonable prediction for the multiaxial yield and post-yield properties of the columnar ice subjected to different temperature, loading rate and path conditions.
From large-eddy simulation to multi-UAVs sampling of shallow cumulus clouds
NASA Astrophysics Data System (ADS)
Lamraoui, Fayçal; Roberts, Greg; Burnet, Frédéric
2016-04-01
In-situ sampling of clouds that can provide simultaneous measurements at satisfying spatio-temporal resolutions to capture 3D small scale physical processes continues to present challenges. This project (SKYSCANNER) aims at bringing together cloud sampling strategies using a swarm of unmanned aerial vehicles (UAVs) based on Large-eddy simulation (LES). The multi-UAV-based field campaigns with a personalized sampling strategy for individual clouds and cloud fields will significantly improve the understanding of the unresolved cloud physical processes. An extensive set of LES experiments for case studies from ARM-SGP site have been performed using MesoNH model at high resolutions down to 10 m. The carried out simulations led to establishing a macroscopic model that quantifies the interrelationship between micro- and macrophysical properties of shallow convective clouds. Both the geometry and evolution of individual clouds are critical to multi-UAV cloud sampling and path planning. The preliminary findings of the current project reveal several linear relationships that associate many cloud geometric parameters to cloud related meteorological variables. In addition, the horizontal wind speed indicates a proportional impact on cloud number concentration as well as triggering and prolonging the occurrence of cumulus clouds. In the framework of the joint collaboration that involves a Multidisciplinary Team (including institutes specializing in aviation, robotics and atmospheric science), this model will be a reference point for multi-UAVs sampling strategies and path planning.
Statistical Symbolic Execution with Informed Sampling
NASA Technical Reports Server (NTRS)
Filieri, Antonio; Pasareanu, Corina S.; Visser, Willem; Geldenhuys, Jaco
2014-01-01
Symbolic execution techniques have been proposed recently for the probabilistic analysis of programs. These techniques seek to quantify the likelihood of reaching program events of interest, e.g., assert violations. They have many promising applications but have scalability issues due to high computational demand. To address this challenge, we propose a statistical symbolic execution technique that performs Monte Carlo sampling of the symbolic program paths and uses the obtained information for Bayesian estimation and hypothesis testing with respect to the probability of reaching the target events. To speed up the convergence of the statistical analysis, we propose Informed Sampling, an iterative symbolic execution that first explores the paths that have high statistical significance, prunes them from the state space and guides the execution towards less likely paths. The technique combines Bayesian estimation with a partial exact analysis for the pruned paths leading to provably improved convergence of the statistical analysis. We have implemented statistical symbolic execution with in- formed sampling in the Symbolic PathFinder tool. We show experimentally that the informed sampling obtains more precise results and converges faster than a purely statistical analysis and may also be more efficient than an exact symbolic analysis. When the latter does not terminate symbolic execution with informed sampling can give meaningful results under the same time and memory limits.
The PATH project in eight European countries: an evaluation.
Veillard, Jeremy Henri Maurice; Schiøtz, Michaela Louise; Guisset, Ann-Lise; Brown, Adalsteinn Davidson; Klazinga, Niek S
2013-01-01
This paper's aim is to evaluate the perceived impact and the enabling factors and barriers experienced by hospital staff participating in an international hospital performance measurement project focused on internal quality improvement. Semi-structured interviews involving international hospital performance measurement project coordinators, including 140 hospitals from eight European countries (Belgium, Estonia, France, Germany, Hungary, Poland, Slovakia and Slovenia). Inductively analyzing the interview transcripts was carried out using the grounded theory approach. Even when public reporting is absent, the project was perceived as having stimulated performance measurement and quality improvement initiatives in participating hospitals. Attention should be paid to leadership/ownership, context, content (project intrinsic features) and processes supporting elements. Generalizing the findings is limited by the study's small sample size. Possible implications for the WHO European Regional Office and for participating hospitals would be to assess hospital preparedness to participate in the PATH project, depending on context, process and structural elements; and enhance performance and practice benchmarking through suggested approaches. This research gathered rich and unique material related to an international performance measurement project. It derived actionable findings.
Daugherty, Ana M; Yuan, Peng; Dahle, Cheryl L; Bender, Andrew R; Yang, Yiqin; Raz, Naftali
2015-09-01
Studies of human navigation in virtual maze environments have consistently linked advanced age with greater distance traveled between the start and the goal and longer duration of the search. Observations of search path geometry suggest that routes taken by older adults may be unnecessarily complex and that excessive path complexity may be an indicator of cognitive difficulties experienced by older navigators. In a sample of healthy adults, we quantify search path complexity in a virtual Morris water maze with a novel method based on fractal dimensionality. In a two-level hierarchical linear model, we estimated improvement in navigation performance across trials by a decline in route length, shortening of search time, and reduction in fractal dimensionality of the path. While replicating commonly reported age and sex differences in time and distance indices, a reduction in fractal dimension of the path accounted for improvement across trials, independent of age or sex. The volumes of brain regions associated with the establishment of cognitive maps (parahippocampal gyrus and hippocampus) were related to path dimensionality, but not to the total distance and time. Thus, fractal dimensionality of a navigational path may present a useful complementary method of quantifying performance in navigation. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Oeffinger, Thomas R. (Inventor); Tocci, Leonard R. (Inventor)
1977-01-01
There is described a passive replicator device to be used in magnetic bubble domain systems. The replicator is passive, i.e., does not require an active element such as a current source or the like, and both propagates and replicates bubble domains. In a preferred embodiment, the replicator uses chevron type elements arranged in an appropriate pattern so as to interact with a pair of propagation paths wherein bubble domains are propagated. A bubble in one propagation path is routinely transferred therealong and, concurrently, replicated by the instant device into another propagation path. A plurality of elements arranged in juxtaposition to the chevrons assists in controlling the propagation of the bubbles through the respective propagation paths and, at the appropriate time, provides a cutting action wherein a bubble which is elongated between the chevrons of the two propagation paths is split into two separate bubbles.
ERIC Educational Resources Information Center
Schulz, Scott Andrew; Lucido, Jerome A.
2011-01-01
The University of Southern California (USC) Center for Enrollment Research, Policy, and Practice, dedicated to research and action that advances the societal benefit of enrollment policies and practices in higher education, sought to shed light on professional preparation, career path and development issues related to chief admission officers and…
Effects of affective picture viewing on postural control.
Stins, John F; Beek, Peter J
2007-10-04
Emotion theory holds that unpleasant events prime withdrawal actions, whereas pleasant events prime approach actions. Recent studies have suggested that passive viewing of emotion eliciting images results in postural adjustments, which become manifest as changes in body center of pressure (COP) trajectories. From those studies it appears that posture is modulated most when viewing pictures with negative valence. The present experiment was conducted to test the hypothesis that pictures with negative valence have a greater impact on postural control than neutral or positive ones. Thirty-four healthy subjects passively viewed a series of emotion eliciting images, while standing either in a bipedal or unipedal stance on a force plate. The images were adopted from the International Affective Picture System (IAPS). We analysed mean and variability of the COP and the length of the associated sway path as a function of emotion. The mean position of the COP was unaffected by emotion, but unipedal stance resulted in overall greater body sway than bipedal stance. We found a modest effect of emotion on COP: viewing pictures of mutilation resulted in a smaller sway path, but only in unipedal stance. We obtained valence and arousal ratings of the images with an independent sample of viewers. These subjects rated the unpleasant images as significantly less pleasant than neutral images, and the pleasant images as significantly more pleasant than neutral images. However, the subjects rated the images as overall less pleasant and less arousing than viewers in a closely comparable American study, pointing to unknown differences in viewer characteristics. Overall, viewing emotion eliciting images had little effect on body sway. Our finding of a reduction in sway path length when viewing pictures of mutilation was indicative of a freezing strategy, i.e. fear bradycardia. The results are consistent with current knowledge about the neuroanatomical organization of the emotion system and the neural control of behavior.
Effects of affective picture viewing on postural control
Stins, John F; Beek, Peter J
2007-01-01
Background Emotion theory holds that unpleasant events prime withdrawal actions, whereas pleasant events prime approach actions. Recent studies have suggested that passive viewing of emotion eliciting images results in postural adjustments, which become manifest as changes in body center of pressure (COP) trajectories. From those studies it appears that posture is modulated most when viewing pictures with negative valence. The present experiment was conducted to test the hypothesis that pictures with negative valence have a greater impact on postural control than neutral or positive ones. Thirty-four healthy subjects passively viewed a series of emotion eliciting images, while standing either in a bipedal or unipedal stance on a force plate. The images were adopted from the International Affective Picture System (IAPS). We analysed mean and variability of the COP and the length of the associated sway path as a function of emotion. Results The mean position of the COP was unaffected by emotion, but unipedal stance resulted in overall greater body sway than bipedal stance. We found a modest effect of emotion on COP: viewing pictures of mutilation resulted in a smaller sway path, but only in unipedal stance. We obtained valence and arousal ratings of the images with an independent sample of viewers. These subjects rated the unpleasant images as significantly less pleasant than neutral images, and the pleasant images as significantly more pleasant than neutral images. However, the subjects rated the images as overall less pleasant and less arousing than viewers in a closely comparable American study, pointing to unknown differences in viewer characteristics. Conclusion Overall, viewing emotion eliciting images had little effect on body sway. Our finding of a reduction in sway path length when viewing pictures of mutilation was indicative of a freezing strategy, i.e. fear bradycardia. The results are consistent with current knowledge about the neuroanatomical organization of the emotion system and the neural control of behavior. PMID:17916245
1994-12-07
set Ci is such that i C_ A and, in general, Ci n Cj 0 for i # j, The importance of the distinction n o ýt a av1 itIam i; the t Ulm hIt I 9B i l 16 a...be the M-dimensional slot assignment probability vector [01, . ., ’iM] T and Wi(0) as the expected node i waiting time. Our objective is to determine...Nominal Sample Path BP#m BP # (m+l) I I I! I I II * I II ,m A2,m :A3,m VIl m T l m T2,m 13 V3,m Figure 2b - (2,m) Phantom Slot Sample Path 8 3 A Schedule
Optimizing the Multisectoral Nutrition Policy Cycle: A Systems Perspective.
Lamstein, Sascha; Pomeroy-Stevens, Amanda; Webb, Patrick; Kennedy, Eileen
2016-12-01
Based on the data collected in Uganda, Nepal, and Ethiopia, the papers included in this supplement fill a critical gap in evidence regarding multisectoral National Nutrition Action Plans. The studies offer new data and new thinking on how and why governance, effective financial decentralization, and improved accountability all matter for nutrition actions in low-income countries. This introductory paper offers an overview of the current state of evidence and thinking on the multisectoral nutrition policy cycle, including how governance and financing support that process. It also explores the benefits of applying a systems lens to understand the dynamic, enabling processes of the policy cycle-from research to knowledge and ultimately action-and to provide more dynamic and accurate information for nutrition advocacy and evidence-based decision-making. It concludes with key findings from the 5 country-level studies included. Several important themes emerge: the egregious gap in human resources needed for effective nutrition actions in most low-income settings, the value of research on bottlenecks and successes, and the need for routine monitoring of national policies and plans to measure their effectiveness in achieving both their own stated goals and global sustainable development goals. Reviewing these studies together provides a path forward in building stronger, evidence-based multisectoral nutrition policies and supporting implementation of the nutrition activities included within them. © The Author(s) 2016.
Wei Liao; Rohr, Karl; Chang-Ki Kang; Zang-Hee Cho; Worz, Stefan
2016-01-01
We propose a novel hybrid approach for automatic 3D segmentation and quantification of high-resolution 7 Tesla magnetic resonance angiography (MRA) images of the human cerebral vasculature. Our approach consists of two main steps. First, a 3D model-based approach is used to segment and quantify thick vessels and most parts of thin vessels. Second, remaining vessel gaps of the first step in low-contrast and noisy regions are completed using a 3D minimal path approach, which exploits directional information. We present two novel minimal path approaches. The first is an explicit approach based on energy minimization using probabilistic sampling, and the second is an implicit approach based on fast marching with anisotropic directional prior. We conducted an extensive evaluation with over 2300 3D synthetic images and 40 real 3D 7 Tesla MRA images. Quantitative and qualitative evaluation shows that our approach achieves superior results compared with a previous minimal path approach. Furthermore, our approach was successfully used in two clinical studies on stroke and vascular dementia.
Pathway Based Toxicology and Fit-for-Purpose Assays.
Clewell, Rebecca A; McMullen, Patrick D; Adeleye, Yeyejide; Carmichael, Paul L; Andersen, Melvin E
The field of toxicity testing for non-pharmaceutical chemicals is in flux with multiple initiatives in North America and the EU to move away from animal testing to mode-of-action based in vitro assays. In this arena, there are still obstacles to overcome, such as developing appropriate cellular assays, creating pathway-based dose-response models and refining in vitro-in vivo extrapolation (IVIVE) tools. Overall, it is necessary to provide assurances that these new approaches are adequately protective of human and ecological health. Another major challenge for individual scientists and regulatory agencies is developing a cultural willingness to shed old biases developed around animal tests and become more comfortable with mode-of-action based assays in human cells. At present, most initiatives focus on developing in vitro alternatives and assessing how well these alternative methods reproduce past results related to predicting organism level toxicity in intact animals. The path forward requires looking beyond benchmarking against high dose animal studies. We need to develop targeted cellular assays, new cell biology-based extrapolation models for assessing regions of safety for chemical exposures in human populations, and mode-of-action-based approaches which are constructed on an understanding of human biology. Furthermore, it is essential that assay developers have the flexibility to 'validate' against the most appropriate mode-of-action data rather than against apical endpoints in high dose animal studies. This chapter demonstrates the principles of fit-for-purpose assay development using pathway-targeted case studies. The projects include p53-mdm2-mediated DNA-repair, estrogen receptor-mediated cell proliferation and PPARα receptor-mediated liver responses.
ERIC Educational Resources Information Center
Mason Heinrichs, Kim R.
2016-01-01
Universities claim that improved critical thinking ability is an educational outcome for their graduates, but they seldom create a path for students to achieve that outcome. In this practitioner action research study, the author created a job aid, entitled "Critical Thinking as a Differentiator for Distinguished Performance," to help…
ERP Evidence for Telicity Effects on Syntactic Processing in Garden-Path Sentences
ERIC Educational Resources Information Center
Malaia, Evguenia; Wilbur, Ronnie B.; Weber-Fox, Christine
2009-01-01
Verbs contain multifaceted information about both the semantics of an action, and potential argument structures. Linguistic theory classifies verbs according to whether the denoted action has an inherent (telic) end-point ("fall," "awaken"), or whether it is considered homogenous, or atelic ("read," "worship"). The aim of our study was to examine…
Perceiving and Reenacting Spatiotemporal Characteristics of Walking Sounds
ERIC Educational Resources Information Center
Young, William; Rodger, Matthew; Craig, Cathy M.
2013-01-01
Many studies have examined the processes involved in recognizing types of human action through sound, but little is known about whether the physical characteristics of an action (such as kinetic and kinematic parameters) can be perceived and imitated from sound. Twelve young healthy adults listened to recordings of footsteps on a gravel path taken…
Path planning and execution monitoring for a planetary rover
NASA Technical Reports Server (NTRS)
Gat, Erann; Slack, Marc G.; Miller, David P.; Firby, R. James
1990-01-01
A path planner and an execution monitoring planner that will enable the rover to navigate to its various destinations safely and correctly while detecting and avoiding hazards are described. An overview of the complete architecture is given. Implementation and testbeds are described. The robot can detect unforseen obstacles and take appropriate action. This includes having the rover back away from the hazard and mark the area as untraversable in the in the rover's internal map. The experiments have consisted of paths roughly 20 m in length. The architecture works with a large variety of rover configurations with different kinematic constraints.
The phenotypic equilibrium of cancer cells: From average-level stability to path-wise convergence.
Niu, Yuanling; Wang, Yue; Zhou, Da
2015-12-07
The phenotypic equilibrium, i.e. heterogeneous population of cancer cells tending to a fixed equilibrium of phenotypic proportions, has received much attention in cancer biology very recently. In the previous literature, some theoretical models were used to predict the experimental phenomena of the phenotypic equilibrium, which were often explained by different concepts of stabilities of the models. Here we present a stochastic multi-phenotype branching model by integrating conventional cellular hierarchy with phenotypic plasticity mechanisms of cancer cells. Based on our model, it is shown that: (i) our model can serve as a framework to unify the previous models for the phenotypic equilibrium, and then harmonizes the different kinds of average-level stabilities proposed in these models; and (ii) path-wise convergence of our model provides a deeper understanding to the phenotypic equilibrium from stochastic point of view. That is, the emergence of the phenotypic equilibrium is rooted in the stochastic nature of (almost) every sample path, the average-level stability just follows from it by averaging stochastic samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
Method and tool for network vulnerability analysis
Swiler, Laura Painton [Albuquerque, NM; Phillips, Cynthia A [Albuquerque, NM
2006-03-14
A computer system analysis tool and method that will allow for qualitative and quantitative assessment of security attributes and vulnerabilities in systems including computer networks. The invention is based on generation of attack graphs wherein each node represents a possible attack state and each edge represents a change in state caused by a single action taken by an attacker or unwitting assistant. Edges are weighted using metrics such as attacker effort, likelihood of attack success, or time to succeed. Generation of an attack graph is accomplished by matching information about attack requirements (specified in "attack templates") to information about computer system configuration (contained in a configuration file that can be updated to reflect system changes occurring during the course of an attack) and assumed attacker capabilities (reflected in "attacker profiles"). High risk attack paths, which correspond to those considered suited to application of attack countermeasures given limited resources for applying countermeasures, are identified by finding "epsilon optimal paths."
Chiu, Chung-Yi; Lynch, Ruth T; Chan, Fong; Berven, Norman L
2011-08-01
To evaluate the Health Action Process Approach (HAPA) as a motivational model for physical activity self-management for people with multiple sclerosis (MS). Quantitative descriptive research design using path analysis. One hundred ninety-five individuals with MS were recruited from the National Multiple Sclerosis Society and a neurology clinic at a university teaching hospital in the Midwest. Outcome was measured by the Physical Activity Stages of Change Instrument, along with measures for nine predictors (severity, action self-efficacy, outcome expectancy, risk perception, perceived barriers, intention, maintenance self-efficacy, action and coping planning, and recovery self-efficacy). The respecified HAPA physical activity model fit the data relatively well (goodness-of-fit index = .92, normed fit index = .91, and comparative fit index = .93) explaining 38% of the variance in physical activity. Recovery self-efficacy, action and coping planning, and perceived barriers directly contributed to the prediction of physical activity. Outcome expectancy significantly influenced intention and the relationship between intention and physical activity is mediated by action and coping planning. Action self-efficacy, maintenance self-efficacy, and recovery self-efficacy directly or indirectly affected physical activity. Severity of MS and action self-efficacy had an inverse relationship with perceived barriers and perceived barriers influenced physical activity. Empirical support was found for the proposed HAPA model of physical activity for people with MS. The HAPA model appears to provide useful information for clinical rehabilitation and health promotion interventions.
Agent Reward Shaping for Alleviating Traffic Congestion
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Agogino, Adrian
2006-01-01
Traffic congestion problems provide a unique environment to study how multi-agent systems promote desired system level behavior. What is particularly interesting in this class of problems is that no individual action is intrinsically "bad" for the system but that combinations of actions among agents lead to undesirable outcomes, As a consequence, agents need to learn how to coordinate their actions with those of other agents, rather than learn a particular set of "good" actions. This problem is ubiquitous in various traffic problems, including selecting departure times for commuters, routes for airlines, and paths for data routers. In this paper we present a multi-agent approach to two traffic problems, where far each driver, an agent selects the most suitable action using reinforcement learning. The agent rewards are based on concepts from collectives and aim to provide the agents with rewards that are both easy to learn and that if learned, lead to good system level behavior. In the first problem, we study how agents learn the best departure times of drivers in a daily commuting environment and how following those departure times alleviates congestion. In the second problem, we study how agents learn to select desirable routes to improve traffic flow and minimize delays for. all drivers.. In both sets of experiments,. agents using collective-based rewards produced near optimal performance (93-96% of optimal) whereas agents using system rewards (63-68%) barely outperformed random action selection (62-64%) and agents using local rewards (48-72%) performed worse than random in some instances.
1981-07-01
reconsiderations, status reports, and followup actions. The NTSB system of priority classification for action provides for documented NTSB followup action for...controllers transmitted information to the flightcrew regarding the location and intensity of the thunderstorm system in the path of the flight, although other... system . Testimony given at a public hearing held in Omaha, Nebraska, during September 1980 indicated that the full extent of the area of precipitation and
Sample and data processing considerations for the NIST quantitative infrared database
NASA Astrophysics Data System (ADS)
Chu, Pamela M.; Guenther, Franklin R.; Rhoderick, George C.; Lafferty, Walter J.; Phillips, William
1999-02-01
Fourier-transform infrared (FT-IR) spectrometry has become a useful real-time in situ analytical technique for quantitative gas phase measurements. In fact, the U.S. Environmental Protection Agency (EPA) has recently approved open-path FT-IR monitoring for the determination of hazardous air pollutants (HAP) identified in EPA's Clean Air Act of 1990. To support infrared based sensing technologies, the National Institute of Standards and Technology (NIST) is currently developing a standard quantitative spectral database of the HAPs based on gravimetrically prepared standard samples. The procedures developed to ensure the quantitative accuracy of the reference data are discussed, including sample preparation, residual sample contaminants, data processing considerations, and estimates of error.
Investigation of real tissue water equivalent path lengths using an efficient dose extinction method
NASA Astrophysics Data System (ADS)
Zhang, Rongxiao; Baer, Esther; Jee, Kyung-Wook; Sharp, Gregory C.; Flanz, Jay; Lu, Hsiao-Ming
2017-07-01
For proton therapy, an accurate conversion of CT HU to relative stopping power (RSP) is essential. Validation of the conversion based on real tissue samples is more direct than the current practice solely based on tissue substitutes and can potentially address variations over the population. Based on a novel dose extinction method, we measured water equivalent path lengths (WEPL) on animal tissue samples to evaluate the accuracy of CT HU to RSP conversion and potential variations over a population. A broad proton beam delivered a spread out Bragg peak to the samples sandwiched between a water tank and a 2D ion-chamber detector. WEPLs of the samples were determined from the transmission dose profiles measured as a function of the water level in the tank. Tissue substitute inserts and Lucite blocks with known WEPLs were used to validate the accuracy. A large number of real tissue samples were measured. Variations of WEPL over different batches of tissue samples were also investigated. The measured WEPLs were compared with those computed from CT scans with the Stoichiometric calibration method. WEPLs were determined within ±0.5% percentage deviation (% std/mean) and ±0.5% error for most of the tissue surrogate inserts and the calibration blocks. For biological tissue samples, percentage deviations were within ±0.3%. No considerable difference (<1%) in WEPL was observed for the same type of tissue from different sources. The differences between measured WEPLs and those calculated from CT were within 1%, except for some bony tissues. Depending on the sample size, each dose extinction measurement took around 5 min to produce ~1000 WEPL values to be compared with calculations. This dose extinction system measures WEPL efficiently and accurately, which allows the validation of CT HU to RSP conversions based on the WEPL measured for a large number of samples and real tissues.
Evaluation of a Proposed Modified F/FB-111 Crew Seat and Restraint System.
1981-11-01
each target’s path in the X-Z plane throughout the impact. (See sample plots.) Computing velocities and accelerations was a simple matter in the...until this work unit is retired. The experimental results will eventually be recorded within a permanent data bank at AFAMRL. The sample data plots were... experimental results will eventually be recorded within a permanent data bank at AFAMRL. The sample data plots were selected based on the subject who had the
Action with Acceleration II: Euclidean Hamiltonian and Jordan Blocks
NASA Astrophysics Data System (ADS)
Baaquie, Belal E.
2013-10-01
The Euclidean action with acceleration has been analyzed in Ref. 1, and referred to henceforth as Paper I, for its Hamiltonian and path integral. In this paper, the state space of the Hamiltonian is analyzed for the case when it is pseudo-Hermitian (equivalent to a Hermitian Hamiltonian), as well as the case when it is inequivalent. The propagator is computed using both creation and destruction operators as well as the path integral. A state space calculation of the propagator shows the crucial role played by the dual state vectors that yields a result impossible to obtain from a Hermitian Hamiltonian. When it is not pseudo-Hermitian, the Hamiltonian is shown to be a direct sum of Jordan blocks.
Landon, Matthew K.; Belitz, Kenneth
2008-01-01
Ground-water quality in the approximately 1,695-square-mile Central Eastside study unit (CESJO) was investigated from March through June 2006 as part of the Statewide Basin Assessment Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The study was designed to provide a spatially unbiased assessment of raw ground-water quality within CESJO, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 78 wells in Merced and Stanislaus Counties. Fifty-eight of the 78 wells were selected using a randomized grid-based method to provide statistical representation of the study unit (grid wells). Twenty of the wells were selected to evaluate changes in water chemistry along selected lateral or vertical ground-water flow paths in the aquifer (flow-path wells). The ground-water samples were analyzed for a large number of synthetic organic constituents [volatile organic compounds (VOCs), gasoline oxygenates and their degradates, pesticides and pesticide degradates], constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), and 1,2,3-trichloropropane (1,2,3-TCP)], inorganic constituents that can occur naturally [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, carbon-14, and uranium isotopes and stable isotopes of hydrogen, oxygen, nitrogen, sulfur, and carbon], and dissolved noble and other gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, samples for matrix spikes) were collected for approximately one-sixth of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the quality-control results showed that the environmental data were of good quality, with low bias and low variability, and resulted in censoring of less than 0.3 percent of the detections found in ground-water samples. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CADPH) and thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CADPH. VOCs and pesticides were detected in approximately half of the grid wells, and all detections in samples from CESJO wells were below health-based thresholds. All detections of nutrients and major elements in grid wells also were below health-based thresholds. Most detections of constituents of special interest, trace elements, and radioactive constituents in samples from grid wells were below health-based thresholds. Exceptions included two detections of arsenic that were above the USEPA maximum contaminant level (MCL-US), one detection of lead above the USEPA action level (AL-US), and one detection of vanadium and three detections of 1,2,3-TCP that were above the CADPH notification levels (NL-CA). All detections of radioactive constituents were below health-based thresholds, although fourteen samples had activities of radon-222 above the lower proposed MCL-US. Most of th
ERIC Educational Resources Information Center
Cavanaugh, Cathy; Sessums, Christopher; Drexler, Wendy
2015-01-01
This essay is a call for rethinking our approach to research in digital learning. It plots a path founded in social trends and advances in education. A brief review of these trends and advances is followed by discussion of what flattened research might look like at scale. Scaling research in digital learning is crucial to advancing understanding…
Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images †
Ran, Lingyan; Zhang, Yanning; Zhang, Qilin; Yang, Tao
2017-01-01
Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the “navigation via classification” task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN), trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications. PMID:28604624
Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images.
Ran, Lingyan; Zhang, Yanning; Zhang, Qilin; Yang, Tao
2017-06-12
Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the "navigation via classification" task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN), trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications.
Material identification based upon energy-dependent attenuation of neutrons
Marleau, Peter
2015-10-06
Various technologies pertaining to identifying a material in a sample and imaging the sample are described herein. The material is identified by computing energy-dependent attenuation of neutrons that is caused by presence of the sample in travel paths of the neutrons. A mono-energetic neutron generator emits the neutron, which is downscattered in energy by a first detector unit. The neutron exits the first detector unit and is detected by a second detector unit subsequent to passing through the sample. Energy-dependent attenuation of neutrons passing through the sample is computed based upon a computed energy of the neutron, wherein such energy can be computed based upon 1) known positions of the neutron generator, the first detector unit, and the second detector unit; or 2) computed time of flight of neutrons between the first detector unit and the second detector unit.
Two Meter Flight Path - Time of Flight Positron Annihilation Induced Auger Electron Spectrometer
NASA Astrophysics Data System (ADS)
Mukherjee, S.; Shastry, K.; Maddox, W.; Weiss, A. H.
2008-03-01
Details of the design and construction of a new time of flight positron annihilation induced Auger electron (TOF-PAES) spectrometer are presented. The new spectrometer will be equipped with a 2 meter long ``TOF'' tube that can be biased at a potential different from that of the sample in order to increase or decrease the kinetic energy of the electrons traveling through the tube. The time of flight will be determined from timing signals obtained from the detection of the annihilation gamma (signaling the start of the flight) and detection of the annihilation induced Auger electron at the end of the 2 meter flight path (signaling the end of the flight). The 2 meter long flight path is a factor of two longer than used in previous TOF-PAES systems. The longer flight path can be expected to result in a fractional energy width: delta E/ E that is .5ex1 -.1em/ -.15em.25ex2 as large as the current UTA lab based TOF-PAES spectrometer.
NASA Astrophysics Data System (ADS)
Martien, P. T.; Guha, A.; Newman, S.; Young, A.; Bower, J.; Perkins, I.; Randall, S.; Stevenson, E.; Hilken, H.
2017-12-01
The Bay Area Air Quality Management District, the San Francisco Bay Area's air quality regulatory agency, has set a goal to reduce the region's greenhouse gas (GHG) emissions 80% below 1990 levels by 2050, consistent with the State of California's climate goals. Recently, the Air District's governing board adopted a 2017 Clean Air Plan advancing the agency's vision and including actions to put the region on a path to achieving the 2050 goal while also reducing air pollution and related health impacts. The Plan includes GHG rule-making efforts, policy initiatives, local government partnerships, outreach, grants and incentives, encompassing over 250 specific implementation actions across all economic sectors to effect ambitious emission reductions in the region. To support the 2017 Plan, the Air District has built a mobile measurement platform (GHG research van) to perform targeted CH4 emissions hotspot detection and source attribution. Instruments in the van measure CH4, CO2 and N2O in ambient plumes. Coincident measurements of source tracers like isotopic methane (13C - CH4), CO and ethane (C2H6) provide the capability to distinguish between biogenic, combustion-based and fossil-based fugitive methane sources. We report observations of CH4 plumes from source-specific measurements in and around facilities including a wastewater treatment plant, a composting operation, a waste-to-energy anaerobic digestion plant and a few refineries. We performed leak surveys inside several electric utility-operated facilities including a power plant and an underground natural gas storage facility. We sampled exhaust from a roadway tunnel and computed fleet-averaged automobile-related CH4 and N2O emission factors. We used tracer-to-tracer emission ratios to create chemical signatures of emissions from each sampled source category. We compare measurement-based ratios with those used to derive the regional GHG inventory. Data from these and other sources will lead to an improved understanding of GHG emissions from well- and lesser-known CH4 sources in the region, key to resolving the differences between top-down estimates (Fairley and Fischer, 2015; Jeong et al., 2016) and the regional bottom-up inventory.
Goal-directed action is automatically biased towards looming motion
Moher, Jeff; Sit, Jonathan; Song, Joo-Hyun
2014-01-01
It is known that looming motion can capture attention regardless of an observer’s intentions. Real-world behavior, however, frequently involves not just attentional selection, but selection for action. Thus, it is important to understand the impact of looming motion on goal-directed action to gain a broader perspective on how stimulus properties bias human behavior. We presented participants with a visually-guided reaching task in which they pointed to a target letter presented among non-target distractors. On some trials, one of the pre-masks at the location of the upcoming search objects grew rapidly in size, creating the appearance of a “looming” target or distractor. Even though looming motion did not predict the target location, the time required to reach to the target was shorter when the target loomed compared to when a distractor loomed. Furthermore, reach movement trajectories were pulled towards the location of a looming distractor when one was present, a pull that was greater still when the looming motion was on a collision path with the participant. We also contrast reaching data with data from a similarly designed visual search task requiring keypress responses. This comparison underscores the sensitivity of visually-guided reaching data, as some experimental manipulations, such as looming motion path, affected reach trajectories but not keypress measures. Together, the results demonstrate that looming motion biases visually-guided action regardless of an observer’s current behavioral goals, affecting not only the time required to reach to targets but also the path of the observer’s hand movement itself. PMID:25159287
76 FR 42161 - Notice of Final Federal Agency Actions on Proposed Highway in California
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-18
... Gilman Drive; installation of new ramp meters; and, construction of a bicycle path along I-5. The project... at http://www.dot.ca.gov/dist11/envir.htm . Pending Federal actions include: 1. Section 401 Water Quality Certification from the San Diego Regional Water Quality Control Board (RWQCB), under Section 401...
Johnson, Sheri L; Tharp, Jordan A; Peckham, Andrew D; Carver, Charles S; Haase, Claudia M
2017-09-01
A growing empirical literature indicates that emotion-related impulsivity (compared to impulsivity that is unrelated to emotion) is particularly relevant for understanding a broad range of psychopathologies. Recent work, however, has differentiated two forms of emotion-related impulsivity: A factor termed Pervasive Influence of Feelings captures tendencies for emotions (mostly negative emotions) to quickly shape thoughts, and a factor termed Feelings Trigger Action captures tendencies for positive and negative emotions to quickly and reflexively shape behaviour and speech. This study used path modelling to consider links from emotion-related and non-emotion-related impulsivity to a broad range of psychopathologies. Undergraduates completed self-report measures of impulsivity, depression, anxiety, aggression, and substance use symptoms. A path model (N = 261) indicated specificity of these forms of impulsivity. Pervasive Influence of Feelings was related to anxiety and depression, whereas Feelings Trigger Action and non-emotion-related impulsivity were related to aggression and substance use. The findings of this study suggest that emotion-relevant impulsivity could be a potentially important treatment target for a set of psychopathologies. Recent work has differentiated two forms of emotion-related impulsivity. This study tests a multivariate path model linking emotion-related and non-emotion-related impulsivity with multiple forms of psychopathology. Impulsive thoughts in response to negative emotions were related to anxiety and depression. Impulsive actions in response to emotions were related to aggression and substance use, as did non-emotion-related impulsivity. The study was limited by the reliance on self-report measures of impulsivity and psychopathology. There is a need for longitudinal work on how these forms of impulsivity predict the onset and course of psychopathology. © 2017 The British Psychological Society.
Drug-Path: a database for drug-induced pathways
Zeng, Hui; Cui, Qinghua
2015-01-01
Some databases for drug-associated pathways have been built and are publicly available. However, the pathways curated in most of these databases are drug-action or drug-metabolism pathways. In recent years, high-throughput technologies such as microarray and RNA-sequencing have produced lots of drug-induced gene expression profiles. Interestingly, drug-induced gene expression profile frequently show distinct patterns, indicating that drugs normally induce the activation or repression of distinct pathways. Therefore, these pathways contribute to study the mechanisms of drugs and drug-repurposing. Here, we present Drug-Path, a database of drug-induced pathways, which was generated by KEGG pathway enrichment analysis for drug-induced upregulated genes and downregulated genes based on drug-induced gene expression datasets in Connectivity Map. Drug-Path provides user-friendly interfaces to retrieve, visualize and download the drug-induced pathway data in the database. In addition, the genes deregulated by a given drug are highlighted in the pathways. All data were organized using SQLite. The web site was implemented using Django, a Python web framework. Finally, we believe that this database will be useful for related researches. Database URL: http://www.cuilab.cn/drugpath PMID:26130661
Drug-Path: a database for drug-induced pathways.
Zeng, Hui; Qiu, Chengxiang; Cui, Qinghua
2015-01-01
Some databases for drug-associated pathways have been built and are publicly available. However, the pathways curated in most of these databases are drug-action or drug-metabolism pathways. In recent years, high-throughput technologies such as microarray and RNA-sequencing have produced lots of drug-induced gene expression profiles. Interestingly, drug-induced gene expression profile frequently show distinct patterns, indicating that drugs normally induce the activation or repression of distinct pathways. Therefore, these pathways contribute to study the mechanisms of drugs and drug-repurposing. Here, we present Drug-Path, a database of drug-induced pathways, which was generated by KEGG pathway enrichment analysis for drug-induced upregulated genes and downregulated genes based on drug-induced gene expression datasets in Connectivity Map. Drug-Path provides user-friendly interfaces to retrieve, visualize and download the drug-induced pathway data in the database. In addition, the genes deregulated by a given drug are highlighted in the pathways. All data were organized using SQLite. The web site was implemented using Django, a Python web framework. Finally, we believe that this database will be useful for related researches. © The Author(s) 2015. Published by Oxford University Press.
Collaborating to improve the use of free-energy and other quantitative methods in drug discovery
NASA Astrophysics Data System (ADS)
Sherborne, Bradley; Shanmugasundaram, Veerabahu; Cheng, Alan C.; Christ, Clara D.; DesJarlais, Renee L.; Duca, Jose S.; Lewis, Richard A.; Loughney, Deborah A.; Manas, Eric S.; McGaughey, Georgia B.; Peishoff, Catherine E.; van Vlijmen, Herman
2016-12-01
In May and August, 2016, several pharmaceutical companies convened to discuss and compare experiences with Free Energy Perturbation (FEP). This unusual synchronization of interest was prompted by Schrödinger's FEP+ implementation and offered the opportunity to share fresh studies with FEP and enable broader discussions on the topic. This article summarizes key conclusions of the meetings, including a path forward of actions for this group to aid the accelerated evaluation, application and development of free energy and related quantitative, structure-based design methods.
Singh, Kanwarpal; Reddy, Rohith; Sharma, Gargi; Verma, Yogesh; Gardecki, Joseph A; Tearney, Guillermo
2018-03-01
Endoscopic optical coherence tomography probes suffer from various artifacts due to dispersion imbalance and polarization mismatch between reference and sample arm light. Such artifacts can be minimized using a common path approach. In this work, we demonstrate a miniaturized common path probe for optical coherence tomography using an inline fiber mirror. A common path optical fiber probe suitable for performing high-resolution endoscopic optical coherence tomography imaging was developed. To achieve common path functionality, an inline fiber mirror was fabricated using a thin gold layer. A commercially available swept source engine was used to test the designed probe in a cadaver human coronary artery ex vivo. We achieved a sensitivity of 104 dB for this probe using a swept source optical coherence tomography system. To test the probe, images of a cadaver human coronary artery were obtained, demonstrating the quality that is comparable to those obtained by OCT systems with separate reference arms. Additionally, we demonstrate recovery of ranging depth by use of a Michelson interferometer in the detection path. We developed a miniaturized monolithic inline fiber mirror-based common path probe for optical coherence tomography. Owing to its simplicity, our design will be helpful in endoscopic applications that require high-resolution probes in a compact form factor while reducing system complexity. Lasers Surg. Med. 50:230-235, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
The use of 137Cs to establish longer-term soil erosion rates on footpaths in the UK.
Rodway-Dyer, S J; Walling, D E
2010-10-01
There is increasing awareness of the damage caused to valuable and often unique sensitive habitats by people pressure as degradation causes a loss of plant species, disturbance to wildlife, on-site and off-site impacts of soil movement and loss, and visual destruction of pristine environments. This research developed a new perspective on the problem of recreational induced environmental degradation by assessing the physical aspects of soil erosion using the fallout radionuclide caesium-137 ((137)Cs). Temporal sampling problems have not successfully been overcome by traditional research methods monitoring footpath erosion and, to date, the (137)Cs technique has not been used to estimate longer-term soil erosion in regard to sensitive recreational habitats. The research was based on-sites within Dartmoor National Park (DNP) and the South West Coast Path (SWCP) in south-west England. (137)Cs inventories were reduced on the paths relative to the reference inventory (control), indicating loss of soil from the path areas. The Profile Distribution Model estimated longer-term erosion rates (ca. 40 years) based on the (137)Cs data and showed that the combined mean soil loss for all the sites on 'paths' was 1.41 kg m(-2) yr(-1) whereas the combined 'off path' soil loss was 0.79 kg m(-2) yr(-1), where natural (non-recreational) soil redistribution processes occur. Recreational pressure was shown to increase erosion in the long-term, as greater soil erosion occurred on the paths, especially where there was higher visitor pressure. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
The Role of Teachers in Facilitating Situational Interest in an Active-Learning Classroom
ERIC Educational Resources Information Center
Rotgans, Jerome I.; Schmidt, Henk G.
2011-01-01
The study sought to explore whether interactional teacher characteristics such as social congruence, subject-matter expertise, and cognitive congruence increase situational interest in students. Correlational and path analyses were conducted on a sample of 498 polytechnic students to assess potential differences in situational interest based on…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamad, Kotiba; Chung, Bong Kwon; Ko, Young Gun, E-mail: younggun@ynu.ac.kr
2014-08-15
This paper reports the effect of the deformation path on the microstructure, microhardness, and texture evolution of interstitial free (IF) steel processed by differential speed rolling (DSR) method. For this purpose, total height reductions of 50% and 75% were imposed on the samples by a series of differential speed rolling operations with various height reductions per pass (deformation levels) ranging from 10 to 50% under a fixed roll speed ratio of 1:4 for the upper and lower rolls, respectively. Microstructural observations using transmission electron microscopy and electron backscattered diffraction measurements showed that the samples rolled at deformation level of 50%more » had the finest mean grain size (∼ 0.5 μm) compared to the other counterparts; also the samples rolled at deformation level of 50% showed a more uniform microstructure. Based on the microhardness measurements along the thickness direction of the deformed samples, gradual evolution of the microhardness value and its homogeneity was observed with the increase of the deformation level per pass. Texture analysis showed that, as the deformation level per pass increased, the fraction of alpha fiber and gamma fiber in the deformed samples increased. The textures obtained by the differential speed rolling process under the lubricated condition would be equivalent to those obtained by the conventional rolling. - Highlights: • Effect of DSR deformation path on microstructure of IF steel is significant. • IF steel rolled at deformation level of 50% has the ultrafine grains of ∼ 0.5 μm. • Rolling texture components are pronounced with increasing deformation level.« less
Fundamental changes to EPA's research enterprise: the path forward.
Anastas, Paul T
2012-01-17
Environmental protection in the United States has reached a critical juncture. It has become clear that to address the complex and interrelated environmental challenges we face, we must augment our traditional approaches. The scientific community must build upon its deep understanding of risk assessment, risk management, and reductionism with tools, technologies, insights and approaches to pursue sustainability. The U.S. Environmental Protection Agency (EPA) has recognized this need for systemic change by implementing a new research paradigm called "The Path Forward." This paper outlines the principles of the Path Forward and the actions taken since 2010 to align EPA's research efforts with the goal of sustainability.
Wypych, Marek; Matuszewski, Jacek; Dragan, Wojciech Ł
2018-01-01
Procrastination - an irrational delay of intended actions despite expecting to be worse off - is a complex and non-homogenous phenomenon. Previous studies have found a number of correlates of procrastination, some of which seem to be particularly important. Impulsivity is closely connected to procrastination on behavioral, genetic, and neuronal levels. Difficulties in emotion regulation have also been shown to be strongly related to procrastination. Procrastination can also be considered as a motivation-based problem. To try to disentangle the connections of impulsivity, emotion regulation, and motivation to procrastination we collected data from over 600 subjects using multiple questionnaires (PPS - Pure Procrastination Scale; UPPSP - Impulsive Behavior Scale, ERQ - Emotion Regulation Questionnaire and MDT - Motivational Diagnostic Test). Structural equation modeling was performed to test several possible relationships between the measured variables. The effects of student status and age have also been investigated. The final path model was a directional model based on six explanatory variables and accounted for 70% of the variance in procrastination. Path analysis revealed that the strongest contributions to procrastination came from lack of value, delay discounting, and lack of perseverance, suggesting the involvement of motivation and impulsivity. The model also revealed the moderating role of expressive suppression between several aspects of impulsivity and procrastination. Close inspection of the paths' weights suggests that there may be two partly competing strategies for dealing with impulsivity and negative emotions: either to suppress emotions and impulsive reactions or to react impulsively, discarding previous plans, and to procrastinate. Path invariance analysis showed the significant moderating roles of student status and age. Both in non-students and high-age groups, the path leading from suppression to procrastination was insignificant. This suggests that caution should be used in generalizing the results of studies carried out on students. These results support previous findings that procrastination may serve as a short-term mood regulation strategy. However, as the spectrum of the emotion regulation strategies included in the study was very limited, we conclude that future studies should seek more insight into the relationship between emotion regulation, self-control, and procrastination.
Clements, Margaret; Aber, J Lawrence; Seidman, Edward
2008-01-01
Structural equation modeling was used to compare 6 competing theoretically based psychosocial models of the longitudinal association between life stressors and depressive symptoms in a sample of early adolescents (N= 907; 40% Hispanic, 32% Black, and 19% White; mean age at Time 1 = 11.4 years). Only two models fit the data, both of which included paths modeling the effect of depressive symptoms on stressors recall: The mood-congruent cognitive bias model included only depressive symptoms to life stressors paths (DS-->S), whereas the fully transactional model included paths representing both the DS-->S and stressors to depressive symptoms (S-->DS) effects. Social causation models and the stress generation model did not fit the data. Findings demonstrate the importance of accounting for mood-congruent cognitive bias in stressors-depressive symptoms investigations.
Liouville action as path-integral complexity: from continuous tensor networks to AdS/CFT
NASA Astrophysics Data System (ADS)
Caputa, Pawel; Kundu, Nilay; Miyaji, Masamichi; Takayanagi, Tadashi; Watanabe, Kento
2017-11-01
We propose an optimization procedure for Euclidean path-integrals that evaluate CFT wave functionals in arbitrary dimensions. The optimization is performed by minimizing certain functional, which can be interpreted as a measure of computational complexity, with respect to background metrics for the path-integrals. In two dimensional CFTs, this functional is given by the Liouville action. We also formulate the optimization for higher dimensional CFTs and, in various examples, find that the optimized hyperbolic metrics coincide with the time slices of expected gravity duals. Moreover, if we optimize a reduced density matrix, the geometry becomes two copies of the entanglement wedge and reproduces the holographic entanglement entropy. Our approach resembles a continuous tensor network renormalization and provides a concrete realization of the proposed interpretation of AdS/CFT as tensor networks. The present paper is an extended version of our earlier report arXiv:1703.00456 and includes many new results such as evaluations of complexity functionals, energy stress tensor, higher dimensional extensions and time evolutions of thermofield double states.
Hitchman, Sean M.; Mather, Martha E.; Smith, Joseph M.; Fencl, Jane S.
2018-01-01
Conserving native biodiversity depends on restoring functional habitats in the face of human-induced disturbances. Low-head dams are a ubiquitous human impact that degrades aquatic ecosystems worldwide. To improve our understanding of how low-head dams impact habitat and associated biodiversity, our research examined complex interactions among three spheres of the total environment. i.e., how low-head dams (anthroposphere) affect aquatic habitat (hydrosphere), and native biodiversity (biosphere) in streams and rivers. Creation of lake-like habitats upstream of low-head dams is a well-documented major impact of dams. Alterations downstream of low head dams also have important consequences, but these downstream dam effects are more challenging to detect. In a multidisciplinary field study at five dammed and five undammed sites within the Neosho River basin, KS, we tested hypotheses about two types of habitat sampling (transect and mosaic) and two types of statistical analyses (analysis of covariance and path analysis). We used fish as our example of biodiversity alteration. Our research provided three insights that can aid environmental professionals who seek to conserve and restore fish biodiversity in aquatic ecosystems threatened by human modifications. First, a mosaic approach identified habitat alterations below low-head dams (e.g. increased proportion of riffles) that were not detected using the more commonly-used transect sampling approach. Second, the habitat mosaic approach illustrated how low-head dams reduced natural variation in stream habitat. Third, path analysis, a statistical approach that tests indirect effects, showed how dams, habitat, and fish biodiversity interact. Specifically, path analysis revealed that low-head dams increased the proportion of riffle habitat below dams, and, as a result, indirectly increased fish species richness. Furthermore, the pool habitat that was created above low-head dams dramatically decreased fish species richness. As we show here, mosaic habitat sampling and path analysis can help conservation practitioners improve science-based management plans for disturbed aquatic systems worldwide.
Hitchman, Sean M; Mather, Martha E; Smith, Joseph M; Fencl, Jane S
2018-04-01
Conserving native biodiversity depends on restoring functional habitats in the face of human-induced disturbances. Low-head dams are a ubiquitous human impact that degrades aquatic ecosystems worldwide. To improve our understanding of how low-head dams impact habitat and associated biodiversity, our research examined complex interactions among three spheres of the total environment. i.e., how low-head dams (anthroposphere) affect aquatic habitat (hydrosphere), and native biodiversity (biosphere) in streams and rivers. Creation of lake-like habitats upstream of low-head dams is a well-documented major impact of dams. Alterations downstream of low head dams also have important consequences, but these downstream dam effects are more challenging to detect. In a multidisciplinary field study at five dammed and five undammed sites within the Neosho River basin, KS, we tested hypotheses about two types of habitat sampling (transect and mosaic) and two types of statistical analyses (analysis of covariance and path analysis). We used fish as our example of biodiversity alteration. Our research provided three insights that can aid environmental professionals who seek to conserve and restore fish biodiversity in aquatic ecosystems threatened by human modifications. First, a mosaic approach identified habitat alterations below low-head dams (e.g. increased proportion of riffles) that were not detected using the more commonly-used transect sampling approach. Second, the habitat mosaic approach illustrated how low-head dams reduced natural variation in stream habitat. Third, path analysis, a statistical approach that tests indirect effects, showed how dams, habitat, and fish biodiversity interact. Specifically, path analysis revealed that low-head dams increased the proportion of riffle habitat below dams, and, as a result, indirectly increased fish species richness. Furthermore, the pool habitat that was created above low-head dams dramatically decreased fish species richness. As we show here, mosaic habitat sampling and path analysis can help conservation practitioners improve science-based management plans for disturbed aquatic systems worldwide. Copyright © 2017 Elsevier B.V. All rights reserved.
Nessler, Ian J; Litman, Jacob M; Schnieders, Michael J
2016-11-09
First principles prediction of the structure, thermodynamics and solubility of organic molecular crystals, which play a central role in chemical, material, pharmaceutical and engineering sciences, challenges both potential energy functions and sampling methodologies. Here we calculate absolute crystal deposition thermodynamics using a novel dual force field approach whose goal is to maintain the accuracy of advanced multipole force fields (e.g. the polarizable AMOEBA model) while performing more than 95% of the sampling in an inexpensive fixed charge (FC) force field (e.g. OPLS-AA). Absolute crystal sublimation/deposition phase transition free energies were determined using an alchemical path that grows the crystalline state from a vapor reference state based on sampling with the OPLS-AA force field, followed by dual force field thermodynamic corrections to change between FC and AMOEBA resolutions at both end states (we denote the three step path as AMOEBA/FC). Importantly, whereas the phase transition requires on the order of 200 ns of sampling per compound, only 5 ns of sampling was needed for the dual force field thermodynamic corrections to reach a mean statistical uncertainty of 0.05 kcal mol -1 . For five organic compounds, the mean unsigned error between direct use of AMOEBA and the AMOEBA/FC dual force field path was only 0.2 kcal mol -1 and not statistically significant. Compared to experimental deposition thermodynamics, the mean unsigned error for AMOEBA/FC (1.4 kcal mol -1 ) was more than a factor of two smaller than uncorrected OPLS-AA (3.2 kcal mol -1 ). Overall, the dual force field thermodynamic corrections reduced condensed phase sampling in the expensive force field by a factor of 40, and may prove useful for protein stability or binding thermodynamics in the future.
Micro Unmanned Surface Vehicle for Shallow Littoral Data Sampling
NASA Astrophysics Data System (ADS)
Murphy, R. R.; Wilde, G.
2016-02-01
This paper describes the creation of an autonomous air boat that can be carried by one person, called a micro unmanned surface vehicle (USV), for sensor sampling in shallow littoral areas such as inlets and creeks. A USV offers advantages over other types of unmanned marine vehicles. Unlike an autonomous underwater vehicle, the Challenge 1.0 air boat can operate in shallow water of less than 15 cm depth and maintain network connectivity for control and data sampling. A USV does not require a tether, like a remotely operated marine vehicle (ROV), which would limit the distance and mobility. However, a USV operating in shallow littoral areas poses several challenges. Navigation is a challenge since rivers and bays may have semi-submerged obstacles and there may be no depth maps; the approach taken in the Challenge 1.0 project is to let the operator specify a safe area of the water by visual inspection and then the USV autonomously creates a path to optimally sample the collision free area. Navigation is also a challenge because of platform dynamics-the USV we describe is a non-holonomic vehicle; this paper explores spiral paths rather than boustrophedon paths. Another challenge is the quality of sensing. Water-based sensing is noisy and thus a reading at a single point may not reflect the overall value. In practice, areas are sampled rather than a single point, but the noise in the point values within the sampled area produce a survey with widely varying numbers and are difficult for humans to interpret. This paper implements an inverse distance weighting interpolation algorithm to produce a visual "heatmap" that reliably portrays the smoothed data.
Manufacturing of Human Extracellular Vesicle-Based Therapeutics for Clinical Use
Gimona, Mario; Pachler, Karin; Laner-Plamberger, Sandra; Schallmoser, Katharina; Rohde, Eva
2017-01-01
Extracellular vesicles (EVs) derived from stem and progenitor cells may have therapeutic effects comparable to their parental cells and are considered promising agents for the treatment of a variety of diseases. To this end, strategies must be designed to successfully translate EV research and to develop safe and efficacious therapies, whilst taking into account the applicable regulations. Here, we discuss the requirements for manufacturing, safety, and efficacy testing of EVs along their path from the laboratory to the patient. Development of EV-therapeutics is influenced by the source cell types and the target diseases. In this article, we express our view based on our experience in manufacturing biological therapeutics for routine use or clinical testing, and focus on strategies for advancing mesenchymal stromal cell (MSC)-derived EV-based therapies. We also discuss the rationale for testing MSC-EVs in selected diseases with an unmet clinical need such as critical size bone defects, epidermolysis bullosa and spinal cord injury. While the scientific community, pharmaceutical companies and clinicians are at the point of entering into clinical trials for testing the therapeutic potential of various EV-based products, the identification of the mode of action underlying the suggested potency in each therapeutic approach remains a major challenge to the translational path. PMID:28587212
Manufacturing of Human Extracellular Vesicle-Based Therapeutics for Clinical Use.
Gimona, Mario; Pachler, Karin; Laner-Plamberger, Sandra; Schallmoser, Katharina; Rohde, Eva
2017-06-03
Extracellular vesicles (EVs) derived from stem and progenitor cells may have therapeutic effects comparable to their parental cells and are considered promising agents for the treatment of a variety of diseases. To this end, strategies must be designed to successfully translate EV research and to develop safe and efficacious therapies, whilst taking into account the applicable regulations. Here, we discuss the requirements for manufacturing, safety, and efficacy testing of EVs along their path from the laboratory to the patient. Development of EV-therapeutics is influenced by the source cell types and the target diseases. In this article, we express our view based on our experience in manufacturing biological therapeutics for routine use or clinical testing, and focus on strategies for advancing mesenchymal stromal cell (MSC)-derived EV-based therapies. We also discuss the rationale for testing MSC-EVs in selected diseases with an unmet clinical need such as critical size bone defects, epidermolysis bullosa and spinal cord injury. While the scientific community, pharmaceutical companies and clinicians are at the point of entering into clinical trials for testing the therapeutic potential of various EV-based products, the identification of the mode of action underlying the suggested potency in each therapeutic approach remains a major challenge to the translational path.
Sen. Bennet, Michael F. [D-CO
2014-12-10
Senate - 12/10/2014 Read twice and referred to the Committee on Health, Education, Labor, and Pensions. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Vegetation Use for Resolving Electromagnetic Compatibility and Ecology Issues
NASA Astrophysics Data System (ADS)
Zvezdina, M. Yu; Shokova, Yu A.; Cherckesova, L. V.; Golovko, T. M.; Cherskaya, A. A.
2017-05-01
The wide spread of Information and Communication Technologies and the development of Internet-enabled mobile applications have aggravated electromagnetic compatibility and ecology problems. Inability to excite electromagnetic field of a desired structure and strength with traditional approaches actualizes additional actions, including providing diffraction on propagation path, to resolve these issues. Diffraction on a stand-alone obstacle along the propagation path and the one on set of obstacles near receive antenna location can be considered as the additional actions in ultrashort band. The accomplished studies have shown that one the most effective means to lower electromagnetic field strength is to shield the receive antenna with vegetation from jamming radio equipment. Moreover, vegetation resolves electromagnetic ecology issues, for the energy flux density can be lowered by about two orders of magnitude.
Catching fly balls in virtual reality: a critical test of the outfielder problem
Fink, Philip W.; Foo, Patrick S.; Warren, William H.
2013-01-01
How does a baseball outfielder know where to run to catch a fly ball? The “outfielder problem” remains unresolved, and its solution would provide a window into the visual control of action. It may seem obvious that human action is based on an internal model of the physical world, such that the fielder predicts the landing point based on a mental model of the ball’s trajectory (TP). But two alternative theories, Optical Acceleration Cancellation (OAC) and Linear Optical Trajectory (LOT), propose that fielders are led to the right place at the right time by coupling their movements to visual information in a continuous “online” manner. All three theories predict successful catches and similar running paths. We provide a critical test by using virtual reality to perturb the vertical motion of the ball in mid-flight. The results confirm the predictions of OAC, but are at odds with LOT and TP. PMID:20055547
Sustaining a Global Social Network: a quasi-experimental study.
Benton, D C; Ferguson, S L
2017-03-01
To examine the longer term impact on the social network of participating nurses in the Global Nursing Leadership Institute (GNLI2013) through using differing frequencies of follow-up to assess impact on maintenance of network cohesion. Social network analysis is increasingly been used by nurse researchers, however, studies tend to use single point-in-time descriptive methods. This study utilizes a repeated measures, block group, control-intervention, quasi-experimental design. Twenty-eight nurse leaders, competitively selected through a double-blind peer review process, were allocated to five action learning-based learning groups. Network architecture, measures of cohesion and node degree frequency were all used to assess programme impact. The programme initiated and sustained connections between nurse leaders drawn from a geographically dispersed heterogeneous group. Modest inputs of two to three e-mails over a 6-month period seem sufficient to maintain connectivity as indicated by measures of network density, diameter and path length. Due to the teaching methodology used, the study sample was relatively small and the follow-up data collection took place after a relatively short time. Replication and further cohort data collection would be advantageous. In an era where many policy solutions are being debated and initiated at the global level, action learning leadership development that utilizes new technology follow-up appears to show significant impact and is worthy of wider application. The approach warrants further inquiry and testing as to its longer term effects on nursing's influence on policy formulation and implementation. © 2016 International Council of Nurses.
ERIC Educational Resources Information Center
Laiken, Marilyn E.
At the Ontario Institute for Studies in Education of the University of Ontario, a course entitled Developing and Leading High Performing Teams: Theory and Practice is experimenting with a design that surfaces the action/reflection paradox for the purpose of learning how to manage this polarity. Whether the product is defined as services or goods,…
Hierarchical Motion Planning for Autonomous Aerial and Terrestrial Vehicles
NASA Astrophysics Data System (ADS)
Cowlagi, Raghvendra V.
Autonomous mobile robots---both aerial and terrestrial vehicles---have gained immense importance due to the broad spectrum of their potential military and civilian applications. One of the indispensable requirements for the autonomy of a mobile vehicle is the vehicle's capability of planning and executing its motion, that is, finding appropriate control inputs for the vehicle such that the resulting vehicle motion satisfies the requirements of the vehicular task. The motion planning and control problem is inherently complex because it involves two disparate sub-problems: (1) satisfaction of the vehicular task requirements, which requires tools from combinatorics and/or formal methods, and (2) design of the vehicle control laws, which requires tools from dynamical systems and control theory. Accordingly, this problem is usually decomposed and solved over two levels of hierarchy. The higher level, called the geometric path planning level, finds a geometric path that satisfies the vehicular task requirements, e.g., obstacle avoidance. The lower level, called the trajectory planning level, involves sufficient smoothening of this geometric path followed by a suitable time parametrization to obtain a reference trajectory for the vehicle. Although simple and efficient, such hierarchical decomposition suffers a serious drawback: the geometric path planner has no information of the kinematical and dynamical constraints of the vehicle. Consequently, the geometric planner may produce paths that the trajectory planner cannot transform into a feasible reference trajectory. Two main ideas appear in the literature to remedy this problem: (a) randomized sampling-based planning, which eliminates the geometric planner altogether by planning in the vehicle state space, and (b) geometric planning supported by feedback control laws. The former class of methods suffer from a lack of optimality of the resultant trajectory, while the latter class of methods makes a restrictive assumption concerning the vehicle kinematical model. We propose a hierarchical motion planning framework based on a novel mode of interaction between these two levels of planning. This interaction rests on the solution of a special shortest-path problem on graphs, namely, one using costs defined on multiple edge transitions in the path instead of the usual single edge transition costs. These costs are provided by a local trajectory generation algorithm, which we implement using model predictive control and the concept of effective target sets for simplifying the non-convex constraints involved in the problem. The proposed motion planner ensures "consistency" between the two levels of planning, i.e., a guarantee that the higher level geometric path is always associated with a kinematically and dynamically feasible trajectory. The main contributions of this thesis are: 1. A motion planning framework based on history-dependent costs (H-costs) in cell decomposition graphs for incorporating vehicle dynamical constraints: this framework offers distinct advantages in comparison with the competing approaches of discretization of the state space, of randomized sampling-based motion planning, and of local feedback-based, decoupled hierarchical motion planning, 2. An efficient and flexible algorithm for finding optimal H-cost paths, 3. A precise and general formulation of a local trajectory problem (the tile motion planning problem) that allows independent development of the discrete planner and the trajectory planner, while maintaining "compatibility" between the two planners, 4. A local trajectory generation algorithm using mpc, and the application of the concept of effective target sets for a significant simplification of the local trajectory generation problem, 5. The geometric analysis of curvature-bounded traversal of rectangular channels, leading to less conservative results in comparison with a result reported in the literature, and also to the efficient construction of effective target sets for the solution of the tile motion planning problem, 6. A wavelet-based multi-resolution path planning scheme, and a proof of completeness of the proposed scheme: such proofs are altogether absent from other works on multi-resolution path planning, 7. A technique for extracting all information about cells---namely, the locations, the sizes, and the associated image intensities---directly from the set of significant detail coefficients considered for path planning at a given iteration, and 8. The extension of the multi-resolution path planning scheme to include vehicle dynamical constraints using the aforementioned history-dependent costs approach. The future work includes an implementation of the proposed framework involving a discrete planner that solves classical planning problems more general than the single-query path planning problem considered thus far, and involving trajectory generation schemes for realistic vehicle dynamical models such as the bicycle model.
NASA Astrophysics Data System (ADS)
Gregg, C. E.; Johnston, D. M.; Sorensen, J. H.; Vogt Sorensen, B.; Whitmore, P.
2014-12-01
Many studies since 2004 have documented the dissemination and receipt of risk information for local to distant tsunamis and factors influencing people's responses. A few earlier tsunami studies and numerous studies of other hazards provide additional support for developing effective tsunami messages. This study explores evidence-based approaches to developing such messages for the Pacific and National Tsunami Warning Centers in the US. It extends a message metric developed for the NWS Tsunami Program. People at risk to tsunamis receive information from multiple sources through multiple channels. Sources are official and informal and environmental and social cues. Traditionally, official tsunami messages followed a linear dissemination path through relatively few channels from warning center to emergency management to public and media. However, the digital age has brought about a fundamental change in the dissemination and receipt of official and informal communications. Information is now disseminated in very non-linear paths and all end-user groups may receive the same message simultaneously. Research has demonstrated a range of factors that influence rapid respond to an initial real or perceived threat. Immediate response is less common than one involving delayed protective actions where people first engage in "milling behavior" to exchange information and confirm the warning before taking protective action. The most important message factors to achieve rapid response focus on the content and style of the message and the frequency of dissemination. Previously we developed a tsunami message metric consisting of 21 factors divided into message content and style and receiver characteristics. Initially, each factor was equally weighted to identify gaps, but here we extend the work by weighting specific factors. This utilizes recent research that identifies the most important determinants of protective action. We then discuss the prioritization of message information in the context of potentially limited space in evolving tsunami messages issued by the warning centers.
Community Action for Health in India's National Rural Health Mission: One policy, many paths.
Gaitonde, Rakhal; San Sebastian, Miguel; Muraleedharan, V R; Hurtig, Anna-Karin
2017-09-01
Community participation as a strategy for health system strengthening and accountability is an almost ubiquitous policy prescription. In 2005, with the election of a new Government in India, the National Rural Health Mission was launched. This was aimed at 'architectural correction' of the health care system, and enshrined 'communitization' as one of its pillars. The mission also provided unique policy spaces and opportunity structures that enabled civil society groups to attempt to bring on to the policy agenda as well as implement a more collective action and social justice based approach to community based accountability. Despite receiving a lot of support and funding from the central ministry in the pilot phase, the subsequent roll out of the process, led in the post-pilot phase by the individual state governments, showed very varied outcomes. This paper using both documentary and interview based data is the first study to document the roll out of this ambitious process. Looking critically at what varied and why, the paper attempts to derive lessons for future implementation of such contested concepts. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
2015-12-01
A new climate agreement won't solve climate change, but it should nudge the world onto a lower-emissions path. Research must drive deeper transformations by translating proposed solutions into workable action.
Field-Based Experiential Learning Using Mobile Devices
NASA Astrophysics Data System (ADS)
Hilley, G. E.
2015-12-01
Technologies such as GPS and cellular triangulation allow location-specific content to be delivered by mobile devices, but no mechanism currently exists to associate content shared between locations in a way that guarantees the delivery of coherent and non-redundant information at every location. Thus, experiential learning via mobile devices must currently take place along a predefined path, as in the case of a self-guided tour. I developed a mobile-device-based system that allows a person to move through a space along a path of their choosing, while receiving information in a way that guarantees delivery of appropriate background and location-specific information without producing redundancy of content between locations. This is accomplished by coupling content to knowledge-concept tags that are noted as fulfilled when users take prescribed actions. Similarly, the presentation of the content is related to the fulfillment of these knowledge-concept tags through logic statements that control the presentation. Content delivery is triggered by mobile-device geolocation including GPS/cellular navigation, and sensing of low-power Bluetooth proximity beacons. Together, these features implement a process that guarantees a coherent, non-redundant educational experience throughout a space, regardless of a learner's chosen path. The app that runs on the mobile device works in tandem with a server-side database and file-serving system that can be configured through a web-based GUI, and so content creators can easily populate and configure content with the system. Once the database has been updated, the new content is immediately available to the mobile devices when they arrive at the location at which content is required. Such a system serves as a platform for the development of field-based geoscience educational experiences, in which students can organically learn about core concepts at particular locations while individually exploring a space.
Detection and response to unauthorized access to a communication device
Smith, Rhett; Gordon, Colin
2015-09-08
A communication gateway consistent with the present disclosure may detect unauthorized physical or electronic access and implement security actions in response thereto. A communication gateway may provide a communication path to an intelligent electronic device (IED) using an IED communications port configured to communicate with the IED. The communication gateway may include a physical intrusion detection port and a network port. The communication gateway may further include control logic configured to evaluate physical intrusion detection signal. The control logic may be configured to determine that the physical intrusion detection signal is indicative of an attempt to obtain unauthorized access to one of the communication gateway, the IED, and a device in communication with the gateway; and take a security action based upon the determination that the indication is indicative of the attempt to gain unauthorized access.
Phonon Scattering and Confinement in Crystalline Films
NASA Astrophysics Data System (ADS)
Parrish, Kevin D.
The operating temperature of energy conversion and electronic devices affects their efficiency and efficacy. In many devices, however, the reference values of the thermal properties of the materials used are no longer applicable due to processing techniques performed. This leads to challenges in thermal management and thermal engineering that demand accurate predictive tools and high fidelity measurements. The thermal conductivity of strained, nanostructured, and ultra-thin dielectrics are predicted computationally using solutions to the Boltzmann transport equation. Experimental measurements of thermal diffusivity are performed using transient grating spectroscopy. The thermal conductivities of argon, modeled using the Lennard-Jones potential, and silicon, modeled using density functional theory, are predicted under compressive and tensile strain from lattice dynamics calculations. The thermal conductivity of silicon is found to be invariant with compression, a result that is in disagreement with previous computational efforts. This difference is attributed to the more accurate force constants calculated from density functional theory. The invariance is found to be a result of competing effects of increased phonon group velocities and decreased phonon lifetimes, demonstrating how the anharmonic contribution of the atomic potential can scale differently than the harmonic contribution. Using three Monte Carlo techniques, the phonon-boundary scattering and the subsequent thermal conductivity reduction are predicted for nanoporous silicon thin films. The Monte Carlo techniques used are free path sampling, isotropic ray-tracing, and a new technique, modal ray-tracing. The thermal conductivity predictions from all three techniques are observed to be comparable to previous experimental measurements on nanoporous silicon films. The phonon mean free paths predicted from isotropic ray-tracing, however, are unphysical as compared to those predicted by free path sampling. Removing the isotropic assumption, leading to the formulation of modal ray-tracing, corrects the mean free path distribution. The effect of phonon line-of-sight is investigated in nanoporous silicon films using free path sampling. When the line-of-sight is cut off there is a distinct change in thermal conductivity versus porosity. By analyzing the free paths of an obstructed phonon mode, it is concluded that the trend change is due to a hard upper limit on the free paths that can exist due to the nanopore geometry in the material. The transient grating technique is an optical contact-less laser based experiment for measuring the in-plane thermal diffusivity of thin films and membranes. The theory of operation and physical setup of a transient grating experiment is detailed. The procedure for extracting the thermal diffusivity from the raw experimental signal is improved upon by removing arbitrary user choice in the fitting parameters used and constructing a parameterless error minimizing procedure. The thermal conductivity of ultra-thin argon films modeled with the Lennard-Jones potential is calculated from both the Monte Carlo free path sampling technique and from explicit reduced dimensionality lattice dynamics calculations. In these ultra-thin films, the phonon properties are altered in more than a perturbative manner, referred to as the confinement regime. The free path sampling technique, which is a perturbative method, is compared to a reduced dimensionality lattice dynamics calculation where the entire film thickness is taken as the unit cell. Divergence in thermal conductivity magnitude and trend is found at few unit cell thick argon films. Although the phonon group velocities and lifetimes are affected, it is found that alterations to the phonon density of states are the primary cause of the deviation in thermal conductivity in the confinement regime.
Enzymatic Kinetic Isotope Effects from Path-Integral Free Energy Perturbation Theory.
Gao, J
2016-01-01
Path-integral free energy perturbation (PI-FEP) theory is presented to directly determine the ratio of quantum mechanical partition functions of different isotopologs in a single simulation. Furthermore, a double averaging strategy is used to carry out the practical simulation, separating the quantum mechanical path integral exactly into two separate calculations, one corresponding to a classical molecular dynamics simulation of the centroid coordinates, and another involving free-particle path-integral sampling over the classical, centroid positions. An integrated centroid path-integral free energy perturbation and umbrella sampling (PI-FEP/UM, or simply, PI-FEP) method along with bisection sampling was summarized, which provides an accurate and fast convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. The PI-FEP method is illustrated by a number of applications, to highlight the computational precision and accuracy, the rule of geometrical mean in kinetic isotope effects, enhanced nuclear quantum effects in enzyme catalysis, and protein dynamics on temperature dependence of kinetic isotope effects. © 2016 Elsevier Inc. All rights reserved.
A path integral approach to the Hodgkin-Huxley model
NASA Astrophysics Data System (ADS)
Baravalle, Roman; Rosso, Osvaldo A.; Montani, Fernando
2017-11-01
To understand how single neurons process sensory information, it is necessary to develop suitable stochastic models to describe the response variability of the recorded spike trains. Spikes in a given neuron are produced by the synergistic action of sodium and potassium of the voltage-dependent channels that open or close the gates. Hodgkin and Huxley (HH) equations describe the ionic mechanisms underlying the initiation and propagation of action potentials, through a set of nonlinear ordinary differential equations that approximate the electrical characteristics of the excitable cell. Path integral provides an adequate approach to compute quantities such as transition probabilities, and any stochastic system can be expressed in terms of this methodology. We use the technique of path integrals to determine the analytical solution driven by a non-Gaussian colored noise when considering the HH equations as a stochastic system. The different neuronal dynamics are investigated by estimating the path integral solutions driven by a non-Gaussian colored noise q. More specifically we take into account the correlational structures of the complex neuronal signals not just by estimating the transition probability associated to the Gaussian approach of the stochastic HH equations, but instead considering much more subtle processes accounting for the non-Gaussian noise that could be induced by the surrounding neural network and by feedforward correlations. This allows us to investigate the underlying dynamics of the neural system when different scenarios of noise correlations are considered.
Mills, C. D.; Burgess, D. C.; Taylor, H. J.; Kain, K. C.
1999-01-01
Rapid, accurate and affordable methods are needed for the diagnosis of malaria. Reported here is an evaluation of a new immunochromatographic strip, the PATH Falciparum Malaria IC Strip, which is impregnated with an immobilized IgM monoclonal antibody that binds to the HRP-II antigen of Plasmodium falciparum. In contrast to other commercially available kits marketed for the rapid diagnosis of falciparum malaria, this kit should be affordable in the malaria-endemic world. Using microscopy and polymerase chain reaction (PCR)-based methods as reference standards, we compared two versions of the PATH test for the detection of P. falciparum infection in 200 febrile travellers. As determined by PCR and microscopy, 148 travellers had malaria, 50 of whom (33.8%) were infected with P. falciparum. Compared with PCR, the two versions of the PATH test had initial sensitivities of 90% and 88% and specificities of 97% and 96%, respectively, for the detection of falciparum malaria. When discrepant samples were retested blindly with a modified procedure (increased sample volume and longer washing step) the sensitivity and specificity of both kits improved to 96% and 99%, respectively. The two remaining false negatives occurred in samples with < 100 parasites per microliter of blood. The accuracy, simplicity and predicted low cost may make this test a useful diagnostic tool in malaria-endemic areas. PMID:10444878
Investigation on electrical tree propagation in polyethylene based on etching method
NASA Astrophysics Data System (ADS)
Shi, Zexiang; Zhang, Xiaohong; Wang, Kun; Gao, Junguo; Guo, Ning
2017-11-01
To investigate the characteristic of electrical tree propagation in semi-crystalline polymers, the low-density polyethylene (LDPE) samples containing electrical trees are cut into slices by using ultramicrotome. Then the slice samples are etched by potassium permanganate etchant. Finally, the crystalline structure and the electrical tree propagation path in samples are observed by polarized light microscopy (PLM). According to the observation, the LDPE spherocrystal structure model is established on the basis of crystallization kinetics and morphology of polymers. And the electrical tree growth process in LDPE is discussed based on the free volume breakdown theory, the molecular chain relaxation theory, the electromechanical force theory, the thermal expansion effect and the space charge shielding effect.
Rep. Myrick, Sue Wilkins [R-NC-9
2012-08-01
House - 08/02/2012 Referred to the Subcommittee on Economic Development, Public Buildings and Emergency Management. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
NASA Astrophysics Data System (ADS)
Cadeddu, M. P.; Marchand, R.; Orlandi, E.; Turner, D. D.; Mech, M.
2016-12-01
The retrieval of liquid water path (LWP) during drizzle and rain from ground-based microwave radiometers presents several challenges that have not been entirely solved. Ground-based microwave radiometers have been traditionally used to retrieve cloud LWP assuming non-precipitating conditions. Yet retrieval of liquid water path under light rain and possibly the partition of total liquid water path among cloud and rain are very important to study cloud properties because the presence of drizzle affects for example the cloud's lifetime. Improving the LWP retrieval during drizzle and possibly partitioning cloud and rain LWP is therefore highly desirable. In precipitating clouds the raindrop's size is of the same order of magnitude of the wavelength sampled by the instrument and the effects of hydrometeor's scattering can't be neglected. In this paper we model the effect of scattering hydrometeors on radiometric brightness temperatures commonly used in LWP retrievals and develop a physical retrieval to derive precipitable water vapor (PWV), total LWP, and the fraction of cloud and rain liquid water (Cf) from microwave brightness temperatures at three commonly used frequencies. The retrieval is first applied to a set of synthetic measurements and is then used to retrieve PWV, LWP, and Cf in two drizzling cases at the Atmospheric Radiation Measurement (ARM) Program Eastern North Atlantic (ENA) site. Results show that there is useful information in the microwave brightness temperatures that can be used to reduce LWP retrieval uncertainty during light rain and can open the path for a better integration of active and passive sensors. The effect of raindrops on the radiometer's lens is examined with the help of a digital camera and experimental data. A possible way to account for raindrop deposition on the instrument's lens is suggested.
Soto, Axel J; Zerva, Chrysoula; Batista-Navarro, Riza; Ananiadou, Sophia
2018-04-15
Pathway models are valuable resources that help us understand the various mechanisms underpinning complex biological processes. Their curation is typically carried out through manual inspection of published scientific literature to find information relevant to a model, which is a laborious and knowledge-intensive task. Furthermore, models curated manually cannot be easily updated and maintained with new evidence extracted from the literature without automated support. We have developed LitPathExplorer, a visual text analytics tool that integrates advanced text mining, semi-supervised learning and interactive visualization, to facilitate the exploration and analysis of pathway models using statements (i.e. events) extracted automatically from the literature and organized according to levels of confidence. LitPathExplorer supports pathway modellers and curators alike by: (i) extracting events from the literature that corroborate existing models with evidence; (ii) discovering new events which can update models; and (iii) providing a confidence value for each event that is automatically computed based on linguistic features and article metadata. Our evaluation of event extraction showed a precision of 89% and a recall of 71%. Evaluation of our confidence measure, when used for ranking sampled events, showed an average precision ranging between 61 and 73%, which can be improved to 95% when the user is involved in the semi-supervised learning process. Qualitative evaluation using pair analytics based on the feedback of three domain experts confirmed the utility of our tool within the context of pathway model exploration. LitPathExplorer is available at http://nactem.ac.uk/LitPathExplorer_BI/. sophia.ananiadou@manchester.ac.uk. Supplementary data are available at Bioinformatics online.
Bach, M; Hoffmann, M B
2018-06-01
The data presented in this article are related to the research article entitled "Retinal conduction speed analysis reveals different origins of the P50 and N95 components of the (multifocal) pattern electroretinogram" (Bach et al., 2018) [1]. That analysis required the individual length data of the retinal nerve fibers (from ganglion cell body to optic nerve head, depending on the position of the ganglion cell body). Jansonius et al. (2009, 2012) [2,3] mathematically modeled the path morphology of the human retinal nerve fibers. We here present a working implementation with source code (for the free and open-source programming environment "R") of the Jansonius' formulas, including all errata. One file defines Jansonius et al.'s "phi" function. This function allows quantitative modelling of paths (and any measures derived from them) of the retinal nerve fibers. As a working demonstration, a second file contains a graph which plots samples of nerve fibers. The included R code runs in base R without the need of any additional packages.
Combined raman and IR fiber-based sensor for gas detection
Carter, Jerry C; Chan, James W; Trebes, James E; Angel, Stanley M; Mizaikoff, Boris
2014-06-24
A double-pass fiber-optic based spectroscopic gas sensor delivers Raman excitation light and infrared light to a hollow structure, such as a hollow fiber waveguide, that contains a gas sample of interest. A retro-reflector is placed at the end of this hollow structure to send the light back through the waveguide where the light is detected at the same end as the light source. This double pass retro reflector design increases the interaction path length of the light and the gas sample, and also reduces the form factor of the hollow structure.
Employees on the rebound: Extending the careers literature to include boomerang employment.
Swider, Brian W; Liu, Joseph T; Harris, T Brad; Gardner, Richard G
2017-06-01
As employee careers have evolved from linear trajectories confined within 1 organization to more dynamic and boundaryless paths, organizations and individuals alike have increasingly considered reestablishing prior employment relationships. These "boomerang employees" follow career paths that feature 2 or more temporally separated tenures in particular organizations ("boomerang organizations"). Yet, research to date is mute on how or to what extent differences across boomerang employees' career experiences, and the learning and knowledge developed at and away from boomerang organizations, meaningfully impact their performance following their return. Addressing this omission, we extend a careers-based learning perspective to construct a theoretical framework of a parsimonious, yet generalizable, set of factors that influence boomerang employee return performance. Results based on a sample of boomerang employees and employers in the same industry (professional basketball) indicate that intra- and extraorganizational knowledge construction and disruptions, as well as transition events, are significantly predictive of boomerangs' return performance. Comparisons with 2 matched samples of nonboomerang employees likewise suggest distinctive patterns in the performance of boomerang employees. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Jiang, Baofeng; Jia, Pengjiao; Zhao, Wen; Wang, Wentao
2018-01-01
This paper explores a new method for rapid structural damage inspection of steel tube slab (STS) structures along randomly measured paths based on a combination of compressive sampling (CS) and ultrasonic computerized tomography (UCT). In the measurement stage, using fewer randomly selected paths rather than the whole measurement net is proposed to detect the underlying damage of a concrete-filled steel tube. In the imaging stage, the ℓ1-minimization algorithm is employed to recover the information of the microstructures based on the measurement data related to the internal situation of the STS structure. A numerical concrete tube model, with the various level of damage, was studied to demonstrate the performance of the rapid UCT technique. Real-world concrete-filled steel tubes in the Shenyang Metro stations were detected using the proposed UCT technique in a CS framework. Both the numerical and experimental results show the rapid UCT technique has the capability of damage detection in an STS structure with a high level of accuracy and with fewer required measurements, which is more convenient and efficient than the traditional UCT technique.
Common path endoscopic probes for optical coherence tomography (Conference Presentation)
NASA Astrophysics Data System (ADS)
Singh, Kanwarpal; Gardecki, Joseph A.; Tearney, Guillermo J.
2017-02-01
Background: Dispersion imbalance and polarization mismatch between the reference and sample arm signals can lead to image quality degradation in optical coherence tomography (OCT). One approach to reduce these image artifacts is to employ a common-path geometry in fiber-based probes. In this work, we report an 800 um diameter all-fiber common-path monolithic probe for coronary artery imaging where the reference signal is generated using an inline fiber partial reflector. Methods: Our common-path probe was designed for swept-source based Fourier domain OCT at 1310 nm wavelength. A face of a coreless fiber was coated with gold and spliced to a standard SMF-28 single mode fiber creating an inline partial reflector, which acted as a reference surface. The other face of the coreless fiber was shaped into a ball lens for focusing. The optical elements were assembled within a 560 µm diameter drive shaft, which was attached to a rotary junction. The drive shaft was placed inside a transparent sheath having an outer diameter of 800 µm. Results: With a source input power of 30mW, the inline common-path probe achieved a sensitivity of 104 dB. Images of human finger skin showed the characteristic layers of skin as well as features such as sweat ducts. Images of coronary arteries ex vivo obtained with this probe enabled visualization of the characteristic architectural morphology of the normal artery wall and known features of atherosclerotic plaque. Conclusion: In this work, we have demonstrated a common path OCT probe for cardiovascular imaging. The probe is easy to fabricate, will reduce system complexity and overall cost. We believe that this design will be helpful in endoscopic applications that require high resolution and a compact form factor.
LWPC: Long Wavelength Propagation Capability
NASA Astrophysics Data System (ADS)
U. S. Navy; Ferguson, J. A.; Hutchins, Michael
2018-03-01
Long Wavelength Propagation Capability (LWPC), written as a collection of separate programs that perform unique actions, generates geographical maps of signal availability for coverage analysis. The program makes it easy to set up these displays by automating most of the required steps. The user specifies the transmitter location and frequency, the orientation of the transmitting and receiving antennae, and the boundaries of the operating area. The program automatically selects paths along geographic bearing angles to ensure that the operating area is fully covered. The diurnal conditions and other relevant geophysical parameters are then determined along each path. After the mode parameters along each path are determined, the signal strength along each path is computed. The signal strength along the paths is then interpolated onto a grid overlying the operating area. The final grid of signal strength values is used to display the signal-strength in a geographic display. The LWPC uses character strings to control programs and to specify options. The control strings have the same meaning and use among all the programs.
Simplified path integral for supersymmetric quantum mechanics and type-A trace anomalies
NASA Astrophysics Data System (ADS)
Bastianelli, Fiorenzo; Corradini, Olindo; Iacconi, Laura
2018-05-01
Particles in a curved space are classically described by a nonlinear sigma model action that can be quantized through path integrals. The latter require a precise regularization to deal with the derivative interactions arising from the nonlinear kinetic term. Recently, for maximally symmetric spaces, simplified path integrals have been developed: they allow to trade the nonlinear kinetic term with a purely quadratic kinetic term (linear sigma model). This happens at the expense of introducing a suitable effective scalar potential, which contains the information on the curvature of the space. The simplified path integral provides a sensible gain in the efficiency of perturbative calculations. Here we extend the construction to models with N = 1 supersymmetry on the worldline, which are applicable to the first quantized description of a Dirac fermion. As an application we use the simplified worldline path integral to compute the type-A trace anomaly of a Dirac fermion in d dimensions up to d = 16.
Surface Wave Tomography with Spatially Varying Smoothing Based on Continuous Model Regionalization
NASA Astrophysics Data System (ADS)
Liu, Chuanming; Yao, Huajian
2017-03-01
Surface wave tomography based on continuous regionalization of model parameters is widely used to invert for 2-D phase or group velocity maps. An inevitable problem is that the distribution of ray paths is far from homogeneous due to the spatially uneven distribution of stations and seismic events, which often affects the spatial resolution of the tomographic model. We present an improved tomographic method with a spatially varying smoothing scheme that is based on the continuous regionalization approach. The smoothness of the inverted model is constrained by the Gaussian a priori model covariance function with spatially varying correlation lengths based on ray path density. In addition, a two-step inversion procedure is used to suppress the effects of data outliers on tomographic models. Both synthetic and real data are used to evaluate this newly developed tomographic algorithm. In the synthetic tests, when the contrived model has different scales of anomalies but with uneven ray path distribution, we compare the performance of our spatially varying smoothing method with the traditional inversion method, and show that the new method is capable of improving the recovery in regions of dense ray sampling. For real data applications, the resulting phase velocity maps of Rayleigh waves in SE Tibet produced using the spatially varying smoothing method show similar features to the results with the traditional method. However, the new results contain more detailed structures and appears to better resolve the amplitude of anomalies. From both synthetic and real data tests we demonstrate that our new approach is useful to achieve spatially varying resolution when used in regions with heterogeneous ray path distribution.
Small, Jeon; Ounpraseuth, Songthip; Curran, Geoffrey M; Booth, Brenda M
2012-05-01
We examined whether motivation to change mediated the relationships between gender and baseline alcohol severity with drinking outcome at 12-month follow-up in a longitudinal community sample. Data were from baseline and 12-month interviews from the Rural Alcohol Study, a probability sample of rural and urban at-risk drinkers (N = 733) from six southern states. At-risk drinkers were identified through a telephone-screening interview. Measures of motivation (problem recognition and taking action) were the resultant two factors derived from the Stages of Change Readiness and Treatment Eagerness Scale. Items on social consequences of drinking measured alcohol severity. Structural equation models examined relationships between baseline alcohol severity and motivation with drinks per drinking day at 12 months. We identified significant, direct paths between drinking at 12 months and alcohol severity and taking action with an unstandardized estimate of 0.116 (p < .05), alcohol severity and problem recognition (0.423, p < .01), and each of the two "motivation" latent constructs-problem recognition (1.846, p < .01) and taking action (-0.660, p < .01). Finally, the combined direct and negative effect of gender on alcohol consumption at 12-month follow-up was statistically significant, with an unstandardized estimate of -0.970 (p < .01). The current study offers evidence for motivation to change as a viable mechanism through which alcohol severity is associated with subsequent drinking outcomes. More research is needed to further explore the persistence of motivation to change on drinking outcomes over time.
Gao, Xiangyun; Huang, Shupei; Sun, Xiaoqi; Hao, Xiaoqing; An, Feng
2018-03-01
Microscopic factors are the basis of macroscopic phenomena. We proposed a network analysis paradigm to study the macroscopic financial system from a microstructure perspective. We built the cointegration network model and the Granger causality network model based on econometrics and complex network theory and chose stock price time series of the real estate industry and its upstream and downstream industries as empirical sample data. Then, we analysed the cointegration network for understanding the steady long-term equilibrium relationships and analysed the Granger causality network for identifying the diffusion paths of the potential risks in the system. The results showed that the influence from a few key stocks can spread conveniently in the system. The cointegration network and Granger causality network are helpful to detect the diffusion path between the industries. We can also identify and intervene in the transmission medium to curb risk diffusion.
Huang, Shupei; Sun, Xiaoqi; Hao, Xiaoqing; An, Feng
2018-01-01
Microscopic factors are the basis of macroscopic phenomena. We proposed a network analysis paradigm to study the macroscopic financial system from a microstructure perspective. We built the cointegration network model and the Granger causality network model based on econometrics and complex network theory and chose stock price time series of the real estate industry and its upstream and downstream industries as empirical sample data. Then, we analysed the cointegration network for understanding the steady long-term equilibrium relationships and analysed the Granger causality network for identifying the diffusion paths of the potential risks in the system. The results showed that the influence from a few key stocks can spread conveniently in the system. The cointegration network and Granger causality network are helpful to detect the diffusion path between the industries. We can also identify and intervene in the transmission medium to curb risk diffusion. PMID:29657804
Stochastic sediment property inversion in Shallow Water 06.
Michalopoulou, Zoi-Heleni
2017-11-01
Received time-series at a short distance from the source allow the identification of distinct paths; four of these are direct, surface and bottom reflections, and sediment reflection. In this work, a Gibbs sampling method is used for the estimation of the arrival times of these paths and the corresponding probability density functions. The arrival times for the first three paths are then employed along with linearization for the estimation of source range and depth, water column depth, and sound speed in the water. Propagating densities of arrival times through the linearized inverse problem, densities are also obtained for the above parameters, providing maximum a posteriori estimates. These estimates are employed to calculate densities and point estimates of sediment sound speed and thickness using a non-linear, grid-based model. Density computation is an important aspect of this work, because those densities express the uncertainty in the inversion for sediment properties.
Positron lifetime spectrometer using a DC positron beam
Xu, Jun; Moxom, Jeremy
2003-10-21
An entrance grid is positioned in the incident beam path of a DC beam positron lifetime spectrometer. The electrical potential difference between the sample and the entrance grid provides simultaneous acceleration of both the primary positrons and the secondary electrons. The result is a reduction in the time spread induced by the energy distribution of the secondary electrons. In addition, the sample, sample holder, entrance grid, and entrance face of the multichannel plate electron detector assembly are made parallel to each other, and are arranged at a tilt angle to the axis of the positron beam to effectively separate the path of the secondary electrons from the path of the incident positrons.
Littelmann path model for geometric crystals, Whittaker functions on Lie groups and Brownian motion
NASA Astrophysics Data System (ADS)
Chhaibi, Reda
2013-02-01
Generally speaking, this thesis focuses on the interplay between the representations of Lie groups and probability theory. It subdivides into essentially three parts. In a first rather algebraic part, we construct a path model for geometric crystals in the sense of Berenstein and Kazhdan, for complex semi-simple Lie groups. We will mainly describe the algebraic structure, its natural morphisms and parameterizations. The theory of total positivity will play a particularly important role. Then, we anticipate on the probabilistic part by exhibiting a canonical measure on geometric crystals. It uses as ingredients the superpotential for the flag manifold and a measure invariant under the crystal actions. The image measure under the weight map plays the role of Duistermaat-Heckman measure. Its Laplace transform defines Whittaker functions, providing an interesting formula for all Lie groups. Then it appears clearly that Whittaker functions are to geometric crystals, what characters are to combinatorial crystals. The Littlewood-Richardson rule is also exposed. Finally we present the probabilistic approach that allows to find the canonical measure. It is based on the fundamental idea that the Wiener measure will induce the adequate measure on the algebraic structures through the path model. In the last chapter, we show how our geometric model degenerates to the continuous classical Littelmann path model and thus recover known results. For example, the canonical measure on a geometric crystal of highest weight degenerates into a uniform measure on a polytope, and recovers the parameterizations of continuous crystals.
Arbib, Michael A
2010-01-01
We develop the view that the involvement of mirror neurons in embodied experience grounds brain structures that underlie language, but that many other brain regions are involved. We stress the cooperation between the dorsal and ventral streams in praxis and language. Both have perceptual and motor schemas but the perceptual schemas in the dorsal path are affordances linked to specific motor schemas for detailed motor control, whereas the ventral path supports planning and decision making. This frames the hypothesis that the mirror system for words evolved from the mirror system for actions to support words-as-phonological-actions, with semantics provided by the linkage to neural systems supporting perceptual and motor schemas. We stress the importance of computational models which can be linked to the parametric analysis of data and conceptual analysis of these models to support new patterns of understanding of the data. In the domain of praxis, we assess the FARS model of the canonical system for grasping, the MNS models for the mirror system for grasping, and the Augmented Competitive Queuing model that extends the control of action to the opportunistic scheduling of action sequences and also offers a new hypothesis on the role of mirror neurons in self action. Turning to language, we use Construction Grammar as our linguistic framework to get beyond single words to phrases and sentences, and initiate analysis of what brain functions must complement mirror systems to support this functionality. 2009 Elsevier Inc. All rights reserved.
Re-evaluation of P-T paths across the Himalayan Main Central Thrust
NASA Astrophysics Data System (ADS)
Catlos, E. J.; Harrison, M.; Kelly, E. D.; Ashley, K.; Lovera, O. M.; Etzel, T.; Lizzadro-McPherson, D. J.
2016-12-01
The Main Central Thrust (MCT) is the dominant crustal thickening structure in the Himalayas, juxtaposing high-grade Greater Himalayan Crystalline rocks over the lower-grade Lesser Himalaya Formations. The fault is underlain by a 2 to 12-km-thick sequence of deformed rocks characterized by an apparent inverted metamorphic gradient, termed the MCT shear zone. Garnet-bearing rocks sampled from across the MCT along the Marysandi River in central Nepal contain monazite that decrease in age from Early Miocene (ca. 20 Ma) in the hanging wall to Late Miocene-Pliocene (ca. 7 Ma and 3 Ma) towards structurally lower levels in the shear zone. We obtained high-resolution garnet-zoning pressure-temperature (P-T) paths from 11 of the same rocks used for monazite geochronology using a recently-developed semi-automated Gibbs-free-energy-minimization technique. Quartz-in-garnet Raman barometry refined the locations of the paths. Diffusional re-equilibration of garnet zoning in hanging wall samples prevented accurate path determinations from most Greater Himalayan Crystalline samples, but one that shows a bell-shaped Mn zoning profile shows a slight decrease in P (from 8.2 to 7.6kbar) with increase in T (from 590 to 640ºC). Three MCT shear zone samples were modeled: one yields a simple path increasing in both P and T (6 to 7kbar, 540 to 580ºC); the others yield N-shaped paths that occupy similar P-T space (4 to 5.5 kbar, 500 to 560ºC). Five lower lesser Himalaya garnet-bearing rocks were modeled. One yields a path increasing in both P-T (6 to 7 kbar, 525 to 550ºC) but others show either sharp compression/decompression or N-shape paths (within 4.5-6 kbar and 530-580ºC). The lowermost sample decreases in P (5.5 to 5 kbar) over increasing T (540 to 580°C). No progressive change is seen from one type of path to another within the Lesser Himalayan Formations to the MCT zone. The results using the modeling approach yield lower P-T conditions compared to the Gibbs method and lower core/rim P-T conditions compared to traditional thermometers and barometers. Inclusion barometry suggests that baric estimates from the modeling may be underestimated by 2-4 kbar. Despite uncertainty, path shapes are consistent with a model in which the MCT shear zone experienced a progressive accretion of footwall slivers.
2016-03-28
provocations, Washington and Seoul hardened their approach, taking a number of coordinated actions designed to rally international support for...punitive actions, which will be designed to “create an environment in which the North keenly realizes that nuclear development does not offer the path to...contentious bilateral issues, how Japan should handle the issue of “ comfort women” who were forced to provide sexual services to Japanese soldiers during
Infrared (IR) photon-sensitive spectromicroscopy in a cryogenic environment
Pereverzev, Sergey
2016-06-14
A system designed to suppress thermal radiation background and to allow IR single-photon sensitive spectromicroscopy of small samples by using both absorption, reflection, and emission/luminescence measurements. The system in one embodiment includes: a light source; a plurality of cold mirrors configured to direct light along a beam path; a cold or warm sample holder in the beam path; windows of sample holder (or whole sample holder) are transparent in a spectral region of interest, so they do not emit thermal radiation in the same spectral region of interest; a cold monochromator or other cold spectral device configured to direct a selected fraction of light onto a cold detector; a system of cold apertures and shields positioned along the beam path to prevent unwanted thermal radiation from arriving at the cold monochromator and/or the detector; a plurality of optical, IR and microwave filters positioned along the beam path and configured to adjust a spectral composition of light incident upon the sample under investigation and/or on the detector; a refrigerator configured to maintain the detector at a temperature below 1.0K; and an enclosure configured to: thermally insulate the light source, the plurality of mirrors, the sample holder, the cold monochromator and the refrigerator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromberger, Seth A.; Klymko, Christine F.; Henderson, Keith A.
Betweenness centrality is a graph statistic used to nd vertices that are participants in a large number of shortest paths in a graph. This centrality measure is commonly used in path and network interdiction problems and its complete form requires the calculation of all-pairs shortest paths for each vertex. This leads to a time complexity of O(jV jjEj), which is impractical for large graphs. Estimation of betweenness centrality has focused on performing shortest-path calculations on a subset of randomly- selected vertices. This reduces the complexity of the centrality estimation to O(jSjjEj); jSj < jV j, which can be scaled appropriatelymore » based on the computing resources available. An estimation strategy that uses random selection of vertices for seed selection is fast and simple to implement, but may not provide optimal estimation of betweenness centrality when the number of samples is constrained. Our experimentation has identi ed a number of alternate seed-selection strategies that provide lower error than random selection in common scale-free graphs. These strategies are discussed and experimental results are presented.« less
Path integral Monte Carlo ground state approach: formalism, implementation, and applications
NASA Astrophysics Data System (ADS)
Yan, Yangqian; Blume, D.
2017-11-01
Monte Carlo techniques have played an important role in understanding strongly correlated systems across many areas of physics, covering a wide range of energy and length scales. Among the many Monte Carlo methods applicable to quantum mechanical systems, the path integral Monte Carlo approach with its variants has been employed widely. Since semi-classical or classical approaches will not be discussed in this review, path integral based approaches can for our purposes be divided into two categories: approaches applicable to quantum mechanical systems at zero temperature and approaches applicable to quantum mechanical systems at finite temperature. While these two approaches are related to each other, the underlying formulation and aspects of the algorithm differ. This paper reviews the path integral Monte Carlo ground state (PIGS) approach, which solves the time-independent Schrödinger equation. Specifically, the PIGS approach allows for the determination of expectation values with respect to eigen states of the few- or many-body Schrödinger equation provided the system Hamiltonian is known. The theoretical framework behind the PIGS algorithm, implementation details, and sample applications for fermionic systems are presented.
Life Paths into Effective Environmental Action.
ERIC Educational Resources Information Center
Chawla, Louise
1999-01-01
Explores interviews with environmentalists in Kentucky (n=30) and Norway (n=26) who represented a broad range of issues from wilderness protection to urban planning to determine the sources of their environmental commitment. (Author/CCM)
Vernat, Jean-Philippe; Gordon, Michael S
2010-02-01
This research examined the acoustic information used to support interceptive actions by the blind. Congenitally blind and severely visually impaired participants (all wearing an opaque, black eye-mask) were asked to listen to a target ball rolling down a track. In response, participants rolled their own ball along a perpendicular path to intercept the target. To better understand what information was used the echoic conditions and rolling dynamics of the target were varied across test sessions. In addition the rolling speed of the target and the distance of the participant from the target were varied across trials. Results demonstrated that participants tended to perform most accurately at moderate speeds and distances, overestimating the target's arrival at the fastest speed, and underestimating it at the slowest speed. However, changes to the target's dynamics, that is, the amount of deceleration it underwent on approach, did not strongly influence performance. Echoic conditions were found to affect performance, as participants were slightly more accurate in conditions with faster, higher-intensity echoes. Based on these results blind individuals in this research seemed to be using spatial and temporal cues to coordinate their interceptive actions.
NASA Astrophysics Data System (ADS)
Gilmore, Troy E.; Genereux, David P.; Solomon, D. Kip; Solder, John E.; Kimball, Briant A.; Mitasova, Helena; Birgand, François
2016-03-01
We compared three stream-based sampling methods to study the fate of nitrate in groundwater in a coastal plain watershed: point measurements beneath the streambed, seepage blankets (novel seepage-meter design), and reach mass-balance. The methods gave similar mean groundwater seepage rates into the stream (0.3-0.6 m/d) during two 3-4 day field campaigns despite an order of magnitude difference in stream discharge between the campaigns. At low flow, estimates of flow-weighted mean nitrate concentrations in groundwater discharge ([NO3-]FWM) and nitrate flux from groundwater to the stream decreased with increasing degree of channel influence and measurement scale, i.e., [NO3-]FWM was 654, 561, and 451 µM for point, blanket, and reach mass-balance sampling, respectively. At high flow the trend was reversed, likely because reach mass-balance captured inputs from shallow transient high-nitrate flow paths while point and blanket measurements did not. Point sampling may be better suited to estimating aquifer discharge of nitrate, while reach mass-balance reflects full nitrate inputs into the channel (which at high flow may be more than aquifer discharge due to transient flow paths, and at low flow may be less than aquifer discharge due to channel-based nitrate removal). Modeling dissolved N2 from streambed samples suggested (1) about half of groundwater nitrate was denitrified prior to discharge from the aquifer, and (2) both extent of denitrification and initial nitrate concentration in groundwater (700-1300 µM) were related to land use, suggesting these forms of streambed sampling for groundwater can reveal watershed spatial relations relevant to nitrate contamination and fate in the aquifer.
Heuristic control of the Utah/MIT dextrous robot hand
NASA Technical Reports Server (NTRS)
Bass, Andrew H., Jr.
1987-01-01
Basic hand grips and sensor interactions that a dextrous robot hand will need as part of the operation of an EVA Retriever are analyzed. What is to be done with a dextrous robot hand is examined along with how such a complex machine might be controlled. It was assumed throughout that an anthropomorphic robot hand should perform tasks just as a human would; i.e., the most efficient approach to developing control strategies for the hand would be to model actual hand actions and do the same tasks in the same ways. Therefore, basic hand grips that human hands perform, as well as hand grip action were analyzed. It was also important to examine what is termed sensor fusion. This is the integration of various disparate sensor feedback paths. These feedback paths can be spatially and temporally separated, as well as, of different sensor types. Neural networks are seen as a means of integrating these varied sensor inputs and types. Basic heuristics of hand actions and grips were developed. These heuristics offer promise of control dextrous robot hands in a more natural and efficient way.
Extending the Universal One-Loop Effective Action: heavy-light coefficients
Ellis, Sebastian A. R.; Quevillon, Jérémie; You, Tevong; ...
2017-08-16
The Universal One-Loop Effective Action (UOLEA) is a general expression for the effective action obtained by evaluating in a model-independent way the one-loop expansion of a functional path integral. It can also be used to match UV theories to their low-energy EFTs more efficiently by avoiding redundant steps in the application of functional methods, simplifying the process of obtaining Wilson coefficients of operators up to dimension six. In addition to loops involving only heavy fields, matching may require the inclusion of loops containing both heavy and light particles. Here we use the recently-developed covariant diagram technique to extend the UOLEAmore » to include heavy-light terms which retain the same universal structure as the previously-derived heavy-only terms. As an example of its application, we integrate out a heavy singlet scalar with a linear coupling to a light doublet Higgs. The extension presented here is a first step towards completing the UOLEA to incorporate all possible structures encountered in a covariant derivative expansion of the one-loop path integral.« less
Extending the Universal One-Loop Effective Action: heavy-light coefficients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, Sebastian A. R.; Quevillon, Jérémie; You, Tevong
The Universal One-Loop Effective Action (UOLEA) is a general expression for the effective action obtained by evaluating in a model-independent way the one-loop expansion of a functional path integral. It can also be used to match UV theories to their low-energy EFTs more efficiently by avoiding redundant steps in the application of functional methods, simplifying the process of obtaining Wilson coefficients of operators up to dimension six. In addition to loops involving only heavy fields, matching may require the inclusion of loops containing both heavy and light particles. Here we use the recently-developed covariant diagram technique to extend the UOLEAmore » to include heavy-light terms which retain the same universal structure as the previously-derived heavy-only terms. As an example of its application, we integrate out a heavy singlet scalar with a linear coupling to a light doublet Higgs. The extension presented here is a first step towards completing the UOLEA to incorporate all possible structures encountered in a covariant derivative expansion of the one-loop path integral.« less
The actions of volatile anaesthetics on synaptic transmission in the dentate gyrus.
Richards, C D; White, A E
1975-01-01
1. The action of four volatile anaesthetics on the evoked synaptic potentials of in vitro preparations of the hippocampus were examined. 2. All four anaesthetics (ether, halothane, methoxyflurane and trichloroethylene) depressed the synaptic transmission between the perforant path and the granule cells at concentrations lower than those required to maintain anaesthesia in intact animals. 3. The population excitatory post-synaptic potential (e.p.s.p.) and massed discharge of the cortical cells (population spike) were depressed at concentrations of the anaesthetics lower than those required to depress the compound action potential of the perforant path nerve fibres. None of the anaesthetics studied increased the threshold depolarization required for granule cell discharge. Furthermore, frequency potentiation of the evoked cortical e.p.s.p.s was not impaired by any of the anaesthetics studied. 4. It is concluded that all four anaesthetics depress synaptic transmission in the dentate gyrus either by reducing the amount of transmitter released from each nerve terminal in response to an afferent volley, or by decreasing the sensitivity of the post-synaptic membrane to released transmitted or by both effects together. PMID:1202196
Minati, Ludovico; Cercignani, Mara; Chan, Dennis
2013-10-01
Graph theory-based analyses of brain network topology can be used to model the spatiotemporal correlations in neural activity detected through fMRI, and such approaches have wide-ranging potential, from detection of alterations in preclinical Alzheimer's disease through to command identification in brain-machine interfaces. However, due to prohibitive computational costs, graph-based analyses to date have principally focused on measuring connection density rather than mapping the topological architecture in full by exhaustive shortest-path determination. This paper outlines a solution to this problem through parallel implementation of Dijkstra's algorithm in programmable logic. The processor design is optimized for large, sparse graphs and provided in full as synthesizable VHDL code. An acceleration factor between 15 and 18 is obtained on a representative resting-state fMRI dataset, and maps of Euclidean path length reveal the anticipated heterogeneous cortical involvement in long-range integrative processing. These results enable high-resolution geodesic connectivity mapping for resting-state fMRI in patient populations and real-time geodesic mapping to support identification of imagined actions for fMRI-based brain-machine interfaces. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
UWB pulse detection and TOA estimation using GLRT
NASA Astrophysics Data System (ADS)
Xie, Yan; Janssen, Gerard J. M.; Shakeri, Siavash; Tiberius, Christiaan C. J. M.
2017-12-01
In this paper, a novel statistical approach is presented for time-of-arrival (TOA) estimation based on first path (FP) pulse detection using a sub-Nyquist sampling ultra-wide band (UWB) receiver. The TOA measurement accuracy, which cannot be improved by averaging of the received signal, can be enhanced by the statistical processing of a number of TOA measurements. The TOA statistics are modeled and analyzed for a UWB receiver using threshold crossing detection of a pulse signal with noise. The detection and estimation scheme based on the Generalized Likelihood Ratio Test (GLRT) detector, which captures the full statistical information of the measurement data, is shown to achieve accurate TOA estimation and allows for a trade-off between the threshold level, the noise level, the amplitude and the arrival time of the first path pulse, and the accuracy of the obtained final TOA.
Thomas, J B; Clark, S M; Gioia, D A
1993-04-01
This study investigated the strategic "sensemaking" processes of scanning, interpretation, and action and how those activities are linked to organizational performance. Using path analyses on data from 156 hospitals, we tested the direct and indirect effects among these sensemaking processes and performance outcomes and developed a model of their relationships. In a more general sense, the research represents an attempt to provide insight not only into relationships between cognition and action, but also into the links between those fundamental processes and organizational performance outcomes.
Thompson, Steven K
2006-12-01
A flexible class of adaptive sampling designs is introduced for sampling in network and spatial settings. In the designs, selections are made sequentially with a mixture distribution based on an active set that changes as the sampling progresses, using network or spatial relationships as well as sample values. The new designs have certain advantages compared with previously existing adaptive and link-tracing designs, including control over sample sizes and of the proportion of effort allocated to adaptive selections. Efficient inference involves averaging over sample paths consistent with the minimal sufficient statistic. A Markov chain resampling method makes the inference computationally feasible. The designs are evaluated in network and spatial settings using two empirical populations: a hidden human population at high risk for HIV/AIDS and an unevenly distributed bird population.
An Approach to Model Based Testing of Multiagent Systems
Nadeem, Aamer
2015-01-01
Autonomous agents perform on behalf of the user to achieve defined goals or objectives. They are situated in dynamic environment and are able to operate autonomously to achieve their goals. In a multiagent system, agents cooperate with each other to achieve a common goal. Testing of multiagent systems is a challenging task due to the autonomous and proactive behavior of agents. However, testing is required to build confidence into the working of a multiagent system. Prometheus methodology is a commonly used approach to design multiagents systems. Systematic and thorough testing of each interaction is necessary. This paper proposes a novel approach to testing of multiagent systems based on Prometheus design artifacts. In the proposed approach, different interactions between the agent and actors are considered to test the multiagent system. These interactions include percepts and actions along with messages between the agents which can be modeled in a protocol diagram. The protocol diagram is converted into a protocol graph, on which different coverage criteria are applied to generate test paths that cover interactions between the agents. A prototype tool has been developed to generate test paths from protocol graph according to the specified coverage criterion. PMID:25874263
Pan, Feng; Tao, Guohua
2013-03-07
Full semiclassical (SC) initial value representation (IVR) for time correlation functions involves a double phase space average over a set of two phase points, each of which evolves along a classical path. Conventionally, the two initial phase points are sampled independently for all degrees of freedom (DOF) in the Monte Carlo procedure. Here, we present an efficient importance sampling scheme by including the path correlation between the two initial phase points for the bath DOF, which greatly improves the performance of the SC-IVR calculations for large molecular systems. Satisfactory convergence in the study of quantum coherence in vibrational relaxation has been achieved for a benchmark system-bath model with up to 21 DOF.
The Relationship between Smoker Role Models and Intentions to Smoke among Adolescents
ERIC Educational Resources Information Center
Wiium, Nora; Breivik, Kyrre; Wold, Bente
2006-01-01
The study examines how adolescents' perceptions of exposure to smoker role models relate to their intentions to smoke, both directly, and indirectly through attitudes, norms, and perceived behavioural control. The data is based on a national representative sample of 15-year-olds (n=1670) in Norway. Path analysis indicates that perceptions of model…
Narrow field electromagnetic sensor system and method
McEwan, Thomas E.
1996-01-01
A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.
Narrow field electromagnetic sensor system and method
McEwan, T.E.
1996-11-19
A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.
JacksonBot - Design, Simulation and Optimal Control of an Action Painting Robot
NASA Astrophysics Data System (ADS)
Raschke, Michael; Mombaur, Katja; Schubert, Alexander
We present the robotics platform JacksonBot which is capable to produce paintings inspired by the Action Painting style of Jackson Pollock. A dynamically moving robot arm splashes color from a container at the end effector on the canvas. The paintings produced by this platform rely on a combination of the algorithmic generation of robot arm motions with random effects of the splashing color. The robot can be considered as a complex and powerful tool to generate art works programmed by a user. Desired end effector motions can be prescribed either by mathematical functions, by point sequences or by data glove motions. We have evaluated the effect of different shapes of input motions on the resulting painting. In order to compute the robot joint trajectories necessary to move along a desired end effector path, we use an optimal control based approach to solve the inverse kinematics problem.
Educational action research on Facebook®: combining leisure and learning.
Labegalini, Célia Maria Gomes; Nogueira, Iara Sescon; Rodrigues, Daysi Mara Murio Ribeiro; Almeida, Elton Carlos; Bueno, Sonia Maria Villela; Baldissera, Vanessa Denardi Antoniassi
2017-04-06
To analyse the path of dialogical education in leisure and mental health in social media. Action research based on the theoretical-methodological framework of Paulo Freire, conducted with 11 nursing students of a public university in the state of Paraná, Brazil, during seven days of June 2015, in a closed group on Facebook®. The dialogues were called, 'Virtual Culture Circles' and preceded by self-administered questionnaires that addressed the relationship between leisure and mental health. The data were analysed in an interpretive way, using the encoding and decoding proposed by Freire. The students related leisure to pleasurable activities and quality of life; however, it is not widely or critically practiced in their personal lives or education. The Virtual Culture Circles provided emancipatory dialogues and a critical analysis of the subject matter, with possible repercussions on the personal and professional lives of the subjects.
For and from Cyberspace: Conceptualizing Cyber Intelligence, Surveillance, and Reconnaissance
2012-12-01
intelligence. Cyber ISR, there- fore, “requires the development of algorithms and visualizations capa- bilities to make activities in the cyber domain... Pentagon , 19 January 2012), https://www.intelink.gov/inteldocs/action.php?kt_path_info=ktcore.actions.docu- ment.view&fDocumentId=1517681, defines...selected proxy servers, with successive levels of encryption and then de- cryption, before delivery to their final destination as plain text. W. Earl
Correlation based networks of equity returns sampled at different time horizons
NASA Astrophysics Data System (ADS)
Tumminello, M.; di Matteo, T.; Aste, T.; Mantegna, R. N.
2007-01-01
We investigate the planar maximally filtered graphs of the portfolio of the 300 most capitalized stocks traded at the New York Stock Exchange during the time period 2001 2003. Topological properties such as the average length of shortest paths, the betweenness and the degree are computed on different planar maximally filtered graphs generated by sampling the returns at different time horizons ranging from 5 min up to one trading day. This analysis confirms that the selected stocks compose a hierarchical system progressively structuring as the sampling time horizon increases. Finally, a cluster formation, associated to economic sectors, is quantitatively investigated.
NASA Astrophysics Data System (ADS)
Hidemori, T.; Matsumi, Y.; Nakayama, T.; Kawasaki, M.; Sasago, H.; Takahashi, K.; Imasu, R.; Takeuchi, W.; Adachi, M.; Machida, T.; Terao, Y.; Nomura, S.; Dhaka, S. K.; Singh, J.
2015-12-01
In southeast and south Asia, the previous satellite observations suggest that the methane emission from rice paddies is significant and important source of methane during rainy season. Since it is difficult to measure methane stably and continuously at rural areas such as the paddy fields in terms of infrastructures and maintenances, there are large uncertainties in quantitative estimation of methane emission in these areas and there are needs for more certification between satellite and ground based measurements. To measure methane concentrations continuously at difficult situations such as the center of paddy fields and wetlands, we developed the continuous in-situ measurement system, not to look for your lost keys under the streetlight. The methane gas sensor is used an open-path laser based measurement instrument (LaserMethane, ANRITSU CORPORATION), which can quickly and selectively detect average methane concentrations on the optical path of the laser beam. The developed system has the power supply and telecommunication system to run the laser gas sensor in rural areas with poor electricity infrastructure.The methane measurement system was installed at paddy fields of Sonepat, Haryana on the north of Delhi in India and has been operated from the end of 2014. The air sampling along with our measurement has been carried out once a week during daytime to calibrate the laser instrument. We found that the seasonal variation of methane concentrations was different from the satellite observations and there were significant diurnal variations, which it was difficult to detect from occasional air samplings. We will present details of the measurement system and recent results of continuous methane measurements in India.
Medial temporal lobe roles in human path integration.
Yamamoto, Naohide; Philbeck, John W; Woods, Adam J; Gajewski, Daniel A; Arthur, Joeanna C; Potolicchio, Samuel J; Levy, Lucien; Caputy, Anthony J
2014-01-01
Path integration is a process in which observers derive their location by integrating self-motion signals along their locomotion trajectory. Although the medial temporal lobe (MTL) is thought to take part in path integration, the scope of its role for path integration remains unclear. To address this issue, we administered a variety of tasks involving path integration and other related processes to a group of neurosurgical patients whose MTL was unilaterally resected as therapy for epilepsy. These patients were unimpaired relative to neurologically intact controls in many tasks that required integration of various kinds of sensory self-motion information. However, the same patients (especially those who had lesions in the right hemisphere) walked farther than the controls when attempting to walk without vision to a previewed target. Importantly, this task was unique in our test battery in that it allowed participants to form a mental representation of the target location and anticipate their upcoming walking trajectory before they began moving. Thus, these results put forth a new idea that the role of MTL structures for human path integration may stem from their participation in predicting the consequences of one's locomotor actions. The strengths of this new theoretical viewpoint are discussed.
Medial Temporal Lobe Roles in Human Path Integration
Yamamoto, Naohide; Philbeck, John W.; Woods, Adam J.; Gajewski, Daniel A.; Arthur, Joeanna C.; Potolicchio, Samuel J.; Levy, Lucien; Caputy, Anthony J.
2014-01-01
Path integration is a process in which observers derive their location by integrating self-motion signals along their locomotion trajectory. Although the medial temporal lobe (MTL) is thought to take part in path integration, the scope of its role for path integration remains unclear. To address this issue, we administered a variety of tasks involving path integration and other related processes to a group of neurosurgical patients whose MTL was unilaterally resected as therapy for epilepsy. These patients were unimpaired relative to neurologically intact controls in many tasks that required integration of various kinds of sensory self-motion information. However, the same patients (especially those who had lesions in the right hemisphere) walked farther than the controls when attempting to walk without vision to a previewed target. Importantly, this task was unique in our test battery in that it allowed participants to form a mental representation of the target location and anticipate their upcoming walking trajectory before they began moving. Thus, these results put forth a new idea that the role of MTL structures for human path integration may stem from their participation in predicting the consequences of one's locomotor actions. The strengths of this new theoretical viewpoint are discussed. PMID:24802000
Bhatt, Divesh; Zuckerman, Daniel M.
2010-01-01
We performed “weighted ensemble” path–sampling simulations of adenylate kinase, using several semi–atomistic protein models. The models have an all–atom backbone with various levels of residue interactions. The primary result is that full statistically rigorous path sampling required only a few weeks of single–processor computing time with these models, indicating the addition of further chemical detail should be readily feasible. Our semi–atomistic path ensembles are consistent with previous biophysical findings: the presence of two distinct pathways, identification of intermediates, and symmetry of forward and reverse pathways. PMID:21660120
Chen, Jiajia; Zhao, Pan; Liang, Huawei; Mei, Tao
2014-09-18
The autonomous vehicle is an automated system equipped with features like environment perception, decision-making, motion planning, and control and execution technology. Navigating in an unstructured and complex environment is a huge challenge for autonomous vehicles, due to the irregular shape of road, the requirement of real-time planning, and the nonholonomic constraints of vehicle. This paper presents a motion planning method, based on the Radial Basis Function (RBF) neural network, to guide the autonomous vehicle in unstructured environments. The proposed algorithm extracts the drivable region from the perception grid map based on the global path, which is available in the road network. The sample points are randomly selected in the drivable region, and a gradient descent method is used to train the RBF network. The parameters of the motion-planning algorithm are verified through the simulation and experiment. It is observed that the proposed approach produces a flexible, smooth, and safe path that can fit any road shape. The method is implemented on autonomous vehicle and verified against many outdoor scenes; furthermore, a comparison of proposed method with the existing well-known Rapidly-exploring Random Tree (RRT) method is presented. The experimental results show that the proposed method is highly effective in planning the vehicle path and offers better motion quality.
Chen, Jiajia; Zhao, Pan; Liang, Huawei; Mei, Tao
2014-01-01
The autonomous vehicle is an automated system equipped with features like environment perception, decision-making, motion planning, and control and execution technology. Navigating in an unstructured and complex environment is a huge challenge for autonomous vehicles, due to the irregular shape of road, the requirement of real-time planning, and the nonholonomic constraints of vehicle. This paper presents a motion planning method, based on the Radial Basis Function (RBF) neural network, to guide the autonomous vehicle in unstructured environments. The proposed algorithm extracts the drivable region from the perception grid map based on the global path, which is available in the road network. The sample points are randomly selected in the drivable region, and a gradient descent method is used to train the RBF network. The parameters of the motion-planning algorithm are verified through the simulation and experiment. It is observed that the proposed approach produces a flexible, smooth, and safe path that can fit any road shape. The method is implemented on autonomous vehicle and verified against many outdoor scenes; furthermore, a comparison of proposed method with the existing well-known Rapidly-exploring Random Tree (RRT) method is presented. The experimental results show that the proposed method is highly effective in planning the vehicle path and offers better motion quality. PMID:25237902
ERIC Educational Resources Information Center
Hartlep, Nicholas Daniel; Lowinger, Robert Jay
2014-01-01
This exploratory study examined white undergraduate students' (a) racial attitudes towards Asian Americans, (b) principled policy attitudes toward affirmative action, and (c) self-interest in relation to their support for college-based affirmative action policies for Asian Americans at a Midwestern university. A sample (n = 264, 28% male, 72%…
NASA Astrophysics Data System (ADS)
Ikeda, Fujio; Toyama, Shigehiro; Ishiduki, Souta; Seta, Hiroaki
2016-09-01
Maritime accidents of small ships continue to increase in number. One of the major factors is poor manoeuvrability of the Manual Hydraulic Steering Mechanism (MHSM) in common use. The manoeuvrability can be improved by using the Electronic Control Steering Mechanism (ECSM). This paper conducts stability analyses of a pleasure boat controlled by human models in view of path following on a target course, in order to establish design guidelines for the ECSM. First, to analyse the stability region, the research derives the linear approximated model in a planar global coordinate system. Then, several human models are assumed to develop closed-loop human-machine controlled systems. These human models include basic proportional, derivative, integral and time-delay actions. The stability analysis simulations for those human-machine systems are carried out. The results show that the stability region tends to spread as a ship's velocity increases in the case of the basic proportional human model. The derivative action and time-delay action of human models are effective in spreading the stability region in their respective ranges of frontal gazing points.
Using multiple travel paths to estimate daily travel distance in arboreal, group-living primates.
Steel, Ruth Irene
2015-01-01
Primate field studies often estimate daily travel distance (DTD) in order to estimate energy expenditure and/or test foraging hypotheses. In group-living species, the center of mass (CM) method is traditionally used to measure DTD; a point is marked at the group's perceived center of mass at a set time interval or upon each move, and the distance between consecutive points is measured and summed. However, for groups using multiple travel paths, the CM method potentially creates a central path that is shorter than the individual paths and/or traverses unused areas. These problems may compromise tests of foraging hypotheses, since distance and energy expenditure could be underestimated. To better understand the magnitude of these potential biases, I designed and tested the multiple travel paths (MTP) method, in which DTD was calculated by recording all travel paths taken by the group's members, weighting each path's distance based on its proportional use by the group, and summing the weighted distances. To compare the MTP and CM methods, DTD was calculated using both methods in three groups of Udzungwa red colobus monkeys (Procolobus gordonorum; group size 30-43) for a random sample of 30 days between May 2009 and March 2010. Compared to the CM method, the MTP method provided significantly longer estimates of DTD that were more representative of the actual distance traveled and the areas used by a group. The MTP method is more time-intensive and requires multiple observers compared to the CM method. However, it provides greater accuracy for testing ecological and foraging models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark Krauss
2011-09-01
The purpose of this CADD/CAP is to present the corrective action alternatives (CAAs) evaluated for CAU 547, provide justification for selection of the recommended alternative, and describe the plan for implementing the selected alternative. Corrective Action Unit 547 consists of the following three corrective action sites (CASs): (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; and(3) CAS 09-99-06, Gas Sampling Assembly. The gas sampling assemblies consist of inactive process piping, equipment, and instrumentation that were left in place after completion of underground safety experiments. The purpose of these safety experiments was to confirm that a nuclearmore » explosion would not occur in the case of an accidental detonation of the high-explosive component of the device. The gas sampling assemblies allowed for the direct sampling of the gases and particulates produced by the safety experiments. Corrective Action Site 02-37-02 is located in Area 2 of the Nevada National Security Site (NNSS) and is associated with the Mullet safety experiment conducted in emplacement borehole U2ag on October 17, 1963. Corrective Action Site 03-99-19 is located in Area 3 of the NNSS and is associated with the Tejon safety experiment conducted in emplacement borehole U3cg on May 17, 1963. Corrective Action Site 09-99-06 is located in Area 9 of the NNSS and is associated with the Player safety experiment conducted in emplacement borehole U9cc on August 27, 1964. The CAU 547 CASs were investigated in accordance with the data quality objectives (DQOs) developed by representatives of the Nevada Division of Environmental Protection (NDEP) and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for CAU 547. Existing radiological survey data and historical knowledge of the CASs were sufficient to meet the DQOs and evaluate CAAs without additional investigation. As a result, further investigation of the CAU 547 CASs was not required. The following CAAs were identified for the gas sampling assemblies: (1) clean closure, (2) closure in place, (3) modified closure in place, (4) no further action (with administrative controls), and (5) no further action. Based on the CAAs evaluation, the recommended corrective action for the three CASs in CAU 547 is closure in place. This corrective action will involve construction of a soil cover on top of the gas sampling assembly components and establishment of use restrictions at each site. The closure in place alternative was selected as the best and most appropriate corrective action for the CASs at CAU 547 based on the following factors: (1) Provides long-term protection of human health and the environment; (2) Minimizes short-term risk to site workers in implementing corrective action; (3) Is easily implemented using existing technology; (4) Complies with regulatory requirements; (5) Fulfills FFACO requirements for site closure; (6) Does not generate transuranic waste requiring offsite disposal; (7) Is consistent with anticipated future land use of the areas (i.e., testing and support activities); and (8) Is consistent with other NNSS site closures where contamination was left in place.« less
MinePath: Mining for Phenotype Differential Sub-paths in Molecular Pathways
Koumakis, Lefteris; Kartsaki, Evgenia; Chatzimina, Maria; Zervakis, Michalis; Vassou, Despoina; Marias, Kostas; Moustakis, Vassilis; Potamias, George
2016-01-01
Pathway analysis methodologies couple traditional gene expression analysis with knowledge encoded in established molecular pathway networks, offering a promising approach towards the biological interpretation of phenotype differentiating genes. Early pathway analysis methodologies, named as gene set analysis (GSA), view pathways just as plain lists of genes without taking into account either the underlying pathway network topology or the involved gene regulatory relations. These approaches, even if they achieve computational efficiency and simplicity, consider pathways that involve the same genes as equivalent in terms of their gene enrichment characteristics. Most recent pathway analysis approaches take into account the underlying gene regulatory relations by examining their consistency with gene expression profiles and computing a score for each profile. Even with this approach, assessing and scoring single-relations limits the ability to reveal key gene regulation mechanisms hidden in longer pathway sub-paths. We introduce MinePath, a pathway analysis methodology that addresses and overcomes the aforementioned problems. MinePath facilitates the decomposition of pathways into their constituent sub-paths. Decomposition leads to the transformation of single-relations to complex regulation sub-paths. Regulation sub-paths are then matched with gene expression sample profiles in order to evaluate their functional status and to assess phenotype differential power. Assessment of differential power supports the identification of the most discriminant profiles. In addition, MinePath assess the significance of the pathways as a whole, ranking them by their p-values. Comparison results with state-of-the-art pathway analysis systems are indicative for the soundness and reliability of the MinePath approach. In contrast with many pathway analysis tools, MinePath is a web-based system (www.minepath.org) offering dynamic and rich pathway visualization functionality, with the unique characteristic to color regulatory relations between genes and reveal their phenotype inclination. This unique characteristic makes MinePath a valuable tool for in silico molecular biology experimentation as it serves the biomedical researchers’ exploratory needs to reveal and interpret the regulatory mechanisms that underlie and putatively govern the expression of target phenotypes. PMID:27832067
MinePath: Mining for Phenotype Differential Sub-paths in Molecular Pathways.
Koumakis, Lefteris; Kanterakis, Alexandros; Kartsaki, Evgenia; Chatzimina, Maria; Zervakis, Michalis; Tsiknakis, Manolis; Vassou, Despoina; Kafetzopoulos, Dimitris; Marias, Kostas; Moustakis, Vassilis; Potamias, George
2016-11-01
Pathway analysis methodologies couple traditional gene expression analysis with knowledge encoded in established molecular pathway networks, offering a promising approach towards the biological interpretation of phenotype differentiating genes. Early pathway analysis methodologies, named as gene set analysis (GSA), view pathways just as plain lists of genes without taking into account either the underlying pathway network topology or the involved gene regulatory relations. These approaches, even if they achieve computational efficiency and simplicity, consider pathways that involve the same genes as equivalent in terms of their gene enrichment characteristics. Most recent pathway analysis approaches take into account the underlying gene regulatory relations by examining their consistency with gene expression profiles and computing a score for each profile. Even with this approach, assessing and scoring single-relations limits the ability to reveal key gene regulation mechanisms hidden in longer pathway sub-paths. We introduce MinePath, a pathway analysis methodology that addresses and overcomes the aforementioned problems. MinePath facilitates the decomposition of pathways into their constituent sub-paths. Decomposition leads to the transformation of single-relations to complex regulation sub-paths. Regulation sub-paths are then matched with gene expression sample profiles in order to evaluate their functional status and to assess phenotype differential power. Assessment of differential power supports the identification of the most discriminant profiles. In addition, MinePath assess the significance of the pathways as a whole, ranking them by their p-values. Comparison results with state-of-the-art pathway analysis systems are indicative for the soundness and reliability of the MinePath approach. In contrast with many pathway analysis tools, MinePath is a web-based system (www.minepath.org) offering dynamic and rich pathway visualization functionality, with the unique characteristic to color regulatory relations between genes and reveal their phenotype inclination. This unique characteristic makes MinePath a valuable tool for in silico molecular biology experimentation as it serves the biomedical researchers' exploratory needs to reveal and interpret the regulatory mechanisms that underlie and putatively govern the expression of target phenotypes.
Method and apparatus for probing relative volume fractions
Jandrasits, Walter G.; Kikta, Thomas J.
1998-01-01
A relative volume fraction probe particularly for use in a multiphase fluid system includes two parallel conductive paths defining therebetween a sample zone within the system. A generating unit generates time varying electrical signals which are inserted into one of the two parallel conductive paths. A time domain reflectometer receives the time varying electrical signals returned by the second of the two parallel conductive paths and, responsive thereto, outputs a curve of impedance versus distance. An analysis unit then calculates the area under the curve, subtracts the calculated area from an area produced when the sample zone consists entirely of material of a first fluid phase, and divides this calculated difference by the difference between an area produced when the sample zone consists entirely of material of the first fluid phase and an area produced when the sample zone consists entirely of material of a second fluid phase. The result is the volume fraction.
Method and apparatus for probing relative volume fractions
Jandrasits, W.G.; Kikta, T.J.
1998-03-17
A relative volume fraction probe particularly for use in a multiphase fluid system includes two parallel conductive paths defining therebetween a sample zone within the system. A generating unit generates time varying electrical signals which are inserted into one of the two parallel conductive paths. A time domain reflectometer receives the time varying electrical signals returned by the second of the two parallel conductive paths and, responsive thereto, outputs a curve of impedance versus distance. An analysis unit then calculates the area under the curve, subtracts the calculated area from an area produced when the sample zone consists entirely of material of a first fluid phase, and divides this calculated difference by the difference between an area produced when the sample zone consists entirely of material of the first fluid phase and an area produced when the sample zone consists entirely of material of a second fluid phase. The result is the volume fraction. 9 figs.
Advance Control Measures & Programs
As areas develop their path forward or action plan, they should consider a variety of voluntary and mandatory measures and programs. The resources on this page can help, and participants are also encouraged to talk with their EPA Advance contact
A machine-learned computational functional genomics-based approach to drug classification.
Lötsch, Jörn; Ultsch, Alfred
2016-12-01
The public accessibility of "big data" about the molecular targets of drugs and the biological functions of genes allows novel data science-based approaches to pharmacology that link drugs directly with their effects on pathophysiologic processes. This provides a phenotypic path to drug discovery and repurposing. This paper compares the performance of a functional genomics-based criterion to the traditional drug target-based classification. Knowledge discovery in the DrugBank and Gene Ontology databases allowed the construction of a "drug target versus biological process" matrix as a combination of "drug versus genes" and "genes versus biological processes" matrices. As a canonical example, such matrices were constructed for classical analgesic drugs. These matrices were projected onto a toroid grid of 50 × 82 artificial neurons using a self-organizing map (SOM). The distance, respectively, cluster structure of the high-dimensional feature space of the matrices was visualized on top of this SOM using a U-matrix. The cluster structure emerging on the U-matrix provided a correct classification of the analgesics into two main classes of opioid and non-opioid analgesics. The classification was flawless with both the functional genomics and the traditional target-based criterion. The functional genomics approach inherently included the drugs' modulatory effects on biological processes. The main pharmacological actions known from pharmacological science were captures, e.g., actions on lipid signaling for non-opioid analgesics that comprised many NSAIDs and actions on neuronal signal transmission for opioid analgesics. Using machine-learned techniques for computational drug classification in a comparative assessment, a functional genomics-based criterion was found to be similarly suitable for drug classification as the traditional target-based criterion. This supports a utility of functional genomics-based approaches to computational system pharmacology for drug discovery and repurposing.
Wypych, Marek; Matuszewski, Jacek; Dragan, Wojciech Ł.
2018-01-01
Procrastination – an irrational delay of intended actions despite expecting to be worse off – is a complex and non-homogenous phenomenon. Previous studies have found a number of correlates of procrastination, some of which seem to be particularly important. Impulsivity is closely connected to procrastination on behavioral, genetic, and neuronal levels. Difficulties in emotion regulation have also been shown to be strongly related to procrastination. Procrastination can also be considered as a motivation-based problem. To try to disentangle the connections of impulsivity, emotion regulation, and motivation to procrastination we collected data from over 600 subjects using multiple questionnaires (PPS – Pure Procrastination Scale; UPPSP – Impulsive Behavior Scale, ERQ – Emotion Regulation Questionnaire and MDT – Motivational Diagnostic Test). Structural equation modeling was performed to test several possible relationships between the measured variables. The effects of student status and age have also been investigated. The final path model was a directional model based on six explanatory variables and accounted for 70% of the variance in procrastination. Path analysis revealed that the strongest contributions to procrastination came from lack of value, delay discounting, and lack of perseverance, suggesting the involvement of motivation and impulsivity. The model also revealed the moderating role of expressive suppression between several aspects of impulsivity and procrastination. Close inspection of the paths’ weights suggests that there may be two partly competing strategies for dealing with impulsivity and negative emotions: either to suppress emotions and impulsive reactions or to react impulsively, discarding previous plans, and to procrastinate. Path invariance analysis showed the significant moderating roles of student status and age. Both in non-students and high-age groups, the path leading from suppression to procrastination was insignificant. This suggests that caution should be used in generalizing the results of studies carried out on students. These results support previous findings that procrastination may serve as a short-term mood regulation strategy. However, as the spectrum of the emotion regulation strategies included in the study was very limited, we conclude that future studies should seek more insight into the relationship between emotion regulation, self-control, and procrastination. PMID:29922205
Parietal neurons encode expected gains in instrumental information
Foley, Nicholas C.; Kelly, Simon P.; Mhatre, Himanshu; Gottlieb, Jacqueline
2017-01-01
In natural behavior, animals have access to multiple sources of information, but only a few of these sources are relevant for learning and actions. Beyond choosing an appropriate action, making good decisions entails the ability to choose the relevant information, but fundamental questions remain about the brain’s information sampling policies. Recent studies described the neural correlates of seeking information about a reward, but it remains unknown whether, and how, neurons encode choices of instrumental information, in contexts in which the information guides subsequent actions. Here we show that parietal cortical neurons involved in oculomotor decisions encode, before an information sampling saccade, the reduction in uncertainty that the saccade is expected to bring for a subsequent action. These responses were distinct from the neurons’ visual and saccadic modulations and from signals of expected reward or reward prediction errors. Therefore, even in an instrumental context when information and reward gains are closely correlated, individual cells encode decision variables that are based on informational factors and can guide the active sampling of action-relevant cues. PMID:28373569
Quasi-Monte Carlo Methods Applied to Tau-Leaping in Stochastic Biological Systems.
Beentjes, Casper H L; Baker, Ruth E
2018-05-25
Quasi-Monte Carlo methods have proven to be effective extensions of traditional Monte Carlo methods in, amongst others, problems of quadrature and the sample path simulation of stochastic differential equations. By replacing the random number input stream in a simulation procedure by a low-discrepancy number input stream, variance reductions of several orders have been observed in financial applications. Analysis of stochastic effects in well-mixed chemical reaction networks often relies on sample path simulation using Monte Carlo methods, even though these methods suffer from typical slow [Formula: see text] convergence rates as a function of the number of sample paths N. This paper investigates the combination of (randomised) quasi-Monte Carlo methods with an efficient sample path simulation procedure, namely [Formula: see text]-leaping. We show that this combination is often more effective than traditional Monte Carlo simulation in terms of the decay of statistical errors. The observed convergence rate behaviour is, however, non-trivial due to the discrete nature of the models of chemical reactions. We explain how this affects the performance of quasi-Monte Carlo methods by looking at a test problem in standard quadrature.
Annealed importance sampling with constant cooling rate
NASA Astrophysics Data System (ADS)
Giovannelli, Edoardo; Cardini, Gianni; Gellini, Cristina; Pietraperzia, Giangaetano; Chelli, Riccardo
2015-02-01
Annealed importance sampling is a simulation method devised by Neal [Stat. Comput. 11, 125 (2001)] to assign weights to configurations generated by simulated annealing trajectories. In particular, the equilibrium average of a generic physical quantity can be computed by a weighted average exploiting weights and estimates of this quantity associated to the final configurations of the annealed trajectories. Here, we review annealed importance sampling from the perspective of nonequilibrium path-ensemble averages [G. E. Crooks, Phys. Rev. E 61, 2361 (2000)]. The equivalence of Neal's and Crooks' treatments highlights the generality of the method, which goes beyond the mere thermal-based protocols. Furthermore, we show that a temperature schedule based on a constant cooling rate outperforms stepwise cooling schedules and that, for a given elapsed computer time, performances of annealed importance sampling are, in general, improved by increasing the number of intermediate temperatures.
NASA Astrophysics Data System (ADS)
Crabtree, Stephen M.; Waters, Laura E.
2017-04-01
To evaluate if intermediate magmas erupting from Volcán Sanganguey (Mexico) and the surrounding volcanic field are formed by mixing of basalts and rhyolites or if they initially exist as intermediate liquids, a detailed petrological study is presented for eight andesite and dacite magmas. Six of the samples erupted from the central edifice (four andesites and two dacites) are crystal-rich (≤ 50 vol%), whereas the remaining two samples (one andesite and one dacite) erupted from monogenetic vents in the peripheral volcanic field and are crystal poor (≤ 5 vol%). Despite the variation in crystallinity, all samples are multiply saturated in five to seven mineral phases (plagioclase + orthopyroxene + titanomagnetite + ilmenite + apatite ± clinopyroxene ± hornblende). In all samples, plagioclase spans a 30-40 mol% An range in composition and orthopyroxene spans a range in Mg# of 5-10. Pre-eruptive temperatures and oxygen fugacites (relative to the NNO buffer) range from 853 (± 24) to 1085 (± 16) °C and - 0.1 (± 0.1) to 0.9 (± 0.1) Δ NNO, on the basis of Fe-Ti two oxide thermometry. Application of the plagioclase-liquid hygrometer to the samples reveals maximum H2O contents that range from 1.7-6.2 wt%. Comparison with phase equilibrium experiments demonstrates that all plagioclase and orthopyroxene compositions in the crystal-poor samples could have grown from their respective whole rock compositions. Comparison of crystal rich samples with phase equilibrium experiments reveals the presence of sodic xenocrysts which reflect resorption textures and an estimated excess plagioclase crystal cargo of > 6 vol%. The excess plagioclase crystal cargo is not distinguishable from phenocrystic plagioclase based on composition or texture, suggesting that they were also grown in intermediate melts, and are therefore described as antecrystic. No calcic plagioclase xenocrysts (> An79) typical of hydrous arc basalts are observed, thus it is likely that the excess plagioclase in the crystal-rich samples were originally formed in intermediate magmas. For the crystal-poor samples, we propose that the mechanism producing the complex phenocryst assemblages is degassing (± cooling), as it may shift equilibrium plagioclase compositions, kinetically inhibit crystal-growth, and increase melt viscosity, leading to complex textures. Notably, the hypothesis of degassing (± cooling) induced crystallization requires that the intermediate melts initially exist as liquids, prior to crystallization, supporting the hypothesis that intermediate melts are generated in the deep crust and arrive in the upper crust as liquids. For the crystal-rich samples, degassing (± cooling) may also be the mechanism generating a portion of the compositional and textural variation in the mineral assemblages and some incorporation of antecrysts or xenocrysts must occur as evidenced by an excess plagioclase crystal cargo; however, we find no definitive evidence supporting the incorporation of crystals initially grown in basalts or rhyolites. Given the similarities in phase assemblage, mineral compositions, mineral textures, and intensive variables between the crystal-poor and -rich samples, we conclude that the melts arriving into the upper crust beneath Volcán Sanganguey and the surrounding peripheral volcanic field are intermediate in composition and are initially formed (as liquids) in the deep crust. Plots of plagioclase composition (%An) vs. distance across each grain, XAL-103. Appendix Fig. B.2.3. Plots of plagioclase composition (%An) vs. distance across each grain, XAL-117. Appendix Fig. B.2.4. Plots of plagioclase composition (%An) vs. distance across each grain, XAL-109. Appendix Fig. B.2.5. Plots of plagioclase composition (%An) vs. distance across each grain, XAL-132. Appendix Fig. B.2.6. Plots of plagioclase composition (%An) vs. distance across each grain, XAL-115. Appendix Fig. B.2.7. Plots of plagioclase composition (%An) vs. distance across each grain, XAL-106. Appendix Fig. B.2.8. Plots of plagioclase composition (%An) vs. distance across each grain, XAL-129. Appendix Fig. B.3.2. Plots of pyroxene composition (Mg#) vs. distance across each grain, XAL-103. Appendix Fig. B.3.3. Plots of pyroxene composition (Mg#) vs. distance across each grain, XAL-117 Appendix Fig. B.3.4. Plots of pyroxene composition (Mg#) vs. distance across each grain, XAL-109. Appendix Fig. B.3.5. Plots of pyroxene composition (Mg#) vs. distance across each grain, XAL-132. Appendix Fig. B.3.6. Plots of pyroxene composition (Mg#) vs. distance across each grain, XAL-115. Appendix Fig. B.3.7. Plots of pyroxene composition (Mg#) vs. distance across each grain, XAL-106. Appendix Fig. B.3.8. Plots of pyroxene composition (Mg#) vs. distance across each grain, XAL-129. Appendix Fig. B.4.2. BSE images of plagioclase grains, with traversal path indicated, XAL-103. Appendix Fig. B.4.3. BSE images of plagioclase grains, with traversal path indicated, XAL-117. Appendix Fig. B.4.4. BSE images of plagioclase grains, with traversal path indicated, XAL-109. Appendix Fig. B.4.5. BSE images of plagioclase grains, with traversal path indicated, XAL-132. Appendix Fig. B.4.6. BSE images of plagioclase grains, with traversal path indicated, XAL-115. Appendix Fig. B.4.7. BSE images of plagioclase grains, with traversal path indicated, XAL-106. Appendix Fig. B.4.8. BSE images of plagioclase grains, with traversal path indicated, XAL-129. Appendix Fig. B.5.2. BSE images of pyroxene grains, with traversal path indicated, XAL-103. Appendix Fig. B.5.3. BSE images of pyroxene grains, with traversal path indicated, XAL-117. Appendix Fig. B.5.4. BSE images of pyroxene grains, with traversal path indicated, XAL-109. Appendix Fig. B.5.5. BSE images of pyroxene grains, with traversal path indicated, XAL-132. Appendix Fig. B.5.6. BSE images of pyroxene grains, with traversal path indicated, XAL-115. Appendix Fig. B.5.7. BSE images of pyroxene grains, with traversal path indicated, XAL-106. Appendix Fig. B.5.8. BSE images of pyroxene grains, with traversal path indicated, XAL-129.
Sampling the kinetic pathways of a micelle fusion and fission transition.
Pool, René; Bolhuis, Peter G
2007-06-28
The mechanism and kinetics of micellar breakup and fusion in a dilute solution of a model surfactant are investigated by path sampling techniques. Analysis of the path ensemble gives insight in the mechanism of the transition. For larger, less stable micelles the fission/fusion occurs via a clear neck formation, while for smaller micelles the mechanism is more direct. In addition, path analysis yields an appropriate order parameter to evaluate the fusion and fission rate constants using stochastic transition interface sampling. For the small, stable micelle (50 surfactants) the computed fission rate constant is a factor of 10 lower than the fusion rate constant. The procedure opens the way for accurate calculation of free energy and kinetics for, e.g., membrane fusion, and wormlike micelle endcap formation.
Activity-Based Teaching in Social Studies Education: An Action Research
ERIC Educational Resources Information Center
Akkus, Zekerya
2015-01-01
The aim of this study was to determine pre-service social studies teachers' skills to plan and apply the activity-based teaching and contribute to their development of these skills. In the study, the action research design of qualitative research was used. The sample of the study consisted of 6 pre-service teachers who were 4th year students at…
Simulation and validation of concentrated subsurface lateral flow paths in an agricultural landscape
NASA Astrophysics Data System (ADS)
Zhu, Q.; Lin, H. S.
2009-08-01
The importance of soil water flow paths to the transport of nutrients and contaminants has long been recognized. However, effective means of detecting concentrated subsurface flow paths in a large landscape are still lacking. The flow direction and accumulation algorithm based on single-direction flow algorithm (D8) in GIS hydrologic modeling is a cost-effective way to simulate potential concentrated flow paths over a large area once relevant data are collected. This study tested the D8 algorithm for simulating concentrated lateral flow paths at three interfaces in soil profiles in a 19.5-ha agricultural landscape in central Pennsylvania, USA. These interfaces were (1) the interface between surface plowed layers of Ap1 and Ap2 horizons, (2) the interface with subsoil water-restricting clay layer where clay content increased to over 40%, and (3) the soil-bedrock interface. The simulated flow paths were validated through soil hydrologic monitoring, geophysical surveys, and observable soil morphological features. The results confirmed that concentrated subsurface lateral flow occurred at the interfaces with the clay layer and the underlying bedrock. At these two interfaces, the soils on the simulated flow paths were closer to saturation and showed more temporally unstable moisture dynamics than those off the simulated flow paths. Apparent electrical conductivity in the soil on the simulated flow paths was elevated and temporally unstable as compared to those outside the simulated paths. The soil cores collected from the simulated flow paths showed significantly higher Mn content at these interfaces than those away from the simulated paths. These results suggest that (1) the D8 algorithm is useful in simulating possible concentrated subsurface lateral flow paths if used with appropriate threshold value of contributing area and sufficiently detailed digital elevation model (DEM); (2) repeated electromagnetic surveys can reflect the temporal change of soil water storage and thus is a useful indicator of possible subsurface flow path over a large area; and (3) observable Mn distribution in soil profiles can be used as a simple indicator of water flow paths in soils and over the landscape; however, it does require sufficient soil sampling (by excavation or augering) to possibly infer landscape-scale subsurface flow paths. In areas where subsurface interface topography varies similarly with surface topography, surface DEM can be used to simulate potential subsurface lateral flow path reasonably so the cost associated with obtaining depth to subsurface water-restricting layer can be minimized.
Duncan, Dustin T.; Tamura, Kosuke; Regan, Seann D.; Athens, Jessica; Elbel, Brian; Meline, Julie; Al-Ajlouni, Yazan A.; Chaix, Basile
2016-01-01
Purpose To examine if there was spatial misclassification in exposure to neighborhood noise complaints among a sample of low-income housing residents in New York City, comparing home-based spatial buffers and Global Positioning Systems (GPS) daily path buffers. Methods Data came from the community-based NYC Low-Income Housing, Neighborhoods and Health Study, where GPS tracking of the sample was conducted for a week (analytic n=102). We created a GPS daily path buffer (a buffering zone drawn around GPS tracks) of 200-meters and 400-meters. We also used home-based buffers of 200-meters and 400-meters. Using these “neighborhoods” (or exposure areas) we calculated neighborhood exposure to noisy events from 311 complaints data (analytic n=143,967). Friedman tests (to compare overall differences in neighborhood definitions) were applied. Results There were differences in neighborhood noise complaints according to the selected neighborhood definitions (p<0.05). For example, the mean neighborhood noise complaint count was 1196 per square kilometer for the 400-meter home-based and 812 per square kilometer for the 400-meter activity space buffer, illustrating how neighborhood definition influences the estimates of exposure to neighborhood noise complaints. Conclusions These analyses suggest that, whenever appropriate, GPS neighborhood definitions can be used in spatial epidemiology research in spatially mobile populations to understand people's lived experience. PMID:28063754
Path-integral representation for the relativistic particle propagators and BFV quantization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fradkin, E.S.; Gitman, D.M.
1991-11-15
The path-integral representations for the propagators of scalar and spinor fields in an external electromagnetic field are derived. The Hamiltonian form of such expressions can be interpreted in the sense of Batalin-Fradkin-Vilkovisky quantization of one-particle theory. The Lagrangian representation as derived allows one to extract in a natural way the expressions for the corresponding gauge-invariant (reparametrization- and supergauge-invariant) actions for pointlike scalar and spinning particles. At the same time, the measure and ranges of integrations, admissible gauge conditions, and boundary conditions can be exactly established.
Amadoz, Alicia; González-Candelas, Fernando
2007-04-20
Most research scientists working in the fields of molecular epidemiology, population and evolutionary genetics are confronted with the management of large volumes of data. Moreover, the data used in studies of infectious diseases are complex and usually derive from different institutions such as hospitals or laboratories. Since no public database scheme incorporating clinical and epidemiological information about patients and molecular information about pathogens is currently available, we have developed an information system, composed by a main database and a web-based interface, which integrates both types of data and satisfies requirements of good organization, simple accessibility, data security and multi-user support. From the moment a patient arrives to a hospital or health centre until the processing and analysis of molecular sequences obtained from infectious pathogens in the laboratory, lots of information is collected from different sources. We have divided the most relevant data into 12 conceptual modules around which we have organized the database schema. Our schema is very complete and it covers many aspects of sample sources, samples, laboratory processes, molecular sequences, phylogenetics results, clinical tests and results, clinical information, treatments, pathogens, transmissions, outbreaks and bibliographic information. Communication between end-users and the selected Relational Database Management System (RDMS) is carried out by default through a command-line window or through a user-friendly, web-based interface which provides access and management tools for the data. epiPATH is an information system for managing clinical and molecular information from infectious diseases. It facilitates daily work related to infectious pathogens and sequences obtained from them. This software is intended for local installation in order to safeguard private data and provides advanced SQL-users the flexibility to adapt it to their needs. The database schema, tool scripts and web-based interface are free software but data stored in our database server are not publicly available. epiPATH is distributed under the terms of GNU General Public License. More details about epiPATH can be found at http://genevo.uv.es/epipath.
NASA Astrophysics Data System (ADS)
Hardy, Jason; Campbell, Mark; Miller, Isaac; Schimpf, Brian
2008-10-01
The local path planner implemented on Cornell's 2007 DARPA Urban Challenge entry vehicle Skynet utilizes a novel mixture of discrete and continuous path planning steps to facilitate a safe, smooth, and human-like driving behavior. The planner first solves for a feasible path through the local obstacle map using a grid based search algorithm. The resulting path is then refined using a cost-based nonlinear optimization routine with both hard and soft constraints. The behavior of this optimization is influenced by tunable weighting parameters which govern the relative cost contributions assigned to different path characteristics. This paper studies the sensitivity of the vehicle's performance to these path planner weighting parameters using a data driven simulation based on logged data from the National Qualifying Event. The performance of the path planner in both the National Qualifying Event and in the Urban Challenge is also presented and analyzed.
Courbin, Nicolas; Fortin, Daniel; Dussault, Christian; Fargeot, Viviane; Courtois, Réhaume
2013-09-01
1. Habitat selection strategies translate into movement tactics, which reckon with the predator-prey spatial game. Strategic habitat selection analysis can therefore illuminate behavioural games. Cover types at potential encounter sites (i.e. intersections between movement paths of predator and prey) can be compared with cover types available (i) within the area of home-range-overlap (HRO) between predator and prey; and (ii) along the path (MP) of each species. Unlike the HRO scale, cover-type availability at MP scale differs between interacting species due to species-specific movement decisions. Scale differences in selection could therefore inform on divergences in fitness rewarding actions between predators and prey. 2. We used this framework to evaluate the spatial game between GPS-collared wolves (Canis lupus) versus caribou (Rangifer tarandus), and wolf versus moose (Alces alces). 3. Changes in cover-type availability between HRO and MP revealed differences in how each species fine-tuned its movements to habitat features. In contrast to caribou, wolves increased their encounter rate with regenerating cuts along their paths (MP) relative to the HRO level. As a consequence, wolves were less likely to cross caribou paths in areas with higher percentage of regenerating cuts than expected based on the availability along their paths, whereas caribou had a higher risk of intersecting wolf paths by crossing these areas, relative to random expectation along their paths. Unlike for caribou, availability of mixed and deciduous areas decreased from HRO to MP level for wolves and moose. Overall, wolves displayed stronger similarities in movement decisions with moose than with caribou, thereby revealing the focus of wolves on moose. 4. Our study reveals how differences in fine-scale movement tactics between species create asymmetric relative encounter probabilities between predators and prey, given their paths. Increase in relative risk of encounter for prey and decrease for predators associated with specific cover types emerging from HRO to MP scale analysis can disclose potential weaknesses in current movement tactics involved the predator-prey game, such as caribou use of cutovers in summer-autumn. In turn, these weaknesses can inform on subsequent changes in habitat selection tactics that might arise due to evolutionary forces. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Gender-Based Salary Inequity in Social Work: Mediators of Gender's Effect on Salary
ERIC Educational Resources Information Center
Koeske, Gary F.; Krowinski, William J.
2004-01-01
This study examined the direct effect of gender, controlling for years of experience, job role, and other variables, in a sample of 359 Pennsylvania social workers. Men social workers received significantly more yearly salary (an estimated $3,665 more) than women social workers. A path analysis suggested that the salary advantage for men that was…
Paths to Success in Young Adulthood from Mental Health and Life Transitions in Emerging Adulthood
ERIC Educational Resources Information Center
Howard, Andrea L.; Galambos, Nancy L.; Krahn, Harvey J.
2010-01-01
This study followed a school-based sample (N = 920) to explore how trajectories of depressive symptoms and expressed anger from age 18 to 25, along with important life transitions, predicted life and career satisfaction at age 32. A two-group (women and men) bivariate growth model revealed that higher depressive symptoms at age 18 predicted lower…
An airport wind shear detection and warning system using Doppler radar: A feasibility study
NASA Technical Reports Server (NTRS)
Mccarthy, J.; Blick, E. F.; Elmore, K. L.
1981-01-01
A feasibility study was conducted to determine whether ground based Doppler radar could measure the wind along the path of an approaching aircraft with sufficient accuracy to predict aircraft performance. Forty-three PAR approaches were conducted, with 16 examined in detail. In each, Doppler derived longitudinal winds were compared to aircraft measured winds; in approximately 75 percent of the cases, the Doppler and aircraft winds were in acceptable agreement. In the remaining cases, errors may have been due to a lack of Doppler resolution, a lack of co-location of the two sampling volumes, the presence of eddy or vortex like disturbances within the pulse volume, or the presence of point targets in antenna side lobes. It was further concluded that shrouding techniques would have reduced the side lobe problem. A ground based Doppler radar operating in the optically clear air, provides the appropriate longitudinal winds along an aircraft's intended flight path.
Grebner, Christoph; Becker, Johannes; Weber, Daniel; Bellinger, Daniel; Tafipolski, Maxim; Brückner, Charlotte; Engels, Bernd
2014-09-15
The presented program package, Conformational Analysis and Search Tool (CAST) allows the accurate treatment of large and flexible (macro) molecular systems. For the determination of thermally accessible minima CAST offers the newly developed TabuSearch algorithm, but algorithms such as Monte Carlo (MC), MC with minimization, and molecular dynamics are implemented as well. For the determination of reaction paths, CAST provides the PathOpt, the Nudge Elastic band, and the umbrella sampling approach. Access to free energies is possible through the free energy perturbation approach. Along with a number of standard force fields, a newly developed symmetry-adapted perturbation theory-based force field is included. Semiempirical computations are possible through DFTB+ and MOPAC interfaces. For calculations based on density functional theory, a Message Passing Interface (MPI) interface to the Graphics Processing Unit (GPU)-accelerated TeraChem program is available. The program is available on request. Copyright © 2014 Wiley Periodicals, Inc.
Jiang, Baofeng; Jia, Pengjiao; Zhao, Wen; Wang, Wentao
2018-01-01
This paper explores a new method for rapid structural damage inspection of steel tube slab (STS) structures along randomly measured paths based on a combination of compressive sampling (CS) and ultrasonic computerized tomography (UCT). In the measurement stage, using fewer randomly selected paths rather than the whole measurement net is proposed to detect the underlying damage of a concrete-filled steel tube. In the imaging stage, the ℓ1-minimization algorithm is employed to recover the information of the microstructures based on the measurement data related to the internal situation of the STS structure. A numerical concrete tube model, with the various level of damage, was studied to demonstrate the performance of the rapid UCT technique. Real-world concrete-filled steel tubes in the Shenyang Metro stations were detected using the proposed UCT technique in a CS framework. Both the numerical and experimental results show the rapid UCT technique has the capability of damage detection in an STS structure with a high level of accuracy and with fewer required measurements, which is more convenient and efficient than the traditional UCT technique. PMID:29293593
NASA Astrophysics Data System (ADS)
Herrington, Jason S.; Hays, Michael D.
2012-08-01
There is high demand for accurate and reliable airborne carbonyl measurement methods due to the human and environmental health impacts of carbonyls and their effects on atmospheric chemistry. Standardized 2,4-dinitrophenylhydrazine (DNPH)-based sampling methods are frequently applied for measuring gaseous carbonyls in the atmospheric environment. However, there are multiple short-comings associated with these methods that detract from an accurate understanding of carbonyl-related exposure, health effects, and atmospheric chemistry. The purpose of this brief technical communication is to highlight these method challenges and their influence on national ambient monitoring networks, and to provide a logical path forward for accurate carbonyl measurement. This manuscript focuses on three specific carbonyl compounds of high toxicological interest—formaldehyde, acetaldehyde, and acrolein. Further method testing and development, the revision of standardized methods, and the plausibility of introducing novel technology for these carbonyls are considered elements of the path forward. The consolidation of this information is important because it seems clear that carbonyl data produced utilizing DNPH-based methods are being reported without acknowledgment of the method short-comings or how to best address them.
Weighted score-level feature fusion based on Dempster-Shafer evidence theory for action recognition
NASA Astrophysics Data System (ADS)
Zhang, Guoliang; Jia, Songmin; Li, Xiuzhi; Zhang, Xiangyin
2018-01-01
The majority of human action recognition methods use multifeature fusion strategy to improve the classification performance, where the contribution of different features for specific action has not been paid enough attention. We present an extendible and universal weighted score-level feature fusion method using the Dempster-Shafer (DS) evidence theory based on the pipeline of bag-of-visual-words. First, the partially distinctive samples in the training set are selected to construct the validation set. Then, local spatiotemporal features and pose features are extracted from these samples to obtain evidence information. The DS evidence theory and the proposed rule of survival of the fittest are employed to achieve evidence combination and calculate optimal weight vectors of every feature type belonging to each action class. Finally, the recognition results are deduced via the weighted summation strategy. The performance of the established recognition framework is evaluated on Penn Action dataset and a subset of the joint-annotated human metabolome database (sub-JHMDB). The experiment results demonstrate that the proposed feature fusion method can adequately exploit the complementarity among multiple features and improve upon most of the state-of-the-art algorithms on Penn Action and sub-JHMDB datasets.
Knoxville, Tennessee: Solar in Action (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-10-01
This brochure provides an overview of the challenges and successes of Knoxville, TN, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.
Austin, Texas: Solar in Action (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This brochure provides an overview of the challenges and successes of Austin, Texas, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.
Denver, Colorado: Solar in Action (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This brochure provides an overview of the challenges and successes of Denver, Colorado, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.
Women in engineering conference: capitalizing on today`s challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metz, S.S.; Martins, S.M.
This document contains the conference proceedings of the Women in Engineering Conference: Capitalizing on Today`s Challenges, held June 1-4, 1996 in Denver, Colorado. Topics included engineering and science education, career paths, workplace issues, and affirmative action.
Madison, Wisconsin: Solar in Action (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-10-01
This brochure provides an overview of the challenges and successes of Madison, WI, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.
Astigmatism corrected common path probe for optical coherence tomography.
Singh, Kanwarpal; Yamada, Daisuke; Tearney, Guillermo
2017-03-01
Optical coherence tomography (OCT) catheters for intraluminal imaging are subject to various artifacts due to reference-sample arm dispersion imbalances and sample arm beam astigmatism. The goal of this work was to develop a probe that minimizes such artifacts. Our probe was fabricated using a single mode fiber at the tip of which a glass spacer and graded index objective lens were spliced to achieve the desired focal distance. The signal was reflected using a curved reflector to correct for astigmatism caused by the thin, protective, transparent sheath that surrounds the optics. The probe design was optimized using Zemax, a commercially available optical design software. Common path interferometric operation was achieved using Fresnel reflection from the tip of the focusing graded index objective lens. The performance of the probe was tested using a custom designed spectrometer-based OCT system. The probe achieved an axial resolution of 15.6 μm in air, a lateral resolution 33 μm, and a sensitivity of 103 dB. A scattering tissue phantom was imaged to test the performance of the probe for astigmatism correction. Images of the phantom confirmed that this common-path, astigmatism-corrected OCT imaging probe had minimal artifacts in the axial, and lateral dimensions. In this work, we developed an astigmatism-corrected, common path probe that minimizes artifacts associated with standard OCT probes. This design may be useful for OCT applications that require high axial and lateral resolutions. Lasers Surg. Med. 49:312-318, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Uchida, Satoshi; Yamamoto, Hitoshi; Okada, Isamu; Sasaki, Tatsuya
2018-02-01
Indirect reciprocity is one of the basic mechanisms to sustain mutual cooperation, by which beneficial acts are returned, not by the recipient, but by third parties. This mechanism relies on the ability of individuals to know the past actions of others, and to assess those actions. There are many different systems of assessing others, which can be interpreted as rudimentary social norms (i.e., views on what is “good” or “bad”). In this paper, impacts of different adaptive architectures, i.e., ways for individuals to adapt to environments, on indirect reciprocity are investigated. We examine two representative architectures: one based on replicator dynamics and the other on genetic algorithm. Different from the replicator dynamics, the genetic algorithm requires describing the mixture of all possible norms in the norm space under consideration. Therefore, we also propose an analytic method to study norm ecosystems in which all possible second order social norms potentially exist and compete. The analysis reveals that the different adaptive architectures show different paths to the evolution of cooperation. Especially we find that so called Stern-Judging, one of the best studied norms in the literature, exhibits distinct behaviors in both architectures. On one hand, in the replicator dynamics, Stern-Judging remains alive and gets a majority steadily when the population reaches a cooperative state. On the other hand, in the genetic algorithm, it gets a majority only temporarily and becomes extinct in the end.
NASA Astrophysics Data System (ADS)
Drescher, Anushka C.; Yost, Michael G.; Park, Doo Y.; Levine, Steven P.; Gadgil, Ashok J.; Fischer, Marc L.; Nazaroff, William W.
1995-05-01
Optical remote sensing and iterative computed tomography (CT) can be combined to measure the spatial distribution of gaseous pollutant concentrations in a plane. We have conducted chamber experiments to test this combination of techniques using an Open Path Fourier Transform Infrared Spectrometer (OP-FTIR) and a standard algebraic reconstruction technique (ART). ART was found to converge to solutions that showed excellent agreement with the ray integral concentrations measured by the FTIR but were inconsistent with simultaneously gathered point sample concentration measurements. A new CT method was developed based on (a) the superposition of bivariate Gaussians to model the concentration distribution and (b) a simulated annealing minimization routine to find the parameters of the Gaussians that resulted in the best fit to the ray integral concentration data. This new method, named smooth basis function minimization (SBFM) generated reconstructions that agreed well, both qualitatively and quantitatively, with the concentration profiles generated from point sampling. We present one set of illustrative experimental data to compare the performance of ART and SBFM.
Constraints on Inner Core Anisotropy Using Array Observations of P'P'
NASA Astrophysics Data System (ADS)
Frost, Daniel A.; Romanowicz, Barbara
2017-11-01
Recent studies of PKPdf travel times suggest strong anisotropy (4% or more) in the quasi-western inner core hemisphere. However, the availability of paths sampling at low angles to the Earth's rotation axis (the fast axis) is limited. To augment this sampling, we collected a travel time data set for the phase P'P'df (PKPPKPdf), for which at least one inner core leg is quasi-polar, at two high latitude seismic arrays. We find that the inferred anisotropy is weak (on the order of 0.5 to 1.5%), confirming previous results based on a much smaller P'P' data set. While previous models of inner core anisotropy required very strong alignment of anisotropic iron grains, our results are more easily explained by current dynamic models of inner core growth. We observe large travel time anomalies when one leg of P'P'df is along the South Sandwich to Alaska path, consistent with PKPdf observations, and warranting further investigation.
Electrical conduction hysteresis in carbon black-filled butyl rubber compounds
NASA Astrophysics Data System (ADS)
Alzamil, M. A.; Alfaramawi, K.; Abboudy, S.; Abulnasr, L.
2018-04-01
Temperature and concentration dependence of electrical resistance of butyl rubber filled with GPF carbon black was carried out. Current-voltage (I-V) characteristics at room-temperature were also investigated. The I-V characteristics show that the behavior is linear at small voltages up to approximately 0.15 V and currents up to 0.05 mA indicating that the conduction mechanism was probably due to electron tunneling from the end of conductive path to the other one under the action of the applied electric field. At higher voltages, a nonlinear behavior was noticed. The nonlinearity was attributed to the joule heating effects. Electrical resistance of the butyl/GPF composites was measured as a function of temperature during heating and cooling cycles from 300 K and upward to a specific temperature. When the specimens were heated up, the resistance was observed to increase continuously with the rise of temperature. However, when the samples were cooled down, the resistance was observed to decrease following a different path. The presence of conduction hysteresis behavior in the resistance-temperature curves during the heating and cooling cycles was then verified. The electrical conduction of the composite system is supposed to follow an activation conduction mechanism. Activation energy was calculated at different filler concentrations for both the heating and cooling processes.
Eakman, Aaron M
2014-01-01
The current study used a prospective longitudinal design to determine whether change in meaningful activity over an 11-month period could help explain change in meaning in life in a sample of 174 undergraduate and graduate students. The Engagement in Meaningful Activities Survey, Basic Psychological Needs Scales (i.e., autonomy, competence, relatedness), and the Meaning in Life Questionnaire were used as indicators of the constructs of meaningful activity, basic psychological needs fulfillment, and meaning and purpose in life. The findings were in support of the study hypotheses and indicated that change in meaningful activity explained both change in basic psychological needs fulfillment (i.e., autonomy, competence, relatedness) and change in meaning in life. Further, this study reports findings consistent with results from cross-sectional studies in support of the hypothesis that change in meaningful activity may influence change in meaning in life through two pathways: a direct path of influence from meaningful activity to meaning in life and an indirect path through change in basic psychological needs fulfillment. The current study contributes to a growing literature implicating subjective evaluations of day-to-day action (or meaningful activity) as a fruitful means for exploring relationships between occupation and well-being. Copyright 2014, SLACK Incorporated.
Wessel, Jan R.; Aron, Adam R.
2014-01-01
Much research has modeled action-stopping using the stop-signal task (SST), in which an impending response has to be stopped when an explicit stop-signal occurs. A limitation of the SST is that real-world action-stopping rarely involves explicit stop-signals. Instead, the stopping-system engages when environmental features match more complex stopping goals. For example, when stepping into the street, one monitors path, velocity, size, and types of objects; and only stops if there is a vehicle approaching. Here, we developed a task in which participants compared the visual features of a multidimensional go-stimulus to a complex stopping-template, and stopped their go-response if all features matched the template. We used independent component analysis of EEG data to show that the same motor inhibition brain network that explains action-stopping in the SST also implements motor inhibition in the complex-stopping task. Furthermore, we found that partial feature overlap between go-stimulus and stopping-template lead to motor slowing, which also corresponded with greater stopping-network activity. This shows that the same brain system for action-stopping to explicit stop-signals is recruited to slow or stop behavior when stimuli match a complex stopping goal. The results imply a generalizability of the brain’s network for simple action-stopping to more ecologically valid scenarios. PMID:25270603
Wang, Jian; Ben, Weiwei; Yang, Min; Zhang, Yu; Qiang, Zhimin
2016-01-01
Swine feedlots are an important pollution source of antibiotics and antibiotic resistance genes (ARGs) to the environment. This study investigated the dissemination of two classes of commonly-used veterinary antibiotics, namely, tetracyclines (TCs) and sulfonamides (SAs), and their corresponding ARGs along the waste treatment paths from a concentrated swine feedlot located in Beijing, China. The highest total TC and total SA concentrations detected were 166.7mgkg(-1) and 64.5μgkg(-1) in swine manure as well as 388.7 and 7.56μgL(-1) in swine wastewater, respectively. Fourteen tetracycline resistance genes (TRGs) encoding ribosomal protection proteins (RPP), efflux proteins (EFP) and enzymatic inactivation proteins, three sulfonamide resistance genes (SRGs), and two integrase genes were detected along the waste treatment paths with detection frequencies of 33.3-75.0%. The relative abundances of target ARGs ranged from 2.74×10(-6) to 1.19. The antibiotics and ARGs generally declined along both waste treatment paths, but their degree of reduction was more significant along the manure treatment path. The RPP TRGs dominated in the upstream samples and then decreased continuously along both waste treatment paths, whilst the EFP TRGs and SRGs maintained relatively stable. Strong correlations between antibiotic concentrations and ARGs were observed among both manure and wastewater samples. In addition, seasonal temperature, and integrase genes, moisture content and nutrient level of tested samples could all impact the relative abundances of ARGs along the swine waste treatment paths. This study helps understand the evolution and spread of ARGs from swine feedlots to the environment as well as assess the environmental risk arising from swine waste treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
The quantization of the chiral Schwinger model based on the BFT-BFV formalism II
NASA Astrophysics Data System (ADS)
Park, Mu-In; Park, Young-Jai; Yoon, Sean J.
1998-12-01
We apply an improved version of Batalin-Fradkin-Tyutin Hamiltonian method to the a = 1 chiral Schwinger model, which is much more nontrivial than the a>1 one. Furthermore, through the path integral quantization, we newly resolve the problem of the nontrivial 0954-3899/24/12/002/img6-function as well as that of the unwanted Fourier parameter 0954-3899/24/12/002/img7 in the measure. As a result, we explicitly obtain the fully gauge invariant partition function, which includes a new type of Wess-Zumino term irrelevant to the gauge symmetry as well as the usual WZ action.
[Analysis on professor WANG Juyi's crevice theory from Tao Teh King].
Luo, Lu; Wang, Juyi
2015-10-01
The crevice theory proposed by professor WANG Juyi is analyzed in this article. In the crevice theory, it is believed that the meridians are located among "skin, pulse, flesh, tendon and bone", and the crevice is the path for the transportation of qi-blood and body fluid in the body, which is the essential condition for vital movement. This is in agreement with the idea of "action through inaction" from Tao Teh King. Based on crevice theory, the abnormalities of meridians can reflex the deficiency and excess of diseases, and regulating meridians is a significant way to treat diseases, and maintaining smooth meridian is important for healthcare.
Corbière, Marc; Zaniboni, Sara; Lecomte, Tania; Bond, Gary; Gilles, Pierre-Yves; Lesage, Alain; Goldner, Elliot
2011-09-01
The main purpose of this study was to test a conceptual model based on the theory of planned behaviour (TPB) to explain competitive job acquisition of people with severe mental disorders enrolled in supported employment programs. Using a sample of 281 people with severe mental disorders participating in a prospective study design, the authors examined the contribution of the TPB in a model including clinical (e.g., severity of symptoms), psychosocial (e.g., self-esteem) and work related variables (e.g., length of time absent from the workplace) as predictors of job acquisition. Path analyses were used to test two conceptual models: (1) the model of job acquisition for people with mental illness adapted from the TPB, and (2) the extended TPB including clinical, psychosocial, and work related variables recognized in the literature as significant determinants of competitive employment. Findings revealed that both models presented good fit indices. In total, individual factors predicted 26% of the variance in job search behaviours (behavioural actions). However, client characteristics explained only 8% of variance in work outcomes, suggesting that environmental variables (e.g., stigma towards mental disorders) play an important role in predicting job acquisition. About 56% (N = 157) of our sample obtained competitive employment. Results suggest that employment specialists can be guided in their interventions by the concepts found in the extended model of work integration since most of these are modifiable, such as perceived barriers to employment, self-efficacy, and self-esteem.
Path statistics, memory, and coarse-graining of continuous-time random walks on networks
Kion-Crosby, Willow; Morozov, Alexandre V.
2015-01-01
Continuous-time random walks (CTRWs) on discrete state spaces, ranging from regular lattices to complex networks, are ubiquitous across physics, chemistry, and biology. Models with coarse-grained states (for example, those employed in studies of molecular kinetics) or spatial disorder can give rise to memory and non-exponential distributions of waiting times and first-passage statistics. However, existing methods for analyzing CTRWs on complex energy landscapes do not address these effects. Here we use statistical mechanics of the nonequilibrium path ensemble to characterize first-passage CTRWs on networks with arbitrary connectivity, energy landscape, and waiting time distributions. Our approach can be applied to calculating higher moments (beyond the mean) of path length, time, and action, as well as statistics of any conservative or non-conservative force along a path. For homogeneous networks, we derive exact relations between length and time moments, quantifying the validity of approximating a continuous-time process with its discrete-time projection. For more general models, we obtain recursion relations, reminiscent of transfer matrix and exact enumeration techniques, to efficiently calculate path statistics numerically. We have implemented our algorithm in PathMAN (Path Matrix Algorithm for Networks), a Python script that users can apply to their model of choice. We demonstrate the algorithm on a few representative examples which underscore the importance of non-exponential distributions, memory, and coarse-graining in CTRWs. PMID:26646868
Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy
Zhao, Yongxin; Bucur, Octavian; Irshad, Humayun; Chen, Fei; Weins, Astrid; Stancu, Andreea L.; Oh, Eun-Young; DiStasio, Marcello; Torous, Vanda; Glass, Benjamin; Stillman, Isaac E.; Schnitt, Stuart J.; Beck, Andrew H.; Boyden, Edward S.
2017-01-01
Expansion microscopy (ExM), a method for improving the resolution of light microscopy by physically expanding the specimen, has not been applied to clinical tissue samples. Here we report a clinically optimized form of ExM that supports nanoscale imaging of human tissue specimens that have been fixed with formalin, embedded in paraffin, stained with hematoxylin and eosin (H&E), and/or fresh frozen. The method, which we call expansion pathology (ExPath), converts clinical samples into an ExM-compatible state, then applies an ExM protocol with protein anchoring and mechanical homogenization steps optimized for clinical samples. ExPath enables ~70 nm resolution imaging of diverse biomolecules in intact tissues using conventional diffraction-limited microscopes, and standard antibody and fluorescent DNA in situ hybridization reagents. We use ExPath for optical diagnosis of kidney minimal-change disease, which previously required electron microscopy (EM), and demonstrate high-fidelity computational discrimination between early breast neoplastic lesions that to date have challenged human judgment. ExPath may enable the routine use of nanoscale imaging in pathology and clinical research. PMID:28714966
Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy.
Zhao, Yongxin; Bucur, Octavian; Irshad, Humayun; Chen, Fei; Weins, Astrid; Stancu, Andreea L; Oh, Eun-Young; DiStasio, Marcello; Torous, Vanda; Glass, Benjamin; Stillman, Isaac E; Schnitt, Stuart J; Beck, Andrew H; Boyden, Edward S
2017-08-01
Expansion microscopy (ExM), a method for improving the resolution of light microscopy by physically expanding a specimen, has not been applied to clinical tissue samples. Here we report a clinically optimized form of ExM that supports nanoscale imaging of human tissue specimens that have been fixed with formalin, embedded in paraffin, stained with hematoxylin and eosin, and/or fresh frozen. The method, which we call expansion pathology (ExPath), converts clinical samples into an ExM-compatible state, then applies an ExM protocol with protein anchoring and mechanical homogenization steps optimized for clinical samples. ExPath enables ∼70-nm-resolution imaging of diverse biomolecules in intact tissues using conventional diffraction-limited microscopes and standard antibody and fluorescent DNA in situ hybridization reagents. We use ExPath for optical diagnosis of kidney minimal-change disease, a process that previously required electron microscopy, and we demonstrate high-fidelity computational discrimination between early breast neoplastic lesions for which pathologists often disagree in classification. ExPath may enable the routine use of nanoscale imaging in pathology and clinical research.
Regression-based model of skin diffuse reflectance for skin color analysis
NASA Astrophysics Data System (ADS)
Tsumura, Norimichi; Kawazoe, Daisuke; Nakaguchi, Toshiya; Ojima, Nobutoshi; Miyake, Yoichi
2008-11-01
A simple regression-based model of skin diffuse reflectance is developed based on reflectance samples calculated by Monte Carlo simulation of light transport in a two-layered skin model. This reflectance model includes the values of spectral reflectance in the visible spectra for Japanese women. The modified Lambert Beer law holds in the proposed model with a modified mean free path length in non-linear density space. The averaged RMS and maximum errors of the proposed model were 1.1 and 3.1%, respectively, in the above range.
Attitudes and exercise adherence: test of the Theories of Reasoned Action and Planned Behaviour.
Smith, R A; Biddle, S J
1999-04-01
Three studies of exercise adherence and attitudes are reported that tested the Theory of Reasoned Action and the Theory of Planned Behaviour. In a prospective study of adherence to a private fitness club, structural equation modelling path analysis showed that attitudinal and social normative components of the Theory of Reasoned Action accounted for 13.1% of the variance in adherence 4 months later, although only social norm significantly predicted intention. In a second study, the Theory of Planned Behaviour was used to predict both physical activity and sedentary behaviour. Path analyses showed that attitude and perceived control, but not social norm, predicted total physical activity. Physical activity was predicted from intentions and control over sedentary behaviour. Finally, an intervention study with previously sedentary adults showed that intentions to be active measured at the start and end of a 10-week intervention were associated with the planned behaviour variables. A multivariate analysis of variance revealed no significant multivariate effects for time on the planned behaviour variables measured before and after intervention. Qualitative data provided evidence that participants had a positive experience on the intervention programme and supported the role of social normative factors in the adherence process.
Discretization independence implies non-locality in 4D discrete quantum gravity
NASA Astrophysics Data System (ADS)
Dittrich, Bianca; Kamiński, Wojciech; Steinhaus, Sebastian
2014-12-01
The 4D Regge action is invariant under 5-1 and 4-2 Pachner moves, which define a subset of (local) changes of the triangulation. Given this fact, one might hope to find a local path integral measure that makes the quantum theory invariant under these moves and hence makes the theory partially triangulation invariant. We show that such a local invariant path integral measure does not exist for the 4D linearized Regge theory. To this end we uncover an interesting geometric interpretation for the Hessian of the 4D Regge action. This geometric interpretation will allow us to prove that the determinant of the Hessian of the 4D Regge action does not factorize over four-simplices or subsimplices. It furthermore allows us to determine configurations where this Hessian vanishes, which only appears to be the case in degenerate backgrounds or if one allows for different orientations of the simplices. We suggest a non-local measure factor that absorbs the non-local part of the determinant of the Hessian under 5-1 moves as well as a local measure factor that is preserved for very special configurations.
SUPERFUND GROUND WATER ISSUE: GROUND WATER SAMPLING FOR METALS ANALYSES
Filtration of ground-water samples for metals analysis is an issue identified by the Forum as a concern of Superfund decision-makers. Inconsistency in EPA Syperfund cleanup pracices occurs where one EPA Region implements a remedial action based on unfiltered ground-water samples,...
MapMaker and PathTracer for tracking carbon in genome-scale metabolic models
Tervo, Christopher J.; Reed, Jennifer L.
2016-01-01
Constraint-based reconstruction and analysis (COBRA) modeling results can be difficult to interpret given the large numbers of reactions in genome-scale models. While paths in metabolic networks can be found, existing methods are not easily combined with constraint-based approaches. To address this limitation, two tools (MapMaker and PathTracer) were developed to find paths (including cycles) between metabolites, where each step transfers carbon from reactant to product. MapMaker predicts carbon transfer maps (CTMs) between metabolites using only information on molecular formulae and reaction stoichiometry, effectively determining which reactants and products share carbon atoms. MapMaker correctly assigned CTMs for over 97% of the 2,251 reactions in an Escherichia coli metabolic model (iJO1366). Using CTMs as inputs, PathTracer finds paths between two metabolites. PathTracer was applied to iJO1366 to investigate the importance of using CTMs and COBRA constraints when enumerating paths, to find active and high flux paths in flux balance analysis (FBA) solutions, to identify paths for putrescine utilization, and to elucidate a potential CO2 fixation pathway in E. coli. These results illustrate how MapMaker and PathTracer can be used in combination with constraint-based models to identify feasible, active, and high flux paths between metabolites. PMID:26771089
Direct synthesis of BiCuChO-type oxychalcogenides by mechanical alloying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pele, Vincent; Barreteau, Celine; CNRS, Orsay F-91405
2013-07-15
We report on the direct synthesis of BiCuChO based materials by mechanical alloying (Ch=Se, Te). We show that contrary to the synthesis paths used in the previous reports dealing with this family of materials, which use costly annealings in closed silica tubes under controlled atmosphere, this new synthesis route enables the synthesis of pure phase materials at room temperature under air, with reasonable milling time. This synthesis procedure is easily scalable for large scale applications. - Highlights: • Phase pure BiCuSeO doped and undoped prepared by mechanical alloying. • Synthesis performed under air at room temperature. • Electrical properties similarmore » to that of samples synthesized by a classical path.« less
San Antonio, Texas: Solar in Action (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-10-01
This brochure provides an overview of the challenges and successes of San Antonio, TX, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.
San Diego, California: Solar in Action (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-10-01
This brochure provides an overview of the challenges and successes of San Diego, CA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.
Minneapolis and Saint Paul, Minnesota: Solar in Action (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-10-01
This brochure provides an overview of the challenges and successes of Minneapolis, MN, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.
San Francisco, California: Solar in Action (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-10-01
This brochure provides an overview of the challenges and successes of San Francisco, CA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.
Spatial connectivity in a highly heterogeneous aquifer: From cores to preferential flow paths
Bianchi, M.; Zheng, C.; Wilson, C.; Tick, G.R.; Liu, Gaisheng; Gorelick, S.M.
2011-01-01
This study investigates connectivity in a small portion of the extremely heterogeneous aquifer at the Macrodispersion Experiment (MADE) site in Columbus, Mississippi. A total of 19 fully penetrating soil cores were collected from a rectangular grid of 4 m by 4 m. Detailed grain size analysis was performed on 5 cm segments of each core, yielding 1740 hydraulic conductivity (K) estimates. Three different geostatistical simulation methods were used to generate 3-D conditional realizations of the K field for the sampled block. Particle tracking calculations showed that the fastest particles, as represented by the first 5% to arrive, converge along preferential flow paths and exit the model domain within preferred areas. These 5% fastest flow paths accounted for about 40% of the flow. The distribution of preferential flow paths and particle exit locations is clearly influenced by the occurrence of clusters formed by interconnected cells with K equal to or greater than the 0.9 decile of the data distribution (10% of the volume). The fraction of particle paths within the high-K clusters ranges from 43% to 69%. In variogram-based K fields, some of the fastest paths are through media with lower K values, suggesting that transport connectivity may not require fully connected zones of relatively homogenous K. The high degree of flow and transport connectivity was confirmed by the values of two groups of connectivity indicators. In particular, the ratio between effective and geometric mean K (on average, about 2) and the ratio between the average arrival time and the arrival time of the fastest particles (on average, about 9) are consistent with flow and advective transport behavior characterized by channeling along preferential flow paths. ?? 2011 by the American Geophysical Union.
Particulate matter exposure of bicycle path users in a high-altitude city
NASA Astrophysics Data System (ADS)
Fajardo, Oscar A.; Rojas, Nestor Y.
2012-01-01
It is necessary to evaluate cyclists' exposure to particulate matter and if they are at a higher risk due to their increased breathing rate and their exposure to freshly emitted pollutants. The aim of this pilot study was to determine cyclists' exposure to PM 10 in a highly-polluted, high-altitude city such as Bogotá, and comment on the appropriateness of building bicycle paths alongside roads with heavy traffic in third world cities. A total of 29 particulate matter (PM 10) measurements, taken at two sampling sites using Harvard impactors, were used for estimating the exposure of users of the 80th street bicycle path to this pollutant. PM 10 dose could be considered as being high, especially due to high concentrations and cyclists' increased inhalation rates. A random survey was conducted over 73 bicycle path users to determine cyclists' time, distance and speed on the bicycle path on a daily and weekly basis, their level of effort when cycling and general characteristics, such as this population's gender and age. Based on this information, the PM 10 average daily dose (ADD c) for different bicycle path users and the ratio between ADD c and a reference ADD for people at rest exposed to an indoor concentration of 25 μg m -3 were estimated. The average increase in ADD was 6%-9% when riding with light effort and by 12%-18% when riding with moderate effort. The most enthusiastic bicycle path users showed ADD c/ADD r ratios as high as 1.30 when riding with light effort and 1.64 when riding with moderate effort, thereby significantly increasing their PM 10 exposure-associated health risks.
Common-path interference and oscillatory Zener tunneling in bilayer graphene p-n junctions
Nandkishore, Rahul; Levitov, Leonid
2011-01-01
Interference and tunneling are two signature quantum effects that are often perceived as the yin and yang of quantum mechanics: a particle simultaneously propagating along several distinct classical paths versus a particle penetrating through a classically inaccessible region via a single least-action path. Here we demonstrate that the Dirac quasiparticles in graphene provide a dramatic departure from this paradigm. We show that Zener tunneling in gapped bilayer graphene, which governs transport through p-n heterojunctions, exhibits common-path interference that takes place under the tunnel barrier. Due to a symmetry peculiar to the gapped bilayer graphene bandstructure, interfering tunneling paths form conjugate pairs, giving rise to high-contrast oscillations in transmission as a function of the gate-tunable bandgap and other control parameters of the junction. The common-path interference is solely due to forward-propagating waves; in contrast to Fabry–Pérot-type interference in resonant-tunneling structures, it does not rely on multiple backscattering. The oscillations manifest themselves in the junction I–V characteristic as N-shaped branches with negative differential conductivity. The negative dI/dV, which arises solely due to under-barrier interference, can enable new high-speed active-circuit devices with architectures that are not available in electronic semiconductor devices. PMID:21825159
Spreading paths in partially observed social networks
NASA Astrophysics Data System (ADS)
Onnela, Jukka-Pekka; Christakis, Nicholas A.
2012-03-01
Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.
Spreading paths in partially observed social networks.
Onnela, Jukka-Pekka; Christakis, Nicholas A
2012-03-01
Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.
Autonomous Lawnmower using FPGA implementation.
NASA Astrophysics Data System (ADS)
Ahmad, Nabihah; Lokman, Nabill bin; Helmy Abd Wahab, Mohd
2016-11-01
Nowadays, there are various types of robot have been invented for multiple purposes. The robots have the special characteristic that surpass the human ability and could operate in extreme environment which human cannot endure. In this paper, an autonomous robot is built to imitate the characteristic of a human cutting grass. A Field Programmable Gate Array (FPGA) is used to control the movements where all data and information would be processed. Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) is used to describe the hardware using Quartus II software. This robot has the ability of avoiding obstacle using ultrasonic sensor. This robot used two DC motors for its movement. It could include moving forward, backward, and turning left and right. The movement or the path of the automatic lawn mower is based on a path planning technique. Four Global Positioning System (GPS) plot are set to create a boundary. This to ensure that the lawn mower operates within the area given by user. Every action of the lawn mower is controlled by the FPGA DE' Board Cyclone II with the help of the sensor. Furthermore, Sketch Up software was used to design the structure of the lawn mower. The autonomous lawn mower was able to operate efficiently and smoothly return to coordinated paths after passing the obstacle. It uses 25% of total pins available on the board and 31% of total Digital Signal Processing (DSP) blocks.
Mass spectrometer with electron source for reducing space charge effects in sample beam
Houk, Robert S.; Praphairaksit, Narong
2003-10-14
A mass spectrometer includes an ion source which generates a beam including positive ions, a sampling interface which extracts a portion of the beam from the ion source to form a sample beam that travels along a path and has an excess of positive ions over at least part of the path, thereby causing space charge effects to occur in the sample beam due to the excess of positive ions in the sample beam, an electron source which adds electrons to the sample beam to reduce space charge repulsion between the positive ions in the sample beam, thereby reducing the space charge effects in the sample beam and producing a sample beam having reduced space charge effects, and a mass analyzer which analyzes the sample beam having reduced space charge effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haumont, R.; Al-Barakaty, A.; Dkhil, B.
2005-03-01
X-ray and neutron diffraction techniques are combined with first-principles-based simulations to derive and understand the structural properties of Pb(Sc,Nb,Ti)O{sub 3} (PSN-PT) near its morphotropic phase boundary (MPB). An analysis of our measurements yields, at room and low temperatures, an overall tetragonal T--monoclinic M{sub C}--monoclinic M{sub B}--rhombohedral R path (when adopting the notations of Vanderbilt and Cohen, Phys. Rev. B 63, 94108 (2001) for the monoclinic phases) as the Ti composition decreases across the MPB. A composition- and temperature-dependent significant mixing between some of these phases is also measured and reported here. The overall T-M{sub C}-M{sub B}-R path, which has alsomore » been proposed for Pb(Mg,Nb,Ti)O{sub 3} [A. K. Singh and D. Pandey, Phys. Rev. B 67, 64102 (2003)] is rather complex since it involves a change in the polarization path: this polarization first rotates in a (100) plane for the T-M{sub C} part of the path and then in a (1-10) plane for the M{sub B}-R part of the path. Moreover, a comparison between these measurements and first-principles-based calculations raises the possibility that this complex path, and the associated M{sub C} and M{sub B} phases, can only occur if the samples exhibit a deviation from a perfectly homogeneous and disordered situation, e.g. possess nanoscale chemically-ordered regions. If not, homogeneously disordered PSN-PT is predicted to exhibit at low temperature the same polarization path as Pb(Zr,Ti)O{sub 3}, that is T-monoclinic M{sub A}-R which involves a 'single' polarization rotation in a (1-10) plane. Nanoscale inhomogeneity may thus play a key role on the macroscopic properties of PSN-PT, in particular, and of other heterovalent complex solid solutions, in general, near their MPB.« less
A New Control Paradigm for Stochastic Differential Equations
NASA Astrophysics Data System (ADS)
Schmid, Matthias J. A.
This study presents a novel comprehensive approach to the control of dynamic systems under uncertainty governed by stochastic differential equations (SDEs). Large Deviations (LD) techniques are employed to arrive at a control law for a large class of nonlinear systems minimizing sample path deviations. Thereby, a paradigm shift is suggested from point-in-time to sample path statistics on function spaces. A suitable formal control framework which leverages embedded Freidlin-Wentzell theory is proposed and described in detail. This includes the precise definition of the control objective and comprises an accurate discussion of the adaptation of the Freidlin-Wentzell theorem to the particular situation. The new control design is enabled by the transformation of an ill-posed control objective into a well-conditioned sequential optimization problem. A direct numerical solution process is presented using quadratic programming, but the emphasis is on the development of a closed-form expression reflecting the asymptotic deviation probability of a particular nominal path. This is identified as the key factor in the success of the new paradigm. An approach employing the second variation and the differential curvature of the effective action is suggested for small deviation channels leading to the Jacobi field of the rate function and the subsequently introduced Jacobi field performance measure. This closed-form solution is utilized in combination with the supplied parametrization of the objective space. For the first time, this allows for an LD based control design applicable to a large class of nonlinear systems. Thus, Minimum Large Deviations (MLD) control is effectively established in a comprehensive structured framework. The construction of the new paradigm is completed by an optimality proof for the Jacobi field performance measure, an interpretive discussion, and a suggestion for efficient implementation. The potential of the new approach is exhibited by its extension to scalar systems subject to state-dependent noise and to systems of higher order. The suggested control paradigm is further advanced when a sequential application of MLD control is considered. This technique yields a nominal path corresponding to the minimum total deviation probability on the entire time domain. It is demonstrated that this sequential optimization concept can be unified in a single objective function which is revealed to be the Jacobi field performance index on the entire domain subject to an endpoint deviation. The emerging closed-form term replaces the previously required nested optimization and, thus, results in a highly efficient application-ready control design. This effectively substantiates Minimum Path Deviation (MPD) control. The proposed control paradigm allows the specific problem of stochastic cost control to be addressed as a special case. This new technique is employed within this study for the stochastic cost problem giving rise to Cost Constrained MPD (CCMPD) as well as to Minimum Quadratic Cost Deviation (MQCD) control. An exemplary treatment of a generic scalar nonlinear system subject to quadratic costs is performed for MQCD control to demonstrate the elementary expandability of the new control paradigm. This work concludes with a numerical evaluation of both MPD and CCMPD control for three exemplary benchmark problems. Numerical issues associated with the simulation of SDEs are briefly discussed and illustrated. The numerical examples furnish proof of the successful design. This study is complemented by a thorough review of statistical control methods, stochastic processes, Large Deviations techniques and the Freidlin-Wentzell theory, providing a comprehensive, self-contained account. The presentation of the mathematical tools and concepts is of a unique character, specifically addressing an engineering audience.
Texture developed during deformation of Transformation Induced Plasticity (TRIP) steels
NASA Astrophysics Data System (ADS)
Bhargava, M.; Shanta, C.; Asim, T.; Sushil, M.
2015-04-01
Automotive industry is currently focusing on using advanced high strength steels (AHSS) due to its high strength and formability for closure applications. Transformation Induced Plasticity (TRIP) steel is promising material for this application among other AHSS. The present work is focused on the microstructure development during deformation of TRIP steel sheets. To mimic complex strain path condition during forming of automotive body, Limit Dome Height (LDH) tests were conducted and samples were deformed in servo hydraulic press to find the different strain path. FEM Simulations were done to predict different strain path diagrams and compared with experimental results. There is a significant difference between experimental and simulation results as the existing material models are not applicable for TRIP steels. Micro texture studies were performed on the samples using EBSD and X-RD techniques. It was observed that austenite is transformed to martensite and texture developed during deformation had strong impact on limit strain and strain path.
NASA Astrophysics Data System (ADS)
Welch, E.; Dulai, H.; El-Kadi, A. I.; Shuler, C. K.
2017-12-01
To examine contaminant transport paths, groundwater and surface water interactions were investigated as a vector of pesticide migration on the island Tutuila in American Samoa. During a field campaign in summer 2016, water from wells, springs, and streams was collected across the island to analyze for selected pesticides. In addition, a detailed watershed-study, involving sampling along the mountain to ocean gradient was conducted in Faga`alu, a U.S. Coral Reef Task Force priority watershed that drains into the Pago Pago Harbor. Samples were screened at the University of Hawai`i for multiple agricultural chemicals using the ELISA method. The pesticides analyzed include glyphosate, azoxystrobin, imidacloprid and DDT/DDE. Field data was integrated into a MODFLOW-based groundwater model of the Faga`alu watershed to reconstruct flow paths, solute concentrations, and dispersion of the analytes. In combination with land-use maps, these tools were used to identify potential pesticide sources and their contaminant contributions. Across the island, pesticide concentrations were well below EPA regulated limits and azoxystrobin was absent. Glyphosate had detectable amounts in 56% of collected groundwater and 62% of collected stream samples. Respectively, 72% and 36% had imidacloprid detected and 98% and 97% had DDT/DDE detected. The highest observed concentration of glyphosate was 0.3 ppb, of imidacloprid was 0.17 ppb, and of DDT was 3.7 ppb. The persistence and ubiquity of DDT/DDE in surface and groundwater since its last island-wide application decades ago is notable. Groundwater flow paths modeled by MODFLOW imply that glyphosate sources match documented agricultural land-use areas. Groundwater-derived pesticide fluxes to the reef in Faga`alu are 977 mg/d of glyphosate and 1642 mg/d of DDT/DDE. Our study shows that pesticides are transported not only via surface runoff, but also via groundwater through the stream's base flow and are exiting the aquifer via submarine groundwater discharge (SGD) in the coastal region as well.
Neutron capture studies with a short flight path
NASA Astrophysics Data System (ADS)
Walter, Stephan; Heil, Michael; Käppeler, Franz; Plag, Ralf; Reifarth, René
The time of flight (TOF) method is an important tool for the experimental determination of neu- tron capture cross sections which are needed for s-process nucleosynthesis in general, and for analyses of branchings in the s-process reaction path in particular. So far, sample masses of at least several milligrams are required to compensate limitations in the currently available neutron fluxes. This constraint leads to unacceptable backgrounds for most of the relevant unstable branch point nuclei, due to the decay activity of the sample. A possible solution has been proposed by the NCAP project at the University of Frankfurt. A first step in this direction is reported here, which aims at enhancing the sensitivity of the Karlsruhe TOF array by reducing the neutron flight path to only a few centimeters. Though sample masses in the microgram regime can be used by this approach, the increase in neutron flux has to be paid by a higher background from the prompt flash related to neutron production. Test measurements with Au samples are reported.
Method and apparatus for probing relative volume fractions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jandrasits, W.G.; Kikta, T.J.
1996-12-31
A relative volume fraction probe particularly for use in a multiphase fluid system includes two parallel conductive paths defining there between a sample zone within the system. A generating unit generates time varying electrical signals which are inserted into one of the two parallel conductive paths. A time domain reflectometer receives the time varying electrical signals returned by the second of the two parallel conductive paths and, responsive thereto, outputs a curve of impedance versus distance. An analysis unit then calculates the area under the curve, subtracts the calculated area from an area produced when the sample zone consists entirelymore » of material of a first fluid phase, and divides this calculated difference by the difference between an area produced when the sample zone consists entirely of material of the first fluid phase and an area produced when the sample zone consists entirely of material of a second fluid phase. The result is the volume fraction.« less
CFO compensation method using optical feedback path for coherent optical OFDM system
NASA Astrophysics Data System (ADS)
Moon, Sang-Rok; Hwang, In-Ki; Kang, Hun-Sik; Chang, Sun Hyok; Lee, Seung-Woo; Lee, Joon Ki
2017-07-01
We investigate feasibility of carrier frequency offset (CFO) compensation method using optical feedback path for coherent optical orthogonal frequency division multiplexing (CO-OFDM) system. Recently proposed CFO compensation algorithms provide wide CFO estimation range in electrical domain. However, their practical compensation range is limited by sampling rate of an analog-to-digital converter (ADC). This limitation has not drawn attention, since the ADC sampling rate was high enough comparing to the data bandwidth and CFO in the wireless OFDM system. For CO-OFDM, the limitation is becoming visible because of increased data bandwidth, laser instability (i.e. large CFO) and insufficient ADC sampling rate owing to high cost. To solve the problem and extend practical CFO compensation range, we propose a CFO compensation method having optical feedback path. By adding simple wavelength control for local oscillator, the practical CFO compensation range can be extended to the sampling frequency range. The feasibility of the proposed method is experimentally investigated.
Cesium isotope ratios as indicators of nuclear power plant operations.
Delmore, James E; Snyder, Darin C; Tranter, Troy; Mann, Nick R
2011-11-01
There are multiple paths by which radioactive cesium can reach the effluent from reactor operations. The radioactive (135)Cs/(137)Cs ratios are controlled by these paths. In an effort to better understand the origin of this radiation, these (135)Cs/(137)Cs ratios in effluents from three power reactor sites have been measured in offsite samples. These ratios are different from global fallout by up to six fold and as such cannot have a significant component from this source. A cesium ratio for a sample collected outside of the plant boundary provides integration over the operating life of the reactor. A sample collected inside the plant at any given time can be much different from this lifetime ratio. The measured cesium ratios vary significantly for the three reactors and indicate that the multiple paths have widely varying levels of contributions. There are too many ways these isotopes can fractionate to be useful for quantitative evaluations of operating parameters in an offsite sample, although it may be possible to obtain limited qualitative information for an onsite sample. Copyright © 2011 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Simons, Jacob V., Jr.
2017-01-01
The critical path method/program evaluation and review technique method of project scheduling is based on the importance of managing a project's critical path(s). Although a critical path is the longest path through a network, its location in large projects is facilitated by the computation of activity slack. However, logical fallacies in…
Algorithm for ion beam figuring of low-gradient mirrors.
Jiao, Changjun; Li, Shengyi; Xie, Xuhui
2009-07-20
Ion beam figuring technology for low-gradient mirrors is discussed. Ion beam figuring is a noncontact machining technique in which a beam of high-energy ions is directed toward a target workpiece to remove material in a predetermined and controlled fashion. Owing to this noncontact mode of material removal, problems associated with tool wear and edge effects, which are common in conventional contact polishing processes, are avoided. Based on the Bayesian principle, an iterative dwell time algorithm for planar mirrors is deduced from the computer-controlled optical surfacing (CCOS) principle. With the properties of the removal function, the shaping process of low-gradient mirrors can be approximated by the linear model for planar mirrors. With these discussions, the error surface figuring technology for low-gradient mirrors with a linear path is set up. With the near-Gaussian property of the removal function, the figuring process with a spiral path can be described by the conventional linear CCOS principle, and a Bayesian-based iterative algorithm can be used to deconvolute the dwell time. Moreover, the selection criterion of the spiral parameter is given. Ion beam figuring technology with a spiral scan path based on these methods can be used to figure mirrors with non-axis-symmetrical errors. Experiments on SiC chemical vapor deposition planar and Zerodur paraboloid samples are made, and the final surface errors are all below 1/100 lambda.
Ground Water Sampling for Metal Analyses
Filtration of ground-water samples for metals analysis is an issue identified by the Forum as a concern of Superfund decision-makers. Inconsistency in EPA Superfund cleanup ractices occurs where one EPA Region implements a remedial action based on...
Science Within Man's Grasp: a Precondition to Progress
ERIC Educational Resources Information Center
de Roulet, Lionel
1972-01-01
Everyone should be aware of the explosive growth of science with its effects in daily life and the sweeping changes it will produce in the near future. Achievement of this aim calls for action along the dual paths of popularization and education. (DF)
Feasibility of Whole-Body Functional Mouse Imaging Using Helical Pinhole SPECT
Metzler, Scott D.; Vemulapalli, Sreekanth; Jaszczak, Ronald J.; Akabani, Gamal; Chin, Bennett B.
2010-01-01
Purpose Detailed in vivo whole-body biodistributions of radiolabeled tracers may characterize the longitudinal progression of disease, and changes with therapeutic interventions. Small-animal imaging in mice is particularly attractive due to the wide array of well characterized genetically and surgically created models of disease. Single Photon Emission Computed Tomography (SPECT) imaging using pinhole collimation provides high resolution and sensitivity, but conventional methods using circular acquisitions result in severe image truncation and incomplete sampling of data which prevent the accurate determination of whole-body radiotracer biodistributions. This study describes the feasibility of helical acquisition paths to mitigate these effects. Procedures Helical paths of pinhole apertures were implemented using an external robotic stage aligned with the axis of rotation (AOR) of the scanner. Phantom and mouse scans were performed using helical paths and either circular or bi-circular orbits at the same radius of rotation (ROR). The bi-circular orbits consisted of two 360-degree scans separated by an axial shift to increase the axial field of view (FOV) and to improve the complete-sampling properties. Results Reconstructions of phantoms and mice acquired with helical paths show good image quality and are visually free of both truncation and axial-blurring artifacts. Circular orbits yielded reconstructions with both artifacts and a limited effective FOV. The bi-circular scans enlarged the axial FOV, but still suffered from truncation and sampling artifacts. Conclusions Helical paths can provide complete sampling data and large effective FOV, yielding 3D full-body in vivo biodistributions while still maintaining a small distance from the aperture to the object for good sensitivity and resolution. PMID:19521736
Evaluation of the Evidence Base for the Alcohol Industry's Actions to Reduce Drink Driving Globally.
Esser, Marissa B; Bao, James; Jernigan, David H; Hyder, Adnan A
2016-04-01
To evaluate the evidence base for the content of initiatives that the alcohol industry implemented to reduce drink driving from 1982 to May 2015. We systematically analyzed the content of 266 global initiatives that the alcohol industry has categorized as actions to reduce drink driving. Social aspects public relations organizations (i.e., organizations funded by the alcohol industry to handle issues that may be damaging to the business) sponsored the greatest proportion of the actions. Only 0.8% (n = 2) of the sampled industry actions were consistent with public health evidence of effectiveness for reducing drink driving. The vast majority of the alcohol industry's actions to reduce drink driving does not reflect public health evidenced-based recommendations, even though effective drink-driving countermeasures exist, such as a maximum blood alcohol concentration limit of 0.05 grams per deciliter for drivers and widespread use of sobriety checkpoints.
Evaluating Status Change of Soil Potassium from Path Model
He, Wenming; Chen, Fang
2013-01-01
The purpose of this study is to determine critical environmental parameters of soil K availability and to quantify those contributors by using a proposed path model. In this study, plot experiments were designed into different treatments, and soil samples were collected and further analyzed in laboratory to investigate soil properties influence on soil potassium forms (water soluble K, exchangeable K, non-exchangeable K). Furthermore, path analysis based on proposed path model was carried out to evaluate the relationship between potassium forms and soil properties. Research findings were achieved as followings. Firstly, key direct factors were soil S, ratio of sodium-potassium (Na/K), the chemical index of alteration (CIA), Soil Organic Matter in soil solution (SOM), Na and total nitrogen in soil solution (TN), and key indirect factors were Carbonate (CO3), Mg, pH, Na, S, and SOM. Secondly, path model can effectively determine direction and quantities of potassium status changes between Exchangeable potassium (eK), Non-exchangeable potassium (neK) and water-soluble potassium (wsK) under influences of specific environmental parameters. In reversible equilibrium state of , K balance state was inclined to be moved into β and χ directions in treatments of potassium shortage. However in reversible equilibrium of , K balance state was inclined to be moved into θ and λ directions in treatments of water shortage. Results showed that the proposed path model was able to quantitatively disclose moving direction of K status and quantify its equilibrium threshold. It provided a theoretical and practical basis for scientific and effective fertilization in agricultural plants growth. PMID:24204659
Laser-Induced Damage to Thin Film Dielectric Coatings.
1980-10-01
magnify and reimage the laser spot in the diagnostic Path B. Location [5] (see Figure (9)) is the equi- valent focal plane in Path B to that in Path A at...the thin film sample, (3] . The object distance is between the focal plane and the lens at [6) and the image distance is betv en the lens [6] and the...the equivalent focal plane in the diagnostic path and positioned so that the peak of the beam spatial profile falls on the pinhole. The diameter of the
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Nevada Operations Office
2000-02-08
This Corrective Action Decision Document identifies and rationalizes the US Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 428, Septic Waste Systems 1 and 5, under the Federal Facility Agreement and Consent Order. Located in Area 3 at the Tonopah Test Range (TTR) in Nevada, CAU 428 is comprised of two Corrective Action Sites (CASs): (1) CAS 03-05-002-SW01, Septic Waste System 1 and (2) CAS 03-05-002- SW05, Septic Waste System 5. A corrective action investigation performed in 1999 detected analyte concentrations that exceeded preliminarymore » action levels; specifically, contaminants of concern (COCs) included benzo(a) pyrene in a septic tank integrity sample associated with Septic Tank 33-1A of Septic Waste System 1, and arsenic in a soil sample associated with Septic Waste System 5. During this investigation, three Corrective Action Objectives (CAOs) were identified to prevent or mitigate exposure to contents of the septic tanks and distribution box, to subsurface soil containing COCs, and the spread of COCs beyond the CAU. Based on these CAOs, a review of existing data, future use, and current operations in Area 3 of the TTR, three CAAs were developed for consideration: Alternative 1 - No Further Action; Alternative 2 - Closure in Place with Administrative Controls; and Alternative 3 - Clean Closure by Excavation and Disposal. These alternatives were evaluated based on four general corrective action standards and five remedy selection decision factors. Based on the results of the evaluation, the preferred CAA was Alternative 3. This alternative meets all applicable state and federal regulations for closure of the site and will eliminate potential future exposure pathways to the contaminated soils at the Area 3 Septic Waste Systems 1 and 5.« less
NASA Astrophysics Data System (ADS)
Shakeri, Nadim; Jalili, Saeed; Ahmadi, Vahid; Rasoulzadeh Zali, Aref; Goliaei, Sama
2015-01-01
The problem of finding the Hamiltonian path in a graph, or deciding whether a graph has a Hamiltonian path or not, is an NP-complete problem. No exact solution has been found yet, to solve this problem using polynomial amount of time and space. In this paper, we propose a two dimensional (2-D) optical architecture based on optical electronic devices such as micro ring resonators, optical circulators and MEMS based mirror (MEMS-M) to solve the Hamiltonian Path Problem, for undirected graphs in linear time. It uses a heuristic algorithm and employs n+1 different wavelengths of a light ray, to check whether a Hamiltonian path exists or not on a graph with n vertices. Then if a Hamiltonian path exists, it reports the path. The device complexity of the proposed architecture is O(n2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
ITLV.
1999-03-01
The Corrective Action Investigation Plan for Corrective Action Unit 428, Area 3 Septic Waste Systems 1 and 5, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U. S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U. S. Department of Defense. Corrective Action Unit 428 consists of Corrective Action Sites 03- 05- 002- SW01 and 03- 05- 002- SW05, respectively known as Area 3 Septic Waste System 1 and Septic Waste System 5. This Corrective Action Investigation Plan is used inmore » combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada , Rev. 1 (DOE/ NV, 1998c). The Leachfield Work Plan was developed to streamline investigations at leachfield Corrective Action Units by incorporating management, technical, quality assurance, health and safety, public involvement, field sampling, and waste management information common to a set of Corrective Action Units with similar site histories and characteristics into a single document that can be referenced. This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 428. A system of leachfields and associated collection systems was used for wastewater disposal at Area 3 of the Tonopah Test Range until a consolidated sewer system was installed in 1990 to replace the discrete septic waste systems. Operations within various buildings at Area 3 generated sanitary and industrial wastewaters potentially contaminated with contaminants of potential concern and disposed of in septic tanks and leachfields. Corrective Action Unit 428 is composed of two leachfield systems in the northern portion of Area 3. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern for the site include oil/ diesel range total petroleum hydrocarbons, and Resource Conservation and Recovery Act characteristic volatile organic compounds, semivolatile organic compounds, and metals. A limited number of samples will be analyzed for gamma- emitting radionuclides and isotopic uranium from four of the septic tanks and if radiological field screening levels are exceeded. Additional samples will be analyzed for geotechnical and hydrological properties and a bioassessment may be performed. The technical approach for investigating this Corrective Action Unit consists of the following activities: Perform video surveys of the discharge and outfall lines. Collect samples of material in the septic tanks. Conduct exploratory trenching to locate and inspect subsurface components. Collect subsurface soil samples in areas of the collection system including the septic tanks and outfall end of distribution boxes. Collect subsurface soil samples underlying the leachfield distribution pipes via trenching. Collect surface and near- surface samples near potential locations of the Acid Sewer Outfall if Septic Waste System 5 Leachfield cannot be located. Field screen samples for volatile organic compounds, total petroleum hydrocarbons, and radiological activity. Drill boreholes and collect subsurface soil samples if required. Analyze samples for total volatile organic compounds, total semivolatile organic compounds, total Resource Conservation and Recovery Act metals, and total petroleum hydrocarbons (oil/ diesel range organics). Limited number of samples will be analyzed for gamma- emitting radionuclides and isotopic uranium from particular septic tanks and if radiological field screening levels are exceeded. Collect samples from native soils beneath the distribution system and analyze for geotechnical/ hydrologic parameters. Collect and analyze bioassessment samples at the discretion of the Site Supervisor if total petroleum hydrocarbons exceed field- screening levels.« less
Selective reaching in macaques: evidence for action-centred attention.
Bulgheroni, Maria; Camperio-Ciani, Andrea; Straulino, Elisa; Sartori, Luisa; D'Amico, Enrico; Castiello, Umberto
2017-03-01
When a monkey selects a piece of food lying on the ground from among other viable objects in the near vicinity, only the desired item governs the particular pattern and direction of the animal's reaching action. It would seem then that selection is an important component controlling the animal's action. But, we may ask, is the selection process in such cases impervious to the presence of other objects that could constitute potential obstacles to or constraints on movement execution? And if it is, in fact, pervious to other objects, do they have a direct influence on the organization of the response? The kinematics of macaques' reaching movements were examined by the current study that analysed some exemplars as they selectively reached to grasp a food item in the absence as well as in the presence of potential obstacles (i.e., stones) that could affect the arm trajectory. Changes in movement parameterization were noted in temporal measures, such as movement time, as well as in spatial ones, such as paths of trajectory. Generally speaking, the presence of stones in the vicinity of the acting hand stalled the reaching movement and affected the arm trajectory as the hand veered away from the stone even when it was not a physical obstacle. We concluded that nearby objects evoke a motor response in macaques, and the attentional mechanisms that allow for a successful action selection are revealed in the reaching path. The data outlined here concur with human studies indicating that potential obstacles are internally represented, a finding implying basic cognitive operations allowing for action selection in macaques.
Masud, Muhammad Mehedi; Akhatr, Rulia; Nasrin, Shamima; Adamu, Ibrahim Mohammed
2017-12-01
Socio-demographic factors play a significant role in increasing the individual's climate change awareness and in setting a favorable individual attitude towards its mitigation. To better understand how the adversative effects of climate change can be mitigated, this study attempts to investigate the impact of socio-demographic factors on the mitigating actions of the individuals (MAOI) on climate change. Qualitative data were collected from a face-to-face survey of 360 respondents in the Kuala Lumpur region of Malaysia through a close-ended questionnaire. Analysis was conducted on the mediating effects of attitudinal variables through the path model by using the SEM. Findings indicate that the socio-demographic factors such as gender, age, education, income, and ethnicity can greatly influence the individual's awareness, attitude, risk perception, and knowledge of climate change issues. The results drawn from this study also revealed that the attitudinal factors act as a mediating effect between the socio-demographic factors and the MAOI, thereby, indicating that both the socio-demographic factors and the attitudinal factors have significant effects on the MAOI towards climate change. The outcome of this study can help policy makers and other private organizations to decide on the appropriate actions to take in managing climate change effects. These actions which encompass improving basic climate change education and making the public more aware of the local dimensions of climate change are important for harnessing public engagement and support that can also stimulate climate change awareness and promote mitigating actions to n protect the environment from the impact of climate change.
Preserving correlations between trajectories for efficient path sampling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gingrich, Todd R.; Geissler, Phillip L.; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
2015-06-21
Importance sampling of trajectories has proved a uniquely successful strategy for exploring rare dynamical behaviors of complex systems in an unbiased way. Carrying out this sampling, however, requires an ability to propose changes to dynamical pathways that are substantial, yet sufficiently modest to obtain reasonable acceptance rates. Satisfying this requirement becomes very challenging in the case of long trajectories, due to the characteristic divergences of chaotic dynamics. Here, we examine schemes for addressing this problem, which engineer correlation between a trial trajectory and its reference path, for instance using artificial forces. Our analysis is facilitated by a modern perspective onmore » Markov chain Monte Carlo sampling, inspired by non-equilibrium statistical mechanics, which clarifies the types of sampling strategies that can scale to long trajectories. Viewed in this light, the most promising such strategy guides a trial trajectory by manipulating the sequence of random numbers that advance its stochastic time evolution, as done in a handful of existing methods. In cases where this “noise guidance” synchronizes trajectories effectively, as the Glauber dynamics of a two-dimensional Ising model, we show that efficient path sampling can be achieved for even very long trajectories.« less
NASA Astrophysics Data System (ADS)
Bao, Xiaoqi; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Campos, Sergio
2017-04-01
The potential return of Mars sample material is of great interest to the planetary science community, as it would enable extensive analysis of samples with highly sensitive laboratory instruments. It is important to make sure such a mission concept would not bring any living microbes, which may possibly exist on Mars, back to Earth's environment. In order to ensure the isolation of Mars microbes from Earth's Atmosphere, a brazing sealing and sterilizing technique was proposed to break the Mars-to-Earth contamination path. Effectively, heating the brazing zone in high vacuum space and controlling the sample temperature for integrity are key challenges to the implementation of this technique. The break-thechain procedures for container configurations, which are being considered, were simulated by multi-physics finite element models. Different heating methods including induction and resistive/radiation were evaluated. The temperature profiles of Martian samples in a proposed container structure were predicted. The results show that the sealing and sterilizing process can be controlled such that the samples temperature is maintained below the level that may cause damage, and that the brazing technique is a feasible approach to breaking the contamination path.
Mobile robot dynamic path planning based on improved genetic algorithm
NASA Astrophysics Data System (ADS)
Wang, Yong; Zhou, Heng; Wang, Ying
2017-08-01
In dynamic unknown environment, the dynamic path planning of mobile robots is a difficult problem. In this paper, a dynamic path planning method based on genetic algorithm is proposed, and a reward value model is designed to estimate the probability of dynamic obstacles on the path, and the reward value function is applied to the genetic algorithm. Unique coding techniques reduce the computational complexity of the algorithm. The fitness function of the genetic algorithm fully considers three factors: the security of the path, the shortest distance of the path and the reward value of the path. The simulation results show that the proposed genetic algorithm is efficient in all kinds of complex dynamic environments.
Pairing-induced speedup of nuclear spontaneous fission
NASA Astrophysics Data System (ADS)
Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.
2014-12-01
Background: Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. Purpose: To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. Methods: We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Results: Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. Conclusions: The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. Consequently, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.
Pairing-induced speedup of nuclear spontaneous fission
Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; ...
2014-12-22
Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependentmore » pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.« less
Validation of paper-based assay for rapid blood typing.
Al-Tamimi, Mohammad; Shen, Wei; Zeineddine, Rania; Tran, Huy; Garnier, Gil
2012-02-07
We developed and validated a new paper-based assay for the detection of human blood type. Our method involves spotting a 3 μL blood sample on a paper surface where grouping antibodies have already been introduced. A thin film chromatograph tank was used to chromatographically elute the blood spot with 0.9% NaCl buffer for 10 min by capillary absorption. Agglutinated red blood cells (RBCs) were fixed on the paper substrate, resulting in a high optical density of the spot, with no visual trace in the buffer wicking path. Conversely, nonagglutinated RBCs could easily be eluted by the buffer and had low optical density of the spot and clearly visible trace of RBCs in the buffer wicking path. Different paper substrates had comparable ability to fix agglutinated blood, while a more porous substrate like Kleenex paper had enhanced ability to elute nonagglutinated blood. Using optimized conditions, a rapid assay for detection of blood groups was developed by spotting blood to antibodies absorbed to paper and eluted with 200 μL of 0.9% NaCl buffer directly by pipetting. RBCs fixation on paper accurately detected blood groups (ABO and RhD) using ascending buffer for 10 min or using a rapid elution step in 100/100 blood samples including 4 weak AB and 4 weak RhD samples. The assay has excellent reproducibility where the same blood group was obtained in 26 samples assessed in 2 different days. Agglutinated blood fixation on porous paper substrate provides a new, simple, and sensitive assay for rapid detection of blood group for point-of-care applications. © 2011 American Chemical Society
Golkhou, Vahid; Parnianpour, Mohamad; Lucas, Caro
2005-04-01
In this study, we have used a single link system with a pair of muscles that are excited with alpha and gamma signals to achieve both point to point and oscillatory movements with variable amplitude and frequency.The system is highly nonlinear in all its physical and physiological attributes. The major physiological characteristics of this system are simultaneous activation of a pair of nonlinear muscle-like-actuators for control purposes, existence of nonlinear spindle-like sensors and Golgi tendon organ-like sensor, actions of gravity and external loading. Transmission delays are included in the afferent and efferent neural paths to account for a more accurate representation of the reflex loops.A reinforcement learning method with an actor-critic (AC) architecture instead of middle and low level of central nervous system (CNS), is used to track a desired trajectory. The actor in this structure is a two layer feedforward neural network and the critic is a model of the cerebellum. The critic is trained by state-action-reward-state-action (SARSA) method. The critic will train the actor by supervisory learning based on the prior experiences. Simulation studies of oscillatory movements based on the proposed algorithm demonstrate excellent tracking capability and after 280 epochs the RMS error for position and velocity profiles were 0.02, 0.04 rad and rad/s, respectively.
Alignment-enhancing feed-through conductors for stackable silicon-on-sapphire wafers
NASA Technical Reports Server (NTRS)
Anthony, Thomas R. (Inventor)
1983-01-01
Alignment-enhancing electrically conductive feed-through paths are provided for the high-speed low-loss transfer of electrical signals between integrated circuits of a plurality of silicon-on-sapphire bodies arrayed in a stack. The alignment-enhancing feed-throughs are made by a process involving the drilling of holes through the body, double-sided sputtering, electroplating, and the filling of the holes with solder by capillary action. The alignment-enhancing feed-throughs are activated by forming a stack of wafers and remelting the solder whereupon the wafers, and the feed-through paths, are pulled into alignment by surface tension forces.
The Conformal Factor and the Cosmological Constant
NASA Astrophysics Data System (ADS)
Giddings, Steven B.
The issue of the conformal factor in quantum gravity is examined for Lorentzian signature spacetimes. In Euclidean signature, the “wrong” sign of the conformal action makes the path integral undefined, but in Lorentzian signature this sign is tied to the instability of gravity and once this is accounted for the path integral should be well-defined. In this approach it is not obvious that the Baum-Hawking-Coleman mechanism for suppression of the cosmological constant functions. It is conceivable that since the multiuniverse system exhibits an instability for positive cosmological constant, the dynamics should force the system to zero cosmological constant.
The "Anatomy" of a Performance-Enhancing Drug Test in Sports
ERIC Educational Resources Information Center
Werner, T. C.
2012-01-01
The components of a performance-enhancing drug (PED) test in sports include sample selection, collection, establishing sample integrity, sample pretreatment, analyte detection, data evaluation, reporting results, and action taken based on the result. Undergraduate curricula generally focus on the detection and evaluation steps of an analytical…
Fermionic localization of the schwarzian theory
Stanford, Douglas; Witten, Edward
2017-10-02
The SYK model is a quantum mechanical model that has been proposed to be holographically dual to a 1 + 1-dimensional model of a quantum black hole. An emergent “gravitational” mode of this model is governed by an unusual action that has been called the Schwarzian action. It governs a reparametrization of a circle. We show that the path integral of the Schwarzian theory is one-loop exact. Here, the argument uses a method of fermionic localization, even though the model itself is purely bosonic.
Some special values of vertices of trees on the suborbital graphs
NASA Astrophysics Data System (ADS)
Deǧer, A. H.; Akbaba, Ü.
2018-01-01
In the present study, the action of a congruence subgroup of S L(2, Z) on ℚ ^ is examined. From this action and its properties, vertices of paths of minimal length on the suborbital graph Fu,N give rise to some special sequence values, that are alternate sequences such as identity, Fibonacci and Lucas sequences. These types of vertices also give rise to special continued fractions, hence from recurrence relations for continued fractions, values of these vertices and values of special sequences were associated.
Hard paths, soft paths or no paths? Cross-cultural perceptions of water solutions
NASA Astrophysics Data System (ADS)
Wutich, A.; White, A. C.; Roberts, C. M.; White, D. D.; Larson, K. L.; Brewis, A.
2013-06-01
In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of interview data. Our results indicate clear differences based on development status and, to a lesser extent, water scarcity. People in less developed sites were more likely to suggest hard path solutions, less likely to suggest soft path solutions, and more likely to see no path to solutions than people in more developed sites. Thematically, people in less developed sites envisioned solutions that involve small-scale water infrastructure and decentralized, community based solutions, while people in more developed sites envisioned solutions that involve large-scale infrastructure and centralized, regulatory water solutions. People in water-scarce sites were less likely to suggest soft path solutions and more likely to see no path to solutions (but no more likely to suggest hard path solutions) than people in water-rich sites. Thematically, people in water-rich sites seemed to perceive a wider array of unrealized potential soft path solutions than those in water-scarce sites. On balance, our findings are encouraging in that they indicate that people are receptive to soft path solutions in a range of sites, even those with limited financial or water resources. Our research points to the need for more studies that investigate the social feasibility of soft path water solutions, particularly in sites with significant financial and natural resource constraints.
Ilunga-Ilunga, Félicien; Levêque, Alain; Ngongo, Léon Okenge; Laokri, Samia; Dramaix, Michèle
2015-03-01
In the Democratic Republic of Congo (DRC), few studies have focused on treatment-seeking paths selected by caretakers for the management of severe childhood malaria in an urban environment. The present study aims at describing the treatment-seeking paths according to the characteristics of households, as well as the subsequent impact on pre-hospitalisation delay and malarial fatality and on the main syndromes associated with severe childhood malaria. This descriptive study included data collected at nine hospitals in Kinshasa between January and November 2011. A total of 1,350 children, under 15 years of age and hospitalised for severe malaria, were included in the study. Regarding the management of malaria, 31.5% of households went directly to the health centre or hospital while 68.5% opted for self-medication, church and/or traditional healing therapy. The most frequent first-line option was self-medication, adopted by more than 61.5% of households. Nevertheless, rational self-medication using antimalarial drugs recommended by the WHO (artemisinin-based combinations) was reported for only 5.5% of children. Only 12.5% of households combined 2 or 3 traditional options. The following criteria influenced the choice of a modern vs. traditional path: household socioeconomic level, residential environment, maternal education level and religious beliefs. When caretakers opted for traditional healing therapy, the pre-hospitalisation delay was longer and the occurrence of respiratory distress, severe anaemia and mortality was higher. The implementation of a malaria action plan in the Democratic Republic of Congo should take into account the diversity and pluralistic character of treatment-seeking behaviours in order to promote the most appropriate options (hospital and rational self-medication) and to avoid detrimental outcomes.
Ilunga-Ilunga, Félicien; Levêque, Alain; Ngongo, Léon Okenge; Laokri, Samia; Dramaix, Michèle
2015-01-01
Background: In the Democratic Republic of Congo (DRC), few studies have focused on treatment-seeking paths selected by caretakers for the management of severe childhood malaria in an urban environment. The present study aims at describing the treatment-seeking paths according to the characteristics of households, as well as the subsequent impact on pre-hospitalisation delay and malarial fatality and on the main syndromes associated with severe childhood malaria. Methods: This descriptive study included data collected at nine hospitals in Kinshasa between January and November 2011. A total of 1,350 children, under 15 years of age and hospitalised for severe malaria, were included in the study. Results: Regarding the management of malaria, 31.5% of households went directly to the health centre or hospital while 68.5% opted for self-medication, church and/or traditional healing therapy. The most frequent first-line option was self-medication, adopted by more than 61.5% of households. Nevertheless, rational self-medication using antimalarial drugs recommended by the WHO (artemisinin-based combinations) was reported for only 5.5% of children. Only 12.5% of households combined 2 or 3 traditional options. The following criteria influenced the choice of a modern vs. traditional path: household socioeconomic level, residential environment, maternal education level and religious beliefs. When caretakers opted for traditional healing therapy, the pre-hospitalisation delay was longer and the occurrence of respiratory distress, severe anaemia and mortality was higher. Conclusion: The implementation of a malaria action plan in the Democratic Republic of Congo should take into account the diversity and pluralistic character of treatment-seeking behaviours in order to promote the most appropriate options (hospital and rational self-medication) and to avoid detrimental outcomes. PMID:25729313
Harmonic Fourier beads method for studying rare events on rugged energy surfaces.
Khavrutskii, Ilja V; Arora, Karunesh; Brooks, Charles L
2006-11-07
We present a robust, distributable method for computing minimum free energy paths of large molecular systems with rugged energy landscapes. The method, which we call harmonic Fourier beads (HFB), exploits the Fourier representation of a path in an appropriate coordinate space and proceeds iteratively by evolving a discrete set of harmonically restrained path points-beads-to generate positions for the next path. The HFB method does not require explicit knowledge of the free energy to locate the path. To compute the free energy profile along the final path we employ an umbrella sampling method in two generalized dimensions. The proposed HFB method is anticipated to aid the study of rare events in biomolecular systems. Its utility is demonstrated with an application to conformational isomerization of the alanine dipeptide in gas phase.
Duncan, Dustin T; Tamura, Kosuke; Regan, Seann D; Athens, Jessica; Elbel, Brian; Meline, Julie; Al-Ajlouni, Yazan A; Chaix, Basile
2017-01-01
To examine if there was spatial misclassification in exposure to neighborhood noise complaints among a sample of low-income housing residents in New York City, comparing home-based spatial buffers and Global Positioning System (GPS) daily path buffers. Data came from the community-based NYC Low-Income Housing, Neighborhoods and Health Study, where GPS tracking of the sample was conducted for a week (analytic n = 102). We created a GPS daily path buffer (a buffering zone drawn around GPS tracks) of 200 m and 400 m. We also used home-based buffers of 200 m and 400 m. Using these "neighborhoods" (or exposure areas), we calculated neighborhood exposure to noisy events from 311 complaints data (analytic n = 143,967). Friedman tests (to compare overall differences in neighborhood definitions) were applied. There were differences in neighborhood noise complaints according to the selected neighborhood definitions (P < .05). For example, the mean neighborhood noise complaint count was 1196 per square kilometer for the 400-m home-based and 812 per square kilometer for the 400-m activity space buffer, illustrating how neighborhood definition influences the estimates of exposure to neighborhood noise complaints. These analyses suggest that, whenever appropriate, GPS neighborhood definitions can be used in spatial epidemiology research in spatially mobile populations to understand people's lived experience. Copyright © 2016 Elsevier Inc. All rights reserved.
Predicate Argument Structure Frames for Modeling Information in Operative Notes
Wang, Yan; Pakhomov, Serguei; Melton, Genevieve B.
2015-01-01
The rich information about surgical procedures contained in operative notes is a valuable data source for improving the clinical evidence base and clinical research. In this study, we propose a set of Predicate Argument Structure (PAS) frames for surgical action verbs to assist in the creation of an information extraction (IE) system to automatically extract details about the techniques, equipment, and operative steps from operative notes. We created PropBank style PAS frames for the 30 top surgical action verbs based on examination of randomly selected sample sentences from 3,000 Laparoscopic Cholecystectomy notes. To assess completeness of the PAS frames to represent usage of same action verbs, we evaluated the PAS frames created on sample sentences from operative notes of 6 other gastrointestinal surgical procedures. Our results showed that the PAS frames created with one type of surgery can successfully denote the usage of the same verbs in operative notes of broader surgical categories. PMID:23920664
NASA Astrophysics Data System (ADS)
Sargent, S.; Somers, J. M.
2015-12-01
Trace-gas eddy covariance flux measurement can be made with open-path or closed-path analyzers. Traditional closed-path trace-gas analyzers use multipass absorption cells that behave as mixing volumes, requiring high sample flow rates to achieve useful frequency response. The high sample flow rate and the need to keep the multipass cell extremely clean dictates the use of a fine-pore filter that may clog quickly. A large-capacity filter cannot be used because it would degrade the EC system frequency response. The high flow rate also requires a powerful vacuum pump, which will typically consume on the order of 1000 W. The analyzer must measure water vapor for spectroscopic and dilution corrections. Open-path analyzers are available for methane, but not for nitrous oxide. The currently available methane analyzers have low power consumption, but are very large. Their large size degrades frequency response and disturbs the air flow near the sonic anemometer. They require significant maintenance to keep the exposed multipass optical surfaces clean. Water vapor measurements for dilution and spectroscopic corrections require a separate water vapor analyzer. A new closed-path eddy covariance system for measuring nitrous oxide or methane fluxes provides an elegant solution. The analyzer (TGA200A, Campbell Scientific, Inc.) uses a thermoelectrically-cooled interband cascade laser. Its small sample-cell volume and unique sample-cell configuration (200 ml, 1.5 m single pass) provide excellent frequency response with a low-power scroll pump (240 W). A new single-tube Nafion® dryer removes most of the water vapor, and attenuates fluctuations in the residual water vapor. Finally, a vortex intake assembly eliminates the need for an intake filter without adding volume that would degrade system frequency response. Laboratory testing shows the system attenuates the water vapor dilution term by more than 99% and achieves a half-power band width of 3.5 Hz.
Physicians' perspectives on receiving unsolicited genomic results.
Pet, Douglas B; Holm, Ingrid A; Williams, Janet L; Myers, Melanie F; Novak, Laurie L; Brothers, Kyle B; Wiesner, Georgia L; Clayton, Ellen W
2018-06-14
Physicians increasingly receive genomic test results they did not order, which we term "unsolicited genomic results" (UGRs). We asked physicians how they think such results will affect them and their patients. Semistructured interviews were conducted with adult and pediatric primary care and subspecialty physicians at four sites affiliated with a large-scale return-of-results project led by the Electronic Medical Records and Genomics (eMERGE) Network. Twenty-five physicians addressed UGRs and (1) perceived need for actionability, (2) impact on patients, (3) health care workflow, (4) return of results process, and (5) responsibility for results. Physicians prioritize actionability of UGRs and the need for clear, evidence-based "paths" for action coupled with clinical decision support (CDS). They identified potential harms to patients including anxiety, false reassurance, and clinical disutility. Clinicians worried about anticipated workflow issues including responding to UGRs and unreimbursed time. They disagreed about who was responsible for responding to UGRs. The prospect of receiving UGRs for otherwise healthy patients raises important concerns for physicians. Their responses informed development of an in-depth survey for physicians following return of UGRs. Strategic workflow integration of UGRs will likely be necessary to empower physicians to serve their patients effectively.
NASA Technical Reports Server (NTRS)
Longendorfer, B. A.
1976-01-01
The construction of an autonomous roving vehicle requires the development of complex data-acquisition and processing systems, which determine the path along which the vehicle travels. Thus, a vehicle must possess algorithms which can (1) reliably detect obstacles by processing sensor data, (2) maintain a constantly updated model of its surroundings, and (3) direct its immediate actions to further a long range plan. The first function consisted of obstacle recognition. Obstacles may be identified by the use of edge detection techniques. Therefore, the Kalman Filter was implemented as part of a large scale computer simulation of the Mars Rover. The second function consisted of modeling the environment. The obstacle must be reconstructed from its edges, and the vast amount of data must be organized in a readily retrievable form. Therefore, a Terrain Modeller was developed which assembled and maintained a rectangular grid map of the planet. The third function consisted of directing the vehicle's actions.
Tissue characterization with ballistic photons: counting scattering and/or absorption centres
NASA Astrophysics Data System (ADS)
Corral, F.; Strojnik, M.; Paez, G.
2015-03-01
We describe a new method to separate ballistic from the scattered photons for optical tissue characterization. It is based on the hypothesis that the scattered photons acquire a phase delay. The photons passing through the sample without scattering or absorption preserve their coherence so they may participate in interference. We implement a Mach-Zehnder experimental setup where the ballistic photons pass through the sample with the delay caused uniquely by the sample indices of refraction. We incorporate a movable mirror on the piezoelectric actuator in the sample arm to detect the amplitude of the modulation term. We present the theory that predicts the path-integrated (or total) concentration of the scattering and absorption centres. The proposed technique may characterize samples with transmission attenuation of ballistic photons by a factor of 10-14.
High-precision diode-laser-based temperature measurement for air refractive index compensation.
Hieta, Tuomas; Merimaa, Mikko; Vainio, Markku; Seppä, Jeremias; Lassila, Antti
2011-11-01
We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements, it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlén equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilizes direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well-matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially nonhomogeneous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using a 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement. © 2011 Optical Society of America
Singh, Anupama; Thotakura, Nagarani; Kumar, Rajendra; Singh, Bhupinder; Sharma, Gajanand; Katare, Om Prakash; Raza, Kaisar
2017-02-01
Biocompatible and biodegradable polymers like PLGA have revolutionized the drug delivery approaches. However, poor drug loading and substantially high lipophilicity, pave a path for further tailing of this promising agent. In this regard, PLGA was feathered with biocompatible phospholipid and polymeric micelles were developed for delivery of Methotrexate (MTX) to cancer cells. The nanocarriers (114.6nm±5.5nm) enhanced the cytotoxicity of MTX by 2.13 folds on MDA-MB-231 cells. Confocal laser scanning microscopy confirmed the increased intracellular delivery. The carrier decreased the protein binding potential and enhanced the bioavailable fraction of MTX. Pharmacokinetic studies vouched substantial enhancement in AUC and bioresidence time, promising an ideal carrier to effectively deliver the drug to the site of action. The developed nanocarriers offer potential to deliver the drug in the interiors of cancer cells in an effective manner for improved therapeutic action. Copyright © 2016 Elsevier B.V. All rights reserved.
An Experiment of GMPLS-Based Dispersion Compensation Control over In-Field Fibers
NASA Astrophysics Data System (ADS)
Seno, Shoichiro; Horiuchi, Eiichi; Yoshida, Sota; Sugihara, Takashi; Onohara, Kiyoshi; Kamei, Misato; Baba, Yoshimasa; Kubo, Kazuo; Mizuochi, Takashi
As ROADMs (Reconfigurable Optical Add/Drop Multiplexers) are becoming widely used in metro/core networks, distributed control of wavelength paths by extended GMPLS (Generalized MultiProtocol Label Switching) protocols has attracted much attention. For the automatic establishment of an arbitrary wavelength path satisfying dynamic traffic demands over a ROADM or WXC (Wavelength Cross Connect)-based network, precise determination of chromatic dispersion over the path and optimized assignment of dispersion compensation capabilities at related nodes are essential. This paper reports an experiment over in-field fibers where GMPLS-based control was applied for the automatic discovery of chromatic dispersion, path computation, and wavelength path establishment with dynamic adjustment of variable dispersion compensation. The GMPLS-based control scheme, which the authors called GMPLS-Plus, extended GMPLS's distributed control architecture with attributes for automatic discovery, advertisement, and signaling of chromatic dispersion. In this experiment, wavelength paths with distances of 24km and 360km were successfully established and error-free data transmission was verified. The experiment also confirmed path restoration with dynamic compensation adjustment upon fiber failure.
Dekker, Kurtis H; Battista, Jerry J; Jordan, Kevin J
2016-08-01
The practical use of the PRESAGE® solid plastic dosimeter is limited by the inconvenience of immersing it in high-viscosity oils to achieve refractive index matching for optical computed tomography (CT) scanning. The oils are slow to mix and difficult to clean from surfaces, and the dosimeter rotation can generate dynamic Schlieren inhomogeneity patterns in the reference liquid, limiting the rotational and overall scan speed. Therefore, it would be beneficial if lower-viscosity, water-based solutions with slightly unmatched refractive index could be used instead. The purpose of this work is to demonstrate the feasibility of allowing mismatched conditions when using a scanning laser system with a large acceptance angle detector. A fiducial-based ray path measurement technique is combined with an iterative CT reconstruction algorithm to reconstruct images. A water based surrounding liquid with a low viscosity was selected for imaging PRESAGE® solid dosimeters. Liquid selection was optimized to achieve as high a refractive index as possible while avoiding rotation-induced Schlieren effects. This led to a refractive index mismatch of 6% between liquid and dosimeters. Optical CT scans were performed with a fan-beam scanning-laser optical CT system with a large area detector to capture most of the refracted rays. A fiducial marker placed on the wall of a cylindrical sample occludes a given light ray twice. With knowledge of the rotation angle and the radius of the cylindrical object, the actual internal path of each ray through the dosimeter can be calculated. Scans were performed with 1024 projections of 512 data samples each, and rays were rebinned to form 512 parallel-beam projections. Reconstructions were performed on a 512 × 512 grid using 100 iterations of the SIRT iterative CT algorithm. Proof of concept was demonstrated with a uniformly attenuating solution phantom. PRESAGE® dosimeters (11 cm diameter) were irradiated with Cobalt-60 irradiator to achieve either a uniform dose or a 2-level "step-dose" pattern. With 6% refractive index mismatching, a circular field of view of 85% of the diameter of a cylindrical sample can be reconstructed accurately. Reconstructed images of the test solution phantom were uniform (within 3%) inside this radius. However, the dose responses of the PRESAGE® samples were not spatially uniform, with variations of at least 5% in sensitivity. The variation appears as a "cupping" artifact with less sensitivity in the middle than at the periphery of the PRESAGE® cylinder. Polarization effects were also detected for these samples. The fiducial-based ray path measurement scheme, coupled with an iterative reconstruction algorithm, enabled optical CT scanning of PRESAGE® dosimeters immersed in mismatched refractive index solutions. However, improvements to PRESAGE® dose response uniformity are required.
NASA Astrophysics Data System (ADS)
Raymond, Neil; Iouchtchenko, Dmitri; Roy, Pierre-Nicholas; Nooijen, Marcel
2018-05-01
We introduce a new path integral Monte Carlo method for investigating nonadiabatic systems in thermal equilibrium and demonstrate an approach to reducing stochastic error. We derive a general path integral expression for the partition function in a product basis of continuous nuclear and discrete electronic degrees of freedom without the use of any mapping schemes. We separate our Hamiltonian into a harmonic portion and a coupling portion; the partition function can then be calculated as the product of a Monte Carlo estimator (of the coupling contribution to the partition function) and a normalization factor (that is evaluated analytically). A Gaussian mixture model is used to evaluate the Monte Carlo estimator in a computationally efficient manner. Using two model systems, we demonstrate our approach to reduce the stochastic error associated with the Monte Carlo estimator. We show that the selection of the harmonic oscillators comprising the sampling distribution directly affects the efficiency of the method. Our results demonstrate that our path integral Monte Carlo method's deviation from exact Trotter calculations is dominated by the choice of the sampling distribution. By improving the sampling distribution, we can drastically reduce the stochastic error leading to lower computational cost.
NASA Technical Reports Server (NTRS)
1997-01-01
The NASA Lewis Research Center is sponsoring the Advanced Communication Technology Insertion (ACTION) for Commercial Space Applications program. The goal of the program is to expedite the development of new technology with a clear path towards productization and enhancing the competitiveness of U.S. manufacturers. The industry has made significant investment in developing ASIC-based modem technology for continuous-mode applications and has made investigations into East, reliable acquisition of burst-mode digital communication signals. With rapid advances in analog and digital communications ICs, it is expected that more functions will be integrated onto these parts in the near future. In addition custom ASIC's can also be developed to address the areas not covered by the other IC's. Using the commercial chips and custom ASIC's, lower-cost, compact, reliable, and high-performance modems can be built for demanding satellite communication application. This report outlines a frequency-hop burst modem design based on commercially available chips.
Automatic classification of visual evoked potentials based on wavelet decomposition
NASA Astrophysics Data System (ADS)
Stasiakiewicz, Paweł; Dobrowolski, Andrzej P.; Tomczykiewicz, Kazimierz
2017-04-01
Diagnosis of part of the visual system, that is responsible for conducting compound action potential, is generally based on visual evoked potentials generated as a result of stimulation of the eye by external light source. The condition of patient's visual path is assessed by set of parameters that describe the time domain characteristic extremes called waves. The decision process is compound therefore diagnosis significantly depends on experience of a doctor. The authors developed a procedure - based on wavelet decomposition and linear discriminant analysis - that ensures automatic classification of visual evoked potentials. The algorithm enables to assign individual case to normal or pathological class. The proposed classifier has a 96,4% sensitivity at 10,4% probability of false alarm in a group of 220 cases and area under curve ROC equals to 0,96 which, from the medical point of view, is a very good result.
Proctor, Christine M; Freeman, Elizabeth W; Brown, Janine L
2010-01-01
The North American African (Loxodonta africana) elephant population is not self-sustaining, in part because of a high rate of abnormal ovarian activity. About 12% of adult females exhibit irregular cycles and 31% do not cycle at all. Our earlier work revealed a relationship between dominance status and ovarian acyclicity, with dominant females being more likely to not cycle normally. One theory is that dominant females may be expending more energy to maintaining peace within the captive herd than for supporting reproduction. The goal of this study was to determine if there was a relationship among dominance status, serum cortisol concentrations, and ovarian acyclicity. We hypothesized that adrenal glucocorticoid activity would be increased in dominant, noncycling elephants as compared with subdominant individuals. Blood samples were collected weekly over a 2-year period in 81 females of known dominance and cyclicity status, and analyzed for cortisol. Based on a path analysis model (Reticular Action Model Or Near Approximation [RAMONA]), noncycling, dominant African elephant females did not have higher mean serum cortisol concentrations, or exhibit more variability (i.e., coefficient of variation, standard deviation) in cortisol secretion. This study suggests that alterations in adrenal activity are not related to dominance status nor contribute directly to acyclicity in captive African elephants.
'Fab-chips': a versatile, fabric-based platform for low-cost, rapid and multiplexed diagnostics.
Bhandari, Paridhi; Narahari, Tanya; Dendukuri, Dhananjaya
2011-08-07
Low cost and scalable manufacture of lab-on-chip devices for applications such as point-of-care testing is an urgent need. Weaving is presented as a unified, scalable and low-cost platform for the manufacture of fabric chips that can be used to perform such testing. Silk yarns with different properties are first selected, treated with the appropriate reagent solutions, dried and handloom-woven in one step into an integrated fabric chip. This platform has the unique advantage of scaling up production using existing and low cost physical infrastructure. We have demonstrated the ability to create pre-defined flow paths in fabric by using wetting and non-wetting silk yarns and a Jacquard attachment in the loom. Further, we show that yarn parameters such as the yarn twist frequency and weaving coverage area may be conveniently used to tune both the wicking rate and the absorptive capacity of the fabric. Yarns optimized for their final function were used to create an integrated fabric chip containing reagent-coated yarns. Strips of this fabric were then used to perform a proof-of-concept immunoassay with sample flow taking place by capillary action and detection being performed by a visual readout. This journal is © The Royal Society of Chemistry 2011
Achievements and future path of Tehran municipality in urban health domain: An Iranian experience
Damari, Behzad; Riazi-Isfahani, Sahand
2016-01-01
Background: According to national laws and world experiences; provision, maintenance, and improving citizens’ health are considered to be the essential functions of municipalities as a "social institute". In order to equitably promote health conditions at urban level, particularly in marginal areas, since 2004 targeted efforts have been implemented in the municipality of Tehran metropolis. This study was intended to identify and analyze these targeted measures and tries to analyze health interventions in a conceptual framework and propose a future path. Methods: This is a qualitative study with content analysis approach. Reviewing documents and structured interviews with national health policy making and planning experts and executive managers of 22-region municipalities of Tehran metropolis were used to collect data. The data were analyzed on the basis of conceptual framework prepared for urban health in 4 domains including municipal interventions, goal achievements, drivers and obstacles of success, and the way forward. Results: From the viewpoint of interviewees, these new health actions of Tehran municipality are more based on public participation and the municipality was able to prioritize health issue in the programs and policies of Tehran city council. Tehran municipality has accomplished three types of interventions to improve health, which in orders of magnitude are: facilitative, promotional, and mandatory interventions. Development and institutionalization of public participation is the greatest achievement in health-oriented actions; and expansion of environmental and physical health-oriented facilities and promoting a healthy lifestyle are next in ranks. Conclusion: Since management alterations seriously challenges institutionalization of actions and innovations especially in the developing countries, it is suggested that mayors of metropolitan cities like Tehran document and review municipal health measures as soon as possible and while eliminating overlapping of interventions with other sectors, design and approve the charter of "health promoting municipality". The most important role of municipalities in this charter would be coordinating health improvement of citizens. This charter, when approved as a national policy could be used for other cities too. PMID:27390693
Entropy-based link prediction in weighted networks
NASA Astrophysics Data System (ADS)
Xu, Zhongqi; Pu, Cunlai; Ramiz Sharafat, Rajput; Li, Lunbo; Yang, Jian
2017-01-01
Information entropy has been proved to be an effective tool to quantify the structural importance of complex networks. In the previous work (Xu et al, 2016 \\cite{xu2016}), we measure the contribution of a path in link prediction with information entropy. In this paper, we further quantify the contribution of a path with both path entropy and path weight, and propose a weighted prediction index based on the contributions of paths, namely Weighted Path Entropy (WPE), to improve the prediction accuracy in weighted networks. Empirical experiments on six weighted real-world networks show that WPE achieves higher prediction accuracy than three typical weighted indices.
Montoya-Castillo, Andrés; Reichman, David R
2017-01-14
We derive a semi-analytical form for the Wigner transform for the canonical density operator of a discrete system coupled to a harmonic bath based on the path integral expansion of the Boltzmann factor. The introduction of this simple and controllable approach allows for the exact rendering of the canonical distribution and permits systematic convergence of static properties with respect to the number of path integral steps. In addition, the expressions derived here provide an exact and facile interface with quasi- and semi-classical dynamical methods, which enables the direct calculation of equilibrium time correlation functions within a wide array of approaches. We demonstrate that the present method represents a practical path for the calculation of thermodynamic data for the spin-boson and related systems. We illustrate the power of the present approach by detailing the improvement of the quality of Ehrenfest theory for the correlation function C zz (t)=Re⟨σ z (0)σ z (t)⟩ for the spin-boson model with systematic convergence to the exact sampling function. Importantly, the numerically exact nature of the scheme presented here and its compatibility with semiclassical methods allows for the systematic testing of commonly used approximations for the Wigner-transformed canonical density.
Phase-Shifted Laser Feedback Interferometry
NASA Technical Reports Server (NTRS)
Ovryn, Benjie
1999-01-01
Phase-shifted, laser feedback interferometry is a new diagnostic tool developed at the NASA Lewis Research Center under the Advanced Technology Development (ATD) Program directed by NASA Headquarters Microgravity Research Division. It combines the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce an instrument that can quantify both optical path length changes and sample reflectivity variations. In a homogenous medium, the optical path length between two points is the product of the index of refraction and the geometric distance between the two points. LFI differs from other forms of interferometry by using the laser as both the source and the phase detector. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. The combination of PSI and LFI has produced a robust instrument, based on a low-power helium-neon (HeNe) gas laser, with a high dynamic range that can be used to measure either static or oscillatory changes of the optical path length. Small changes in optical path length are limited by the fraction of a fringe that can be measured; we can measure nonoscillatory changes with a root mean square (rms) error of the wavelength/1000 without averaging.
Energy Harvesting A Nano-Scale Based Magneto-Thermal-Electric Element
2015-05-21
induction , H is...magnetic field and L is the length of the magnetic circuit . As the area, path length and...sample was subsequently annealed to 850 C, for 1 hour, in a tube furnace under
NASA Astrophysics Data System (ADS)
Fang, Zenong; Li, Min; Wang, Shaokai; Li, Yanxia; Wang, Xiaolei; Gu, Yizhuo; Liu, Qianli; Tian, Jie; Zhang, Zuoguang
2017-11-01
This paper focuses on the anisotropic characteristics of the in-plane thermal conductivity of fiber-reinforced polymer composite based on experiment and simulation. Thermal conductivity along different in-plane orientations was measured by laser flash analysis (LFA) and steady-state heat flow method. Their heat transfer processes were simulated to reveal the geometrical effect on thermal conduction. The results show that the in-plane thermal conduction of unidirectional carbon-fiber-reinforced polymer composite is greatly influenced by the sample geometry at an in-plane orientation angle between 0° to 90°. By defining radius-to-thickness as a dimensionless shape factor for the LFA sample, the apparent thermal conductivity shows a dramatic change when the shape factor is close to the tangent of the orientation angle (tanθ). Based on finite element analysis, this phenomenon was revealed to correlate with the change of the heat transfer process. When the shape factor is larger than tanθ, the apparent thermal conductivity is consistent with the estimated value according to the theoretical model. For a sample with a shape factor smaller than tanθ, the apparent thermal conductivity shows a slow growth around a low value, which seriously deviates from the theory estimation. This phenomenon was revealed to correlate with the change of the heat transfer process from a continuous path to a zigzag path. These results will be helpful in optimizing the ply scheme of composite laminates for thermal management applications.
Prospective Optimization with Limited Resources
Snider, Joseph; Lee, Dongpyo; Poizner, Howard; Gepshtein, Sergei
2015-01-01
The future is uncertain because some forthcoming events are unpredictable and also because our ability to foresee the myriad consequences of our own actions is limited. Here we studied how humans select actions under such extrinsic and intrinsic uncertainty, in view of an exponentially expanding number of prospects on a branching multivalued visual stimulus. A triangular grid of disks of different sizes scrolled down a touchscreen at a variable speed. The larger disks represented larger rewards. The task was to maximize the cumulative reward by touching one disk at a time in a rapid sequence, forming an upward path across the grid, while every step along the path constrained the part of the grid accessible in the future. This task captured some of the complexity of natural behavior in the risky and dynamic world, where ongoing decisions alter the landscape of future rewards. By comparing human behavior with behavior of ideal actors, we identified the strategies used by humans in terms of how far into the future they looked (their “depth of computation”) and how often they attempted to incorporate new information about the future rewards (their “recalculation period”). We found that, for a given task difficulty, humans traded off their depth of computation for the recalculation period. The form of this tradeoff was consistent with a complete, brute-force exploration of all possible paths up to a resource-limited finite depth. A step-by-step analysis of the human behavior revealed that participants took into account very fine distinctions between the future rewards and that they abstained from some simple heuristics in assessment of the alternative paths, such as seeking only the largest disks or avoiding the smaller disks. The participants preferred to reduce their depth of computation or increase the recalculation period rather than sacrifice the precision of computation. PMID:26367309
Prospective Optimization with Limited Resources.
Snider, Joseph; Lee, Dongpyo; Poizner, Howard; Gepshtein, Sergei
2015-09-01
The future is uncertain because some forthcoming events are unpredictable and also because our ability to foresee the myriad consequences of our own actions is limited. Here we studied how humans select actions under such extrinsic and intrinsic uncertainty, in view of an exponentially expanding number of prospects on a branching multivalued visual stimulus. A triangular grid of disks of different sizes scrolled down a touchscreen at a variable speed. The larger disks represented larger rewards. The task was to maximize the cumulative reward by touching one disk at a time in a rapid sequence, forming an upward path across the grid, while every step along the path constrained the part of the grid accessible in the future. This task captured some of the complexity of natural behavior in the risky and dynamic world, where ongoing decisions alter the landscape of future rewards. By comparing human behavior with behavior of ideal actors, we identified the strategies used by humans in terms of how far into the future they looked (their "depth of computation") and how often they attempted to incorporate new information about the future rewards (their "recalculation period"). We found that, for a given task difficulty, humans traded off their depth of computation for the recalculation period. The form of this tradeoff was consistent with a complete, brute-force exploration of all possible paths up to a resource-limited finite depth. A step-by-step analysis of the human behavior revealed that participants took into account very fine distinctions between the future rewards and that they abstained from some simple heuristics in assessment of the alternative paths, such as seeking only the largest disks or avoiding the smaller disks. The participants preferred to reduce their depth of computation or increase the recalculation period rather than sacrifice the precision of computation.
Path connectivity based spectral defragmentation in flexible bandwidth networks.
Wang, Ying; Zhang, Jie; Zhao, Yongli; Zhang, Jiawei; Zhao, Jie; Wang, Xinbo; Gu, Wanyi
2013-01-28
Optical networks with flexible bandwidth provisioning have become a very promising networking architecture. It enables efficient resource utilization and supports heterogeneous bandwidth demands. In this paper, two novel spectrum defragmentation approaches, i.e. Maximum Path Connectivity (MPC) algorithm and Path Connectivity Triggering (PCT) algorithm, are proposed based on the notion of Path Connectivity, which is defined to represent the maximum variation of node switching ability along the path in flexible bandwidth networks. A cost-performance-ratio based profitability model is given to denote the prons and cons of spectrum defragmentation. We compare these two proposed algorithms with non-defragmentation algorithm in terms of blocking probability. Then we analyze the differences of defragmentation profitability between MPC and PCT algorithms.
NASA Astrophysics Data System (ADS)
Li, Xiang
2016-10-01
Blood glucose monitoring is of great importance for controlling diabetes procedure and preventing the complications. At present, the clinical blood glucose concentration measurement is invasive and could be replaced by noninvasive spectroscopy analytical techniques. Among various parameters of optical fiber probe used in spectrum measuring, the measurement distance is the key one. The Monte Carlo technique is a flexible method for simulating light propagation in tissue. The simulation is based on the random walks that photons make as they travel through tissue, which are chosen by statistically sampling the probability distributions for step size and angular deflection per scattering event. The traditional method for determine the optimal distance between transmitting fiber and detector is using Monte Carlo simulation to find out the point where most photons come out. But there is a problem. In the epidermal layer there is no artery, vein or capillary vessel. Thus, when photons propagate and interactive with tissue in epidermal layer, no information is given to the photons. A new criterion is proposed to determine the optimal distance, which is named effective path length in this paper. The path length of each photons travelling in dermis is recorded when running Monte-Carlo simulation, which is the effective path length defined above. The sum of effective path length of every photon at each point is calculated. The detector should be place on the point which has most effective path length. Then the optimal measuring distance between transmitting fiber and detector is determined.
Narratives boost entrepreneurial attitudes: Making an entrepreneurial career attractive?
Fellnhofer, Katharina
2018-06-01
This article analyses the impact of narratives on entrepreneurial attitudes and intentions. To this end, a quasi-experiment was conducted to evaluate web-based entrepreneurial narratives. The paired-sample tests and regression analysis use a sample of 466 people from Austria, Finland, and Greece and indicate that individuals' perceptions of the desirability of entrepreneurship and entrepreneurial intention are significantly different before and after exposure to entrepreneurial narratives. Furthermore, the findings indicate that perceptions of the feasibility of entrepreneurship are more strongly affected by videos than by cases. From a policy perspective, this study raises awareness that entrepreneurship is an attractive career path.
RADC SCAT automated sneak circuit analysis tool
NASA Astrophysics Data System (ADS)
Depalma, Edward L.
The sneak circuit analysis tool (SCAT) provides a PC-based system for real-time identification (during the design phase) of sneak paths and design concerns. The tool utilizes an expert system shell to assist the analyst so that prior experience with sneak analysis is not necessary for performance. Both sneak circuits and design concerns are targeted by this tool, with both digital and analog circuits being examined. SCAT focuses the analysis at the assembly level, rather than the entire system, so that most sneak problems can be identified and corrected by the responsible design engineer in a timely manner. The SCAT program identifies the sneak circuits to the designer, who then decides what course of action is necessary.
Benson, Neil
2015-08-01
Phase II attrition remains the most important challenge for drug discovery. Tackling the problem requires improved understanding of the complexity of disease biology. Systems biology approaches to this problem can, in principle, deliver this. This article reviews the reports of the application of mechanistic systems models to drug discovery questions and discusses the added value. Although we are on the journey to the virtual human, the length, path and rate of learning from this remain an open question. Success will be dependent on the will to invest and make the most of the insight generated along the way. Copyright © 2015 Elsevier Ltd. All rights reserved.
Symmetric Trajectories for the 2N-Body Problem with Equal Masses
NASA Astrophysics Data System (ADS)
Terracini, Susanna; Venturelli, Andrea
2007-06-01
We consider the problem of 2 N bodies of equal masses in mathbb{R}^3 for the Newtonian-like weak-force potential r -σ, and we prove the existence of a family of collision-free nonplanar and nonhomographic symmetric solutions that are periodic modulo rotations. In addition, the rotation number with respect to the vertical axis ranges in a suitable interval. These solutions have the hip-hop symmetry, a generalization of that introduced in [19], for the case of many bodies and taking account of a topological constraint. The argument exploits the variational structure of the problem, and is based on the minimization of Lagrangian action on a given class of paths.
Spahr, Norman E.; Dubrovsky, Neil M.; Gronberg, JoAnn M.; Franke, O. Lehn; Wolock, David M.
2010-01-01
Hydrograph separation was used to determine the base-flow component of streamflow for 148 sites sampled as part of the National Water-Quality Assessment program. Sites in the Southwest and the Northwest tend to have base-flow index values greater than 0.5. Sites in the Midwest and the eastern portion of the Southern Plains generally have values less than 0.5. Base-flow index values for sites in the Southeast and Northeast are mixed with values less than and greater than 0.5. Hypothesized flow paths based on relative scaling of soil and bedrock permeability explain some of the differences found in base-flow index. Sites in areas with impermeable soils and bedrock (areas where overland flow may be the primary hydrologic flow path) tend to have lower base-flow index values than sites in areas with either permeable bedrock or permeable soils (areas where deep groundwater flow paths or shallow groundwater flow paths may occur). The percentage of nitrate load contributed by base flow was determined using total flow and base flow nitrate load models. These regression-based models were calibrated using available nitrate samples and total streamflow or base-flow nitrate samples and the base-flow component of total streamflow. Many streams in the country have a large proportion of nitrate load contributed by base flow: 40 percent of sites have more than 50 percent of the total nitrate load contributed by base flow. Sites in the Midwest and eastern portion of the Southern Plains generally have less than 50 percent of the total nitrate load contributed by base flow. Sites in the Northern Plains and Northwest have nitrate load ratios that generally are greater than 50 percent. Nitrate load ratios for sites in the Southeast and Northeast are mixed with values less than and greater than 50 percent. Significantly lower contributions of nitrate from base flow were found at sites in areas with impermeable soils and impermeable bedrock. These areas could be most responsive to nutrient management practices designed to reduce nutrient transport to streams by runoff. Conversely, sites with potential for shallow or deep groundwater contribution (some combination of permeable soils or permeable bedrock) had significantly greater contributions of nitrate from base flow. Effective nutrient management strategies would consider groundwater nitrate contributions in these areas. Mean annual base-flow nitrate concentrations were compared to shallow-groundwater nitrate concentrations for 27 sites. Concentrations in groundwater tended to be greater than base-flow concentrations for this group of sites. Sites where groundwater concentrations were much greater than base-flow concentrations were found in areas of high infiltration and oxic groundwater conditions. The lack of correspondingly high concentrations in the base flow of the paired surface-water sites may have multiple causes. In some settings, there has not been sufficient time for enough high-nitrate shallow groundwater to migrate to the nearby stream. In these cases, the stream nitrate concentrations lag behind those in the shallow groundwater, and concentrations may increase in the future as more high-nitrate groundwater reaches the stream. Alternatively, some of these sites may have processes that rapidly remove nitrate as water moves from the aquifer into the stream channel. Partitioning streamflow and nitrate load between the quick-flow and base-flow portions of the hydrograph coupled with relative scales of soil permeability can infer the importance of surface water compared to groundwater nitrate sources. Study of the relation of nitrate concentrations to base-flow index and the comparison of groundwater nitrate concentrations to stream nitrate concentrations during times when base-flow index is high can provide evidence of potential nitrate transport mechanisms. Accounting for the surface-water and groundwater contributions of nitrate is crucial to effective management and remediat
Luther, Stefan; Singh, Rupinder; Gilmour, Robert F.
2010-01-01
The pattern of action potential propagation during various tachyarrhythmias is strongly suspected to be composed of multiple re-entrant waves, but has never been imaged in detail deep within myocardial tissue. An understanding of the nature and dynamics of these waves is important in the development of appropriate electrical or pharmacological treatments for these pathological conditions. We propose a new imaging modality that uses ultrasound to visualize the patterns of propagation of these waves through the mechanical deformations they induce. The new method would have the distinct advantage of being able to visualize these waves deep within cardiac tissue. In this article, we describe one step that would be necessary in this imaging process—the conversion of these deformations into the action potential induced active stresses that produced them. We demonstrate that, because the active stress induced by an action potential is, to a good approximation, only nonzero along the local fiber direction, the problem in our case is actually overdetermined, allowing us to obtain a complete solution. Use of two- rather than three-dimensional displacement data, noise in these displacements, and/or errors in the measurements of the fiber orientations all produce substantial but acceptable errors in the solution. We conclude that the reconstruction of action potential-induced active stress from the deformation it causes appears possible, and that, therefore, the path is open to the development of the new imaging modality. PMID:20499183
The role of Compensatory Health Beliefs in eating behavior change: A mixed method study.
Amrein, Melanie A; Rackow, Pamela; Inauen, Jennifer; Radtke, Theda; Scholz, Urte
2017-09-01
Compensatory Health Beliefs (CHBs), defined as beliefs that an unhealthy behavior can be compensated for by engaging in another healthy behavior, are assumed to hinder health behavior change. The aim of the present study was to investigate the role of CHBs for two distinct eating behaviors (increased fruit and vegetable consumption and eating fewer unhealthy snacks) with a mixed method approach. Participants (N = 232, mean age = 27.3 years, 76.3% women) were randomly assigned to a fruit and vegetable or an unhealthy snack condition. For the quantitative approach, path models were fitted to analyze the role of CHBs within a social-cognitive theory of health behavior change, the Health Action Process Approach (HAPA). With a content analysis, the qualitative approach investigated the occurrence of CHBs in smartphone chat groups when pursuing an eating goal. Both analyses were conducted for each eating behavior separately. Path models showed that CHBs added predictive value for intention, but not behavior over and above HAPA variables only in the unhealthy snack condition. CHBs were significantly negatively associated with intention and action planning. Content analysis revealed that people generated only a few CHB messages. However, CHBs were more likely to be present and were also more diverse in the unhealthy snack condition compared to the fruit and vegetable condition. Based on a mixed method approach, this study suggests that CHBs play a more important role for eating unhealthy snacks than for fruit and vegetable consumption. Copyright © 2017 Elsevier Ltd. All rights reserved.
Experimental simulation of ranging action using Si photonic crystal modulator and optical antenna
NASA Astrophysics Data System (ADS)
Furukado, Yuya; Abe, Hiroshi; Hinakura, Yosuke; Baba, Toshihiko
2018-02-01
Time of flight LiDARs are used for auto-driving of vehicles, while FMCW LiDARs potentially achieve a higher sensitivity. In this study, we fabricated and tested each component of a FMCW LiDAR based on Si photonics and experimentally simulated the ranging action. Here, we drove a Si photonic crystal slow light modulator with linearly frequency-chirped signal in the frequency band of 500-1000 MHz and a repetition frequency of 100 kHz, to generate FM-signal light from a narrow-linewidth laser source. Next, we branched the signal light into two paths. One was inserted into a fiber delay line of 20-320 m and its output was irradiated to a photonic crystal slow beam steering device acting as an optical antenna via the free-space transmission. When the irradiation angle was optimized so that the antenna gain took maximum for a set laser wavelength, light was efficiently coupled into the antenna. We mixed the light output from the antenna with reference light of the other path with no delay, and detected it by balanced photodiodes. We observed a beat signal whose frequency well agreed with the theoretical value predicted from the length of the delay line. Thus, we succeeded in the experimental simulation of the FMCW LiDAR. We also observed a spectral sequence around the beat spectrum, in which the inter-frequency spacing equals the repetition frequency and corresponds to a range resolution of 30 cm which will be improved by expanding the modulation bandwidth.
Wilson, Dawn K; Trumpeter, Nevelyn N; St George, Sara M; Coulon, Sandra M; Griffin, Sarah; Lee Van Horn, M; Lawman, Hannah G; Wandersman, Abe; Egan, Brent; Forthofer, Melinda; Goodlett, Benjamin D; Kitzman-Ulrich, Heather; Gadson, Barney
2010-11-01
Ethnic minorities and lower-income adults have among the highest rates of obesity and lowest levels of regular physical activity (PA). The Positive Action for Today's Health (PATH) trial compares three communities that are randomly assigned to different levels of an environmental intervention to improve safety and access for walking in low income communities. Three communities matched on census tract information (crime, PA, ethnic minorities, and income) were randomized to receive either: an intervention that combines a police-patrolled-walking program with social marketing strategies to promote PA, a police-patrolled-walking only intervention, or no-walking intervention (general health education only). Measures include PA (7-day accelerometer estimates), body composition, blood pressure, psychosocial measures, and perceptions of safety and access for PA at baseline, 6, 12, 18, and 24 months. The police-patrolled walking plus social marketing intervention targets increasing safety (training community leaders as walking captains, hiring off-duty police officers to patrol the walking trail, and containing stray dogs), increasing access for PA (marking a walking route), and utilizes a social marketing campaign that targets psychosocial and environmental mediators for increasing PA. MAIN HYPOTHESES/OUTCOMES: It is hypothesized that the police-patrolled walking plus social marketing intervention will result in greater increases in moderate-to-vigorous PA as compared to the police-patrolled-walking only or the general health intervention after 12 months and that this effect will be maintained at 18 and 24 months. Implications of this community-based trial are discussed. Copyright © 2010. Published by Elsevier Inc.
Zimmermann, Friederike; Sieverding, Monika
2010-09-01
This study focused on young adults' alcohol consumption in social contexts. A dual-process model (including reasoned action and social reaction) was applied by combining the theory of planned behaviour (TPB) and the prototype/willingness model. A key question was whether willingness and actor and abstainer prototype variables would augment the TPB by increasing explained variance. Participants completed questionnaires prior to spending an evening socializing over the weekend (Time 1). Behavioural data were obtained by telephone interviews a few days after the social drinking occasion (Time 2). N=300 people (mean age 25 years) took part in the study. The outcome measure of pure alcohol in grams was calculated based on participants' reports about their consumed drinks. Multigroup path analyses were conducted because of sex differences on behavioural and psychological variables. The TPB explained 35% of the variance in men's and 41% in women's alcohol consumption. Augmentation with prototype perception and willingness contributed significantly to the prediction of intention (DeltaR(2)=.07) and alcohol consumption for men (DeltaR(2)=.14). A significant interaction implied that willingness led to heavy drinking particularly among those men who made negative evaluations of the abstainer prototype. Women's alcohol consumption is explained by TPB variables via a more controlled reasoned-action path only, whereas additional processes (e.g., pursuing the actor image intentionally, rejecting the abstainer image more intuitively) are important for men. The moderating role of gender is discussed in light of traditional gender roles and recent trends in alcohol consumption.
Wilson, Dawn K.; Trumpeter, Nevelyn N.; St. George, Sara M.; Coulon, Sandra M.; Griffin, Sarah; Van Horn, M. Lee; Lawman, Hannah G.; Wandersman, Abe; Egan, Brent; Forthofer, Melinda; Goodlett, Benjamin D.; Kitzman-Ulrich, Heather; Gadson, Barney
2012-01-01
Background Ethnic minorities and lower-income adults have among the highest rates of obesity and lowest levels of regular physical activity (PA). The Positive Action for Today's Health (PATH) trial compares three communities that are randomly assigned to different levels of an environmental intervention to improve safety and access for walking in low income communities. Design and setting Three communities matched on census tract information (crime, PA, ethnic minorities, and income) were randomized to receive either: an intervention that combines a police-patrolled-walking program with social marketing strategies to promote PA, a police-patrolled-walking only intervention, or no-walking intervention (general health education only). Measures include PA (7-day accelerometer estimates), body composition, blood pressure, psychosocial measures, and perceptions of safety and access for PA at baseline, 6, 12, 18, and 24 months. Intervention The police-patrolled walking plus social marketing intervention targets increasing safety (training community leaders as walking captains, hiring off-duty police officers to patrol the walking trail, and containing stray dogs), increasing access for PA (marking a walking route), and utilizes a social marketing campaign that targets psychosocial and environmental mediators for increasing PA. Main hypotheses/outcomes It is hypothesized that the police-patrolled walking plus social marketing intervention will result in greater increases in moderate-to-vigorous PA as compared to the police-patrolled-walking only or the general health intervention after 12 months and that this effect will be maintained at 18 and 24 months. Conclusions Implications of this community-based trial are discussed. PMID:20801233
14 CFR Appendix D to Part 25 - Appendix D to Part 25
Code of Federal Regulations, 2013 CFR
2013-01-01
... considered: (1) Flight path control. (2) Collision avoidance. (3) Navigation. (4) Communications. (5... flight, power, and equipment controls, including emergency fuel shutoff valves, electrical controls... crew action to guard against loss of hydraulic or electric power to flight controls or to other...
75 FR 60164 - Notice of Final Federal Agency Actions on Proposed Shared-Use Path in New York State
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-29
.... Social and Economic: Civil Rights Act of 1964 [42 U.S.C. 2000(d)-2000(d)(1)]; American Indian Religious... and Enhancement of Cultural Resources; E.O. 13007 Indian Sacred Sites; E.O. 13287 Preserve America; E...
System and Method for Measuring the Transfer Function of a Guided Wave Device
NASA Technical Reports Server (NTRS)
Froggatt, Mark E. (Inventor); Erdogan, Turan (Inventor)
2002-01-01
A method/system are provided for measuring the NxN scalar transfer function elements for an N-port guided wave device. Optical energy of a selected wavelength is generated at a source and directed along N reference optical paths having N reference path lengths. Each reference optical path terminates in one of N detectors such that N reference signals are produced at the N detectors. The reference signals are indicative of amplitude, phase and frequency of the optical energy carried along the N reference optical paths. The optical energy from the source is also directed to the N-ports of the guided wave device and then on to each of the N detectors such that N measurement optical paths are defined between the source and each of the N detectors. A portion of the optical energy is modified in terms of at least one of the amplitude and phase to produce N modified signals at each of the N detectors. At each of the N detectors, each of the N modified signals is combined with a corresponding one of the N reference signals to produce corresponding N combined signals at each of the N detectors. A total of N(sup 2) measurement signals are generated by the N detectors. Each of the N(sup 2) measurement signals is sampled at a wave number increment (Delta)k so that N(sup 2) sampled signals are produced. The NxN transfer function elements are generated using the N(sup 2) sampled signals. Reference and measurement path length constraints are defined such that the N combined signals at each of the N detectors are spatially separated from one another in the time domain.
A technology path to tactical agent-based modeling
NASA Astrophysics Data System (ADS)
James, Alex; Hanratty, Timothy P.
2017-05-01
Wargaming is a process of thinking through and visualizing events that could occur during a possible course of action. Over the past 200 years, wargaming has matured into a set of formalized processes. One area of growing interest is the application of agent-based modeling. Agent-based modeling and its additional supporting technologies has potential to introduce a third-generation wargaming capability to the Army, creating a positive overmatch decision-making capability. In its simplest form, agent-based modeling is a computational technique that helps the modeler understand and simulate how the "whole of a system" responds to change over time. It provides a decentralized method of looking at situations where individual agents are instantiated within an environment, interact with each other, and empowered to make their own decisions. However, this technology is not without its own risks and limitations. This paper explores a technology roadmap, identifying research topics that could realize agent-based modeling within a tactical wargaming context.
Implications of path tolerance and path characteristics on critical vehicle manoeuvres
NASA Astrophysics Data System (ADS)
Lundahl, K.; Frisk, E.; Nielsen, L.
2017-12-01
Path planning and path following are core components in safe autonomous driving. Typically, a path planner provides a path with some tolerance on how tightly the path should be followed. Based on that, and other path characteristics, for example, sharpness of curves, a speed profile needs to be assigned so that the vehicle can stay within the given tolerance without going unnecessarily slow. Here, such trajectory planning is based on optimal control formulations where critical cases arise as on-the-limit solutions. The study focuses on heavy commercial vehicles, causing rollover to be of a major concern, due to the relatively high centre of gravity. Several results are obtained on required model complexity depending on path characteristics, for example, quantification of required path tolerance for a simple model to be sufficient, quantification of when yaw inertia needs to be considered in more detail, and how the curvature rate of change interplays with available friction. Overall, in situations where the vehicle is subject to a wide range of driving conditions, from good transport roads to more tricky avoidance manoeuvres, the requirements on the path following will vary. For this, the provided results form a basis for real-time path following.
A Model of Adolescents’ Seeking of Sexual Content in their Media Choices
Bleakley, Amy; Hennessy, Michael; Fishbein, Martin
2010-01-01
This paper reports on the extent to which adolescents report actively seeking sexual content in media, identifies from which media they report seeking, estimates the association between seeking sexual information and romantic and sexual behavior, and shows that active seeking of sexual content in media sources is explained by an intention to seek such content using the Integrative Model of Behavioral Prediction, a reasoned action approach. The data are a national sample of 810 adolescents aged 13-18 years. Results show that fifty percent of adolescents reported actively seeking sexual content in their media choices, which included movies, television, music, internet pornography sites, and magazines. Males sought sex content more than females and gender differences were greatest for seeking from internet pornography sites, movies, and television. Path analysis demonstrate that seeking sexual content is well predicted by intentions to seek and intentions are primarily driven by perceived normative pressure to seek sexual content. PMID:20672214
A model of adolescents' seeking of sexual content in their media choices.
Bleakley, Amy; Hennessy, Michael; Fishbein, Martin
2011-07-01
This article reports on the extent to which adolescents report actively seeking sexual content in media, identifies from which media they report seeking, estimates the association between seeking sexual information and romantic and sexual behavior, and shows that active seeking of sexual content in media sources is explained by an intention to seek such content using the Integrative Model of Behavioral Prediction, a reasoned action approach. The data are a national sample of 810 adolescents aged 13 to 18 years. Results show that 50% of adolescents reported actively seeking sexual content in their media choices, which included movies, television, music, Internet pornography sites, and magazines. Males sought sex content more than females, and gender differences were greatest for seeking from Internet pornography sites, movies, and television. Path analysis demonstrate that seeking sexual content is well-predicted by intentions to seek, and intentions are primarily driven by perceived normative pressure to seek sexual content.
NASA Astrophysics Data System (ADS)
Zeng, Wenhui; Yi, Jin; Rao, Xiao; Zheng, Yun
2017-11-01
In this article, collision-avoidance path planning for multiple car-like robots with variable motion is formulated as a two-stage objective optimization problem minimizing both the total length of all paths and the task's completion time. Accordingly, a new approach based on Pythagorean Hodograph (PH) curves and Modified Harmony Search algorithm is proposed to solve the two-stage path-planning problem subject to kinematic constraints such as velocity, acceleration, and minimum turning radius. First, a method of path planning based on PH curves for a single robot is proposed. Second, a mathematical model of the two-stage path-planning problem for multiple car-like robots with variable motion subject to kinematic constraints is constructed that the first-stage minimizes the total length of all paths and the second-stage minimizes the task's completion time. Finally, a modified harmony search algorithm is applied to solve the two-stage optimization problem. A set of experiments demonstrate the effectiveness of the proposed approach.
Ground-Based Radiometric Measurements of Slant Path Attenuation in the V/W Bands
2016-04-01
GROUND-BASED RADIOMETRIC MEASUREMENTS OF SLANT PATH ATTENUATION IN THE V/W BANDS APRIL 2016 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE...2. REPORT TYPE FINAL TECHNICAL REPORT 3. DATES COVERED (From - To) OCT 2012 – SEP 2015 4. TITLE AND SUBTITLE GROUND-BASED RADIOMETRIC MEASUREMENTS ...SUPPLEMENTARY NOTES 14. ABSTRACT Ground-based radiometric techniques were applied to measure the slant path attenuation cumulative distribution function to
Mission Planning and Decision Support for Underwater Glider Networks: A Sampling on-Demand Approach
Ferri, Gabriele; Cococcioni, Marco; Alvarez, Alberto
2015-01-01
This paper describes an optimal sampling approach to support glider fleet operators and marine scientists during the complex task of planning the missions of fleets of underwater gliders. Optimal sampling, which has gained considerable attention in the last decade, consists in planning the paths of gliders to minimize a specific criterion pertinent to the phenomenon under investigation. Different criteria (e.g., A, G, or E optimality), used in geosciences to obtain an optimum design, lead to different sampling strategies. In particular, the A criterion produces paths for the gliders that minimize the overall level of uncertainty over the area of interest. However, there are commonly operative situations in which the marine scientists may prefer not to minimize the overall uncertainty of a certain area, but instead they may be interested in achieving an acceptable uncertainty sufficient for the scientific or operational needs of the mission. We propose and discuss here an approach named sampling on-demand that explicitly addresses this need. In our approach the user provides an objective map, setting both the amount and the geographic distribution of the uncertainty to be achieved after assimilating the information gathered by the fleet. A novel optimality criterion, called Aη, is proposed and the resulting minimization problem is solved by using a Simulated Annealing based optimizer that takes into account the constraints imposed by the glider navigation features, the desired geometry of the paths and the problems of reachability caused by ocean currents. This planning strategy has been implemented in a Matlab toolbox called SoDDS (Sampling on-Demand and Decision Support). The tool is able to automatically download the ocean fields data from MyOcean repository and also provides graphical user interfaces to ease the input process of mission parameters and targets. The results obtained by running SoDDS on three different scenarios are provided and show that SoDDS, which is currently used at NATO STO Centre for Maritime Research and Experimentation (CMRE), can represent a step forward towards a systematic mission planning of glider fleets, dramatically reducing the efforts of glider operators. PMID:26712763
Mission Planning and Decision Support for Underwater Glider Networks: A Sampling on-Demand Approach.
Ferri, Gabriele; Cococcioni, Marco; Alvarez, Alberto
2015-12-26
This paper describes an optimal sampling approach to support glider fleet operators and marine scientists during the complex task of planning the missions of fleets of underwater gliders. Optimal sampling, which has gained considerable attention in the last decade, consists in planning the paths of gliders to minimize a specific criterion pertinent to the phenomenon under investigation. Different criteria (e.g., A, G, or E optimality), used in geosciences to obtain an optimum design, lead to different sampling strategies. In particular, the A criterion produces paths for the gliders that minimize the overall level of uncertainty over the area of interest. However, there are commonly operative situations in which the marine scientists may prefer not to minimize the overall uncertainty of a certain area, but instead they may be interested in achieving an acceptable uncertainty sufficient for the scientific or operational needs of the mission. We propose and discuss here an approach named sampling on-demand that explicitly addresses this need. In our approach the user provides an objective map, setting both the amount and the geographic distribution of the uncertainty to be achieved after assimilating the information gathered by the fleet. A novel optimality criterion, called A η , is proposed and the resulting minimization problem is solved by using a Simulated Annealing based optimizer that takes into account the constraints imposed by the glider navigation features, the desired geometry of the paths and the problems of reachability caused by ocean currents. This planning strategy has been implemented in a Matlab toolbox called SoDDS (Sampling on-Demand and Decision Support). The tool is able to automatically download the ocean fields data from MyOcean repository and also provides graphical user interfaces to ease the input process of mission parameters and targets. The results obtained by running SoDDS on three different scenarios are provided and show that SoDDS, which is currently used at NATO STO Centre for Maritime Research and Experimentation (CMRE), can represent a step forward towards a systematic mission planning of glider fleets, dramatically reducing the efforts of glider operators.
All-optical optoacoustic microscopy based on probe beam deflection technique.
Maswadi, Saher M; Ibey, Bennett L; Roth, Caleb C; Tsyboulski, Dmitri A; Beier, Hope T; Glickman, Randolph D; Oraevsky, Alexander A
2016-09-01
Optoacoustic (OA) microscopy using an all-optical system based on the probe beam deflection technique (PBDT) for detection of laser-induced acoustic signals was investigated as an alternative to conventional piezoelectric transducers. PBDT provides a number of advantages for OA microscopy including (i) efficient coupling of laser excitation energy to the samples being imaged through the probing laser beam, (ii) undistorted coupling of acoustic waves to the detector without the need for separation of the optical and acoustic paths, (iii) high sensitivity and (iv) ultrawide bandwidth. Because of the unimpeded optical path in PBDT, diffraction-limited lateral resolution can be readily achieved. The sensitivity of the current PBDT sensor of 22 μV/Pa and its noise equivalent pressure (NEP) of 11.4 Pa are comparable with these parameters of the optical micro-ring resonator and commercial piezoelectric ultrasonic transducers. Benefits of the present prototype OA microscope were demonstrated by successfully resolving micron-size details in histological sections of cardiac muscle.
Rockers, Peter C.; Saydee, Geetor; Macauley, Rose; Varpilah, S. Tornorlah; Kruk, Margaret E.
2010-01-01
Objectives. We assessed the geographical distribution of posttraumatic stress disorder (PTSD) in postconflict Nimba County, Liberia, nearly 2 decades after the end of primary conflict in the area, and we related this pattern to the history of conflict. Methods. We administered individual surveys to a population-based sample of 1376 adults aged 19 years or older. In addition, we conducted a historical analysis of conflict in Nimba County, Liberia, where the civil war started in 1989. Results. The prevalence of PTSD in Nimba County was high at 48.3% (95% confidence interval = 45.7, 50.9; n = 664). The geographical patterns of traumatic event experiences and of PTSD were consistent with the best available information about the path of the intranational conflict that Nimba County experienced in 1989–1990. Conclusions. The demonstration of a “path of PTSD” coincident with the decades-old path of violence dramatically underscores the direct link between population burden of psychopathology and the experience of violent conflict. Persistent postconflict disruptions of social and physical context may explain some of the observed patterns. PMID:20634461
pathChirp: Efficient Available Bandwidth Estimation for Network Paths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cottrell, Les
2003-04-30
This paper presents pathChirp, a new active probing tool for estimating the available bandwidth on a communication network path. Based on the concept of ''self-induced congestion,'' pathChirp features an exponential flight pattern of probes we call a chirp. Packet chips offer several significant advantages over current probing schemes based on packet pairs or packet trains. By rapidly increasing the probing rate within each chirp, pathChirp obtains a rich set of information from which to dynamically estimate the available bandwidth. Since it uses only packet interarrival times for estimation, pathChirp does not require synchronous nor highly stable clocks at the sendermore » and receiver. We test pathChirp with simulations and Internet experiments and find that it provides good estimates of the available bandwidth while using only a fraction of the number of probe bytes that current state-of-the-art techniques use.« less
Importance sampling studies of helium using the Feynman-Kac path integral method
NASA Astrophysics Data System (ADS)
Datta, S.; Rejcek, J. M.
2018-05-01
In the Feynman-Kac path integral approach the eigenvalues of a quantum system can be computed using Wiener measure which uses Brownian particle motion. In our previous work on such systems we have observed that the Wiener process numerically converges slowly for dimensions greater than two because almost all trajectories will escape to infinity. One can speed up this process by using a generalized Feynman-Kac (GFK) method, in which the new measure associated with the trial function is stationary, so that the convergence rate becomes much faster. We thus achieve an example of "importance sampling" and, in the present work, we apply it to the Feynman-Kac (FK) path integrals for the ground and first few excited-state energies for He to speed up the convergence rate. We calculate the path integrals using space averaging rather than the time averaging as done in the past. The best previous calculations from variational computations report precisions of 10-16 Hartrees, whereas in most cases our path integral results obtained for the ground and first excited states of He are lower than these results by about 10-6 Hartrees or more.
Low cost label-free live cell imaging for biological samples
NASA Astrophysics Data System (ADS)
Seniya, C.; Towers, C. E.; Towers, D. P.
2017-02-01
This paper reports the progress to develop a practical phase measuring microscope offering new capabilities in terms of phase measurement accuracy and quantification of cell:cell interactions over the longer term. A novel, low cost phase interference microscope for imaging live cells (label-free) is described. The method combines the Zernike phase contrast approach with a dual mirror design to enable phase modulation between the scattered and un-scattered optical fields. Two designs are proposed and demonstrated, one of which retains the common path nature of Zernike's original microscopy concept. In both setups the phase shift is simple to control via a piezoelectric driven mirror in the back focal plane of the imaging system. The approach is significantly cheaper to implement than those based on spatial light modulators (SLM) at approximately 20% of the cost. A quantitative assessment of the performance of a set of phase shifting algorithms is also presented, specifically with regard to broad bandwidth illumination in phase contrast microscopy. The simulation results show that the phase measurement accuracy is strongly dependent on the algorithm selected and the optical path difference in the sample.
Feller processes: the next generation in modeling. Brownian motion, Lévy processes and beyond.
Böttcher, Björn
2010-12-03
We present a simple construction method for Feller processes and a framework for the generation of sample paths of Feller processes. The construction is based on state space dependent mixing of Lévy processes. Brownian Motion is one of the most frequently used continuous time Markov processes in applications. In recent years also Lévy processes, of which Brownian Motion is a special case, have become increasingly popular. Lévy processes are spatially homogeneous, but empirical data often suggest the use of spatially inhomogeneous processes. Thus it seems necessary to go to the next level of generalization: Feller processes. These include Lévy processes and in particular brownian motion as special cases but allow spatial inhomogeneities. Many properties of Feller processes are known, but proving the very existence is, in general, very technical. Moreover, an applicable framework for the generation of sample paths of a Feller process was missing. We explain, with practitioners in mind, how to overcome both of these obstacles. In particular our simulation technique allows to apply Monte Carlo methods to Feller processes.
Feller Processes: The Next Generation in Modeling. Brownian Motion, Lévy Processes and Beyond
Böttcher, Björn
2010-01-01
We present a simple construction method for Feller processes and a framework for the generation of sample paths of Feller processes. The construction is based on state space dependent mixing of Lévy processes. Brownian Motion is one of the most frequently used continuous time Markov processes in applications. In recent years also Lévy processes, of which Brownian Motion is a special case, have become increasingly popular. Lévy processes are spatially homogeneous, but empirical data often suggest the use of spatially inhomogeneous processes. Thus it seems necessary to go to the next level of generalization: Feller processes. These include Lévy processes and in particular Brownian motion as special cases but allow spatial inhomogeneities. Many properties of Feller processes are known, but proving the very existence is, in general, very technical. Moreover, an applicable framework for the generation of sample paths of a Feller process was missing. We explain, with practitioners in mind, how to overcome both of these obstacles. In particular our simulation technique allows to apply Monte Carlo methods to Feller processes. PMID:21151931
NASA Astrophysics Data System (ADS)
Wolf, C.; Glorius, J.; Reifarth, R.; Weigand, M.
2018-01-01
The determination of neutron capture cross sections of some radioactive isotopes like 85Kr is very important to improve the knowledge about the s process. Based on its own radioactive decay these isotopes can only be used in small samples inside a TOF facility, which is why the neutron flux of these facilities has to be very high. Unfortunately the neutron flux of the FRANZ setup at Goethe University Frankfurt, which will offer the highest neutron flux in astrophysical energy regions (keV region) [1], is still to low to investigate isotopes like 85Kr. Therefore a new setup called NAUTILUS is under development, which will reduce the flight path from 80 cm to a few centimeter to enhance the angular coverage of the sample and therefore increase the neutron flux by a factor of nearly 100. This implies a higher intensity of the γ-flash energy inside the detector and the neutron induced background. Hence the geometry, the scintillator material and the moderator were optimized by GEANT3 simulations.
Intelligence for education: as described by Piaget and measured by psychometrics.
Shayer, Michael
2008-03-01
Two separate paths to the concept of intelligence are discussed: the psychometric path being concerned with the measurement of intelligence, involving the methodology of norm-referenced testing; the path followed by Piaget, and others, addresses from the start the related question of how intelligence can be described, and employs a criterion-referenced methodology. The achievements of psychometrics are briefly described, with an argument that they now remain important tools of what Kuhn called 'normal science'. The criterion-referenced approach of Piaget and others is described, with evidence from intervention studies that the Genevan descriptions of children-in-action have allowed the choice of contexts within which children can profitably be challenged to go further in their thinking. Hence, Genevan psychology is also now a part of the normal science with important uses, shown both in neo-Piagetian studies and further research stemming from Geneva. Discussion of the 'Flynn effect' sheds light on both paths, with problems still unresolved. The argument is then developed that the relevance of neuroscience needs to be discussed to try to decide in what ways it may provide useful insights into intelligence.
Effects of eHealth Literacy on General Practitioner Consultations: A Mediation Analysis
Fitzpatrick, Mary Anne; Hess, Alexandra; Sudbury-Riley, Lynn; Hartung, Uwe
2017-01-01
Background Most evidence (not all) points in the direction that individuals with a higher level of health literacy will less frequently utilize the health care system than individuals with lower levels of health literacy. The underlying reasons of this effect are largely unclear, though people’s ability to seek health information independently at the time of wide availability of such information on the Internet has been cited in this context. Objective We propose and test two potential mediators of the negative effect of eHealth literacy on health care utilization: (1) health information seeking and (2) gain in empowerment by information seeking. Methods Data were collected in New Zealand, the United Kingdom, and the United States using a Web-based survey administered by a company specialized on providing online panels. Combined, the three samples resulted in a total of 996 baby boomers born between 1946 and 1965 who had used the Internet to search for and share health information in the previous 6 months. Measured variables include eHealth literacy, Internet health information seeking, the self-perceived gain in empowerment by that information, and the number of consultations with one’s general practitioner (GP). Path analysis was employed for data analysis. Results We found a bundle of indirect effect paths showing a positive relationship between health literacy and health care utilization: via health information seeking (Path 1), via gain in empowerment (Path 2), and via both (Path 3). In addition to the emergence of these indirect effects, the direct effect of health literacy on health care utilization disappeared. Conclusions The indirect paths from health literacy via information seeking and empowerment to GP consultations can be interpreted as a dynamic process and an expression of the ability to find, process, and understand relevant information when that is necessary. PMID:28512081
Dissolution-induced preferential flow in a limestone fracture.
Liu, Jishan; Polak, Amir; Elsworth, Derek; Grader, Avrami
2005-06-01
Flow in a rock fracture is surprisingly sensitive to the evolution of flow paths that develop as a result of dissolution. Net dissolution may either increase or decrease permeability uniformly within the fracture, or may form a preferential flow path through which most of the injected fluid flows, depending on the prevailing ambient mechanical and chemical conditions. A flow-through test was completed on an artificial fracture in limestone at room temperature under ambient confining stress of 3.5 MPa. The sample was sequentially circulated by water of two different compositions through the 1500 h duration of the experiment; the first 935 h by tap groundwater, followed by 555 h of distilled water. Measurements of differential pressures between the inlet and the outlet, fluid and dissolved mass fluxes, and concurrent X-ray CT imaging and sectioning were used to characterize the evolution of flow paths within the limestone fracture. During the initial circulation of groundwater, the differential pressure increased almost threefold, and was interpreted as a net reduction in permeability as the contacting asperities across the fracture are removed, and the fracture closes. With the circulation of distilled water, permeability initially reduces threefold, and ultimately increases by two orders of magnitude. This spontaneous switch from net decrease in permeability, to net increase occurred with no change in flow rate or applied effective stress, and is attributed to the evolving localization of flow path as evidenced by CT images. Based on the X-ray CT characterizations, a flow path-dependent flow model was developed to simulate the evolution of flow paths within the fracture and its influence on the overall flow behaviors of the injected fluid in the fracture.
Cells and biofluids analyzed in aqueous environment by infrared spectroscopy
NASA Astrophysics Data System (ADS)
Naumann, D.; Lasch, P.; Fabian, H.
2006-02-01
Infrared transmission/absorption measurements of cells and biofluids in water are restricted to very short optical pathlengths. When the amide I and amide II bands of protein constituents have to be analysed, path-lengths of less than 8 μm are necessary. Infrared spectra of cancer cells were collected from physiological buffer solutions utilizing custom-made mid-infrared compatible IR-cuvettes. The technology permitted to obtain cell-type specific spectral signatures and probe biochemical changes induced by varying temperatures or cell-drug interaction. Optical path-lengths of 8-30 μm were used on a set of microbial test strains to evaluate, whether the methodology can also be used to discriminate and identify micro-organisms. A semi-automatic methodology was developed for the analysis of liquid serum samples, which combines simple sample handling with high sample throughput and extreme measurement reproducibility. The applicability of this infrared technology to the analysis of liquid serum samples from cattle and human beings suffering from various acute viral or bacterial infections was explored testing the interrelationship between α-helical and β-sheet specific spectral signatures in the amide I band contour and total albumin and globulin content in serum. The technical details, advantages, and limitations of the new technology are described in the context of developing a routine, IR-based biodiagnostic technique for biofluids and biological cells.
Shimizu, Sanae; Kojima, Yukari; Saito, Kyoko; Wada, Hisako; Yamamoto, Masahiro; Morinaga, Koji; Kawai, Yasukazu; Haba, Toshihiro
2014-11-01
The clinical path for the treatment of acute myeloid leukemia (AML) patients has been in practice in our hospital since 2003. In the clinical path, laboratory technologists take on the role of explaining the microscopic findings in bone marrow and peripheral blood samples to patients (with or without their families) using the view-sharing microscope in our laboratory. From July 2003 to October 2014, 56 patients were enrolled in the AML clinical path and given an explanation of their bone marrow and peripheral blood samples. The patients' median age was 62, and the median time spent for explanation was 40 minutes. We conducted a questionnaire feedback survey involving those who enrolled, and the results showed significant improvement in the recognition of the disease pathophysiology, treatment efficacy, and the importance of precautions against infectious diseases. Based on the feedback, we have made marked efforts to provide patients with an improved environment during the explanatory session. This includes installing a special display for the patients, drawing a schematic illustration that shows how the blood cells differentiate, and putting them into operation in a hematology ward to promote patient privacy and precautions against infectious diseases. Hematological laboratory technologists have played an important role in patient care in our hospital. To perform their role as effectively as possible, hematological laboratory technologists participate in the conferences of the Department of Hematology and Oncology regularly, in which medical staff members can discuss the conditions and clinical courses of patients. We aim to contribute to patient satisfaction by sophisticating specialized knowledge as hematological laboratory technologists and cooperate with other medical staff members.
ALISEO on MIOSat: an imaging interferometer for earth observation
NASA Astrophysics Data System (ADS)
Barducci, A.; Castagnoli, F.; Castellini, G.; Guzzi, D.; Marcoionni, P.; Pippi, I.
2017-11-01
The Italian Space Agency (ASI) decided to perform an low cost Earth observation mission based on a new mini satellite named MIOsat which will carry various technological payloads. Among them an imaging interferometer designed and now ready to be assembled and tested by our Institute. The instrument, named ALISEO (Aerospace Leap-frog Imaging Stationary interferometer for Earth Observation), operates in the common-path Sagnac configuration, and it does not utilize any moving part to scan the phase delays between the two interfering beams. The sensor acquires target images modulated by a pattern of autocorrelation functions of the energy coming from each scene pixel, and the resulting fringe pattern remains spatially fixed with respect to the instrument's field-of-view. The complete interferogram of each target location is retrieved by introducing a relative source-observer motion, which allows any image pixels to be observed under different viewing-angles and experience discrete path differences. The paper describes the main characteristics of the imaging interferometer as well as the overall optical configuration and the electronics layout. Moreover some theoretical issues concerning sampling theory in "common path" imaging interferometry are investigated. The experimental activity performed in laboratory is presented and its outcomes are analysed. Particularly, a set of measurements has been carried out using both standard (certificate) reflectance tiles and natural samples of different volcanic rocks. An algorithm for raw data pre-processing aimed at retrieving the at-sensor radiance spectrum is introduced and its performance is addressed by taking into account various issues such as dark signal subtraction, spectral instrument response compensation, effects of vignetting, and Fourier backtransform. Finally, examples of retrieved absolute reflectance of several samples are sketched at different wavelengths.
Analyzing Water's Optical Absorption
NASA Technical Reports Server (NTRS)
2002-01-01
A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.