Sample records for activate adenylyl cyclase

  1. Adenylyl cyclase and G-proteins in Phytomonas.

    PubMed

    Farber, M D; Montagna, A E; Paveto, C; Dollet, M; Sanchex-Moreno, M; Osuna, A; Torres, H N; Flawia, M M

    1995-01-01

    Phytomonas sp. membranes have an adenylyl cyclase activity which is greater in the presence of Mn2+ than with Mg2+. The Mg2+ and Mn2+ activity ratio varies from one membrane preparation to another, suggesting that the adenylyl cyclase has a variable activation state. A[35S]GTP-gamma-S-binding activity with a Kd of 171 nM was detected in Phytomonas membranes. Incubation of these membranes with activated cholera or pertussis toxin and [adenylate 23P]NAD+ led to incorporation of radioactivity into bands of about 40-44 kDa. Crude membranes were electrophoresed on SDS-polyacrylamide gels and analyzed, by Western blotting, with the 9188 anti-alpha[s] antibody and the AS/7 antibody (anti-alpha[i], anti-alpha[i1], and anti-alpha[i2]. These procedures resulted in the identification of polypeptides of approximately 40-44 kDa. Phytomonas adenylyl cyclase could be activated by treatment of membrane preparations with cholera toxin, in the presence of NAD+, while similar treatment with pertussis toxin did not affect this enzyme activity. These studies indicate that in Phytomonas, adenylyl cyclase activity is coupled to an unknown receptor entity through G alpha[s] proteins.

  2. Adenylyl cyclase G is activated by an intramolecular osmosensor.

    PubMed

    Saran, Shweta; Schaap, Pauline

    2004-03-01

    Adenylyl cyclase G (ACG) is activated by high osmolality and mediates inhibition of spore germination by this stress factor. The catalytic domains of all eukaryote cyclases are active as dimers and dimerization often mediates activation. To investigate the role of dimerization in ACG activation, we coexpressed ACG with an ACG construct that lacked the catalytic domain (ACGDeltacat) and was driven by a UV-inducible promoter. After UV induction of ACGDeltacat, cAMP production by ACG was strongly inhibited, but osmostimulation was not reduced. Size fractionation of native ACG showed that dimers were formed between ACG molecules and between ACG and ACGDeltacat. However, high osmolality did not alter the dimer/monomer ratio. This indicates that ACG activity requires dimerization via a region outside the catalytic domain but that dimer formation does not mediate activation by high osmolality. To establish whether ACG required auxiliary sensors for osmostimulation, we expressed ACG cDNA in a yeast adenylyl cyclase null mutant. In yeast, cAMP production by ACG was similarly activated by high osmolality as in Dictyostelium. This strongly suggests that the ACG osmosensor is intramolecular, which would define ACG as the first characterized primary osmosensor in eukaryotes.

  3. Calmodulin-regulated adenylyl cyclases and neuromodulation.

    PubMed

    Xia, Z; Storm, D R

    1997-06-01

    Coincidence detection and crosstalk between signal transduction systems play very important regulatory roles in the nervous system, particularly in the regulation of transcription. Coupling of the Ca2+ and cAMP regulatory systems by calmodulin-regulated adenylyl cyclases is hypothesized to be important for some forms of synaptic plasticity, neuroendocrine function, and olfactory detection. Recent studies of a mutant mouse deficient in type I calmodulin-sensitive adenylyl cyclase have provided the first evidence that adenylyl cyclases are important for synaptic plasticity, as well as for learning and memory in vertebrates.

  4. Effects of Forskolin on Kupffer Cell Production of Interleukin-10 and Tumor Necrosis Factor Alpha Differ from Those of Endogenous Adenylyl Cyclase Activators: Possible Role for Adenylyl Cyclase 9

    PubMed Central

    Dahle, Maria K.; Myhre, Anders E.; Aasen, Ansgar O.; Wang, Jacob E.

    2005-01-01

    Proinflammatory cytokines like tumor necrosis factor alpha (TNF-α) that are released from Kupffer cells may trigger liver inflammation and damage. Hence, endogenous mechanisms for limiting TNF-α expression are crucial for avoiding the development of sepsis. Such mechanisms include the anti-inflammatory actions of interleukin-10 (IL-10) as well as signaling induced by the intracellular second messenger cyclic AMP (cAMP). Kupffer cells express several receptors that activate cAMP synthesis, including E-prostanoid receptors and β-adrenergic receptors. The expression and role of specific adenylyl cyclases in the inhibition of Kupffer cell activation have so far not been subject to study. Pretreatment of rat Kupffer cell cultures with cAMP analogues [8-(4-chlorophenyl)-thio-cAMP], adenylyl cyclase activator (forskolin), or ligands for G-coupled receptors (isoproterenol or prostaglandin E2) 30 min before the addition of lipopolysaccharide (LPS) (1 μg/ml) caused attenuated TNF-α levels in culture medium (forskolin/isoproterenol, P ≤ 0.05; prostaglandin E2, P ≤ 0.01). Forskolin also reduced IL-10 mRNA and protein (P ≤ 0.05), which was not observed with the other cAMP-inducing agents. Furthermore, we found that rat Kupffer cells express high levels of the forskolin-insensitive adenylyl cyclase 9 compared to whole liver and that this expression is down-regulated by LPS (P ≤ 0.05). We conclude that regulation of TNF-α and IL-10 in Kupffer cells depends on the mechanism by which cAMP is elevated. Forskolin and prostaglandin E2 differ in their effects, which suggests a possible role of forskolin-insensitive adenylyl cyclases like adenylyl cyclase 9. PMID:16239525

  5. Cloning and expression of a Ca(2+)-inhibitable adenylyl cyclase from NCB-20 cells.

    PubMed Central

    Yoshimura, M; Cooper, D M

    1992-01-01

    A cDNA that encodes an adenylyl cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] has been cloned from NCB-20 cells, in which adenylyl cyclase activity is inhibited by Ca2+ at physiological concentrations. The cDNA clone (5.8 kilobases) was isolated by polymerase chain reaction (PCR) using degenerate primers designed by comparison of three adenylyl cyclase sequences (types I, II, and III) and subsequent library screening. Northern analysis revealed expression of mRNA (6.1 kilobases) corresponding to this cDNA in cardiac tissue, which is a prominent source of Ca(2+)-inhibitable adenylyl cyclase. The clone encodes a protein of 1165 amino acids, whose hydrophilicity profile was very similar to those of other mammalian adenylyl cyclases that have recently been cloned. A noticeable difference between this protein and other adenylyl cyclases was a lengthy aminoterminal region before the first transmembrane span. Transient expression of this cDNA in the human embryonic kidney cell line 293 revealed a 3-fold increase in cAMP production in response to forskolin compared with control transfected cells. In purified plasma membranes from transfected cells, increased adenylyl cyclase activity was also detected, which was susceptible to inhibition by submicromolar Ca2+. Thus, this adenylyl cyclase seems to represent the Ca(2+)-inhibitable form that is encountered in NCB-20 cells, cardiac tissue, and elsewhere. Its identification should permit a determination of the structural features that determine the mode of regulation of adenylyl cyclase by Ca2+. Images PMID:1379717

  6. Purification and assay of cell-invasive form of calmodulin-sensitive adenylyl cyclase from Bordetella pertussis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masure, H.R.; Donovan, M.G.; Storm, D.R.

    1991-01-01

    An invasive form of the CaM-sensitive adenylyl cyclase from Bordetella pertussis can be isolated from bacterial culture supernatants. This isolation is achieved through the use of QAE-Sephadex anion-exchange chromatography. It has been demonstrated that the addition of exogenous Ca{sup 2}{sup +} to the anion-exchange gradient buffers will affect elution from the column and will thereby affect the isolation of invasive adenylyl cyclase. This is probably due to a Ca2(+)-dependent interaction of the catalytic subunit with another component in the culture supernatant. Two peaks of adenylyl cyclase activity are obtained. The Pk1 adenylyl cyclase preparation is able to cause significant increasesmore » in intracellular cAMP levels in animal cells. This increase occurs rapidly and in a dose-dependent manner in both N1E-115 mouse neuroblastoma cells and human erythrocytes. The Pk2 adenylyl cyclase has catalytic activity but is not cell invasive. This material can serve, therefore, as a control to ensure that the cAMP which is measured is, indeed, intracellular. A second control is to add exogenous CaM to the Pk1 adenylyl cyclase preparation. The 45-kDa catalytic subunit-CaM complex is not cell invasive. Although the mechanism for membrane translocation of the adenylyl cyclase is unknown, there is evidence that the adenylyl cyclase enters animal cells by a mechanism distinct from receptor-mediated endocytosis. Calmodulin-sensitive adenylyl cyclase activity can be removed from preparations of the adenylyl cyclase that have been subjected to SDS-polyacrylamide gel electrophoresis. This property of the enzyme has enabled purification of the catalytic subunit to apparent homogeneity. The purified catalytic subunit from culture supernatants has a predicted molecular weight of 45,000. This polypeptide interacts directly with Ca{sup 2}{sup +} and this interaction may be important for its invasion into animal cells.« less

  7. Nicotine-induced activation of soluble adenylyl cyclase participates in ion transport regulation in mouse tracheal epithelium.

    PubMed

    Hollenhorst, Monika I; Lips, Katrin S; Kummer, Wolfgang; Fronius, Martin

    2012-11-27

    Functional nicotinic acetylcholine receptors (nAChR) have been identified in airway epithelia and their location in the apical and basolateral membrane makes them targets for acetylcholine released from neuronal and non-neuronal sources. One function of nAChR in airway epithelia is their involvement in the regulation of transepithelial ion transport by activation of chloride and potassium channels. However, the mechanisms underlying this nicotine-induced activation of ion transport are not fully elucidated. Thus, the aim of this study was to investigate the involvement of adenylyl cyclases in the nicotine-induced ion current in mouse tracheal epithelium. To evaluate the nicotine-mediated changes of transepithelial ion transport processes electrophysiological Ussing chamber measurements were applied and nicotine-induced ion currents were recorded in the absence and presence of adenylyl cyclase inhibitors. The ion current changes induced by nicotine (100 μM, apical) were not altered in the presence of high doses of atropine (25 μM, apical and basolateral), underlining the involvement of nAChR. Experiments with the transmembrane adenylyl cyclase inhibitor 2'5'-dideoxyadenosine (50 μM, apical and basolateral) and the soluble adenylyl cyclase inhibitor KH7 (10 μM, apical and basolateral) both reduced the nicotine-mediated ion current to a similar extent. Yet, a statistically significant reduction was obtained only in the experiments with KH7. This study indicates that nicotine binding to nAChR in mouse tracheal epithelium activates transepithelial ion transport involving adenylyl cyclase activity. This might be important for novel therapeutic strategies targeting epithelial ion transport mediated by the non-neuronal cholinergic system. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. The Diurnal Oscillation of MAP Kinase and Adenylyl Cyclase Activities in the Hippocampus Depends on the SCN

    PubMed Central

    Phan, Trongha; Chan, Guy; Sindreu, Carlos; Eckel-Mahan, Kristin; Storm, Daniel R.

    2011-01-01

    Consolidation of hippocampus dependent memory is dependent on activation of the cAMP/ Erk/MAPK signal transduction pathway in the hippocampus. Recently, we discovered that adenylyl cyclase and MAPK activities undergo a circadian oscillation in the hippocampus and that inhibition of this oscillation impairs contextual memory. This suggests the interesting possibility that the persistence of hippocampus-dependent memory depends upon the reactivation of MAPK in the hippocampus during the circadian cycle. A key unanswered question is whether the circadian oscillation of this signaling pathway is intrinsic to the hippocampus or is driven by the master circadian clock in the suprachiasmatic nucleus (SCN). To address this question, we ablated the SCN of mice by electrolytic lesion and examined hippocampus-dependent memory as well as adenylyl cyclase and MAPK activities. Electrolytic lesion of the SCN two days after training for contextual fear memory reduced contextual memory measured two weeks after training indicating that maintenance of contextual memory depends on the SCN. Spatial memory was also compromised in SCN-lesioned mice. Furthermore, the diurnal oscillation of adenylyl cyclase and MAPK activities in the hippocampus was destroyed by lesioning of the SCN. These data suggest that hippocampus-dependent long-term memory is dependent on the SCN-controlled oscillation of the adenylyl cyclase/MAPK pathway in the hippocampus. PMID:21775607

  9. Ca2+ -stimulated adenylyl cyclases regulate ERK-dependent activation of MSK1 during fear conditioning.

    PubMed

    Sindreu, Carlos Balet; Scheiner, Zachary S; Storm, Daniel R

    2007-01-04

    The cAMP and ERK/MAP kinase (MAPK) signal transduction pathways are critical for hippocampus-dependent memory, a process that depends on CREB-mediated transcription. However, the extent of crosstalk between these pathways and the downstream CREB kinase activated during memory formation has not been elucidated. Here we report that PKA, MAPK, and MSK1, a CREB kinase, are coactivated in a subset of hippocampal CA1 pyramidal neurons following contextual fear conditioning. Activation of PKA, MAPK, MSK1, and CREB is absolutely dependent on Ca(2+)-stimulated adenylyl cyclase activity. We conclude that adenylyl cyclase activity supports the activation of MAPK, and that MSK1 is the major CREB kinase activated during training for contextual memory.

  10. Ca2+-Stimulated Adenylyl Cyclases Regulate ERK-Dependent Activation of MSK1 During Fear Conditioning

    PubMed Central

    Sindreu, Carlos Balet; Scheiner, Zachary S.; Storm, Daniel R.

    2007-01-01

    The cAMP and ERK/MAP kinase (MAPK) signal transduction pathways are critical for hippocampus-dependent memory, a process that depends on CREB-mediated transcription. However, the extent of crosstalk between these pathways and the downstream CREB kinase activated during memory formation have not been elucidated. Here we report that PKA, MAPK, and MSK1, a CREB kinase, are co-activated in a subset of hippocampal CA1 pyramidal neurons following contextual fear conditioning. Activation of PKA, MAPK, MSK1, and CREB is absolutely dependent on Ca2+-stimulated adenylyl cyclase activity. We conclude that adenylyl cyclase activity supports the activation of MAPK, and that MSK1 is the major CREB kinase activated during training for contextual memory. PMID:17196532

  11. The diurnal oscillation of MAP (mitogen-activated protein) kinase and adenylyl cyclase activities in the hippocampus depends on the suprachiasmatic nucleus.

    PubMed

    Phan, Trongha X; Phan, Trongha H; Chan, Guy C-K; Sindreu, Carlos B; Eckel-Mahan, Kristin L; Storm, Daniel R

    2011-07-20

    Consolidation of hippocampus-dependent memory is dependent on activation of the cAMP/Erk/MAPK (mitogen-activated protein kinase) signal transduction pathway in the hippocampus. Recently, we discovered that adenylyl cyclase and MAPK activities undergo a circadian oscillation in the hippocampus and that inhibition of this oscillation impairs contextual memory. This suggests the interesting possibility that the persistence of hippocampus-dependent memory depends upon the reactivation of MAPK in the hippocampus during the circadian cycle. A key unanswered question is whether the circadian oscillation of this signaling pathway is intrinsic to the hippocampus or is driven by the master circadian clock in the suprachiasmatic nucleus (SCN). To address this question, we ablated the SCN of mice by electrolytic lesion and examined hippocampus-dependent memory as well as adenylyl cyclase and MAPK activities. Electrolytic lesion of the SCN 2 d after training for contextual fear memory reduced contextual memory measured 2 weeks after training, indicating that maintenance of contextual memory depends on the SCN. Spatial memory was also compromised in SCN-lesioned mice. Furthermore, the diurnal oscillation of adenylyl cyclase and MAPK activities in the hippocampus was destroyed by lesioning of the SCN. These data suggest that hippocampus-dependent long-term memory is dependent on the SCN-controlled oscillation of the adenylyl cyclase/MAPK pathway in the hippocampus.

  12. Cyanobacteriochrome-based photoswitchable adenylyl cyclases (cPACs) for broad spectrum light regulation of cAMP levels in cells.

    PubMed

    Blain-Hartung, Matthew; Rockwell, Nathan C; Moreno, Marcus V; Martin, Shelley S; Gan, Fei; Bryant, Donald A; Lagarias, J Clark

    2018-06-01

    Class III adenylyl cyclases generate the ubiquitous second messenger cAMP from ATP often in response to environmental or cellular cues. During evolution, soluble adenylyl cyclase catalytic domains have been repeatedly juxtaposed with signal-input domains to place cAMP synthesis under the control of a wide variety of these environmental and endogenous signals. Adenylyl cyclases with light-sensing domains have proliferated in photosynthetic species depending on light as an energy source, yet are also widespread in nonphotosynthetic species. Among such naturally occurring light sensors, several flavin-based photoactivated adenylyl cyclases (PACs) have been adopted as optogenetic tools to manipulate cellular processes with blue light. In this report, we report the discovery of a cyanobacteriochrome-based photoswitchable adenylyl cyclase (cPAC) from the cyanobacterium Microcoleus sp. PCC 7113. Unlike flavin-dependent PACs, which must thermally decay to be deactivated, cPAC exhibits a bistable photocycle whose adenylyl cyclase could be reversibly activated and inactivated by blue and green light, respectively. Through domain exchange experiments, we also document the ability to extend the wavelength-sensing specificity of cPAC into the near IR. In summary, our work has uncovered a cyanobacteriochrome-based adenylyl cyclase that holds great potential for the design of bistable photoswitchable adenylyl cyclases to fine-tune cAMP-regulated processes in cells, tissues, and whole organisms with light across the visible spectrum and into the near IR.

  13. Blocking adenylyl cyclase inhibits olfactory generator currents induced by "IP(3)-odors".

    PubMed

    Chen, S; Lane, A P; Bock, R; Leinders-Zufall, T; Zufall, F

    2000-07-01

    Vertebrate olfactory receptor neurons (ORNs) transduce odor stimuli into electrical signals by means of an adenylyl cyclase/cAMP second messenger cascade, but it remains widely debated whether this cAMP cascade mediates transduction for all odorants or only certain odor classes. To address this problem, we have analyzed the generator currents induced by odors that failed to produce cAMP in previous biochemical assays but instead produced IP(3) ("IP(3)-odors"). We show that in single salamander ORNs, sensory responses to "cAMP-odors" and IP(3)-odors are not mutually exclusive but coexist in the same cells. The currents induced by IP(3)-odors exhibit identical biophysical properties as those induced by cAMP odors or direct activation of the cAMP cascade. By disrupting adenylyl cyclase to block cAMP formation using two potent antagonists of adenylyl cyclase, SQ22536 and MDL12330A, we show that this molecular step is necessary for the transduction of both odor classes. To assess whether these results are also applicable to mammals, we examine the electrophysiological responses to IP(3)-odors in intact mouse main olfactory epithelium (MOE) by recording field potentials. The results show that inhibition of adenylyl cyclase prevents EOG responses to both odor classes in mouse MOE, even when "hot spots" with heightened sensitivity to IP(3)-odors are examined.

  14. Adenylyl cyclases in the digestive system

    PubMed Central

    Sabbatini, Maria Eugenia; Gorelick, Fred; Glaser, Shannon

    2015-01-01

    Adenylyl cyclases (ACs) are a group of widely distributed enzymes whose functions are very diverse. There are nine known transmembrane AC isoforms activated by Gαs. Each has its own pattern of expression in the digestive system and differential regulation of function by Ca2+ and other intracellular signals. In addition to the transmembrane isoforms, one AC is soluble and exhibits distinct regulation. In this review, the basic structure, regulation and physiological roles of ACs in the digestive system are discussed. PMID:24521753

  15. Adenylyl cyclases in the digestive system.

    PubMed

    Sabbatini, Maria Eugenia; Gorelick, Fred; Glaser, Shannon

    2014-06-01

    Adenylyl cyclases (ACs) are a group of widely distributed enzymes whose functions are very diverse. There are nine known transmembrane AC isoforms activated by Gαs. Each has its own pattern of expression in the digestive system and differential regulation of function by Ca(2+) and other intracellular signals. In addition to the transmembrane isoforms, one AC is soluble and exhibits distinct regulation. In this review, the basic structure, regulation and physiological roles of ACs in the digestive system are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. A mitochondrial CO2-adenylyl cyclase-cAMP signalosome controls yeast normoxic cytochrome c oxidase activity

    PubMed Central

    Hess, Kenneth C.; Liu, Jingjing; Manfredi, Giovanni; Mühlschlegel, Fritz A.; Buck, Jochen; Levin, Lonny R.; Barrientos, Antoni

    2014-01-01

    Mitochondria, the major source of cellular energy in the form of ATP, respond to changes in substrate availability and bioenergetic demands by employing rapid, short-term, metabolic adaptation mechanisms, such as phosphorylation-dependent protein regulation. In mammalian cells, an intramitochondrial CO2-adenylyl cyclase (AC)-cyclic AMP (cAMP)-protein kinase A (PKA) pathway regulates aerobic energy production. One target of this pathway involves phosphorylation of cytochrome c oxidase (COX) subunit 4-isoform 1 (COX4i1), which modulates COX allosteric regulation by ATP. However, the role of the CO2-sAC-cAMP-PKA signalosome in regulating COX activity and mitochondrial metabolism and its evolutionary conservation remain to be fully established. We show that in Saccharomyces cerevisiae, normoxic COX activity measured in the presence of ATP is 55% lower than in the presence of ADP. Moreover, the adenylyl cyclase Cyr1 activity is present in mitochondria, and it contributes to the ATP-mediated regulation of COX through the normoxic subunit Cox5a, homologue of human COX4i1, in a bicarbonate-sensitive manner. Furthermore, we have identified 2 phosphorylation targets in Cox5a (T65 and S43) that modulate its allosteric regulation by ATP. These residues are not conserved in the Cox5b-containing hypoxic enzyme, which is not regulated by ATP. We conclude that across evolution, a CO2-sAC-cAMP-PKA axis regulates normoxic COX activity.—Hess, K. C., Liu, J., Manfredi, G., Mühlschlegel, F. A., Buck, J., Levin, L. R., Barrientos, A. A mitochondrial CO2-adenylyl cyclase-cAMP signalosome controls yeast normoxic cytochrome c oxidase activity. PMID:25002117

  17. A role for calmodulin-stimulated adenylyl cyclases in cocaine sensitization.

    PubMed

    DiRocco, Derek P; Scheiner, Zachary S; Sindreu, Carlos Balet; Chan, Guy C-K; Storm, Daniel R

    2009-02-25

    Cocaine sensitization is produced by repeated exposure to the drug and is thought to reflect neuroadaptations that contribute to addiction. Here, we identify the Ca(2+)/calmodulin-stimulated adenylyl cyclases, type 1 (AC1) and type 8 (AC8), as novel regulators of this behavioral plasticity. We show that, whereas AC1 and AC8 single knock-out mice (AC1(-/-) and AC8(-/-)) exhibit Ca(2+)-stimulated adenylyl cyclase activity in striatal membrane fractions, AC1/8 double-knock-out (DKO) mice do not. Furthermore, DKO mice are acutely supersensitive to low doses of cocaine and fail to display locomotor sensitization after chronic cocaine treatment. Because of the known role for the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase signaling pathway in cocaine-induced behavioral plasticity and its coupling to calcium-stimulated cAMP signaling in the hippocampus, we measured phosphorylated ERK (pERK) levels in the striatum. Under basal conditions, pERK is upregulated in choline acetyltransferase-positive interneurons in DKO mice relative to wild-type (WT) controls. After acute cocaine treatment, pERK signaling is significantly suppressed in medium spiny neurons (MSNs) of DKO mice relative to WT mice. In addition to the lack of striatal ERK activation by acute cocaine, signaling machinery downstream of ERK is uncoupled in DKO mice. We demonstrate that AC1 and AC8 are necessary for the phosphorylation of mitogen and stress-activated kinase-1 (pMSK1) at Ser376 and Thr581 and cAMP response element-binding protein (pCREB) at Ser133 after acute cocaine treatment. Our results demonstrate that the Ca(2+)-stimulated adenylyl cyclases regulate long-lasting cocaine-induced behavioral plasticity via activation of the ERK/MSK1/CREB signaling pathway in striatonigral MSNs.

  18. A Role for Calmodulin-Stimulated Adenylyl Cyclases in Cocaine Sensitization

    PubMed Central

    DiRocco, Derek P.; Scheiner, Zachary S.; Sindreu, Carlos Balet; Chan, Guy C-K; Storm, Daniel R.

    2009-01-01

    Cocaine sensitization is produced by repeated exposure to the drug and is thought to reflect neuroadaptations that contribute to addiction. Here, we identify the Ca2+/calmodulin-stimulated adenylyl cyclases, type 1 (AC1) and type 8 (AC8), as novel regulators of this behavioral plasticity. We show that while AC1 and AC8 single knockout mice (AC1−/− and AC8−/−) exhibit Ca2+-stimulated adenylyl cyclase activity in striatal membrane fractions, AC1/8 double-knockout (DKO) mice do not. Furthermore, DKO mice are acutely supersensitive to low doses of cocaine and fail to display locomotor sensitization following chronic cocaine treatment. Because of the known role for the ERK/MAP kinase signaling pathway in cocaine-induced behavioral plasticity and its coupling to calcium-stimulated cAMP signaling in the hippocampus, we measured phosphorylated extracellular signal-regulated kinase (pERK) levels in the striatum. Under basal conditions, pERK is upregulated in choline acetyltransferase positive (ChAT+) interneurons in DKO mice relative to wild-type (WT) controls. Following acute cocaine treatment, pERK signaling is significantly suppressed in medium spiny neurons (MSNs) of DKO mice relative to WT mice. In addition to the lack of striatal ERK activation by acute cocaine, signaling machinery downstream of ERK is uncoupled in DKO mice. We demonstrate that AC1 and AC8 are necessary for the phosphorylation of mitogen and stress-activated kinase-1 (pMSK1) at Ser376 and Thr581, and cAMP response element-binding protein (pCREB) at Ser133 following acute cocaine treatment. Our results demonstrate that the Ca2+-stimulated adenylyl cyclases regulate long-lasting cocaine-induced behavioral plasticity via activation of the ERK/MSK1/CREB signaling pathway in striatonigral MSNs. PMID:19244515

  19. Forskolin photoaffinity labels with specificity for adenylyl cyclase and the glucose transporter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, D.I.; Robbins, J.D.; Ruoho, A.E.

    1991-07-15

    Two photolabels, N-(3-(4-azido-3-125I-phenyl)-propionamide)-6- aminoethylcarbamylforskolin(125I-6-AIPP-Fsk) and N-(3-(4-azido-3-125I-phenyl)propionamide)-7-aminoethylcarbamyl-7- desacetylforskolin (125I-7-AIPP-Fsk) were synthesized with specific activities of 2200 Ci/mmol and used to label adenylyl cyclase and the glucose transporter. The affinities of the photolabels for adenylyl cyclase were determined by their inhibition of (3H)forskolin binding to bovine brain membranes. 6-AIPP-Fsk and 7-AIPP-Fsk inhibited (3H)forskolin binding with IC50 values of 15 nM and 200 nM, respectively. 125I-6-AIPP-Fsk labeled a 115-kDa protein in control and GTP {gamma} S-preactivated bovine brain membranes. This labeling was inhibited by forskolin but not by 1,9-dideoxyforskolin or cytochalasin B. 125I-6-AIPP-Fsk labeling of partially purified adenylyl cyclase was inhibited by forskolinmore » but not by 1,9-dideoxyforskolin. 125I-7-AIPP-Fsk specifically labeled a 45-kDa protein and not a 115-kDa protein in control and GTP {gamma} S-preactivated brain membranes. This labeling was inhibited by forskolin, 1,9-dideoxyforskolin, cytochalasin B, and D-glucose but not cytochalasin E or L-glucose. Human erythrocyte membranes were photolyzed with 125I-6-AIPP-Fsk and 125I-7-AIPP-Fsk. 125I-7-AIPP-Fsk, but not 125I-6-AIPP-Fsk, strongly labeled a broad 45-70-kDa band. Forskolin, 7-bromoacetyl-7-desacetylforskolin, 1,9-dideoxyforskolin, cytochalasin B, and D-glucose, but not cytochalasin E or L-glucose, inhibited 125I-7-AIPP-Fsk labeling of the 45-70-kDa band. 125I-6-AIPP-Fsk and 125I-7-AIPP-Fsk are high affinity photolabels with specificity for adenylyl cyclase and the glucose transporter, respectively.« less

  20. Overexpression of the Type 1 Adenylyl Cyclase in the Forebrain Leads to Deficits of Behavioral Inhibition

    PubMed Central

    Cao, Hong; Saraf, Amit; Zweifel, Larry S.

    2015-01-01

    The type 1 adenylyl cyclase (AC1) is an activity-dependent, calcium-stimulated adenylyl cyclase expressed in the nervous system that is implicated in memory formation. We examined the locomotor activity, and impulsive and social behaviors of AC1+ mice, a transgenic mouse strain overexpressing AC1 in the forebrain. Here we report that AC1+ mice exhibit hyperactive behaviors and demonstrate increased impulsivity and reduced sociability. In contrast, AC1 and AC8 double knock-out mice are hypoactive, and exhibit increased sociability and reduced impulsivity. Interestingly, the hyperactivity of AC1+ mice can be corrected by valproate, a mood-stabilizing drug. These data indicate that increased expression of AC1 in the forebrain leads to deficits in behavioral inhibition. PMID:25568126

  1. H{sub 2}S induces vasoconstriction of rat cerebral arteries via cAMP/adenylyl cyclase pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Sen; Ping, Na-na; Cao, Lei, E-mail: leicao@mail.xjtu.edu.cn

    2015-12-15

    Hydrogen sulfide (H{sub 2}S), traditionally known for its toxic effects, is now involved in regulating vascular tone. Here we investigated the vasoconstrictive effect of H{sub 2}S on cerebral artery and the underlying mechanism. Sodium hydrosulfide (NaHS), a donor of H{sub 2}S, concentration-dependently induced vasoconstriction on basilar artery, which was enhanced in the presence of isoprenaline, a β-adrenoceptor agonist or forskolin, an adenylyl cyclase activator. Administration of NaHS attenuated the vasorelaxant effects of isoprenaline or forskolin. Meanwhile, the NaHS-induced vasoconstriction was diminished in the presence of 8B-cAMP, an analog of cAMP, but was not affected by Bay K-8644, a selective L-typemore » Ca{sup 2+} channel agonist. These results could be explained by the revised effects of NaHS on isoprenaline-induced cAMP elevation and forskolin-stimulated adenylyl cyclase activity. Additionally, NaHS-induced vasoconstriction was enhanced by removing the endothelium or in the presence of L-NAME, an inhibitor of nitric oxide synthase. L-NAME only partially attenuated the effect of NaHS which was given together with forskolin on the pre-contracted artery. In conclusion, H{sub 2}S induces vasoconstriction of cerebral artery via, at least in part, cAMP/adenylyl cyclase pathway. - Highlights: • The vasoactivity effect of NaHS, a donor of H{sub 2}S, was studied on rat cerebral arteries. • H{sub 2}S induces a constriction, not a relaxant effect on basilar arteries. • The vasoconstrictive effect is invovled in inhibiting adenylyl cyclase to reduce cAMP levels. • The vasoconstriction is partially antagonized by NO, and does not necessarily act via NO pathway.« less

  2. Distinct pools of cAMP centre on different isoforms of adenylyl cyclase in pituitary-derived GH3B6 cells.

    PubMed

    Wachten, Sebastian; Masada, Nanako; Ayling, Laura-Jo; Ciruela, Antonio; Nikolaev, Viacheslav O; Lohse, Martin J; Cooper, Dermot M F

    2010-01-01

    Microdomains have been proposed to explain specificity in the myriad of possible cellular targets of cAMP. Local differences in cAMP levels can be generated by phosphodiesterases, which control the diffusion of cAMP. Here, we address the possibility that adenylyl cyclases, the source of cAMP, can be primary architects of such microdomains. Distinctly regulated adenylyl cyclases often contribute to total cAMP levels in endogenous cellular settings, making it virtually impossible to determine the contribution of a specific isoform. To investigate cAMP dynamics with high precision at the single-isoform level, we developed a targeted version of Epac2-camps, a cAMP sensor, in which the sensor was tagged to a catalytically inactive version of the Ca(2+)-stimulable adenylyl cyclase 8 (AC8). This sensor, and less stringently targeted versions of Epac2-camps, revealed opposite regulation of cAMP synthesis in response to Ca(2+) in GH(3)B(6) pituitary cells. Ca(2+) release triggered by thyrotropin-releasing hormone stimulated the minor endogenous AC8 species. cAMP levels were decreased by inhibition of AC5 and AC6, and simultaneous activation of phosphodiesterases, in different compartments of the same cell. These findings demonstrate the existence of distinct adenylyl-cyclase-centered cAMP microdomains in live cells and open the door to their molecular micro-dissection.

  3. Hypoxia induces cancer-associated cAMP/PKA signalling through HIF-mediated transcriptional control of adenylyl cyclases VI and VII.

    PubMed

    Simko, Veronika; Iuliano, Filippo; Sevcikova, Andrea; Labudova, Martina; Barathova, Monika; Radvak, Peter; Pastorekova, Silvia; Pastorek, Jaromir; Csaderova, Lucia

    2017-08-31

    Hypoxia is a phenomenon often arising in solid tumours, linked to aggressive malignancy, bad prognosis and resistance to therapy. Hypoxia-inducible factor-1 has been identified as a key mediator of cell and tissue adaptation to hypoxic conditions through transcriptional activation of many genes involved in glucose metabolism and other cancer-related processes, such as angiogenesis, cell survival and cell invasion. Cyclic adenosine 3'5'-monophosphate is one of the most ancient and evolutionarily conserved signalling molecules and the cAMP/PKA signalling pathway plays an important role in cellular adaptation to hypoxia. We have investigated possible new mechanisms behind hypoxic activation of the cAMP/PKA pathway. For the first time, we have shown that hypoxia induces transcriptional up-regulation of the system of adenylyl cyclases, enzymes responsible for cAMP production, in a panel of carcinoma cell lines of various origin. Our data prove functional relevance of the hypoxic increase of adenylyl cyclases VI and VII at least partially mediated by HIF-1 transcription factor. We have identified adenylyl cyclase VI and VII isoforms as mediators of cellular response to hypoxia, which led to the elevation of cAMP levels and enhanced PKA activity, with an impact on cell migration and pH regulation.

  4. Identification of photoactivated adenylyl cyclases in Naegleria australiensis and BLUF-containing protein in Naegleria fowleri.

    PubMed

    Yasukawa, Hiro; Sato, Aya; Kita, Ayaka; Kodaira, Ken-Ichi; Iseki, Mineo; Takahashi, Tetsuo; Shibusawa, Mami; Watanabe, Masakatsu; Yagita, Kenji

    2013-01-01

    Complete genome sequencing of Naegleria gruberi has revealed that the organism encodes polypeptides similar to photoactivated adenylyl cyclases (PACs). Screening in the N. australiensis genome showed that the organism also encodes polypeptides similar to PACs. Each of the Naegleria proteins consists of a "sensors of blue-light using FAD" domain (BLUF domain) and an adenylyl cyclase domain (AC domain). PAC activity of the Naegleria proteins was assayed by comparing sensitivities of Escherichia coli cells heterologously expressing the proteins to antibiotics in a dark condition and a blue light-irradiated condition. Antibiotics used in the assays were fosfomycin and fosmidomycin. E. coli cells expressing the Naegleria proteins showed increased fosfomycin sensitivity and fosmidomycin sensitivity when incubated under blue light, indicating that the proteins functioned as PACs in the bacterial cells. Analysis of the N. fowleri genome revealed that the organism encodes a protein bearing an amino acid sequence similar to that of BLUF. A plasmid expressing a chimeric protein consisting of the BLUF-like sequence found in N. fowleri and the adenylyl cyclase domain of N. gruberi PAC was constructed to determine whether the BLUF-like sequence functioned as a sensor of blue light. E. coli cells expressing a chimeric protein showed increased fosfomycin sensitivity and fosmidomycin sensitivity when incubated under blue light. These experimental results indicated that the sequence similar to the BLUF domain found in N. fowleri functioned as a sensor of blue light.

  5. Adenylyl cyclase 3/adenylyl cyclase-associated protein 1 (CAP1) complex mediates the anti-migratory effect of forskolin in pancreatic cancer cells.

    PubMed

    Quinn, Sierra N; Graves, Sarai H; Dains-McGahee, Clayton; Friedman, Emilee M; Hassan, Humma; Witkowski, Piotr; Sabbatini, Maria E

    2017-04-01

    Pancreatic cancer is one of the most lethal human malignancies. A better understanding of the intracellular mechanism of migration and invasion is urgently needed to develop treatment that will suppress metastases and improve overall survival. Cyclic adenosine monophosphate (cyclic AMP) is a second messenger that has shown to regulate migration and invasion of pancreatic cancer cells. The rise of cyclic AMP suppressed migration and invasion of pancreatic ductal adenocarcinoma cells. Cyclic AMP is formed from cytosolic ATP by the enzyme adenylyl cyclase (AC). There are ten isoforms of ACs; nine are anchored in the plasma membrane and one is soluble. What remains unknown is the extent to which the expression of transmembrane AC isoforms is both modified in pancreatic cancer and mediates the inhibitory effect of forskolin on cell motility. Using real-time PCR analysis, ADCY3 was found to be highly expressed in pancreatic tumor tissues, resulting in a constitutive increase in cyclic AMP levels. On the other hand, ADCY2 was down-regulated. Migration, invasion, and filopodia formation in two different pancreatic adenocarcinoma cell lines, HPAC and PANC-1 deficient in AC1 or AC3, were studied. We found that AC3, upon stimulation with forskolin, enhanced cyclic AMP levels and inhibited cell migration and invasion. Unlikely to be due to a cytotoxic effect, the inhibitory effects of forskolin involved the quick formation of AC3/adenylyl cyclase-associated protein 1 (CAP1)/G-actin complex, which inhibited filopodia formation and cell motility. Using Western blotting analysis, forskolin, through AC3 activation, caused phosphorylation of CREB, but not ERK. The effect of CREB phosphorylation is likely to be associated with long-term signaling changes. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Soluble Adenylyl Cyclase of Sea Urchin Spermatozoa

    PubMed Central

    Vacquier, Victor D.; Loza-Huerta, Arlet; García-Rincón, Juan; Darszon, Alberto; Beltrán, Carmen

    2014-01-01

    Fertilization, a key step in sexual reproduction, requires orchestrated changes in cAMP concentrations. It is notable that spermatozoa (sperm) are amongst the cell types with extremely high adenylyl cyclase (AC) activity. As production and consumption of this second messenger need to be locally regulated, the discovery of soluble AC (sAC) has broadened our understanding of how such cells deal with these requirements. In addition, because sAC is directly regulated by HCO3- it is able to translate CO2/HCO3-/pH changes into cAMP levels. Fundamental sperm functions such as maturation, motility regulation and the acrosome reaction are influenced by cAMP; this is especially true for sperm of the sea urchin (SU), an organism that has been a model in the study of fertilization for more than 130 years. Here we summarize the discovery and properties of SU sperm sAC, and discuss its involvement in sperm physiology. PMID:25064590

  7. Established and potential physiological roles of bicarbonate-sensing soluble adenylyl cyclase (sAC) in aquatic animals

    PubMed Central

    Tresguerres, Martin; Barott, Katie L.; Barron, Megan E.; Roa, Jinae N.

    2014-01-01

    Soluble adenylyl cyclase (sAC) is a recently recognized source of the signaling molecule cyclic AMP (cAMP) that is genetically and biochemically distinct from the classic G-protein-regulated transmembrane adenylyl cyclases (tmACs). Mammalian sAC is distributed throughout the cytoplasm and it may be present in the nucleus and inside mitochondria. sAC activity is directly stimulated by HCO3−, and sAC has been confirmed to be a HCO3− sensor in a variety of mammalian cell types. In addition, sAC can functionally associate with carbonic anhydrases to act as a de facto sensor of pH and CO2. The two catalytic domains of sAC are related to HCO3−-regulated adenylyl cyclases from cyanobacteria, suggesting the cAMP pathway is an evolutionarily conserved mechanism for sensing CO2 levels and/or acid/base conditions. Reports of sAC in aquatic animals are still limited but are rapidly accumulating. In shark gills, sAC senses blood alkalosis and triggers compensatory H+ absorption. In the intestine of bony fishes, sAC modulates NaCl and water absorption. And in sea urchin sperm, sAC may participate in the initiation of flagellar movement and in the acrosome reaction. Bioinformatics and RT-PCR results reveal that sAC orthologs are present in most animal phyla. This review summarizes the current knowledge on the physiological roles of sAC in aquatic animals and suggests additional functions in which sAC may be involved. PMID:24574382

  8. Adenylyl cyclase type 9 gene polymorphisms are associated with asthma and allergy in Brazilian children.

    PubMed

    Teixeira, Helena M P; Alcantara-Neves, Neuza M; Barreto, Maurício; Figueiredo, Camila A; Costa, Ryan S

    2017-02-01

    Asthma is a chronic inflammatory disease of the respiratory tract. This heterogeneous disease is caused by the interaction of interindividual genetic variability and environmental factors. The gene adenylyl cyclase type 9 (ADCY9) encodes a protein called adenylyl cyclase (AC), responsible for producing the second messenger cyclic AMP (cAMP). cAMP is produced by T regulatory cells and is involved in the down-regulation of T effector cells. Failures in cAMP production may be related to an imbalance in the regulatory immune response, leading to immune-mediated diseases, such as allergic disorders. The aim of this study was to investigate how polymorphisms in the ADCY9 are associated with asthma and allergic markers. The study comprised 1309 subjects from the SCAALA (Social Changes Asthma and Allergy in Latin America) program. Genotyping was accomplished using the Illumina 2.5 Human Omni bead chip. Logistic regression was used to assess the association between allergy markers and ADCY9 variation in PLINK 1.07 software with adjustments for sex, age, helminth infection and ancestry markers. The ADCY9 candidate gene was associated with different phenotypes, such as asthma, specific IgE, skin prick test, and cytokine production. Among 133 markers analyzed, 29 SNPs where associated with asthma and allergic markers in silico analysis revealed the functional impact of the 6 SNPs on ADCY9 expression. It can be concluded that polymorphisms in the ADCY9 gene are significantly associated with asthma and/or allergy markers. We believe that such polymorphisms may lead to increased expression of adenylyl cyclase with a consequent increase in immunoregulatory activity. Therefore, these SNPs may offer an impact on the occurrence of these conditions in admixture population from countries such as Brazil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. CO2/HCO3−- and Calcium-regulated Soluble Adenylyl Cyclase as a Physiological ATP Sensor*

    PubMed Central

    Zippin, Jonathan H.; Chen, Yanqiu; Straub, Susanne G.; Hess, Kenneth C.; Diaz, Ana; Lee, Dana; Tso, Patrick; Holz, George G.; Sharp, Geoffrey W. G.; Levin, Lonny R.; Buck, Jochen

    2013-01-01

    The second messenger molecule cAMP is integral for many physiological processes. In mammalian cells, cAMP can be generated from hormone- and G protein-regulated transmembrane adenylyl cyclases or via the widely expressed and structurally and biochemically distinct enzyme soluble adenylyl cyclase (sAC). sAC activity is uniquely stimulated by bicarbonate ions, and in cells, sAC functions as a physiological carbon dioxide, bicarbonate, and pH sensor. sAC activity is also stimulated by calcium, and its affinity for its substrate ATP suggests that it may be sensitive to physiologically relevant fluctuations in intracellular ATP. We demonstrate here that sAC can function as a cellular ATP sensor. In cells, sAC-generated cAMP reflects alterations in intracellular ATP that do not affect transmembrane AC-generated cAMP. In β cells of the pancreas, glucose metabolism generates ATP, which corresponds to an increase in cAMP, and we show here that sAC is responsible for an ATP-dependent cAMP increase. Glucose metabolism also elicits insulin secretion, and we further show that sAC is necessary for normal glucose-stimulated insulin secretion in vitro and in vivo. PMID:24100033

  10. Gi proteins regulate adenylyl cyclase activity independent of receptor activation.

    PubMed

    Melsom, Caroline Bull; Ørstavik, Øivind; Osnes, Jan-Bjørn; Skomedal, Tor; Levy, Finn Olav; Krobert, Kurt Allen

    2014-01-01

    Despite the view that only β2- as opposed to β1-adrenoceptors (βARs) couple to G(i), some data indicate that the β1AR-evoked inotropic response is also influenced by the inhibition of Gi. Therefore, we wanted to determine if Gi exerts tonic receptor-independent inhibition upon basal adenylyl cyclase (AC) activity in cardiomyocytes. We used the Gs-selective (R,R)- and the Gs- and G(i)-activating (R,S)-fenoterol to selectively activate β2ARs (β1AR blockade present) in combination with Gi inactivation with pertussis toxin (PTX). We also determined the effect of PTX upon basal and forskolin-mediated responses. Contractility was measured ex vivo in left ventricular strips and cAMP accumulation was measured in isolated ventricular cardiomyocytes from adult Wistar rats. PTX amplified both the (R,R)- and (R,S)-fenoterol-evoked maximal inotropic response and concentration-dependent increases in cAMP accumulation. The EC50 values of fenoterol matched published binding affinities. The PTX enhancement of the Gs-selective (R,R)-fenoterol-mediated responses suggests that Gi regulates AC activity independent of receptor coupling to Gi protein. Consistent with this hypothesis, forskolin-evoked cAMP accumulation was increased and inotropic responses to forskolin were potentiated by PTX treatment. In non-PTX-treated tissue, phosphodiesterase (PDE) 3 and 4 inhibition or removal of either constitutive muscarinic receptor activation of Gi with atropine or removal of constitutive adenosine receptor activation with CGS 15943 had no effect upon contractility. However, in PTX-treated tissue, PDE3 and 4 inhibition alone increased basal levels of cAMP and accordingly evoked a large inotropic response. Together, these data indicate that Gi exerts intrinsic receptor-independent inhibitory activity upon AC. We propose that PTX treatment shifts the balance of intrinsic G(i) and Gs activity upon AC towards Gs, enhancing the effect of all cAMP-mediated inotropic agents.

  11. Gi Proteins Regulate Adenylyl Cyclase Activity Independent of Receptor Activation

    PubMed Central

    Melsom, Caroline Bull; Ørstavik, Øivind; Osnes, Jan-Bjørn; Skomedal, Tor; Levy, Finn Olav; Krobert, Kurt Allen

    2014-01-01

    Background and purpose Despite the view that only β2- as opposed to β1-adrenoceptors (βARs) couple to Gi, some data indicate that the β1AR-evoked inotropic response is also influenced by the inhibition of Gi. Therefore, we wanted to determine if Gi exerts tonic receptor-independent inhibition upon basal adenylyl cyclase (AC) activity in cardiomyocytes. Experimental approach We used the Gs-selective (R,R)- and the Gs- and Gi-activating (R,S)-fenoterol to selectively activate β2ARs (β1AR blockade present) in combination with Gi inactivation with pertussis toxin (PTX). We also determined the effect of PTX upon basal and forskolin-mediated responses. Contractility was measured ex vivo in left ventricular strips and cAMP accumulation was measured in isolated ventricular cardiomyocytes from adult Wistar rats. Key results PTX amplified both the (R,R)- and (R,S)-fenoterol-evoked maximal inotropic response and concentration-dependent increases in cAMP accumulation. The EC50 values of fenoterol matched published binding affinities. The PTX enhancement of the Gs-selective (R,R)-fenoterol-mediated responses suggests that Gi regulates AC activity independent of receptor coupling to Gi protein. Consistent with this hypothesis, forskolin-evoked cAMP accumulation was increased and inotropic responses to forskolin were potentiated by PTX treatment. In non-PTX-treated tissue, phosphodiesterase (PDE) 3 and 4 inhibition or removal of either constitutive muscarinic receptor activation of Gi with atropine or removal of constitutive adenosine receptor activation with CGS 15943 had no effect upon contractility. However, in PTX-treated tissue, PDE3 and 4 inhibition alone increased basal levels of cAMP and accordingly evoked a large inotropic response. Conclusions and implications Together, these data indicate that Gi exerts intrinsic receptor-independent inhibitory activity upon AC. We propose that PTX treatment shifts the balance of intrinsic Gi and Gs activity upon AC towards Gs

  12. Activation and inhibition of adenylyl cyclase isoforms by forskolin analogs.

    PubMed

    Pinto, Cibele; Papa, Dan; Hübner, Melanie; Mou, Tung-Chung; Lushington, Gerald H; Seifert, Roland

    2008-04-01

    Adenylyl cyclase (AC) isoforms 1 to 9 are differentially expressed in tissues and constitute an interesting drug target. ACs 1 to 8 are activated by the diterpene, forskolin (FS). It is unfortunate that there is a paucity of AC isoform-selective activators. To develop such compounds, an understanding of the structure/activity relationships of diterpenes is necessary. Therefore, we examined the effects of FS and nine FS analogs on ACs 1, 2, and 5 expressed in Spodoptera frugiperda insect cells. Diterpenes showed the highest potencies at AC1 and the lowest potencies at AC2. We identified full agonists, partial agonists, antagonists, and inverse agonists, i.e., diterpenes that reduced basal AC activity. Each AC isoform exhibited a distinct pharmacological profile. AC2 showed the highest basal activity of all AC isoforms and highest sensitivity to inverse agonistic effects of 1-deoxy-forskolin, 7-deacetyl-1,9-dideoxy-forskolin, and, particularly, BODIPY-forskolin. In contrast, BODIPY-forskolin acted as partial agonist at the other ACs. 1-Deoxy-forskolin analogs were devoid of agonistic activity at ACs but antagonized the effects of FS in a mixed competitive/noncompetitive manner. At purified catalytic AC subunits, BODIPY-forskolin acted as weak partial agonist/strong partial antagonist. Molecular modeling revealed that the BODIPY group rotates promiscuously outside of the FS-binding site. Collectively, ACs are not uniformly activated and inhibited by FS and FS analogs, demonstrating the feasibility to design isoform-selective FS analogs. The two- and multiple-state models, originally developed to conceptualize ligand effects at G-protein-coupled receptors, can be applied to ACs to explain certain experimental data.

  13. Soluble adenylyl cyclase is an acid-base sensor in epithelial base-secreting cells.

    PubMed

    Roa, Jinae N; Tresguerres, Martin

    2016-08-01

    Blood acid-base regulation by specialized epithelia, such as gills and kidney, requires the ability to sense blood acid-base status. Here, we developed primary cultures of ray (Urolophus halleri) gill cells to study mechanisms for acid-base sensing without the interference of whole animal hormonal regulation. Ray gills have abundant base-secreting cells, identified by their noticeable expression of vacuolar-type H(+)-ATPase (VHA), and also express the evolutionarily conserved acid-base sensor soluble adenylyl cyclase (sAC). Exposure of cultured cells to extracellular alkalosis (pH 8.0, 40 mM HCO3 (-)) triggered VHA translocation to the cell membrane, similar to previous reports in live animals experiencing blood alkalosis. VHA translocation was dependent on sAC, as it was blocked by the sAC-specific inhibitor KH7. Ray gill base-secreting cells also express transmembrane adenylyl cyclases (tmACs); however, tmAC inhibition by 2',5'-dideoxyadenosine did not prevent alkalosis-dependent VHA translocation, and tmAC activation by forskolin reduced the abundance of VHA at the cell membrane. This study demonstrates that sAC is a necessary and sufficient sensor of extracellular alkalosis in ray gill base-secreting cells. In addition, this study indicates that different sources of cAMP differentially modulate cell biology. Copyright © 2016 the American Physiological Society.

  14. A novel cytosolic regulator, Pianissimo, is required for chemoattractant receptor and G protein-mediated activation of the 12 transmembrane domain adenylyl cyclase in Dictyostelium

    PubMed Central

    Chen, Mei-Yu; Long, Yu; Devreotes, Peter N.

    1997-01-01

    Genetic analysis was applied to identify novel genes involved in G protein-linked pathways controlling development. Using restriction enzyme-mediated integration (REMI), we have identified a new gene, Pianissimo (PiaA), involved in cAMP signaling in Dictyostelium discoideum. PiaA encodes a 130-kD cytosolic protein required for chemoattractant receptor and G protein-mediated activation of the 12 transmembrane domain adenylyl cyclase. In piaA− null mutants, neither chemoattractant stimulation of intact cells nor GTPγS treatment of lysates activates the enzyme; constitutive expression of PiaA reverses these defects. Cytosols of wild-type cells that contain Pia protein reconstitute the GTPγS stimulation of adenylyl cyclase activity in piaA− lysates, indicating that Pia is directly involved in the activation. Pia and CRAC, a previously identified cytosolic regulator, are both essential for activation of the enzyme as lysates of crac− piaA− double mutants require both proteins for reconstitution. Homologs of PiaA are found in Saccharomyces cerevisiae and Schizosaccaromyces pombe; disruption of the S. cerevisiae homolog results in lethality. We propose that homologs of Pia and similar modes of regulation of these ubiquitous G protein-linked pathways are likely to exist in higher eukaryotes. PMID:9389653

  15. Activity of adenylyl cyclase and protein kinase A contributes to morphine-induced spinal apoptosis.

    PubMed

    Lim, Grewo; Wang, Shuxing; Lim, Jeong-Ae; Mao, Jianren

    2005-12-02

    Our previous study has shown that chronic morphine exposure induces neuronal apoptosis within the spinal cord dorsal horn; however, the mechanisms of morphine-induced apoptosis remain unclear. Here we examined whether adenylyl cyclase (AC) and protein kinase A (PKA) would play a role in this process. Intrathecal morphine regimen (10 microg, twice daily x 7 days) that resulted in antinociceptive tolerance induced spinal apoptosis as revealed by in situ terminal deoxynucleotidyl transferase (TdT)-UTP-biotin nick end labeling (TUNEL). The TUNEL-positive cells were detected primarily in the superficial laminae of the spinal cord dorsal horn, which was associated with an increase in the expression of activated caspase-3 and mitogen-activated protein kinase (MAPK) within the same spinal region. Co-administration of morphine with a broad AC inhibitor (ddA), a PKA inhibitor (H89), or a MAPK inhibitor (PD98059) substantially reduced the number of TUNEL-positive cells, as compared with the morphine alone group. The results indicate that the spinal AC and PKA pathway through intracellular MAPK may be contributory to the cellular mechanisms of morphine-induced apoptosis.

  16. The Type 3 Adenylyl Cyclase is Required for Novel Object Learning and Extinction of Contextual Memory: Role of cAMP Signaling in Primary Cilia

    PubMed Central

    Wang, Zhenshan; Phan, Trongha; Storm, Daniel R.

    2011-01-01

    Although primary cilia are found on neurons throughout the brain, their physiological function remains elusive. Human ciliopathies are associated with cognition defects and transgenic mice lacking proteins expressed in primary cilia exhibit defects in learning and memory. Recently, it was reported that mice lacking the G-protein coupling receptor somatostatin receptor-3 (SSTR3), a protein expressed predominately in the primary cilia of neurons, have defective memory for novel object recognition and lower cAMP levels in the brain. Since SSTR3 is coupled to regulation of adenylyl cyclase this suggests that adenylyl cyclase activity in primary cilia of CNS neurons may be critical for some forms of learning and memory. Because the type 3 adenylyl cyclase (AC3) is expressed in primary cilia of hippocampal neurons, we examined AC3−/− mice for several forms of learning and memory. Here, we report that AC3−/− mice show no short-term memory for novel objects and fail to exhibit extinction of contextual fear conditioning. They also show impaired learning and memory for temporally dissociated passive avoidance (TDPA). Since AC3 is exclusively expressed in primary cilia we conclude that cAMP signals generated within primary cilia contribute to some forms of learning and memory including extinction of contextual fear conditioning. PMID:21490195

  17. The type 3 adenylyl cyclase is required for novel object learning and extinction of contextual memory: role of cAMP signaling in primary cilia.

    PubMed

    Wang, Zhenshan; Phan, Trongha; Storm, Daniel R

    2011-04-13

    Although primary cilia are found on neurons throughout the brain, their physiological function remains elusive. Human ciliopathies are associated with cognition defects, and transgenic mice lacking proteins expressed in primary cilia exhibit defects in learning and memory. Recently, it was reported that mice lacking the G-protein-coupling receptor somatostatin receptor-3 (SSTR3), a protein expressed predominately in the primary cilia of neurons, have defective memory for novel object recognition and lower cAMP levels in the brain. Since SSTR3 is coupled to regulation of adenylyl cyclase, this suggests that adenylyl cyclase activity in primary cilia of CNS neurons may be critical for some forms of learning and memory. Because the type 3 adenylyl cyclase (AC3) is expressed in primary cilia of hippocampal neurons, we examined AC3(-/-) mice for several forms of learning and memory. Here, we report that AC3(-/-) mice show no short-term memory for novel objects and fail to exhibit extinction of contextual fear conditioning. They also show impaired learning and memory for temporally dissociative passive avoidance. Since AC3 is exclusively expressed in primary cilia, we conclude that cAMP signals generated within primary cilia contribute to some forms of learning and memory, including extinction of contextual fear conditioning.

  18. An adenylyl cyclase gene (NlAC9) influences growth and fecundity in the brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae)

    USDA-ARS?s Scientific Manuscript database

    The cAMP/PKA intracellular signaling pathway is launched by adenylyl cyclase (AC) conversion of adenosine triphosphate (ATP) to 3', 5'-cyclic AMP (cAMP) and cAMP-dependent activation of PKA. Although this pathway is very well known in insect physiology, there is little to no information on it in som...

  19. AN ADENYLYL CYCLASE SIGNALING PATHWAY PREDICTS DIRECT DOPAMINERGIC INPUT TO VESTIBULAR HAIR CELLS

    PubMed Central

    DRESCHER, M. J.; CHO, W. J.; FOLBE, A. J.; SELVAKUMAR, D.; KEWSON, D. T.; ABU-HAMDAN, M. D.; OH, C. K.; RAMAKRISHNAN, N. A.; HATFIELD, J. S.; KHAN, K. M.; ANNE, S.; HARPOOL, E. C.; DRESCHER, D. G.

    2010-01-01

    Adenylyl cyclase signaling pathways have been identified in a model hair cell preparation from the trout saccule, for which the hair cell is the only intact cell type. The use of degenerate primers targeting cDNA sequence conserved across adenylyl cyclase (AC) isoforms, and RT-PCR, coupled with cloning of amplification products, indicated expression of AC9, AC7 and AC5/6, with cloning efficiencies of 11:5:2. AC9 and AC5/6 are inhibited by Ca2+, the former in conjunction with calcineurin, and message for calcineurin has also been identified in the trout saccular hair cell layer. AC7 is independent of Ca2+. Given the lack of detection of calcium/calmodulin-activated isoforms previously suggested to mediate adenylyl cyclase activation in the absence of Gαs in mammalian cochlear hair cells, the issue of hair-cell Gαs mRNA expression was re-examined in the teleost vestibular hair cell model. Two full-length coding sequences were obtained for Gαs/olf in the vestibular type II-like hair cells of the trout saccule. Two messages for Gαi have also been detected in the hair cell layer, one with homology to Gαi1 and the second with homology to Gαi3 of higher vertebrates. Both Gαs/olf protein and Gαi1/Gαi3 protein were immunolocalized to stereocilia and to the base of the hair cell, the latter consistent with sites of efferent input. While a signaling event coupling to Gαs/olf and Gαi1/Gαi3 in the stereocilia is currently unknown, signaling with Gαs/olf, Gαi3, and AC5/6 at the base of the hair cell would be consistent with transduction pathways activated by dopaminergic efferent input. mRNA for dopamine receptors D1A4 and five forms of dopamine D2 were found to be expressed in the teleost saccular hair cell layer, representing information on vestibular hair cell expression not directly available for higher vertebrates. Dopamine D1A receptor would couple to Gαolf and activation of AC5/6. Co-expression with dopamine D2 receptor, which itself couples to Gαi3 and AC

  20. Impaired activation of adenylyl cyclase in lung of the Basenji-greyhound model of airway hyperresponsiveness: decreased numbers of high affinity beta-adrenoceptors.

    PubMed Central

    Emala, C. W.; Aryana, A.; Hirshman, C. A.

    1996-01-01

    1. To evaluate mechanisms involved in the impaired beta-adrenoceptor stimulation of adenylyl cyclase in tissues from the Basenji-greyhound (BG) dog model of airway hyperresponsiveness, we compared agonist and antagonist binding affinity of beta-adrenoceptors, beta-adrenoceptor subtypes, percentage of beta-adrenoceptors sequestered, and coupling of the beta-adrenoceptor to Gs alpha in lung membranes from BG and control mongrel dogs. We found that lung membranes from the BG dog had higher total numbers of beta-adrenoceptors with a greater percentage of receptors of the beta 2 subtype as compared to mongrel lung membranes. 2. Agonist and antagonist binding affinity and the percentage of beta-adrenoceptors sequestered were not different in BG and mongrel dog lung membranes. However, the percentage of beta-adrenoceptors in the high affinity state for agonist was decreased in BG lung membranes suggesting an uncoupling of the receptor from Gs alpha. 3. Impaired coupling between the beta-adrenoceptor and G protein documented by the decreased numbers of beta-adrenoceptors in the high affinity state in BG lung membranes, is a plausible explanation for the reduced stimulation of adenylyl cyclase and the resultant reduction in airway smooth muscle relaxation in this model. PMID:8864536

  1. Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase.

    PubMed

    Choi, Hyun B; Gordon, Grant R J; Zhou, Ning; Tai, Chao; Rungta, Ravi L; Martinez, Jennifer; Milner, Teresa A; Ryu, Jae K; McLarnon, James G; Tresguerres, Martin; Levin, Lonny R; Buck, Jochen; MacVicar, Brian A

    2012-09-20

    Astrocytes are proposed to participate in brain energy metabolism by supplying substrates to neurons from their glycogen stores and from glycolysis. However, the molecules involved in metabolic sensing and the molecular pathways responsible for metabolic coupling between different cell types in the brain are not fully understood. Here we show that a recently cloned bicarbonate (HCO₃⁻) sensor, soluble adenylyl cyclase (sAC), is highly expressed in astrocytes and becomes activated in response to HCO₃⁻ entry via the electrogenic NaHCO₃ cotransporter (NBC). Activated sAC increases intracellular cAMP levels, causing glycogen breakdown, enhanced glycolysis, and the release of lactate into the extracellular space, which is subsequently taken up by neurons for use as an energy substrate. This process is recruited over a broad physiological range of [K⁺](ext) and also during aglycemic episodes, helping to maintain synaptic function. These data reveal a molecular pathway in astrocytes that is responsible for brain metabolic coupling to neurons. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Metabolic Communication between Astrocytes and Neurons via Bicarbonate-Responsive Soluble Adenylyl Cyclase

    PubMed Central

    Choi, Hyun B.; Gordon, Grant R.J.; Zhou, Ning; Tai, Chao; Rungta, Ravi L.; Martinez, Jennifer; Milner, Teresa A.; Ryu, Jae K.; McLarnon, James G.; Tresguerres, Martin; Levin, Lonny R.; Buck, Jochen; MacVicar, Brian A.

    2013-01-01

    SUMMARY Astrocytes are proposed to participate in brain energy metabolism by supplying substrates to neurons from their glycogen stores and from glycolysis. However, the molecules involved in metabolic sensing and the molecular pathways responsible for metabolic coupling between different cell types in the brain are not fully understood. Here we show that a recently cloned bicarbonate (HCO3−) sensor, soluble adenylyl cyclase (sAC), is highly expressed in astrocytes and becomes activated in response to HCO3− entry via the electrogenic NaHCO3 cotransporter (NBC). Activated sAC increases intracellular cAMP levels, causing glycogen breakdown, enhanced glycolysis, and the release of lactate into the extracellular space, which is subsequently taken up by neurons for use as an energy substrate. This process is recruited over a broad physiological range of [K+]ext and also during aglycemic episodes, helping to maintain synaptic function. These data reveal a molecular pathway in astrocytes that is responsible for brain metabolic coupling to neurons. PMID:22998876

  3. Expression of adenylyl cyclase types III and VI in human hyperfunctioning thyroid nodules.

    PubMed

    Celano, M; Arturi, F; Presta, I; Bruno, R; Scarpelli, D; Calvagno, M G; Cristofaro, C; Bulotta, S; Giannasio, P; Sacco, R; Filetti, S; Russo, D

    2003-05-30

    Hyperfunctioning thyroid nodules are characterized by the presence of spontaneous somatic mutations responsible for constitutive activation of the cAMP pathway. However, alterations affecting other elements of the cAMP signaling system may counteract the effects of the mutations. In this study, the expression of the adenylyl cyclase (AC) types III and VI was investigated by Western blot in 18 hyperfunctioning thyroid nodules; in 12 samples, we also assessed the presence of TSH receptor (TSHR) or gsp mutations and levels of AC VI and III mRNA. We found that the expression of nodular AC VI (but not AC III) was significantly lower (85.1% of normal, P=0.014) than the expression of both adenylyl cycles types of perinodular tissue from the same patients. Slightly, but not significant differences were detected in nodules with or without mutations and AC protein levels generally showed correlation with the levels of the transcripts detected by RT-PCR. In addition, AC III and AC VI expression levels within a given nodule were characterized by a significant positive correlation. These findings indicate that a diminished expression of AC type VI may be part of the mechanisms occurring in the hyperfunctioning nodules, independently of the presence of TSHR or gsp mutations, which influence the resulting phenotype.

  4. RasC is required for optimal activation of adenylyl cyclase and Akt/PKB during aggregation

    PubMed Central

    Lim, Chinten James; Spiegelman, George B.; Weeks, Gerald

    2001-01-01

    Disruption of Dictyostelium rasC, encoding a Ras subfamily protein, generated cells incapable of aggregation. While rasC expression is enriched in a cell type-specific manner during post-aggregative development, the defect in rasC– cells is restricted to aggregation and fully corrected by application of exogenous cAMP pulses. cAMP is not produced in rasC– cells stimulated by 2′-deoxy-cAMP, but is produced in response to GTPγS in cell lysates, indicating that G-protein-coupled cAMP receptor activation of adenylyl cyclase is regulated by RasC. However, cAMP-induced ERK2 phosphorylation is unaffected in rasC– cells, indicating that RasC is not an upstream activator of the mitogen-activated protein kinase required for cAMP relay. rasC– cells also exhibit reduced chemotaxis to cAMP during early development and delayed response to periodic cAMP stimuli produced by wild-type cells in chimeric mixtures. Furthermore, cAMP-induced Akt/PKB phosphorylation through a phosphatidylinositide 3-kinase (PI3K)-dependent pathway is dramatically reduced in rasC– cells, suggesting that G-protein-coupled serpentine receptor activation of PI3K is regulated by RasC. Cells lacking the RasGEF, AleA, exhibit similar defects as rasC– cells, suggesting that AleA may activate RasC. PMID:11500376

  5. RasC is required for optimal activation of adenylyl cyclase and Akt/PKB during aggregation.

    PubMed

    Lim, C J; Spiegelman, G B; Weeks, G

    2001-08-15

    Disruption of Dictyostelium rasC, encoding a Ras subfamily protein, generated cells incapable of aggregation. While rasC expression is enriched in a cell type-specific manner during post-aggregative development, the defect in rasC(-) cells is restricted to aggregation and fully corrected by application of exogenous cAMP pulses. cAMP is not produced in rasC(-) cells stimulated by 2'-deoxy-cAMP, but is produced in response to GTPgammaS in cell lysates, indicating that G-protein-coupled cAMP receptor activation of adenylyl cyclase is regulated by RasC. However, cAMP-induced ERK2 phosphorylation is unaffected in rasC(-) cells, indicating that RasC is not an upstream activator of the mitogen-activated protein kinase required for cAMP relay. rasC(-) cells also exhibit reduced chemotaxis to cAMP during early development and delayed response to periodic cAMP stimuli produced by wild-type cells in chimeric mixtures. Furthermore, cAMP-induced Akt/PKB phosphorylation through a phosphatidylinositide 3-kinase (PI3K)-dependent pathway is dramatically reduced in rasC(-) cells, suggesting that G-protein-coupled serpentine receptor activation of PI3K is regulated by RasC. Cells lacking the RasGEF, AleA, exhibit similar defects as rasC(-) cells, suggesting that AleA may activate RasC.

  6. Evidence for functional pre-coupled complexes of receptor heteromers and adenylyl cyclase.

    PubMed

    Navarro, Gemma; Cordomí, Arnau; Casadó-Anguera, Verónica; Moreno, Estefanía; Cai, Ning-Sheng; Cortés, Antoni; Canela, Enric I; Dessauer, Carmen W; Casadó, Vicent; Pardo, Leonardo; Lluís, Carme; Ferré, Sergi

    2018-03-28

    G protein-coupled receptors (GPCRs), G proteins and adenylyl cyclase (AC) comprise one of the most studied transmembrane cell signaling pathways. However, it is unknown whether the ligand-dependent interactions between these signaling molecules are based on random collisions or the rearrangement of pre-coupled elements in a macromolecular complex. Furthermore, it remains controversial whether a GPCR homodimer coupled to a single heterotrimeric G protein constitutes a common functional unit. Using a peptide-based approach, we here report evidence for the existence of functional pre-coupled complexes of heteromers of adenosine A 2A receptor and dopamine D 2 receptor homodimers coupled to their cognate Gs and Gi proteins and to subtype 5 AC. We also demonstrate that this macromolecular complex provides the necessary frame for the canonical Gs-Gi interactions at the AC level, sustaining the ability of a Gi-coupled GPCR to counteract AC activation mediated by a Gs-coupled GPCR.

  7. Adenylyl cyclase A mRNA localized at the back of cells is actively translated in live chemotaxing Dictyostelium.

    PubMed

    Wang, Weiye; Chen, Song; Das, Satarupa; Losert, Wolfgang; Parent, Carole A

    2018-05-04

    Dictyostelium discoideum cells transport adenylyl cyclase A (ACA)-containing vesicles to the back of polarized cells to relay exogenous cAMP signals during chemotaxis. Fluorescence in situ hybridization (FISH) experiments showed that ACA mRNA is also asymmetrically distributed at the back of polarized cells. By using the MS2 bacteriophage system, we now visualize the distribution of ACA mRNA in live chemotaxing cells. We found that the ACA mRNA localization is not dependent on the translation of the protein product and requires multiple cis-acting elements within the ACA-coding sequence. We show that ACA mRNA is associated with actively translating ribosomes and is transported along microtubules towards the back of cells. By monitoring the recovery of ACA-YFP after photobleaching, we observed that local translation of ACA-YFP occurs at the back of cells. These data represent a novel functional role for localized translation in the relay of chemotactic signals during chemotaxis. © 2018. Published by The Company of Biologists Ltd.

  8. AmTAR2: Functional characterization of a honeybee tyramine receptor stimulating adenylyl cyclase activity.

    PubMed

    Reim, Tina; Balfanz, Sabine; Baumann, Arnd; Blenau, Wolfgang; Thamm, Markus; Scheiner, Ricarda

    2017-01-01

    The biogenic monoamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. Insects such as honeybees do not synthesize these neuroactive substances. Instead, they employ octopamine and tyramine for comparable physiological functions. These biogenic amines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Based on pharmacological data obtained on heterologously expressed receptors, α- and β-adrenergic-like octopamine receptors are better activated by octopamine than by tyramine. Conversely, GPCRs forming the type 1 tyramine receptor clade (synonymous to octopamine/tyramine receptors) are better activated by tyramine than by octopamine. More recently, receptors were characterized which are almost exclusively activated by tyramine, thus forming an independent type 2 tyramine receptor clade. Functionally, type 1 tyramine receptors inhibit adenylyl cyclase activity, leading to a decrease in intracellular cAMP concentration ([cAMP] i ). Type 2 tyramine receptors can mediate Ca 2+ signals or both Ca 2+ signals and effects on [cAMP] i . We here provide evidence that the honeybee tyramine receptor 2 (AmTAR2), when heterologously expressed in flpTM cells, exclusively causes an increase in [cAMP] i . The receptor displays a pronounced preference for tyramine over octopamine. Its activity can be blocked by a series of established antagonists, of which mianserin and yohimbine are most efficient. The functional characterization of two tyramine receptors from the honeybee, AmTAR1 (previously named AmTYR1) and AmTAR2, which respond to tyramine by changing cAMP levels in opposite direction, is an important step towards understanding the actions of tyramine in honeybee behavior and physiology, particularly in comparison to the effects of octopamine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Mice Overexpressing Type 1 Adenylyl Cyclase Show Enhanced Spatial Memory Flexibility in the Absence of Intact Synaptic Long-Term Depression

    ERIC Educational Resources Information Center

    Zhang, Ming; Wang, Hongbing

    2013-01-01

    There is significant interest in understanding the contribution of intracellular signaling and synaptic substrates to memory flexibility, which involves new learning and suppression of obsolete memory. Here, we report that enhancement of Ca[superscript 2+]-stimulated cAMP signaling by overexpressing type 1 adenylyl cyclase (AC1) facilitated…

  10. Absorption and emission spectroscopic characterization of photo-dynamics of photoactivated adenylyl cyclase mutant bPAC-Y7F of Beggiatoa sp.

    PubMed

    Penzkofer, Alfons; Stierl, Manuela; Mathes, Tilo; Hegemann, Peter

    2014-11-01

    The photoactivated cyclase bPAC of the microbial mats bacterium Beggiatoa sp. consists of a BLUF domain and an adenylyl cyclase domain. It has strong activity of photo-induced cyclic adenylyl monophosphate (cAMP) formation and is therefore an important optogenetic tool in neuroscience applications. The SUMO-bPAC-Y7F mutant where Tyr-7 is replaced by Phe-7 in the BLUF domain has lost the typical BLUF domain photo-cycle dynamics. Instead, the investigated SUMO-bPAC-Y7F mutant consisted of three protein conformations with different triplet based photo-dynamics: (i) reversible flavin quinone (Fl) cofactor reduction to flavin semiquinone (FlH), (ii) reversible violet/near ultraviolet absorbing flavin photoproduct (FlA) formation, and (iii) irreversible red absorbing flavin photoproduct (FlC) formation. Absorption and emission spectroscopic measurements on SUMO-bPAC-Y7F were carried out before, during and after light exposure. Flavin photo-dynamics schemes are developed for the SUMO-bPAC-Y7F fractions performing photo-induced FlH, FlA, and FlC formation. Quantitative parameters of the flavin cofactor excitation, relaxation and recovery dynamics in SUMO-bPAC-Y7F are determined. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Type 1 Adenylyl Cyclase is Essential for Maintenance of Remote Contextual Fear Memory

    PubMed Central

    Shan, Qiang; Chan, Guy C.-K.; Storm, Daniel R.

    2008-01-01

    Although molecular mechanisms for hippocampus-dependent memory have been extensively studied, much less is known about signaling events important for remote memory. Here we report that mice lacking type 1 adenylyl cyclase (AC1) are able to establish and retrieve remote contextual memory but unable to sustain it as long as wild type mice. Interestingly, mice over-expressing AC1 show superior remote contextual memory even though they exhibit normal hippocampus-dependent contextual memory. These data illustrate that calcium coupling to cAMP contributes to the stability of remote memory and identifies AC1 as a potential drug target site to improve long-term remote memory. PMID:19036980

  12. Identification of an adenylyl cyclase inhibitor for treating neuropathic and inflammatory pain.

    PubMed

    Wang, Hansen; Xu, Hui; Wu, Long-Jun; Kim, Susan S; Chen, Tao; Koga, Kohei; Descalzi, Giannina; Gong, Bo; Vadakkan, Kunjumon I; Zhang, Xuehan; Kaang, Bong-Kiun; Zhuo, Min

    2011-01-12

    Neuropathic pain, often caused by nerve injury, is commonly observed among patients with different diseases. Because its basic mechanisms are poorly understood, effective medications are limited. Previous investigations of basic pain mechanisms and drug discovery efforts have focused mainly on early sensory neurons such as dorsal root ganglion and spinal dorsal horn neurons, and few synaptic-level studies or new drugs are designed to target the injury-related cortical plasticity that accompanies neuropathic pain. Our previous work has demonstrated that calcium-stimulated adenylyl cyclase 1 (AC1) is critical for nerve injury-induced synaptic changes in the anterior cingulate cortex. Through rational drug design and chemical screening, we have identified a lead candidate AC1 inhibitor, NB001, which is relatively selective for AC1 over other adenylate cyclase isoforms. Using a variety of behavioral tests and toxicity studies, we have found that NB001, when administered intraperitoneally or orally, has an analgesic effect in animal models of neuropathic pain, without any apparent side effects. Our study thus shows that AC1 could be a productive therapeutic target for neuropathic pain and describes a new agent for the possible treatment of neuropathic pain.

  13. Isolated dorsal root ganglion neurones inhibit receptor-dependent adenylyl cyclase activity in associated glial cells

    PubMed Central

    Ng, KY; Yeung, BHS; Wong, YH; Wise, H

    2013-01-01

    Background and Purpose Hyper-nociceptive PGE2 EP4 receptors and prostacyclin (IP) receptors are present in adult rat dorsal root ganglion (DRG) neurones and glial cells in culture. The present study has investigated the cell-specific expression of two other Gs-protein coupled hyper-nociceptive receptor systems: β-adrenoceptors and calcitonin gene-related peptide (CGRP) receptors in isolated DRG cells and has examined the influence of neurone–glial cell interactions in regulating adenylyl cyclase (AC) activity. Experimental Approach Agonist-stimulated AC activity was determined in mixed DRG cell cultures from adult rats and compared with activity in DRG neurone-enriched cell cultures and pure DRG glial cell cultures. Key Results Pharmacological analysis showed the presence of Gs-coupled β2-adrenoceptors and CGRP receptors, but not β1-adrenoceptors, in all three DRG cell preparations. Agonist-stimulated AC activity was weakest in DRG neurone-enriched cell cultures. DRG neurones inhibited IP receptor-stimulated glial cell AC activity by a process dependent on both cell–cell contact and neurone-derived soluble factors, but this is unlikely to involve purine or glutamine receptor activation. Conclusions and Implications Gs-coupled hyper-nociceptive receptors are readily expressed on DRG glial cells in isolated cell cultures and the activity of CGRP, EP4 and IP receptors, but not β2-adrenoceptors, in glial cells is inhibited by DRG neurones. Studies using isolated DRG cells should be aware that hyper-nociceptive ligands may stimulate receptors on glial cells in addition to neurones, and that variable numbers of neurones and glial cells will influence absolute measures of AC activity and affect downstream functional responses. PMID:22924655

  14. The "soluble" adenylyl cyclase in sperm mediates multiple signaling events required for fertilization.

    PubMed

    Hess, Kenneth C; Jones, Brian H; Marquez, Becky; Chen, Yanqiu; Ord, Teri S; Kamenetsky, Margarita; Miyamoto, Catarina; Zippin, Jonathan H; Kopf, Gregory S; Suarez, Susan S; Levin, Lonny R; Williams, Carmen J; Buck, Jochen; Moss, Stuart B

    2005-08-01

    Mammalian fertilization is dependent upon a series of bicarbonate-induced, cAMP-dependent processes sperm undergo as they "capacitate," i.e., acquire the ability to fertilize eggs. Male mice lacking the bicarbonate- and calcium-responsive soluble adenylyl cyclase (sAC), the predominant source of cAMP in male germ cells, are infertile, as the sperm are immotile. Membrane-permeable cAMP analogs are reported to rescue the motility defect, but we now show that these "rescued" null sperm were not hyperactive, displayed flagellar angulation, and remained unable to fertilize eggs in vitro. These deficits uncover a requirement for sAC during spermatogenesis and/or epididymal maturation and reveal limitations inherent in studying sAC function using knockout mice. To circumvent this restriction, we identified a specific sAC inhibitor that allowed temporal control over sAC activity. This inhibitor revealed that capacitation is defined by separable events: induction of protein tyrosine phosphorylation and motility are sAC dependent while acrosomal exocytosis is not dependent on sAC.

  15. Activation of the adenylyl cyclase/cyclic AMP/protein kinase A pathway in endothelial cells exposed to cyclic strain

    NASA Technical Reports Server (NTRS)

    Cohen, C. R.; Mills, I.; Du, W.; Kamal, K.; Sumpio, B. E.

    1997-01-01

    The aim of this study was to assess the involvement of the adenylyl cyclase/cyclic AMP/protein kinase A pathway (AC) in endothelial cells (EC) exposed to different levels of mechanical strain. Bovine aortic EC were seeded to confluence on flexible membrane-bottom wells. The membranes were deformed with either 150 mm Hg (average 10% strain) or 37.5 mm Hg (average 6% strain) vacuum at 60 cycles per minute (0.5 s strain; 0.5 s relaxation) for 0-60 min. The results demonstrate that at 10% average strain (but not 6% average strain) there was a 1.5- to 2.2-fold increase in AC, cAMP, and PKA activity by 15 min when compared to unstretched controls. Further studies revealed an increase in cAMP response element binding protein in EC subjected to the 10% average strain (but not 6% average strain). These data support the hypothesis that cyclic strain activates the AC/cAMP/PKA signal transduction pathway in EC which may occur by exceeding a strain threshold and suggest that cyclic strain may stimulate the expression of genes containing cAMP-responsive promoter elements.

  16. Opioid and GABAB receptors differentially couple to an adenylyl cyclase/protein kinase A downstream effector after chronic morphine treatment

    PubMed Central

    Bagley, Elena E.

    2014-01-01

    Opioids are intensely addictive, and cessation of their chronic use is associated with a highly aversive withdrawal syndrome. A cellular hallmark of withdrawal is an opioid sensitive protein kinase A-dependent increase in GABA transporter-1 (GAT-1) currents in periaqueductal gray (PAG) neurons. Elevated GAT-1 activity directly increases GABAergic neuronal excitability and synaptic GABA release, which will enhance GABAergic inhibition of PAG output neurons. This reduced activity of PAG output neurons to several brain regions, including the hypothalamus and medulla, contributes to many of the PAG-mediated signs of opioid withdrawal. The GABAB receptor agonist baclofen reduces some of the PAG mediated signs of opioid withdrawal. Like the opioid receptors the GABAB receptor is a Gi/Go coupled G-protein coupled receptor. This suggests it could be modulating GAT-1 activity in PAG neurons through its inhibition of the adenylyl cyclase/protein kinase A pathway. Opioid modulation of the GAT-1 activity can be detected by changes in the reversal potential of opioid membrane currents. We found that when opioids are reducing the GAT-1 cation conductance and increasing the GIRK conductance the opioid agonist reversal potential is much more negative than Ek. Using this approach for GABAB receptors we show that the GABAB receptor agonist, baclofen, does not couple to inhibition of GAT-1 currents during opioid withdrawal. It is possible this differential signaling of the two Gi/Go coupled G-protein coupled receptors is due to the strong compartmentalization of the GABAB receptor that does not favor signaling to the adenylyl cyclase/protein kinase A/GAT-1 pathway. This highlights the importance of studying the effects of G-protein coupled receptors in native tissue with endogenous G-protein coupled receptors and the full complement of relevant proteins and signaling molecules. This study suggests that baclofen reduces opioid withdrawal symptoms through a non-GAT-1 effector. PMID

  17. Opioid and GABAB receptors differentially couple to an adenylyl cyclase/protein kinase A downstream effector after chronic morphine treatment.

    PubMed

    Bagley, Elena E

    2014-01-01

    Opioids are intensely addictive, and cessation of their chronic use is associated with a highly aversive withdrawal syndrome. A cellular hallmark of withdrawal is an opioid sensitive protein kinase A-dependent increase in GABA transporter-1 (GAT-1) currents in periaqueductal gray (PAG) neurons. Elevated GAT-1 activity directly increases GABAergic neuronal excitability and synaptic GABA release, which will enhance GABAergic inhibition of PAG output neurons. This reduced activity of PAG output neurons to several brain regions, including the hypothalamus and medulla, contributes to many of the PAG-mediated signs of opioid withdrawal. The GABAB receptor agonist baclofen reduces some of the PAG mediated signs of opioid withdrawal. Like the opioid receptors the GABAB receptor is a Gi/Go coupled G-protein coupled receptor. This suggests it could be modulating GAT-1 activity in PAG neurons through its inhibition of the adenylyl cyclase/protein kinase A pathway. Opioid modulation of the GAT-1 activity can be detected by changes in the reversal potential of opioid membrane currents. We found that when opioids are reducing the GAT-1 cation conductance and increasing the GIRK conductance the opioid agonist reversal potential is much more negative than E k . Using this approach for GABAB receptors we show that the GABAB receptor agonist, baclofen, does not couple to inhibition of GAT-1 currents during opioid withdrawal. It is possible this differential signaling of the two Gi/Go coupled G-protein coupled receptors is due to the strong compartmentalization of the GABAB receptor that does not favor signaling to the adenylyl cyclase/protein kinase A/GAT-1 pathway. This highlights the importance of studying the effects of G-protein coupled receptors in native tissue with endogenous G-protein coupled receptors and the full complement of relevant proteins and signaling molecules. This study suggests that baclofen reduces opioid withdrawal symptoms through a non-GAT-1 effector.

  18. Lysophosphatidic acid and adenylyl cyclase inhibitor increase proliferation of senescent human diploid fibroblasts by inhibiting adenosine monophosphate-activated protein kinase.

    PubMed

    Rhim, Ji-Heon; Jang, Ik-Soon; Song, Kye-Yong; Ha, Moon-Kyung; Cho, Sung-Chun; Yeo, Eui-Ju; Park, Sang Chul

    2008-08-01

    This study was designed to elucidate the molecular mechanism underlying lysophosphatidic acid (LPA) and adenylyl cyclase inhibitor SQ22536 (ACI)-induced senescent human diploid fibroblast (HDF) proliferation. Because adenosine monophosphate (AMP)-activated protein kinase (AMPK) is known to inhibit cell proliferation, we examined the phosphorylation status of AMPK and p53 and the expression level of p21(waf1/cip1) after treating HDFs with LPA and ACI. Phosphorylation of AMPKalpha on threonine-172 (p-Thr172-AMPKalpha) increases its catalytic activity but phosphorylation on serine-485/491 (p-Ser485/491-AMPKalpha) reduces the accessibility of the Thr172 phosphorylation site thereby inhibiting its catalytic activity. LPA increased p-Ser485/491-AMPKalpha, presumably by activating cAMP-dependent protein kinase (PKA). However, ACI reduced p-Thr172-AMPKalpha by inhibiting the LKB signaling. Our data demonstrated that both LPA and ACI inhibit the catalytic activity of AMPKalpha and p53 by differentially regulating phosphorylation of AMPKalpha, causing increased senescent cell proliferation. These findings suggest that the proliferation potential of senescent HDFs can be modulated through the regulation of the AMPK signaling pathway.

  19. pH sensing via bicarbonate-regulated “soluble” adenylyl cyclase (sAC)

    PubMed Central

    Rahman, Nawreen; Buck, Jochen; Levin, Lonny R.

    2013-01-01

    Soluble adenylyl cyclase (sAC) is a source of the second messenger cyclic adenosine 3′, 5′ monophosphate (cAMP). sAC is directly regulated by bicarbonate (HCO−3) ions. In living cells, HCO−3 ions are in nearly instantaneous equilibrium with carbon dioxide (CO2) and pH due to the ubiquitous presence of carbonic anhydrases. Numerous biological processes are regulated by CO2, HCO−3, and/or pH, and in a number of these, sAC has been shown to function as a physiological CO2/HCO3/pH sensor. In this review, we detail the known pH sensing functions of sAC, and we discuss two highly-studied, pH-dependent pathways in which sAC might play a role. PMID:24324443

  20. Chronic treatment with escitalopram but not R-citalopram translocates Galpha(s) from lipid raft domains and potentiates adenylyl cyclase: a 5-hydroxytryptamine transporter-independent action of this antidepressant compound.

    PubMed

    Zhang, Lanqiu; Rasenick, Mark M

    2010-03-01

    Chronic antidepressant treatment has been shown to increase adenylyl cyclase activity, in part, due to translocation of Galpha(s) from lipid rafts to a nonraft fraction of the plasma membrane where they engage in a more facile stimulation of adenylyl cyclase. This effect holds for multiple classes of antidepressants, and for serotonin uptake inhibitors, it occurs in the absence of the serotonin transporter. In the present study, we examined the change in the amount of Galpha(s) in lipid raft and whole cell lysate after exposing C6 cells to escitalopram. The results showed that chronic (but not acute) escitalopram decreased the content of Galpha(s) in lipid rafts, whereas there was no change in overall Galpha(s) content. These effects were drug dose- and exposure time-dependent. Although R-citalopram has been reported to antagonize some effects of escitalopram, this compound was without effect on Galpha(s) localization in lipid rafts, and R-citalopram did not inhibit these actions of escitalopram. Escitalopram treatment increased cAMP accumulation, and this seemed due to increased coupling between Galpha(s) and adenylyl cyclase. Thus, escitalopram is potent, rapid and efficacious in translocating Galpha(s) from lipid rafts, and this effect seems to occur independently of 5-hydroxytryptamine transporters. Our results suggest that, although antidepressants display distinct affinities for well identified targets (e.g., monoamine transporters), several presynaptic and postsynaptic molecules are probably modified during chronic antidepressant treatment, and these additional targets may be required for clinical efficacy of these drugs.

  1. Chronic Treatment with Escitalopram but Not R-Citalopram Translocates Gαs from Lipid Raft Domains and Potentiates Adenylyl Cyclase: A 5-Hydroxytryptamine Transporter-Independent Action of This Antidepressant Compound

    PubMed Central

    Zhang, Lanqiu

    2010-01-01

    Chronic antidepressant treatment has been shown to increase adenylyl cyclase activity, in part, due to translocation of Gαs from lipid rafts to a nonraft fraction of the plasma membrane where they engage in a more facile stimulation of adenylyl cyclase. This effect holds for multiple classes of antidepressants, and for serotonin uptake inhibitors, it occurs in the absence of the serotonin transporter. In the present study, we examined the change in the amount of Gαs in lipid raft and whole cell lysate after exposing C6 cells to escitalopram. The results showed that chronic (but not acute) escitalopram decreased the content of Gαs in lipid rafts, whereas there was no change in overall Gαs content. These effects were drug dose- and exposure time-dependent. Although R-citalopram has been reported to antagonize some effects of escitalopram, this compound was without effect on Gαs localization in lipid rafts, and R-citalopram did not inhibit these actions of escitalopram. Escitalopram treatment increased cAMP accumulation, and this seemed due to increased coupling between Gαs and adenylyl cyclase. Thus, escitalopram is potent, rapid and efficacious in translocating Gαs from lipid rafts, and this effect seems to occur independently of 5-hydroxytryptamine transporters. Our results suggest that, although antidepressants display distinct affinities for well identified targets (e.g., monoamine transporters), several presynaptic and postsynaptic molecules are probably modified during chronic antidepressant treatment, and these additional targets may be required for clinical efficacy of these drugs. PMID:19996298

  2. Pituitary adenylate cyclase activating polypeptide reduces A-type K+ currents and caspase activity in cultured adult mouse olfactory neurons.

    PubMed

    Han, P; Lucero, M T

    2005-01-01

    Pituitary adenylate cyclase activating polypeptide has been shown to reduce apoptosis in neonatal cerebellar and olfactory receptor neurons, however the underlying mechanisms have not been elucidated. In addition, the neuroprotective effects of pituitary adenylate cyclase activating polypeptide have not been examined in adult tissues. To study the effects of pituitary adenylate cyclase activating polypeptide on neurons in apoptosis, we measured caspase activation in adult olfactory receptor neurons in vitro. Interestingly, we found that the protective effects of pituitary adenylate cyclase activating polypeptide were related to the absence of a 4-aminopyridine (IC50=144 microM) sensitive rapidly inactivating potassium current often referred to as A-type current. In the presence of 40 nM pituitary adenylate cyclase activating polypeptide 38, both A-type current and activated caspases were significantly reduced. A-type current reduction by pituitary adenylate cyclase activating polypeptide was blocked by inhibiting the phospholipase C pathway, but not the adenylyl cyclase pathway. Our observation that 5 mM 4-aminopyridine mimicked the caspase inhibiting effects of pituitary adenylate cyclase activating polypeptide indicates that A-type current is involved in apoptosis. This work contributes to our growing understanding that potassium currents are involved with the activation of caspases to affect the balance between cell life and death.

  3. Pituitary adenylyl cyclase-activating peptide: A pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock

    PubMed Central

    Chen, Dong; Buchanan, Gordon F.; Ding, Jian M.; Hannibal, Jens; Gillette, Martha U.

    1999-01-01

    The circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus organizes behavioral rhythms, such as the sleep–wake cycle, on a near 24-h time base and synchronizes them to environmental day and night. Light information is transmitted to the SCN by direct retinal projections via the retinohypothalamic tract (RHT). Both glutamate (Glu) and pituitary adenylyl cyclase-activating peptide (PACAP) are localized within the RHT. Whereas Glu is an established mediator of light entrainment, the role of PACAP is unknown. To understand the functional significance of this colocalization, we assessed the effects of nocturnal Glu and PACAP on phasing of the circadian rhythm of neuronal firing in slices of rat SCN. When coadministered, PACAP blocked the phase advance normally induced by Glu during late night. Surprisingly, blocking PACAP neurotransmission, with either PACAP6–38, a specific PACAP receptor antagonist, or anti-PACAP antibodies, augmented the Glu-induced phase advance. Blocking PACAP in vivo also potentiated the light-induced phase advance of the rhythm of hamster wheel-running activity. Conversely, PACAP enhanced the Glu-induced delay in the early night, whereas PACAP6–38 inhibited it. These results reveal that PACAP is a significant component of the Glu-mediated light-entrainment pathway. When Glu activates the system, PACAP receptor-mediated processes can provide gain control that generates graded phase shifts. The relative strengths of the Glu and PACAP signals together may encode the amplitude of adaptive circadian behavioral responses to the natural range of intensities of nocturnal light. PMID:10557344

  4. Learning defects in Drosophila growth restricted chico mutants are caused by attenuated adenylyl cyclase activity.

    PubMed

    Naganos, Shintaro; Ueno, Kohei; Horiuchi, Junjiro; Saitoe, Minoru

    2016-04-06

    Reduced insulin/insulin-like growth factor signaling (IIS) is a major cause of symmetrical intrauterine growth retardation (IUGR), an impairment in cell proliferation during prenatal development that results in global growth defects and mental retardation. In Drosophila, chico encodes the only insulin receptor substrate. Similar to other animal models of IUGR, chico mutants have defects in global growth and associative learning. However, the physiological and molecular bases of learning defects caused by chico mutations, and by symmetrical IUGR, are not clear. In this study, we found that chico mutations impair memory-associated synaptic plasticity in the mushroom bodies (MBs), neural centers for olfactory learning. Mutations in chico reduce expression of the rutabaga-type adenylyl cyclase (rut), leading to decreased cAMP synthesis in the MBs. Expressing a rut (+) transgene in the MBs restores memory-associated plasticity and olfactory associative learning in chico mutants, without affecting growth. Thus chico mutations disrupt olfactory learning, at least in part, by reducing cAMP signaling in the MBs. Our results suggest that some cognitive defects associated with reduced IIS may occur, independently of developmental defects, from acute reductions in cAMP signaling.

  5. Regulator of G-protein signaling 6 (RGS6) promotes anxiety and depression by attenuating serotonin-mediated activation of the 5-HT1A receptor-adenylyl cyclase axis

    PubMed Central

    Stewart, Adele; Maity, Biswanath; Wunsch, Amanda M.; Meng, Fantao; Wu, Qi; Wemmie, John A.; Fisher, Rory A.

    2014-01-01

    Targeting serotonin (5-HT) bioavailability with selective 5-HT reuptake inhibitors (SSRIs) remains the most widely used treatment for mood disorders. However, their limited efficacy, delayed onset of action, and side effects restrict their clinical utility. Endogenous regulator of G-protein signaling (RGS) proteins have been implicated as key inhibitors of 5-HT1ARs, whose activation is believed to underlie the beneficial effects of SSRIs, but the identity of the specific RGS proteins involved remains unknown. We identify RGS6 as the critical negative regulator of 5-HT1AR-dependent antidepressant actions. RGS6 is enriched in hippocampal and cortical neurons, 5-HT1AR-expressing cells implicated in mood disorders. RGS6−/− mice exhibit spontaneous anxiolytic and antidepressant behavior rapidly and completely reversibly by 5-HT1AR blockade. Effects of the SSRI fluvoxamine and 5-HT1AR agonist 8-OH-DPAT were also potentiated in RGS6+/− mice. The phenotype of RGS6−/− mice was associated with decreased CREB phosphorylation in the hippocampus and cortex, implicating enhanced Gαi-dependent adenylyl cyclase inhibition as a possible causative factor in the behavior observed in RGS6−/− animals. Our results demonstrate that by inhibiting serotonergic innervation of the cortical-limbic neuronal circuit, RGS6 exerts powerful anxiogenic and prodepressant actions. These findings indicate that RGS6 inhibition may represent a viable means to treat mood disorders or enhance the efficacy of serotonergic agents.—Stewart, A., Maity, B., Wunsch, A. M., Meng, F., Wu, Q., Wemmie, J. A., Fisher, R. A. Regulator of G-protein signaling 6 (RGS6) promotes anxiety and depression by attenuating serotonin-mediated activation of the 5-HT1A receptor-adenylyl cyclase axis. PMID:24421401

  6. Disruption of type 3 adenylyl cyclase expression in the hypothalamus leads to obesity

    PubMed Central

    Cao, Hong; Chen, Xuanmao; Yang, Yimei; Storm, Daniel R

    2016-01-01

    Evidence from human studies and transgenic mice lacking the type 3 adenylyl cyclase (AC3) indicates that AC3 plays a role in the regulation of body weight. It is unknown in which brain region AC3 exerts such an effect. We examined the role of AC3 in the hypothalamus for body weight control using a floxed AC3 mouse strain. Here, we report that AC3 flox/flox mice became obese after the administration of AAV-CRE-GFP into the hypothalamus. Both male and female AC3 floxed mice showed heavier body weight than AAV-GFP injected control mice. Furthermore, mice with selective ablation of AC3 expression in the ventromedial hypothalamus also showed increased body weight and food consumption. Our results indicated that AC3 in the hypothalamus regulates energy balance. PMID:27942392

  7. Solubilization of adenylyl cyclase from human myometrium in a alphas-coupled form.

    PubMed

    Bajo, Ana M; Prieto, Juan C; Valenzuela, Pedro; Martinez, Pilar; Guijarro, Luis G

    2003-08-01

    Adenylyl cyclase (AC) was extracted from human myometrium with either non-ionic (Lubrol-PX or Triton X-100) or zwitterionic (3-[3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, CHAPS) detergents. The soluble enzyme was stimulated by forskolin, a hydrophobic activator, in the presence of Mg2+ indicating that the catalytic subunit had not been damaged after solubilization. The enzyme was also activated by 5'-guanylyl imidodiphosphate (Gpp(NH)p) showing that the catalytic unit was not separated from stimulatory guanine nucleotide binding protein (Gs) during the extraction. Both activators showed different effects on the stimulatory efficacy and potency of AC activity solobulized with detergents. Gel filtration of Lubrol-PX and CHAPS extracts over a Sepharose CL-2B column partially resolved AC and its complexes. The chromatographic profile for Lubrol-solubilized AC presented a main peak of about 200 kDa whereas CHAPS-solubilized AC showed a dominant peak of about 1100 kDa. The heterodisperse peaks obtained revealed that the catalytic AC subunit was not separated from Gs proteins after gel filtration, and that AC could be associated with other cellular proteins. When Lubrol extract was submitted to anionic-exchange chromatography, the enzyme was purified about 7.5 fold (enzymatic activity of 48.1 pmol/min/mg of protein). The catalytic subunit was co-eluted with both AC-activating proteins Galphas large (52.2 kDa) and Galphas small (48.7 kDa). This is the first demonstration of the stable physical association of AC with both alphas subunits of G proteins in human myometrium.

  8. Partial agonist clonidine mediates alpha(2)-AR subtypes specific regulation of cAMP accumulation in adenylyl cyclase II transfected DDT1-MF2 cells.

    PubMed

    Limon-Boulez, I; Bouet-Alard, R; Gettys, T W; Lanier, S M; Maltier, J P; Legrand, C

    2001-02-01

    alpha2-Adrenergic receptor (alpha(2)-AR) activation in the pregnant rat myometrium at midterm potentiates beta(2)-AR stimulation of adenylyl cyclase (AC) via Gbetagamma regulation of the type II isoform of adenylyl cyclase. However, at term, alpha(2)-AR activation inhibits beta(2)-AR stimulation of AC. This phenomenon is associated with changes in alpha(2)-AR subtype expression (midterm alpha(2A/D)-AR > alpha(2B)-AR; term alpha(2B) >or =alpha(2A/D)-AR), without any change in ACII mRNA, suggesting that alpha(2A/D)- and alpha(2B)-AR differentially regulate beta(2)-cAMP production. To address this issue, we have stably expressed the same density of alpha(2A/D)- or alpha(2B)-AR with AC II in DDT1-MF2 cells. Clonidine (partial agonist) increased beta(2)-AR-stimulated cAMP production in alpha(2A/D)-AR-ACII transfectants but inhibited it in alpha(2B)-AR-ACII transfectants. In contrast, epinephrine (full agonist) enhanced beta(2)-stimulated ACII in both alpha(2A)- and alpha(2B)-ACII clonal cell lines. 4-Azidoanilido-[alpha-(32)P]GTP-labeling of activated G proteins indicated that, in alpha(2B)-AR transfectants, clonidine activated only Gi(2), whereas epinephrine, the full agonist, effectively coupled to Gi(2) and Gi(3). Thus, partial and full agonists selectively activate G proteins that lead to drug specific effects on effectors. Moreover, these data indicate that Gi(3) activation is required for potentiation of beta(2)-AR stimulation of AC by alpha(2A/D) and alpha(2B)-AR in DDT1-MF2 cells. This may reflect an issue of the amount of Gbetagamma released upon receptor activation and/or betagamma composition of Gi(3) versus Gi(2).

  9. Functional characterization of transmembrane adenylyl cyclases from the honeybee brain.

    PubMed

    Balfanz, Sabine; Ehling, Petra; Wachten, Sebastian; Jordan, Nadine; Erber, Joachim; Mujagic, Samir; Baumann, Arnd

    2012-06-01

    The second messenger cAMP has a pivotal role in animals' physiology and behavior. Intracellular concentrations of cAMP are balanced by cAMP-synthesizing adenylyl cyclases (ACs) and cAMP-cleaving phosphodiesterases. Knowledge about ACs in the honeybee (Apis mellifera) is rather limited and only an ortholog of the vertebrate AC3 isoform has been functionally characterized, so far. Employing bioinformatics and functional expression we characterized two additional honeybee genes encoding membrane-bound (tm)ACs. The proteins were designated AmAC2t and AmAC8. Unlike the common structure of tmACs, AmAC2t lacks the first transmembrane domain. Despite this unusual topography, AmAC2t-activity could be stimulated by norepinephrine and NKH477 with EC(50s) of 0.07 μM and 3 μM. Both ligands stimulated AmAC8 with EC(50s) of 0.24 μM and 3.1 μM. In brain cryosections, intensive staining of mushroom bodies was observed with specific antibodies against AmAC8, an expression pattern highly reminiscent of the Drosophila rutabaga AC. In a current release of the honeybee genome database we identified three additional tmAC- and one soluble AC-encoding gene. These results suggest that (1) the AC-gene family in honeybees is comparably large as in other species, and (2) based on the restricted expression of AmAC8 in mushroom bodies, this enzyme might serve important functions in honeybee behavior. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. An Improved Targeted cAMP Sensor to Study the Regulation of Adenylyl Cyclase 8 by Ca2+ Entry through Voltage-Gated Channels

    PubMed Central

    Everett, Katy L.; Cooper, Dermot M. F.

    2013-01-01

    Here we describe an improved sensor with reduced pH sensitivity tethered to adenylyl cyclase (AC) 8. The sensor was used to study cAMP dynamics in the AC8 microdomain of MIN6 cells, a pancreatic β-cell line. In these cells, AC8 was activated by Ca2+ entry through L-type voltage-gated channels following depolarisation. This activation could be reconstituted in HEK293 cells co-expressing AC8 and either the α1C or α1D subunit of L-type voltage-gated Ca2+ channels. The development of this improved sensor opens the door to the study of cAMP microdomains in excitable cells that have previously been challenging due to the sensitivity of fluorescent proteins to pH changes. PMID:24086669

  11. The propensity for consuming ethanol in Drosophila requires rutabaga adenylyl cyclase expression within mushroom body neurons

    PubMed Central

    Xu, Shiyu; Chan, Tammy; Shah, Vruntant; Zhang, Shixing; Pletcher, Scott D.; Roman, Gregg

    2012-01-01

    Alcohol activates reward systems through an unknown mechanism, in some cases leading to alcohol abuse and dependence. Herein, we utilized a two-choice Capillary Feeding assay to address the neural and molecular basis for ethanol self-administration in Drosophila melanogaster. Wild-type Drosophila demonstrates a significant preference for food containing between 5 and 15% ethanol. Preferred ethanol self-administration does not appear to be due to caloric advantage, nor due to perceptual biases, suggesting a hedonic bias for ethanol exists in Drosophila. Interestingly, rutabaga adenylyl cyclase expression within intrinsic mushroom body neurons is necessary for robust ethanol self-administration. The expression of rutabaga in mushroom bodies is also required for both appetitive and aversive olfactory associative memories, suggesting that reinforced behavior has an important role in the ethanol self-administration in Drosophila. However, rutabaga expression is required more broadly within the mushroom bodies for the preference for ethanol-containing food than for olfactory memories reinforced by sugar reward. Together these data implicate cAMP signaling and behavioral reinforcement for preferred ethanol self-administration in Drosophila melanogaster. PMID:22624869

  12. Bicarbonate disruption of the pulmonary endothelial barrier via activation of endogenous soluble adenylyl cyclase, isoform 10

    PubMed Central

    Obiako, Boniface; Calchary, Wendy; Xu, Ningyong; Kunstadt, Ryan; Richardson, Bianca; Nix, Jessica

    2013-01-01

    It is becoming increasingly apparent that cAMP signals within the pulmonary endothelium are highly compartmentalized, and this compartmentalization is critical to maintaining endothelial barrier integrity. Studies demonstrate that the exogenous soluble bacterial toxin, ExoY, and heterologous expression of the forskolin-stimulated soluble mammalian adenylyl cyclase (AC) chimera, sACI/II, elevate cytosolic cAMP and disrupt the pulmonary microvascular endothelial barrier. The barrier-disruptive effects of cytosolic cAMP generated by exogenous soluble ACs are in contrast to the barrier-protective effects of subplasma membrane cAMP generated by transmembrane AC, which strengthens endothelial barrier integrity. Endogenous soluble AC isoform 10 (AC10 or commonly known as sAC) lacks transmembrane domains and localizes within the cytosolic compartment. AC10 is uniquely activated by bicarbonate to generate cytosolic cAMP, yet its role in regulation of endothelial barrier integrity has not been addressed. Here we demonstrate that, within the pulmonary circulation, AC10 is expressed in pulmonary microvascular endothelial cells (PMVECs) and pulmonary artery endothelial cells (PAECs), yet expression in PAECs is lower. Furthermore, pulmonary endothelial cells selectively express bicarbonate cotransporters. While extracellular bicarbonate generates a phosphodiesterase 4-sensitive cAMP pool in PMVECs, no such cAMP response is detected in PAECs. Finally, addition of extracellular bicarbonate decreases resistance across the PMVEC monolayer and increases the filtration coefficient in the isolated perfused lung above osmolality controls. Collectively, these findings suggest that PMVECs have a bicarbonate-sensitive cytosolic cAMP pool that disrupts endothelial barrier integrity. These studies could provide an alternative mechanism for the controversial effects of bicarbonate correction of acidosis of acute respiratory distress syndrome patients. PMID:23686854

  13. Bicarbonate-regulated adenylyl cyclase (sAC) is a sensor that regulates pH-dependent V-ATPase recycling.

    PubMed

    Pastor-Soler, Nuria; Beaulieu, Valerie; Litvin, Tatiana N; Da Silva, Nicolas; Chen, Yanqiu; Brown, Dennis; Buck, Jochen; Levin, Lonny R; Breton, Sylvie

    2003-12-05

    Modulation of environmental pH is critical for the function of many biological systems. However, the molecular identity of the pH sensor and its interaction with downstream effector proteins remain poorly understood. Using the male reproductive tract as a model system in which luminal acidification is critical for sperm maturation and storage, we now report a novel pathway for pH regulation linking the bicarbonate activated soluble adenylyl cyclase (sAC) to the vacuolar H+ATPase (V-ATPase). Clear cells of the epididymis and vas deferens contain abundant V-ATPase in their apical pole and are responsible for acidifying the lumen. Proton secretion is regulated via active recycling of V-ATPase. Here we demonstrate that this recycling is regulated by luminal pH and bicarbonate. sAC is highly expressed in clear cells, and apical membrane accumulation of V-ATPase is triggered by a sAC-dependent rise in cAMP in response to alkaline luminal pH. As sAC is expressed in other acid/base transporting epithelia, including kidney and choroid plexus, this cAMP-dependent signal transduction pathway may be a widespread mechanism that allows cells to sense and modulate extracellular pH.

  14. Fluorogenic Green-Inside Red-Outside (GIRO) Labeling Approach Reveals Adenylyl Cyclase-Dependent Control of BKα Surface Expression

    PubMed Central

    2015-01-01

    The regulation of surface levels of protein is critical for proper cell function and influences properties including cell adhesion, ion channel contributions to current flux, and the sensitivity of surface receptors to ligands. Here we demonstrate a two-color labeling system in live cells using a single fluorogen activating peptide (FAP) based fusion tag, which enables the rapid and simultaneous quantification of surface and internal proteins. In the nervous system, BK channels can regulate neural excitability and neurotransmitter release, and the surface trafficking of BK channels can be modulated by signaling cascades and assembly with accessory proteins. Using this labeling approach, we examine the dynamics of BK channel surface expression in HEK293 cells. Surface pools of the pore-forming BKα subunit were stable, exhibiting a plasma membrane half-life of >10 h. Long-term activation of adenylyl cyclase by forskolin reduced BKα surface levels by 30%, an effect that could not be attributed to increased bulk endocytosis of plasma membrane proteins. This labeling approach is compatible with microscopic imaging and flow cytometry, providing a solid platform for examining protein trafficking in living cells. PMID:26301573

  15. Distinct Mechanisms of Calmodulin Binding and Regulation of Adenylyl Cyclases 1 and 8

    PubMed Central

    2012-01-01

    Calmodulin (CaM), by mediating the stimulation of the activity of two adenylyl cyclases (ACs), plays a key role in integrating the cAMP and Ca2+ signaling systems. These ACs, AC1 and AC8, by decoding discrete Ca2+ signals can contribute to fine-tuning intracellular cAMP dynamics, particularly in neurons where they predominate. CaM comprises an α-helical linker separating two globular regions at the N-terminus and the C-terminus that each bind two Ca2+ ions. These two lobes have differing affinities for Ca2+, and they can interact with target proteins independently. This study explores previous indications that the two lobes of CaM can regulate AC1 and AC8 differently and thereby yield different responses to cellular transitions in [Ca2+]i. We first compared by glutathione S-transferase pull-down assays and offline nanoelectrospray ionization mass spectrometry the interaction of CaM and Ca2+-binding deficient mutants of CaM with the internal CaM binding domain (CaMBD) of AC1 and the two terminal CaMBDs of AC8. We then examined the influence of these three CaMBDs on Ca2+ binding by native and mutated CaM in stopped-flow experiments to quantify their interactions. The three CaMBDs show quite distinct interactions with the two lobes of CaM. These findings establish the critical kinetic differences between the mechanisms of Ca2+-CaM activation of AC1 and AC8, which may underpin their different physiological roles. PMID:22971080

  16. Pituitary adenylyl cyclase-activating polypeptide (PACAP) and its receptor (PAC1-R) are positioned to modulate afferent signaling in the cochlea.

    PubMed

    Drescher, M J; Drescher, D G; Khan, K M; Hatfield, J S; Ramakrishnan, N A; Abu-Hamdan, M D; Lemonnier, L A

    2006-09-29

    Pituitary adenylyl cyclase-activating polypeptide (PACAP), via its specific receptor pituitary adenylyl cyclase-activating polypeptide receptor 1 (PAC1-R), is known to have roles in neuromodulation and neuroprotection associated with glutamatergic and cholinergic neurotransmission, which, respectively, are believed to form the primary basis for afferent and efferent signaling in the organ of Corti. Previously, we identified transcripts for PACAP preprotein and multiple splice variants of its receptor, PAC1-R, in microdissected cochlear subfractions. In the present work, neural localizations of PACAP and PAC1-R within the organ of Corti and spiral ganglion were examined, defining sites of PACAP action. Immunolocalization of PACAP and PAC1-R in the organ of Corti and spiral ganglion was compared with immunolocalization of choline acetyltransferase (ChAT) and synaptophysin as efferent neuronal markers, and glutamate receptor 2/3 (GluR2/3) and neurofilament 200 as afferent neuronal markers, for each of the three cochlear turns. Brightfield microscopy giving morphological detail for individual immunolocalizations was followed by immunofluorescence detection of co-localizations. PACAP was found to be co-localized with ChAT in nerve fibers of the intraganglionic spiral bundle and beneath the inner and outer hair cells within the organ of Corti. Further, evidence was obtained that PACAP is expressed in type I afferent axons leaving the spiral ganglion en route to the auditory nerve, potentially serving as a neuromodulator in axonal terminals. In contrast to the efferent localization of PACAP within the organ of Corti, PAC1-R immunoreactivity was co-localized with afferent dendritic neuronal marker GluR2/3 in nerve fibers passing beneath and lateral to the inner hair cell and in fibers at supranuclear and basal sites on outer hair cells. Given the known association of PACAP with catecholaminergic neurotransmission in sympathoadrenal function, we also re-examined the issue

  17. Transmembrane adenylyl cyclase regulates amphibian sperm motility through Protein Kinase A activation

    PubMed Central

    O’Brien, Emma D.; Krapf, Darío; Cabada, Marcelo O.; Visconti, Pablo E.; Arranz, Silvia E.

    2014-01-01

    Sperm motility is essential for achieving fertilization. In animals with external fertilization as amphibians, spermatozoa are stored in a quiescent state in the testis. Spermiation to hypotonic fertilization media triggers activation of sperm motility. Bufo arenarum sperm are immotile in artificial seminal plasma (ASP) but acquire in situ flagellar beating upon dilution. In addition to the effect of low osmolarity on sperm motility activation, we report that diffusible factors of the egg jelly coat (EW) regulate motility patterns, switching from in situ to progressive movement. The signal transduction pathway involved in amphibian sperm motility activation is mostly unknown. In the present study, we show a correlation between motility activation triggered by low osmotic pressure and activation of protein kinase A (PKA). Moreover, this is the first study to present strong evidences that point toward a role of a transmembrane adenyl-cyclase (tmAC) in the regulation of amphibian sperm motility through PKA activation. PMID:21126515

  18. Adenylyl cyclase localization to the uropod of aggregating Dictyostelium cells requires RacC

    PubMed Central

    Wang, C.; Jung, D.; Cao, Z.; Chung, C. Y.

    2015-01-01

    The localization of adenylyl cyclase A (ACA) to uropod of cells is required for the stream formation during Dictyostelium development. RacC is a Dictyostelium orthologue of Cdc42. We identified a streaming defect of racC− cells as they are clearly less polarized and form smaller and fragmented streams. ACA-YFP is mainly associated with intracellular vesicular structures, but not with the plasma membrane in racC− cells. racC− cells have a slightly higher number of vesicles than Ax3 cells, suggesting that the defect of ACA trafficking is not simply due to the lack of vesicle formation. While the ACA-YFP vesicles traveled with an average velocity of 9.1 µm/min in Ax3 cells, a slow and diffusional movement without direction with an average velocity of 4 µm/min was maintained in racC− cells. Images acquired by using total internal reflection fluorescence (TIRF) microscopy and fluorescence recovery after photobleaching (FRAP) analysis revealed that a significantly decreased number of ACA-YFP vesicles appeared near the cell membrane, indicating a defect in ACA-YFP vesicle trafficking. These results suggest an important role of RacC in the rapid and directional movements of ACA vesicles on microtubules to the plasma membrane, especially to the back of polarized cell. PMID:26315268

  19. The Dictyostelium MAP kinase kinase DdMEK1 regulates chemotaxis and is essential for chemoattractant-mediated activation of guanylyl cyclase.

    PubMed Central

    Ma, H; Gamper, M; Parent, C; Firtel, R A

    1997-01-01

    We have identified a MAP kinase kinase (DdMEK1) that is required for proper aggregation in Dictyostelium. Null mutations produce extremely small aggregate sizes, resulting in the formation of slugs and terminal fruiting bodies that are significantly smaller than those of wild-type cells. Time-lapse video microscopy and in vitro assays indicate that the cells are able to produce cAMP waves that move through the aggregation domains. However, these cells are unable to undergo chemotaxis properly during aggregation in response to the chemoattractant cAMP or activate guanylyl cyclase, a known regulator of chemotaxis in Dictyostelium. The activation of guanylyl cyclase in response to osmotic stress is, however, normal. Expression of putative constitutively active forms of DdMEK1 in a ddmek1 null background is capable, at least partially, of complementing the small aggregate size defect and the ability to activate guanylyl cyclase. However, this does not result in constitutive activation of guanylyl cyclase, suggesting that DdMEK1 activity is necessary, but not sufficient, for cAMP activation of guanylyl cyclase. Analysis of a temperature-sensitive DdMEK1 mutant suggests that DdMEK1 activity is required throughout aggregation at the time of guanylyl cyclase activation, but is not essential for proper morphogenesis during the later multicellular stages. The activation of the MAP kinase ERK2, which is essential for chemoattractant activation of adenylyl cyclase, is not affected in ddmek1 null strains, indicating that DdMEK1 does not regulate ERK2 and suggesting that at least two independent MAP kinase cascades control aggregation in Dictyostelium. PMID:9250676

  20. Structural Basis for Inhibition of Mammalian Adenylyl Cyclase by Calcium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mou, Tung-Chung; Masada, Nanako; Cooper, Dermot M.F.

    2009-09-11

    Type V and VI mammalian adenylyl cyclases (AC5, AC6) are inhibited by Ca{sup 2+} at both sub- and supramicromolar concentration. This inhibition may provide feedback in situations where cAMP promotes opening of Ca{sup 2+} channels, allowing fine control of cardiac contraction and rhythmicity in cardiac tissue where AC5 and AC6 predominate. Ca{sup 2+} inhibits the soluble AC core composed of the C1 domain of AC5 (VC1) and the C2 domain of AC2 (IIC2). As observed for holo-AC5, inhibition is biphasic, showing 'high-affinity' (K{sub i} = {approx}0.4 {mu}M) and 'low-affinity' (K{sub i} = {approx}100 {mu}M) modes of inhibition. At micromolar concentration,more » Ca{sup 2+} inhibition is nonexclusive with respect to pyrophosphate (PP{sub i}), a noncompetitive inhibitor with respect to ATP, but at >100 {mu}M Ca{sup 2+}, inhibition appears to be exclusive with respect to PP{sub i}. The 3.0 {angstrom} resolution structure of G{alpha}s{center_dot}GTP{gamma}S/forskolin-activated VC1:IIC2 crystals soaked in the presence of ATP{alpha}S and 8 {mu}M free Ca{sup 2+} contains a single, loosely coordinated metal ion. ATP soaked into VC1:IIC2 crystals in the presence of 1.5 mM Ca{sup 2+} is not cyclized, and two calcium ions are observed in the 2.9 {angstrom} resolution structure of the complex. In both of the latter complexes VC1:IIC2 adopts the 'open', catalytically inactive conformation characteristic of the apoenzyme, in contrast to the 'closed', active conformation seen in the presence of ATP analogues and Mg{sup 2+} or Mn{sup 2+}. Structures of the pyrophosphate (PP{sub i}) complex with 10 mM Mg{sup 2+} (2.8 {angstrom}) or 2 mM Ca{sup 2+} (2.7 {angstrom}) also adopt the open conformation, indicating that the closed to open transition occurs after cAMP release. In the latter complexes, Ca{sup 2+} and Mg{sup 2+} bind only to the high-affinity 'B' metal site associated with substrate/product stabilization. Ca{sup 2+} thus stabilizes the inactive conformation in both ATP- and PP

  1. Impact of divalent metal ions on regulation of adenylyl cyclase isoforms by forskolin analogs.

    PubMed

    Erdorf, Miriam; Mou, Tung-Chung; Seifert, Roland

    2011-12-01

    Mammalian membranous adenylyl cyclases (mACs) play an important role in transmembrane signalling events in almost every cell and represent an interesting drug target. Forskolin (FS) is an invaluable research tool, activating AC isoforms 1-8. However, there is a paucity of AC isoform-selective FS analogs. Therefore, we examined the effects of FS and six FS derivatives on recombinant ACs 1, 2 and 5, representing members of different mAC families. Correlations of the pharmacological properties of the different AC isoforms revealed pronounced differences between ACs 1, 2 and 5. Additionally, potencies and efficacies of FS derivatives changed for any given AC isoform, depending on the metal ion, Mg(2+) or Mn(2+). The most striking effects of Mg(2+) and Mn(2+) on the diterpene profile were observed for AC2 where the large inhibitory effect of BODIPY-FS in the presence of Mg(2+) was considerably reduced in the presence of Mn(2+). Sequence alignment and docking experiments confirmed an exceptional position of AC2 compared to ACs 1 and 5 with respect to the structural environment of the catalytic core and cation-dependent diterpene effects. In conclusion, mAC isoforms 1, 2 and 5 exhibit a distinct pharmacological diterpene profile, depending on the divalent cation present. mAC crystal structures and modelling/docking studies provided an explanation for the pharmacological differences between the AC isoforms. Our study constitutes an important step towards the development of isoform-specific diterpenes exhibiting stimulatory or inhibitory effects. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Soluble Adenylyl Cyclase Is Required for Retinal Ganglion Cell and Photoreceptor Differentiation

    PubMed Central

    Shaw, Peter X.; Fang, Jiahua; Sang, Alan; Wang, Yan; Kapiloff, Michael S.; Goldberg, Jeffrey L.

    2016-01-01

    Purpose We have previously demonstrated that soluble adenylyl cyclase (sAC) is necessary for retinal ganglion cell (RGC) survival and axon growth. Here, we further investigate the role of sAC in neuronal differentiation during retinal development. Methods Chx10 or Math5 promoter-driven Cre-Lox recombination were used to conditionally delete sAC from early and intermediate retinal progenitor cells during retinal development. We examined cell type–specific markers expressed by retinal cells to estimate their relative numbers and characterize retinal laminar morphology by immunofluorescence in adult and newborn mice. Results Retinal ganglion cell and amacrine cell markers were significantly lower in the retinas of adult Math5cre/sACfl/fl and Chx10cre/sACfl/fl mice than in those of wild-type controls. The effect on RGC development was detectable as early as postnatal day 1 and deleting sAC in either Math5- or Chx10-expressing retinal progenitor cells also reduced nerve fiber layer thickness into adulthood. The thickness of the photoreceptor layer was slightly but statistically significantly decreased in both the newborn Chx10cre/sACfl/fl and Math5cre/sACfl/fl mice, but this reduction and abnormal morphology persisted in the adults in only the Chx10cre/sACfl/fl mice. Conclusions sAC plays an important role in the early retinal development of RGCs as well as in the development of amacrine cells and to a lesser degree photoreceptors. PMID:27679853

  3. Bacterial effector binds host cell adenylyl cyclase to potentiate Gαs-dependent cAMP production

    PubMed Central

    Pulliainen, Arto T.; Pieles, Kathrin; Brand, Cameron S.; Hauert, Barbara; Böhm, Alex; Quebatte, Maxime; Wepf, Alexander; Gstaiger, Matthias; Aebersold, Ruedi; Dessauer, Carmen W.; Dehio, Christoph

    2012-01-01

    Subversion of host organism cAMP signaling is an efficient and widespread mechanism of microbial pathogenesis. Bartonella effector protein A (BepA) of vasculotumorigenic Bartonella henselae protects the infected human endothelial cells against apoptotic stimuli by elevation of cellular cAMP levels by an as yet unknown mechanism. Here, adenylyl cyclase (AC) and the α-subunit of the AC-stimulating G protein (Gαs) were identified as potential cellular target proteins for BepA by gel-free proteomics. Results of the proteomics screen were evaluated for physical and functional interaction by: (i) a heterologous in vivo coexpression system, where human AC activity was reconstituted under the regulation of Gαs and BepA in Escherichia coli; (ii) in vitro AC assays with membrane-anchored full-length human AC and recombinant BepA and Gαs; (iii) surface plasmon resonance experiments; and (iv) an in vivo fluorescence bimolecular complementation-analysis. The data demonstrate that BepA directly binds host cell AC to potentiate the Gαs-dependent cAMP production. As opposed to the known microbial mechanisms, such as ADP ribosylation of G protein α-subunits by cholera and pertussis toxins, the fundamentally different BepA-mediated elevation of host cell cAMP concentration appears subtle and is dependent on the stimulus of a G protein-coupled receptor-released Gαs. We propose that this mechanism contributes to the persistence of Bartonella henselae in the chronically infected vascular endothelium. PMID:22635269

  4. Stimulation of Electro-Olfactogram Responses in the Main Olfactory Epithelia by Airflow Depend on the Type 3 Adenylyl Cyclase

    PubMed Central

    Chen, Xuanmao; Xia, Zhengui; Storm, Daniel R.

    2012-01-01

    Cilia of olfactory sensory neurons (OSN) are the primary sensory organelles for olfaction. The detection of odorants by the main olfactory epithelium (MOE) depends on coupling of odorant receptors to the type 3 adenylyl cyclase (AC3) in olfactory cilia. We monitored the effect of airflow on electro-olfactogram (EOG) responses and found that the MOE of mice can sense mechanical forces generated by airflow. The airflow-sensitive EOG response in the MOE was attenuated when cAMP was increased by odorants or by forskolin suggesting a common mechanism for airflow and odorant detection. In addition, the sensitivity to airflow was significantly impaired in the MOE from AC3−/− mice. We conclude that AC3 in the MOE is required for detecting the mechanical force of airflow, which in turn may regulate odorant perception during sniffing. PMID:23136416

  5. Adenylyl cyclase-associated protein-1/CAP1 as a biological target substrate of gelatinase B/MMP-9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cauwe, Benedicte; Martens, Erik; Van den Steen, Philippe E.

    2008-09-10

    Matrix metalloproteinases (MMPs) are classically associated with the turnover of secreted structural and functional proteins. Although MMPs have been shown to process also a kaleidoscope of membrane-associated substrates, little is known about the processing of intracellular proteins by MMPs. Physiological and pathological cell apoptosis, necrosis and tumor lysis by chemotherapy, radiotherapy or immunological cytotoxicity, are examples of conditions in which an overload of intracellular proteins becomes accessible to the action of MMPs. We used a model system of dying human myelomonocytic cells to study the processing of intracellular protein substrates by gelatinase B/MMP-9 in vitro. Adenylyl cyclase-associated protein-1 or CAP1more » was identified as a novel and most efficient substrate of gelatinase B/MMP-9. The presence of CAP1 in the extracellular milieu in vivo was documented by analysis of urine of patients with systemic autoimmune diseases. Whereas no active MMP-9 could be detected in urines of healthy controls, all urine samples of patients with clinical parameters of renal failure contained activated MMP-9 and/or MMP-2. In addition, in some of these patients indications of CAP1 cleavage are observed, implying CAP1 degradation in vivo. The high turnover rate of CAP1 by MMP-9, comparable to that of gelatin as the natural extracellular substrate of this enzyme, may be critical to prevent pathological conditions associated with considerable cytolysis.« less

  6. Three alpha-subunits of heterotrimeric G proteins and an adenylyl cyclase have distinct roles in fruiting body development in the homothallic fungus Sordaria macrospora.

    PubMed

    Kamerewerd, Jens; Jansson, Malin; Nowrousian, Minou; Pöggeler, Stefanie; Kück, Ulrich

    2008-09-01

    Sordaria macrospora, a self-fertile filamentous ascomycete, carries genes encoding three different alpha-subunits of heterotrimeric G proteins (gsa, G protein Sordaria alpha subunit). We generated knockout strains for all three gsa genes (Deltagsa1, Deltagsa2, and Deltagsa3) as well as all combinations of double mutants. Phenotypic analysis of single and double mutants showed that the genes for Galpha-subunits have distinct roles in the sexual life cycle. While single mutants show some reduction of fertility, double mutants Deltagsa1Deltagsa2 and Deltagsa1Deltagsa3 are completely sterile. To test whether the pheromone receptors PRE1 and PRE2 mediate signaling via distinct Galpha-subunits, two recently generated Deltapre strains were crossed with all Deltagsa strains. Analyses of the corresponding double mutants revealed that compared to GSA2, GSA1 is a more predominant regulator of a signal transduction cascade downstream of the pheromone receptors and that GSA3 is involved in another signaling pathway that also contributes to fruiting body development and fertility. We further isolated the gene encoding adenylyl cyclase (AC) (sac1) for construction of a knockout strain. Analyses of the three DeltagsaDeltasac1 double mutants and one Deltagsa2Deltagsa3Deltasac1 triple mutant indicate that SAC1 acts downstream of GSA3, parallel to a GSA1-GSA2-mediated signaling pathway. In addition, the function of STE12 and PRO41, two presumptive signaling components, was investigated in diverse double mutants lacking those developmental genes in combination with the gsa genes. This analysis was further completed by expression studies of the ste12 and pro41 transcripts in wild-type and mutant strains. From the sum of all our data, we propose a model for how different Galpha-subunits interact with pheromone receptors, adenylyl cyclase, and STE12 and thus cooperatively regulate sexual development in S. macrospora.

  7. Characterization of the intrinsic activity for a novel class of cannabinoid receptor ligands: Indole Quinuclidine analogues

    PubMed Central

    Franks, Lirit N.; Ford, Benjamin M.; Madadi, Nikhil R.; Penthala, Narsimha R.; Crooks, Peter A.; Prather, Paul L.

    2014-01-01

    Our laboratory recently reported that a group of novel indole quinuclidine analogues bind with nanomolar affinity to cannabinoid type-1 and type-2 receptors. This study characterized the intrinsic activity of these compounds by determining whether they exhibit agonist, antagonist, or inverse agonist activity at cannabinoid type-1 and/or type-2 receptors. Cannabinoid receptors activate Gi/Go-proteins that then proceed to inhibit activity of the downstream intracellular effector adenylyl cyclase. Therefore, intrinsic activity was quantified by measuring the ability of compounds to modulate levels of intracellular cAMP in intact cells. Concerning cannabinoid type-1 receptors endogenously expressed in Neuro2A cells, a single analogue exhibited agonist activity, while eight acted as neutral antagonists and two possessed inverse agonist activity. For cannabinoid type-2 receptors stably expressed in CHO cells, all but two analogues acted as agonists; these two exceptions exhibited inverse agonist activity. Confirming specificity at cannabinoid type-1 receptors, modulation of adenylyl cyclase activity by all proposed agonists and inverse agonists was blocked by co-incubation with the neutral cannabinoid type-1 antagonist O-2050. All proposed cannabinoid type-1 receptor antagonists attenuated adenylyl cyclase modulation by cannabinoid agonist CP-55,940. Specificity at cannabinoid type-2 receptors was confirmed by failure of all compounds to modulate adenylyl cyclase activity in CHO cells devoid of cannabinoid type-2 receptors. Further characterization of select analogues demonstrated concentration-dependent modulation of adenylyl cyclase activity with potencies similar to their respective affinities for cannabinoid receptors. Therefore, indole quinuclidines are a novel structural class of compounds exhibiting high affinity and a range of intrinsic activity at cannabinoid type-1 and type-2 receptors. PMID:24858620

  8. [THE CHANGES OF NOCICEPTIVE THRESHOLD AND ACTIVITY OF THE ADENYLYL CYCLASE SYSTEM IN THE SKELETAL MUSCLES OF RATS WITH ACUTE AND MILD TYPE 1 DIABETES MELLITUS ].

    PubMed

    Shipilov, V N; Trost, A M; Chistyakova, O V; Derkach, K V; Shpakov, A O

    2016-02-01

    Diabetic peripheral neuropathy (DPN) is one of the most common complications of the type 1 diabetes mellitus (DM1). The aim of the work was to study the dynamics of a painful DPN and functional state of the hormone-sensitive ACSS in the skeletal muscles of rats with the models of acute and mild DM1, as well as the study of impact on them of insulin therapy with different ways of hormone delivery - intranasal and peripheral. In both models of DM1, the level of nociceptive threshold in rats decreased and the stimulatory effects of guanine nucleotides (GppNHp) and adrenergic agonists (isoproterenol, BRL-37344) on adenylyl cyclase (AC) activity were attenuated. The AC stimulating effect of relaxin decreased in animals with acute DM1, but in mild DM1, the decrease was insignificant. Peripheral administration of insulin in rats with acute DM1 increased the nociceptive threshold and partially restored the AC effect of ß 3-agonist BRL-37344. Intranasal administration of insulin in rats with DM1 also increased the nociceptive threshold and partially restored the basal and BRL-37344-stimulated AC activity in the skeletal muscles of diabetic animals. Thus, in the skeletal muscles of rats with acute and mild DM1 the nociceptive sensitivity and the functions of ACSS were disturbed, and they were partially restored by the treatment with peripheral (acute DM1) or intranasal (mild DM1) insulin.

  9. Structure, signaling mechanism and regulation of the natriuretic peptide receptor guanylate cyclase.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misono, K. S.; Philo, J. S.; Arakawa, T.

    2011-06-01

    Atrial natriuretic peptide (ANP) and the homologous B-type natriuretic peptide are cardiac hormones that dilate blood vessels and stimulate natriuresis and diuresis, thereby lowering blood pressure and blood volume. ANP and B-type natriuretic peptide counterbalance the actions of the renin-angiotensin-aldosterone and neurohormonal systems, and play a central role in cardiovascular regulation. These activities are mediated by natriuretic peptide receptor-A (NPRA), a single transmembrane segment, guanylyl cyclase (GC)-linked receptor that occurs as a homodimer. Here, we present an overview of the structure, possible chloride-mediated regulation and signaling mechanism of NPRA and other receptor GCs. Earlier, we determined the crystal structures ofmore » the NPRA extracellular domain with and without bound ANP. Their structural comparison has revealed a novel ANP-induced rotation mechanism occurring in the juxtamembrane region that apparently triggers transmembrane signal transduction. More recently, the crystal structures of the dimerized catalytic domain of green algae GC Cyg12 and that of cyanobacterium GC Cya2 have been reported. These structures closely resemble that of the adenylyl cyclase catalytic domain, consisting of a C1 and C2 subdomain heterodimer. Adenylyl cyclase is activated by binding of G{sub s}{alpha} to C2 and the ensuing 7{sup o} rotation of C1 around an axis parallel to the central cleft, thereby inducing the heterodimer to adopt a catalytically active conformation. We speculate that, in NPRA, the ANP-induced rotation of the juxtamembrane domains, transmitted across the transmembrane helices, may induce a similar rotation in each of the dimerized GC catalytic domains, leading to the stimulation of the GC catalytic activity.« less

  10. Adenylyl cyclase 6 enhances NKCC2 expression and mediates vasopressin-induced phosphorylation of NKCC2 and NCC.

    PubMed

    Rieg, Timo; Tang, Tong; Uchida, Shinichi; Hammond, H Kirk; Fenton, Robert A; Vallon, Volker

    2013-01-01

    Arginine vasopressin (AVP) affects kidney function via vasopressin V2 receptors that are linked to activation of adenylyl cyclase (AC) and an increase in cyclic adenosine monophosphate formation. AVP/cyclic adenosine monophosphate enhance the phosphorylation of the Na-K-2Cl cotransporter (NKCC2) at serine residue 126 (pS126 NKCC2) and of the Na-Cl cotransporter (NCC) at threonine 58 (pT58 NCC). The isoform(s) of AC involved in these responses, however, were unknown. Phosphorylation of S126 NKCC2 and T58 NCC, induced by the V2 receptor agonist (1-desamino-8-D-arginine vasopressin) in wild-type mice, is lacking in knockout mice for AC isoform 6 (AC6). With regard to NKCC2 phosphorylation, the stimulatory effect of 1-desamino-8-D-AVP and the defect in AC6(-/-) mice seem to be restricted to the medullary portion of the thick ascending limb. AC6 is also a stimulator of total renal NKCC2 protein abundance in medullary and cortical thick ascending limb. Consequently, mice lacking AC6 have lower NKCC2 expression and a mild Bartter syndrome-like phenotype, including lower plasma concentrations of K+ and H+ and compensatory upregulation of NCC. Increased AC6-independent phosphorylation of NKCC2 at S126 might help to stabilize NKCC2 activity in the absence of AC6. Renal AC6 determines total NKCC2 expression and mediates vasopressin-induced NKCC2/NCC phosphorylation. These regulatory mechanisms, which are defective in AC knockout mice, are likely responsible for the observed mild Bartter syndrome. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Discovery of G protein signaling.

    PubMed

    Selinger, Zvi

    2008-01-01

    The mechanism of transmembrane signaling by the receptor-activated adenylyl cyclase was an enigma. It was suggested that hydrolysis of GTP is a turn-off mechanism that resets the active adenylyl cyclase to the inactive state. To test this hypothesis, we developed a specific GTPase assay and found that the catecholamine adrenergic agonists stimulated the hydrolysis of GTP. To resolve the question of how the hormone concurrently stimulates GTP hydrolysis and activates the adenylyl cyclase, we suggested the regulatory GTPase cycle. Thus, because the hormone facilitates the binding of GTP, which is subsequently hydrolyzed, the regulatory cycle results in a hormone-stimulated GTPase activity. This model also predicts that two mechanisms could account for stimulation of adenylyl cyclase activity-either by the familiar hormone stimulation of the activation reaction or by an inhibition of the turn-off reaction. Indeed, we showed that cholera toxin enhances adenylyl cyclase activity by inhibition of GTP hydrolysis. Finally, we also showed that the hormone-activated receptor stimulates adenylyl cyclase activity by facilitating the exchange of bound GDP for free GTP. Thus, we presented, for the first time, an explicit mechanism for receptor action.

  12. Three α-Subunits of Heterotrimeric G Proteins and an Adenylyl Cyclase Have Distinct Roles in Fruiting Body Development in the Homothallic Fungus Sordaria macrospora

    PubMed Central

    Kamerewerd, Jens; Jansson, Malin; Nowrousian, Minou; Pöggeler, Stefanie; Kück, Ulrich

    2008-01-01

    Sordaria macrospora, a self-fertile filamentous ascomycete, carries genes encoding three different α-subunits of heterotrimeric G proteins (gsa, G protein Sordaria alpha subunit). We generated knockout strains for all three gsa genes (Δgsa1, Δgsa2, and Δgsa3) as well as all combinations of double mutants. Phenotypic analysis of single and double mutants showed that the genes for Gα-subunits have distinct roles in the sexual life cycle. While single mutants show some reduction of fertility, double mutants Δgsa1Δgsa2 and Δgsa1Δgsa3 are completely sterile. To test whether the pheromone receptors PRE1 and PRE2 mediate signaling via distinct Gα-subunits, two recently generated Δpre strains were crossed with all Δgsa strains. Analyses of the corresponding double mutants revealed that compared to GSA2, GSA1 is a more predominant regulator of a signal transduction cascade downstream of the pheromone receptors and that GSA3 is involved in another signaling pathway that also contributes to fruiting body development and fertility. We further isolated the gene encoding adenylyl cyclase (AC) (sac1) for construction of a knockout strain. Analyses of the three ΔgsaΔsac1 double mutants and one Δgsa2Δgsa3Δsac1 triple mutant indicate that SAC1 acts downstream of GSA3, parallel to a GSA1–GSA2-mediated signaling pathway. In addition, the function of STE12 and PRO41, two presumptive signaling components, was investigated in diverse double mutants lacking those developmental genes in combination with the gsa genes. This analysis was further completed by expression studies of the ste12 and pro41 transcripts in wild-type and mutant strains. From the sum of all our data, we propose a model for how different Gα-subunits interact with pheromone receptors, adenylyl cyclase, and STE12 and thus cooperatively regulate sexual development in S. macrospora. PMID:18723884

  13. The structure of the regulatory domain of the adenylyl cyclase Rv1264 from Mycobacterium tuberculosis with bound oleic acid.

    PubMed

    Findeisen, Felix; Linder, Jürgen U; Schultz, Anita; Schultz, Joachim E; Brügger, Britta; Wieland, Felix; Sinning, Irmgard; Tews, Ivo

    2007-06-22

    The universal secondary messenger cAMP is produced by adenylyl cyclases (ACs). Most bacterial and all eukaryotic ACs belong to class III of six divergent classes. A class III characteristic is formation of the catalytic pocket at a dimer interface and the presence of additional regulatory domains. Mycobacterium tuberculosis possesses 15 class III ACs, including Rv1264, which is activated at acidic pH due to pH-dependent structural transitions of the Rv1264 dimer. It has been shown by X-ray crystallography that the N-terminal regulatory and C-terminal catalytic domains of Rv1264 interact in completely different ways in the active and inhibited states. Here, we report an in-depth structural and functional analysis of the regulatory domain of Rv1264. The 1.6 A resolution crystal structure shows the protein in a tight, disk-shaped dimer, formed around a helical bundle, and involving a protein chain crossover. To understand pH regulation, we determined structures at acidic and basic pH values and employed structure-based mutagenesis in the holoenzyme to elucidate regulation using an AC activity assay. It has been shown that regulatory and catalytic domains must be linked in a single protein chain. The new studies demonstrate that the length of the linker segment is decisive for regulation. Several amino acids on the surface of the regulatory domain, when exchanged, altered the pH-dependence of AC activity. However, these residues are not conserved amongst a number of related ACs. The closely related mycobacterial Rv2212, but not Rv1264, is strongly activated by the addition of fatty acids. The structure resolved the presence of a deeply embedded fatty acid, characterised as oleic acid by mass spectrometry, which may serve as a hinge. From these data, we conclude that the regulatory domain is a structural scaffold used for distinct regulatory purposes.

  14. Palmitoylation targets AKAP79 protein to lipid rafts and promotes its regulation of calcium-sensitive adenylyl cyclase type 8.

    PubMed

    Delint-Ramirez, Ilse; Willoughby, Debbie; Hammond, Gerald R V; Hammond, Gerald V R; Ayling, Laura J; Cooper, Dermot M F

    2011-09-23

    PKA anchoring proteins (AKAPs) optimize the efficiency of cAMP signaling by clustering interacting partners. Recently, AKAP79 has been reported to directly bind to adenylyl cyclase type 8 (AC8) and to regulate its responsiveness to store-operated Ca(2+) entry (SOCE). Although AKAP79 is well targeted to the plasma membrane via phospholipid associations with three N-terminal polybasic regions, recent studies suggest that AKAP79 also has the potential to be palmitoylated, which may specifically allow it to target the lipid rafts where AC8 resides and is regulated by SOCE. In this study, we have addressed the role of palmitoylation of AKAP79 using a combination of pharmacological, mutagenesis, and cell biological approaches. We reveal that AKAP79 is palmitoylated via two cysteines in its N-terminal region. This palmitoylation plays a key role in targeting the AKAP to lipid rafts in HEK-293 cells. Mutation of the two critical cysteines results in exclusion of AKAP79 from lipid rafts and alterations in its membrane diffusion behavior. This is accompanied by a loss of the ability of AKAP79 to regulate SOCE-dependent AC8 activity in intact cells and decreased PKA-dependent phosphorylation of raft proteins, including AC8. We conclude that palmitoylation plays a key role in the targeting and action of AKAP79. This novel property of AKAP79 adds an unexpected regulatory and targeting option for AKAPs, which may be exploited in the cellular context.

  15. Adenylyl Cyclase 9 Polymorphisms Reveal Potential Link to HDL Function and Cardiovascular Events in Multiple Pathologies: Potential Implications in Sickle Cell Disease.

    PubMed

    Niesor, Eric J; Benghozi, Renée; Amouyel, Philippe; Ferdinand, Keith C; Schwartz, Gregory G

    2015-12-01

    Adenylyl cyclase 9 (ADCY9) mediates β2-adrenoceptor (β2-AR) signalling. Both proteins are associated with caveolae, specialized cholesterol-rich membrane substructures. Apolipoprotein A1 (ApoA1), the major protein component of high-density lipoprotein (HDL), removes cholesterol from cell membrane and caveolae and may thereby influence β2-AR signalling, shown in vitro to be modulated by cholesterol. Patients with Sickle Cell Disease (SCD) typically have low HDL and ApoA1 levels. In patients, mainly of African origin, with SCD, β2-AR activation may trigger adhesion of red blood cells to endothelial cells, leading to vascular occlusive events. Moreover, ADCY9 polymorphism is associated with risk of stroke in SCD. In recent clinical trials, ADCY9 polymorphism was found to be a discriminant factor associated with the risk of cardiovascular (CV) events in Caucasian patients treated with the HDL-raising compound dalcetrapib. We hypothesize that these seemingly disparate observations share a common mechanism related to interaction of HDL/ApoA1 and ADCY9 on β2-AR signalling. This review also raises the importance of characterizing polymorphisms that determine the response to HDL-raising and -mimicking agents in the non-Caucasian population at high risk of CV diseases and suffering from SCD. This may facilitate personalized CV treatments.

  16. Regulation of anterior chamber drainage by bicarbonate-sensitive soluble adenylyl cyclase in the ciliary body.

    PubMed

    Lee, Yong S; Tresguerres, Martin; Hess, Kenneth; Marmorstein, Lihua Y; Levin, Lonny R; Buck, Jochen; Marmorstein, Alan D

    2011-12-02

    Glaucoma is a leading cause of blindness affecting as many as 2.2 million Americans. All current glaucoma treatment strategies aim to reduce intraocular pressure (IOP). IOP results from the resistance to drainage of aqueous humor (AH) produced by the ciliary body in a process requiring bicarbonate. Once secreted into the anterior chamber, AH drains from the eye via two pathways: uveoscleral and pressure-dependent or conventional outflow (C(t)). Modulation of "inflow" and "outflow" pathways is thought to occur via distinct, local mechanisms. Mice deficient in the bicarbonate channel bestrophin-2 (Best2), however, exhibit a lower IOP despite an increase in AH production. Best2 is expressed uniquely in nonpigmented ciliary epithelial (NPE) cells providing evidence for a bicarbonate-dependent communicative pathway linking inflow and outflow. Here, we show that bicarbonate-sensitive soluble adenylyl cyclase (sAC) is highly expressed in the ciliary body in NPE cells, but appears to be absent from drainage tissues. Pharmacologic inhibition of sAC in mice causes a significant increase in IOP due to a decrease in C(t) with no effect on inflow. In mice deficient in sAC IOP is elevated, and C(t) is decreased relative to wild-type mice. Pharmacologic inhibition of sAC did not alter IOP or C(t) in sAC-deficient mice. Based on these data we propose that the ciliary body can regulate C(t) and that sAC serves as a critical sensor of bicarbonate in the ciliary body regulating the secretion of substances into the AH that govern outflow facility independent of pressure.

  17. Delivery of Large Heterologous Polypeptides across the Cytoplasmic Membrane of Antigen-Presenting Cells by the Bordetella RTX Hemolysin Moiety Lacking the Adenylyl Cyclase Domain

    PubMed Central

    Holubova, Jana; Jelinek, Jiri; Tomala, Jakub; Masin, Jiri; Kosova, Martina; Stanek, Ondrej; Bumba, Ladislav; Michalek, Jaroslav; Kovar, Marek; Sebo, Peter

    2012-01-01

    The Bordetella adenylate cyclase toxin-hemolysin (CyaA; also called ACT or AC-Hly) targets CD11b-expressing phagocytes and translocates into their cytosol an adenylyl cyclase (AC) that hijacks cellular signaling by conversion of ATP to cyclic AMP (cAMP). Intriguingly, insertion of large passenger peptides removes the enzymatic activity but not the cell-invasive capacity of the AC domain. This has repeatedly been exploited for delivery of heterologous antigens into the cytosolic pathway of CD11b-expressing dendritic cells by CyaA/AC− toxoids, thus enabling their processing and presentation on major histocompatibility complex (MHC) class I molecules to cytotoxic CD8+ T lymphocytes (CTLs). We produced a set of toxoids with overlapping deletions within the first 371 residues of CyaA and showed that the structure of the AC enzyme does not contain any sequences indispensable for its translocation across target cell membrane. Moreover, replacement of the AC domain (residues 1 to 371) with heterologous polypeptides of 40, 146, or 203 residues yielded CyaAΔAC constructs that delivered passenger CTL epitopes into antigen-presenting cells (APCs) and induced strong antigen-specific CD8+ CTL responses in vivo in mice and ex vivo in human peripheral blood mononuclear cell cultures. This shows that the RTX (repeats in toxin) hemolysin moiety, consisting of residues 374 to 1706 of CyaA, harbors all structural information involved in translocation of the N-terminal AC domain across target cell membranes. These results decipher the extraordinary capacity of the AC domain of CyaA to transport large heterologous cargo polypeptides into the cytosol of CD11b+ target cells and pave the way for the construction of CyaAΔAC-based polyvalent immunotherapeutic T cell vaccines. PMID:22215742

  18. Continuous activation of pituitary adenylate cyclase-activating polypeptide receptors elicits antipodal effects on cyclic AMP and inositol phospholipid signaling pathways in CATH.a cells: role of protein synthesis and protein kinases.

    PubMed

    Muller, A; Lutz-Bucher, B; Kienlen-Campard, P; Koch, B; Loeffler, J P

    1998-04-01

    Continuous exposure of cells to agonists develops a process that determines the extent to which the cells eventually respond to further stimuli. Here we used CATH.a cells (a catecholaminergic neuron-like cell line), which express pituitary adenylate cyclase-activating polypeptide (PACAP) receptors linked to both adenylyl cyclase and phospholipase C-beta pathways, to investigate the influence of prolonged hormonal treatment on dual signaling and gene transcription. Prolonged incubation of cells with PACAP failed to down-regulate the density and affinity of membrane binding sites and caused opposite changes in messenger systems: PACAP-stimulated cyclic AMP accumulation was attenuated in a time- and dose-dependent fashion (t(1/2) = 6.7 h and IC50 = 0.1 nM), whereas phosphoinositide turnover was overstimulated. Both effects were insensitive to pertussis toxin, whereas the drop in cyclic AMP concentration was also unchanged in the presence of 3-isobutyl-1-methylxanthine, indicating that neither Gi-like proteins nor cyclic nucleotide phosphodiesterases play a critical role in these processes. Blockade of protein synthesis with cycloheximide, as well as inhibition by H89 of cyclic AMP-dependent protein kinase (but not by bisindolylmaleimide of protein kinase C) antagonized the influences exerted by PACAP on adenylyl cyclase activity and inositol phosphate formation. Transcription of the chimeric GAL4-CREB construct, transiently transfected into CATH.a cells, was stimulated by PACAP, and this effect was potentiated as a result of chronic PACAP treatment. The results of the present investigation provide new insight into the possible differential regulation and cross-talks of transduction signals of receptors linked to multiplex signaling. They demonstrate that prolonged exposure of CATH.a cells to PACAP results in the desensitization of the cyclic AMP pathway and superinduction of the inositol phosphate signal, through protein neosynthesis and cyclic AMP-dependent protein

  19. Soluble adenylyl cyclase mediates mitochondrial pathway of apoptosis and ATP metabolism in oyster Crassostrea gigas exposed to elevated CO2.

    PubMed

    Wang, Xiudan; Wang, Mengqiang; Xu, Jiachao; Jia, Zhihao; Liu, Zhaoqun; Wang, Lingling; Song, Linsheng

    2017-07-01

    Ocean acidification (OA) has deleterious impacts on immune response and energy homeostasis status of Mollusca. In the present study, the apoptosis ratio of hemocytes and the adenosine triphosphate (ATP) allocation in gill tissues were determined after Pacific oysters Crassostrea gigas were exposed to elevated CO 2 environment (pH = 7.50) for 16 days.The apoptosis ratio in CO 2 exposure group (35.2%) was significantly higher (p < 0.05) than that in the control group, and the increased apoptosis ratio induced by elevated CO 2 could be significantly inhibited (p < 0.05) by KH7, a specific inhibitor of a bicarbonate sensor soluble adenylyl cyclase (sAC). After CO 2 exposure, sAC in oyster (CgsAC) was found to be clustered with mitochondria in the cytoplasm, and the pro-caspase-3 was cleaved into two small fragments. Moreover, the activities of caspase-3 and caspase-9 also increased post CO 2 exposure and these increases could be inhibited by KH7. However, the activities of caspase-8 did not change significantly compared with that in the control group. After CO 2 exposure, the ATP content in the gill increased significantly (p < 0.05) and such increase could also be inhibited by KH7. The ATP content in purified gill mitochondria decreased significantly (p < 0.05) after CO 2 exposure, which was also inhibited by KH7. These results implied that the elevated CO 2 could activate the mitochondria-CgsAC pathway of apoptosis and ATP metabolism in oyster, and this pathway played essential roles in maintaining the homeostasis and the balance of energy metabolism in response to OA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. An adenylyl cyclase like-9 gene (NlAC9) influences growth and fecundity in the brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae).

    PubMed

    Ge, LinQuan; Gu, HaoTian; Huang, Bo; Song, Qisheng; Stanley, David; Liu, Fang; Yang, Guo-Qing; Wu, Jin-Cai

    2017-01-01

    The cAMP/PKA intracellular signaling pathway is launched by adenylyl cyclase (AC) conversion of adenosine triphosphate (ATP) to 3', 5'-cyclic AMP (cAMP) and cAMP-dependent activation of PKA. Although this pathway is very well known in insect physiology, there is little to no information on it in some very small pest insects, such as the brown planthopper (BPH), Nilaparvata lugens Stål. BPH is a destructive pest responsible for tremendous crop losses in rice cropping systems. We are investigating the potentials of novel pest management technologies from RNA interference perspective. Based on analysis of transcriptomic data, the BPH AC like-9 gene (NlAC9) was up-regulated in post-mating females, which led us to pose the hypothesis that NlAC9 is a target gene that would lead to reduced BPH fitness and populations. Targeting NlAC9 led to substantially decreased soluble ovarian protein content, yeast-like symbiont abundance, and vitellogenin gene expression, accompanied with stunted ovarian development and body size. Eggs laid were decreased and oviposition period shortened. Taken together, our findings indicated that NlAC9 exerted pronounced effects on female fecundity, growth and longevity, which strongly supports our hypothesis.

  1. Glucose and cyclic adenosine monophosphate stimulate activities of adenylate cyclase and guanylate cyclase of Tetrahymena pyriformis infusoria.

    PubMed

    Shpakov, A O; Derkach, K V; Uspenskaya, Z I

    2012-02-01

    The sensitivities of cyclase enzymes adenylate cyclase and guanylate cyclase to glucose and extracellular cAMP were studied in Tetrahymena pyriformis infusoria. Glucose effectively stimulated activities of both cyclase enzymes, while cAMP more effectively stimulated adenylate cyclase. It was shown that [6-(14)C]glucose specifically bound to Tetrahymena pyriformis infusoria at dissociation constant (K(D)) and number of binding sites (B(max)) 43 nM and 7.53 fmol glucose per 100,000 cells and [8-(3)H]cAMP bound at 19 nM and 4.46 fmol cAMP per 100,000 cells, respectively. Hence, glucose and cAMP specifically bound to Tetrahymena pyriformis cells and stimulated activities of cyclases in these infusoria.

  2. Adenylyl cyclase A expression is tip-specific in Dictyostelium slugs and directs StatA nuclear translocation and CudA gene expression.

    PubMed

    Verkerke-van Wijk, I; Fukuzawa, M; Devreotes, P N; Schaap, P

    2001-06-01

    cAMP oscillations, generated by adenylyl cyclase A (ACA), coordinate cell aggregation in Dictyostelium and have also been implicated in organizer function during multicellular development. We used a gene fusion of the ACA promoter with a labile lacZ derivative to study the expression pattern of ACA. During aggregation, most cells expressed ACA, but thereafter expression was lost in all cells except those of the anterior tip. Before aggregation, ACA transcription was strongly upregulated by nanomolar cAMP pulses. Postaggregative transcription was sustained by nanomolar cAMP pulses, but downregulated by a continuous micromolar cAMP stimulus and by the stalk-cell-inducing factor DIF. Earlier work showed that the transcription factor StatA displays tip-specific nuclear translocation and directs tip-specific expression of the nuclear protein CudA, which is essential for culmination. Both StatA and CudA were present in nuclei throughout the entire slug in an aca null mutant that expresses ACA from the constitutive actin15 promoter. This suggests that the tip-specific expression of ACA directs tip-specific nuclear translocation of StatA and tip-specific expression of CudA. Copyright 2001 Academic Press.

  3. Calcium influx through L-type channels attenuates skeletal muscle contraction via inhibition of adenylyl cyclases.

    PubMed

    Menezes-Rodrigues, Francisco Sandro; Pires-Oliveira, Marcelo; Duarte, Thiago; Paredes-Gamero, Edgar Julian; Chiavegatti, Tiago; Godinho, Rosely Oliveira

    2013-11-15

    Skeletal muscle contraction is triggered by acetylcholine induced release of Ca(2+) from sarcoplasmic reticulum. Although this signaling pathway is independent of extracellular Ca(2+), L-type voltage-gated calcium channel (Cav) blockers have inotropic effects on frog skeletal muscles which occur by an unknown mechanism. Taking into account that skeletal muscle fiber expresses Ca(+2)-sensitive adenylyl cyclase (AC) isoforms and that cAMP is able to increase skeletal muscle contraction force, we investigated the role of Ca(2+) influx on mouse skeletal muscle contraction and the putative crosstalk between extracellular Ca(2+) and intracellular cAMP signaling pathways. The effects of Cav blockers (verapamil and nifedipine) and extracellular Ca(2+) chelator EGTA were evaluated on isometric contractility of mouse diaphragm muscle under direct electrical stimulus (supramaximal voltage, 2 ms, 0.1 Hz). Production of cAMP was evaluated by radiometric assay while Ca(2+) transients were assessed by confocal microscopy using L6 cells loaded with fluo-4/AM. Ca(2+) channel blockers verapamil and nifedipine had positive inotropic effect, which was mimicked by removal of extracellular Ca(+2) with EGTA or Ca(2+)-free Tyrode. While phosphodiesterase inhibitor IBMX potentiates verapamil positive inotropic effect, it was abolished by AC inhibitors SQ22536 and NYK80. Finally, the inotropic effect of verapamil was associated with increased intracellular cAMP content and mobilization of intracellular Ca(2+), indicating that positive inotropic effects of Ca(2+) blockers depend on cAMP formation. Together, our results show that extracellular Ca(2+) modulates skeletal muscle contraction, through inhibition of Ca(2+)-sensitive AC. The cross-talk between extracellular calcium and cAMP-dependent signaling pathways appears to regulate the extent of skeletal muscle contraction responses. © 2013 Published by Elsevier B.V.

  4. Adenylyl cyclase-associated protein 1 in metastasis of squamous cell carcinoma of the head and neck and non-small cell lung cancer

    NASA Astrophysics Data System (ADS)

    Kakurina, G. V.; Kolegova, E. S.; Cheremisina, O. V.; Zavyalov, A. A.; Shishkin, D. A.; Kondakova, I. V.; Choinzonov, E. L.

    2016-08-01

    Progression of tumors and metastasis in particular is one of the main reasons of the high mortality rate among cancer patients. The primary role in developing metastases plays cell locomotion which requires remodeling of the actin cytoskeleton. Form, dynamics, localization and mechanical properties of the actin cytoskeleton are regulated by a variety of actin-binding proteins, which include the adenylyl cyclase-associated protein 1 (CAP1). The study is devoted to the investigation of CAP1 level depending on the presence or absence of metastases in patients with squamous cell carcinoma of the head and neck (SCCHN) and non-small cell lung cancer (NSCLC). The results show the contribution of CAP1 to SCCHN and NSCLC progression. We detected the connection between the tissue protein CAP1 level and the stage of NSCLC and SCCHN disease. Also the levels of the CAP1 protein in tissues of primary tumors and metastases in lung cancer were different. Our data showed that CAP is important in the development of metastases, which suggests further perspectives in the study of this protein for projecting metastasis of NSCLC and SCCHN.

  5. An adenylyl cyclase signaling pathway predicts direct dopaminergic input to vestibular hair cells.

    PubMed

    Drescher, M J; Cho, W J; Folbe, A J; Selvakumar, D; Kewson, D T; Abu-Hamdan, M D; Oh, C K; Ramakrishnan, N A; Hatfield, J S; Khan, K M; Anne, S; Harpool, E C; Drescher, D G

    2010-12-29

    Adenylyl cyclase (AC) signaling pathways have been identified in a model hair cell preparation from the trout saccule, for which the hair cell is the only intact cell type. The use of degenerate primers targeting cDNA sequence conserved across AC isoforms, and reverse transcription-polymerase chain reaction (RT-PCR), coupled with cloning of amplification products, indicated expression of AC9, AC7 and AC5/6, with cloning efficiencies of 11:5:2. AC9 and AC5/6 are inhibited by Ca(2+), the former in conjunction with calcineurin, and message for calcineurin has also been identified in the trout saccular hair cell layer. AC7 is independent of Ca(2+). Given the lack of detection of calcium/calmodulin-activated isoforms previously suggested to mediate AC activation in the absence of Gαs in mammalian cochlear hair cells, the issue of hair-cell Gαs mRNA expression was re-examined in the teleost vestibular hair cell model. Two full-length coding sequences were obtained for Gαs/olf in the vestibular type II-like hair cells of the trout saccule. Two messages for Gαi have also been detected in the hair cell layer, one with homology to Gαi1 and the second with homology to Gαi3 of higher vertebrates. Both Gαs/olf protein and Gαi1/Gαi3 protein were immunolocalized to stereocilia and to the base of the hair cell, the latter consistent with sites of efferent input. Although a signaling event coupling to Gαs/olf and Gαi1/Gαi3 in the stereocilia is currently unknown, signaling with Gαs/olf, Gαi3, and AC5/6 at the base of the hair cell would be consistent with transduction pathways activated by dopaminergic efferent input. mRNA for dopamine receptors D1A4 and five forms of dopamine D2 were found to be expressed in the teleost saccular hair cell layer, representing information on vestibular hair cell expression not directly available for higher vertebrates. Dopamine D1A receptor would couple to Gαolf and activation of AC5/6. Co-expression with dopamine D2 receptor, which

  6. β3GnT2 Maintains Adenylyl Cyclase-3 Signaling and Axon Guidance Molecule Expression in the Olfactory Epithelium

    PubMed Central

    Faden, Ashley A.; Knott, Thomas K.

    2011-01-01

    In the olfactory epithelium (OE), odorant receptor stimulation generates cAMP signals that function in both odor detection and the regulation of axon guidance molecule expression. The enzyme that synthesizes cAMP, adenylyl cyclase 3 (AC3), is coexpressed in olfactory sensory neurons (OSNs) with poly-N-acetyllactosamine (PLN) oligosaccharides determined by the glycosyltransferase β3GnT2. The loss of either enzyme results in similar defects in olfactory bulb (OB) innervation and OSN survival, suggesting that glycosylation may be important for AC3 function. We show here that AC3 is extensively modified with N-linked PLN, which is essential for AC3 activity and localization. On Western blots, AC3 from the wild-type OE migrates diffusely as a heavily glycosylated 200 kDa band that interacts with the PLN-binding lectin LEA. AC3 from the β3GnT2−/− OE loses these PLN modifications, migrating instead as a 140 kDa glycoprotein. Furthermore, basal and forskolin-stimulated cAMP production is reduced 80–90% in the β3GnT2−/− OE. Although AC3 traffics normally to null OSN cilia, it is absent from axon projections that aberrantly target the OB. The cAMP-dependent guidance receptor neuropilin-1 is also lost from β3GnT2−/− OSNs and axons, while semaphorin-3A ligand expression is upregulated. In addition, kirrel2, a mosaically expressed adhesion molecule that functions in axon sorting, is absent from β3GnT2−/− OB projections. These results demonstrate that PLN glycans are essential in OSNs for proper AC3 localization and function. We propose that the loss of cAMP-dependent guidance cues is also a critical factor in the severe axon guidance defects observed in β3GnT2−/− mice. PMID:21525298

  7. Overexpression of Adenylyl Cyclase Encoded by the Mycobacterium tuberculosis Rv2212 Gene Confers Improved Fitness, Accelerated Recovery from Dormancy and Enhanced Virulence in Mice.

    PubMed

    Shleeva, Margarita O; Kondratieva, Tatyana K; Demina, Galina R; Rubakova, Elvira I; Goncharenko, Anna V; Apt, Alexander S; Kaprelyants, Arseny S

    2017-01-01

    Earlier we demonstrated that the adenylyl cyclase (AC) encoded by the MSMEG_4279 gene plays a key role in the resuscitation and growth of dormant Mycobacterium smegmatis and that overexpression of this gene leads to an increase in intracellular cAMP concentration and prevents the transition of M. smegmatis from active growth to dormancy in an extended stationary phase accompanied by medium acidification. We surmised that the homologous Rv2212 gene of M. tuberculosis ( Mtb ), the main cAMP producer, plays similar physiological roles by supporting, under these conditions, the active state and reactivation of dormant bacteria. To test this hypothesis, we established Mtb strain overexpressing Rv2212 and compared its in vitro and in vivo growth characteristics with a control strain. In vitro , the AC-overexpressing pMind Rv2212 strain demonstrated faster growth in a liquid medium, prolonged capacity to form CFUs and a significant delay or even prevention of transition toward dormancy. AC-overexpressing cells exhibited easier recovery from dormancy. In vivo , AC-overexpressing bacteria demonstrated significantly higher growth rates (virulence) in the lungs and spleens of infected mice compared to the control strain, and, unlike the latter, killed mice in the TB-resistant strain before month 8 of infection. Even in the absence of selecting hygromycin B, all pMind Rv2212 CFUs retained the Rv2212 insert during in vivo growth, strongly suggesting that AC overexpression is beneficial for bacteria. Taken together, our results indicate that cAMP supports the maintenance of Mtb cells vitality under unfavorable conditions in vitro and their virulence in vivo .

  8. Pituitary adenylate cyclase-activating polypeptide: a novel peptide with protean implications.

    PubMed

    Pisegna, Joseph R; Oh, David S

    2007-02-01

    The purpose of this review is to highlight the importance of pituitary adenylate cyclase-activating polypeptide in physiological processes and to describe how this peptide is becoming increasingly recognized as having a major role in the body. Since its discovery in 1989, investigators have sought to determine the site of biological activity and the function of pituitary adenylate cyclase-activating polypeptide in maintaining homeostasis. Since its discovery, pituitary adenylate cyclase-activating polypeptide appears to play an important role in the regulation of processes within the central nervous system and gastrointestinal tract, as well in reproductive biology. Pituitary adenylate cyclase-activating polypeptide has been shown to regulate tumor cell growth and to regulate immune function through its effects on T lympocytes. These discoveries suggest the importance of pituitary adenylate cyclase-activating polypeptide in neuronal development, neuronal function, gastrointestinal tract function and reproduction. Future studies will examine more closely the role of pituitary adenylate cyclase-activating polypeptide in regulation of malignantly transformed cells, as well as in regulation of immune function.

  9. Reactive oxygen species potentiate the negative inotropic effect of cardiac M2-muscarinic receptor stimulation.

    PubMed

    Peters, S L; Sand, C; Batinik, H D; Pfaffendorf, M; van Zwieten, P A

    2001-08-01

    The aim of the present study was to investigate the influence of reactive oxygen species (ROS) on the contractile responses of rat isolated left atria to muscarinic receptor stimulation. ROS were generated by means of electrolysis (30 mA, 75 s) of the organ bath fluid. Twenty minutes after the electrolysis period, the electrically paced atria (3 Hz) were stimulated with the adenylyl cyclase activator forskolin (1 microM). Subsequently, cumulative acetylcholine concentration-response curves were constructed (0.01 nM-10 microM). In addition, phosphoinositide turnover and adenylyl cyclase activity under basal and stimulated conditions were measured. For these biochemical experiments we used the stable acetylcholine analogue carbachol. The atria exposed to reactive oxygen species were influenced more potently (pD2 control: 6.2 vs. 7.1 for electrolysis-treated atria, P<0.05) and more effectively (Emax control: 40% vs. 90% reduction of the initial amplitude, P<0.05) by acetylcholine. In contrast, ROS exposure did not alter the responses to adenosine, whose receptor is also coupled via a Gi-protein to adenylyl cyclase. The basal (40% vs. control, P<0.05) as well as the carbachol-stimulated (-85% vs. control, P<0.05) inositol-phosphate formation was reduced in atria exposed to ROS. The forskolin-stimulated adenylyl cyclase activity was identical in both groups but carbachol stimulation induced a more pronounced reduction in adenylyl cyclase activity in the electrolysis-treated atria. Accordingly we may conclude that ROS enhance the negative inotropic response of isolated rat atria to acetylcholine by both a reduction of the positive (inositide turnover) and increase of the negative (adenylyl cyclase inhibition) inotropic components of cardiac muscarinic receptor stimulation. This phenomenon is most likely M2-receptor specific, since the negative inotropic response to adenosine is unaltered by ROS exposure.

  10. Cholera toxin activation of adenylate cyclase in cancer cell membrane fragments.

    PubMed Central

    Bitensky, M W; Wheeler, M A; Mehta, H; Miki, N

    1975-01-01

    Activation of adenylate [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] by cholera toxin (84,000 daltons, 5.5 S) is demonstrated in plasma membrane fragments of mouse ascites cancer cells. The activation of adenylate cyclase is mediated by a macromolecular cyclase activating factor (MCAF), which has a sedimentation constant of 2.7 S and a molecular weight of about 26,000. MCAF is derived from, and may be identical to the "A fragment" of cholera toxin. Generation of MCAF depends on prior interaction of cholera toxin with either dithiothreitol, NADH, NAD, or a low-molecular-weight component (less than 700 daltons) present in cytoplasm. Subsequent exposure of this pretreated cholera toxin to cell membranes from a variety of mouse ascites cancer cells is followed rapidly by the appearance of MCAF, which no longer requires dithiothreitol, NADH, or NAD for the activation of adenylate cyclase. Activation of adenylate cyclase by MCAF in ascites cancer cell membrane fragments is not reversed by repeated washing of these membrane fragments. Adenylate cyclase in normal cell membrane fragments fails to respond either to cholera toxin or MCAF in the presence of dithiothreitol. In striking contrast, the adenylate cyclase in membrane fragments from five ascites cancer cells responds to either MCAF or native cholera toxin preincubated with dithiothreitol, NADH, or NAD. PMID:1058474

  11. Effect of age and posture on human lymphocyte adenylate cyclase activity.

    PubMed

    Mader, S L; Robbins, A S; Rubenstein, L Z; Tuck, M L; Scarpace, P J

    1988-03-01

    1. A number of age-related changes have been reported in the catecholamine-adrenoceptor-adenylate cyclase system. Most of the data available on these alterations come from resting subjects; the response to acute stress may provide additional insights into the age effect on these responses. 2. We measured supine and 10 min upright plasma noradrenaline and lymphocyte adenylate cyclase activity in ten healthy elderly subjects (age 66-80 years) and seven healthy young subjects (age 27-34 years). 3. Isoprenaline stimulation of lymphocyte adenylate cyclase activity was not significantly different between supine and upright positions or between elderly and young subjects. There was a marked increase in forskolin-stimulated adenylate cyclase activity in the upright posture in both elderly and young subjects. The increment over supine levels was 70% in the elderly (P less than 0.025) and 73% in the young (P less than 0.05). This enhanced forskolin activity was not seen in two young subjects who became syncopal. 4. These data suggest that enhanced forskolin-stimulated adenylate cyclase activity occurs after 10 min of upright posture in both elderly and young subjects, and may be relevant to immediate blood pressure regulation. We were unable to demonstrate any age-related differences in these acute adrenergic responses.

  12. Differential profile of typical, atypical and third generation antipsychotics at human 5-HT7a receptors coupled to adenylyl cyclase: detection of agonist and inverse agonist properties.

    PubMed

    Rauly-Lestienne, Isabelle; Boutet-Robinet, Elisa; Ailhaud, Marie-Christine; Newman-Tancredi, Adrian; Cussac, Didier

    2007-10-01

    5-HT(7) receptors are present in thalamus and limbic structures, and a possible role of these receptors in the pathology of schizophrenia has been evoked. In this study, we examined binding affinity and agonist/antagonist/inverse agonist properties at these receptors of a large series of antipsychotics, i.e., typical, atypical, and third generation compounds preferentially targeting D(2) and 5-HT(1A) sites. Adenylyl cyclase (AC) activity was measured in HEK293 cells stably expressing the human (h) 5-HT(7a) receptor isoform. 5-HT and 5-CT increased cyclic adenosine monophosphate level by about 20-fold whereas (+)-8-OH-DPAT, the antidyskinetic agent sarizotan, and the novel antipsychotic compound bifeprunox exhibited partial agonist properties at h5-HT(7a) receptors stimulating AC. Other compounds antagonized 5-HT-induced AC activity with pK (B) values which correlated with their pK (i) as determined by competition binding vs [(3)H]5-CT. The selective 5-HT(7) receptor ligand, SB269970, was the most potent antagonist. For antipsychotic compounds, the following rank order of antagonism potency (pK (B)) was ziprasidone > tiospirone > SSR181507 > or = clozapine > or = olanzapine > SLV-314 > SLV-313 > or = aripiprazole > or = chlorpromazine > nemonapride > haloperidol. Interestingly, pretreatment of HEK293-h5-HT(7a) cells with forskolin enhanced basal AC activity and revealed inverse agonist properties for both typical and atypical antipsychotics as well as for aripiprazole. In contrast, other novel antipsychotics exhibited diverse 5-HT(7a) properties; SLV-313 and SLV-314 behaved as quasi-neutral antagonists, SSR181507 acted as an inverse agonist, and bifeprunox as a partial agonist, as mentioned above. In conclusion, the differential properties of third generation antipsychotics at 5-HT(7) receptors may influence their antipsychotic profile.

  13. 5-HT stimulation of heart rate in Drosophila does not act through cAMP as revealed by pharmacogenetics.

    PubMed

    Majeed, Zana R; Nichols, Charles D; Cooper, Robin L

    2013-12-01

    The fruit fly, Drosophila melanogaster, is a good experimental organism to study the underlying mechanism of heart rate (HR) regulation. It is already known that many neuromodulators (serotonin, dopamine, octopamine, acetylcholine) change the HR in Drosophila melanogaster larvae. In this study, we investigated the role of cAMP-PKA signaling pathway in HR regulation and 5-HT positive chronotropic action. In order to obtain insight into the 5-HT mechanism of action in larvae cardiomyocytes, genetic and pharmacological approaches were used. We used transgenic flies that expressed the hM4Di receptor [designer receptors exclusively activated by designer drugs (DREADDs)] as one tool. Our previous results showed that activation of hM4Di receptors (modified muscarinic acetylcholine receptors) decreases or arrests the heart from beating. In this study, it was hypothesized that the positive chronotropic effect of serotonin [5-hydroxytryptamine (5-HT)] are mediated by serotonin receptors coupled to the adenylyl cyclase pathway and downstream cAMP and PKA activity. Activation of hM4Di by clozapine-N-oxide (CNO) was predicted to block the effects of serotonin by inhibiting adenylyl cyclase activity through Gαi pathway activation. Interestingly, we found here that manipulation of adenylyl cyclase activity and cAMP levels had no significant effect on HR. The ability of hM4Di receptor activation to slow or stop the heart is therefore likely mediated by activation of GIRK channels to produce hyperpolarization of cardiomyocytes, and not through inhibition of adenylyl cyclase.

  14. Factors affecting the activity of guanylate cyclase in lysates of human blood platelets.

    PubMed Central

    Adams, A F; Haslam, R J

    1978-01-01

    1. Under optimal ionic conditions (4 mM-MnCl2) the specific activity of guanylate cyclase in fresh platelet lysates was about 10nmol of cyclic GMP formed/20 min per mg of protein at 30 degrees C. Activity was 15% of optimum with 10mM-MgCl2 and negligible with 4mM-CaCl2. Synergism between MnCl2 and MgCl2 or CaCl2 was observed when [MnCl2] less than or equal to [GPT]. 2. Lower than optimal specific activities were obtained in assays containing large volumes of platelet lysate, owing to the presence of inhibitory factors that could be removed by ultrafiltration. Adenine nucleotides accounted for less than 50% of the inhibitory activity. 3. Preincubation of lysate for 1 h at 30 degrees C increased the specific activity of platelet guanylate cyclase by about 2-fold. 4. Lubrol PX (1%, w/v) stimulated guanylate cyclase activity by 3--5-fold before preincubation and by about 2-fold after preincubation. Triton X-100 was much less effective. 5. Dithiothreitol inhibited the guanylate cyclase activity of untreated, preincubated and Lubrol PX-treated lysates and prevented activation by preincubation provided that it was added beforehand. 6. Oleate stimulated guanylate cyclase activity 3--4-fold and arachidonate 2--3-fold, whereas palmitate was almost inactive. Pretreatment of lysate with indomethacin did not inhibit this effect of arachidonate. Oleate and arachidonate caused marked stimulation of guanylate cyclase in preincubated lysate, but inhibited the enzyme in Lubrol PX-treated lysate. 7. NaN3 (10mM) increased guanylate cyclase activity by up to 7-fold; this effect was both time- and temperature-dependent. NaN3 did not further activate the enzyme in Lubrol PX-treated lysate. 8. The results indicated that preincubation, Lubrol PX, fatty acids and NaN3 activated platelet guanylate cyclase by different mechanisms. 9. Platelet particulate fractions contained no guanylate cyclase activity detectable in the presence or absence of Lubrol PX that could not be accounted for by

  15. Factors affecting the activity of guanylate cyclase in lysates of human blood platelets.

    PubMed

    Adams, A F; Haslam, R J

    1978-07-15

    1. Under optimal ionic conditions (4 mM-MnCl2) the specific activity of guanylate cyclase in fresh platelet lysates was about 10nmol of cyclic GMP formed/20 min per mg of protein at 30 degrees C. Activity was 15% of optimum with 10mM-MgCl2 and negligible with 4mM-CaCl2. Synergism between MnCl2 and MgCl2 or CaCl2 was observed when [MnCl2] less than or equal to [GPT]. 2. Lower than optimal specific activities were obtained in assays containing large volumes of platelet lysate, owing to the presence of inhibitory factors that could be removed by ultrafiltration. Adenine nucleotides accounted for less than 50% of the inhibitory activity. 3. Preincubation of lysate for 1 h at 30 degrees C increased the specific activity of platelet guanylate cyclase by about 2-fold. 4. Lubrol PX (1%, w/v) stimulated guanylate cyclase activity by 3--5-fold before preincubation and by about 2-fold after preincubation. Triton X-100 was much less effective. 5. Dithiothreitol inhibited the guanylate cyclase activity of untreated, preincubated and Lubrol PX-treated lysates and prevented activation by preincubation provided that it was added beforehand. 6. Oleate stimulated guanylate cyclase activity 3--4-fold and arachidonate 2--3-fold, whereas palmitate was almost inactive. Pretreatment of lysate with indomethacin did not inhibit this effect of arachidonate. Oleate and arachidonate caused marked stimulation of guanylate cyclase in preincubated lysate, but inhibited the enzyme in Lubrol PX-treated lysate. 7. NaN3 (10mM) increased guanylate cyclase activity by up to 7-fold; this effect was both time- and temperature-dependent. NaN3 did not further activate the enzyme in Lubrol PX-treated lysate. 8. The results indicated that preincubation, Lubrol PX, fatty acids and NaN3 activated platelet guanylate cyclase by different mechanisms. 9. Platelet particulate fractions contained no guanylate cyclase activity detectable in the presence or absence of Lubrol PX that could not be accounted for by

  16. Intracoronary Gene Transfer of Adenylyl Cyclase 6 in Patients With Heart Failure

    PubMed Central

    Hammond, H. Kirk; Penny, William F.; Traverse, Jay H.; Henry, Timothy D.; Watkins, Matthew W.; Yancy, Clyde W.; Sweis, Ranya N.; Adler, Eric D.; Patel, Amit N.; Murray, David R.; Ross, Robert S.; Bhargava, Valmik; Maisel, Alan; Barnard, Denise D.; Lai, N. Chin; Dalton, Nancy D.; Lee, Martin L.; Narayan, Sanjiv M.; Blanchard, Daniel G.; Gao, Mei Hua

    2017-01-01

    Importance Gene transfer has rarely been tested in randomized clinical trials. Objective To evaluate the safety and efficacy of intracoronary delivery of adenovirus 5 encoding adenylyl cyclase 6 (Ad5.hAC6) in heart failure. Design, Setting, and Participants A randomized, double-blind, placebo-controlled, phase 2 clinical trial was conducted in US medical centers (randomization occurred from July 19, 2010, to October 30, 2014). Participants 18 to 80 years with symptomatic heart failure (ischemic and nonischemic) and an ejection fraction (EF) of 40% or less were screened; 86 individuals were enrolled, and 56 were randomized. Data analysis was of the intention-to-treat population. Participants underwent exercise testing and measurement of left ventricular EF (echocardiography) and then cardiac catheterization, where left ventricular pressure development (+dP/dt)and decline (−dP/dt) were recorded. Participants were randomized (3:1 ratio) to receive 1 of 5 doses of intracoronary Ad5.hAC6 or placebo. Participants underwent a second catheterization 4 weeks later for measurement of dP/dt. Exercise testing and EF were assessed 4 and 12 weeks after randomization. Interventions Intracoronary administration of Ad5.hAC6 (3.2 × 109 to 1012 virus particles) or placebo. Main Outcomes and Measures Primary end points included exercise duration and EF before and 4 and 12 weeks after randomization and peak rates of +dP/dt and −dP/dt before and 4 weeks after randomization. Fourteen placebo participants were compared (intention to treat) with 24 Ad5.hAC6 participants receiving the highest 2 doses (D4 + 5). Results Fifty-six individuals were randomized and monitored for up to 1 year. Forty-two participants (75%) received Ad5.hAC6 (mean [SE] age, 63 [1] years; EF, 30% [1%]), and 14 individuals (25%) received placebo (age, 62 [1] years; EF, 30% [2%]). Exercise duration showed no significant group differences (4 weeks, P = .27; 12 weeks, P = .47, respectively). The D4 + 5 participants

  17. Controlling fertilization and cAMP signaling in sperm by optogenetics.

    PubMed

    Jansen, Vera; Alvarez, Luis; Balbach, Melanie; Strünker, Timo; Hegemann, Peter; Kaupp, U Benjamin; Wachten, Dagmar

    2015-01-20

    Optogenetics is a powerful technique to control cellular activity by light. The light-gated Channelrhodopsin has been widely used to study and manipulate neuronal activity in vivo, whereas optogenetic control of second messengers in vivo has not been examined in depth. In this study, we present a transgenic mouse model expressing a photoactivated adenylyl cyclase (bPAC) in sperm. In transgenic sperm, bPAC mimics the action of the endogenous soluble adenylyl cyclase (SACY) that is required for motility and fertilization: light-stimulation rapidly elevates cAMP, accelerates the flagellar beat, and, thereby, changes swimming behavior of sperm. Furthermore, bPAC replaces endogenous adenylyl cyclase activity. In mutant sperm lacking the bicarbonate-stimulated SACY activity, bPAC restored motility after light-stimulation and, thereby, enabled sperm to fertilize oocytes in vitro. We show that optogenetic control of cAMP in vivo allows to non-invasively study cAMP signaling, to control behaviors of single cells, and to restore a fundamental biological process such as fertilization.

  18. Sustained signalling by PTH modulates IP3 accumulation and IP3 receptors through cyclic AMP junctions

    PubMed Central

    Meena, Abha; Tovey, Stephen C.; Taylor, Colin W.

    2015-01-01

    ABSTRACT Parathyroid hormone (PTH) stimulates adenylyl cyclase through type 1 PTH receptors (PTH1R) and potentiates the Ca2+ signals evoked by carbachol, which stimulates formation of inositol 1,4,5-trisphosphate (IP3). We confirmed that in HEK cells expressing PTH1R, acute stimulation with PTH(1-34) potentiated carbachol-evoked Ca2+ release. This was mediated by locally delivered cyclic AMP (cAMP), but unaffected by inhibition of protein kinase A (PKA), exchange proteins activated by cAMP, cAMP phosphodiesterases (PDEs) or substantial inhibition of adenylyl cyclase. Sustained stimulation with PTH(1-34) causes internalization of PTH1R–adenylyl cyclase signalling complexes, but the consequences for delivery of cAMP to IP3R within cAMP signalling junctions are unknown. Here, we show that sustained stimulation with PTH(1-34) or with PTH analogues that do not evoke receptor internalization reduced the potentiated Ca2+ signals and attenuated carbachol-evoked increases in cytosolic IP3. Similar results were obtained after sustained stimulation with NKH477 to directly activate adenylyl cyclase, or with the membrane-permeant analogue of cAMP, 8-Br-cAMP. These responses were independent of PKA and unaffected by substantial inhibition of adenylyl cyclase. During prolonged stimulation with PTH(1-34), hyperactive cAMP signalling junctions, within which cAMP is delivered directly and at saturating concentrations to its targets, mediate sensitization of IP3R and a more slowly developing inhibition of IP3 accumulation. PMID:25431134

  19. Subcellular distribution and activation by non-ionic detergents of guanylate cyclase in cerebral cortex of rat.

    PubMed

    Deguchi, T; Amano, E; Nakane, M

    1976-11-01

    Non-ionic detergents stimulated particulate guanylate cyclase activity in cerebral cortex of rat 8- to 12-fold while stimulation of soluble enzyme was 1.3- to 2.5-fold. Among various detergents, Lubrol PX was the most effective one. The subcellular distribution of guanylate cyclase activity was examined with or without 0.5% Lubrol PX. Without Lubrol PX two-thirds of the enzyme activity was detected in the soluble fraction. In the presence of Lubrol PX, however, two-thirds of guanylate cyclase activity was recovered in the crude mitochondrial fraction. Further fractionation revealed that most of the particulate guanylate cyclase activity was associated with synaptosomes. The sedimentation characteristic of the particulate guanylate cyclase activity was very close to those of choline acetyltransferase and acetylcholine esterase activities, two synaptosomal enzymes. When the crude mitochondrial fraction was subfractionated after osmotic shock, most of guanylate cyclase activity as assayed in the absence of Lubrol PX was released into the soluble fraction while the rest of the enzyme activity was tightly bound to synaptic membrane fractions. The total guanylate cyclase activity recovered in the synaptosomal soluble fraction was 6 to 7 times higher than that of the starting material. The specific enzyme activity reached more than 1000 pmol per min per mg protein, which was 35-fold higher than that of the starting material. The membrane bound guanylate cyclase activity was markedly stimulated by Lubrol PX. Guanylate cyclase activity in the synaptosomal soluble fraction, in contrast, was suppressed by the addition of Lubrol PX. The observation that most of guanylate cyclase activity was detected in synaptosomes, some of which was tightly bound to the synaptic membrane fraction upon hypoosmotic treatment, is consistent with the concept that cyclic GMP is involved in neural transmission.

  20. LH-RH binding to purified pituitary plasma membranes: absence of adenylate cyclase activation.

    PubMed

    Clayton, R N; Shakespear, R A; Marshall, J C

    1978-06-01

    Purified bovine pituitary plasma membranes possess two specific LH-RH binding sites. The high affinity site (2.5 X 10(9) l/mol) has low capacity (9 X 10(-15) mol/mg membrane protein) while the low affinity site 6.1 X 10(5) l/mol) has a much higher capacity (1.1 X 10(-10) mol/mg). Specific LH-RH binding to plasma membranes is increased 8.5-fold during purification from homogenate whilst adenylate cyclase activity is enriched 7--8-fold. Distribution of specific LH-RH binding to sucrose density gradient interface fractions parallels that of adenylate cyclase activity. Mg2+ and Ca2+ inhibit specific [125I]LH-RH binding at micromolar concentrations. Synthetic LH-RH, up to 250 microgram/ml, failed to stimulate adenylase cyclase activity of the purified bovine membranes. Using a crude 10,800 g rat pituitary membrane preparation, LH-RH similarly failed to activate adenylate cyclase even in the presence of guanyl nucleotides. These data confirm the presence of LH-RH receptor sites on pituitary plasma membranes and suggest that LH-RH-induced gonadotrophin release may be mediated by mechanisms other than activation of adenylate cyclase.

  1. The Effects of Thrombin on Adenyl Cyclase Activity and a Membrane Protein from Human Platelets

    PubMed Central

    Brodie, G. N.; Baenziger, Nancy Lewis; Chase, Lewis R.; Majerus, Philip W.

    1972-01-01

    Washed human platelets were incubated with 0.1-1.0 U/ml human thrombin and the effects on adenyl cyclase activity and on a platelet membrane protein (designated thrombin-sensitive protein) were studied. Adenyl cyclase activity was decreased 70-90% when intact platelets were incubated with thrombin. The T½ for loss of adenyl cyclase activity was less than 15 sec at 1 U/ml thrombin. There was no decrease of adenyl cyclase activity when sonicated platelets or isolated membranes were incubated with these concentrations of thrombin. Loss of adenyl cyclase activity was relatively specific since the activities of other platelet membrane enzymes were unaffected by thrombin. Prior incubation of platelets with dibutyryl cyclic adenosine monophosphate (AMP), prostaglandin E1, or theophylline protected adenyl cyclase from inhibition by thrombin. Incubation of intact but not disrupted platelets with thrombin resulted in the release of thrombin-sensitive protein from the platelet membrane. The rapid release of this protein (T½ < 15 sec) at low concentrations of thrombin suggested that removal of thrombin-sensitive protein from the platelet membrane is an integral part of the platelet release reaction. This hypothesis is supported by the parallel effects of thrombin on adenyl cyclase activity and thrombin-sensitive protein release in the presence of dibutyryl cyclic AMP, prostaglandin E1, and theophylline at varying concentrations of thrombin. Images PMID:4331802

  2. Porcine CD38 exhibits prominent secondary NAD(+) cyclase activity.

    PubMed

    Ting, Kai Yiu; Leung, Christina F P; Graeff, Richard M; Lee, Hon Cheung; Hao, Quan; Kotaka, Masayo

    2016-03-01

    Cyclic ADP-ribose (cADPR) mobilizes intracellular Ca(2+) stores and activates Ca(2+) influx to regulate a wide range of physiological processes. It is one of the products produced from the catalysis of NAD(+) by the multifunctional CD38/ADP-ribosyl cyclase superfamily. After elimination of the nicotinamide ring by the enzyme, the reaction intermediate of NAD(+) can either be hydrolyzed to form linear ADPR or cyclized to form cADPR. We have previously shown that human CD38 exhibits a higher preference towards the hydrolysis of NAD(+) to form linear ADPR while Aplysia ADP-ribosyl cyclase prefers cyclizing NAD(+) to form cADPR. In this study, we characterized the enzymatic properties of porcine CD38 and revealed that it has a prominent secondary NAD(+) cyclase activity producing cADPR. We also determined the X-ray crystallographic structures of porcine CD38 and were able to observe conformational flexibility at the base of the active site of the enzyme which allow the NAD(+) reaction intermediate to adopt conformations resulting in both hydrolysis and cyclization forming linear ADPR and cADPR respectively. © 2016 The Protein Society.

  3. The anti-diabetic drug repaglinide induces vasorelaxation via activation of PKA and PKG in aortic smooth muscle.

    PubMed

    Kim, Hye Won; Li, Hongliang; Kim, Han Sol; Shin, Sung Eun; Jung, Won-Kyo; Ha, Kwon-Soo; Han, Eun-Taek; Hong, Seok-Ho; Choi, Il-Whan; Firth, Amy L; Bang, Hyoweon; Park, Won Sun

    2016-09-01

    We investigated the vasorelaxant effect of repaglinide and its related signaling pathways using phenylephrine (Phe)-induced pre-contracted aortic rings. Repaglinide induced vasorelaxation in a concentration-dependent manner. The repaglinide-induced vasorelaxation was not affected by removal of the endothelium. In addition, application of a nitric oxide synthase inhibitor (L-NAME) and a small-conductance Ca(2+)-activated K(+) (SKCa) channel inhibitor (apamin) did not alter the vasorelaxant effect of repaglinide on endothelium-intact arteries. Pretreatment with an adenylyl cyclase inhibitor (SQ 22536) or a PKA inhibitor (KT 5720) effectively reduced repaglinide-induced vasorelaxation. Also, pretreatment with a guanylyl cyclase inhibitor (ODQ) or a PKG inhibitor (KT 5823) inhibited repaglinide-induced vasorelaxation. However, pretreatment with a voltage-dependent K(+) (Kv) channel inhibitor (4-AP), ATP-sensitive K(+) (KATP) channel inhibitor (glibenclamide), large-conductance Ca(2+)-activated K(+) (BKCa) channel inhibitor (paxilline), or the inwardly rectifying K(+) (Kir) channel inhibitor (Ba(2+)) did not affect the vasorelaxant effect of repaglinide. Furthermore, pretreatment with a Ca(2+) inhibitor (nifedipine) and a sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibitor (thapsigargin) did not affect the vasorelaxant effect of repaglinide. The vasorelaxant effect of repaglinide was not affected by elevated glucose (50mM). Based on these results, we conclude that repaglinide induces vasorelaxation via activation of adenylyl cyclase/PKA and guanylyl cyclase/PKG signaling pathways independently of the endothelium, K(+) channels, Ca(2+) channels, and intracellular Ca(2+) ([Ca(2+)]i). Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Nitric oxide (NO), the only nitrogen monoxide redox form capable of activating soluble guanylyl cyclase.

    PubMed

    Dierks, E A; Burstyn, J N

    1996-06-28

    In the present study, we determined that of the redox forms of nitrogen monoxide, NO-, NO and NO+, only NO significantly activates soluble guanylyl cyclase (GTP pyrophosphate-lyase cyclizing, EC 4.6.1.2). Neither of the NO-donors tested, Angeli's salt (Na2N2O3) or Piloty's acid (C6H5SO2NHOH), caused a change in the guanylyl cyclase activity relative to the basal activity level. Interference by other reaction products was eliminated as a possible explanation for the lack of activation. To the extent that NO+ could be stabilized in aqueous solution, by dissolution of the nitrosonium salt NOPF6 in dry organic solvent prior to addition to the enzyme in buffer, NO+ had no effect on the activity of soluble guanylyl cyclase. The counter-ion, PF6-, had a minimal effect on the enzyme activity and, therefore was, not responsible for the lack of activation by NO+. These observations suggest that NO- is the natural activator of soluble guanylyl cyclase and is reasonably identical with endothelium-derived relaxing factor, the physiological regulator of soluble guanylyl cyclase activity.

  5. Effect of nitroso complexes of some transition metals on the activity of soluble guanylate cyclase.

    PubMed

    Severina, I S; Bussygina, O G; Grigorjev, N B

    1992-03-01

    Effects of nitroso complexes of some transition metals (Fe, Co, Cr), differing in the character of NO oxidation on the activity of human and rat platelet guanylate cyclase were studied. 3 types of nitroso complexes were used: (1) NO group carries a positive charge--a nitrosonium cation (Na2[FeNO + (CN)5]-nitroprusside); (2) NO is neutral--(K3[CrNO(CN)5 and [CoNO(NH3)5]SO4) and (3) NO is coordinated as anion NO- (K3[CoNO-(CN)5]. It is shown that the highest stimulatory effect is produced by sodium nitroprusside, whose activating action is due to the interaction of its NO group with the guanylate cyclase heme. Nitroso complexes (Co and Cr) the NO group of which is neutral stimulated guanylate cyclase activity insignificantly and this activation was not guanylate cyclase heme directed. Nitroso complex (Co) with NO coordinated as anion NO(-)--is a guanylate cyclase inhibitor. In contrast to nitroprusside, the nitroso complexes used (Co and Cr) have no hypotensive effect. It was concluded that the essential requirement for the realization of the hypotensive effect of transition metals' nitroso complexes is the ability of these compounds to activate soluble guanylate cyclase solely by the heme-dependent mechanism.

  6. CD38-dependent ADP-ribosyl cyclase activity in developing and adult mouse brain.

    PubMed Central

    Ceni, Claire; Pochon, Nathalie; Brun, Virginie; Muller-Steffner, Hélène; Andrieux, Annie; Grunwald, Didier; Schuber, Francis; De Waard, Michel; Lund, Frances; Villaz, Michel; Moutin, Marie-Jo

    2003-01-01

    CD38 is a transmembrane glycoprotein that is expressed in many tissues throughout the body. In addition to its major NAD+-glycohydrolase activity, CD38 is also able to synthesize cyclic ADP-ribose, an endogenous calcium-regulating molecule, from NAD+. In the present study, we have compared ADP-ribosyl cyclase and NAD+-glycohydrolase activities in protein extracts of brains from developing and adult wild-type and Cd38 -/- mice. In extracts from wild-type brain, cyclase activity was detected spectrofluorimetrically, using nicotinamide-guanine dinucleotide as a substrate (GDP-ribosyl cyclase activity), as early as embryonic day 15. The level of cyclase activity was similar in the neonate brain (postnatal day 1) and then increased greatly in the adult brain. Using [14C]NAD+ as a substrate and HPLC analysis, we found that ADP-ribose is the major product formed in the brain at all developmental stages. Under the same experimental conditions, neither NAD+-glycohydrolase nor GDP-ribosyl cyclase activity could be detected in extracts of brains from developing or adult Cd38 -/- mice, demonstrating that CD38 is the predominant constitutive enzyme endowed with these activities in brain at all developmental stages. The activity measurements correlated with the level of CD38 transcripts present in the brains of developing and adult wild-type mice. Using confocal microscopy we showed, in primary cultures of hippocampal cells, that CD38 is expressed by both neurons and glial cells, and is enriched in neuronal perikarya. Intracellular NAD+-glycohydrolase activity was measured in hippocampal cell cultures, and CD38-dependent cyclase activity was higher in brain fractions enriched in intracellular membranes. Taken together, these results lead us to speculate that CD38 might have an intracellular location in neural cells in addition to its plasma membrane location, and may play an important role in intracellular cyclic ADP-ribose-mediated calcium signalling in brain tissue. PMID

  7. Adenylyl Cyclase 1 Is Required for Ethanol-Induced Locomotor Sensitization and Associated Increases in NMDA Receptor Phosphorylation and Function in the Dorsal Medial Striatum

    PubMed Central

    Bosse, Kelly E.; Oginsky, Max F.; Susick, Laura L.; Ramalingam, Sailesh; Ferrario, Carrie R.

    2017-01-01

    Neuroadaptive responses to chronic ethanol, such as behavioral sensitization, are associated with N-methyl-D-aspartate receptor (NMDAR) recruitment. Ethanol enhances GluN2B-containing NMDAR function and phosphorylation (Tyr-1472) of the GluN2B-NMDAR subunit in the dorsal medial striatum (DMS) through a protein kinase A (PKA)–dependent pathway. Ethanol-induced phosphorylation of PKA substrates is partially mediated by calcium-stimulated adenylyl cyclase 1 (AC1), which is enriched in the dorsal striatum. As such, AC1 is poised as an upstream modulator of ethanol-induced DMS neuroadaptations that promote drug responding, and thus represents a therapeutic target. Our hypothesis is that loss of AC1 activity will prevent ethanol-induced locomotor sensitization and associated DMS GluN2B-NMDAR adaptations. We evaluated AC1’s contribution to ethanol-evoked locomotor responses and DMS GluN2B-NMDAR phosphorylation and function using AC1 knockout (AC1KO) mice. Results were mechanistically validated with the AC1 inhibitor, NB001. Acute ethanol (2.0 g/kg) locomotor responses in AC1KO and wild-type (WT) mice pretreated with NB001 (10 mg/kg) were comparable to WT ethanol controls. However, repeated ethanol treatment (10 days, 2.5 g/kg) failed to produce sensitization in AC1KO or NB001 pretreated mice, as observed in WT ethanol controls, following challenge exposure (2.0 g/kg). Repeated exposure to ethanol in the sensitization procedure significantly increased pTyr-1472 GluN2B levels and GluN2B-containing NMDAR transmission in the DMS of WT mice. Loss of AC1 signaling impaired ethanol-induced increases in DMS pGluN2B levels and NMDAR-mediated transmission. Together, these data support a critical and specific role for AC1 in striatal signaling that mediates ethanol-induced behavioral sensitization, and identify GluN2B-containing NMDARs as an important AC1 target. PMID:28838956

  8. Ocean acidification stimulates alkali signal pathway: A bicarbonate sensing soluble adenylyl cyclase from oyster Crassostrea gigas mediates physiological changes induced by CO2 exposure.

    PubMed

    Wang, Xiudan; Wang, Mengqiang; Jia, Zhihao; Wang, Hao; Jiang, Shuai; Chen, Hao; Wang, Lingling; Song, Linsheng

    2016-12-01

    Ocean acidification (OA) has been demonstrated to have severe effects on marine organisms, especially marine calcifiers. However, the impacts of OA on the physiology of marine calcifiers and the underlying mechanisms remain unclear. Soluble adenylyl cyclase (sAC) is an acid-base sensor in response to [HCO 3 - ] and an intracellular source of cyclic AMP (cAMP). In the present study, an ortholog of sAC was identified from pacific oyster Crassostrea gigas (designated as CgsAC) and the catalytic region of CgsAC was cloned and expressed. Similar to the native CgsAC from gill tissues, the recombinant CgsAC protein (rCgsAC) exhibited [HCO 3 - ] mediated cAMP-forming activity, which could be inhibited by a small molecule KH7. After 16days of CO 2 exposure (pH=7.50), the mRNA transcripts of CgsAC increased in muscle, mantle, hepatopancreas, gill, male gonad and haemocytes, and two truncated CgsAC forms of 45kD and 20kD were produced. Cytosolic CgsAC could be translocated from the cytoplasm and nuclei to the membrane in response to CO 2 exposure. Besides, CO 2 exposure could increase the production of cAMP and intracellular pH of haemocytes, which was regulated by CgsAC (p<0.05), suggesting the existence of a [HCO 3 - ]/CgsAC/cAMP signal pathway in oyster. The elevated CO 2 could induce an increase of ROS level (p<0.05) and a decrease of phagocytic rate of haemocytes (p<0.05), which could be inhibited by KH7. The results collectively suggest that CgsAC is an important acid-base sensor in oyster and the [HCO 3 - ]/CgsAC/cAMP signal pathway might be responsible for intracellular alkalization effects on oxidative phosphorylation and innate immunity under CO 2 exposure. The changes of intracellular pH, ROS, and phagocytosis mediated by CgsAC might help us to further understand the effects of ocean acidification on marine calcifiers. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Second messenger production in avian medullary nephron segments in response to peptide hormones.

    PubMed

    Goldstein, D L; Reddy, V; Plaga, K

    1999-03-01

    We examined the sites of peptide hormone activation within medullary nephron segments of the house sparrow (Passer domesticus) kidney by measuring rates of hormone-induced generation of cyclic nucleotide second messenger. Thin descending limbs, thick ascending limbs, and collecting ducts had baseline activity of adenylyl cyclase that resulted in cAMP accumulation of 207 +/- 56, 147 +/- 31, and 151 +/- 41 fmol. mm-1. 30 min-1, respectively. In all segments, this activity increased 10- to 20-fold in response to forskolin. Activity of adenylyl cyclase in the thin descending limb was stimulated approximately twofold by parathyroid hormone (PTH) but not by any of the other hormones tested [arginine vasotocin (AVT), glucagon, atrial natriuretic peptide (ANP), or isoproterenol, each at 10(-6) M]. Thick ascending limb was stimulated two- to threefold by both AVT and PTH; however, glucagon and isoproterenol had no effect, and ANP stimulated neither cAMP nor cGMP accumulation. Adenylyl cyclase activity in the collecting duct was stimulated fourfold by AVT but not by the other hormones; likewise, ANP did not stimulate cGMP accumulation in this segment. These data support a tubular action of AVT and PTH in the avian renal medulla.

  10. Comparison of the effects of histamine and tolazoline on adenylate cyclase activity from guinea pig heart.

    PubMed

    Weinryb, I; Michel, I M

    1975-01-01

    Both histamine and tolazoline (2-benzyl-2-imidazoline) stimulated particulate fractions of adenylate cyclase from guinea pig myocardium. Tolazoline was one-tenth as potent, and about two-thirds as active at maximally effective levels, as was histamine. Enhancement of cyclase activity by tolazoline was additive with that by isoproterenol, and the histamine and tolazoline concentration-response curves were parallel, suggesting that tolazoline acted at the same site as histamine. At maximally effective concentrations, tolazoline did not affect ATPase or cyclic AMP phosphodiesterase activities associated with the cyclase preparations. The H1-receptor antagonist mepyramine, and the H2 antagonist, burimamide, blocked stimulation of cyclase by tolazoline at one-tenth the molarity of agonist. Both antagonists were less effective vs. histamine stimulation of heart cyclase in particulate fractions or whole homogenates, with mepyramine being generally more potent. It is suggested that the molecular basis of the stimulatory effect of tolazoline on cardiac tissue may be histaminergic stimulation of adenylate cyclase. Furthermore, the lack of potency of burimamide as a histamine antagonist and its lack of specificity compared to mepyramine, at the subcellular level, indicate that histamine-responsive adenylate cyclase from heart may not be a satisfactory molecular model for the H2 receptor pharmacology of histamine in cardiac tissue.

  11. Bifunctional Homodimeric Triokinase/FMN Cyclase

    PubMed Central

    Rodrigues, Joaquim Rui; Couto, Ana; Cabezas, Alicia; Pinto, Rosa María; Ribeiro, João Meireles; Canales, José; Costas, María Jesús; Cameselle, José Carlos

    2014-01-01

    Mammalian triokinase, which phosphorylates exogenous dihydroxyacetone and fructose-derived glyceraldehyde, is neither molecularly identified nor firmly associated to an encoding gene. Human FMN cyclase, which splits FAD and other ribonucleoside diphosphate-X compounds to ribonucleoside monophosphate and cyclic X-phosphodiester, is identical to a DAK-encoded dihydroxyacetone kinase. This bifunctional protein was identified as triokinase. It was modeled as a homodimer of two-domain (K and L) subunits. Active centers lie between K1 and L2 or K2 and L1: dihydroxyacetone binds K and ATP binds L in different subunits too distant (≈14 Å) for phosphoryl transfer. FAD docked to the ATP site with ribityl 4′-OH in a possible near-attack conformation for cyclase activity. Reciprocal inhibition between kinase and cyclase reactants confirmed substrate site locations. The differential roles of protein domains were supported by their individual expression: K was inactive, and L displayed cyclase but not kinase activity. The importance of domain mobility for the kinase activity of dimeric triokinase was highlighted by molecular dynamics simulations: ATP approached dihydroxyacetone at distances below 5 Å in near-attack conformation. Based upon structure, docking, and molecular dynamics simulations, relevant residues were mutated to alanine, and kcat and Km were assayed whenever kinase and/or cyclase activity was conserved. The results supported the roles of Thr112 (hydrogen bonding of ATP adenine to K in the closed active center), His221 (covalent anchoring of dihydroxyacetone to K), Asp401 and Asp403 (metal coordination to L), and Asp556 (hydrogen bonding of ATP or FAD ribose to L domain). Interestingly, the His221 point mutant acted specifically as a cyclase without kinase activity. PMID:24569995

  12. Adenylylation of mycobacterial Glnk (PII) protein is induced by nitrogen limitation

    PubMed Central

    Williams, Kerstin J.; Bennett, Mark H.; Barton, Geraint R.; Jenkins, Victoria A.; Robertson, Brian D.

    2013-01-01

    Summary PII proteins are pivotal regulators of nitrogen metabolism in most prokaryotes, controlling the activities of many targets, including nitrogen assimilation enzymes, two component regulatory systems and ammonium transport proteins. Escherichia coli contains two PII-like proteins, PII (product of glnB) and GlnK, both of which are uridylylated under nitrogen limitation at a conserved Tyrosine-51 residue by GlnD (a uridylyl transferase). PII-uridylylation in E. coli controls glutamine synthetase (GS) adenylylation by GlnE and mediates the NtrB/C transcriptomic response. Mycobacteria contain only one PII protein (GlnK) which in environmental Actinomycetales is adenylylated by GlnD under nitrogen limitation. However in mycobacteria, neither the type of GlnK (PII) covalent modification nor its precise role under nitrogen limitation is known. In this study, we used LC-Tandem MS to analyse the modification state of mycobacterial GlnK (PII), and demonstrate that during nitrogen limitation GlnK from both non-pathogenic Mycobacterium smegmatis and pathogenic Mycobacterium tuberculosis is adenylylated at the Tyrosine-51 residue; we also show that GlnD is the adenylyl transferase enzyme responsible. Further analysis shows that in contrast to E. coli, GlnK (PII) adenylylation in M. tuberculosis does not regulate GS adenylylation, nor does it mediate the transcriptomic response to nitrogen limitation. PMID:23352854

  13. Inhibition of Heat-Stable Toxin-Induced Intestinal Salt and Water Secretion by a Novel Class of Guanylyl Cyclase C Inhibitors.

    PubMed

    Bijvelds, Marcel J C; Loos, Michaela; Bronsveld, Inez; Hellemans, Ann; Bongartz, Jean-Pierre; Ver Donck, Luc; Cox, Eric; de Jonge, Hugo R; Schuurkes, Jan A J; De Maeyer, Joris H

    2015-12-01

    Many enterotoxigenic Escherichia coli strains produce the heat-stable toxin, STa, which, by activation of the intestinal receptor-enzyme guanylyl cyclase (GC) C, triggers an acute, watery diarrhea. We set out to identify GCC inhibitors that may be of benefit for the treatment of infectious diarrheal disease. Compounds that inhibit STa-induced cyclic guanosine 3',5'-monophosphate (cGMP) production were selected by performing cyclase assays on cells and membranes containing GCC, or the related GCA. The effect of leads on STa/GCC-dependent activation of the cystic fibrosis transmembrane conductance regulator anion channel was investigated in T84 cells, and in porcine and human intestinal tissue. Their effect on STa-provoked fluid transport was assessed in ligated intestinal loops in piglets. Four N-2-(propylamino)-6-phenylpyrimidin-4-one-substituted piperidines were shown to inhibit GCC-mediated cellular cGMP production. The half maximal inhibitory concentrations were ≤ 5 × 10(-7) mol/L, whereas they were >10 times higher for GCA. In T84 monolayers, these leads blocked STa/GCC-dependent, but not forskolin/adenylyl cyclase-dependent, cystic fibrosis transmembrane conductance regulator activity. GCC inhibition reduced STa-provoked anion secretion in pig jejunal tissue, and fluid retention and cGMP levels in STa-exposed loops. These GCC inhibitors blocked STa-provoked anion secretion in rectal biopsy specimens. We have identified a novel class of GCC inhibitors that may form the basis for development of future therapeutics for (infectious) diarrheal disease. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Dimerization Domain of Retinal Membrane Guanylyl Cyclase 1 (RetGC1) Is an Essential Part of Guanylyl Cyclase-activating Protein (GCAP) Binding Interface.

    PubMed

    Peshenko, Igor V; Olshevskaya, Elena V; Dizhoor, Alexander M

    2015-08-07

    The photoreceptor-specific proteins guanylyl cyclase-activating proteins (GCAPs) bind and regulate retinal membrane guanylyl cyclase 1 (RetGC1) but not natriuretic peptide receptor A (NPRA). Study of RetGC1 regulation in vitro and its association with fluorescently tagged GCAP in transfected cells showed that R822P substitution in the cyclase dimerization domain causing congenital early onset blindness disrupted RetGC1 ability to bind GCAP but did not eliminate its affinity for another photoreceptor-specific protein, retinal degeneration 3 (RD3). Likewise, the presence of the NPRA dimerization domain in RetGC1/NPRA chimera specifically disabled binding of GCAPs but not of RD3. In subsequent mapping using hybrid dimerization domains in RetGC1/NPRA chimera, multiple RetGC1-specific residues contributed to GCAP binding by the cyclase, but the region around Met(823) was the most crucial. Either positively or negatively charged residues in that position completely blocked GCAP1 and GCAP2 but not RD3 binding similarly to the disease-causing mutation in the neighboring Arg(822). The specificity of GCAP binding imparted by RetGC1 dimerization domain was not directly related to promoting dimerization of the cyclase. The probability of coiled coil dimer formation computed for RetGC1/NPRA chimeras, even those incapable of binding GCAP, remained high, and functional complementation tests showed that the RetGC1 active site, which requires dimerization of the cyclase, was formed even when Met(823) or Arg(822) was mutated. These results directly demonstrate that the interface for GCAP binding on RetGC1 requires not only the kinase homology region but also directly involves the dimerization domain and especially its portion containing Arg(822) and Met(823). © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Chronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulation in rats.

    PubMed

    Han, Xun; Ran, Ye; Su, Min; Liu, Yinglu; Tang, Wenjing; Dong, Zhao; Yu, Shengyuan

    2017-01-01

    Background Preclinical experimental studies revealed an acute alteration of pituitary adenylate cyclase-activating polypeptide in response to a single activation of the trigeminovascular system, which suggests a potential role of pituitary adenylate cyclase-activating polypeptide in the pathogenesis of migraine. However, changes in pituitary adenylate cyclase-activating polypeptide after repeated migraine-like attacks in chronic migraine are not clear. Therefore, the present study investigated chronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulations in the rat. Methods A rat model of chronic migraine was established by repeated chemical dural stimulations using an inflammatory soup for a different numbers of days. The pituitary adenylate cyclase-activating polypeptide levels were quantified in plasma, the trigeminal ganglia, and the trigeminal nucleus caudalis using radioimmunoassay and Western blotting in trigeminal ganglia and trigeminal nucleus caudalis tissues. Western blot analysis and real-time polymerase chain reaction were used to measure the protein and mRNA expression of pituitary adenylate cyclase-activating polypeptide-related receptors (PAC1, VPAC1, and VPAC2) in the trigeminal ganglia and trigeminal nucleus caudalis to identify changes associated with repetitive applications of chemical dural stimulations. Results All rats exhibited significantly decreased periorbital nociceptive thresholds to repeated inflammatory soup stimulations. Radioimmunoassay and Western blot analysis demonstrated significantly decreased pituitary adenylate cyclase-activating polypeptide levels in plasma and trigeminal ganglia after repetitive chronic inflammatory soup stimulation. Protein and mRNA analyses of pituitary adenylate cyclase-activating polypeptide-related receptors demonstrated significantly increased PAC1 receptor protein and mRNA expression in the trigeminal ganglia, but not

  16. Regulation and therapeutic targeting of peptide-activated receptor guanylyl cyclases

    PubMed Central

    Potter, Lincoln R.

    2016-01-01

    Cyclic GMP is a ubiquitous second messenger that regulates a wide array of physiologic processes such as blood pressure, long bone growth, intestinal fluid secretion, phototransduction and lipolysis. Soluble and single-membrane-spanning enzymes called guanylyl cyclases (GC) synthesize cGMP. In humans, the latter group consists of GC-A, GC-B, GC-C, GC-E and GC-F, which are also known as NPR-A, NPR-B, StaR, Ret1-GC and Ret2-GC, respectively. Membrane GCs are activated by peptide ligands such as atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), C-type natriuretic peptide (CNP), guanylin, uroguanylin, heat stable enterotoxin and GC-activating proteins. Nesiritide and carperitide are clinically approved peptide-based drugs that activate GC-A. CD-NP is an experimental heart failure drug that primarily activates GC-B but also activates GC-A at high concentrations and is resistant to degradation. Inactivating mutations in GC-B cause acromesomelic dysplasia type Maroteaux dwarfism and chromosomal mutations that increase CNP concentrations are associated with Marfanoid-like skeletal overgrowth. Pump-based CNP infusions increase skeletal growth in a mouse model of the most common type of human dwarfism, which supports CNP/GC-B-based therapies for short stature diseases. Linaclotide is a peptide activator of GC-C that stimulates intestinal motility and is in late-stage clinical trials for the treatment of chronic constipation. This review discusses the discovery of cGMP, guanylyl cyclases, the general characteristics and therapeutic applications of GC-A, GC-B and GC-C, and emphasizes the regulation of transmembrane guanylyl cyclases by phosphorylation and ATP. PMID:21185863

  17. (S)Pot on Mitochondria: Cannabinoids Disrupt Cellular Respiration to Limit Neuronal Activity.

    PubMed

    Harkany, Tibor; Horvath, Tamas L

    2017-01-10

    Classical views posit G protein-coupled cannabinoid receptor 1s (CB1Rs) at the cell surface with cytosolic Giα-mediated signal transduction. Hebert-Chatelain et al. (2016) instead place CB 1 Rs at mitochondria limiting neuronal respiration by soluble adenylyl cyclase-dependent modulation of complex I activity. Thus, neuronal bioenergetics link to synaptic plasticity and, globally, learning and memory. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Functional β2-adrenoceptors in rat left atria: effect of foot-shock stress.

    PubMed

    Moura, André Luiz de; Hyslop, Stephen; Grassi-Kassisse, Dora M; Spadari, Regina C

    2017-09-01

    Altered sensitivity to the chronotropic effect of catecholamines and a reduction in the β 1 /β 2 -adrenoceptor ratio have previously been reported in right atria of stressed rats, human failing heart, and aging. In this report, we investigated whether left atrial inotropism was affected by foot-shock stress. Male rats were submitted to 3 foot-shock sessions and the left atrial inotropic response, adenylyl cyclase activity, and β-adrenoceptor expression were investigated. Left atria of stressed rats were supersensitive to isoprenaline when compared with control rats and this effect was abolished by ICI118,551, a selective β 2 -receptor antagonist. Schild plot slopes for the antagonism between CGP20712A (a selective β 1 -receptor antagonist) and isoprenaline differed from unity in atria of stressed but not control rats. Atrial sensitivity to norepinephrine, as well as basal and forskolin- or isoprenaline-stimulated adenylyl cyclase activities were not altered by stress. The effect of isoprenaline on adenylyl cyclase stimulation was partially blocked by ICI118,551 in atrial membranes of stressed rats. These findings indicate that foot-shock stress equally affects inotropism and chronotropism and that β 2 -adrenoceptor upregulation contributes to the enhanced inotropic response to isoprenaline.

  19. Adenylylation of Tyr77 stabilizes Rab1b GTPase in an active state: A molecular dynamics simulation analysis

    PubMed Central

    Luitz, Manuel P.; Bomblies, Rainer; Ramcke, Evelyn; Itzen, Aymelt; Zacharias, Martin

    2016-01-01

    The pathogenic pathway of Legionella pneumophila exploits the intercellular vesicle transport system via the posttranslational attachment of adenosine monophosphate (AMP) to the Tyr77 sidechain of human Ras like GTPase Rab1b. The modification, termed adenylylation, is performed by the bacterial enzyme DrrA/SidM, however the effect on conformational properties of the molecular switch mechanism of Rab1b remained unresolved. In this study we find that the adenylylation of Tyr77 stabilizes the active Rab1b state by locking the switch in the active signaling conformation independent of bound GTP or GDP and that electrostatic interactions due to the additional negative charge in the switch region make significant contributions. The stacking interaction between adenine and Phe45 however, seems to have only minor influence on this stabilisation. The results may also have implications for the mechanistic understanding of conformational switching in other signaling proteins. PMID:26818796

  20. Adenylyl cyclase-5 in the dorsal striatum function as a molecular switch for the generation of behavioral preferences for cue-directed food choices.

    PubMed

    Kim, Hannah; Kim, Tae-Kyung; Kim, Ji-Eun; Park, Jin-Young; Lee, Yunjin; Kang, Minkyung; Kim, Kyoung-Shim; Han, Pyung-Lim

    2014-11-07

    Behavioral choices in habits and innate behaviors occur automatically in the absence of conscious selection. These behaviors are not easily modified by learning. Similar types of behaviors also occur in various mental illnesses including drug addiction, obsessive-compulsive disorder, schizophrenia, and autism. However, underlying mechanisms are not clearly understood. In the present study, we investigated the molecular mechanisms regulating unconditioned preferred behaviors in food-choices. Mice lacking adenylyl cyclase-5 (AC5 KO mice), which is preferentially expressed in the dorsal striatum, consumed food pellets nearly one after another in cages. AC5 KO mice showed aversive behaviors to bitter tasting quinine, but they compulsively chose quinine-containing AC5 KO-pellets over fresh pellets. The unusual food-choice behaviors in AC5 KO mice were due to the gain of behavioral preferences for food pellets containing an olfactory cue, which wild-type mice normally ignored. Such food-choice behaviors in AC5 KO mice disappeared when whiskers were trimmed. Conversely, whisker trimming in wildtype mice induced behavioral preferences for AC5 KO food pellets, indicating that preferred food-choices were not learned through prior experience. Both AC5 KO mice and wildtype mice with trimmed whiskers had increased glutamatergic input from the barrel cortex into the dorsal striatum, resulting in an increase in the mGluR1-dependent signaling cascade. The siRNA-mediated inhibition of mGluR1 in the dorsal striatum in AC5 KO mice and wildtype mice with trimmed whiskers abolished preferred choices for AC5 KO food pellets, whereas siRNA-mediated inhibition of mGluR3 glutamate receptors in the dorsal striatum in wildtype mice induced behavioral preferences for AC5 KO food pellets, thus mimicking AC5 KO phenotypes. Our results show that the gain and loss of behavioral preferences for a specific cue-directed option were regulated by specific cellular factors in the dorsal striatum, such

  1. Localization of soluble guanylate cyclase activity in the guinea pig inner ear.

    PubMed

    Takumida, M; Anniko, M; Popa, R; Zhang, D M

    2000-01-01

    The aim of this study was to characterize the nitric oxide (NO) receptor soluble guanylate cyclase (sGC), to determine the cells targeted by NO and to elucidate the function of the NO/cGMP pathway in the inner ear. sGC activity in the inner ear was localized by immunohistochemical detection of NO-stimulated cGMP. Soluble guanylate cyclase activity in the cochlea was detected in the nerve endings underneath the outer and inner hair cells, supporting cells, stria vascularis and vessels. In the vestibular organs, sGC activity was detected in the cytoplasm of sensory cells, nerve fibres, dark cells and transitional cells and vessels. These findings suggest that the NO/cGMP pathway may be involved in regulatory processes in neurotransmission, blood flow and inner ear fluid homeostasis.

  2. delta(9)-Tetrahydrocannabinol-dependent mice undergoing withdrawal display impaired spatial memory.

    PubMed

    Wise, Laura E; Varvel, Stephen A; Selley, Dana E; Wiebelhaus, Jason M; Long, Kelly A; Middleton, Lisa S; Sim-Selley, Laura J; Lichtman, Aron H

    2011-10-01

    Cannabis users display a constellation of withdrawal symptoms upon drug discontinuation, including sleep disturbances, irritability, and possibly memory deficits. In cannabinoid-dependent rodents, the CB(1) antagonist rimonabant precipitates somatic withdrawal and enhances forskolin-stimulated adenylyl cyclase activity in cerebellum, an effect opposite that of acutely administered ∆(9)-tetrahydrocannabinol (THC), the primary constituent in cannabis. Here, we tested whether THC-dependent mice undergoing rimonabant-precipitated withdrawal display short-term spatial memory deficits, as assessed in the Morris water maze. We also evaluated whether rimonabant would precipitate adenylyl cyclase superactivation in hippocampal and cerebellar tissue from THC-dependent mice. Rimonabant significantly impaired spatial memory of THC-dependent mice at lower doses than those necessary to precipitate somatic withdrawal behavior. In contrast, maze performance was near perfect in the cued task, suggesting sensorimotor function and motivational factors were unperturbed by the withdrawal state. Finally, rimonabant increased adenylyl cyclase activity in cerebellar, but not in hippocampal, membranes. The memory disruptive effects of THC undergo tolerance following repeated dosing, while the withdrawal state leads to a rebound deficit in memory. These results establish spatial memory impairment as a particularly sensitive component of cannabinoid withdrawal, an effect that may be mediated through compensatory changes in the cerebellum.

  3. Calcium-independent metal-ion catalytic mechanism of anthrax edema factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yuequan; Zhukovskaya, Natalia L.; Guo, Qing

    2009-11-18

    Edema factor (EF), a key anthrax exotoxin, has an anthrax protective antigen-binding domain (PABD) and a calmodulin (CaM)-activated adenylyl cyclase domain. Here, we report the crystal structures of CaM-bound EF, revealing the architecture of EF PABD. CaM has N- and C-terminal domains and each domain can bind two calcium ions. Calcium binding induces the conformational change of CaM from closed to open. Structures of the EF-CaM complex show how EF locks the N-terminal domain of CaM into a closed conformation regardless of its calcium-loading state. This represents a mechanism of how CaM effector alters the calcium affinity of CaM andmore » uncouples the conformational change of CaM from calcium loading. Furthermore, structures of EF-CaM complexed with nucleotides show that EF uses two-metal-ion catalysis, a prevalent mechanism in DNA and RNA polymerases. A histidine (H351) further facilitates the catalysis of EF by activating a water to deprotonate 3'OH of ATP. Mammalian adenylyl cyclases share no structural similarity with EF and they also use two-metal-ion catalysis, suggesting the catalytic mechanism-driven convergent evolution of two structurally diverse adenylyl cyclases.« less

  4. Prefrontal cortical network activity: Opposite effects of psychedelic hallucinogens and D1/D5 dopamine receptor activation

    PubMed Central

    Lambe, Evelyn K.; Aghajanian, George K.

    2007-01-01

    The fine-tuning of network activity provides a modulating influence on how information is processed and interpreted in the brain. Here, we use brain slices of rat prefrontal cortex to study how recurrent network activity is affected by neuromodulators known to alter normal cortical function. We previously determined that glutamate spillover and stimulation of extrasynaptic NMDA receptors are required to support hallucinogen-induced cortical network activity. Since microdialysis studies suggest that psychedelic hallucinogens and dopamine D1/D5 receptor agonists have opposite effects on extracellular glutamate in prefrontal cortex, we hypothesized that these two families of psychoactive drugs would have opposite effects on cortical network activity. We found that network activity can be enhanced by DOI (a psychedelic hallucinogen that is a partial agonist of serotonin 5-HT2A/2C receptors) and suppressed by the selective D1/D5 agonist SKF 38393. This suppression could be mimicked by direct activation of adenylyl cyclase with forskolin or by addition of a cAMP analog. These findings are consistent with previous work showing that activation of adenylyl cyclase can upregulate neuronal glutamate transporters, thereby decreasing synaptic spillover of glutamate. Consistent with this hypothesis, a low concentration of the glutamate transporter inhibitor TBOA restored electrically-evoked recurrent activity in the presence of a selective D1/D5 agonist, whereas recurrent activity in the presence of a low level of the GABAA antagonist bicuculline was not resistant to suppression by the D1/D5 agonist. The tempering of network UP states by D1/D5 receptor activation may have implications for the proposed use of D1/D5 agonists in the treatment of schizophrenia. PMID:17293055

  5. Picomolar-affinity binding and inhibition of adenylate cyclase activity by melatonin in Syrian hamster hypothalamus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niles, L.P.; Hashemi, F.

    1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, ({sup 125}I)iodomelatonin, was examined using an incubation temperature (30{degree}C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing ({sup 125}I)iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax =more » 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus.« less

  6. Diguanylate cyclase activity of the Mycobacterium leprae T cell antigen ML1419c

    PubMed Central

    Rotcheewaphan, Suwatchareeporn; Belisle, John T.; Webb, Kristofor J.; Kim, Hee-Jin; Spencer, John S.

    2016-01-01

    The second messenger, bis-(3′,5′)-cyclic dimeric guanosine monophosphate (cyclic di-GMP), is involved in the control of multiple bacterial phenotypes, including those that impact host–pathogen interactions. Bioinformatics analyses predicted that Mycobacterium leprae, an obligate intracellular bacterium and the causative agent of leprosy, encodes three active diguanylate cyclases. In contrast, the related pathogen Mycobacterium tuberculosis encodes only a single diguanylate cyclase. One of the M. leprae unique diguanylate cyclases (ML1419c) was previously shown to be produced early during the course of leprosy. Thus, functional analysis of ML1419c was performed. The gene encoding ML1419c was cloned and expressed in Pseudomonas aeruginosa PAO1 to allow for assessment of cyclic di-GMP production and cyclic di-GMP-mediated phenotypes. Phenotypic studies revealed that ml1419c expression altered colony morphology, motility and biofilm formation of P. aeruginosa PAO1 in a manner consistent with increased cyclic di-GMP production. Direct measurement of cyclic di-GMP levels by liquid chromatography–mass spectrometry confirmed that ml1419c expression increased cyclic di-GMP production in P. aeruginosa PAO1 cultures in comparison to the vector control. The observed phenotypes and increased levels of cyclic di-GMP detected in P. aeruginosa expressing ml1419c could be abrogated by mutation of the active site in ML1419c. These studies demonstrated that ML1419c of M. leprae functions as diguanylate cyclase to synthesize cyclic di-GMP. Thus, this protein was renamed DgcA (Diguanylate cyclase A). These results also demonstrated the ability to use P. aeruginosa as a heterologous host for characterizing the function of proteins involved in the cyclic di-GMP pathway of a pathogen refractory to in vitro growth, M. leprae. PMID:27450520

  7. Diguanylate cyclase activity of the Mycobacterium leprae T cell antigen ML1419c.

    PubMed

    Rotcheewaphan, Suwatchareeporn; Belisle, John T; Webb, Kristofor J; Kim, Hee-Jin; Spencer, John S; Borlee, Bradley R

    2016-09-01

    The second messenger, bis-(3',5')-cyclic dimeric guanosine monophosphate (cyclic di-GMP), is involved in the control of multiple bacterial phenotypes, including those that impact host-pathogen interactions. Bioinformatics analyses predicted that Mycobacterium leprae, an obligate intracellular bacterium and the causative agent of leprosy, encodes three active diguanylate cyclases. In contrast, the related pathogen Mycobacterium tuberculosis encodes only a single diguanylate cyclase. One of the M. leprae unique diguanylate cyclases (ML1419c) was previously shown to be produced early during the course of leprosy. Thus, functional analysis of ML1419c was performed. The gene encoding ML1419c was cloned and expressed in Pseudomonas aeruginosa PAO1 to allow for assessment of cyclic di-GMP production and cyclic di-GMP-mediated phenotypes. Phenotypic studies revealed that ml1419c expression altered colony morphology, motility and biofilm formation of P. aeruginosa PAO1 in a manner consistent with increased cyclic di-GMP production. Direct measurement of cyclic di-GMP levels by liquid chromatography-mass spectrometry confirmed that ml1419c expression increased cyclic di-GMP production in P. aeruginosa PAO1 cultures in comparison to the vector control. The observed phenotypes and increased levels of cyclic di-GMP detected in P. aeruginosa expressing ml1419c could be abrogated by mutation of the active site in ML1419c. These studies demonstrated that ML1419c of M. leprae functions as diguanylate cyclase to synthesize cyclic di-GMP. Thus, this protein was renamed DgcA (Diguanylate cyclase A). These results also demonstrated the ability to use P. aeruginosa as a heterologous host for characterizing the function of proteins involved in the cyclic di-GMP pathway of a pathogen refractory to in vitro growth, M. leprae.

  8. Cell death sensitization of leukemia cells by opioid receptor activation

    PubMed Central

    Friesen, Claudia; Roscher, Mareike; Hormann, Inis; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf A.; Debatin, Klaus-Michael; Miltner, Erich

    2013-01-01

    Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in leukemia cells. However, the mechanism how opioids trigger apoptosis and activate caspases in leukemia cells is not understood. In this study, we demonstrate that downregulation of cAMP induced by opioid receptor activation using the opioid D,L-methadone kills and sensitizes leukemia cells for doxorubicin treatment. Enhancing cAMP levels by blocking opioid-receptor signaling strongly reduced D,L-methadone-induced apoptosis, caspase activation and doxorubicin-sensitivity. Induction of cell death in leukemia cells by activation of opioid receptors using the opioid D,L-methadone depends on critical levels of opioid receptor expression on the cell surface. Doxorubicin increased opioid receptor expression in leukemia cells. In addition, the opioid D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux in leukemia cells, suggesting that the opioid D,L-methadone as well as doxorubicin mutually increase their cytotoxic potential. Furthermore, we found that opioid receptor activation using D,L-methadone alone or in addition to doxorubicin inhibits tumor growth significantly in vivo. These results demonstrate that opioid receptor activation via triggering the downregulation of cAMP induces apoptosis, activates caspases and sensitizes leukemia cells for doxorubicin treatment. Hence, opioid receptor activation seems to be a promising strategy to improve anticancer therapies. PMID:23633472

  9. In vivo adenylate cyclase activity in ultraviolet- and gamma-irradiated Escherichia coli.

    PubMed

    Chatterjee, A; Bhattacharya, A K

    1988-06-01

    The incorporation of [14C]adenine into the cyclic AMP fraction by whole cells of Escherichia coli B/r was taken as a measure of the in vivo adenylate cyclase activity. This activity was significantly inhibited by irradiation of the cells either with 60Co gamma-rays or with UV light from a germicidal lamp, suggesting inhibition of cyclic AMP synthesis. The incubation of cells after irradiation with lower doses (50-100 Gy) of gamma-rays produced a significant increase of in vivo adenylate cyclase activity, whereas there was no significant change after higher doses (150 Gy and above). Dark incubation of cells after irradiation with UV light (54 J m-2) led to recovery of enzyme activity to the level measured in unirradiated cells. Thus it appears that the catabolite repression of L-arabinose isomerase induced by UV light, as well as gamma-irradiation, is due to reduced cyclic AMP synthesis in irradiated cells.

  10. Pituitary adenylate cyclase-activating polypeptide stimulates glucose production via the hepatic sympathetic innervation in rats.

    PubMed

    Yi, Chun-Xia; Sun, Ning; Ackermans, Mariette T; Alkemade, Anneke; Foppen, Ewout; Shi, Jing; Serlie, Mireille J; Buijs, Ruud M; Fliers, Eric; Kalsbeek, Andries

    2010-07-01

    The unraveling of the elaborate brain networks that control glucose metabolism presents one of the current challenges in diabetes research. Within the central nervous system, the hypothalamus is regarded as the key brain area to regulate energy homeostasis. The aim of the present study was to investigate the hypothalamic mechanism involved in the hyperglycemic effects of the neuropeptide pituitary adenylyl cyclase-activating polypeptide (PACAP). Endogenous glucose production (EGP) was determined during intracerebroventricular infusions of PACAP-38, vasoactive intestinal peptide (VIP), or their receptor agonists. The specificity of their receptors was examined by coinfusions of receptor antagonists. The possible neuronal pathway involved was investigated by 1) local injections in hypothalamic nuclei, 2) retrograde neuronal tracing from the thoracic spinal cord to hypothalamic preautonomic neurons together with Fos immunoreactivity, and 3) specific hepatic sympathetic or parasympathetic denervation to block the autonomic neuronal input to liver. Intracerebroventricular infusion of PACAP-38 increased EGP to a similar extent as a VIP/PACAP-2 (VPAC2) receptor agonist, and intracerebroventricular administration of VIP had significantly less influence on EGP. The PACAP-38 induced increase of EGP was significantly suppressed by preinfusion of a VPAC2 but not a PAC1 receptor antagonist, as well as by hepatic sympathetic but not parasympathetic denervation. In the hypothalamus, Fos immunoreactivity induced by PACAP-38 was colocalized within autonomic neurons in paraventricular nuclei projecting to preganglionic sympathetic neurons in the spinal cord. Local infusion of PACAP-38 directly into the PVN induced a significant increase of EGP. This study demonstrates that PACAP-38 signaling via sympathetic preautonomic neurons located in the paraventricular nucleus is an important component in the hypothalamic control of hepatic glucose production.

  11. Evaluation of the effect of phosphodiesterase on equine platelet activation and the effect of antigen challenge on platelet phosphodiesterase activity in horses with recurrent airway obstruction.

    PubMed

    Dunkel, Bettina; Rickards, Karen J; Werling, Dirk; Page, Clive P; Cunningham, Fiona M

    2010-05-01

    To determine whether expression of equine platelet activation-dependent surface markers is influenced by phospodiesterase (PDE) isoenzyme activity and whether antigen challenge alters platelet PDE activity in horses with recurrent airway obstruction (RAO). 16 horses. 7 healthy horses were used for in vitro experiments, 6 horses with RAO were used for antigen challenge, and 6 healthy horses were used as control animals. Three of the healthy horses had also been used in the in vitro experiments. Effects of PDE inhibition and activation of adenylyl cyclase on CD41/61 and CD62P expression on platelets and platelet-neutrophil aggregate formation in vitro were investigated via flow cytometry. Platelet PDE activity and sensitivity to inhibition of PDE3 and PDE5 isoenzymes were examined in horses with RAO and control horses before and after antigen challenge. Inhibition of PDE or activation of adenylyl cyclase significantly inhibited stimulus-induced expression of CD41/61 and CD62P (by approx 94% and 40%, respectively) and percentage of CD62P positive cells (by approx 30%). Only the PDE3 inhibitor, trequinsin, caused a significant (53%) reduction in platelet-neutrophil aggregate formation. Platelet PDE activity decreased following antigen challenge in RAO-affected horses and control horses. In horses with RAO, a significant increase in sensitivity of platelet PDE to inhibition by the PDE5 inhibitor zaprinast was observed after 5 hours. Results provided further evidence that PDE3 is an important regulator of equine platelet activation and suggested that changes in regulation of platelet PDE5 may contribute to antigen-induced response in horses with RAO.

  12. The size of adenylate cyclase and guanylate cyclase from the rat renal medulla.

    PubMed

    Neer, E J

    1976-01-01

    The size distribution of adenylate cyclase from the rat renal medulla solubilized with the nonionic detergents Triton X-100 and Lubrol PX was determined by gel filtration and by centrifugation in sucrose density gradients made up in H2O or D2O. The physical parameters of the predominant form in Triton X-100 are s20,w, 5.9S; Strokes radius, 62 A; partial specific volume (v), 0.74 ml/g; mass, 159,000 daltons; f/f0, 1.6; axial ratio (prolate ellipsoid), 11. For the minor form the values are: s20w, 3.0; Stokes radius, 28 A; mass, 38,000 daltons; f/f0, 1.2. The corresponding values determined in Lubrol PX are similar. The value for V for the enzyme indicates that it binds less than 0.2 mg detergent/mg protein. Since interactions with detergents probably substitute for interactions with lipids and hydrophobic amino acid side chains, these findings suggest that no more than 5% of the surface of adenylate cyclase is involved in hydrophobic interactions with other membrane components. Thus, most of the mass of the enzyme is not deeply embedded in the lipid bilayer of the plasma membrane. Similar studies have been performed on the soluble guanylate cyclase of the rat renal medulla. In the absence of detergent, the molecular properties of this enzyme are: s20w, 6.3S; Stokes radius, 54 A, V, 0.75 ml/g; mass, 154,000 daltons f/f0, 1.4; Axial ratio, 7. The addition of 0.1% Lubrol PX to this soluble enzyme increases it activity two- to fourfold and changes the physical properties to: s20,w, 5.5S; Stokes radius, 62 A; V, 0.74 ml/g; mass, 148,000 daltons, f/f0, 1.6; axial ratio, 11. These results show that Lubrol PX activates the enzyme by causing a conformational change with unfolding on the polypeptide chain. Guanylate cyclase from the particulate cell fraction can be solubilized with Lubrol PX but has properties quite different from those of the enzyme in the soluble cell fraction. It is a heterogeneous aggregate with s20,w, 10S; Stokes radius, 65 A; mass about 300,000 daltons

  13. The effects of sex and neonatal stress on pituitary adenylate cyclase-activating peptide expression.

    PubMed

    Mosca, E V; Rousseau, J P; Gulemetova, R; Kinkead, R; Wilson, R J A

    2015-02-01

    What is the central question of this study? Does sex or neonatal stress affect the expression of pituitary adenylate cyclase-activating peptide or its receptors? What is the main finding and its importance? Neonatal-maternal separation stress has little long-lasting effect on the expression of pituitary adenylate cyclase-activating peptide or its receptors, but sex differences exist in these genes between males and females at baseline. Sex differences in classic stress hormones have been studied in depth, but pituitary adenylate cyclase-activating peptide (PACAP), recently identified as playing a critical role in the stress axes, has not. Here we studied whether baseline levels of PACAP differ between sexes in various stress-related tissues and whether neonatal-maternal separation stress has a sex-dependent effect on PACAP gene expression in stress pathways. Using quantitative RT-PCR, we found sex differences in PACAP and PACAP receptor gene expression in several respiratory and/or stress-related tissues, while neonatal-maternal separation stress did little to affect PACAP signalling in adult animals. We propose that sex differences in PACAP expression are likely to contribute to differences between males and females in responses to stress. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  14. Structural and Chemical Biology of Terpenoid Cyclases

    PubMed Central

    2017-01-01

    The year 2017 marks the twentieth anniversary of terpenoid cyclase structural biology: a trio of terpenoid cyclase structures reported together in 1997 were the first to set the foundation for understanding the enzymes largely responsible for the exquisite chemodiversity of more than 80000 terpenoid natural products. Terpenoid cyclases catalyze the most complex chemical reactions in biology, in that more than half of the substrate carbon atoms undergo changes in bonding and hybridization during a single enzyme-catalyzed cyclization reaction. The past two decades have witnessed structural, functional, and computational studies illuminating the modes of substrate activation that initiate the cyclization cascade, the management and manipulation of high-energy carbocation intermediates that propagate the cyclization cascade, and the chemical strategies that terminate the cyclization cascade. The role of the terpenoid cyclase as a template for catalysis is paramount to its function, and protein engineering can be used to reprogram the cyclization cascade to generate alternative and commercially important products. Here, I review key advances in terpenoid cyclase structural and chemical biology, focusing mainly on terpenoid cyclases and related prenyltransferases for which X-ray crystal structures have informed and advanced our understanding of enzyme structure and function. PMID:28841019

  15. A Japanese family with nonautoimmune hyperthyroidism caused by a novel heterozygous thyrotropin receptor gene mutation.

    PubMed

    Nakamura, Akie; Morikawa, Shuntaro; Aoyagi, Hayato; Ishizu, Katsura; Tajima, Toshihiro

    2014-06-01

    Hyperthyroidism caused by activating mutations of the thyrotropin receptor gene (TSHR) is rare in the pediatric population. We found a Japanese family with hyperthyroidism without autoantibody. DNA sequence analysis of TSHR was undertaken in this family. The functional consequences for the Gs-adenylyl cyclase and Gq/11-phospholipase C signaling pathways and cell surface expression of receptors were determined in vitro using transiently transfected human embryonic kidney 293 cells. We identified a heterozygous mutation (M453R) in exon 10 of TSHR. In this family, this mutation was found in all individuals who exhibited hyperthyroidism. The results showed that this mutation resulted in constitutive activation of the Gs-adenylyl cyclase system. However, this mutation also caused a reduction in the activation capacity of the Gq/11-phospholipase C pathway, compared with the wild type. We demonstrate that the M453R mutation is the cause of nonautoimmune hyperthyroidism.

  16. Short-term hyperthyroidism modulates adenosine receptors and catalytic activity of adenylate cyclase in adipocytes.

    PubMed Central

    Rapiejko, P J; Malbon, C C

    1987-01-01

    The effects of short-term hyperthyroidism in vivo on the status of the components of the fat-cell hormone-sensitive adenylate cyclase were investigated. The number of beta-adrenergic receptors was elevated by about 25% in membranes of fat-cells isolated from hyperthyroid rats as compared with euthyroid rats, but their affinity for radioligand was unchanged. Membranes of hyperthyroid-rat fat-cells displayed less than 65% of the normal complement of receptors for [3H]cyclohexyladenosine. The affinity of the receptors for this ligand was normal. In contrast with the marked increase in the amounts of the alpha-subunits of the guanine nucleotide-binding proteins Gi (Mr 41,000) and Go (Mr 39,000) observed in the hypothyroid state [Malbon, Rapiejko & Mangano (1985) J. Biol. Chem. 260, 2558-2564], the amounts of alpha-Gi, alpha-Go as well as alpha-Gs subunits [Mr 42,000 (major) and 46,000/48,000 (minor)] were not changed by hyperthyroidism. Adenylate cyclase activity in response to forskolin, guanosine 5'-[gamma-thio]triphosphate or isoprenaline, in contrast, was decreased by 30-50% in fat-cell membranes from hyperthyroid rats. Fat-cells isolated from hyperthyroid rats accumulated cyclic AMP to less than 50% of the extent in their euthyroid counterparts in the presence of adenosine deaminase and either adrenaline or forskolin, suggesting a decrease in the amount or activity of the catalytic subunit of adenylate cyclase. In the absence of exogenous adenosine deaminase, cyclic AMP accumulation in response to adrenaline was elevated rather than decreased in fat-cells from hyperthyroid rats. The inhibitory influence of adenosine is apparently limited in the hyperthyroid state by the decreased complement of inhibitory R-site purinergic receptors in these fat-cells. Short-term hyperthyroidism modulates the fat-cell adenylate cyclase system at the receptor level (beta-receptor number increased, R-site purinergic-receptor number decreased) and the catalytic subunit of adenylate

  17. ADP-ribosyl cyclases regulate early development of the sea urchin.

    PubMed

    Ramakrishnan, Latha; Uhlinger, Kevin; Dale, Leslie; Hamdoun, Amro; Patel, Sandip

    2016-06-01

    ADP-ribosyl cyclases are multifunctional enzymes involved in the metabolism of nucleotide derivatives necessary for Ca 2+ signalling such as cADPR and NAADP. Although Ca 2+ signalling is a critical regulator of early development, little is known of the role of ADP-ribosyl cyclases during embryogenesis. Here we analyze the expression, activity and function of ADP-ribosyl cyclases in the embryo of the sea urchin - a key organism for study of both Ca 2+ signalling and embryonic development. ADP-ribosyl cyclase isoforms (SpARC1-4) showed unique changes in expression during early development. These changes were associated with an increase in the ratio of cADPR:NAADP production. Over-expression of SpARC4 (a preferential cyclase) disrupted gastrulation. Our data highlight the importance of ADP-ribosyl cyclases during embryogenesis.

  18. Activation of particulate guanylate cyclase by adrenomedullin in cultured SV-40 transformed cat iris sphincter smooth muscle (SV-CISM-2) cells.

    PubMed

    Ali, N; Yousufzai, S Y; Abdel-Latif, A A

    2000-07-01

    We investigated the effects of adrenomedullin (ADM) on cGMP production in cultured SV-40 transformed cat iris sphincter smooth muscle (SV-CISM-2) cells. ADM increased cGMP accumulation in a time- and concentration- dependent manner. The peptide increased cGMP formation in the transformed cells by 405-fold as compared to 1. 6-fold in primary cultured CISM cells. The basal cGMP concentrations in both cell types were comparable. In addition, ADM increased cAMP accumulation in SV-CISM-2 cells and in primary cultured cells by 18. 9- and 5.8-fold, respectively. The ADM receptor antagonist, ADM(26-52), but not the atrial natriuretic peptide (ANP) receptor antagonist, anantin, inhibited ADM-induced cGMP formation. The phorbol ester, phorbol 12, 13-dibutyrate (PDBu), which inhibits particulate guanylate cyclases in smooth muscle, blocked ADM-stimulated cGMP accumulation. In contrast, inhibitors of the soluble guanylate cyclases, such as LY83583 and ODQ, and inhibitors of the nitric oxide cascade had little effect on ADM-stimulated cGMP production. The stimulatory effect of ADM on cGMP formation is due to activation of the guanylate cyclase system and not to a much reduced phosphodiesterase activity. ADM stimulated guanylate cyclase activity in membrane fractions isolated from SV-CISM-2 cells in a concentration-dependent manner with EC(50) value of 72 nM. Pertussis toxin, an activator of the G-protein, Gi, inhibited ADM-stimulated cGMP accumulation, whereas cholera toxin, a stimulator of the Gs G-protein and subsequently cAMP accumulation, had little effect. Pretreatment of the plasma membrane fraction with Gialpha antibody attenuated ADM-stimulated guanylate cyclase activity by 75%. We conclude that ADM increases intracellular cGMP levels in SV-CISM-2 cells through activation of the ADM receptor and subsequent stimulation of a Gi-mediated membrane-bound guanylate cyclase.

  19. Bordetella Adenylate Cyclase-Hemolysin Toxins

    PubMed Central

    Guiso, Nicole

    2017-01-01

    Adenylate cyclase-hemolysin toxin is secreted and produced by three classical species of the genus Bordetella: Bordetella pertussis, B. parapertussis and B. bronchiseptica. This toxin has several properties such as: (i) adenylate cyclase activity, enhanced after interaction with the eukaryotic protein, calmodulin; (ii) a pore-forming activity; (iii) an invasive activity. It plays an important role in the pathogenesis of these Bordetella species responsible for whooping cough in humans or persistent respiratory infections in mammals, by modulating host immune responses. In contrast with other Bordetella toxins or adhesins, lack of (or very low polymorphism) is observed in the structural gene encoding this toxin, supporting its importance as well as a potential role as a vaccine antigen against whooping cough. In this article, an overview of the investigations undertaken on this toxin is presented. PMID:28892012

  20. Decreased glucagon responsiveness by bile acids: a role for protein kinase Calpha and glucagon receptor phosphorylation.

    PubMed

    Ikegami, Tadashi; Krilov, Lada; Meng, Jianping; Patel, Bhumika; Chapin-Kennedy, Kelli; Bouscarel, Bernard

    2006-11-01

    Dihydroxy bile acids like chenodeoxycholic acid (CDCA) induce heterologous glucagon receptor desensitization. We previously demonstrated that protein kinase C (PKC) was activated by certain bile acids and mediated the CDCA-induced decrease in glucagon responsiveness. The aim of the present study was to explore the role of PKC in the phosphorylation and desensitization of the glucagon receptor by CDCA. Desensitization was evaluated by measuring adenylyl cyclase activity. Receptor phosphorylation was assayed by metabolic labeling with [gamma-(32)P] ATP. Protein kinase C (PKC) translocation and activation was visualized by fluorescence microscopy. CDCA decreased cAMP production induced by glucagon in a dose-dependent manner without affecting cAMP synthesis through stimulation of either stimulatory GTP-binding protein (Gs) by NaF or adenylyl cyclase by forskolin. The CDCA-induced inhibition of adenylyl cyclase activity was potentiated by the phosphatase inhibitor, okadaic acid. The desensitizing effect of CDCA was bile acid-specific and was significantly reduced in the presence of PKC inhibitors and after PKC down-regulation by phorbol 12-myristate 13-acetate. CDCA increased glucagon receptor phosphorylation more than 3-fold at concentrations as low as 25 mum. Furthermore, CDCA significantly stimulated human recombinant PKCalpha autophosphorylation in vitro, as well as PKCalpha translocation to the plasma membrane and phosphorylation in vivo at concentrations as low as 25 mum. CDCA also stimulated PKCdelta translocation to the perinuclear region. Activated PKCalpha, PKCzeta, and to a lesser extent, PKCdelta, phosphorylated the glucagon receptor in vitro. This study demonstrates that certain bile acids, such as CDCA, stimulate phosphorylation and heterologous desensitization of the glucagon receptor, involving at least PKCalpha activation.

  1. Investigation of cAMP microdomains as a path to novel cancer diagnostics.

    PubMed

    Desman, Garrett; Waintraub, Caren; Zippin, Jonathan H

    2014-12-01

    Understanding of cAMP signaling has greatly improved over the past decade. The advent of live cell imaging techniques and more specific pharmacologic modulators has led to an improved understanding of the intricacies by which cAMP is able to modulate such a wide variety of cellular pathways. It is now appreciated that cAMP is able to activate multiple effector proteins at distinct areas in the cell leading to the activation of very different downstream targets. The investigation of signaling proteins in cancer is a common route to the development of diagnostic tools, prognostic tools, and/or therapeutic targets, and in this review we highlight how investigation of cAMP signaling microdomains driven by the soluble adenylyl cyclase in different cancers has led to the development of a novel cancer biomarker. Antibodies directed against the soluble adenylyl cyclase (sAC) are highly specific markers for melanoma especially for lentigo maligna melanoma and are being described as "second generation" cancer diagnostics, which are diagnostics that determine the 'state' of a cell and not just identify the cell type. Due to the wide presence of cAMP signaling pathways in cancer, we predict that further investigation of both sAC and other cAMP microdomains will lead to additional cancer biomarkers. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. [Adenylate cyclase from rabbit heart: substrate binding site].

    PubMed

    Perfil'eva, E A; Khropov, Iu V; Khachatrian, L; Bulargina, T V; Baranova, L A

    1981-08-01

    The effects of 17 ATP analogs on the solubilized rabbit heart adenylate cyclase were studied. The triphosphate chain, position 8 of the adenine base and the ribose residue of the ATP molecule were modified. Despite the presence of the alkylating groups in two former types of the analogs tested, no covalent blocking of the active site of the enzyme was observed. Most of the compounds appeared to be competitive reversible inhibitors. The kinetic data confirmed the importance of the triphosphate chain for substrate binding in the active site of adenylate cyclase. (Formula: See Text) The inhibitors with different substituents in position 8 of the adenine base had a low affinity for the enzyme. The possible orientation of the triphosphate chain and the advantages of anti-conformation of the ATP molecule for their binding in the active site of adenylate cyclase are discussed.

  3. Cyclic AMP-Elevating Capacity of Adenylate Cyclase Toxin-Hemolysin Is Sufficient for Lung Infection but Not for Full Virulence of Bordetella pertussis

    PubMed Central

    Skopova, Karolina; Tomalova, Barbora; Kanchev, Ivan; Rossmann, Pavel; Svedova, Martina; Adkins, Irena; Bibova, Ilona; Tomala, Jakub; Masin, Jiri; Guiso, Nicole; Osicka, Radim; Sedlacek, Radislav; Kovar, Marek

    2017-01-01

    ABSTRACT The adenylate cyclase toxin-hemolysin (CyaA, ACT, or AC-Hly) of Bordetella pertussis targets phagocytic cells expressing the complement receptor 3 (CR3, Mac-1, αMβ2 integrin, or CD11b/CD18). CyaA delivers into cells an N-terminal adenylyl cyclase (AC) enzyme domain that is activated by cytosolic calmodulin and catalyzes unregulated conversion of cellular ATP into cyclic AMP (cAMP), a key second messenger subverting bactericidal activities of phagocytes. In parallel, the hemolysin (Hly) moiety of CyaA forms cation-selective hemolytic pores that permeabilize target cell membranes. We constructed the first B. pertussis mutant secreting a CyaA toxin having an intact capacity to deliver the AC enzyme into CD11b-expressing (CD11b+) host phagocytes but impaired in formation of cell-permeabilizing pores and defective in cAMP elevation in CD11b− cells. The nonhemolytic AC+ Hly− bacteria inhibited the antigen-presenting capacities of coincubated mouse dendritic cells in vitro and skewed their Toll-like receptor (TLR)-triggered maturation toward a tolerogenic phenotype. The AC+ Hly− mutant also infected mouse lungs as efficiently as the parental AC+ Hly+ strain. Hence, elevation of cAMP in CD11b− cells and/or the pore-forming capacity of CyaA were not required for infection of mouse airways. The latter activities were, however, involved in bacterial penetration across the epithelial layer, enhanced neutrophil influx into lung parenchyma during sublethal infections, and the exacerbated lung pathology and lethality of B. pertussis infections at higher inoculation doses (>107 CFU/mouse). The pore-forming activity of CyaA further synergized with the cAMP-elevating activity in downregulation of major histocompatibility complex class II (MHC-II) molecules on infiltrating myeloid cells, likely contributing to immune subversion of host defenses by the whooping cough agent. PMID:28396322

  4. Differential inhibition of adenylylated and deadenylylated forms of M. tuberculosis glutamine synthetase as a drug discovery platform

    PubMed Central

    Theron, A.; Roth, R. L.; Hoppe, H.; Parkinson, C.; van der Westhuyzen, C. W.; Stoychev, S.; Wiid, I.; Pietersen, R. D.; Baker, B.

    2017-01-01

    Glutamine synthetase is a ubiquitous central enzyme in nitrogen metabolism that is controlled by up to four regulatory mechanisms, including adenylylation of some or all of the twelve subunits by adenylyl transferase. It is considered a potential therapeutic target for the treatment of tuberculosis, being essential for the growth of Mycobacterium tuberculosis, and is found extracellularly only in the pathogenic Mycobacterium strains. Human glutamine synthetase is not regulated by the adenylylation mechanism, so the adenylylated form of bacterial glutamine synthetase is of particular interest. Previously published reports show that, when M. tuberculosis glutamine synthetase is expressed in Escherichia coli, the E. coli adenylyl transferase does not optimally adenylylate the M. tuberculosis glutamine synthetase. Here, we demonstrate the production of soluble adenylylated M. tuberulosis glutamine synthetase in E. coli by the co-expression of M. tuberculosis glutamine synthetase and M. tuberculosis adenylyl transferase. The differential inhibition of adenylylated M. tuberulosis glutamine synthetase and deadenylylated M. tuberulosis glutamine synthetase by ATP based scaffold inhibitors are reported. Compounds selected on the basis of their enzyme inhibition were also shown to inhibit M. tuberculosis in the BACTEC 460TB™ assay as well as the intracellular inhibition of M. tuberculosis in a mouse bone-marrow derived macrophage assay. PMID:28972974

  5. Time course of the uridylylation and adenylylation states in the glutamine synthetase bicyclic cascade.

    PubMed Central

    Varón-Castellanos, R; Havsteen, B H; García-Moreno, M; Valero-Ruiz, E; Molina-Alarcón, M; García-Cánovas, F

    1993-01-01

    A kinetic analysis of the glutamine synthetase bicyclic cascade is presented. It includes the dependence on time from the onset of the reaction of both the uridylylation of Shapiro's regulatory protein and the adenylylation of the glutamine synthetase. The transient phase equations obtained allow an estimation of the time elapsed until the states of uridylylation and adenylylation reach their steady-states, and therefore an evaluation of the effective sensitivity of the system. The contribution of the uridylylation cycle to the adenylylation cycle has been studied, and an equation relating the state of adenylylation at any time to the state of uridylylation at the same instant has been derived. PMID:8104399

  6. Bifunctional homodimeric triokinase/FMN cyclase: contribution of protein domains to the activities of the human enzyme and molecular dynamics simulation of domain movements.

    PubMed

    Rodrigues, Joaquim Rui; Couto, Ana; Cabezas, Alicia; Pinto, Rosa María; Ribeiro, João Meireles; Canales, José; Costas, María Jesús; Cameselle, José Carlos

    2014-04-11

    Mammalian triokinase, which phosphorylates exogenous dihydroxyacetone and fructose-derived glyceraldehyde, is neither molecularly identified nor firmly associated to an encoding gene. Human FMN cyclase, which splits FAD and other ribonucleoside diphosphate-X compounds to ribonucleoside monophosphate and cyclic X-phosphodiester, is identical to a DAK-encoded dihydroxyacetone kinase. This bifunctional protein was identified as triokinase. It was modeled as a homodimer of two-domain (K and L) subunits. Active centers lie between K1 and L2 or K2 and L1: dihydroxyacetone binds K and ATP binds L in different subunits too distant (≈ 14 Å) for phosphoryl transfer. FAD docked to the ATP site with ribityl 4'-OH in a possible near-attack conformation for cyclase activity. Reciprocal inhibition between kinase and cyclase reactants confirmed substrate site locations. The differential roles of protein domains were supported by their individual expression: K was inactive, and L displayed cyclase but not kinase activity. The importance of domain mobility for the kinase activity of dimeric triokinase was highlighted by molecular dynamics simulations: ATP approached dihydroxyacetone at distances below 5 Å in near-attack conformation. Based upon structure, docking, and molecular dynamics simulations, relevant residues were mutated to alanine, and kcat and Km were assayed whenever kinase and/or cyclase activity was conserved. The results supported the roles of Thr(112) (hydrogen bonding of ATP adenine to K in the closed active center), His(221) (covalent anchoring of dihydroxyacetone to K), Asp(401) and Asp(403) (metal coordination to L), and Asp(556) (hydrogen bonding of ATP or FAD ribose to L domain). Interestingly, the His(221) point mutant acted specifically as a cyclase without kinase activity.

  7. Adenylylation of small RNA sequencing adapters using the TS2126 RNA ligase I.

    PubMed

    Lama, Lodoe; Ryan, Kevin

    2016-01-01

    Many high-throughput small RNA next-generation sequencing protocols use 5' preadenylylated DNA oligonucleotide adapters during cDNA library preparation. Preadenylylation of the DNA adapter's 5' end frees from ATP-dependence the ligation of the adapter to RNA collections, thereby avoiding ATP-dependent side reactions. However, preadenylylation of the DNA adapters can be costly and difficult. The currently available method for chemical adenylylation of DNA adapters is inefficient and uses techniques not typically practiced in laboratories profiling cellular RNA expression. An alternative enzymatic method using a commercial RNA ligase was recently introduced, but this enzyme works best as a stoichiometric adenylylating reagent rather than a catalyst and can therefore prove costly when several variant adapters are needed or during scale-up or high-throughput adenylylation procedures. Here, we describe a simple, scalable, and highly efficient method for the 5' adenylylation of DNA oligonucleotides using the thermostable RNA ligase 1 from bacteriophage TS2126. Adapters with 3' blocking groups are adenylylated at >95% yield at catalytic enzyme-to-adapter ratios and need not be gel purified before ligation to RNA acceptors. Experimental conditions are also reported that enable DNA adapters with free 3' ends to be 5' adenylylated at >90% efficiency. © 2015 Lama and Ryan; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  8. Effects of Lubrol detergents on adenylate cyclases.

    PubMed

    Bär, H P; Kulshrestha, S

    1975-04-01

    The nonionic detergent Lubrol WX showed diverse, concentration-dependent effects onbasal and stimulated adenylate cyclases. Above concentrations of 0.001-0.01% Lubrol WX, the basal activity of cyclase from Ehrlich ascites cells was inhibed about 50%, and that from rat fat cells was doubled. In both cases, hormonal sensitivity was lost at 0.01%. These effects were reversed upon dilution of the detergent. It is suggested that solubilization of adenylate cyclases at such low concentrations of Lubrol should be attempted since it is conceivable that loss of hormone sensitivity may then be reversible. Different Lubrol-type detergents may also offer centain advantages, since Lubrol PX effects were not identical with those of Lubrol WX.

  9. Modification of adenylate cyclase by photoaffinity analogs of forskolin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, L.T.; Nie, Z.M.; Mende, T.J.

    1989-01-01

    Photoaffinity labeling analogs of the adenylate cyclase activator forskolin (PF) have been synthesized, purified and tested for their effect on preparations of membrane-bound, Lubrol solubilized and forskolin affinity-purified adenylate cyclase (AC). All analogs of forskolin significantly activated AC. However, in the presence of 0.1 to 0.3 microM forskolin, the less active forskolin photoaffinity probes at 100 microM caused inhibition. This inhibition was dose-dependent for PF, suggesting that PF may complete with F for the same binding site(s). After cross-linking (125I)PF-M to either membrane or Lubrol-solubilized AC preparations by photolysis, a radiolabeled 100-110 kDa protein band was observed after autoradiography followingmore » SDS-PAGE. F at 100 microM blocked the photoradiolabeling of this protein. Radioiodination of forskolin-affinity purified AC showed several protein bands on autoradiogram, however, only one band (Mr = 100-110 kDa) was specifically labeled by (125I)PF-M following photolysis. The photoaffinity-labeled protein of 100-110 kDa of AC preparation of rat adipocyte may be the catalytic unit of adenylate cyclase of rat adipocyte itself as supported by the facts that (a) no other AC-regulatory proteins are known to be of this size, (b) the catalytic unit of bovine brain enzyme is in the same range and (c) this PF specifically stimulates AC activity when assayed alone, and weekly inhibits forskolin-activation of cyclase. These studies indicate that radiolabeled PF probes may be useful for photolabeling and detecting the catalytic unit of adenylate cyclase.« less

  10. Antagonism of histamine-activated adenylate cyclase in brain by D-lysergic acid diethylamide.

    PubMed

    Green, J P; Johnson, C L; Weinstein, H; Maayani, S

    1977-12-01

    D-Lysergic acid diethylamide and D-2-bromolysergic acid diethylamide are competitive antagonists of the histamine activation of adenylate cyclase [ATP pyrophosphate-lyase (cyclizing); E.C. 4.6.1.1] in broken cell preparations of the hippocampus and cortex of guinea pig brain. The adenylate cyclase is linked to the histamine H2-receptor. Both D-lysergic acid diethylamide and D-2-bromolysergic acid diethylamide show topological congruency with potent H2-antagonists. D-2-Bromolysergic acid diethylamide is 10 times more potent as an H2-antagonist than cimetidine, which has been the most potent H2-antagonist reported, and D-lysergic acid diethylamide is about equipotent to cimetidine. Blockade of H2-receptors could contribute to the behavioral effects of D-2-bromolysergic acid diethylamide and D-lysergic acid diethylamide.

  11. General base-general acid catalysis by terpenoid cyclases.

    PubMed

    Pemberton, Travis A; Christianson, David W

    2016-07-01

    Terpenoid cyclases catalyze the most complex reactions in biology, in that more than half of the substrate carbon atoms often undergo changes in bonding during the course of a multistep cyclization cascade that proceeds through multiple carbocation intermediates. Many cyclization mechanisms require stereospecific deprotonation and reprotonation steps, and most cyclization cascades are terminated by deprotonation to yield an olefin product. The first bacterial terpenoid cyclase to yield a crystal structure was pentalenene synthase from Streptomyces exfoliatus UC5319. This cyclase generates the hydrocarbon precursor of the pentalenolactone family of antibiotics. The structures of pentalenene synthase and other terpenoid cyclases reveal predominantly nonpolar active sites typically lacking amino acid side chains capable of serving general base-general acid functions. What chemical species, then, enables the Brønsted acid-base chemistry required in the catalytic mechanisms of these enzymes? The most likely candidate for such general base-general acid chemistry is the co-product inorganic pyrophosphate. Here, we briefly review biological and nonbiological systems in which phosphate and its derivatives serve general base and general acid functions in catalysis. These examples highlight the fact that the Brønsted acid-base activities of phosphate derivatives are comparable to the Brønsted acid-base activities of amino acid side chains.

  12. New functional activity of aripiprazole revealed: robust antagonism of D2 dopamine receptor-stimulated Gβγ signaling

    PubMed Central

    Brust, Tarsis F.; Hayes, Michael P.; Roman, David L.; Watts, Val J.

    2014-01-01

    The dopamine D2 receptor (DRD2) is a G protein-coupled receptor (GPCR) that is generally considered to be a primary target in the treatment of schizophrenia. First generation antipsychotic drugs (e.g. haloperidol) are antagonists of the DRD2, while second generation antipsychotic drugs (e.g. olanzapine) antagonize DRD2 and 5HT2A receptors. Notably, both these classes of drugs may cause side effects associated with D2 receptor antagonism (e.g. hyperprolactemia and extrapyramidal symptoms). The novel, “third generation” antipsychotic drug, aripiprazole is also used to treat schizophrenia, with the remarkable advantage that its tendency to cause extrapyramidal symptoms is minimal. Aripiprazole is considered a partial agonist of the DRD2, but it also has partial agonist/antagonist activity for other GPCRs. Further, aripiprazole has been reported to have a unique activity profile in functional assays with the DRD2. In the present study the molecular pharmacology of aripiprazole was further examined in HEK cell models stably expressing the DRD2 and specific isoforms of adenylyl cyclase to assess functional responses of Gα and Gβγ subunits. Additional studies examined the activity of aripiprazole in DRD2-mediated heterologous sensitization of adenylyl cyclase and cell-based dynamic mass redistribution (DMR). Aripiprazole displayed a unique functional profile for modulation of G proteins, being a partial agonist for Gαi/o and a robust antagonist for Gβγ signaling. Additionally, aripiprazole was a weak partial agonist for both heterologous sensitization and dynamic mass redistribution. PMID:25449598

  13. 78 FR 26794 - Prospective Grant of Start-Up Exclusive Evaluation Option License Agreement: Gene Therapy and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ...-Up Exclusive Evaluation Option License Agreement: Gene Therapy and Cell-Based Therapy for Cardiac... the field of use may be limited to ``Gene therapy and cell-based therapy for cardiac arrhythmias in...\\2+\\-activated adenylyl cyclase, as well as cardiac cells or cardiac-like cells derived from...

  14. Interactions between lysergic acid diethylamide and dopamine-sensitive adenylate cyclase systems in rat brain.

    PubMed

    Hungen, K V; Roberts, S; Hill, D F

    1975-08-22

    Investigations were carried out on the interactions of the hallucinogenic drug, D-lysergic acid diethylamide (D-LSD), and other serotonin antagonists with catecholamine-sensitive adenylate cyclase systems in cell-free preparations from different regions of rat brain. In equimolar concentration, D-LSD, 2-brono-D-lysergic acid diethylamide (BOL), or methysergide (UML) strongly blocked maximal stimulation of adenylate cyclase activity by either norepinephrine or dopamine in particulate preparations from cerebral cortices of young adult rats. D-LSD also eliminated the stimulation of adenylate cyclase activity of equimolar concentrations of norepinephrine or dopamine in particulate preparations from rat hippocampus. The effects of this hallucinogenic agent on adenylate cyclase activity were most striking in particulate preparations from corpus striatum. Thus, in 10 muM concentration, D-LSD not only completely eradicated the response to 10 muM dopamine in these preparations but also consistently stimulated adenylate cyclase activity. L-LSD (80 muM) was without effect. Significant activation of striatal adenylate cyclase was produced by 0.1 muM D-LSD. Activation of striatal adenylate cyclase of either D-LSD or dopamine was strongly blocked by the dopamine-blocking agents trifluoperazine, thioridazine, chlorpromazine, and haloperidol. The stimulatory effects of D-LSD and dopamine were also inhibited by the serotonin-blocking agents, BOL, 1-methyl-D-lysergic acid diethylamide (MLD), and cyproheptadine, but not by the beta-adrenergic-blocking agent, propranolol. However, these serotonin antagonists by themselves were incapable of stimulating adenylate cyclase activity in the striatal preparations. Several other hallucinogens, which were structurally related to serotonin, were also inactive in this regard, e.g., mescaline, N,N-dimethyltryptamine, psilocin and bufotenine. Serotonin itself produced a small stimulation of adenylate cyclase activity in striatal preparations and

  15. Modeling beta-adrenergic control of cardiac myocyte contractility in silico.

    PubMed

    Saucerman, Jeffrey J; Brunton, Laurence L; Michailova, Anushka P; McCulloch, Andrew D

    2003-11-28

    The beta-adrenergic signaling pathway regulates cardiac myocyte contractility through a combination of feedforward and feedback mechanisms. We used systems analysis to investigate how the components and topology of this signaling network permit neurohormonal control of excitation-contraction coupling in the rat ventricular myocyte. A kinetic model integrating beta-adrenergic signaling with excitation-contraction coupling was formulated, and each subsystem was validated with independent biochemical and physiological measurements. Model analysis was used to investigate quantitatively the effects of specific molecular perturbations. 3-Fold overexpression of adenylyl cyclase in the model allowed an 85% higher rate of cyclic AMP synthesis than an equivalent overexpression of beta 1-adrenergic receptor, and manipulating the affinity of Gs alpha for adenylyl cyclase was a more potent regulator of cyclic AMP production. The model predicted that less than 40% of adenylyl cyclase molecules may be stimulated under maximal receptor activation, and an experimental protocol is suggested for validating this prediction. The model also predicted that the endogenous heat-stable protein kinase inhibitor may enhance basal cyclic AMP buffering by 68% and increasing the apparent Hill coefficient of protein kinase A activation from 1.0 to 2.0. Finally, phosphorylation of the L-type calcium channel and phospholamban were found sufficient to predict the dominant changes in myocyte contractility, including a 2.6x increase in systolic calcium (inotropy) and a 28% decrease in calcium half-relaxation time (lusitropy). By performing systems analysis, the consequences of molecular perturbations in the beta-adrenergic signaling network may be understood within the context of integrative cellular physiology.

  16. Modeling beta-adrenergic control of cardiac myocyte contractility in silico

    NASA Technical Reports Server (NTRS)

    Saucerman, Jeffrey J.; Brunton, Laurence L.; Michailova, Anushka P.; McCulloch, Andrew D.; McCullough, A. D. (Principal Investigator)

    2003-01-01

    The beta-adrenergic signaling pathway regulates cardiac myocyte contractility through a combination of feedforward and feedback mechanisms. We used systems analysis to investigate how the components and topology of this signaling network permit neurohormonal control of excitation-contraction coupling in the rat ventricular myocyte. A kinetic model integrating beta-adrenergic signaling with excitation-contraction coupling was formulated, and each subsystem was validated with independent biochemical and physiological measurements. Model analysis was used to investigate quantitatively the effects of specific molecular perturbations. 3-Fold overexpression of adenylyl cyclase in the model allowed an 85% higher rate of cyclic AMP synthesis than an equivalent overexpression of beta 1-adrenergic receptor, and manipulating the affinity of Gs alpha for adenylyl cyclase was a more potent regulator of cyclic AMP production. The model predicted that less than 40% of adenylyl cyclase molecules may be stimulated under maximal receptor activation, and an experimental protocol is suggested for validating this prediction. The model also predicted that the endogenous heat-stable protein kinase inhibitor may enhance basal cyclic AMP buffering by 68% and increasing the apparent Hill coefficient of protein kinase A activation from 1.0 to 2.0. Finally, phosphorylation of the L-type calcium channel and phospholamban were found sufficient to predict the dominant changes in myocyte contractility, including a 2.6x increase in systolic calcium (inotropy) and a 28% decrease in calcium half-relaxation time (lusitropy). By performing systems analysis, the consequences of molecular perturbations in the beta-adrenergic signaling network may be understood within the context of integrative cellular physiology.

  17. Identification of a fourth family of lycopene cyclases in photosynthetic bacteria

    PubMed Central

    Maresca, Julia A.; Graham, Joel E.; Wu, Martin; Eisen, Jonathan A.; Bryant, Donald A.

    2007-01-01

    A fourth and large family of lycopene cyclases was identified in photosynthetic prokaryotes. The first member of this family, encoded by the cruA gene of the green sulfur bacterium Chlorobium tepidum, was identified in a complementation assay with a lycopene-producing strain of Escherichia coli. Orthologs of cruA are found in all available green sulfur bacterial genomes and in all cyanobacterial genomes that lack genes encoding CrtL- or CrtY-type lycopene cyclases. The cyanobacterium Synechococcus sp. PCC 7002 has two homologs of CruA, denoted CruA and CruP, and both were shown to have lycopene cyclase activity. Although all characterized lycopene cyclases in plants are CrtL-type proteins, genes orthologous to cruP also occur in plant genomes. The CruA- and CruP-type carotenoid cyclases are members of the FixC dehydrogenase superfamily and are distantly related to CrtL- and CrtY-type lycopene cyclases. Identification of these cyclases fills a major gap in the carotenoid biosynthetic pathways of green sulfur bacteria and cyanobacteria. PMID:17606904

  18. Identification of a fourth family of lycopene cyclases in photosynthetic bacteria.

    PubMed

    Maresca, Julia A; Graham, Joel E; Wu, Martin; Eisen, Jonathan A; Bryant, Donald A

    2007-07-10

    A fourth and large family of lycopene cyclases was identified in photosynthetic prokaryotes. The first member of this family, encoded by the cruA gene of the green sulfur bacterium Chlorobium tepidum, was identified in a complementation assay with a lycopene-producing strain of Escherichia coli. Orthologs of cruA are found in all available green sulfur bacterial genomes and in all cyanobacterial genomes that lack genes encoding CrtL- or CrtY-type lycopene cyclases. The cyanobacterium Synechococcus sp. PCC 7002 has two homologs of CruA, denoted CruA and CruP, and both were shown to have lycopene cyclase activity. Although all characterized lycopene cyclases in plants are CrtL-type proteins, genes orthologous to cruP also occur in plant genomes. The CruA- and CruP-type carotenoid cyclases are members of the FixC dehydrogenase superfamily and are distantly related to CrtL- and CrtY-type lycopene cyclases. Identification of these cyclases fills a major gap in the carotenoid biosynthetic pathways of green sulfur bacteria and cyanobacteria.

  19. Identification of terminal adenylyl transferase activity of the poliovirus polymerase 3Dpol.

    PubMed Central

    Neufeld, K L; Galarza, J M; Richards, O C; Summers, D F; Ehrenfeld, E

    1994-01-01

    A terminal adenylyl transferase (TATase) activity has been identified in preparations of purified poliovirus RNA-dependent RNA polymerase (3Dpol). Highly purified 3Dpol is capable of adding [32P]AMP to the 3' ends of chemically synthesized 12-nucleotide (nt)-long RNAs. The purified 52-kDa polypeptide, isolated after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and renatured, retained the TATase activity. Two 3Dpol mutants, purified from Escherichia coli expression systems, displayed no detectable polymerase activity and were unable to catalyze TATase activity. Likewise, extracts from the parental E. coli strain that harbored no expression plasmid were unable to catalyze formation of the TATase products. With the RNA oligonucleotide 5'-CCUGCUUUUGCA-3' used as an acceptor, the products formed by wild-type 3Dpol were 9 and 18 nt longer than the 12-nt oligomer. GTP, CTP, and UTP did not serve as substrates for transfer to this RNA, either by themselves or when all deoxynucleoside triphosphates were present in the reaction. Results from kinetic and stoichiometric analyses suggest that the reaction is catalytic and shows substrate and enzyme dependence. The 3'-terminal 13 nt of poliovirus minus-strand RNA also served as an acceptor for TATase activity, raising the possibility that this activity functions in poliovirus RNA replication. The efficiency of utilization and the nature of the products formed during the reaction were dependent on the acceptor RNA. Images PMID:8057462

  20. Structure of the Cmr2 Subunit of the CRISPR-Cas RNA Silencing Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cocozaki, Alexis I.; Ramia, Nancy F.; Shao, Yaming

    Cmr2 is the largest and an essential subunit of a CRISPR RNA-Cas protein complex (the Cmr complex) that cleaves foreign RNA to protect prokaryotes from invading genetic elements. Cmr2 is thought to be the catalytic subunit of the effector complex because of its N-terminal HD nuclease domain. Here, however, we report that the HD domain of Cmr2 is not required for cleavage by the complex in vitro. The 2.3 {angstrom} crystal structure of Pyrococcus furiosus Cmr2 (lacking the HD domain) reveals two adenylyl cyclase-like and two {alpha}-helical domains. The adenylyl cyclase-like domains are arranged as in homodimeric adenylyl cyclases andmore » bind ADP and divalent metals. However, mutagenesis studies show that the metal- and ADP-coordinating residues of Cmr2 are also not critical for cleavage by the complex. Our findings suggest that another component provides the catalytic function and that the essential role by Cmr2 does not require the identified ADP- or metal-binding or HD domains in vitro.« less

  1. General Base-General Acid Catalysis by Terpenoid Cyclases§

    PubMed Central

    Pemberton, Travis A.; Christianson, David W.

    2016-01-01

    Terpenoid cyclases catalyze the most complex reactions in biology, in that more than half of the substrate carbon atoms often undergo changes in bonding during the course of a multistep cyclization cascade that proceeds through multiple carbocation intermediates. Many cyclization mechanisms require stereospecific deprotonation and reprotonation steps, and most cyclization cascades are terminated by deprotonation to yield an olefin product. The first bacterial terpenoid cyclase to yield a crystal structure was pentalenene synthase from Streptomyces exfoliatus UC5319. This cyclase generates the hydrocarbon precursor of the pentalenolactone family of antibiotics. The structures of pentalenene synthase and other terpenoid cyclases reveal predominantly nonpolar active sites typically lacking amino acid side chains capable of serving general base-general acid functions. What chemical species, then, enables the Brønsted acid-base chemistry required in the catalytic mechanisms of these enzymes? The most likely candidate for such general base-general acid chemistry is the co-product inorganic pyrophosphate. Here, we briefly review biological and nonbiological systems in which phosphate and its derivatives serve general base and general acid functions in catalysis. These examples highlight the fact that the Brønsted acid-base activities of phosphate derivatives are comparable to the Brønsted acid-base activities of amino acid side chains. PMID:27072285

  2. Dopaminergic Modulation of Sleep-Wake States.

    PubMed

    Herrera-Solis, Andrea; Herrera-Morales, Wendy; Nunez-Jaramillo, Luis; Arias-Carrion, Oscar

    2017-01-01

    The role of dopamine in sleep-wake regulation is considered as a wakefulness-promoting agent. For the clinical treatment of excessive daytime sleepiness, drugs have been commonly used to increase dopamine release. However, sleep disorders or lack of sleep are related to several dopaminerelated disorders. The effects of dopaminergic agents, nevertheless, are mediated by two families of dopamine receptors, D1 and D2-like receptors; the first family increases adenylyl cyclase activity and the second inhibits adenylyl cyclase. For this reason, the dopaminergic agonist effects on sleep-wake cycle are complex. Here, we review the state-of-the-art and discuss the different effects of dopaminergic agonists in sleep-wake states, and propose that these receptors account for the affinity, although not the specificity, of several effects on the sleep-wake cycle. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Action of Escherichia coli Enterotoxin: Adenylate Cyclase Behavior of Intestinal Epithelial Cells in Culture

    PubMed Central

    Kantor, Harvey S.; Tao, Pearl; Wisdom, Charlene

    1974-01-01

    Heat-labile enterotoxin preparations obtained from two enteropathogenic strains of Escherichia coli of porcine and human origin were shown to stimulate adenylate cyclase activity of human embryonic intestinal epithelial cells in culture. Comparable results were also obtained when cholera toxin was used. The degree of enzyme stimulation was proportional to the concentration of enterotoxin. Similar preparations from two strains of non-enterotoxigenic E. coli had no effect on adenylate cyclase activity. Cells exposed to enterotoxin could be washed after 1 min of contact time without altering the subsequent course of maximum adenylate cyclase activity, which was maintained for at least 18 h at 37 C. During long periods (18 h) of tissue culture incubation, the determination of adenylate cyclase activity was 200- to 300-fold more sensitive than quantitating fluid accumulation in the adult rabbit ileal loop model. Decreasing the incubation time appreciably reduced the sensitivity of the epithelial cells to enterotoxin. E. coli enterotoxin is an effective activator of nonintestinal adenylate cyclase systems. Treatment of KB and HEp-2 cell lines with enterotoxin also resulted in significant enzyme stimulation. The intestinal epithelial cell tissue culture model provides a sensitive homogenous biological system for studying the response of intestinal adenylate cyclase to enterotoxin while eliminating the numerous cellular and tissue components present in the ligated ileal loop model. PMID:4364505

  4. Dysfunction of outer segment guanylate cyclase caused by retinal disease related mutations

    PubMed Central

    Zägel, Patrick; Koch, Karl-Wilhelm

    2014-01-01

    Membrane bound guanylate cyclases are expressed in rod and cone cells of the vertebrate retina and mutations in several domains of rod outer segment guanylate cyclase 1 (ROS-GC1 encoded by the gene GUCY2D) correlate with different forms of retinal degenerations. In the present work we investigated the biochemical consequences of three point mutations, one is located in position P575L in the juxtamembrane domain close to the kinase homology domain and two are located in the cyclase catalytic domain at H1019P and P1069R. These mutations correlate with various retinal diseases like autosomal dominant progressive cone degeneration, e.g., Leber Congenital Amaurosis and a juvenile form of retinitis pigmentosa. Wildtype and mutant forms of ROS-GC1 were heterologously expressed in HEK cells, their cellular distribution was investigated and activity profiles in the presence and absence of guanylate cyclase-activating proteins were measured. The mutant P575L was active under all tested conditions, but it displayed a twofold shift in the Ca2+-sensitivity, whereas the mutant P1069R remained inactive despite normal expression levels. The mutation H1019P caused the cyclase to become more labile. The different biochemical consequences of these mutations seem to reflect the different clinical symptoms. The mutation P575L induces a dysregulation of the Ca2+-sensitive cyclase activation profile causing a slow progression of the disease by the distortion of the Ca2+-cGMP homeostasis. In contrast, a strong reduction in cGMP synthesis due to an inactive or structurally unstable ROS-GC1 would trigger more severe forms of retinal diseases. PMID:24616660

  5. Abacavir increases platelet reactivity via competitive inhibition of soluble guanylyl cyclase

    PubMed Central

    Baum, Paul D.; Sullam, Paul M.; Stoddart, Cheryl A.; McCune, Joseph M.

    2011-01-01

    Objective To provide a molecular mechanism that explains the association of the antiretroviral guanosine analogue, abacavir, with an increased risk of myocardial infarction. Design Drug effects were studied with biochemical and cellular assays. Methods Human platelets were incubated with nucleoside analogue drugs ex vivo. Platelet activation stimulated by ADP was studied by measuring surface P-selectin with flow cytometry. Inhibition of purified soluble guanylyl cyclase was quantified using an ELISA to measure cGMP production. Results Pre-incubation of platelets in abacavir significantly increased activation in response to ADP in a time and dose-dependent manner. The active anabolite of abacavir, carbovir triphosphate, competitively inhibited soluble guanylyl cyclase activity with a Ki of 55 μmol/l. Conclusion Abacavir competitively inhibits guanylyl cyclase, leading to platelet hyper-reactivity. This may explain the observed increased risk of myocardial infarction in HIV patients taking abacavir. PMID:21941165

  6. Intestinal receptor for heat-stable enterotoxin of Escherichia coli is tightly coupled to a novel form of particulate guanylate cyclase.

    PubMed Central

    Waldman, S A; Kuno, T; Kamisaki, Y; Chang, L Y; Gariepy, J; O'Hanley, P; Schoolnik, G; Murad, F

    1986-01-01

    A novel form of particulate guanylate cyclase tightly coupled by cytoskeletal components to receptors for heat-stable enterotoxin (ST) produced by Escherichia coli can be found in membranes from rat intestinal mucosa. Intestinal particulate guanylate cyclase was resistant to solubilization with detergent alone, with only 30% of the total enzyme activity being extracted with Lubrol-PX. Under similar conditions, 70% of this enzyme was solubilized from rat lung membranes. The addition of high concentrations of sodium chloride to the extraction buffer resulted in greater solubilization of particulate guanylate cyclase from intestinal membranes. Although extraction of intestinal membranes with detergent and salt resulted in greater solubilization of guanylate cyclase, a small fraction of the enzyme activity remained associated with the particulate fraction. This activity was completely resistant to solubilization with a variety of detergents and chaotropes. Particulate guanylate cyclase and the ST receptor solubilized by detergent retained their abilities to produce cyclic GMP and bind ST, respectively. However, ST failed to activate particulate guanylate cyclase in detergent extracts. In contrast, guanylate cyclase resistant to solubilization remained functional and coupled to the ST receptor since enzyme activation by ST was unaffected by various extraction procedures. The possibility that the ST receptor and particulate guanylate cyclase were the same molecule was explored. ST binding and cyclic GMP production were separated by affinity chromatography on GTP-agarose. Similarly, guanylate cyclase migrated as a 300,000-dalton protein, while the ST receptor migrated as a 240,000-dalton protein on gel filtration chromatography. Also, thiol-reactive agents such as cystamine and N-ethylmaleimide inhibited guanylate cyclase activation by ST, with no effect on receptor binding of ST. These data suggest that guanylate cyclase and the ST receptor are independent proteins

  7. Redesign of Schistosoma mansoni NAD+ catabolizing enzyme : the active site H103W mutation restores ADP-ribosyl cyclase activity†

    PubMed Central

    Kuhn, Isabelle; Kellenberger, Esther; Rognan, Didier; Lund, Frances E.; Muller-Steffner, Hélène; Schuber, Francis

    2008-01-01

    Schistosoma mansoni NAD(P)+ catabolizing enzyme (SmNACE) is a new member of the ADP-ribosyl cyclase family. In contrast to all the other enzymes which are involved in the production of metabolites that elicit Ca2+ mobilization, SmNACE is virtually unable to transform NAD+ into the second messenger cyclic ADP-ribose (cADPR). Sequence alignments revealed that one of four conserved residues within the active site of these enzymes was replaced in SmNACE by a histidine (His103) instead of the highly conserved tryptophan. To find out whether the inability of SmNACE to catalyze the canonical ADP-ribosyl cyclase reaction is linked to this change we have replaced His103 with a tryptophan. The H103W mutation in SmNACE was indeed found to restore ADP-ribosyl cyclase activity as cADPR amounts for 7% of the reaction products, i.e., a value larger than observed for other members of this family such as CD38. Introduction of a Trp103 residue provides some of the binding characteristics of mammalian ADP-ribosyl cyclases such as increased affinity for Cibacron blue and slow-binding inhibition by araF-NAD+. Homology modeling of wild-type and H103W mutant three-dimensional structures, and docking of substrates within the active sites, provide new insight into the catalytic mechanism of SmNACE. Both residue side chains share similar roles in the nicotinamide-ribose bond cleavage step leading to an E.ADP-ribosyl reaction intermediate. They diverge however in the evolution of this intermediate; His103 provides a more polar environment favoring the accessibility to water and hydrolysis leading to ADP-ribose at the expense of the intramolecular cyclization pathway resulting in cADPR. PMID:17002287

  8. sAC as a model for understanding the impact of endosymbiosis on cell signaling.

    PubMed

    Blackstone, Neil W

    2014-12-01

    As signaling pathways evolve, selection for new functions guides the co-option of existing material. Major transitions in the history of life, including the evolution of eukaryotes and multicellularity, exemplify this process. These transitions provided both strong selection and a plenitude of available material for the evolution of signaling pathways. Mechanisms that evolved to mediate conflict during the evolution of eukaryotes may subsequently have been co-opted during the many independent derivations of multicellularity. The soluble adenylyl cyclase (sAC) signaling pathway illustrates this hypothesis. Class III adenylyl cyclases, which include sAC, are found in bacteria, including the α-proteobacteria. These adenylyl cyclases are the only ones present in eukaryotes but appear to be absent in archaeans. This pattern suggests that the mitochondrial endosymbiosis brought sAC signaling to eukaryotes as part of an intact module. After transfer to the proto-nuclear genome, this module was then co-opted into numerous new functions. In the evolution of eukaryotes, sAC signaling may have mediated conflicts by maintaining metabolic homeostasis. In the evolution of multicellularity, in different lineages sAC may have been co-opted into parallel tasks originally related to conflict mediation. Elucidating the history of the sAC pathway may be relatively straightforward because it is ubiquitous and linked to near universal metabolic by-products (CO₂/HCO(3)(-)). Other signaling pathways (e.g., those involving STAT and VEGF) present a greater challenge but may suggest a complementary pattern. The impact of the mitochondrial endosymbiosis on cell signaling may thus have been profound. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. A Novel Ras-interacting Protein Required for Chemotaxis and Cyclic Adenosine Monophosphate Signal Relay in Dictyostelium

    PubMed Central

    Lee, Susan; Parent, Carole A.; Insall, Robert; Firtel, Richard A.

    1999-01-01

    We have identified a novel Ras-interacting protein from Dictyostelium, RIP3, whose function is required for both chemotaxis and the synthesis and relay of the cyclic AMP (cAMP) chemoattractant signal. rip3 null cells are unable to aggregate and lack receptor activation of adenylyl cyclase but are able, in response to cAMP, to induce aggregation-stage, postaggregative, and cell-type-specific gene expression in suspension culture. In addition, rip3 null cells are unable to properly polarize in a cAMP gradient and chemotaxis is highly impaired. We demonstrate that cAMP stimulation of guanylyl cyclase, which is required for chemotaxis, is reduced ∼60% in rip3 null cells. This reduced activation of guanylyl cyclase may account, in part, for the defect in chemotaxis. When cells are pulsed with cAMP for 5 h to mimic the endogenous cAMP oscillations that occur in wild-type strains, the cells will form aggregates, most of which, however, arrest at the mound stage. Unlike the response seen in wild-type strains, the rip3 null cell aggregates that form under these experimental conditions are very small, which is probably due to the rip3 null cell chemotaxis defect. Many of the phenotypes of the rip3 null cell, including the inability to activate adenylyl cyclase in response to cAMP and defects in chemotaxis, are very similar to those of strains carrying a disruption of the gene encoding the putative Ras exchange factor AleA. We demonstrate that aleA null cells also exhibit a defect in cAMP-mediated activation of guanylyl cyclase similar to that of rip3 null cells. A double-knockout mutant (rip3/aleA null cells) exhibits a further reduction in receptor activation of guanylyl cyclase, and these cells display almost no cell polarization or movement in cAMP gradients. As RIP3 preferentially interacts with an activated form of the Dictyostelium Ras protein RasG, which itself is important for cell movement, we propose that RIP3 and AleA are components of a Ras-regulated pathway

  10. A novel Ras-interacting protein required for chemotaxis and cyclic adenosine monophosphate signal relay in Dictyostelium.

    PubMed

    Lee, S; Parent, C A; Insall, R; Firtel, R A

    1999-09-01

    We have identified a novel Ras-interacting protein from Dictyostelium, RIP3, whose function is required for both chemotaxis and the synthesis and relay of the cyclic AMP (cAMP) chemoattractant signal. rip3 null cells are unable to aggregate and lack receptor activation of adenylyl cyclase but are able, in response to cAMP, to induce aggregation-stage, postaggregative, and cell-type-specific gene expression in suspension culture. In addition, rip3 null cells are unable to properly polarize in a cAMP gradient and chemotaxis is highly impaired. We demonstrate that cAMP stimulation of guanylyl cyclase, which is required for chemotaxis, is reduced approximately 60% in rip3 null cells. This reduced activation of guanylyl cyclase may account, in part, for the defect in chemotaxis. When cells are pulsed with cAMP for 5 h to mimic the endogenous cAMP oscillations that occur in wild-type strains, the cells will form aggregates, most of which, however, arrest at the mound stage. Unlike the response seen in wild-type strains, the rip3 null cell aggregates that form under these experimental conditions are very small, which is probably due to the rip3 null cell chemotaxis defect. Many of the phenotypes of the rip3 null cell, including the inability to activate adenylyl cyclase in response to cAMP and defects in chemotaxis, are very similar to those of strains carrying a disruption of the gene encoding the putative Ras exchange factor AleA. We demonstrate that aleA null cells also exhibit a defect in cAMP-mediated activation of guanylyl cyclase similar to that of rip3 null cells. A double-knockout mutant (rip3/aleA null cells) exhibits a further reduction in receptor activation of guanylyl cyclase, and these cells display almost no cell polarization or movement in cAMP gradients. As RIP3 preferentially interacts with an activated form of the Dictyostelium Ras protein RasG, which itself is important for cell movement, we propose that RIP3 and AleA are components of a Ras

  11. The relationship between the agonist-induced activation and desensitization of the human tachykinin NK2 receptor expressed in Xenopus oocytes

    PubMed Central

    Maudsley, S; Gent, J P; Findlay, J B C; Donnelly, D

    1998-01-01

    Repeated applications of neurokinin A (NKA) to oocytes injected with 25 ng wild-type hNK2 receptor cRNA caused complete attenuation of second and subsequent NKA-induced responses while analogous experiments using repeated applications of GR64349 and [Nle10]NKA(4–10) resulted in no such desensitization. This behaviour has been previously attributed to the ability of the different ligands to stabilize different active conformations of the receptor that have differing susceptibilities to receptor kinases (Nemeth & Chollet, 1995).However, for Xenopus oocytes injected (into the nucleus) with 10 ng wild-type hNK2 receptor cDNA, a single 100 nM concentration of any of the three ligands resulted in complete desensitization to further concentrations.On the other hand, none of the ligands caused any desensitization in oocytes injected with 0.25 ng wild-type hNK2 receptor cRNA, even at concentrations up to 10 μM.The two N-terminally truncated analogues of neurokinin A have a lower efficacy than NKA and it is likely that it is this property which causes the observed differences in desensitization, rather than the formation of alternative active states of the receptor.The peak calcium-dependent chloride current is not a reliable measure of maximal receptor stimulation and efficacy is better measured in this system by studying agonist-induced desensitization.The specific adenylyl cyclase inhibitor SQ22536 can enhance NKA and GR64349-mediated desensitization which suggests that agonist-induced desensitization involves the inhibition of adenylyl cyclase and the subsequent down-regulation of the cyclic AMP-dependent protein kinase, possibly by cross-talk to a second signalling pathway. PMID:9690859

  12. 3',5'-cIMP as Potential Second Messenger in the Vascular Wall.

    PubMed

    Leung, Susan W S; Gao, Yuansheng; Vanhoutte, Paul M

    2017-01-01

    Traditionally, only the 3',5'-cyclic monophosphates of adenosine and guanosine (produced by adenylyl cyclase and guanylyl cyclase, respectively) are regarded as true "second messengers" in the vascular wall, despite the presence of other cyclic nucleotides in different tissues. Among these noncanonical cyclic nucleotides, inosine 3',5'-cyclic monophosphate (cIMP) is synthesized by soluble guanylyl cyclase in porcine coronary arteries in response to hypoxia, when the enzyme is activated by endothelium-derived nitric oxide. Its production is associated with augmentation of vascular contraction mediated by stimulation of Rho kinase. Based on these findings, cIMP appears to meet most, if not all, of the criteria required for it to be accepted as a "second messenger," at least in the vascular wall.

  13. Deinococcus radiodurans RNA ligase exemplifies a novel ligase clade with a distinctive N-terminal module that is important for 5'-PO4 nick sealing and ligase adenylylation but dispensable for phosphodiester formation at an adenylylated nick.

    PubMed

    Raymond, Amy; Shuman, Stewart

    2007-01-01

    Deinococcus radiodurans RNA ligase (DraRnl) is a template-directed ligase that seals nicked duplexes in which the 3'-OH strand is RNA. DraRnl is a 342 amino acid polypeptide composed of a C-terminal adenylyltransferase domain fused to a distinctive 126 amino acid N-terminal module (a putative OB-fold). An alanine scan of the C domain identified 9 amino acids essential for nick ligation, which are located within nucleotidyltransferase motifs I, Ia, III, IIIa, IV and V. Seven mutants were dysfunctional by virtue of defects in ligase adenylylation: T163A, H167A, G168A, K186A, E230A, F281A and E305A. Four of these were also defective in phosphodiester formation at a preadenylylated nick: G168A, E230A, F281A and E305A. Two nick sealing-defective mutants were active in ligase adenylylation and sealing a preadenylylated nick, thereby implicating Ser185 and Lys326 in transfer of AMP from the enzyme to the nick 5'-PO(4). Whereas deletion of the N-terminal domain suppressed overall nick ligation and ligase adenylylation, it did not compromise sealing at a preadenylylated nick. Mutational analysis of 15 residues of the N domain identified Lys26, Gln31 and Arg79 as key constituents. Structure-activity relationships at the essential residues were determined via conservative substitutions. We propose that DraRnl typifies a new clade of polynucleotide ligases. DraRnl homologs are detected in several eukaryal proteomes.

  14. (/sup 3/H)forskolin- and (/sup 3/H)dihydroalprenolol-binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, S.Q.; Ren, Y.F.; Alam, B.S.

    1988-03-01

    The characteristics of the cardiac adenylate cyclase system were studied in rats fed diets containing fish oil (menhaden oil) and other oils. Adenylate cyclase activity generally was higher in cardiac homogenates and membranes of rats fed diet containing 10% menhaden oil than in the other oils. The increase in enzyme activity, especially in forskolin-stimulated activity, was associated with an increase in the concentration of the (/sup 3/H) forskolin-binding sites in cardiac membranes of rats fed menhaden oil. The beta-adrenergic receptor concentration was not significantly altered although the affinity for (/sup 3/H)dihydroalprenolol-binding was lower in membranes of rats fed menhaden oilmore » than those fed the other oils. omega-3 fatty acids from menhaden oil were incorporated into the cardiac membrane phospholipids. The results suggest that the observed increase in myocardial adenylate cyclase activity of rats fed menhaden oil may be due to an increase in the number of the catalytic subunits of the enzyme or due to a greater availability of the forskolin-binding sites.« less

  15. Mathematical modeling physiological effects of the overexpression of β2-adrenoceptors in mouse ventricular myocytes.

    PubMed

    Rozier, Kelvin; Bondarenko, Vladimir E

    2018-03-01

    Transgenic (TG) mice overexpressing β 2 -adrenergic receptors (β 2 -ARs) demonstrate enhanced myocardial function, which manifests in increased basal adenylyl cyclase activity, enhanced atrial contractility, and increased left ventricular function in vivo. To gain insights into the mechanisms of these effects, we developed a comprehensive mathematical model of the mouse ventricular myocyte overexpressing β 2 -ARs. We found that most of the β 2 -ARs are active in control conditions in TG mice. The simulations describe the dynamics of major signaling molecules in different subcellular compartments, increased basal adenylyl cyclase activity, modifications of action potential shape and duration, and the effects on L-type Ca 2+ current and intracellular Ca 2+ concentration ([Ca 2+ ] i ) transients upon stimulation of β 2 -ARs in control, after the application of pertussis toxin, upon stimulation with a specific β 2 -AR agonist zinterol, and upon stimulation with zinterol in the presence of pertussis toxin. The model also describes the effects of the β 2 -AR inverse agonist ICI-118,551 on adenylyl cyclase activity, action potential, and [Ca 2+ ] i transients. The simulation results were compared with experimental data obtained in ventricular myocytes from TG mice overexpressing β 2 -ARs and with simulation data on wild-type mice. In conclusion, a new comprehensive mathematical model was developed that describes multiple experimental data on TG mice overexpressing β 2 -ARs and can be used to test numerous hypotheses. As an example, using the developed model, we proved the hypothesis of the major contribution of L-type Ca 2+ current to the changes in the action potential and [Ca 2+ ] i transient upon stimulation of β 2 -ARs with zinterol. NEW & NOTEWORTHY We developed a new mathematical model for transgenic mouse ventricular myocytes overexpressing β 2 -adrenoceptors that describes the experimental findings in transgenic mice. The model reveals mechanisms of the

  16. Deinococcus radiodurans RNA ligase exemplifies a novel ligase clade with a distinctive N-terminal module that is important for 5′-PO4 nick sealing and ligase adenylylation but dispensable for phosphodiester formation at an adenylylated nick

    PubMed Central

    Raymond, Amy; Shuman, Stewart

    2007-01-01

    Deinococcus radiodurans RNA ligase (DraRnl) is a template-directed ligase that seals nicked duplexes in which the 3′-OH strand is RNA. DraRnl is a 342 amino acid polypeptide composed of a C-terminal adenylyltransferase domain fused to a distinctive 126 amino acid N-terminal module (a putative OB-fold). An alanine scan of the C domain identified 9 amino acids essential for nick ligation, which are located within nucleotidyltransferase motifs I, Ia, III, IIIa, IV and V. Seven mutants were dysfunctional by virtue of defects in ligase adenylylation: T163A, H167A, G168A, K186A, E230A, F281A and E305A. Four of these were also defective in phosphodiester formation at a preadenylylated nick: G168A, E230A, F281A and E305A. Two nick sealing-defective mutants were active in ligase adenylylation and sealing a preadenylylated nick, thereby implicating Ser185 and Lys326 in transfer of AMP from the enzyme to the nick 5′-PO4. Whereas deletion of the N-terminal domain suppressed overall nick ligation and ligase adenylylation, it did not compromise sealing at a preadenylylated nick. Mutational analysis of 15 residues of the N domain identified Lys26, Gln31 and Arg79 as key constituents. Structure–activity relationships at the essential residues were determined via conservative substitutions. We propose that DraRnl typifies a new clade of polynucleotide ligases. DraRnl homologs are detected in several eukaryal proteomes. PMID:17204483

  17. Characterization of nitrosoalkane binding and activation of soluble guanylate cyclase.

    PubMed

    Derbyshire, Emily R; Tran, Rosalie; Mathies, Richard A; Marletta, Michael A

    2005-12-13

    Soluble guanylate cyclase (sGC) is the primary receptor for the signaling agent nitric oxide (NO). Electronic absorption and resonance Raman spectroscopy were used to show that nitrosoalkanes bind to the heme of sGC to form six-coordinate, low-spin complexes. In the sGC-nitrosopentane complex, a band assigned to an Fe-N stretching vibration is observed at 543 cm(-)(1) which is similar to values reported for other six-coordinate NO-bound hemoproteins. Nitrosoalkanes activate sGC 2-6-fold and synergize with YC-1, a synthetic benzylindazole derivative, to activate the enzyme 11-47-fold. In addition, the observed off-rates of nitrosoalkanes from sGC were found to be dependent on the alkyl chain length. A linear correlation was found between the observed off-rates and the alkyl chain length which suggests that the sGC heme has a large hydrophobic distal ligand-binding pocket. Together, these data show that nitrosoalkanes are a novel class of heme-based sGC activators and suggest that heme ligation is a general requirement for YC-1 synergism.

  18. Studies of the Mu-Opioid Receptor/G-protein Complex Affinity Co-Purified and Membrane Preparations from 7315c Cells

    DTIC Science & Technology

    1989-06-09

    centrifugational sedimentation rates of the GTPys- activated and inactivated purified Gs (Birnbaumer et al., 1985). Recently, different antibodies raised against...and Membrane Preparations from 7315c Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...were shown to be fused with the 1 membranes from turkey erythrocytes that have ~-adrenergic receptors but inactive adenylyl cyclase activity due to

  19. Inhibition of Gαs/cAMP Signaling Decreases TCR-Stimulated IL-2 transcription in CD4(+) T Helper Cells.

    PubMed

    Hynes, Thomas R; Yost, Evan A; Yost, Stacy M; Hartle, Cassandra M; Ott, Braden J; Berlot, Catherine H

    2015-07-06

    The role of cAMP in regulating T cell activation and function has been controversial. cAMP is generally known as an immunosuppressant, but it is also required for generating optimal immune responses. As the effect of cAMP is likely to depend on its cellular context, the current study investigated whether the mechanism of activation of Gαs and adenylyl cyclase influences their effect on T cell receptor (TCR)-stimulated interleukin-2 (IL-2) mRNA levels. The effect of blocking Gs-coupled receptor (GsPCR)-mediated Gs activation on TCR-stimulated IL-2 mRNA levels in CD4(+) T cells was compared with that of knocking down Gαs expression or inhibiting adenylyl cyclase activity. The effect of knocking down Gαs expression on TCR-stimulated cAMP accumulation was compared with that of blocking GsPCR signaling. ZM-241385, an antagonist to the Gs-coupled A2A adenosine receptor (A2AR), enhanced TCR-stimulated IL-2 mRNA levels in primary human CD4(+) T helper cells and in Jurkat T cells. A dominant negative Gαs construct, GαsDN3, also enhanced TCR-stimulated IL-2 mRNA levels. Similar to GsPCR antagonists, GαsDN3 blocked GsPCR-dependent activation of both Gαs and Gβγ. In contrast, Gαs siRNA and 2',5'-dideoxyadenosine (ddA), an adenylyl cyclase inhibitor, decreased TCR-stimulated IL-2 mRNA levels. Gαs siRNA, but not GαsDN3, decreased TCR-stimulated cAMP synthesis. Potentiation of IL-2 mRNA levels by ZM-241385 required at least two days of TCR stimulation, and addition of ddA after three days of TCR stimulation enhanced IL-2 mRNA levels. GsPCRs play an inhibitory role in the regulation of TCR-stimulated IL-2 mRNA levels whereas Gαs and cAMP can play a stimulatory one. Additionally, TCR-dependent activation of Gαs does not appear to involve GsPCRs. These results suggest that the context of Gαs/cAMP activation and the stage of T cell activation and differentiation determine the effect on TCR-stimulated IL-2 mRNA levels.

  20. Forskolin- and dihydroalprenolol (DHA) binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, S.Q.; Ren, Y.F.; Alam, B.S.

    1987-05-01

    The purpose of the present investigation was to determine if dietary lipids can induce changes in the adenylate cyclase system in rat heart. Three groups of male young Sprague-Dawley rats were fed for 6 weeks diets containing 10% corn oil (I), 8% coconut oil + 2% corn oil (II) or 10% menhaden oil (III). Adenylate cyclase activity (basal, fluoride-, isoproterenol-, and forskolin-stimulated) was higher in heart homogenates of rats in group III than in the other two groups. Concentration of the (/sup 3/H)-forskolin binding sites in the cardiac membranes were significantly higher in rats fed menhaden oil. The values (pmol/mgmore » protein) were 4.8 +/- 0.2 (I), 4.5 +/- 0.7 (II) and 8.4 +/- 0.5 (III). There was no significant difference in the affinity of the forskolin binding sites among the 3 dietary groups. When measured at different concentrations of forskolin, the adenylate cyclase activity in cardiac membranes of rats fed menhaden oil was higher than in the other 2 groups. Concentrations of the (/sup 3/H)DHA binding sites were slightly higher but their affinity was lower in cardiac membranes of rats fed menhaden oil. The results suggest that diets containing fish oil increase the concentration of the forskolin binding sites and may also affect the characteristics of the ..beta..-adrenergic receptor in rat heart.« less

  1. Enhancement of UV-induced nucleotide excision repair activity upon forskolin treatment is cell growth-dependent.

    PubMed

    Lee, Jeong-Min; Park, Jeong-Min; Kang, Tae-Hong

    2016-10-01

    Forskolin (FSK), an adenylyl cyclase activator, has recently been shown to enhance nucleotide excision repair (NER) upon UV exposure. However, our study revealed that this effect was detected in human skin epithelial ARPE19 cells only in growing cells, but not in non-cycling cells. When the cells were grown at low density (70% confluence), FSK was capable of stimulating cAMP responsive element binding (CREB) phosphorylation, a marker for FSK-stimulated PKA activation, and resulted in a significant increase of NER activity compared to control treatment. However, cells grown under 100% confluent conditions showed neither FSK-induced CREB phosphorylation nor the resulting NER enhancement. These findings indicate that cellular growth is critical for FSK-induced NER enhancement and suggest that cellular growth conditions should be considered as a variable while evaluating a reagent's pharmacotherapeutic efficacy. [BMB Reports 2016; 49(10): 566-571].

  2. N-hydroxylamine is not an intermediate in the conversion of L-arginine to an activator of soluble guanylate cyclase in neuroblastoma N1E-115 cells.

    PubMed Central

    Pou, S; Pou, W S; Rosen, G M; el-Fakahany, E E

    1991-01-01

    This study evaluates the role of N-hydroxylamine (NH2OH) in activating soluble guanylate cyclase in the mouse neuroblastoma clone N1E-115. It has been proposed that NH2OH is a putative intermediate in the biochemical pathway for the generation of nitric oxide (NO)/endothelium-derived relaxing factor (EDRF) from L-arginine. NH2OH caused a time- and concentration-dependent increase in cyclic GMP formation in intact cells. This response was not dependent on Ca2+. In cytosol preparations the activation of guanylate cyclase by L-arginine was dose-dependent and required Ca2+ and NADPH. In contrast, NH2OH itself did not activate cytosolic guanylate cyclase but it inhibited the basal activity of this enzyme in a concentration-dependent manner. The formation of cyclic GMP in the cytosolic fractions in response to NH2OH required the addition of catalase and H2O2. On the other hand, catalase and/or H2O2 lead to a decrease in L-arginine-induced cyclic GMP formation. Furthermore, NH2OH inhibited L-arginine- and sodium nitroprusside-induced cyclic GMP formation in the cytosol. The inhibition of L-arginine-induced cyclic GMP formation in the cytosol by NH2OH was not reversed by the addition of superoxide dismutase. These data strongly suggest that NH2OH is not a putative intermediate in the metabolism of L-arginine to an activator of guanylate cyclase. PMID:1671745

  3. Effects of chlorogenic acid on carbachol-induced contraction of mouse urinary bladder.

    PubMed

    Kaneda, Takeharu; Sasaki, Noriyasu; Urakawa, Norimoto; Shimizu, Kazumasa

    2018-01-01

    Chlorogenic acid (CGA) is a polyphenol found in coffee and medicinal herbs such as Lonicera japonica. In this study, the effect of CGA-induced relaxation on carbachol (CCh)-induced contraction of mouse urinary bladder was investigated. CGA (30-300 μg/ml) inhibited CCh- or U46619-induced contraction in a concentration-dependent manner. SQ22536 (adenylyl cyclase inhibitor) recovered CGA-induced relaxation of CCh-induced contraction; however, ODQ (guanylyl cyclase inhibitor) did not have the same effect. In addition, 3-isobutyl-1-methylxanthine (IBMX) enhanced CGA-induced relaxation; however, forskolin or sodium nitroprusside did not have the same effect. Moreover, Ro 20-1724, a selective phosphodiesterase (PDE) 4 inhibitor, enhanced CGA-induced relaxation, but vardenafil, a selective PDE5 inhibitor, did not have the same effect. In the presence of CCh, CGA increased cyclic adenosine monophosphate (cAMP) level, whereas SQ22536 inhibited the increase of cAMP levels. Moreover, higher cAMP levels were obtained with CGA plus IBMX treatment than the total cAMP levels obtained with separate CGA and IBMX treatments. In conclusion, these results suggest that CGA inhibited CCh-induced contraction of mouse urinary bladder by partly increasing cAMP levels via adenylyl cyclase activation. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  4. Regulation of Mu and Delta Opioid Action in Normal and Morphine-Tolerant Cells and Cell Membrane Preparations

    DTIC Science & Technology

    1988-03-10

    Burns et al., 1975; Aktories et al., 1979), and the lutropin/ choriogonadotropin receptors on porcine luteal membranes (Buettner and Ascoli, 1984...guanyl nucleotide-, fluoride-, and hormone-stimulated adenylyl cyclase activity in the Gs deficient eye- variant of S49 murine lymphoma cells. The...binding was also observed in the as- deficient eye- S49lymphoma cells (Minuth and Jakobs, 1986). Therefore it is highly unlikely that sodium regulates

  5. Molecular determinants of Guanylate Cyclase Activating Protein subcellular distribution in photoreceptor cells of the retina.

    PubMed

    López-Begines, Santiago; Plana-Bonamaisó, Anna; Méndez, Ana

    2018-02-13

    Retinal guanylate cyclase (RetGC) and guanylate cyclase activating proteins (GCAPs) play an important role during the light response in photoreceptor cells. Mutations in these proteins are linked to distinct forms of blindness. RetGC and GCAPs exert their role at the ciliary outer segment where phototransduction takes place. We investigated the mechanisms governing GCAP1 and GCAP2 distribution to rod outer segments by expressing selected GCAP1 and GCAP2 mutants as transient transgenes in the rods of GCAP1/2 double knockout mice. We show that precluding GCAP1 direct binding to RetGC (K23D/GCAP1) prevented its distribution to rod outer segments, while preventing GCAP1 activation of RetGC post-binding (W94A/GCAP1) did not. We infer that GCAP1 translocation to the outer segment strongly depends on GCAP1 binding affinity for RetGC, which points to GCAP1 requirement to bind to RetGC to be transported. We gain further insight into the distinctive regulatory steps of GCAP2 distribution, by showing that a phosphomimic at position 201 is sufficient to retain GCAP2 at proximal compartments; and that the bovine equivalent to blindness-causative mutation G157R/GCAP2 results in enhanced phosphorylation in vitro and significant retention at the inner segment in vivo, as likely contributing factors to the pathophysiology.

  6. Cloning and Functional Characterization of a Lycopene β-Cyclase from Macrophytic Red Alga Bangia fuscopurpurea.

    PubMed

    Cao, Tian-Jun; Huang, Xing-Qi; Qu, Yuan-Yuan; Zhuang, Zhong; Deng, Yin-Yin; Lu, Shan

    2017-04-11

    Lycopene cyclases cyclize the open ends of acyclic lycopene (ψ,ψ-carotene) into β- or ε-ionone rings in the crucial bifurcation step of carotenoid biosynthesis. Among all carotenoid constituents, β-carotene (β,β-carotene) is found in all photosynthetic organisms, except for purple bacteria and heliobacteria, suggesting a ubiquitous distribution of lycopene β-cyclase activity in these organisms. In this work, we isolated a gene ( BfLCYB ) encoding a lycopene β-cyclase from Bangia fuscopurpurea , a red alga that is considered to be one of the primitive multicellular eukaryotic photosynthetic organisms and accumulates carotenoid constituents with both β- and ε-rings, including β-carotene, zeaxanthin, α-carotene (β,ε-carotene) and lutein. Functional complementation in Escherichia coli demonstrated that BfLCYB is able to catalyze cyclization of lycopene into monocyclic γ-carotene (β,ψ-carotene) and bicyclic β-carotene, and cyclization of the open end of monocyclic δ-carotene (ε,ψ-carotene) to produce α-carotene. No ε-cyclization activity was identified for BfLCYB. Sequence comparison showed that BfLCYB shares conserved domains with other functionally characterized lycopene cyclases from different organisms and belongs to a group of ancient lycopene cyclases. Although B. fuscopurpurea also synthesizes α-carotene and lutein, its enzyme-catalyzing ε-cyclization is still unknown.

  7. Contribution of phospholipase C-beta3 phosphorylation to the rapid attenuation of opioid-activated phosphoinositide response.

    PubMed

    Strassheim, D; Law, P Y; Loh, H H

    1998-06-01

    Activation of the delta-opioid receptor in NG108-15 neuroblastoma X glioma hybrid cells results in a transient increase at the intracellular level of inositol-1,4,5-triphosphate [Ins(1,4,5)P3]. This time course in the transient increase in the Ins(1,4,5)P3 level is distinctly different from that observed in the homologous opioid receptor desensitization as measured by the inhibition of adenylyl cyclase activity. One probable mechanism for this rapid loss in Ins(1,4,5)P3 response is the feedback regulation of the phospholipase C activity. Regulation by protein phosphorylation was suggested by the observations that the opioid-mediated response was potentiated by calphostin C, an inhibitor of protein kinase C (PKC), and was abolished by either phorbol-12-myristate-13-acetate, a PKC activator, or calyculin A, a protein phosphatase1/2A inhibitor. The direct phosphorylation of phospholipase C was demonstrated by immunoprecipitation of PLC-beta3 from metabolically labeled NG108-15 cells challenged with the delta-selective agonist [D-Pen2, D-Pen5]enkephalin (DPDPE). A time- and DPDPE concentration-dependent and naloxone-reversible increase in the PLC-beta3 phosphorylation can be demonstrated. This PLC-beta3 phosphorylation was mainly due to PKC activation because pretreatment of NG108-15 cells with calphostin C could block the DPDPE effect. Activation of the PLC-beta3 by DPDPE was one of the prerequisites for agonist-mediated PLC-beta3 phosphorylation because the aminosteroid phospholipase C inhibitor U73122 could block the DPDPE effect. In addition to DPDPE, lysophosphatidic acid (LPA) stimulated the PLC-beta3 phosphorylation, but bradykinin did not. Furthermore, the LPA- and DPDPE-mediated PLC-beta3 phosphorylation was additive and was much less than that observed with phorbol-12-myristate-13-acetate. The effect of DPDPE was specific to PLC-beta3; the betagamma-insensitive phospholipase C-beta1 was not phosphorylated in the presence of either DPDPE or LPA. These results

  8. Guanylate cyclase-activating protein 2 contributes to phototransduction and light adaptation in mouse cone photoreceptors.

    PubMed

    Vinberg, Frans; Peshenko, Igor V; Chen, Jeannie; Dizhoor, Alexander M; Kefalov, Vladimir J

    2018-05-11

    Light adaptation of photoreceptor cells is mediated by Ca 2+ -dependent mechanisms. In darkness, Ca 2+ influx through cGMP-gated channels into the outer segment of photoreceptors is balanced by Ca 2+ extrusion via Na + /Ca 2+ , K + exchangers (NCKXs). Light activates a G protein signaling cascade, which closes cGMP-gated channels and decreases Ca 2+ levels in photoreceptor outer segment because of continuing Ca 2+ extrusion by NCKXs. Guanylate cyclase-activating proteins (GCAPs) then up-regulate cGMP synthesis by activating retinal membrane guanylate cyclases (RetGCs) in low Ca 2+ This activation of RetGC accelerates photoresponse recovery and critically contributes to light adaptation of the nighttime rod and daytime cone photoreceptors. In mouse rod photoreceptors, GCAP1 and GCAP2 both contribute to the Ca 2+ -feedback mechanism. In contrast, only GCAP1 appears to modulate RetGC activity in mouse cones because evidence of GCAP2 expression in cones is lacking. Surprisingly, we found that GCAP2 is expressed in cones and can regulate light sensitivity and response kinetics as well as light adaptation of GCAP1-deficient mouse cones. Furthermore, we show that GCAP2 promotes cGMP synthesis and cGMP-gated channel opening in mouse cones exposed to low Ca 2+ Our biochemical model and experiments indicate that GCAP2 significantly contributes to the activation of RetGC1 at low Ca 2+ when GCAP1 is not present. Of note, in WT mouse cones, GCAP1 dominates the regulation of cGMP synthesis. We conclude that, under normal physiological conditions, GCAP1 dominates the regulation of cGMP synthesis in mouse cones, but if its function becomes compromised, GCAP2 contributes to the regulation of phototransduction and light adaptation of cones. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Cryptic indole hydroxylation by a non-canonical terpenoid cyclase parallels bacterial xenobiotic detoxification

    NASA Astrophysics Data System (ADS)

    Kugel, Susann; Baunach, Martin; Baer, Philipp; Ishida-Ito, Mie; Sundaram, Srividhya; Xu, Zhongli; Groll, Michael; Hertweck, Christian

    2017-06-01

    Terpenoid natural products comprise a wide range of molecular architectures that typically result from C-C bond formations catalysed by classical type I/II terpene cyclases. However, the molecular diversity of biologically active terpenoids is substantially increased by fully unrelated, non-canonical terpenoid cyclases. Their evolutionary origin has remained enigmatic. Here we report the in vitro reconstitution of an unusual flavin-dependent bacterial indoloterpenoid cyclase, XiaF, together with a designated flavoenzyme-reductase (XiaP) that mediates a key step in xiamycin biosynthesis. The crystal structure of XiaF with bound FADH2 (at 2.4 Å resolution) and phylogenetic analyses reveal that XiaF is, surprisingly, most closely related to xenobiotic-degrading enzymes. Biotransformation assays show that XiaF is a designated indole hydroxylase that can be used for the production of indigo and indirubin. We unveil a cryptic hydroxylation step that sets the basis for terpenoid cyclization and suggest that the cyclase has evolved from xenobiotics detoxification enzymes.

  10. Dispatch. Dictyostelium chemotaxis: fascism through the back door?

    PubMed

    Insall, Robert

    2003-04-29

    Aggregating Dictyostelium cells secrete cyclic AMP to attract their neighbours by chemotaxis. It has now been shown that adenylyl cyclase is enriched in the rear of cells, and this localisation is required for normal aggregation.

  11. A novel antithrombotic effect of sulforaphane via activation of platelet adenylate cyclase: ex vivo and in vivo studies.

    PubMed

    Jayakumar, Thanasekaran; Chen, Wei-Fan; Lu, Wan-Jung; Chou, Duen-Suey; Hsiao, George; Hsu, Chung-Yi; Sheu, Joen-Rong; Hsieh, Cheng-Ying

    2013-06-01

    Sulforaphane is a naturally occurring isothiocyanate, which can be found in cruciferous vegetables such as broccoli and cabbage. Sulforaphane was found to have very potent inhibitory effects on tumor growth through regulation of diverse mechanisms. However, no data are available concerning the effects of sulforaphane on platelet activation and its relative issues. Activation of platelets caused by arterial thrombosis is relevant to a variety of cardiovascular diseases. Hence, the aim of this study was to examine the in vivo antithrombotic effects of sulforaphane and its possible mechanisms in platelet activation. Sulforaphane (0.125 and 0.25 mg/kg) was effective in reducing the mortality of ADP-induced acute pulmonary thromboembolism in mice. Other in vivo studies also revealed that sulforaphane (0.25 mg/kg) significantly prolonged platelet plug formation in mice. In addition, sulforaphane (15-75 μM) exhibited more-potent activity of inhibiting platelet aggregation stimulated by collagen. Sulforaphane inhibited platelet activation accompanied by inhibiting relative Ca(2+) mobilization; phosphorylation of phospholipase C (PLC)γ2, protein kinase C (PKC), mitogen-activated protein kinases (MAPKs) and Akt; and hydroxyl radical (OH(●)) formation. Sulforaphane markedly increased cyclic (c)AMP, but not cyclic (c)GMP levels, and stimulated vasodilator-stimulated phosphoprotein (VASP) phosphorylation. SQ22536, an inhibitor of adenylate cyclase, but not ODQ (1H-[1,2,4]Oxadiazolo[4,3-a]quinoxal in-1-one), an inhibitor of guanylate cyclase, obviously reversed the sulforaphane-mediated effects on platelet aggregation; PKC activation, p38 MAPK, Akt and VASP phosphorylation; and OH(●) formation. Furthermore, a PI3-kinase inhibitor (LY294002) and a p38 MAPK inhibitor (SB203580) both significantly diminished PKC activation and p38 MAPK and Akt phosphorylation; in contrast, a PKC inhibitor (RO318220) did not diminish p38 MAPK or Akt phosphorylation stimulated by collagen. This

  12. Tachyphylaxis to PACAP-27 after inhibition of NO synthesis: a loss of adenylate cyclase activation

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    1999-01-01

    The vasodilator effects of pituitary adenylate cyclase activating polypeptide (PACAP-27) are subject to tachyphylaxis in rats treated with the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). This study examined whether this tachyphylaxis is due to the loss of vasodilator potency of cAMP generated by activation of the G(s) protein-coupled PACAP receptors. Five successive treatments with PACAP-27 (2 nmol/kg iv) produced pronounced vasodilator responses in saline-treated rats that were not subject to tachyphylaxis. The first injection of PACAP-27 (2 nmol/kg iv) in L-NAME (50 micromol/kg iv)-treated rats produced vasodilator responses of similar magnitude to those in saline-treated rats, whereas four subsequent injections produced progressively and markedly smaller responses. The hemodynamic effects of the membrane-permeable cAMP analog 8-(4-chlorophenylthiol)-cAMP (8-CPT-cAMP; 5-15 micromol/kg iv) were similar in L-NAME-treated rats and in L-NAME-treated rats that had received the five injections of PACAP-27. In addition, five injections of 8-CPT-cAMP (10 micromol/kg iv) produced pronounced vasodilator responses in saline- and L-NAME-treated rats that were not subject to the development of tachyphylaxis. These results suggest that a loss of biological potency of cAMP is not responsible for tachyphylaxis to PACAP-27 in L-NAME-treated rats. This tachyphylaxis may be due to the inability of the G(s) protein-coupled PACAP receptor to activate adenylate cyclase.

  13. Structure-guided design and functional characterization of an artificial red light-regulated guanylate/adenylate cyclase for optogenetic applications.

    PubMed

    Etzl, Stefan; Lindner, Robert; Nelson, Matthew D; Winkler, Andreas

    2018-06-08

    Genetically targeting biological systems to control cellular processes with light is the concept of optogenetics. Despite impressive developments in this field, underlying molecular mechanisms of signal transduction of the employed photoreceptor modules are frequently not sufficiently understood to rationally design new optogenetic tools. Here, we investigate the requirements for functional coupling of red light-sensing phytochromes with non-natural enzymatic effectors by creating a series of constructs featuring the Deinococcus radiodurans bacteriophytochrome linked to a Synechocystis guanylate/adenylate cyclase. Incorporating characteristic structural elements important for cyclase regulation in our designs, we identified several red light-regulated fusions with promising properties. We provide details of one light-activated construct with low dark-state activity and high dynamic range that outperforms previous optogenetic tools in vitro and expands our in vivo toolkit, as demonstrated by manipulation of Caenorhabditis elegans locomotor activity. The full-length crystal structure of this phytochrome-linked cyclase revealed molecular details of photoreceptor-effector coupling, highlighting the importance of the regulatory cyclase element. Analysis of conformational dynamics by hydrogen-deuterium exchange in different functional states enriched our understanding of phytochrome signaling and signal integration by effectors. We found that light-induced conformational changes in the phytochrome destabilize the coiled-coil sensor-effector linker, which releases the cyclase regulatory element from an inhibited conformation, increasing cyclase activity of this artificial system. Future designs of optogenetic functionalities may benefit from our work, indicating that rational considerations for the effector improve the rate of success of initial designs to obtain optogenetic tools with superior properties. © 2018 Etzl et al.

  14. Coincident postsynaptic activity gates presynaptic dopamine release to induce plasticity in Drosophila mushroom bodies

    PubMed Central

    Ueno, Kohei; Suzuki, Ema; Naganos, Shintaro; Ofusa, Kyoko; Horiuchi, Junjiro; Saitoe, Minoru

    2017-01-01

    Simultaneous stimulation of the antennal lobes (ALs) and the ascending fibers of the ventral nerve cord (AFV), two sensory inputs to the mushroom bodies (MBs), induces long-term enhancement (LTE) of subsequent AL-evoked MB responses. LTE induction requires activation of at least three signaling pathways to the MBs, mediated by nicotinic acetylcholine receptors (nAChRs), NMDA receptors (NRs), and D1 dopamine receptors (D1Rs). Here, we demonstrate that inputs from the AL are transmitted to the MBs through nAChRs, and inputs from the AFV are transmitted by NRs. Dopamine signaling occurs downstream of both nAChR and NR activation, and requires simultaneous stimulation of both pathways. Dopamine release requires the activity of the rutabaga adenylyl cyclase in postsynaptic MB neurons, and release is restricted to MB neurons that receive coincident stimulation. Our results indicate that postsynaptic activity can gate presynaptic dopamine release to regulate plasticity. DOI: http://dx.doi.org/10.7554/eLife.21076.001 PMID:28117664

  15. Stabilizing function for myristoyl group revealed by the crystal structure of a neuronal calcium sensor, guanylate cyclase-activating protein 1.

    PubMed

    Stephen, Ricardo; Bereta, Grzegorz; Golczak, Marcin; Palczewski, Krzysztof; Sousa, Marcelo Carlos

    2007-11-01

    Guanylate cyclase-activating proteins (GCAPs) are Ca(2+)-binding proteins myristoylated at the N terminus that regulate guanylate cyclases in photoreceptor cells and belong to the family of neuronal calcium sensors (NCS). Many NCS proteins display a recoverin-like "calcium-myristoyl switch" whereby the myristoyl group, buried inside the protein in the Ca(2+)-free state, becomes fully exposed upon Ca(2+) binding. Here we present a 2.0 A resolution crystal structure of myristoylated GCAP1 with Ca(2+) bound. The acyl group is buried inside Ca(2+)-bound GCAP1. This is in sharp contrast to Ca(2+)-bound recoverin, where the myristoyl group is solvent exposed. Furthermore, we provide direct evidence that the acyl group in GCAP1 remains buried in the Ca(2+)-free state and does not undergo switching. A pronounced kink in the C-terminal helix and the presence of the myristoyl group allow clustering of sequence elements crucial for GCAP1 activity.

  16. Stabilizing Function for Myristoyl Group Revealed by the Crystal Structure of a Neuronal Calcium Sensor, Guanylate Cyclase-Activating Protein 1

    PubMed Central

    Stephen, Ricardo; Bereta, Grzegorz; Golczak, Marcin; Palczewski, Krzysztof; Sousa, Marcelo Carlos

    2008-01-01

    SUMMARY Guanylate cyclase-activating proteins (GCAPs) are Ca2+-binding proteins myristoylated at the N terminus that regulate guanylate cyclases in photoreceptor cells and belong to the family of neuronal calcium sensors (NCS). Many NCS proteins display a recoverin-like “calcium-myristoyl switch” whereby the myristoyl group, buried inside the protein in the Ca2+-free state, becomes fully exposed upon Ca2+ binding. Here we present a 2.0 Å resolution crystal structure of myristoylated GCAP1 with Ca2+ bound. The acyl group is buried inside Ca2+-bound GCAP1. This is in sharp contrast to Ca2+-bound recoverin, where the myristoyl group is solvent exposed. Furthermore, we provide direct evidence that the acyl group in GCAP1 remains buried in the Ca2+-free state and does not undergo switching. A pronounced kink in the C-terminal helix and the presence of the myristoyl group allow clustering of sequence elements crucial for GCAP1 activity. PMID:17997965

  17. Heavy isotope labeling study of the turnover of forskolin-stimulated adenylate cyclase in BC/sup 3/H1 cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhelal, R.; Bockaert, J.; Mermet-Bouvier, R.

    1987-06-25

    We have used the method of heavy isotope labeling to study the metabolic turnover of adenylate cyclase in a nonfusing muscle cell line, the BC/sup 3/H1 cells. These cells contains an adenylate cyclase coupled to beta-adrenergic receptors and highly stimulated by forskolin, a potent activator of the enzyme. After transfer of the cells from normal medium to heavy medium (a medium containing heavy labeled amino acids, /sup 3/H, /sup 13/C, /sup 15/N), heavy isotope-labeled adenylate cyclase molecules progressively replace pre-existing light molecules. In sucrose gradient differential sedimentation, after a 5-day switch in heavy medium, the enzyme exhibited a higher massmore » (s = 8.40 +/- 0.03 S, n = 13) compared to the control enzyme. Indeed, the increase in the sedimentation coefficient of the heavy molecules was due to the synthesis of new molecules of adenylate cyclase labeled with heavy isotope amino acids since in the presence of cycloheximide, an inhibitor of protein synthesis, no change in the sedimentation pattern of the forskolin-stimulated adenylate cyclase occurred. After incorporation of heavy isotope amino acids in the adenylate cyclase molecules, the kinetics parameters of the enzyme did not change. However, adenylate cyclase from cells incubated with heavy medium exhibits an activity about 2-fold lower than control. After switching the cells to the heavy medium, the decrease of the activity of the enzyme occurred during the first 24 h and thereafter remained at a steady state for at least 4 days. In contrast, 24 h after the switch, the sedimentation coefficient of forskolin-stimulated adenylate cyclase was progressively shifted to a higher value.« less

  18. Biased activity of soluble guanylyl cyclase: the Janus face of thymoquinone.

    PubMed

    Detremmerie, Charlotte; Vanhoutte, Paul M; Leung, Susan

    2017-07-01

    The natural compound thymoquinone, extracted from Nigella sativa (black cumin), is widely used in humans for its anti-oxidative properties. Thymoquinone is known for its acute endothelium-independent vasodilator effects in isolated rat aortae and pulmonary arteries, depending in part on activation of adenosine triphosphate-sensitive potassium channels and inhibition of voltage-dependent calcium channels. The compound also improves endothelial dysfunction in mesenteric arteries of ageing rodents and in aortae of rabbits treated with pyrogallol, by inhibiting oxidative stress. Serendipitously, thymoquinone was found to augment contractions in isolated arteries with endothelium of both rats and pigs. The endothelium-dependent augmentation it causes counterintuitively depends on biased activation of soluble guanylyl cyclase (sGC) producing inosine 3',5'-cyclic monophosphate (cyclic IMP) rather than guanosine 3',5'-cyclic monophosphate. This phenomenon shows a striking mechanistic similarity to the hypoxic augmentation previously observed in porcine coronary arteries. The cyclic IMP preferentially produced under thymoquinone exposure causes an increased contractility of arterial smooth muscle by interfering with calcium homeostasis. This brief review summarizes the vascular pharmacology of thymoquinone, focussing in particular on how the compound causes endothelium-dependent contractions by biasing the activity of sGC.

  19. Crystal structure of the Alpha subunit PAS domain from soluble guanylyl cyclase

    PubMed Central

    Purohit, Rahul; Weichsel, Andrzej; Montfort, William R

    2013-01-01

    Soluble guanylate cyclase (sGC) is a heterodimeric heme protein of ∼150 kDa and the primary nitric oxide receptor. Binding of NO stimulates cyclase activity, leading to regulation of cardiovascular physiology and providing attractive opportunities for drug discovery. How sGC is stimulated and where candidate drugs bind remains unknown. The α and β sGC chains are each composed of Heme-Nitric Oxide Oxygen (H-NOX), Per-ARNT-Sim (PAS), coiled-coil and cyclase domains. Here, we present the crystal structure of the α1 PAS domain to 1.8 Å resolution. The structure reveals the binding surfaces of importance to heterodimer function, particularly with respect to regulating NO binding to heme in the β1 H-NOX domain. It also reveals a small internal cavity that may serve to bind ligands or participate in signal transduction. PMID:23934793

  20. The Presence of Two Cyclase Thioesterases Expands the Conformational Freedom of the Cyclic Peptide Occidiofungin

    PubMed Central

    Ravichandran, Akshaya; Gu, Ganyu; Escano, Jerome; Lu, Shi-En; Smith, Leif

    2014-01-01

    Occidiofungin is a cyclic nonribosomally synthesized antifungal peptide with submicromolar activity produced by Gram-negative bacterium Burkholderia contaminans. The biosynthetic gene cluster was confirmed to contain two cyclase thioesterases. NMR analysis revealed that the presence of both thioesterases is used to increase the conformational repertoire of the cyclic peptide. The loss of the OcfN cyclic thioesterase by mutagenesis results in a reduction of conformational variants and an appreciable decrease in bioactivity against Candida species. Presumably, the presence of both asparagine and β-hydroxyasparagine variants coordinate the enzymatic function of both of the cyclase thioesterases. OcfN has presumably evolved to be part of the biosynthetic gene cluster due to its ability to produce structural variants that enhance antifungal activity against some fungi. The enhancement of the antifungal activity from the incorporation of an additional cyclase thioesterase into the biosynthetic gene cluster of occidiofungin supports the need to explore new conformational variants of other therapeutic or potentially therapeutic cyclic peptides. PMID:23394257

  1. Interaction of forskolin with the P-glycoprotein multidrug transporter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming s, D.I.; Seamon, K.B.; Speicher, L.A.

    1991-08-27

    Forskolin and 1,9-dideoxyforskolin, an analogue that does not activate adenylyl cyclase, were tested for their ability to enhance the cytotoxic effects of adriamycin in human ovarian carcinoma cells, SKOV3, which are sensitive to adriamycin and express low levels of P-glycoprotein, and a variant cell line, SKVLB, which overexpresses the P-glycoprotein and has the multidrug reing ance (MDR) phenotype. Forskolin and 1,9-dideoxyforskolin both increased the cytotoxic effects of adriamycin in SKVLB cells, yet had no effect on SKOV3 cells. Two photoactive derivatives of forskolin have been synthesized, 7-O-((2-(3-(4-azido-3-({sup 125}I)iodophenyl)propionamido)ethyl)carbamyl)forskolin, {sup 125}I-6-AIPP-Fsk, and 6-O-((2-(3-(4-azido-3-({sup 125}I)iodophenyl)propionamido)ethyl)carbamyl)forskolin, {sup 125}I-6-AIPP-Fsk, which exhibit specificity for labelingmore » the glucose transporter and aing lyl cyclase, respectively. Both photolabels identified a 140-kDa protein in membranes from SKVLB cells whose labeling was inhibited by forskolin and 1,9-dideoxyforskolin. The data are consistent with forskolin binding to the P-glycoprotein analogous to that of other chemosensitizing drugs that have been shown to partially reverse MDR. The ability of forskolin photolabels to specifically label the transporter, the adenylyl cyclase, and the P-glycoprotein suggests that these proteins may share a common biing g domain for forskolin analogues.« less

  2. The guanylyl cyclase family at Y2K.

    PubMed

    Wedel, B; Garbers, D

    2001-01-01

    During the 1980s the purification, cloning, and expression of various forms of guanylyl cyclase (GC) revealed that they served as receptors for extracellular signals. Seven membrane forms, which presumably exist as homodimers, and four subunits of apparent heterodimers (commonly referred to as the soluble forms) are known, but in animals such as nematodes, much larger numbers of GCs are expressed. The number of transmembrane segments (none, one, or multiple) divide the GC family into three groups. Those with no or one transmembrane segment bind nitric oxide/carbon monoxide (NO/CO) or peptides. There are no known ligands for the multiple transmembrane segment class of GCs. Mutational and structural analyses support a model where catalysis requires a shared substrate binding site between the subunits, whether homomeric or heteromeric in nature. Because some cyclases or cyclase ligand genes lack specific GC inhibitors, disruption of either has been used to define the functions of individual cyclases, as well as to define human genetic disease counterparts.

  3. Effect of hypolipidemic drugs on basal and stimulated adenylate cyclase activity in tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bershtein, L.M.; Kovaleva, I.G.; Rozenberg, O.A.

    1986-02-01

    This paper studies adenylate cyclase acticvity in Ehrlich's ascites carcinoma (EAC) cells during administration of drugs with a hypolipidemic action. Seven to eight days before they were killed, male mice ingested the antidiabetic biguanide phenformin, and the phospholipid-containing preparation Essentiale in drinking water. The cAMP formed was isolated by chromatography on Silufol plates after incubation of the enzyme preparation with tritium-ATP, or was determined by the competitive binding method with protein. It is shown that despite the possible differences in the concrete mechanism of action of the hypolipidemic agents chosen for study on the cyclase system, the use of suchmore » agents, offers definite prospects for oriented modification of the hormone sensitivity of tumor cells.« less

  4. Regulation of tyrosine hydroxylase activity and phosphorylation at Ser(19) and Ser(40) via activation of glutamate NMDA receptors in rat striatum.

    PubMed

    Lindgren, N; Xu, Z Q; Lindskog, M; Herrera-Marschitz, M; Goiny, M; Haycock, J; Goldstein, M; Hökfelt, T; Fisone, G

    2000-06-01

    The activity of tyrosine hydroxylase, the rate-limiting enzyme in the biosynthesis of dopamine, is stimulated by phosphorylation. In this study, we examined the effects of activation of NMDA receptors on the state of phosphorylation and activity of tyrosine hydroxylase in rat striatal slices. NMDA produced a time-and concentration-dependent increase in the levels of phospho-Ser(19)-tyrosine hydroxylase in nigrostriatal nerve terminals. This increase was not associated with any changes in the basal activity of tyrosine hydroxylase, measured as DOPA accumulation. Forskolin, an activator of adenylyl cyclase, stimulated tyrosine hydroxylase phosphorylation at Ser(40) and caused a significant increase in DOPA accumulation. NMDA reduced forskolin-mediated increases in both Ser(40) phosphorylation and DOPA accumulation. In addition, NMDA reduced the increase in phospho-Ser(40)-tyrosine hydroxylase produced by okadaic acid, an inhibitor of protein phosphatase 1 and 2A, but not by a cyclic AMP analogue, 8-bromo-cyclic AMP. These results indicate that, in the striatum, glutamate decreases tyrosine hydroxylase phosphorylation at Ser(40) via activation of NMDA receptors by reducing cyclic AMP production. They also provide a mechanism for the demonstrated ability of NMDA to decrease tyrosine hydroxylase activity and dopamine synthesis.

  5. Regulation of follitropin-sensitive adenylate cyclase by stimulatory and inhibitory forms of the guanine nucleotide regulatory protein in immature rat Sertoli cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, G.P.

    1987-01-01

    Studies have been designed to examine the role of guanine nucleotides in mediating FSH-sensitive adenylate cyclase activity in Sertoli cell plasma membranes. Analysis of ({sup 3}H)GDP binding to plasma membranes suggested a single high affinity site with a K{sub d} = 0.24 uM. Competition studies indicated that GTP{sub {gamma}}S was 7-fold more potent than GDP{sub {beta}}S. Bound GDP could be released by FSH in the presence of GTP{sub {gamma}}S, but not by FSH alone. Adenylate cyclase activity was enhanced 5-fold by FSH in the presence of GTP. Addition of GDP{sub {beta}}S to the activated enzyme (FSH plus GTP) resulted inmore » a time-dependent decay to basal activity within 20 sec. GDP{sub {beta}}S competitively inhibited GTP{sub {gamma}}S-stimulated adenylate cyclase activity with a K{sub i} = 0.18 uM. Adenylate cyclase activity was also demonstrated to be sensitive to the nucleotide bound state. In the presence of FSH, only the GTP{sub {gamma}}S-bound form persisted even if GDP{sub {beta}}S previously occupied all available binding sites. Two membrane proteins, M{sub r} = 43,000 and 48,000, were ADP{centered dot}ribosylated using cholera toxin and labeling was enhanced 2 to 4-fold by GTP{sub {gamma}}S but not by GDP{sub {beta}}S. The M{sub r} = 43,000 and 48,000 proteins represented variant forms of G{sub S}. A single protein of M{sub r} = 40,000 (G{sub i}) was ADP-ribosylated by pertussis toxin in vitro. GTP inhibited forskolin-stimulated adenylate cyclase activity with an IC{sub 50} = 0.1 uM. The adenosine analog, N{sup 6}{centered dot}phenylisopropyl adenosine enhanced GTP inhibition of forskolin-stimulated adenylate cyclase activity by an additional 15%. GTP-dependent inhibition of forskolin-sensitive adenylate cyclase activity was abolished in membranes prepared from Sertoli cells treated in culture with pertussis toxin.« less

  6. Pituitary adenylate cyclase-activating polypeptide is a potent broad-spectrum antimicrobial peptide: Structure-activity relationships.

    PubMed

    Starr, Charles G; Maderdrut, Jerome L; He, Jing; Coy, David H; Wimley, William C

    2018-06-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a naturally occurring cationic peptide with potent immunosuppressant and cytoprotective activities. We now show that full length PACAP38 and to a lesser extent, the truncated form PACAP27, and the closely related vasoactive intestinal peptide (VIP) and secretin had antimicrobial activity against the Gram-negative bacteria Escherichia coli in the radial diffusion assay. PACAP38 was more potent than either the bovine neutrophil antimicrobial peptide indolicidin or the synthetic antimicrobial peptide ARVA against E. coli. PACAP38 also had activity against the Gram-positive bacteria Staphylococcus aureus in the same assay with comparable potency to indolicidin and ARVA. In the more stringent broth dilution assay, PACAP38 had moderate sterilizing activity against E. coli, and potent sterilizing activity against the Gram-negative bacteria Pseudomonas aeruginosa. PACAP27, VIP and secretin were much less active than PACAP38 in this assay. PACAP38 also had some activity against the Gram-positive bacteria Bacillus cereus in the broth dilution assay. Many exopeptidase-resistant analogs of PACAP38, including both receptor agonists and antagonists, had antimicrobial activities equal to, or better than PACAP38, in both assays. PACAP38 made the membranes of E. coli permeable to SYTOX Green, suggesting a classical membrane lytic mechanism. These data suggest that analogs of PACPAP38 with a wide range of useful biological activities can be made by judicious substitutions in the sequence. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. A nitric oxide/cysteine interaction mediates the activation of soluble guanylate cyclase

    PubMed Central

    Fernhoff, Nathaniel B.; Derbyshire, Emily R.; Marletta, Michael A.

    2009-01-01

    Nitric oxide (NO) regulates a number of essential physiological processes by activating soluble guanylate cyclase (sGC) to produce the second messenger cGMP. The mechanism of NO sensing was previously thought to result exclusively from NO binding to the sGC heme; however, recent studies indicate that heme-bound NO only partially activates sGC and additional NO is involved in the mechanism of maximal NO activation. Furthermore, thiol oxidation of sGC cysteines results in the loss of enzyme activity. Herein the role of cysteines in NO-stimulated sGC activity investigated. We find that the thiol modifying reagent methyl methanethiosulfonate specifically inhibits NO activation of sGC by blocking a non-heme site, which defines a role for sGC cysteine(s) in mediating NO binding. The nature of the NO/cysteine interaction was probed by examining the effects of redox active reagents on NO-stimulated activity. These results show that NO binding to, and dissociation from, the critical cysteine(s) does not involve a change in the thiol redox state. Evidence is provided for non-heme NO in the physiological activation of sGC in context of a primary cell culture of human umbilical vein endothelial cells. These findings have relevance to diseases involving the NO/cGMP signaling pathway. PMID:20007374

  8. Increases in cAMP, MAPK Activity and CREB Phosphorylation during REM Sleep: Implications for REM Sleep and Memory Consolidation

    PubMed Central

    Luo, Jie; Phan, Trongha X.; Yang, Yimei; Garelick, Michael G.; Storm, Daniel R.

    2013-01-01

    The cyclic adenosine monophosphate (cAMP), mitogen-activated protein kinase (MAPK) and cAMP response element-binding protein (CREB) transcriptional pathway is required for consolidation of hippocampus-dependent memory. In mice, this pathway undergoes a circadian oscillation required for memory persistence that reaches a peak during the daytime. Since mice exhibit polyphasic sleep patterns during the day, this suggested the interesting possibility that cAMP, MAPK activity and CREB phosphorylation may be elevated during sleep. Here, we report that cAMP, phospho-p44/42 MAPK and phospho-CREB are higher in rapid eye movement (REM) sleep compared to awake mice but are not elevated in non-rapid eye movement (NREM) sleep. This peak of activity during REM sleep does not occur in mice lacking calmodulin-stimulated adenylyl cyclases, a mouse strain that learns but cannot consolidate hippocampus-dependent memory. We conclude that a preferential increase in cAMP, MAPK activity and CREB phosphorylation during REM sleep may contribute to hippocampus-dependent memory consolidation. PMID:23575844

  9. Activation of particulate guanylyl cyclase by endothelins in cultured SV-40 transformed cat iris sphincter smooth muscle cells.

    PubMed

    Ding, K H; Latimer, A J; Abdel-Latif, A A

    1999-01-01

    We investigated the effects of endothelins (ETs) on cGMP production in cultured SV-40 transformed cat iris sphincter smooth muscle (SV-CISM-2) cells. ET-3 increased cGMP formation in a concentration-dependent manner (EC50 = 98nM), which was 2.5 times higher than that of ET-1. The ET(B)receptor agonists sarafotoxin-S6c and IRL 1620 also increased cGMP production, mimicking the effects of the ETs. The ET(B) receptor antagonist BQ 788, but not the ET(A) receptor antagonist BQ610, dose-dependently blocked ET-3-stimulated cGMP formation (IC50=10nM). The phorbol ester, Phorbol 12, 13-dibutyrate (PDBu), which inhibits particulate guanylyl cyclase in smooth muscle, dose-dependently inhibited ET-3-stimulated cGMP accumulation (IC50=66nM). LY83583 and ODQ, inhibitors of soluble guanylyl cyclases, as well as inhibitors of the nitric oxide cascade and of intracellular Ca2+ elevation had no appreciable effect on ET-3-induced cGMP production. ET-3 markedly inhibited carbachol-induced intracellular Ca2+ mobilization. We conclude that ET-3 increases intracellular cGMP levels in SV-CISM-2 cells through activation of the ET(B) receptor subtype and subsequent stimulation of the membrane-bound guanylyl cyclase. Elevation of cGMP by ET and the subsequent inhibition of muscarinic stimulation of intracellular Ca2+ mobilization by the cyclic nucleotide could serve to modulate the contractile effects of Ca2+-mobilizing agonists in the iris sphincter smooth muscle.

  10. Effect of salinity on regulation mechanism of neuroendocrine-immunoregulatory network in Litopenaeus vannamei.

    PubMed

    Zhao, Qun; Pan, Luqing; Ren, Qin; Wang, Lin; Miao, Jingjing

    2016-02-01

    The effects of low salinity (transferred from 31‰ to 26‰, 21‰, and 16‰) on the regulation pathways of neuroendocrine-immunoregulatory network were investigated in Litopenaeus vannamei. The results showed that the hormones (corticotrophin-releasing hormone, adrenocorticotropic hormone) and biogenic amines (dopamine, noradrenaline, 5-hydroxytryptamine) concentrations in lower salinity groups increased significantly within 12 h. The gene expression of biogenic amine receptors showed that dopamine receptor D4 and α2 adrenergic receptor in lower salinity groups decreased significantly within 12 h, whereas the 5-HT7 receptor significantly increased within 1d. The second messenger synthetases (adenylyl cyclase, phospholipase C) and the second messengers (cyclic adenosine monophosphate, cyclic guanosine monophosphate) of lower salinity groups shared a similar trend in which adenylyl cyclase and cyclic adenosine monophosphate reached the maximum at 12 h, whereas phospholipase C and cyclic guanosine monophosphate reached the minimum. The immune parameters (total hemocyte count, phenoloxidase activity, phagocytic activity, crustin expression, antibacterial activity, C-type lectin expression, hemagglutinating activity) in lower salinity groups decreased significantly within 12 h. Except for the total hemocyte count, all the parameters recovered to the control levels afterwards. Therefore, it may be concluded that the neuroendocrine-immunoregulatory network plays a principal role in adapting to salinity changes as the main center for sensing the stress and causes immune response in L. vannamei. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Relationship of calcium and membrane guanylate cyclase in adrenocorticotropin-induced steroidogenesis.

    PubMed

    Nambi, P; Aiyar, N V; Roberts, A N; Sharma, R K

    1982-07-01

    Chlorpromazine, when incubated with isolated adrenal cells, inhibited the ACTH-stimulated formation of cGMP and corticosterone production. It also inhibited the ACTH-stimulated membrane guanylate cyclase, but did not affect the binding of ACTH to the membrane receptors. cGMP-induced steroidogenesis was not affected by the drug. These data indicate that chlorpromazine interferes with adrenal steroid metabolism at a site between the hormone receptor and guanylate cyclase and also show that guanylate cyclase is composed of separate receptor and catalytic components. Furthermore, based on the premise that chlorpromazine exerts its inhibitory action by blocking the binding of a calcium receptor protein, such as calmodulin, to the receptor-coupled guanylate cyclase, it is proposed that the interaction of calcium, presumably through a calcium-binding protein, is essential for ACTH-dependent guanylate cyclase.

  12. Characterization of plant carotenoid cyclases as members of the flavoprotein family functioning with no net redox change.

    PubMed

    Mialoundama, Alexis Samba; Heintz, Dimitri; Jadid, Nurul; Nkeng, Paul; Rahier, Alain; Deli, Jozsef; Camara, Bilal; Bouvier, Florence

    2010-07-01

    The later steps of carotenoid biosynthesis involve the formation of cyclic carotenoids. The reaction is catalyzed by lycopene beta-cyclase (LCY-B), which converts lycopene into beta-carotene, and by capsanthin-capsorubin synthase (CCS), which is mainly dedicated to the synthesis of kappa-cyclic carotenoids (capsanthin and capsorubin) but also has LCY-B activity. Although the peptide sequences of plant LCY-Bs and CCS contain a putative dinucleotide-binding motif, it is believed that these two carotenoid cyclases proceed via protic activation and stabilization of resulting carbocation intermediates. Using pepper (Capsicum annuum) CCS as a prototypic carotenoid cyclase, we show that the monomeric protein contains one noncovalently bound flavin adenine dinucleotide (FAD) that is essential for enzyme activity only in the presence of NADPH, which functions as the FAD reductant. The reaction proceeds without transfer of hydrogen from the dinucleotide cofactors to beta-carotene or capsanthin. Using site-directed mutagenesis, amino acids potentially involved in the protic activation were identified. Substitutions of alanine, lysine, and arginine for glutamate-295 in the conserved 293-FLEET-297 motif of pepper CCS or LCY-B abolish the formation of beta-carotene and kappa-cyclic carotenoids. We also found that mutations of the equivalent glutamate-196 located in the 194-LIEDT-198 domain of structurally divergent bacterial LCY-B abolish the formation of beta-carotene. The data herein reveal plant carotenoid cyclases to be novel enzymes that combine characteristics of non-metal-assisted terpene cyclases with those attributes typically found in flavoenzymes that catalyze reactions, with no net redox, such as type 2 isopentenyl diphosphate isomerase. Thus, FAD in its reduced form could be implicated in the stabilization of the carbocation intermediate.

  13. High skeletal muscle adenylate cyclase in malignant hyperthermia.

    PubMed Central

    Willner, J H; Cerri, C G; Wood, D S

    1981-01-01

    Malignant hyperthermia occurs in humans with several congenital myopathies, usually in response to general anesthesia. Commonly, individuals who develop this syndrome lack symptoms of muscle disease, and their muscle lacks specific pathological changes. A biochemical marker for this myopathy has not previously been available; we found activity of adenylate cyclase and content of cyclic AMP to be abnormally high in skeletal muscle. Secondary modification of protein phosphorylation could explain observed abnormalities of phosphorylase activation and sarcoplasmic reticulum function. PMID:6271806

  14. Fetal nicotine exposure produces postnatal up-regulation of adenylate cyclase activity in peripheral tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slotkin, T.A.; Navarro, H.A.; McCook, E.C.

    1990-01-01

    Gestational exposure to nicotine has been shown to affect development of noradrenergic activity in both the central and peripheral nervous systems. In the current study, pregnant rats received nicotine infusions of 6 mg/kg/day throughout gestation, administered by osmotic minipump implants. After birth, offspring of the nicotine-infused dams exhibited marked increases in basal adenylate cyclase activity in membranes prepared from kidney and heart, as well as supersensitivity to stimulation by either a {beta}-adrenergic agonist, isoproterenol, or by forskolin. The altered responses were not accompanied by up-regulation of {beta}-adrenergic receptors: in fact, ({sup 125}I)pindolol binding was significantly decreased in the nicotine group.more » These results indicate that fetal nicotine exposure affects enzymes involved in membrane receptor signal transduction, leading to altered responsiveness independently of changes at the receptor level.« less

  15. Effects of fenoterol on beta-adrenoceptor and muscarinic M2 receptor function in bovine tracheal smooth muscle.

    PubMed

    De Vries, B; Roffel, A F; Kooistra, J M; Meurs, H; Zaagsma, J

    2001-05-11

    Prolonged (18 h) incubation of isolated bovine tracheal smooth muscle with the beta2-adrenoceptor agonist fenoterol (10 microM) induced desensitization of isoprenaline-induced adenylyl cyclase activity in bovine tracheal smooth muscle membranes, characterized by a 25% decrease in maximal effect (Emax) (P < 0.05), while the sensitivity to the agonist (pEC50) was unchanged. The Emax value of isoprenaline-induced smooth muscle relaxation of submaximal methacholine-induced contractile tones was similarly reduced by about 25% (P < 0.001), while the pEC50 value was diminished by 1.0 log unit (P < 0.001). As determined by 30 microM gallamine-induced muscarinic M2 receptor antagonism and pertussis toxin-induced inactivation of G(i alpha), muscarinic M2 receptor-mediated functional antagonism did not play a role in isoprenaline-induced relaxation of bovine tracheal smooth muscle contracted by methacholine, both in control and in 18-h fenoterol-treated tissue. In line with these observations, we found no enhanced muscarinic M2 receptor-mediated inhibition of 1 microM forskolin-stimulated adenylyl cyclase activity after 18-h fenoterol treatment. These data indicate that 18-h fenoterol treatment of bovine tracheal smooth muscle induces beta2-adrenoceptor desensitization and reduced functional antagonism of methacholine-induced contraction by beta-adrenoceptor agonists, without a change of muscarinic M2 receptor function.

  16. Cyclic AMP and alkaline pH downregulate carbonic anhydrase 2 in mouse fibroblasts.

    PubMed

    Mardones, Pablo; Chang, Jung Chin; Oude Elferink, Ronald P J

    2014-06-01

    The hydration of CO2 catalyzed by the ubiquitous carbonic anhydrase 2 (Ca2) is central for bicarbonate transport, bone metabolism and acid-base homeostasis in metazoans. There is evidence that in some tissues Ca2 expression can be acutely induced by cAMP, whereas in other cell types it is unresponsive to cAMP-mediated transcriptional activation. We isolated fibroblasts from wild type and mice lacking the ubiquitous chloride/bicarbonate exchanger (Ae2a,b(-/-) mice). In these cells the regulation of carbonic anhydrase 2 by cAMP was studied. We show that Ca2 expression is strongly inhibited by chronic incubation with dibutyryl-cAMP, forskolin or alkaline pH in cultured mouse fibroblasts. Furthermore, fibroblasts obtained from anion exchanger 2 deficient (Ae2a,b(-/-)) mice, which display intracellular alkalosis and increased cAMP production, express less than 10% of control Ca2 mRNA and protein. Surprisingly, inhibition of the bicarbonate-sensitive soluble adenylyl cyclase (sAC) was found to reduce CA2 expression instead of increasing it. CA2 expression is strongly regulated by intracellular pH and by cAMP, suggesting a role for soluble adenylyl cyclase. Regulation occurs in opposite directions which may be explained by an incoherent feedforward loop consisting of activation by pCREB and repression by ICER. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. The first structure of a bacterial diterpene cyclase: CotB2.

    PubMed

    Janke, Ronja; Görner, Christian; Hirte, Max; Brück, Thomas; Loll, Bernhard

    2014-06-01

    Sesquiterpenes and diterpenes are a diverse class of secondary metabolites that are predominantly derived from plants and some prokaryotes. The properties of these natural products encompass antitumor, antibiotic and even insecticidal activities. Therefore, they are interesting commercial targets for the chemical and pharmaceutical industries. Owing to their structural complexity, these compounds are more efficiently accessed by metabolic engineering of microbial systems than by chemical synthesis. This work presents the first crystal structure of a bacterial diterpene cyclase, CotB2 from the soil bacterium Streptomyces melanosporofaciens, at 1.64 Å resolution. CotB2 is a diterpene cyclase that catalyzes the cyclization of the linear geranylgeranyl diphosphate to the tricyclic cyclooctat-9-en-7-ol. The subsequent oxidation of cyclooctat-9-en-7-ol by two cytochrome P450 monooxygenases leads to bioactive cyclooctatin. Plasticity residues that decorate the active site of CotB2 have been mutated, resulting in alternative monocyclic, dicyclic and tricyclic compounds that show bioactivity. These new compounds shed new light on diterpene cyclase reaction mechanisms. Furthermore, the product of mutant CotB2(W288G) produced the new antibiotic compound (1R,3E,7E,11S,12S)-3,7,18-dolabellatriene, which acts specifically against multidrug-resistant Staphylococcus aureus. This opens a sustainable route for the industrial-scale production of this bioactive compound.

  18. Soluble guanylate cyclase generation of cGMP regulates migration of MGE neurons.

    PubMed

    Mandal, Shyamali; Stanco, Amelia; Buys, Emmanuel S; Enikolopov, Grigori; Rubenstein, John L R

    2013-10-23

    Here we have provided evidence that nitric oxide-cyclic GMP (NO-cGMP) signaling regulates neurite length and migration of immature neurons derived from the medial ganglionic eminence (MGE). Dlx1/2(-/-) and Lhx6(-/-) mouse mutants, which exhibit MGE interneuron migration defects, have reduced expression of the gene encoding the α subunit of a soluble guanylate cyclase (Gucy1A3). Furthermore, Dlx1/2(-/-) mouse mutants have reduced expression of NO synthase 1 (NOS1). Gucy1A3(-/-) mice have a transient reduction in cortical interneuron number. Pharmacological inhibition of soluble guanylate cyclase and NOS activity rapidly induces neurite retraction of MGE cells in vitro and in slice culture and robustly inhibits cell migration from the MGE and caudal ganglionic eminence. We provide evidence that these cellular phenotypes are mediated by activation of the Rho signaling pathway and inhibition of myosin light chain phosphatase activity.

  19. Novel antipsychotics activate recombinant human and native rat serotonin 5-HT1A receptors: affinity, efficacy and potential implications for treatment of schizophrenia.

    PubMed

    Newman-Tancredi, Adrian; Assié, Marie-Bernadette; Leduc, Nathalie; Ormière, Anne-Marie; Danty, Nathalie; Cosi, Cristina

    2005-09-01

    Serotonin 5-HT1A receptors are promising targets in the management of schizophrenia but little information exists about affinity and efficacy of novel antipsychotics at these sites. We addressed this issue by comparing binding affinity at 5-HT1A receptors with dopamine rD2 receptors, which are important targets for antipsychotic drug action. Agonist efficacy at 5-HT1A receptors was determined for G-protein activation and adenylyl cyclase activity. Whereas haloperidol, thioridazine, risperidone and olanzapine did not interact with 5-HT1A receptors, other antipsychotic agents exhibited agonist properties at these sites. E(max) values (% effect induced by 10 microM of 5-HT) for G-protein activation at rat brain 5-HT1A receptors: sarizotan (66.5), bifeprunox (35.9), SSR181507 (25.8), nemonapride (25.7), ziprasidone (20.6), SLV313 (19), aripiprazole (15), tiospirone (8.9). These data were highly correlated with results obtained at recombinant human 5-HT1A receptors in determinations of G-protein activation and inhibition of forskolin-stimulated adenylyl cyclase. In binding-affinity determinations, the antipsychotics exhibited diverse properties at r5-HT1A receptors: sarizotan (pK(i)=8.65), SLV313 (8.64), SSR181507 (8.53), nemonapride (8.35), ziprasidone (8.30), tiospirone (8.22), aripiprazole (7.42), bifeprunox (7.19) and clozapine (6.31). The affinity ratios of the ligands at 5-HT1A vs. D2 receptors also varied widely: ziprasidone, SSR181507 and SLV313 had similar affinities whereas aripiprazole, nemonapride and bifeprunox were more potent at D2 than 5-HT1A receptors. Taken together, these data indicate that aripiprazole has low efficacy and modest affinity at 5-HT1A receptors, whereas bifeprunox has low affinity but high efficacy. In contrast, SSR181507 has intermediate efficacy but high affinity, and is likely to have more prominent 5-HT1A receptor agonist properties. Thus, the contribution of 5-HT1A receptor activation to the pharmacological profile of action of the

  20. Activation of intestinal brush border guanylate cyclase by aromatic disulphide compounds.

    PubMed Central

    elDeib, M M; Parker, C D; White, A A

    1991-01-01

    Guanylate cyclase in pig intestinal brush border membranes was stimulated by certain aromatic disulphides. The most effective were 6-thioguanine disulphide [(TGS)2], 6-mercaptopurine disulphide, 6,6'-dithiodinicotinic acid, 5,5'-dithiobis-(2-nitrobenzoic acid) and 5-carboxy-2-thiouracil disulphide. (TGS)2 stimulated activity 15-fold when present at 0.1 mM. The optimum concentration for each disulphide was different, and higher concentrations were inhibitory. There was no activation by alkyl disulphides or by N-ethylmaleimide. Activation by 50 microM-(TGS)2 was partially reversed by later addition of 0.1 mM-dithiothreitol, whereas activation by the Escherichia coli heat-stable enterotoxin STa was relatively unaffected. Pretreatment of the membranes with (TGS)2 produced a concentration-dependent inhibition of STa-stimulated activity, while stimulating basal activity, until the activities were equal at 50 microM. Activity was [Mg2+]-dependent, the optimal [Mg2+] progressively increasing as the enzyme was stimulated by (TGS)2, STa and Lubrol PX respectively. However, (TGS)2 pretreatment prevented the shift to higher [Mg2+]optima induced by STa or Lubrol alone. Substitution of Mn2+ for Mg2+ in the reaction elevated basal activity and eliminated by activation (TGS)2. (TGS)2 only inhibited Mn2(+)-dependent activity (both basal and stimulated). The affinity of 125I-STa for its receptor was slightly increased by (TGS)2. We propose that (TGS)2 undergoes thiol-disulphide exchange with at least three different protein thiols of decreasing reactivity. The first is associated with Mg2(+)-dependent activation, the second is associated with a tonic inhibition of activity and the third is associated with the catalytic activity, although probably not at the active site. PMID:1673335

  1. Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans.

    PubMed

    Hallem, Elissa A; Spencer, W Clay; McWhirter, Rebecca D; Zeller, Georg; Henz, Stefan R; Rätsch, Gunnar; Miller, David M; Horvitz, H Robert; Sternberg, Paul W; Ringstad, Niels

    2011-01-04

    CO(2) is both a critical regulator of animal physiology and an important sensory cue for many animals for host detection, food location, and mate finding. The free-living soil nematode Caenorhabditis elegans shows CO(2) avoidance behavior, which requires a pair of ciliated sensory neurons, the BAG neurons. Using in vivo calcium imaging, we show that CO(2) specifically activates the BAG neurons and that the CO(2)-sensing function of BAG neurons requires TAX-2/TAX-4 cyclic nucleotide-gated ion channels and the receptor-type guanylate cyclase GCY-9. Our results delineate a molecular pathway for CO(2) sensing and suggest that activation of a receptor-type guanylate cyclase is an evolutionarily conserved mechanism by which animals detect environmental CO(2).

  2. Ex vivo and in vivo studies of CME-1, a novel polysaccharide purified from the mycelia of Cordyceps sinensis that inhibits human platelet activation by activating adenylate cyclase/cyclic AMP.

    PubMed

    Lu, Wan-Jung; Chang, Nen-Chung; Jayakumar, Thanasekaran; Liao, Jiun-Cheng; Lin, Mei-Jiun; Wang, Shwu-Huey; Chou, Duen-Suey; Thomas, Philip Aloysius; Sheu, Joen-Rong

    2014-12-01

    CME-1, a novel water-soluble polysaccharide, was purified from the mycelia of Cordyceps sinensis, and its chemical structure was characterized to contain mannose and galactose in a ratio of 4:6 (27.6 kDa). CME-1 was originally observed to exert a potent inhibitory effect on tumor migration and a cytoprotective effect against oxidative stress. Activation of platelets caused by arterial thrombosis is relevant to various cardiovascular diseases (CVDs). However, no data are available concerning the effects of CME-1 on platelet activation. Hence, the purpose of this study was to examine the ex vivo and in vivo antithrombotic effects of CME-1 and its possible mechanisms in platelet activation. The aggregometry, immunoblotting, flow cytometric analysis and platelet functional analysis were used in this study. CME-1 (2.3-7.6 μM) exhibited highly potent activity in inhibiting human platelet aggregation when stimulated by collagen, thrombin, and arachidonic acid but not by U46619. CME-1 inhibited platelet activation accompanied by inhibiting Akt, mitogen-activated protein kinases (MAPKs), thromboxane B2 (TxB2) and hydroxyl radical (OH(●)) formation. However, CME-1 interrupted neither FITC-triflavin nor FITC-collagen binding to platelets. CME-1 markedly increased cyclic AMP levels, but not cyclic GMP levels, and stimulated vasodilator-stimulated phosphoprotein (VASP) phosphorylation. SQ22536, an inhibitor of adenylate cyclase, but not ODQ, an inhibitor of guanylate cyclase, obviously reversed the CME-1-mediated effects on platelet aggregation and vasodilator-stimulated phosphoprotein (VASP), Akt, p38 MAPK phosphorylation, and TxB2 formation. CME-1 substantially prolonged the closure time of whole blood and the occlusion time of platelet plug formation. This study demonstrates for the first time that CME-1 exhibits highly potent antiplatelet activity that may initially activate adenylate cyclase/cyclic AMP and, subsequently, inhibit intracellular signals (such as Akt and

  3. Bicarbonate Modulates Photoreceptor Guanylate Cyclase (ROS-GC) Catalytic Activity*

    PubMed Central

    Duda, Teresa; Wen, Xiao-Hong; Isayama, Tomoki; Sharma, Rameshwar K.; Makino, Clint L.

    2015-01-01

    By generating the second messenger cGMP in retinal rods and cones, ROS-GC plays a central role in visual transduction. Guanylate cyclase-activating proteins (GCAPs) link cGMP synthesis to the light-induced fall in [Ca2+]i to help set absolute sensitivity and assure prompt recovery of the response to light. The present report discloses a surprising feature of this system: ROS-GC is a sensor of bicarbonate. Recombinant ROS-GCs synthesized cGMP from GTP at faster rates in the presence of bicarbonate with an ED50 of 27 mm for ROS-GC1 and 39 mm for ROS-GC2. The effect required neither Ca2+ nor use of the GCAPs domains; however, stimulation of ROS-GC1 was more powerful in the presence of GCAP1 or GCAP2 at low [Ca2+]. When applied to retinal photoreceptors, bicarbonate enhanced the circulating current, decreased sensitivity to flashes, and accelerated flash response kinetics. Bicarbonate was effective when applied either to the outer or inner segment of red-sensitive cones. In contrast, bicarbonate exerted an effect when applied to the inner segment of rods but had little efficacy when applied to the outer segment. The findings define a new regulatory mechanism of the ROS-GC system that affects visual transduction and is likely to affect the course of retinal diseases caused by cGMP toxicity. PMID:25767116

  4. Localization of the action of cholera toxin on adenyl cyclase in mucosal epithelial cells of rabbit intestine

    PubMed Central

    Parkinson, David K.; Ebel, Hans; DiBona, Donald R.; Sharp, Geoffrey W. G.

    1972-01-01

    Brush borders and plasma membranes have been purified from mucosal epithelial cells of rabbit ileum under control conditions and after treatment for 3 hr with cholera toxin in vivo. The activity of several enzymes in these preparations was measured. It was concluded that adenyl cyclase, like NaK-ATPase, seems not to be a normal constituent of brush borders. Both these enzymes are present in plasma membrane preparations derived largely from the basal and lateral margins of the epithelial cells, both may be phospholipid dependent enzymes and both are affected by cholera toxin. Adenyl cyclase activity is increased while NaK-ATPase is decreased. The activities of alkaline phosphatase, leucineaminopeptidase, 5′-nucleotidase, glucose-6-phosphatase, and Mg-ATPase were not found to be affected by the toxin. Cholera toxin, which makes contact with the luminal side of the epithelial cells, in the natural disease and in the experimental model, would appear to exert its pathologic effect on adenyl cyclase at the opposite (basal and lateral) side of the cells. Images PMID:4344729

  5. Pore-formation by adenylate cyclase toxoid activates dendritic cells to prime CD8+ and CD4+ T cells.

    PubMed

    Svedova, Martina; Masin, Jiri; Fiser, Radovan; Cerny, Ondrej; Tomala, Jakub; Freudenberg, Marina; Tuckova, Ludmila; Kovar, Marek; Dadaglio, Gilles; Adkins, Irena; Sebo, Peter

    2016-04-01

    The adenylate cyclase toxin-hemolysin (CyaA) of Bordetella pertussis is a bi-functional leukotoxin. It penetrates myeloid phagocytes expressing the complement receptor 3 and delivers into their cytosol its N-terminal adenylate cyclase enzyme domain (~400 residues). In parallel, ~1300 residue-long RTX hemolysin moiety of CyaA forms cation-selective pores and permeabilizes target cell membrane for efflux of cytosolic potassium ions. The non-enzymatic CyaA-AC(-) toxoid, has repeatedly been successfully exploited as an antigen delivery tool for stimulation of adaptive T-cell immune responses. We show that the pore-forming activity confers on the CyaA-AC(-) toxoid a capacity to trigger Toll-like receptor and inflammasome signaling-independent maturation of CD11b-expressing dendritic cells (DC). The DC maturation-inducing potency of mutant toxoid variants in vitro reflected their specifically enhanced or reduced pore-forming activity and K(+) efflux. The toxoid-induced in vitro phenotypic maturation of DC involved the activity of mitogen activated protein kinases p38 and JNK and comprised increased expression of maturation markers, interleukin 6, chemokines KC and LIX and granulocyte-colony-stimulating factor secretion, prostaglandin E2 production and enhancement of chemotactic migration of DC. Moreover, i.v. injected toxoids induced maturation of splenic DC in function of their cell-permeabilizing capacity. Similarly, the capacity of DC to stimulate CD8(+) and CD4(+) T-cell responses in vitro and in vivo was dependent on the pore-forming activity of CyaA-AC(-). This reveals a novel self-adjuvanting capacity of the CyaA-AC(-) toxoid that is currently under clinical evaluation as a tool for delivery of immunotherapeutic anti-cancer CD8(+) T-cell vaccines into DC.

  6. One ring or two? Determination of ring number in carotenoids by lycopene epsilon-cyclases.

    PubMed

    Cunningham, F X; Gantt, E

    2001-02-27

    Carotenoids in the photosynthetic membranes of plants typically contain two beta-rings (e.g., beta-carotene and zeaxanthin) or one epsilon- and one beta-ring (e.g., lutein). Carotenoids with two epsilon-rings are uncommon. We reported earlier that the Arabidopsis thaliana lycopene epsilon-cyclase (LCYe) adds one epsilon-ring to the symmetrical linear substrate lycopene, whereas the structurally related lycopene beta-cyclase (LCYb) adds two beta-rings. Here we describe a cDNA encoding LCYe in romaine lettuce (Lactuca sativa var. romaine), one of the few plant species known to accumulate substantial quantities of a carotenoid with two epsilon-rings: lactucaxanthin. The product of the lettuce cDNA, similar in sequence to the Arabidopsis LCYe (77% amino acid identity), efficiently converted lycopene into the bicyclic epsilon-carotene in a heterologous Escherichia coli system. Regions of the lettuce and Arabidopsis epsilon-cyclases involved in the determination of ring number were mapped by analysis of chimeric epsilon-cyclases constructed by using an inverse PCR approach. A single amino acid was found to act as a molecular switch: lettuce LCYe mutant H457L added only one epsilon-ring to lycopene, whereas the complementary Arabidopsis LCYe mutant, L448H, added two epsilon-rings. An R residue in this position also yields a bi-epsilon-cyclase for both the lettuce and Arabidopsis enzymes. Construction and analysis of chimera of related enzymes with differing catalytic activities provide an informative approach that may be of particular utility for studying membrane-associated enzymes that cannot easily be crystallized or modeled to existing crystal structures.

  7. One ring or two? Determination of ring number in carotenoids by lycopene ɛ-cyclases

    PubMed Central

    Cunningham, Francis X.; Gantt, Elisabeth

    2001-01-01

    Carotenoids in the photosynthetic membranes of plants typically contain two β-rings (e.g., β-carotene and zeaxanthin) or one ɛ- and one β-ring (e.g., lutein). Carotenoids with two ɛ-rings are uncommon. We reported earlier that the Arabidopsis thaliana lycopene ɛ-cyclase (LCYe) adds one ɛ-ring to the symmetrical linear substrate lycopene, whereas the structurally related lycopene β-cyclase (LCYb) adds two β-rings. Here we describe a cDNA encoding LCYe in romaine lettuce (Lactuca sativa var. romaine), one of the few plant species known to accumulate substantial quantities of a carotenoid with two ɛ-rings: lactucaxanthin. The product of the lettuce cDNA, similar in sequence to the Arabidopsis LCYe (77% amino acid identity), efficiently converted lycopene into the bicyclic ɛ-carotene in a heterologous Escherichia coli system. Regions of the lettuce and Arabidopsis ɛ-cyclases involved in the determination of ring number were mapped by analysis of chimeric ɛ-cyclases constructed by using an inverse PCR approach. A single amino acid was found to act as a molecular switch: lettuce LCYe mutant H457L added only one ɛ-ring to lycopene, whereas the complementary Arabidopsis LCYe mutant, L448H, added two ɛ-rings. An R residue in this position also yields a bi-ɛ-cyclase for both the lettuce and Arabidopsis enzymes. Construction and analysis of chimera of related enzymes with differing catalytic activities provide an informative approach that may be of particular utility for studying membrane-associated enzymes that cannot easily be crystallized or modeled to existing crystal structures. PMID:11226339

  8. Forskolin Regulates L-Type Calcium Channel through Interaction between Actinin 4 and β3 Subunit in Osteoblasts.

    PubMed

    Zhang, Xuemei; Li, Fangping; Guo, Lin; Hei, Hongya; Tian, Lulu; Peng, Wen; Cai, Hui

    2015-01-01

    Voltage-dependent L-type calcium channels that permit cellular calcium influx are essential in calcium-mediated modulation of cellular signaling. Although the regulation of voltage-dependent L-type calcium channels is linked to many factors including cAMP-dependent protein kinase A (PKA) activity and actin cytoskeleton, little is known about the detailed mechanisms underlying the regulation in osteoblasts. Our present study investigated the modulation of L-type calcium channel activities through the effects of forskolin on actin reorganization and on its functional interaction with actin binding protein actinin 4. The results showed that forskolin did not significantly affect the trafficking of pore forming α1c subunit and its interaction with actin binding protein actinin 4, whereas it significantly increased the expression of β3 subunit and its interaction with actinin 4 in osteoblast cells as assessed by co-immunoprecipitation, pull-down assay, and immunostaining. Further mapping showed that the ABD and EF domains of actinin 4 were interaction sites. This interaction is independent of PKA phosphorylation. Knockdown of actinin 4 significantly decreased the activities of L-type calcium channels. Our study revealed a new aspect of the mechanisms by which the forskolin activation of adenylyl cyclase - cAMP cascade regulates the L-type calcium channel in osteoblast cells, besides the PKA mediated phosphorylation of the channel subunits. These data provide insight into the important role of interconnection among adenylyl cyclase, cAMP, PKA, the actin cytoskeleton, and the channel proteins in the regulation of voltage-dependent L-type calcium channels in osteoblast cells.

  9. Forskolin Regulates L-Type Calcium Channel through Interaction between Actinin 4 and β3 Subunit in Osteoblasts

    PubMed Central

    Guo, Lin; Hei, Hongya; Tian, Lulu; Peng, Wen; Cai, Hui

    2015-01-01

    Voltage-dependent L-type calcium channels that permit cellular calcium influx are essential in calcium-mediated modulation of cellular signaling. Although the regulation of voltage-dependent L-type calcium channels is linked to many factors including cAMP-dependent protein kinase A (PKA) activity and actin cytoskeleton, little is known about the detailed mechanisms underlying the regulation in osteoblasts. Our present study investigated the modulation of L-type calcium channel activities through the effects of forskolin on actin reorganization and on its functional interaction with actin binding protein actinin 4. The results showed that forskolin did not significantly affect the trafficking of pore forming α1c subunit and its interaction with actin binding protein actinin 4, whereas it significantly increased the expression of β3 subunit and its interaction with actinin 4 in osteoblast cells as assessed by co-immunoprecipitation, pull-down assay, and immunostaining. Further mapping showed that the ABD and EF domains of actinin 4 were interaction sites. This interaction is independent of PKA phosphorylation. Knockdown of actinin 4 significantly decreased the activities of L-type calcium channels. Our study revealed a new aspect of the mechanisms by which the forskolin activation of adenylyl cyclase - cAMP cascade regulates the L-type calcium channel in osteoblast cells, besides the PKA mediated phosphorylation of the channel subunits. These data provide insight into the important role of interconnection among adenylyl cyclase, cAMP, PKA, the actin cytoskeleton, and the channel proteins in the regulation of voltage-dependent L-type calcium channels in osteoblast cells. PMID:25902045

  10. Interaction with beta-arrestin determines the difference in internalization behavor between beta1- and beta2-adrenergic receptors.

    PubMed

    Shiina, T; Kawasaki, A; Nagao, T; Kurose, H

    2000-09-15

    The beta(1)-adrenergic receptor (beta(1)AR) shows the resistance to agonist-induced internalization. As beta-arrestin is important for internalization, we examine the interaction of beta-arrestin with beta(1)AR with three different methods: intracellular trafficking of beta-arrestin, binding of in vitro translated beta-arrestin to intracellular domains of beta(1)- and beta(2)ARs, and inhibition of betaAR-stimulated adenylyl cyclase activities by beta-arrestin. The green fluorescent protein-tagged beta-arrestin 2 translocates to and stays at the plasma membrane by beta(2)AR stimulation. Although green fluorescent protein-tagged beta-arrestin 2 also translocates to the plasma membrane, it returns to the cytoplasm 10-30 min after beta(1)AR stimulation. The binding of in vitro translated beta-arrestin 1 and beta-arrestin 2 to the third intracellular loop and the carboxyl tail of beta(1)AR is lower than that of beta(2)AR. The fusion protein of beta-arrestin 1 with glutathione S-transferase inhibits the beta(1)- and beta(2)AR-stimulated adenylyl cyclase activities, although inhibition of the beta(1)AR-stimulated activity requires a higher concentration of the fusion protein than that of the beta(2)AR-stimulated activity. These results suggest that weak interaction of beta(1)AR with beta-arrestins explains the resistance to agonist-induced internalization. This is further supported by the finding that beta-arrestin can induce internalization of beta(1)AR when beta-arrestin 1 does not dissociate from beta(1)AR by fusing to the carboxyl tail of beta(1)AR.

  11. Unifying mechanism for Aplysia ADP-ribosyl cyclase and CD38/NAD(+) glycohydrolases.

    PubMed Central

    Cakir-Kiefer, C; Muller-Steffner, H; Schuber, F

    2000-01-01

    Highly purified Aplysia californica ADP-ribosyl cyclase was found to be a multifunctional enzyme. In addition to the known transformation of NAD(+) into cADP-ribose this enzyme is able to catalyse the solvolysis (hydrolysis and methanolysis) of cADP-ribose. This cADP-ribose hydrolase activity, which becomes detectable only at high concentrations of the enzyme, is amplified with analogues such as pyridine adenine dinucleotide, in which the cleavage rate of the pyridinium-ribose bond is much reduced compared with NAD(+). Although the specificity ratio V(max)/K(m) is in favour of NAD(+) by 4 orders of magnitude, this multifunctionality allowed us to propose a 'partitioning' reaction scheme for the Aplysia enzyme, similar to that established previously for mammalian CD38/NAD(+) glycohydrolases. This mechanism involves the formation of a single oxocarbenium-type intermediate that partitions to cADP-ribose and solvolytic products via competing pathways. In favour of this mechanism was the finding that the enzyme also catalysed the hydrolysis of NMN(+), a substrate that cannot undergo cyclization. The major difference between the mammalian and the invertebrate enzymes resides in their relative cyclization/hydrolysis rate-constant ratios, which dictate their respective yields of cADP-ribose (ADP-ribosyl cyclase activity) and ADP-ribose (NAD(+) glycohydrolase activity). For the Aplysia enzyme's catalysed transformation of NAD(+) we favour a mechanism where the formation of cADP-ribose precedes that of ADP-ribose; i.e. macroscopically the invertebrate ADP-ribosyl cyclase conforms to a sequential reaction pathway as a limiting form of the partitioning mechanism. PMID:10861229

  12. The isoenzyme of glutaminyl cyclase is an important regulator of monocyte infiltration under inflammatory conditions

    PubMed Central

    Cynis, Holger; Hoffmann, Torsten; Friedrich, Daniel; Kehlen, Astrid; Gans, Kathrin; Kleinschmidt, Martin; Rahfeld, Jens-Ulrich; Wolf, Raik; Wermann, Michael; Stephan, Anett; Haegele, Monique; Sedlmeier, Reinhard; Graubner, Sigrid; Jagla, Wolfgang; Müller, Anke; Eichentopf, Rico; Heiser, Ulrich; Seifert, Franziska; Quax, Paul H A; de Vries, Margreet R; Hesse, Isabel; Trautwein, Daniela; Wollert, Ulrich; Berg, Sabine; Freyse, Ernst-Joachim; Schilling, Stephan; Demuth, Hans-Ulrich

    2011-01-01

    Acute and chronic inflammatory disorders are characterized by detrimental cytokine and chemokine expression. Frequently, the chemotactic activity of cytokines depends on a modified N-terminus of the polypeptide. Among those, the N-terminus of monocyte chemoattractant protein 1 (CCL2 and MCP-1) is modified to a pyroglutamate (pE-) residue protecting against degradation in vivo. Here, we show that the N-terminal pE-formation depends on glutaminyl cyclase activity. The pE-residue increases stability against N-terminal degradation by aminopeptidases and improves receptor activation and signal transduction in vitro. Genetic ablation of the glutaminyl cyclase iso-enzymes QC (QPCT) or isoQC (QPCTL) revealed a major role of isoQC for pE1-CCL2 formation and monocyte infiltration. Consistently, administration of QC-inhibitors in inflammatory models, such as thioglycollate-induced peritonitis reduced monocyte infiltration. The pharmacologic efficacy of QC/isoQC-inhibition was assessed in accelerated atherosclerosis in ApoE3*Leiden mice, showing attenuated atherosclerotic pathology following chronic oral treatment. Current strategies targeting CCL2 are mainly based on antibodies or spiegelmers. The application of small, orally available inhibitors of glutaminyl cyclases represents an alternative therapeutic strategy to treat CCL2-driven disorders such as atherosclerosis/restenosis and fibrosis. PMID:21774078

  13. Serotonin-Sensitive Adenylate Cyclase in Neural Tissue and Its Similarity to the Serotonin Receptor: A Possible Site of Action of Lysergic Acid Diethylamide

    PubMed Central

    Nathanson, James A.; Greengard, Paul

    1974-01-01

    An adenylate cyclase (EC 4.6.1.1) that is activated specifically by low concentrations of serotonin has been identified in homogenates of the thoracic ganglia of an insect nervous system. The activation of this enzyme by serotonin was selectively inhibited by extremely low concentrations of D-lysergic acid diethylamide (LSD), 2-bromo-LSD, and cyproheptadine, agents which are known to block certain serotonin receptors in vivo. The inhibition was competitive with respect to serotonin, and the calculated inhibitory constant of LSD for this serotonin-sensitive adenylate cyclase was 5 nM. The data are consistent with a model in which the serotonin receptor of neural tissue is intimately associated with a serotonin-sensitive adenylate cyclase which mediates serotonergic neurotransmission. The results are also compatible with the possibility that some of the physiological effects of LSD may be mediated through interaction with serotonin-sensitive adenylate cyclase. PMID:4595572

  14. Structural analysis of an oxygen-regulated diguanylate cyclase.

    PubMed

    Tarnawski, Miroslaw; Barends, Thomas R M; Schlichting, Ilme

    2015-11-01

    Cyclic di-GMP is a bacterial second messenger that is involved in switching between motile and sessile lifestyles. Given the medical importance of biofilm formation, there has been increasing interest in understanding the synthesis and degradation of cyclic di-GMPs and their regulation in various bacterial pathogens. Environmental cues are detected by sensing domains coupled to GGDEF and EAL or HD-GYP domains that have diguanylate cyclase and phosphodiesterase activities, respectively, producing and degrading cyclic di-GMP. The Escherichia coli protein DosC (also known as YddV) consists of an oxygen-sensing domain belonging to the class of globin sensors that is coupled to a C-terminal GGDEF domain via a previously uncharacterized middle domain. DosC is one of the most strongly expressed GGDEF proteins in E. coli, but to date structural information on this and related proteins is scarce. Here, the high-resolution structural characterization of the oxygen-sensing globin domain, the middle domain and the catalytic GGDEF domain in apo and substrate-bound forms is described. The structural changes between the iron(III) and iron(II) forms of the sensor globin domain suggest a mechanism for oxygen-dependent regulation. The structural information on the individual domains is combined into a model of the dimeric DosC holoprotein. These findings have direct implications for the oxygen-dependent regulation of the activity of the cyclase domain.

  15. Downregulated expression of the cyclase-associated protein 1 (CAP1) reduces migration in esophageal squamous cell carcinoma.

    PubMed

    Li, Mei; Yang, Xiaojing; Shi, Hui; Ren, Hanru; Chen, Xueyu; Zhang, Shu; Zhu, Junya; Zhang, Jianguo

    2013-09-01

    Overexpression of cyclase-associated proteins has been associated with poor prognosis in several human cancers. Cyclase-associated protein 1 is a member of the cyclase-associated proteins which contributes to tumor progression. The aim of the present study was to examine the expression of cyclase-associated protein 1 and to elucidate its clinicopathologic significance in a larger series of esophageal squamous cell carcinoma. Immunohistochemical and western blot analyses were performed in esophageal squamous cell carcinoma tissues. Survival analyses were performed by using the Kaplan-Meier method. The role of cyclase-associated protein 1 in migration was studied in esophageal squamous cell carcinoma cell lines of TE1 through knocking down cyclase-associated protein 1 with siRNA and overexpression of cyclase-associated protein 1. The regulation of cyclase-associated protein 1 on migration was determined by transwell and wound-healing assays. Immunohistochemical analysis showed that cyclase-associated protein 1 expression was negatively associated with E-cadherin and significantly associated with lymph node metastases. Survival analysis revealed that cyclase-associated protein 1 overexpression was significantly associated with overall survival (P = 0.011). Knock down of cyclase-associated protein 1 in TE1 cells resulted in decreased vimentin and F-actin levels and the capability for migration. In addition, overexpression of cyclase-associated protein 1 promoted the migration of TE1 cells. These findings suggest that cyclase-associated protein 1 is involved in the metastasis of esophageal squamous cell carcinoma, and that elevated levels of cyclase-associated protein 1 expression may indicate a poor prognosis for patients with esophageal squamous cell carcinoma.

  16. Hypoxic Vasospasm Mediated by cIMP: When Soluble Guanylyl Cyclase Turns Bad.

    PubMed

    Gao, Yuansheng; Chen, Zhengju; Leung, Susan W S; Vanhoutte, Paul M

    2015-06-01

    In a number of isolated blood vessel types, hypoxia causes an acute contraction that is dependent on the presence of nitric oxide and activation of soluble guanylyl cyclase. It is more pronounced when the preparations are constricted and is therefore termed hypoxic augmentation of vasoconstriction. This hypoxic response is accompanied by increases in the intracellular level of inosine 5'-triphosphate and in the synthesis of inosine 3',5'-cyclic monophosphate (cIMP) by soluble guanylyl cyclase. The administration of exogenous cIMP or inosine 5'-triphosphate causes augmented vasoconstriction to hypoxia. Furthermore, the vasoconstriction evoked by hypoxia and cIMP is associated with increased activity of Rho kinase (ROCK), indicating that cIMP may mediate the hypoxic effect by sensitizing the myofilaments to Ca through ROCK. Hypoxia is implicated in exaggerated vasoconstriction in the pathogenesis of coronary artery disease, myocardial infarction, hypertension, and stroke. The newly found role of cIMP may help to identify unique therapeutic targets for certain cardiovascular disorders.

  17. Bicarbonate Modulates Photoreceptor Guanylate Cyclase (ROS-GC) Catalytic Activity.

    PubMed

    Duda, Teresa; Wen, Xiao-Hong; Isayama, Tomoki; Sharma, Rameshwar K; Makino, Clint L

    2015-04-24

    By generating the second messenger cGMP in retinal rods and cones, ROS-GC plays a central role in visual transduction. Guanylate cyclase-activating proteins (GCAPs) link cGMP synthesis to the light-induced fall in [Ca(2+)]i to help set absolute sensitivity and assure prompt recovery of the response to light. The present report discloses a surprising feature of this system: ROS-GC is a sensor of bicarbonate. Recombinant ROS-GCs synthesized cGMP from GTP at faster rates in the presence of bicarbonate with an ED50 of 27 mM for ROS-GC1 and 39 mM for ROS-GC2. The effect required neither Ca(2+) nor use of the GCAPs domains; however, stimulation of ROS-GC1 was more powerful in the presence of GCAP1 or GCAP2 at low [Ca(2+)]. When applied to retinal photoreceptors, bicarbonate enhanced the circulating current, decreased sensitivity to flashes, and accelerated flash response kinetics. Bicarbonate was effective when applied either to the outer or inner segment of red-sensitive cones. In contrast, bicarbonate exerted an effect when applied to the inner segment of rods but had little efficacy when applied to the outer segment. The findings define a new regulatory mechanism of the ROS-GC system that affects visual transduction and is likely to affect the course of retinal diseases caused by cGMP toxicity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Receptor-mediated inhibition of adenylate cyclase and stimulation of arachidonic acid release in 3T3 fibroblasts. Selective susceptibility to islet-activating protein, pertussis toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murayama, T.; Ui, M.

    1985-06-25

    Thrombin exhibited diverse effects on mouse 3T3 fibroblasts. It (a) decreased cAMP in the cell suspension, (b) inhibited adenylate cyclase in the Lubrol-permeabilized cell suspension in a GTP-dependent manner, increased releases of (c) arachidonic acid and (d) inositol from the cell monolayer prelabeled with these labeled compounds, (e) increased /sup 45/Ca/sup 2 +/ uptake into the cell monolayer, and (f) increased /sup 86/Rb/sup +/ uptake into the cell monolayer in a ouabain-sensitive manner. Most of the effects were reproduced by bradykinin, platelet-activating factor, and angiotensin II. The receptors for these agonists are thus likely to be linked to three separatemore » effector systems: the adenylate cyclase inhibition, the phosphoinositide breakdown leading to Ca/sup 2 +/ mobilization and phospholipase A2 activation, and the Na,K-ATPase activation. Among the effects of these agonists, (a), (b), (c), and (e) were abolished, but (d) and (f) were not, by prior treatment of the cells with islet-activating protein (IAP), pertussis toxin, which ADP-ribosylates the Mr = 41,000 protein, the alpha-subunit of the inhibitory guanine nucleotide regulatory protein (Ni), thereby abolishing receptor-mediated inhibition of adenylate cyclase. The effects (a), (c), (d), and (e) of thrombin, but not (b), were mimicked by A23187, a calcium ionophore. The effects of A23187, in contrast to those of receptor agonists, were not affected by the treatment of cells with IAP. Thus, the IAP substrate, the alpha-subunit of Ni, or the protein alike, may play an additional role in signal transduction arising from the Ca/sup 2 +/-mobilizing receptors, probably mediating process(es) distal to phosphoinositide breakdown and proximal to Ca/sup 2 +/ gating.« less

  19. Behavioural and biochemical evidence for signs of abstinence in mice chronically treated with Δ-9-tetrahydrocannabinol

    PubMed Central

    Hutcheson, Daniel M; Th. Tzavara, Eleni; Smadja, Claire; Valjent, Emmanuel; Roques, Bernard P; Hanoune, Jacques; Maldonado, Rafael

    1998-01-01

    Tolerance and dependence induced by chronic Δ-9-tetrahydrocannabinol (THC) administration were investigated in mice. The effects on body weight, analgesia and hypothermia were measured during 6 days of treatment (10 or 20 mg kg−1 THC twice daily). A rapid tolerance to the acute effects was observed from the second THC administration.The selective CB-1 receptor antagonist SR 141716A (10 mg kg−1) was administered at the end of the treatment, and somatic and vegetative manifestations of abstinence were evaluated. SR 141716A administration precipitated several somatic signs that included wet dog shakes, frontpaw tremor, ataxia, hunched posture, tremor, ptosis, piloerection, decreased locomotor activity and mastication, which can be interpreted as being part of a withdrawal syndrome.Brains were removed immediately after the behavioural measures and assayed for adenylyl cyclase activity. An increase in basal, forskolin and calcium/calmodulin stimulated adenylyl cyclase activities was specifically observed in the cerebellum of these mice.The motivational effects of THC administration and withdrawal were evaluated by using the place conditioning paradigm. No conditioned change in preference to withdrawal associated environment was observed. In contrast, a conditioned place aversion was produced by the repeated pairing of THC (20 mg kg−1), without observing place preference at any of the doses used.This study constitutes a clear behavioural and biochemical model of physical THC withdrawal with no motivational aversive consequences. This model permits an easy quantification of THC abstinence in mice and can be useful for the elucidation of the molecular mechanisms involved in cannabinoid dependence. PMID:9884086

  20. An Odor-Specific Threshold Deficit Implicates Abnormal Intracellular Cyclic AMP Signaling in Schizophrenia

    PubMed Central

    Turetsky, Bruce I.; Moberg, Paul J.

    2012-01-01

    Objective Although olfactory deficits are common in schizophrenia, their underlying pathophysiology remains unknown. Recent evidence has suggested that cAMP signaling may be disrupted in schizophrenia. Since cAMP mediates signal transduction in olfactory receptor neurons, this could contribute to the etiology of observed olfactory deficits. This study was designed to test this hypothesis by determining odor detection threshold sensitivities to two odorants that differ in their relative activations of this intracellular cAMP signaling cascade. Method Thirty schizophrenia patients, 25 healthy comparison subjects, and 19 unaffected first-degree relatives of schizophrenia patients were studied. Odor detection threshold sensitivities were measured for the two odorants citralva and lyral. Although both have fruity/floral scents, citralva strongly activates adenylyl cyclase to increase cAMP levels, while lyral is a very weak activator of adenylyl cyclase. Results There was a significant group-by-odor interaction. Both schizophrenia patients and unaffected first-degree relatives were impaired in their ability to detect lyral versus citralva. Comparison subjects were equally sensitive to both odorants. This selective deficit could not be explained by differences in age, sex, smoking, clinical symptom profile, or medication use. Conclusions This study establishes the presence of an odor-specific hyposmia that may denote a disruption of cAMP-mediated signal transduction in schizophrenia. The presence of a parallel deficit in the patients’ unaffected first-degree relatives suggests that this deficit is genetically mediated. Although additional physiological studies are needed to confirm the underlying mechanism, these results offer strong inferential support for the hypothesis that cAMP signaling is dys-regulated in schizophrenia. PMID:19074977

  1. An odor-specific threshold deficit implicates abnormal intracellular cyclic AMP signaling in schizophrenia.

    PubMed

    Turetsky, Bruce I; Moberg, Paul J

    2009-02-01

    Although olfactory deficits are common in schizophrenia, their underlying pathophysiology remains unknown. Recent evidence has suggested that cAMP signaling may be disrupted in schizophrenia. Since cAMP mediates signal transduction in olfactory receptor neurons, this could contribute to the etiology of observed olfactory deficits. This study was designed to test this hypothesis by determining odor detection threshold sensitivities to two odorants that differ in their relative activations of this intracellular cAMP signaling cascade. Thirty schizophrenia patients, 25 healthy comparison subjects, and 19 unaffected first-degree relatives of schizophrenia patients were studied. Odor detection threshold sensitivities were measured for the two odorants citralva and lyral. Although both have fruity/floral scents, citralva strongly activates adenylyl cyclase to increase cAMP levels, while lyral is a very weak activator of adenylyl cyclase. There was a significant group-by-odor interaction. Both schizophrenia patients and unaffected first-degree relatives were impaired in their ability to detect lyral versus citralva. Comparison subjects were equally sensitive to both odorants. This selective deficit could not be explained by differences in age, sex, smoking, clinical symptom profile, or medication use. This study establishes the presence of an odor-specific hyposmia that may denote a disruption of cAMP-mediated signal transduction in schizophrenia. The presence of a parallel deficit in the patients' unaffected first-degree relatives suggests that this deficit is genetically mediated. Although additional physiological studies are needed to confirm the underlying mechanism, these results offer strong inferential support for the hypothesis that cAMP signaling is dysregulated in schizophrenia.

  2. Pituitary Adenylate Cyclase-Activating Polypeptide Reverses Ammonium Metavanadate-Induced Airway Hyperresponsiveness in Rats

    PubMed Central

    Tlili, Mounira; Sriha, Badreddine; Ben Rhouma, Khémais; Sakly, Mohsen; Wurtz, Olivier

    2015-01-01

    The rate of atmospheric vanadium is constantly increasing due to fossil fuel combustion. This environmental pollution favours vanadium exposure in particular to its vanadate form, causing occupational bronchial asthma and bronchitis. Based on the well admitted bronchodilator properties of the pituitary adenylate cyclase-activating polypeptide (PACAP), we investigated the ability of this neuropeptide to reverse the vanadate-induced airway hyperresponsiveness in rats. Exposure to ammonium metavanadate aerosols (5 mg/m3/h) for 15 minutes induced 4 hours later an array of pathophysiological events, including increase of bronchial resistance and histological alterations, activation of proinflammatory alveolar macrophages, and increased oxidative stress status. Powerfully, PACAP inhalation (0.1 mM) for 10 minutes alleviated many of these deleterious effects as demonstrated by a decrease of bronchial resistance and histological restoration. PACAP reduced the level of expression of mRNA encoding inflammatory chemokines (MIP-1α, MIP-2, and KC) and cytokines (IL-1α and TNF-α) in alveolar macrophages and improved the antioxidant status. PACAP reverses the vanadate-induced airway hyperresponsiveness not only through its bronchodilator activity but also by counteracting the proinflammatory and prooxidative effects of the metal. Then, the development of stable analogs of PACAP could represent a promising therapeutic alternative for the treatment of inflammatory respiratory disorders. PMID:26199679

  3. Null EPAC Mutants Reveal a Sequential Order of Versatile cAMP Effects during "Drosophila" Aversive Odor Learning

    ERIC Educational Resources Information Center

    Richlitzki, Antje; Latour, Philipp; Schwärzel, Martin

    2017-01-01

    Here, we define a role of the cAMP intermediate EPAC in "Drosophila" aversive odor learning by means of null epac mutants. Complementation analysis revealed that EPAC acts downstream from the "rutabaga" adenylyl cyclase and in parallel to protein kinase A. By means of targeted knockdown and genetic rescue we identified mushroom…

  4. Characterization of Plant Carotenoid Cyclases as Members of the Flavoprotein Family Functioning with No Net Redox Change1[W][OA

    PubMed Central

    Mialoundama, Alexis Samba; Heintz, Dimitri; Jadid, Nurul; Nkeng, Paul; Rahier, Alain; Deli, Jozsef; Camara, Bilal; Bouvier, Florence

    2010-01-01

    The later steps of carotenoid biosynthesis involve the formation of cyclic carotenoids. The reaction is catalyzed by lycopene β-cyclase (LCY-B), which converts lycopene into β-carotene, and by capsanthin-capsorubin synthase (CCS), which is mainly dedicated to the synthesis of κ-cyclic carotenoids (capsanthin and capsorubin) but also has LCY-B activity. Although the peptide sequences of plant LCY-Bs and CCS contain a putative dinucleotide-binding motif, it is believed that these two carotenoid cyclases proceed via protic activation and stabilization of resulting carbocation intermediates. Using pepper (Capsicum annuum) CCS as a prototypic carotenoid cyclase, we show that the monomeric protein contains one noncovalently bound flavin adenine dinucleotide (FAD) that is essential for enzyme activity only in the presence of NADPH, which functions as the FAD reductant. The reaction proceeds without transfer of hydrogen from the dinucleotide cofactors to β-carotene or capsanthin. Using site-directed mutagenesis, amino acids potentially involved in the protic activation were identified. Substitutions of alanine, lysine, and arginine for glutamate-295 in the conserved 293-FLEET-297 motif of pepper CCS or LCY-B abolish the formation of β-carotene and κ-cyclic carotenoids. We also found that mutations of the equivalent glutamate-196 located in the 194-LIEDT-198 domain of structurally divergent bacterial LCY-B abolish the formation of β-carotene. The data herein reveal plant carotenoid cyclases to be novel enzymes that combine characteristics of non-metal-assisted terpene cyclases with those attributes typically found in flavoenzymes that catalyze reactions, with no net redox, such as type 2 isopentenyl diphosphate isomerase. Thus, FAD in its reduced form could be implicated in the stabilization of the carbocation intermediate. PMID:20460582

  5. Reflections on: "A general role for adaptations in G-Proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function".

    PubMed

    Nestler, Eric J

    2016-08-15

    In 1991 we demonstrated that chronic morphine exposure increased levels of adenylyl cyclase and protein kinase A (PKA) in several regions of the rat central nervous system as inferred from measures of enzyme activity in crude extracts (Terwilliger et al., 1991). These findings led us to hypothesize that a concerted upregulation of the cAMP pathway is a general mechanism of opiate tolerance and dependence. Moreover, in the same study we showed similar induction of adenylyl cyclase and PKA activity in nucleus accumbens (NAc) in response to chronic administration of cocaine, but not of several non-abused psychoactive drugs. Morphine and cocaine also induced equivalent changes in inhibitory G protein subunits in this brain region. We thus extended our hypothesis to suggest that, particularly within brain reward regions such as NAc, cAMP pathway upregulation represents a common mechanism of reward tolerance and dependence shared by several classes of drugs of abuse. Research since that time, by many laboratories, has provided substantial support for these hypotheses. Specifically, opiates in several CNS regions including NAc, and cocaine more selectively in NAc, induce expression of certain adenylyl cyclase isoforms and PKA subunits via the transcription factor, CREB, and these transcriptional adaptations serve a homeostatic function to oppose drug action. In certain brain regions, such as locus coeruleus, these adaptations mediate aspects of physical opiate dependence and withdrawal, whereas in NAc they mediate reward tolerance and dependence that drives increased drug self-administration. This work has had important implications for understanding the molecular basis of addiction. "A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function". Previous studies have shown that chronic morphine increases levels of the G-protein subunits Giα and Goα, adenylate cyclase, cyclic AMP

  6. Opposing Effects of Platelet-Activating Factor and Lyso-Platelet-Activating Factor on Neutrophil and Platelet ActivationS⃞

    PubMed Central

    Welch, Emily J.; Naikawadi, Ram P.; Li, Zhenyu; Lin, Phoebe; Ishii, Satoshi; Shimizu, Takao; Tiruppathi, Chinnaswamy; Du, Xiaoping; Subbaiah, Papasani V.; Ye, Richard D.

    2009-01-01

    Platelet-activating factor (PAF) is a potent, bioactive phospholipid that acts on multiple cells and tissues through its G protein-coupled receptor (GPCR). PAF is not stored but is rapidly generated via enzymatic acetylation of the precursor 1-O-hexadecyl-2-hydroxy-sn-glycero-3-phosphocholine (lysoPAF). The bioactivity of PAF is effectively and tightly regulated by PAF acetylhydrolases, which convert PAF back to lysoPAF. Previous studies report that lysoPAF is an inactive precursor and metabolite of PAF. However, lysoPAF has not been carefully studied in its own context. Here we report that lysoPAF has an opposing effect of PAF in the activation of neutrophils and platelets. Whereas PAF potentiates neutrophil NADPH oxidase activation, lysoPAF dose-dependently inhibits this function. Inhibition by lysoPAF is not affected by the use of a PAF receptor antagonist or genetic deletion of the PAF receptor gene. The mechanism of lysoPAF-mediated inhibition of neutrophils involves an elevation in the intracellular cAMP level, and pharmacological blockade of adenylyl cyclase completely reverses the inhibitory effect of lysoPAF. In addition, lysoPAF increases intracellular cAMP levels in platelets and inhibits thrombin-induced platelet aggregation, which can be reversed by inhibition of protein kinase A. These findings identify lysoPAF as a bioactive lipid with opposing functions of PAF and suggest a novel and intrinsic regulatory mechanism for balance of the potent activity of PAF. PMID:18931035

  7. Functional Lycopene Cyclase (CruA) in Cyanobacterium, Arthrospira platensis NIES-39, and its Role in Carotenoid Synthesis.

    PubMed

    Sugiyama, Kenjiro; Ebisawa, Masashi; Yamada, Masaharu; Nagashima, Yoshiki; Suzuki, Hideyuki; Maoka, Takashi; Takaichi, Shinichi

    2017-04-01

    The genus Arthrospira is filamentous, non-nitrogen-fixing cyanobacteria that is commercially important. We identified the molecular structures of carotenoids in Arthrospira platensis NIES-39. The major carotenoid identified was β-carotene. In addition, the hydroxyl derivatives of β-cryptoxanthin and (3R,3'R)-zeaxanthin were also found to be present. The carotenoid glycosides were identified as (3R,2'S)-myxol 2'-methylpentoside and oscillol 2,2'-dimethylpentoside. The methylpentoside moiety was a mixture of fucoside and chinovoside in an approximate ratio of 1 : 4. Trace amounts of the ketocarotenoid 3'-hydroxyechinenone were also found. Three types of lycopene cyclases have been functionally confirmed in carotenogenesis organisms. In cyanobacteria, the functional lycopene cyclases (CrtL, CruA and CruP) have only been found in four species. In this study, we found that CruA exhibited lycopene cyclase activity in transformed Escherichia coli, which contains lycopene, but CruP exhibited no lycopene cyclase activity and crtL was absent. This is the third cyanobacterial species in which CruA activity has been confirmed. Neurosporene was not a substrate of CruA in E. coli, whereas lycopene cyclases of CrtY (bacteria), CrtL (plants) and CrtYB (fungi) have been reported to convert neurosporene to 7,8-dihydro-β-carotene. β-Carotene hydroxylase (CrtR) was found to convert β-carotene to zeaxanthin in transformed E. coli, which contains β-carotene. Among the β-carotene hydroxylases, bacterial CrtZ and eukaryotic CrtR and BCH have similarities, whereas cyanobacterial CrtR appears to belong to another clade. Based on the identification of the carotenoids and the completion of the entire nucleotide sequence of the A. platensis NIES-39 genome, we propose a biosynthetic pathway for the carotenoids as well as the corresponding genes and enzymes. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved

  8. Developing grasshopper neurons show variable levels of guanylyl cyclase activity on arrival at their targets.

    PubMed

    Ball, E E; Truman, J W

    1998-04-27

    The ability of certain grasshopper neurons to respond to exogenously applied donors of nitric oxide (NO) by producing cyclic GMP (cGMP) depends on their developmental state. ODQ, a selective blocker of NO-sensitive guanylyl cyclase, blocks cGMP production at 10(-5) M, thus confirming the nature of the response. Experiments in which the distal axon is separated from its proximal stump before application of an NO donor show that guanylyl cyclase is distributed uniformly throughout the neuron. In the locust abdomen, where segments are formed sequentially, the pattern of guanylyl cyclase up-regulation is predictable and sequential from anterior to posterior. There are two patterns of innervation by cGMP-expressing motor neurons. In the first, typified by muscle 187, an innervating neuron begins to be NO responsive on arrival at its muscle and continues to be so over most of the remainder of embryonic development, including the formation of motor end plates. In the second, typified by a neuron innervating muscle 191, the neuron extends well along the muscle, apparently laying down a number of sites of contact with it, before it becomes NO responsive. In both patterns, however, NO responsiveness marks the neuron's transition from growth cone elongation to the production of lateral branches. Individual muscles receive innervation from multiple motor neurons, some of which express transient NO sensitivity during development and others which do not. With the exception of the leg motor neuron SETi, the first motor neuron to reach any muscle is usually not NO responsive. We suggest that cGMP plays a role in, or reflects, the early stages of communication between a target and specific innervating neurons.

  9. Differential effects of non-ionic detergents on microsomal and sarcolemmal adenylate cyclase in cardiac muscle

    PubMed Central

    Sulakhe, Prakash V.; Narayanan, Njanoor

    1978-01-01

    1. About 4 and 23% of the homogenate adenylate cyclase activity was recovered in the microsomal and sarcolemmal fractions isolated from guinea-pig heart ventricles. 2. Cardiac microsomal adenylate cyclase activity [basal as well as p[NH]ppG (guanyl-5′-yl imidodiphosphate)- and NaF-stimulated] was increased over 2-fold in the presence of Lubrol-PX (0.01–0.1%). 3. The sarcolemmal enzyme, however, showed concentration-dependent inhibition caused by the detergent under all assay conditions, except when p[NH]ppG was included in the assay. In the latter case, the detergent (0.01–0.02%) caused a modest increase (30–45%) in enzyme activity. 4. Another non-ionic detergent, Triton X-100, also stimulated the microsomal cyclase and inhibited the sarcolemmal enzyme. 5. With either membrane fraction, Lubrol-PX solubilized the enzyme when the detergent/membrane protein ratio was 2.5 (μmol of detergent/mg of protein). 6. The findings with homogenate and a washed particulate fraction resembled those obtained with sarcolemma, and those with isolated sarcoplasmic reticulum resembled those with microsomal preparations. 7. p[NH]ppG, and to some extent NaF, protected the detergent-induced inactivation of the enzyme observed at higher detergent concentrations (0.5% Lubrol-PX and 0.05–0.5% Triton X-100). 8. In the absence of detergents, p[NH]ppG increased the basal enzyme activity about 2-fold in microsomal fractions, but did not appreciably stimulate the sarcolemmal enzyme. Isoproterenol, on the other hand, increased the sarcolemmal enzyme activity (>2-fold) in the presence of p[NH]ppG and caused only moderate stimulation (31%) of the microsomal enzyme under these conditions. 9. These findings support the view that, although the bulk of adenylate cyclase resides in heart sarcolemma (plasma membrane), the microsomal activity cannot be accounted for solely by contamination of the microsomal fraction with sarcolemma, as has been suggested by others [Besch, Jones & Watanabe (1976

  10. FABP4 is secreted from adipocytes by adenyl cyclase-PKA- and guanylyl cyclase-PKG-dependent lipolytic mechanisms.

    PubMed

    Mita, Tomohiro; Furuhashi, Masato; Hiramitsu, Shinya; Ishii, Junnichi; Hoshina, Kyoko; Ishimura, Shutaro; Fuseya, Takahiro; Watanabe, Yuki; Tanaka, Marenao; Ohno, Kohei; Akasaka, Hiroshi; Ohnishi, Hirofumi; Yoshida, Hideaki; Saitoh, Shigeyuki; Shimamoto, Kazuaki; Miura, Tetsuji

    2015-02-01

    Fatty acid-binding protein 4 (FABP4) is expressed in adipocytes, and elevated plasma FABP4 level is associated with obesity-mediated metabolic phenotype. Postprandial regulation and secretory signaling of FABP4 has been investigated. Time courses of FABP4 levels were examined during an oral glucose tolerance test (OGTT; n=53) or a high-fat test meal eating (n=35). Effects of activators and inhibitors of adenyl cyclase (AC)-protein kinase A (PKA) signaling and guanylyl cyclase (GC)-protein kinase G (PKG) signaling on FABP4 secretion from mouse 3T3-L1 adipocytes were investigated. FABP4 level significantly declined after the OGTT or a high-fat meal eating, while insulin level was increased. Treatment with low and high glucose concentration or palmitate for 2 h did not affect FABP4 secretion from 3T3-L1 adipocytes. FABP4 secretion was increased by stimulation of lipolysis using isoproterenol, a β3 -adrenoceptor agonist (CL316243), forskolin, dibutyryl-cAMP and atrial natriuretic peptide, and the induced FABP4 secretion was suppressed by insulin or an inhibitor of PKA (H-89), PKG (KT5823) or hormone sensitive lipase (CAY10499). FABP4 is secreted from adipocytes in association with lipolysis regulated by AC-PKA- and GC-PKG-mediated signal pathways. Plasma FABP4 level declines postprandially, and suppression of FABP4 secretion by insulin-induced anti-lipolytic signaling may be involved in this decline in FABP4 level. © 2014 The Obesity Society.

  11. Interaction of Erp Protein of Mycobacterium tuberculosis with Rv2212 Enhances Intracellular Survival of Mycobacterium smegmatis.

    PubMed

    Ganaie, Arsheed Ahmad; Trivedi, Garima; Kaur, Amanpreet; Jha, Sidharth Shankar; Anand, Shashi; Rana, Vibhuti; Singh, Amit; Kumar, Shekhar; Sharma, Charu

    2016-10-15

    The Mycobacterium tuberculosis exported repetitive protein (RvErp) is a crucial virulence-associated factor as determined by its role in the survival and multiplication of mycobacteria in cultured macrophages and in vivo Although attempts have been made to understand the function of Erp protein, its exact role in Mycobacterium pathogenesis is still elusive. One way to determine this is by searching for novel interactions of RvErp. Using a yeast two-hybrid assay, an adenylyl cyclase (AC), Rv2212, was found to interact with RvErp. The interaction between RvErp and Rv2212 is direct and occurs at the endogenous level. The Erp protein of Mycobacterium smegmatis (MSMEG_6405, or MsErp) interacts neither with Rv2212 nor with Ms_4279, the M. smegmatis homologue of Rv2212. Deletion mutants of Rv2212 revealed its adenylyl cyclase domain to be responsible for the interaction. RvErp enhances Rv2212-mediated cyclic AMP (cAMP) production. Also, the biological significance of the interaction between RvErp and Rv2212 was demonstrated by the enhanced survival of M. smegmatis within THP-1 macrophages. Taken together, these studies address a novel mechanism by which Erp executes its function. RvErp is one of the important virulence factors of M. tuberculosis This study describes a novel function of RvErp protein of M. tuberculosis by identifying Rv2212 as its interacting protein. Rv2212 is an adenylyl cyclase (AC) and produces cAMP, one of the prime second messengers that regulate the intracellular survival of mycobacteria. Therefore, the significance of investigating novel interactions of RvErp is paramount in unraveling the mechanisms governing the intracellular survival of mycobacteria. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Characterization of a novel serotonin receptor coupled to adenylate cyclase in the hybrid neuroblastoma cell line NCB. 20

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conner, D.A.

    1988-01-01

    Pharmacological characterization of the serotonin activation of adenylate cyclase in membrane preparation using over 40 serotonergic and non-serotonergic compounds demonstrated that the receptor mediating the response was distinct from previously described mammalian serotonin receptors. Agonist activity was only observed with tryptamine and ergoline derivatives. Potent antagonism was observed with several ergoline derivatives and with compounds such as mianserin and methiothepine. A comparison of the rank order of potency of a variety of compounds for the NCB.20 cell receptor with well characterized mammalian and non-mammalian serotonin receptors showed a pharmacological similarity, but not identity, with the mammalian 5-HT{sub 1C} receptor, whichmore » modulates phosphatidylinositol metabolism, and with serotonin receptors in the parasitic trematodes Fasciola hepatica and Schistosoma mansoni, which are coupled to adenylate cyclase. Equilibrium binding analysis utilizing ({sup 3}H)serotonin, ({sup 3}H)lysergic acid diethylamide or ({sup 3}H)dihydroergotamine demonstrated that there are no abundant high affinity serotonergic sites, which implies that the serotonin activation of adenylate cyclase is mediated by receptors present in low abundance. Incubation of intact NCB.20 cells with serotinin resulted in a time and concentration dependent desensitization of the serotonin receptor.« less

  13. Membrane guanylate cyclase is a beautiful signal transduction machine: overview.

    PubMed

    Sharma, Rameshwar K

    2010-01-01

    This article is a sequel to the four earlier comprehensive reviews which covered the field of membrane guanylate cyclase from its origin to the year 2002 (Sharma in Mol Cell Biochem 230:3-30, 2002) and then to the year 2004 (Duda et al. in Peptides 26:969-984, 2005); and of the Ca(2+)-modulated membrane guanylate cyclase to the year 1997 (Pugh et al. in Biosci Rep 17:429-473, 1997) and then to 2004 (Sharma et al. in Curr Top Biochem Res 6:111-144, 2004). This article contains three parts. The first part is "Historical"; it is brief, general, and freely borrowed from the earlier reviews, covering the field from its origin to the year 2004 (Sharma in Mol Cell Biochem, 230:3-30, 2002; Duda et al. in Peptides 26:969-984, 2005). The second part focuses on the "Ca(2+)-modulated ROS-GC membrane guanylate cyclase subfamily". It is divided into two sections. Section "Historical" and covers the area from its inception to the year 2004. It is also freely borrowed from an earlier review (Sharma et al. in Curr Top Biochem Res 6:111-144, 2004). Section "Ca(2+)-modulated ROS-GC membrane guanylate cyclase subfamily" covers the area from the year 2004 to May 2009. The objective is to focus on the chronological development, recognize major contributions of the original investigators, correct misplaced facts, and project on the future trend of the field of mammalian membrane guanylate cyclase. The third portion covers the present status and concludes with future directions in the field.

  14. BAY 41-2272, a soluble guanylate cyclase agonist, activates human mononuclear phagocytes

    PubMed Central

    Soeiro-Pereira, PV; Falcai, A; Kubo, CA; Oliveira-Júnior, EB; Marques, OC; Antunes, E; Condino-Neto, A

    2012-01-01

    BACKGROUND AND PURPOSE Phagocyte function is critical for host defense against infections. Defects in phagocytic function lead to several primary immunodeficiencies characterized by early onset of recurrent and severe infections. In this work, we further investigated the effects of BAY 41-2272, a soluble guanylate cyclase (sGC) agonist, on the activation of human peripheral blood monocytes (PBM) and THP-1 cells. EXPERIMENTAL APPROACH THP-1 cells and PBM viability was evaluated by methylthiazoletetrazolium assay; reactive oxygen species production by lucigenin chemiluminescence; gene and protein expression of NAPDH oxidase components by qRT-PCR and Western blot analysis, respectively; phagocytosis and microbicidal activity by co-incubation, respectively, with zymosan and Escherichia coli; and cytokine release by elisa. KEY RESULTS BAY 41-2272, compared with the untreated group, increased spreading of monocytes by at least 35%, superoxide production by at least 50%, and gp91PHOX and p67PHOX gene expression 20 to 40 times, in both PBM and THP-1 cells. BAY 41-2272 also augmented phagocytosis of zymosan particles threefold compared with control, doubled microbicidal activity against E. coli and enhanced the release of TNF-α and IL-12p70 by both PBM and THP-1 cells. Finally, by inhibiting sGC with ODQ, we showed that BAY 41-2272-induced superoxide production and phagocytosis is not dependent exclusively on sGC activation. CONCLUSIONS AND IMPLICATIONS In addition to its ability to induce vasorelaxation and its potential application for therapy of vascular diseases, BAY 41-2272 was shown to activate human mononuclear phagocytes. Hence, it is a novel pro-inflammatory drug that may be useful for controlling infections in the immunocompromised host. PMID:22044316

  15. Disaggregation of adenylate cyclase during polyacrylamide-gel electrophoresis in mixtures of ionic and non-ionic detergents.

    PubMed

    Newby, A C; Chrambach, A

    1979-02-01

    1. Adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] solubilized from the rat liver plasma membrane with 1% Lubrol PX and partially purified by gel filtration in buffer containing 0.01% Lubrol PX was physically characterized by polyacrylamide-gel electrophoresis. 2. The molecular radius determined for the partially purified enzyme was 4.9nm, compared with the value of 3.9nm obtained for the enzyme before gel filtration. 3. This difference, representing an approximate doubling of the molecular volume of the enzyme, implied that aggregation with itself or other proteins had occurred during partial purification. 4. Aggregation was not reversed by electrophoresis in the presence of high Lubrol concentrations. 5. Substitution of deoxycholate or N-dodecylsarcosinate for Lubrol PX either for solubilization or during electrophoresis led to poorer resolution of membrane proteins at concentrations giving greater than 70% loss of enzyme activity. 6. Partially purified adenylate cyclase was electrophoresed in the presence of mixed micelles of Lubrol PX and deoxycholate or Lubrol PX and N-dodecylsarcosinate. Different mixtures were examined simultaneously in a suitable apparatus. 7. Electrophoresis in the presence of 0.1% Lubrol plus 0.03% deoxycholate decreased the molecular radius of the cyclase to 4.0nm, with greater than 90% recovery of enzymic activity. The net charge of the enzyme was also increased, indicating ionic detergent binding. 8. With 0.1% Lubrol plus 0.03% N-dodecylsarcosinate the molecular radius was 4.3nm, recovery approx. 50% and net charge similar to that seen in Lubrol plus deoxycholate. 9. The resolution of cyclase from bulk protein, on an analytical scale, was improved in the presence of detergent mixtures, as compared with resolution in Lubrol alone. 10. The results demonstrate the usefulness of polyacrylamide-gel electrophoresis to detect and overcome aggregation problems with membrane proteins and suggest that detergent mixtures in

  16. Disaggregation of adenylate cyclase during polyacrylamide-gel electrophoresis in mixtures of ionic and non-ionic detergents

    PubMed Central

    Newby, Andrew C.; Chrambach, Andreas

    1979-01-01

    1. Adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] solubilized from the rat liver plasma membrane with 1% Lubrol PX and partially purified by gel filtration in buffer containing 0.01% Lubrol PX was physically characterized by polyacrylamide-gel electrophoresis. 2. The molecular radius determined for the partially purified enzyme was 4.9nm, compared with the value of 3.9nm obtained for the enzyme before gel filtration. 3. This difference, representing an approximate doubling of the molecular volume of the enzyme, implied that aggregation with itself or other proteins had occurred during partial purification. 4. Aggregation was not reversed by electrophoresis in the presence of high Lubrol concentrations. 5. Substitution of deoxycholate or N-dodecylsarcosinate for Lubrol PX either for solubilization or during electrophoresis led to poorer resolution of membrane proteins at concentrations giving greater than 70% loss of enzyme activity. 6. Partially purified adenylate cyclase was electrophoresed in the presence of mixed micelles of Lubrol PX and deoxycholate or Lubrol PX and N-dodecylsarcosinate. Different mixtures were examined simultaneously in a suitable apparatus. 7. Electrophoresis in the presence of 0.1% Lubrol plus 0.03% deoxycholate decreased the molecular radius of the cyclase to 4.0nm, with greater than 90% recovery of enzymic activity. The net charge of the enzyme was also increased, indicating ionic detergent binding. 8. With 0.1% Lubrol plus 0.03% N-dodecylsarcosinate the molecular radius was 4.3nm, recovery approx. 50% and net charge similar to that seen in Lubrol plus deoxycholate. 9. The resolution of cyclase from bulk protein, on an analytical scale, was improved in the presence of detergent mixtures, as compared with resolution in Lubrol alone. 10. The results demonstrate the usefulness of polyacrylamide-gel electrophoresis to detect and overcome aggregation problems with membrane proteins and suggest that detergent mixtures in

  17. Structural basis for olivetolic acid formation by a polyketide cyclase from Cannabis sativa.

    PubMed

    Yang, Xinmei; Matsui, Takashi; Kodama, Takeshi; Mori, Takahiro; Zhou, Xiaoxi; Taura, Futoshi; Noguchi, Hiroshi; Abe, Ikuro; Morita, Hiroyuki

    2016-03-01

    In polyketide biosynthesis, ring formation is one of the key diversification steps. Olivetolic acid cyclase (OAC) from Cannabis sativa, involved in cannabinoid biosynthesis, is the only known plant polyketide cyclase. In addition, it is the only functionally characterized plant α+β barrel (DABB) protein that catalyzes the C2-C7 aldol cyclization of the linear pentyl tetra-β-ketide CoA as the substrate, to generate olivetolic acid (OA). Herein, we solved the OAC apo and OAC-OA complex binary crystal structures at 1.32 and 1.70 Å resolutions, respectively. The crystal structures revealed that the enzyme indeed belongs to the DABB superfamily, as previously proposed, and possesses a unique active-site cavity containing the pentyl-binding hydrophobic pocket and the polyketide binding site, which have never been observed among the functionally and structurally characterized bacterial polyketide cyclases. Furthermore, site-directed mutagenesis studies indicated that Tyr72 and His78 function as acid/base catalysts at the catalytic center. Structural and/or functional studies of OAC suggested that the enzyme lacks thioesterase and aromatase activities. These observations demonstrated that OAC employs unique catalytic machinery utilizing acid/base catalytic chemistry for the formation of the precursor of OA. The structural and functional insights obtained in this work thus provide the foundation for analyses of the plant polyketide cyclases that will be discovered in the future. Structural data reported in this paper are available in the Protein Data Bank under the accession numbers 5B08 for the OAC apo, 5B09 for the OAC-OA binary complex and 5B0A, 5B0B, 5B0C, 5B0D, 5B0E, 5B0F and 5B0G for the OAC His5Q, Ile7F, Tyr27F, Tyr27W, Val59M, Tyr72F and His78S mutant enzymes, respectively. © 2016 Federation of European Biochemical Societies.

  18. Signaling of pigment-dispersing factor (PDF) in the Madeira cockroach Rhyparobia maderae.

    PubMed

    Wei, Hongying; Yasar, Hanzey; Funk, Nico W; Giese, Maria; Baz, El-Sayed; Stengl, Monika

    2014-01-01

    The insect neuropeptide pigment-dispersing factor (PDF) is a functional ortholog of vasoactive intestinal polypeptide, the coupling factor of the mammalian circadian pacemaker. Despite of PDF's importance for synchronized circadian locomotor activity rhythms its signaling is not well understood. We studied PDF signaling in primary cell cultures of the accessory medulla, the circadian pacemaker of the Madeira cockroach. In Ca²⁺ imaging studies four types of PDF-responses were distinguished. In regularly bursting type 1 pacemakers PDF application resulted in dose-dependent long-lasting increases in Ca²⁺ baseline concentration and frequency of oscillating Ca²⁺ transients. Adenylyl cyclase antagonists prevented PDF-responses in type 1 cells, indicating that PDF signaled via elevation of intracellular cAMP levels. In contrast, in type 2 pacemakers PDF transiently raised intracellular Ca²⁺ levels even after blocking adenylyl cyclase activity. In patch clamp experiments the previously characterized types 1-4 could not be identified. Instead, PDF-responses were categorized according to ion channels affected. Application of PDF inhibited outward potassium or inward sodium currents, sometimes in the same neuron. In a comparison of Ca²⁺ imaging and patch clamp experiments we hypothesized that in type 1 cells PDF-dependent rises in cAMP concentrations block primarily outward K⁺ currents. Possibly, this PDF-dependent depolarization underlies PDF-dependent phase advances of pacemakers. Finally, we propose that PDF-dependent concomitant modulation of K⁺ and Na⁺ channels in coupled pacemakers causes ultradian membrane potential oscillations as prerequisite to efficient synchronization via resonance.

  19. Signaling of Pigment-Dispersing Factor (PDF) in the Madeira Cockroach Rhyparobia maderae

    PubMed Central

    Funk, Nico W.; Giese, Maria; Baz, El-Sayed; Stengl, Monika

    2014-01-01

    The insect neuropeptide pigment-dispersing factor (PDF) is a functional ortholog of vasoactive intestinal polypeptide, the coupling factor of the mammalian circadian pacemaker. Despite of PDF's importance for synchronized circadian locomotor activity rhythms its signaling is not well understood. We studied PDF signaling in primary cell cultures of the accessory medulla, the circadian pacemaker of the Madeira cockroach. In Ca2+ imaging studies four types of PDF-responses were distinguished. In regularly bursting type 1 pacemakers PDF application resulted in dose-dependent long-lasting increases in Ca2+ baseline concentration and frequency of oscillating Ca2+ transients. Adenylyl cyclase antagonists prevented PDF-responses in type 1 cells, indicating that PDF signaled via elevation of intracellular cAMP levels. In contrast, in type 2 pacemakers PDF transiently raised intracellular Ca2+ levels even after blocking adenylyl cyclase activity. In patch clamp experiments the previously characterized types 1–4 could not be identified. Instead, PDF-responses were categorized according to ion channels affected. Application of PDF inhibited outward potassium or inward sodium currents, sometimes in the same neuron. In a comparison of Ca2+ imaging and patch clamp experiments we hypothesized that in type 1 cells PDF-dependent rises in cAMP concentrations block primarily outward K+ currents. Possibly, this PDF-dependent depolarization underlies PDF-dependent phase advances of pacemakers. Finally, we propose that PDF-dependent concomitant modulation of K+ and Na+ channels in coupled pacemakers causes ultradian membrane potential oscillations as prerequisite to efficient synchronization via resonance. PMID:25269074

  20. Purification and growth of melanocortin 1 receptor (Mc1r)-defective primary murine melanocytes is dependent on stem cell factor from keratinocyte-conditioned media

    PubMed Central

    Scott, Timothy L.; Wakamatsu, Kazumasa; Ito, Shosuke; D’Orazio, John A.

    2015-01-01

    Summary The melanocortin 1 receptor (MC1R) is a transmembrane Gs-coupled surface protein found on melanocytes that binds melanocyte stimulating hormone (MSH) and mediates activation of adenylyl cyclase and generation of the second messenger cAMP. MC1R regulates growth and differentiation of melanocytes and protects against carcinogenesis. Persons with loss-of-function polymorphisms of MC1R tend to be UV-sensitive (fair-skinned and with a poor tanning response) and are at high risk for melanoma. Mechanistic studies of the role of MC1R in melanocytic UV responses, however, have been hindered in part because Mc1r-defective primary murine melanocytes have been difficult to culture in vitro. Until now, effective growth of murine melanocytes has depended on cAMP stimulation with adenylyl cyclase activating or phosphodiesterase inhibiting agents. However, rescuing cAMP in the setting of defective MC1R signaling would be expected to confound experiments directly testing MC1R function on melanocytic UV responses. Here we report a novel method of culturing primary murine melanocytes in the absence of pharmacologic cAMP stimulation by incorporating conditioned supernatants containing stem cell factor (SCF) derived from primary keratinocytes. Importantly, this method seems to permit similar pigment expression by cultured melanocytes as that found in the skin of their parental murine strains. This novel approach will allow mechanistic investigation into MC1R’s role in protection against UV-mediated carcinogenesis and determination of the role of melanin pigment subtypes on UV-mediated melanocyte responses. PMID:19633898

  1. Accelerated Evolution of the Pituitary Adenylate Cyclase-Activating Polypeptide Precursor Gene During Human Origin

    PubMed Central

    Wang, Yin-qiu; Qian, Ya-ping; Yang, Su; Shi, Hong; Liao, Cheng-hong; Zheng, Hong-Kun; Wang, Jun; Lin, Alice A.; Cavalli-Sforza, L. Luca; Underhill, Peter A.; Chakraborty, Ranajit; Jin, Li; Su, Bing

    2005-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide abundantly expressed in the central nervous system and involved in regulating neurogenesis and neuronal signal transduction. The amino acid sequence of PACAP is extremely conserved across vertebrate species, indicating a strong functional constraint during the course of evolution. However, through comparative sequence analysis, we demonstrated that the PACAP precursor gene underwent an accelerated evolution in the human lineage since the divergence from chimpanzees, and the amino acid substitution rate in humans is at least seven times faster than that in other mammal species resulting from strong Darwinian positive selection. Eleven human-specific amino acid changes were identified in the PACAP precursors, which are conserved from murine to African apes. Protein structural analysis suggested that a putative novel neuropeptide might have originated during human evolution and functioned in the human brain. Our data suggested that the PACAP precursor gene underwent adaptive changes during human origin and may have contributed to the formation of human cognition. PMID:15834139

  2. Influence of volatile anesthetics on muscarinic receptor adenylate cyclase coupling in brain and heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, B.L.

    In the present study, the influence of four volatile anesthetics (enflurane, isoflurane, diethyl ether, and chloroform) on (1) muscarinic receptor binding parameters and (2) muscarnic regulation of adenylate cyclase activity was examined using membranes isolated from rat brain and heart. Membranes were equilibrated with each of the four anesthetics for 30 minutes and then during the binding assay. The data obtained can be summarized as follows: (1) volatile anesthetics increased receptor affinity for a radiolabeled antagonists, ({sup 3}H)N-methylscopolamine (({sup 3}H)MS), by decreasing its rate of dissociation in brain stem, but not in cardiac, membranes, (2) volatile anesthetics decreased high affinitymore » ({sup 3}H)Oxotremorine-M binding, (3) volatile anesthetics depressed or eliminated the guanine nucleotide sensitivity of agonist binding. The influence of volatile anesthetics on muscarinic regulation of adenylate cyclase enzyme activity was studied using {alpha}({sup 32}P)ATP as the substrate.« less

  3. Altered gene regulation and synaptic morphology in Drosophila learning and memory mutants

    PubMed Central

    Guan, Zhuo; Buhl, Lauren K.; Quinn, William G.; Littleton, J. Troy

    2011-01-01

    Genetic studies in Drosophila have revealed two separable long-term memory pathways defined as anesthesia-resistant memory (ARM) and long-lasting long-term memory (LLTM). ARM is disrupted in radish (rsh) mutants, whereas LLTM requires CREB-dependent protein synthesis. Although the downstream effectors of ARM and LLTM are distinct, pathways leading to these forms of memory may share the cAMP cascade critical for associative learning. Dunce, which encodes a cAMP-specific phosphodiesterase, and rutabaga, which encodes an adenylyl cyclase, both disrupt short-term memory. Amnesiac encodes a pituitary adenylyl cyclase-activating peptide homolog and is required for middle-term memory. Here, we demonstrate that the Radish protein localizes to the cytoplasm and nucleus and is a PKA phosphorylation target in vitro. To characterize how these plasticity pathways may manifest at the synaptic level, we assayed synaptic connectivity and performed an expression analysis to detect altered transcriptional networks in rutabaga, dunce, amnesiac, and radish mutants. All four mutants disrupt specific aspects of synaptic connectivity at larval neuromuscular junctions (NMJs). Genome-wide DNA microarray analysis revealed ∼375 transcripts that are altered in these mutants, suggesting defects in multiple neuronal signaling pathways. In particular, the transcriptional target Lapsyn, which encodes a leucine-rich repeat cell adhesion protein, localizes to synapses and regulates synaptic growth. This analysis provides insights into the Radish-dependent ARM pathway and novel transcriptional targets that may contribute to memory processing in Drosophila. PMID:21422168

  4. Cyclic Adenosine Monophosphate Regulation of Ion Transport in Porcine Vocal Fold Mucosae

    PubMed Central

    Sivasankar, Mahalakshmi; Nofziger, Charity; Blazer-Yost, Bonnie

    2012-01-01

    Objectives/Hypothesis Cyclic adenosine monophosphate (cAMP) is an important biological molecule that regulates ion transport and inflammatory responses in epithelial tissue. The present study examined whether the adenylyl cyclase activator, forskolin, would increase cAMP concentration in porcine vocal fold mucosa and whether the effects of increased cAMP would be manifested as a functional increase in transepithelial ion transport. Additionally, changes in cAMP concentrations following exposure to an inflammatory mediator, tumor necrosis factor-α (TNFα) were investigated. Study Design In vitro experimental design with matched treatment and control groups. Methods Porcine vocal fold mucosae (N = 30) and tracheal mucosae (N = 20) were exposed to forskolin, TNFα, or vehicle (dimethyl sulfoxide) treatment. cAMP concentrations were determined with enzyme-linked immunosorbent assay. Ion transport was measured using electrophysiological techniques. Results Thirty minute exposure to forskolin significantly increased cAMP concentration and ion transport in porcine vocal fold and tracheal mucosae. However, 30-minute and 2-hour exposure to TNFα did not significantly alter cAMP concentration. Conclusions We demonstrate that forskolin-sensitive adenylyl cyclase is present in vocal fold mucosa, and further, that the product, cAMP increases vocal fold ion transport. The results presented here contribute to our understanding of the intracellular mechanisms underlying vocal fold ion transport. As ion transport is important for maintaining superficial vocal fold hydration, data demonstrating forskolin-stimulated ion transport in vocal fold mucosa suggest opportunities for developing pharmacological treatments that increase surface hydration. PMID:18596479

  5. GUCY2D Cone-Rod Dystrophy-6 Is a "Phototransduction Disease" Triggered by Abnormal Calcium Feedback on Retinal Membrane Guanylyl Cyclase 1.

    PubMed

    Sato, Shinya; Peshenko, Igor V; Olshevskaya, Elena V; Kefalov, Vladimir J; Dizhoor, Alexander M

    2018-03-21

    The Arg838Ser mutation in retinal membrane guanylyl cyclase 1 (RetGC1) has been linked to autosomal dominant cone-rod dystrophy type 6 (CORD6). It is believed that photoreceptor degeneration is caused by the altered sensitivity of RetGC1 to calcium regulation via guanylyl cyclase activating proteins (GCAPs). To determine the mechanism by which this mutation leads to degeneration, we investigated the structure and function of rod photoreceptors in two transgenic mouse lines, 362 and 379, expressing R838S RetGC1. In both lines, rod outer segments became shorter than in their nontransgenic siblings by 3-4 weeks of age, before the eventual photoreceptor degeneration. Despite the shortening of their outer segments, the dark current of transgenic rods was 1.5-2.2-fold higher than in nontransgenic controls. Similarly, the dim flash response amplitude in R838S + rods was larger, time to peak was delayed, and flash sensitivity was increased, all suggesting elevated dark-adapted free cGMP in transgenic rods. In rods expressing R838S RetGC1, dark-current noise increased and the exchange current, detected after a saturating flash, became more pronounced. These results suggest disrupted Ca 2+ phototransduction feedback and abnormally high free-Ca 2+ concentration in the outer segments. Notably, photoreceptor degeneration, which typically occurred after 3 months of age in R838S RetGC1 transgenic mice in GCAP1,2 +/+ or GCAP1,2 +/- backgrounds, was prevented in GCAP1,2 -/- mice lacking Ca 2+ feedback to guanylyl cyclase. In summary, the dysregulation of guanylyl cyclase in RetGC1-linked CORD6 is a "phototransduction disease," which means it is associated with increased free-cGMP and Ca 2+ levels in photoreceptors. SIGNIFICANCE STATEMENT In a mouse model expressing human membrane guanylyl cyclase 1 (RetGC1, GUCY2D ), a mutation associated with early progressing congenital blindness, cone-rod dystrophy type 6 (CORD6), deregulates calcium-sensitive feedback of phototransduction to

  6. Guanylyl cyclase activation reverses resistive breathing-induced lung injury and inflammation.

    PubMed

    Glynos, Constantinos; Toumpanakis, Dimitris; Loverdos, Konstantinos; Karavana, Vassiliki; Zhou, Zongmin; Magkou, Christina; Dettoraki, Maria; Perlikos, Fotis; Pavlidou, Athanasia; Kotsikoris, Vasilis; Topouzis, Stavros; Theocharis, Stamatios E; Brouckaert, Peter; Giannis, Athanassios; Papapetropoulos, Andreas; Vassilakopoulos, Theodoros

    2015-06-01

    Inspiratory resistive breathing (RB), encountered in obstructive lung diseases, induces lung injury. The soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP) pathway is down-regulated in chronic and acute animal models of RB, such as asthma, chronic obstructive pulmonary disease, and in endotoxin-induced acute lung injury. Our objectives were to: (1) characterize the effects of increased concurrent inspiratory and expiratory resistance in mice via tracheal banding; and (2) investigate the contribution of the sGC/cGMP pathway in RB-induced lung injury. Anesthetized C57BL/6 mice underwent RB achieved by restricting tracheal surface area to 50% (tracheal banding). RB for 24 hours resulted in increased bronchoalveolar lavage fluid cellularity and protein content, marked leukocyte infiltration in the lungs, and perturbed respiratory mechanics (increased tissue resistance and elasticity, shifted static pressure-volume curve right and downwards, decreased static compliance), consistent with the presence of acute lung injury. RB down-regulated sGC expression in the lung. All manifestations of lung injury caused by RB were exacerbated by the administration of the sGC inhibitor, 1H-[1,2,4]oxodiazolo[4,3-]quinoxalin-l-one, or when RB was performed using sGCα1 knockout mice. Conversely, restoration of sGC signaling by prior administration of the sGC activator BAY 58-2667 (Bayer, Leverkusen, Germany) prevented RB-induced lung injury. Strikingly, direct pharmacological activation of sGC with BAY 58-2667 24 hours after RB reversed, within 6 hours, the established lung injury. These findings raise the possibility that pharmacological targeting of the sGC-cGMP axis could be used to ameliorate lung dysfunction in obstructive lung diseases.

  7. Molecular study of a squalene cyclase homolog gene in Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Bosak, T.; Pearson, A.; Losick, R.

    2005-12-01

    Polycyclic triterpenoids such as hopanes and steranes are formed by enzymatic cyclization of linear isoprenoid precursors by squalene cyclases and oxidosqualene cyclases. Due to their amazing preservation potential, polycyclic triterpenoids have been used to indicate the source of organic matter in oils and sediments for decades, although many cannot be attributed to known organisms and genes. To bridge the gap between the genomic database and the geochemical record, we are using molecular tools to study the expression, intracellular localization, and products of a squalene cyclase homolog found in Bacillus subtilis, a Gram-positive soil bacterium. We find that the gene is expressed during sporulation and is localized to the spore coat. Our results may help to understand the source of some previously unassigned natural products, and they may also provide clues to the physiological role of triterpenoids in the Bacillales.

  8. Stimulation of Hippocampal Adenylyl Cyclase Activity Dissociates Memory Consolidation Processes for Response and Place Learning

    ERIC Educational Resources Information Center

    Martel, Guillaume; Millard, Annabelle; Jaffard, Robert; Guillou, Jean-Louis

    2006-01-01

    Procedural and declarative memory systems are postulated to interact in either a synergistic or a competitive manner, and memory consolidation appears to be a highly critical stage for this process. However, the precise cellular mechanisms subserving these interactions remain unknown. To investigate this issue, 24-h retention performances were…

  9. Different Roles of N-Terminal and C-Terminal Domains in Calmodulin for Activation of Bacillus anthracis Edema Factor

    PubMed Central

    Lübker, Carolin; Dove, Stefan; Tang, Wei-Jen; Urbauer, Ramona J. Bieber; Moskovitz, Jackob; Urbauer, Jeffrey L.; Seifert, Roland

    2015-01-01

    Bacillus anthracis adenylyl cyclase toxin edema factor (EF) is one component of the anthrax toxin and is essential for establishing anthrax disease. EF activation by the eukaryotic Ca2+-sensor calmodulin (CaM) leads to massive cAMP production resulting in edema. cAMP also inhibits the nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase, thus reducing production of reactive oxygen species (ROS) used for host defense in activated neutrophils and thereby facilitating bacterial growth. Methionine (Met) residues in CaM, important for interactions between CaM and its binding partners, can be oxidized by ROS. We investigated the impact of site-specific oxidation of Met in CaM on EF activation using thirteen CaM-mutants (CaM-mut) with Met to leucine (Leu) substitutions. EF activation shows high resistance to oxidative modifications in CaM. An intact structure in the C-terminal region of oxidized CaM is sufficient for major EF activation despite altered secondary structure in the N-terminal region associated with Met oxidation. The secondary structures of CaM-mut were determined and described in previous studies from our group. Thus, excess cAMP production and the associated impairment of host defence may be afforded even under oxidative conditions in activated neutrophils. PMID:26184312

  10. Depression of neuronal excitability and epileptic activities by group II metabotropic glutamate receptors in the medial entorhinal cortex.

    PubMed

    Zhang, Haopeng; Cilz, Nicholas I; Yang, Chuanxiu; Hu, Binqi; Dong, Hailong; Lei, Saobo

    2015-11-01

    Whereas the ionotropic glutamate receptors are the major mediator in glutamatergic transmission, the metabotropic glutamate receptors (mGluRs) usually play a modulatory role. Whereas the entorhinal cortex (EC) is an essential structure involved in the generation and propagation of epilepsy, the roles and mechanisms of mGluRs in epilepsy in the EC have not been determined. Here, we studied the effects of activation of group II metabotropic glutamate receptors (mGluRs II) on epileptiform activity induced by picrotoxin or deprivation of extracellular Mg2+ and neuronal excitability in the medial EC. We found that activation of mGluRs II by application of the selective agonist, LY354740, exerted robust inhibition on epileptiform activity. LY354740 hyperpolarized entorhinal neurons via activation of a K+ conductance and inhibition of a Na+ -permeable channel. LY354740-induced hyperpolarization was G protein-dependent, but independent of adenylyl cyclase and protein kinase A. However, the function of Gβγ was involved in mGluRs II-mediated depression of both neuronal excitability and epileptiform activity. Our results provide a novel cellular mechanism to explain the antiepileptic effects of mGluRs II in the treatment of epilepsy. © 2015 Wiley Periodicals, Inc.

  11. Calcineurin regulates progressive motility activation of Rhinella (Bufo) arenarum sperm through dephosphorylation of PKC substrates.

    PubMed

    Krapf, Dario; O'Brien, Emma; Maidagán, Paula M; Morales, Enrique S; Visconti, Pablo E; Arranz, Silvia E

    2014-10-01

    Animals with external fertilization, as amphibians, store their sperm in a quiescent state in the testis. When spermatozoa are released into natural fertilization media, the hypotonic shock triggers activation of sperm motility. Rhinella (Bufo) arenarum sperm are immotile in artificial seminal plasma (ASP, resembling testicular plasma tonicity) but acquire in situ flagellar beating upon dilution. However, if components from the egg shelly coat are added to this medium, motility shifts to a progressive pattern. Recently, we have shown that the signal transduction pathway required for in situ motility activation involves a rise in intracellular cAMP through a transmembrane adenylyl cyclase and activation of PKA, mostly in the midpiece and in the sperm head. In this report, we demonstrate that activation of calcineurin (aka PP2B and PPP3) is required for the shift from in situ to progressive sperm motility. The effect of calcineurin is manifested by dephosphorylation of PKC substrates, and can be promoted by intracellular calcium rise by Ca(2+) ionophore. Both phosphorylated PKC substrates and calcineurin localized to the flagella, indicating a clear differentiation between compartmentalization of PKA and calcineurin pathways. Moreover, no crosstalk is observed between these signaling events, even though both pathways are required for progressive motility acquisition as discussed. © 2014 Wiley Periodicals, Inc.

  12. A new small molecule inhibitor of soluble guanylate cyclase

    PubMed Central

    Mota, Filipa; Gane, Paul; Hampden-Smith, Kathryn; Allerston, Charles K.; Garthwaite, John; Selwood, David L.

    2015-01-01

    Soluble guanylate cyclase (sGC) is a haem containing enzyme that regulates cardiovascular homeostasis and multiple mechanisms in the central and peripheral nervous system. Commonly used inhibitors of sGC activity act through oxidation of the haem moiety, however they also bind haemoglobin and this limits their bioavailability for in vivo studies. We have discovered a new class of small molecule inhibitors of sGC and have characterised a compound designated D12 (compound 10) which binds to the catalytic domain of the enzyme with a KD of 11 μM in a SPR assay. PMID:26264842

  13. Anthrax lethal factor inhibitors as potential countermeasure of the infection.

    PubMed

    Kumar, B V S Suneel; Malik, Siddharth; Grandhi, Pradeep; Dayam, Raveendra; Sarma, J A R P

    2014-01-01

    Anthrax Lethal Factor (LF) is a zinc-dependent metalloprotease, one of the virulence factor of anthrax infection. Three forms of the anthrax infection have been identified: cutaneous (through skin), gastrointestinal (through alimentary tract), and pulmonary (by inhalation of spores). Anthrax toxin is composed of protective antigen (PA), lethal factor (LF), and edema factor (EF). Protective antigen mediates the entry of Lethal Factor/Edema Factor into the cytosol of host cells. Lethal factor (LF) inactivates mitogen-activated protein kinase kinase inducing cell death, and EF is an adenylyl cyclase impairing host defenses. In the past few years, extensive studies are undertaken to design inhibitors targeting LF. The current review focuses on the small molecule inhibitors targeting LF activity and its structure activity relationships (SAR).

  14. Involvement of endogenous antioxidant systems in the protective activity of pituitary adenylate cyclase-activating polypeptide against hydrogen peroxide-induced oxidative damages in cultured rat astrocytes.

    PubMed

    Douiri, Salma; Bahdoudi, Seyma; Hamdi, Yosra; Cubì, Roger; Basille, Magali; Fournier, Alain; Vaudry, Hubert; Tonon, Marie-Christine; Amri, Mohamed; Vaudry, David; Masmoudi-Kouki, Olfa

    2016-06-01

    Astroglial cells possess an array of cellular defense mechanisms, including superoxide dismutase (SOD) and catalase antioxidant enzymes, to prevent damages caused by oxidative stress. Nevertheless, astroglial cell viability and functionality can be affected by significant oxidative stress. We have previously shown that pituitary adenylate cyclase-activating polypeptide (PACAP) is a potent glioprotective agent that prevents hydrogen peroxide (H2 O2 )-induced apoptosis in cultured astrocytes. The purpose of this study was to investigate the potential protective effect of PACAP against oxidative-generated alteration of astrocytic antioxidant systems. Incubation of cells with subnanomolar concentrations of PACAP inhibited H2 O2 -evoked reactive oxygen species accumulation, mitochondrial respiratory burst, and caspase-3 mRNA level increase. PACAP also stimulated SOD and catalase activities in a concentration-dependent manner, and counteracted the inhibitory effect of H2 O2 on the activity of these two antioxidant enzymes. The protective action of PACAP against H2 O2 -evoked inhibition of antioxidant systems in astrocytes was protein kinase A, PKC, and MAP-kinase dependent. In the presence of H2 O2 , the SOD blocker NaCN and the catalase inhibitor 3-aminotriazole, both suppressed the protective effects of PACAP on SOD and catalase activities, mitochondrial function, and cell survival. Taken together, these results indicate that the anti-apoptotic effect of PACAP on astroglial cells can account for the activation of endogenous antioxidant enzymes and reduction in respiration rate, thus preserving mitochondrial integrity and preventing caspase-3 expression provoked by oxidative stress. Considering its powerful anti-apoptotic and anti-oxidative properties, the PACAPergic signaling system should thus be considered for the development of new therapeutical approaches to cure various pathologies involving oxidative neurodegeneration. We propose the following cascade for the

  15. Binding of (/sup 3/H)forskolin to solubilized preparations of adenylate cyclase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, C.A.; Seamon, K.B.

    1988-01-01

    The binding of (/sup 3/H)forskolin to proteins solubilized from bovine brain membranes was studied by precipitating proteins with polyethylene glycol and separating (/sup 3/H)forskolin bound to protein from free (/sup 3/H)forskolin by rapid filtration. The K/sub d/ for (/sup 3/H)forskolin binding to solubilized proteins was 14 nM which was similar to that for (/sup 3/H)forskolin binding sites in membranes from rat brain and human platelets. Forskolin analogs competed for (/sup 3/H)forskolin binding sites with the same rank potency in both brain membranes and in proteins solubilized from brain membranes. (/sup 3/H)forskolin bound to proteins solubilized from membranes with a Bmaxmore » of 38 fmolmg protein which increased to 94 fmolmg protein when GppNHp was included in the binding assay. In contrast, GppNHp had no effect on (/sup 3/H)forskolin binding to proteins solubilized from membranes preactivated with GppNHp. Solubilized adenylate cyclase from non-preactivated membranes had a basal activity of 130 pmolmgmin which was increased 7-fold by GppNHp. In contrast, adenylate cyclase from preactivated membranes had a basal activity of 850 pmolmgmin which was not stimulated by GppNHp or forskolin« less

  16. The localization of guanylyl cyclase-activating proteins in the mammalian retina.

    PubMed

    Cuenca, N; Lopez, S; Howes, K; Kolb, H

    1998-06-01

    To explore the distribution of guanylyl cylase-activating proteins 1 and 2 (GCAP1 and GCAP2) in the mammalian retina. Cryostat and vibratome vertical sections and wholemount retinas from mouse, rat, cat, bovine, monkey, and human eyes were prepared for immunocytochemistry and viewing by light and confocal microscopy. In all mammalian retinas investigated, intense GCAP1 immunoreactivity (GCAP1-IR) was seen in cone photoreceptor inner and outer segments, cell bodies, and synaptic regions. Intensity of the GCAP1-IR was strong in inner segments of rods in all species but weaker in outer segments-particularly so in primates and cats. GCAP2 immunoreactivity (GCAP2-IR) was weak in bovine, mouse, and rat cones but was intense in human and monkey cones. In all species except primates, GCAP2 staining was intense in rod inner and outer segments. In primates GCAP2-IR was intense in the rod inner segment but faint in the rod outer segment. A striking difference from the GCAP1 pattern of immunoreactivity was seen with GCAP2 antibodies as far as the inner retina was concerned. GCAP2-IR was evident in certain populations of bipolar, amacrine, and ganglion cells in all species. GCAP1 and GCAP2, which are involved in Ca2+-dependent stimulation and inhibition of photoreceptor guanylyl cyclase, can be detected in mammalian photoreceptor inner and outer segments, consistent with their physiological function. The occurrence of both GCAPs in the synaptic region of the photoreceptors indicates participation of these proteins in pathways other than regulation of phototransduction. The occurrence of GCAP2 in inner retinal neurons is indicative of second-messenger chemical transduction, possibly in metabotropic glutamate, gamma-aminobutyric acid (GABA) receptor, and nitric oxide-activated neural circuits.

  17. Increased glutamate synaptic transmission in the nucleus raphe magnus neurons from morphine-tolerant rats.

    PubMed

    Bie, Bihua; Pan, Zhizhong Z

    2005-02-09

    Currently, opioid-based drugs are the most effective pain relievers that are widely used in the treatment of pain. However, the analgesic efficacy of opioids is significantly limited by the development of tolerance after repeated opioid administration. Glutamate receptors have been reported to critically participate in the development and maintenance of opioid tolerance, but the underlying mechanisms remain unclear. Using whole-cell voltage-clamp recordings in brainstem slices, the present study investigated chronic morphine-induced adaptations in glutamatergic synaptic transmission in neurons of the nucleus raphe magnus (NRM), a key supraspinal relay for pain modulation and opioid analgesia. Chronic morphine significantly increased glutamate synaptic transmission exclusively in one class of NRM cells that contains mu-opioid receptors in a morphine-tolerant state. The adenylyl cyclase activator forskolin and the cAMP analog 8-bromo-cAMP mimicked the chronic morphine effect in control neurons and their potency in enhancing the glutamate synaptic current was significantly increased in neurons from morphine-tolerant rats. MDL12330a, an adenylyl cyclase inhibitor, and H89, a protein kinase A (PKA) inhibitor, reversed the increase in glutamate synaptic transmission induced by chronic morphine. In addition, PMA, a phorbol ester activator of protein kinase C (PKC), also showed an increased potency in enhancing the glutamate synaptic current in these morphine-tolerant cells. The PKC inhibitor GF109203X attenuated the chronic morphine effect. Taken together, these results suggest that chronic morphine increases presynaptic glutamate release in mu receptor-containing NRM neurons in a morphine-tolerant state, and that the increased glutamate synaptic transmission appears to involve an upregulation of both the cAMP/PKA pathway and the PKC pathway. This glutamate-mediated activation of these NRM neurons that are thought to facilitate spinal pain transmission may contribute to

  18. Understanding the Mechanism of Translocation of Adenylate Cyclase Toxin across Biological Membranes

    PubMed Central

    Ostolaza, Helena; Martín, César; González-Bullón, David; Uribe, Kepa B.; Etxaniz, Asier

    2017-01-01

    Adenylate cyclase toxin (ACT) is one of the principal virulence factors secreted by the whooping cough causative bacterium Bordetella pertussis, and it has a critical role in colonization of the respiratory tract and establishment of the disease. ACT targets phagocytes via binding to the CD11b/CD18 integrin and delivers its N-terminal adenylate cyclase (AC) domain directly to the cell cytosol, where it catalyzes unregulated conversion of cytosolic ATP into cAMP upon activation by binding to cellular calmodulin. High cAMP levels disrupt bactericidal functions of the immune cells, ultimately leading to cell death. In spite of its relevance in the ACT biology, the mechanism by which its ≈400 amino acid-long AC domain is transported through the target plasma membrane, and is released into the target cytosol, remains enigmatic. This article is devoted to refresh our knowledge on the mechanism of AC translocation across biological membranes. Two models, the so-called “two-step model” and the recently-proposed “toroidal pore model”, will be considered. PMID:28934133

  19. Introducing a novel mechanism to control heart rate in the ancestral Pacific hagfish.

    PubMed

    Wilson, Christopher M; Roa, Jinae N; Cox, Georgina K; Tresguerres, Martin; Farrell, Anthony P

    2016-10-15

    Although neural modulation of heart rate is well established among chordate animals, the Pacific hagfish (Eptatretus stoutii) lacks any cardiac innervation, yet it can increase its heart rate from the steady, depressed heart rate seen in prolonged anoxia to almost double its normal normoxic heart rate, an almost fourfold overall change during the 1-h recovery from anoxia. The present study sought mechanistic explanations for these regulatory changes in heart rate. We provide evidence for a bicarbonate-activated, soluble adenylyl cyclase (sAC)-dependent mechanism to control heart rate, a mechanism never previously implicated in chordate cardiac control. © 2016. Published by The Company of Biologists Ltd.

  20. Cardiovascular and adenylate cyclase stimulating effects of colforsin daropate, a water-soluble forskolin derivative, compared with those of isoproterenol, dopamine and dobutamine.

    PubMed

    Yoneyama, Masahiko; Sugiyama, Atsushi; Satoh, Yoshioki; Takahara, Akira; Nakamura, Yuji; Hashimoto, Keitaro

    2002-12-01

    Colforsin daropate is a recently developed water-soluble derivative of forskolin that directly stimulates adenylate cyclase, unlike the catecholamines. The chronotropic, inotropic and coronary vasodilator actions of colforsin daropate were compared with those of isoproterenol, dopamine and dobutamine, using canine isolated, blood-perfused heart preparations. The stimulating effect of each drug on adenylate cyclase activity was also assessed. Colforsin daropate, as well as each of the catecholamines, exerted positive chronotropic, inotropic and coronary vasodilator actions. The order of selectivity for the cardiovascular variables of colforsin daropate was coronary vasodilation > positive inotropy > positive chronotropy; whereas that of isoproterenol, dopamine and dobutamine was positive inotropy > coronary vasodilation > positive chronotropy. Thus, a marked characteristic of colforsin daropate is its potent coronary vasodilator action. On the other hand, each drug significantly increased the adenylate cyclase activity in a dose-related manner: colforsin daropate > isoproterenol > dopamine = dobutamine. These results suggest that colforsin daropate may be preferable in the treatment of severe heart failure where the coronary blood flow is reduced and beta-adrenoceptor-dependent signal transduction pathway is down-regulated.

  1. Diminished but Not Abolished Effect of Two His351 Mutants of Anthrax Edema Factor in a Murine Model

    PubMed Central

    Zhao, Taoran; Zhao, Xinghui; Liu, Ju; Meng, Yingying; Feng, Yingying; Fang, Ting; Zhang, Jinlong; Yang, Xiuxu; Li, Jianmin; Xu, Junjie; Chen, Wei

    2016-01-01

    Edema toxin (ET), which is composed of a potent adenylate cyclase (AC), edema factor (EF), and protective antigen (PA), is one of the major toxicity factors of Bacillus anthracis. In this study, we introduced mutations in full-length EF to generate alanine EF(H351A) and arginine EF(H351R) variants. In vitro activity analysis displayed that the adenylyl cyclase activity of both the mutants was significantly diminished compared with the wild-type EF. When the native and mutant toxins were administered subcutaneously in a mouse footpad edema model, severe acute swelling was evoked by wild-type ET, while the symptoms induced by mutant toxins were very minor. Systemic administration of these EF variants caused non-lethal hepatotoxicity. In addition, EF(H351R) exhibited slightly higher activity in causing more severe edema than EF(H351A). Our findings demonstrate that the toxicity of ET is not abolished by substitution of EF residue His351 by alanine or arginine. These results also indicate the potential of the mouse footpad edema model as a sensitive method for evaluating both ET toxicity and the efficacy of candidate therapeutic agents. PMID:26848687

  2. Synechocystis sp. PCC 6803 CruA (sll0147) encodes lycopene cyclase and requires bound chlorophyll a for activity.

    PubMed

    Xiong, Wei; Shen, Gaozhong; Bryant, Donald A

    2017-03-01

    The genome of the model cyanobacterium, Synechococcus sp. PCC 7002, encodes two paralogs of CruA-type lycopene cyclases, SynPCC7002_A2153 and SynPCC7002_A0043, which are denoted cruA and cruP, respectively. Unlike the wild-type strain, a cruA deletion mutant is light-sensitive, grows slowly, and accumulates lycopene, γ-carotene, and 1-OH-lycopene; however, this strain still produces β-carotene and other carotenoids derived from it. Expression of cruA from Synechocystis sp. PCC 6803 (cruA 6803 ) in Escherichia coli strains that synthesize either lycopene or γ-carotene did not lead to the synthesis of either γ-carotene or β-carotene, respectively. However, expression of this orthologous cruA 6803 gene (sll0147) in the Synechococcus sp. PCC 7002 cruA deletion mutant produced strains with phenotypic properties identical to the wild type. CruA 6803 was purified from Synechococcus sp. PCC 7002 by affinity chromatography, and the purified protein was pale yellow-green due to the presence of bound chlorophyll (Chl) a and β-carotene. Native polyacrylamide gel electrophoresis of the partly purified protein in the presence of lithium dodecylsulfate at 4 °C confirmed that the protein was yellow-green in color. When purified CruA 6803 was assayed in vitro with either lycopene or γ-carotene as substrate, β-carotene was synthesized. These data establish that CruA 6803 is a lycopene cyclase and that it requires a bound Chl a molecule for activity. Possible binding sites for Chl a and the potential regulatory role of the Chl a in coordination of Chl and carotenoid biosynthesis are discussed.

  3. Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP) knockout mice

    PubMed Central

    Hattori, Satoko; Takao, Keizo; Tanda, Koichi; Toyama, Keiko; Shintani, Norihito; Baba, Akemichi; Hashimoto, Hitoshi; Miyakawa, Tsuyoshi

    2012-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide acting as a neurotransmitter, neuromodulator, or neurotrophic factor. PACAP is widely expressed throughout the brain and exerts its functions through the PACAP-specific receptor (PAC1). Recent studies reveal that genetic variants of the PACAP and PAC1 genes are associated with mental disorders, and several behavioral abnormalities of PACAP knockout (KO) mice are reported. However, an insufficient number of backcrosses was made using PACAP KO mice on the C57BL/6J background due to their postnatal mortality. To elucidate the effects of PACAP on neuropsychiatric function, the PACAP gene was knocked out in F1 hybrid mice (C57BL/6J × 129SvEv) for appropriate control of the genetic background. The PACAP KO mice were then subjected to a behavioral test battery. PACAP deficiency had no significant effects on neurological screen. As shown previously, the mice exhibited significantly increased locomotor activity in a novel environment and abnormal anxiety-like behavior, while no obvious differences between genotypes were shown in home cage (HC) activity. In contrast to previous reports, the PACAP KO mice showed normal prepulse inhibition (PPI) and slightly decreased depression-like behavior. Previous study demonstrates that the social interaction (SI) in a resident-intruder test was decreased in PACAP KO mice. On the other hand, we showed that PACAP KO mice exhibited increased SI in Crawley's three-chamber social approach test, although PACAP KO had no significant impact on SI in a HC. PACAP KO mice also exhibited mild performance deficit in working memory in an eight-arm radial maze (RM) and the T-maze (TM), while they did not show any significant abnormalities in the left-right discrimination task in the TM. These results suggest that PACAP has an important role in the regulation of locomotor activity, social behavior, anxiety-like behavior and, potentially, working memory. PMID:23060763

  4. Catalytically Active Guanylyl Cyclase B Requires Endoplasmic Reticulum-mediated Glycosylation, and Mutations That Inhibit This Process Cause Dwarfism.

    PubMed

    Dickey, Deborah M; Edmund, Aaron B; Otto, Neil M; Chaffee, Thomas S; Robinson, Jerid W; Potter, Lincoln R

    2016-05-20

    C-type natriuretic peptide activation of guanylyl cyclase B (GC-B), also known as natriuretic peptide receptor B or NPR2, stimulates long bone growth, and missense mutations in GC-B cause dwarfism. Four such mutants (L658F, Y708C, R776W, and G959A) bound (125)I-C-type natriuretic peptide on the surface of cells but failed to synthesize cGMP in membrane GC assays. Immunofluorescence microscopy also indicated that the mutant receptors were on the cell surface. All mutant proteins were dephosphorylated and incompletely glycosylated, but dephosphorylation did not explain the inactivation because the mutations inactivated a "constitutively phosphorylated" enzyme. Tunicamycin inhibition of glycosylation in the endoplasmic reticulum or mutation of the Asn-24 glycosylation site decreased GC activity, but neither inhibition of glycosylation in the Golgi by N-acetylglucosaminyltransferase I gene inactivation nor PNGase F deglycosylation of fully processed GC-B reduced GC activity. We conclude that endoplasmic reticulum-mediated glycosylation is required for the formation of an active catalytic, but not ligand-binding domain, and that mutations that inhibit this process cause dwarfism. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Mauritia flexuosa Presents In Vitro and In Vivo Antiplatelet and Antithrombotic Activities

    PubMed Central

    Fuentes, Eduardo; Rodríguez-Pérez, Wilson; Guzmán, Luis; Alarcón, Marcelo; Navarrete, Simón; Forero-Doria, Oscar; Palomo, Iván

    2013-01-01

    Fruit from the palm Mauritia flexuosa is one of the most important species in Peru, Venezuela, Brazil, Colombia, Bolivia, and Guyana. The present study aimed to investigate the antiplatelet and antithrombotic activities of oil extracted from Mauritia flexuosa. The fatty acid contents were determined by gas chromatography—mass spectrometry. Oil extract of peel of Mauritia flexuosa was extracted by soxhlet extraction. The oil extract inhibited platelet secretion and aggregation induced by ADP, collagen, and TRAP-6 by a concentration-dependent way (0.1 to 1 mg/mL) without the participation of the adenylyl cyclase pathway and diminished platelet rolling and firm adhesion under flow conditions. Furthermore, the oil extract induced a marked increase in the rolling speed of leukocytes retained on the platelet surface, reflecting a reduction of rolling and less adhesion. At the concentrations used, the oil extract significantly decreased platelet release of sP-selectin, an atherosclerotic-related inflammatory mediator. Oil extract inhibited thrombus growth at the same concentration as that of aspirin, a classical reference drug. Finally, the data presented herein also demonstrate for the first time to our knowledge the protective effect of oil extracted from Mauritia flexuosa on platelet activation and thrombosis formation. PMID:24454503

  6. Mauritia flexuosa Presents In Vitro and In Vivo Antiplatelet and Antithrombotic Activities.

    PubMed

    Fuentes, Eduardo; Rodríguez-Pérez, Wilson; Guzmán, Luis; Alarcón, Marcelo; Navarrete, Simón; Forero-Doria, Oscar; Palomo, Iván

    2013-01-01

    Fruit from the palm Mauritia flexuosa is one of the most important species in Peru, Venezuela, Brazil, Colombia, Bolivia, and Guyana. The present study aimed to investigate the antiplatelet and antithrombotic activities of oil extracted from Mauritia flexuosa. The fatty acid contents were determined by gas chromatography-mass spectrometry. Oil extract of peel of Mauritia flexuosa was extracted by soxhlet extraction. The oil extract inhibited platelet secretion and aggregation induced by ADP, collagen, and TRAP-6 by a concentration-dependent way (0.1 to 1 mg/mL) without the participation of the adenylyl cyclase pathway and diminished platelet rolling and firm adhesion under flow conditions. Furthermore, the oil extract induced a marked increase in the rolling speed of leukocytes retained on the platelet surface, reflecting a reduction of rolling and less adhesion. At the concentrations used, the oil extract significantly decreased platelet release of sP-selectin, an atherosclerotic-related inflammatory mediator. Oil extract inhibited thrombus growth at the same concentration as that of aspirin, a classical reference drug. Finally, the data presented herein also demonstrate for the first time to our knowledge the protective effect of oil extracted from Mauritia flexuosa on platelet activation and thrombosis formation.

  7. Mutation in the β-hairpin of the Bordetella pertussis adenylate cyclase toxin modulates N-lobe conformation in calmodulin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, Tzvia I.; Goebel, Erich; Hariraju, Dinesh

    Highlights: • Bordetella pertussis adenylate cyclase toxin modulates bi-lobal structure of CaM. • The structure and stability of the complex rely on intermolecular associations. • A novel mode of CaM-dependent activation of the adenylate cyclase toxin is proposed. - Abstract: Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved throughmore » its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD’s β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD’s β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (R{sub h}) and reduced thermal stability in the mutant complex

  8. Pituitary adenylate cyclase-activating polypeptide promotes eccrine gland sweat secretion.

    PubMed

    Sasaki, S; Watanabe, J; Ohtaki, H; Matsumoto, M; Murai, N; Nakamachi, T; Hannibal, J; Fahrenkrug, J; Hashimoto, H; Watanabe, H; Sueki, H; Honda, K; Miyazaki, A; Shioda, S

    2017-02-01

    Sweat secretion is the major function of eccrine sweat glands; when this process is disturbed (paridrosis), serious skin problems can arise. To elucidate the causes of paridrosis, an improved understanding of the regulation, mechanisms and factors underlying sweat production is required. Pituitary adenylate cyclase-activating polypeptide (PACAP) exhibits pleiotropic functions that are mediated via its receptors [PACAP-specific receptor (PAC1R), vasoactive intestinal peptide (VIP) receptor type 1 (VPAC1R) and VPAC2R]. Although some studies have suggested a role for PACAP in the skin and several exocrine glands, the effects of PACAP on the process of eccrine sweat secretion have not been examined. To investigate the effect of PACAP on eccrine sweat secretion. Reverse transcriptase-polymerase chain reaction and immunostaining were used to determine the expression and localization of PACAP and its receptors in mouse and human eccrine sweat glands. We injected PACAP subcutaneously into the footpads of mice and used the starch-iodine test to visualize sweat-secreting glands. Immunostaining showed PACAP and PAC1R expression by secretory cells from mouse and human sweat glands. PACAP immunoreactivity was also localized in nerve fibres around eccrine sweat glands. PACAP significantly promoted sweat secretion at the injection site, and this could be blocked by the PAC1R-antagonist PACAP6-38. VIP, an agonist of VPAC1R and VPAC2R, failed to induce sweat secretion. This is the first report demonstrating that PACAP may play a crucial role in sweat secretion via its action on PAC1R located in eccrine sweat glands. The mechanisms underlying the role of PACAP in sweat secretion may provide new therapeutic options to combat sweating disorders. © 2016 British Association of Dermatologists.

  9. Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue.

    PubMed

    Gray, Jesse M; Karow, David S; Lu, Hang; Chang, Andy J; Chang, Jennifer S; Ellis, Ronald E; Marletta, Michael A; Bargmann, Cornelia I

    2004-07-15

    Specialized oxygen-sensing cells in the nervous system generate rapid behavioural responses to oxygen. We show here that the nematode Caenorhabditis elegans exhibits a strong behavioural preference for 5-12% oxygen, avoiding higher and lower oxygen levels. 3',5'-cyclic guanosine monophosphate (cGMP) is a common second messenger in sensory transduction and is implicated in oxygen sensation. Avoidance of high oxygen levels by C. elegans requires the sensory cGMP-gated channel tax-2/tax-4 and a specific soluble guanylate cyclase homologue, gcy-35. The GCY-35 haem domain binds molecular oxygen, unlike the haem domains of classical nitric-oxide-regulated guanylate cyclases. GCY-35 and TAX-4 mediate oxygen sensation in four sensory neurons that control a naturally polymorphic social feeding behaviour in C. elegans. Social feeding and related behaviours occur only when oxygen exceeds C. elegans' preferred level, and require gcy-35 activity. Our results suggest that GCY-35 is regulated by molecular oxygen, and that social feeding can be a behavioural strategy for responding to hyperoxic environments.

  10. Characterization of the adenosine receptor in cultured embryonic chick atrial myocytes: Coupling to modulation of contractility and adenylate cyclase activity and identification by direct radioligand binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, B.T.

    1989-06-01

    Adenosine receptors in a spontaneously contracting atrial myocyte culture from 14-day chick embryos were characterized by radioligand binding studies and by examining the involvement of G-protein in coupling these receptors to a high-affinity state and to the adenylate cyclase and the myocyte contractility. Binding of the antagonist radioligand (3H)-8-cyclopentyl-1,3-diproylxanthine ((3H)CPX) was rapid, reversible and saturable and was to a homogeneous population of sites with a Kd value of 2.1 +/- 0.2 nM and an apparent maximum binding of 26.2 +/- 3 fmol/mg of protein (n = 10, +/- S.E.). Guanyl-5-yl-(beta, gamma-imido)diphosphate had no effect on either the Kd or themore » maximum binding and CPX reversed the N6-R-phenyl-2-propyladenosine-induced inhibition of adenylate cyclase activity and contractility, indicating that (3H) CPX is an antagonist radioligand. Competition curves for (3H) CPX binding by a series of reference adenosine agonists were consistent with labeling of an A1 adenosine receptor and were better fit by a two-site model than by a one-site model. ADP-ribosylation of the G-protein by the endogenous NAD+ in the presence of pertussis toxin shifted the competition curves from bi to monophasic with Ki values similar to those of the KL observed in the absence of prior pertussis intoxication. The adenosine agonists were capable of inhibiting both the adenylate cyclase activity and myocyte contractility in either the absence or the presence of isoproterenol. The A1 adenosine receptor-selective antagonist CPX reversed these agonist effects. The order of ability of the reference adenosine receptor agonists in causing these inhibitory effects was similar to the order of potency of the same agonists in inhibiting the specific (3H)CPX binding (N6-R-phenyl-2-propyladenosine greater than N6-S-phenyl-2-propyladenosine or N-ethyladenosine-5'-uronic acid).« less

  11. Biochemical activity and multiple locations of particulate guanylate cyclase in Rhyacophila dorsalis acutidens (Insecta: Trichoptera) provide insights into the cGMP signalling pathway in Malpighian tubules.

    PubMed

    Secca, T; Sciaccaluga, M; Marra, A; Barberini, L; Bicchierai, M C

    2011-04-01

    In insect renal physiology, cGMP and cAMP have important regulatory roles. In Drosophila melanogaster, considered a good model for molecular physiology studies, and in other insects, cGMP and cAMP act as signalling molecules in the Malpighian tubules (MTs). However, many questions related to cyclic nucleotide functions are unsolved in principal cells (PC) and stellate cells (SC), the two cell types that compose the MT. In PC, despite the large body of information available on soluble guanylate cyclase (sGC) in the cGMP pathway, the functional circuit of particulate guanylate cyclase (pGC) remains obscure. In SC, on the other side, the synthesis and physiological role of the cGMP are still unknown. Our biochemical data regarding the presence of cyclic nucleotides in the MTs of Rhyacophila dorsalis acutidens revealed a cGMP level above the 50%, in comparison with the cAMP. The specific activity values for the membrane-bound guanylate cyclase were also recorded, implying that, besides the sGC, pGC is a physiologically relevant source of cGMP in MTs. Cytochemical studies showed ultrastructurally that there was a great deal of pGC on the basolateral membranes of both the principal and stellate cells. In addition, pGC was also detected in the contact zone between the two cell types and in the apical microvillar region of the stellate cells bordering the tubule lumen. The pGC signal is so well represented in PC and, unexpectedly in SC of MTs, that it is possible to hypothesize the existence of still uncharacterized physiological processes regulated by the pGC-cGMP system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Meconium ileus caused by mutations in GUCY2C, encoding the CFTR-activating guanylate cyclase 2C.

    PubMed

    Romi, Hila; Cohen, Idan; Landau, Daniella; Alkrinawi, Suliman; Yerushalmi, Baruch; Hershkovitz, Reli; Newman-Heiman, Nitza; Cutting, Garry R; Ofir, Rivka; Sivan, Sara; Birk, Ohad S

    2012-05-04

    Meconium ileus, intestinal obstruction in the newborn, is caused in most cases by CFTR mutations modulated by yet-unidentified modifier genes. We now show that in two unrelated consanguineous Bedouin kindreds, an autosomal-recessive phenotype of meconium ileus that is not associated with cystic fibrosis (CF) is caused by different homozygous mutations in GUCY2C, leading to a dramatic reduction or fully abrogating the enzymatic activity of the encoded guanlyl cyclase 2C. GUCY2C is a transmembrane receptor whose extracellular domain is activated by either the endogenous ligands, guanylin and related peptide uroguanylin, or by an external ligand, Escherichia coli (E. coli) heat-stable enterotoxin STa. GUCY2C is expressed in the human intestine, and the encoded protein activates the CFTR protein through local generation of cGMP. Thus, GUCY2C is a likely candidate modifier of the meconium ileus phenotype in CF. Because GUCY2C heterozygous and homozygous mutant mice are resistant to E. coli STa enterotoxin-induced diarrhea, it is plausible that GUCY2C mutations in the desert-dwelling Bedouin kindred are of selective advantage. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  13. Pituitary adenylate cyclase 1 receptor internalization and endosomal signaling mediate the pituitary adenylate cyclase activating polypeptide-induced increase in guinea pig cardiac neuron excitability.

    PubMed

    Merriam, Laura A; Baran, Caitlin N; Girard, Beatrice M; Hardwick, Jean C; May, Victor; Parsons, Rodney L

    2013-03-06

    After G-protein-coupled receptor activation and signaling at the plasma membrane, the receptor complex is often rapidly internalized via endocytic vesicles for trafficking into various intracellular compartments and pathways. The formation of signaling endosomes is recognized as a mechanism that produces sustained intracellular signals that may be distinct from those generated at the cell surface for cellular responses including growth, differentiation, and survival. Pituitary adenylate cyclase activating polypeptide (PACAP; Adcyap1) is a potent neurotransmitter/neurotrophic peptide and mediates its diverse cellular functions in part through internalization of its cognate G-protein-coupled PAC1 receptor (PAC1R; Adcyap1r1). In the present study, we examined whether PAC1R endocytosis participates in the regulation of neuronal excitability. Although PACAP increased excitability in 90% of guinea pig cardiac neurons, pretreatment with Pitstop 2 or dynasore to inhibit clathrin and dynamin I/II, respectively, suppressed the PACAP effect. Subsequent addition of inhibitor after the PACAP-induced increase in excitability developed gradually attenuated excitability with no changes in action potential properties. Likewise, the PACAP-induced increase in excitability was markedly decreased at ambient temperature. Receptor trafficking studies with GFP-PAC1 cell lines demonstrated the efficacy of Pitstop 2, dynasore, and low temperatures at suppressing PAC1R endocytosis. In contrast, brefeldin A pretreatments to disrupt Golgi vesicle trafficking did not blunt the PACAP effect, and PACAP/PAC1R signaling still increased neuronal cAMP production even with endocytic blockade. Our results demonstrate that PACAP/PAC1R complex endocytosis is a key step for the PACAP modulation of cardiac neuron excitability.

  14. The opposing effects of calmodulin, adenosine 5 prime -triphosphate, and pertussis toxin on phorbol ester induced inhibition of atrial natriuretic factor stimulated guanylate cyclase in SK-NEP-1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekiya, M.; Frohlich, E.D.; Cole, F.E.

    1991-01-01

    In the present study, we investigated the effects of calmodulin, adenosine 5{prime}-triphosphate (ATP) and pertussis toxin (PT) on phorbol ester (PMA) induced inhibition of ANF-stimulated cyclic GMP formation in cells from the human renal cell line, SK-NEP-1. PMA inhibited ANF-stimulated guanylate cyclase activity in particulate membranes by about 65%. Calmodulin reversed this inhibition in a dose dependent manner. ATP potentiated Mg++ but not Mn++ supported guanylate cyclase activity. In PMA treated membranes, ATP potentiating effects were abolished. PMA also inhibited ANF-stimulated cGMP accumulation, but pretreatment with PT prevented this PMA inhibition. PT did not affect basal or ANF-stimulated cGMP accumulation.more » In conclusion, these results demonstrated that PMA inhibited ANF stimulation of particulate guanylate cyclase in opposition to the activating effects of calmodulin or ATP in SK-NEP-1 cells. The protein kinase C inhibitory effects appeared to be mediated via a PT-sensitive G protein.« less

  15. Gene transfer of heterologous G protein-coupled receptors to cardiomyocytes: differential effects on contractility.

    PubMed

    Laugwitz, K L; Weig, H J; Moretti, A; Hoffmann, E; Ueblacker, P; Pragst, I; Rosport, K; Schömig, A; Ungerer, M

    2001-04-13

    In heart failure, reduced cardiac contractility is accompanied by blunted cAMP responses to beta-adrenergic stimulation. Parathyroid hormone (PTH)-related peptide and arginine vasopressin are released from the myocardium in response to increased wall stress but do not stimulate contractility or adenylyl cyclase at physiological concentrations. To bypass the defective beta-adrenergic signaling cascade, recombinant P1 PTH/PTH-related peptide receptors (rPTH1-Rs) and V(2) vasopressin receptors (rV(2)-Rs), which are normally not expressed in the myocardium and which are both strongly coupled to adenylyl cyclase, and recombinant beta(2)-adrenergic receptors (rbeta(2)-ARs) were overexpressed in cardiomyocytes by viral gene transfer. The capacity of endogenous hormones to increase contractility via the heterologous, recombinant receptors was compared. Whereas V(2)-Rs are uniquely coupled to Gs, PTH1-Rs and beta(2)-ARs are also coupled to other G proteins. Gene transfer of rPTH1-Rs or rbeta(2)-ARs to adult cardiomyocytes resulted in maximally increased basal contractility, which could not be further stimulated by adding receptor agonists. Agonists at rPTH1-Rs induced increased cAMP formation and phospholipase C activity. In contrast, healthy or failing rV(2)-R-expressing cardiomyocytes showed unaltered basal contractility. Their contractility and cAMP formation increased only at agonist exposure, which did not activate phospholipase C. In summary, we found that gene transfer of PTH1-Rs to cardiomyocytes results in constitutive activity of the transgene, as does that of beta(2)-ARS: In the absence of receptor agonists, rPTH1-Rs and rbeta(2)-ARs increase basal contractility, coupling to 2 G proteins simultaneously. In contrast, rV(2)-Rs are uniquely coupled to Gs and are not constitutively active, retaining their property to be activated exclusively on agonist stimulation. Therefore, gene transfer of V(2)-Rs might be more suited to test the effects of c

  16. Integrative Signaling Networks of Membrane Guanylate Cyclases: Biochemistry and Physiology

    PubMed Central

    Sharma, Rameshwar K.; Duda, Teresa; Makino, Clint L.

    2016-01-01

    This monograph presents a historical perspective of cornerstone developments on the biochemistry and physiology of mammalian membrane guanylate cyclases (MGCs), highlighting contributions made by the authors and their collaborators. Upon resolution of early contentious studies, cyclic GMP emerged alongside cyclic AMP, as an important intracellular second messenger for hormonal signaling. However, the two signaling pathways differ in significant ways. In the cyclic AMP pathway, hormone binding to a G protein coupled receptor leads to stimulation or inhibition of an adenylate cyclase, whereas the cyclic GMP pathway dispenses with intermediaries; hormone binds to an MGC to affect its activity. Although the cyclic GMP pathway is direct, it is by no means simple. The modular design of the molecule incorporates regulation by ATP binding and phosphorylation. MGCs can form complexes with Ca2+-sensing subunits that either increase or decrease cyclic GMP synthesis, depending on subunit identity. In some systems, co-expression of two Ca2+ sensors, GCAP1 and S100B with ROS-GC1 confers bimodal signaling marked by increases in cyclic GMP synthesis when intracellular Ca2+ concentration rises or falls. Some MGCs monitor or are modulated by carbon dioxide via its conversion to bicarbonate. One MGC even functions as a thermosensor as well as a chemosensor; activity reaches a maximum with a mild drop in temperature. The complexity afforded by these multiple limbs of operation enables MGC networks to perform transductions traditionally reserved for G protein coupled receptors and Transient Receptor Potential (TRP) ion channels and to serve a diverse array of functions, including control over cardiac vasculature, smooth muscle relaxation, blood pressure regulation, cellular growth, sensory transductions, neural plasticity and memory. PMID:27695398

  17. Discovery of Potent Human Glutaminyl Cyclase Inhibitors as Anti-Alzheimer's Agents Based on Rational Design.

    PubMed

    Hoang, Van-Hai; Tran, Phuong-Thao; Cui, Minghua; Ngo, Van T H; Ann, Jihyae; Park, Jongmi; Lee, Jiyoun; Choi, Kwanghyun; Cho, Hanyang; Kim, Hee; Ha, Hee-Jin; Hong, Hyun-Seok; Choi, Sun; Kim, Young-Ho; Lee, Jeewoo

    2017-03-23

    Glutaminyl cyclase (QC) has been implicated in the formation of toxic amyloid plaques by generating the N-terminal pyroglutamate of β-amyloid peptides (pGlu-Aβ) and thus may participate in the pathogenesis of Alzheimer's disease (AD). We designed a library of glutamyl cyclase (QC) inhibitors based on the proposed binding mode of the preferred substrate, Aβ 3E-42 . An in vitro structure-activity relationship study identified several excellent QC inhibitors demonstrating 5- to 40-fold increases in potency compared to a known QC inhibitor. When tested in mouse models of AD, compound 212 significantly reduced the brain concentrations of pyroform Aβ and total Aβ and restored cognitive functions. This potent Aβ-lowering effect was achieved by incorporating an additional binding region into our previously established pharmacophoric model, resulting in strong interactions with the carboxylate group of Glu327 in the QC binding site. Our study offers useful insights in designing novel QC inhibitors as a potential treatment option for AD.

  18. Solubilization and other studies on adenylate cyclase of baker's yeast.

    PubMed Central

    Varimo, K; Londesborough, J

    1976-01-01

    1. Adenylate cyclase of Saccharomyces cerevisiae was sedimented from mechanically disintegrated preparations of yeast over an unusually wide range of centrifugal forces. 2. The enzyme was readily solubilized by Ficoll and by Lubrol PX. Lubrol caused a 2-fold activation. 3. Both particle-bound and Lubrol-solubilized enzyme had an apparent Km for ATP of 1.6 mM in the presence of 0.4 mM-cyclic AMP and 5 mM-MnCl2 at pH 6.2 and 30 degrees C. 4. The Lubrol-solubilized enzyme behaved on gel filtration as a monodisperse protein with an apparent mol.wt. of about 450000. PMID:793584

  19. Kinetic study of the processing by dipeptidyl-peptidase IV/CD26 of neuropeptides involved in pancreatic insulin secretion.

    PubMed

    Lambeir, A M; Durinx, C; Proost, P; Van Damme, J; Scharpé, S; De Meester, I

    2001-11-02

    Dipeptidyl-peptidase IV (DPPIV/CD26) metabolizes neuropeptides regulating insulin secretion. We studied the in vitro steady-state kinetics of DPPIV/CD26-mediated truncation of vasoactive intestinal peptide (VIP), pituitary adenylyl cyclase-activating peptide (PACAP27 and PACAP38), gastrin-releasing peptide (GRP) and neuropeptide Y (NPY). DPPIV/CD26 sequentially cleaves off two dipeptides of VIP, PACAP27, PACAP38 and GRP. GRP situates between the best DPPIV/CD26 substrates reported, comparable to NPY. Surprisingly, the C-terminal extension of PACAP38, distant from the scissile bond, improves both PACAP38 binding and turnover. Therefore, residues remote from the scissile bond can modulate DPPIV/CD26 substrate selectivity as well as residues flanking it.

  20. Nitric oxide synthase and soluble guanylate cyclase are involved in spinal cord wind-up activity of monoarthritic, but not of normal rats.

    PubMed

    Laurido, Claudio; Hernández, Alejandro; Constandil, Luis; Pelissier, Teresa

    2003-11-27

    While increasing evidence points to a role for the nitric oxide (NO)/cyclic guanosine 3,5-monophosphate (GMPc) cascade in hyperalgesia and allodynia, participation of the NO/GMPc pathway in synaptic processing in the spinal cord, i.e. wind-up activity, is less clear. We studied the effects of intrathecal administration of Nomega-nitro-L-arginine methyl ester (L-NAME) and methylene blue, inhibitors of NO synthase and guanylate cyclase respectively, on wind-up activity developed in a C-fiber reflex response paradigm. 5, 10 and 20 microg i.t. of L-NAME or methylene blue did not modify spinal wind-up in normal rats, while a dose-dependent inhibition of wind-up was observed in monoarthritic rats. Results suggest that the NO/GMPc pathway plays a non-significant role in wind-up activity evoked in normal animals, while it may be essential in chronic pain processing.

  1. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures

    PubMed Central

    Juhász, Tamás; Szentléleky, Eszter; Szűcs Somogyi, Csilla; Takács, Roland; Dobrosi, Nóra; Engler, Máté; Tamás, Andrea; Reglődi, Dóra; Zákány, Róza

    2015-01-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during chondrogenesis. Expressions of the mRNAs of PACAP and its major receptor, PAC1 increased, while that of other receptors, VPAC1, VPAC2 decreased upon mechanical stimulus. Mechanical load enhanced the expression of collagen type X, a marker of hypertrophic differentiation of chondrocytes and PACAP addition attenuated this elevation. Moreover, exogenous PACAP also prevented the mechanical load evoked activation of hedgehog signaling: protein levels of Sonic and Indian Hedgehogs and Gli1 transcription factor were lowered while expressions of Gli2 and Gli3 were elevated by PACAP application during mechanical load. Our results suggest that mechanical load activates PACAP signaling and exogenous PACAP acts against the hypertrophy inducing effect of mechanical load. PMID:26230691

  2. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures.

    PubMed

    Juhász, Tamás; Szentléleky, Eszter; Somogyi, Csilla Szűcs; Takács, Roland; Dobrosi, Nóra; Engler, Máté; Tamás, Andrea; Reglődi, Dóra; Zákány, Róza

    2015-07-29

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during chondrogenesis. Expressions of the mRNAs of PACAP and its major receptor, PAC1 increased, while that of other receptors, VPAC1, VPAC2 decreased upon mechanical stimulus. Mechanical load enhanced the expression of collagen type X, a marker of hypertrophic differentiation of chondrocytes and PACAP addition attenuated this elevation. Moreover, exogenous PACAP also prevented the mechanical load evoked activation of hedgehog signaling: protein levels of Sonic and Indian Hedgehogs and Gli1 transcription factor were lowered while expressions of Gli2 and Gli3 were elevated by PACAP application during mechanical load. Our results suggest that mechanical load activates PACAP signaling and exogenous PACAP acts against the hypertrophy inducing effect of mechanical load.

  3. Pre-synaptic kainate receptor-mediated facilitation of glutamate release involves PKA and Ca(2+) -calmodulin at thalamocortical synapses.

    PubMed

    Andrade-Talavera, Yuniesky; Duque-Feria, Paloma; Sihra, Talvinder S; Rodríguez-Moreno, Antonio

    2013-09-01

    We have investigated the mechanisms underlying the facilitatory modulation mediated by kainate receptor (KAR) activation in the cortex, using isolated nerve terminals (synaptosomes) and slice preparations. In cortical nerve terminals, kainate (KA, 100 μM) produced an increase in 4-aminopyridine (4-AP)-evoked glutamate release. In thalamocortical slices, KA (1 μM) produced an increase in the amplitude of evoked excitatory post-synaptic currents (eEPSCs) at synapses established between thalamic axon terminals from the ventrobasal nucleus onto stellate neurons of L4 of the somatosensory cortex. In both, synaptosomes and slices, the effect of KA was antagonized by 6-cyano-7-nitroquinoxaline-2,3-dione, and persisted after pre-treatment with a cocktail of antagonists of other receptors whose activation could potentially have produced facilitation of release indirectly. Mechanistically, the observed effects of KA appear to be congruent in synaptosomal and slice preparations. Thus, the facilitation by KA of synaptosomal glutamate release and thalamocortical synaptic transmission were suppressed by the inhibition of protein kinase A and occluded by the stimulation of adenylyl cyclase. Dissecting this G-protein-independent regulation further in thalamocortical slices, the KAR-mediated facilitation of synaptic transmission was found to be sensitive to the block of Ca(2+) permeant KARs by philanthotoxin. Intriguingly, the synaptic facilitation was abrogated by depletion of intracellular Ca(2+) stores by thapsigargin, or inhibition of Ca(2+) -induced Ca(2+) -release by ryanodine. Thus, the KA-mediated modulation was contingent on both Ca(2+) entry through Ca(2+) -permeable KARs and liberation of intracellular Ca(2+) stores. Finally, sensitivity to W-7 indicated that the increased cytosolic [Ca(2+) ] underpinning KAR-mediated regulation of synaptic transmission at thalamocortical synapses, requires downstream activation of calmodulin. We conclude that neocortical pre

  4. Control of βAR- and N-methyl-D-aspartate (NMDA) Receptor-Dependent cAMP Dynamics in Hippocampal Neurons

    PubMed Central

    Chay, Andrew; Zamparo, Ilaria; Koschinski, Andreas; Zaccolo, Manuela; Blackwell, Kim T.

    2016-01-01

    Norepinephrine, a neuromodulator that activates β-adrenergic receptors (βARs), facilitates learning and memory as well as the induction of synaptic plasticity in the hippocampus. Several forms of long-term potentiation (LTP) at the Schaffer collateral CA1 synapse require stimulation of both βARs and N-methyl-D-aspartate receptors (NMDARs). To understand the mechanisms mediating the interactions between βAR and NMDAR signaling pathways, we combined FRET imaging of cAMP in hippocampal neuron cultures with spatial mechanistic modeling of signaling pathways in the CA1 pyramidal neuron. Previous work implied that cAMP is synergistically produced in the presence of the βAR agonist isoproterenol and intracellular calcium. In contrast, we show that when application of isoproterenol precedes application of NMDA by several minutes, as is typical of βAR-facilitated LTP experiments, the average amplitude of the cAMP response to NMDA is attenuated compared with the response to NMDA alone. Models simulations suggest that, although the negative feedback loop formed by cAMP, cAMP-dependent protein kinase (PKA), and type 4 phosphodiesterase may be involved in attenuating the cAMP response to NMDA, it is insufficient to explain the range of experimental observations. Instead, attenuation of the cAMP response requires mechanisms upstream of adenylyl cyclase. Our model demonstrates that Gs-to-Gi switching due to PKA phosphorylation of βARs as well as Gi inhibition of type 1 adenylyl cyclase may underlie the experimental observations. This suggests that signaling by β-adrenergic receptors depends on temporal pattern of stimulation, and that switching may represent a novel mechanism for recruiting kinases involved in synaptic plasticity and memory. PMID:26901880

  5. Effect of soluble guanylyl cyclase activator and stimulator therapy on nitroglycerin-induced nitrate tolerance in rats.

    PubMed

    Jabs, A; Oelze, M; Mikhed, Y; Stamm, P; Kröller-Schön, S; Welschof, P; Jansen, T; Hausding, M; Kopp, M; Steven, S; Schulz, E; Stasch, J-P; Münzel, T; Daiber, A

    2015-08-01

    Chronic nitroglycerin (GTN) anti-ischemic therapy induces side effects such as nitrate tolerance and endothelial dysfunction. Both phenomena could be based on a desensitization/oxidation of the soluble guanylyl cyclase (sGC). Therefore, the present study aims at investigating the effects of the therapy with the sGC activator BAY 60-2770 and the sGC stimulator BAY 41-8543 on side effects induced by chronic nitroglycerin treatment. Male Wistar rats were treated with nitroglycerin (100mg/kg/d for 3.5days, s.c. in ethanol) and BAY 60-2770 (0.5 or 2.5mg/kg/d) or BAY 41-8543 (1 and 5mg/kg/d) for 6days. Therapy with BAY 60-2770 but not with BAY 41-8543 improved nitroglycerin-triggered endothelial dysfunction and nitrate tolerance, corrected the decrease in aortic nitric oxide levels, improved the cGMP dependent activation of protein kinase I in aortic tissue and reduced vascular, cardiac and whole blood oxidative stress (fluorescence and chemiluminescence assays; 3-nitrotyrosine staining). In contrast to BAY 41-8543, the vasodilator potency of BAY 60-2770 was not impaired in isolated aortic ring segments from nitrate tolerant rats. sGC activator therapy improves partially the adverse effects of nitroglycerin therapy whereas sGC stimulation has only minor beneficial effects pointing to a nitroglycerin-dependent sGC oxidation/inactivation mechanism contributing to nitrate tolerance. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. cAMP and Mitochondria

    PubMed Central

    Valsecchi, Federica; Ramos-Espiritu, Lavoisier S.; Buck, Jochen; Levin, Lonny R.

    2013-01-01

    Phosphorylation of mitochondrial proteins has emerged as a major regulatory mechanism for metabolic adaptation. cAMP signaling and PKA phosphorylation of mitochondrial proteins have just started to be investigated, and the presence of cAMP-generating enzymes and PKA inside mitochondria is still controversial. Here, we discuss the role of cAMP in regulating mitochondrial bioenergetics through protein phosphorylation and the evidence for soluble adenylyl cyclase as the source of cAMP inside mitochondria. PMID:23636265

  7. Mild deficits in mice lacking pituitary adenylate cyclase-activating polypeptide receptor type 1 (PAC1) performing on memory tasks.

    PubMed

    Sauvage, M; Brabet, P; Holsboer, F; Bockaert, J; Steckler, T

    2000-12-08

    Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor subtype 1 (PAC1) have been suggested to play a role in the modulation of learning and memory. However, behavioral evidence for altered mnemonic function due to altered PAC1 activity is missing. Therefore, the role of PAC1 in learning and memory was studied in mouse mutants lacking this receptor (PAC1 knock-out mice), tested in water maze two-choice spatial discrimination, one-trial contextual and cued fear conditioning, and multiple-session contextual discrimination. Water maze spatial discrimination was unaffected in PAC1 mutants, while a mild deficit was observed in multiple session contextual discrimination in PAC1 knock-out mice. Furthermore, PAC1 knock-out mice were able to learn the association between context and shock in one-trial contextual conditioning, but showed faster return to baseline than wild-type mice. Thus, the effects of PAC1 knock-out on modulating performance in these tasks were subtle and suggest that PAC1 only plays a limited role in learning and memory.

  8. Aspartate 102 in the Heme Domain of Soluble Guanylyl Cyclase Has a Key Role in NO Activation

    PubMed Central

    Baskaran, Padmamalini; Heckler, Erin J.; van den Akker, Focco; Beuve, Annie

    2012-01-01

    Nitric oxide (NO) is involved in the physiology and pathophysiology of the cardiovascular and neuronal systems via activation of soluble guanylyl cyclase (sGC), a heme-containing heterodimer. Recent structural studies have allowed a better understanding of the residues that dictate the affinity and binding of NO to the heme and the resulting breakage of the bond between the heme iron and histidine 105 (H105) of the β subunit of sGC. Still, it is unknown how the breakage of the iron–His bond translates into NO-dependent increased catalysis. Structural studies on homologous H-NOX domains in various states pointed to a role for movement of the H105 containing αF helix. Our modeling of the heme-binding domain highlighted conserved residues in the vicinity of H105 that could potentially regulate the extent to which the αF helix shifts and/or propagate the activation signal once the covalent bond with H105 has been broken. These include a direct interaction of αF helix residue D102 with the backbone nitrogen of F120. Mutational analysis of this region points to an essential role of the interactions in the vicinity of H105 for heme stability and identifies aspartate 102 (D102) as having a key role in NO activation following breakage of the iron–His bond. PMID:21491881

  9. Bacillus anthracis Edema Factor Substrate Specificity: Evidence for New Modes of Action

    PubMed Central

    Göttle, Martin; Dove, Stefan; Seifert, Roland

    2012-01-01

    Since the isolation of Bacillus anthracis exotoxins in the 1960s, the detrimental activity of edema factor (EF) was considered as adenylyl cyclase activity only. Yet the catalytic site of EF was recently shown to accomplish cyclization of cytidine 5′-triphosphate, uridine 5′-triphosphate and inosine 5′-triphosphate, in addition to adenosine 5′-triphosphate. This review discusses the broad EF substrate specificity and possible implications of intracellular accumulation of cyclic cytidine 3′:5′-monophosphate, cyclic uridine 3′:5′-monophosphate and cyclic inosine 3′:5′-monophosphate on cellular functions vital for host defense. In particular, cAMP-independent mechanisms of action of EF on host cell signaling via protein kinase A, protein kinase G, phosphodiesterases and CNG channels are discussed. PMID:22852066

  10. The fibrate gemfibrozil is a NO- and haem-independent activator of soluble guanylyl cyclase: in vitro studies

    PubMed Central

    Sharina, I G; Sobolevsky, M; Papakyriakou, A; Rukoyatkina, N; Spyroulias, G A; Gambaryan, S; Martin, E

    2015-01-01

    Background and Purpose Fibrates are a class of drugs widely used to treat dyslipidaemias. They regulate lipid metabolism and act as PPARα agonists. Clinical trials demonstrate that besides changes in lipid profiles, fibrates decrease the incidence of cardiovascular events, with gemfibrozil exhibiting the most pronounced benefit. This study aims to characterize the effect of gemfibrozil on the activity and function of soluble guanylyl cyclase (sGC), the key mediator of NO signalling. Experimental Approach High-throughput screening of a drug library identified gemfibrozil as a direct sGC activator. Activation of sGC is unique to gemfibrozil and is not shared by other fibrates. Key Results Gemfibrozil activated purified sGC, induced endothelium-independent relaxation of aortic rings and inhibited platelet aggregation. Gemfibrozil-dependent activation was absent when the sGC haem domain was deleted, but was significantly enhanced when sGC haem was lacking or oxidized. Oxidation of sGC haem enhanced the vasoactive and anti-platelet effects of gemfibrozil. Gemfibrozil competed with the haem-independent sGC activators ataciguat and cinaciguat. Computational modelling predicted that gemfibrozil occupies the space of the haem group and interacts with residues crucial for haem stabilization. This is consistent with structure-activity data which revealed an absolute requirement for gemfibrozil's carboxyl group. Conclusions and Implications These data suggest that in addition to altered lipid and lipoprotein state, the cardiovascular preventive benefits of gemfibrozil may derive from direct activation and protection of sGC function. A sGC-directed action may explain the more pronounced cardiovascular benefit of gemfibrozil observed over other fibrates and some of the described side effects of gemfibrozil. PMID:25536881

  11. The fibrate gemfibrozil is a NO- and haem-independent activator of soluble guanylyl cyclase: in vitro studies.

    PubMed

    Sharina, I G; Sobolevsky, M; Papakyriakou, A; Rukoyatkina, N; Spyroulias, G A; Gambaryan, S; Martin, E

    2015-05-01

    Fibrates are a class of drugs widely used to treat dyslipidaemias. They regulate lipid metabolism and act as PPARα agonists. Clinical trials demonstrate that besides changes in lipid profiles, fibrates decrease the incidence of cardiovascular events, with gemfibrozil exhibiting the most pronounced benefit. This study aims to characterize the effect of gemfibrozil on the activity and function of soluble guanylyl cyclase (sGC), the key mediator of NO signalling. High-throughput screening of a drug library identified gemfibrozil as a direct sGC activator. Activation of sGC is unique to gemfibrozil and is not shared by other fibrates. Gemfibrozil activated purified sGC, induced endothelium-independent relaxation of aortic rings and inhibited platelet aggregation. Gemfibrozil-dependent activation was absent when the sGC haem domain was deleted, but was significantly enhanced when sGC haem was lacking or oxidized. Oxidation of sGC haem enhanced the vasoactive and anti-platelet effects of gemfibrozil. Gemfibrozil competed with the haem-independent sGC activators ataciguat and cinaciguat. Computational modelling predicted that gemfibrozil occupies the space of the haem group and interacts with residues crucial for haem stabilization. This is consistent with structure-activity data which revealed an absolute requirement for gemfibrozil's carboxyl group. These data suggest that in addition to altered lipid and lipoprotein state, the cardiovascular preventive benefits of gemfibrozil may derive from direct activation and protection of sGC function. A sGC-directed action may explain the more pronounced cardiovascular benefit of gemfibrozil observed over other fibrates and some of the described side effects of gemfibrozil. © 2014 The British Pharmacological Society.

  12. Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides.

    PubMed

    Gagne, Steve J; Stout, Jake M; Liu, Enwu; Boubakir, Zakia; Clark, Shawn M; Page, Jonathan E

    2012-07-31

    Δ(9)-Tetrahydrocannabinol (THC) and other cannabinoids are responsible for the psychoactive and medicinal properties of Cannabis sativa L. (marijuana). The first intermediate in the cannabinoid biosynthetic pathway is proposed to be olivetolic acid (OA), an alkylresorcinolic acid that forms the polyketide nucleus of the cannabinoids. OA has been postulated to be synthesized by a type III polyketide synthase (PKS) enzyme, but so far type III PKSs from cannabis have been shown to produce catalytic byproducts instead of OA. We analyzed the transcriptome of glandular trichomes from female cannabis flowers, which are the primary site of cannabinoid biosynthesis, and searched for polyketide cyclase-like enzymes that could assist in OA cyclization. Here, we show that a type III PKS (tetraketide synthase) from cannabis trichomes requires the presence of a polyketide cyclase enzyme, olivetolic acid cyclase (OAC), which catalyzes a C2-C7 intramolecular aldol condensation with carboxylate retention to form OA. OAC is a dimeric α+β barrel (DABB) protein that is structurally similar to polyketide cyclases from Streptomyces species. OAC transcript is present at high levels in glandular trichomes, an expression profile that parallels other cannabinoid pathway enzymes. Our identification of OAC both clarifies the cannabinoid pathway and demonstrates unexpected evolutionary parallels between polyketide biosynthesis in plants and bacteria. In addition, the widespread occurrence of DABB proteins in plants suggests that polyketide cyclases may play an overlooked role in generating plant chemical diversity.

  13. Adenylyl cylases 1 and 8 mediate select striatal-dependent behaviors and sensitivity to ethanol stimulation in the adolescent period following acute neonatal ethanol exposure.

    PubMed

    Susick, Laura L; Lowing, Jennifer L; Bosse, Kelly E; Hildebrandt, Clara C; Chrumka, Alexandria C; Conti, Alana C

    2014-08-01

    Neonatal alcohol exposure in rodents causes dramatic neurodegenerative effects throughout the developing nervous system, particularly in the striatum, acutely after exposure. These acute neurodegenerative effects are augmented in mice lacking adenylyl cyclases 1 and 8 (AC1/8) as neonatal mice with a genetic deletion of both AC isoforms (DKO) have increased vulnerability to ethanol-induced striatal neurotoxicity compared to wild type (WT) controls. While neonatal ethanol exposure is known to negatively impact cognitive behaviors, such as executive functioning and working memory in adolescent and adult animals, the threshold of ethanol exposure required to impinge upon developmental behaviors in mice has not been extensively examined. Therefore, the purpose of this study was to determine the behavioral effects of neonatal ethanol exposure using various striatal-dependent developmental benchmarks and to assess the impact of AC1/8 deletion on this developmental progression. WT and DKO mice were treated with 2.5 g/kg ethanol or saline on postnatal day (P)6 and later subjected to the wire suspension, negative geotaxis, postural reflex, grid hang, tail suspension and accelerating rotarod tests at various time points. At P30, mice were evaluated for their hypnotic responses to 4.0 g/kg ethanol by using the loss of righting reflex assay and ethanol-induced stimulation of locomotor activity after 2.0 g/kg ethanol. Ethanol exposure significantly impaired DKO performance in the negative geotaxis test while genetic deletion of AC1/8 alone increased grid hang time and decreased immobility time in the tail suspension test with a concomitant increase in hindlimb clasping behavior. Locomotor stimulation was significantly increased in animals that received ethanol as neonates, peaking significantly in ethanol-treated DKO mice compared to ethanol-treated WT controls, while sedation duration following high-dose ethanol challenge was unaffected. These data indicate that the

  14. Identification of a soluble guanylate cyclase in RBCs: preserved activity in patients with coronary artery disease.

    PubMed

    Cortese-Krott, Miriam M; Mergia, Evanthia; Kramer, Christian M; Lückstädt, Wiebke; Yang, Jiangning; Wolff, Georg; Panknin, Christina; Bracht, Thilo; Sitek, Barbara; Pernow, John; Stasch, Johannes-Peter; Feelisch, Martin; Koesling, Doris; Kelm, Malte

    2018-04-01

    Endothelial dysfunction is associated with decreased NO bioavailability and impaired activation of the NO receptor soluble guanylate cyclase (sGC) in the vasculature and in platelets. Red blood cells (RBCs) are known to produce NO under hypoxic and normoxic conditions; however evidence of expression and/or activity of sGC and downstream signaling pathway including phopshodiesterase (PDE)-5 and protein kinase G (PKG) in RBCs is still controversial. In the present study, we aimed to investigate whether RBCs carry a functional sGC signaling pathway and to address whether this pathway is compromised in coronary artery disease (CAD). Using two independent chromatographic procedures, we here demonstrate that human and murine RBCs carry a catalytically active α 1 β 1 -sGC (isoform 1), which converts 32 P-GTP into 32 P-cGMP, as well as PDE5 and PKG. Specific sGC stimulation by NO+BAY 41-2272 increases intracellular cGMP-levels up to 1000-fold with concomitant activation of the canonical PKG/VASP-signaling pathway. This response to NO is blunted in α1-sGC knockout (KO) RBCs, but fully preserved in α2-sGC KO. In patients with stable CAD and endothelial dysfunction red cell eNOS expression is decreased as compared to aged-matched controls; by contrast, red cell sGC expression/activity and responsiveness to NO are fully preserved, although sGC oxidation is increased in both groups. Collectively, our data demonstrate that an intact sGC/PDE5/PKG-dependent signaling pathway exists in RBCs, which remains fully responsive to NO and sGC stimulators/activators in patients with endothelial dysfunction. Targeting this pathway may be helpful in diseases with NO deficiency in the microcirculation like sickle cell anemia, pulmonary hypertension, and heart failure. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. A single gene for lycopene cyclase, phytoene synthase, and regulation of carotene biosynthesis in Phycomyces

    PubMed Central

    Arrach, Nabil; Fernández-Martín, Rafael; Cerdá-Olmedo, Enrique; Avalos, Javier

    2001-01-01

    Previous complementation and mapping of mutations that change the usual yellow color of the Zygomycete Phycomyces blakesleeanus to white or red led to the definition of two structural genes for carotene biosynthesis. We have cloned one of these genes, carRA, by taking advantage of its close linkage to the other, carB, responsible for phytoene dehydrogenase. The sequences of the wild type and six mutants have been established, compared with sequences in other organisms, and correlated with the mutant phenotypes. The carRA and carB coding sequences are separated by 1,381 untranslated nucleotides and are divergently transcribed. Gene carRA contains separate domains for two enzymes, lycopene cyclase and phytoene synthase, and regulates the overall activity of the pathway and its response to physical and chemical stimuli from the environment. The lycopene cyclase domain of carRA derived from a duplication of a gene from a common ancestor of fungi and Brevibacterium linens; the phytoene synthase domain is similar to the phytoene and squalene synthases of many organisms; but the regulatory functions appear to be specific to Phycomyces. PMID:11172012

  16. Partial reactions of d-glucose 6-phosphate–1 l-myoinositol 1-phosphate cyclase

    PubMed Central

    Barnett, J. E. G.; Rasheed, A.; Corina, D. L.

    1973-01-01

    After removal of tightly bound NAD+ by using charcoal, a preparation of d-glucose 6-phosphate–1 l-myoinositol 1-phosphate cyclase catalysed the reduction of 5-keto-d-glucitol 6-phosphate and 5-keto-d-glucose 6-phosphate by [4-3H]NADH to give [5-3H]-glucitol 6-phosphate and [5-3H]glucose 6-phosphate respectively. The position of the tritium atom in the latter was shown by degradation. Both enzyme-catalysed reductions were strongly inhibited by 2-deoxy-d-glucose 6-phosphate, a powerful competitive inhibitor of inositol cyclase. The charcoal-treated enzyme preparation also converted 5-keto-d-glucose 6-phosphate into [3H]myoinositol 1-phosphate in the presence of [4-3H]NADH, but less effectively. These partial reactions of inositol cyclase are interpreted as providing strong evidence for the formation of 5-keto-d-glucose 6-phosphate as an enzyme-bound intermediate in the conversion of d-glucose 6-phosphate into 1 l-myoinositol 1-phosphate. The enzyme was partially inactivated by NaBH4 in the presence of NAD+. Glucose 6-phosphate did not increase the inactivation, and there was no inactivation in the absence of NAD+. There was no evidence for Schiff base formation during the cyclization. d-Glucitol 6-phosphate (l-sorbitol 1-phosphate) was a good inhibitor of the overall reaction. It did not inactivate the enzyme. The apparent molecular weight of inositol cyclase as determined by Sephadex chromatography was 2.15×105. PMID:4352864

  17. Pituitary adenylate cyclase-activating polypeptide (PACAP) in zebrafish models of nephrotic syndrome

    PubMed Central

    van den Heuvel, Lambertus P.; Khodaparast, Laleh; Khodaparast, Ladan; van Geet, Chris; Freson, Kathleen

    2017-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is an inhibitor of megakaryopoiesis and platelet function. Recently, PACAP deficiency was observed in children with nephrotic syndrome (NS), associated with increased platelet count and aggregability and increased risk of thrombosis. To further study PACAP deficiency in NS, we used transgenic Tg(cd41:EGFP) zebrafish with GFP-labeled thrombocytes. We generated two models for congenital NS, a morpholino injected model targeting nphs1 (nephrin), which is mutated in the Finnish-type congenital NS. The second model was induced by exposure to the nephrotoxic compound adriamycin. Nephrin RNA expression was quantified and zebrafish embryos were live-screened for proteinuria and pericardial edema as evidence of renal impairment. Protein levels of PACAP and its binding-protein ceruloplasmin were measured and GFP-labeled thrombocytes were quantified. We also evaluated the effects of PACAP morpholino injection and the rescue effects of PACAP-38 peptide in both congenital NS models. Nephrin downregulation and pericardial edema were observed in both nephrin morpholino injected and adriamycin exposed congenital NS models. However, PACAP deficiency was demonstrated only in the adriamycin exposed condition. Ceruloplasmin levels and the number of GFP-labeled thrombocytes remained unchanged in both models. PACAP morpholino injections worsened survival rates and the edema phenotype in both congenital NS models while injection with human PACAP-38 could only rescue the adriamycin exposed model. We hereby report, for the first time, PACAP deficiency in a NS zebrafish model as a consequence of adriamycin exposure. However, distinct from the human congenital NS, both zebrafish models retained normal levels of ceruloplasmin and thrombocytes. We further extend the renoprotective effects of the PACAP-38 peptide against adriamycin toxicity in zebrafish. PMID:28759637

  18. Hemodynamic actions of systemically injected pituitary adenylate cyclase activating polypeptide-27 in the rat

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    1999-01-01

    The aims of this study were (1) to characterize the hemodynamic mechanisms underlying the hypotensive effects of pituitary adenylate cyclase activating polypeptide-27 (PACAP-27 0.1-2.0 nmol/kg, i.v.) in pentobarbital-anesthetized rats, and (2) to determine the roles of the autonomic nervous system, adrenal catecholamines and endothelium-derived nitric oxide (NO) in the expression of PACAP-27-mediated effects on hemodynamic function. PACAP-27 produced dose-dependent decreases in mean arterial blood pressure and hindquarter and mesenteric vascular resistances in saline-treated rats. PACAP-27 also produced pronounced falls in mean arterial blood pressure in rats treated with the ganglion blocker, chlorisondamine (5 mg/kg, i.v.). The hypotensive and vasodilator actions of PACAP-27 were not attenuated by the beta-adrenoceptor antagonist, propranolol (1 mg/kg, i.v.), or the NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME 50 micromol/kg, i.v.). PACAP-27 produced dose-dependent increases in heart rate whereas the hypotensive response produced by the nitrovasodilator, sodium nitroprusside (10 microg/kg, i.v.), was associated with a minimal tachycardia. The PACAP-27-induced tachycardia was unaffected by chlorisondamine, but was virtually abolished by propranolol. These results suggest that the vasodilator effects of PACAP-27 are due to actions in the microcirculation rather than to the release of adrenal catecholamines and that this vasodilation may not involve the release of endothelium-derived NO. These results also suggest that PACAP-27 produces tachycardia by directly releasing norepinephrine from cardiac sympathetic nerve terminals rather than by direct or baroreceptor reflex-mediated increases in sympathetic nerve activity.

  19. Germacrene C synthase from Lycopersicon esculentum cv. VFNT Cherry tomato: cDNA isolation, characterization, and bacterial expression of the multiple product sesquiterpene cyclase

    PubMed Central

    Colby, Sheila M.; Crock, John; Dowdle-Rizzo, Barbara; Lemaux, Peggy G.; Croteau, Rodney

    1998-01-01

    Germacrene C was found by GC-MS and NMR analysis to be the most abundant sesquiterpene in the leaf oil of Lycopersicon esculentum cv. VFNT Cherry, with lesser amounts of germacrene A, guaia-6,9-diene, germacrene B, β-caryophyllene, α-humulene, and germacrene D. Soluble enzyme preparations from leaves catalyzed the divalent metal ion-dependent cyclization of [1-3H]farnesyl diphosphate to these same sesquiterpene olefins, as determined by radio-GC. To obtain a germacrene synthase cDNA, a set of degenerate primers was constructed based on conserved amino acid sequences of related terpenoid cyclases. With cDNA prepared from leaf epidermis-enriched mRNA, these primers amplified a 767-bp fragment that was used as a hybridization probe to screen the cDNA library. Thirty-one clones were evaluated for functional expression of terpenoid cyclase activity in Escherichia coli by using labeled geranyl, farnesyl, and geranylgeranyl diphosphates as substrates. Nine cDNA isolates expressed sesquiterpene synthase activity, and GC-MS analysis of the products identified germacrene C with smaller amounts of germacrene A, B, and D. None of the expressed proteins was active with geranylgeranyl diphosphate; however, one truncated protein converted geranyl diphosphate to the monoterpene limonene. The cDNA inserts specify a deduced polypeptide of 548 amino acids (Mr = 64,114), and sequence comparison with other plant sesquiterpene cyclases indicates that germacrene C synthase most closely resembles cotton δ-cadinene synthase (50% identity). PMID:9482865

  20. Structure-activity relationships of benzimidazole-based glutaminyl cyclase inhibitors featuring a heteroaryl scaffold.

    PubMed

    Ramsbeck, Daniel; Buchholz, Mirko; Koch, Birgit; Böhme, Livia; Hoffmann, Torsten; Demuth, Hans-Ulrich; Heiser, Ulrich

    2013-09-12

    Glutaminyl cyclase (hQC) has emerged as a new potential target for the treatment of Alzheimer's disease (AD). The inhibition of hQC prevents of the formation of the Aβ3(pE)-40,42 species which were shown to be of elevated neurotoxicity and are likely to act as a seeding core, leading to an accelerated formation of Aβ-oligomers and fibrils. This work presents a new class of inhibitors of hQC, resulting from a pharmacophore-based screen. Hit molecules were identified, containing benzimidazole as the metal binding group connected to 1,3,4-oxadiazole as the central scaffold. The subsequent optimization resulted in benzimidazolyl-1,3,4-thiadiazoles and -1,2,3-triazoles with an inhibitory potency in the nanomolar range. Further investigation into the potential binding mode of the new compound classes combined molecular docking and site directed mutagenesis studies.

  1. Docosahexaenoic acid alters Gsα localization in lipid raft and potentiates adenylate cyclase.

    PubMed

    Zhu, Zhuoran; Tan, Zhoubin; Li, Yan; Luo, Hongyan; Hu, Xinwu; Tang, Ming; Hescheler, Jürgen; Mu, Yangling; Zhang, Lanqiu

    2015-01-01

    Supplementation with docosahexaenoic acid (DHA), an ω-3 polyunsaturated fatty acid (PUFA), recently has become popular for the amelioration of depression; however the molecular mechanism of DHA action remains unclear. The aim of this study was to investigate the mechanism underlying the antidepressant effect of DHA by evaluating Gsα localization in lipid raft and the activity of adenylate cyclase in an in vitro glioma cell model. Lipid raft fractions from C6 glioma cells treated chronically with DHA were isolated by sucrose gradient ultracentrifugation. The content of Gsα in lipid raft was analyzed by immunoblotting and colocalization of Gsα with lipid raft was subjected to confocal microscopic analysis. The intracellular cyclic adenosine monophosphate (cAMP) level was determined by cAMP immunoassay kit. DHA decreased the amount of Gsα in lipid raft, whereas whole cell lysate Gsα was not changed. Confocal microscopic analysis demonstrated that colocalization of Gsα with lipid raft was decreased, whereas DHA increased intracellular cAMP accumulation in a dose-dependent manner. Interestingly, we found that DHA increased the lipid raft level, instead of disrupting it. The results of this study suggest that DHA may exert its antidepressant effect by translocating Gsα from lipid raft and potentiating the activity of adenylate cyclase. Importantly, the reduced Gsα in lipid raft by DHA is independent of disruption of lipid raft. Overall, the study provides partial preclinical evidence supporting a safe and effective therapy using DHA for depression. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Kinetic Analysis of DNA Strand Joining by Chlorella Virus DNA Ligase and the Role of Nucleotidyltransferase Motif VI in Ligase Adenylylation*

    PubMed Central

    Samai, Poulami; Shuman, Stewart

    2012-01-01

    Chlorella virus DNA ligase (ChVLig) is an instructive model for mechanistic studies of the ATP-dependent DNA ligase family. ChVLig seals 3′-OH and 5′-PO4 termini via three chemical steps: 1) ligase attacks the ATP α phosphorus to release PPi and form a covalent ligase-adenylate intermediate; 2) AMP is transferred to the nick 5′-phosphate to form DNA-adenylate; 3) the 3′-OH of the nick attacks DNA-adenylate to join the polynucleotides and release AMP. Each chemical step requires Mg2+. Kinetic analysis of nick sealing by ChVLig-AMP revealed that the rate constant for phosphodiester synthesis (kstep3 = 25 s−1) exceeds that for DNA adenylylation (kstep2 = 2.4 s−1) and that Mg2+ binds with similar affinity during step 2 (Kd = 0.77 mm) and step 3 (Kd = 0.87 mm). The rates of DNA adenylylation and phosphodiester synthesis respond differently to pH, such that step 3 becomes rate-limiting at pH ≤ 6.5. The pH profiles suggest involvement of one and two protonation-sensitive functional groups in catalysis of steps 2 and 3, respectively. We suggest that the 5′-phosphate of the nick is the relevant protonation-sensitive moiety and that a dianionic 5′-phosphate is necessary for productive step 2 catalysis. Motif VI, located at the C terminus of the OB-fold domain of ChVLig, is a conserved feature of ATP-dependent DNA ligases and GTP-dependent mRNA capping enzymes. Presteady state and burst kinetic analysis of the effects of deletion and missense mutations highlight the catalytic contributions of ChVLig motif VI, especially the Asp-297 carboxylate, exclusively during the ligase adenylylation step. PMID:22745124

  3. Stress-related disorders, pituitary adenylate cyclase-activating peptide (PACAP)ergic system, and sex differences.

    PubMed

    Ramikie, Teniel S; Ressler, Kerry J

    2016-12-01

    Trauma-related disorders, such as posttraumatic stress disorder (PTSD) are remarkably common and debilitating, and are often characterized by dysregulated threat responses. Across numerous epidemiological studies, females have been found to have an approximately twofold increased risk for PTSD and other stress-related disorders. Understanding the biological mechanisms of this differential risk is of critical importance. Recent data suggest that the pituitary adenylate cyclase-activating polypeptide (PACAP) pathway is a critical regulator of the stress response across species. Moreover, increasing evidence suggests that this pathway is regulated by both stress and estrogen modulation and may provide an important window into understanding mechanisms of sex differences in the stress response. We have recently shown that PACAP and its receptor (PAC1R) are critical mediators of abnormal processes after psychological trauma. Notably, in heavily traumatized human subjects, there appears to be a robust sex-specific association of PACAP blood levels and PAC1R gene variants with fear physiology, PTSD diagnosis, and symptoms, specifically in females. The sex-specific association occurs within a single-nucleotide polymorphism (rs2267735) that resides in a putative estrogen response element involved in PAC1R gene regulation. Complementing these human data, the PAC1R messenger RNA is induced with fear conditioning or estrogen replacement in rodent models. These data suggest that perturbations in the PACAP-PAC1R pathway are regulated by estrogen and are involved in abnormal fear responses underlying PTSD.

  4. GPR30: a seven-transmembrane-spanning estrogen receptor that triggers EGF release.

    PubMed

    Filardo, Edward J; Thomas, Peter

    2005-10-01

    Heterotrimeric G proteins and seven-transmembrane-spanning (7TM) receptors are implicated in rapid estrogen signaling. The orphan 7TM receptor GPR30 is linked to estrogen-mediated activation of adenylyl cyclase, release of epidermal growth factor (EGF)-related ligands, and specific estrogen binding. GPR30 acts independently of estrogen receptors, ERalpha and ERbeta, and probably functions as a heptahelical ER. 7TM receptors elicit signals that stimulate second messengers, and convey intracellular signals via EGF receptors. Identification of GPR30 as a Gs-coupled 7TM receptor that triggers release of heparin-binding EGF establishes its role in cell signaling cascades initiated by estrogens, and explains their capacity to activate second messengers and promote EGF-like effects. Thus, estrogen can signal by the same mechanism as various other hormones, through a specific 7TM receptor.

  5. Pituitary adenylate cyclase-activating polypeptide type 1 (PAC1) receptor is expressed during embryonic development of the earthworm.

    PubMed

    Boros, Akos; Somogyi, Ildikó; Engelmann, Péter; Lubics, Andrea; Reglodi, Dóra; Pollák, Edit; Molnár, László

    2010-03-01

    Pituitary adenylate cyclase activating polypeptide (PACAP)-like molecules have been shown to be present in cocoon albumin and in Eisenia fetida embryos at an early developmental stage (E1) by immunocytochemistry and radioimmunoassay. Here, we focus on detecting the stage at which PAC1 receptor (PAC1R)-like immunoreactivity first appears in germinal layers and structures, e.g., various parts of the central nervous system (CNS), in developing earthworm embryos. PAC1R-like immunoreactivity was revealed by Western blot and Far Western blot as early as the E2 developmental stage, occurring in the ectoderm and later in specific neurons of the developing CNS. Labeled CNS neurons were first seen in the supraesophageal ganglion (brain) and subsequently in the subesophageal and ventral nerve cord ganglia. Ultrastructurally, PAC1Rs were located mainly on plasma membranes and intracellular membranes, especially on cisternae of the endoplasmic reticulum. Therefore, PACAP-like compounds probably influence the differentiation of germinal layers (at least the ectoderm) and of some neurons and might act as signaling molecules during earthworm embryonic development.

  6. Human recombinant soluble guanylyl cyclase: expression, purification, and regulation

    NASA Technical Reports Server (NTRS)

    Lee, Y. C.; Martin, E.; Murad, F.

    2000-01-01

    The alpha1- and beta1-subunits of human soluble guanylate cyclase (sGC) were coexpressed in the Sf9 cells/baculovirus system. In addition to the native enzyme, constructs with hexahistidine tag at the amino and carboxyl termini of each subunit were coexpressed. This permitted the rapid and efficient purification of active recombinant enzyme on a nickel-affinity column. The enzyme has one heme per heterodimer and was readily activated with the NO donor sodium nitroprusside or 3-(5'-hydroxymethyl-2'furyl)-1-benzyl-indazole (YC-1). Sodium nitroprusside and YC-1 treatment potentiated each other in combination and demonstrated a remarkable 2,200-fold stimulation of the human recombinant sGC. The effects were inhibited with 1H-(1,2, 4)oxadiazole(4,3-a)quinoxalin-1one (ODQ). The kinetics of the recombinant enzyme with respect to GTP was examined. The products of the reaction, cGMP and pyrophosphate, inhibited the enzyme. The extent of inhibition by cGMP depended on the activation state of the enzyme, whereas inhibition by pyrophosphate was not affected by the enzyme state. Both reaction products displayed independent binding and cooperativity with respect to enzyme inhibition. The expression of large quantities of active enzyme will facilitate structural characterization of the protein.

  7. β1-adrenergic receptors activate two distinct signaling pathways in striatal neurons

    PubMed Central

    Meitzen, John; Luoma, Jessie I.; Stern, Christopher M.; Mermelstein, Paul G.

    2010-01-01

    Monoamine action in the dorsal striatum and nucleus accumbens plays essential roles in striatal physiology. Although research often focuses on dopamine and its receptors, norepinephrine and adrenergic receptors are also crucial in regulating striatal function. While noradrenergic neurotransmission has been identified in the striatum, little is known regarding the signaling pathways activated by β-adrenergic receptors in this brain region. Using cultured striatal neurons, we characterized a novel signaling pathway by which activation of β1-adrenergic receptors leads to the rapid phosphorylation of cAMP Response Element Binding Protein (CREB), a transcription-factor implicated as a molecular switch underlying long-term changes in brain function. Norepinephrine-mediated CREB phosphorylation requires β1-adrenergic receptor stimulation of a receptor tyrosine kinase, ultimately leading to the activation of a Ras/Raf/MEK/MAPK/MSK signaling pathway. Activation of β1-adrenergic receptors also induces CRE-dependent transcription and increased c-fos expression. In addition, stimulation of β1-adrenergic receptors produces cAMP production, but surprisingly, β1-adrenergic receptor activation of adenylyl cyclase was not functionally linked to rapid CREB phosphorylation. These findings demonstrate that activation of β1-adrenergic receptors on striatal neurons can stimulate two distinct signaling pathways. These adrenergic actions can produce long-term changes in gene expression, as well as rapidly modulate cellular physiology. By elucidating the mechanisms by which norepinephrine and β1-adrenergic receptor activation affects striatal physiology, we provide the means to more fully understand the role of monoamines in modulating striatal function, specifically how norepinephrine and β1-adrenergic receptors may affect striatal physiology. PMID:21143600

  8. Cannabinoid inhibition of adenylate cyclase-mediated signal transduction and interleukin 2 (IL-2) expression in the murine T-cell line, EL4.IL-2.

    PubMed

    Condie, R; Herring, A; Koh, W S; Lee, M; Kaminski, N E

    1996-05-31

    Cannabinoid receptors negatively regulate adenylate cyclase through a pertussis toxin-sensitive GTP-binding protein. In the present studies, signaling via the adenylate cyclase/cAMP pathway was investigated in the murine thymoma-derived T-cell line, EL4.IL-2. Northern analysis of EL4.IL-2 cells identified the presence of 4-kilobase CB2 but not CB1 receptor-subtype mRNA transcripts. Southern analysis of genomic DNA digests for the CB2 receptor demonstrated identical banding patterns for EL4.IL-2 cells and mouse-derived DNA, both of which were dissimilar to DNA isolated from rat. Treatment of EL4.IL-2 cells with either cannabinol or Delta9-THC disrupted the adenylate cyclase signaling cascade by inhibiting forskolin-stimulated cAMP accumulation which consequently led to a decrease in protein kinase A activity and the binding of transcription factors to a CRE consensus sequence. Likewise, an inhibition of phorbol 12-myristate 13-acetate (PMA)/ionomycin-induced interleukin 2 (IL-2) protein secretion, which correlated to decreased IL-2 gene transcription, was induced by both cannabinol and Delta9-THC. Further, cannabinoid treatment also decreased PMA/ionomycin-induced nuclear factor binding to the AP-1 proximal site of the IL-2 promoter. Conversely, forskolin enhanced PMA/ionomycin-induced AP-1 binding. These findings suggest that inhibition of signal transduction via the adenylate cyclase/cAMP pathway induces T-cell dysfunction which leads to a diminution in IL-2 gene transcription.

  9. HPr antagonizes the anti-σ70 activity of Rsd in Escherichia coli.

    PubMed

    Park, Young-Ha; Lee, Chang-Ro; Choe, Mangyu; Seok, Yeong-Jae

    2013-12-24

    The bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) is a multicomponent system that participates in a variety of physiological processes in addition to the phosphorylation-coupled transport of numerous sugars. In Escherichia coli and other enteric bacteria, enzyme IIA(Glc) (EIIA(Glc)) is known as the central processing unit of carbon metabolism and plays multiple roles, including regulation of adenylyl cyclase, the fermentation/respiration switch protein FrsA, glycerol kinase, and several non-PTS transporters, whereas the only known regulatory role of the E. coli histidine-containing phosphocarrier protein HPr is in the activation of glycogen phosphorylase. Because HPr is known to be more abundant than EIIA(Glc) in enteric bacteria, we assumed that there might be more regulatory mechanisms connected with HPr. The ligand fishing experiment in this study identified Rsd, an anti-sigma factor known to complex with σ(70) in stationary-phase cells, as an HPr-binding protein in E. coli. Only the dephosphorylated form of HPr formed a tight complex with Rsd and thereby inhibited complex formation between Rsd and σ(70). Dephosphorylated HPr, but not phosphorylated HPr, antagonized the inhibitory effect of Rsd on σ(70)-dependent transcriptions both in vivo and in vitro, and also influenced the competition between σ(70) and σ(S) for core RNA polymerase in the presence of Rsd. Based on these data, we propose that the anti-σ(70) activity of Rsd is regulated by the phosphorylation state-dependent interaction of HPr with Rsd.

  10. HPr antagonizes the anti-σ70 activity of Rsd in Escherichia coli

    PubMed Central

    Park, Young-Ha; Lee, Chang-Ro; Choe, Mangyu; Seok, Yeong-Jae

    2013-01-01

    The bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) is a multicomponent system that participates in a variety of physiological processes in addition to the phosphorylation-coupled transport of numerous sugars. In Escherichia coli and other enteric bacteria, enzyme IIAGlc (EIIAGlc) is known as the central processing unit of carbon metabolism and plays multiple roles, including regulation of adenylyl cyclase, the fermentation/respiration switch protein FrsA, glycerol kinase, and several non-PTS transporters, whereas the only known regulatory role of the E. coli histidine-containing phosphocarrier protein HPr is in the activation of glycogen phosphorylase. Because HPr is known to be more abundant than EIIAGlc in enteric bacteria, we assumed that there might be more regulatory mechanisms connected with HPr. The ligand fishing experiment in this study identified Rsd, an anti-sigma factor known to complex with σ70 in stationary-phase cells, as an HPr-binding protein in E. coli. Only the dephosphorylated form of HPr formed a tight complex with Rsd and thereby inhibited complex formation between Rsd and σ70. Dephosphorylated HPr, but not phosphorylated HPr, antagonized the inhibitory effect of Rsd on σ70-dependent transcriptions both in vivo and in vitro, and also influenced the competition between σ70 and σS for core RNA polymerase in the presence of Rsd. Based on these data, we propose that the anti-σ70 activity of Rsd is regulated by the phosphorylation state-dependent interaction of HPr with Rsd. PMID:24324139

  11. Adenylate cyclase-stimulating, bone-resorbing and B TGF-like activities in canine apocrine cell adenocarcinoma of the anal sac.

    PubMed

    Weir, E C; Centrella, M; Matus, R E; Brooks, M L; Wu, T; Insogna, K L

    1988-12-01

    Canine apocrine cell adenocarcinoma of the anal sac (APO-AS) is a spontaneously occurring tumor that causes humorally mediated hypercalcemia in 90% of cases. To further define the nature of the responsible mediator in APO-AS, we examined tumor extracts from five APO-AS and four control tumors for adenylate cyclase-stimulating activity (ACSA). All extracts from APO-AS contained potent ACSA, whereas the four control tumors did not. The ACSA extracted from one tumor demonstrated a dose response curve parallel to that of synthetic bovinePTH-(1-34) and was 80% inhibited by Nle8,18,Tyr34 bPTH-(3-34)amide at a concentration of 10(-5) M. Extracts from three APO-AS and three control tumors were also examined for in vitro bone-resorbing activity (BRA). All APO-AS contained significant BRA, stimulating resorption 1.47 to 2.13-fold over basal, whereas none of the control tumors stimulated resorption. Purification of one extract using C18 reverse-phase high pressure liquid chromatography (RP-HPLC) resulted in a single sharp peak of ACSA which was 400-fold purified compared with the initial extract. This pool also contained significant bone-resorbing activity, whereas none of the adjacent pools did. Purification of a second extract using sequential CN and C18 RP-HPLC followed by size exclusion HPLC resulted in material that was at least 10,000-fold purified, and showed co-purification of ACSA and B TGF-like activity.

  12. Selective blockade of a slowly inactivating potassium current in striatal neurons by (+/-) 6-chloro-APB hydrobromide (SKF82958).

    PubMed

    Nisenbaum, E S; Mermelstein, P G; Wilson, C J; Surmeier, D J

    1998-07-01

    The ion channels of rat striatal neurons are known to be modulated by stimulation of D1 dopamine receptors. The susceptibility of depolarization-activated K+ currents to be modulated by the D1 agonist, 6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetra-hydro-1H-3-benzaze pine (APB) was investigated using whole-cell voltage-clamp recording techniques from acutely isolated neurons. APB (0.01-100 microM) produced a concentration-dependent reduction in the total K+ current. At intermediate concentrations (ca. 10 microM), APB selectively depressed the slowly inactivating A-current (I(As)). A similar effect was produced by application of the D1 agonist, 7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1-H-2-benzazepine (SKF38393, 10 microM). APB reduced I(As) rapidly, having onset and recovery time constants of 1.2 sec and 1.6 sec, respectively. Unexpectedly, the effect of APB could not be mimicked by application of Sp-adenosine 3',5'-cyclic monophosphothioate triethylamine (Sp-cAMPS, 100-200 microM), a membrane-permeable analog of cyclic AMP (cAMP), or by pretreatment with forskolin (25 microM), an activator of adenylyl cyclase. The reduction in I(As) also was not blocked by pretreatment with the D1 receptor antagonist, R(+)-SCH23390 hydrochloride (SCH23390, 10-20 microM). In addition, intracellular dialysis with guanosine-5'-O-(2-thiodiphosphate (GDP-beta-S, 200 microM) did not preclude the APB-induced inhibition of I(As), nor did dialysis with guanosine-5'-O-(3-thiotriphosphate (GTP-gamma-S, 400 microM) prevent reversal of the effect. The effect of APB was produced by a reduction in the maximal conductance of I(As) without changing the voltage-dependence of the current. Collectively, these results argue that APB does not inhibit I(As) through D1 receptors coupled to stimulation of adenylyl cyclase, but rather by allosterically regulating or blocking the channels giving rise to this current.

  13. Opioid receptor activation triggering downregulation of cAMP improves effectiveness of anti-cancer drugs in treatment of glioblastoma

    PubMed Central

    Friesen, Claudia; Hormann, Inis; Roscher, Mareike; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf; Debatin, Klaus-Michael; Miltner, Erich

    2014-01-01

    Glioblastoma are the most frequent and malignant human brain tumors, having a very poor prognosis. The enhanced radio- and chemoresistance of glioblastoma and the glioblastoma stem cells might be the main reason why conventional therapies fail. The second messenger cyclic AMP (cAMP) controls cell proliferation, differentiation, and apoptosis. Downregulation of cAMP sensitizes tumor cells for anti-cancer treatment. Opioid receptor agonists triggering opioid receptors can activate inhibitory Gi proteins, which, in turn, block adenylyl cyclase activity reducing cAMP. In this study, we show that downregulation of cAMP by opioid receptor activation improves the effectiveness of anti-cancer drugs in treatment of glioblastoma. The µ-opioid receptor agonist D,L-methadone sensitizes glioblastoma as well as the untreatable glioblastoma stem cells for doxorubicin-induced apoptosis and activation of apoptosis pathways by reversing deficient caspase activation and deficient downregulation of XIAP and Bcl-xL, playing critical roles in glioblastomas’ resistance. Blocking opioid receptors using the opioid receptor antagonist naloxone or increasing intracellular cAMP by 3-isobutyl-1-methylxanthine (IBMX) strongly reduced opioid receptor agonist-induced sensitization for doxorubicin. In addition, the opioid receptor agonist D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux, whereas doxorubicin increased opioid receptor expression in glioblastomas. Furthermore, opioid receptor activation using D,L-methadone inhibited tumor growth significantly in vivo. Our findings suggest that opioid receptor activation triggering downregulation of cAMP is a promising strategy to inhibit tumor growth and to improve the effectiveness of anti-cancer drugs in treatment of glioblastoma and in killing glioblastoma stem cells. PMID:24626197

  14. High-throughput screening using the differential radial capillary action of ligand assay identifies ebselen as an inhibitor of diguanylate cyclases.

    PubMed

    Lieberman, Ori J; Orr, Mona W; Wang, Yan; Lee, Vincent T

    2014-01-17

    The rise of bacterial resistance to traditional antibiotics has motivated recent efforts to identify new drug candidates that target virulence factors or their regulatory pathways. One such antivirulence target is the cyclic-di-GMP (cdiGMP) signaling pathway, which regulates biofilm formation, motility, and pathogenesis. Pseudomonas aeruginosa is an important opportunistic pathogen that utilizes cdiGMP-regulated polysaccharides, including alginate and pellicle polysaccharide (PEL), to mediate virulence and antibiotic resistance. CdiGMP activates PEL and alginate biosynthesis by binding to specific receptors including PelD and Alg44. Mutations that abrogate cdiGMP binding to these receptors prevent polysaccharide production. Identification of small molecules that can inhibit cdiGMP binding to the allosteric sites on these proteins could mimic binding defective mutants and potentially reduce biofilm formation or alginate secretion. Here, we report the development of a rapid and quantitative high-throughput screen for inhibitors of protein-cdiGMP interactions based on the differential radial capillary action of ligand assay (DRaCALA). Using this approach, we identified ebselen as an inhibitor of cdiGMP binding to receptors containing an RxxD domain including PelD and diguanylate cyclases (DGC). Ebselen reduces diguanylate cyclase activity by covalently modifying cysteine residues. Ebselen oxide, the selenone analogue of ebselen, also inhibits cdiGMP binding through the same covalent mechanism. Ebselen and ebselen oxide inhibit cdiGMP regulation of biofilm formation and flagella-mediated motility in P. aeruginosa through inhibition of diguanylate cyclases. The identification of ebselen provides a proof-of-principle that a DRaCALA high-throughput screening approach can be used to identify bioactive agents that reverse regulation of cdiGMP signaling by targeting cdiGMP-binding domains.

  15. The Bordetella Adenylate Cyclase Repeat-in-Toxin (RTX) Domain Is Immunodominant and Elicits Neutralizing Antibodies*

    PubMed Central

    Wang, Xianzhe; Maynard, Jennifer A.

    2015-01-01

    The adenylate cyclase toxin (ACT) is a multifunctional virulence factor secreted by Bordetella species. Upon interaction of its C-terminal hemolysin moiety with the cell surface receptor αMβ2 integrin, the N-terminal cyclase domain translocates into the host cell cytosol where it rapidly generates supraphysiological cAMP concentrations, which inhibit host cell anti-bacterial activities. Although ACT has been shown to induce protective immunity in mice, it is not included in any current acellular pertussis vaccines due to protein stability issues and a poor understanding of its role as a protective antigen. Here, we aimed to determine whether any single domain could recapitulate the antibody responses induced by the holo-toxin and to characterize the dominant neutralizing antibody response. We first immunized mice with ACT and screened antibody phage display libraries for binding to purified ACT. The vast majority of unique antibodies identified bound the C-terminal repeat-in-toxin (RTX) domain. Representative antibodies binding two nonoverlapping, neutralizing epitopes in the RTX domain prevented ACT association with J774A.1 macrophages and soluble αMβ2 integrin, suggesting that these antibodies inhibit the ACT-receptor interaction. Sera from mice immunized with the RTX domain showed similar neutralizing activity as ACT-immunized mice, indicating that this domain induced an antibody response similar to that induced by ACT. These data demonstrate that RTX can elicit neutralizing antibodies and suggest it may present an alternative to ACT. PMID:25505186

  16. Convergent phosphomodulation of the major neuronal dendritic potassium channel Kv4.2 by pituitary adenylate cyclase-activating polypeptide.

    PubMed

    Gupte, Raeesa P; Kadunganattil, Suraj; Shepherd, Andrew J; Merrill, Ronald; Planer, William; Bruchas, Michael R; Strack, Stefan; Mohapatra, Durga P

    2016-02-01

    The endogenous neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is secreted by both neuronal and non-neuronal cells in the brain and spinal cord, in response to pathological conditions such as stroke, seizures, chronic inflammatory and neuropathic pain. PACAP has been shown to exert various neuromodulatory and neuroprotective effects. However, direct influence of PACAP on the function of intrinsically excitable ion channels that are critical to both hyperexcitation as well as cell death, remain largely unexplored. The major dendritic K(+) channel Kv4.2 is a critical regulator of neuronal excitability, back-propagating action potentials in the dendrites, and modulation of synaptic inputs. We identified, cloned and characterized the downstream signaling originating from the activation of three PACAP receptor (PAC1) isoforms that are expressed in rodent hippocampal neurons that also exhibit abundant expression of Kv4.2 protein. Activation of PAC1 by PACAP leads to phosphorylation of Kv4.2 and downregulation of channel currents, which can be attenuated by inhibition of either PKA or ERK1/2 activity. Mechanistically, this dynamic downregulation of Kv4.2 function is a consequence of reduction in the density of surface channels, without any influence on the voltage-dependence of channel activation. Interestingly, PKA-induced effects on Kv4.2 were mediated by ERK1/2 phosphorylation of the channel at two critical residues, but not by direct channel phosphorylation by PKA, suggesting a convergent phosphomodulatory signaling cascade. Altogether, our findings suggest a novel GPCR-channel signaling crosstalk between PACAP/PAC1 and Kv4.2 channel in a manner that could lead to neuronal hyperexcitability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Odorant receptors directly activate phospholipase C/inositol-1,4,5-trisphosphate coupled to calcium influx in Odora cells.

    PubMed

    Liu, Guang; Badeau, Robert M; Tanimura, Akihiko; Talamo, Barbara R

    2006-03-01

    Mechanisms by which odorants activate signaling pathways in addition to cAMP are hard to evaluate in heterogeneous mixtures of primary olfactory neurons. We used single cell calcium imaging to analyze the response to odorant through odorant receptor (OR) U131 in the olfactory epithelial cell line Odora (Murrell and Hunter 1999), a model system with endogenous olfactory signaling pathways. Because adenylyl cyclase levels are low, agents activating cAMP formation do not elevate calcium, thus unmasking independent signaling mediated by OR via phospholipase C (PLC), inositol-1,4,5-trisphosphate (IP(3)), and its receptor. Unexpectedly, we found that extracellular calcium is required for odor-induced calcium elevation without the release of intracellular calcium, even though the latter pathway is intact and can be stimulated by ATP. Relevant signaling components of the PLC pathway and G protein isoforms are identified by western blot in Odora cells as well as in olfactory sensory neurons (OSNs), where they are localized to the ciliary zone or cell bodies and axons of OSNs by immunohistochemistry. Biotinylation studies establish that IP(3) receptors type 2 and 3 are at the cell surface in Odora cells. Thus, individual ORs are capable of elevating calcium through pathways not directly mediated by cAMP and this may provide another avenue for odorant signaling in the olfactory system.

  18. Structure-activity analysis of synthetic alpha-thrombin-receptor-activating peptides.

    PubMed

    Van Obberghen-Schilling, E; Rasmussen, U B; Vouret-Craviari, V; Lentes, K U; Pavirani, A; Pouysségur, J

    1993-06-15

    alpha-Thrombin stimulates G-protein-coupled effectors leading to secretion and aggregation in human platelets, and to a mitogenic response in CCL39 hamster fibroblasts. alpha-Thrombin receptors can be activated by synthetic peptides corresponding to the receptor sequence starting with serine-42, at the proposed cleavage site. We have previously determined that the agonist domain of receptor-activating peptides resides within the five N-terminal residues [Vouret-Craviari, Van Obberghen-Schilling, Rasmussen, Pavirani, Lecocq and Pouysségur (1992) Mol. Biol. Cell. 3, 95-102], although the 7-residue peptide (SFFLRNP) corresponding to the hamster alpha-thrombin receptor was 10 times more potent than the 5-residue peptide for activation of human platelets. In the present study we have analysed the role of individual amino acids in receptor activation by using a series of modified hexa- or hepta-peptides derived from the human alpha-thrombin-receptor sequence. Cellular events examined here include phospholipase C activation, adenylyl cyclase inhibition and DNA synthesis stimulation in non-transformed CCL39 fibroblasts and a tumorigenic variant of that line (A71 cells). Modification of the peptide sequence had similar functional consequence for each of the assays described, indicating that either a unique receptor or pharmacologically indistinguishable receptor subtypes activate distinct G-protein signalling pathways. Furthermore, we found that: (1) the N-terminal serine can be replaced by small or intermediately sized amino acids (+/- hydroxyl groups) without loss of activity. However, its replacement by an aromatic side-chain or omission of the N-terminal amino group severely reduces activity. (2) An aromatic side-chain on the penultimate N-terminal residue appears to play a critical role since phenylalanine in this position can be substituted by tyrosine without complete loss of activity whereas an alanine in its place is not tolerated. (3) Deletion of the first

  19. Structure-activity analysis of synthetic alpha-thrombin-receptor-activating peptides.

    PubMed Central

    Van Obberghen-Schilling, E; Rasmussen, U B; Vouret-Craviari, V; Lentes, K U; Pavirani, A; Pouysségur, J

    1993-01-01

    alpha-Thrombin stimulates G-protein-coupled effectors leading to secretion and aggregation in human platelets, and to a mitogenic response in CCL39 hamster fibroblasts. alpha-Thrombin receptors can be activated by synthetic peptides corresponding to the receptor sequence starting with serine-42, at the proposed cleavage site. We have previously determined that the agonist domain of receptor-activating peptides resides within the five N-terminal residues [Vouret-Craviari, Van Obberghen-Schilling, Rasmussen, Pavirani, Lecocq and Pouysségur (1992) Mol. Biol. Cell. 3, 95-102], although the 7-residue peptide (SFFLRNP) corresponding to the hamster alpha-thrombin receptor was 10 times more potent than the 5-residue peptide for activation of human platelets. In the present study we have analysed the role of individual amino acids in receptor activation by using a series of modified hexa- or hepta-peptides derived from the human alpha-thrombin-receptor sequence. Cellular events examined here include phospholipase C activation, adenylyl cyclase inhibition and DNA synthesis stimulation in non-transformed CCL39 fibroblasts and a tumorigenic variant of that line (A71 cells). Modification of the peptide sequence had similar functional consequence for each of the assays described, indicating that either a unique receptor or pharmacologically indistinguishable receptor subtypes activate distinct G-protein signalling pathways. Furthermore, we found that: (1) the N-terminal serine can be replaced by small or intermediately sized amino acids (+/- hydroxyl groups) without loss of activity. However, its replacement by an aromatic side-chain or omission of the N-terminal amino group severely reduces activity. (2) An aromatic side-chain on the penultimate N-terminal residue appears to play a critical role since phenylalanine in this position can be substituted by tyrosine without complete loss of activity whereas an alanine in its place is not tolerated. (3) Deletion of the first

  20. Light-regulated synthesis of cyclic-di-GMP by a bidomain construct of the cyanobacteriochrome Tlr0924 (SesA) without stable dimerization

    DOE PAGES

    Blain-Hartung, Matthew D.; Rockwell, Nathan Clarke; Lagarias, J. Clark

    2017-10-26

    Here, phytochromes and cyanobacteriochromes (CBCRs) use double bond photoisomerization of their linear tetrapyrrole (bilin) chromophores within cGMP-specific phosphodiesterases/Adenylyl cyclases/FhlA (GAF) domain-containing photosensory modules to regulate activity of C-terminal output domains. CBCRs exhibit much more diverse photocycles than phytochromes, and are often found in large modular proteins such as Tlr0924 (SesA), one of three blue light regulators of cell aggregation in the cyanobacterium Thermosynechococcus elongatus. Tlr0924 contains a single bilin-binding GAF domain adjacent to a C-terminal diguanylate cyclase (GGDEF) domain whose catalytic activity requires formation of a dimeric transition state presumably supported by a multi-domain extension at its N-terminus. To probemore » the structural basis of light-mediated signal propagation from the photosensory input domain to a signaling output domain for a representative CBCR, these studies explore the properties of a bidomain GAF-GGDEF construct of Tlr0924 (Tlr0924Δ) that retains light-regulated diguanylate cyclase activity. Surprisingly, CD spectroscopy and size exclusion chromatography data do not support formation of stable dimers in the either the blue-absorbing 15ZP b dark state or the green-absorbing 15EP g photoproduct state of Tlr0924Δ. Analysis of variants containing site-specific mutations reveals that proper signal transmission requires both chromophorylation of the GAF domain and individual residues within the amphipathic linker region between GAF and GGDEF domains. Based on these data, we propose a model in which bilin binding and light signals are propagated from the GAF domain via the linker region to alter the equilibrium and interconversion dynamics between active and inactive conformations of the GGDEF domain to favor or disfavor formation of catalytic competent dimers.« less

  1. Light-regulated synthesis of cyclic-di-GMP by a bidomain construct of the cyanobacteriochrome Tlr0924 (SesA) without stable dimerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blain-Hartung, Matthew D.; Rockwell, Nathan Clarke; Lagarias, J. Clark

    Here, phytochromes and cyanobacteriochromes (CBCRs) use double bond photoisomerization of their linear tetrapyrrole (bilin) chromophores within cGMP-specific phosphodiesterases/Adenylyl cyclases/FhlA (GAF) domain-containing photosensory modules to regulate activity of C-terminal output domains. CBCRs exhibit much more diverse photocycles than phytochromes, and are often found in large modular proteins such as Tlr0924 (SesA), one of three blue light regulators of cell aggregation in the cyanobacterium Thermosynechococcus elongatus. Tlr0924 contains a single bilin-binding GAF domain adjacent to a C-terminal diguanylate cyclase (GGDEF) domain whose catalytic activity requires formation of a dimeric transition state presumably supported by a multi-domain extension at its N-terminus. To probemore » the structural basis of light-mediated signal propagation from the photosensory input domain to a signaling output domain for a representative CBCR, these studies explore the properties of a bidomain GAF-GGDEF construct of Tlr0924 (Tlr0924Δ) that retains light-regulated diguanylate cyclase activity. Surprisingly, CD spectroscopy and size exclusion chromatography data do not support formation of stable dimers in the either the blue-absorbing 15ZP b dark state or the green-absorbing 15EP g photoproduct state of Tlr0924Δ. Analysis of variants containing site-specific mutations reveals that proper signal transmission requires both chromophorylation of the GAF domain and individual residues within the amphipathic linker region between GAF and GGDEF domains. Based on these data, we propose a model in which bilin binding and light signals are propagated from the GAF domain via the linker region to alter the equilibrium and interconversion dynamics between active and inactive conformations of the GGDEF domain to favor or disfavor formation of catalytic competent dimers.« less

  2. β2-Adrenergic receptor activation mobilizes intracellular calcium via a non-canonical cAMP-independent signaling pathway.

    PubMed

    Galaz-Montoya, Monica; Wright, Sara J; Rodriguez, Gustavo J; Lichtarge, Olivier; Wensel, Theodore G

    2017-06-16

    Beta adrenergic receptors (βARs) are G-protein-coupled receptors essential for physiological responses to the hormones/neurotransmitters epinephrine and norepinephrine which are found in the nervous system and throughout the body. They are the targets of numerous widely used drugs, especially in the case of the most extensively studied βAR, β 2 AR, whose ligands are used for asthma and cardiovascular disease. βARs signal through Gα s G-proteins and via activation of adenylyl cyclase and cAMP-dependent protein kinase, but some alternative downstream pathways have also been proposed that could be important for understanding normal physiological functioning of βAR signaling and its disruption in disease. Using fluorescence-based Ca 2+ flux assays combined with pharmacology and gene knock-out methods, we discovered a previously unrecognized endogenous pathway in HEK-293 cells whereby β 2 AR activation leads to robust Ca 2+ mobilization from intracellular stores via activation of phospholipase C and opening of inositol trisphosphate (InsP 3 ) receptors. This pathway did not involve cAMP, Gα s , or Gα i or the participation of the other members of the canonical β 2 AR signaling cascade and, therefore, constitutes a novel signaling mechanism for this receptor. This newly uncovered mechanism for Ca 2+ mobilization by β 2 AR has broad implications for adrenergic signaling, cross-talk with other signaling pathways, and the effects of βAR-directed drugs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Dopamine Promotes Motor Cortex Plasticity and Motor Skill Learning via PLC Activation

    PubMed Central

    Rioult-Pedotti, Mengia-Seraina; Pekanovic, Ana; Atiemo, Clement Osei; Marshall, John; Luft, Andreas Rüdiger

    2015-01-01

    Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA), leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC) activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease. PMID:25938462

  4. Soluble guanylate cyclase activation during ischemic injury in mice protects against postischemic inflammation at the mitochondrial level.

    PubMed

    Wang, Derek Z; Jones, Allan W; Wang, Walter Z; Wang, Meifang; Korthuis, Ronald J

    2016-05-01

    The aim was to determine whether treatment with BAY 60-2770, a selective activator of oxidized soluble guanylate cyclase (sGC), near the end of an ischemic event would prevent postischemic inflammation and mitochondrial dysfunction in wild-type (WT) and heme oxygenase-1 KO (HO-1(-/-)) mice. This protocol prevented increases in leukocyte rolling (LR) and adhesion (LA) to intestinal venules along with elevated TNFα and circulating neutrophil levels that accompany ischemia-reperfusion (I/R) in both animal models. We further hypothesized that a component of BAY 60-2770 treatment involves maintenance of mitochondrial membrane integrity during I/R. Measurements on isolated enterocytes of calcein fluorescence (mitochondrial permeability) and JC-1 fluorescence ratio (mitochondrial membrane potential) were reduced by I/R, indicating formation of mitochondrial permeability transition pores (mPTP). These effects were abrogated by BAY 60-2770 as well as cyclosporin A and SB-216763, which prevented mPTP opening and inhibited glycogen synthase kinase-3β (GSK-3β), respectively. Western blots of WT and HO-1(-/-) enterocytes indicated that GSK-3β phosphorylation on Ser(9) (inhibitory site) was reduced by half following I/R alone (increased GSK-3β activity) and increased by one-third (reduced GSK-3β activity) following BAY 60-2770. Other investigators have associated phosphorylation of the GSK-3β substrate cyclophilin D (pCyPD) with mPTP formation. We observed a 60% increase in pCyPD after I/R, whereas BAY 60-2770 treatment of sham and I/R groups reduced pCyPD by about 20%. In conclusion, selective activation of oxidized sGC of WT and HO-1(-/-) during ischemia protects against I/R-induced inflammation and preserves mucosal integrity in part by reducing pCyPD production and mPTP formation. Copyright © 2016 the American Physiological Society.

  5. The Adenylate Cyclase Toxins of Bacillus anthracis and Bordetella pertussis Promote Th2 Cell Development by Shaping T Cell Antigen Receptor Signaling

    PubMed Central

    Rossi Paccani, Silvia; Benagiano, Marisa; Capitani, Nagaja; Zornetta, Irene; Ladant, Daniel; Montecucco, Cesare; D'Elios, Mario M.; Baldari, Cosima T.

    2009-01-01

    The adjuvanticity of bacterial adenylate cyclase toxins has been ascribed to their capacity, largely mediated by cAMP, to modulate APC activation, resulting in the expression of Th2–driving cytokines. On the other hand, cAMP has been demonstrated to induce a Th2 bias when present during T cell priming, suggesting that bacterial cAMP elevating toxins may directly affect the Th1/Th2 balance. Here we have investigated the effects on human CD4+ T cell differentiation of two adenylate cyclase toxins, Bacillus anthracis edema toxin (ET) and Bordetella pertussis CyaA, which differ in structure, mode of cell entry, and subcellular localization. We show that low concentrations of ET and CyaA, but not of their genetically detoxified adenylate cyclase defective counterparts, potently promote Th2 cell differentiation by inducing expression of the master Th2 transcription factors, c-maf and GATA-3. We also present evidence that the Th2–polarizing concentrations of ET and CyaA selectively inhibit TCR–dependent activation of Akt1, which is required for Th1 cell differentiation, while enhancing the activation of two TCR–signaling mediators, Vav1 and p38, implicated in Th2 cell differentiation. This is at variance from the immunosuppressive toxin concentrations, which interfere with the earliest step in TCR signaling, activation of the tyrosine kinase Lck, resulting in impaired CD3ζ phosphorylation and inhibition of TCR coupling to ZAP-70 and Erk activation. These results demonstrate that, notwithstanding their differences in their intracellular localization, which result in focalized cAMP production, both toxins directly affect the Th1/Th2 balance by interfering with the same steps in TCR signaling, and suggest that their adjuvanticity is likely to result from their combined effects on APC and CD4+ T cells. Furthermore, our results strongly support the key role of cAMP in the adjuvanticity of these toxins. PMID:19266022

  6. Dephosphorylation of juxtamembrane serines and threonines of the NPR2 guanylyl cyclase is required for rapid resumption of oocyte meiosis in response to luteinizing hormone

    PubMed Central

    Shuhaibar, Leia C.; Egbert, Jeremy R.; Edmund, Aaron B.; Uliasz, Tracy F.; Dickey, Deborah M.; Yee, Siu-Pok; Potter, Lincoln R.; Jaffe, Laurinda A.

    2016-01-01

    The meiotic cell cycle of mammalian oocytes starts during embryogenesis and then pauses until luteinizing hormone (LH) acts on the granulosa cells of the follicle surrounding the oocyte to restart the cell cycle. An essential event in this process is a decrease in cyclic GMP in the granulosa cells, and part of the cGMP decrease results from dephosphorylation and inactivation of the natriuretic peptide receptor 2 (NPR2) guanylyl cyclase, also known as guanylyl cyclase B. However, it is unknown whether NPR2 dephosphorylation is essential for LH-induced meiotic resumption. Here, we prevented NPR2 dephosphorylation by generating a mouse line in which the seven regulatory serines and threonines of NPR2 were changed to the phosphomimetic amino acid glutamate (Npr2–7E). Npr2–7E/7E follicles failed to show a decrease in enzyme activity in response to LH, and the cGMP decrease was attenuated; correspondingly, LH-induced meiotic resumption was delayed. Meiotic resumption in response to EGF receptor activation was likewise delayed, indicating that NPR2 dephosphorylation is a component of the pathway by which EGF receptor activation mediates LH signaling. We also found that most of the NPR2 protein in the follicle was present in the mural granulosa cells. These findings indicate that NPR2 dephosphorylation in the mural granulosa cells is essential for the normal progression of meiosis in response to LH and EGF receptor activation. In addition, these studies provide the first demonstration that a change in phosphorylation of a transmembrane guanylyl cyclase regulates a physiological process, a mechanism that may also control other developmental events. PMID:26522847

  7. Soluble guanylyl cyclase-activated cyclic GMP-dependent protein kinase inhibits arterial smooth muscle cell migration independent of VASP-serine 239 phosphorylation.

    PubMed

    Holt, Andrew W; Martin, Danielle N; Shaver, Patti R; Adderley, Shaquria P; Stone, Joshua D; Joshi, Chintamani N; Francisco, Jake T; Lust, Robert M; Weidner, Douglas A; Shewchuk, Brian M; Tulis, David A

    2016-09-01

    Coronary artery disease (CAD) accounts for over half of all cardiovascular disease-related deaths. Uncontrolled arterial smooth muscle (ASM) cell migration is a major component of CAD pathogenesis and efforts aimed at attenuating its progression are clinically essential. Cyclic nucleotide signaling has long been studied for its growth-mitigating properties in the setting of CAD and other vascular disorders. Heme-containing soluble guanylyl cyclase (sGC) synthesizes cyclic guanosine monophosphate (cGMP) and maintains vascular homeostasis predominantly through cGMP-dependent protein kinase (PKG) signaling. Considering that reactive oxygen species (ROS) can interfere with appropriate sGC signaling by oxidizing the cyclase heme moiety and so are associated with several CVD pathologies, the current study was designed to test the hypothesis that heme-independent sGC activation by BAY 60-2770 (BAY60) maintains cGMP levels despite heme oxidation and inhibits ASM cell migration through phosphorylation of the PKG target and actin-binding vasodilator-stimulated phosphoprotein (VASP). First, using the heme oxidant ODQ, cGMP content was potentiated in the presence of BAY60. Using a rat model of arterial growth, BAY60 significantly reduced neointima formation and luminal narrowing compared to vehicle (VEH)-treated controls. In rat ASM cells BAY60 significantly attenuated cell migration, reduced G:F actin, and increased PKG activity and VASP Ser239 phosphorylation (pVASP·S239) compared to VEH controls. Site-directed mutagenesis was then used to generate overexpressing full-length wild type VASP (FL-VASP/WT), VASP Ser239 phosphorylation-mimetic (FL-VASP/239D) and VASP Ser239 phosphorylation-resistant (FL-VASP/239A) ASM cell mutants. Surprisingly, FL-VASP/239D negated the inhibitory effects of FL-VASP/WT and FL-VASP/239A cells on migration. Furthermore, when FL-VASP mutants were treated with BAY60, only the FL-VASP/239D group showed reduced migration compared to its VEH controls

  8. Pituitary adenylate cyclase-activating polypeptide ameliorates experimental acute ileitis and extra-intestinal sequelae.

    PubMed

    Heimesaat, Markus M; Dunay, Ildiko R; Schulze, Silvia; Fischer, André; Grundmann, Ursula; Alutis, Marie; Kühl, Anja A; Tamas, Andrea; Toth, Gabor; Dunay, Miklos P; Göbel, Ulf B; Reglodi, Dora; Bereswill, Stefan

    2014-01-01

    The neuropeptide Pituitary adenylate cyclase-activating polypeptide (PACAP) plays pivotal roles in immunity and inflammation. So far, potential immune-modulatory properties of PACAP have not been investigated in experimental ileitis. Mice were perorally infected with Toxoplasma (T.) gondii to induce acute ileitis (day 0) and treated daily with synthetic PACAP38 from day 1 to 6 post infection (p.i.; prophylaxis) or from day 4 to 6 p.i. (therapy). Whereas placebo-treated control mice suffered from acute ileitis at day 7 p.i. and succumbed to infection, intestinal immunopathology was ameliorated following PACAP prophylaxis. PACAP-treated mice exhibited increased abundance of small intestinal FOXP3+ cells, but lower numbers of ileal T lymphocytes, neutrophils, monocytes and macrophages, which was accompanied by less ileal expression of pro-inflammatory cytokines such as IL-23p19, IL-22, IFN-γ, and MCP-1. Furthermore, PACAP-treated mice displayed higher anti-inflammatory IL-4 concentrations in mesenteric lymph nodes and liver and higher systemic anti-inflammatory IL-10 levels in spleen and serum as compared to control animals at day 7 p.i. Remarkably, PACAP-mediated anti-inflammatory effects could also be observed in extra-intestinal compartments as indicated by reduced pro-inflammatory mediator levels in spleen (TNF-α, nitric oxide) and liver (TNF-α, IFN-γ, MCP-1, IL-6) and less severe histopathological sequelae in lungs and kidneys following prophylactic PACAP treatment. Strikingly, PACAP prolonged survival of T. gondii infected mice in a time-of-treatment dependent manner. Synthetic PACAP ameliorates acute small intestinal inflammation and extra-intestinal sequelae by down-regulating Th1-type immunopathology, reducing oxidative stress and up-regulating anti-inflammatory cytokine responses. These findings provide novel potential treatment options of inflammatory bowel diseases.

  9. An activating G{sub s}{alpha} mutation is present in fibrous dysplasia of bone in the McCune-Albright syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shenker, A.; Weinstein, L.S.; Spiegel, A.M.

    1994-09-01

    McCune-Albright syndrome (MAS) is a sporadic disease characterized by polyostotic fibrous dysplasia, cafe-au-lait spots, and multiple endocrinopathies. The etiology of fibrous dysplasia is unknown. Activating mutations of codon 201 in the gene encoding the {alpha}-subunit of G{sub s}, the G-protein that stimulates adenylyl cyclase, have been found in all affected MAS tissues that have been studied. Initial attempts to amplify DNA from decalcified paraffin-embedded bone specimens from frozen surgical bone specimens from five MAS patients using polymerase chain reaction and allele-specific oligonucleotide hybridization. Most of the cells in four specimens of dysplastic bone contained a heterozygous mutation encoding substitution ofmore » Arg{sup 201} of G{sub s}{alpha} with His, but the mutation was barely detectable in peripheral blood specimens from the patients. Only a small amount of mutant allele was detected in a specimen of normal cortical bone from the fifth patient, although this patients had a high proportion of mutation in other, affected tissues. The mosaic distribution of mutant alleles is consistent with an embryological somatic cell mutation of the G{sub s}{alpha} gene in MAS. The presence of an activating mutation of G{sub s}{alpha} in osteoblastic progenitor cells may cause them to exhibit increased proliferation and abnormal differentiation, thereby producing the lesions of fibrous dysplasia. 43 refs., 2 figs.« less

  10. Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli

    PubMed Central

    Salem, Wesam; Leitner, Deborah R.; Zingl, Franz G.; Schratter, Gebhart; Prassl, Ruth; Goessler, Walter; Reidl, Joachim; Schild, Stefan

    2015-01-01

    Vibrio cholerae and enterotoxic Escherichia coli (ETEC) remain two dominant bacterial causes of severe secretory diarrhea and still a significant cause of death, especially in developing countries. In order to investigate new effective and inexpensive therapeutic approaches, we analyzed nanoparticles synthesized by a green approach using corresponding salt (silver or zinc nitrate) with aqueous extract of Caltropis procera fruit or leaves. We characterized the quantity and quality of nanoparticles by UV–visible wavelength scans and nanoparticle tracking analysis. Nanoparticles could be synthesized in reproducible yields of approximately 108 particles/ml with mode particles sizes of approx. 90–100 nm. Antibacterial activity against two pathogens was assessed by minimal inhibitory concentration assays and survival curves. Both pathogens exhibited similar resistance profiles with minimal inhibitory concentrations ranging between 5 × 105 and 107 particles/ml. Interestingly, zinc nanoparticles showed a slightly higher efficacy, but sublethal concentrations caused adverse effects and resulted in increased biofilm formation of V. cholerae. Using the expression levels of the outer membrane porin OmpT as an indicator for cAMP levels, our results suggest that zinc nanoparticles inhibit adenylyl cyclase activity. This consequently deceases the levels of this second messenger, which is a known inhibitor of biofilm formation. Finally, we demonstrated that a single oral administration of silver nanoparticles to infant mice colonized with V. cholerae or ETEC significantly reduces the colonization rates of the pathogens by 75- or 100-fold, respectively. PMID:25466205

  11. Effects of pituitary adenylate cyclase activating polypeptide in the urinary system, with special emphasis on its protective effects in the kidney.

    PubMed

    Reglodi, Dora; Kiss, Peter; Horvath, Gabriella; Lubics, Andrea; Laszlo, Eszter; Tamas, Andrea; Racz, Boglarka; Szakaly, Peter

    2012-04-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a widespread neuropeptide with diverse effects in the nervous system and peripheral organs. One of the most well-studied effects of PACAP is its cytoprotective action, against different harmful stimuli in a wide variety of cells and tissues. PACAP occurs in the urinary system, from the kidney to the lower urinary tract. The present review focuses on the nephroprotective effects of PACAP and summarizes data obtained regarding the protective effects of PACAP in different models of kidney pathologies. In vitro data show that PACAP protects tubular cells against oxidative stress, myeloma light chain, cisplatin, cyclosporine-A and hypoxia. In vivo data provide evidence for its protective effects in ischemia/reperfusion, cisplatin, cyclosporine-A, myeloma kidney injury, diabetic nephropathy and gentamicin-induced kidney damage. Results accumulated on the renoprotective effects of PACAP suggest that PACAP is an emerging candidate for treatment of human kidney pathologies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. The Cyclase-Associated Protein Cap1 Is Important for Proper Regulation of Infection-Related Morphogenesis in Magnaporthe oryzae

    PubMed Central

    Zhou, Xiaoying; Zhang, Haifeng; Li, Guotian; Shaw, Brian; Xu, Jin-Rong

    2012-01-01

    Surface recognition and penetration are critical steps in the infection cycle of many plant pathogenic fungi. In Magnaporthe oryzae, cAMP signaling is involved in surface recognition and pathogenesis. Deletion of the MAC1 adenylate cyclase gene affected appressorium formation and plant infection. In this study, we used the affinity purification approach to identify proteins that are associated with Mac1 in vivo. One of the Mac1-interacting proteins is the adenylate cyclase-associated protein named Cap1. CAP genes are well-conserved in phytopathogenic fungi but none of them have been functionally characterized. Deletion of CAP1 blocked the effects of a dominant RAS2 allele and resulted in defects in invasive growth and a reduced intracellular cAMP level. The Δcap1 mutant was defective in germ tube growth, appressorium formation, and formation of typical blast lesions. Cap1-GFP had an actin-like localization pattern, localizing to the apical regions in vegetative hyphae, at the periphery of developing appressoria, and in circular structures at the base of mature appressoria. Interestingly, Cap1, similar to LifeAct, did not localize to the apical regions in invasive hyphae, suggesting that the apical actin cytoskeleton differs between vegetative and invasive hyphae. Domain deletion analysis indicated that the proline-rich region P2 but not the actin-binding domain (AB) of Cap1 was responsible for its subcellular localization. Nevertheless, the AB domain of Cap1 must be important for its function because CAP1 ΔAB only partially rescued the Δcap1 mutant. Furthermore, exogenous cAMP induced the formation of appressorium-like structures in non-germinated conidia in CAP1 ΔAB transformants. This novel observation suggested that AB domain deletion may result in overstimulation of appressorium formation by cAMP treatment. Overall, our results indicated that CAP1 is important for the activation of adenylate cyclase, appressorium morphogenesis, and plant infection in M

  13. Identification of Glutaminyl Cyclase Genes Involved in Pyroglutamate Modification of Fungal Lignocellulolytic Enzymes

    DOE PAGES

    Wu, Vincent W.; Dana, Craig M.; Iavarone, Anthony T.; ...

    2017-01-17

    The breakdown of plant biomass to simple sugars is essential for the production of second-generation biofuels and high-value bioproducts. Currently, enzymes produced from filamentous fungi are used for deconstructing plant cell wall polysaccharides into fermentable sugars for biorefinery applications. A post-translational N-terminal pyroglutamate modification observed in some of these enzymes occurs when N-terminal glutamine or glutamate is cyclized to form a five-membered ring. This modification has been shown to confer resistance to thermal denaturation for CBH-1 and EG-1 cellulases. In mammalian cells, the formation of pyroglutamate is catalyzed by glutaminyl cyclases. Using the model filamentous fungus Neurospora crassa, we identifiedmore » two genes ( qc-1 and qc-2) that encode proteins homologous to mammalian glutaminyl cyclases. We show that qc-1 and qc-2 are essential for catalyzing the formation of an N-terminal pyroglutamate on CBH-1 and GH5-1. CBH-1 and GH5-1 produced in a Δqc-1 Δqc-2 mutant, and thus lacking the N-terminal pyroglutamate modification, showed greater sensitivity to thermal denaturation, and for GH5-1, susceptibility to proteolytic cleavage. QC-1 and QC-2 are endoplasmic reticulum (ER)-localized proteins. The pyroglutamate modification is predicted to occur in a number of additional fungal proteins that have diverse functions. The identification of glutaminyl cyclases in fungi may have implications for production of lignocellulolytic enzymes, heterologous expression, and biotechnological applications revolving around protein stability.« less

  14. Identification of Glutaminyl Cyclase Genes Involved in Pyroglutamate Modification of Fungal Lignocellulolytic Enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Vincent W.; Dana, Craig M.; Iavarone, Anthony T.

    The breakdown of plant biomass to simple sugars is essential for the production of second-generation biofuels and high-value bioproducts. Currently, enzymes produced from filamentous fungi are used for deconstructing plant cell wall polysaccharides into fermentable sugars for biorefinery applications. A post-translational N-terminal pyroglutamate modification observed in some of these enzymes occurs when N-terminal glutamine or glutamate is cyclized to form a five-membered ring. This modification has been shown to confer resistance to thermal denaturation for CBH-1 and EG-1 cellulases. In mammalian cells, the formation of pyroglutamate is catalyzed by glutaminyl cyclases. Using the model filamentous fungus Neurospora crassa, we identifiedmore » two genes ( qc-1 and qc-2) that encode proteins homologous to mammalian glutaminyl cyclases. We show that qc-1 and qc-2 are essential for catalyzing the formation of an N-terminal pyroglutamate on CBH-1 and GH5-1. CBH-1 and GH5-1 produced in a Δqc-1 Δqc-2 mutant, and thus lacking the N-terminal pyroglutamate modification, showed greater sensitivity to thermal denaturation, and for GH5-1, susceptibility to proteolytic cleavage. QC-1 and QC-2 are endoplasmic reticulum (ER)-localized proteins. The pyroglutamate modification is predicted to occur in a number of additional fungal proteins that have diverse functions. The identification of glutaminyl cyclases in fungi may have implications for production of lignocellulolytic enzymes, heterologous expression, and biotechnological applications revolving around protein stability.« less

  15. Luteinizing hormone-stimulated pituitary adenylate cyclase-activating polypeptide system and its role in progesterone production in human luteinized granulosa cells.

    PubMed

    Park, Hyun-Jeong; Choi, Bum-Chae; Song, Sang-Jin; Lee, Dong-Sik; Roh, Jaesook; Chun, Sang-Young

    2010-01-01

    The present study examined the gonadotropin regulation of pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAP type I receptor (PAC(1)-R) expression, and its role in progesterone production in the human luteinized granulosa cells. The stimulation of both PACAP and PAC(1)-R mRNA levels by LH was detected using a competitive reverse transcription-polymerase chain reaction (RT-PCR). PACAP transcript was stimulated by LH reaching maximum levels at 12 hours in a dose dependent manner. LH treatment also stimulated PAC(1)-R mRNA levels within 24 hours. Addition of PACAP-38 (10(-7) M) as well as LH significantly stimulated progesterone production during 48 hours culture. Furthermore, co-treatment with PACAP antagonist partially inhibited LH-stimulated progesterone production. Treatment with vasoactive intestinal peptide, however, did not affect progesterone production. Taken together, the present study demonstrates that LH causes a transient stimulation of PACAP and PAC(1)-R expression and that PACAP stimulates progesterone production in the human luteinized granulosa cells, suggesting a possible role of PACAP as a local ovarian regulator in luteinization.

  16. Phenotypes Associated with the Essential Diadenylate Cyclase CdaA and Its Potential Regulator CdaR in the Human Pathogen Listeria monocytogenes

    PubMed Central

    Rismondo, Jeanine; Gibhardt, Johannes; Rosenberg, Jonathan; Kaever, Volkhard

    2015-01-01

    ABSTRACT Cyclic diadenylate monophosphate (c-di-AMP) is a second messenger utilized by diverse bacteria. In many species, including the Gram-positive human pathogen Listeria monocytogenes, c-di-AMP is essential for growth. Here we show that the single diadenylate cyclase of L. monocytogenes, CdaA, is an integral membrane protein that interacts with its potential regulatory protein, CdaR, via the transmembrane protein domain. The presence of the CdaR protein is not required for the membrane localization and abundance of CdaA. We have also found that CdaR negatively influences CdaA activity in L. monocytogenes and that the role of CdaR is most evident at a high growth temperature. Interestingly, a cdaR mutant strain is less susceptible to lysozyme. Moreover, CdaA contributes to cell division, and cells depleted of CdaA are prone to lysis. The observation that the growth defect of a CdaA depletion strain can be partially restored by increasing the osmolarity of the growth medium suggests that c-di-AMP is important for maintaining the integrity of the protective cell envelope. Overall, this work provides new insights into the relationship between CdaA and CdaR. IMPORTANCE Cyclic diadenylate monophosphate (c-di-AMP) is a recently identified second messenger that is utilized by the Gram-positive human pathogen Listeria monocytogenes. Here we show that the single diadenylate cyclase of L. monocytogenes, CdaA, is an integral membrane protein that interacts with CdaR, its potential regulatory protein. We show that CdaR is not required for membrane localization or abundance of the diadenylate cyclase, but modulates its activity. Moreover, CdaA seems to contribute to cell division. Overall, this work provides new insights into the relationship between CdaA and CdaR and their involvement in cell growth. PMID:26527648

  17. Disease-Causing Mutations in the G Protein Gαs Subvert the Roles of GDP and GTP.

    PubMed

    Hu, Qi; Shokat, Kevan M

    2018-05-17

    The single most frequent cancer-causing mutation across all heterotrimeric G proteins is R201C in Gαs. The current model explaining the gain-of-function activity of the R201 mutations is through the loss of GTPase activity and resulting inability to switch off to the GDP state. Here, we find that the R201C mutation can bypass the need for GTP binding by directly activating GDP-bound Gαs through stabilization of an intramolecular hydrogen bond network. Having found that a gain-of-function mutation can convert GDP into an activator, we postulated that a reciprocal mutation might disrupt the normal role of GTP. Indeed, we found R228C, a loss-of-function mutation in Gαs that causes pseudohypoparathyroidism type 1a (PHP-Ia), compromised the adenylyl cyclase-activating activity of Gαs bound to a non-hydrolyzable GTP analog. These findings show that disease-causing mutations in Gαs can subvert the canonical roles of GDP and GTP, providing new insights into the regulation mechanism of G proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Molecular Physiology of Membrane Guanylyl Cyclase Receptors.

    PubMed

    Kuhn, Michaela

    2016-04-01

    cGMP controls many cellular functions ranging from growth, viability, and differentiation to contractility, secretion, and ion transport. The mammalian genome encodes seven transmembrane guanylyl cyclases (GCs), GC-A to GC-G, which mainly modulate submembrane cGMP microdomains. These GCs share a unique topology comprising an extracellular domain, a short transmembrane region, and an intracellular COOH-terminal catalytic (cGMP synthesizing) region. GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure/volume and energy balance. GC-B is activated by C-type natriuretic peptide, stimulating endochondral ossification in autocrine way. GC-C mediates the paracrine effects of guanylins on intestinal ion transport and epithelial turnover. GC-E and GC-F are expressed in photoreceptor cells of the retina, and their activation by intracellular Ca(2+)-regulated proteins is essential for vision. Finally, in the rodent system two olfactorial GCs, GC-D and GC-G, are activated by low concentrations of CO2and by peptidergic (guanylins) and nonpeptidergic odorants as well as by coolness, which has implications for social behaviors. In the past years advances in human and mouse genetics as well as the development of sensitive biosensors monitoring the spatiotemporal dynamics of cGMP in living cells have provided novel relevant information about this receptor family. This increased our understanding of the mechanisms of signal transduction, regulation, and (dys)function of the membrane GCs, clarified their relevance for genetic and acquired diseases and, importantly, has revealed novel targets for therapies. The present review aims to illustrate these different features of membrane GCs and the main open questions in this field. Copyright © 2016 the American Physiological Society.

  19. Crystallization and preliminary X-ray diffraction studies of the glutaminyl cyclase from Carica papaya latex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azarkan, Mohamed; Clantin, Bernard; Bompard, Coralie

    2005-01-01

    The glutaminyl cyclase isolated from C. papaya latex has been crystallized using the hanging-drop method. Diffraction data have been collected at ESRF beamline BM14 and processed to 1.7 Å resolution. In living systems, the intramolecular cyclization of N-terminal glutamine residues is accomplished by glutaminyl cyclase enzymes (EC 2.3.2.5). While in mammals these enzymes are involved in the synthesis of hormonal and neurotransmitter peptides, the physiological role played by the corresponding plant enzymes still remains to be unravelled. Papaya glutaminyl cyclase (PQC), a 33 kDa enzyme found in the latex of the tropical tree Carica papaya, displays an exceptional resistance tomore » chemical and thermal denaturation as well as to proteolysis. In order to elucidate its enzymatic mechanism and to gain insights into the structural determinants underlying its remarkable stability, PQC was isolated from papaya latex, purified and crystallized by the hanging-drop vapour-diffusion method. The crystals belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 62.82, b = 81.23, c = 108.17 Å and two molecules per asymmetric unit. Diffraction data have been collected at ESRF beamline BM14 and processed to a resolution of 1.7 Å.« less

  20. Diphtheria toxin can simultaneously bind to its receptor and adenylyl-(3',5')-uridine 3'-monophosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbieri, J.T.; Collins, C.M.; Collier, R.J.

    1986-10-21

    Diphtheria toxin (DT) that was bound to receptors on BS-C-1 cells was able to bind approximately 1 molar equiv of adenylyl-(3',5')-uridine 3'-monophosphate (ApUp). In contrast, receptor-bound CRM197, a mutant form of toxin with greatly diminished affinity for dinucleotides, did not bind ApUp. Affinity of the dinucleotide for receptor-bound toxin differed from that for free toxin by less than an order of magnitude. These results indicate that the receptor site and the ApUp site on the toxin do not significantly overlap. BS-C-1 cells were incubated with or without /sup 125/I-DT or CRM 197. They were then incubated with (/sup 32/P)ApUp, andmore » assayed.« less

  1. Isolation and functional characterization of Lycopene β-cyclase (CYC-B) promoter from Solanum habrochaites

    PubMed Central

    2010-01-01

    Background Carotenoids are a group of C40 isoprenoid molecules that play diverse biological and ecological roles in plants. Tomato is an important vegetable in human diet and provides the vitamin A precursor β-carotene. Genes encoding enzymes involved in carotenoid biosynthetic pathway have been cloned. However, regulation of genes involved in carotenoid biosynthetic pathway and accumulation of specific carotenoid in chromoplasts are not well understood. One of the approaches to understand regulation of carotenoid metabolism is to characterize the promoters of genes encoding proteins involved in carotenoid metabolism. Lycopene β-cyclase is one of the crucial enzymes in carotenoid biosynthesis pathway in plants. Its activity is required for synthesis of both α-and β-carotenes that are further converted into other carotenoids such as lutein, zeaxanthin, etc. This study describes the isolation and characterization of chromoplast-specific Lycopene β-cyclase (CYC-B) promoter from a green fruited S. habrochaites genotype EC520061. Results A 908 bp region upstream to the initiation codon of the Lycopene β-cyclase gene was cloned and identified as full-length promoter. To identify promoter region necessary for regulating developmental expression of the ShCYC-B gene, the full-length promoter and its three different 5' truncated fragments were cloned upstream to the initiation codon of GUS reporter cDNA in binary vectors. These four plant transformation vectors were separately transformed in to Agrobacterium. Agrobacterium-mediated transient and stable expression systems were used to study the GUS expression driven by the full-length promoter and its 5' deletion fragments in tomato. The full-length promoter showed a basal level activity in leaves, and its expression was upregulated > 5-fold in flowers and fruits in transgenic tomato plants. Deletion of -908 to -577 bp 5' to ATG decreases the ShCYC-B promoter strength, while deletion of -908 to -437 bp 5' to ATG led to

  2. Alpha 2-adrenergic receptor stimulation of phospholipase A2 and of adenylate cyclase in transfected Chinese hamster ovary cells is mediated by different mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.B.; Halenda, S.P.; Bylund, D.B.

    1991-02-01

    The effect of alpha 2-adrenergic receptor activation on adenylate cyclase activity in Chinese hamster ovary cells stably transfected with the alpha 2A-adrenergic receptor gene is biphasic. At lower concentrations of epinephrine forskolin-stimulated cyclic AMP production is inhibited, but at higher concentrations the inhibition is reversed. Both of these effects are blocked by the alpha 2 antagonist yohimbine but not by the alpha 1 antagonist prazosin. Pretreatment with pertussis toxin attenuates inhibition at lower concentrations of epinephrine and greatly potentiates forskolin-stimulated cyclic AMP production at higher concentrations of epinephrine. alpha 2-Adrenergic receptor stimulation also causes arachidonic acid mobilization, presumably via phospholipasemore » A2. This effect is blocked by yohimbine, quinacrine, removal of extracellular Ca2+, and pretreatment with pertussis toxin. Quinacrine and removal of extracellular Ca2+, in contrast, have no effect on the enhanced forskolin-stimulated cyclic AMP production. Thus, it appears that the alpha 2-adrenergic receptor in these cells can simultaneously activate distinct signal transduction systems; inhibition of adenylate cyclase and stimulation of phospholipase A2, both via G1, and potentiation of cyclic AMP production by a different (pertussis toxin-insensitive) mechanism.« less

  3. Crystal structure of papaya glutaminyl cyclase, an archetype for plant and bacterial glutaminyl cyclases.

    PubMed

    Wintjens, René; Belrhali, Hassan; Clantin, Bernard; Azarkan, Mohamed; Bompard, Coralie; Baeyens-Volant, Danielle; Looze, Yvan; Villeret, Vincent

    2006-03-24

    Glutaminyl cyclases (QCs) (EC 2.3.2.5) catalyze the intramolecular cyclization of protein N-terminal glutamine residues into pyroglutamic acid with the concomitant liberation of ammonia. QCs may be classified in two groups containing, respectively, the mammalian enzymes, and the enzymes from plants, bacteria, and parasites. The crystal structure of the QC from the latex of Carica papaya (PQC) has been determined at 1.7A resolution. The structure was solved by the single wavelength anomalous diffraction technique using sulfur and zinc as anomalous scatterers. The enzyme folds into a five-bladed beta-propeller, with two additional alpha-helices and one beta hairpin. The propeller closure is achieved via an original molecular velcro, which links the last two blades into a large eight stranded beta-sheet. The zinc ion present in the PQC is bound via an octahedral coordination into an elongated cavity located along the pseudo 5-fold axis of the beta-propeller fold. This zinc ion presumably plays a structural role and may contribute to the exceptional stability of PQC, along with an extended hydrophobic packing, the absence of long loops, the three-joint molecular velcro and the overall folding itself. Multiple sequence alignments combined with structural analyses have allowed us to tentatively locate the active site, which is filled in the crystal structure either by a Tris molecule or an acetate ion. These analyses are further supported by the experimental evidence that Tris is a competitive inhibitor of PQC. The active site is located at the C-terminal entrance of the PQC central tunnel. W83, W110, W169, Q24, E69, N155, K225, F22 and F67 are highly conserved residues in the C-terminal entrance, and their putative role in catalysis is discussed. The PQC structure is representative of the plants, bacterial and parasite enzymes and contrasts with that of mammalian enzymes, that may possibly share a conserved scaffold of the bacterial aminopeptidase.

  4. The cyclic-di-GMP diguanylate cyclase CdgA has a role in biofilm formation and exopolysaccharide production in Azospirillum brasilense.

    PubMed

    Ramírez-Mata, Alberto; López-Lara, Lilia I; Xiqui-Vázquez, Ma Luisa; Jijón-Moreno, Saúl; Romero-Osorio, Angelica; Baca, Beatriz E

    2016-04-01

    In bacteria, proteins containing GGDEF domains are involved in production of the second messenger c-di-GMP. Here we report that the cdgA gene encoding diguanylate cyclase A (CdgA) is involved in biofilm formation and exopolysaccharide (EPS) production in Azospirillum brasilense Sp7. Biofilm quantification using crystal violet staining revealed that inactivation of cdgA decreased biofilm formation. In addition, confocal laser scanning microscopy analysis of green-fluorescent protein-labeled bacteria showed that, during static growth, the biofilms had differential levels of development: bacteria harboring a cdgA mutation exhibited biofilms with considerably reduced thickness compared with those of the wild-type Sp7 strain. Moreover, DNA-specific staining and treatment with DNase I, and epifluorescence studies demonstrated that extracellular DNA and EPS are components of the biofilm matrix in Azospirillum. After expression and purification of the CdgA protein, diguanylate cyclase activity was detected. The enzymatic activity of CdgA-producing cyclic c-di-GMP was determined using GTP as a substrate and flavin adenine dinucleotide (FAD(+)) and Mg(2)(+) as cofactors. Together, our results revealed that A. brasilense possesses a functional c-di-GMP biosynthesis pathway. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. Effects of arecoline on adipogenesis, lipolysis, and glucose uptake of adipocytes-A possible role of betel-quid chewing in metabolic syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Hsin-Fen; Tsou, Tsui-Chun, E-mail: tctsou@nhri.org.t; Chao, How-Ran

    To investigate the possible involvement of betel-quid chewing in adipocyte dysfunction, we determined the effects of arecoline, a major alkaloid in areca nuts, on adipogenic differentiation (adipogenesis), lipolysis, and glucose uptake by fat cells. Using mouse 3T3-L1 preadipocytes, we showed that arecoline inhibited adipogenesis as determined by oil droplet formation and adipogenic marker gene expression. The effects of arecoline on lipolysis of differentiated 3T3-L1 adipocytes were determined by the glycerol release assay, indicating that arecoline induced lipolysis in an adenylyl cyclase-dependent manner. The diabetogenic effects of arecoline on differentiated 3T3-L1 adipocytes were evaluated by the glucose uptake assay, revealing thatmore » {>=} 300 {mu}M arecoline significantly attenuated insulin-induced glucose uptake; however, no marked effect on basal glucose uptake was detected. Moreover, using 94 subjects that were randomly selected from a health check-up, we determined the association of betel-quid chewing with hyperlipidemia and its related risk factors. Hyperlipidemia frequency and serum triglyceride levels of betel-quid chewers were significantly higher than those of non-betel-quid chewers. In this study, we demonstrated that arecoline inhibits adipogenic differentiation, induces adenylyl cyclase-dependent lipolysis, and interferes with insulin-induced glucose uptake. Arecoline-induced fat cell dysfunction may lead to hyperlipidemia and hyperglycemia/insulin-resistance. These findings provide the first in vitro evidence of betel-quid chewing modulation of adipose cell metabolism that could contribute to the explanation of the association of this habit with metabolic syndrome disorders.« less

  6. DISPARATE DEVELOPMENTAL NEUROTOXICANTS CONVERGE ON THE CYCLIC AMP SIGNALING CASCADE, REVEALED BY TRANSCRIPTIONAL PROFILES IN VITRO AND IN VIVO

    PubMed Central

    Adigun, Abayomi A.; Seidler, Frederic J.; Slotkin, Theodore A.

    2009-01-01

    Cell-signaling cascades are convergent targets for developmental neurotoxicity of otherwise unrelated agents. We compared organophosphates (chlorpyrifos, diazinon), an organochlorine (dieldrin) and a metal (Ni2+) for their effects on neuronotypic PC12 cells, assessing gene transcription involved in the cyclic AMP pathway. Each agent was introduced during neurodifferentiation at a concentration of 30 μM for 24 or 72 hr and we assessed 69 genes encoding adenylyl cyclase isoforms and regulators, G-protein α- and β,γ-subunits, protein kinase A subtypes and the phosphodiesterase family. We found strong concordance among the four agents across all the gene families, with the strongest relationships for the G-proteins, followed by adenylyl cyclase, and lesser concordance for protein kinase A and phosphodiesterase. Superimposed on this pattern, chlorpyrifos and diazinon were surprisingly the least alike, whereas there was strong concordance of dieldrin and Ni2+ with each other and with each individual organophosphate. Further, the effects of chlorpyrifos differed substantially depending on whether cells were undifferentiated or differentiating. To resolve the disparities between chlorpyrifos and diazinon, we performed analyses in rat brain regions after in vivo neonatal exposures; unlike the in vitro results, there was strong concordance. Our results show that unrelated developmental neurotoxicants can nevertheless produce similar outcomes by targeting cell signaling pathways involved in neurodifferentiation during a critical developmental period of vulnerability. Nevertheless, a full evaluation of concordance between different toxicants requires evaluations of in vitro systems that detect direct effects, as well as in vivo systems that allow for more complex interactions that converge on the same pathway. PMID:20026089

  7. The dopamine D1 receptor is expressed and facilitates relaxation in airway smooth muscle.

    PubMed

    Mizuta, Kentaro; Zhang, Yi; Xu, Dingbang; Mizuta, Fumiko; D'Ovidio, Frank; Masaki, Eiji; Emala, Charles W

    2013-09-02

    Dopamine signaling is mediated by Gs protein-coupled "D1-like" receptors (D1 and D5) and Gi-coupled "D2-like" receptors (D2-4). In asthmatic patients, inhaled dopamine induces bronchodilation. Although the Gi-coupled dopamine D2 receptor is expressed and sensitizes adenylyl cyclase activity in airway smooth muscle (ASM) cells, the Gs-coupled dopamine D1-like receptor subtypes have never been identified on these cells. Activation of Gs-coupled receptors stimulates cyclic AMP (cAMP) production through the stimulation of adenylyl cyclase, which promotes ASM relaxation. We questioned whether the dopamine D1-like receptor is expressed on ASM, and modulates its function through Gs-coupling. The mRNA and protein expression of dopamine D1-like receptor subtypes in both native human and guinea pig ASM tissue and cultured human ASM (HASM) cells was measured. To characterize the stimulation of cAMP through the dopamine D1 receptor, HASM cells were treated with dopamine or the dopamine D1-like receptor agonists (A68930 or SKF38393) before cAMP measurements. To evaluate whether the activation of dopamine D1 receptor induces ASM relaxation, guinea pig tracheal rings suspended under isometric tension in organ baths were treated with cumulatively increasing concentrations of dopamine or A68930, following an acetylcholine-induced contraction with or without the cAMP-dependent protein kinase (PKA) inhibitor Rp-cAMPS, the large-conductance calcium-activated potassium (BKCa) channel blocker iberiotoxin, or the exchange proteins directly activated by cAMP (Epac) antagonist NSC45576. Messenger RNA encoding the dopamine D1 and D5 receptors were detected in native human ASM tissue and cultured HASM cells. Immunoblots confirmed the protein expression of the dopamine D1 receptor in both native human and guinea pig ASM tissue and cultured HASM cells. The dopamine D1 receptor was also immunohistochemically localized to both human and guinea pig ASM. The dopamine D1-like receptor agonists

  8. Enzymatic synthesis and characterizations of cyclic GDP-ribose. A procedure for distinguishing enzymes with ADP-ribosyl cyclase activity.

    PubMed

    Graeff, R M; Walseth, T F; Fryxell, K; Branton, W D; Lee, H C

    1994-12-02

    Cyclic nucleotides such as cAMP and cGMP are second messengers subserving various signaling pathways. Cyclic ADP-ribose (cADPR), a recently discovered member of the family, is derived from NAD+ and is a mediator of Ca2+ mobilization in various cellular systems. The synthesis and degradation of cADPR are, respectively, catalyzed by ADP-ribosyl cyclase and cADPR hydrolase. CD38, a differentiation antigen of B lymphocytes, has recently been shown to be a bifunctional enzyme catalyzing both the formation and hydrolysis of cADPR. The overall reaction catalyzed by CD38 is the formation of ADP-ribose and nicotinamide from NAD+, identical to that catalyzed by NADase. The difficulties in detecting the formation of cADPR have led to frequent identification of CD38 as a classical NADase. In this study, we show that both ADP-ribosyl cyclase and CD38, but not NADase, can cyclize nicotinamide guanine dinucleotide (NGD+) producing a new nucleotide. Analyses by high performance liquid chromatography and mass spectroscopy indicate the product is cyclic GDP-ribose (cGDPR) with a structure similar to cADPR except with guanine replacing adenine. Compared to cADPR, cGDPR is a more stable compound showing 2.8 times more resistance to heat-induced hydrolysis. These results are consistent with a catalytic scheme for CD38 where the cyclization of the substrate precedes the hydrolytic reaction. Spectroscopic analyses show that cGDPR is fluorescent and has an absorption spectrum different from both NGD+ and GDPR, providing a very convenient way for monitoring its enzymatic formation. The use of NGD+ as substrate for assaying the cyclization reaction was found to be applicable to pure enzymes as well as crude tissue extracts making it a useful diagnostic tool for distinguishing CD38-like enzymes from degradative NADases.

  9. Pituitary hyperplasia and gigantism in mice caused by a cholera toxin transgene.

    PubMed

    Burton, F H; Hasel, K W; Bloom, F E; Sutcliffe, J G

    1991-03-07

    Cyclic AMP is thought to act as an intracellular second messenger, mediating the physiological response of many cell types to extracellular signals. In the pituitary, growth hormone (GH)-producing cells (somatotrophs) proliferate and produce GH in response to hypothalamic GH-releasing factor, which binds a receptor that stimulates Gs protein activation of adenylyl cyclase. We have now determined whether somatotroph proliferation and GH production are stimulated by cAMP alone, or require concurrent, non-Gs-mediated induction of other regulatory molecules by designing a transgene to induce chronic supraphysiological concentrations of cAMP in somatotrophs. The rat GH promoter was used to express an intracellular form of cholera toxin, a non-cytotoxic and irreversible activator of Gs. Introduction of this transgene into mice caused gigantism, elevated serum GH levels, somatotroph proliferation and pituitary hyperplasia. These results support the direct triggering of these events by cAMP, and illustrate the utility of cholera toxin transgenes as a tool for physiological engineering.

  10. mTORC2 regulates neutrophil chemotaxis in a cAMP- and RhoA-dependent fashion.

    PubMed

    Liu, Lunhua; Das, Satarupa; Losert, Wolfgang; Parent, Carole A

    2010-12-14

    We studied the role of the target of rapamycin complex 2 (mTORC2) during neutrophil chemotaxis, a process that is mediated through the polarization of actin and myosin filament networks. We show that inhibition of mTORC2 activity, achieved via knock down (KD) of Rictor, severely inhibits neutrophil polarization and directed migration induced by chemoattractants, independently of Akt. Rictor KD also abolishes the ability of chemoattractants to induce cAMP production, a process mediated through the activation of the adenylyl cyclase 9 (AC9). Cells with either reduced or higher AC9 levels also exhibit specific and severe tail retraction defects that are mediated through RhoA. We further show that cAMP is excluded from extending pseudopods and remains restricted to the cell body of migrating neutrophils. We propose that the mTORC2-dependent regulation of MyoII occurs through a cAMP/RhoA-signaling axis, independently of actin reorganization during neutrophil chemotaxis. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Spatiotemporal control of opioid signaling and behavior

    PubMed Central

    Siuda, Edward R.; Copits, Bryan A.; Schmidt, Martin J.; Baird, Madison A.; Al-Hasani, Ream; Planer, William J.; Funderburk, Samuel C.; McCall, Jordan G.; Gereau, Robert W.; Bruchas, Michael R.

    2015-01-01

    Summary Optogenetics is now a widely accepted tool for spatiotemporal manipulation of neuronal activity. However, a majority of optogenetic approaches use binary on/off control schemes. Here we extend the optogenetic toolset by developing a neuromodulatory approach using a rationale-based design to generate a Gi-coupled, optically-sensitive, mu-opioid-like receptor, we term opto-MOR. We demonstrate that opto-MOR engages canonical mu-opioid signaling through inhibition of adenylyl cyclase, activation of MAPK and G protein-gated inward rectifying potassium (GIRK) channels, and internalizes with similar kinetics as the mu-opioid receptor. To assess in vivo utility we expressed a Cre-dependent viral opto-MOR in RMTg/VTA GABAergic neurons, which led to a real-time place preference. In contrast, expression of opto-MOR in GABAergic neurons of the ventral pallidum hedonic cold spot, led to real-time place aversion. This tool has generalizable application for spatiotemporal control of opioid signaling and, furthermore, can be used broadly for mimicking endogenous neuronal inhibition pathways. PMID:25937173

  12. The Central Role of cAMP in Regulating Plasmodium falciparum Merozoite Invasion of Human Erythrocytes

    PubMed Central

    More, Kunal R.; Siddiqui, Faiza Amber; Pachikara, Niseema; Ramdani, Ghania; Langsley, Gordon; Chitnis, Chetan E.

    2014-01-01

    All pathogenesis and death associated with Plasmodium falciparum malaria is due to parasite-infected erythrocytes. Invasion of erythrocytes by P. falciparum merozoites requires specific interactions between host receptors and parasite ligands that are localized in apical organelles called micronemes. Here, we identify cAMP as a key regulator that triggers the timely secretion of microneme proteins enabling receptor-engagement and invasion. We demonstrate that exposure of merozoites to a low K+ environment, typical of blood plasma, activates a bicarbonate-sensitive cytoplasmic adenylyl cyclase to raise cytosolic cAMP levels and activate protein kinase A, which regulates microneme secretion. We also show that cAMP regulates merozoite cytosolic Ca2+ levels via induction of an Epac pathway and demonstrate that increases in both cAMP and Ca2+ are essential to trigger microneme secretion. Our identification of the different elements in cAMP-dependent signaling pathways that regulate microneme secretion during invasion provides novel targets to inhibit blood stage parasite growth and prevent malaria. PMID:25522250

  13. Melanocortin 1 Receptor: Structure, Function, and Regulation

    PubMed Central

    Wolf Horrell, Erin M.; Boulanger, Mary C.; D’Orazio, John A.

    2016-01-01

    The melanocortin 1 receptor (MC1R) is a melanocytic Gs protein coupled receptor that regulates skin pigmentation, UV responses, and melanoma risk. It is a highly polymorphic gene, and loss of function correlates with a fair, UV-sensitive, and melanoma-prone phenotype due to defective epidermal melanization and sub-optimal DNA repair. MC1R signaling, achieved through adenylyl cyclase activation and generation of the second messenger cAMP, is hormonally controlled by the positive agonist melanocortin, the negative agonist agouti signaling protein, and the neutral antagonist β-defensin 3. Activation of cAMP signaling up-regulates melanin production and deposition in the epidermis which functions to limit UV penetration into the skin and enhances nucleotide excision repair (NER), the genomic stability pathway responsible for clearing UV photolesions from DNA to avoid mutagenesis. Herein we review MC1R structure and function and summarize our laboratory’s findings on the molecular mechanisms by which MC1R signaling impacts NER. PMID:27303435

  14. Associative Learning in Invertebrates

    PubMed Central

    Hawkins, Robert D.; Byrne, John H.

    2015-01-01

    This work reviews research on neural mechanisms of two types of associative learning in the marine mollusk Aplysia, classical conditioning of the gill- and siphon-withdrawal reflex and operant conditioning of feeding behavior. Basic classical conditioning is caused in part by activity-dependent facilitation at sensory neuron–motor neuron (SN–MN) synapses and involves a hybrid combination of activity-dependent presynaptic facilitation and Hebbian potentiation, which are coordinated by trans-synaptic signaling. Classical conditioning also shows several higher-order features, which might be explained by the known circuit connections in Aplysia. Operant conditioning is caused in part by a different type of mechanism, an intrinsic increase in excitability of an identified neuron in the central pattern generator (CPG) for feeding. However, for both classical and operant conditioning, adenylyl cyclase is a molecular site of convergence of the two signals that are associated. Learning in other invertebrate preparations also involves many of the same mechanisms, which may contribute to learning in vertebrates as well. PMID:25877219

  15. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Enhances Hippocampal Synaptic Plasticity and Improves Memory Performance in Huntington's Disease.

    PubMed

    Cabezas-Llobet, N; Vidal-Sancho, L; Masana, M; Fournier, A; Alberch, J; Vaudry, D; Xifró, X

    2018-03-10

    Deficits in hippocampal synaptic plasticity result in cognitive impairment in Huntington's disease (HD). Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that exerts neuroprotective actions, mainly through the PAC1 receptor. However, the role of PACAP in cognition is poorly understood, and no data exists in the context of Huntington's disease (HD). Here, we investigated the ability of PACAP receptor stimulation to enhance memory development in HD. First, we observed a hippocampal decline of all three PACAP receptor expressions, i.e., PAC1, VPAC1, and VPAC2, in two different HD mouse models, R6/1 and HdhQ7/Q111, from the onset of cognitive dysfunction. In hippocampal post-mortem human samples, we found a specific decrease of PAC1, without changes in VPAC1 and VPAC2 receptors. To determine whether activation of PACAP receptors could contribute to improve memory performance, we conducted daily intranasal administration of PACAP38 to R6/1 mice at the onset of cognitive impairment for seven days. We found that PACAP treatment rescued PAC1 level in R6/1 mice, promoted expression of the hippocampal brain-derived neurotrophic factor, and reduced the formation of mutant huntingtin aggregates. Furthermore, PACAP administration counteracted R6/1 mice memory deficits as analyzed by the novel object recognition test and the T-maze spontaneous alternation task. Importantly, the effect of PACAP on cognitive performance was associated with an increase of VGlut-1 and PSD95 immunolabeling in hippocampus of R6/1 mice. Taken together, these results suggest that PACAP, acting through stimulation of PAC1 receptor, may have a therapeutic potential to counteract cognitive deficits induced in HD.

  16. Buprenorphine-elicited alteration of adenylate cyclase activity in human embryonic kidney 293 cells coexpressing κ-, μ-opioid and nociceptin receptors

    PubMed Central

    Wang, Pei-Chen; Ho, Ing-Kang; Lee, Cynthia Wei-Sheng

    2015-01-01

    Buprenorphine, a maintenance drug for heroin addicts, exerts its pharmacological function via κ- (KOP), μ-opioid (MOP) and nociceptin/opioid receptor-like 1 (NOP) receptors. Previously, we investigated its effects in an in vitro model expressing human MOP and NOP receptors individually or simultaneously (MOP, NOP, and MOP+NOP) in human embryonic kidney 293 cells. Here, we expanded this cell model by expressing human KOP, MOP and NOP receptors individually or simultaneously (KOP, KOP+MOP, KOP+NOP and KOP+MOP+NOP). Radioligand binding with tritium-labelled diprenorphine confirmed the expression of KOP receptors. Immunoblotting and immunocytochemistry indicated that the expressed KOP, MOP and NOP receptors are N-linked glycoproteins and colocalized in cytoplasmic compartments. Acute application of the opioid receptor agonists— U-69593, DAMGO and nociceptin— inhibited adenylate cyclase (AC) activity in cells expressing KOP, MOP and NOP receptors respectively. Buprenorphine, when applied acutely, inhibited AC activity to ~90% in cells expressing KOP+MOP+NOP receptors. Chronic exposure to buprenorphine induced concentration-dependent AC superactivation in cells expressing KOP+NOP receptors, and the level of this superactivation was even higher in KOP+MOP+NOP-expressing cells. Our study demonstrated that MOP receptor could enhance AC regulation in the presence of coexpressed KOP and NOP receptors, and NOP receptor is essential for concentration-dependent AC superactivation elicited by chronic buprenorphine exposure. PMID:26153065

  17. Activation of cAMP-dependent signaling pathway induces mouse organic anion transporting polypeptide 2 expression.

    PubMed

    Chen, Chuan; Cheng, Xingguo; Dieter, Matthew Z; Tanaka, Yuji; Klaassen, Curtis D

    2007-04-01

    Rodent Oatp2 is a hepatic uptake transporter for such compounds as cardiac glycosides. In the present study, we found that fasting resulted in a 2-fold induction of Oatp2 expression in liver of mice. Because the cAMP-protein kinase A (PKA) signaling pathway is activated during fasting, the role of this pathway in Oatp2 induction during fasting was examined. In Hepa-1c1c7 cells, adenylyl cyclase activator forskolin as well as two cellular membrane-permeable cAMP analogs, dibutyryl cAMP and 8-bromo-cAMP, induced Oatp2 mRNA expression in a time- and dose-dependent manner. These three chemicals induced reporter gene activity in cells transfected with a luciferase reporter gene construct containing a 7.6-kilobase (kb) 5'-flanking region of mouse Oatp2. Transient transfection of cells with 5'-deletion constructs derived from the 7.6-kb Oatp2 promoter reporter gene construct, as well as 7.6-kb constructs in which a consensus cAMP response element (CRE) half-site CGTCA (-1808/-1804 bp) was mutated or deleted, confirms that this CRE site was required for the induction of luciferase activity by forskolin. Luciferase activity driven by the Oatp2 promoter containing this CRE site was induced in cells cotransfected with a plasmid encoding the protein kinase A catalytic subunit. Cotransfection of cells with a plasmid encoding the dominant-negative CRE binding protein (CREB) completely abolished the inducibility of the reporter gene activity by forskolin. In conclusion, induction of Oatp2 expression in liver of fasted mice may be caused by activation of the cAMP-dependent signaling pathway, with the CRE site (-1808/-1804) and CREB being the cis- and trans-acting factors mediating the induction, respectively.

  18. In vitro action of bombesin and bombesin-like peptides on amylase secretion, calcium efflux, and adenylate cyclase activity in the rat pancreas: a comparison with other secretagogues.

    PubMed Central

    Deschodt-Lanckman, M; Robberecht, P; De Neef, P; Lammens, M; Christophe, J

    1976-01-01

    Bombesin (a tetradecapeptide), the C-terminal nonapeptide of bombesin (bombesin-NP), and litorin (a parent nonapeptide), each stimulated amylase secretion from rat pancreatic fragments. These responses were not affected by atropine. The concentrations that produced half-maximal stumulation of secretion were 0.25 nM for bombesin, 0.30 nM for bombesin-NP, and 0.07 nM for litorin, as compared to 0.12 nM for caerulein and 0.80 muM for the cholinergic agent carbamylcholine. When used at maximal concentrations, bombesin, bombesin-NP, and litorin showed no action on cyclic AMP levels in the presence of 5 mM theophylline. By contrast, caerulein and secretin increased cyclic AMP levels by 27 and 208%, respectively. Bombesin, bombesin-NP, and litorin did not activate adenylate cyclase in a purified pancreatic plasma membrane preparation, whereas caerulein and secretin increased this activity 20 and 16-times, respectively... PMID:184111

  19. Exchange protein activated by cyclic AMP (Epac)-mediated induction of suppressor of cytokine signaling 3 (SOCS-3) in vascular endothelial cells.

    PubMed

    Sands, William A; Woolson, Hayley D; Milne, Gillian R; Rutherford, Claire; Palmer, Timothy M

    2006-09-01

    Here, we demonstrate that elevation of intracellular cyclic AMP (cAMP) in vascular endothelial cells (ECs) by either a direct activator of adenylyl cyclase or endogenous cAMP-mobilizing G protein-coupled receptors inhibited the tyrosine phosphorylation of STAT proteins by an interleukin 6 (IL-6) receptor trans-signaling complex (soluble IL-6Ralpha/IL-6). This was associated with the induction of suppressor of cytokine signaling 3 (SOCS-3), a bona fide inhibitor in vivo of gp130, the signal-transducing component of the IL-6 receptor complex. Attenuation of SOCS-3 induction in either ECs or SOCS-3-null murine embryonic fibroblasts abolished the inhibitory effect of cAMP, whereas inhibition of SHP-2, another negative regulator of gp130, was without effect. Interestingly, the inhibition of STAT phosphorylation and SOCS-3 induction did not require cAMP-dependent protein kinase activity but could be recapitulated upon selective activation of the alternative cAMP sensor Epac, a guanine nucleotide exchange factor for Rap1. Consistent with this hypothesis, small interfering RNA-mediated knockdown of Epac1 was sufficient to attenuate both cAMP-mediated SOCS-3 induction and inhibition of STAT phosphorylation, suggesting that Epac activation is both necessary and sufficient to observe these effects. Together, these data argue for the existence of a novel cAMP/Epac/Rap1/SOCS-3 pathway for limiting IL-6 receptor signaling in ECs and illuminate a new mechanism by which cAMP may mediate its potent anti-inflammatory effects.

  20. A Single Oxidosqualene Cyclase Produces the Seco-Triterpenoid α-Onocerin1[OPEN

    PubMed Central

    Almeida, Aldo; Khakimov, Bekzod; Bassard, Jean-Etienne; Appendino, Giovanni

    2018-01-01

    8,14-seco-Triterpenoids are characterized by their unusual open C-ring. Their distribution in nature is rare and scattered in taxonomically unrelated plants. The 8,14-seco-triterpenoid α-onocerin is only known from the evolutionarily distant clubmoss genus Lycopodium and the leguminous genus Ononis, which makes the biosynthesis of this seco-triterpenoid intriguing from an evolutionary standpoint. In our experiments with Ononis spinosa, α-onocerin was detected only in the roots. Through transcriptome analysis of the roots, an oxidosqualene cyclase, OsONS1, was identified that produces α-onocerin from squalene-2,3;22,23-dioxide when transiently expressed in Nicotiana bethamiana. In contrast, in Lycopodium clavatum, two sequential cyclases, LcLCC and LcLCD, are required to produce α-onocerin in the N. benthamiana transient expression system. Expression of OsONS1 in the lanosterol synthase knockout yeast strain GIL77, which accumulates squalene-2,3;22,23-dioxide, verified the α-onocerin production. A phylogenetic analysis predicts that OsONS1 branches off from specific lupeol synthases and does not group with the known L. clavatum α-onocerin cyclases. Both the biochemical and phylogenetic analyses of OsONS1 suggest convergent evolution of the α-onocerin pathways. When OsONS1 was coexpressed in N. benthamiana leaves with either of the two O. spinosa squalene epoxidases, OsSQE1 or OsSQE2, α-onocerin production was boosted, most likely because the epoxidases produce higher amounts of squalene-2,3;22,23-dioxide. Fluorescence lifetime imaging microscopy analysis demonstrated specific protein-protein interactions between OsONS1 and both O. spinosa squalene epoxidases. Coexpression of OsONS1 with the two OsSQEs suggests that OsSQE2 is the preferred partner of OsONS1 in planta. Our results provide an example of the convergent evolution of plant specialized metabolism. PMID:29203557

  1. Isolation and functional characterization of a lycopene β-cyclase gene that controls fruit colour of papaya (Carica papaya L.)

    PubMed Central

    Devitt, Luke C.; Fanning, Kent; Dietzgen, Ralf G.; Holton, Timothy A.

    2010-01-01

    The colour of papaya fruit flesh is determined largely by the presence of carotenoid pigments. Red-fleshed papaya fruit contain lycopene, whilst this pigment is absent from yellow-fleshed fruit. The conversion of lycopene (red) to β-carotene (yellow) is catalysed by lycopene β-cyclase. This present study describes the cloning and functional characterization of two different genes encoding lycopene β-cyclases (lcy-β1 and lcy-β2) from red (Tainung) and yellow (Hybrid 1B) papaya cultivars. A mutation in the lcy-β2 gene, which inactivates enzyme activity, controls lycopene production in fruit and is responsible for the difference in carotenoid production between red and yellow-fleshed papaya fruit. The expression level of both lcy-β1 and lcy-β2 genes is similar and low in leaves, but lcy-β2 expression increases markedly in ripe fruit. Isolation of the lcy-β2 gene from papaya, that is preferentially expressed in fruit and is correlated with fruit colour, will facilitate marker-assisted breeding for fruit colour in papaya and should create possibilities for metabolic engineering of carotenoid production in papaya fruit to alter both colour and nutritional properties. PMID:19887502

  2. Isolation and functional characterization of a lycopene beta-cyclase gene that controls fruit colour of papaya (Carica papaya L.).

    PubMed

    Devitt, Luke C; Fanning, Kent; Dietzgen, Ralf G; Holton, Timothy A

    2010-01-01

    The colour of papaya fruit flesh is determined largely by the presence of carotenoid pigments. Red-fleshed papaya fruit contain lycopene, whilst this pigment is absent from yellow-fleshed fruit. The conversion of lycopene (red) to beta-carotene (yellow) is catalysed by lycopene beta-cyclase. This present study describes the cloning and functional characterization of two different genes encoding lycopene beta-cyclases (lcy-beta1 and lcy-beta2) from red (Tainung) and yellow (Hybrid 1B) papaya cultivars. A mutation in the lcy-beta2 gene, which inactivates enzyme activity, controls lycopene production in fruit and is responsible for the difference in carotenoid production between red and yellow-fleshed papaya fruit. The expression level of both lcy-beta1 and lcy-beta2 genes is similar and low in leaves, but lcy-beta2 expression increases markedly in ripe fruit. Isolation of the lcy-beta2 gene from papaya, that is preferentially expressed in fruit and is correlated with fruit colour, will facilitate marker-assisted breeding for fruit colour in papaya and should create possibilities for metabolic engineering of carotenoid production in papaya fruit to alter both colour and nutritional properties.

  3. Downregulation of cardiac guanosine 5'-triphosphate-binding proteins in right atrium and left ventricle in pacing-induced congestive heart failure.

    PubMed Central

    Roth, D A; Urasawa, K; Helmer, G A; Hammond, H K

    1993-01-01

    The extent to which congestive heart failure (CHF) is dependent upon increased levels of the cardiac inhibitory GTP-binding protein (Gi), and the impact of CHF on the cardiac stimulatory GTP-binding protein (Gs) and mechanisms by which Gs may change remain unexplored. We have addressed these unsettled issues using pacing-induced CHF in pigs to examine physiological, biochemical, and molecular features of the right atrium (RA) and left ventricle (LV). CHF was associated with an 85 +/- 20% decrease in LV segment shortening (P < 0.001) and a 3.5-fold increase (P = 0.006) in the ED50 for isoproterenol-stimulated heart rate responsiveness. Myocardial beta-adrenergic receptor number was decreased 54% in RA (P = 0.004) and 57% in LV (P < 0.001), and multiple measures of adenylyl cyclase activity were depressed 49 +/- 8% in RA (P < 0.005), and 44 +/- 9% in LV (P < 0.001). Quantitative immunoblotting established that Gi and Gs were decreased in RA (Gi: 59% reduction; P < 0.0001; Gs: 28% reduction; P < 0.007) and LV (Gi: 35% reduction; P < 0.008; Gs: 28% reduction; P < 0.01) after onset of CHF. Reduced levels of Gi and Gs were confirmed by ADP ribosylation studies, and diminished function of Gs was established in reconstitution studies. Steady state levels for Gs alpha mRNA were increased in RA and unchanged in LV, and significantly more GS alpha was found in the supernatant (presumably cytosolic) fraction in RA and LV membrane homogenates after CHF, suggesting that increased Gs degradation, rather than decreased Gs synthesis, is the mechanism by which Gs is downregulated. We conclude that cardiac Gi content poorly predicts adrenergic responsiveness or contractile function, that decreased Gs is caused by increased degradation rather than decreased synthesis, and that alterations in beta-adrenergic receptors, adenylyl cyclase, and GTP-binding proteins are uniform in RA and LV in this model of congestive heart failure. Images PMID:8383705

  4. Dopamine induces inhibitory effects on the circular muscle contractility of mouse distal colon via D1- and D2-like receptors.

    PubMed

    Auteri, Michelangelo; Zizzo, Maria Grazia; Amato, Antonella; Serio, Rosa

    2016-08-01

    Dopamine (DA) acts as gut motility modulator, via D1- and D2-like receptors, but its effective role is far from being clear. Since alterations of the dopaminergic system could lead to gastrointestinal dysfunctions, a characterization of the enteric dopaminergic system is mandatory. In this study, we investigated the role of DA and D1- and D2-like receptors in the contractility of the circular muscle of mouse distal colon by organ-bath technique. DA caused relaxation in carbachol-precontracted circular muscle strips, sensitive to domperidone, D2-like receptor antagonist, and mimicked by bromocriptine, D2-like receptor agonist. 7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH-23390), D1-like receptor antagonist, neural toxins, L-NAME (nitric oxide (NO) synthase inhibitor), 2'-deoxy-N 6 -methyl adenosine 3',5'-diphosphate diammonium salt (MRS 2179), purinergic P2Y1 antagonist, or adrenergic antagonists were ineffective. DA also reduced the amplitude of neurally evoked cholinergic contractions. The effect was mimicked by (±)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrobromide (SKF-38393), D1-like receptor agonist and antagonized by SCH-23390, MRS 2179, or L-NAME. Western blotting analysis determined the expression of DA receptor proteins in mouse distal colon. Notably, SCH-23390 per se induced an increase in amplitude of spontaneous and neurally evoked cholinergic contractions, unaffected by neural blockers, L-NAME, MRS 2179, muscarinic, adrenergic, or D2-like receptor antagonists. Indeed, SCH-23390-induced effects were antagonized by an adenylyl cyclase blocker. In conclusion, DA inhibits colonic motility in mice via D2- and D1-like receptors, the latter reducing acetylcholine release from enteric neurons, involving nitrergic and purinergic systems. Whether constitutively active D1-like receptors, linked to adenylyl cyclase pathway, are involved in a tonic inhibitory control of colonic contractility is

  5. Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli.

    PubMed

    Salem, Wesam; Leitner, Deborah R; Zingl, Franz G; Schratter, Gebhart; Prassl, Ruth; Goessler, Walter; Reidl, Joachim; Schild, Stefan

    2015-01-01

    Vibrio cholerae and enterotoxic Escherichia coli (ETEC) remain two dominant bacterial causes of severe secretory diarrhea and still a significant cause of death, especially in developing countries. In order to investigate new effective and inexpensive therapeutic approaches, we analyzed nanoparticles synthesized by a green approach using corresponding salt (silver or zinc nitrate) with aqueous extract of Caltropis procera fruit or leaves. We characterized the quantity and quality of nanoparticles by UV-visible wavelength scans and nanoparticle tracking analysis. Nanoparticles could be synthesized in reproducible yields of approximately 10(8) particles/ml with mode particles sizes of approx. 90-100 nm. Antibacterial activity against two pathogens was assessed by minimal inhibitory concentration assays and survival curves. Both pathogens exhibited similar resistance profiles with minimal inhibitory concentrations ranging between 5×10(5) and 10(7) particles/ml. Interestingly, zinc nanoparticles showed a slightly higher efficacy, but sublethal concentrations caused adverse effects and resulted in increased biofilm formation of V. cholerae. Using the expression levels of the outer membrane porin OmpT as an indicator for cAMP levels, our results suggest that zinc nanoparticles inhibit adenylyl cyclase activity. This consequently deceases the levels of this second messenger, which is a known inhibitor of biofilm formation. Finally, we demonstrated that a single oral administration of silver nanoparticles to infant mice colonized with V. cholerae or ETEC significantly reduces the colonization rates of the pathogens by 75- or 100-fold, respectively. Copyright © 2014 The Authors. Published by Elsevier GmbH.. All rights reserved.

  6. The selective metabotropic glutamate 2/3 receptor agonist MGS0028 reverses psychomotor abnormalities and recognition memory deficits in mice lacking the pituitary adenylate cyclase-activating polypeptide.

    PubMed

    Ago, Yukio; Hiramatsu, Naoki; Ishihama, Toshihiro; Hazama, Keisuke; Hayata-Takano, Atsuko; Shibasaki, Yasuhiro; Shintani, Norihito; Hashimoto, Hitoshi; Kawasaki, Toshiyuki; Onoe, Hirotaka; Chaki, Shigeyuki; Nakazato, Atsuro; Baba, Akemichi; Takuma, Kazuhiro; Matsuda, Toshio

    2013-02-01

    Previous studies suggest that metabotropic glutamate 2/3 receptors are involved in psychiatric disorders. In this study, we examined the effects of the selective metabotropic glutamate 2/3 (mGlu2/3) receptor agonist MGS0028 on behavioral abnormalities in mice lacking the pituitary adenylate cyclase-activating polypeptide (PACAP), an experimental model of psychiatric disorders such as schizophrenia and attention-deficit/hyperactivity disorder. We found that PACAP-deficient mice showed impairments in the novel object recognition test and these impairments were improved by MGS0028 (0.1 mg/kg). Similarly, MGS0028 improved hyperactivity and jumping behaviors, but did not reverse increased immobility times in the forced swim test in PACAP-deficient mice. These results suggest that MGS0028 may be a potential, novel treatment for psychiatric disorders.

  7. [Construction of high-yield strain by optimizing lycopene cyclase for β-carotene production].

    PubMed

    Jin, Yingfu; Han, Li; Zhang, Shasha; Li, Shizhong; Liu, Weifeng; Tao, Yong

    2017-11-25

    To optimize key enzymes, such as to explore the gene resources and to modify the expression level, can maximize metabolic pathways of target products. β-carotene is a terpenoid compound with important application value. Lycopene cyclase (CrtY) is the key enzyme in β-carotene biosynthesis pathway, catalyzing flavin adenine dinucleotide (FAD)-dependent cyclization reaction and β-carotene synthesis from lycopene precursor. We optimized lycopene cyclase (CrtY) to improve the synthesis of β-carotene and determined the effect of CrtY expression on metabolic pathways. Frist, we developed a β-carotene synthesis module by coexpressing the lycopene β-cyclase gene crtY with crtEBI module in Escherichia coli. Then we simultaneously optimized the ribosome-binding site (RBS) intensity and the species of crtY using oligo-linker mediated DNA assembly method (OLMA). Five strains with high β-carotene production capacity were screened out from the OLMA library. The β-carotene yields of these strains were up to 15.79-18.90 mg/g DCW (Dry cell weight), 65% higher than that of the original strain at shake flask level. The optimal strain CP12 was further identified and evaluated for β-carotene production at 5 L fermentation level. After process optimization, the final β-carotene yield could reach to 1.9 g/L. The results of RBS strength and metabolic intermediate analysis indicated that an appropriate expression level of CrtY could be beneficial for the function of the β-carotene synthesis module. The results of this study provide important insight into the optimization of β-carotene synthesis pathway in metabolic engineering.

  8. Guanylyl Cyclase C Hormone Axis at the Intersection of Obesity and Colorectal Cancer

    PubMed Central

    Blomain, Erik S.; Merlino, Dante J.; Pattison, Amanda M.; Snook, Adam E.

    2016-01-01

    Obesity has emerged as a principal cause of mortality worldwide, reflecting comorbidities including cancer risk, particularly in colorectum. Although this relationship is established epidemiologically, molecular mechanisms linking colorectal cancer and obesity continue to be refined. Guanylyl cyclase C (GUCY2C), a membrane-bound guanylyl cyclase expressed in intestinal epithelial cells, binds the paracrine hormones guanylin and uroguanylin, inducing cGMP signaling in colorectum and small intestine, respectively. Guanylin is the most commonly lost gene product in sporadic colorectal cancer, and its universal loss early in transformation silences GUCY2C, a tumor suppressor, disrupting epithelial homeostasis underlying tumorigenesis. In small intestine, eating induces endocrine secretion of uroguanylin, the afferent limb of a novel gut-brain axis that activates hypothalamic GUCY2C-cGMP signaling mediating satiety opposing obesity. Recent studies revealed that diet-induced obesity suppressed guanylin and uroguanylin expression in mice and humans. Hormone loss reflects reversible calorie-induced endoplasmic reticulum stress and the associated unfolded protein response, rather than the endocrine, adipokine, or inflammatory milieu of obesity. Loss of intestinal uroguanylin secretion silences the hypothalamic GUCY2C endocrine axis, creating a feed-forward loop contributing to hyperphagia in obesity. Importantly, calorie-induced guanylin loss silences the GUCY2C-cGMP paracrine axis underlying obesity-induced epithelial dysfunction and colorectal tumorigenesis. Indeed, genetically enforced guanylin replacement eliminated diet-induced intestinal tumorigenesis in mice. Taken together, these observations suggest that GUCY2C hormone axes are at the intersection of obesity and colorectal cancer. Moreover, they suggest that hormone replacement that restores GUCY2C signaling may be a novel therapeutic paradigm to prevent both hyperphagia and intestinal tumorigenesis in obesity

  9. 17 beta-estradiol modifies nitric oxide-sensitive guanylyl cyclase expression and down-regulates its activity in rat anterior pituitary gland.

    PubMed

    Cabilla, Jimena P; Díaz, María del Carmen; Machiavelli, Leticia I; Poliandri, Ariel H; Quinteros, Fernanda A; Lasaga, Mercedes; Duvilanski, Beatriz H

    2006-09-01

    Previous studies showed that 17 beta-estradiol (17 beta-E2) regulates the nitric oxide (NO)/soluble guanylyl cyclase (sGC)/cGMP pathway in many tissues. Evidence from our laboratory indicates that 17 beta-E2 disrupts the inhibitory effect of NO on prolactin release, decreasing sGC activity and affecting the cGMP pathway in anterior pituitary gland of adult ovariectomized and estrogenized rats. To ascertain the mechanisms by which 17 beta-E2 affects sGC activity, we investigated the in vivo and in vitro effects of 17 beta-E2 on sGC protein and mRNA expression in anterior pituitary gland from immature female rats. In the present work, we showed that 17 beta-E2 acute treatment exerted opposite effects on the two sGC subunits, increasing alpha1 and decreasing beta1 subunit protein and mRNA expression. This action on sGC protein expression was maximal 6-9 h after 17 beta-E2 administration. 17beta-E2 also caused the same effect on mRNA expression at earlier times. Concomitantly, 17 beta-E2 dramatically decreased sGC activity 6 and 9 h after injection. These effects were specific of 17 beta-E2, because they were not observed with the administration of other steroids such as progesterone and 17 alpha-estradiol. This inhibitory action of 17beta-E2 on sGC also required the activation of estrogen receptor (ER), because treatment with the pure ER antagonist ICI 182,780 completely blocked 17 beta-E2 action. 17 beta-E2 acute treatment caused the same effects on pituitary cells in culture. These results suggest that 17 beta-E2 exerts an acute inhibitory effect on sGC in anterior pituitary gland by down-regulating sGC beta 1 subunit and sGC activity in a specific, ER-dependent manner.

  10. A membrane-associated adenylate cyclase modulates lactate dehydrogenase and creatine kinase activities required for bull sperm capacitation induced by hyaluronic acid.

    PubMed

    Fernández, Silvina; Córdoba, Mariana

    2017-04-01

    Hyaluronic acid, as well as heparin, is a glycosaminoglycan present in the female genital tract of cattle. The aim of this study was to evaluate oxidative metabolism and intracellular signals mediated by a membrane-associated adenylate cyclase (mAC), in sperm capacitation with hyaluronic acid and heparin, in cryopreserved bull sperm. The mAC inhibitor, 2',5'-dideoxyadenosine, was used in the present study. Lactate dehydrogenase (LDH) and creatine kinase (CK) activities and lactate concentration were determined spectrophotometrically in the incubation medium. Capacitation and acrosome reaction were evaluated by chlortetracycline technique, while plasma membrane and acrosome integrity were determined by trypan blue stain/differential interference contrast microscopy. Heparin capacitated samples had a significant decrease in LDH and CK activities, while in hyaluronic acid capacitated samples LDH and CK activities both increased compared to control samples, in heparin and hyaluronic acid capacitation conditions, respectively. A significant increase in lactate concentration in the incubation medium occurred in hyaluronic acid-treated sperm samples compared to heparin treatment, indicating this energetic metabolite is produced during capacitation. The LDH and CK enzyme activities and lactate concentrations in the incubation medium were decreased with 2',5'-dideoxyadenosine treatment in hyaluronic acid samples. The mAC inhibitor significantly inhibited heparin-induced capacitation of sperm cells, but did not completely inhibit hyaluronic acid capacitation. Therefore, hyaluronic acid and heparin are physiological glycosaminoglycans capable of inducing in vitro capacitation in cryopreserved bull sperm, stimulating different enzymatic pathways and intracellular signals modulated by a mAC. Hyaluronic acid induces sperm capacitation involving LDH and CK activities, thereby reducing oxidative metabolism, and this process is mediated by mAC. Copyright © 2017 Elsevier B.V. All

  11. Structure of RNA 3′-phosphate cyclase bound to substrate RNA

    PubMed Central

    Desai, Kevin K.; Bingman, Craig A.; Cheng, Chin L.; Phillips, George N.

    2014-01-01

    RNA 3′-phosphate cyclase (RtcA) catalyzes the ATP-dependent cyclization of a 3′-phosphate to form a 2′,3′-cyclic phosphate at RNA termini. Cyclization proceeds through RtcA–AMP and RNA(3′)pp(5′)A covalent intermediates, which are analogous to intermediates formed during catalysis by the tRNA ligase RtcB. Here we present a crystal structure of Pyrococcus horikoshii RtcA in complex with a 3′-phosphate terminated RNA and adenosine in the AMP-binding pocket. Our data reveal that RtcA recognizes substrate RNA by ensuring that the terminal 3′-phosphate makes a large contribution to RNA binding. Furthermore, the RNA 3′-phosphate is poised for in-line attack on the P–N bond that links the phosphorous atom of AMP to Nε of His307. Thus, we provide the first insights into RNA 3′-phosphate termini recognition and the mechanism of 3′-phosphate activation by an Rtc enzyme. PMID:25161314

  12. Enzymatic Addition of Alcohols to Terpenes by Squalene Hopene Cyclase Variants.

    PubMed

    Kühnel, Lisa C; Nestl, Bettina M; Hauer, Bernhard

    2017-11-16

    Squalene-hopene cyclases (SHCs) catalyze the polycyclization of squalene into a mixture of hopene and hopanol. Recently, amino-acid residues lining the catalytic cavity of the SHC from Alicyclobacillus acidocaldarius were replaced by small and large hydrophobic amino acids. The alteration of leucine 607 to phenylalanine resulted in increased enzymatic activity towards the formation of an intermolecular farnesyl-farnesyl ether product from farnesol. Furthermore, the addition of small-chain alcohols acting as nucleophiles led to the formation of non-natural ether-linked terpenoids and, thus, to significant alteration of the product pattern relative to that obtained with the wild type. It is proposed that the mutation of leucine at position 607 may facilitate premature quenching of the intermediate by small alcohol nucleophiles. This mutagenesis-based study opens the field for further intermolecular bond-forming reactions and the generation of non-natural products. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Activation of Extracellular Signal-Regulated Kinase in the Anterior Cingulate Cortex Contributes to the Induction and Expression of Affective Pain

    PubMed Central

    Cao, Hong; Gao, Yong-Jing; Ren, Wen-Hua; Li, Ting-Ting; Duan, Kai-Zheng; Cui, Yi-Hui; Cao, Xiao-Hua; Zhao, Zhi-Qi; Ji, Ru-Rong; Zhang, Yu-Qiu

    2009-01-01

    The anterior cingulate cortex (ACC) is implicated in the affective response to noxious stimuli. However, little is known about the molecular mechanisms involved. The present study demonstrated that extracellular signal-regulated kinase (ERK) activation in the ACC plays a crucial role in pain-related negative emotion. Intraplantar formalin injection produced a transient ERK activation in laminae V–VI and a persistent ERK activation in laminae II–III of the rostral ACC (rACC) bilaterally. Using formalin-induced conditioned place avoidance (F-CPA) in rats, which is believed to reflect the pain-related negative emotion, we found that blockade of ERK activation in the rACC with MEK inhibitors prevented the induction of F-CPA. Interestingly, this blockade did not affect formalin-induced two-phase spontaneous nociceptive responses and CPA acquisition induced by electric foot-shock or U69,593, an innocuous aversive agent. Upstream, NMDA receptor, adenylyl cyclase (AC) and PKA activators activated ERK in rACC slices. Consistently, intra-rACC microinjection of AC or PKA inhibitors prevented F-CPA induction. Downstream, phosphorylation of cAMP response element binding protein (CREB) was induced in the rACC by formalin injection and by NMDA, AC and PKA activators in brain slices, which was suppressed by MEK inhibitors. Furthermore, ERK also contributed to the expression of pain-related negative emotion. Thus, when rats were re-exposed to the conditioning context for retrieval of pain experience, ERK and CREB were re-activated in the rACC, and inhibiting ERK activation blocked the expression of F-CPA. All together, our results demonstrate that ERK activation in the rACC is required for the induction and expression of pain-related negative affect. PMID:19279268

  14. The natriuretic peptides BNP and CNP increase heart rate and electrical conduction by stimulating ionic currents in the sinoatrial node and atrial myocardium following activation of guanylyl cyclase-linked natriuretic peptide receptors.

    PubMed

    Springer, Jeremy; Azer, John; Hua, Rui; Robbins, Courtney; Adamczyk, Andrew; McBoyle, Sarah; Bissell, Mary Beth; Rose, Robert A

    2012-05-01

    Natriuretic peptides (NPs) are best known for their ability to regulate blood vessel tone and kidney function whereas their electrophysiological effects on the heart are less clear. Here, we measured the effects of BNP and CNP on sinoatrial node (SAN) and atrial electrophysiology in isolated hearts as well as isolated SAN and right atrial myocytes from mice. BNP and CNP dose-dependently increased heart rate and conduction through the heart as indicated by reductions in R-R interval, P wave duration and P-R interval on ECGs. In conjunction with these ECG changes BNP and CNP (100 nM) increased spontaneous action potential frequency in isolated SAN myocytes by increasing L-type Ca(2+) current (I(Ca,L)) and the hyperpolarization-activated current (I(f)). BNP had no effect on right atrial myocyte APs in basal conditions; however, in the presence of isoproterenol (10nM), BNP increased atrial AP duration and I(Ca,L). Quantitative gene expression and immunocytochemistry data show that all three NP receptors (NPR-A, NPR-B and NPR-C) are expressed in the SAN and atrium. The effects of BNP and CNP on SAN and right atrial myocytes were maintained in mutant mice lacking functional NPR-C receptors and blocked by the NPR-A antagonist A71915 indicating that BNP and CNP function through their guanylyl cyclase-linked receptors. Our data also show that the effects of BNP and CNP are completely absent in the presence of the phosphodiesterase 3 inhibitor milrinone. Based on these data we conclude that NPs can increase heart rate and electrical conduction by activating the guanylyl cyclase-linked NPR-A and NPR-B receptors and inhibiting PDE3 activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Regulation of intestinal mucosa guanylate cyclase by hemin, heme and protoporphyrin IX.

    PubMed

    elDeib, M M; Parker, C D; White, A A

    1987-04-02

    Mg2+-dependent activity of intestinal brush border guanylate cyclase was stimulated 4-5-fold by 50-100 microM hemin. Higher concentrations were inhibitory. In the presence of 25% dimethyl sulfoxide, which stimulated activity 9-times, 50 microM hemin further increased activity 1.7-fold. However, when activity was stimulated 32-fold by the Escherichia coli heat-stable enterotoxin, or 26-fold by Lubrol PX, hemin produced only concentration-dependent inhibition. The first type of activation was more sensitive to hemin than the second. Reduction of hemin by dithiothreitol eliminated stimulation of basal activity, while inhibition of Lubrol PX-stimulated activity remained. Protoporphyrin IX also had no effect on basal activity, however, it inhibited enterotoxin- and Lubrol PX-stimulated activities similarly, but only to half the extent of hemin. Substitution of Mn2+ for Mg2+ elevated basal activity 15-fold, and this Mn2+-dependent activity was inhibited by hemin. Mn2+-dependent activity was stimulated (43%) by enterotoxin, however, the stimulated activity was more sensitive to hemin inhibition than the basal Mn2+-dependent activity and both inhibition curves were congruent above 50 microM hemin. Hemin inhibition of Lubrol PX-stimulated activity was much less with Mn2+ than with Mg2+. These results were interpreted as suggesting two sites of hemin inhibition; on an inhibitory regulator and on the enzyme. We also found that the secretory effect of enterotoxin in the suckling mouse bioassay was reduced 56% by the oral administration of hemin.

  16. CREB trans-activation of disruptor of telomeric silencing-1 mediates forskolin inhibition of CTGF transcription in mesangial cells.

    PubMed

    Yu, Zhiyuan; Kong, Qun; Kone, Bruce C

    2010-03-01

    Connective tissue growth factor (CTGF) participates in diverse fibrotic processes including glomerulosclerosis. The adenylyl cyclase agonist forskolin inhibits CTGF expression in mesangial cells by unclear mechanisms. We recently reported that the histone H3K79 methyltransferase disruptor of telomeric silencing-1 (Dot1) suppresses CTGF gene expression in collecting duct cells (J Clin Invest 117: 773-783, 2007) and HEK 293 cells (J Biol Chem In press). In the present study, we characterized the involvement of Dot1 in mediating the inhibitory effect of forskolin on CTGF transcription in mouse mesangial cells. Overexpression of Dot1 or treatment with forskolin dramatically suppressed basal CTGF mRNA levels and CTGF promoter-luciferase activity, while hypermethylating H3K79 in chromatin associated with the CTGF promoter. siRNA knockdown of Dot1 abrogated the inhibitory effect of forskolin on CTGF mRNA expression. Analysis of the Dot1 promoter sequence identified a CREB response element (CRE) at -384/-380. Overexpression of CREB enhanced forskolin-stimulated Dot1 promoter activity. A constitutively active CREB mutant (CREB-VP16) strongly induced Dot1 promoter-luciferase activity, whereas overexpression of CREBdLZ-VP16, which lacks the CREB DNA-binding domain, abolished this activation. Mutation of the -384/-380 CRE resulted in 70% lower levels of Dot1 promoter activity. ChIP assays confirmed CREB binding to the Dot1 promoter in chromatin. We conclude that forskolin stimulates CREB-mediated trans-activation of the Dot1 gene, which leads to hypermethylation of histone H3K79 at the CTGF promoter, and inhibition of CTGF transcription. These data are the first to describe regulation of the Dot1 gene, and disclose a complex network of genetic and epigenetic controls on CTGF transcription.

  17. Lipoic acid stimulates cAMP production via the EP2 and EP4 prostanoid receptors and inhibits IFN gamma synthesis and cellular cytotoxicity in NK cells

    PubMed Central

    Salinthone, Sonemany; Schillace, Robynn V.; Marracci, Gail H.; Bourdette, Dennis N.; Carr, Daniel W.

    2008-01-01

    The antioxidant lipoic acid (LA) treats and prevents the animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). In an effort to understand the therapeutic potential of LA in MS, we sought to define the cellular mechanisms that mediate the effects of LA on human natural killer (NK) cells, which are important in innate immunity as the first line of defense against invading pathogens and tumor cells. We discovered that LA stimulates cAMP production in NK cells in a dose-dependent manner. Studies using pharmacological inhibitors and receptor transfection experiments indicate that LA stimulates cAMP production via activation of the EP2 and EP4 prostanoid receptors and adenylyl cyclase. In addition, LA suppressed interleukin (IL)-12/IL-18 induced IFNγ secretion and cytotoxicity in NK cells. These novel findings suggest that LA may inhibit NK cell function via the cAMP signaling pathway. PMID:18562016

  18. Expression, purification and crystallization of a plant polyketide cyclase from Cannabis sativa

    PubMed Central

    Yang, Xinmei; Matsui, Takashi; Mori, Takahiro; Taura, Futoshi; Noguchi, Hiroshi; Abe, Ikuro; Morita, Hiroyuki

    2015-01-01

    Plant polyketides are a structurally diverse family of natural products. In the biosynthesis of plant polyketides, the construction of the carbocyclic scaffold is a key step in diversifying the polyketide structure. Olivetolic acid cyclase (OAC) from Cannabis sativa L. is the only known plant polyketide cyclase that catalyzes the C2–C7 intramolecular aldol cyclization of linear pentyl tetra-β-ketide-CoA to generate olivetolic acid in the biosynthesis of cannabinoids. The enzyme is also thought to belong to the dimeric α+β barrel (DABB) protein family. However, because of a lack of functional analysis of other plant DABB proteins and low sequence identity with the functionally distinct bacterial DABB proteins, the catalytic mechanism of OAC has remained unclear. To clarify the intimate catalytic mechanism of OAC, the enzyme was overexpressed in Escherichia coli and crystallized using the vapour-diffusion method. The crystals diffracted X-rays to 1.40 Å resolution and belonged to space group P3121 or P3221, with unit-cell parameters a = b = 47.3, c = 176.0 Å. Further crystallographic analysis will provide valuable insights into the structure–function relationship and catalytic mechanism of OAC. PMID:26625288

  19. Expression, purification and crystallization of a plant polyketide cyclase from Cannabis sativa.

    PubMed

    Yang, Xinmei; Matsui, Takashi; Mori, Takahiro; Taura, Futoshi; Noguchi, Hiroshi; Abe, Ikuro; Morita, Hiroyuki

    2015-12-01

    Plant polyketides are a structurally diverse family of natural products. In the biosynthesis of plant polyketides, the construction of the carbocyclic scaffold is a key step in diversifying the polyketide structure. Olivetolic acid cyclase (OAC) from Cannabis sativa L. is the only known plant polyketide cyclase that catalyzes the C2-C7 intramolecular aldol cyclization of linear pentyl tetra-β-ketide-CoA to generate olivetolic acid in the biosynthesis of cannabinoids. The enzyme is also thought to belong to the dimeric α+β barrel (DABB) protein family. However, because of a lack of functional analysis of other plant DABB proteins and low sequence identity with the functionally distinct bacterial DABB proteins, the catalytic mechanism of OAC has remained unclear. To clarify the intimate catalytic mechanism of OAC, the enzyme was overexpressed in Escherichia coli and crystallized using the vapour-diffusion method. The crystals diffracted X-rays to 1.40 Å resolution and belonged to space group P3121 or P3221, with unit-cell parameters a = b = 47.3, c = 176.0 Å. Further crystallographic analysis will provide valuable insights into the structure-function relationship and catalytic mechanism of OAC.

  20. Evolution and cell physiology. 2. The evolution of cell signaling: from mitochondria to Metazoa.

    PubMed

    Blackstone, Neil W

    2013-11-01

    The history of life is a history of levels-of-selection transitions. Each transition requires mechanisms that mediate conflict among the lower-level units. In the origins of multicellular eukaryotes, cell signaling is one such mechanism. The roots of cell signaling, however, may extend to the previous major transition, the origin of eukaryotes. Energy-converting protomitochondria within a larger cell allowed eukaryotes to transcend the surface-to-volume constraints inherent in the design of prokaryotes. At the same time, however, protomitochondria can selfishly allocate energy to their own replication. Metabolic signaling may have mediated this principal conflict in several ways. Variation of the protomitochondria was constrained by stoichiometry and strong metabolic demand (state 3) exerted by the protoeukaryote. Variation among protoeukaryotes was increased by the sexual stage of the life cycle, triggered by weak metabolic demand (state 4), resulting in stochastic allocation of protomitochondria to daughter cells. Coupled with selection, many selfish protomitochondria could thus be removed from the population. Hence, regulation of states 3 and 4, as, for instance, provided by the CO2/soluble adenylyl cyclase/cAMP pathway in mitochondria, was critical for conflict mediation. Subsequently, as multicellular eukaryotes evolved, metabolic signaling pathways employed by eukaryotes to mediate conflict within cells could now be co-opted into conflict mediation between cells. For example, in some fungi, the CO2/soluble adenylyl cyclase/cAMP pathway regulates the transition from yeast to forms with hyphae. In animals, this pathway regulates the maturation of sperm. While the particular features (sperm and hyphae) are distinct, both may involve between-cell conflicts that required mediation.

  1. Zn2+-stimulation of sperm capacitation and of the acrosome reaction is mediated by EGFR activation.

    PubMed

    Michailov, Yulia; Ickowicz, Debbi; Breitbart, Haim

    2014-12-15

    Extracellular zinc regulates cell proliferation via the MAP1 kinase pathway in several cell types, and has been shown to act as a signaling molecule. The testis contains a relatively high concentration of Zn(2+), required in both the early and late stages of spermatogenesis. Despite the clinical significance of this ion, its role in mature sperm cells is poorly understood. In this study, we characterized the role of Zn(2+) in sperm capacitation and in the acrosome reaction. Western blot analysis revealed the presence of ZnR of the GPR39 type in sperm cells. We previously demonstrated the presence of active epidermal growth factor receptor (EGFR) in sperm, its possible transactivation by direct activation of G-protein coupled receptor (GPCR), and its involvement in sperm capacitation and in the acrosome reaction (AR). We show here that Zn(2+) activates the EGFR during sperm capacitation, which is mediated by activation of trans-membrane adenylyl cyclase (tmAC), protein kinase A (PKA), and the tyrosine kinase, Src. Moreover, the addition of Zn(2+) to capacitated sperm caused further stimulation of EGFR and phosphatydil-inositol-3-kinase (PI3K) phosphorylation, leading to the AR. The stimulation of the AR by Zn(2+) also occurred in the absence of Ca(2+) in the incubation medium, and required the tmAC, indicating that Zn(2+) activates a GPCR. The AR stimulated by Zn(2+) is mediated by GPR39 receptor, PKA, Src and the EGFR, as well as the EGFR down-stream effectors PI3K, phospholipase C (PLC) and protein kinase C (PKC). These data support a role for extracellular zinc, acting through the ZnR, in regulating multiple signaling pathways in sperm capacitation and the acrosome reaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Structure/function relationships of calcitonin analogues as agonists, antagonists, or inverse agonists in a constitutively activated receptor cell system.

    PubMed

    Pozvek, G; Hilton, J M; Quiza, M; Houssami, S; Sexton, P M

    1997-04-01

    The structure/function relationship of salmon calcitonin (sCT) analogues was investigated in heterologous calcitonin receptor (CTR) expression systems. sCT analogues with progressive amino-terminal truncations intermediate of sCT-(1-32) to sCT-(8-32) were examined for their ability to act as agonists, antagonists, or inverse agonists. Two CTR cell clones, B8-H10 and G12-E12, which express approximately 5 million and 25,000 C1b receptors/cell, respectively, were used for this study. The B8-H10 clone has an approximately 80-fold increase in basal levels of intracellular cAMP due to constitutive activation of the overexpressed receptor. In whole-cell competition binding studies, sCT-(1-32) was more potent than any of its amino-terminally truncated analogues in competition for 125I-sCT binding. In cAMP accumulation studies, sCT-(1-32) and modified analogues sCT-(2-32) and sCT-(3-32) had agonist activities. SDZ-216-710, with an amino-terminal truncation of four amino acids, behaved as a partial agonist/antagonist, whereas amino-terminal truncations of six or seven amino acid residues produced a 16-fold reduction in basal cAMP levels and attenuated the response to the agonist sCT-(1-32) in the constitutively active CTR system. This inverse agonist effect was insensitive to pertussis toxin inhibition. In contrast, the inverse agonist activity of these peptides was not observed in the nonconstitutively active CTR system, in which sCT analogues with amino-terminal truncations of four or more amino acids behaved as neutral competitive antagonists. These results suggest that the inverse agonist activity is mediated by stabilization of the inactive state of the receptor, which does not couple to G protein, and attenuates basal signaling initiated by ligand-independent activation of the effector adenylyl cyclase.

  3. Pituitary adenylate cyclase-activating polypeptide is a potent inhibitor of the growth of light chain-secreting human multiple myeloma cells.

    PubMed

    Li, Min; Cortez, Shirley; Nakamachi, Tomoya; Batuman, Vecihi; Arimura, Akira

    2006-09-01

    Multiple myeloma represents a malignant proliferation of plasma cells in the bone marrow, which often overproduces immunoglobulin light chains. We have shown previously that pituitary adenylate cyclase-activating polypeptide (PACAP) markedly suppresses the release of proinflammatory cytokines from light chain-stimulated human renal proximal tubule epithelial cells and prevents the resulting tubule cell injury. In this study, we have shown that PACAP suppresses the proliferation of human kappa and lambda light chain-secreting multiple myeloma-derived cells. The addition of PACAP suppressed light chain-producing myeloma cell-stimulated interleukin 6 (IL-6) secretion by the bone marrow stromal cells (BMSCs). A specific antagonist to either the human PACAP-specific receptor or the vasoactive intestinal peptide receptor attenuated the suppressive effect of PACAP on IL-6 production in the adhesion of human multiple myeloma cells to BMSCs. The secretion of IL-6 by BMSCs was completely inhibited by 10(-9) mol/L PACAP, which also attenuated the phosphorylation of both p42/44 and p38 mitogen-activated protein kinases (MAPK) as well as nuclear factor-kappaB (NF-kappaB) activation in response to the adhesion of multiple myeloma cells to BMSCs, whereas the inhibition of p42/44 MAPK signaling attenuated PACAP action. The signaling cascades involved in the inhibitory effect of PACAP on IL-6-mediated paracrine stimulation of light chain-secreting myeloma cell growth was mediated through the suppression of p38 MAPK as well as modulation of activation of transcription factor NF-kappaB. These findings suggest that PACAP may be a new antitumor agent that directly suppresses light chain-secreting myeloma cell growth and indirectly affects tumor cell growth by modifying the bone marrow milieu of the multiple myeloma.

  4. Cloning, tissue distribution and effects of fasting on pituitary adenylate cyclase-activating polypeptide in largemouth bass

    NASA Astrophysics Data System (ADS)

    Li, Shengjie; Han, Linqiang; Bai, Junjie; Ma, Dongmei; Quan, Yingchun; Fan, Jiajia; Jiang, Peng; Yu, Lingyun

    2015-03-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) has a wide range of biological functions. We cloned the full-length cDNAs encoding PACAP and PACAP-related peptide (PRP) from the brain of largemouth bass ( Micropterus salmoides) and used real-time quantitative PCR to detect PRP-PACAP mRNA expression. The PRP-PACAP cDNA has two variants expressed via alternative splicing: a long form, which encodes both PRP and PACAP, and a short form, which encodes only PACAP. Sequence analysis results are consistent with a higher conservation of PACAP than PRP peptide sequences. The expression of PACAP-long and PACAP-short transcripts was highest in the forebrain, followed by the medulla, midbrain, pituitary, stomach, cerebellum, intestine, and kidney; however, these transcripts were either absent or were weakly expressed in the muscle, spleen, gill, heart, fatty tissue, and liver. The level of PACAP-short transcript expression was significantly higher than expression of the long transcript in the forebrain, cerebella, pituitary and intestine, but lower than that of the long transcript in the stomach. PACAP-long and PACAP-short transcripts were first detected at the blastula stage of embryogenesis, and the level of expression increased markedly between the muscular contraction stage and 3 d post hatch (dph). The expression of PACAP-long and PACAP-short transcripts decreased significantly in the brain following 4 d fasting compared with the control diet group. The down-regulation effect was enhanced as fasting continued. Conversely, expression levels increased significantly after 3 d of re-feeding. Our results suggest that PRP-PACAP acts as an important factor in appetite regulation in largemouth bass.

  5. Pituitary Adenylate Cyclase-Activating Polypeptide Disrupts Motivation, Social Interaction, and Attention in Male Sprague Dawley Rats.

    PubMed

    Donahue, Rachel J; Venkataraman, Archana; Carroll, F Ivy; Meloni, Edward G; Carlezon, William A

    2016-12-15

    Severe or prolonged stress can trigger psychiatric illnesses including mood and anxiety disorders. Recent work indicates that pituitary adenylate cyclase-activating polypeptide (PACAP) plays an important role in regulating stress effects. In rodents, exogenous PACAP administration can produce persistent elevations in the acoustic startle response, which may reflect anxiety-like signs including hypervigilance. We investigated whether PACAP causes acute or persistent alterations in behaviors that reflect other core features of mood and anxiety disorders (motivation, social interaction, and attention). Using male Sprague Dawley rats, we examined if PACAP (.25-1.0 µg, intracerebroventricular infusion) affects motivation as measured in the intracranial self-stimulation test. We also examined if PACAP alters interactions with a conspecific in the social interaction test. Finally, we examined if PACAP affects performance in the 5-choice serial reaction time task, which quantifies attention and error processing. Dose-dependent disruptions in motivation, social interaction, and attention were produced by PACAP, as reflected by increases in reward thresholds, decreases in social behaviors, and decreases in correct responses and alterations in posterror accuracy. Behavior normalized quickly in the intracranial self-stimulation and 5-choice serial reaction time task tests but remained dysregulated in the social interaction test. Effects on attention were attenuated by the corticotropin-releasing factor receptor-1 antagonist antalarmin but not the κ opioid receptor antagonist JDTic. Our findings suggest that PACAP affects numerous domains often dysregulated in mood and anxiety disorders, but that individual signs depend on brain substrates that are at least partially independent. This work may help to devise therapeutics that mitigate specific signs of these disorders. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Guanylyl Cyclase C Hormone Axis at the Intersection of Obesity and Colorectal Cancer.

    PubMed

    Blomain, Erik S; Merlino, Dante J; Pattison, Amanda M; Snook, Adam E; Waldman, Scott A

    2016-09-01

    Obesity has emerged as a principal cause of mortality worldwide, reflecting comorbidities including cancer risk, particularly in colorectum. Although this relationship is established epidemiologically, molecular mechanisms linking colorectal cancer and obesity continue to be refined. Guanylyl cyclase C (GUCY2C), a membrane-bound guanylyl cyclase expressed in intestinal epithelial cells, binds the paracrine hormones guanylin and uroguanylin, inducing cGMP signaling in colorectum and small intestine, respectively. Guanylin is the most commonly lost gene product in sporadic colorectal cancer, and its universal loss early in transformation silences GUCY2C, a tumor suppressor, disrupting epithelial homeostasis underlying tumorigenesis. In small intestine, eating induces endocrine secretion of uroguanylin, the afferent limb of a novel gut-brain axis that activates hypothalamic GUCY2C-cGMP signaling mediating satiety opposing obesity. Recent studies revealed that diet-induced obesity suppressed guanylin and uroguanylin expression in mice and humans. Hormone loss reflects reversible calorie-induced endoplasmic reticulum stress and the associated unfolded protein response, rather than the endocrine, adipokine, or inflammatory milieu of obesity. Loss of intestinal uroguanylin secretion silences the hypothalamic GUCY2C endocrine axis, creating a feed-forward loop contributing to hyperphagia in obesity. Importantly, calorie-induced guanylin loss silences the GUCY2C-cGMP paracrine axis underlying obesity-induced epithelial dysfunction and colorectal tumorigenesis. Indeed, genetically enforced guanylin replacement eliminated diet-induced intestinal tumorigenesis in mice. Taken together, these observations suggest that GUCY2C hormone axes are at the intersection of obesity and colorectal cancer. Moreover, they suggest that hormone replacement that restores GUCY2C signaling may be a novel therapeutic paradigm to prevent both hyperphagia and intestinal tumorigenesis in obesity

  7. Characterization of SB-271046: A potent, selective and orally active 5-HT6 receptor antagonist

    PubMed Central

    Routledge, Carol; Bromidge, Steven M; Moss, Stephen F; Price, Gary W; Hirst, Warren; Newman, Helen; Riley, Graham; Gager, Tracey; Stean, Tania; Upton, Neil; Clarke, Stephen E; Brown, Anthony M; Middlemiss, Derek N

    2000-01-01

    SB-271046, potently displaced [3H]-LSD and [125I]-SB-258585 from human 5-HT6 receptors recombinantly expressed in HeLa cells in vitro (pKi 8.92 and 9.09 respectively). SB-271046 also displaced [125I]-SB-258585 from human caudate putamen and rat and pig striatum membranes (pKi 8.81, 9.02 and 8.55 respectively). SB-271046 was over 200 fold selective for the 5-HT6 receptor vs 55 other receptors, binding sites and ion channels. In functional studies on human 5-HT6 receptors SB-271046 competitively antagonized 5-HT-induced stimulation of adenylyl cyclase activity with a pA2 of 8.71. SB-271046 produced an increase in seizure threshold over a wide-dose range in the rat maximal electroshock seizure threshold (MEST) test, with a minimum effective dose of ⩽0.1 mg kg−1 p.o. and maximum effect at 4 h post-dose. The level of anticonvulsant activity achieved correlated well with the blood concentrations of SB-271046 (EC50 of 0.16 μM) and brain concentrations of 0.01–0.04 μM at Cmax. These data, together with the observed anticonvulsant activity of other selective 5-HT6 receptor antagonists, SB-258510 (10 mg kg−1, 2–6 h pre-test) and Ro 04-6790 (1–30 mg kg−1, 1 h pre-test), in the rat MEST test, suggest that the anticonvulsant properties of SB-271046 are likely to be mediated by 5-HT6 receptors. Overall, these studies demonstrate that SB-271046 is a potent and selective 5-HT6 receptor antagonist and is orally active in the rat MEST test. SB-271046 represents a valuable tool for evaluating the in vivo central function of 5-HT6 receptors. PMID:10928964

  8. Molecular Characterization of Tick Salivary Gland Glutaminyl Cyclase

    PubMed Central

    Adamson, Steven W.; Browning, Rebecca E.; Chao, Chien-Chung; Bateman, Robert C.; Ching, Wei-Mei; Karim, Shahid

    2013-01-01

    Glutaminyl cyclase (QC) catalyzes the cyclization of N-terminal glutamine residues into pyroglutamate. This post-translational modification extends the half-life of peptides and, in some cases, is essential in binding to their cognate receptor. Due to its potential role in the post-translational modification of tick neuropeptides, we report the molecular, biochemical and physiological characterization of salivary gland QC during the prolonged blood-feeding of the black-legged tick (Ixodes scapularis) and the gulf-coast tick (Amblyomma maculatum). QC sequences from I. scapularis and A. maculatum showed a high degree of amino acid identity to each other and other arthropods and residues critical for zinc-binding/catalysis (D159, E202, and H330) or intermediate stabilization (E201, W207, D248, D305, F325, and W329) are conserved. Analysis of QC transcriptional gene expression kinetics depicts an upregulation during the blood-meal of adult female ticks prior to fast feeding phases in both I. scapularis and A. maculatum suggesting a functional link with blood meal uptake. QC enzymatic activity was detected in saliva and extracts of tick salivary glands and midguts. Recombinant QC was shown to be catalytically active. Furthermore, knockdown of QC-transcript by RNA interference resulted in lower enzymatic activity, and small, unviable egg masses in both studied tick species as well as lower engorged tick weights for I. scapularis. These results suggest that the post-translational modification of neurotransmitters and other bioactive peptides by QC is critical to oviposition and potentially other physiological processes. Moreover, these data suggest that tick-specific QC-modified neurotransmitters/hormones or other relevant parts of this system could potentially be used as novel physiological targets for tick control. PMID:23770496

  9. Selective activation of the B natriuretic peptide receptor by C-type natriuretic peptide (CNP).

    PubMed

    Koller, K J; Lowe, D G; Bennett, G L; Minamino, N; Kangawa, K; Matsuo, H; Goeddel, D V

    1991-04-05

    The natriuretic peptides are hormones that can stimulate natriuretic, diuretic, and vasorelaxant activity in vivo, presumably through the activation of two known cell surface receptor guanylyl cyclases (ANPR-A and ANPR-B). Although atrial natriuretic peptide (ANP) and, to a lesser extent, brain natriuretic peptide (BNP) are efficient activators of the ANPR-A guanylyl cyclase, neither hormone can significantly stimulate ANPR-B. A member of this hormone family, C-type natriuretic peptide (CNP), potently and selectively activated the human ANPR-B guanylyl cyclase. CNP does not increase guanosine 3',5'-monophosphate accumulation in cells expressing human ANPR-A. The affinity of CNP for ANPR-B is 50- or 500-fold higher than ANP or BNP, respectively. This ligand-receptor pair may be involved in the regulation of fluid homeostasis by the central nervous system.

  10. Phorbol esters alter adenylate cyclase responses to vasoactive intestinal peptide and forskolin in the GH cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summers, S.; Florio, T.; Cronin, M.

    1986-05-01

    Activation of protein kinase C with phorbol ester modifies cyclic AMP production in several anterior pituitary cell systems. In the GH cell line from a rat pituitary tumor, exposure to phorbol 12-myristate 13-acetate (PMA: 100 nM) for 30 minutes significantly reduces vasoactive intestinal peptide (VIP: 100 nM) stimulated adenylate cyclase (AC) activity in subsequent membrane preparations to 62 + 4% of control (n = 6 independent studies). In contrast, these same membrane preparations respond to forskolin (1 ..mu..M) with significantly more activity, 130 +/- 6% of controls (n = 6 independent studies). Finally, phorbol ester does not block an inhibitorymore » hormone input into the AC system; somatostatin (100 nM) reduction of VIP-stimulated AC activity is not significantly different in membrane preparations from PMA treated and control cells (n = 3 independent studies). These other findings lead the authors to propose that protein kinase C can modify several sites in the AC complex in anterior pituitary cells.« less

  11. Expression of pituitary adenylate cyclase-activating polypeptide 1 and 2 receptor mRNA in gallbladder tissue of patients with gallstone or gallbladder polyps.

    PubMed

    Zhang, Zhen-Hai; Wu, Shuo-Dong; Gao, Hong; Shi, Gang; Jin, Jun-Zhe; Kong, Jing; Tian, Zhong; Su, Yang

    2006-03-07

    To detect the expression of pituitary adenylate cyclase-activating polypeptide receptor 1 (VPCAP1-R)and VPCAP2-R mRNA in gallbladder tissues of patients with gallstone or gallbladder polyps. The expression of VPCAP1-R and VPCAP2-R mRNA in gallbladder tissues was detected in 25 patients with gallstone,8 patients with gallbladder polyps and 7 donors of liver transplantation by reverse transcription polymerase chain reaction (RT-PCR). The VPCAP2-R mRNA expression level in the control group (1.09+/-0.58) was lower than that in the gallbladder polyp group (1.64+/-0.56) and the gallstone group (1.55+/-0.45) (P<0.05) while the VPCAP1-R mRNA expression level in the control group (1.15+/-0.23) was not apparently different from that in the gallbladder polyp group (1.28+/-0.56) and the gallstone group (1.27+/-0.38). The abnormal expression of VPCAP2-R mRNA in gallbladder tissue may play a role in the formation of gallbladder stone and gallbladder polyps.

  12. The Inhibitory Effect of Non-Substrate and Substrate DNA on the Ligation and Self-Adenylylation Reactions Catalyzed by T4 DNA Ligase.

    PubMed

    Bauer, Robert J; Evans, Thomas C; Lohman, Gregory J S

    2016-01-01

    DNA ligases are essential both to in vivo replication, repair and recombination processes, and in vitro molecular biology protocols. Prior characterization of DNA ligases through gel shift assays has shown the presence of a nick site to be essential for tight binding between the enzyme and its dsDNA substrate, with no interaction evident on dsDNA lacking a nick. In the current study, we observed a significant substrate inhibition effect, as well as the inhibition of both the self-adenylylation and nick-sealing steps of T4 DNA ligase by non-nicked, non-substrate dsDNA. Inhibition by non-substrate DNA was dependent only on the total DNA concentration rather than the structure; with 1 μg/mL of 40-mers, 75-mers, or circular plasmid DNA all inhibiting ligation equally. A >15-fold reduction in T4 DNA ligase self-adenylylation rate when in the presence of high non-nicked dsDNA concentrations was observed. Finally, EMSAs were utilized to demonstrate that non-substrate dsDNA can compete with nicked dsDNA substrates for enzyme binding. Based upon these data, we hypothesize the inhibition of T4 DNA ligase by non-nicked dsDNA is direct evidence for a two-step nick-binding mechanism, with an initial, nick-independent, transient dsDNA-binding event preceding a transition to a stable binding complex in the presence of a nick site.

  13. The Inhibitory Effect of Non-Substrate and Substrate DNA on the Ligation and Self-Adenylylation Reactions Catalyzed by T4 DNA Ligase

    PubMed Central

    Bauer, Robert J.; Evans, Thomas C.; Lohman, Gregory J. S.

    2016-01-01

    DNA ligases are essential both to in vivo replication, repair and recombination processes, and in vitro molecular biology protocols. Prior characterization of DNA ligases through gel shift assays has shown the presence of a nick site to be essential for tight binding between the enzyme and its dsDNA substrate, with no interaction evident on dsDNA lacking a nick. In the current study, we observed a significant substrate inhibition effect, as well as the inhibition of both the self-adenylylation and nick-sealing steps of T4 DNA ligase by non-nicked, non-substrate dsDNA. Inhibition by non-substrate DNA was dependent only on the total DNA concentration rather than the structure; with 1 μg/mL of 40-mers, 75-mers, or circular plasmid DNA all inhibiting ligation equally. A >15-fold reduction in T4 DNA ligase self-adenylylation rate when in the presence of high non-nicked dsDNA concentrations was observed. Finally, EMSAs were utilized to demonstrate that non-substrate dsDNA can compete with nicked dsDNA substrates for enzyme binding. Based upon these data, we hypothesize the inhibition of T4 DNA ligase by non-nicked dsDNA is direct evidence for a two-step nick-binding mechanism, with an initial, nick-independent, transient dsDNA-binding event preceding a transition to a stable binding complex in the presence of a nick site. PMID:26954034

  14. Inhibitors for human glutaminyl cyclase by structure based design and bioisosteric replacement.

    PubMed

    Buchholz, Mirko; Hamann, Antje; Aust, Susanne; Brandt, Wolfgang; Böhme, Livia; Hoffmann, Torsten; Schilling, Stephan; Demuth, Hans-Ulrich; Heiser, Ulrich

    2009-11-26

    The inhibition of human glutaminyl cyclase (hQC) has come into focus as a new potential approach for the treatment of Alzheimer's disease. The hallmark of this principle is the prevention of the formation of Abeta(3,11(pE)-40,42), as these Abeta-species were shown to be of elevated neurotoxicity and likely to act as a seeding core leading to an accelerated formation of Abeta-oligomers and fibrils. Starting from 1-(3-(1H-imidazol-1-yl)propyl)-3-(3,4-dimethoxyphenyl)thiourea, bioisosteric replacements led to the development of new classes of inhibitors. The optimization of the metal-binding group was achieved by homology modeling and afforded a first insight into the probable binding mode of the inhibitors in the hQC active site. The efficacy assessment of the hQC inhibitors was performed in cell culture, directly monitoring the inhibition of Abeta(3,11(pE)-40,42) formation.

  15. Restitution of defective glucose-stimulated insulin secretion in diabetic GK rat by acetylcholine uncovers paradoxical stimulatory effect of beta-cell muscarinic receptor activation on cAMP production.

    PubMed

    Dolz, Manuel; Bailbé, Danielle; Giroix, Marie-Hélène; Calderari, Sophie; Gangnerau, Marie-Noelle; Serradas, Patricia; Rickenbach, Katharina; Irminger, Jean-Claude; Portha, Bernard

    2005-11-01

    Because acetylcholine (ACh) is a recognized potentiator of glucose-stimulated insulin release in the normal beta-cell, we have studied ACh's effect on islets of the Goto-Kakizaki (GK) rat, a spontaneous model of type 2 diabetes. We first verified that ACh was able to restore the insulin secretory glucose competence of the GK beta-cell. Then, we demonstrated that in GK islets 1) ACh elicited a first-phase insulin release at low glucose, whereas it had no effect in Wistar; 2) total phospholipase C activity, ACh-induced inositol phosphate production, and intracellular free calcium concentration ([Ca2+]i) elevation were normal; 3) ACh triggered insulin release, even in the presence of thapsigargin, which induced a reduction of the ACh-induced [Ca2+]i response (suggesting that ACh produces amplification signals that augment the efficacy of elevated [Ca2+]i on GK exocytosis); 4) inhibition of protein kinase C did not affect [Ca2+]i nor the insulin release responses to ACh; and 5) inhibition of cAMP-dependent protein kinases (PKAs), adenylyl cyclases, or cAMP generation, while not affecting the [Ca2+]i response, significantly lowered the insulinotropic response to ACh (at low and high glucose). In conclusion, ACh acts mainly through activation of the cAMP/PKA pathway to potently enhance Ca2+-stimulated insulin release in the GK beta-cell and, in doing so, normalizes its defective glucose responsiveness.

  16. [Forskolin inhibits spontaneous contraction of gastric antral smooth muscle in rats].

    PubMed

    Jiang, Jing-Zhi; Sun, Qian; Xu, Dong-Yuan; Zhang, Mo-Han; Piao, Li-Hua; Cai, Ying-Lan; Jin, Zheng

    2013-04-25

    The aim of the present study was to investigate the effects of cyclic adenosine monophosphate (cAMP) on rat gastric antral circular smooth muscle function. Forskolin, a direct activator of adenylyl cyclase (AC), was used to observe the influences of cAMP. Multi-channel physiological recorder was used to record spontaneous contraction activity of gastric antral circular muscle from Wistar rats. And ELISA method was used to detect the change of cAMP production in perfusate. The results showed that forskolin concentration-dependently suppressed the amplitude and frequency of the spontaneous contraction of the gastric antral muscle, and lowered the baseline of contraction movement significantly. Forskolin concentration-dependently increased the production of cAMP in the perfusate, which showed a significant negative correlation with the contraction amplitude of gastric antral ring muscle. The inhibitory effect of forskolin on spontaneous contraction activity of rat gastric antral circular muscle could be blocked by cAMP-dependent protein kinase (PKA) inhibitor H-89. These results suggest forskolin increases cAMP production and then activates PKA pathway, resulting in the inhibition of the spontaneous contraction activity of rat gastric antral circular smooth muscle.

  17. The dopamine D1 receptor is expressed and facilitates relaxation in airway smooth muscle

    PubMed Central

    2013-01-01

    Background Dopamine signaling is mediated by Gs protein-coupled “D1-like” receptors (D1 and D5) and Gi-coupled “D2-like” receptors (D2-4). In asthmatic patients, inhaled dopamine induces bronchodilation. Although the Gi-coupled dopamine D2 receptor is expressed and sensitizes adenylyl cyclase activity in airway smooth muscle (ASM) cells, the Gs-coupled dopamine D1-like receptor subtypes have never been identified on these cells. Activation of Gs-coupled receptors stimulates cyclic AMP (cAMP) production through the stimulation of adenylyl cyclase, which promotes ASM relaxation. We questioned whether the dopamine D1-like receptor is expressed on ASM, and modulates its function through Gs-coupling. Methods The mRNA and protein expression of dopamine D1-like receptor subtypes in both native human and guinea pig ASM tissue and cultured human ASM (HASM) cells was measured. To characterize the stimulation of cAMP through the dopamine D1 receptor, HASM cells were treated with dopamine or the dopamine D1-like receptor agonists (A68930 or SKF38393) before cAMP measurements. To evaluate whether the activation of dopamine D1 receptor induces ASM relaxation, guinea pig tracheal rings suspended under isometric tension in organ baths were treated with cumulatively increasing concentrations of dopamine or A68930, following an acetylcholine-induced contraction with or without the cAMP-dependent protein kinase (PKA) inhibitor Rp-cAMPS, the large-conductance calcium-activated potassium (BKCa) channel blocker iberiotoxin, or the exchange proteins directly activated by cAMP (Epac) antagonist NSC45576. Results Messenger RNA encoding the dopamine D1 and D5 receptors were detected in native human ASM tissue and cultured HASM cells. Immunoblots confirmed the protein expression of the dopamine D1 receptor in both native human and guinea pig ASM tissue and cultured HASM cells. The dopamine D1 receptor was also immunohistochemically localized to both human and guinea pig ASM. The

  18. Haloperidol Regulates the State of Phosphorylation of Ribosomal Protein S6 via Activation of PKA and Phosphorylation of DARPP-32

    PubMed Central

    Valjent, Emmanuel; Bertran-Gonzalez, Jesus; Bowling, Heather; Lopez, Sébastien; Santini, Emanuela; Matamales, Miriam; Bonito-Oliva, Alessandra; Hervé, Denis; Hoeffer, Charles; Klann, Eric; Girault, Jean-Antoine; Fisone, Gilberto

    2011-01-01

    Administration of typical antipsychotic drugs, such as haloperidol, promotes cAMP-dependent signaling in the medium spiny neurons (MSNs) of the striatum. In this study, we have examined the effect of haloperidol on the state of phosphorylation of the ribosomal protein S6 (rpS6), a component of the small 40S ribosomal subunit. We found that haloperidol increases the phosphorylation of rpS6 at the dual site Ser235/236, which is involved in the regulation of mRNA translation. This effect was exerted in the MSNs of the indirect pathway, which express specifically dopamine D2 receptors (D2Rs) and adenosine A2 receptors (A2ARs). The effect of haloperidol was decreased by blockade of A2ARs or by genetic attenuation of the Gαolf protein, which couples A2ARs to activation of adenylyl cyclase. Moreover, stimulation of cAMP-dependent protein kinase A (PKA) increased Ser235/236 phosphorylation in cultured striatal neurons. The ability of haloperidol to promote rpS6 phosphorylation was abolished in knock-in mice deficient for PKA activation of the protein phosphatase-1 inhibitor, dopamine- and cAMP-regulated phosphoprotein of 32 kDa. In contrast, pharmacological or genetic inactivation of p70 rpS6 kinase 1, or extracellular signal-regulated kinases did not affect haloperidol-induced rpS6 phosphorylation. These results identify PKA as a major rpS6 kinase in neuronal cells and suggest that regulation of protein synthesis through rpS6 may be a potential target of antipsychotic drugs. PMID:21814187

  19. Recruitment of endosomal signaling mediates the forskolin modulation of guinea pig cardiac neuron excitability.

    PubMed

    Hardwick, Jean C; Clason, Todd A; Tompkins, John D; Girard, Beatrice M; Baran, Caitlin N; Merriam, Laura A; May, Victor; Parsons, Rodney L

    2017-08-01

    Forskolin, a selective activator of adenylyl cyclase (AC), commonly is used to establish actions of G protein-coupled receptors (GPCRs) that are initiated primarily through activation of AC/cAMP signaling pathways. In the present study, forskolin was used to evaluate the potential role of AC/cAMP, which is a major signaling mechanism for the pituitary adenylate cyclase-activating polypeptide (PACAP)-selective PAC1 receptor, in the regulation of guinea pig cardiac neuronal excitability. Forskolin (5-10 µM) increases excitability in ~60% of the cardiac neurons. The forskolin-mediated increase in excitability was considered related to cAMP regulation of a cyclic nucleotide gated channel or via protein kinase A (PKA)/ERK signaling, mechanisms that have been linked to PAC1 receptor activation. However, unlike PACAP mechanisms, forskolin enhancement of excitability was not significantly reduced by treatment with cesium to block currents through hyperpolarization-activated nonselective cation channels ( I h ) or by treatment with PD98059 to block MEK/ERK signaling. In contrast, treatment with the clathrin inhibitor Pitstop2 or the dynamin inhibitor dynasore eliminated the forskolin-induced increase in excitability; treatments with the inactive Pitstop analog or PP2 treatment to inhibit Src-mediated endocytosis mechanisms were ineffective. The PKA inhibitor KT5702 significantly suppressed the forskolin-induced change in excitability; further, KT5702 and Pitstop2 reduced the forskolin-stimulated MEK/ERK activation in cardiac neurons. Collectively, the present results suggest that forskolin activation of AC/cAMP/PKA signaling leads to the recruitment of clathrin/dynamin-dependent endosomal transduction cascades, including MEK/ERK signaling, and that endosomal signaling is the critical mechanism underlying the forskolin-induced increase in cardiac neuron excitability. Copyright © 2017 the American Physiological Society.

  20. Pituitary adenylate cyclase-activating polypeptide (PACAP) has a neuroprotective function in dopamine-based neurodegeneration in rat and snail parkinsonian models

    PubMed Central

    Kiss, Tibor; Jungling, Adel

    2017-01-01

    ABSTRACT Pituitary adenylate cyclase-activating polypeptide (PACAP) rescues dopaminergic neurons from neurodegeneration and improves motor changes induced by 6-hydroxy-dopamine (6-OHDA) in rat parkinsonian models. Recently, we investigated the molecular background of the neuroprotective effect of PACAP in dopamine (DA)-based neurodegeneration using rotenone-induced snail and 6-OHDA-induced rat models of Parkinson's disease. Behavioural activity, monoamine (DA and serotonin), metabolic enzyme (S-COMT, MB-COMT and MAO-B) and PARK7 protein concentrations were measured before and after PACAP treatment in both models. Locomotion and feeding activity were decreased in rotenone-treated snails, which corresponded well to findings obtained in 6-OHDA-induced rat experiments. PACAP was able to prevent the behavioural malfunctions caused by the toxins. Monoamine levels decreased in both models and the decreased DA level induced by toxins was attenuated by ∼50% in the PACAP-treated animals. In contrast, PACAP had no effect on the decreased serotonin (5HT) levels. S-COMT metabolic enzyme was also reduced but a protective effect of PACAP was not observed in either of the models. Following toxin treatment, a significant increase in MB-COMT was observed in both models and was restored to normal levels by PACAP. A decrease in PARK7 was also observed in both toxin-induced models; however, PACAP had a beneficial effect only on 6-OHDA-treated animals. The neuroprotective effect of PACAP in different animal models of Parkinson's disease is thus well correlated with neurotransmitter, enzyme and protein levels. The models successfully mimic several, but not all etiological properties of the disease, allowing us to study the mechanisms of neurodegeneration as well as testing new drugs. The rotenone and 6-OHDA rat and snail in vivo parkinsonian models offer an alternative method for investigation of the molecular mechanisms of neuroprotective agents, including PACAP. PMID:28067625

  1. Pituitary adenylate cyclase-activating polypeptide (PACAP) has a neuroprotective function in dopamine-based neurodegeneration in rat and snail parkinsonian models.

    PubMed

    Maasz, Gabor; Zrinyi, Zita; Reglodi, Dora; Petrovics, Dora; Rivnyak, Adam; Kiss, Tibor; Jungling, Adel; Tamas, Andrea; Pirger, Zsolt

    2017-02-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) rescues dopaminergic neurons from neurodegeneration and improves motor changes induced by 6-hydroxy-dopamine (6-OHDA) in rat parkinsonian models. Recently, we investigated the molecular background of the neuroprotective effect of PACAP in dopamine (DA)-based neurodegeneration using rotenone-induced snail and 6-OHDA-induced rat models of Parkinson's disease. Behavioural activity, monoamine (DA and serotonin), metabolic enzyme (S-COMT, MB-COMT and MAO-B) and PARK7 protein concentrations were measured before and after PACAP treatment in both models. Locomotion and feeding activity were decreased in rotenone-treated snails, which corresponded well to findings obtained in 6-OHDA-induced rat experiments. PACAP was able to prevent the behavioural malfunctions caused by the toxins. Monoamine levels decreased in both models and the decreased DA level induced by toxins was attenuated by ∼50% in the PACAP-treated animals. In contrast, PACAP had no effect on the decreased serotonin (5HT) levels. S-COMT metabolic enzyme was also reduced but a protective effect of PACAP was not observed in either of the models. Following toxin treatment, a significant increase in MB-COMT was observed in both models and was restored to normal levels by PACAP. A decrease in PARK7 was also observed in both toxin-induced models; however, PACAP had a beneficial effect only on 6-OHDA-treated animals. The neuroprotective effect of PACAP in different animal models of Parkinson's disease is thus well correlated with neurotransmitter, enzyme and protein levels. The models successfully mimic several, but not all etiological properties of the disease, allowing us to study the mechanisms of neurodegeneration as well as testing new drugs. The rotenone and 6-OHDA rat and snail in vivo parkinsonian models offer an alternative method for investigation of the molecular mechanisms of neuroprotective agents, including PACAP. © 2017. Published by The

  2. A Zebrafish Embryo Culture System Defines Factors that Promote Vertebrate Myogenesis across Species

    PubMed Central

    Ciarlo, Christie; Liu, Jingxia; Castiglioni, Alessandra; Price, Emily; Liu, Min; Barton, Elisabeth R.; Kahn, C. Ronald; Wagers, Amy J.; Zon, Leonard I.

    2013-01-01

    SUMMARY Ex vivo expansion of satellite cells and directed differentiation of pluripotent cells to mature skeletal muscle have proved difficult challenges for regenerative biology. Using a zebrafish embryo culture system with reporters of early and late skeletal muscle differentiation, we examined the influence of 2,400 chemicals on myogenesis and identified six that expanded muscle progenitors, including three GSK3β inhibitors, two calpain inhibitors and one adenylyl cyclase activator, forskolin. Forskolin also enhanced proliferation of mouse satellite cells in culture and maintained their ability to engraft muscle in vivo. A combination of bFGF, forskolin and the GSK3β inhibitor BIO induced skeletal muscle differentiation in human induced pluripotent stem cells (iPSCs) and produced engraftable myogenic progenitors that contributed to muscle repair in vivo. In summary, these studies reveal functionally conserved pathways regulating myogenesis across species and identify chemical compounds that expand mouse satellite cells and differentiate human iPSCs into engraftable muscle. PMID:24209627

  3. Creating Order from Chaos: Cellular Regulation by Kinase Anchoring

    PubMed Central

    Scott, John D.; Dessauer, Carmen W.; Tasken, Kjetil

    2012-01-01

    Second messenger responses rely on where and when the enzymes that propagate these signals become active. Spatial and temporal organization of certain signaling enzymes is controlled in part by A-kinase anchoring proteins (AKAPs). This family of regulatory proteins was originally classified on the basis of their ability to compartmentalize the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (also known as protein kinase A, or PKA). However, it is now recognized that AKAPs position G protein–coupled receptors, adenylyl cyclases, G proteins, and their effector proteins in relation to protein kinases and signal termination enzymes such as phosphodiesterases and protein phosphatases. This arrangement offers a simple and efficient means to limit the scope, duration, and directional flow of information to sites deep within the cell. This review focuses on the pros and cons of reagents that define the biological role of kinase anchoring inside cells and discusses recent advances in our understanding of anchored second messenger signaling in the cardiovascular and immune systems. PMID:23043438

  4. Seizure Suppression by High Temperature via cAMP Modulation in Drosophila.

    PubMed

    Saras, Arunesh; Tanouye, Mark A

    2016-10-13

    Bang-sensitive (BS) Drosophila mutants display characteristic seizure-like activity (SLA) and paralysis after mechanical shock . After high-frequency electrical stimulation (HFS) of the brain, they generate robust seizures at very low threshold voltage. Here we report an important phenomenon, which effectively suppresses SLA in BS mutants. High temperature causes seizure suppression in all BS mutants (para bss1 , eas, sda) examined in this study. This effect is fully reversible and flies show complete recovery from BS paralysis once the temperature effect is nullified. High temperature induces an increase in seizure threshold after a brief pulse of heat shock (HS). By genetic screening, we identified the involvement of cAMP in the suppression of seizures by high temperature. We propose that HS induces adenylyl cyclase which in turn increases cAMP concentration which eventually suppresses seizures in mutant flies. In summary, we describe an unusual phenomenon, where high temperature can suppress SLA in flies by modulating cAMP concentration. Copyright © 2016 Saras and Tanouye.

  5. Spatiotemporal control of opioid signaling and behavior.

    PubMed

    Siuda, Edward R; Copits, Bryan A; Schmidt, Martin J; Baird, Madison A; Al-Hasani, Ream; Planer, William J; Funderburk, Samuel C; McCall, Jordan G; Gereau, Robert W; Bruchas, Michael R

    2015-05-20

    Optogenetics is now a widely accepted tool for spatiotemporal manipulation of neuronal activity. However, a majority of optogenetic approaches use binary on/off control schemes. Here, we extend the optogenetic toolset by developing a neuromodulatory approach using a rationale-based design to generate a Gi-coupled, optically sensitive, mu-opioid-like receptor, which we term opto-MOR. We demonstrate that opto-MOR engages canonical mu-opioid signaling through inhibition of adenylyl cyclase, activation of MAPK and G protein-gated inward rectifying potassium (GIRK) channels and internalizes with kinetics similar to that of the mu-opioid receptor. To assess in vivo utility, we expressed a Cre-dependent viral opto-MOR in RMTg/VTA GABAergic neurons, which led to a real-time place preference. In contrast, expression of opto-MOR in GABAergic neurons of the ventral pallidum hedonic cold spot led to real-time place aversion. This tool has generalizable application for spatiotemporal control of opioid signaling and, furthermore, can be used broadly for mimicking endogenous neuronal inhibition pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Distinct intracellular sAC-cAMP domains regulate ER Ca2+ signaling and OXPHOS function.

    PubMed

    Valsecchi, Federica; Konrad, Csaba; D'Aurelio, Marilena; Ramos-Espiritu, Lavoisier S; Stepanova, Anna; Burstein, Suzanne R; Galkin, Alexander; Magranè, Jordi; Starkov, Anatoly; Buck, Jochen; Levin, Lonny R; Manfredi, Giovanni

    2017-11-01

    cAMP regulates a wide variety of physiological functions in mammals. This single second messenger can regulate multiple, seemingly disparate functions within independently regulated cell compartments. We have previously identified one such compartment inside the matrix of the mitochondria, where soluble adenylyl cyclase (sAC) regulates oxidative phosphorylation (OXPHOS). We now show that sAC knockout fibroblasts have a defect in OXPHOS activity and attempt to compensate for this defect by increasing OXPHOS proteins. Importantly, sAC knockout cells also exhibit decreased probability of endoplasmic reticulum (ER) Ca 2+ release associated with diminished phosphorylation of the inositol 3-phosphate receptor. Restoring sAC expression exclusively in the mitochondrial matrix rescues OXPHOS activity and reduces mitochondrial biogenesis, indicating that these phenotypes are regulated by intramitochondrial sAC. In contrast, Ca 2+ release from the ER is only rescued when sAC expression is restored throughout the cell. Thus, we show that functionally distinct, sAC-defined, intracellular cAMP signaling domains regulate metabolism and Ca 2+ signaling. © 2017. Published by The Company of Biologists Ltd.

  7. Association of the membrane estrogen receptor, GPR30, with breast tumor metastasis and transactivation of the epidermal growth factor receptor.

    PubMed

    Filardo, Edward J; Quinn, Jeffrey A; Sabo, Edmond

    2008-10-01

    The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases function as a common signaling conduit for membrane receptors that lack intrinsic enzymatic activity, such as G-protein coupled receptors and integrins. GPR30, an orphan member of the seven transmembrane receptor (7TMR) superfamily has been linked to specific estrogen binding, rapid estrogen-mediated activation of adenylyl cyclase and the release of membrane-tethered proHB-EGF. More recently, GPR30 expression in primary breast adenocarcinoma has been associated with pathological parameters commonly used to assess breast cancer progression, including the development of extramammary metastases. This newly appreciated mechanism of cross communication between estrogen and EGF is consistent with the observation that 7TMR-mediated transactivation of the EGFR is a recurrent signaling paradigm and may explain prior data reporting the EGF-like effects of estrogen. The molecular details surrounding GPR30-mediated release of proHB-EGF, the involvement of integrin beta1 as a signaling intermediary in estrogen-dependent EGFR action, and the possible implications of these data for breast cancer progression are discussed herein.

  8. Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids.

    PubMed

    Andre, Christelle M; Legay, Sylvain; Deleruelle, Amélie; Nieuwenhuizen, Niels; Punter, Matthew; Brendolise, Cyril; Cooney, Janine M; Lateur, Marc; Hausman, Jean-François; Larondelle, Yvan; Laing, William A

    2016-09-01

    Apple (Malus × domestica) accumulates bioactive ursane-, oleanane-, and lupane-type triterpenes in its fruit cuticle, but their biosynthetic pathway is still poorly understood. We used a homology-based approach to identify and functionally characterize two new oxidosqualene cyclases (MdOSC4 and MdOSC5) and one cytochrome P450 (CYP716A175). The gene expression patterns of these enzymes and of previously described oxidosqualene cyclases were further studied in 20 apple cultivars with contrasting triterpene profiles. MdOSC4 encodes a multifunctional oxidosqualene cyclase producing an oleanane-type triterpene, putatively identified as germanicol, as well as β-amyrin and lupeol, in the proportion 82 : 14 : 4. MdOSC5 cyclizes 2,3-oxidosqualene into lupeol and β-amyrin at a ratio of 95 : 5. CYP716A175 catalyses the C-28 oxidation of α-amyrin, β-amyrin, lupeol and germanicol, producing ursolic acid, oleanolic acid, betulinic acid, and putatively morolic acid. The gene expression of MdOSC1 was linked to the concentrations of ursolic and oleanolic acid, whereas the expression of MdOSC5 was correlated with the concentrations of betulinic acid and its caffeate derivatives. Two new multifuntional triterpene synthases as well as a multifunctional triterpene C-28 oxidase were identified in Malus × domestica. This study also suggests that MdOSC1 and MdOSC5 are key genes in apple fruit triterpene biosynthesis. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  9. Intestinal Cell Proliferation and Senescence Are Regulated by Receptor Guanylyl Cyclase C and p21*

    PubMed Central

    Basu, Nirmalya; Saha, Sayanti; Khan, Imran; Ramachandra, Subbaraya G.; Visweswariah, Sandhya S.

    2014-01-01

    Guanylyl cyclase C (GC-C) is expressed in intestinal epithelial cells and serves as the receptor for bacterial heat-stable enterotoxin (ST) peptides and the guanylin family of gastrointestinal hormones. Activation of GC-C elevates intracellular cGMP, which modulates intestinal fluid-ion homeostasis and differentiation of enterocytes along the crypt-villus axis. GC-C activity can regulate colonic cell proliferation by inducing cell cycle arrest, and mice lacking GC-C display increased cell proliferation in colonic crypts. Activation of GC-C by administration of ST to wild type, but not Gucy2c−/−, mice resulted in a reduction in carcinogen-induced aberrant crypt foci formation. In p53-deficient human colorectal carcinoma cells, ST led to a transcriptional up-regulation of p21, the cell cycle inhibitor, via activation of the cGMP-responsive kinase PKGII and p38 MAPK. Prolonged treatment of human colonic carcinoma cells with ST led to nuclear accumulation of p21, resulting in cellular senescence and reduced tumorigenic potential. Our results, therefore, identify downstream effectors for GC-C that contribute to regulating intestinal cell proliferation. Thus, genomic responses to a bacterial toxin can influence intestinal neoplasia and senescence. PMID:24217248

  10. Structures of Human Golgi-resident Glutaminyl Cyclase and Its Complexes with Inhibitors Reveal a Large Loop Movement upon Inhibitor Binding*

    PubMed Central

    Huang, Kai-Fa; Liaw, Su-Sen; Huang, Wei-Lin; Chia, Cho-Yun; Lo, Yan-Chung; Chen, Yi-Ling; Wang, Andrew H.-J.

    2011-01-01

    Aberrant pyroglutamate formation at the N terminus of certain peptides and proteins, catalyzed by glutaminyl cyclases (QCs), is linked to some pathological conditions, such as Alzheimer disease. Recently, a glutaminyl cyclase (QC) inhibitor, PBD150, was shown to be able to reduce the deposition of pyroglutamate-modified amyloid-β peptides in brain of transgenic mouse models of Alzheimer disease, leading to a significant improvement of learning and memory in those transgenic animals. Here, we report the 1.05–1.40 Å resolution structures, solved by the sulfur single-wavelength anomalous dispersion phasing method, of the Golgi-luminal catalytic domain of the recently identified Golgi-resident QC (gQC) and its complex with PBD150. We also describe the high-resolution structures of secretory QC (sQC)-PBD150 complex and two other gQC-inhibitor complexes. gQC structure has a scaffold similar to that of sQC but with a relatively wider and negatively charged active site, suggesting a distinct substrate specificity from sQC. Upon binding to PBD150, a large loop movement in gQC allows the inhibitor to be tightly held in its active site primarily by hydrophobic interactions. Further comparisons of the inhibitor-bound structures revealed distinct interactions of the inhibitors with gQC and sQC, which are consistent with the results from our inhibitor assays reported here. Because gQC and sQC may play different biological roles in vivo, the different inhibitor binding modes allow the design of specific inhibitors toward gQC and sQC. PMID:21288892

  11. Structures of human Golgi-resident glutaminyl cyclase and its complexes with inhibitors reveal a large loop movement upon inhibitor binding.

    PubMed

    Huang, Kai-Fa; Liaw, Su-Sen; Huang, Wei-Lin; Chia, Cho-Yun; Lo, Yan-Chung; Chen, Yi-Ling; Wang, Andrew H-J

    2011-04-08

    Aberrant pyroglutamate formation at the N terminus of certain peptides and proteins, catalyzed by glutaminyl cyclases (QCs), is linked to some pathological conditions, such as Alzheimer disease. Recently, a glutaminyl cyclase (QC) inhibitor, PBD150, was shown to be able to reduce the deposition of pyroglutamate-modified amyloid-β peptides in brain of transgenic mouse models of Alzheimer disease, leading to a significant improvement of learning and memory in those transgenic animals. Here, we report the 1.05-1.40 Å resolution structures, solved by the sulfur single-wavelength anomalous dispersion phasing method, of the Golgi-luminal catalytic domain of the recently identified Golgi-resident QC (gQC) and its complex with PBD150. We also describe the high-resolution structures of secretory QC (sQC)-PBD150 complex and two other gQC-inhibitor complexes. gQC structure has a scaffold similar to that of sQC but with a relatively wider and negatively charged active site, suggesting a distinct substrate specificity from sQC. Upon binding to PBD150, a large loop movement in gQC allows the inhibitor to be tightly held in its active site primarily by hydrophobic interactions. Further comparisons of the inhibitor-bound structures revealed distinct interactions of the inhibitors with gQC and sQC, which are consistent with the results from our inhibitor assays reported here. Because gQC and sQC may play different biological roles in vivo, the different inhibitor binding modes allow the design of specific inhibitors toward gQC and sQC.

  12. Atomoxetine reverses locomotor hyperactivity, impaired novel object recognition, and prepulse inhibition impairment in mice lacking pituitary adenylate cyclase-activating polypeptide.

    PubMed

    Shibasaki, Y; Hayata-Takano, A; Hazama, K; Nakazawa, T; Shintani, N; Kasai, A; Nagayasu, K; Hashimoto, R; Tanida, M; Katayama, T; Matsuzaki, S; Yamada, K; Taniike, M; Onaka, Y; Ago, Y; Waschek, J A; Köves, K; Reglődi, D; Tamas, A; Matsuda, T; Baba, A; Hashimoto, H

    2015-06-25

    Attention-deficit/hyperactivity disorder (ADHD) is a complex neurobehavioral disorder that is characterized by attention difficulties, impulsivity, and hyperactivity. A non-stimulant drug, atomoxetine (ATX), which is a selective noradrenaline reuptake inhibitor, is widely used for ADHD because it exhibits fewer adverse effects compared to conventional psychostimulants. However, little is known about the therapeutic mechanisms of ATX. ATX treatment significantly alleviated hyperactivity of pituitary adenylate cyclase-activating polypeptide (PACAP)-deficient (PACAP(-/-)) mice with C57BL/6J and 129S6/SvEvTac hybrid background. ATX also improved impaired novel object recognition memory and prepulse inhibition in PACAP(-/-) mice with CD1 background. The ATX-induced increases in extracellular noradrenaline and dopamine levels were significantly higher in the prefrontal cortex of PACAP(-/-) mice compared to wild-type mice with C57BL/6J and 129S6/SvEvTac hybrid background. These results suggest that ATX treatment-induced increases in central monoamine metabolism may be involved in the rescue of ADHD-related abnormalities in PACAP(-/-) mice. Our current study suggests that PACAP(-/-) mice are an ideal rodent model with predictive validity for the study of ADHD etiology and drug development. Additionally, the potential effects of differences in genetic background of PACAP(-/-) mice on behaviors are discussed. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Pituitary adenylate cyclase-activating peptide in the rat central nervous system: an immunohistochemical and in situ hybridization study.

    PubMed

    Hannibal, Jens

    2002-11-25

    In the present study the localization of pituitary adenylate cyclase-activating peptide (PACAP)-expressing cell bodies and PACAP projections were mapped in the adult rat brain and spinal cord by using immunohistochemistry and in situ hybridization histochemistry. A widespread occurrence of PACAP-containing cell bodies was found, with the greatest accumulation in several hypothalamic nuclei and in several brainstem nuclei, especially the habenular nuclei, the pontine nucleus, the lateral parabrachial nucleus (LPB), and the vagal complex. PACAP was also present in cell bodies in the olfactory areas, in neocortical areas, in the hippocampus, in the vestibulo- and cochlear nuclei, in cell bodies of the intermediolateral cell column of the spinal cord and in Purkinje cells of the cerebellum, in the subfornical organ, and in the organum vasculosum of the lamina terminalis. An intense accumulation of PACAP-immunoreactive (-IR) nerve fibers was observed throughout the hypothalamus, in the amydaloid and extended amygdaloid complex, in the anterior and paraventricular thalamic nuclei, in the intergeniculate leaflet, in the pretectum, and in several brainstem nuclei, such as the parabrachial nucleus, the sensory trigeminal nucleus, and the nucleus of the solitary tract. PACAP-IR nerve fibers were also found in the area postrema, the posterior pituitary and the choroid plexus, and the dorsal and ventral horn of the spinal cord. The widespread distribution of PACAP in the brain and spinal cord suggests that PACAP is involved in the control of many autonomic and sensory functions as well as higher cortical processes. Copyright 2002 Wiley-Liss, Inc.

  14. Sex differences and the effects of ovariectomy on the β-adrenergic contractile response

    PubMed Central

    McIntosh, Victoria J.; Chandrasekera, P. Charukeshi

    2011-01-01

    The presence of sex differences in myocardial β-adrenergic responsiveness is controversial, and limited studies have addressed the mechanism underlying these differences. Studies were performed using isolated perfused hearts from male, intact female and ovariectomized female mice to investigate sex differences and the effects of ovarian hormone withdrawal on β-adrenergic receptor function. Female hearts exhibited blunted contractile responses to the β-adrenergic receptor agonist isoproterenol (ISO) compared with males but not ovariectomized females. There were no sex differences in β1-adrenergic receptor gene or protein expression. To investigate the role of adenylyl cyclase, phosphodiesterase, and the cAMP-signaling cascade in generating sex differences in the β-adrenergic contractile response, dose-response studies were performed in isolated perfused male and female hearts using forskolin, 3-isobutyl-1-methylxanthine (IBMX), and 8-(4-chlorophenylthio)adenosine 3′,5′-cyclic monophosphate (CPT-cAMP). Males showed a modestly enhanced contractile response to forskolin at 300 nM and 5 μM compared with females, but there were no sex differences in the response to IBMX or CPT-cAMP. The role of the A1 adenosine receptor (A1AR) in antagonizing the β-adrenergic contractile response was investigated using both the A1AR agonist 2-chloro-N6-cyclopentyl-adenosine and A1AR knockout (KO) mice. Intact females showed an enhanced A1AR anti-adrenergic effect compared with males and ovariectomized females. The β-adrenergic contractile response was potentiated in both male and female A1ARKO hearts, with sex differences no longer present above 1 nM ISO. The β-adrenergic contractile response is greater in male hearts than females, and minor differences in the action of adenylyl cyclase or the A1AR may contribute to these sex differences. PMID:21685268

  15. Snf1 Phosphorylates Adenylate Cyclase and Negatively Regulates Protein Kinase A-dependent Transcription in Saccharomyces cerevisiae.

    PubMed

    Nicastro, Raffaele; Tripodi, Farida; Gaggini, Marco; Castoldi, Andrea; Reghellin, Veronica; Nonnis, Simona; Tedeschi, Gabriella; Coccetti, Paola

    2015-10-09

    In eukaryotes, nutrient availability and metabolism are coordinated by sensing mechanisms and signaling pathways, which influence a broad set of cellular functions such as transcription and metabolic pathways to match environmental conditions. In yeast, PKA is activated in the presence of high glucose concentrations, favoring fast nutrient utilization, shutting down stress responses, and boosting growth. On the contrary, Snf1/AMPK is activated in the presence of low glucose or alternative carbon sources, thus promoting an energy saving program through transcriptional activation and phosphorylation of metabolic enzymes. The PKA and Snf1/AMPK pathways share common downstream targets. Moreover, PKA has been reported to negatively influence the activation of Snf1/AMPK. We report a new cross-talk mechanism with a Snf1-dependent regulation of the PKA pathway. We show that Snf1 and adenylate cyclase (Cyr1) interact in a nutrient-independent manner. Moreover, we identify Cyr1 as a Snf1 substrate and show that Snf1 activation state influences Cyr1 phosphorylation pattern, cAMP intracellular levels, and PKA-dependent transcription. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Delayed pituitary adenylate cyclase-activating polypeptide delivery after brain stroke improves functional recovery by inducing m2 microglia/macrophage polarization.

    PubMed

    Brifault, Coralie; Gras, Marjorie; Liot, Donovan; May, Victor; Vaudry, David; Wurtz, Olivier

    2015-02-01

    Until now, except thrombolysis, the therapeutical strategies targeting the acute phase of cerebral ischemia have been proven ineffective, and no approach is available to attenuate the delayed cell death mechanisms and the resulting functional deficits in the late phase. Then, we investigated whether a targeted and delayed delivery of pituitary adenylate cyclase-activating polypeptide (PACAP), a peptide known to exert neuroprotective activities, may dampen delayed pathophysiological processes improving functional recovery. Three days after permanent focal ischemia, PACAP-producing stem cells were transplanted intracerebro ventricularly in nonimmunosuppressed mice. At 7 and 14 days post ischemia, the effects of this stem cell-based targeted delivery of PACAP on functional recovery, volume lesions, and inflammatory processes were analyzed. The delivery of PACAP in the vicinity of the infarct zone 3 days post stroke promotes fast, stable, and efficient functional recovery. This was correlated with a modulation of the postischemic inflammatory response. Transcriptomic and Ingenuity Pathway Analysis-based bioinformatic analyses identified several gene networks, functions, and key transcriptional factors, such as nuclear factor-κB, C/EBP-β, and Notch/RBP-J as PACAP's potential targets. Such PACAP-dependent immunomodulation was further confirmed by morphometric and phenotypic analyses of microglial cells showing increased number of Arginase-1(+) cells in mice treated with PACAP-expressing cells specifically, demonstrating the redirection of the microglial response toward a neuroprotective M2 phenotype. Our results demonstrated that immunomodulatory strategies capable of redirecting the microglial response toward a neuroprotective M2 phenotype in the late phase of brain ischemia could represent attractive options for stroke treatment in a new and unexploited therapeutical window. © 2014 American Heart Association, Inc.

  17. Filipin-dependent Inhibition of Cholera Toxin: Evidence for Toxin Internalization and Activation through Caveolae-like Domains

    PubMed Central

    Orlandi, Palmer A.; Fishman, Peter H.

    1998-01-01

    The mechanism by which cholera toxin (CT) is internalized from the plasma membrane before its intracellular reduction and subsequent activation of adenylyl cyclase is not well understood. Ganglioside GM1, the receptor for CT, is predominantly clustered in detergent-insoluble glycolipid rafts and in caveolae, noncoated, cholesterol-rich invaginations on the plasma membrane. In this study, we used filipin, a sterol-binding agent that disrupts caveolae and caveolae-like structures, to explore their role in the internalization and activation of CT in CaCo-2 human intestinal epithelial cells. When toxin internalization was quantified, only 33% of surface-bound toxin was internalized by filipin-treated cells within 1 h compared with 79% in untreated cells. However, CT activation as determined by its reduction to form the A1 peptide and CT activity as measured by cyclic AMP accumulation were inhibited in filipin-treated cells. Another sterol-binding agent, 2-hydroxy-β-cyclodextrin, gave comparable results. The cationic amphiphilic drug chlorpromazine, an inhibitor of clathrin-dependent, receptor-mediated endocytosis, however, affected neither CT internalization, activation, nor activity in contrast to its inhibitory effects on diphtheria toxin cytotoxicity. As filipin did not inhibit the latter, the two drugs appeared to distinguish between caveolae- and coated pit–mediated processes. In addition to its effects in CaCo-2 cells that express low levels of caveolin, filipin also inhibited CT activity in human epidermoid carcinoma A431 and Jurkat T lymphoma cells that are, respectively, rich in or lack caveolin. Thus, filipin inhibition correlated more closely with alterations in the biochemical characteristics of CT-bound membranes due to the interactions of filipin with cholesterol rather than with the expressed levels of caveolin and caveolar structure. Our results indicated that the internalization and activation of CT was dependent on and mediated through cholesterol

  18. Expression of pituitary adenylate cyclase-activating polypeptide 1 and 2 receptor mRNA in gallbladder tissue of patients with gallstone or gallbladder polyps

    PubMed Central

    Zhang, Zhen-Hai; Wu, Shuo-Dong; Gao, Hong; Shi, Gang; Jin, Jun-Zhe; Kong, Jing; Tian, Zhong; Su, Yang

    2006-01-01

    AIM: To detect the expression of pituitary adenylate cyclase-activating polypeptide receptor 1 (VPCAP1-R) and VPCAP2-R mRNA in gallbladder tissues of patients with gallstone or gallbladder polyps. METHODS: The expression of VPCAP1-R and VPCAP2-R mRNA in gallbladder tissues was detected in 25 patients with gallstone, 8 patients with gallbladder polyps and 7 donors of liver transplantation by reverse transcription polymerase chain reaction (RT-PCR). RESULTS: The VPCAP2-R mRNA expression level in the control group (1.09±0.58) was lower than that in the gallbladder polyp group (1.64 ± 0.56) and the gallstone group (1.55±0.45) (P < 0.05) while the VPCAP1-R mRNA expression level in the control group (1.15 ± 0.23) was not apparently different from that in the gallbladder polyp group (1.28±0.56) and the gallstone group (1.27 ± 0.38). CONCLUSION: The abnormal expression of VPCAP2-R mRNA in gallbladder tissue may play a role in the formation of gallbladder stone and gallbladder polyps. PMID:16552823

  19. Intracellular pH in sperm physiology.

    PubMed

    Nishigaki, Takuya; José, Omar; González-Cota, Ana Laura; Romero, Francisco; Treviño, Claudia L; Darszon, Alberto

    2014-08-01

    Intracellular pH (pHi) regulation is essential for cell function. Notably, several unique sperm ion transporters and enzymes whose elimination causes infertility are either pHi dependent or somehow related to pHi regulation. Amongst them are: CatSper, a Ca(2+) channel; Slo3, a K(+) channel; the sperm-specific Na(+)/H(+) exchanger and the soluble adenylyl cyclase. It is thus clear that pHi regulation is of the utmost importance for sperm physiology. This review briefly summarizes the key components involved in pHi regulation, their characteristics and participation in fundamental sperm functions such as motility, maturation and the acrosome reaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. YC-1 BINDING TO THE BETA SUBUNIT OF SOLUBLE GUANYLYL CYCLASE OVERCOMES ALLOSTERIC INHIBITION BY THE ALPHA SUBUNIT

    PubMed Central

    Purohit, Rahul; Fritz, Bradley G.; The, Juliana; Issaian, Aaron; Weichsel, Andrzej; David, Cynthia L.; Campbell, Eric; Hausrath, Andrew C.; Rassouli-Taylor, Leida; Garcin, Elsa D.; Gage, Matthew J.; Montfort, William R.

    2014-01-01

    Soluble guanylate cyclase (sGC) is a heterodimeric heme protein and the primary nitric oxide receptor. NO binding stimulates cyclase activity, leading to regulation of cardiovascular physiology and making sGC an attractive target for drug discovery. YC-1 and related compounds stimulate sGC both independently and synergistically with NO and CO binding; however, where the compounds bind and how they work remains unknown. Using linked-equilibria binding measurements, surface plasmon resonance, and domain truncations in Manduca sexta and bovine sGC, we demonstrate that YC-1 binds near or directly to the heme-containing domain of the beta subunit. In the absence of CO, YC-1 binds with Kd = 9–21 μM, depending on construct. In the presence of CO, these values decrease to 0.6–1.1 μM. Pfizer compound 25 bound ~10-fold weaker than YC-1 in the absence of CO whereas compound BAY 41–2272 bound particularly tightly in the presence of CO (Kd = 30–90 nM). Additionally, we found that CO binding is much weaker to heterodimeric sGC proteins (Kd = 50–100 μM) than to the isolated heme domain (Kd = 0.2 μM for Manduca beta H-NOX/PAS). YC-1 greatly enhanced CO binding to heterodimeric sGC, as expected (Kd = ~1 μM). These data indicate the alpha subunit induces a heme pocket conformation with lower affinity for CO and NO. YC-1 family compounds bind near the heme domain, overcoming the alpha subunit effect and inducing a heme pocket conformation with high affinity. We propose this high-affinity conformation is required for the full-length protein to achieve high catalytic activity. PMID:24328155

  1. Prolonged exposure of chromaffin cells to nitric oxide down-regulates the activity of soluble guanylyl cyclase and corresponding mRNA and protein levels

    PubMed Central

    Ferrero, Rut; Torres, Magdalena

    2002-01-01

    Background Soluble guanylyl cyclase (sGC) is the main receptor for nitric oxide (NO) when the latter is produced at low concentrations. This enzyme exists mainly as a heterodimer consisting of one α and one β subunit and converts GTP to the second intracellular messenger cGMP. In turn, cGMP plays a key role in regulating several physiological processes in the nervous system. The aim of the present study was to explore the effects of a NO donor on sGC activity and its protein and subunit mRNA levels in a neural cell model. Results Continuous exposure of bovine adrenal chromaffin cells in culture to the nitric oxide donor, diethylenetriamine NONOate (DETA/NO), resulted in a lower capacity of the cells to synthesize cGMP in response to a subsequent NO stimulus. This effect was not prevented by an increase of intracellular reduced glutathione level. DETA/NO treatment decreased sGC subunit mRNA and β1 subunit protein levels. Both sGC activity and β1 subunit levels decreased more rapidly in chromaffin cells exposed to NO than in cells exposed to the protein synthesis inhibitor, cycloheximide, suggesting that NO decreases β1 subunit stability. The presence of cGMP-dependent protein kinase (PKG) inhibitors effectively prevented the DETA/NO-induced down regulation of sGC subunit mRNA and partially inhibited the reduction in β1 subunits. Conclusions These results suggest that activation of PKG mediates the drop in sGC subunit mRNA levels, and that NO down-regulates sGC activity by decreasing subunit mRNA levels through a cGMP-dependent mechanism, and by reducing β1 subunit stability. PMID:12350235

  2. Mutation in the β-hairpin of the Bordetella pertussis adenylate cyclase toxin modulates N-lobe conformation in calmodulin.

    PubMed

    Springer, Tzvia I; Goebel, Erich; Hariraju, Dinesh; Finley, Natosha L

    2014-10-10

    Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved through its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD's β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD's β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (Rh) and reduced thermal stability in the mutant complex. Taken together, our data provide new structural insights into the β-hairpin's role in stabilizing interactions between CyaA-ACD and N-CaM. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Characterization of the homologous and heterologous desensitization of rat Leydig-tumour-cell adenylate cyclase.

    PubMed

    Dix, C J; Habberfield, A D; Cooke, B A

    1984-06-15

    The homologous and heterologous desensitization of rat Leydig-tumour-cell adenylate cyclase induced by lutropin (LH) was characterized with the aid of forskolin and cholera toxin. Forskolin stimulated cyclic AMP production in a dose-dependent manner, with linear kinetics up to 2h. Forskolin also potentiated the action of LH on cyclic AMP production, but was only additive with cholera toxin. Preincubation of rat Leydig tumour cells with LH (1.0 micrograms/ml) for 1 h produced a desensitization of the subsequent LH (1.0 micrograms/ml)-stimulated cyclic AMP production, whereas the responses to cholera toxin (5.0 micrograms/ml), forskolin (100 microM), LH plus forskolin or cholera toxin plus forskolin were unaltered. In contrast, preincubation with LH for 20h produced a desensitization to all the stimuli tested. When rat Leydig tumour cells were preincubated for 1h with forskolin or dibutyryl cyclic AMP, the only subsequent response that was significantly altered was that to LH plus forskolin after preincubation with forskolin. However, preincubation for 20h with forskolin or dibutyryl cyclic AMP induced a desensitization to all stimuli subsequently tested. LH produced a rapid (0-1h) homologous desensitization, which was followed by a slower (2-8h)-onset heterologous desensitization. Forskolin and dibutyryl cyclic AMP were only able to induce heterologous desensitization. The rate of desensitization induced by either forskolin or dibutyryl cyclic AMP was similar to the rate of heterologous desensitization induced by LH. These results demonstrate that in purified rat Leydig tumour cells LH produces an initial homologous desensitization of adenylate cyclase that involves a cyclic AMP-independent lesion at or proximal to the guanine nucleotide regulatory protein (G-protein). This is followed by heterologous desensitization, which can also be induced by forskolin or dibutyryl cyclic AMP, thus indicating that LH-induced heterologous desensitization of rat Leydig

  4. Activation of multiple mitogen-activated protein kinases by recombinant calcitonin gene-related peptide receptor.

    PubMed

    Parameswaran, N; Disa, J; Spielman, W S; Brooks, D P; Nambi, P; Aiyar, N

    2000-02-18

    Calcitonin gene-related peptide is a 37-amino-acid neuropeptide and a potent vasodilator. Although calcitonin gene-related peptide has been shown to have a number of effects in a variety of systems, the mechanisms of action and the intracellular signaling pathways, especially the regulation of mitogen-activated protien kinase (MAPK) pathway, is not known. In the present study we investigated the role of calcitonin gene-related peptide in the regulation of MAPKs in human embryonic kidney (HEK) 293 cells stably transfected with a recombinant porcine calcitonin gene-related peptide-1 receptor. Calcitonin gene-related peptide caused a significant dose-dependent increase in cAMP response and the effect was inhibited by calcitonin gene-related peptide(8-37), the calcitonin gene-related peptide-receptor antagonist. Calcitonin gene-related peptide also caused a time- and concentration-dependent increase in extracellular signal-regulated kinase (ERK) and P38 mitogen-activated protein kinase (P38 MAPK) activities, with apparently no significant change in cjun-N-terminal kinase (JNK) activity. Forskolin, a direct activator of adenylyl cyclase also stimulated ERK and P38 activities in these cells suggesting the invovement of cAMP in this process. Calcitonin gene-related peptide-stimulated ERK and P38 MAPK activities were inhibited significantly by calcitonin gene-related peptide receptor antagonist, calcitonin gene-related peptide-(8-37) suggesting the involvement of calcitonin gene-related peptide-1 receptor. Preincubation of the cells with the cAMP-dependent protein kinase inhibitor, H89 [¿N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide, hydrochloride¿] inhibited calcitonin gene-related peptide-mediated activation of ERK and p38 kinases. On the other hand, preincubation of the cells with wortmannin ¿[1S-(1alpha,6balpha,9abeta,11alpha, 11bbeta)]-11-(acetyloxy)-1,6b,7,8,9a,10,11, 11b-octahydro-1-(methoxymethyl)-9a,11b-dimethyl-3H-furo[4,3, 2-de]indeno[4,5-h]-2

  5. Further investigation into the signal transduction mechanism of the 5-HT4-like receptor in the circular smooth muscle of human colon.

    PubMed Central

    McLean, P. G.; Coupar, I. M.

    1996-01-01

    the 5-HT4 receptors of the circular smooth muscle of human colon mediate relaxation and inhibition of spontaneous contractions via activation of adenylyl cyclase, formation of cyclic AMP and activation of protein kinase A. PMID:8799582

  6. Further investigation into the signal transduction mechanism of the 5-HT4-like receptor in the circular smooth muscle of human colon.

    PubMed

    McLean, P G; Coupar, I M

    1996-06-01

    the 5-HT4 receptors of the circular smooth muscle of human colon mediate relaxation and inhibition of spontaneous contractions via activation of adenylyl cyclase, formation of cyclic AMP and activation of protein kinase A.

  7. Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy.

    PubMed

    Rahmeh, Rita; Damian, Marjorie; Cottet, Martin; Orcel, Hélène; Mendre, Christiane; Durroux, Thierry; Sharma, K Shivaji; Durand, Grégory; Pucci, Bernard; Trinquet, Eric; Zwier, Jurriaan M; Deupi, Xavier; Bron, Patrick; Banères, Jean-Louis; Mouillac, Bernard; Granier, Sébastien

    2012-04-24

    G protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters, representing the largest group of therapeutic targets. Recent studies show that some GPCRs signal through both G protein and arrestin pathways in a ligand-specific manner. Ligands that direct signaling through a specific pathway are known as biased ligands. The arginine-vasopressin type 2 receptor (V2R), a prototypical peptide-activated GPCR, is an ideal model system to investigate the structural basis of biased signaling. Although the native hormone arginine-vasopressin leads to activation of both the stimulatory G protein (Gs) for the adenylyl cyclase and arrestin pathways, synthetic ligands exhibit highly biased signaling through either Gs alone or arrestin alone. We used purified V2R stabilized in neutral amphipols and developed fluorescence-based assays to investigate the structural basis of biased signaling for the V2R. Our studies demonstrate that the Gs-biased agonist stabilizes a conformation that is distinct from that stabilized by the arrestin-biased agonists. This study provides unique insights into the structural mechanisms of GPCR activation by biased ligands that may be relevant to the design of pathway-biased drugs.

  8. Direct involvement of sigma-1 receptors in the dopamine D1 receptor-mediated effects of cocaine.

    PubMed

    Navarro, Gemma; Moreno, Estefanía; Aymerich, Marisol; Marcellino, Daniel; McCormick, Peter J; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Canela, Enric I; Ortiz, Jordi; Fuxe, Kjell; Lluís, Carmen; Ferré, Sergi; Franco, Rafael

    2010-10-26

    It is well known that cocaine blocks the dopamine transporter. This mechanism should lead to a general increase in dopaminergic neurotransmission, and yet dopamine D(1) receptors (D(1)Rs) play a more significant role in the behavioral effects of cocaine than the other dopamine receptor subtypes. Cocaine also binds to σ-1 receptors, the physiological role of which is largely unknown. In the present study, D(1)R and σ(1)R were found to heteromerize in transfected cells, where cocaine robustly potentiated D(1)R-mediated adenylyl cyclase activation, induced MAPK activation per se and counteracted MAPK activation induced by D(1)R stimulation in a dopamine transporter-independent and σ(1)R-dependent manner. Some of these effects were also demonstrated in murine striatal slices and were absent in σ(1)R KO mice, providing evidence for the existence of σ(1)R-D(1)R heteromers in the brain. Therefore, these results provide a molecular explanation for which D(1)R plays a more significant role in the behavioral effects of cocaine, through σ(1)R-D(1)R heteromerization, and provide a unique perspective toward understanding the molecular basis of cocaine addiction.

  9. Glutaminyl Cyclase Knock-out Mice Exhibit Slight Hypothyroidism but No Hypogonadism

    PubMed Central

    Schilling, Stephan; Kohlmann, Stephanie; Bäuscher, Christoph; Sedlmeier, Reinhard; Koch, Birgit; Eichentopf, Rico; Becker, Andreas; Cynis, Holger; Hoffmann, Torsten; Berg, Sabine; Freyse, Ernst-Joachim; von Hörsten, Stephan; Rossner, Steffen; Graubner, Sigrid; Demuth, Hans-Ulrich

    2011-01-01

    Glutaminyl cyclases (QCs) catalyze the formation of pyroglutamate (pGlu) residues at the N terminus of peptides and proteins. Hypothalamic pGlu hormones, such as thyrotropin-releasing hormone and gonadotropin-releasing hormone are essential for regulation of metabolism and fertility in the hypothalamic pituitary thyroid and gonadal axes, respectively. Here, we analyzed the consequences of constitutive genetic QC ablation on endocrine functions and on the behavior of adult mice. Adult homozygous QC knock-out mice are fertile and behave indistinguishably from wild type mice in tests of motor function, cognition, general activity, and ingestion behavior. The QC knock-out results in a dramatic drop of enzyme activity in the brain, especially in hypothalamus and in plasma. Other peripheral organs like liver and spleen still contain QC activity, which is most likely caused by its homolog isoQC. The serum gonadotropin-releasing hormone, TSH, and testosterone concentrations were not changed by QC depletion. The serum thyroxine was decreased by 24% in homozygous QC knock-out animals, suggesting a mild hypothyroidism. QC knock-out mice were indistinguishable from wild type with regard to blood glucose and glucose tolerance, thus differing from reports of thyrotropin-releasing hormone knock-out mice significantly. The results suggest a significant formation of the hypothalamic pGlu hormones by alternative mechanisms, like spontaneous cyclization or conversion by isoQC. The different effects of QC depletion on the hypothalamic pituitary thyroid and gonadal axes might indicate slightly different modes of substrate conversion of both enzymes. The absence of significant abnormalities in QC knock-out mice suggests the presence of a therapeutic window for suppression of QC activity in current drug development. PMID:21330373

  10. Pituitary adenylate cyclase activating polypeptide and PAC1 receptor signaling increase Homer 1a expression in central and peripheral neurons.

    PubMed

    Girard, Beatrice M; Keller, Emily T; Schutz, Kristin C; May, Victor; Braas, Karen M

    2004-12-15

    Pituitary adenylate cyclase activating polypeptides (PACAP) and PAC1 receptor signaling have diverse roles in central and peripheral nervous system development and function. In recent microarray analyses for PACAP and PAC1 receptor modulation of neuronal transcripts, the mRNA of Homer 1a (H1a), which encodes the noncrosslinking and immediate early gene product isoform of Homer, was identified to be strongly upregulated in superior cervical ganglion (SCG) sympathetic neurons. Given the prominent roles of Homer in synaptogenesis, synaptic protein complex assembly and receptor/channel signaling, we have examined the ability for PACAP to induce H1a expression in sympathetic, cortical and hippocampal neurons to evaluate more comprehensively the roles of PACAP in synaptic function. In both central and peripheral neuronal cultures, PACAP peptides increased transiently H1a transcript levels approximately 3.5- to 6-fold. From real-time quantitative PCR measurements, the temporal patterns of PACAP-mediated H1a mRNA induction among the different neuronal cultures appeared similar although the onset of sympathetic H1a transcript expression appeared protracted. The increase in H1a transcripts was accompanied by increases in H1a protein levels. Comparative studies with VIP and PACAP(6-38) antagonist demonstrated that the PACAP effects reflected PAC1 receptor activation and signaling. The PAC1 receptor isoforms expressed in central and peripheral neurons can engage diverse intracellular second messenger systems, and studies using selective signaling pathway inhibitors demonstrated that the cyclic AMP/PKA and MEK/ERK cascades are principal mediators of the PACAP-mediated H1a induction response. In modulating H1a transcript and protein expression, these studies may implicate broad roles for PACAP and PAC1 receptor signaling in synaptic development and plasticity.

  11. CB2 Cannabinoid Receptor Targets Mitogenic Gi Protein–Cyclin D1 Axis in Osteoblasts

    PubMed Central

    Ofek, Orr; Attar-Namdar, Malka; Kram, Vardit; Dvir-Ginzberg, Mona; Mechoulam, Raphael; Zimmer, Andreas; Frenkel, Baruch; Shohami, Esther; Bab, Itai

    2011-01-01

    CB2 is a Gi protein–coupled receptor activated by endo- and phytocannabinoids, thus inhibiting stimulated adenylyl cyclase activity. CB2 is expressed in bone cells and Cb2 null mice show a marked age-related bone loss. CB2-specific agonists both attenuate and rescue ovariectomy-induced bone loss. Activation of CB2 stimulates osteoblast proliferation and bone marrow derived colony-forming units osteoblastic. Here we show that selective and nonselective CB2 agonists are mitogenic in MC3T3 E1 and newborn mouse calvarial osteoblastic cultures. The CB2 mitogenic signaling depends critically on the stimulation of Erk1/2 phosphorylation and de novo synthesis of MAP kinase–activated protein kinase 2 (Mapkapk2) mRNA and protein. Further downstream, CB2 activation enhances CREB transcriptional activity and cyclin D1 mRNA expression. The CB2-induced stimulation of CREB and cyclin D1 is inhibitable by pertussis toxin, the MEK-Erk1/2 inhibitors PD098059 and U0126, and Mapkapk2 siRNA. These data demonstrate that in osteoblasts CB2 targets a Gi protein–cyclin D1 mitogenic axis. Erk1/2 phosphorylation and Mapkapk2 protein synthesis are critical intermediates in this axis. © 2011 American Society for Bone and Mineral Research. PMID:20803555

  12. The Importance of Sulfate Adenylyl Transferase in S and O Fractionation by Sulfate Reducing Bacteria

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Johnston, D. T.; Bradley, A. S.

    2016-12-01

    Microbial sulfate reduction (MSR) is critical to the oxidation of organic matter in modern and ancient oceans, and plays an important role in regulating the redox state of the Earth's surface. The sulfur and oxygen isotopic composition of seawater sulfate and of sulfate minerals reflect the biogeochemical processes that cycle sulfur, of which MSR is among the most important. MSR is a multi-enzymatic reaction network that partitions the isotopes of sulfur and oxygen as a consequence of both the flux of sulfate through this biochemical network and the fractionation imposed by each individual enzyme. MSR affects the δ18O of residual, extracellular sulfate mainly by the equilibration of the MSR intermediate sulfite with extracellular water (Antler et al., 2013 GCA, Wankel et al., 2013 Geobiol). A series of oxidative and exchange reactions catalyzed by APS reductase (APSr), sulfate adenylyl transferase (Sat), and sulfate transporters promote the conversion of water-equilibrated intracellular sulfite to extracellular sulfate. The flux of sulfoxy anions via these proteins will be, at least in part, dependent on the activity of these enzymes. To test this, we examined sulfur and oxygen isotope fractionation in genetically engineered mutants of the sulfate reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH). In these mutants, the activity of Sat has been artificially increased by perturbing the (i) transcriptional repressor Rex and (ii) its binding site upstream of the gene encoding Sat (Christensen et al., 2015 J. Bacteriol). It was predicted that this would minimize the back reaction of Sat, enhance the intracellular pool of APS, and minimize the equilibration between sulfite and adenosine monophosphate (AMP). Both mutants, along with the wild type DvH were grown in batch culture made with water enriched in 18O. Samples were collected throughout batch growth, and we report the evolution of the S and O isotopic composition of sulfate, and of the S isotopic

  13. Effect of dibutyryl cyclic adenosine monophosphate on the gene expression of plasminogen activator inhibitor-1 and tissue factor in adipocytes.

    PubMed

    Taniguchi, Makoto; Ono, Naoko; Hayashi, Akira; Yakura, Yuwna; Takeya, Hiroyuki

    2011-10-01

    Hypertrophic adipocytes in obese states express the elevated levels of plasminogen activator inhibitor-1 (PAI-1) and tissue factor (TF). An increase in the intracellular concentration of cyclic adenosine monophosphate (cAMP) promotes triglyceride hydrolysis and may improve dysregulation of adipocyte metabolism. Here, we investigate the effect of dibutyryl-cAMP (a phosphodiesterase-resistant analog of cAMP) on the gene expression of PAI-1 and TF in adipocytes. Differentiated 3T3-L1 adipocytes were treated with dibutyryl-cAMP and agents that would be expected to elevate intracellular cAMP, including cilostazol (a phosphodiesterase inhibitor with anti-platelet and vasodilatory properties), isoproterenol (a beta adrenergic agonist) and forskolin (an adenylyl cyclase activator). The levels of PAI-1 and TF mRNAs were measured using real-time quantitative reverse transcription-PCR. The treatment of adipocytes with dibutyryl-cAMP resulted in the inhibition of both lipid accumulation and TF gene expression. However, PAI-1 gene expression was slightly but significantly increased by dibutyryl-cAMP. On the other hand, cilostazol inhibited the expression of PAI-1 without affecting lipid accumulation. When the adipocytes were treated with cilostazol in combination with isoproterenol or forskolin, the inhibitory effect of cilostazol on PAI-1 gene expression was counteracted, thus suggesting that inhibition by cilostazol may not be the result of intracellular cAMP accumulation by phosphodiesterase inhibition. These results suggest the implication of cAMP in regulation of the gene expression of TF and PAI-1 in adipocytes. Our findings will serve as a useful basis for further research in therapy for obesity-associated thrombosis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Engineering Escherichia coli Nicotinic Acid Mononucleotide Adenylyltransferase for Fully Active Amidated NAD Biosynthesis.

    PubMed

    Wang, Xueying; Zhou, Yongjin J; Wang, Lei; Liu, Wujun; Liu, Yuxue; Peng, Chang; Zhao, Zongbao K

    2017-07-01

    NAD and its reduced form NADH function as essential redox cofactors and have major roles in determining cellular metabolic features. NAD can be synthesized through the deamidated and amidated pathways, for which the key reaction involves adenylylation of nicotinic acid mononucleotide (NaMN) and nicotinamide mononucleotide (NMN), respectively. In Escherichia coli , NAD de novo biosynthesis depends on the protein NadD-catalyzed adenylylation of NaMN to nicotinic acid adenine dinucleotide (NaAD), followed by NAD synthase-catalyzed amidation. In this study, we engineered NadD to favor NMN for improved amidated pathway activity. We designed NadD mutant libraries, screened by a malic enzyme-coupled colorimetric assay, and identified two variants, 11B4 (Y84V/Y118D) and 16D8 (A86W/Y118N), with a high preference for NMN. Whereas in the presence of NMN both variants were capable of enabling the viability of cells of E. coli BW25113-derived NAD-auxotrophic strain YJE003, for which the last step of the deamidated pathway is blocked, the 16D8 expression strain could grow without exogenous NMN and accumulated a higher cellular NAD(H) level than BW25113 in the stationary phase. These mutants established fully active amidated NAD biosynthesis and offered a new opportunity to manipulate NAD metabolism for biocatalysis and metabolic engineering. IMPORTANCE Adenylylation of nicotinic acid mononucleotide (NaMN) and adenylylation of nicotinamide mononucleotide (NMN), respectively, are the key steps in the deamidated and amidated pathways for NAD biosynthesis. In most organisms, canonical NAD biosynthesis follows the deamidated pathway. Here we engineered Escherichia coli NaMN adenylyltransferase to favor NMN and expressed the mutant enzyme in an NAD-auxotrophic E. coli strain that has the last step of the deamidated pathway blocked. The engineered strain survived in M9 medium, which indicated the implementation of a functional amidated pathway for NAD biosynthesis. These results enrich

  15. Multiple pathways from three types of sugar receptor sites to metabotropic transduction pathways of the blowfly: study by the whole cell-clamp experiments.

    PubMed

    Kan, Hideko; Kataoka-Shirasugi, Naoko; Amakawa, Taisaku

    2011-09-01

    Multiple pathways from three types of multiple receptor sites to three types of metabotropic signal transduction pathways were investigated in the whole cell-clamp experiments using isolated labellar sugar receptor neurons (cells) of the adult blowfly, Phormia regina. First, the concentration-response curves of three types of sweet taste components specialized to multiple receptor sites were obtained: sucrose for the pyranose sites (P-sites), fructose for the furanose sites (F-sites), and l-valine for the alkyl sites (R-sites). Next, the effects of inhibitors such as 2', 5'-dideoxyadenosine on adenylyl cyclase in the cAMP pathway, LY 83583 on guanylyl cyclase in the cGMP pathway, and U-73122 on phospholipase C in the IP₃ pathway were examined. The results showed that all of the inhibitors affected each specific target in the second-messenger transduction pathways. The obtained results verified that the P-site corresponded to the cAMP, the F-site to the cGMP, and the R-site to the IP₃ transduction pathway, and that these three signal pathways did not have crossing points. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Activation of muscarinic acetylcholine receptors elicits pigment granule dispersion in retinal pigment epithelium isolated from bluegill.

    PubMed

    González, Alfredo; Crittenden, Elizabeth L; García, Dana M

    2004-07-13

    In fish, melanin pigment granules in the retinal pigment epithelium disperse into apical projections as part of the suite of responses the eye makes to bright light conditions. This pigment granule dispersion serves to reduce photobleaching and occurs in response to neurochemicals secreted by the retina. Previous work has shown that acetylcholine may be involved in inducing light-adaptive pigment dispersion. Acetylcholine receptors are of two main types, nicotinic and muscarinic. Muscarinic receptors are in the G-protein coupled receptor superfamily, and five different muscarinic receptors have been molecularly cloned in human. These receptors are coupled to adenylyl cyclase, calcium mobilization and ion channel activation. To determine the receptor pathway involved in eliciting pigment granule migration, we isolated retinal pigment epithelium from bluegill and subjected it to a battery of cholinergic agents. The general cholinergic agonist carbachol induces pigment granule dispersion in isolated retinal pigment epithelium. Carbachol-induced pigment granule dispersion is blocked by the muscarinic antagonist atropine, by the M1 antagonist pirenzepine, and by the M3 antagonist 4-DAMP. Pigment granule dispersion was also induced by the M1 agonist 4-[N-(4-chlorophenyl) carbamoyloxy]-4-pent-2-ammonium iodide. In contrast the M2 antagonist AF-DX 116 and the M4 antagonist tropicamide failed to block carbachol-induced dispersion, and the M2 agonist arecaidine but-2-ynyl ester tosylate failed to elicit dispersion. Our results suggest that carbachol-mediated pigment granule dispersion occurs through the activation of Modd muscarinic receptors, which in other systems couple to phosphoinositide hydrolysis and elevation of intracellular calcium. This conclusion must be corroborated by molecular studies, but suggests Ca2+-dependent pathways may be involved in light-adaptive pigment dispersion.

  17. Incorporation of Tyrosine and Glutamine Residues into the Soluble Guanylate Cyclase Heme Distal Pocket Alters NO and O2 Binding*

    PubMed Central

    Derbyshire, Emily R.; Deng, Sarah; Marletta, Michael A.

    2010-01-01

    Nitric oxide (NO) is the physiologically relevant activator of the mammalian hemoprotein soluble guanylate cyclase (sGC). The heme cofactor of α1β1 sGC has a high affinity for NO but has never been observed to form a complex with oxygen. Introduction of a key tyrosine residue in the sGC heme binding domain β1(1–385) is sufficient to produce an oxygen-binding protein, but this mutation in the full-length enzyme did not alter oxygen affinity. To evaluate ligand binding specificity in full-length sGC we mutated several conserved distal heme pocket residues (β1 Val-5, Phe-74, Ile-145, and Ile-149) to introduce a hydrogen bond donor in proximity to the heme ligand. We found that the NO coordination state, NO dissociation, and enzyme activation were significantly affected by the presence of a tyrosine in the distal heme pocket; however, the stability of the reduced porphyrin and the proteins affinity for oxygen were unaltered. Recently, an atypical sGC from Drosophila, Gyc-88E, was shown to form a stable complex with oxygen. Sequence analysis of this protein identified two residues in the predicted heme pocket (tyrosine and glutamine) that may function to stabilize oxygen binding in the atypical cyclase. The introduction of these residues into the rat β1 distal heme pocket (Ile-145 → Tyr and Ile-149 → Gln) resulted in an sGC construct that oxidized via an intermediate with an absorbance maximum at 417 nm. This absorbance maximum is consistent with globin FeII-O2 complexes and is likely the first observation of a FeII-O2 complex in the full-length α1β1 protein. Additionally, these data suggest that atypical sGCs stabilize O2 binding by a hydrogen bonding network involving tyrosine and glutamine. PMID:20231286

  18. Oxygen Binding and Redox Properties of the Heme in Soluble Guanylate Cyclase

    PubMed Central

    Makino, Ryu; Park, Sam-yon; Obayashi, Eiji; Iizuka, Tetsutaro; Hori, Hiroshi; Shiro, Yoshitugu

    2011-01-01

    Soluble guanylate cyclase is an NO-sensing hemoprotein that serves as a NO receptor in NO-mediated signaling pathways. It has been believed that this enzyme displays no measurable affinity for O2, thereby enabling the selective NO sensing in aerobic environments. Despite the physiological significance, the reactivity of the enzyme-heme for O2 has not been examined in detail. In this paper we demonstrated that the high spin heme of the ferrous enzyme converted to a low spin oxyheme (Fe2+-O2) when frozen at 77 K in the presence of O2. The ligation of O2 was confirmed by EPR analyses using cobalt-substituted enzyme. The oxy form was produced also under solution conditions at −7 °C, with the extremely low affinity for O2. The low O2 affinity was not caused by a distal steric protein effect and by rupture of the Fe2+-proximal His bond as revealed by extended x-ray absorption fine structure. The midpoint potential of the enzyme-heme was +187 mV, which is the most positive among high spin protoheme-hemoproteins. This observation implies that the electron density of the ferrous heme iron is relatively low by comparison to those of other hemoproteins, presumably due to the weak Fe2+-proximal His bond. Based on our results, we propose that the weak Fe2+-proximal His bond is a key determinant for the low O2 affinity of the heme moiety of soluble guanylate cyclase. PMID:21385878

  19. The effect of aspartate-lysine-isoleucine and aspartate-arginine-tyrosine mutations on the expression and activity of vasopressin V2 receptor gene.

    PubMed

    Najafzadeh, Hossein; Safaeian, Leila; Mirmohammad Sadeghi, Hamid; Rabbani, Mohammad; Jafarian, Abbas

    2010-01-01

    Vasopressin type 2 receptor (V2R) plays an important role in the water reabsorption in the kidney collecting ducts. V2R is a G protein coupled receptor (GPCR) and the triplet of amino acids aspartate-arginine-histidine (DRH) in this receptor might significantly influence its activity similar to other GPCR. However, the role of this motif has not been fully confirmed. Therefore, the present study attempted to shed some more light on the role of DRH motif in G protein coupling and V2R function with the use of site-directed mutagenesis. Nested PCR using specific primers was used to produce DNA fragments containing aspartate-lysine-isoleucine and aspartate-arginine-tyrosine mutations with replacements of the arginine to lysine and histidine to tyrosine, respectively. After digestion, these inserts were ligated into the pcDNA3 vector and transformation into E. coli HB101 was performed using heat shock method. The obtained colonies were analyzed for the presence and orientation of the inserts using proper restriction enzymes. After transient transfection of COS-7 cells using diethylaminoethyl-dextran method, the adenylyl cyclase activity assay was performed for functional study. The cell surface expression was analyzed by indirect ELISA method. The functional assay indicated that none of these mutations significantly altered cAMP production and cell surface expression of V2R in these cells. Since some substitutions in arginine residue have shown to lead to the inactive V2 receptor, further studies are required to define the role of this residue more precisely. However, it seems that the role of the histidine residue is not critical in the V2 receptor function.

  20. G protein-coupled receptors: the inside story.

    PubMed

    Jalink, Kees; Moolenaar, Wouter H

    2010-01-01

    Recent findings necessitate revision of the traditional view of G protein-coupled receptor (GPCR) signaling and expand the diversity of mechanisms by which receptor signaling influences cell behavior in general. GPCRs elicit signals at the plasma membrane and are then rapidly removed from the cell surface by endocytosis. Internalization of GPCRs has long been thought to serve as a mechanism to terminate the production of second messengers such as cAMP. However, recent studies show that internalized GPCRs can continue to either stimulate or inhibit cAMP production in a sustained manner. They do so by remaining associated with their cognate G protein subunit and adenylyl cyclase at endosomal compartments. Once internalized, the GPCRs produce cellular responses distinct from those elicited at the cell surface.

  1. The family B1 GPCR: structural aspects and interaction with accessory proteins.

    PubMed

    Couvineau, Alain; Laburthe, Marc

    2012-01-01

    G protein coupled receptors (GPCRs) play a crucial role in physiology and pathophysiology in humans. Beside the large family A (rhodopsin-like receptors) and family C GPCR (metabotropic glutamate receptors), the small family B1 GPCR (secretin-like receptors) includes important receptors such as vasoactive intestinal peptide receptors (VPAC), pituitary adenylyl cyclase activating peptide receptor (PAC1R), secretin receptor (SECR), growth hormone releasing factor receptor (GRFR), glucagon receptor (GCGR), glucagon like-peptide 1 and 2 receptors (GLPR), gastric inhibitory peptide receptor (GIPR), parathyroid hormone receptors (PTHR), calcitonin receptors (CTR) and corticotropin-releasing factor receptors (CRFR). They represent very promising targets for the development of drugs having therapeutical impact on many diseases such as chronic inflammation, neurodegeneration, diabetes, stress and osteoporosis. Over the past decade, structure-function relationship studies have demonstrated that the N-terminal ectodomain (N-ted) of family B1 receptors plays a pivotal role in natural ligand recognition. Structural analysis of some family B1 GPCR N-teds revealed the existence of a Sushi domain fold consisting of two antiparallel β sheets stabilized by three disulfide bonds and a salt bridge. The family B1 GPCRs promote cellular responses through a signaling pathway including predominantly the Gsadenylyl cyclase-cAMP pathway activation. Family B1 GPCRs also interact with a few accessory proteins which play a role in cell signaling, receptor expression and/or pharmacological profiles of receptors. These accessory proteins may represent new targets for the design of new drugs. Here, we review the current knowledge regarding: i) the structure of family B1 GPCR binding domain for natural ligands and ii) the interaction of family B1 GPCRs with accessory proteins.

  2. Identification of Glutaminyl Cyclase Genes Involved in Pyroglutamate Modification of Fungal Lignocellulolytic Enzymes.

    PubMed

    Wu, Vincent W; Dana, Craig M; Iavarone, Anthony T; Clark, Douglas S; Glass, N Louise

    2017-01-17

    The breakdown of plant biomass to simple sugars is essential for the production of second-generation biofuels and high-value bioproducts. Currently, enzymes produced from filamentous fungi are used for deconstructing plant cell wall polysaccharides into fermentable sugars for biorefinery applications. A post-translational N-terminal pyroglutamate modification observed in some of these enzymes occurs when N-terminal glutamine or glutamate is cyclized to form a five-membered ring. This modification has been shown to confer resistance to thermal denaturation for CBH-1 and EG-1 cellulases. In mammalian cells, the formation of pyroglutamate is catalyzed by glutaminyl cyclases. Using the model filamentous fungus Neurospora crassa, we identified two genes (qc-1 and qc-2) that encode proteins homologous to mammalian glutaminyl cyclases. We show that qc-1 and qc-2 are essential for catalyzing the formation of an N-terminal pyroglutamate on CBH-1 and GH5-1. CBH-1 and GH5-1 produced in a Δqc-1 Δqc-2 mutant, and thus lacking the N-terminal pyroglutamate modification, showed greater sensitivity to thermal denaturation, and for GH5-1, susceptibility to proteolytic cleavage. QC-1 and QC-2 are endoplasmic reticulum (ER)-localized proteins. The pyroglutamate modification is predicted to occur in a number of additional fungal proteins that have diverse functions. The identification of glutaminyl cyclases in fungi may have implications for production of lignocellulolytic enzymes, heterologous expression, and biotechnological applications revolving around protein stability. Pyroglutamate modification is the post-translational conversion of N-terminal glutamine or glutamate into a cyclized amino acid derivative. This modification is well studied in animal systems but poorly explored in fungal systems. In Neurospora crassa, we show that this modification takes place in the ER and is catalyzed by two well-conserved enzymes, ubiquitously conserved throughout the fungal kingdom. We

  3. Characterizations of a synthetic pituitary adenylate cyclase-activating polypeptide analog displaying potent neuroprotective activity and reduced in vivo cardiovascular side effects in a Parkinson's disease model.

    PubMed

    Lamine, Asma; Létourneau, Myriam; Doan, Ngoc Duc; Maucotel, Julie; Couvineau, Alain; Vaudry, Hubert; Chatenet, David; Vaudry, David; Fournier, Alain

    2016-09-01

    Parkinson's disease (PD) is characterized by a steady loss of dopamine neurons through apoptotic, inflammatory and oxidative stress processes. In that line of view, the pituitary adenylate cyclase-activating polypeptide (PACAP), with its ability to cross the blood-brain barrier and its anti-apoptotic, anti-inflammatory and anti-oxidative properties, has proven to offer potent neuroprotection in various PD models. Nonetheless, its peripheral actions, paired with low metabolic stability, hampered its clinical use. We have developed Ac-[Phe(pI)(6), Nle(17)]PACAP(1-27) as an improved PACAP-derived neuroprotective compound. In vitro, this analog stimulated cAMP production, maintained mitochondrial potential and protected SH-SY5Y neuroblastoma cells from 1-methyl-4-phenylpyridinium (MPP(+)) toxicity, as potently as PACAP. Furthermore, contrasting with PACAP, it is stable in human plasma and against dipeptidyl peptidase IV activity. When injected intravenously to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, PACAP and Ac-[Phe(pI)(6), Nle(17)]PACAP(1-27) restored tyrosine hydoxylase expression into the substantia nigra and modulated the inflammatory response. Albeit falls of mean arterial pressure (MAP) were observed with both PACAP- and Ac-[Phe(pI)(6), Nle(17)]PACAP(1-27)-treated mice, the intensity of the decrease as well as its duration were significantly less marked after iv injections of the analog than after those of the native polypeptide. Moreover, no significant changes in heart rate were measured with the animals for both compounds. Thus, Ac-[Phe(pI)(6), Nle(17)]PACAP(1-27) appears as a promising lead molecule for the development of PACAP-derived drugs potentially useful for the treatment of PD or other neurodegenerative diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Cyclase inhibitor tripropylamine significantly enhanced lycopene accumulation in Blakeslea trispora.

    PubMed

    Wang, Yanlong; Chen, Xiwen; Hong, Xiao; Du, Shipeng; Liu, Chunxiao; Gong, Wenfang; Chen, Defu

    2016-11-01

    Lycopene is a member of carotenoids that exhibits strong antioxidant activity. In this study, on the basis of screening suitable strain combination [ATCC 14271(+) and ATCC 14272(-)] and establishing the optimal inoculation proportion of mated culture (1/2, +/-, w/w) for carotenoid production, the efficiency of compounds, mainly tertiary amines, on enhancing the lycopene content of Blakeslea trispora was systematically assessed. Of these compounds, tripropylamine showed the best enhancing effect, and then sequentially followed by triethylamine, tributylamine, trimethylamine, diisopropylamine, and isopropylamine. After treated with 1.8 g/L tripropylamine for two days, the lycopene proportion was increased from 1.7% to 90.1%, while the β-carotene proportion was decreased from 91.1% to 6.4% of the total carotenoids. In this case, the lycopene and total carotenoid contents were increased to 83.2 and 92.4 mg/gDW, which were 315.8- and 5.9-fold of that of the untreated control, respectively; while the growth of mycelia was only decreased at 6.0 g/L tripropylamine. Gene expression analysis showed that all the tested genes, especially genes encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase (hmgr) and isopentenyl pyrophosphate isomerase (ipi) in mevalonate pathway, as well as phytoene desaturase (carB) in carotenoid biosynthesis process were upregulated. Therefore, tripropylamine enhanced lycopene content of B. trispora by inhibiting the cyclase activity, and by upregulating the expression of genes associated with terpenoid biosynthesis. Besides, a possible association between the structure and the lycopene-enhancing capability of these compounds was also discussed. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Biotin increases glucokinase expression via soluble guanylate cyclase/protein kinase G, adenosine triphosphate production and autocrine action of insulin in pancreatic rat islets.

    PubMed

    Vilches-Flores, Alonso; Tovar, Armando R; Marin-Hernandez, Alvaro; Rojas-Ochoa, Alberto; Fernandez-Mejia, Cristina

    2010-07-01

    Besides its role as a carboxylase prosthetic group, biotin has important effects on gene expression. However, the molecular mechanisms through which biotin exerts these effects are largely unknown. We previously found that biotin increases pancreatic glucokinase expression. We have now explored the mechanisms underlying this effect. Pancreatic islets from Wistar rats were treated with biotin, in the presence or absence of different types of inhibitors. Glucokinase mRNA and 18s rRNA abundance were determined by real-time PCR. Adenosine triphosphate (ATP) content was analyzed by fluorometry. Biotin treatment increased glucokinase mRNA abundance approximately one fold after 2 h; the effect was sustained up to 24 h. Inhibition of soluble guanylate cyclase or protein kinase G (PKG) signalling suppressed biotin-induced glucokinase expression. The cascade of events downstream of PKG in biotin-mediated gene transcription is not known. We found that inhibition of insulin secretion with diazoxide or nifedipine prevented biotin-stimulated glucokinase mRNA increase. Biotin treatment increased islet ATP content (control: 4.68+/-0.28; biotin treated: 6.62+/-0.26 pmol/islet) at 30 min. Inhibition of PKG activity suppressed the effects of biotin on ATP content. Insulin antibodies or inhibitors of phosphoinositol-3-kinase/Akt insulin signalling pathway prevented biotin-induced glucokinase expression. The nucleotide 8-Br-cGMP mimicked the biotin effects. We propose that the induction of pancreatic glucokinase mRNA by biotin involves guanylate cyclase and PKG activation, which leads to an increase in ATP content. This induces insulin secretion via ATP-sensitive potassium channels. Autocrine insulin, in turn, activates phosphoinositol-3-kinase/Akt signalling. Our results offer new insights into the pathways that participate in biotin-mediated gene expression. (c) 2010 Elsevier Inc. All rights reserved.

  6. Phosphoinositide-3-Kinase Is the Primary Mediator of Phosphoinositide-Dependent Inhibition in Mammalian Olfactory Receptor Neurons

    PubMed Central

    Ukhanov, Kirill; Corey, Elizabeth; Ache, Barry W.

    2016-01-01

    Odorants inhibit as well as excite primary olfactory receptor neurons (ORNs) in many animal species. Growing evidence suggests that inhibition of mammalian ORNs is mediated by phosphoinositide (PI) signaling through activation of phosphoinositide 3-kinase (PI3K), and that canonical adenylyl cyclase III signaling and PI3K signaling interact to provide the basis for ligand-induced selective signaling. As PI3K is known to act in concert with phospholipase C (PLC) in some cellular systems, the question arises as to whether they work together to mediate inhibitory transduction in mammalian ORNs. The present study is designed to test this hypothesis. While we establish that multiple PLC isoforms are expressed in the transduction zone of rat ORNs, that odorants can activate PLC in ORNs in situ, and that pharmacological blockade of PLC enhances the excitatory response to an odorant mixture in some ORNs in conjunction with PI3K blockade, we find that by itself PLC does not account for an inhibitory response. We conclude that PLC does not make a measurable independent contribution to odor-evoked inhibition, and that PI3K is the primary mediator of PI-dependent inhibition in mammalian ORNs. PMID:27147969

  7. Dop1 enhances conspecific olfactory attraction by inhibiting miR-9a maturation in locusts.

    PubMed

    Guo, Xiaojiao; Ma, Zongyuan; Du, Baozhen; Li, Ting; Li, Wudi; Xu, Lingling; He, Jing; Kang, Le

    2018-03-22

    Dopamine receptor 1 (Dop1) mediates locust attraction behaviors, however, the mechanism by which Dop1 modulates this process remains unknown to date. Here, we identify differentially expressed small RNAs associated with locust olfactory attraction after activating and inhibiting Dop1. Small RNA transcriptome analysis and qPCR validation reveal that Dop1 activation and inhibition downregulates and upregulates microRNA-9a (miR-9a) expression, respectively. miR-9a knockdown in solitarious locusts increases their attraction to gregarious volatiles, whereas miR-9a overexpression in gregarious locusts reduces olfactory attraction. Moreover, miR-9a directly targets adenylyl cyclase 2 (ac2), causing its downregulation at the mRNA and protein levels. ac2 responds to Dop1 and mediates locust olfactory attraction. Mechanistically, Dop1 inhibits miR-9a expression through inducing the dissociation of La protein from pre-miR-9a and resulting in miR-9a maturation inhibition. Our results reveal a Dop1-miR-9a-AC2 circuit that modulates locust olfactory attraction underlying aggregation. This study suggests that miRNAs act as key messengers in the GPCR signaling.

  8. Association of Adenylate Cyclase 10 (ADCY10) Polymorphisms and Bone Mineral Density in Healthy Adults

    PubMed Central

    Ichikawa, Shoji; Koller, Daniel L.; Curry, Leah R.; Lai, Dongbing; Xuei, Xiaoling; Edenberg, Howard J.; Hui, Siu L.; Peacock, Munro; Foroud, Tatiana; Econs, Michael J.

    2010-01-01

    Phenotypic variation in bone mineral density (BMD) among healthy adults is influenced by both genetic and environmental factors. Genetic sequence variations in the adenylate cyclase 10 (ADCY10) gene, which is also called soluble adenylate cyclase, have previously been reported to be associated with low spinal BMD in hypercalciuric patients. Since ADCY10 is located in the region linked to spinal BMD in our previous linkage analysis, we tested whether polymorphisms in this gene are also associated with normal BMD variation in healthy adults. Sixteen single nucleotide polymorphisms (SNPs) distributed throughout ADCY10 were genotyped in two healthy groups of American whites: 1,692 premenopausal women and 715 men. Statistical analyses were performed in the two groups to test for association between these SNPs and femoral neck and lumbar spine areal BMD. We observed significant evidence of association (p<0.01) with one SNP each in men and women. Genotypes at these SNPs accounted for less than 1% of hip BMD variation in men, but 1.5% of spinal BMD in women. However, adjacent SNPs did not corroborate the association in either males or females. In conclusion, we found a modest association between an ADCY10 polymorphism and spinal areal BMD in premenopausal white women. PMID:19093065

  9. Pituitary Adenylate Cyclase-Activating Peptide in the Central Amygdala Causes Anorexia and Body Weight Loss via the Melanocortin and the TrkB Systems.

    PubMed

    Iemolo, Attilio; Ferragud, Antonio; Cottone, Pietro; Sabino, Valentina

    2015-07-01

    Growing evidence suggests that the pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1 receptor system represents one of the main regulators of the behavioral, endocrine, and autonomic responses to stress. Although induction of anorexia is a well-documented effect of PACAP, the central sites underlying this phenomenon are poorly understood. The present studies addressed this question by examining the neuroanatomical, behavioral, and pharmacological mechanisms mediating the anorexia produced by PACAP in the central nucleus of the amygdala (CeA), a limbic structure implicated in the emotional components of ingestive behavior. Male rats were microinfused with PACAP (0-1 μg per rat) into the CeA and home-cage food intake, body weight change, microstructural analysis of food intake, and locomotor activity were assessed. Intra-CeA (but not intra-basolateral amygdala) PACAP dose-dependently induced anorexia and body weight loss without affecting locomotor activity. PACAP-treated rats ate smaller meals of normal duration, revealing that PACAP slowed feeding within meals by decreasing the regularity and maintenance of feeding from pellet-to-pellet; postprandial satiety was unaffected. Intra-CeA PACAP-induced anorexia was blocked by coinfusion of either the melanocortin receptor 3/4 antagonist SHU 9119 or the tyrosine kinase B (TrKB) inhibitor k-252a, but not the CRF receptor antagonist D-Phe-CRF(12-41). These results indicate that the CeA is one of the brain areas through which the PACAP system promotes anorexia and that PACAP preferentially lessens the maintenance of feeding in rats, effects opposite to those of palatable food. We also demonstrate that PACAP in the CeA exerts its anorectic effects via local melanocortin and the TrKB systems, and independently from CRF.

  10. cAMP Level Modulates Scleral Collagen Remodeling, a Critical Step in the Development of Myopia

    PubMed Central

    Liu, Shufeng; Fang, Fang; Lu, Runxia; Lu, Chanyi; Zheng, Min; An, Jianhong; Xu, Hongjia; Zhao, Fuxin; Chen, Jiang-fan; Qu, Jia; Zhou, Xiangtian

    2013-01-01

    The development of myopia is associated with decreased ocular scleral collagen synthesis in humans and animal models. Collagen synthesis is, in part, under the influence of cyclic adenosine monophosphate (cAMP). We investigated the associations between cAMP, myopia development in guinea pigs, and collagen synthesis by human scleral fibroblasts (HSFs). Form-deprived myopia (FDM) was induced by unilateral masking of guinea pig eyes. Scleral cAMP levels increased selectively in the FDM eyes and returned to normal levels after unmasking and recovery. Unilateral subconjunctival treatment with the adenylyl cyclase (AC) activator forskolin resulted in a myopic shift accompanied by reduced collagen mRNA levels, but it did not affect retinal electroretinograms. The AC inhibitor SQ22536 attenuated the progression of FDM. Moreover, forskolin inhibited collagen mRNA levels and collagen secretion by HSFs. The inhibition was reversed by SQ22536. These results demonstrate a critical role of cAMP in control of myopia development. Selective regulation of cAMP to control scleral collagen synthesis may be a novel therapeutic strategy for preventing and treating myopia. PMID:23951163

  11. Impaired β-arrestin recruitment and reduced desensitization by non-catechol agonists of the D1 dopamine receptor.

    PubMed

    Gray, David L; Allen, John A; Mente, Scot; O'Connor, Rebecca E; DeMarco, George J; Efremov, Ivan; Tierney, Patrick; Volfson, Dmitri; Davoren, Jennifer; Guilmette, Edward; Salafia, Michelle; Kozak, Rouba; Ehlers, Michael D

    2018-02-14

    Selective activation of dopamine D1 receptors (D1Rs) has been pursued for 40 years as a therapeutic strategy for neurologic and psychiatric diseases due to the fundamental role of D1Rs in motor function, reward processing, and cognition. All known D1R-selective agonists are catechols, which are rapidly metabolized and desensitize the D1R after prolonged exposure, reducing agonist response. As such, drug-like selective D1R agonists have remained elusive. Here we report a novel series of selective, potent non-catechol D1R agonists with promising in vivo pharmacokinetic properties. These ligands stimulate adenylyl cyclase signaling and are efficacious in a rodent model of Parkinson's disease after oral administration. They exhibit distinct binding to the D1R orthosteric site and a novel functional profile including minimal receptor desensitization, reduced recruitment of β-arrestin, and sustained in vivo efficacy. These results reveal a novel class of D1 agonists with favorable drug-like properties, and define the molecular basis for catechol-specific recruitment of β-arrestin to D1Rs.

  12. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil.

    PubMed

    Terés, S; Barceló-Coblijn, G; Benet, M; Alvarez, R; Bressani, R; Halver, J E; Escribá, P V

    2008-09-16

    Numerous studies have shown that high olive oil intake reduces blood pressure (BP). These positive effects of olive oil have frequently been ascribed to its minor components, such as alpha-tocopherol, polyphenols, and other phenolic compounds that are not present in other oils. However, in this study we demonstrate that the hypotensive effect of olive oil is caused by its high oleic acid (OA) content (approximately 70-80%). We propose that olive oil intake increases OA levels in membranes, which regulates membrane lipid structure (H(II) phase propensity) in such a way as to control G protein-mediated signaling, causing a reduction in BP. This effect is in part caused by its regulatory action on G protein-associated cascades that regulate adenylyl cyclase and phospholipase C. In turn, the OA analogues, elaidic and stearic acids, had no hypotensive activity, indicating that the molecular mechanisms that link membrane lipid structure and BP regulation are very specific. Similarly, soybean oil (with low OA content) did not reduce BP. This study demonstrates that olive oil induces its hypotensive effects through the action of OA.

  13. Somatostatin and insulin mediate glucose-inhibited glucagon secretion in the pancreatic α-cell by lowering cAMP

    PubMed Central

    Elliott, Amicia D.; Ustione, Alessandro

    2014-01-01

    The dysregulation of glucose-inhibited glucagon secretion from the pancreatic islet α-cell is a critical component of diabetes pathology and metabolic disease. We show a previously uncharacterized [Ca2+]i-independent mechanism of glucagon suppression in human and murine pancreatic islets whereby cAMP and PKA signaling are decreased. This decrease is driven by the combination of somatostatin, which inhibits adenylyl cyclase production of cAMP via the Gαi subunit of the SSTR2, and insulin, which acts via its receptor to activate phosphodiesterase 3B and degrade cytosolic cAMP. Our data indicate that both somatostatin and insulin signaling are required to suppress cAMP/PKA and glucagon secretion from both human and murine α-cells, and the combination of these two signaling mechanisms is sufficient to reduce glucagon secretion from isolated α-cells as well as islets. Thus, we conclude that somatostatin and insulin together are critical paracrine mediators of glucose-inhibited glucagon secretion and function by lowering cAMP/PKA signaling with increasing glucose. PMID:25406263

  14. Linked Production of Pyroglutamate-Modified Proteins via Self-Cleavage of Fusion Tags with TEV Protease and Autonomous N-Terminal Cyclization with Glutaminyl Cyclase In Vivo

    PubMed Central

    Shih, Yan-Ping; Chou, Chi-Chi; Chen, Yi-Ling; Huang, Kai-Fa; Wang, Andrew H.- J.

    2014-01-01

    Overproduction of N-terminal pyroglutamate (pGlu)-modified proteins utilizing Escherichia coli or eukaryotic cells is a challenging work owing to the fact that the recombinant proteins need to be recovered by proteolytic removal of fusion tags to expose the N-terminal glutaminyl or glutamyl residue, which is then converted into pGlu catalyzed by the enzyme glutaminyl cyclase. Herein we describe a new method for production of N-terminal pGlu-containing proteins in vivo via intracellular self-cleavage of fusion tags by tobacco etch virus (TEV) protease and then immediate N-terminal cyclization of passenger target proteins by a bacterial glutaminyl cyclase. To combine with the sticky-end PCR cloning strategy, this design allows the gene of target proteins to be efficiently inserted into the expression vector using two unique cloning sites (i.e., SnaB I and Xho I), and the soluble and N-terminal pGlu-containing proteins are then produced in vivo. Our method has been successfully applied to the production of pGlu-modified enhanced green fluorescence protein and monocyte chemoattractant proteins. This design will facilitate the production of protein drugs and drug target proteins that possess an N-terminal pGlu residue required for their physiological activities. PMID:24733552

  15. The temperature-dependence of adenylate cyclase from baker's yeast.

    PubMed Central

    Londesborough, J; Varimo, K

    1979-01-01

    The Michaelis constant of membrane-bound adenylate cyclase increased from 1.1 to 1.8 mM between 7 and 38 degrees C (delta H = 13 kJ/mol). Over this temperature range, the maximum velocity increased 10-fold, and the Arrhenius plot was nearly linear, with an average delta H* of 51 kJ/mol. The temperature-dependence of the reaction rate at 2 mM-ATP was examined in more detail: for Lubrol-dispersed enzyme, Arrhenius plots were nearly linear with average delta H* values of 45 and 68 kJ/mol, respectively, for untreated and gel-filtered enzymes; for membrane-bound enzyme, delta H changed from 40 kJ/mol above about 21 degrees C to 62 kJ/mol below 21 degrees C, but this behaviour does not necessarily indicate an abrupt, lipid-induced, transition in the reaction mechanism. PMID:391221

  16. High density and ligand affinity confer ultrasensitive signal detection by a guanylyl cyclase chemoreceptor

    PubMed Central

    Pichlo, Magdalena; Bungert-Plümke, Stefanie; Weyand, Ingo; Seifert, Reinhard; Bönigk, Wolfgang; Strünker, Timo; Kashikar, Nachiket Dilip; Goodwin, Normann; Müller, Astrid; Körschen, Heinz G.; Collienne, Ursel; Pelzer, Patric; Van, Qui; Enderlein, Jörg; Klemm, Clementine; Krause, Eberhard; Trötschel, Christian; Poetsch, Ansgar; Kremmer, Elisabeth

    2014-01-01

    Guanylyl cyclases (GCs), which synthesize the messenger cyclic guanosine 3′,5′-monophosphate, control several sensory functions, such as phototransduction, chemosensation, and thermosensation, in many species from worms to mammals. The GC chemoreceptor in sea urchin sperm can decode chemoattractant concentrations with single-molecule sensitivity. The molecular and cellular underpinnings of such ultrasensitivity are not known for any eukaryotic chemoreceptor. In this paper, we show that an exquisitely high density of 3 × 105 GC chemoreceptors and subnanomolar ligand affinity provide a high ligand-capture efficacy and render sperm perfect absorbers. The GC activity is terminated within 150 ms by dephosphorylation steps of the receptor, which provides a means for precise control of the GC lifetime and which reduces “molecule noise.” Compared with other ultrasensitive sensory systems, the 10-fold signal amplification by the GC receptor is surprisingly low. The hallmarks of this signaling mechanism provide a blueprint for chemical sensing in small compartments, such as olfactory cilia, insect antennae, or even synaptic boutons. PMID:25135936

  17. Differential activation of natriuretic peptide receptors modulates cardiomyocyte proliferation during development

    PubMed Central

    Becker, Jason R.; Chatterjee, Sneha; Robinson, Tamara Y.; Bennett, Jeffrey S.; Panáková, Daniela; Galindo, Cristi L.; Zhong, Lin; Shin, Jordan T.; Coy, Shannon M.; Kelly, Amy E.; Roden, Dan M.; Lim, Chee Chew; MacRae, Calum A.

    2014-01-01

    Organ development is a highly regulated process involving the coordinated proliferation and differentiation of diverse cellular populations. The pathways regulating cell proliferation and their effects on organ growth are complex and for many organs incompletely understood. In all vertebrate species, the cardiac natriuretic peptides (ANP and BNP) are produced by cardiomyocytes in the developing heart. However, their role during cardiogenesis is not defined. Using the embryonic zebrafish and neonatal mammalian cardiomyocytes we explored the natriuretic peptide signaling network during myocardial development. We observed that the cardiac natriuretic peptides ANP and BNP and the guanylate cyclase-linked natriuretic peptide receptors Npr1 and Npr2 are functionally redundant during early cardiovascular development. In addition, we demonstrate that low levels of the natriuretic peptides preferentially activate Npr3, a receptor with Gi activator sequences, and increase cardiomyocyte proliferation through inhibition of adenylate cyclase. Conversely, high concentrations of natriuretic peptides reduce cardiomyocyte proliferation through activation of the particulate guanylate cyclase-linked natriuretic peptide receptors Npr1 and Npr2, and activation of protein kinase G. These data link the cardiac natriuretic peptides in a complex hierarchy modulating cardiomyocyte numbers during development through opposing effects on cardiomyocyte proliferation mediated through distinct cyclic nucleotide signaling pathways. PMID:24353062

  18. Exchange protein activated by cAMP (Epac) mediates cAMP-dependent but protein kinase A-insensitive modulation of vascular ATP-sensitive potassium channels

    PubMed Central

    Purves, Gregor I; Kamishima, Tomoko; Davies, Lowri M; Quayle, John M; Dart, Caroline

    2009-01-01

    Exchange proteins directly activated by cyclic AMP (Epacs or cAMP-GEF) represent a family of novel cAMP-binding effector proteins. The identification of Epacs and the recent development of pharmacological tools that discriminate between cAMP-mediated pathways have revealed previously unrecognized roles for cAMP that are independent of its traditional target cAMP-dependent protein kinase (PKA). Here we show that Epac exists in a complex with vascular ATP-sensitive potassium (KATP) channel subunits and that cAMP-mediated activation of Epac modulates KATP channel activity via a Ca2+-dependent mechanism involving the activation of Ca2+-sensitive protein phosphatase 2B (PP-2B, calcineurin). Application of the Epac-specific cAMP analogue 8-pCPT-2′-O-Me-cAMP, at concentrations that activate Epac but not PKA, caused a 41.6 ± 4.7% inhibition (mean ±s.e.m.; n= 7) of pinacidil-evoked whole-cell KATP currents recorded in isolated rat aortic smooth muscle cells. Importantly, similar results were obtained when cAMP was elevated by addition of the adenylyl cyclase activator forskolin in the presence of the structurally distinct PKA inhibitors, Rp-cAMPS or KT5720. Activation of Epac by 8-pCPT-2′-O-Me-cAMP caused a transient 171.0 ± 18.0 nm (n= 5) increase in intracellular Ca2+ in Fura-2-loaded aortic myocytes, which persisted in the absence of extracellular Ca2+. Inclusion of the Ca2+-specific chelator BAPTA in the pipette-filling solution or preincubation with the calcineurin inhibitors, cyclosporin A or ascomycin, significantly reduced the ability of 8-pCPT-2′-O-Me-cAMP to inhibit whole-cell KATP currents. These results highlight a previously undescribed cAMP-dependent regulatory mechanism that may be essential for understanding the physiological and pathophysiological roles ascribed to arterial KATP channels in the control of vascular tone and blood flow. PMID:19491242

  19. Evidence for Noncanonical Neurotransmitter Activation: Norepinephrine as a Dopamine D2-Like Receptor Agonist

    PubMed Central

    Sánchez-Soto, Marta; Bonifazi, Alessandro; Cai, Ning Sheng; Ellenberger, Michael P.; Newman, Amy Hauck

    2016-01-01

    The Gαi/o-coupled dopamine D2-like receptor family comprises three subtypes: the D2 receptor (D2R), with short and long isoform variants (D2SR and D2LR), D3 receptor (D3R), and D4 receptor (D4R), with several polymorphic variants. The common overlap of norepinephrine innervation and D2-like receptor expression patterns prompts the question of a possible noncanonical action by norepinephrine. In fact, previous studies have suggested that norepinephrine can functionally interact with D4R. To our knowledge, significant interactions between norepinephrine and D2R or D3R receptors have not been demonstrated. By using radioligand binding and bioluminescent resonance energy transfer (BRET) assays in transfected cells, the present study attempted a careful comparison between dopamine and norepinephrine in their possible activation of all D2-like receptors, including the two D2R isoforms and the most common D4R polymorphic variants. Functional BRET assays included activation of G proteins with all Gαi/o subunits, adenylyl cyclase inhibition, and β arrestin recruitment. Norepinephrine acted as a potent agonist for all D2-like receptor subtypes, with the general rank order of potency of D3R > D4R ≥ D2SR ≥ D2L. However, for both dopamine and norepinephrine, differences depended on the Gαi/o protein subunit involved. The most striking differences were observed with Gαi2, where the rank order of potencies for both dopamine and norepinephrine were D4R > D2SR = D2LR >> D3R. Furthermore the results do not support the existence of differences in the ability of dopamine and norepinephrine to activate different human D4R variants. The potency of norepinephrine for adrenergic α2A receptor was only about 20-fold higher compared with D3R and D4R across the three functional assays. PMID:26843180

  20. Late INa increases diastolic SR-Ca2+-leak in atrial myocardium by activating PKA and CaMKII

    PubMed Central

    Fischer, Thomas H.; Herting, Jonas; Mason, Fleur E.; Hartmann, Nico; Watanabe, Saera; Nikolaev, Viacheslav O.; Sprenger, Julia U.; Fan, Peidong; Yao, Lina; Popov, Aron-Frederik; Danner, Bernhard C.; Schöndube, Friedrich; Belardinelli, Luiz; Hasenfuss, Gerd; Maier, Lars S.; Sossalla, Samuel

    2015-01-01

    Aims Enhanced cardiac late Na current (late INa) and increased sarcoplasmic reticulum (SR)-Ca2+-leak are both highly arrhythmogenic. This study seeks to identify signalling pathways interconnecting late INa and SR-Ca2+-leak in atrial cardiomyocytes (CMs). Methods and results In murine atrial CMs, SR-Ca2+-leak was increased by the late INa enhancer Anemonia sulcata toxin II (ATX-II). An inhibition of Ca2+/calmodulin-dependent protein kinase II (Autocamide-2-related inhibitory peptide), protein kinase A (H89), or late INa (Ranolazine or Tetrodotoxin) all prevented ATX-II-dependent SR-Ca2+-leak. The SR-Ca2+-leak induction by ATX-II was not detected when either the Na+/Ca2+ exchanger was inhibited (KBR) or in CaMKIIδc-knockout mice. FRET measurements revealed increased cAMP levels upon ATX-II stimulation, which could be prevented by inhibition of adenylyl cyclases (ACs) 5 and 6 (NKY 80) but not by inhibition of phosphodiesterases (IBMX), suggesting PKA activation via an AC-dependent increase of cAMP levels. Western blots showed late INa-dependent hyperphosphorylation of CaMKII as well as PKA target sites at ryanodine receptor type-2 (-S2814 and -S2808) and phospholamban (-Thr17, -S16). Enhancement of late INa did not alter Ca2+-transient amplitude or SR-Ca2+-load. However, upon late INa activation and simultaneous CaMKII inhibition, Ca2+-transient amplitude and SR-Ca2+-load were increased, whereas PKA inhibition reduced Ca2+-transient amplitude and load and additionally slowed Ca2+ elimination. In atrial CMs from patients with atrial fibrillation, inhibition of late INa, CaMKII, or PKA reduced the SR-Ca2+-leak. Conclusion Late INa exerts distinct effects on Ca2+ homeostasis in atrial myocardium through activation of CaMKII and PKA. Inhibition of late INa represents a potential approach to attenuate CaMKII activation and decreases SR-Ca2+-leak in atrial rhythm disorders. The interconnection with the cAMP/PKA system further increases the antiarrhythmic potential of late