Science.gov

Sample records for activate chemical reactions

  1. Transient assembly of active materials fueled by a chemical reaction

    NASA Astrophysics Data System (ADS)

    Boekhoven, Job; Hendriksen, Wouter E.; Koper, Ger J. M.; Eelkema, Rienk; van Esch, Jan H.

    2015-09-01

    Fuel-driven self-assembly of actin filaments and microtubules is a key component of cellular organization. Continuous energy supply maintains these transient biomolecular assemblies far from thermodynamic equilibrium, unlike typical synthetic systems that spontaneously assemble at thermodynamic equilibrium. Here, we report the transient self-assembly of synthetic molecules into active materials, driven by the consumption of a chemical fuel. In these materials, reaction rates and fuel levels, instead of equilibrium composition, determine properties such as lifetime, stiffness, and self-regeneration capability. Fibers exhibit strongly nonlinear behavior including stochastic collapse and simultaneous growth and shrinkage, reminiscent of microtubule dynamics.

  2. Microfluidic chemical reaction circuits

    DOEpatents

    Lee, Chung-cheng; Sui, Guodong; Elizarov, Arkadij; Kolb, Hartmuth C.; Huang, Jiang; Heath, James R.; Phelps, Michael E.; Quake, Stephen R.; Tseng, Hsian-rong; Wyatt, Paul; Daridon, Antoine

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  3. X-ray imaging of chemically active valence electrons during a pericyclic reaction

    NASA Astrophysics Data System (ADS)

    Bredtmann, Timm; Ivanov, Misha; Dixit, Gopal

    2014-11-01

    Time-resolved imaging of chemically active valence electron densities is a long-sought goal, as these electrons dictate the course of chemical reactions. However, X-ray scattering is always dominated by the core and inert valence electrons, making time-resolved X-ray imaging of chemically active valence electron densities extremely challenging. Here we demonstrate an effective and robust method, which emphasizes the information encoded in weakly scattered photons, to image chemically active valence electron densities. The degenerate Cope rearrangement of semibullvalene, a pericyclic reaction, is used as an example to visually illustrate our approach. Our work also provides experimental access to the long-standing problem of synchronous versus asynchronous bond formation and breaking during pericyclic reactions.

  4. X-ray imaging of chemically active valence electrons during a pericyclic reaction

    PubMed Central

    Bredtmann, Timm; Ivanov, Misha; Dixit, Gopal

    2014-01-01

    Time-resolved imaging of chemically active valence electron densities is a long-sought goal, as these electrons dictate the course of chemical reactions. However, X-ray scattering is always dominated by the core and inert valence electrons, making time-resolved X-ray imaging of chemically active valence electron densities extremely challenging. Here we demonstrate an effective and robust method, which emphasizes the information encoded in weakly scattered photons, to image chemically active valence electron densities. The degenerate Cope rearrangement of semibullvalene, a pericyclic reaction, is used as an example to visually illustrate our approach. Our work also provides experimental access to the long-standing problem of synchronous versus asynchronous bond formation and breaking during pericyclic reactions. PMID:25424639

  5. Spatiotemporal regulation of chemical reaction kinetics of cell surface molecules by active remodeling of cortical actin

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Bhaswati; Chaudhuri, Abhishek; Gowrishankar, Kripa; Mayor, Satyajit; Rao, Madan

    2010-03-01

    Cell surface proteins such as lipid tethered GPI-anchored proteins and Ras-proteins are distributed as monomers and nanoclusters on the surface of living cells. Recent work from our laboratory suggests that the spatial distribution and dynamics of formation and breakup of these nanoclusters is controlled by the active remodeling dynamics of the underlying cortical actin. To explain these observations, we propose a novel mechanism of nanoclustering, involving the transient binding to and advection along constitutively occuring ``asters'' of cortical actin. Here we study the consequences of such active actin based clustering, in the context of chemical reactions involving conformational changes of cell surface proteins. We find that active remodeling of cortical actin, can give rise to a dramatic increase in the reaction efficiency and output levels. In general, such actin driven clustering of membrane proteins could be a cellular mechanism to spatiotemporally regulate and amplify local chemical reaction rates, in the context of signalling and endocytosis.

  6. Chemical Reaction Problem Solving.

    ERIC Educational Resources Information Center

    Veal, William

    1999-01-01

    Discusses the role of chemical-equation problem solving in helping students predict reaction products. Methods for helping students learn this process must be taught to students and future teachers by using pedagogical skills within the content of chemistry. Emphasizes that solving chemical reactions should involve creative cognition where…

  7. Chemical burn or reaction

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000059.htm Chemical burn or reaction To use the sharing features on this page, please enable JavaScript. Chemicals that touch skin can lead to a reaction on the skin, throughout the body, or both. ...

  8. Chemical activity induces dynamical force with global structure in a reaction-diffusion-convection system.

    PubMed

    Mahara, Hitoshi; Okada, Koichi; Nomura, Atsushi; Miike, Hidetoshi; Sakurai, Tatsunari

    2009-07-01

    We found a rotating global structure induced by the dynamical force of local chemical activity in a thin solution layer of excitable Belousov-Zhabotinsky reaction coupled with diffusion. The surface flow and deformation associated with chemical spiral waves (wavelength about 1 mm) represents a global unidirectional structure and a global tilt in the entire Petri dish (100 mm in diameter), respectively. For these observations, we scanned the condition of hierarchal pattern selection. From this result, the bromomalonic acid has an important role to induce the rotating global structure. An interaction between a reaction-diffusion process and a surface-tension-driven effect leads to such hierarchal pattern with different scales. PMID:19658764

  9. Heat and Mass Transfer in Unsteady Rotating Fluid Flow with Binary Chemical Reaction and Activation Energy

    PubMed Central

    Awad, Faiz G.; Motsa, Sandile; Khumalo, Melusi

    2014-01-01

    In this study, the Spectral Relaxation Method (SRM) is used to solve the coupled highly nonlinear system of partial differential equations due to an unsteady flow over a stretching surface in an incompressible rotating viscous fluid in presence of binary chemical reaction and Arrhenius activation energy. The velocity, temperature and concentration distributions as well as the skin-friction, heat and mass transfer coefficients have been obtained and discussed for various physical parametric values. The numerical results obtained by (SRM) are then presented graphically and discussed to highlight the physical implications of the simulations. PMID:25250830

  10. Experimental Demonstrations in Teaching Chemical Reactions.

    ERIC Educational Resources Information Center

    Hugerat, Muhamad; Basheer, Sobhi

    2001-01-01

    Presents demonstrations of chemical reactions by employing different features of various compounds that can be altered after a chemical change occurs. Experimental activities include para- and dia-magnetism in chemical reactions, aluminum reaction with base, reaction of acid with carbonates, use of electrochemical cells for demonstrating chemical…

  11. Chemical Reactions at Surfaces

    SciTech Connect

    Michael Henderson and Nancy Ryan Gray

    2010-04-14

    Chemical reactions at surfaces underlie some of the most important processes of today, including catalysis, energy conversion, microelectronics, human health and the environment. Understanding surface chemical reactions at a fundamental level is at the core of the field of surface science. The Gordon Research Conference on Chemical Reactions at Surfaces is one of the premiere meetings in the field. The program this year will cover a broad range of topics, including heterogeneous catalysis and surface chemistry, surfaces in environmental chemistry and energy conversion, reactions at the liquid-solid and liquid-gas interface, electronic materials growth and surface modification, biological interfaces, and electrons and photons at surfaces. An exciting program is planned, with contributions from outstanding speakers and discussion leaders from the international scientific community. The conference provides a dynamic environment with ample time for discussion and interaction. Attendees are encouraged to present posters; the poster sessions are historically well attended and stimulate additional discussions. The conference provides an excellent opportunity for junior researchers (e.g. graduate students or postdocs) to present their work and interact with established leaders in the field.

  12. Enhancing chemical reactions

    DOEpatents

    Morrey, John R.

    1978-01-01

    Methods of enhancing selected chemical reactions. The population of a selected high vibrational energy state of a reactant molecule is increased substantially above its population at thermal equilibrium by directing onto the molecule a beam of radiant energy from a laser having a combination of frequency and intensity selected to pump the selected energy state, and the reaction is carried out with the temperature, pressure, and concentrations of reactants maintained at a combination of values selected to optimize the reaction in preference to thermal degradation by transforming the absorbed energy into translational motion. The reaction temperature is selected to optimize the reaction. Typically a laser and a frequency doubler emit radiant energy at frequencies of .nu. and 2.nu. into an optical dye within an optical cavity capable of being tuned to a wanted frequency .delta. or a parametric oscillator comprising a non-centrosymmetric crystal having two indices of refraction, to emit radiant energy at the frequencies of .nu., 2.nu., and .delta. (and, with a parametric oscillator, also at 2.nu.-.delta.). Each unwanted frequency is filtered out, and each desired frequency is focused to the desired radiation flux within a reaction chamber and is reflected repeatedly through the chamber while reactants are fed into the chamber and reaction products are removed therefrom.

  13. Chemically Activated Formation of Organic Acids in Reactions of the Criegee Intermediate with Aldehydes and Ketones

    SciTech Connect

    Jalan, Amrit; Allen, Joshua W.; Green, William H.

    2013-08-08

    Reactions of the Criegee intermediate (CI, .CH2OO.) are important in atmospheric ozonolysis models. In this work, we compute the rates for reactions between .CH2OO. and HCHO, CH3CHO and CH3COCH3 leading to the formation of secondary ozonides (SOZ) and organic acids. Relative to infinitely separated reactants, the SOZ in all three cases is found to be 48–51 kcal mol-1 lower in energy, formed via 1,3- cycloaddition of .CH2OO. across the CQO bond. The lowest energy pathway found for SOZ decomposition is intramolecular disproportionation of the singlet biradical intermediate formed from cleavage of the O–O bond to form hydroxyalkyl esters. These hydroxyalkyl esters undergo concerted decomposition providing a low energy pathway from SOZ to acids. Geometries and frequencies of all stationary points were obtained using the B3LYP/MG3S DFT model chemistry, and energies were refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. RRKM calculations were used to obtain microcanonical rate coefficients (k(E)) and the reservoir state method was used to obtain temperature and pressure dependent rate coefficients (k(T, P)) and product branching ratios. At atmospheric pressure, the yield of collisionally stabilized SOZ was found to increase in the order HCHO o CH3CHO o CH3COCH3 (the highest yield being 10-4 times lower than the initial .CH2OO. concentration). At low pressures, chemically activated formation of organic acids (formic acid in the case of HCHO and CH3COCH3, formic and acetic acid in the case of CH3CHO) was found to be the major product channel in agreement with recent direct measurements. Collisional energy transfer parameters and the barrier heights for SOZ reactions were found to be the most sensitive parameters determining SOZ and organic acid yield.

  14. Chemical Reactions in DSMC

    SciTech Connect

    Bird, G. A.

    2011-05-20

    DSMC simulations of chemically reacting gas flows have generally employed procedures that convert the macroscopic chemical rate equations to reaction cross-sections at the microscopic level. They therefore depend on the availability of experimental data that has been fitted to equations of the Arrhenius form. This paper presents a physical model for dissociation and recombination reactions and a phenomenological model for exchange and chain reactions. These are based on the vibrational states of the colliding molecules and do not require any experimentally-based data. The simplicity of the models allows the corresponding rate equations to be written down and, while these are not required for the implementation of the models, they facilitate their validation. The model is applied to a typical hypersonic atmospheric entry problem and the results are compared with the corresponding results from the traditional method. It is also used to investigate both spontaneous and forced ignition as well as the structure of a deflagration wave in an oxygen-hydrogen mixture.

  15. Chemical Reactions in DSMC

    NASA Astrophysics Data System (ADS)

    Bird, G. A.

    2011-05-01

    DSMC simulations of chemically reacting gas flows have generally employed procedures that convert the macroscopic chemical rate equations to reaction cross-sections at the microscopic level. They therefore depend on the availability of experimental data that has been fitted to equations of the Arrhenius form. This paper presents a physical model for dissociation and recombination reactions and a phenomenological model for exchange and chain reactions. These are based on the vibrational states of the colliding molecules and do not require any experimentally-based data. The simplicity of the models allows the corresponding rate equations to be written down and, while these are not required for the implementation of the models, they facilitate their validation. The model is applied to a typical hypersonic atmospheric entry problem and the results are compared with the corresponding results from the traditional method. It is also used to investigate both spontaneous and forced ignition as well as the structure of a deflagration wave in an oxygen-hydrogen mixture.

  16. Mass Transfer with Chemical Reaction.

    ERIC Educational Resources Information Center

    DeCoursey, W. J.

    1987-01-01

    Describes the organization of a graduate course dealing with mass transfer, particularly as it relates to chemical reactions. Discusses the course outline, including mathematics models of mass transfer, enhancement of mass transfer rates by homogeneous chemical reaction, and gas-liquid systems with chemical reaction. (TW)

  17. Photocatalytic activity of layered perovskite-like oxides in practically valuable chemical reactions

    NASA Astrophysics Data System (ADS)

    Rodionov, I. A.; Zvereva, I. A.

    2016-03-01

    The photocatalytic properties of layered perovskite-like oxides corresponding to the Ruddlesen–Popper, Dion–Jacobson and Aurivillius phases are considered. Of the photocatalytic reactions, the focus is on the reactions of water splitting, hydrogen evolution from aqueous solutions of organic substances and degradation of model organic pollutants. Possibilities to conduct these reactions under UV and visible light in the presence of layered perovskite-like oxides and composite photocatalysts based on them are shown. The specific surface area, band gap energy, particle morphology, cation and anion doping and surface modification are considered as factors that affect the photocatalytic activity. Special attention is paid to the possibilities to enhance the photocatalytic activity by intercalation, ion exchange and exfoliation, which are inherent in this class of compounds. Conclusions are made about the prospects for the use of layered perovskite-like oxides in photocatalysis. The bibliography includes 253 references.

  18. Catalytically active polymers obtained by molecular imprinting and their application in chemical reaction engineering.

    PubMed

    Brüggemann, O

    2001-08-01

    Molecular imprinting is a way of creating polymers bearing artificial receptors. It allows the fabrication of highly selective plastics by polymerizing monomers in the presence of a template. This technique primarily had been developed for the generation of biomimetic materials to be used in chromatographic separation, in extraction approaches and in sensors and assays. Beyond these applications, in the past few years molecular imprinting has become a tool for producing new kinds of catalysts. For catalytic applications, the template must be chosen, so that it is structurally comparable with the transition state (a transition state analogue, TSA) of a reaction, or with the product or substrate. The advantage of using these polymeric catalysts is obvious: the backbone withstands more aggressive conditions than a bio material could ever survive. Results are presented showing the applicability of a molecularly imprinted catalyst in different kinds of chemical reactors. It is demonstrated that the catalysts can be utilized not only in batch but also in continuously driven reactors and that their performance can be improved by means of chemical reaction engineering. PMID:11429307

  19. Chemical burn or reaction

    MedlinePlus

    ... different products that contain toxic chemicals such as ammonia and bleach. The mixture can give off hazardous ... chemicals immediately after use. Use paints, petroleum products, ammonia, bleach, and other products that give off fumes ...

  20. More on Chemical Reaction Balancing.

    ERIC Educational Resources Information Center

    Swinehart, D. F.

    1985-01-01

    A previous article stated that only the matrix method was powerful enough to balance a particular chemical equation. Shows how this equation can be balanced without using the matrix method. The approach taken involves writing partial mathematical reactions and redox half-reactions, and combining them to yield the final balanced reaction. (JN)

  1. Speeding chemical reactions by focusing

    NASA Astrophysics Data System (ADS)

    Lacasta, A. M.; Ramírez-Piscina, L.; Sancho, J. M.; Lindenberg, K.

    2013-04-01

    We present numerical results for a chemical reaction of colloidal particles which are transported by a laminar fluid and are focused by periodic obstacles in such a way that the two components are well mixed and consequently the chemical reaction is speeded up. The roles of the various system parameters (diffusion coefficients, reaction rate, and obstacles sizes) are studied. We show that focusing speeds up the reaction from the diffusion limited rate ˜t-1/2 to very close to the perfect mixing rate, ˜t-1.

  2. Reduction of chemical reaction models

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael

    1991-01-01

    An attempt is made to reconcile the different terminologies pertaining to reduction of chemical reaction models. The approaches considered include global modeling, response modeling, detailed reduction, chemical lumping, and statistical lumping. The advantages and drawbacks of each of these methods are pointed out.

  3. Chemical Activities. Teacher Edition.

    ERIC Educational Resources Information Center

    Borgford, Christie L.; Summerlin, Lee R.

    This sourcebook for chemical activities is designed to be used as a student laboratory book for both junior and senior high school students. The student's role as a knowledgeable consumer and informed citizen is stressed. Each activity includes a list of needed materials, procedures, reactions, questions, and notes for the teacher which include…

  4. Programmability of Chemical Reaction Networks

    NASA Astrophysics Data System (ADS)

    Cook, Matthew; Soloveichik, David; Winfree, Erik; Bruck, Jehoshua

    Motivated by the intriguing complexity of biochemical circuitry within individual cells we study Stochastic Chemical Reaction Networks (SCRNs), a formal model that considers a set of chemical reactions acting on a finite number of molecules in a well-stirred solution according to standard chemical kinetics equations. SCRNs have been widely used for describing naturally occurring (bio)chemical systems, and with the advent of synthetic biology they become a promising language for the design of artificial biochemical circuits. Our interest here is the computational power of SCRNs and how they relate to more conventional models of computation. We survey known connections and give new connections between SCRNs and Boolean Logic Circuits, Vector Addition Systems, Petri nets, Gate Implementability, Primitive Recursive Functions, Register Machines, Fractran, and Turing Machines. A theme to these investigations is the thin line between decidable and undecidable questions about SCRN behavior.

  5. Chemical characteristics and enhanced hepatoprotective activities of Maillard reaction products derived from milk protein-sugar system.

    PubMed

    Oh, Nam Su; Young Lee, Ji; Lee, Hyun Ah; Joung, Jae Yeon; Shin, Yong Kook; Kim, Sae Hun; Kim, Younghoon; Lee, Kwang Won

    2016-02-01

    The objective of this study was to investigate the characteristics, antioxidative properties, and hepatoprotective effects of Maillard reaction products (MRP) from milk protein reacted with sugars. The MRP were obtained from milk protein, whey protein concentrates and sodium caseinate, using 2 types of sugars, lactose and glucose, by heating the mixture at 55°C for 7d in a sodium phosphate buffer (pH 7.4). Changes in the chemical modification of the milk protein were monitored by measuring the protein-bound carbonyls and PAGE protein profiles. The results showed that the amount of protein-bound carbonyls increased after Maillard reaction (MR). In addition, sodium dodecyl sulfate-PAGE analysis indicated a formation of high-molecular weight complexes through MR. The modification sites induced by MR of milk protein were monitored by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of tryptic-digested gel spots of MRP. As a result, modification and their localization in AA sequence of MRP was identified. Also, the MRP showed higher antioxidant activities than the intact milk protein, and they reduced intracellular reactive oxygen species production and inhibited the depletion of the reduced glutathione concentrations in the HepG2 cells. In particular, glucose-sodium caseinate MRP showed the highest biological activities among all MRP. Therefore, these results suggest that the MRP from milk protein reacting with sugars possess effective antioxidant activity and have a protective ability against oxidative damage. PMID:26627852

  6. Glutathione Reaction Products with a Chemical Allergen, Methylene-diphenyl Diisocyanate, Stimulate Alternative Macrophage Activation and Eosinophilic Airway Inflammation

    PubMed Central

    Wisnewski, Adam V.; Liu, Jian; Colangelo, Christopher M.

    2015-01-01

    Isocyanates have been a leading chemical cause of occupational asthma since their utility for generating polyurethane was first recognized over 60 years ago, yet the mechanisms of isocyanate asthma pathogenesis remain unclear. The present study provides in vivo evidence that a GSH mediated pathway underlies asthma-like eosinophilic inflammatory responses to respiratory tract isocyanate exposure. In naïve mice, a mixture of GSH reaction products with the chemical allergen, methylene-diphenyl diisocyanate (MDI), induced innate immune responses, characterized by significantly increased airway levels of Chitinase YM-1 and IL-12/IL-23β (but not α) subunit. However, in mice immunologically sensitized to MDI via prior skin exposure, identical GSH–MDI doses induced substantially greater inflammatory responses, including significantly increased airway eosinophil numbers and mucus production, along with IL-12/IL-23β, chitinases, and other indicators of alternative macrophage activation. The “self”-protein albumin in mouse airway fluid was uniquely modified by GSH–MDI at position 414K, a preferred site of MDI reactivity on human albumin. The 414K–MDI conjugation appears to covalently cross-link GSH to albumin via GSH's NH2-terminus, a unique conformation possibly resulting from cyclized mono(GSH)–MDI or asymmetric (S,N′-linked) bis(GSH)–MDI conjugates. Together, the data support a possible thiol mediated transcarbamoylating mechanism linking MDI exposure to pathogenic eosinophilic inflammatory responses. PMID:25635619

  7. A continuous sirtuin activity assay without any coupling to enzymatic or chemical reactions

    PubMed Central

    Schuster, Sabine; Roessler, Claudia; Meleshin, Marat; Zimmermann, Philipp; Simic, Zeljko; Kambach, Christian; Schiene-Fischer, Cordelia; Steegborn, Clemens; Hottiger, Michael O.; Schutkowski, Mike

    2016-01-01

    Sirtuins are NAD+ dependent lysine deacylases involved in many regulatory processes such as control of metabolic pathways, DNA repair and stress response. Modulators of sirtuin activity are required as tools for uncovering the biological function of these enzymes and as potential therapeutic agents. Systematic discovery of such modulators is hampered by the lack of direct and continuous activity assays. The present study describes a novel continuous assay based on the increase of a fluorescence signal subsequent to sirtuin mediated removal of a fluorescent acyl chain from a modified TNFα-derived peptide. This substrate is well recognized by human sirtuins 1–6 and represents the best sirtuin 2 substrate described so far with a kcat/KM-value of 176 000 M−1s−1. These extraordinary substrate properties allow the first determination of Ki-values for the specific Sirt2 inhibitory peptide S2iL5 (600 nM) and for the quasi-universal sirtuin inhibitor peptide thioxo myristoyl TNFα (80 nM). PMID:26940860

  8. A continuous sirtuin activity assay without any coupling to enzymatic or chemical reactions.

    PubMed

    Schuster, Sabine; Roessler, Claudia; Meleshin, Marat; Zimmermann, Philipp; Simic, Zeljko; Kambach, Christian; Schiene-Fischer, Cordelia; Steegborn, Clemens; Hottiger, Michael O; Schutkowski, Mike

    2016-01-01

    Sirtuins are NAD(+) dependent lysine deacylases involved in many regulatory processes such as control of metabolic pathways, DNA repair and stress response. Modulators of sirtuin activity are required as tools for uncovering the biological function of these enzymes and as potential therapeutic agents. Systematic discovery of such modulators is hampered by the lack of direct and continuous activity assays. The present study describes a novel continuous assay based on the increase of a fluorescence signal subsequent to sirtuin mediated removal of a fluorescent acyl chain from a modified TNFα-derived peptide. This substrate is well recognized by human sirtuins 1-6 and represents the best sirtuin 2 substrate described so far with a kcat/KM-value of 176 000 M(-1)s(-1). These extraordinary substrate properties allow the first determination of Ki-values for the specific Sirt2 inhibitory peptide S2iL5 (600 nM) and for the quasi-universal sirtuin inhibitor peptide thioxo myristoyl TNFα (80 nM). PMID:26940860

  9. Chemical reactions confined within carbon nanotubes.

    PubMed

    Miners, Scott A; Rance, Graham A; Khlobystov, Andrei N

    2016-08-22

    In this critical review, we survey the wide range of chemical reactions that have been confined within carbon nanotubes, particularly emphasising how the pairwise interactions between the catalysts, reactants, transition states and products of a particular molecular transformation with the host nanotube can be used to control the yields and distributions of products of chemical reactions. We demonstrate that nanoscale confinement within carbon nanotubes enables the control of catalyst activity, morphology and stability, influences the local concentration of reactants and products thus affecting equilibria, rates and selectivity, pre-arranges the reactants for desired reactions and alters the relative stability of isomeric products. We critically evaluate the relative advantages and disadvantages of the confinement of chemical reactions inside carbon nanotubes from a chemical perspective and describe how further developments in the controlled synthesis of carbon nanotubes and the incorporation of multifunctionality are essential for the development of this ever-expanding field, ultimately leading to the effective control of the pathways of chemical reactions through the rational design of multi-functional carbon nanoreactors. PMID:27301444

  10. (Laser enhanced chemical reaction studies)

    SciTech Connect

    Not Available

    1992-01-01

    Experimental studies of dynamic molecular processes are described with particular emphasis on the use of a powerful infrared diode laser probe technique developed in our laboratory. This technique allows us to determine the final states of CO{sub 2} (and other molecules) produced by collisions, photofragmentation, or chemical reactions with a spectral resolution of 0.0003 cm{sup {minus}1} and a time resolution of 10{sup {minus}7} sec. Such high spectral resolution provides a detailed picture of the vibrational and rotational states of molecules produced by these dynamic events. We have used this experimental method to probe collisions between hot hydrogen/deuterium atoms and CO{sub 2}, between O({sup 1}D) atoms and CO{sub 2}, to study the final states of DC1 molecules produced as a result of the reactions of hot Cl atoms, and to investigate the dynamics of the reaction between OH and CO molecules. Advances in our techniques over the past two years have allowed us to identify and study more than 200 final rotational states in ten different vibrational levels of CO{sub 2} encompassing all 3 normal modes, many overtones, and combination states of the molecule. We have extended the technique to probe a variety of new molecules such as OCS, N{sub 2}O, DCl, and CS{sub 2}. All of this work is aimed at providing experimental tests for polyatomic molecule potential energy surfaces, chemical transition states in complex systems, and theories of reaction dynamic in molecules with more than 3 atoms.

  11. Learning to predict chemical reactions.

    PubMed

    Kayala, Matthew A; Azencott, Chloé-Agathe; Chen, Jonathan H; Baldi, Pierre

    2011-09-26

    Being able to predict the course of arbitrary chemical reactions is essential to the theory and applications of organic chemistry. Approaches to the reaction prediction problems can be organized around three poles corresponding to: (1) physical laws; (2) rule-based expert systems; and (3) inductive machine learning. Previous approaches at these poles, respectively, are not high throughput, are not generalizable or scalable, and lack sufficient data and structure to be implemented. We propose a new approach to reaction prediction utilizing elements from each pole. Using a physically inspired conceptualization, we describe single mechanistic reactions as interactions between coarse approximations of molecular orbitals (MOs) and use topological and physicochemical attributes as descriptors. Using an existing rule-based system (Reaction Explorer), we derive a restricted chemistry data set consisting of 1630 full multistep reactions with 2358 distinct starting materials and intermediates, associated with 2989 productive mechanistic steps and 6.14 million unproductive mechanistic steps. And from machine learning, we pose identifying productive mechanistic steps as a statistical ranking, information retrieval problem: given a set of reactants and a description of conditions, learn a ranking model over potential filled-to-unfilled MO interactions such that the top-ranked mechanistic steps yield the major products. The machine learning implementation follows a two-stage approach, in which we first train atom level reactivity filters to prune 94.00% of nonproductive reactions with a 0.01% error rate. Then, we train an ensemble of ranking models on pairs of interacting MOs to learn a relative productivity function over mechanistic steps in a given system. Without the use of explicit transformation patterns, the ensemble perfectly ranks the productive mechanism at the top 89.05% of the time, rising to 99.86% of the time when the top four are considered. Furthermore, the system

  12. Learning to Predict Chemical Reactions

    PubMed Central

    Kayala, Matthew A.; Azencott, Chloé-Agathe; Chen, Jonathan H.

    2011-01-01

    Being able to predict the course of arbitrary chemical reactions is essential to the theory and applications of organic chemistry. Approaches to the reaction prediction problems can be organized around three poles corresponding to: (1) physical laws; (2) rule-based expert systems; and (3) inductive machine learning. Previous approaches at these poles respectively are not high-throughput, are not generalizable or scalable, or lack sufficient data and structure to be implemented. We propose a new approach to reaction prediction utilizing elements from each pole. Using a physically inspired conceptualization, we describe single mechanistic reactions as interactions between coarse approximations of molecular orbitals (MOs) and use topological and physicochemical attributes as descriptors. Using an existing rule-based system (Reaction Explorer), we derive a restricted chemistry dataset consisting of 1630 full multi-step reactions with 2358 distinct starting materials and intermediates, associated with 2989 productive mechanistic steps and 6.14 million unproductive mechanistic steps. And from machine learning, we pose identifying productive mechanistic steps as a statistical ranking, information retrieval, problem: given a set of reactants and a description of conditions, learn a ranking model over potential filled-to-unfilled MO interactions such that the top ranked mechanistic steps yield the major products. The machine learning implementation follows a two-stage approach, in which we first train atom level reactivity filters to prune 94.00% of non-productive reactions with a 0.01% error rate. Then, we train an ensemble of ranking models on pairs of interacting MOs to learn a relative productivity function over mechanistic steps in a given system. Without the use of explicit transformation patterns, the ensemble perfectly ranks the productive mechanism at the top 89.05% of the time, rising to 99.86% of the time when the top four are considered. Furthermore, the system

  13. Chemical reactions at aqueous interfaces

    NASA Astrophysics Data System (ADS)

    Vecitis, Chad David

    2009-12-01

    Interfaces or phase boundaries are a unique chemical environment relative to individual gas, liquid, or solid phases. Interfacial reaction mechanisms and kinetics are often at variance with homogeneous chemistry due to mass transfer, molecular orientation, and catalytic effects. Aqueous interfaces are a common subject of environmental science and engineering research, and three environmentally relevant aqueous interfaces are investigated in this thesis: 1) fluorochemical sonochemistry (bubble-water), 2) aqueous aerosol ozonation (gas-water droplet), and 3) electrolytic hydrogen production and simultaneous organic oxidation (water-metal/semiconductor). Direct interfacial analysis under environmentally relevant conditions is difficult, since most surface-specific techniques require relatively `extreme' conditions. Thus, the experimental investigations here focus on the development of chemical reactors and analytical techniques for the completion of time/concentration-dependent measurements of reactants and their products. Kinetic modeling, estimations, and/or correlations were used to extract information on interfacially relevant processes. We found that interfacial chemistry was determined to be the rate-limiting step to a subsequent series of relatively fast homogeneous reactions, for example: 1) Pyrolytic cleavage of the ionic headgroup of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) adsorbed to cavitating bubble-water interfaces during sonolysis was the rate-determining step in transformation to their inorganic constituents carbon monoxide, carbon dioxide, and fluoride; 2) ozone oxidation of aqueous iodide to hypoiodous acid at the aerosol-gas interface is the rate-determining step in the oxidation of bromide and chloride to dihalogens; 3) Electrolytic oxidation of anodic titanol surface groups is rate-limiting for the overall oxidation of organics by the dichloride radical. We also found chemistry unique to the interface, for example: 1

  14. Reaction efficiency effects on binary chemical reactions

    NASA Astrophysics Data System (ADS)

    Lazaridis, Filippos; Savara, Aditya; Argyrakis, Panos

    2014-09-01

    We study the effect of the variation of reaction efficiency in binary reactions. We use the well-known A + B → 0 model, which has been extensively studied in the past. We perform simulations on this model where we vary the efficiency of reaction, i.e., when two particles meet they do not instantly react, as has been assumed in previous studies, but they react with a probability γ, where γ is in the range 0 < γ < 1. Our results show that at small γ values the system is reaction limited, but as γ increases it crosses over to a diffusion limited behavior. At early times, for small γ values, the particle density falls slower than for larger γ values. This fall-off goes over a crossover point, around the value of γ = 0.50 for high initial densities. Under a variety of conditions simulated, we find that the crossover point was dependent on the initial concentration but not on the lattice size. For intermediate and long times simulations, all γ values (in the depleted reciprocal density versus time plot) converge to the same behavior. These theoretical results are useful in models of epidemic reactions and epidemic spreading, where a contagion from one neighbor to the next is not always successful but proceeds with a certain probability, an analogous effect with the reaction probability examined in the current work.

  15. Chemical reactions in endoreversible thermodynamics

    NASA Astrophysics Data System (ADS)

    Wagner, Katharina; Hoffmann, Karl Heinz

    2016-01-01

    Endoreversible thermodynamics is a theory for the (approximate) description of thermodynamic non-equilibrium systems, which allows us to capture the ever present irreversibilities of real processes. For instance in heat engines the dissipation due to finite heat transport capabilities, as well as the resulting limitations in the energy fluxes, can be incorporated into the theory. It has thus been very successful in closing the gap between observed and theoretically predicted efficiencies. Here an extension of the theory is provided, with which chemical reactions can be included in the formalism. This opens up a wide field of applications for endoreversible modeling and the investigation of dissipative processes, for instance in fuel cells or batteries.

  16. Chemical computing with reaction-diffusion processes.

    PubMed

    Gorecki, J; Gizynski, K; Guzowski, J; Gorecka, J N; Garstecki, P; Gruenert, G; Dittrich, P

    2015-07-28

    Chemical reactions are responsible for information processing in living organisms. It is believed that the basic features of biological computing activity are reflected by a reaction-diffusion medium. We illustrate the ideas of chemical information processing considering the Belousov-Zhabotinsky (BZ) reaction and its photosensitive variant. The computational universality of information processing is demonstrated. For different methods of information coding constructions of the simplest signal processing devices are described. The function performed by a particular device is determined by the geometrical structure of oscillatory (or of excitable) and non-excitable regions of the medium. In a living organism, the brain is created as a self-grown structure of interacting nonlinear elements and reaches its functionality as the result of learning. We discuss whether such a strategy can be adopted for generation of chemical information processing devices. Recent studies have shown that lipid-covered droplets containing solution of reagents of BZ reaction can be transported by a flowing oil. Therefore, structures of droplets can be spontaneously formed at specific non-equilibrium conditions, for example forced by flows in a microfluidic reactor. We describe how to introduce information to a droplet structure, track the information flow inside it and optimize medium evolution to achieve the maximum reliability. Applications of droplet structures for classification tasks are discussed. PMID:26078345

  17. Analytic study of the chain dark decomposition reaction of iodides - atomic iodine donors - in the active medium of a pulsed chemical oxygen-iodine laser: 2. Limiting parameters of the branching chain dark decomposition reaction of iodides

    SciTech Connect

    Andreeva, Tamara L; Kuznetsova, S V; Maslov, Aleksandr I; Sorokin, Vadim N

    2009-08-31

    The final stages in the development of a branching chain decomposition reaction of iodide in the active medium of a pulsed chemical oxygen-iodine laser (COIL) are analysed. Approximate expressions are derived to calculate the limiting parameters of the chain reaction: the final degree of iodide decomposition, the maximum concentration of excited iodine atoms, the time of its achievement, and concentrations of singlet oxygen and iodide at that moment. The limiting parameters, calculated by using these expressions for a typical composition of the active medium of a pulsed COIL, well coincide with the results of numerical calculations. (active media)

  18. 2005 Chemical Reactions at Surfaces

    SciTech Connect

    Cynthia M. Friend

    2006-03-14

    The Gordon Research Conference (GRC) on 2005 Chemical Reactions at Surfaces was held at Ventura Beach Marriott, Ventura California from February 13, 2005 through February 18, 2005. The Conference was well-attended with 124 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. Attached is a copy of the formal schedule and speaker program and the poster program. In addition to these formal interactions, 'free time' was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field.

  19. Dynamic Reaction Figures: An Integrative Vehicle for Understanding Chemical Reactions

    ERIC Educational Resources Information Center

    Schultz, Emeric

    2008-01-01

    A highly flexible learning tool, referred to as a dynamic reaction figure, is described. Application of these figures can (i) yield the correct chemical equation by simply following a set of menu driven directions; (ii) present the underlying "mechanism" in chemical reactions; and (iii) help to solve quantitative problems in a number of different…

  20. Suppression of Ostwald Ripening by Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Zwicker, David; Hyman, Anthony A.; Jülicher, Frank

    2015-03-01

    Emulsions consisting of droplets immersed in a fluid are typically unstable and coarsen over time. One important coarsening process is Ostwald ripening, which is driven by the surface tension of the droplets. Ostwald ripening must thus be suppressed to stabilize emulsions, e.g. to control the properties of pharmaceuticals, food, or cosmetics. Suppression of Ostwald ripening is also important in biological cells, which contain stable liquid-like compartments, e.g. germ granules, Cajal-bodies, and centrosomes. Such systems are often driven away from equilibrium by chemical reactions and can thus be called active emulsions. Here, we show that non-equilibrium chemical reactions can suppress Ostwald Ripening, leading to stable, monodisperse emulsions. We derive analytical approximations of the typical droplet size, droplet count, and time scale of the dynamics from a coarse-grained description of the droplet dynamics. We also compare these results to numerical simulations of the continuous concentration fields. Generally, we thus show how chemical reactions can be used to stabilize emulsions and to control their properties in technology and nature.

  1. Microfabricated electrochemiluminescence cell for chemical reaction detection

    DOEpatents

    Northrup, M. Allen; Hsueh, Yun-Tai; Smith, Rosemary L.

    2003-01-01

    A detector cell for a silicon-based or non-silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The detector cell is an electrochemiluminescence cell constructed of layers of silicon with a cover layer of glass, with spaced electrodes located intermediate various layers forming the cell. The cell includes a cavity formed therein and fluid inlets for directing reaction fluid therein. The reaction chamber and detector cell may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The ECL cell may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  2. Chemical reactions in low-g

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.; Facemire, B. R.

    1978-01-01

    The Apollo-Soyuz flight experiment, 'Chemical Foams' demonstrated that foams and air/liquid dispersions are much more stable in low-gravity than on the ground. It thus should be possible to conduct unique chemical reactions in space foams. The low-g results and subsequent ground work on the formaldehyde clock reaction indicate that the reaction is strongly influenced by (1) dissociated and undissociated solution species being adsorbed at solid/liquid and gas/liquid surfaces and (2) chemical reaction rates apparently being affected by long-range forces determined by the liquid mass and the extent and nature of all surface interfaces.

  3. 'GREENER' CHEMICAL SYNTHESES USING ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    Microwave (MW) irradiation in conjunction with water as reaction media has proven to be a greener chemical approach for expeditious N-alkylation reactions of amines and hydrazines wherein the reactions under mildly basic conditions afford tertiary amines and double N-alkylation t...

  4. Chemical potential and reaction electronic flux in symmetry controlled reactions.

    PubMed

    Vogt-Geisse, Stefan; Toro-Labbé, Alejandro

    2016-07-15

    In symmetry controlled reactions, orbital degeneracies among orbitals of different symmetries can occur along a reaction coordinate. In such case Koopmans' theorem and the finite difference approximation provide a chemical potential profile with nondifferentiable points. This results in an ill-defined reaction electronic flux (REF) profile, since it is defined as the derivative of the chemical potential with respect to the reaction coordinate. To overcome this deficiency, we propose a new way for the calculation of the chemical potential based on a many orbital approach, suitable for reactions in which symmetry is preserved. This new approach gives rise to a new descriptor: symmetry adapted chemical potential (SA-CP), which is the chemical potential corresponding to a given irreducible representation of a symmetry group. A corresponding symmetry adapted reaction electronic flux (SA-REF) is also obtained. Using this approach smooth chemical potential profiles and well defined REFs are achieved. An application of SA-CP and SA-REF is presented by studying the Cs enol-keto tautomerization of thioformic acid. Two SA-REFs are obtained, JA'(ξ) and JA'' (ξ). It is found that the tautomerization proceeds via an in-plane delocalized 3-center 4-electron O-H-S hypervalent bond which is predicted to exist only in the transition state (TS) region. © 2016 Wiley Periodicals, Inc. PMID:27237470

  5. Microfabricated sleeve devices for chemical reactions

    DOEpatents

    Northrup, M. Allen

    2003-01-01

    A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and non-silicon based materials to provide the thermal properties desired. For example, the chamber may combine a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  6. Modeling of turbulent chemical reaction

    NASA Technical Reports Server (NTRS)

    Chen, J.-Y.

    1995-01-01

    Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.

  7. Chemical Reactions at Surfaces. Final Progress Report

    SciTech Connect

    2003-02-21

    The Gordon Research Conference (GRC) on Chemical Reactions at Surfaces was held at Holiday Inn, Ventura, California, 2/16-21/03. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  8. Kinetic studies of elementary chemical reactions

    SciTech Connect

    Durant, J.L. Jr.

    1993-12-01

    This program concerning kinetic studies of elementary chemical reactions is presently focussed on understanding reactions of NH{sub x} species. To reach this goal, the author is pursuing experimental studies of reaction rate coefficients and product branching fractions as well as using electronic structure calculations to calculate transition state properties and reaction rate calculations to relate these properties to predicted kinetic behavior. The synergy existing between the experimental and theoretical studies allow one to gain a deeper insight into more complex elementary reactions.

  9. Chemical Principles Revisited: Annotating Reaction Equations.

    ERIC Educational Resources Information Center

    Tykodi, R. J.

    1987-01-01

    Urges chemistry teachers to have students annotate the chemical reactions in aqueous-solutions that they see in their textbooks and witness in the laboratory. Suggests this will help students recognize the reaction type more readily. Examples are given for gas formation, precipitate formation, redox interaction, acid-base interaction, and…

  10. Entropy Generation in a Chemical Reaction

    ERIC Educational Resources Information Center

    Miranda, E. N.

    2010-01-01

    Entropy generation in a chemical reaction is analysed without using the general formalism of non-equilibrium thermodynamics at a level adequate for advanced undergraduates. In a first approach to the problem, the phenomenological kinetic equation of an elementary first-order reaction is used to show that entropy production is always positive. A…

  11. Understanding Chemical Reaction Kinetics and Equilibrium with Interlocking Building Blocks

    ERIC Educational Resources Information Center

    Cloonan, Carrie A.; Nichol, Carolyn A.; Hutchinson, John S.

    2011-01-01

    Chemical reaction kinetics and equilibrium are essential core concepts of chemistry but are challenging topics for many students, both at the high school and undergraduate university level. Visualization at the molecular level is valuable to aid understanding of reaction kinetics and equilibrium. This activity provides a discovery-based method to…

  12. Thermodynamic performance for a chemical reactions model

    NASA Astrophysics Data System (ADS)

    Gonzalez-Narvaez, R. E.; Sánchez-Salas, N.; Chimal-Eguía, J. C.

    2015-01-01

    This paper presents the analysis efficiency of a chemical reaction model of four states, such that their activated states can occur at any point (fixed but arbitrary) of the transition from one state to another. This mechanism operates under a single heat reservoir temperature, unlike the internal combustion engines where there are two thermal sources. Different efficiencies are compared to this model, which operate at different optimum engine regimes. Thus, some analytical methods are used to give an approximate expression, facilitating the comparison between them. Finally, the result is compared with that obtained by other authors considered a general model of an isothermal molecular machine. Taking into account the above, the results seems to follow a similar behaviour for all the optimized engines, which resemble that observed in the case of heat engine efficiencies.

  13. Chemical Reactions in Supercritical Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Wai, Chien M.; Hunt, Fred; Ji, Min; Chen, Xiaoyuan

    1998-12-01

    Utilizing supercritical fluids as environmentally benign solvents for chemical synthesis is one of the new approaches in the "greening" of chemistry. Carbon dioxide is the most widely used gas for supercritical fluid studies because of its moderate critical constants, nontoxic nature, and availability in pure form. One unique property of supercritical carbon dioxide (sc-CO2) is its high solubility for fluorinated compounds. Thus sc-CO2 can be used to replace Freons that are conventionally used as solvents for synthesis of perfluoro-polymers. Another property of sc-CO2 is its miscibility with gases such as H2. Heterogeneous reactions involving these gases may become homogeneous reactions in sc-CO2. Reactions in sc-CO2 may offer several advantages including controlling phase behavior and products, increasing speed of reactions, and obtaining specific reaction channels. This paper describes the following nine types of chemical reactions reported in the literature utilizing sc-CO2 as a solvent to illustrate the unique properties of the supercritical fluid reaction systems: (i) hydrogenation and hydroformylation, (ii) synthesis of organometallic compounds, (iii) metal chelation and extraction, (iv) preparation of inorganic nanoparticles, (v) stereo-selectivity of lipase-catalyzed reactions, (vi) asymmetric catalytic hydrogenation, (vii) polymerization, (viii) Diels-Alder reaction, and (ix) free radical reactions.

  14. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  15. Anatomy of an Elementary Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Alexander, Andrew J.; Zare, Richard N.

    1998-09-01

    The alchemists of old sought the knowledge to transform one material to another-for example, base metals into gold-as a path to the elixir of life. As chemists have concerned themselves with the transformation from compound to compound, so they have become involved in trying to uncover the structures of molecules and the pathways that reactions follow. Classically, the study of reaction mechanisms in chemistry encompasses reaction kinetics, the study of velocities or rates of reactions, and reaction dynamics, the study of the nanoscopic motion and rearrangement of atoms during a reactive event. An essential aim of this article is to bring the reader to a favorable vantage point with a brief introduction to reactive dynamics, and from there to describe some examples of recent strategies that have been employed to promote a fundamental understanding of the anatomy of elementary chemical reactions. In the final section we ponder future directions for this rapidly evolving field of research.

  16. Parameter Sensitivity Study of the Unreacted-Core Shrinking Model: A Computer Activity for Chemical Reaction Engineering Courses

    ERIC Educational Resources Information Center

    Tudela, Ignacio; Bonete, Pedro; Fullana, Andres; Conesa, Juan Antonio

    2011-01-01

    The unreacted-core shrinking (UCS) model is employed to characterize fluid-particle reactions that are important in industry and research. An approach to understand the UCS model by numerical methods is presented, which helps the visualization of the influence of the variables that control the overall heterogeneous process. Use of this approach in…

  17. Kinetics of Hydrogen Radical Reactions with Toluene Including Chemical Activation Theory Employing System-Specific Quantum RRK Theory Calibrated by Variational Transition State Theory.

    PubMed

    Bao, Junwei Lucas; Zheng, Jingjing; Truhlar, Donald G

    2016-03-01

    Pressure-dependent reactions are ubiquitous in combustion and atmospheric chemistry. We employ a new calibration procedure for quantum Rice-Ramsperger-Kassel (QRRK) unimolecular rate theory within a chemical activation mechanism to calculate the pressure-falloff effect of a radical association with an aromatic ring. The new theoretical framework is applied to the reaction of H with toluene, which is a prototypical reaction in the combustion chemistry of aromatic hydrocarbons present in most fuels. Both the hydrogen abstraction reactions and the hydrogen addition reactions are calculated. Our system-specific (SS) QRRK approach is adjusted with SS parameters to agree with multistructural canonical variational transition state theory with multidimensional tunneling (MS-CVT/SCT) at the high-pressure limit. The new method avoids the need for the usual empirical estimations of the QRRK parameters, and it eliminates the need for variational transition state theory calculations as a function of energy, although in this first application we do validate the falloff curves by comparing SS-QRRK results without tunneling to multistructural microcanonical variational transition state theory (MS-μVT) rate constants without tunneling. At low temperatures, the two approaches agree well with each other, but at high temperatures, SS-QRRK tends to overestimate falloff slightly. We also show that the variational effect is important in computing the energy-resolved rate constants. Multiple-structure anharmonicity, torsional-potential anharmonicity, and high-frequency-mode vibrational anharmonicity are all included in the rate computations, and torsional anharmonicity effects on the density of states are investigated. Branching fractions, which are both temperature- and pressure-dependent (and for which only limited data is available from experiment), are predicted as a function of pressure. PMID:26841076

  18. Memory Switches in Chemical Reaction Space

    PubMed Central

    Ramakrishnan, Naren; Bhalla, Upinder S.

    2008-01-01

    Just as complex electronic circuits are built from simple Boolean gates, diverse biological functions, including signal transduction, differentiation, and stress response, frequently use biochemical switches as a functional module. A relatively small number of such switches have been described in the literature, and these exhibit considerable diversity in chemical topology. We asked if biochemical switches are indeed rare and if there are common chemical motifs and family relationships among such switches. We performed a systematic exploration of chemical reaction space by generating all possible stoichiometrically valid chemical configurations up to 3 molecules and 6 reactions and up to 4 molecules and 3 reactions. We used Monte Carlo sampling of parameter space for each such configuration to generate specific models and checked each model for switching properties. We found nearly 4,500 reaction topologies, or about 10% of our tested configurations, that demonstrate switching behavior. Commonly accepted topological features such as feedback were poor predictors of bistability, and we identified new reaction motifs that were likely to be found in switches. Furthermore, the discovered switches were related in that most of the larger configurations were derived from smaller ones by addition of one or more reactions. To explore even larger configurations, we developed two tools: the “bistabilizer,” which converts almost-bistable systems into bistable ones, and frequent motif mining, which helps rank untested configurations. Both of these tools increased the coverage of our library of bistable systems. Thus, our systematic exploration of chemical reaction space has produced a valuable resource for investigating the key signaling motif of bistability. PMID:18636099

  19. Aerosol simulation including chemical and nuclear reactions

    SciTech Connect

    Marwil, E.S.; Lemmon, E.C.

    1985-01-01

    The numerical simulation of aerosol transport, including the effects of chemical and nuclear reactions presents a challenging dynamic accounting problem. Particles of different sizes agglomerate and settle out due to various mechanisms, such as diffusion, diffusiophoresis, thermophoresis, gravitational settling, turbulent acceleration, and centrifugal acceleration. Particles also change size, due to the condensation and evaporation of materials on the particle. Heterogeneous chemical reactions occur at the interface between a particle and the suspending medium, or a surface and the gas in the aerosol. Homogeneous chemical reactions occur within the aersol suspending medium, within a particle, and on a surface. These reactions may include a phase change. Nuclear reactions occur in all locations. These spontaneous transmutations from one element form to another occur at greatly varying rates and may result in phase or chemical changes which complicate the accounting process. This paper presents an approach for inclusion of these effects on the transport of aerosols. The accounting system is very complex and results in a large set of stiff ordinary differential equations (ODEs). The techniques for numerical solution of these ODEs require special attention to achieve their solution in an efficient and affordable manner. 4 refs.

  20. Theoretical study of chemical reactions in solution

    SciTech Connect

    Yokogawa, D.

    2015-12-31

    Quantum chemical calculations in solution are becoming more and more important in chemistry. Reference interaction site model self-consistent field (RISM-SCF) is one of the powerful approaches to perform quantum chemical calculations in solution. In this work, we developed a new generation of RISM-SCF, where a robust fitting method was newly introduced. We applied the new method to tautomerization reaction of cytosine in aqueous phase. Our calculation reproduced experimentally obtained relative stabilities and relative free energies correctly.

  1. Chemical Demonstrations with Consumer Chemicals: The Black and White Reaction

    NASA Astrophysics Data System (ADS)

    Wright, Stephen W.

    2002-01-01

    A color-change reaction is described in which two colorless solutions are combined to afford a black mixture. Two more colorless solutions are combined to afford a white mixture. The black and white mixtures are then combined to afford a clear, colorless solution. The reaction uses chemicals that are readily available on the retail market: vitamin C, tincture of iodine, vinegar, ammonia, bleach, Epsom salt, and laundry starch.

  2. Computer Animation of a Chemical Reaction.

    ERIC Educational Resources Information Center

    Eaker, Charles W.; Jacobs, Edwin L.

    1982-01-01

    Taking a prototype chemical reaction (molecular hydrogen plus hydrogen atom), constructs an accurate semiempirical, generalized diatomics-in-molecules potential energy surface, calculates motions of these atoms on this surface using REACTS trajectory program, and presents results as moving picture on a microcomputer graphics system. Provides…

  3. Classification of Chemical Reactions: Stages of Expertise

    ERIC Educational Resources Information Center

    Stains, Marilyne; Talanquer, Vicente

    2008-01-01

    In this study we explore the strategies that undergraduate and graduate chemistry students use when engaged in classification tasks involving symbolic and microscopic (particulate) representations of different chemical reactions. We were specifically interested in characterizing the basic features to which students pay attention when classifying…

  4. Chemical reactions in reverse micelle systems

    DOEpatents

    Matson, Dean W.; Fulton, John L.; Smith, Richard D.; Consani, Keith A.

    1993-08-24

    This invention is directed to conducting chemical reactions in reverse micelle or microemulsion systems comprising a substantially discontinuous phase including a polar fluid, typically an aqueous fluid, and a microemulsion promoter, typically a surfactant, for facilitating the formation of reverse micelles in the system. The system further includes a substantially continuous phase including a non-polar or low-polarity fluid material which is a gas under standard temperature and pressure and has a critical density, and which is generally a water-insoluble fluid in a near critical or supercritical state. Thus, the microemulsion system is maintained at a pressure and temperature such that the density of the non-polar or low-polarity fluid exceeds the critical density thereof. The method of carrying out chemical reactions generally comprises forming a first reverse micelle system including an aqueous fluid including reverse micelles in a water-insoluble fluid in the supercritical state. Then, a first reactant is introduced into the first reverse micelle system, and a chemical reaction is carried out with the first reactant to form a reaction product. In general, the first reactant can be incorporated into, and the product formed in, the reverse micelles. A second reactant can also be incorporated in the first reverse micelle system which is capable of reacting with the first reactant to form a product.

  5. Theoretical studies of chemical reaction dynamics

    SciTech Connect

    Schatz, G.C.

    1993-12-01

    This collaborative program with the Theoretical Chemistry Group at Argonne involves theoretical studies of gas phase chemical reactions and related energy transfer and photodissociation processes. Many of the reactions studied are of direct relevance to combustion; others are selected they provide important examples of special dynamical processes, or are of relevance to experimental measurements. Both classical trajectory and quantum reactive scattering methods are used for these studies, and the types of information determined range from thermal rate constants to state to state differential cross sections.

  6. Minimum Energy Pathways for Chemical Reactions

    NASA Technical Reports Server (NTRS)

    Walch, S. P.; Langhoff, S. R. (Technical Monitor)

    1995-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives useful results for a number of chemically important systems. The talk will focus on a number of applications to reactions leading to NOx and soot formation in hydrocarbon combustion.

  7. Correlating the chemical composition and size of various metal oxide substrates with the catalytic activity and stability of as-deposited Pt nanoparticles for the methanol oxidation reaction

    SciTech Connect

    Megan E. Scofield; Wong, Stanislaus S.; Koenigsmann, Christopher; Bobb-Semple, Dara; Tao, Jing; Tong, Xiao; Wang, Lei; Lewis, Crystal S.; Vuklmirovic, Miomir; Zhu, Yimei; Adzic, Radoslav R.

    2015-12-09

    The performance of electrode materials in conventional direct alcohol fuel cells (DAFC) is constrained by (i) the low activity of the catalyst materials relative to their overall cost, (ii) the poisoning of the active sites due to the presence of partially oxidized carbon species (such as but not limited to CO, formate, and acetate) produced during small molecule oxidation, and (iii) the lack of catalytic stability and durability on the underlying commercial carbon support. Therefore, as a viable alternative, we have synthesized various metal oxide and perovskite materials of different sizes and chemical compositions as supports for Pt nanoparticles (NPs). Our results including unique mechanistic studies demonstrate that the SrRuO3 substrate with immobilized Pt NPs at its surface evinces the best methanol oxidation performance as compared with all of the other substrate materials tested herein, including commercial carbon itself. In addition, data from electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of electron transfer from bound Pt NPs to surface Ru species within the SrRuO3 substrate itself, thereby suggesting that favorable metal support interactions are responsible for the increased methanol oxidation reaction (MOR) activity of Pt species with respect to the underlying SrRuO3 composite catalyst material.

  8. Correlating the chemical composition and size of various metal oxide substrates with the catalytic activity and stability of as-deposited Pt nanoparticles for the methanol oxidation reaction

    DOE PAGESBeta

    Megan E. Scofield; Wong, Stanislaus S.; Koenigsmann, Christopher; Bobb-Semple, Dara; Tao, Jing; Tong, Xiao; Wang, Lei; Lewis, Crystal S.; Vuklmirovic, Miomir; Zhu, Yimei; et al

    2015-12-09

    The performance of electrode materials in conventional direct alcohol fuel cells (DAFC) is constrained by (i) the low activity of the catalyst materials relative to their overall cost, (ii) the poisoning of the active sites due to the presence of partially oxidized carbon species (such as but not limited to CO, formate, and acetate) produced during small molecule oxidation, and (iii) the lack of catalytic stability and durability on the underlying commercial carbon support. Therefore, as a viable alternative, we have synthesized various metal oxide and perovskite materials of different sizes and chemical compositions as supports for Pt nanoparticles (NPs).more » Our results including unique mechanistic studies demonstrate that the SrRuO3 substrate with immobilized Pt NPs at its surface evinces the best methanol oxidation performance as compared with all of the other substrate materials tested herein, including commercial carbon itself. In addition, data from electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of electron transfer from bound Pt NPs to surface Ru species within the SrRuO3 substrate itself, thereby suggesting that favorable metal support interactions are responsible for the increased methanol oxidation reaction (MOR) activity of Pt species with respect to the underlying SrRuO3 composite catalyst material.« less

  9. Chemical Reactions Directed Peptide Self-Assembly

    PubMed Central

    Rasale, Dnyaneshwar B.; Das, Apurba K.

    2015-01-01

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly. PMID:25984603

  10. Tuning Bimolecular Chemical Reactions by Electric Fields.

    PubMed

    Tscherbul, Timur V; Krems, Roman V

    2015-07-10

    We develop a theoretical method for solving the quantum mechanical reactive scattering problem in the presence of external fields based on a hyperspherical coordinate description of the reaction complex combined with the total angular momentum representation for collisions in external fields. The method allows us to obtain converged results for the chemical reaction LiF+H→Li+HF in an electric field. Our calculations demonstrate that, by inducing couplings between states of different total angular momenta, electric fields with magnitudes <150  kV/cm give rise to resonant scattering and a significant modification of the total reaction probabilities, product state distributions, and the branching ratios for reactive versus inelastic scattering. PMID:26207466

  11. Tuning Bimolecular Chemical Reactions by Electric Fields

    NASA Astrophysics Data System (ADS)

    Tscherbul, Timur V.; Krems, Roman V.

    2015-07-01

    We develop a theoretical method for solving the quantum mechanical reactive scattering problem in the presence of external fields based on a hyperspherical coordinate description of the reaction complex combined with the total angular momentum representation for collisions in external fields. The method allows us to obtain converged results for the chemical reaction LiF +H →Li +HF in an electric field. Our calculations demonstrate that, by inducing couplings between states of different total angular momenta, electric fields with magnitudes <150 kV /cm give rise to resonant scattering and a significant modification of the total reaction probabilities, product state distributions, and the branching ratios for reactive versus inelastic scattering.

  12. WATER AS A REACTION MEDIUM FOR CLEAN CHEMICAL PROCESSES.

    EPA Science Inventory

    Green chemistry is a rapid developing new field that provides us a pro-active avenue for the sustainable development of future science and technologies. When designed properly, clean chemical technology can be developed in water as a reaction media. The technologies generated f...

  13. Photochemical reactions of anthropogenic chemicals in seawater

    SciTech Connect

    Toole, A.P.; Crosby, D.G. )

    1988-09-01

    Sunlight-driven, photochemical reactions can be a major degradative force for anthropogenic organic compounds in the aquatic environment. Chlorinated phenols, various classes of pesticides, and polycyclic aromatic hydrocarbons are among some examples of the compounds shown to be degraded by sunlight. Most environmental photochemistry has been studied in fresh water, despite the fact that the oceans cover more than 70% of the earths surface and receive large inputs of anthropogenic chemicals via atmospheric transport, runoff, and coastal outfalls. This fact, along with increasing pressure for ocean waste disposal as land options dwindle, present a need for information on the photochemical reactions of anthropogenic organic chemicals in seawater. Several probable seawater pollutants were selected as probes for studying photochemical reactions including, 2-nitrotoluene, 4-nitrotoluene, styrene, 4,5-dichloroguaiacol, 4,5,6-trichloroguaiacol and tetrachloroguaiacol. Dilute solutions of each probe were prepared in buffered (pH 8), distilled water (DW), synthetic seawater (SSW) and natural seawater (NSW), then irradiated in a temperature-controlled photoreactor fitted with a General Electric F40BL fluorescent lamp to simulate sunlight. Samples were taken at regular intervals, concentrated using solid phase extraction techniques and analyzed by gas chromatography. Photolysis rates were determined assuming first, or pseudo-first, order kinetics. Photoproducts were identified by gas chromatography;mass spectrometry and confirmed by comparison to standards when available. By determining rates in DW containing selected components of SSW, at SSW concentrations, the inorganic compounds mediating the photochemical reactions in seawater could be determined.

  14. Role of chemical composition in the enhanced catalytic activity of Pt-based alloyed ultrathin nanowires for the hydrogen oxidation reaction under alkaline conditions

    DOE PAGESBeta

    Megan E. Scofield; Wong, Stanislaus S.; Zhou, Yuchen; Yue, Shiyu; Wang, Lei; Su, Dong; Tong, Xiao; Vukmirovic, Miomir B.; Adzic, Radoslav R.

    2016-05-19

    With the increased interest in the development of hydrogen fuel cells as a plausible alternative to internal combustion engines, recent work has focused on creating alkaline fuel cells (AFC), which employ an alkaline environment. Working in alkaline as opposed to acidic media yields a number of tangible benefits, including (i) the ability to use cheaper and plentiful precious-metal-free catalysts, due to their increased stability, (ii) a reduction in the amount of degradation and corrosion of Pt-based catalysts, and (iii) a longer operational lifetime for the overall fuel cell configuration. However, in the absence of Pt, no catalyst has achieved activitiesmore » similar to those of Pt. Herein, we have synthesized a number of crystalline ultrathin PtM alloy nanowires (NWs) (M = Fe, Co, Ru, Cu, Au) in order to replace a portion of the costly Pt metal without compromising on activity while simultaneously adding in metals known to exhibit favorable synergistic ligand and strain effects with respect to the host lattice. In fact, our experiments confirm theoretical insights about a clear and correlative dependence between measured activity and chemical composition. We have conclusively demonstrated that our as-synthesized alloy NW catalysts yield improved hydrogen oxidation reaction (HOR) activities as compared with a commercial Pt standard as well as with our as-synthesized Pt NWs. The Pt7Ru3 NW system, in particular, quantitatively achieved an exchange current density of 0.493 mA/cm2, which is higher than the corresponding data for Pt NWs alone. In addition, the HOR activities follow the same expected trend as their calculated hydrogen binding energy (HBE) values, thereby confirming the critical importance and correlation of HBE with the observed activities.« less

  15. Stochastic flux analysis of chemical reaction networks

    PubMed Central

    2013-01-01

    Background Chemical reaction networks provide an abstraction scheme for a broad range of models in biology and ecology. The two common means for simulating these networks are the deterministic and the stochastic approaches. The traditional deterministic approach, based on differential equations, enjoys a rich set of analysis techniques, including a treatment of reaction fluxes. However, the discrete stochastic simulations, which provide advantages in some cases, lack a quantitative treatment of network fluxes. Results We describe a method for flux analysis of chemical reaction networks, where flux is given by the flow of species between reactions in stochastic simulations of the network. Extending discrete event simulation algorithms, our method constructs several data structures, and thereby reveals a variety of statistics about resource creation and consumption during the simulation. We use these structures to quantify the causal interdependence and relative importance of the reactions at arbitrary time intervals with respect to the network fluxes. This allows us to construct reduced networks that have the same flux-behavior, and compare these networks, also with respect to their time series. We demonstrate our approach on an extended example based on a published ODE model of the same network, that is, Rho GTP-binding proteins, and on other models from biology and ecology. Conclusions We provide a fully stochastic treatment of flux analysis. As in deterministic analysis, our method delivers the network behavior in terms of species transformations. Moreover, our stochastic analysis can be applied, not only at steady state, but at arbitrary time intervals, and used to identify the flow of specific species between specific reactions. Our cases study of Rho GTP-binding proteins reveals the role played by the cyclic reverse fluxes in tuning the behavior of this network. PMID:24314153

  16. Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms

    NASA Astrophysics Data System (ADS)

    Gao, Connie W.; Allen, Joshua W.; Green, William H.; West, Richard H.

    2016-06-01

    Reaction Mechanism Generator (RMG) constructs kinetic models composed of elementary chemical reaction steps using a general understanding of how molecules react. Species thermochemistry is estimated through Benson group additivity and reaction rate coefficients are estimated using a database of known rate rules and reaction templates. At its core, RMG relies on two fundamental data structures: graphs and trees. Graphs are used to represent chemical structures, and trees are used to represent thermodynamic and kinetic data. Models are generated using a rate-based algorithm which excludes species from the model based on reaction fluxes. RMG can generate reaction mechanisms for species involving carbon, hydrogen, oxygen, sulfur, and nitrogen. It also has capabilities for estimating transport and solvation properties, and it automatically computes pressure-dependent rate coefficients and identifies chemically-activated reaction paths. RMG is an object-oriented program written in Python, which provides a stable, robust programming architecture for developing an extensible and modular code base with a large suite of unit tests. Computationally intensive functions are cythonized for speed improvements.

  17. Scattering Resonances in the Simplest Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Fernandez-Alonso, Felix; Zare, Richard N.

    2002-10-01

    Recent studies of state-resolved angular distributions show the participation of reactive scattering resonances in the simplest chemical reaction. This review is intended for those who wish to learn about the state-of-the-art in the study of the H + H2 reaction family that has made this breakthrough possible. This review is also intended for those who wish to gain insight into the nature of reactive scattering resonances. Following a tour across several fields of physics and chemistry where the concept of resonance has been crucial for the understanding of new phenomena, we offer an operational definition and taxonomy of reactive scattering resonances. We introduce simple intuitive models to illustrate each resonance type. We focus next on the last decade of H + H2 reaction dynamics. Emphasis is placed on the various experimental approaches that have been applied to the search for resonance behavior in the H + H2 reaction family. We conclude by sketching the road ahead in the study of H + H2 reactive scattering resonances.

  18. Quantum dynamics of fast chemical reactions

    SciTech Connect

    Light, J.C.

    1993-12-01

    The aims of this research are to explore, develop, and apply theoretical methods for the evaluation of the dynamics of gas phase collision processes, primarily chemical reactions. The primary theoretical tools developed for this work have been quantum scattering theory, both in time dependent and time independent forms. Over the past several years, the authors have developed and applied methods for the direct quantum evaluation of thermal rate constants, applying these to the evaluation of the hydrogen isotopic exchange reactions, applied wave packet propagation techniques to the dissociation of Rydberg H{sub 3}, incorporated optical potentials into the evaluation of thermal rate constants, evaluated the use of optical potentials for state-to-state reaction probability evaluations, and, most recently, have developed quantum approaches for electronically non-adiabatic reactions which may be applied to simplify calculations of reactive, but electronically adiabatic systems. Evaluation of the thermal rate constants and the dissociation of H{sub 3} were reported last year, and have now been published.

  19. [Laser enhanced chemical reaction studies]. [Progress report

    SciTech Connect

    Not Available

    1992-04-01

    Experimental studies of dynamic molecular processes are described with particular emphasis on the use of a powerful infrared diode laser probe technique developed in our laboratory. This technique allows us to determine the final states of CO{sub 2} (and other molecules) produced by collisions, photofragmentation, or chemical reactions with a spectral resolution of 0.0003 cm{sup {minus}1} and a time resolution of 10{sup {minus}7} sec. Such high spectral resolution provides a detailed picture of the vibrational and rotational states of molecules produced by these dynamic events. We have used this experimental method to probe collisions between hot hydrogen/deuterium atoms and CO{sub 2}, between O({sup 1}D) atoms and CO{sub 2}, to study the final states of DC1 molecules produced as a result of the reactions of hot Cl atoms, and to investigate the dynamics of the reaction between OH and CO molecules. Advances in our techniques over the past two years have allowed us to identify and study more than 200 final rotational states in ten different vibrational levels of CO{sub 2} encompassing all 3 normal modes, many overtones, and combination states of the molecule. We have extended the technique to probe a variety of new molecules such as OCS, N{sub 2}O, DCl, and CS{sub 2}. All of this work is aimed at providing experimental tests for polyatomic molecule potential energy surfaces, chemical transition states in complex systems, and theories of reaction dynamic in molecules with more than 3 atoms.

  20. Law of Localization in Chemical Reaction Networks

    NASA Astrophysics Data System (ADS)

    Okada, Takashi; Mochizuki, Atsushi

    2016-07-01

    In living cells, chemical reactions are connected by sharing their products and substrates, and form complex networks, e.g., metabolic pathways. Here we developed a theory to predict the sensitivity, i.e., the responses of concentrations and fluxes to perturbations of enzymes, from network structure alone. Nonzero response patterns turn out to exhibit two characteristic features, localization and hierarchy. We present a general theorem connecting sensitivity with network topology that explains these characteristic patterns. Our results imply that network topology is an origin of biological robustness. Finally, we suggest a strategy to determine real networks from experimental measurements.

  1. Chemical Reaction Dynamics in Nanoscle Environments

    SciTech Connect

    Evelyn M. Goldfield

    2006-09-26

    The major focus of the research in this program is the study of the behavior of molecular systems confined in nanoscale environments. The goal is to develop a theoretical framework for predicting how chemical reactions occur in nanoscale environments. To achieve this goal we have employed ab initio quantum chemistry, classical dynamics and quantum dynamics methods. Much of the research has focused on the behavior of molecules confined within single-walled carbon nanotubes (SWCNTs). We have also studied interactions of small molecules with the exterior surface of SWCNTs. Nonequilibrium molecular dynamics of interfaces of sliding surface interfaces have also been performed.

  2. Chemical Potentials and Activities: An Electrochemical Introduction.

    ERIC Educational Resources Information Center

    Wetzel, T. L.; And Others

    1986-01-01

    Describes a laboratory experiment which explores the effects of adding inert salts to electrolytic cells and demonstrates the difference between concentration and chemical activity. Examines chemical potentials as the driving force of reactions. Provides five examples of cell potential and concentration change. (JM)

  3. Chemical repair activity of free radical scavenger edaravone: reduction reactions with dGMP hydroxyl radical adducts and suppression of base lesions and AP sites on irradiated plasmid DNA

    PubMed Central

    Hata, Kuniki; Urushibara, Ayumi; Yamashita, Shinichi; Lin, Mingzhang; Muroya, Yusa; Shikazono, Naoya; Yokoya, Akinari; Fu, Haiying; Katsumura, Yosuke

    2015-01-01

    Reactions of edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) with deoxyguanosine monophosphate (dGMP) hydroxyl radical adducts were investigated by pulse radiolysis technique. Edaravone was found to reduce the dGMP hydroxyl radical adducts through electron transfer reactions. The rate constants of the reactions were greater than 4 × 108 dm3 mol−1 s−1 and similar to those of the reactions of ascorbic acid, which is a representative antioxidant. Yields of single-strand breaks, base lesions, and abasic sites produced in pUC18 plasmid DNA by gamma ray irradiation in the presence of low concentrations (10–1000 μmol dm−3) of edaravone were also quantified, and the chemical repair activity of edaravone was estimated by a method recently developed by the authors. By comparing suppression efficiencies to the induction of each DNA lesion, it was found that base lesions and abasic sites were suppressed by the chemical repair activity of edaravone, although the suppression of single-strand breaks was not very effective. This phenomenon was attributed to the chemical repair activity of edaravone toward base lesions and abasic sites. However, the chemical repair activity of edaravone for base lesions was lower than that of ascorbic acid. PMID:25212600

  4. Molecular Dynamics Simulations of Chemical Reactions for Use in Education

    ERIC Educational Resources Information Center

    Qian Xie; Tinker, Robert

    2006-01-01

    One of the simulation engines of an open-source program called the Molecular Workbench, which can simulate thermodynamics of chemical reactions, is described. This type of real-time, interactive simulation and visualization of chemical reactions at the atomic scale could help students understand the connections between chemical reaction equations…

  5. The role of chemical reactions in the Chernobyl accident

    SciTech Connect

    Grishanin, E. I.

    2010-12-15

    It is shown that chemical reactions played an essential role in the Chernobyl accident at all of its stages. It is important that the reactor before the explosion was at maximal xenon poisoning, and its reactivity, apparently, was not destroyed by the explosion. The reactivity release due to decay of Xe-235 on the second day after the explosion led to a reactor power of 80-110 MW. Owing to this power, the chemical reactions of reduction of uranium, plutonium, and other metals at a temperature of about 2000 Degree-Sign C occurred in the core. The yield of fission products thus sharply increased. Uranium and other metals flew down in the bottom water communications and rooms. After reduction of the uranium and its separation from the graphite, the chain reaction stopped, the temperature of the core decreased, and the activity yield stopped.

  6. Kinetics investigations of atmospheric chemical reactions

    SciTech Connect

    Hills, A.J.

    1987-01-01

    Two separate gas-phase kinetics investigations were performed using a low-pressure fast-flow system with mass spectrometer detection. The first part of this research was a study of the atmospheric reactivity of diatomic sulfur, S/sub 2/. Rates of the reactions of sulfur with O, O/sub 2/, O/sub 3/, N/sub 2/O, NO, and NO/sub 2/ were investigated at 409 K and low pressure (0.89-3.0 Torr) in a discharge-flow system with mass spectrometric detection. The second investigation involves a study of the synergistic coupling of atmospheric bromine and chlorine chemistry. Recent measurements of ozone in the stratosphere over Antarctica have shown that the springtime ozone column decreased by 40% from 1960 to 1985. Both dynamical and chemical theories have been advanced to explain the formation of the Antarctic ozone hole. Prominent among these theories is that a synergistic interaction between gas-phase BrO and ClO radicals may be responsible for springtime ozone loss. The overall rate constant for the reaction, BrO + ClO ..-->.. Br + OClO ..-->.. Br + Cl + O/sub 2/ ..-->.. BrCl + O/sub 2/, has been measured over the temperature range 241-408 K. The rate constant for the overall reaction equals (8.2 +/- 1.0) 10/sup -12/ cm/sup 3//molecule s, independent of temperature.

  7. Systematic Error Estimation for Chemical Reaction Energies.

    PubMed

    Simm, Gregor N; Reiher, Markus

    2016-06-14

    For a theoretical understanding of the reactivity of complex chemical systems, accurate relative energies between intermediates and transition states are required. Despite its popularity, density functional theory (DFT) often fails to provide sufficiently accurate data, especially for molecules containing transition metals. Due to the huge number of intermediates that need to be studied for all but the simplest chemical processes, DFT is, to date, the only method that is computationally feasible. Here, we present a Bayesian framework for DFT that allows for error estimation of calculated properties. Since the optimal choice of parameters in present-day density functionals is strongly system dependent, we advocate for a system-focused reparameterization. While, at first sight, this approach conflicts with the first-principles character of DFT that should make it, in principle, system independent, we deliberately introduce system dependence to be able to assign a stochastically meaningful error to the system-dependent parametrization, which makes it nonarbitrary. By reparameterizing a functional that was derived on a sound physical basis to a chemical system of interest, we obtain a functional that yields reliable confidence intervals for reaction energies. We demonstrate our approach on the example of catalytic nitrogen fixation. PMID:27159007

  8. Chemical attenuation reactions of selenium; Final report

    SciTech Connect

    Zachara, J.M.; Rai, D.; Moore, D.A.; Turner, G.D.; Felmy, A.R.

    1994-02-01

    This report summarizes research on the geochemical behavior of Se present in utility coal-combustion wastes. Laboratory experiments quantified select geochemical reactions that control the concentrations of selenite (SeO{sub 3}{sup 2{minus}}) and selenate (SeO{sub 4}{sup 2{minus}}) in soil solutions and groundwater and determined the magnitude and mechanisms of chemical attenuation of these species in soils and subsurface materials. Thermodynamic data, equilibrium constants, and modeling procedures were developed that to utilities to make improved predictions of the mobility of Se species from ponded and dry landfill sites. An adsorption-constant database for selenite and selenate on common soil minerals was developed. The database, which can be used to estimate the extent of Se attenuation by adsorption in utility soils, was used to determine the specific mineral phases control the adsorption of selenite (Fe oxides) and selenate (Al oxides). Solubility studies were performed with two Se solid phases that may form in the environment [BaSeO{sub 4}(c) and Fe{sub 2}(SeO{sub 3}){sub 3}{lg_bullet}6H{sub 2}0(c)] to establish upper limits on Se concentrations. New thermodynamic data were developed to allow prediction of aqueous Se concentrations where these phases may exist. Eleven soil and subsurface materials, collected nationally and representative of properties frequently encountered at waste sites, were used in experiments involving adsorption of selenite and selenate to assess their potential for Se chemical attenuation and to determine chemical and mineralogic factors that control Se adsorption. Selenite was far more strongly adsorbed by the geologic materials than the selenate. The adsorption of both Se species depended on the type of natural materials and showed positive correlation with Fe and Al oxides associated with particle surfaces. Procedures were developed to predict Se adsorption from comprehensive chemical and mineralogic characterization data.

  9. Silicon-based sleeve devices for chemical reactions

    DOEpatents

    Northrup, M. Allen; Mariella, Jr., Raymond P.; Carrano, Anthony V.; Balch, Joseph W.

    1996-01-01

    A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  10. Silicon-based sleeve devices for chemical reactions

    DOEpatents

    Northrup, M.A.; Mariella, R.P. Jr.; Carrano, A.V.; Balch, J.W.

    1996-12-31

    A silicon-based sleeve type chemical reaction chamber is described that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis. 32 figs.

  11. Shock induced chemical reactions in energetic structural materials

    NASA Astrophysics Data System (ADS)

    Reding, Derek J.

    Energetic structural materials (ESMs) constitute a new class of materials that provide dual functions of strength and energetic characteristics. ESMs are typically composed of micron-scale or nano-scale intermetallic mixtures or mixtures of metals and metal oxides, polymer binders, and structural reinforcements. Voids are included to produce a composite with favorable chemical reaction characteristics. In this thesis, a continuum approach is used to simulate gas-gun or explosive loading experiments where a strong shock is induced in the ESM by an impacting plate. Algorithms are developed to obtain equations of state of mixtures. It is usually assumed that the shock loading increases the energy of the ESM and causes the ESM to reach the transition state. It is also assumed that the activation energy needed to reach the transition state is a function of the temperature of the mixture. In this thesis, it is proposed that the activation energy is a function of temperature and the stress state of the mixture. The incorporation of such an activation energy is selected in this thesis. Then, a multi-scale chemical reaction model for a heterogeneous mixture is introduced. This model incorporates reaction initiation, propagation, and extent of completed reaction in spatially heterogeneous distributions of reactants. A new model is proposed for the pore collapse of mixtures. This model is formulated by modifying the Carol, Holt, and Nesterenko spherically symmetric model to include mixtures and compressibility effects. Uncertainties in the model result from assumptions in formulating the models for continuum relationships and chemical reactions in mixtures that are distributed heterogeneously in space and in numerical integration of the resulting equations. It is important to quantify these uncertainties. In this thesis, such an uncertainty quantification is investigated by systematically identifying the physical processes that occur during shock compression of ESMs which are

  12. Chemical Engineering Division Activities

    ERIC Educational Resources Information Center

    Chemical Engineering Education, 1978

    1978-01-01

    The 1978 ASEE Chemical Engineering Division Lecturer was Theodore Vermeulen of the University of California at Berkeley. Other chemical engineers who received awards or special recognition at a recent ASEE annual conference are mentioned. (BB)

  13. Chemical reactions driven by concentrated solar energy

    NASA Astrophysics Data System (ADS)

    Levy, Moshe

    Solar energy can be used for driving endothermic reactions, either photochemically or thermally. The fraction of the solar spectrum that can be photochemically active is quite small. Therefore, it is desirable to be able to combine photochemical and thermal processes in order to increase the overall efficiency. Two thermally driven reactions are being studied: oil shale gasification and methane reforming. In both cases, the major part of the work was done in opaque metal reactors where photochemical reactions cannot take place. We then proceeded working in transparent quartz reactors. The results are preliminary, but they seem to indicate that there may be some photochemical enhancement. The experimental solar facilities used for this work include the 30 kW Schaeffer Solar Furnace and the 3 MW Solar Central Receiver in operation at the Weizmann Institute. The furnace consists of a 96 sq. m flat heliostat, that follows the sun by computer control. It reflects the solar radiation onto a spherical concentrator, 7.3 m in diameter, with a rim angle of 65 degrees. The furnace was characterized by radiometric and calorimetric measurements to show a solar concentration ratio of over 10,000 suns. The central receiver consists of 64 concave heliostats, 54 sq. m each, arranged in a north field and facing a 52 m high tower. The tower has five target levels that can be used simultaneously. The experiments with the shale gasification were carried out at the lowest level, 20 m above ground, which has the lowest solar efficiency and is assigned for low power experiments. We used secondary concentrators to boost the solar flux.

  14. Plasmon-driven sequential chemical reactions in an aqueous environment

    PubMed Central

    Zhang, Xin; Wang, Peijie; Zhang, Zhenglong; Fang, Yurui; Sun, Mengtao

    2014-01-01

    Plasmon-driven sequential chemical reactions were successfully realized in an aqueous environment. In an electrochemical environment, sequential chemical reactions were driven by an applied potential and laser irradiation. Furthermore, the rate of the chemical reaction was controlled via pH, which provides indirect evidence that the hot electrons generated from plasmon decay play an important role in plasmon-driven chemical reactions. In acidic conditions, the hot electrons were captured by the abundant H+ in the aqueous environment, which prevented the chemical reaction. The developed plasmon-driven chemical reactions in an aqueous environment will significantly expand the applications of plasmon chemistry and may provide a promising avenue for green chemistry using plasmon catalysis in aqueous environments under irradiation by sunlight. PMID:24958029

  15. Plasmon-driven sequential chemical reactions in an aqueous environment

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Wang, Peijie; Zhang, Zhenglong; Fang, Yurui; Sun, Mengtao

    2014-06-01

    Plasmon-driven sequential chemical reactions were successfully realized in an aqueous environment. In an electrochemical environment, sequential chemical reactions were driven by an applied potential and laser irradiation. Furthermore, the rate of the chemical reaction was controlled via pH, which provides indirect evidence that the hot electrons generated from plasmon decay play an important role in plasmon-driven chemical reactions. In acidic conditions, the hot electrons were captured by the abundant H+ in the aqueous environment, which prevented the chemical reaction. The developed plasmon-driven chemical reactions in an aqueous environment will significantly expand the applications of plasmon chemistry and may provide a promising avenue for green chemistry using plasmon catalysis in aqueous environments under irradiation by sunlight.

  16. Structure-activity relationships for chemical and glutathione S-transferase-catalysed glutathione conjugation reactions of a series of 2-substituted 1-chloro-4-nitrobenzenes.

    PubMed Central

    Van der Aar, E M; Bouwman, T; Commandeur, J N; Vermeulen, N P

    1996-01-01

    Glutathione S-transferases (GSTs) constitute an important class of phase II (de)toxifying enzymes, catalysing the conjugation of glutathione (GSH) with electrophilic compounds. In the present study, Km, kcat and kcat/Km values for the rat GST 1-1-, 3-3-, 4-4- and 7-7-catalysed conjugation reactions between GSH and a series of 10 different 2-substituted 1-chloro-4-nitrobenzenes, and the second-order rate constants (ks) of the corresponding base-catalysed reactions, were correlated with nine classical physicochemical parameters (electronic, steric and lipophilic) of the substituents and with 16 computer-calculated molecular parameters of the substrates and of the corresponding Meisenheimer complexes with MeS- as a model nucleophile for GS- (charge distributions and several energy values), giving structure-activity relationships. On the basis of an identical dependence of the base-catalysed as well as the GST 1-1- and GST 7-7-catalysed reactions on electronic parameters (among others, Hammett substituent constant sigma p and charge on p-nitro substituents), and the finding that the corresponding reactions catalysed by GSTs 3-3 and 4-4 depend to a significantly lesser extent on these parameters, it was concluded that the Mu-class GST isoenzymes have a rate-determining transition state in the conjugation reaction between 2-substituted 1-chloro-4-nitrobenzenes and GSH which is different from that of the other two GSTs. Several alternative rate-limiting transition states for GST 3-3 and 4-4 are discussed. Furthermore, based on the obtained structure-activity relationships, it was possible to predict the kcat/Km values of the four GST isoenzymes and the ks of the base-catalysed GSH conjugation of 1-chloro-4-nitrobenzene. PMID:8973562

  17. Heterogeneous chemical reactions: Preparation of monodisperse latexes

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; Micale, F. J.; El-Aasser, M. S.; Sterk, A. A.; Bethke, G. W.

    1977-01-01

    It is demonstrated that a photoinitiated emulsion polymerization can be carried out to a significant conversion in a SPAR rocket prototype polymerization vessel within the six minutes allowed for the experiment. The percentage of conversion was determined by both dilatometry and gravimetric methods with good agreement. The experimental results lead to the following conclusions: (1) emulsion polymerizations can be carried out to conversions as high as 75%, using a stable micellized styrene-SLS system plus photoinitiator; (2) dilatometry can be used to accurately determine both the rate and conversion of polymerization; (3) thermal expansion due to the light source and heat of reaction is small and can be corrected for if necessary; (4) although seeded emulsion polymerizations are unfavorable in photoinitiation, as opposed to chemical initiation, polymerizations can be carried out to at least 15% conversion using 7940A seed particles, with 0.05% solids; and (5) photoinitiation should be used to initiate polymerization in the SPAR rocket experiments because of the mechanical simplicity of the experiment.

  18. Exploring chemical reaction mechanisms through harmonic Fourier beads path optimization

    NASA Astrophysics Data System (ADS)

    Khavrutskii, Ilja V.; Smith, Jason B.; Wallqvist, Anders

    2013-10-01

    Here, we apply the harmonic Fourier beads (HFB) path optimization method to study chemical reactions involving covalent bond breaking and forming on quantum mechanical (QM) and hybrid QM/molecular mechanical (QM/MM) potential energy surfaces. To improve efficiency of the path optimization on such computationally demanding potentials, we combined HFB with conjugate gradient (CG) optimization. The combined CG-HFB method was used to study two biologically relevant reactions, namely, L- to D-alanine amino acid inversion and alcohol acylation by amides. The optimized paths revealed several unexpected reaction steps in the gas phase. For example, on the B3LYP/6-31G(d,p) potential, we found that alanine inversion proceeded via previously unknown intermediates, 2-iminopropane-1,1-diol and 3-amino-3-methyloxiran-2-ol. The CG-HFB method accurately located transition states, aiding in the interpretation of complex reaction mechanisms. Thus, on the B3LYP/6-31G(d,p) potential, the gas phase activation barriers for the inversion and acylation reactions were 50.5 and 39.9 kcal/mol, respectively. These barriers determine the spontaneous loss of amino acid chirality and cleavage of peptide bonds in proteins. We conclude that the combined CG-HFB method further advances QM and QM/MM studies of reaction mechanisms.

  19. Chemical Characterization and Reactivity of Fuel-Oxidizer Reaction Product

    NASA Technical Reports Server (NTRS)

    David, Dennis D.; Dee, Louis A.; Beeson, Harold D.

    1997-01-01

    Fuel-oxidizer reaction product (FORP), the product of incomplete reaction of monomethylhydrazine and nitrogen tetroxide propellants prepared under laboratory conditions and from firings of Shuttle Reaction Control System thrusters, has been characterized by chemical and thermal analysis. The composition of FORP is variable but falls within a limited range of compositions that depend on three factors: the fuel-oxidizer ratio at the time of formation; whether the composition of the post-formation atmosphere is reducing or oxidizing; and the reaction or post-reaction temperature. A typical composition contains methylhydrazinium nitrate, ammonium nitrate, methylammonium nitrate, and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. Thermal decomposition reactions of the FORP compositions used in this study were unremarkable. Neither the various compositions of FORP, the pure major components of FORP, nor mixtures of FORP with propellant system corrosion products showed any unusual thermal activity when decomposed under laboratory conditions. Off-limit thruster operations were simulated by rapid mixing of liquid monomethylhydrazine and liquid nitrogen tetroxide in a confined space. These tests demonstrated that monomethylhydrazine, methylhydrazinium nitrate, ammonium nitrate, or Inconel corrosion products can induce a mixture of monomethylhydrazine and nitrogen tetroxide to produce component-damaging energies. Damaging events required FORP or metal salts to be present at the initial mixing of monomethylhydrazine and nitrogen tetroxide.

  20. Spectroscopy and reactions of molecules important in chemical evolution

    NASA Technical Reports Server (NTRS)

    Becker, R. S.

    1974-01-01

    The research includes: (1) hot hydrogen atom reactions in terms of the nature of products produced, mechanism of the reactions and the implication and application of such reactions for molecules existing in interstellar clouds, in planetary atmospheres, and in chemical evolution; (2) photochemical reactions that can lead to molecules important in chemical evolution, interstellar clouds and as constituents in planetary atmospheres; and (3) spectroscopic and theoretical properties of biomolecules and their precursors and where possible, use these to understand their photochemical behavior.

  1. GREEN CHEMICAL SYNTHESIS THROUGH CATALYSIS AND ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    Green chemical synthesis through catalysis and alternate reaction conditions

    Encompassing green chemistry techniques and methodologies, we have initiated several projects at the National Risk Management Research laboratory that focus on the design and development of chemic...

  2. Prediction and Prevention of Chemical Reaction Hazards: Learning by Simulation.

    ERIC Educational Resources Information Center

    Shacham, Mordechai; Brauner, Neima; Cutlip, Michael B.

    2001-01-01

    Points out that chemical hazards are the major cause of accidents in chemical industry and describes a safety teaching approach using a simulation. Explains a problem statement on exothermic liquid-phase reactions. (YDS)

  3. Incidents of chemical reactions in cell equipment

    SciTech Connect

    Baldwin, N.M.; Barlow, C.R.

    1991-12-31

    Strongly exothermic reactions can occur between equipment structural components and process gases under certain accident conditions in the diffusion enrichment cascades. This paper describes the conditions required for initiation of these reactions, and describes the range of such reactions experienced over nearly 50 years of equipment operation in the US uranium enrichment program. Factors are cited which can promote or limit the destructive extent of these reactions, and process operations are described which are designed to control the reactions to minimize equipment damage, downtime, and the possibility of material releases.

  4. Deterministic Function Computation with Chemical Reaction Networks*

    PubMed Central

    Chen, Ho-Lin; Doty, David; Soloveichik, David

    2013-01-01

    Chemical reaction networks (CRNs) formally model chemistry in a well-mixed solution. CRNs are widely used to describe information processing occurring in natural cellular regulatory networks, and with upcoming advances in synthetic biology, CRNs are a promising language for the design of artificial molecular control circuitry. Nonetheless, despite the widespread use of CRNs in the natural sciences, the range of computational behaviors exhibited by CRNs is not well understood. CRNs have been shown to be efficiently Turing-universal (i.e., able to simulate arbitrary algorithms) when allowing for a small probability of error. CRNs that are guaranteed to converge on a correct answer, on the other hand, have been shown to decide only the semilinear predicates (a multi-dimensional generalization of “eventually periodic” sets). We introduce the notion of function, rather than predicate, computation by representing the output of a function f : ℕk → ℕl by a count of some molecular species, i.e., if the CRN starts with x1, …, xk molecules of some “input” species X1, …, Xk, the CRN is guaranteed to converge to having f(x1, …, xk) molecules of the “output” species Y1, …, Yl. We show that a function f : ℕk → ℕl is deterministically computed by a CRN if and only if its graph {(x, y) ∈ ℕk × ℕl ∣ f(x) = y} is a semilinear set. Finally, we show that each semilinear function f (a function whose graph is a semilinear set) can be computed by a CRN on input x in expected time O(polylog ∥x∥1). PMID:25383068

  5. Semiclassical methods in chemical reaction dynamics

    SciTech Connect

    Keshavamurthy, S.

    1994-12-01

    Semiclassical approximations, simple as well as rigorous, are formulated in order to be able to describe gas phase chemical reactions in large systems. We formulate a simple but accurate semiclassical model for incorporating multidimensional tunneling in classical trajectory simulations. This model is based on the existence of locally conserved actions around the saddle point region on a multidimensional potential energy surface. Using classical perturbation theory and monitoring the imaginary action as a function of time along a classical trajectory we calculate state-specific unimolecular decay rates for a model two dimensional potential with coupling. Results are in good comparison with exact quantum results for the potential over a wide range of coupling constants. We propose a new semiclassical hybrid method to calculate state-to-state S-matrix elements for bimolecular reactive scattering. The accuracy of the Van Vleck-Gutzwiller propagator and the short time dynamics of the system make this method self-consistent and accurate. We also go beyond the stationary phase approximation by doing the resulting integrals exactly (numerically). As a result, classically forbidden probabilties are calculated with purely real time classical trajectories within this approach. Application to the one dimensional Eckart barrier demonstrates the accuracy of this approach. Successful application of the semiclassical hybrid approach to collinear reactive scattering is prevented by the phenomenon of chaotic scattering. The modified Filinov approach to evaluating the integrals is discussed, but application to collinear systems requires a more careful analysis. In three and higher dimensional scattering systems, chaotic scattering is suppressed and hence the accuracy and usefulness of the semiclassical method should be tested for such systems.

  6. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1990-01-01

    The objective was to obtain accurate potential energy surfaces (PES's) for a number of reactions which are important in the H/N/O combustion process. The interest in this is centered around the design of the SCRAM jet engine for the National Aerospace Plane (NASP), which was envisioned as an air-breathing hydrogen-burning vehicle capable of reaching velocities as large as Mach 25. Preliminary studies indicated that the supersonic flow in the combustor region of the scram jet engine required accurate reaction rate data for reactions in the H/N/O system, some of which was not readily available from experiment. The most important class of combustion reactions from the standpoint of the NASP project are radical recombinaton reactions, since these reactions result in most of the heat release in the combustion process. Theoretical characterizations of the potential energy surfaces for these reactions are presented and discussed.

  7. Surface coordination number and surface redox couples on catalyst oxides, a new approach of the interpretation of activity and selectivity III. Interpretation of chemical and catalytic oxidation reactions on some oxides

    NASA Astrophysics Data System (ADS)

    Arnaud, Y. P.

    The concepts of surface coordination number n, and of surface redox couples MO [ n] /MO ( n+1) presented previously, are exploited to explain experimental results. Two cases are considered: reactions of chemical gaseous species such as CO, CO 2, H 2, H 2O,N 2O, propene and methanol on the surface of the oxides NiO, TiO 2, and Cr 2O 3, in the absence of oxygen: activated catalytic reactions of oxygen on reductive species such as CO, H 2,C 2H 6, and CH 3OH. The knowledge of the potential of surface redox couples permits a rationalization of the study of these reactions. The efficiency of the two concepts is obvious in many cases. For example, the origin of an athermal oxidative process occurring for the oxidations of CO or H 2 on TiO 2 is easily understood, as well as those of the poisoning of the catalysts or of the inactivity of a surface saturated by oxygen. In addition, the study of chemical reactions on the oxides confirms and completes the theoretical approach used. Particularly, the existence of the surface states, which are postulated in the case of Cr 2O 3, is corroborated by experimental observations concerning the number of surface states and the value of the chemical potentials. Even though the theory is based upon thermodynamical and structural data, it also leads to a better understanding of kinetic features.

  8. [Anaphylactic reactions to low-molecular weight chemicals].

    PubMed

    Nowak, Daria; Panaszek, Bernard

    2015-01-01

    Low-molecular weight chemicals (haptens) include a large group of chemical compounds occurring in work environment, items of everyday use (cleaning products, clothing, footwear, gloves, furniture), jewelry (earrings, bracelets), drugs, especially in cosmetics. They cause type IV hypersensitive reactions. During the induction phase of delayed-type hypersensitivity, haptens form complexes with skin proteins. After internalization through antigen presenting cells, they are bound to MHC class II molecules. Next, they are exposed against specific T-lymphocytes, what triggers activation of Th1 cells mainly. After repeating exposition to that hapten, during effector phase, Th1 induce production of cytokines affecting non-specific inflammatory cells. Usually, it causes contact dermatitis. However, occasionally incidence of immediate generalized reactions after contact with some kinds of haptens is noticed. A question arises, how the hapten does induce symptoms which are typical for anaphylaxis, and what contributes to amplification of this mechanism. It seems that this phenomenon arises from pathomechanism occurring in contact urticaria syndrome in which an anaphylactic reaction may be caused either by contact of sensitized skin with protein antigens, high-molecular weight allergens, or haptens. One of the hypotheses indicates the leading role of basophiles in this process. Their contact with haptens, may cause to release mediators of immediate allergic reaction (histamine, eicosanoids) and to produce cytokines corresponding to Th2 cells profile. Furthermore, Th17 lymphocytes secreting pro-inflammatory interleukin-17 might be engaged into amplifying hypersensitivity into immediate reactions and regulatory T-cells may play role in the process, due to insufficient control of the activity of effector cells. PMID:25661919

  9. Chemical Looping Combustion Reactions and Systems

    SciTech Connect

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2014-03-01

    , they performed a sensitivity analysis for velocity, height and polydispersity and compared results against literature data for experimental studies of CLC beds with no reaction. Finally, they present an optimization space using simple non-reactive configurations. In Subtask 5.3, through a series of experimental studies, behavior of a variety of oxygen carriers with different loadings and manufacturing techniques was evaluated under both oxidizing and reducing conditions. The influences of temperature, degree of carrier conversion and thermodynamic driving force resulting from the difference between equilibrium and system O{sub 2} partial pressures were evaluated through several experimental campaigns, and generalized models accounting for these influences were developed to describe oxidation and oxygen release. Conversion of three solid fuels with widely ranging reactivities was studied in a small fluidized bed system, and all but the least reactive fuel (petcoke) were rapidly converted by oxygen liberated from the CLOU carrier. Attrition propensity of a variety of carriers was also studied, and the carriers produced by freeze granulation or impregnation of preformed substrates displayed the lowest rates of attrition. Subtask 5.4 focused on gathering kinetic data for a copper-based oxygen carrier to assist with modeling of a functioning chemical looping reactor. The kinetics team was also responsible for the development and analysis of supported copper oxygen carrier material.

  10. Stereodynamics: From elementary processes to macroscopic chemical reactions

    SciTech Connect

    Kasai, Toshio; Che, Dock-Chil; Tsai, Po-Yu; Lin, King-Chuen; Palazzetti, Federico; Aquilanti, Vincenzo

    2015-12-31

    This paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed.

  11. On the rate of relativistic surface chemical reactions.

    PubMed

    Veitsman, E V

    2004-07-15

    On the basis of special relativity and the classical theory of chemical reaction rates it is shown how the surface chemical reaction rates vary as v --> c, where v is the velocity of the object under study and c is the velocity of light. PMID:15178286

  12. Chemical kinetics computer program for static and flow reactions

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Scullin, V. J.

    1972-01-01

    General chemical kinetics computer program for complex gas mixtures has been developed. Program can be used for any homogeneous reaction in either one dimensional flow or static system. It is flexible, accurate, and easy to use. It can be used for any chemical system for which species thermodynamic data and reaction rate constant data are known.

  13. Chemical Demonstrations with Consumer Chemicals: The Black and White Reaction.

    ERIC Educational Resources Information Center

    Wright, Stephen W.

    2002-01-01

    Describes a dramatic chemical demonstration in which chemicals that are black and white combine to produce a colorless liquid. Reactants include tincture of iodine, bleach, white vinegar, Epsom salt, vitamin C tablets, and liquid laundry starch. (DDR)

  14. An Analysis of the Algebraic Method for Balancing Chemical Reactions.

    ERIC Educational Resources Information Center

    Olson, John A.

    1997-01-01

    Analyzes the algebraic method for balancing chemical reactions. Introduces a third general condition that involves a balance between the total amount of oxidation and reduction. Requires the specification of oxidation states for all elements throughout the reaction. Describes the general conditions, the mathematical treatment, redox reactions, and…

  15. Droplet heat transfer and chemical reactions during direct containment heating

    SciTech Connect

    Baker, L. Jr.

    1986-01-01

    A simplified model of heat transfer and chemical reaction has been adapted to evaluate the expected behavior of droplets containing unreacted Zircaloy and stainless steel moving through the containment atmosphere during postulated accidents involving direct containment heating. The model includes internal and external diffusive resistances to reaction. The results indicate that reactions will be incomplete for many conditions characteristic of direct containment heating sequences.

  16. FACILITATED CHEMICAL SYNTHESIS UNDER ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    The chemical research in the late 1990's witnessed a paradigm shift towards "environmentally-friendly chemistry" more popularly known as "green chemistry" due to the increasing environmental concerns and legislative requirements to curb the release of chemical waste into the atmo...

  17. The How and Why of Chemical Reactions

    ERIC Educational Resources Information Center

    Schubert, Leo

    1970-01-01

    Presents a discussion of some of the fundamental concepts in thermodynamics and quantum mechanics including entropy, enthalpy, free energy, the partition function, chemical kinetics, transition state theory, the making and breaking of chemical bonds, electronegativity, ion sizes, intermolecular energies and of their role in explaining the nature…

  18. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Levin, Eugene

    1993-01-01

    A new global potential energy surface (PES) is being generated for O(P-3) + H2 yields OH + H. This surface is being fit using the rotated Morse oscillator method, which was used to fit the previous POL-CI surface. The new surface is expected to be more accurate and also includes a much more complete sampling of bent geometries. A new study has been undertaken of the reaction N + O2 yields NO + O. The new studies have focused on the region of the surface near a possible minimum corresponding to the peroxy form of NOO. A large portion of the PES for this second reaction has been mapped out. Since state to state cross sections for the reaction are important in the chemistry of high temperature air, these studies will probably be extended to permit generation of a new global potential for reaction.

  19. Chemical Reaction Experiment for the Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Kwon, K. C.; And Others

    1987-01-01

    Provides an overview of an experiment on reaction kinetics of the anthracene-hydrogen system. Includes a description of the laboratory equipment, procedures, and data analysis requirements. Points out the advantages of the recommended technique. (ML)

  20. Kinetics of Chemical Reactions in Flames

    NASA Technical Reports Server (NTRS)

    Zeldovich, Y.; Semenov, N.

    1946-01-01

    In part I of the paper the theory of flame propagation is developed along the lines followed by Frank-Kamenetsky and one of the writers. The development of chain processes in flames is considered. A basis is given for the application of the method of stationary concentrations to reactions in flames; reactions with branching chains are analyzed. The case of a diffusion coefficient different from the coefficient of temperature conductivity is considered.

  1. Nonequilibrium thermodynamics and a fluctuation theorem for individual reaction steps in a chemical reaction network

    NASA Astrophysics Data System (ADS)

    Pal, Krishnendu; Das, Biswajit; Banerjee, Kinshuk; Gangopadhyay, Gautam

    2015-09-01

    We have introduced an approach to nonequilibrium thermodynamics of an open chemical reaction network in terms of the propensities of the individual elementary reactions and the corresponding reverse reactions. The method is a microscopic formulation of the dissipation function in terms of the relative entropy or Kullback-Leibler distance which is based on the analogy of phase space trajectory with the path of elementary reactions in a network of chemical process. We have introduced here a fluctuation theorem valid for each opposite pair of elementary reactions which is useful in determining the contribution of each sub-reaction on the nonequilibrium thermodynamics of overall reaction. The methodology is applied to an oligomeric enzyme kinetics at a chemiostatic condition that leads the reaction to a nonequilibrium steady state for which we have estimated how each step of the reaction is energy driven or entropy driven to contribute to the overall reaction.

  2. Organocatalytic C–H activation reactions

    PubMed Central

    2012-01-01

    Summary Organocatalytic C–H activation reactions have recently been developed besides the traditional metal-catalysed C–H activation reactions. The recent non-asymmetric and asymmetric C–H activation reactions mediated by organocatalysts are discussed in this review. PMID:23019474

  3. CW CO2 Laser Induced Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Pola, Joseph

    1989-05-01

    CW CO2 laser driven reactions between sulfur hexafluoride and carbon oxide, carbon suboxide, carbonyl sulfide and carbon disulfide proceed at subatmospheric pressures and yield fluorinated carbon compounds and sulfur tetrafluoride. CW CO2 laser driven reactions of organic compounds in the presence of energy-conveying sulfur hexafluoride show reaction course different from that normally observed due to elimination of reactor hot surface effects. The examples concern the decomposition of polychlorohydrocarbons, 2-nitropropane, tert.-butylamine, allyl chloride, spirohexane, isobornyl acetate and the oxidation of haloolefins. CW CO2 laser induced fragmentation of 1-methyl-l-silacyclobutanes and 4-silaspiro(3.4)octane in the presence of sulfur hexafluoride is an effective way for preparation and deposition of stable organosilicon polymers.

  4. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Walch, Stephen P.

    1992-01-01

    The work on the NH + NO system which was described in the last progress report was written up and a draft of the manuscript is included in the appendix. The appendix also contains a draft of a manuscript on an Ar + H + H surface. New work which was completed in the last six months includes the following: (1) calculations on the (1)CH2 + H2O, H2 + HCOH, and H2 + H2CO product channels in the CH3 + OH reaction; (2) calculations for the NH2 + O reaction; (3) calculations for the CH3 + O2 reaction; and (4) calculations for CH3O and the two decomposition channels--CH2OH and H + H2CO. Detailed descriptions of this work will be given in manuscripts; however, brief descriptions of the CH3 + OH and CH3 + O2 projects are given.

  5. Non-equilibrium effects in high temperature chemical reactions

    NASA Technical Reports Server (NTRS)

    Johnson, Richard E.

    1987-01-01

    Reaction rate data were collected for chemical reactions occurring at high temperatures during reentry of space vehicles. The principle of detailed balancing is used in modeling kinetics of chemical reactions at high temperatures. Although this principle does not hold for certain transient or incubation times in the initial phase of the reaction, it does seem to be valid for the rates of internal energy transitions that occur within molecules and atoms. That is, for every rate of transition within the internal energy states of atoms or molecules, there is an inverse rate that is related through an equilibrium expression involving the energy difference of the transition.

  6. Communication: Control of chemical reactions using electric field gradients

    NASA Astrophysics Data System (ADS)

    Deshmukh, Shivaraj D.; Tsori, Yoav

    2016-05-01

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.

  7. Communication: Control of chemical reactions using electric field gradients.

    PubMed

    Deshmukh, Shivaraj D; Tsori, Yoav

    2016-05-21

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts. PMID:27208928

  8. Visualizing chemical reactions confined under graphene.

    PubMed

    Mu, Rentao; Fu, Qiang; Jin, Li; Yu, Liang; Fang, Guangzong; Tan, Dali; Bao, Xinhe

    2012-05-14

    An undercover agent: graphene has been used as an imaging agent to visualize interfacial reactions under its cover, and exhibits a strong confinement effect on the chemistry of molecules underneath. In a CO atmosphere, CO penetrates into the graphene/Pt(111) interface and reacts with O(2) therein, whereas intercalated CO desorbs from the Pt surface. PMID:22492473

  9. Unusual Physical and Chemical Properties of Ni in Ce1-xNixO2-y Oxides: Structural Characterization and Catalytic Activity for the Water Gas Shift Reaction

    SciTech Connect

    Rodriguez, J.A.; Barrio, L.; Kubacka, A.; Zhou, G.; Estrella, M.; Martınez-Arias, A.; Hanson, J.C.; Fernandez-Garcıa, M.

    2010-07-29

    The structural and electronic properties of Ce{sub 1-x}Ni{sub x}O{sub 2-y} nanosystems prepared by a reverse microemulsion method were characterized with synchrotron-based X-ray diffraction, X-ray absorption spectroscopy, Raman spectroscopy, and density functional calculations. The Ce{sub 1-x}Ni{sub x}O{sub 2-y} systems adopt a lattice with a fluorite-type structure with an acute local order where Ni displays a strongly distorted (oxygen) nearest-neighbor coordination and the presence of Ni atoms as first cation distances, pointing to the existence of Ni-O-Ni entities embedded into the ceria lattice. A Ni {leftrightarrow} Ce exchange within the CeO{sub 2} leads to a charge redistribution and the appearance of O vacancies. The Ni?O bonds in Ce{sub 1-x}Ni{sub x}O{sub 2-y} are more difficult to reduce than the bonds in pure NiO. The specific structural configuration of Ni inside the mixed-metal oxide leads to a unique catalyst with a high activity for the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction and a simultaneous reduction of the methanation activity of nickel. Characterization results indicate that small particles of metallic Ni at the interface position of a ceria network may be the key for high WGS activity and that the formate?carbonate route is operative for the production of hydrogen.

  10. Unusual Physical and Chemical Properties of Ni in Ce1-xNixO2-y Oxides: Structural Characterization and Catalytic Activity for the Water Gas Shift Reaction

    SciTech Connect

    Barrio, L.; Kubacka, A; Zhou, G; Estrella, M; Martinez-Arias, A; Hanson, J; Fernandez-Garcia, M; Rodriguez, J

    2010-01-01

    The structural and electronic properties of Ce{sub 1-x}Ni{sub x}O{sub 2-y} nanosystems prepared by a reverse microemulsion method were characterized with synchrotron-based X-ray diffraction, X-ray absorption spectroscopy, Raman spectroscopy, and density functional calculations. The Ce{sub 1-x}Ni{sub x}O{sub 2-y} systems adopt a lattice with a fluorite-type structure with an acute local order where Ni displays a strongly distorted (oxygen) nearest-neighbor coordination and the presence of Ni atoms as first cation distances, pointing to the existence of Ni-O-Ni entities embedded into the ceria lattice. A Ni {leftrightarrow} Ce exchange within the CeO{sub 2} leads to a charge redistribution and the appearance of O vacancies. The Ni-O bonds in Ce{sub 1-x}Ni{sub x}O{sub 2-y} are more difficult to reduce than the bonds in pure NiO. The specific structural configuration of Ni inside the mixed-metal oxide leads to a unique catalyst with a high activity for the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction and a simultaneous reduction of the methanation activity of nickel. Characterization results indicate that small particles of metallic Ni at the interface position of a ceria network may be the key for high WGS activity and that the formate-carbonate route is operative for the production of hydrogen.

  11. Developing Secondary Students' Conceptions of Chemical Reactions: The Introduction of Chemical Equilibrium.

    ERIC Educational Resources Information Center

    Van Driel, Jan H.; De Vos, Wobbe; Verloop, Nico; Dekkers, Hetty

    1998-01-01

    Describes an empirical study concerning the introduction of the concept of chemical equilibrium in chemistry classrooms in a way which challenges students' initial conceptions of chemical reactions. Contains 23 references. (DDR)

  12. Experiments on Rate of Chemical Reactions.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand).

    This laboratory manual, part of a series of instruction books on basic experimental chemistry, is designed to provide the secondary school students of developing countries in Asia with laboratory experiences that bring out the fundamental concepts and ideas of chemical kinetics. Taking into consideration the possibility of limited facilities of…

  13. Computed Potential Energy Surfaces for Chemical Reactions

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Walch, Stephen P.; Levin, Eugene

    1993-01-01

    A manuscript describing the calculations on the (1)CH2 + H2O, H2 + HCOH, and H2 + H2CO product channels in the CH3 + OH reaction, which were described in the last progress report, has been accepted for publication in J. Chem. Phys., and a copy of the manuscript is included in the appendix. The production of (1)CH2 in this reaction is important in hydrocarbon combustion since (1)CH2 is highly reactive and would be expected to insert into N2, possibly leading to a new source for prompt NO(x) (vide infra). During the last six months new calculations have been carried out for the NH2 + NO system, which is important in the thermal de-NO(x) process.

  14. Fluid flow and chemical reaction kinetics in metamorphic systems

    SciTech Connect

    Lasaga, A.C.; Rye, D.M. )

    1993-05-01

    The treatment and effects of chemical reaction kinetics during metamorphism are developed along with the incorporation of fluid flow, diffusion, and thermal evolution. The interplay of fluid flow and surface reaction rates, the distinction between steady state and equilibrium, and the possible overstepping of metamorphic reactions are discussed using a simple analytic model. This model serves as an introduction to the second part of the paper, which develops a reaction model that solves the coupled temperature-fluid flow-chemical composition differential equations relevant to metamorphic processes. Consideration of stable isotopic evidence requires that such a kinetic model be considered for the chemical evolution of a metamorphic aureole. A general numerical scheme is discussed to handle the solution of the model. The results of this kinetic model allow us to reach several important conclusions regarding the factors controlling the chemical evolution of mineral assemblages during a metamorphic event. 41 refs., 19 figs., 5 tabs.

  15. 29. NORTHWEST VIEW OF BOILER FEEDWATER CHEMICAL REACTION TANKS, WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. NORTHWEST VIEW OF BOILER FEEDWATER CHEMICAL REACTION TANKS, WITH FORMER GENERAL OFFICE BUILDING IN BACKGROUND. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  16. CHEMICAL REACTIONS SIMULATED BY GROUND-WATER-QUALITY MODELS.

    USGS Publications Warehouse

    Grove, David B.; Stollenwerk, Kenneth G.

    1987-01-01

    Recent literature concerning the modeling of chemical reactions during transport in ground water is examined with emphasis on sorption reactions. The theory of transport and reactions in porous media has been well documented. Numerous equations have been developed from this theory, to provide both continuous and sequential or multistep models, with the water phase considered for both mobile and immobile phases. Chemical reactions can be either equilibrium or non-equilibrium, and can be quantified in linear or non-linear mathematical forms. Non-equilibrium reactions can be separated into kinetic and diffusional rate-limiting mechanisms. Solutions to the equations are available by either analytical expressions or numerical techniques. Saturated and unsaturated batch, column, and field studies are discussed with one-dimensional, laboratory-column experiments predominating. A summary table is presented that references the various kinds of models studied and their applications in predicting chemical concentrations in ground waters.

  17. Quantum chemical mechanism in parasitic reaction of AlGaN alloys formation

    NASA Astrophysics Data System (ADS)

    Makino, Osamu; Nakamura, Koichi; Tachibana, Akitomo; Tokunaga, Hiroki; Akutsu, Nakao; Matsumoto, Koh

    2000-06-01

    The mechanism of parasitic reactions among trimethylaluminum (TMA), trimethylgallium (TMG), and NH 3 in atmospheric pressure (AP) MOVPE for growth of AlGaN is theoretically studied using the quantum chemical method. The calculations show that metal-nitrogen chain growth reaction easily proceeds through the successive reactions of 'complex formation with NH 3' and 'CH 4 elimination by the bimolecular mechanism'. Additionally, a parasitic reaction in APMOVPE using other raw material is also investigated. The calculated result shows that small change of raw material raises activation energy of parasitic reaction, and, thus, the parasitic reaction is suppressed. This result suggests a way to improve APMOVPE by a suitable choice of substituent.

  18. Chemical reactions of organic compounds on clay surfaces.

    PubMed Central

    Soma, Y; Soma, M

    1989-01-01

    Chemical reactions of organic compounds including pesticides at the interlayer and exterior surfaces of clay minerals and with soil organic matter are reviewed. Representative reactions under moderate conditions possibly occurring in natural soils are described. Attempts have been made to clarify the importance of the chemical nature of molecules, their structures and their functional groups, and the Brönsted or Lewis acidity of clay minerals. PMID:2533556

  19. Accelerated Chemical Reactions and Organic Synthesis in Leidenfrost Droplets.

    PubMed

    Bain, Ryan M; Pulliam, Christopher J; Thery, Fabien; Cooks, R Graham

    2016-08-22

    Leidenfrost levitated droplets can be used to accelerate chemical reactions in processes that appear similar to reaction acceleration in charged microdroplets produced by electrospray ionization. Reaction acceleration in Leidenfrost droplets is demonstrated for a base-catalyzed Claisen-Schmidt condensation, hydrazone formation from precharged and neutral ketones, and for the Katritzky pyrylium into pyridinium conversion under various reaction conditions. Comparisons with bulk reactions gave intermediate acceleration factors (2-50). By keeping the volume of the Leidenfrost droplets constant, it was shown that interfacial effects contribute to acceleration; this was confirmed by decreased reaction rates in the presence of a surfactant. The ability to multiplex Leidenfrost microreactors, to extract product into an immiscible solvent during reaction, and to use Leidenfrost droplets as reaction vessels to synthesize milligram quantities of product is also demonstrated. PMID:27465311

  20. Quantum Chemical Approach to Estimating the Thermodynamics of Metabolic Reactions

    NASA Astrophysics Data System (ADS)

    Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán

    2014-11-01

    Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism.

  1. Laser cutting with chemical reaction assist

    DOEpatents

    Gettemy, Donald J.

    1992-01-01

    A method for cutting with a laser beam where an oxygen-hydrocarbon reaction is used to provide auxiliary energy to a metal workpiece to supplement the energy supplied by the laser. Oxygen is supplied to the laser focus point on the workpiece by a nozzle through which the laser beam also passes. A liquid hydrocarbon is supplied by coating the workpiece along the cutting path with the hydrocarbon prior to laser irradiation or by spraying a stream of hydrocarbon through a nozzle aimed at a point on the cutting path which is just ahead of the focus point during irradiation.

  2. Laser cutting with chemical reaction assist

    DOEpatents

    Gettemy, D.J.

    1992-11-17

    A method is described for cutting with a laser beam where an oxygen-hydrocarbon reaction is used to provide auxiliary energy to a metal workpiece to supplement the energy supplied by the laser. Oxygen is supplied to the laser focus point on the workpiece by a nozzle through which the laser beam also passes. A liquid hydrocarbon is supplied by coating the workpiece along the cutting path with the hydrocarbon prior to laser irradiation or by spraying a stream of hydrocarbon through a nozzle aimed at a point on the cutting path which is just ahead of the focus point during irradiation. 1 figure.

  3. Laser cutting with chemical reaction assist

    SciTech Connect

    Gettemy, D.J.

    1991-04-08

    This invention is comprised of a method for cutting with a laser beam where an oxygen-hydrocarbon reaction is used to provide auxiliary energy to a metal workpiece to supplement the energy supplied by the laser. Oxygen is supplied to the laser focus point on the workpiece by a nozzle through which the laser beam also passes. A liquid hydrocarbon is supplied by coating the workpiece along the cutting path with the hydrocarbon prior to laser irradiation or by spraying a stream of hydrocarbon through a nozzle aimed at a point on the cutting path which is just ahead of the focus point during irradiation.

  4. Is the simplest chemical reaction really so simple?

    PubMed Central

    Jankunas, Justin; Sneha, Mahima; Zare, Richard N.; Bouakline, Foudhil; Althorpe, Stuart C.; Herráez-Aguilar, Diego; Aoiz, F. Javier

    2014-01-01

    Modern computational methods have become so powerful for predicting the outcome for the H + H2 → H2 + H bimolecular exchange reaction that it might seem further experiments are not needed. Nevertheless, experiments have led the way to cause theorists to look more deeply into this simplest of all chemical reactions. The findings are less simple. PMID:24367084

  5. Cu-free click cycloaddition reactions in chemical biology†

    PubMed Central

    Jewett, John C.

    2010-01-01

    Bioorthogonal chemical reactions are paving the way for new innovations in biology. These reactions possess extreme selectivity and biocompatibility, such that their participating reagents can form covalent bonds within richly functionalized biological systems—in some cases, living organisms. This tutorial review will summarize the history of this emerging field, as well as recent progress in the development and application of bioorthogonal copper-free click cycloaddition reactions. PMID:20349533

  6. Chemical reactions of excited nitrogen atoms for short wavelength chemical lasers. Final technical report

    SciTech Connect

    Not Available

    1989-12-15

    Accomplishments of this program include the following: (1) Scalable, chemical generation of oxygen atoms by reaction of fluorine atoms and water vapor. (2) Production of nitrogen atom densities of 1 {times} 10{sup 1}5 cm{sup {minus}3} with 5% electrical efficiency by injecting trace amounts of fluorine into microwave discharged nitrogen. (3) Production of cyanide radicals by reaction of high densities of N atoms with cyanogen. (4) Production of carbon atoms by reaction of nitrogen atoms with cyanogen or with fluorine atoms and hydrogen cyanide. (5) Confirmation that the reaction of carbon atoms and carbonyl sulfide produces CS(a{sup 3} {Pi}{sub r}), as predicted by conservation of electron spin and orbital angular momenta and as proposed by others under another SWCL program. (6) Production of cyanide radicals by injection of cyanogen halides into active nitrogen and use as spectroscopic calibration source. (7) Demonstration that sodium atoms react with cyanogen chloride, bromide and iodide and with cyanuric trifluoride to produce cyanide radicals. (8) Demonstration of the potential utility of the fluorine atom plus ammonia reaction system in the production of NF(b{sup l}{Sigma}{sup +}) via N({sup 2}D) + F{sub 2}.

  7. Conservation-dissipation structure of chemical reaction systems.

    PubMed

    Yong, Wen-An

    2012-12-01

    In this Brief Report, we show that balanced chemical reaction systems governed by the law of mass action have an elegant conservation-dissipation structure. From this structure a number of important conclusions can be easily deduced. In particular, with the help of this structure we can rigorously justify the classical partial equilibrium approximation in chemical kinetics. PMID:23368081

  8. Results of the 2010 Survey on Teaching Chemical Reaction Engineering

    ERIC Educational Resources Information Center

    Silverstein, David L.; Vigeant, Margot A. S.

    2012-01-01

    A survey of faculty teaching the chemical reaction engineering course or sequence during the 2009-2010 academic year at chemical engineering programs in the United States and Canada reveals change in terms of content, timing, and approaches to teaching. The report consists of two parts: first, a statistical and demographic characterization of the…

  9. Exact stochastic simulation of coupled chemical reactions with delays

    NASA Astrophysics Data System (ADS)

    Cai, Xiaodong

    2007-03-01

    Gillespie's exact stochastic simulation algorithm (SSA) [J. Phys. Chem. 81, 2350 (1977)] has been widely used to simulate the stochastic dynamics of chemically reacting systems. In this algorithm, it is assumed that all reactions occur instantly. While this is true in many cases, it is also possible that some chemical reactions, such as gene transcription and translation in living cells, take certain time to finish after they are initiated. Thus, the product of such reactions will emerge after certain delays. Apparently, Gillespie's SSA is not an exact algorithm for chemical reaction systems with delays. In this paper, the author develops an exact SSA for chemical reaction systems with delays, based upon the same fundamental premise of stochastic kinetics used by Gillespie in the development of his SSA. He then shows that an algorithm modified from Gillespie's SSA by Barrio et al. [PLOS Comput. Biol. 2, 1017 (2006)] is also an exact SSA for chemical reaction systems with delays, but it needs to generate more random variables than the author's algorithm.

  10. Chemical kinetic reaction mechanism for the combustion of propane

    NASA Technical Reports Server (NTRS)

    Jachimowski, C. J.

    1984-01-01

    A detailed chemical kinetic reaction mechanism for the combustion of propane is presented and discussed. The mechanism consists of 27 chemical species and 83 elementary chemical reactions. Ignition and combustion data as determined in shock tube studies were used to evaluate the mechanism. Numerical simulation of the shock tube experiments showed that the kinetic behavior predicted by the mechanism for stoichiometric mixtures is in good agrement with the experimental results over the entire temperature range examined (1150-2600K). Sensitivity and theoretical studies carried out using the mechanism revealed that hydrocarbon reactions which are involved in the formation of the HO2 radical and the H2O2 molecule are very important in the mechanism and that the observed nonlinear behavior of ignition delay time with decreasing temperature can be interpreted in terms of the increased importance of the HO2 and H2O2 reactions at the lower temperatures.

  11. Numerical simulation of rising bubble with chemical reaction

    NASA Astrophysics Data System (ADS)

    Sahu, Kirti; Tripathi, Manoj; Matar, Omar; Karapetsas, George

    2014-11-01

    The dynamics of a rising bubble under the action of gravity and in the presence of an exothermic chemical reaction at the interface is investigated via direct numerical simulation using Volume-of-Fluid (VOF) method. The product of the chemical reaction, and temperature rise due to the exothermic chemical reaction influence the local viscosity and surface tension near the interfacial region, which in turn give rise to many interesting dynamics. The flow is governed by continuity, Navier-Stokes equations along with the convection equation of the volume fraction of the outer fluid and the energy equation. The effects of the Bond, Damkohler, and Reynolds numbers, and of the dimensionless heat of reaction are investigated. The results of this parametric study will be presented at the meeting.

  12. ReactionMap: an efficient atom-mapping algorithm for chemical reactions.

    PubMed

    Fooshee, David; Andronico, Alessio; Baldi, Pierre

    2013-11-25

    Large databases of chemical reactions provide new data-mining opportunities and challenges. Key challenges result from the imperfect quality of the data and the fact that many of these reactions are not properly balanced or atom-mapped. Here, we describe ReactionMap, an efficient atom-mapping algorithm. Our approach uses a combination of maximum common chemical subgraph search and minimization of an assignment cost function derived empirically from training data. We use a set of over 259,000 balanced atom-mapped reactions from the SPRESI commercial database to train the system, and we validate it on random sets of 1000 and 17,996 reactions sampled from this pool. These large test sets represent a broad range of chemical reaction types, and ReactionMap correctly maps about 99% of the atoms and about 96% of the reactions, with a mean time per mapping of 2 s. Most correctly mapped reactions are mapped with high confidence. Mapping accuracy compares favorably with ChemAxon's AutoMapper, versions 5 and 6.1, and the DREAM Web tool. These approaches correctly map 60.7%, 86.5%, and 90.3% of the reactions, respectively, on the same data set. A ReactionMap server is available on the ChemDB Web portal at http://cdb.ics.uci.edu . PMID:24160861

  13. Chemical reactions and gas transfer in natural waters

    SciTech Connect

    O`Connor, D.J. |

    1998-02-01

    Many chemical reactions of environmental significance involve reactants or end products that exchange with the atmosphere. The transferable constituents are the atmospheric gases--oxygen, carbon dioxide, and, to a more limited degree, nitrogen--and volatile substances that are not usually present in the atmosphere, such as ammonia, sulfur dioxide, and hydrogen sulfide. Reactions of this type have many applications in natural water systems, as well as water and waste treatment processes. It is the general purpose of this paper to present a mathematical approach to the analysis of these reactions and to demonstrate the application to various environmental problems. Both variable and constant pH conditions are addressed. The latter frequently characterizes laboratory experiments in batch reactions, in which a constant pH is maintained. The former is commonly present in natural waters, in which the pH changes through the course of the chemical reaction.

  14. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1988-01-01

    The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.

  15. Chemical Looping Combustion Reactions and Systems

    SciTech Connect

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2011-07-01

    Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO2 capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This work focused on two classes of oxygen carrier, one that merely undergoes a change in oxidation state, such as Fe3O4/Fe2O3 and one that is converted from its higher to its lower oxidation state by the release of oxygen on heating, i.e., CuO/Cu2O. This topical report discusses the results of four complementary efforts: (1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification (3) the exploration of operating characteristics in the laboratory-scale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability (4) the identification of mechanisms and rates for the copper, cuprous oxide, and cupric oxide system using thermogravimetric analysis.

  16. Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions.

    PubMed

    Latino, Diogo A R S; Aires-de-Sousa, João

    2014-01-01

    The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of

  17. Automatic NMR-Based Identification of Chemical Reaction Types in Mixtures of Co-Occurring Reactions

    PubMed Central

    Latino, Diogo A. R. S.; Aires-de-Sousa, João

    2014-01-01

    The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the 1H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the 1H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of the

  18. Matrix isolation as a tool for studying interstellar chemical reactions

    NASA Technical Reports Server (NTRS)

    Ball, David W.; Ortman, Bryan J.; Hauge, Robert H.; Margrave, John L.

    1989-01-01

    Since the identification of the OH radical as an interstellar species, over 50 molecular species were identified as interstellar denizens. While identification of new species appears straightforward, an explanation for their mechanisms of formation is not. Most astronomers concede that large bodies like interstellar dust grains are necessary for adsorption of molecules and their energies of reactions, but many of the mechanistic steps are unknown and speculative. It is proposed that data from matrix isolation experiments involving the reactions of refractory materials (especially C, Si, and Fe atoms and clusters) with small molecules (mainly H2, H2O, CO, CO2) are particularly applicable to explaining mechanistic details of likely interstellar chemical reactions. In many cases, matrix isolation techniques are the sole method of studying such reactions; also in many cases, complexations and bond rearrangements yield molecules never before observed. The study of these reactions thus provides a logical basis for the mechanisms of interstellar reactions. A list of reactions is presented that would simulate interstellar chemical reactions. These reactions were studied using FTIR-matrix isolation techniques.

  19. Asymmetric chemical reactions by polarized quantum beams

    NASA Astrophysics Data System (ADS)

    Takahashi, Jun-Ichi; Kobayashi, Kensei

    One of the most attractive hypothesis for the origin of homochirality in terrestrial bio-organic compounds (L-amino acid and D-sugar dominant) is nominated as "Cosmic Scenario"; a chiral impulse from asymmetric excitation sources in space triggered asymmetric reactions on the surfaces of such space materials as meteorites or interstellar dusts prior to the existence of terrestrial life. 1) Effective asymmetric excitation sources in space are proposed as polarized quantum beams, such as circularly polarized light and spin polarized electrons. Circularly polarized light is emitted as synchrotron radiation from tightly captured electrons by intense magnetic field around neutron stars. In this case, either left-or right-handed polarized light can be observed depending on the direction of observation. On the other hand, spin polarized electrons is emitted as beta-ray in beta decay from radioactive nuclei or neutron fireballs in supernova explosion. 2) The spin of beta-ray electrons is longitudinally polarized due to parity non-conservation in the weak interaction. The helicity (the the projection of the spin onto the direction of kinetic momentum) of beta-ray electrons is universally negative (left-handed). For the purpose of verifying the asymmetric structure emergence in bio-organic compounds by polarized quantum beams, we are now carrying out laboratory simulations using circularly polarized light from synchrotron radiation facility or spin polarized electron beam from beta-ray radiation source. 3,4) The target samples are solid film or aqueous solution of racemic amino acids. 1) K.Kobayashi, K.Kaneko, J.Takahashi, Y.Takano, in Astrobiology: from simple molecules to primitive life; Ed. V.Basiuk; American Scientific Publisher: Valencia, 2008. 2) G.A.Gusev, T.Saito, V.A.Tsarev, A.V.Uryson, Origins Life Evol. Biosphere. 37, 259 (2007). 3) J.Takahashi, H.Shinojima, M.Seyama, Y.Ueno, T.Kaneko, K.Kobayashi, H.Mita, M.Adachi, M.Hosaka, M.Katoh, Int. J. Mol. Sci. 10, 3044

  20. Incorporation of Chemical Reactions into Building-scale Flow

    SciTech Connect

    Humphreys, T D; Jayaweera, T M; Lee, R L

    2003-10-30

    Many hazardous atmospheric releases involve chemical reactions that occur within a few kilometers of the source. Reactions with commonly occurring atmospheric compounds such as the OH radical, can transform and potentially neutralize original release compounds. Especially in these cases, accurately resolving flow around nearby structures and over surrounding topography can be critical to correctly predicting material dispersion, and thus, the extent of any hazard. Accurate prediction of material dispersion around complex geometries near the source of an atmospheric release requires high-resolution computation. Further complications arise if the compounds released undergo chemical reactions which could alter the extent of the main plume. The reaction products form dispersion patterns separate from, and often more complicated than, the original plume. Directions for future work include expanding the library of chemical reaction mechanisms, adding capabilities for aqueous and heterogeneous reactions, and integrating this model within larger-scale models. We plan that the larger-scale models will provide meteorological and chemical boundary conditions, and that this model could provide a source term in larger-scale models, both for momentum and for dispersed compounds.

  1. An Efficient Chemical Reaction Optimization Algorithm for Multiobjective Optimization.

    PubMed

    Bechikh, Slim; Chaabani, Abir; Ben Said, Lamjed

    2015-10-01

    Recently, a new metaheuristic called chemical reaction optimization was proposed. This search algorithm, inspired by chemical reactions launched during collisions, inherits several features from other metaheuristics such as simulated annealing and particle swarm optimization. This fact has made it, nowadays, one of the most powerful search algorithms in solving mono-objective optimization problems. In this paper, we propose a multiobjective variant of chemical reaction optimization, called nondominated sorting chemical reaction optimization, in an attempt to exploit chemical reaction optimization features in tackling problems involving multiple conflicting criteria. Since our approach is based on nondominated sorting, one of the main contributions of this paper is the proposal of a new quasi-linear average time complexity quick nondominated sorting algorithm; thereby making our multiobjective algorithm efficient from a computational cost viewpoint. The experimental comparisons against several other multiobjective algorithms on a variety of benchmark problems involving various difficulties show the effectiveness and the efficiency of this multiobjective version in providing a well-converged and well-diversified approximation of the Pareto front. PMID:25373137

  2. Binuclear metallohydrolases: complex mechanistic strategies for a simple chemical reaction.

    PubMed

    Schenk, Gerhard; Mitić, Nataša; Gahan, Lawrence R; Ollis, David L; McGeary, Ross P; Guddat, Luke W

    2012-09-18

    Binuclear metallohydrolases are a large family of enzymes that require two closely spaced transition metal ions to carry out a plethora of hydrolytic reactions. Representatives include purple acid phosphatases (PAPs), enzymes that play a role in bone metabolism and are the only member of this family with a heterovalent binuclear center in the active form (Fe(3+)-M(2+), M = Fe, Zn, Mn). Other members of this family are urease, which contains a di-Ni(2+) center and catalyzes the breakdown of urea, arginase, which contains a di-Mn(2+) center and catalyzes the final step in the urea cycle, and the metallo-β-lactamases, which contain a di-Zn(2+) center and are virulence factors contributing to the spread of antibiotic-resistant pathogens. Binuclear metallohydrolases catalyze numerous vital reactions and are potential targets of drugs against a wide variety of human disorders including osteoporosis, various cancers, antibiotic resistance, and erectile dysfunctions. These enzymes also tend to catalyze more than one reaction. An example is an organophosphate (OP)-degrading enzyme from Enterobacter aerogenes (GpdQ). Although GpdQ is part of a pathway that is used by bacteria to degrade glycerolphosphoesters, it hydrolyzes a variety of other phosphodiesters and displays low levels of activity against phosphomono- and triesters. Such a promiscuous nature may have assisted the apparent recent evolution of some binuclear metallohydrolases to deal with situations created by human intervention such as OP pesticides in the environment. OP pesticides were first used approximately 70 years ago, and therefore the enzymes that bacteria use to degrade them must have evolved very quickly on the evolutionary time scale. The promiscuous nature of enzymes such as GpdQ makes them ideal candidates for the application of directed evolution to produce new enzymes that can be used in bioremediation and against chemical warfare. In this Account, we review the mechanisms employed by binuclear

  3. The Electronic Flux in Chemical Reactions. Insights on the Mechanism of the Maillard Reaction

    NASA Astrophysics Data System (ADS)

    Flores, Patricio; Gutiérrez-Oliva, Soledad; Herrera, Bárbara; Silva, Eduardo; Toro-Labbé, Alejandro

    2007-11-01

    The electronic transfer that occurs during a chemical process is analysed in term of a new concept, the electronic flux, that allows characterizing the regions along the reaction coordinate where electron transfer is actually taking place. The electron flux is quantified through the variation of the electronic chemical potential with respect to the reaction coordinate and is used, together with the reaction force, to shed light on reaction mechanism of the Schiff base formation in the Maillard reaction. By partitioning the reaction coordinate in regions in which different process might be taking place, electronic reordering associated to polarization and transfer has been identified and found to be localized at specific transition state regions where most bond forming and breaking occur.

  4. A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions

    NASA Astrophysics Data System (ADS)

    Zhou, Jicheng; Xu, Wentao; You, Zhimin; Wang, Zhe; Luo, Yushang; Gao, Lingfei; Yin, Cheng; Peng, Renjie; Lan, Lixin

    2016-04-01

    The use of microwave (MW) irradiation to increase the rate of chemical reactions has attracted much attention recently in nearly all fields of chemistry due to substantial enhancements in reaction rates. However, the intrinsic nature of the effects of MW irradiation on chemical reactions remains unclear. Herein, the highly effective conversion of NO and decomposition of H2S via MW catalysis were investigated. The temperature was decreased by several hundred degrees centigrade. Moreover, the apparent activation energy (Ea’) decreased substantially under MW irradiation. Importantly, for the first time, a model of the interactions between microwave electromagnetic waves and molecules is proposed to elucidate the intrinsic reason for the reduction in the Ea’ under MW irradiation, and a formula for the quantitative estimation of the decrease in the Ea’ was determined. MW irradiation energy was partially transformed to reduce the Ea’, and MW irradiation is a new type of power energy for speeding up chemical reactions. The effect of MW irradiation on chemical reactions was determined. Our findings challenge both the classical view of MW irradiation as only a heating method and the controversial MW non-thermal effect and open a promising avenue for the development of novel MW catalytic reaction technology.

  5. A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions.

    PubMed

    Zhou, Jicheng; Xu, Wentao; You, Zhimin; Wang, Zhe; Luo, Yushang; Gao, Lingfei; Yin, Cheng; Peng, Renjie; Lan, Lixin

    2016-01-01

    The use of microwave (MW) irradiation to increase the rate of chemical reactions has attracted much attention recently in nearly all fields of chemistry due to substantial enhancements in reaction rates. However, the intrinsic nature of the effects of MW irradiation on chemical reactions remains unclear. Herein, the highly effective conversion of NO and decomposition of H2S via MW catalysis were investigated. The temperature was decreased by several hundred degrees centigrade. Moreover, the apparent activation energy (Ea') decreased substantially under MW irradiation. Importantly, for the first time, a model of the interactions between microwave electromagnetic waves and molecules is proposed to elucidate the intrinsic reason for the reduction in the Ea' under MW irradiation, and a formula for the quantitative estimation of the decrease in the Ea' was determined. MW irradiation energy was partially transformed to reduce the Ea', and MW irradiation is a new type of power energy for speeding up chemical reactions. The effect of MW irradiation on chemical reactions was determined. Our findings challenge both the classical view of MW irradiation as only a heating method and the controversial MW non-thermal effect and open a promising avenue for the development of novel MW catalytic reaction technology. PMID:27118640

  6. A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions

    PubMed Central

    Zhou, Jicheng; Xu, Wentao; You, Zhimin; Wang, Zhe; Luo, Yushang; Gao, Lingfei; Yin, Cheng; Peng, Renjie; Lan, Lixin

    2016-01-01

    The use of microwave (MW) irradiation to increase the rate of chemical reactions has attracted much attention recently in nearly all fields of chemistry due to substantial enhancements in reaction rates. However, the intrinsic nature of the effects of MW irradiation on chemical reactions remains unclear. Herein, the highly effective conversion of NO and decomposition of H2S via MW catalysis were investigated. The temperature was decreased by several hundred degrees centigrade. Moreover, the apparent activation energy (Ea’) decreased substantially under MW irradiation. Importantly, for the first time, a model of the interactions between microwave electromagnetic waves and molecules is proposed to elucidate the intrinsic reason for the reduction in the Ea’ under MW irradiation, and a formula for the quantitative estimation of the decrease in the Ea’ was determined. MW irradiation energy was partially transformed to reduce the Ea’, and MW irradiation is a new type of power energy for speeding up chemical reactions. The effect of MW irradiation on chemical reactions was determined. Our findings challenge both the classical view of MW irradiation as only a heating method and the controversial MW non-thermal effect and open a promising avenue for the development of novel MW catalytic reaction technology. PMID:27118640

  7. Finding Chemical Reaction Paths with a Multilevel Preconditioning Protocol

    PubMed Central

    2015-01-01

    Finding transition paths for chemical reactions can be computationally costly owing to the level of quantum-chemical theory needed for accuracy. Here, we show that a multilevel preconditioning scheme that was recently introduced (Tempkin et al. J. Chem. Phys.2014, 140, 184114) can be used to accelerate quantum-chemical string calculations. We demonstrate the method by finding minimum-energy paths for two well-characterized reactions: tautomerization of malonaldehyde and Claissen rearrangement of chorismate to prephanate. For these reactions, we show that preconditioning density functional theory (DFT) with a semiempirical method reduces the computational cost for reaching a converged path that is an optimum under DFT by several fold. The approach also shows promise for free energy calculations when thermal noise can be controlled. PMID:25516726

  8. Finding Chemical Reaction Paths with a Multilevel Preconditioning Protocol

    DOE PAGESBeta

    Kale, Seyit; Sode, Olaseni; Weare, Jonathan; Dinner, Aaron R.

    2014-11-07

    Finding transition paths for chemical reactions can be computationally costly owing to the level of quantum-chemical theory needed for accuracy. Here, we show that a multilevel preconditioning scheme that was recently introduced (Tempkin et al. J. Chem. Phys. 2014, 140, 184114) can be used to accelerate quantum-chemical string calculations. We demonstrate the method by finding minimum-energy paths for two well-characterized reactions: tautomerization of malonaldehyde and Claissen rearrangement of chorismate to prephanate. For these reactions, we show that preconditioning density functional theory (DFT) with a semiempirical method reduces the computational cost for reaching a converged path that is an optimum undermore » DFT by several fold. In conclusion, the approach also shows promise for free energy calculations when thermal noise can be controlled.« less

  9. Finding Chemical Reaction Paths with a Multilevel Preconditioning Protocol

    SciTech Connect

    Kale, Seyit; Sode, Olaseni; Weare, Jonathan; Dinner, Aaron R.

    2014-11-07

    Finding transition paths for chemical reactions can be computationally costly owing to the level of quantum-chemical theory needed for accuracy. Here, we show that a multilevel preconditioning scheme that was recently introduced (Tempkin et al. J. Chem. Phys. 2014, 140, 184114) can be used to accelerate quantum-chemical string calculations. We demonstrate the method by finding minimum-energy paths for two well-characterized reactions: tautomerization of malonaldehyde and Claissen rearrangement of chorismate to prephanate. For these reactions, we show that preconditioning density functional theory (DFT) with a semiempirical method reduces the computational cost for reaching a converged path that is an optimum under DFT by several fold. In conclusion, the approach also shows promise for free energy calculations when thermal noise can be controlled.

  10. Maximum Probability Reaction Sequences in Stochastic Chemical Kinetic Systems

    PubMed Central

    Salehi, Maryam; Perkins, Theodore J.

    2010-01-01

    The detailed behavior of many molecular processes in the cell, such as protein folding, protein complex assembly, and gene regulation, transcription and translation, can often be accurately captured by stochastic chemical kinetic models. We investigate a novel computational problem involving these models – that of finding the most-probable sequence of reactions that connects two or more states of the system observed at different times. We describe an efficient method for computing the probability of a given reaction sequence, but argue that computing most-probable reaction sequences is EXPSPACE-hard. We develop exact (exhaustive) and approximate algorithms for finding most-probable reaction sequences. We evaluate these methods on test problems relating to a recently-proposed stochastic model of folding of the Trp-cage peptide. Our results provide new computational tools for analyzing stochastic chemical models, and demonstrate their utility in illuminating the behavior of real-world systems. PMID:21629860

  11. International chemical identifier for reactions (RInChI)

    PubMed Central

    2013-01-01

    The IUPAC International Chemical Identifier (InChI) provides a method to generate a unique text descriptor of molecular structures. Building on this work, we report a process to generate a unique text descriptor for reactions, RInChI. By carefully selecting the information that is included and by ordering the data carefully, different scientists studying the same reaction should produce the same RInChI. If differences arise, these are most likely the minor layers of the InChI, and so may be readily handled. RInChI provides a concise description of the key data in a chemical reaction, and will help enable the rapid searching and analysis of reaction databases. PMID:24152584

  12. Method and apparatus for controlling gas evolution from chemical reactions

    DOEpatents

    Skorpik, J.R.; Dodson, M.G.

    1999-05-25

    The present invention is directed toward monitoring a thermally driven gas evolving chemical reaction with an acoustic apparatus. Signals from the acoustic apparatus are used to control a heater to prevent a run-away condition. A digestion module in combination with a robotic arm further automate physical handling of sample material reaction vessels. The invention is especially useful for carrying out sample procedures defined in EPA Methods SW-846. 8 figs.

  13. Method and apparatus for controlling gas evolution from chemical reactions

    DOEpatents

    Skorpik, James R.; Dodson, Michael G.

    1999-01-01

    The present invention is directed toward monitoring a thermally driven gas evolving chemical reaction with an acoustic apparatus. Signals from the acoustic apparatus are used to control a heater to prevent a run-away condition. A digestion module in combination with a robotic arm further automate physical handling of sample material reaction vessels. The invention is especially useful for carrying out sample procedures defined in EPA Methods SW-846.

  14. A network dynamics approach to chemical reaction networks

    NASA Astrophysics Data System (ADS)

    van der Schaft, A. J.; Rao, S.; Jayawardhana, B.

    2016-04-01

    A treatment of a chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption, the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a very simple derivation of a number of key results in the chemical reaction network theory, and which directly relates to the thermodynamics and port-Hamiltonian formulation of the system. Central in this formulation is the definition of a balanced Laplacian matrix on the graph of chemical complexes together with a resulting fundamental inequality. This immediately leads to the characterisation of the set of equilibria and their stability. Furthermore, the assumption of complex balancedness is revisited from the point of view of Kirchhoff's matrix tree theorem. Both the form of the dynamics and the deduced behaviour are very similar to consensus dynamics, and provide additional perspectives to the latter. Finally, using the classical idea of extending the graph of chemical complexes by a 'zero' complex, a complete steady-state stability analysis of mass action kinetics reaction networks with constant inflows and mass action kinetics outflows is given, and a unified framework is provided for structure-preserving model reduction of this important class of open reaction networks.

  15. Nucleic Acid Templated Chemical Reaction in a Live Vertebrate

    PubMed Central

    2016-01-01

    Nucleic acid templated reactions are enabled by the hybridization of probe-reagent conjugates resulting in high effective reagent concentration and fast chemical transformation. We have developed a reaction that harnesses cellular microRNA (miRNA) to yield the cleavage of a linker releasing fluorogenic rhodamine in a live vertebrate. The reaction is based on the catalytic photoreduction of an azide by a ruthenium complex. We showed that this system reports specific expression of miRNA in living tissues of a vertebrate. PMID:27413783

  16. Researches on Preliminary Chemical Reactions in Spark-Ignition Engines

    NASA Technical Reports Server (NTRS)

    Muehlner, E.

    1943-01-01

    Chemical reactions can demonstrably occur in a fuel-air mixture compressed in the working cylinder of an Otto-cycle (spark ignition) internal-combustion engine even before the charge is ignited by the flame proceeding from the sparking plug. These are the so-called "prelinminary reactions" ("pre-flame" combustion or oxidation), and an exact knowledge of their characteristic development is of great importance for a correct appreciation of the phenomena of engine-knock (detonation), and consequently for its avoidance. Such reactions can be studied either in a working engine cylinder or in a combustion bomb. The first method necessitates a complicated experimental technique, while the second has the disadvantage of enabling only a single reaction to be studied at one time. Consequently, a new series of experiments was inaugurated, conducted in a motored (externally-driven) experimental engine of mixture-compression type, without ignition, the resulting preliminary reactions being detectable and measurable thermometrically.

  17. Chemical pathways in ultracold reactions of SrF molecules

    SciTech Connect

    Meyer, Edmund R.; Bohn, John L.

    2011-03-15

    We present a theoretical investigation of the chemical reaction SrF + SrF {yields} products, focusing on reactions at ultralow temperatures. We find that bond swapping SrF + SrF {yields} Sr{sub 2} + F{sub 2} is energetically forbidden at these temperatures. Rather, the only energetically allowed reaction is SrF + SrF {yields} SrF{sub 2} + Sr, and even then only singlet states of the SrF{sub 2} trimer can form. A calculation along a reduced reaction path demonstrates that this abstraction reaction is barrierless and proceeds by one SrF molecule ''handing off'' a fluorine atom to the other molecule.

  18. Modeling Second-Order Chemical Reactions using Cellular Automata

    NASA Astrophysics Data System (ADS)

    Hunter, N. E.; Barton, C. C.; Seybold, P. G.; Rizki, M. M.

    2012-12-01

    Cellular automata (CA) are discrete, agent-based, dynamic, iterated, mathematical computational models used to describe complex physical, biological, and chemical systems. Unlike the more computationally demanding molecular dynamics and Monte Carlo approaches, which use "force fields" to model molecular interactions, CA models employ a set of local rules. The traditional approach for modeling chemical reactions is to solve a set of simultaneous differential rate equations to give deterministic outcomes. CA models yield statistical outcomes for a finite number of ingredients. The deterministic solutions appear as limiting cases for conditions such as a large number of ingredients or a finite number of ingredients and many trials. Here we present a 2-dimensional, probabilistic CA model of a second-order gas phase reaction A + B → C, using a MATLAB basis. Beginning with a random distribution of ingredients A and B, formation of C emerges as the system evolves. The reaction rate can be varied based on the probability of favorable collisions of the reagents A and B. The model permits visualization of the conversion of reagents to products, and allows one to plot concentration vs. time for A, B and C. We test hypothetical reaction conditions such as: limiting reagents, the effects of reaction probabilities, and reagent concentrations on the reaction kinetics. The deterministic solutions of the reactions emerge as statistical averages in the limit of the large number of cells in the array. Modeling results for dynamic processes in the atmosphere will be presented.

  19. Reduction of chemical reaction networks through delay distributions

    NASA Astrophysics Data System (ADS)

    Barrio, Manuel; Leier, André; Marquez-Lago, Tatiana T.

    2013-03-01

    Accurate modelling and simulation of dynamic cellular events require two main ingredients: an adequate description of key chemical reactions and simulation of such chemical events in reasonable time spans. Quite logically, posing the right model is a crucial step for any endeavour in Computational Biology. However, more often than not, it is the associated computational costs which actually limit our capabilities of representing complex cellular behaviour. In this paper, we propose a methodology aimed at representing chains of chemical reactions by much simpler, reduced models. The abridgement is achieved by generation of model-specific delay distribution functions, consecutively fed to a delay stochastic simulation algorithm. We show how such delay distributions can be analytically described whenever the system is solely composed of consecutive first-order reactions, with or without additional "backward" bypass reactions, yielding an exact reduction. For models including other types of monomolecular reactions (constitutive synthesis, degradation, or "forward" bypass reactions), we discuss why one must adopt a numerical approach for its accurate stochastic representation, and propose two alternatives for this. In these cases, the accuracy depends on the respective numerical sample size. Our model reduction methodology yields significantly lower computational costs while retaining accuracy. Quite naturally, computational costs increase alongside network size and separation of time scales. Thus, we expect our model reduction methodologies to significantly decrease computational costs in these instances. We anticipate the use of delays in model reduction will greatly alleviate some of the current restrictions in simulating large sets of chemical reactions, largely applicable in pharmaceutical and biological research.

  20. CHARACTERIZATION OF CHEMICALLY MODIFIED HYPERTHERMOPHILIC ENZYMES FOR CHEMICAL SYNTHESES AND BIOREMEDIATION REACTIONS

    EPA Science Inventory

    Research developments in the area of biocatalysis in organic solvents are expected to greatly expand the role of bioprocessing in chemical synthesis, fuel processing, and bioremediation technologies. Many biological transformation reactions of interest to DOE site remediation inv...

  1. Effects of incomplete mixing on chemical reactions under flow heterogeneities.

    NASA Astrophysics Data System (ADS)

    Perez, Lazaro; Hidalgo, Juan J.; Dentz, Marco

    2016-04-01

    Evaluation of the mixing process in aquifers is of primary importance when assessing attenuation of pollutants. In aquifers different hydraulic and chemical properties can increase mixing and spreading of the transported species. Mixing processes control biogeochemical transformations such as precipitation/dissolution reactions or degradation reactions that are fast compared to mass transfer processes. Reactions are local phenomena that fluctuate at the pore scale, but predictions are often made at much larger scales. However, aquifer heterogeities are found at all scales and generates flow heterogeneities which creates complex concentration distributions that enhances mixing. In order to assess the impact of spatial flow heterogeneities at pore scale we study concentration profiles, gradients and reaction rates using a random walk particle tracking (RWPT) method and kernel density estimators to reconstruct concentrations and gradients in two setups. First, we focus on a irreversible bimolecular reaction A+B → C under homogeneous flow to distinguish phenomena of incomplete mixing of reactants from finite-size sampling effects. Second, we analise a fast reversible bimolecular chemical reaction A+B rightleftharpoons C in a laminar Poiseuille flow reactor to determine the difference between local and global reaction rates caused by the incomplete mixing under flow heterogeneities. Simulation results for the first setup differ from the analytical solution of the continuum scale advection-dispersion-reaction equation studied by Gramling et al. (2002), which results in an overstimation quantity of reaction product (C). In the second setup, results show that actual reaction rates are bigger than the obtained from artificially mixing the system by averaging the concentration vertically. - LITERATURE Gramling, C. M.,Harvey, C. F., Meigs, and L. C., (2002). Reactive transport in porous media: A comparison of model prediction with laboratory visualization, Environ. Sci

  2. Program Helps To Determine Chemical-Reaction Mechanisms

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Radhakrishnan, K.

    1995-01-01

    General Chemical Kinetics and Sensitivity Analysis (LSENS) computer code developed for use in solving complex, homogeneous, gas-phase, chemical-kinetics problems. Provides for efficient and accurate chemical-kinetics computations and provides for sensitivity analysis for variety of problems, including problems involving honisothermal conditions. Incorporates mathematical models for static system, steady one-dimensional inviscid flow, reaction behind incident shock wave (with boundary-layer correction), and perfectly stirred reactor. Computations of equilibrium properties performed for following assigned states: enthalpy and pressure, temperature and pressure, internal energy and volume, and temperature and volume. Written in FORTRAN 77 with exception of NAMELIST extensions used for input.

  3. Chemical Reaction Engineering: Current Status and Future Directions.

    ERIC Educational Resources Information Center

    Dudukovic, M. P.

    1987-01-01

    Describes Chemical Reaction Engineering (CRE) as the discipline that quantifies the interplay of transport phenomena and kinetics in relating reactor performance to operating conditions and input variables. Addresses the current status of CRE in both academic and industrial settings and outlines future trends. (TW)

  4. Quantum and semiclassical theories of chemical reaction rates

    SciTech Connect

    Miller, W.H. |

    1995-09-01

    A rigorous quantum mechanical theory (and a semiclassical approximation thereto) is described for calculating chemical reaction rates ``directly``, i.e., without having to solve the complete state-to-state reactive scattering problem. The approach has many vestiges of transition state theory, for which it may be thought of as the rigorous generalization.

  5. Prediction of Rate Constants for Catalytic Reactions with Chemical Accuracy.

    PubMed

    Catlow, C Richard A

    2016-08-01

    Ex machina: A computational method for predicting rate constants for reactions within microporous zeolite catalysts with chemical accuracy has recently been reported. A key feature of this method is a stepwise QM/MM approach that allows accuracy to be achieved while using realistic models with accessible computer resources. PMID:27329206

  6. Do nuclear reactions take place under chemical stimulation?

    SciTech Connect

    Bockris, J.O.; Lin, G.H.; Bush, R.T.

    1996-09-01

    Several examples of nuclear reactions occurring under the stimulation of chemical type energies are given. The production of tritium from deuterium in Pd has more than 100 published confirmations. Three models suggest circumstances such that barriers between nucleii may become transparent. 24 refs.

  7. 2011 Chemical Reactions at Surfaces Gordon Research Conference

    SciTech Connect

    Peter Stair

    2011-02-11

    The Gordon Research Conference on Chemical Reactions at Surfaces is dedicated to promoting and advancing the fundamental science of interfacial chemistry and physics by providing surface scientists with the foremost venue for presentation and discussion of research occurring at the frontiers of their fields.

  8. Chemical reaction mediated self-assembly of PTCDA into nanofibers.

    PubMed

    Sayyad, Arshad S; Balakrishnan, Kaushik; Ajayan, Pulickel M

    2011-09-01

    Uniform and crystalline nanofibers of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), an insoluble organic semiconducting molecule, have been achieved by self-assembling the molecules using chemical reaction mediated conversion of an appropriately designed soluble precursor, perylene tetracarboxylic acid (PTCA) using carbodiimide chemistry. PMID:21814688

  9. Mapping students' ideas about chemical reactions at different educational levels

    NASA Astrophysics Data System (ADS)

    Yan, Fan

    Understanding chemical reactions is crucial in learning chemistry at all educational levels. Nevertheless, research in science education has revealed that many students struggle to understand chemical processes. Improving teaching and learning about chemical reactions demands that we develop a clearer understanding of student reasoning in this area and of how this reasoning evolves with training in the discipline. Thus, we have carried out a qualitative study using semi-structured interviews as the main data collection tool to explore students reasoning about reaction mechanism and causality. The participants of this study included students at different levels of training in chemistry: general chemistry students (n=22), organic chemistry students (n=16), first year graduate students (n=13) and Ph.D. candidates (n=14). We identified major conceptual modes along critical dimensions of analysis, and illustrated common ways of reasoning using typical cases. Main findings indicate that although significant progress is observed in student reasoning in some areas, major conceptual difficulties seem to persist even at the more advanced educational levels. In addition, our findings suggest that students struggle to integrate important concepts when thinking about mechanism and causality in chemical reactions. The results of our study are relevant to chemistry educators interested in learning progressions, assessment, and conceptual development.

  10. Active Chemical Thermodynamics promoted by activity of cortical actin

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Bhaswati; Chaudhuri, Abhishek; Gowrishankar, Kripa; Rao, Madan

    2011-03-01

    The spatial distribution and dynamics of formation and breakup of the nanoclusters of cell surface proteins is controlled by the active remodeling dynamics of the underlying cortical actin. To explain these observations, we have proposed a novel mechanism of nanoclustering, involving the transient binding to and advection along constitutively occuring ``asters'' of cortical actin. We study the consequences of such active actin-based clustering, in the context of chemical reactions involving conformational changes of cell surface proteins. We find that the active remodeling of cortical actin, can give rise to a dramatic increase in efficiency and extent of conformational spread, even at low levels of expression at the cell surface. We define a activity temperature (τa) arising due to actin activities which can be used to describe chemical thermodynamics of the system. We plot TTT (time-temparature-transformation) curves and compute the Arrhenius factors which depend on τa . With this, the active asters can be treated as enzymes whose enzymatic reaction rate can be related to the activity.

  11. Theoretical Chemical Dynamics Studies of Elementary Combustion Reactions

    SciTech Connect

    Donald L. Thompson

    2006-04-27

    The purpose of this research was the development and application of theoretical/computational methods for accurate predictions of the rates of reactions in many-atom systems. The specific aim was to improve computational methods for studying the chemical dynamics of large, complex systems and to obtain a better understanding of the chemical reactions involving large polyatomic molecules and radicals. The focus was on the development an automatic potential energy surface generation algorithm that takes advantage of high-performance computing environments; e.g., software for rate calculations that direct quantum chemistry codes to produce ab initio predictions of reaction rates and related dynamics quantities. Specifically, we developed interpolative moving least-squares (IMLS) methods for accurately fitting ab initio energies to provide global PESs and for use in direct dynamics simulations.

  12. CONSIDERATION OF REACTION INTERMEDIATES IN STRUCTURE-ACTIVITY RELATIONSHIPS: A KEY TO UNDERSTANDING AND PREDICTION

    EPA Science Inventory

    Consideration of Reaction Intermediates in Structure- Activity Relationships: A Key to Understanding and Prediction

    A structure-activity relationship (SAR) represents an empirical means for generalizing chemical information relative to biological activity, and is frequent...

  13. Beating polymer gels coupled with a nonlinear chemical reaction

    NASA Astrophysics Data System (ADS)

    Yoshida, Ryo; Kokufuta, Etsuo; Yamaguchi, Tomohiko

    1999-06-01

    We report on a beating polymer gel that exhibits periodical volume changes (swelling and deswelling) in a closed solution without external stimuli, like autonomous heartbeat. The mechanical oscillation is driven by the chemical energy of the oscillatory Belousov-Zhabotinsky (BZ) reaction. The gel is a copolymer gel of N-isopropylacrylamide (NIPAAm) in which ruthenium tris(2,2'-bipyridine) [Ru(bpy)3], known as a catalyst of the BZ reaction, is covalently bonded to the polymer chain. The poly[NIPAAm-co-Ru(bpy)3] gel provides an open system where the BZ reaction proceeds, when immersed in an aqueous solution containing the reactants of the BZ reaction (with the exception of a catalyst). The chemical oscillation in the BZ reaction generates the periodical changes of the charge of Ru(bpy)3 in the gel network between reduced [Ru(II)] and oxidized [Ru(III)] states. The gel swells at the oxidized state because the hydrophilicity of the polymer chains increases, while at the reduced state the gel deswells. Thus, the chemical energy is transduced into the mechanical energy to drive the polymer gel oscillation with a period of about 5 min, depending on the composition of the surrounding solution. The oscillation mode of the gel depends on its size scaled by the wavelength of the BZ pattern. Sufficiently small bead-like gels demonstrate isotropic beating. A large rectangular gel shows mechanical oscillation with a peristaltic motion coupled with the propagating chemical waves. The dynamic behavior of the chemical and mechanical oscillations have been analyzed with a model simulation.

  14. Identification of dynamical models of chemical reaction networks

    NASA Astrophysics Data System (ADS)

    Haber, Aleksandar

    Current first-principles models of complex chemistry, such as combustion reaction networks, often give inaccurate predictions of the time variation of chemical species. Moreover, the high complexity and dimensionality of these models render them impractical for real-time prediction and control of chemical network processes. These limitations have motivated us to search for an alternative paradigm that is able to both identify the correct model from the observed dynamical data and reduce complexity while preserving the underlying network structure. In this talk, I will present one such modeling paradigm under the scenarios of complete and incomplete observability of the dynamics. The proposed approach is applicable to combustion chemistry and a range of other chemical reaction networks. Research supported by ARO Grant W911NF-14-1-0359.

  15. Enhancement of activated sludge dewatering performance by combined composite enzymatic lysis and chemical re-flocculation with inorganic coagulants: Kinetics of enzymatic reaction and re-flocculation morphology.

    PubMed

    Chen, Zhan; Zhang, Weijun; Wang, Dongsheng; Ma, Teng; Bai, Runying

    2015-10-15

    The feasibility of combined process of composite enzymatic treatment and chemical flocculation with inorganic salt coagulants was investigated in this study. The evolution of extracellular polymeric substances (EPS) distribution, composition and morphological properties were analyzed to unravel the sludge conditioning mechanism. It was found that sludge filtration performance was deteriorated due to release of a large amount of biopolymers after enzymatic treatment. The change in EPS followed the pseudo-first-order kinetic equation well under enzymatic treatment. The feeding modes of enzymes had a significant influence on sludge lysis efficiency under compound enzymes treatment. Alpha amylase + protease was more effective in solubilization than other two addition modes (protease + α-amylase or simultaneous addition). The sludge floc re-formed and macromolecule biopolymers were effectively removed through coagulation process. At the same time, both of filtration rate and cake solid content of sludge treated with enzymes were improved with increasing dosage of coagulants, and ferric iron (FeCl3) had better performance in sludge dewaterability enhancement than polyaluminium chloride (PACl). In addition, sludge filtration property was slightly deteriorated, while the cake moisture reduction was favored at the optimal dosage of inorganic coagulants. PMID:26196306

  16. Development of a chemical oxygen - iodine laser with production of atomic iodine in a chemical reaction

    SciTech Connect

    Censky, M; Spalek, O; Jirasek, V; Kodymova, J; Jakubec, I

    2009-11-30

    The alternative method of atomic iodine generation for a chemical oxygen - iodine laser (COIL) in chemical reactions with gaseous reactants is investigated experimentally. The influence of the configuration of iodine atom injection into the laser cavity on the efficiency of the atomic iodine generation and small-signal gain is studied. (lasers)

  17. Students' Understandings of Chemical Bonds and the Energetics of Chemical Reactions.

    ERIC Educational Resources Information Center

    Boo, Hong Kwen

    1998-01-01

    Investigates Grade 12 students' understandings of the nature of chemical bonds and the energetics elicited across five familiar chemical reactions following a course of instruction. Discusses the many ways in which students can misconstruct concepts and principles. Contains 63 references. (DDR)

  18. Chemical research on red pigments after adverse reactions to tattoo.

    PubMed

    Tammaro, A; Toniolo, C; Giulianelli, V; Serafini, M; Persechino, S

    2016-03-01

    Currently, the incidence of tattooing is on the rise compared to the past, especially among adolescents, and it leads to the urgency of monitoring the security status of tattooing centers, as well as to inform people about the risks of tattoo practice. In our clinical experience, 20% of tattooed patients presented adverse reactions, like allergic contact dermatitis, psoriasis with Koebner's phenomena and granulomatous reactions, with the latter most prevalent and most often related to red pigment. Adverse reactions to tattoo pigments, especially the red one, are well known and described in literature. Great attention has to be focused on the pigments used, especially for the presence of new substances, often not well known. For this reason, we decided to perform a study on 12 samples of red tattoo ink, obtained by patients affected by different cutaneous reactions in the site of tattoo, to analyze their chemical composition. PMID:26934738

  19. A Light-Activated Reaction Manifold.

    PubMed

    Hiltebrandt, Kai; Elies, Katharina; D'hooge, Dagmar R; Blinco, James P; Barner-Kowollik, Christopher

    2016-06-01

    We introduce an efficient reaction manifold where the rate of a thermally induced ligation can be controlled by a photonic field via two competing reaction channels. The effectiveness of the reaction manifold is evidenced by following the transformations of macromolecular chain termini via high-resolution mass spectrometry and subsequently by selective block copolymer formation. The light-controlled reaction manifold consists of a so-called o-quinodimethane species, a photocaged diene, that reacts in the presence of light with suitable enes in a Diels-Alder reaction and undergoes a transformation into imines with amines in the absence of light. The chemical selectivity of the manifold is controlled by the amount of ene present in the reaction and can be adjusted from 100% imine formation (0% photo product) to 5% imine formation (95% photo product). The reported light-controlled reaction manifold is highly attractive because a simple external field is used to switch the selectivity of specific reaction channels. PMID:27151599

  20. Internal Active Thermal Control System (IATCS) Sodium Bicarbonate/Carbonate Buffer in an Open Aqueous Carbon Dioxide System and Corollary Electrochemical/Chemical Reactions Relative to System pH Changes

    NASA Technical Reports Server (NTRS)

    Stegman, Thomas W.; Wilson, Mark E.; Glasscock, Brad; Holt, Mike

    2014-01-01

    The International Space Station (ISS) Internal Active Thermal Control System (IATCS) experienced a number of chemical changes driven by system absorption of CO2 which altered the coolant’s pH. The natural effects of the decrease in pH from approximately 9.2 to less than 8.4 had immediate consequences on system corrosion rates and corrosion product interactions with specified coolant constituents. The alkalinity of the system was increased through the development and implementation of a carbonate/bicarbonate buffer that would increase coolant pH to 9.0 – 10.0 and maintain pH above 9.0 in the presence of ISS cabin concentrations of CO2 up to twenty times higher than ground concentrations. This paper defines how a carbonate/bicarbonate buffer works in an open carbon dioxide system and summarizes the analyses performed on the buffer for safe and effective application in the on-orbit system. The importance of the relationship between the cabin environment and the IATCS is demonstrated as the dominant factor in understanding the system chemistry and pH trends before and after addition of the carbonate/bicarbonate buffer. The paper also documents the corollary electrochemical and chemical reactions the system has experienced and the rationale for remediation of these effects with the addition of the carbonate/bicarbonate buffer.

  1. Photo-induced chemical reaction of trans-resveratrol.

    PubMed

    Zhao, Yue; Shi, Meng; Ye, Jian-Hui; Zheng, Xin-Qiang; Lu, Jian-Liang; Liang, Yue-Rong

    2015-03-15

    Photo-induced chemical reaction of trans-resveratrol has been studied. UV B, liquid state and sufficient exposure time are essential conditions to the photochemical change of trans-resveratrol. Three principal compounds, cis-resveratrol, 2,4,6-phenanthrenetriol and 2-(4-hydroxyphenyl)-5,6-benzofurandione, were successively generated in the reaction solution of trans-resveratrol (0.25 mM, 100% ethanol) under 100 μW cm(-2) UV B radiation for 4h. cis-Resveratrol, originated from isomerization of trans-resveratrol, resulted in 2,4,6-phenanthrenetriol through photocyclisation reaction meanwhile loss of 2 H. 2,4,6-Phenanthrenetriol played a role of photosensitizer producing singlet oxygen in the reaction pathway. The singlet oxygen triggered [4+2] cycloaddition reaction of trans-resveratrol, and then resulted in the generation of 2-(4-hydroxyphenyl)-5,6-benzofurandione through photorearrangement and oxidation reaction. The singlet oxygen reaction was closely related to the substrate concentration of trans-resveratrol in solution. PMID:25308653

  2. Dealing with chemical reaction pathways and electronic excitations in molecular systems via renormalized and active-space coupled-cluster methods

    SciTech Connect

    Piecuch, Piotr; Li, Wei; Lutz, Jesse J.; Włoch, Marta; Gour, Jeffrey R.

    2015-01-22

    Coupled-cluster (CC) theory has become the de facto standard for high-accuracy molecular calculations, but the widely used CC and equation-of-motion (EOM) CC approaches, such as CCSD(T) and EOMCCSD, have difficulties with capturing stronger electron correlations that characterize multi-reference molecular problems. This presentation demonstrates that many of these difficulties can be addressed by exploiting the completely renormalized (CR) CC and EOMCC approaches, such as CR-CC(2,3), CR-EOMCCSD(T), and CR-EOMCC(2,3), and their local correlation counterparts applicable to systems with hundreds of atoms, and the active-space CC/EOMCC approaches, such as CCSDt and EOMCCSDt, and their extensions to valence systems via the electron-attached and ionized formalisms.

  3. A chemical reaction network solver for the astrophysics code NIRVANA

    NASA Astrophysics Data System (ADS)

    Ziegler, U.

    2016-02-01

    Context. Chemistry often plays an important role in astrophysical gases. It regulates thermal properties by changing species abundances and via ionization processes. This way, time-dependent cooling mechanisms and other chemistry-related energy sources can have a profound influence on the dynamical evolution of an astrophysical system. Modeling those effects with the underlying chemical kinetics in realistic magneto-gasdynamical simulations provide the basis for a better link to observations. Aims: The present work describes the implementation of a chemical reaction network solver into the magneto-gasdynamical code NIRVANA. For this purpose a multispecies structure is installed, and a new module for evolving the rate equations of chemical kinetics is developed and coupled to the dynamical part of the code. A small chemical network for a hydrogen-helium plasma was constructed including associated thermal processes which is used in test problems. Methods: Evolving a chemical network within time-dependent simulations requires the additional solution of a set of coupled advection-reaction equations for species and gas temperature. Second-order Strang-splitting is used to separate the advection part from the reaction part. The ordinary differential equation (ODE) system representing the reaction part is solved with a fourth-order generalized Runge-Kutta method applicable for stiff systems inherent to astrochemistry. Results: A series of tests was performed in order to check the correctness of numerical and technical implementation. Tests include well-known stiff ODE problems from the mathematical literature in order to confirm accuracy properties of the solver used as well as problems combining gasdynamics and chemistry. Overall, very satisfactory results are achieved. Conclusions: The NIRVANA code is now ready to handle astrochemical processes in time-dependent simulations. An easy-to-use interface allows implementation of complex networks including thermal processes

  4. Investigation of chemical reactions in solution using API-MS

    NASA Astrophysics Data System (ADS)

    Santos, Leonardo Silva; Knaack, Larissa; Metzger, Jürgen O.

    2005-11-01

    The general concepts, advantages, and applications of on-line and off-line screening to organic reaction mechanistic studies applying API-MS are reviewed. An overview is presented of the development and the present stage of connected microreactors to API ion-sources. Examples of the successful application of API in revealing, elucidating, and helping to consolidate several proposed mechanisms of organic reactions are summarized. Finally, a variety of outstanding features and advantages that make API-MS the most suitable tool for the fast screening of intermediates directly from solution, and the exceptional gains in chemical information for organic chemists are also emphasized.

  5. Laser studies of chemical reaction and collision processes

    SciTech Connect

    Flynn, G.

    1993-12-01

    This work has concentrated on several interrelated projects in the area of laser photochemistry and photophysics which impinge on a variety of questions in combustion chemistry and general chemical kinetics. Infrared diode laser probes of the quenching of molecules with {open_quotes}chemically significant{close_quotes} amounts of energy in which the energy transferred to the quencher has, for the first time, been separated into its vibrational, rotational, and translational components. Probes of quantum state distributions and velocity profiles for atomic fragments produced in photodissociation reactions have been explored for iodine chloride.

  6. Chemical Accelerator Studies of Ion-Molecule Reaction Dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Jingfeng

    1995-01-01

    A chemical accelerator instrument has been used to study the dynamics of ion-molecule reaction processes in the gas phase. Specifically, the following reactions are investigated: eqalign{rm CO^+ + H_2&longrightarrowrm HCO ^+ + Hcrrm CO^+ + D_2& longrightarrowrm DCO^+ + Dcrrm CO^+ + HDlongrightarrow &rm HCO ^+ (DCO^+) + D (H)cr} . Both angular and velocity distributions of reactively scattered product ions are measured, as well as reaction cross sections as a function of reactant relative translational energy. Formation of HCO^+ ion from rm CO^+ + H_2 over the collision energy range from 0.35 to 3.02 eV (c.m.) follows closely the predictions of the spectator stripping model, and results in highly excited HCO^+ product ions. This reaction is found to proceed via a direct impulsive mechanism, without any long-lived intermediate complexes involved. The reaction cross section is proportional to E_{T} ^{-1/2}, where E_ {rm T} is the reactant ion relative translational energy. Deuterium atom transfer from D_2 to CO^+ over the collision energy range from 0.41 to 5.14 eV (c.m.) occurs also in a direct process. Reaction cross section is proportional to rm E_{T}^{ -1/2}. The results are very similar to those of the reaction rm CO^+ + H_2. The reaction CO^+ + HD has two product channels, leading to the formation of HCO ^+ and DCO^+, respectively. The reaction is studied over the energy range from 0.88 to 5.00 eV (c.m.). It is found that the production of HCO^+ is consistently the slightly favored reaction channel, which is attributed to the orientation isotope effect. The translational exoergicity for both reaction channels follows closely the prediction of spectator stripping model. Product DCO^+ ions are in higher excited states than HCO ^+ ions. Product velocity distribution contour maps indicate that, at the lowest energies, the DCO ^+ production channel has a longer reaction duration than the HCO^+ production channel, but both reaction channels are dominated by direct

  7. Crossed molecular beam studies of atmospheric chemical reaction dynamics

    SciTech Connect

    Zhang, Jingsong

    1993-04-01

    The dynamics of several elementary chemical reactions that are important in atmospheric chemistry are investigated. The reactive scattering of ground state chlorine or bromine atoms with ozone molecules and ground state chlorine atoms with nitrogen dioxide molecules is studied using a crossed molecular beams apparatus with a rotatable mass spectrometer detector. The Cl + O{sub 3} {yields} ClO + O{sub 2} reaction has been studied at four collision energies ranging from 6 kcal/mole to 32 kcal/mole. The derived product center-of-mass angular and translational energy distributions show that the reaction has a direct reaction mechanism and that there is a strong repulsion on the exit channel. The ClO product is sideways and forward scattered with respect to the Cl atom, and the translational energy release is large. The Cl atom is most likely to attack the terminal oxygen atom of the ozone molecule. The Br + O{sub 3} {yields} ClO + O{sub 2} reaction has been studied at five collision energies ranging from 5 kcal/mole to 26 kcal/mole. The derived product center-of-mass angular and translational energy distributions are quite similar to those in the Cl + O{sub 3} reaction. The Br + O{sub 3} reaction has a direct reaction mechanism similar to that of the Cl + O{sub 3} reaction. The electronic structure of the ozone molecule seems to play the central role in determining the reaction mechanism in atomic radical reactions with the ozone molecule. The Cl + NO{sub 2} {yields} ClO + NO reaction has been studied at three collision energies ranging from 10.6 kcal/mole to 22.4 kcal/mole. The center-of-mass angular distribution has some forward-backward symmetry, and the product translational energy release is quite large. The reaction proceeds through a short-lived complex whose lifetime is less than one rotational period. The experimental results seem to show that the Cl atom mainly attacks the oxygen atom instead of the nitrogen atom of the NO{sub 2} molecule.

  8. Chemical reaction fouling model for single-phase heat transfer

    SciTech Connect

    Panchal, C.B.; Watkinson, A.P.

    1993-08-01

    A fouling model was developed on the premise that the chemical reaction for generation of precursor can take place in the bulk fluid, in the thermalboundary layer, or at the fluid/wall interface, depending upon the interactive effects of flu id dynamics, heat and mass transfer, and the controlling chemical reaction. The analysis was used to examine the experimental data for fouling deposition of polyperoxides produced by autoxidation of indene in kerosene. The effects of fluid and wall temperatures for two flow geometries were analyzed. The results showed that the relative effects of physical parameters on the fouling rate would differ for the three fouling mechanisms; therefore, it is important to identify the controlling mechanism in applying the closed-flow-loop data to industrial conditions.

  9. Implementation of a vibrationally linked chemical reaction model for DSMC

    NASA Technical Reports Server (NTRS)

    Carlson, A. B.; Bird, Graeme A.

    1994-01-01

    A new procedure closely linking dissociation and exchange reactions in air to the vibrational levels of the diatomic molecules has been implemented in both one- and two-dimensional versions of Direct Simulation Monte Carlo (DSMC) programs. The previous modeling of chemical reactions with DSMC was based on the continuum reaction rates for the various possible reactions. The new method is more closely related to the actual physics of dissociation and is more appropriate to the particle nature of DSMC. Two cases are presented: the relaxation to equilibrium of undissociated air initially at 10,000 K, and the axisymmetric calculation of shuttle forebody heating during reentry at 92.35 km and 7500 m/s. Although reaction rates are not used in determining the dissociations or exchange reactions, the new method produces rates which agree astonishingly well with the published rates derived from experiment. The results for gas properties and surface properties also agree well with the results produced by earlier DSMC models, equilibrium air calculations, and experiment.

  10. Solution of Chemical Master Equations for Nonlinear Stochastic Reaction Networks

    PubMed Central

    Smadbeck, Patrick; Kaznessis, Yiannis N.

    2014-01-01

    Stochasticity in the dynamics of small reacting systems requires discrete-probabilistic models of reaction kinetics instead of traditional continuous-deterministic ones. The master probability equation is a complete model of randomly evolving molecular populations. Because of its ambitious character, the master equation remained unsolved for all but the simplest of molecular interaction networks. With the first solution of chemical master equations, a wide range of experimental observations of small-system interactions may be mathematically conceptualized. PMID:25215268

  11. Stochastic Generator of Chemical Structure. 3. Reaction Network Generation

    SciTech Connect

    FAULON,JEAN-LOUP; SAULT,ALLEN G.

    2000-07-15

    A new method to generate chemical reaction network is proposed. The particularity of the method is that network generation and mechanism reduction are performed simultaneously using sampling techniques. Our method is tested for hydrocarbon thermal cracking. Results and theoretical arguments demonstrate that our method scales in polynomial time while other deterministic network generator scale in exponential time. This finding offers the possibility to investigate complex reacting systems such as those studied in petroleum refining and combustion.

  12. Magnetic Resonance Current Density Imaging of Chemical Processes and Reactions

    NASA Astrophysics Data System (ADS)

    Beravs, Katarina; Demš Ar, Alojz; Demsar, Franci

    1999-03-01

    Electric current density imaging was used to image conductivity changes that occur as a chemical process or reaction progresses. Feasibility was assessed in two models representing the dissolving of an ionic solid and the formation of an insoluble precipitate. In both models, temporal and spatial changes in ionic concentrations were obtained on current density images. As expected, the images showed significant signal enhancement along the ionization/dissociation sites.

  13. Separation of the isotopes of boron by chemical exchange reactions

    DOEpatents

    McCandless, F.P.; Herbst, R.S.

    1995-05-30

    The isotopes of boron, {sup 10}B and {sup 11}B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF{sub 3} and a liquid BF{sub 3} donor molecular addition complex formed between BF{sub 3} gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone. 1 Fig.

  14. Separation of the isotopes of boron by chemical exchange reactions

    DOEpatents

    McCandless, Frank P.; Herbst, Ronald S.

    1995-01-01

    The isotopes of boron, .sup.10 B and .sup.11 B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF.sub.3 and a liquid BF.sub.3 . donor molecular addition complex formed between BF.sub.3 gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone.

  15. Computational Study on Chemical Reaction Mechanisms of Octafluorocarbon Molecules

    NASA Astrophysics Data System (ADS)

    Choi, Heechol; Song, Mi-Young; Yoon, Jung-Sik; Plasma Fundamental Technology Research Team

    2015-09-01

    Saturated or unsaturated octafluorocarbons(OFCs) have been used extensively in dry etching processes due to their relatively low global warming potential and their high CF2 radical levels in commercial plasma treatments. Many experimental and theoretical studies of these species have been performed for useful information about physical and chemical properties of OFCs. However, direct experimental studies of these chemicals are difficult because of their high reactivity in plasma state and high-level theoretical approaches such as G3(MP2) and CCSD(T)/CBS need huge computational cost. Recently, it has been shown that the ωB97X-D/aVTZ method is strongly recommended as the best practical density functional theory(DFT) for rigorous and extensive studies of OFCs because of its high performance and reliability for van der Waals interactions. All the feasible isomerization and dissociation paths of OFCs were investigated at ωB97X-D/aVTZ and rate constants of their chemical reactions were computed by using variational transition-state theory(VTST) for a deep insight into OFCs' reaction mechanisms. Fates and roles of OFCs and their fragments in plasma phases could be clearly explained based on the obtained reaction mechanisms. This work was supported by R&D Program of ``Plasma Convergence & Fundamental Research'' through NFRI of Korea funded by the Government funds.

  16. Exploring complex chemical reactions by ab-initio simulation

    NASA Astrophysics Data System (ADS)

    Parrinello, Michele

    1998-03-01

    Recent progress in the ab-initio molecular dynamics method and the power of parallel computing, allow the detailed study of complex chemical reaction of great industrial relevance. We illustrate this unprecedented capability by investigating the second generation Ziegler-Natta catalytic process. In this inhomogeneous catalyst, a polymerization reaction is induced by TiCl4 molecules deposited on an MgCl2 solid support. A density functional based ab-initio molecular dynamics calculation conducted with a minimum of initial assumption allows to understand the nature of the catalytic center and to determine the reaction path with the associated free energy barrier. Furthermore our calculation can explain in a nontrivial way the stereo-selectivity of the process.

  17. Laser-initiated chemical reactions in carbon suspensions.

    SciTech Connect

    McGrath, T. E.; Diebold, G. J.; Bartels, D. M.; Crowell, R. A.; Chemistry; Brown Univ.

    2002-10-31

    We report on laser-initiated chemical reactions in colloidal carbon suspensions. Irradiation of carbon particles ranging in size from 13 to 75 nm in diameter suspended in water, toluene, and benzene with high power nanosecond, picosecond, and femtosecond laser pulses leads to the formation of a number of gaseous hydrocarbons as well as a series of liquid-phase products. In the product gas above irradiated carbon suspensions in water, H{sub 2} and CO, the main reaction products of the carbon-steam reaction, and numerous hydrocarbons ranging from C{sub 1}-C{sub 4} were detected. Irradiation of particulate carbon in toluene and benzene gave H{sub 2} as the main gas product with small amounts of C{sub 1}-C{sub 3} hydrocarbons. Bibenzyl and biphenyl were found as the main liquid products produced in toluene and benzene suspensions, respectively, but with numerous polycyclic aromatic hydrocarbons in smaller concentrations. The amount of products generated by pulsed laser irradiation is shown to depend on particle size and concentration, as well as the laser fluence and pulse width. The chemical reactions reported take place under conditions characterized by extremely high temperatures and pressures of short duration.

  18. Control of Ultracold Chemical Reactions Through Conical Intersections

    NASA Astrophysics Data System (ADS)

    Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana

    2016-05-01

    The pioneering work on obtaining a quantum degenerate sample of ground state KRb molecules is one of the great successes in ultracold physics. The early experimental and theoretical investigations to describe quantum chemical reactions of ultracold KRb molecules with residual ultracold K atoms have been based on probing their inelastic collision loss rates. A natural progression towards control of molecular reactivity would be to study the potential landscape of the collisional complex with the inherited degeneracies and intersections between two lowest electronic states. The topology of these surfaces provide us with a qualitative understanding of the reaction mechanism. Here we study how the ability to prepare unique initial states combined with the presence of conical intersections can be used to control the outcome of ultracold chemical reactions of alkali-metal atoms and molecules. We locate and determine properties of conical intersections for the KRbK molecular system and determine signatures of non-adiabatic passage through the conical intersection to distinguish between relaxation and reaction pathways. This work is supported by the ARO-MURI and NSF Grants.

  19. Chemical dynamics in the gas phase: Time-dependent quantum mechanics of chemical reactions

    SciTech Connect

    Gray, S.K.

    1993-12-01

    A major goal of this research is to obtain an understanding of the molecular reaction dynamics of three and four atom chemical reactions using numerically accurate quantum dynamics. This work involves: (i) the development and/or improvement of accurate quantum mechanical methods for the calculation and analysis of the properties of chemical reactions (e.g., rate constants and product distributions), and (ii) the determination of accurate dynamical results for selected chemical systems, which allow one to compare directly with experiment, determine the reliability of the underlying potential energy surfaces, and test the validity of approximate theories. This research emphasizes the use of recently developed time-dependent quantum mechanical methods, i.e. wave packet methods.

  20. [Recent results in research on oscillatory chemical reactions].

    PubMed

    Poros, Eszter; Kurin-Csörgei, Krisztina

    2014-01-01

    The mechanisms of the complicated periodical phenomenas in the nature (e.g. hearth beat, sleep cycle, circadian rhythms, etc) could be understood with using the laws of nonlinear chemical systems. In this article the newest result in the research of the subfield of nonlinear chemical dynamics aimed at constructing oscillatory chemical reactions, which are novel either in composition or in configuration, are presented. In the introductory part the concept of chemical periodicity is defined, then the forms as it can appear in time and space and the methods of their study are discussed. Detailed description of the experimental work that has resulted in two significant discoveries is provided. A method was developed to design pH-oscillators which are capable of operating under close conditions. The batch pH-oscillators are more convenient to use in some proposed applications than the equivalent CSTR variant. A redox oscillator that is new in composition was found. The permanganate oxidation of some amino acids was shown to take place according to oscillatory kinetics in a narrow range of the experimental parameters. The KMnO4 - glycine - Na2HPO4 system represents the first example in the family of manganese based oscillators where amino acids is involved. In the conclusion formal analogies between the simple chemical and some more complicated biological oscillatory phenomena are mentioned and the possibility of modeling periodic processes with the use of information gained from the studies of chemical oscillations is pointed out. PMID:25872277

  1. APOLLO: A computer program for the calculation of chemical equilibrium and reaction kinetics of chemical systems

    SciTech Connect

    Nguyen, H.D.

    1991-11-01

    Several of the technologies being evaluated for the treatment of waste material involve chemical reactions. Our example is the in situ vitrification (ISV) process where electrical energy is used to melt soil and waste into a ``glass like`` material that immobilizes and encapsulates any residual waste. During the ISV process, various chemical reactions may occur that produce significant amounts of products which must be contained and treated. The APOLLO program was developed to assist in predicting the composition of the gases that are formed. Although the development of this program was directed toward ISV applications, it should be applicable to other technologies where chemical reactions are of interest. This document presents the mathematical methodology of the APOLLO computer code. APOLLO is a computer code that calculates the products of both equilibrium and kinetic chemical reactions. The current version, written in FORTRAN, is readily adaptable to existing transport programs designed for the analysis of chemically reacting flow systems. Separate subroutines EQREACT and KIREACT for equilibrium ad kinetic chemistry respectively have been developed. A full detailed description of the numerical techniques used, which include both Lagrange multiplies and a third-order integrating scheme is presented. Sample test problems are presented and the results are in excellent agreement with those reported in the literature.

  2. APOLLO: A computer program for the calculation of chemical equilibrium and reaction kinetics of chemical systems

    SciTech Connect

    Nguyen, H.D.

    1991-11-01

    Several of the technologies being evaluated for the treatment of waste material involve chemical reactions. Our example is the in situ vitrification (ISV) process where electrical energy is used to melt soil and waste into a glass like'' material that immobilizes and encapsulates any residual waste. During the ISV process, various chemical reactions may occur that produce significant amounts of products which must be contained and treated. The APOLLO program was developed to assist in predicting the composition of the gases that are formed. Although the development of this program was directed toward ISV applications, it should be applicable to other technologies where chemical reactions are of interest. This document presents the mathematical methodology of the APOLLO computer code. APOLLO is a computer code that calculates the products of both equilibrium and kinetic chemical reactions. The current version, written in FORTRAN, is readily adaptable to existing transport programs designed for the analysis of chemically reacting flow systems. Separate subroutines EQREACT and KIREACT for equilibrium ad kinetic chemistry respectively have been developed. A full detailed description of the numerical techniques used, which include both Lagrange multiplies and a third-order integrating scheme is presented. Sample test problems are presented and the results are in excellent agreement with those reported in the literature.

  3. Chemical reactions occurring during direct solar reduction of CO2.

    PubMed

    Lyma, J L; Jensen, R J

    2001-09-28

    At high temperatures carbon dioxide may absorb solar radiation and react to form carbon monoxide and molecular oxygen. The CO, so produced, may be converted by well-established means to a combustible fuel, such as methanol. We intend to make a future demonstration of the solar reduction of CO2 based on these processes. This paper, however, addresses only the problem of preserving, or even enhancing, the initial photolytic CO by quenching the hot gas with colder H2O or CO2. We present model calculations with a reaction mechanism used extensively in other calculations. If a CO2 gas stream is heated and photolyzed by intense solar radiation and then allowed to cool slowly, it will react back to the initial CO2 by a series of elementary chemical reactions. The back reaction to CO2 can be terminated with the rapid addition of CO2, water, or a mixture. Calculations show that a three-fold quench with pure CO2 will stop the reactions and preserve over 90% of the initial photolytic CO. We find that water has one of two effects. It can either increase the CO level, or it can catalyze the recombination of O and CO to CO2. The gas temperature is the determining factor. If the quench gas is not sufficient to keep the temperature below approximately 1100 K, a chain-branching reaction dominates and the reaction to CO2 occurs. If the temperature stays below that level a chain terminating reaction dominates and the CO is increased. The former case occurs below approximately a fourfold quench with a water/CO2 mixture. The later case occurs when the quench is greater than fourfold. We conclude that CO2, H2O, or a mixture may quench the hot gas stream photolyzed by solar radiation and preserve the photolytic CO. PMID:11589409

  4. Compare and contrast the reaction coordinate diagrams for chemical reactions and cytoskeletal force generators.

    PubMed

    Scholey, Jonathan M

    2013-02-01

    Reaction coordinate diagrams are used to relate the free energy changes that occur during the progress of chemical processes to the rate and equilibrium constants of the process. Here I briefly review the application of these diagrams to the thermodynamics and kinetics of the generation of force and motion by cytoskeletal motors and polymer ratchets as they mediate intracellular transport, organelle dynamics, cell locomotion, and cell division. To provide a familiar biochemical context for discussing these subcellular force generators, I first review the application of reaction coordinate diagrams to the mechanisms of simple chemical and enzyme-catalyzed reactions. My description of reaction coordinate diagrams of motors and polymer ratchets is simplified relative to the rigorous biophysical treatment found in many of the references that I use and cite, but I hope that the essay provides a valuable qualitative representation of the physical chemical parameters that underlie the generation of force and motility at molecular scales. In any case, I have found that this approach represents a useful interdisciplinary framework for understanding, researching, and teaching the basic molecular mechanisms by which motors contribute to fundamental cell biological processes. PMID:23408787

  5. Computational analysis of the mechanism of chemical reactions in terms of reaction phases: hidden intermediates and hidden transition States.

    PubMed

    Kraka, Elfi; Cremer, Dieter

    2010-05-18

    Computational approaches to understanding chemical reaction mechanisms generally begin by establishing the relative energies of the starting materials, transition state, and products, that is, the stationary points on the potential energy surface of the reaction complex. Examining the intervening species via the intrinsic reaction coordinate (IRC) offers further insight into the fate of the reactants by delineating, step-by-step, the energetics involved along the reaction path between the stationary states. For a detailed analysis of the mechanism and dynamics of a chemical reaction, the reaction path Hamiltonian (RPH) and the united reaction valley approach (URVA) are an efficient combination. The chemical conversion of the reaction complex is reflected by the changes in the reaction path direction t(s) and reaction path curvature k(s), both expressed as a function of the path length s. This information can be used to partition the reaction path, and by this the reaction mechanism, of a chemical reaction into reaction phases describing chemically relevant changes of the reaction complex: (i) a contact phase characterized by van der Waals interactions, (ii) a preparation phase, in which the reactants prepare for the chemical processes, (iii) one or more transition state phases, in which the chemical processes of bond cleavage and bond formation take place, (iv) a product adjustment phase, and (v) a separation phase. In this Account, we examine mechanistic analysis with URVA in detail, focusing on recent theoretical insights (with a variety of reaction types) from our laboratories. Through the utilization of the concept of localized adiabatic vibrational modes that are associated with the internal coordinates, q(n)(s), of the reaction complex, the chemical character of each reaction phase can be identified via the adiabatic curvature coupling coefficients, A(n,s)(s). These quantities reveal whether a local adiabatic vibrational mode supports (A(n,s) > 0) or resists

  6. Preparation of activated carbon by chemical activation under vacuum.

    PubMed

    Juan, Yang; Ke-Qiang, Qiu

    2009-05-01

    Activated carbons especially used for gaseous adsorption were prepared from Chinesefir sawdust by zinc chloride activation under vacuum condition. The micropore structure, adsorption properties, and surface morphology of activated carbons obtained under atmosphere and vacuum were investigated. The prepared activated carbons were characterized by SEM, FTIR, and nitrogen adsorption. It was found that the structure of the starting material is kept after activation. The activated carbon prepared under vacuum exhibited higher values of the BET surface area (up to 1079 m2 g(-1)) and total pore volume (up to 0.5665 cm3 g(-1)) than those of the activated carbon obtained under atmosphere. This was attributed to the effect of vacuum condition that reduces oxygen in the system and limits the secondary reaction of the organic vapor. The prepared activated carbon has well-developed microstructure and high microporosity. According to the data obtained, Chinese fir sawdust is a suitable precursor for activated carbon preparation. The obtained activated carbon could be used as a low-cost adsorbent with favorable surface properties. Compared with the traditional chemical activation, vacuum condition demands less energy consumption, simultaneity, and biomass-oil is collected in the procedure more conveniently. FTIR analysis showed that heat treatment would result in the aromatization of the carbon structure. PMID:19534162

  7. Studying photonuclear reactions using the activation technique

    NASA Astrophysics Data System (ADS)

    Belyshev, S. S.; Ermakov, A. N.; Ishkhanov, B. S.; Khankin, V. V.; Kurilik, A. S.; Kuznetsov, A. A.; Shvedunov, V. I.; Stopani, K. A.

    2014-05-01

    The experimental setup that is used at the Skobeltsyn Institute of Nuclear Physics of the Moscow State University to study photonuclear reactions using the activation technique is described. The system is based on two modern compact race track microtrons with maximum energy of electrons of up to 55 and 67.7 MeV. A low-background HPGe detector is used to measure the induced gamma activity. The data acquisition and analysis system, used to process the measured spectra, is described. The described system is used to study multiparticle photonuclear reactions and production of nuclei far from the beta stability region.

  8. Chemical reaction network approaches to Biochemical Systems Theory.

    PubMed

    Arceo, Carlene Perpetua P; Jose, Editha C; Marin-Sanguino, Alberto; Mendoza, Eduardo R

    2015-11-01

    This paper provides a framework to represent a Biochemical Systems Theory (BST) model (in either GMA or S-system form) as a chemical reaction network with power law kinetics. Using this representation, some basic properties and the application of recent results of Chemical Reaction Network Theory regarding steady states of such systems are shown. In particular, Injectivity Theory, including network concordance [36] and the Jacobian Determinant Criterion [43], a "Lifting Theorem" for steady states [26] and the comprehensive results of Müller and Regensburger [31] on complex balanced equilibria are discussed. A partial extension of a recent Emulation Theorem of Cardelli for mass action systems [3] is derived for a subclass of power law kinetic systems. However, it is also shown that the GMA and S-system models of human purine metabolism [10] do not display the reactant-determined kinetics assumed by Müller and Regensburger and hence only a subset of BST models can be handled with their approach. Moreover, since the reaction networks underlying many BST models are not weakly reversible, results for non-complex balanced equilibria are also needed. PMID:26363083

  9. Chemical reaction and dust formation studies in laboratory hydrocarbon plasmas.

    NASA Astrophysics Data System (ADS)

    Hippler, Rainer; Majumdar, Abhijit; Thejaswini, H. C.

    Plasma chemical reaction studies with relevance to, e.g., Titan's atmosphere have been per-formed in various laboratory plasmas [1,2]. Chemical reactions in a dielectric barrier discharge at medium pressure of 250-300 mbar have been studied in CH4 /N2 and CH4 /Ar gas mixtures by means of mass spectrometry. The main reaction scheme is production of H2 by fragmenta-tion of CH4 , but also production of larger hydrocarbons like Cn Hm with n up to 10 including formation of different functional CN groups is observed. [1] A. Majumdar and R. Hippler, Development of dielectric barrier discharge plasma processing apparatus for mass spectrometry and thin film deposition, Rev. Sci. Instrum. 78, 075103 (2007) [2] H.T. Do, G. Thieme, M. Frühlich, H. Kersten, and R. Hippler, Ion Molecule and Dust Particle Formation in Ar/CH4 , Ar/C2 H2 and Ar/C3 H6 Radio-frequency Plasmas, Contrib. Plasma Phys. 45, No. 5-6, 378-384 (2005)

  10. The ozone acetylene reaction: concerted or non-concerted reaction mechanism? A quantum chemical investigation

    NASA Astrophysics Data System (ADS)

    Cremer, Dieter; Kraka, Elfi; Crehuet, Ramon; Anglada, Josep; Gräfenstein, Jürgen

    2001-10-01

    The ozone-acetylene reaction is found to proceed via an intermediate van der Waals complex (rather than a biradical), which is the precursor for a concerted symmetry-allowed [4+2] cycloaddition reaction leading to 1,2,3-trioxolene. CCSD(T)/6-311G+(2d, 2p) and CCSD(T)/CBS (complete basis set) calculations predict the ozone-acetylene van der Waals complex to be stable by 2.2 kcal mol -1, the calculated activation enthalpy for the cycloaddition reaction is 9.6 kcal mol -1 and the reaction enthalpy -55.5 kcal mol -1. Calculated kinetic data for the overall reaction ( k=0.8 l mol -1 s-1, A=1.71×10 6 l mol -1 s-1, E a=8.6 kcal mol -1) suggest that there is a need for refined kinetic measurements.

  11. Holistic Metrics for Assessment of the Greenness of Chemical Reactions in the Context of Chemical Education

    ERIC Educational Resources Information Center

    Ribeiro, M. Gabriela T. C.; Machado, Adelio A. S. C.

    2013-01-01

    Two new semiquantitative green chemistry metrics, the green circle and the green matrix, have been developed for quick assessment of the greenness of a chemical reaction or process, even without performing the experiment from a protocol if enough detail is provided in it. The evaluation is based on the 12 principles of green chemistry. The…

  12. Dynamics of self-propelled nanomotors in chemically active media

    NASA Astrophysics Data System (ADS)

    Thakur, Snigdha; Kapral, Raymond

    2011-07-01

    Synthetic chemically powered nanomotors often rely on the environment for their fuel supply. The propulsion properties of such motors can be altered if the environment in which they move is chemically active. The dynamical properties of sphere dimer motors, composed of linked catalytic and noncatalytic monomers, are investigated in active media. Chemical reactions occur at the catalytic monomer and the reactant or product of this reaction is involved in cubic autocatalytic or linear reactions that take place in the bulk phase environment. For these reactions, as the bulk phase reaction rates increase, the motor propulsion velocity decreases. For the cubic autocatalytic reaction, this net effect arises from a competition between a reduction of the nonequilibrium concentration gradient that leads to smaller velocity and the generation of fuel in the environment that tends to increase the motor propulsion. The role played by detailed balance in determining the form of the concentration gradient in the motor vicinity in the active medium is studied. Simulations are carried out using reactive multiparticle collision dynamics and compared with theoretical models to obtain further insight into sphere dimer dynamics in active media.

  13. Chemical characteristics of mineral trioxide aggregate and its hydration reaction

    PubMed Central

    2012-01-01

    Mineral trioxide aggregate (MTA) was developed in early 1990s and has been successfully used for root perforation repair, root end filling, and one-visit apexification. MTA is composed mainly of tricalcium silicate and dicalcium silicate. When MTA is hydrated, calcium silicate hydrate (CSH) and calcium hydroxide is formed. Formed calcium hydroxide interacts with the phosphate ion in body fluid and form amorphous calcium phosphate (ACP) which finally transforms into calcium deficient hydroxyapatite (CDHA). These mineral precipitate were reported to form the MTA-dentin interfacial layer which enhances the sealing ability of MTA. Clinically, the use of zinc oxide euginol (ZOE) based materials may retard the setting of MTA. Also, the use of acids or contact with excessive blood should be avoided before complete set of MTA, because these conditions could adversely affect the hydration reaction of MTA. Further studies on the chemical nature of MTA hydration reaction are needed. PMID:23429542

  14. Chemical characteristics of mineral trioxide aggregate and its hydration reaction.

    PubMed

    Chang, Seok-Woo

    2012-11-01

    Mineral trioxide aggregate (MTA) was developed in early 1990s and has been successfully used for root perforation repair, root end filling, and one-visit apexification. MTA is composed mainly of tricalcium silicate and dicalcium silicate. When MTA is hydrated, calcium silicate hydrate (CSH) and calcium hydroxide is formed. Formed calcium hydroxide interacts with the phosphate ion in body fluid and form amorphous calcium phosphate (ACP) which finally transforms into calcium deficient hydroxyapatite (CDHA). These mineral precipitate were reported to form the MTA-dentin interfacial layer which enhances the sealing ability of MTA. Clinically, the use of zinc oxide euginol (ZOE) based materials may retard the setting of MTA. Also, the use of acids or contact with excessive blood should be avoided before complete set of MTA, because these conditions could adversely affect the hydration reaction of MTA. Further studies on the chemical nature of MTA hydration reaction are needed. PMID:23429542

  15. Nature of the chemical reaction for furfural modified asphalt

    SciTech Connect

    Memon, G.M.; Chollar, B.H.

    1994-12-31

    Three of the most serious problems of asphalt pavements today are rutting, cracking, and susceptibility to moisture damage (stripping). Asphalt manufacturers have been mixing asphalts with polymers to produce polymer-modified asphalts with improved rheological properties. However, the costs for these improved polymer-modified asphalts are almost double that of regular asphalts. FHWA researchers have found that asphalt modified by the chemical, furfural (which is prepared by simple elimination reaction of aldopentoses obtained from oat hulls), exhibited better stripping properties and was less temperature susceptible than the virgin asphalt while costing less than polymer-modified asphalts. This paper discusses the possible structure of the furfural-modified asphalt, data for the virgin and furfural-modified asphalts and their Corbett fractions, data from a model reaction between phenol and furfural, and a possible explanation of this structure based on these data.

  16. Thermal energy storage. [by means of chemical reactions

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.

    1975-01-01

    The principles involved in thermal energy storage by sensible heat, chemical potential energy, and latent heat of fusion are examined for the purpose of evolving selection criteria for material candidates in the low ( 0 C) and high ( 100 C) temperature ranges. The examination identifies some unresolved theoretical considerations and permits a preliminary formulation of an energy storage theory. A number of candidates in the low and high temperature ranges are presented along with a rating of candidates or potential candidates. A few interesting candidates in the 0 to 100 C region are also included. It is concluded that storage by means of reactions whose reversibility can be controlled either by product removal or by catalytic means appear to offer appreciable advantages over storage with reactions whose reversability cannot be controlled. Among such advantages are listed higher heat storage capacities and more favorable options regarding temperatures of collection, storage, and delivery. Among the disadvantages are lower storage efficiencies.

  17. Method for detecting pollutants. [through chemical reactions and heat treatment

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Richards, R. R.; Conway, E. J. (Inventor)

    1976-01-01

    A method is described for detecting and measuring trace amounts of pollutants of the group consisting of ozone, nitrogen dioxide, and carbon monoxide in a gaseous environment. A sample organic solid material that will undergo a chemical reaction with the test pollutant is exposed to the test environment and thereafter, when heated in the temperature range of 100-200 C., undergoes chemiluminescence that is measured and recorded as a function of concentration of the test pollutant. The chemiluminescence of the solid organic material is specific to the pollutant being tested.

  18. Chemical reactions of As complexation by glutathione: an XAFS study

    NASA Astrophysics Data System (ADS)

    Franco, M. W.; Vasconcelos, I. F.; Modolo, L. V.; Barbosa, F. A. R.

    2016-05-01

    In this study, the chemical reactions between As(III) and As(V) with glutathione, which is a target compound in As biochemistry due to its primordial role in As immobilization and intracellular reduction, in various molar ratios were investigated using As K-edge XAFS spectroscopy. Results showed a gradual substitution of As-O bonds in the coordination of aqueous As(III) and As(V) for three As-S bonds in the As+GSH complex. Moreover, the data showed reduction of As(V) to As(III) prior or concomitant to the As+GSH complex formation.

  19. Chemical Kinetic Reaction Mechanisms for Combustion of Hydrocarbon and Other Types of Chemical Fuels

    DOE Data Explorer

    The central feature of the Combustion Chemistry project at LLNL is the development, validation, and application of detailed chemical kinetic reaction mechanisms for the combustion of hydrocarbon and other types of chemical fuels. For the past 30 years, LLNL's Chemical Sciences Division has built hydrocarbon mechanisms for fuels from hydrogen and methane through much larger fuels including heptanes and octanes. Other classes of fuels for which models have been developed include flame suppressants such as halons and organophosphates, and air pollutants such as soot and oxides of nitrogen and sulfur. Reaction mechanisms have been tested and validated extensively through comparisons between computed results and measured data from laboratory experiments (e.g., shock tubes, laminar flames, rapid compression machines, flow reactors, stirred reactors) and from practical systems (e.g., diesel engines, spark-ignition engines, homogeneous charge, compression ignition (HCCI) engines). These kinetic models are used to examine a wide range of combustion systems.

  20. Spatially resolved chemical reaction monitoring using magnetic resonance imaging.

    PubMed

    Feindel, Kirk W

    2016-06-01

    Over the previous three decades, the use of MRI for studying dynamic physical and chemical processes of materials systems has grown significantly. This mini-review provides a brief introduction to relevant principles of MRI, including methods of spatial localization, factors contributing to image contrast, and chemical shift imaging. A few historical examples of (1) H MRI for reaction monitoring will be presented, followed by a review of recent research including (1) H MRI studies of gelation and biofilms, (1) H, (7) Li, and (11) B MRI studies of electrochemical systems, in vivo glucose metabolism monitored with (19) F MRI, and in situ temperature monitoring with (27) Al MRI. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25589470

  1. Inorganic chemically active adsorbents (ICAAs)

    SciTech Connect

    Ally, M.R.; Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  2. Single-collision studies of energy transfer and chemical reaction

    SciTech Connect

    Valentini, J.J.

    1993-12-01

    The research focus in this group is state-to-state dynamics of reaction and energy transfer in collisions of free radicals such as H, OH, and CH{sub 3} with H{sub 2}, alkanes, alcohols and other hydrogen-containing molecules. The motivation for the work is the desire to provide a detailed understanding of the chemical dynamics of prototype reactions that are important in the production and utilization of energy sources, most importantly in combustion. The work is primarily experimental, but with an important and growing theoretical/computational component. The focus of this research program is now on reactions in which at least one of the reactants and one of the products is polyatomic. The objective is to determine how the high dimensionality of the reactants and products differentiates such reactions from atom + diatom reactions of the same kinematics and energetics. The experiments use highly time-resolved laser spectroscopic methods to prepare reactant states and analyze the states of the products on a single-collision time scale. The primary spectroscopic tool for product state analysis is coherent anti-Stokes Raman scattering (CARS) spectroscopy. CARS is used because of its generality and because the extraction of quantum state populations from CARS spectra is straightforward. The combination of the generality and easy analysis of CARS makes possible absolute cross section measurements (both state-to-state and total), a particularly valuable capability for characterizing reactive and inelastic collisions. Reactant free radicals are produced by laser photolysis of appropriate precursors. For reactant vibrational excitation stimulated Raman techniques are being developed and implemented.

  3. Electro-induced manipulations of liquid marbles for chemical reactions

    NASA Astrophysics Data System (ADS)

    Liu, Zhou; Fu, Xiangyu; Binks, Bernard P.; Shum, Ho Cheung; Microfluidics; Soft Matter Group in University of Hong Kong Team; Surfactant; Colloid Group at Hull Team

    2015-11-01

    Liquid marbles, liquid droplets coated by non-wetting particles, have been well demonstrated as a promising template for various droplet-based applications, in particular for chemical reactions. In these applications, controlled manipulations on liquid marbles, including coalescence and mixing, are highly demanded but yet rarely investigated. In this work, we study the coalescence and mixing of liquid marbles controlled by an electric field. We found that a sufficiently large applied voltage can cause the coalescence of two or multiple marbles arranged in a chain. This critical voltage, leading to the consequent coalescence, increases with the number of the liquid marbles. In addition, the imposed electric stress can induce convective liquid flow within the different liquid marbles, resulting in rapid and efficient mixing. The mixing efficiency can be conveniently tuned through varying the applied voltage. Our approach based on electro-assisted manipulations of liquids marbles represents a robust and feasible template for chemical or biomedical reactions involving multiple reagents and steps. We have demonstrated its potential by performing a chemiluminescence to detect the hydrogen peroxide encapsulated in liquid marbles.

  4. Laboratory investigation of chemical reactions relevant in Titan atmosphere

    NASA Astrophysics Data System (ADS)

    Franceschi, P.; Ascenzi, D.; Guella, G.; Scarduelli, G.; Tosi, P.

    Experimental data obtained by the Huygens-Cassini mission demonstrate the chemical complexity of the Titan's atmosphere. To rationalize such a complexity it is important to set-up laboratory investigations of the chemical processes occurring in the energetic processing of hydrocarbon nitrogen mixtures followed by the detailed study of selected key reactions. In laboratory, energetic conditions can be simulated in the plasma treatment of hydrocarbon-nitrogen samples and molecular synthesis as well as polymerization can be observed [1]. In the last months we investigated the dynamics of non equilibrium discharges containing benzene focusing on the growth of complex molecular systems [2]. Our study has been performed combining well established analytical methods for neutral product detection with mass spectrometric analysis of the ion population. In this communication, preliminary results on the molecular growth in nitrogen-hydrocarbon plasma processes will be presented and the dynamics of the C6 H+ + C6 H6 reaction will be discussed. 5 References [1] R. Hodyss, Methods for the analysis of organic chemistry on Titan, Phd Dissertation, California Institute of Technology (2005). [2] G. Guella, D. Ascenzi, P. Franceschi, P. Tosi, Rapid Commun. Mass Spectrom. 19, 1-6 (2005).

  5. Double group transfer reactions: role of activation strain and aromaticity in reaction barriers.

    PubMed

    Fernández, Israel; Bickelhaupt, F Matthias; Cossío, Fernando P

    2009-12-01

    Double group transfer (DGT) reactions, such as the bimolecular automerization of ethane plus ethene, are known to have high reaction barriers despite the fact that their cyclic transition states have a pronounced in-plane aromatic character, as indicated by NMR spectroscopic parameters. To arrive at a way of understanding this somewhat paradoxical and incompletely understood phenomenon of high-energy aromatic transition states, we have explored six archetypal DGT reactions using density functional theory (DFT) at the OLYP/TZ2P level. The main trends in reactivity are rationalized using the activation strain model of chemical reactivity. In this model, the shape of the reaction profile DeltaE(zeta) and the height of the overall reaction barrier DeltaE( not equal)=DeltaE(zeta=zeta(TS)) is interpreted in terms of the strain energy DeltaE(strain)(zeta) associated with deforming the reactants along the reaction coordinate zeta plus the interaction energy DeltaE(int)(zeta) between these deformed reactants: DeltaE(zeta)=DeltaE(strain)(zeta)+DeltaE(int)(zeta). We also use an alternative fragmentation and a valence bond model for analyzing the character of the transition states. PMID:19852009

  6. The quantum dynamics of electronically nonadiabatic chemical reactions

    NASA Technical Reports Server (NTRS)

    Truhlar, Donald G.

    1993-01-01

    Considerable progress was achieved on the quantum mechanical treatment of electronically nonadiabatic collisions involving energy transfer and chemical reaction in the collision of an electronically excited atom with a molecule. In the first step, a new diabatic representation for the coupled potential energy surfaces was created. A two-state diabatic representation was developed which was designed to realistically reproduce the two lowest adiabatic states of the valence bond model and also to have the following three desirable features: (1) it is more economical to evaluate; (2) it is more portable; and (3) all spline fits are replaced by analytic functions. The new representation consists of a set of two coupled diabatic potential energy surfaces plus a coupling surface. It is suitable for dynamics calculations on both the electronic quenching and reaction processes in collisions of Na(3p2p) with H2. The new two-state representation was obtained by a three-step process from a modified eight-state diatomics-in-molecules (DIM) representation of Blais. The second step required the development of new dynamical methods. A formalism was developed for treating reactions with very general basis functions including electronically excited states. Our formalism is based on the generalized Newton, scattered wave, and outgoing wave variational principles that were used previously for reactive collisions on a single potential energy surface, and it incorporates three new features: (1) the basis functions include electronic degrees of freedom, as required to treat reactions involving electronic excitation and two or more coupled potential energy surfaces; (2) the primitive electronic basis is assumed to be diabatic, and it is not assumed that it diagonalizes the electronic Hamiltonian even asymptotically; and (3) contracted basis functions for vibrational-rotational-orbital degrees of freedom are included in a very general way, similar to previous prescriptions for locally

  7. The quantum dynamics of electronically nonadiabatic chemical reactions

    NASA Astrophysics Data System (ADS)

    Truhlar, Donald G.

    1993-04-01

    Considerable progress was achieved on the quantum mechanical treatment of electronically nonadiabatic collisions involving energy transfer and chemical reaction in the collision of an electronically excited atom with a molecule. In the first step, a new diabatic representation for the coupled potential energy surfaces was created. A two-state diabatic representation was developed which was designed to realistically reproduce the two lowest adiabatic states of the valence bond model and also to have the following three desirable features: (1) it is more economical to evaluate; (2) it is more portable; and (3) all spline fits are replaced by analytic functions. The new representation consists of a set of two coupled diabatic potential energy surfaces plus a coupling surface. It is suitable for dynamics calculations on both the electronic quenching and reaction processes in collisions of Na(3p2p) with H2. The new two-state representation was obtained by a three-step process from a modified eight-state diatomics-in-molecules (DIM) representation of Blais. The second step required the development of new dynamical methods. A formalism was developed for treating reactions with very general basis functions including electronically excited states. Our formalism is based on the generalized Newton, scattered wave, and outgoing wave variational principles that were used previously for reactive collisions on a single potential energy surface, and it incorporates three new features: (1) the basis functions include electronic degrees of freedom, as required to treat reactions involving electronic excitation and two or more coupled potential energy surfaces; (2) the primitive electronic basis is assumed to be diabatic, and it is not assumed that it diagonalizes the electronic Hamiltonian even asymptotically; and (3) contracted basis functions for vibrational-rotational-orbital degrees of freedom are included in a very general way, similar to previous prescriptions for locally

  8. Assessment of reaction-rate predictions of a collision-energy approach for chemical reactions in atmospheric flows.

    SciTech Connect

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

    2010-06-01

    A recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates is assessed for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary non-equilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological nonequilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, significant differences can be found. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.

  9. A new mathematical solution for predicting char activation reactions

    USGS Publications Warehouse

    Rafsanjani, H.H.; Jamshidi, E.; Rostam-Abadi, M.

    2002-01-01

    The differential conservation equations that describe typical gas-solid reactions, such as activation of coal chars, yield a set of coupled second-order partial differential equations. The solution of these coupled equations by exact analytical methods is impossible. In addition, an approximate or exact solution only provides predictions for either reaction- or diffusion-controlling cases. A new mathematical solution, the quantize method (QM), was applied to predict the gasification rates of coal char when both chemical reaction and diffusion through the porous char are present. Carbon conversion rates predicted by the QM were in closer agreement with the experimental data than those predicted by the random pore model and the simple particle model. ?? 2002 Elsevier Science Ltd. All rights reserved.

  10. Solar photo-thermal catalytic reactions to produce high value chemicals

    SciTech Connect

    Prengle, Jr, H W; Wentworth, W E

    1992-04-01

    This report presents a summary of the research work accomplished to date on the utilization of solar photo-thermal energy to convert low cost chemical feedstocks into high $-value chemical products. The rationale is that the solar IR-VIS-UV spectrum is unique, supplying endothermic reaction energy as well as VIS-UV for photochemical activation. Chemical market analysis and product price distribution focused attention on speciality chemicals with prices >$1.00/lb, and a synthesis sequence of n-paraffins to aromatics to partial oxidized products. The experimental work has demonstrated that enhanced reaction effects result from VIS-UV irradiation of catalytically active V2O5/SiO2. Experiments of the past year have been on dehydrogenation and dehydrocyclization of n-paraffins to olefins and aromatics with preference for the latter. Recent results using n-hexane produced 95% conversion with 56% benzene; it is speculated that aromatic yield should reach {approximately}70% by further optimization. Pilot- and commercial-scale reactor configurations have been examined; the odds-on-favorite being a shallow fluid-bed of catalyst with incident radiation from the top. Sequencing for maximum cost effectiveness would be day-time endothermic followed by night-time exothermic reactions to produce the products.

  11. Ion-molecule reactions of oxygenated chemical ionization reagents with vincamine.

    PubMed

    Bauerle, G F; Hall, B J; Tran, N V; Brodbelt, J S

    1996-03-01

    The ion-molecule reactions of ions from acetone, dimethyl ether, 2-methoxyethanol, and vinyl methyl ether with vincamine were investigated. Reactions with dimethyl ether result in [M+13](+) and [M+45](+) products, reactions with 2-methoxyethanol produce [M+13](+) and [M+89](+) ions, and reactions with acetone or vinyl methyl ether ions generate predominantly [M+43](+) ions. Collision-activated dissociation and deuterium labeling experiments allowed speculation about the product structures and mechanisms of dissociation. The methylene substitution process was shown to occur at the hydroxyl oxygen and the phenyl ring of vincamine for dimethyl ether reactions, but the methylene substitution process was not favored at the hydroxyl oxygen for the 2-methoxyethanol reactions, instead favored at the 12 phenyl position. The reaction site is likely different for the 2-methoxyethanol ion due to its capability for secondary hydrogen-bonding interactions. For the [M+45](+) and [M+89](+) ions, evidence suggests that charge-remote fragmentation processes occur from these products. In general, the use of dimethyl ether ions or 2-methoxyethanol ions for ionmolecule reactions prove highly diagnostic for the characterization of vincamine; both molecular weight and structural information are obtained. Limits of detection for vincamine with dimethyl ether chemical ionization via this technique on a benchtop ion trap gas chromatography-tandem mass spectrometer are in the upper parts per trillion range. PMID:24203296

  12. Waste Heat Recovery from Blast Furnace Slag by Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Qin, Yuelin; Lv, Xuewei; Bai, Chenguang; Qiu, Guibao; Chen, Pan

    2012-08-01

    Blast furnace (BF) slag, which is the main byproduct in the ironmaking process, contains large amounts of sensible heat. To recover the heat, a new waste heat-recovery system—granulating molten BF slag by rotary multinozzles cup atomizer and pyrolyzing printed circuited board with obtained hot BF slag particle—was proposed in this study. The feasibility of the waste heat-recovery system was verified by dry granulation and pyrolyzation experiments. The energy of hot BF slag could be converted to chemical energy through the pyrolysis reaction, and a large amount of combustible gas like CO, H2, C m H n , and CH4 can be generated during the process.

  13. Chemical Reactions in the Processing of Mosi2 + Carbon Compacts

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Lee, Kang N.; Maloy, Stuart A.; Heuer, Arthur H.

    1993-01-01

    Hot-pressing of MoSi2 powders with carbon at high temperatures reduces the siliceous grain boundary phase in the resultant compact. The chemical reactions in this process were examined using the Knudsen cell technique. A 2.3 wt pct oxygen MoSi2 powder and a 0.59 wt pct oxygen MoSi2 powder, both with additions of 2 wt pct carbon, were examined. The reduction of the siliceous grain boundary phase was examined at 1350 K and the resultant P(SiO)/P(CO) ratios interpreted in terms of the SiO(g) and CO(g) isobars on the Si-C-O predominance diagram. The MoSi2 + carbon mixtures were then heated at the hot-pressing temperature of 2100 K. Large weight losses were observed and could be correlated with the formation of a low-melting eutectic and the formation and vaporization of SiC.

  14. Luminescence from Collapsing Centimeter Bubbles Expanded by Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Duplat, Jérôme; Villermaux, Emmanuel

    2015-08-01

    We report on a new method for realizing an exceptionally strong inertial confinement of a gas in a liquid: A centimetric spherical bubble filled with a reactive gaseous mixture in a liquid is expanded by an exothermic chemical reaction whose products condense in the liquid at the bubble wall. Hence, the cavity formed in this way is essentially empty as it collapses. The temperatures reached at maximum compression, inferred from the cavity radius dynamics and further confirmed by spectroscopic measurements exceed 20 000 K. Because the cavity is typically big, our findings also provide unique space and time resolved sequences of the events accompanying the collapse, notably the development of the inertial instability notoriously known to deter strong compression.

  15. Miscible viscous fingering involving production of gel by chemical reactions

    NASA Astrophysics Data System (ADS)

    Nagatsu, Yuichiro; Hoshino, Kenichi

    2015-11-01

    We have experimentally investigated miscible viscous fingering with chemical reactions producing gel. Here, two systems were employed. In one system, sodium polyacrylate (SPA) solution and aluminum ion (Al3 +) solution were used as the more and less viscous liquids, respectively. In another system, SPA solution and ferric ion (Fe3 +) solution were used as the more and less viscous liquids, respectively. In the case of Al3 +, displacement efficiency was smaller than that in the non-reactive case, whereas in the case of Fe3 +, the displacement efficiency was larger. We consider that the difference in change of the patterns in the two systems will be caused by the difference in the properties of the gels. Therefore, we have measured the rheological properties of the gels by means of a rheometer. We discuss relationship between the VF patterns and the rheological measurement.

  16. Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks

    SciTech Connect

    Ziaul Huque

    2007-08-31

    This is the final technical report for the project titled 'Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks'. The aim of the project was to develop an efficient chemistry model for combustion simulations. The reduced chemistry model was developed mathematically without the need of having extensive knowledge of the chemistry involved. To aid in the development of the model, Neural Networks (NN) was used via a new network topology known as Non-linear Principal Components Analysis (NPCA). A commonly used Multilayer Perceptron Neural Network (MLP-NN) was modified to implement NPCA-NN. The training rate of NPCA-NN was improved with the GEneralized Regression Neural Network (GRNN) based on kernel smoothing techniques. Kernel smoothing provides a simple way of finding structure in data set without the imposition of a parametric model. The trajectory data of the reaction mechanism was generated based on the optimization techniques of genetic algorithm (GA). The NPCA-NN algorithm was then used for the reduction of Dimethyl Ether (DME) mechanism. DME is a recently discovered fuel made from natural gas, (and other feedstock such as coal, biomass, and urban wastes) which can be used in compression ignition engines as a substitute for diesel. An in-house two-dimensional Computational Fluid Dynamics (CFD) code was developed based on Meshfree technique and time marching solution algorithm. The project also provided valuable research experience to two graduate students.

  17. Modeling chemical reactions in laser-induced plasmas

    NASA Astrophysics Data System (ADS)

    Shabanov, S. V.; Gornushkin, I. B.

    2015-11-01

    Under the assumption of local thermal equilibrium, a numerical algorithm is proposed to find the equation of state for laser-induced plasmas (LIPs) in which chemical reactions are permitted in addition to ionization processes. The Coulomb interaction in plasma is accounted for by the Debye-Hückel method. The algorithm is used to calculate the equation of state for LIPs containing carbon, silicon, nitrogen, and argon. The equilibrium reaction constants are calculated using the latest experimental and ab initio data of spectroscopic constants for the molecules {N}_2, {C}_2, {Si}_2, {CN}, {SiN}, {SiC} and their ions. The algorithm is incorporated into a fluid dynamic numerical model based on the Navier-Stokes equations describing an expansion of LIP plumes into an ambient gas. The dynamics of LIP plumes obtained by the ablation of SiC, solid silicon, or solid carbon in an ambient gas containing {N}_2 and Ar is simulated to study formation of molecules and molecular ions.

  18. Site remediation via Dispersion by Chemical Reaction (DCR). Special report

    SciTech Connect

    Marion, G.M.; Payne, J.R.; Brar, G.S.

    1997-08-01

    The DCR (Dispersion by Chemical Reaction) technologies are a group of patented waste treatment processes using CaO (quicklime) for the immobilization of heavily oiled sludges, oil-contaminated soils, acid-tars, and heavy metals in Ca(OH)2 and CaCO3 matrices. The objectives of this project were to: (1) evaluate the DCR process for remediating soils contaminated with pesticides, petroleum hydrocarbons (oils and fuels), and heavy metals in cold regions and (2) evaluate DCR-treated oil-contaminated soil as a non-frost-susceptible (NFS) construction material. Three major studies evaluated the DCR process to remediate (1) hydrocarbons at Eareckson Air Force Station on Shemya in the Aleutians, (2) pesticide-contaminated soils from Rocky Mt. Arsenal, and (3) heavy-metal contaminated soils from a former zinc smelter site at Palmerton, Pennsylvania. The DCR process was successful in stabilizing liquid organics and heavy metals in contaminated soils. The chemical properties of soils contaminated by solid organics (asphalt tar and pesticides) were not generally improved by the DCR process, but even in these cases, the physical properties were improved for potential reuse as construction materials.

  19. Chemically Reversible Reactions of Hydrogen Sulfide with Metal Phthalocyanines

    PubMed Central

    2015-01-01

    Hydrogen sulfide (H2S) is an important signaling molecule that exerts action on various bioinorganic targets. Despite this importance, few studies have investigated the differential reactivity of the physiologically relevant H2S and HS– protonation states with metal complexes. Here we report the distinct reactivity of H2S and HS– with zinc(II) and cobalt(II) phthalocyanine (Pc) complexes and highlight the chemical reversibility and cyclability of each metal. ZnPc reacts with HS–, but not H2S, to generate [ZnPc-SH]−, which can be converted back to ZnPc by protonation. CoPc reacts with HS–, but not H2S, to form [CoIPc]−, which can be reoxidized to CoPc by air. Taken together, these results demonstrate the chemically reversible reaction of HS– with metal phthalocyanine complexes and highlight the importance of H2S protonation state in understanding the reactivity profile of H2S with biologically relevant metal scaffolds. PMID:24785654

  20. Chemically reversible reactions of hydrogen sulfide with metal phthalocyanines.

    PubMed

    Hartle, Matthew D; Sommer, Samantha K; Dietrich, Stephen R; Pluth, Michael D

    2014-08-01

    Hydrogen sulfide (H2S) is an important signaling molecule that exerts action on various bioinorganic targets. Despite this importance, few studies have investigated the differential reactivity of the physiologically relevant H2S and HS(-) protonation states with metal complexes. Here we report the distinct reactivity of H2S and HS(-) with zinc(II) and cobalt(II) phthalocyanine (Pc) complexes and highlight the chemical reversibility and cyclability of each metal. ZnPc reacts with HS(-), but not H2S, to generate [ZnPc-SH](-), which can be converted back to ZnPc by protonation. CoPc reacts with HS(-), but not H2S, to form [Co(I)Pc](-), which can be reoxidized to CoPc by air. Taken together, these results demonstrate the chemically reversible reaction of HS(-) with metal phthalocyanine complexes and highlight the importance of H2S protonation state in understanding the reactivity profile of H2S with biologically relevant metal scaffolds. PMID:24785654

  1. Chloroaluminum phthalocyanine thin films: chemical reaction and molecular orientation.

    PubMed

    Latteyer, Florian; Peisert, Heiko; Uihlein, Johannes; Basova, Tamara; Nagel, Peter; Merz, Michael; Schuppler, Stefan; Chassé, Thomas

    2013-05-01

    The chemical transformation of the polar chloroaluminum phthalocyanine, AlClPc, to μ-(oxo)bis(phthalocyaninato)aluminum(III), (PcAl)2O, in thin films on indium tin oxide is studied and its influence on the molecular orientation is discussed. The studies were conducted using complementary spectroscopic techniques: Raman spectroscopy, X-ray photoelectron spectroscopy, and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. In addition, density functional theory calculations were performed in order to identify specific vibrations and to monitor the product formation. The thin films of AlClPc were annealed in controlled environmental conditions to obtain (PcAl)2O. It is shown that the chemical transformation in the thin films can proceed only in the presence of water. The influence of the reaction and the annealing on the molecular orientation was studied with Raman spectroscopy and NEXAFS spectroscopy in total electron yield and partial electron yield modes. The comparison of the results obtained from these techniques allows the determination of the molecular orientation of the film as a function of the probing depth. PMID:23494276

  2. Chemical Reaction and Flow Modeling in Fullerene and Nanotube Production

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Farhat, Samir; Greendyke, Robert B.

    2004-01-01

    The development of processes to produce fullerenes and carbon nanotubes has largely been empirical. Fullerenes were first discovered in the soot produced by laser ablation of graphite [1]and then in the soot of electric arc evaporated carbon. Techniques and conditions for producing larger and larger quantities of fullerenes depended mainly on trial and error empirical variations of these processes, with attempts to scale them up by using larger electrodes and targets and higher power. Various concepts of how fullerenes and carbon nanotubes were formed were put forth, but very little was done based on chemical kinetics of the reactions. This was mainly due to the complex mixture of species and complex nature of conditions in the reactors. Temperatures in the reactors varied from several thousand degrees Kelvin down to near room temperature. There are hundreds of species possible, ranging from atomic carbon to large clusters of carbonaceous soot, and metallic catalyst atoms to metal clusters, to complexes of metals and carbon. Most of the chemical kinetics of the reactions and the thermodynamic properties of clusters and complexes have only been approximated. In addition, flow conditions in the reactors are transient or unsteady, and three dimensional, with steep spatial gradients of temperature and species concentrations. All these factors make computational simulations of reactors very complex and challenging. This article addresses the development of the chemical reaction involved in fullerene production and extends this to production of carbon nanotubes by the laser ablation/oven process and by the electric arc evaporation process. In addition, the high-pressure carbon monoxide (HiPco) process is discussed. The article is in several parts. The first one addresses the thermochemical aspects of modeling; and considers the development of chemical rate equations, estimates of reaction rates, and thermodynamic properties where they are available. The second part

  3. Bioorthogonal Chemical Activation of Kinases in Living Systems

    PubMed Central

    2016-01-01

    Selective manipulation of protein kinases under living conditions is highly desirable yet extremely challenging, particularly in a gain-of-function fashion. Here we employ our recently developed bioorthogonal cleavage reaction as a general strategy for intracellular activation of individual kinases. Site-specific incorporation of trans-cyclooctene-caged lysine in place of the conserved catalytic lysine, in conjunction with the cleavage partner dimethyl-tetrazine, allowed efficient lysine decaging with the kinase activity chemically rescued in living systems. PMID:27280167

  4. Ring closure dynamics for a chemically active polymer.

    PubMed

    Sarkar, Debarati; Thakur, Snigdha; Tao, Yu-Guo; Kapral, Raymond

    2014-12-21

    The principles that underlie the motion of colloidal particles in concentration gradients and the propulsion of chemically-powered synthetic nanomotors are used to design active polymer chains. The active chains contain catalytic and noncatalytic monomers, or beads, at the ends or elsewhere along the polymer chain. A chemical reaction at the catalytic bead produces a self-generated concentration gradient and the noncatalytic bead responds to this gradient by a diffusiophoretic mechanism that causes these two beads to move towards each other. Because of this chemotactic response, the dynamical properties of these active polymer chains are very different from their inactive counterparts. In particular, we show that ring closure and loop formation are much more rapid than those for inactive chains, which rely primarily on diffusion to bring distant portions of the chain in close proximity. The mechanism presented in this paper can be extended to other chemical systems which rely on diffusion to bring reagents into contact for reactions to occur. This study suggests the possibility that synthetic systems could make use of chemically-powered active motion or chemotaxis to effectively carry out complex transport tasks in reaction dynamics, much like those that molecular motors perform in biological systems. PMID:25365034

  5. Chemical activation by mechanochemical mixing, microwave, and ultrasonic irradiation

    EPA Science Inventory

    The use of emerging MW-assisted chemistry techniques in conjunction with benign reaction media is dramatically reducing chemical waste ad reaction times in several organic syntheses and chemical transformations. This editorial comments on the recent developments in mechanochemica...

  6. Science Activities in Energy: Chemical Energy.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 15 activities relating to chemical energy. Activities are simple, concrete experiments for fourth, fifth and sixth grades which illustrate principles and problems relating to energy. Each activity is outlined on a single card which is introduced by a question. A teacher's…

  7. Transport Properties of a Kinetic Model for Chemical Reactions without Barriers

    SciTech Connect

    Alves, Giselle M.; Kremer, Gilberto M.; Soares, Ana Jacinta

    2011-05-20

    A kinetic model of the Boltzmann equation for chemical reactions without energy barrier is considered here with the aim of evaluating the reaction rate and characterizing the transport coefficient of shear viscosity for the reactive system. The Chapman-Enskog solution of the Boltzmann equation is used to compute the chemical reaction effects, in a flow regime for which the reaction process is close to the final equilibrium state. Some numerical results are provided illustrating that the considered chemical reaction without energy barrier can induce an appreciable influence on the reaction rate and on the transport coefficient of shear viscosity.

  8. Valence-bond description of chemical reactions on Born-Oppenheimer molecular dynamics trajectories

    NASA Astrophysics Data System (ADS)

    Noguchi, Nao; Nakano, Haruyuki

    2009-04-01

    The nature of chemical bonds on dynamic paths was investigated using the complete active space valence-bond (CASVB) method and the Born-Oppenheimer dynamics. To extract the chemical bond picture during reactions, a scheme to collect contributions from several VB (resonance) structures into a small numbers of indices was introduced. In this scheme, a tree diagram for the VB structures is constructed with the numbers of the ionic bonds treated as generation. A pair of VB structures is related to each other if one VB structure is transferred into the other by changing a covalent bond to an ionic bond. The former and latter VB structures are named parent and child structures, respectively. The weights of the bond pictures are computed as the sum of the CASVB occupation numbers running from the top generation to the bottom along the descent of the VB structures. Thus, a number of CASVB occupation numbers are collected into a small number of indices, and a clear bond picture may be obtained from the CASVB wave function. The scheme was applied to the hydrogen exchange reaction H2+F→H+HF and the Diels-Alder reaction C5H6(cyclopentadiene)+CH2=CH2(ethylene)→C7H10(norbornene). In both the reactions, the scheme gave a clear picture for the Born-Oppenheimer dynamics trajectories. The reconstruction of the bonds during reactions was well described by following the temporal changes in weight.

  9. No electron left behind: a rule-based expert system to predict chemical reactions and reaction mechanisms

    PubMed Central

    Chen, Jonathan H.; Baldi, Pierre

    2009-01-01

    Predicting the course and major products of arbitrary reactions is a fundamental problem in chemistry, one that chemists must address in a variety of tasks ranging from synthesis design to reaction discovery. Described here is an expert system to predict organic chemical reactions based on a knowledge base of over 1,500 manually composed reaction transformation rules. Novel rule extensions are introduced to enable robust predictions and describe detailed reaction mechanisms at the level of electron flows in elementary reaction steps, ensuring that all reactions are properly balanced and atom-mapped. The core reaction prediction functionalities of this expert system are illustrated with applications including: (1) prediction of detailed reaction mechanisms; (2) computer-based learning in organic chemistry; (3) retro synthetic analysis; and (4) combinatorial library design. Select applications available via http://cdb.ics.uci.edu. PMID:19719121

  10. No electron left behind: a rule-based expert system to predict chemical reactions and reaction mechanisms.

    PubMed

    Chen, Jonathan H; Baldi, Pierre

    2009-09-01

    Predicting the course and major products of arbitrary reactions is a fundamental problem in chemistry, one that chemists must address in a variety of tasks ranging from synthesis design to reaction discovery. Described here is an expert system to predict organic chemical reactions based on a knowledge base of over 1500 manually composed reaction transformation rules. Novel rule extensions are introduced to enable robust predictions and describe detailed reaction mechanisms at the level of electron flows in elementary reaction steps, ensuring that all reactions are properly balanced and atom-mapped. The core reaction prediction functionalities of this expert system are illustrated with applications including: (1) prediction of detailed reaction mechanisms; (2) computer-based learning in organic chemistry; (3) retrosynthetic analysis; and (4) combinatorial library design. Select applications are available via http://cdb.ics.uci.edu. PMID:19719121

  11. A Case Study in Chemical Kinetics: The OH + CO Reaction.

    ERIC Educational Resources Information Center

    Weston, Ralph E., Jr.

    1988-01-01

    Reviews some important properties of the bimolecular reaction between the hydroxyl radical and carbon monoxide. Investigates the kinetics of the reaction, the temperature and pressure dependence of the rate constant, the state-to-state dynamics of the reaction, and the reverse reaction. (MVL)

  12. Final Technical Report "Energy Partitioning in Elementary Chemical Reactions"

    SciTech Connect

    Richard Bersohn; James J. Valentini

    2005-10-03

    This is the final technical report of the subject grant. It describes the scientific results obtained during the reporting period. These results are focused on the reactions of atomic oxygen with terminal alkenes. We have studied the production of vinoxy in these reactions. We have characterized the energy disposal in the reactions and have elaborated the reaction mechanism.

  13. Chemical dynamics in the gas phase : quantum mechanics of chemical reactions.

    SciTech Connect

    Gray, S. K.

    2006-01-01

    This research program focuses on both the development and application of accurate quantum mechanical methods to describe gas phase chemical reactions and highly excited molecules. Emphasis is often placed on time-dependent or integrative approaches that, in addition to computational simplifications, yield useful mechanistic insights. Applications to systems of current experimental and theoretical interest are emphasized. The results of these calculations also allow one to gauge the quality of the underlying potential energy surfaces and the reliability of more approximate theoretical approaches such as classical trajectories and transition state theories.

  14. Chemical dynamics in the gas phase : quantum mechanics of chemical reactions.

    SciTech Connect

    Gray, S. K.

    1999-07-02

    This research program focuses on both the development and application of accurate quantum mechanical methods to describe gas phase chemical reactions and highly excited molecules. Emphasis is often placed on time-dependent or integrative approaches that, in addition to computational simplifications, yield useful mechanistic insights. Applications to systems of current experimental and theoretical interest are emphasized. The results of these calculations also allow one to gauge the quality of the underlying potential energy surfaces and the reliability of more approximate theoretical approaches such as classical trajectories and transition state theories.

  15. Detailed Chemical Kinetic Reaction Mechanism for Biodiesel Components Methyl Stearate and Methyl Oleate

    SciTech Connect

    Naik, C; Westbrook, C K; Herbinet, O; Pitz, W J; Mehl, M

    2010-01-22

    New chemical kinetic reaction mechanisms are developed for two of the five major components of biodiesel fuel, methyl stearate and methyl oleate. The mechanisms are produced using existing reaction classes and rules for reaction rates, with additional reaction classes to describe other reactions unique to methyl ester species. Mechanism capabilities were examined by computing fuel/air autoignition delay times and comparing the results with more conventional hydrocarbon fuels for which experimental results are available. Additional comparisons were carried out with measured results taken from jet-stirred reactor experiments for rapeseed methyl ester fuels. In both sets of computational tests, methyl oleate was found to be slightly less reactive than methyl stearate, and an explanation of this observation is made showing that the double bond in methyl oleate inhibits certain low temperature chain branching reaction pathways important in methyl stearate. The resulting detailed chemical kinetic reaction mechanism includes more approximately 3500 chemical species and more than 17,000 chemical reactions.

  16. Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks

    SciTech Connect

    Nelson Butuk

    2004-12-01

    This is an annual technical report for the work done over the last year (period ending 9/30/2004) on the project titled ''Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks''. The aim of the project is to develop an efficient chemistry model for combustion simulations. The reduced chemistry model will be developed mathematically without the need of having extensive knowledge of the chemistry involved. To aid in the development of the model, Neural Networks (NN) will be used via a new network topology know as Non-linear Principal Components Analysis (NPCA). We report on the development of a procedure to speed up the training of NPCA. The developed procedure is based on the non-parametric statistical technique of kernel smoothing. When this smoothing technique is implemented as a Neural Network, It is know as Generalized Regression Neural Network (GRNN). We present results of implementing GRNN on a test problem. In addition, we present results of an in house developed 2-D CFD code that will be used through out the project period.

  17. Capillary Action may Cool Systems and Precisely balance Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Kriske, Richard

    2011-10-01

    It is well known that it takes no work for Water to rise in a Capillary tube against the force of Gravity. There is a precise balance in this system that resembles Robert Millikan's ``Oil Drop'' experiment, where mass was balanced against the electrostatic force. If at the top of the capillary tube there is evaporation, one can see that the system is cooled as another water molecule has room to move up the column. Furthermore, if the evaporation process can be controlled one photon at a time, a precise balance is created between a photon, and the height/mass of the column. If other molecules are place in the column, they can be moved up and down the column, in a chromatograph way, in a fairly precise manner, by controlling evaporation and molecular weight. If in addition to all of this, the interface of the solution against the walls of the column have Fermi levels, it can be seen as a very precise Electrochemical Device. In the situation of nanotubes, as opposed to trees and plants, these properties can be used to create measure environmental properties and to Balance Chemical Reactions. Forests, and Plants may cool themselves and their environment using this process, and using this process coupled with more energetic photons through photosynthesis.

  18. Heat Diffusion in Gases, Including Effects of Chemical Reaction

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick

    1960-01-01

    The diffusion of heat through gases is treated where the coefficients of thermal conductivity and diffusivity are functions of temperature. The diffusivity is taken proportional to the integral of thermal conductivity, where the gas is ideal, and is considered constant over the temperature interval in which a chemical reaction occurs. The heat diffusion equation is then solved numerically for a semi-infinite gas medium with constant initial and boundary conditions. These solutions are in a dimensionless form applicable to gases in general, and they are used, along with measured shock velocity and heat flux through a shock reflecting surface, to evaluate the integral of thermal conductivity for air up to 5000 degrees Kelvin. This integral has the properties of a heat flux potential and replaces temperature as the dependent variable for problems of heat diffusion in media with variable coefficients. Examples are given in which the heat flux at the stagnation region of blunt hypersonic bodies is expressed in terms of this potential.

  19. Synthesis and Decomposition of Zinc Iodide: Model Reactions for Investigating Chemical Change in the Introductory Laboratory

    NASA Astrophysics Data System (ADS)

    Demeo, Stephen

    1995-09-01

    The purpose of this article is to discuss two colorful reactions not widely used by chemical educators in high schools or college chemistry laboratories: The synthesis of zinc iodide from its elements, zinc and iodine, and the subsequent decomposition of zinc iodide back into its elements. These reactions are important for chemistry teachers to know about because they can be performed by introductory students to understand different aspects of chemical change such as the concepts of reaction, compound, bonding, excess and limiting reactants, an empirical formula, balanced chemical equation, the conservation of matter and energy, the Law of the Conservation of Mass, and the Law of Constant Composition. These concepts, in turn, are important because they are fundamental to chemistry, are widely taught by chemistry teachers, and are deceptively difficult for introductory chemistry students to understand. The synthesis of zinc iodide has many scientific advantages over current syntheses of binary compounds from elements such as the syntheses of copper sulfide and magnesium oxide. For example, zinc iodide can be synthesized to 1% of theoretical mass in less than a half an hour and can be readily analyzed qualitatively as well as quantitatively by two different titrations. As a set of reactions, the synthesis and decomposition of zinc iodide is safe to perform, reliable, inexpensive, and does not pose a threat to the environment. The author has developed a small collection of teacher activities describing the synthesis and decomposition of zinc iodide. The activities are innovative because they contain improvements not found in the existing literature. Appropriate for high school and first year college chemistry teachers, all of the activities contain detailed procedures and discussions as well as safety and disposal requirements.

  20. An Activation Energy Experiment for a Second-Order Reaction in a Single Laboratory Period.

    ERIC Educational Resources Information Center

    Barile, Raymond C.; Michiels, Leo P.

    1983-01-01

    Describes modification of a chemical reaction to a single 4 1/2-hour laboratory period. Reaction kinetics between 2, 4-initrochlorobenzene and piperidine to form 2, 4-dinitrophenyl-piperidine and piperidinium hydrochloride are followed conductometrically at three temperatures to obtain data to calculate activation parameters. (Author/JN)

  1. Plasmon-assisted chemical reactions revealed by high-vacuum tip-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lu, Shuaicheng; Sheng, Shaoxiang; Zhang, Zhenglong; Xu, Hongxing; Zheng, Hairong

    2014-08-01

    Tip-enhanced Raman spectroscopy (TERS) is the technique that combines the nanoscale spatial resolution of a scanning probe microscope and the highly sensitive Raman spectroscopy enhanced by the surface plasmons. It is suitable for chemical analysis at nanometer scale. Recently, TERS exhibited powerful potential in analyzing the chemical reactions at nanoscale. The high sensitivity and spatial resolution of TERS enable us to learn the reaction processes more clearly. More importantly, the chemical reaction in TERS is assisted by surface plasmons, which provides us an optical method to manipulate the chemical reactions at nanoscale. Here using our home-built high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) setup, we successfully observed the plasmon-assisted molecule dimerization and dissociation reactions. In HV-TERS system, under laser illumination, 4-nitrobenzenethiol (4NBT) molecules can be dimerized to p,p'-dimercaptoazobenzene (DMAB), and dissociation reaction occurs for malachite green (MG) molecules. Using our HV-TERS setup, the dynamic processes of the reactions are clearly revealed. The chemical reactions can be manipulated by controlling the plasmon intensity through changing the power of the incident laser, the tunneling current and the bias voltage. We also investigated the role of plasmonic thermal effect in the reactions by measuring both the Stokes and anti- Stokes Raman peaks. Our findings extend the applications of TERS, which can help to study the chemical reactions and understand the dynamic processes at single molecular level, and even design molecules by the plasmon-assisted chemical reactions.

  2. Probing the bioactivity-relevant chemical space of robust reactions and common molecular building blocks.

    PubMed

    Hartenfeller, Markus; Eberle, Martin; Meier, Peter; Nieto-Oberhuber, Cristina; Altmann, Karl-Heinz; Schneider, Gisbert; Jacoby, Edgar; Renner, Steffen

    2012-05-25

    In the search for new bioactive compounds, there is a trend toward increasingly complex compound libraries aiming to target the demanding targets of the future. In contrast, medicinal chemistry and traditional library design rely mainly on a small set of highly established and robust reactions. Here, we probe a set of 58 such reactions for their ability to sample the chemical space of known bioactive molecules, and the potential to create new scaffolds. Combined with ~26,000 common available building blocks, the reactions retrieve around 9% of a scaffold-diverse set of compounds active on human target proteins covering all major pharmaceutical target classes. Almost 80% of generated scaffolds from virtual one-step synthesis products are not present in a large set of known bioactive molecules for human targets, indicating potential for new discoveries. The results suggest that established synthesis resources are well suited to cover the known bioactivity-relevant chemical space and that there are plenty of unexplored regions accessible by these reactions, possibly providing valuable "low-hanging fruit" for hit discovery. PMID:22512717

  3. Simple Chemical Solution Deposition of Co₃O₄ Thin Film Electrocatalyst for Oxygen Evolution Reaction.

    PubMed

    Jeon, Hyo Sang; Jee, Michael Shincheon; Kim, Haeri; Ahn, Su Jin; Hwang, Yun Jeong; Min, Byoung Koun

    2015-11-11

    Oxygen evolution reaction (OER) is the key reaction in electrochemical processes, such as water splitting, metal-air batteries, and solar fuel production. Herein, we developed a facile chemical solution deposition method to prepare a highly active Co3O4 thin film electrode for OER, showing a low overpotential of 377 mV at 10 mA/cm(2) with good stability. An optimal loading of ethyl cellulose additive in a precursor solution was found to be essential for the morphology control and thus its electrocatalytic activity. Our results also show that the distribution of Co3O4 nanoparticle catalysts on the substrate is crucial in enhancing the inherent OER catalytic performance. PMID:26489005

  4. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions

    SciTech Connect

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly; Kim, Young Jin; Jardine, Philip M; Watson, David B

    2007-01-01

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing NE equilibrium reactions and a set of reactive transport equations of M-NE kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  5. Computational molecular technology towards macroscopic chemical phenomena-molecular control of complex chemical reactions, stereospecificity and aggregate structures

    SciTech Connect

    Nagaoka, Masataka

    2015-12-31

    A new efficient hybrid Monte Carlo (MC)/molecular dynamics (MD) reaction method with a rare event-driving mechanism is introduced as a practical ‘atomistic’ molecular simulation of large-scale chemically reactive systems. Starting its demonstrative application to the racemization reaction of (R)-2-chlorobutane in N,N-dimethylformamide solution, several other applications are shown from the practical viewpoint of molecular controlling of complex chemical reactions, stereochemistry and aggregate structures. Finally, I would like to mention the future applications of the hybrid MC/MD reaction method.

  6. Computational Analyses of Complex Flows with Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Bae, Kang-Sik

    The heat and mass transfer phenomena in micro-scale for the mass transfer phenomena on drug in cylindrical matrix system, the simulation of oxygen/drug diffusion in a three dimensional capillary network, and a reduced chemical kinetic modeling of gas turbine combustion for Jet propellant-10 have been studied numerically. For the numerical analysis of the mass transfer phenomena on drug in cylindrical matrix system, the governing equations are derived from the cylindrical matrix systems, Krogh cylinder model, which modeling system is comprised of a capillary to a surrounding cylinder tissue along with the arterial distance to veins. ADI (Alternative Direction Implicit) scheme and Thomas algorithm are applied to solve the nonlinear partial differential equations (PDEs). This study shows that the important factors which have an effect on the drug penetration depth to the tissue are the mass diffusivity and the consumption of relevant species during the time allowed for diffusion to the brain tissue. Also, a computational fluid dynamics (CFD) model has been developed to simulate the blood flow and oxygen/drug diffusion in a three dimensional capillary network, which are satisfied in the physiological range of a typical capillary. A three dimensional geometry has been constructed to replicate the one studied by Secomb et al. (2000), and the computational framework features a non-Newtonian viscosity model for blood, the oxygen transport model including in oxygen-hemoglobin dissociation and wall flux due to tissue absorption, as well as an ability to study the diffusion of drugs and other materials in the capillary streams. Finally, a chemical kinetic mechanism of JP-10 has been compiled and validated for a wide range of combustion regimes, covering pressures of 1atm to 40atm with temperature ranges of 1,200 K--1,700 K, which is being studied as a possible Jet propellant for the Pulse Detonation Engine (PDE) and other high-speed flight applications such as hypersonic

  7. Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks

    SciTech Connect

    Nelson Butuk

    2006-09-21

    This is an annual technical report for the work done over the last year (period ending 9/30/2005) on the project titled ''Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks''. The aim of the project is to develop an efficient chemistry model for combustion simulations. The reduced chemistry model will be developed mathematically without the need of having extensive knowledge of the chemistry involved. To aid in the development of the model, Neural Networks (NN) will be used via a new network topology know as Non-linear Principal Components Analysis (NPCA). We report on the significant development made in developing a truly meshfree computational fluid dynamics (CFD) flow solver to be coupled to NPCA. First, the procedure of obtaining nearly analytic accurate first order derivatives using the complex step method (CSM) is extended to include computation of accurate meshfree second order derivatives via a theorem described in this report. Next, boosted generalized regression neural network (BGRNN), described in our previous report is combined with CSM and used to obtain complete solution of a hard to solve wave dominated sample second order partial differential equation (PDE): the cubic Schrodinger equation. The resulting algorithm is a significant improvement of the meshfree technique of smooth particle hydrodynamics method (SPH). It is suggested that the demonstrated meshfree technique be termed boosted smooth particle hydrodynamics method (BSPH). Some of the advantages of BSPH over other meshfree methods include; it is of higher order accuracy than SPH; compared to other meshfree methods, it is completely meshfree and does not require any background meshes; It does not involve any construction of shape function with their associated solution of possibly ill conditioned matrix equations; compared to some SPH techniques, no equation for the smoothing parameter is required; finally it is easy to program.

  8. Probing Isotope Effects in Chemical Reactions Using Single Ions

    SciTech Connect

    Staanum, Peter F.; Hoejbjerre, Klaus; Drewsen, Michael; Wester, Roland

    2008-06-20

    Isotope effects in reactions between Mg{sup +} in the 3p {sup 2}P{sub 3/2} excited state and molecular hydrogen at thermal energies are studied through single reaction events. From only {approx}250 reactions with HD, the branching ratio between formation of MgD{sup +} and MgH{sup +} is found to be larger than 5. From an additional 65 reactions with H{sub 2} and D{sub 2} we find that the overall fragmentation probability of the intermediate MgH{sub 2}{sup +}, MgHD{sup +}, or MgD{sub 2}{sup +} complexes is the same. Our study shows that few single ion reactions can provide quantitative information on ion-neutral reactions. Hence, the method is well suited for reaction studies involving rare species, e.g., rare isotopes or short-lived unstable elements.

  9. Probing Isotope Effects in Chemical Reactions Using Single Ions

    NASA Astrophysics Data System (ADS)

    Staanum, Peter F.; Højbjerre, Klaus; Wester, Roland; Drewsen, Michael

    2008-06-01

    Isotope effects in reactions between Mg+ in the 3p P3/22 excited state and molecular hydrogen at thermal energies are studied through single reaction events. From only ˜250 reactions with HD, the branching ratio between formation of MgD+ and MgH+ is found to be larger than 5. From an additional 65 reactions with H2 and D2 we find that the overall fragmentation probability of the intermediate MgH2+, MgHD+, or MgD2+ complexes is the same. Our study shows that few single ion reactions can provide quantitative information on ion-neutral reactions. Hence, the method is well suited for reaction studies involving rare species, e.g., rare isotopes or short-lived unstable elements.

  10. CHEMICAL SYNTHESIS USING 'GREENER' ALTERNATIVE REACTION CONDITIONS AND MEDIA

    EPA Science Inventory

    The chemical research during the last decade has witnessed a paradigm shift towards "environmentally-friendly chemistry" more popularly known as "green chemistry" due to the increasing environmental concerns and legislative requirements to curb the release of chemical waste into ...

  11. SUBSTITUTION REACTIONS FOR THE DETOXIFICATION OF HAZARDOUS CHEMICALS

    EPA Science Inventory

    Chemical Treatment is one of several treatment techniques used for the remediation of toxic and hazardous chemicals. Chemical treatment in this report is defined as substitution of halogens by hydrogens for the conversion of halogenated organic toxicant into its native hydrocarb...

  12. Mixing and chemical reaction in sheared and nonsheared homogeneous turbulence

    NASA Technical Reports Server (NTRS)

    Leonard, Andy D.; Hill, James C.

    1992-01-01

    Direct numerical simulations were made to examine the local structure of the reaction zone for a moderately fast reaction between unmixed species in decaying, homogeneous turbulence and in a homogeneous turbulent shear flow. Pseudospectral techniques were used in domains of 64 exp 3 and higher wavenumbers. A finite-rate, single step reaction between non-premixed reactants was considered, and in one case temperature-dependent Arrhenius kinetics was assumed. Locally intense reaction rates that tend to persist throughout the simulations occur in locations where the reactant concentration gradients are large and are amplified by the local rate of strain. The reaction zones are more organized in the case of a uniform mean shear than in isotropic turbulence, and regions of intense reaction rate appear to be associated with vortex structures such as horseshoe vortices and fingers seen in mixing layers. Concentration gradients tend to align with the direction of the most compressive principal strain rate, more so in the isotropic case.

  13. Application of a locally optimized control theory to pump dump laser-driven chemical reactions

    NASA Astrophysics Data System (ADS)

    Ohtsuki, Y.; Yahata, Y.; Kono, H.; Fujimura, Y.

    1998-05-01

    A locally optimized control theory is developed. This theory is applied to pump-dump laser-driven chemical reactions via an electronically excited state. The results show that the theory can design the pulse shapes for chemical reactions with high quantum yields in strong laser intensity regimes in which perturbative treatments break down.

  14. Introducing Stochastic Simulation of Chemical Reactions Using the Gillespie Algorithm and MATLAB: Revisited and Augmented

    ERIC Educational Resources Information Center

    Argoti, A.; Fan, L. T.; Cruz, J.; Chou, S. T.

    2008-01-01

    The stochastic simulation of chemical reactions, specifically, a simple reversible chemical reaction obeying the first-order, i.e., linear, rate law, has been presented by Martinez-Urreaga and his collaborators in this journal. The current contribution is intended to complement and augment their work in two aspects. First, the simple reversible…

  15. Achieving Chemical Equilibrium: The Role of Imposed Conditions in the Ammonia Formation Reaction

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2006-01-01

    Under conditions of constant temperature T and pressure P, chemical equilibrium occurs in a closed system (fixed mass) when the Gibbs free energy G of the reaction mixture is minimized. However, when chemical reactions occur under other conditions, other thermodynamic functions are minimized or maximized. For processes at constant T and volume V,…

  16. Method of operating a thermal engine powered by a chemical reaction

    DOEpatents

    Ross, J.; Escher, C.

    1988-06-07

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction. 7 figs.

  17. Mapping Students' Conceptual Modes When Thinking about Chemical Reactions Used to Make a Desired Product

    ERIC Educational Resources Information Center

    Weinrich, M. L.; Talanquer, V.

    2015-01-01

    The central goal of this qualitative research study was to uncover major implicit assumptions that students with different levels of training in the discipline apply when thinking and making decisions about chemical reactions used to make a desired product. In particular, we elicited different ways of conceptualizing why chemical reactions happen…

  18. Motivational Factors Contributing to Turkish High School Students' Achievement in Gases and Chemical Reactions

    ERIC Educational Resources Information Center

    Kadioglu, Cansel; Uzuntiryaki, Esen

    2008-01-01

    This study aimed to investigate the contribution of motivational factors to 10th grade students' achievement in gases and chemical reactions in chemistry. Three hundred fifty nine 10th grade students participated in the study. The Gases and Chemical Reactions Achievement Test and the Motivated Strategies for Learning Questionnaire were…

  19. Design criteria for extraction with chemical reaction and liquid membrane permeation

    NASA Technical Reports Server (NTRS)

    Bart, H. J.; Bauer, A.; Lorbach, D.; Marr, R.

    1988-01-01

    The design criteria for heterogeneous chemical reactions in liquid/liquid systems formally correspond to those of classical physical extraction. More complex models are presented which describe the material exchange at the individual droplets in an extraction with chemical reaction and in liquid membrane permeation.

  20. Acid-Base Chemistry According to Robert Boyle: Chemical Reactions in Words as well as Symbols

    ERIC Educational Resources Information Center

    Goodney, David E.

    2006-01-01

    Examples of acid-base reactions from Robert Boyle's "The Sceptical Chemist" are used to illustrate the rich information content of chemical equations. Boyle required lengthy passages of florid language to describe the same reaction that can be done quite simply with a chemical equation. Reading or hearing the words, however, enriches the student's…

  1. Method of operating a thermal engine powered by a chemical reaction

    DOEpatents

    Ross, John; Escher, Claus

    1988-01-01

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction.

  2. Theoretical research program to study chemical reactions in AOTV bow shock tubes

    NASA Technical Reports Server (NTRS)

    Taylor, P.

    1986-01-01

    Progress in the development of computational methods for the characterization of chemical reactions in aerobraking orbit transfer vehicle (AOTV) propulsive flows is reported. Two main areas of code development were undertaken: (1) the implementation of CASSCF (complete active space self-consistent field) and SCF (self-consistent field) analytical first derivatives on the CRAY X-MP; and (2) the installation of the complete set of electronic structure codes on the CRAY 2. In the area of application calculations the main effort was devoted to performing full configuration-interaction calculations and using these results to benchmark other methods. Preprints describing some of the systems studied are included.

  3. Formation of slow molecules in chemical reactions in crossed molecular beams

    NASA Astrophysics Data System (ADS)

    Tscherbul, T. V.; Barinovs, Ğ.; Kłos, J.; Krems, R. V.

    2008-08-01

    We demonstrate that chemical reactions in collisions of molecular beams can generally produce low-velocity molecules in the laboratory-fixed frame. Our analysis shows that collisions of beams may simultaneously yield slow reactant molecules and slow products. The reaction products are formed in selected rovibrational states and scattered in a specific direction, which can be controlled by tuning the kinetic energies of the incident beams and the angle between the beams. Our calculations indicate that chemical reactions of polar alkali-metal dimers are barrierless and we suggest that chemical reactions involving alkali-metal dimers may be particularly suitable for producing slow molecules in crossed beams.

  4. Phase and chemical equilibria in the transesterification reaction of vegetable oils with supercritical lower alcohols

    NASA Astrophysics Data System (ADS)

    Anikeev, V. I.; Stepanov, D. A.; Ermakova, A.

    2011-08-01

    Calculations of thermodynamic data are performed for fatty acid triglycerides, free fatty acids, and fatty acid methyl esters, participants of the transesterification reaction of vegetable oils that occurs in methanol. Using the obtained thermodynamic parameters, the phase diagrams for the reaction mixture are constructed, and the chemical equilibria of the esterification reaction of free fatty acids and the transesterification reaction of fatty acid triglycerides attained upon treatment with supercritical methanol are determined. Relying on our analysis of the obtained equilibria for the esterification reaction of fatty acids and the transesterification reaction of triglycerides attained upon treatment with lower alcohols, we select the optimum conditions for performing the reaction in practice.

  5. Chemical modeling of irreversible reactions in nuclear waste-water-rock systems

    SciTech Connect

    Wolery, T.J.

    1981-02-01

    Chemical models of aqueous geochemical systems are usually built on the concept of thermodynamic equilibrium. Though many elementary reactions in a geochemical system may be close to equilibrium, others may not be. Chemical models of aqueous fluids should take into account that many aqueous redox reactions are among the latter. The behavior of redox reactions may critically affect migration of certain radionuclides, especially the actinides. In addition, the progress of reaction in geochemical systems requires thermodynamic driving forces associated with elementary reactions not at equilibrium, which are termed irreversible reactions. Both static chemical models of fluids and dynamic models of reacting systems have been applied to a wide spectrum of problems in water-rock interactions. Potential applications in nuclear waste disposal range from problems in geochemical aspects of site evaluation to those of waste-water-rock interactions. However, much further work in the laboratory and the field will be required to develop and verify such applications of chemical modeling.

  6. Evolution of DNA and RNA as catalysts for chemical reactions.

    PubMed

    Jäschke, A; Seelig, B

    2000-06-01

    In vitro selection from combinatorial nucleic acid libraries has provided new RNA and DNA molecules that have catalytic properties. Catalyzed reactions now go far beyond self-modifying reactions of nucleic acid molecules. The future application of in vitro selected RNA and DNA catalysts in bioorganic synthesis appears promising. PMID:10826969

  7. Chemical Synthesis Accelerated by Paper Spray: The Haloform Reaction

    ERIC Educational Resources Information Center

    Bain, Ryan M.; Pulliam, Christopher J.; Raab, Shannon A.; Cooks, R. Graham

    2016-01-01

    In this laboratory, students perform a synthetic reaction in two ways: (i) by traditional bulk-phase reaction and (ii) in the course of reactive paper spray ionization. Mass spectrometry (MS) is used both as an analytical method and a means of accelerating organic syntheses. The main focus of this laboratory exercise is that the same ionization…

  8. CHEMICAL REACTIONS OF AQUATIC HUMIC MATERIALS WITH SELECTED OXIDANTS

    EPA Science Inventory

    A study was conducted to identify the specific organic reaction products of natural aquatic humic materials with selected oxidants (KMnO4, HOCl, Cl02, O3 and monochloramine). Reaction products were identified by GC/MS after solvent extraction and derivatization. The two most reac...

  9. On the deduction of chemical reaction pathways from measurements of time series of concentrations

    NASA Astrophysics Data System (ADS)

    Samoilov, Michael; Arkin, Adam; Ross, John

    2001-03-01

    We discuss the deduction of reaction pathways in complex chemical systems from measurements of time series of chemical concentrations of reacting species. First we review a technique called correlation metric construction (CMC) and show the construction of a reaction pathway from measurements on a part of glycolysis. Then we present two new improved methods for the analysis of time series of concentrations, entropy metric construction (EMC), and entropy reduction method (ERM), and illustrate (EMC) with calculations on a model reaction system.

  10. Chemical reaction model for oil and gas generation from type 1 and type 2 kerogen

    SciTech Connect

    Braun, R.L.; Burnham, A.K.

    1993-06-01

    A global model for the generation of oil and gas from petroleum source rocks is presented. The model consists of 13 chemical species and 10 reactions, including an alternate-pathway mechanism for kerogen pyrolysis. Reaction rate parameters and stoichiometry coefficients determined from a variety of pyrolysis data are given for both type I and type II kerogen. Use of the chemical reaction model is illustrated for typical geologic conditions.

  11. A Model for Incorporating Chemical Reactions in Mesoscale Modeling of Laser Ablation of Polymers

    NASA Astrophysics Data System (ADS)

    Garrison, Barbara J.; Yingling, Yaroslava G.

    2004-03-01

    We have developed a methodology for including effects of chemical reactions in coarse-grained computer simulations such as those that use the united atom or bead and spring approximations. The new coarse-grained chemical reaction model (CGCRM) adopts the philosophy of kinetic Monte Carlo approaches and includes a probabilistic element to predicting when reactions occur, thus obviating the need for a chemically correct interaction potential. The CGCRM uses known chemical reactions along with their probabilities and exothermicities for a specific material in order to assess the effect of chemical reactions on a physical process of interest. The reaction event in the simulation is implemented by removing the reactant molecules from the simulation and replacing them with product molecules. The position of the product molecules is carefully adjusted to make sure that the total energy change of the system corresponds to the reaction exothermicity. The CGCR model was initially implemented in simulations of laser irradiation at fluences such that there is ablation or massive removal of material. The initial reaction is photon cleavage of a chemical bond thus creating two radicals that can undergo subsequent abstraction and radical-radical recombination reactions. The talk will discuss application of the model to photoablation of PMMA. Y. G. Yingling, L. V. Zhigilei and B. J. Garrison, J. Photochemistry and Photobiology A: Chemistry, 145, 173-181 (2001); Y. G. Yingling and B. J. Garrison, Chem. Phys. Lett., 364, 237-243 (2002).

  12. Kinetics of gas-phase reactions relevant to the chemical vapor deposition of indium compounds

    SciTech Connect

    Allendorf, M.D.; McDaniel, A.H.

    1998-03-01

    Compounds containing indium are of interest for electronic and optical applications. These compounds include III-V semiconductors such as InP and InAs used in both electronic devices and solar cells, and indium tin oxide, which can be used for optical memory and antireflection coatings. Chemical vapor deposition (CVD) techniques can be used to deposit these materials on a variety of substrates. At the temperatures typically employed (550--900 K), gas-phase chemical reactions involving the indium-containing precursor can occur. The kinetics of trimethylindium pyrolysis are investigated in a flow reactor equipped with a molecular-beam mass-spectrometric sampling system. Data are analyzed using a new computational approach that accounts for heat and mass transport in the reactor. The measured activation energy, 46.2 kcal/mol, is in good agreement with previously reported values.

  13. Activated coconut shell charcoal carbon using chemical-physical activation

    NASA Astrophysics Data System (ADS)

    Budi, Esmar; Umiatin, Nasbey, Hadi; Bintoro, Ridho Akbar; Wulandari, Futri; Erlina

    2016-02-01

    The use of activated carbon from natural material such as coconut shell charcoal as metal absorbance of the wastewater is a new trend. The activation of coconut shell charcoal carbon by using chemical-physical activation has been investigated. Coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours in producing charcoal. The charcoal as the sample was shieved into milimeter sized granule particle and chemically activated by immersing in various concentration of HCl, H3PO4, KOH and NaOH solutions. The samples then was physically activated using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology and carbon content of activated carbon were characterized by using SEM/EDS. The result shows that the pores of activated carbon are openned wider as the chemical activator concentration is increased due to an excessive chemical attack. However, the pores tend to be closed as further increasing in chemical activator concentration due to carbon collapsing.

  14. Noble metal-free hydrazine fuel cell catalysts: EPOC effect in competing chemical and electrochemical reaction pathways.

    PubMed

    Sanabria-Chinchilla, Jean; Asazawa, Koichiro; Sakamoto, Tomokazu; Yamada, Koji; Tanaka, Hirohisa; Strasser, Peter

    2011-04-13

    We report the discovery of a highly active Ni-Co alloy electrocatalyst for the oxidation of hydrazine (N(2)H(4)) and provide evidence for competing electrochemical (faradaic) and chemical (nonfaradaic) reaction pathways. The electrochemical conversion of hydrazine on catalytic surfaces in fuel cells is of great scientific and technological interest, because it offers multiple redox states, complex reaction pathways, and significantly more favorable energy and power densities compared to hydrogen fuel. Structure-reactivity relations of a Ni(60)Co(40) alloy electrocatalyst are presented with a 6-fold increase in catalytic N(2)H(4) oxidation activity over today's benchmark catalysts. We further study the mechanistic pathways of the catalytic N(2)H(4) conversion as function of the applied electrode potential using differentially pumped electrochemical mass spectrometry (DEMS). At positive overpotentials, N(2)H(4) is electrooxidized into nitrogen consuming hydroxide ions, which is the fuel cell-relevant faradaic reaction pathway. In parallel, N(2)H(4) decomposes chemically into molecular nitrogen and hydrogen over a broad range of electrode potentials. The electroless chemical decomposition rate was controlled by the electrode potential, suggesting a rare example of a liquid-phase electrochemical promotion effect of a chemical catalytic reaction ("EPOC"). The coexisting electrocatalytic (faradaic) and heterogeneous catalytic (electroless, nonfaradaic) reaction pathways have important implications for the efficiency of hydrazine fuel cells. PMID:21425793

  15. Study of chemical reactions under the influence of ultrasound

    SciTech Connect

    Lee, Kien-Yin.

    1993-01-01

    At Los Alamos the author is interested in sonochemistry because there is potential for accelerating reactions involving the synthesis of certain nitro compounds and for reducing the possibility of decomposition under milder reaction conditions. The author has initiated the study of the nitration of 2,4-dihydro-3H-1,2,4-triazol-3-one with concentrated nitric acid under sonication. The preparation of 3,6-bis(3,5-dimethylpyrazol-1-yl)-1,2-dihydro-1,2,4,5-tetrazine, and oxidation of 3,6-diamino-1,2,4,5-tetrazine were also studied. Sonication reaction conditions and results of these reactions under ultrasound are discussed in detail.

  16. Study of chemical reactions under the influence of ultrasound

    SciTech Connect

    Lee, Kien-Yin

    1993-07-01

    At Los Alamos the author is interested in sonochemistry because there is potential for accelerating reactions involving the synthesis of certain nitro compounds and for reducing the possibility of decomposition under milder reaction conditions. The author has initiated the study of the nitration of 2,4-dihydro-3H-1,2,4-triazol-3-one with concentrated nitric acid under sonication. The preparation of 3,6-bis(3,5-dimethylpyrazol-1-yl)-1,2-dihydro-1,2,4,5-tetrazine, and oxidation of 3,6-diamino-1,2,4,5-tetrazine were also studied. Sonication reaction conditions and results of these reactions under ultrasound are discussed in detail.

  17. Vicher: A Virtual Reality Based Educational Module for Chemical Reaction Engineering.

    ERIC Educational Resources Information Center

    Bell, John T.; Fogler, H. Scott

    1996-01-01

    A virtual reality application for undergraduate chemical kinetics and reactor design education, Vicher (Virtual Chemical Reaction Model) was originally designed to simulate a portion of a modern chemical plant. Vicher now consists of two programs: Vicher I that models catalyst deactivation and Vicher II that models nonisothermal effects in…

  18. Chemical Reaction CO+OH(•) → CO2+H(•) Autocatalyzed by Carbon Dioxide: Quantum Chemical Study of the Potential Energy Surfaces.

    PubMed

    Masunov, Artëm E; Wait, Elizabeth; Vasu, Subith S

    2016-08-01

    The supercritical carbon dioxide medium, used to increase efficiency in oxy combustion fossil energy technology, may drastically alter both rates and mechanisms of chemical reactions. Here we investigate potential energy surface of the second most important combustion reaction with quantum chemistry methods. Two types of effects are reported: formation of the covalent intermediates and formation of van der Waals complexes by spectator CO2 molecule. While spectator molecule alter the activation barrier only slightly, the covalent bonding opens a new reaction pathway. The mechanism includes sequential covalent binding of CO2 to OH radical and CO molecule, hydrogen transfer from oxygen to carbon atoms, and CH bond dissociation. This reduces the activation barrier by 11 kcal/mol at the rate-determining step and is expected to accelerate the reaction rate. The finding of predicted catalytic effect is expected to play an important role not only in combustion but also in a broad array of chemical processes taking place in supercritical CO2 medium. It may open a new venue for controlling reaction rates for chemical manufacturing. PMID:27351778

  19. Modeling the Influence of Transport on Chemical Reactivity in Microbial Membranes: Mineral Precipitation/Dissolution Reactions.

    NASA Astrophysics Data System (ADS)

    Felmy, A. R.; Liu, C.; Clark, S.; Straatsma, T.; Rustad, J.

    2003-12-01

    It has long been known that microorganisms can alter the chemical composition of their immediate surroundings and influence such processes as ion uptake or adsorption and mineral precipitation dissolution. However, only recently have molecular imaging and molecular modeling capabilities been developed that begin to shed light on the nature of these processes at the nm to um scale at the surface of bacterial membranes. In this presentation we will show the results of recent molecular simulations of microbial surface reactions and describe our efforts to develop accurate non-equilibrium thermodynamic models for the microbial surface that can describe ion uptake and surface induced mineral precipitation. The thermodynamic models include the influence of the bacterial electrical double layer on the uptake of ions from solution and the removal, or exclusion, of ions from the surface of the cell, non-equilibrium diffusion and chemical reaction within the membrane, as well as a new thermodynamic approach to representing ion activities within the microbial membrane. In the latter case, the variability in the water content within the microbial membrane has a significant influence on the calculated mineral saturation indices. In such cases, we will propose the use of recently developed mixed solvent-electrolyte formalisms. Recent experimental data for mixed-solvent electrolyte systems will also be presented to demonstrate the potential impact of the variable water content on calculated ion activities within the membrane.

  20. Activity Therapy Services and Chemical Dependency Rehabilitation.

    ERIC Educational Resources Information Center

    James, Mark R.; Townsley, Robin K.

    1989-01-01

    Discusses how music, occupational, and recreation therapies can contribute to comprehensive treatment programs for chemical dependency. Sees prime contribution of activity therapy as lying in nature of experiential education, applying insight gained in counseling sessions and discussion groups to practical real-life situations. (Author/NB)

  1. A lattice gas automata model for heterogeneous chemical reactions at mineral surfaces and in pore networks

    SciTech Connect

    Wells, J.T. . Dept. of Geological Sciences); Janecky, D.R.; Travis, B.J. )

    1990-01-15

    A lattice gas automata (LGA) model is described, which couples solute transport with chemical reactions at mineral surfaces and in pore networks. Chemical reactions and transport are integrated into a FHP-I LGA code as a module so that the approach is readily transportable to other codes. Diffusion in a box calculations are compared to finite element Fickian diffusion results and provide an approach to quantifying space-time ratios of the models. Chemical reactions at solid surfaces, including precipitation/dissolution, sorption, and catalytic reaction, can be examined with the model because solute diffusion and mineral surface processes are all treated explicitly. The simplicity and flexibility of the LGA approach provides the ability to study the interrelationship between fluid flow and chemical reactions in porous materials, at a level of complexity that has not previously been computationally possible. 20 refs., 8 figs.

  2. Analysis of weblike network structures of directed graphs for chemical reactions in methane plasmas

    NASA Astrophysics Data System (ADS)

    Sakai, Osamu; Nobuto, Kyosuke; Miyagi, Shigeyuki; Tachibana, Kunihide

    2015-10-01

    Chemical reactions of molecular gases like methane are so complicated that a chart of decomposed and/or synthesized species originating from molecules in plasma resembles a weblike network in which we write down species and reactions among them. Here we consider properties of the network structures of chemical reactions in methane plasmas. In the network, atoms/molecules/radical species are assumed to form nodes and chemical reactions correspond to directed edges in the terminology of graph theory. Investigation of the centrality index reveals importance of CH3 in the global chemical reaction, and difference of an index for each radical species between cases with and without electrons clarifies that the electrons are at an influential position to tighten the network structure.

  3. Analysis of weblike network structures of directed graphs for chemical reactions in methane plasmas

    SciTech Connect

    Sakai, Osamu Nobuto, Kyosuke; Miyagi, Shigeyuki; Tachibana, Kunihide

    2015-10-15

    Chemical reactions of molecular gases like methane are so complicated that a chart of decomposed and/or synthesized species originating from molecules in plasma resembles a weblike network in which we write down species and reactions among them. Here we consider properties of the network structures of chemical reactions in methane plasmas. In the network, atoms/molecules/radical species are assumed to form nodes and chemical reactions correspond to directed edges in the terminology of graph theory. Investigation of the centrality index reveals importance of CH{sub 3} in the global chemical reaction, and difference of an index for each radical species between cases with and without electrons clarifies that the electrons are at an influential position to tighten the network structure.

  4. Why Do Lithium-Oxygen Batteries Fail: Parasitic Chemical Reactions and Their Synergistic Effect.

    PubMed

    Yao, Xiahui; Dong, Qi; Cheng, Qingmei; Wang, Dunwei

    2016-09-12

    As an electrochemical energy-storage technology with the highest theoretical capacity, lithium-oxygen batteries face critical challenges in terms of poor stabilities and low charge/discharge round-trip efficiencies. It is generally recognized that these issues are connected to the parasitic chemical reactions at the anode, electrolyte, and cathode. While the detailed mechanisms of these reactions have been studied separately, the possible synergistic effects between these reactions remain poorly understood. To fill in the knowledge gap, this Minireview examines literature reports on the parasitic chemical reactions and finds the reactive oxygen species a key chemical mediator that participates in or facilitates nearly all parasitic chemical reactions. Given the ubiquitous presence of oxygen in all test cells, this finding is important. It offers new insights into how to stabilize various components of lithium-oxygen batteries for high-performance operations and how to eventually materialize the full potentials of this promising technology. PMID:27381169

  5. Molecule-based approach for computing chemical-reaction rates in upper atmosphere hypersonic flows.

    SciTech Connect

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

    2009-08-01

    This report summarizes the work completed during FY2009 for the LDRD project 09-1332 'Molecule-Based Approach for Computing Chemical-Reaction Rates in Upper-Atmosphere Hypersonic Flows'. The goal of this project was to apply a recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary nonequilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological non-equilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, the difference between the two models can exceed 10 orders of magnitude. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates. Extensions of the model to reactions typically found in combustion flows and ionizing reactions are also found to be in very good agreement with available measurements, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.

  6. Studying Chemical Reactions, One Bond at a Time, with Single Molecule AFM Techniques

    NASA Astrophysics Data System (ADS)

    Fernandez, Julio M.

    2008-03-01

    The mechanisms by which mechanical forces regulate the kinetics of a chemical reaction are unknown. In my lecture I will demonstrate how we use single molecule force-clamp spectroscopy and protein engineering to study the effect of force on the kinetics of thiol/disulfide exchange. Reduction of disulfide bond via the thiol/disulfide exchange chemical reaction is crucial in regulating protein function and is of common occurrence in mechanically stressed proteins. While reduction is thought to proceed through a substitution nucleophilic bimolecular (SN2) reaction, the role of a mechanical force in modulating this chemical reaction is unknown. We apply a constant stretching force to single engineered disulfide bonds and measure their rate of reduction by dithiothreitol (DTT). We find that while the reduction rate is linearly dependent on the concentration of DTT, it is exponentially dependent on the applied force, increasing 10-fold over a 300 pN range. This result predicts that the disulfide bond lengthens by 0.34 å at the transition state of the thiol/disulfide exchange reaction. In addition to DTT, we also study the reduction of the engineered disulfide bond by the E. coli enzyme thioredoxin (Trx). Thioredoxins are enzymes that catalyze disulfide bond reduction in all organisms. As before, we apply a mechanical force in the range of 25-450 pN to the engineered disulfide bond substrate and monitor the reduction of these bonds by individual enzymes. In sharp contrast with the data obtained with DTT, we now observe two alternative forms of the catalytic reaction, the first requiring a reorientation of the substrate disulfide bond, causing a shortening of the substrate polypeptide by 0.76±0.07 å, and the second elongating the substrate disulfide bond by 0.21±0.01 å. These results support the view that the Trx active site regulates the geometry of the participating sulfur atoms, with sub-ångström precision, in order to achieve efficient catalysis. Single molecule

  7. Chemical and mathematical modeling of asphaltene reaction pathways

    SciTech Connect

    Salvage, P.E.

    1986-01-01

    Precipitated asphaltene was subjected to pyrolysis and hydropyrolysis, both neat and in solvents, and catalytic hydroprocessing. A solvent extraction procedure defined gas, maltene, asphaltene, and coke product fractions. The apparent first order rate constant for asphaltene conversion at 400/sup 0/C was relatively insensitive to the particular reaction scheme. The yield of gases likewise showed little variation and was always less than 10%. On the other hand, the maltene and coke yields were about 20% and 60%, respectively, from neat pyrolysis, and about 60% and less than 5%, respectively, from catalytic reactions. The temporal variations of the product fractions allowed discernment of asphaltene reaction pathways. The primary reaction of asphaltene was to residual asphaltene, maltenes, and gases. The residual asphaltene reacted thermally to coke and catalytically to maltenes at the expense of coke. Secondary degradation of these primary products led to lighter compounds. Reaction mechanism for pyrolysis of asphaltene model compounds and alkylaromstics were determined. The model compound kinetics results were combined with a stochastic description of asphaltene structure in a mathematical model of asphaltene pyrolysis. Individual molecular product were assigned to either the gas, maltene, asphaltene, or coke product fractions, and summation of the weights of each constituted the model's predictions. The temporal variation of the product fractions from simulated asphaltene pyrolysis compared favorably with experimental results.

  8. Ab initio chemical kinetics for the HCCO + OH reaction

    NASA Astrophysics Data System (ADS)

    Mai, Tam V.-T.; Raghunath, P.; Le, Xuan T.; Huynh, Lam K.; Nam, Pham-Cam; Lin, M. C.

    2014-01-01

    The mechanism for the reaction of HCCO and OH has been investigated at different high-levels of theory. The reaction was found to occur on singlet and triplet potential energy surfaces with multiple accessible paths. Rate constants predicted by variational RRKM/ME calculations show that the reaction on both surfaces occurs primarily by barrierless OH attack at both C atoms producing excited intermediates which fragment to produce predominantly CO and 1,3HCOH with kS = 3.12 × 10-8T-0.59exp[-73.0/T] and kT = 6.29 × 10-11T0.13exp[108/T] cm3 molecule-1 s-1 at T = 300-2000 K, independent of pressure at P < 76 000 Torr.

  9. Applications of the ETS-NOCV method in descriptions of chemical reactions.

    PubMed

    Mitoraj, Mariusz Paweł; Parafiniuk, Monika; Srebro, Monika; Handzlik, Michał; Buczek, Agnieszka; Michalak, Artur

    2011-09-01

    The present study characterizes changes in the electronic structure of reactants during chemical reactions based on the combined charge and energy decomposition scheme, ETS-NOCV (extended transition state-natural orbitals for chemical valence). Decomposition of the activation barrier, ΔE (#), into stabilizing (orbital interaction, ΔE (orb), and electrostatic, ΔE (elstat)) and destabilizing (Pauli repulsion, ΔE (Pauli), and geometry distortion energy, ΔE (dist)) factors is discussed in detail for the following reactions: (I) hydrogen cyanide to hydrogen isocyanide, HCN → CNH isomerization; (II) Diels-Alder cycloaddition of ethene to 1,3-butadiene; and two catalytic processes, i.e., (III) insertion of ethylene into the metal-alkyl bond using half-titanocene with phenyl-phenoxy ligand catalyst; and (IV) B-H bond activation catalyzed by an Ir-containing catalyst. Various reference states for fragments were applied in ETS-NOCV analysis. We found that NOCV-based deformation densities (Δρ (i)) and the corresponding energies ΔE (orb)(i) obtained from the ETS-NOCV scheme provide a very useful picture, both qualitatively and quantitatively, of electronic density reorganization along the considered reaction pathways. Decomposition of the barrier ΔE(#) into stabilizing and destabilizing contributions allowed us to conclude that the main factor responsible for the existence of positive values of ΔE (#) for all processes (I, II, III and IV) is Pauli interaction, which is the origin of steric repulsion. In addition, in the case of reactions II, III and IV, a significant degree of structural deformation of the reactants, as measured by the geometry distortion energy, plays an important role. Depending on the reaction type, stabilization of the transition state (relatively to the reactants) originating either from the orbital interaction term or from electrostatic attraction can be of vital importance. Finally, use of the ETS-NOCV method to describe catalytic

  10. Soret and chemical reaction effects on unsteady two-dimensional natural convection along a vertical plate

    NASA Astrophysics Data System (ADS)

    Raju, S. Suresh Kumar; Narahari, M.; Pendyala, Rajashekhar

    2014-10-01

    In this paper, a numerical solution of the unsteady two-dimensional natural convection along a vertical plate in the presence of Soret and chemical reaction effects is presented. The governing non-dimensional coupled non-linear partial differential equations have been evaluated by using an implicit finite-difference technique of Crank-Nicolson scheme. Numerical predictions for the velocity, concentration, local and average skin-friction and Sherwood number for distinct values of chemical reaction parameter and Soret number are plotted graphically. It is found that the fluid velocity and concentration decreases while increasing chemical reaction parameter whereas an increase in the Soret number increases the fluid velocity and concentration.

  11. Chemical Principles Revisited. Redox Reactions and the Electropotential Axis.

    ERIC Educational Resources Information Center

    Vella, Alfred J.

    1990-01-01

    This paper suggests a nontraditional pedagogic approach to the subject of redox reactions and electrode potentials suitable for freshman chemistry. Presented is a method for the representation of galvanic cells without the introduction of the symbology and notation of conventional cell diagrams. (CW)

  12. Theoretical studies of the dynamics of chemical reactions

    SciTech Connect

    Wagner, A.F.

    1993-12-01

    Recent research effort has focussed on several reactions pertinent to combustion. The formation of the formyl radical from atomic hydrogen and carbon monoxide, recombination of alkyl radicals and halo-alkyl radicals with halogen atoms, and the thermal dissociation of hydrogen cyanide and acetylene have been studied by modeling. In addition, the inelastic collisions of NCO with helium have been investigated.

  13. Theoretical Studies of Chemical Reactions following Electronic Excitation

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.

    2003-01-01

    The use of multi-configurational wave functions is demonstrated for several processes: tautomerization reactions in the ground and excited states of the DNA base adenine, dissociation of glycine molecule after electronic excitation, and decomposition/deformation of novel rare gas molecules HRgF. These processes involve bond brealung/formation and require multi-configurational approaches that include dynamic correlation.

  14. Synthesis and chemical reactions of the steroidal hormone 17α-methyltestosterone.

    PubMed

    El-Desoky, El-Sayed Ibrahim; Reyad, Mahmoud; Afsah, Elsayed Mohammed; Dawidar, Abdel-Aziz Mahmoud

    2016-01-01

    Structural modifications of natural products with complex structures like steroids require great synthetic effort. A review of literature is presented on the chemistry of the steroidal hormone 17α-methyltestosterone that is approved by Food and Drug Administration (FDA) in the United States as an androgen for estrogen-androgen hormone replacement therapy treatment. The analog also offers special possibilities for the prevention/treatment of hormone-sensitive cancers. The testosterone skeleton has important functionalities in the molecule that can act as a carbonyl component, an active methylene compound, α,β-unsaturated enone and tertiary hydroxyl group in various chemical reactions to access stereoisomeric steroidal compounds with potent activity. In addition, microbiological methods of synthesis and transformation of this hormone are presented. PMID:26639430

  15. Sensitive detection of chemical agents and toxic industrial chemicals using active open-path FTIRs

    NASA Astrophysics Data System (ADS)

    Walter, William T.

    2004-03-01

    Active open-path FTIR sensors provide more sensitive detection of chemical agents than passive FTIRs, such as the M21 RSCAAL and JSLSCAD, and at the same time identify and quantify toxic industrial chemicals (TIC). Passive FTIRs are bistatic sensors relying on infrared sources of opportunity. Utilization of earth-based sources of opportunity limits the source temperatures available for passive chemical-agent FTIR sensors to 300° K. Active FTIR chemical-agent sensors utilize silicon carbide sources, which can be operated at 1500° K. The higher source temperature provides more than an 80-times increase in the infrared radiant flux emitted per unit area in the 7 to 14 micron spectral fingerprint region. Minimum detection limits are better than 5 μgm/m3 for GA, GB, GD, GF and VX. Active FTIR sensors can (1) assist first responders and emergency response teams in their assessment of and reaction to a terrorist threat, (2) provide information on the identification of the TIC present and their concentrations and (3) contribute to the understanding and prevention of debilitating disorders analogous to the Gulf War Syndrome for military and civilian personnel.

  16. X-ray microspectroscopy and chemical reactions in soil microsites.

    PubMed

    Hesterberg, Dean; Duff, Martine C; Dixon, Joe B; Vepraskas, Michael J

    2011-01-01

    Soils provide long-term storage of environmental contaminants, which helps to protect water and air quality and diminishes negative impacts of contaminants on human and ecosystem health. Characterizing solid-phase chemical species in highly complex matrices is essential for developing principles that can be broadly applied to the wide range of notoriously heterogeneous soils occurring at the earth's surface. In the context of historical developments in soil analytical techniques, we describe applications of bulk-sample and spatially resolved synchrotron X-ray absorption spectroscopy (XAS) for characterizing chemical species of contaminants in soils, and for determining the uniqueness of trace-element reactivity in different soil microsites. Spatially resolved X-ray techniques provide opportunities for following chemical changes within soil microsites that serve as highly localized chemical micro- (or nano-)reactors of unique composition. An example of this microreactor concept is shown for micro-X-ray absorption near edge structure analysis of metal sulfide oxidation in a contaminated soil. One research challenge is to use information and principles developed from microscale soil chemistry for predicting macroscale and field-scale behavior of soil contaminants. PMID:21546654

  17. EFFICIENT CHEMICAL TRANSFORMATIONS USING ALTERNATIVE REACTION CONDITIONS AND MEDIA

    EPA Science Inventory

    The diverse nature of chemical entities requires various green' strategic pathways in our quest towards attaining sustainability. A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of less-expensive and recyclable...

  18. X-ray Microspectroscopy and Chemical Reactions in Soil Microsites

    SciTech Connect

    D Hesterberg; M Duff; J Dixon; M Vepraskas

    2011-12-31

    Soils provide long-term storage of environmental contaminants, which helps to protect water and air quality and diminishes negative impacts of contaminants on human and ecosystem health. Characterizing solid-phase chemical species in highly complex matrices is essential for developing principles that can be broadly applied to the wide range of notoriously heterogeneous soils occurring at the earth's surface. In the context of historical developments in soil analytical techniques, we describe applications of bulk-sample and spatially resolved synchrotron X-ray absorption spectroscopy (XAS) for characterizing chemical species of contaminants in soils, and for determining the uniqueness of trace-element reactivity in different soil microsites. Spatially resolved X-ray techniques provide opportunities for following chemical changes within soil microsites that serve as highly localized chemical micro- (or nano-)reactors of unique composition. An example of this microreactor concept is shown for micro-X-ray absorption near edge structure analysis of metal sulfide oxidation in a contaminated soil. One research challenge is to use information and principles developed from microscale soil chemistry for predicting macroscale and field-scale behavior of soil contaminants.

  19. TDDFT-based local control theory for chemical reactions

    NASA Astrophysics Data System (ADS)

    Tavernelli, Ivano; Curchod, Basile F. E.; Penfold, Thomas J.

    In this talk I will describe the implementation of local control theory for laser pulse shaping within the framework of TDDFT-based nonadiabatic dynamics. The method is based on a set of modified Tully's surface hopping equations and provides an efficient way to control the population of a selected reactive state of interest through the coupling with an external time-dependent electric field generated on-the-fly during the dynamics. This approach is applied to the investigation of the photoinduced intramolecular proton transfer reaction in 4-hydroxyacridine in gas phase and in solution. The generated pulses reveal important information about the underlying excited-state nuclear dynamics highlighting the involvement of collective vibrational modes that would be neglected in studies performed on model systems. Finally, this approach can help to shed new light on the photophysics and photochemistry of complex molecular systems and guide the design of novel reaction paths.

  20. Magnetohydrodynamic (MHD) stretched flow of nanofluid with power-law velocity and chemical reaction

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Rashid, Madiha; Imtiaz, Maria; Alsaedi, Ahmed

    2015-11-01

    This paper deals with the boundary layer flow of nanofluid over power-law stretched surface. Analysis has been carried out in the presence of applied magnetic field and chemical reaction. Heat and mass transfer characteristics are studied using heat and mass convective conditions. The governing partial differential equations are transferred to the nonlinear ordinary differential equations. Convergent series solutions are obtained for fluid velocity, temperature and concentrations fields. Influences of pertinent parameters including Hartman number, thermal and concentration Biot numbers and chemical reaction parameters are discussed on the velocity, temperature and concentration profiles. Graphical result are presented and discussed. Computations for local Nusselt and Sherwood numbers are carried out. It is observed that the heat transfer rate is enhanced by increasing power-law index, thermal Biot number and chemical reaction parameter while mass transfer rate increases for power-law index and chemical reaction parameter.

  1. Rheological monitoring of phase separation induced by chemical reaction in thermoplastic-modified epoxy

    SciTech Connect

    Vinh-Tung, C.; Lachenal, G.; Chabert, B.

    1996-12-31

    The phase separation induced by chemical reaction in blends of tetraglycidyl-diaminodiphenylmethane epoxy resin with an aromatic diamine hardener and a thermoplastic was monitored. Rheological measurements and morphologies are described.

  2. LSENS, a general chemical kinetics and sensitivity analysis code for gas-phase reactions: User's guide

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Bittker, David A.

    1993-01-01

    A general chemical kinetics and sensitivity analysis code for complex, homogeneous, gas-phase reactions is described. The main features of the code, LSENS, are its flexibility, efficiency and convenience in treating many different chemical reaction models. The models include static system, steady, one-dimensional, inviscid flow, shock initiated reaction, and a perfectly stirred reactor. In addition, equilibrium computations can be performed for several assigned states. An implicit numerical integration method, which works efficiently for the extremes of very fast and very slow reaction, is used for solving the 'stiff' differential equation systems that arise in chemical kinetics. For static reactions, sensitivity coefficients of all dependent variables and their temporal derivatives with respect to the initial values of dependent variables and/or the rate coefficient parameters can be computed. This paper presents descriptions of the code and its usage, and includes several illustrative example problems.

  3. Reformulation and solution of the master equation for multiple-well chemical reactions.

    PubMed

    Georgievskii, Yuri; Miller, James A; Burke, Michael P; Klippenstein, Stephen J

    2013-11-21

    We consider an alternative formulation of the master equation for complex-forming chemical reactions with multiple wells and bimolecular products. Within this formulation the dynamical phase space consists of only the microscopic populations of the various isomers making up the reactive complex, while the bimolecular reactants and products are treated equally as sources and sinks. This reformulation yields compact expressions for the phenomenological rate coefficients describing all chemical processes, i.e., internal isomerization reactions, bimolecular-to-bimolecular reactions, isomer-to-bimolecular reactions, and bimolecular-to-isomer reactions. The applicability of the detailed balance condition is discussed and confirmed. We also consider the situation where some of the chemical eigenvalues approach the energy relaxation time scale and show how to modify the phenomenological rate coefficients so that they retain their validity. PMID:24053787

  4. "JCE" Classroom Activity #111: Redox Reactions in Three Representations

    ERIC Educational Resources Information Center

    Nieves, Edgardo L. Ortiz; Barreto, Reizelie; Medina, Zuleika

    2012-01-01

    This activity introduces students to the concept of reduction-oxidation (redox) reactions. To help students obtain a thorough understanding of redox reactions, the concept is explored at three levels: macroscopic, submicroscopic, and symbolic. In this activity, students perform hands-on investigations of the three levels as they work at different…

  5. Collective surfing of chemically active particles.

    PubMed

    Masoud, Hassan; Shelley, Michael J

    2014-03-28

    We study theoretically the collective dynamics of immotile particles bound to a 2D surface atop a 3D fluid layer. These particles are chemically active and produce a chemical concentration field that creates surface-tension gradients along the surface. The resultant Marangoni stresses create flows that carry the particles, possibly concentrating them. For a 3D diffusion-dominated concentration field and Stokesian fluid we show that the surface dynamics of active particle density can be determined using nonlocal 2D surface operators. Remarkably, we also show that for both deep or shallow fluid layers this surface dynamics reduces to the 2D Keller-Segel model for the collective chemotactic aggregation of slime mold colonies. Mathematical analysis has established that the Keller-Segel model can yield finite-time, finite-mass concentration singularities. We show that such singular behavior occurs in our finite-depth system, and study the associated 3D flow structures. PMID:24724685

  6. Collective Surfing of Chemically Active Particles

    NASA Astrophysics Data System (ADS)

    Masoud, Hassan; Shelley, Michael J.

    2014-03-01

    We study theoretically the collective dynamics of immotile particles bound to a 2D surface atop a 3D fluid layer. These particles are chemically active and produce a chemical concentration field that creates surface-tension gradients along the surface. The resultant Marangoni stresses create flows that carry the particles, possibly concentrating them. For a 3D diffusion-dominated concentration field and Stokesian fluid we show that the surface dynamics of active particle density can be determined using nonlocal 2D surface operators. Remarkably, we also show that for both deep or shallow fluid layers this surface dynamics reduces to the 2D Keller-Segel model for the collective chemotactic aggregation of slime mold colonies. Mathematical analysis has established that the Keller-Segel model can yield finite-time, finite-mass concentration singularities. We show that such singular behavior occurs in our finite-depth system, and study the associated 3D flow structures.

  7. Three model space experiments on chemical reactions. [Gibbs adsorption, equilibrium shift and electrodeposition

    NASA Technical Reports Server (NTRS)

    Grodzka, P.; Facemire, B.

    1977-01-01

    Three investigations conducted aboard Skylab IV and Apollo-Soyuz involved phenomena that are of interest to the biochemistry community. The formaldehyde clock reaction and the equilibrium shift reaction experiments conducted aboard Apollo Soyuz demonstrate the effect of low-g foams or air/liquid dispersions on reaction rate and chemical equilibrium. The electrodeposition reaction experiment conducted aboard Skylab IV demonstrate the effect of a low-g environment on an electrochemical displacement reaction. The implications of the three space experiments for various applications are considered.

  8. Ambient solid-state mechano-chemical reactions between functionalized carbon nanotubes

    PubMed Central

    Kabbani, Mohamad A.; Tiwary, Chandra Sekhar; Autreto, Pedro A.S.; Brunetto, Gustavo; Som, Anirban; Krishnadas, K.R.; Ozden, Sehmus; Hackenberg, Ken P.; Gong, Yongi; Galvao, Douglas S.; Vajtai, Robert; Kabbani, Ahmad T.; Pradeep, Thalappil; Ajayan, Pulickel M.

    2015-01-01

    Carbon nanotubes can be chemically modified by attaching various functionalities to their surfaces, although harsh chemical treatments can lead to their break-up into graphene nanostructures. On the other hand, direct coupling between functionalities bound on individual nanotubes could lead to, as yet unexplored, spontaneous chemical reactions. Here we report an ambient mechano-chemical reaction between two varieties of nanotubes, carrying predominantly carboxyl and hydroxyl functionalities, respectively, facilitated by simple mechanical grinding of the reactants. The purely solid-state reaction between the chemically differentiated nanotube species produces condensation products and unzipping of nanotubes due to local energy release, as confirmed by spectroscopic measurements, thermal analysis and molecular dynamic simulations. PMID:26073564

  9. Indoor Volatile Organic Compounds and Chemical Sensitivity Reactions

    PubMed Central

    Win-Shwe, Tin-Tin; Arashidani, Keiichi; Kunugita, Naoki

    2013-01-01

    Studies of unexplained symptoms observed in chemically sensitive subjects have increased the awareness of the relationship between neurological and immunological diseases due to exposure to volatile organic compounds (VOCs). However, there is no direct evidence that links exposure to low doses of VOCs and neurological and immunological dysfunction. We review animal model data to clarify the role of VOCs in neuroimmune interactions and discuss our recent studies that show a relationship between chronic exposure of C3H mice to low levels of formaldehyde and the induction of neural and immune dysfunction. We also consider the possible mechanisms by which VOC exposure can induce the symptoms presenting in patients with a multiple chemical sensitivity. PMID:24228055

  10. Chemical and structural features influencing the biological activity of curcumin.

    PubMed

    Priyadarsini, K Indira

    2013-01-01

    Curcumin, a polyphenolic natural product, exhibits therapeutic activity against a number of diseases, attributed mainly to its chemical structure and unique physical, chemical, and biological properties. It is a diferuloyl methane molecule [1,7-bis (4-hydroxy-3- methoxyphenyl)-1,6-heptadiene-3,5-dione)] containing two ferulic acid residues joined by a methylene bridge. It has three important functionalities: an aromatic o-methoxy phenolic group, α, β-unsaturated β-diketo moiety and a seven carbon linker. Extensive research in the last two decades has provided evidence for the role of these different functional groups in its crucial biological activities. A few highlights of chemical structural features associated with the biological activity of curcumin are: The o-methoxyphenol group and methylenic hydrogen are responsible for the antioxidant activity of curcumin, and curcumin donates an electron/ hydrogen atom to reactive oxygen species. Curcumin interacts with a number of biomolecules through non-covalent and covalent binding. The hydrogen bonding and hydrophobicity of curcumin, arising from the aromatic and tautomeric structures along with the flexibility of the linker group are responsible for the non-covalent interactions. The α, β-unsaturated β-diketone moiety covalently interacts with protein thiols, through Michael reaction. The β-diketo group forms chelates with transition metals, there by reducing the metal induced toxicity and some of the metal complexes exhibit improved antioxidant activity as enzyme mimics. New analogues with improved activity are being developed with modifications on specific functional groups of curcumin. The physico-chemical and structural features associated with some of the biological activities of curcumin and important analogues are summarized in this article. PMID:23116315

  11. Effects of reversible chemical reaction on Li diffusion and stresses in spherical composition-gradient electrodes

    SciTech Connect

    Li, Yong; Zhang, Kai; Zheng, Bailin Zhang, Xiaoqian; Wang, Qi

    2015-06-28

    Composition-gradient electrode materials have been proven to be one of the most promising materials in lithium-ion battery. To study the mechanism of mechanical degradation in spherical composition-gradient electrodes, the finite deformation theory and reversible chemical theory are adopted. In homogeneous electrodes, reversible electrochemical reaction may increase the magnitudes of stresses. However, reversible electrochemical reaction has different influences on stresses in composition-gradient electrodes, resulting from three main inhomogeneous factors—forward reaction rate, backward reaction rate, and reaction partial molar volume. The decreasing transition form of forward reaction rate, increasing transition form of backward reaction rate, and increasing transition form of reaction partial molar volume can reduce the magnitudes of stresses. As a result, capacity fading and mechanical degradation are reduced by taking advantage of the effects of inhomogeneous factors.

  12. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    DOEpatents

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  13. Non-stationary filtration mode during chemical reactions with the gas phase

    NASA Astrophysics Data System (ADS)

    Zavialov, Ivan; Konyukhov, Andrey; Negodyaev, Sergey

    2015-04-01

    An experimental and numerical study of filtration accompanied by chemical reactions between displacing fluid and solid skeleton is considered. Glass balls (400-500 μm in diameter) were placed in 1 cm gap between two glass sheets and were used as model porous medium. The baking soda was added to the glass balls. The 70% solution of acetic acid was used as the displacer. The modeling porous medium was saturated with a mineral oil, and then 70% solution of colored acetic acid was pumped through the medium. The glass balls and a mineral oil have a similar refractive index, so the model porous medium was optically transparent. During the filtration, the gas phase was generated by the chemical reactions between the baking soda and acetic acid, and time-dependent displacement of the chemical reaction front was observed. The front of the chemical reaction was associated with the most intensive gas separation. The front moved, stopped, and then moved again to the area where it had been already. We called this process a secondary oxidation wave. To describe this effect, we added to the balance equations a term associated with the formation and disappearance of phases due to chemical reactions. The equations were supplemented by Darcy's law for multiphase filtration. Nonstationarity front propagation of the chemical reaction in the numerical experiment was observed at Damköhler numbers greater than 100. The mathematical modelling was agreed well with the experimental results.

  14. RPMDRATE: Bimolecular chemical reaction rates from ring polymer molecular dynamics

    NASA Astrophysics Data System (ADS)

    Suleimanov, Yu. V.; Allen, J. W.; Green, W. H.

    2013-03-01

    We present RPMDRATE, a computer program for the calculation of gas phase bimolecular reaction rate coefficients using the ring polymer molecular dynamics (RPMD) method. The RPMD rate coefficient is calculated using the Bennett-Chandler method as a product of a static (centroid density quantum transition state theory (QTST) rate) and a dynamic (ring polymer transmission coefficient) factor. The computational procedure is general and can be used to treat bimolecular polyatomic reactions of any complexity in their full dimensionality. The program has been tested for the H+H2, H+CH4, OH+CH4 and H+C2H6 reactions. Catalogue identifier: AENW_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AENW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: MIT license No. of lines in distributed program, including test data, etc.: 94512 No. of bytes in distributed program, including test data, etc.: 1395674 Distribution format: tar.gz Programming language: Fortran 90/95, Python (version 2.6.x or later, including any version of Python 3, is recommended). Computer: Not computer specific. Operating system: Any for which Python, Fortran 90/95 compiler and the required external routines are available. Has the code been vectorized or parallelized?: The program can efficiently utilize 4096+ processors, depending on problem and available computer. At low temperatures, 110 processors are reasonable for a typical umbrella integration run with an analytic potential energy function and gradients on the latest x86-64 machines.

  15. Quantum chemical study of penicillin: Reactions after acylation

    NASA Astrophysics Data System (ADS)

    Li, Rui; Feng, Dacheng; Zhu, Feng

    The density functional theory methods were used on the model molecules of penicillin to determine the possible reactions after their acylation on ?-lactamase, and the results were compared with sulbactam we have studied. The results show that, the acylated-enzyme tetrahedral intermediate can evolves with opening of ?-lactam ring as well as the thiazole ring; the thiazole ring-open products may be formed via ?-lactam ring-open product or from tetrahedral intermediate directly. Those products, in imine or enamine form, can tautomerize via hydrogen migration. In virtue of the water-assisted, their energy barriers are obviously reduced.

  16. Ca + HF - The anatomy of a chemical insertion reaction

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.; Pattengill, M. D.; Mascarello, F. G.; Zare, R. N.

    1987-01-01

    A comprehensive first-principles theoretical investigation of the gas phase reaction Ca + HF - CaF + H is reported. Ab initio potential energy calculations are first discussed, along with characteristics of the computed potential energy surface. Next, the fitting of the computed potential energy points to a suitable analytical functional form is described, and maps of the fitted potential surface are displayed. The methodology and results of a classical trajectory calculation utilizing the fitted potential surface are presented. Finally, the significance of the trajectory study results is discussed, and generalizations concerning dynamical aspects of Ca + HF scattering are drawn.

  17. Rate-Controlled Constrained-Equilibrium Theory of Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Keck, James C.

    2008-08-01

    The Rate-Controlled Constrained-Equilibrium (RCCE) method for simplifying the treatment of reactions in complex systems is summarized and the selection of constraints for both close-to and far-from equilibrium systems is discussed. Illustrative examples of RCCE calculations of carbon monoxide concentrations in the exhaust products of an internal combustion engine and ignition delays for methane-oxygen mixtures in a constant volume adiabatic chamber are given and compared with "detailed" calculations. The advantages of RCCE calculations over "detailed" calculations are discussed.

  18. The Modification of Biocellular Chemical Reactions by Environmental Physicochemicals

    NASA Astrophysics Data System (ADS)

    Ishido, M.

    Environmental risk factors affect human biological system to different extent from modification of biochemical reaction to cellular catastrophe. There are considerable public concerns about electromagnetic fields and endocrine disruptors. Their risk assessments have not been fully achieved because of their scientific uncertainty: electromagnetic fields just modify the bioreaction in the restricted cells and endocrine disruptors are quite unique in that their expression is dependent on the exposure periods throughout a life. Thus, we here describe their molecular characterization to establish the new risk assessments for environmental physicochemicals.

  19. Reaction between Chromium(III) and EDTA Ions: an Overlooked Mechanism of Case Study Reaction of Chemical Kinetics.

    PubMed

    Cerar, Janez

    2015-01-01

    Widely cited and accepted explanation of reaction mechanism of the case study reaction of chemical kinetics between Cr(III) ions and ethylenediaminetetraacetic acid (EDTA) contradicts modern chromium(III) coordination chemistry data. Absorption UV and visible light spectra were recorded during the reaction between aqueous solution of Cr(NO(3))(3) and EDTA in order to obtain new information about this reaction. Analysis of the spectra showed that only very small fraction of intermediates may be present in solution during the course of the reaction. The reaction scheme was established and according to it calculations based on a simplified model were carried out. Literature data for constants were used if known, otherwise, adjusted values of their sound estimates were applied. Reasonable agreement of the model calculations with the experimental data was obtained for pH values 3.8 and 4.5 but the model failed to reproduce measured rate of reaction at pH 5.5, probably due to the use of the oversimplified model. PMID:26454587

  20. Mechanism of the Ferrocyanide-Iodate-Sulfite Oscillatory Chemical Reaction.

    PubMed

    Horváth, Viktor; Epstein, Irving R; Kustin, Kenneth

    2016-03-31

    Existing models of the ferrocyanide-iodate-sulfite (FIS) reaction seek to replicate the oscillatory pH behavior that occurs in open systems. These models exhibit significant differences in the amplitudes and waveforms of the concentration oscillations of such intermediates as I(-), I3(-), and Fe(CN)6(3-) under identical conditions and do not include several experimentally found intermediates. Here we report measurements of sulfite concentrations during an oscillatory cycle. Knowing the correct concentration of sulfite over the course of a period is important because sulfite is the main component that determines the buffer capacity, the pH extrema, and the amount of oxidizer (iodate) required for the transition to low pH. On the basis of this new result and recent experimental findings on the rate laws and intermediates of component processes taken from the literature, we propose a mass action kinetics model that attempts to faithfully represent the chemistry of the FIS reaction. This new comprehensive mechanism reproduces the pH oscillations and the periodic behavior in [Fe(CN)6(3-)], [I3(-)], [I(-)], and [SO3(2-)]T with characteristics similar to those seen in experiments in both CSTR and semibatch arrangements. The parameter ranges at which stationary and oscillatory behavior is exhibited also show good agreement with those of the experiments. PMID:26949219

  1. Theoretical Chemical Dynamics Studies of Elementary Combustion Reactions

    SciTech Connect

    Donald L. Thompson

    2009-09-30

    The objective of this research was to develop and apply methods for more accurate predictions of reaction rates based on high-level quantum chemistry. We have developed and applied efficient, robust methods for fitting global ab initio potential energy surfaces (PESs) for both spectroscopy and dynamics calculations and for performing direct dynamics simulations. Our approach addresses the problem that high-level quantum calculations are often too costly in computer time for practical applications resulting in the use of levels of theory that are often inadequate for reactions. A critical objective was to develop practical methods that require the minimum number of electronic structure calculations for acceptable fidelity to the ab initio PES. Our method does this by a procedure that determines the optimal configurations at which ab initio points are computed, and that ensures that the final fitted PES is uniformly accurate to a prescribed tolerance. Our fitting methods can be done automatically, with little or no human intervention, and with no prior knowledge of the topology of the PES. The methods are based on local fitting schemes using interpolating moving least-squares (IMLS). IMLS has advantages over the very effective modified-Shepard methods developed by Collins and others in that higher-order polynomials can be used and does not require derivatives but can benefit from them if available.

  2. Transmission coefficients for chemical reactions with multiple states: role of quantum decoherence.

    PubMed

    de la Lande, Aurélien; Řezáč, Jan; Lévy, Bernard; Sanders, Barry C; Salahub, Dennis R

    2011-03-23

    Transition-state theory (TST) is a widely accepted paradigm for rationalizing the kinetics of chemical reactions involving one potential energy surface (PES). Multiple PES reaction rate constants can also be estimated within semiclassical approaches provided the hopping probability between the quantum states is taken into account when determining the transmission coefficient. In the Marcus theory of electron transfer, this hopping probability was historically calculated with models such as Landau-Zener theory. Although the hopping probability is intimately related to the question of the transition from the fully quantum to the semiclassical description, this issue is not adequately handled in physicochemical models commonly in use. In particular, quantum nuclear effects such as decoherence or dephasing are not present in the rate constant expressions. Retaining the convenient semiclassical picture, we include these effects through the introduction of a phenomenological quantum decoherence function. A simple modification to the usual TST rate constant expression is proposed: in addition to the electronic coupling, a characteristic decoherence time τ(dec) now also appears as a key parameter of the rate constant. This new parameter captures the idea that molecular systems, although intrinsically obeying quantum mechanical laws, behave semiclassically after a finite but nonzero amount of time (τ(dec)). This new degree of freedom allows a fresh look at the underlying physics of chemical reactions involving more than one quantum state. The ability of the proposed formula to describe the main physical lines of the phenomenon is confirmed by comparison with results obtained from density functional theory molecular dynamics simulations for a triplet to singlet transition within a copper dioxygen adduct relevant to the question of dioxygen activation by copper monooxygenases. PMID:21344903

  3. Hypersensitivity reactions to radiocontrast media: the role of complement activation.

    PubMed

    Szebeni, Janos

    2004-01-01

    Although intravenous use of radiocontrast media (RCM) for a variety of radiographic procedures is generally safe, clinically significant acute hypersensitivity reactions still occur in a significant percentage of patients. The mechanism of these anaphylactoid, or "pseudoallergic," reactions is complex, involving complement activation, direct degranulation of mast cells and basophils, and modulation of enzymes and proteolytic cascades in plasma. In this review, basic information on different RCMs and their reactogenicity is summarized and updated, and the prevalence, pathomechanism, prediction, prevention, treatment, and economic impact of hypersensitivity reactions are discussed. Particular attention is paid to the in vitro and in vivo evidence supporting complement activation as an underlying cause of RCM reactions. PMID:14680617

  4. WORKSHOP ON STATUS OF TEST METHODS FOR ASSESSING POTENTIAL OF CHEMICALS TO INDUCE RESPIRATORY ALLERGIC REACTIONS

    EPA Science Inventory

    Because of the association between allergy and asthma and the increasing incidence of morbidity and mortality due to asthma, there is growing concern over the potential of industrial chemicals to produce allergic reactions in the respiratory tract. Two classes of chemicals have b...

  5. Students' Ideas about How and Why Chemical Reactions Happen: Mapping the Conceptual Landscape

    ERIC Educational Resources Information Center

    Yan, Fan; Talanquer, Vicente

    2015-01-01

    Research in science education has revealed that many students struggle to understand chemical reactions. Improving teaching and learning about chemical processes demands that we develop a clearer understanding of student reasoning in this area and of how this reasoning evolves with training in the domain. Thus, we have carried out a qualitative…

  6. Simulation of chemical reactions in solution by a combination of classical and quantum mechanical approach

    NASA Astrophysics Data System (ADS)

    Onida, Giovanni; Andreoni, Wanda

    1995-09-01

    A classical trajectory mapping method was developed to study chemical reactions in solution and in enzymes. In this method, the trajectories were calculated on a classical potential surface and the free energy profile was obtained by mapping the classical surface to the quantum mechanical surface obtained by the semiempirical AM1 method. There is no need to perform expensive quantum mechanical calculations at each iteration step. This method was applied to proton transfer reactions both in aqueous solution and in papain. The results are encouraging, indicating the applicability of this hybrid method to chemical reactions both in solution and in enzymes.

  7. The mineralogic evolution of the Martian surface through time: Implications from chemical reaction path modeling studies

    NASA Technical Reports Server (NTRS)

    Plumlee, G. S.; Ridley, W. I.; Debraal, J. D.; Reed, M. H.

    1993-01-01

    Chemical reaction path calculations were used to model the minerals that might have formed at or near the Martian surface as a result of volcano or meteorite impact driven hydrothermal systems; weathering at the Martian surface during an early warm, wet climate; and near-zero or sub-zero C brine-regolith reactions in the current cold climate. Although the chemical reaction path calculations carried out do not define the exact mineralogical evolution of the Martian surface over time, they do place valuable geochemical constraints on the types of minerals that formed from an aqueous phase under various surficial and geochemically complex conditions.

  8. Rate constants for chemical reactions in high-temperature nonequilibrium air

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.

    1986-01-01

    In the nonequilibrium atmospheric chemistry regime that will be encountered by the proposed Aeroassisted Orbital Transfer Vehicle in the upper atmosphere, where air density is too low for thermal and chemical equilibrium to be maintained, the detailed high temperature air chemistry plays a critical role in defining radiative and convective heating loads. Although vibrational and electronic temperatures remain low (less than 15,000 K), rotational and translational temperatures may reach 50,000 K. Attention is presently given to the effects of multiple temperatures on the magnitudes of various chemical reaction rate constants, for the cases of both bimolecular exchange reactions and collisional excitation and dissociation reactions.

  9. KEMOD: A mixed chemical kinetic and equilibrium model of aqueous and solid phase geochemical reactions

    SciTech Connect

    Yeh, G.T.; Iskra, G.A.; Szecsody, J.E.; Zachara, J.M.; Streile, G.P.

    1995-01-01

    This report presents the development of a mixed chemical Kinetic and Equilibrium MODel in which every chemical species can be treated either as a equilibrium-controlled or as a kinetically controlled reaction. The reaction processes include aqueous complexation, adsorption/desorption, ion exchange, precipitation/dissolution, oxidation/reduction, and acid/base reactions. Further development and modification of KEMOD can be made in: (1) inclusion of species switching solution algorithms, (2) incorporation of the effect of temperature and pressure on equilibrium and rate constants, and (3) extension to high ionic strength.

  10. Concentration fluctuations in a mesoscopic oscillating chemical reaction system

    NASA Astrophysics Data System (ADS)

    Qian, Hong; Saffarian, Saveez; Elson, Elliot L.

    2002-08-01

    Under sustained pumping, kinetics of macroscopic nonlinear biochemical reaction systems far from equilibrium either can be in a stationary steady state or can execute sustained oscillations about a fixed mean. For a system of two dynamic species X and Y, the concentrations nx and ny will be constant or will repetitively trace a closed loop in the (nx, ny) phase plane, respectively. We study a mesoscopic system with nx and ny very small; hence the occurrence of random fluctuations modifies the deterministic behavior and the law of mass action is replaced by a stochastic model. We show that nx and ny execute cyclic random walks in the (nx, ny) plane whether or not the deterministic kinetics for the corresponding macroscopic system represents a steady or an oscillating state. Probability distributions and correlation functions for nx(t) and ny(t) show quantitative but not qualitative differences between states that would appear as either oscillating or steady in the corresponding macroscopic systems. A diffusion-like equation for probability P(nx, ny, t) is obtained for the two-dimensional Brownian motion in the (nx, ny) phase plane. In the limit of large nx, ny, the deterministic nonlinear kinetics derived from mass action is recovered. The nature of large fluctuations in an oscillating nonequilibrium system and the conceptual difference between "thermal stochasticity" and "temporal complexity" are clarified by this analysis. This result is relevant to fluorescence correlation spectroscopy and metabolic reaction networks. fluorescence correlation spectroscopy | limit cycle | nanobiochemistry | nonequilibrium steady state | random walk

  11. Molecules in Motion: Chemical Reaction and Allied Dynamics in Solution and Elsewhere

    NASA Astrophysics Data System (ADS)

    Hynes, James T.

    2015-04-01

    After my acceptance of the kind invitation from Todd Martínez and Mark Johnson, Co-Editors of this journal, to write this article, I had to decide just how to actually do this, given the existence of a fairly personal and extended autobiographical account of recent vintage detailing my youth, education, and assorted experiences and activities at the University of Colorado, Boulder, and later also at Ecole Normale Supérieure in Paris ( 1 ). In the end, I settled on a differently styled recounting of the adventures with my students, postdocs, collaborators, and colleagues in trying to unravel, comprehend, describe, and occasionally even predict the manifestations and consequences of the myriad assortment of molecular dances that contribute to and govern the rates and mechanisms of chemical reactions in solution (and elsewhere). The result follows.

  12. Activation entropy of electron transfer reactions

    NASA Astrophysics Data System (ADS)

    Milischuk, Anatoli A.; Matyushov, Dmitry V.; Newton, Marshall D.

    2006-05-01

    We report microscopic calculations of free energies and entropies for intramolecular electron transfer reactions. The calculation algorithm combines the atomistic geometry and charge distribution of a molecular solute obtained from quantum calculations with the microscopic polarization response of a polar solvent expressed in terms of its polarization structure factors. The procedure is tested on a donor-acceptor complex in which ruthenium donor and cobalt acceptor sites are linked by a four-proline polypeptide. The reorganization energies and reaction energy gaps are calculated as a function of temperature by using structure factors obtained from our analytical procedure and from computer simulations. Good agreement between two procedures and with direct computer simulations of the reorganization energy is achieved. The microscopic algorithm is compared to the dielectric continuum calculations. We found that the strong dependence of the reorganization energy on the solvent refractive index predicted by continuum models is not supported by the microscopic theory. Also, the reorganization and overall solvation entropies are substantially larger in the microscopic theory compared to continuum models.

  13. Detailed Chemical Kinetic Reaction Mechanisms for Incineration of Organophosphorus and Fluoro-Organophosphorus Compounds

    SciTech Connect

    Glaude, P A; Melius, C; Pitz, W J; Westbrook, C K

    2001-12-13

    A detailed chemical kinetic reaction mechanism is developed to describe incineration of the chemical warfare nerve agent sarin (GB), based on commonly used principles of bond additivity and hierarchical reaction mechanisms. The mechanism is based on previous kinetic models of organophosphorus compounds such as TMP, DMMP and DIMP that are often used as surrogates to predict incineration of GB. Kinetic models of the three surrogates and GB are then used to predict their consumption in a perfectly stirred reactor fueled by natural gas to simulate incineration of these chemicals. Computed results indicate that DIMP is the only one of these surrogates that adequately describes combustion of GB under comparable conditions. The kinetic pathways responsible for these differences in reactivity are identified and discussed. The most important reaction in GB and DIMP that makes them more reactive than TMP or DMMP is found to be a six-center molecular elimination reaction producing propene.

  14. Electric field suppression of ultracold confined chemical reactions

    SciTech Connect

    Quemener, Goulven; Bohn, John L.

    2010-06-15

    We consider ultracold collisions of polar molecules confined in a one-dimensional optical lattice. Using a quantum scattering formalism and a frame transformation method, we calculate elastic and chemical quenching rate constants for fermionic molecules. Taking {sup 40}K{sup 87}Rb molecules as a prototype, we find that the rate of quenching collisions is enhanced at zero electric field as the confinement is increased but that this rate is suppressed when the electric field is turned on. For molecules with 500 nK of collision energy, for realistic molecular densities, and for achievable experimental electric fields and trap confinements, we predict lifetimes for KRb molecules to be 1 s. We find a ratio of elastic to quenching collision rates of about 100, which may be sufficient to achieve efficient evaporative cooling of polar KRb molecules.

  15. From chemical reactions to evolution: Emergence of species

    NASA Astrophysics Data System (ADS)

    Carletti, T.; Fanelli, D.

    2007-01-01

    The Chemoton model constitutes a minimalistic description of a protocell unit. The original formulation assumes three coupled chemical networks, representing a proto-metabolism, a template duplication and the membrane growth. An improved version is here proposed that explicitly incorporates the effects of the volume changes, due to the membrane growth. A stochastic mechanism is also introduced that mimics a stochastic source of error in the template duplication process. Numerical simulations are performed to monitor the time evolution of a family of protocells, under the chemoton hypothesis. An open-ended Darwinian evolution under the pressure of the environment is reproduced thus allowing to conclude that differentiation into species is an emergent property of the model.

  16. Proposed experimental probes of chemical reaction molecular dynamics in solution: ICN photodissociation

    NASA Astrophysics Data System (ADS)

    Benjamin, I.; Wilson, Kent R.

    1989-04-01

    Knowledge of how translational and rotational motions are influenced by the solvent during the course of a photodissociation ``half-collision'' reaction in solution is of interest in itself and can also help our understanding of how thermally activated reactions take place in solution by means of fluctuations in translational and rotational motion. With this goal, the molecular dynamics of the photodissociation of the triatomic molecule ICN are compared in the gas phase and in Xe solution. The time evolution of the trajectories (particularly with respect to interfragment distance and CN orientation) and of the energy partitioning (particularly into fragment translational recoil and into rotation of the CN) are displayed. Two types of solution experiments are proposed and simulated, both closely related to recent gas phase studies by Dantus, Rosker, and Zewail. These experiments are designed to probe the detailed dynamics of chemical reactions in solution during the time period the reaction is in progress, in particular to reveal the dramatic effects of the solvent on translational motions and energies. Both are pump-probe experiments in which the first photon dissociates the ICN and the second induces fluorescence in the CN fragment. In the first type of experiment, which is particularly sensitive to fragment translational motion, the fluorescence intensity is measured as a function of photon energy and of time delay. In the second type of experiment, which is particularly sensitive to fragment rotation, in addition the angle between the polarizations of the pump and probe photons is varied. In the calculations presented here, the effect of the absorption of the photodissociation photon is treated using the classical Frank-Condon principle. The coupling between the assumed two upper electronic surfaces is taken into account semiclassically using a generalization to the condensed phase of the classical electron model of Miller and Meyer, which was applied to ICN

  17. Characterization of chemically modified enzymes for bioremediation-reactions. 1997 annual progress report

    SciTech Connect

    Kaufman, E.N.; Adams, M.W.W.

    1997-09-01

    'Many, if not most, biological transformation reactions of interest to US Department of Energy (DOE) site remediation involve substrates that are only sparingly soluble in aqueous environments. Hence, destruction of these recalcitrant and toxic materials would benefit tremendously if their degradation could be performed in nonaqueous environments. Organic biocatalysis may be motivated by the nature of the substrate itself, augmented mass transport, ease of product recovery, or novel reaction pathways afforded by the organic solvent. For instance, polychlorinated biphenyls (PCBs) are sparingly soluble in water, but may be more effectively processed when solubilized by organic liquids. However, naturally-occurring enzymes are not soluble in organic solvents. Indeed, most spontaneously denature and, depending on the solvent used, typically form inactive and insoluble precipitates. The objective of the current work is to gain a fundamental understanding of the molecular and catalytic properties of enzymes that have been chemically-modified so that they are catalytically-active and chemically-thermally-stable in organic solvents. The premise for this study is that highly stable enzymes which are catalytically active in both water and in a range of organic solvents are optimally suited for bioremediation where substrates of interest are more soluble and may be processed with greater specificity in nonaqueous solvents. The proposed research program will enable the development of nonaqueous bioremediation technologies for the treatment of DOE sites contaminated with aqueous-insoluble organic compounds. Such compounds may include dense nonaqueous phase liquids, trichloroethylene (TCE), trichloroacetic acid, trans-dichloroethylene, diesel fuel, and PCBs. These compounds have been identified as targets for technology development in the ``EM Technology Needs Database,'''' and are contaminants at the following DOE sites: K-25 Site plumes; ORNL WAGS 1, 4, and 5; Paducah plumes

  18. Students' Dilemmas in Reaction Stoichiometry Problem Solving: Deducing the Limiting Reagent in Chemical Reactions

    ERIC Educational Resources Information Center

    Chandrasegaran, A. L.; Treagust, David F.; Waldrip, Bruce G.; Chandrasegaran, Antonia

    2009-01-01

    A qualitative case study was conducted to investigate the understanding of the limiting reagent concept and the strategies used by five Year 11 students when solving four reaction stoichiometry problems. Students' written problem-solving strategies were studied using the think-aloud protocol during problem-solving, and retrospective verbalisations…

  19. Effect of water treatment chemicals on limestone/sulfur dioxide reaction in flue gas desulfurization systems

    SciTech Connect

    Dille, E.R.; Gaikwad, R.P.

    1994-12-31

    A simple laboratory test has been developed which simulates the reaction between limestone/water and sulfur dioxide in flue gas desulfurization systems. By adding various chemicals, in differing concentrations, to the limestone/water mixture, the quantitative impact on the sulfur dioxide/limestone reaction can be qualified and quantified. This paper will present the impact of several water treatment chemicals on the reaction of limestone and sulfur dioxide. An attempt has been made to predict the effect through mathematical correlations. All of the additive chemicals tend to decrease the rate of dissolution of limestone to various degrees. Some of the chemicals retard crystal growth thus adversely impacting solids separation in the thickener. The physical appearance of the crystal growth retarded limestone absorber slurry approaches a colloidal suspension.

  20. Momentum balance equation for nonelectrolytes in models of coupling between chemical reaction and diffusion in membranes.

    PubMed

    Gałdzicki, Z; Miekisz, S

    1984-04-01

    The role of viscosity in coupling between chemical reaction (complex formation) and diffusion in membranes has been investigated. The Fick law was replaced by the momentum balance equation with the viscous term. The irreversible thermodynamics admits coupling of the chemical reaction rate with the gradient of velocity. The proposed model has shown the contrary effect of viscosity and confirmed the experimental results. The chemical reaction rate increases only above the limit value of viscosity. The parameter Q (degree of complex formation) was introduced to investigate coupling. Q equals to the ratio of the chemical contribution into the flux of the complex to the total flux of the substance transported. For different values of the parameters of the model the dependence of Q upon position inside the membrane has been numerically calculated. The assumptions of the model limit it to a specific case and they only roughly model the biological situation. PMID:6537360

  1. Students' Ideas about How and Why Chemical Reactions Happen: Mapping the conceptual landscape

    NASA Astrophysics Data System (ADS)

    Yan, Fan; Talanquer, Vicente

    2015-12-01

    Research in science education has revealed that many students struggle to understand chemical reactions. Improving teaching and learning about chemical processes demands that we develop a clearer understanding of student reasoning in this area and of how this reasoning evolves with training in the domain. Thus, we have carried out a qualitative study to explore students reasoning about chemical causality and mechanism. Study participants included individuals at different educational levels, from college to graduate school. We identified diverse conceptual modes expressed by students when engaged in the analysis of different types of reactions. Main findings indicate that student reasoning about chemical reactions is influenced by the nature of the process. More advanced students tended to express conceptual modes that were more normative and had more explanatory power, but major conceptual difficulties persisted in their reasoning. The results of our study are relevant to educators interested in conceptual development, learning progressions, and assessment.

  2. Radical-neutral chemical reactions studied at low temperature with VUV synchrotron photoionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Soorkia, Satchin; Leone, Stephen R.; Wilson, Kevin R.

    2012-11-01

    A pulsed Laval nozzle apparatus employing tunable VUV synchrotron photoionization and quadrupole mass spectrometry for the study of radical-neutral chemical reactions of importance for modeling the atmosphere of Titan and the outer planets is described. The apparatus enables the study of low-temperature kinetics and isomer-resolved product branching of highly reactive radicals with unsaturated hydrocarbons reactions. The low-temperature branching ratio for the reaction of the ethynyl radical (C2H) with allene (C3H4) has been measured for the first time at 79 K. This reaction is found to yield 1,4-pentadiyne as the major reaction product (50+10%), followed by ethynylallene (28+10%) and methyldiacetylene (22+10%) via H-atom elimination from the initially formed C5H5 adduct. The derived branching ratios can be directly used to predict the chemical evolution of Titan's atmosphere.

  3. Mixing and chemical reaction in an idealized swirl chamber

    SciTech Connect

    Knio, O.M.; Worlikar, A.S.; Najm, H.N.

    1996-01-01

    A vorticity-based, low-Mach-number model for simulating combustion in closed chambers is constructed. Numerical scheme is based on a mixed finite-difference pseudo-spectral discretization of the governing equations. Discrete evolution equations are integrated in time using a predictor-corrector scheme, while discrete elliptic systems are inverted with the help of fast-Poisson solver. Scheme is applied to analyze mixing and combustion in an idealized swirl cavity, which consists of the annular space between a spinning inner cylinder and a stationary reaction. To this end, we assume that the oxidizer and fuel are initially separated by a thin mixed region, and carefully control mixing levels by varying the duration of the swirl-driven mixing period. The mixture is then ignited along the boundary of the inner cylinder. When pre-mixing is complete, an axisymmetric flame front is established, and the reactants are consumed as the front propagates radially outwards. When the charge is partially mixed, combustion in the early stages predominantly occurs within a non-uniform premixed front. As this non-uniform front approaches the outer cylinder, a transition to a distributed combustion regime occurs. Following the transition, the remaining fuel burns at a slow rate within non-premixed flames which wrap around the inner cylinder. Results show that the mixing time has substantial effects on the pressure rise within the cavity and on the evolution of the burnt fraction, and that these effects become more pronounced as the Damkoehler number increases.

  4. Delayed response of interfacial tension in propagating chemical waves of the Belousov-Zhabotinsky reaction without stirring.

    PubMed

    Tanaka, Ryo; Nomoto, Tomonori; Toyota, Taro; Kitahata, Hiroyuki; Fujinami, Masanori

    2013-11-01

    Time-resolved measurements of the interfacial tension of propagating chemical waves of the Belousov-Zhabotinsky reaction based on the iron complex catalysts were carried out without stirring by monitoring the frequency of capillary waves with the quasi-elastic laser scattering method. A delayed response of the interfacial tension with respect to absorption was found with the delay being ligand-dependent when the reaction was conducted at a liquid/liquid interface. This behavior is attributed to differences in adsorption activity of the hydrophobic metal catalyst. The delay time and the increase in interfacial tension were also reproduced by a model considering the rate constants of equilibrium adsorption. PMID:24107133

  5. Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms

    DOE R&D Accomplishments Database

    Continetti, R. E.; Balko, B. A.; Lee, Y. T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.

  6. Molecular beam studies of hot atom chemical reactions: Reactive scattering of energetic deuterium atoms

    SciTech Connect

    Continetti, R.E.; Balko, B.A.; Lee, Y.T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H/sub 2/ /minus/> DH + H and the substitution reaction D + C/sub 2/H/sub 2/ /minus/> C/sub 2/HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible. 18 refs., 9 figs.

  7. New chemical reactions in methane at high temperatures and pressures

    SciTech Connect

    Culler, T.S.; Schiferl, D. )

    1993-01-21

    The authors have used a Merrill-Bassett diamond anvil cell and Raman spectroscopy to study methane at high pressures (up to 13 GPa) and high temperatures (up to 912 K). At 2.5-5.0 GPa and 912 K, methane photoreacts with the laser light used for Raman spectroscopy and forms a graphitelike soot compound. At room temperature and pressure the Raman spectrum of the new material has an intense peak with a frequency of 1597 cm[sup [minus]1]. At higher pressures and temperatures (10-13 GPa and 948 K) a sample of [sup 13]CD[sub 4] methane photoreacted with the laser light and formed a hard, clear, solid film. At 0.34 GPa and 300 K, this film had Raman peaks at 541 and 1605 cm[sup [minus]1]. The 541-cm[sup [minus]1] peak may correspond to the 550-cm[sup [minus]1] peak found in some diamondlike carbon (DLC) films formed by chemical vapor deposition (CVD), but the 1605-cm[sup [minus]1] peak does not appear to have any such counterpart. Other possible Raman peaks were masked by interference from the diamond anvils. Thus, while the hard, clear film has some similarities to CVD DLC films, some important differences and questions remain. 35 refs., 5 figs.

  8. Active Emulsions: Synchronization of Chemical Oscillators

    NASA Astrophysics Data System (ADS)

    Fraden, Seth

    2012-02-01

    We explore the dynamical behavior of emulsions consisting of nanoliter volume droplets of the oscillatory Belousov-Zhabotinsky (BZ) reaction separated by a continuous oil phase. Some of the aqueous BZ reactants partition into the oil leading to chemical coupling of the drops. We use microfluidics to vary the size, composition and topology of the drops in 1D and 2D. Addition of a light sensitive catalyst to the drops and illumination with a computer projector allows each drop to be individually perturbed. A variety of synchronous regimes are found that systematically vary with the coupling strength and whether coupling is dominated by activatory or inhibitory species. In 1D we observe in- and anti-phase oscillations, stationary Turing patterns in which drops stop oscillating, but form spatially periodic patterns of drops in the oxidized and reduced states, and more complex combinations of stationary and oscillatory drops. In 2D, the attractors are more complex and vary with network topology and coupling strength. For hexagonal lattices as a function of increasing coupling strength we observe right and left handed rotating oscillations, mixed oscillatory and Turing states and finally full Turing states. Reaction -- diffusion models based on a simplified description of the BZ chemistry and diffusion of messenger species reproduce a number of the experimental results. For a range of parameters, a simplified phase oscillator model provides an intuitive understanding of the complex synchronization patterns. [4pt] ``Coupled oscillations in a 1D emulsion of Belousov--Zhabotinsky droplets,'' Jorge Delgado, Ning Li, Marcin Leda, Hector O. Gonzalez-Ochoa, Seth Fraden and Irving R. Epstein, Soft Matter, 7, 3155 (2011).

  9. Force-induced chemical reactions on the metal centre in a single metalloprotein molecule

    NASA Astrophysics Data System (ADS)

    Zheng, Peng; Arantes, Guilherme M.; Field, Martin J.; Li, Hongbin

    2015-06-01

    Metalloproteins play indispensable roles in biology owing to the versatile chemical reactivity of metal centres. However, studying their reactivity in many metalloproteins is challenging, as protein three-dimensional structure encloses labile metal centres, thus limiting their access to reactants and impeding direct measurements. Here we demonstrate the use of single-molecule atomic force microscopy to induce partial unfolding to expose metal centres in metalloproteins to aqueous solution, thus allowing for studying their chemical reactivity in aqueous solution for the first time. As a proof-of-principle, we demonstrate two chemical reactions for the FeS4 centre in rubredoxin: electrophilic protonation and nucleophilic ligand substitution. Our results show that protonation and ligand substitution result in mechanical destabilization of the FeS4 centre. Quantum chemical calculations corroborated experimental results and revealed detailed reaction mechanisms. We anticipate that this novel approach will provide insights into chemical reactivity of metal centres in metalloproteins under biologically more relevant conditions.

  10. Lattice based Kinetic Monte Carlo Simulations of a complex chemical reaction network

    NASA Astrophysics Data System (ADS)

    Danielson, Thomas; Savara, Aditya; Hin, Celine

    Lattice Kinetic Monte Carlo (KMC) simulations offer a powerful alternative to using ordinary differential equations for the simulation of complex chemical reaction networks. Lattice KMC provides the ability to account for local spatial configurations of species in the reaction network, resulting in a more detailed description of the reaction pathway. In KMC simulations with a large number of reactions, the range of transition probabilities can span many orders of magnitude, creating subsets of processes that occur more frequently or more rarely. Consequently, processes that have a high probability of occurring may be selected repeatedly without actually progressing the system (i.e. the forward and reverse process for the same reaction). In order to avoid the repeated occurrence of fast frivolous processes, it is necessary to throttle the transition probabilities in such a way that avoids altering the overall selectivity. Likewise, as the reaction progresses, new frequently occurring species and reactions may be introduced, making a dynamic throttling algorithm a necessity. We present a dynamic steady-state detection scheme with the goal of accurately throttling rate constants in order to optimize the KMC run time without compromising the selectivity of the reaction network. The algorithm has been applied to a large catalytic chemical reaction network, specifically that of methanol oxidative dehydrogenation, as well as additional pathways on CeO2(111) resulting in formaldehyde, CO, methanol, CO2, H2 and H2O as gas products.

  11. Chemical activity of simple basic peptides

    NASA Astrophysics Data System (ADS)

    Brack, André; Barbier, Bernard

    1990-03-01

    Alternating all-L poly(leucyl-lysyl) increases markedly the rate of hydrolysis of oligoribonucleotides. Pure D poly (leucyl-lysyl) is as active as the all-L polymer. The homochiral polypeptides adopt aβ-sheet structure when complexed to the oligonucleotides. Alternating poly(D,L-Leu-D,L-Lys) made of racemic amino acids is much less efficient and is unable to adopt aβ-sheet structure. A set of alternating poly (leucyl-lysyl) ranging from the racemic to the homochiral all-L polymer has been checked. Their conformations can be described as a mixture of random coil andβ-sheet conformations, the amount ofβ-sheet increasing with the optical purity of the polymer. The hydrolytic activity follows the proportion ofβ-sheets, suggesting that the chemical activity is related to the geometry of the chain. Short peptides were prepared in order to evaluate the critical chain length required for the hydrolytic activity. A decapeptide is long enough to present 90% of the activity of the corresponding polypeptide.

  12. The Sugar Model: Autocatalytic Activity of the Triose Ammonia Reaction

    NASA Astrophysics Data System (ADS)

    Weber, Arthur L.

    2007-04-01

    Reaction of triose sugars with ammonia under anaerobic conditions yielded autocatalytic products. The autocatalytic behavior of the products was examined by measuring the effect of the crude triose ammonia reaction product on the kinetics of a second identical triose ammonia reaction. The reaction product showed autocatalytic activity by increasing both the rate of disappearance of triose and the rate of formation of pyruvaldehyde, the product of triose dehydration. This synthetic process is considered a reasonable model of origin-of-life chemistry because it uses plausible prebiotic substrates, and resembles modern biosynthesis by employing the energized carbon groups of sugars to drive the synthesis of autocatalytic molecules.

  13. Characteristics of Turbulent/non-turbulent Interface in a Turbulent Planar Jet with a Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Watanabe, Tomoaki; Sakai, Yasuhiko; Nagata, Kouji; Terashima, Osamu; Ito, Yasumasa; Hayase, Toshiyuki

    2013-11-01

    Characteristics of chemical reaction (A + B --> P) near the turbulent/non-turbulent (T/NT) interface are investigated by using the direct numerical simulation of reactive planar jet. The reactants A and B are separately premixed into the jet and ambient flows, respectively. DNS is performed at three different Damköhler numbers. The conditional statistics conditioned on the distance from the T/NT interface is used to investigate the chemical reaction near the T/NT interface. The conditional mean concentration of product P shows a sharp jump near the T/NT interface, and the product P hardly exists in the non-turbulent region. This implies that the chemical reaction takes place in the turbulent region after the reactant B in the ambient flow is entrained into the turbulent region. The conditional mean scalar dissipation rate of mixture fraction has a large peak value slightly inside the T/NT interface. At the same point, the chemical reaction rate also has a peak value in the case of large Damköhler number. On the other hand, when the Damköhler number is small, the chemical reaction rate near the T/NT interface is smaller than that in the turbulent region. This work was carried out under the Collaborative Research Project of the Institute of Fluid Science, Tohoku University. Part of this work was supported by JSPS KAKENHI Grant Number 25002531 and MEXT KAKENHI Grant Numbers 25289030, 25289031, 2563005.

  14. The efficiency of driving chemical reactions by a physical non-equilibrium is kinetically controlled.

    PubMed

    Göppel, Tobias; Palyulin, Vladimir V; Gerland, Ulrich

    2016-07-27

    An out-of-equilibrium physical environment can drive chemical reactions into thermodynamically unfavorable regimes. Under prebiotic conditions such a coupling between physical and chemical non-equilibria may have enabled the spontaneous emergence of primitive evolutionary processes. Here, we study the coupling efficiency within a theoretical model that is inspired by recent laboratory experiments, but focuses on generic effects arising whenever reactant and product molecules have different transport coefficients in a flow-through system. In our model, the physical non-equilibrium is represented by a drift-diffusion process, which is a valid coarse-grained description for the interplay between thermophoresis and convection, as well as for many other molecular transport processes. As a simple chemical reaction, we consider a reversible dimerization process, which is coupled to the transport process by different drift velocities for monomers and dimers. Within this minimal model, the coupling efficiency between the non-equilibrium transport process and the chemical reaction can be analyzed in all parameter regimes. The analysis shows that the efficiency depends strongly on the Damköhler number, a parameter that measures the relative timescales associated with the transport and reaction kinetics. Our model and results will be useful for a better understanding of the conditions for which non-equilibrium environments can provide a significant driving force for chemical reactions in a prebiotic setting. PMID:27147197

  15. Effect of gravity field on the nonequilibrium/nonlinear chemical oscillation reactions

    NASA Astrophysics Data System (ADS)

    Fujieda, S.; Mori, Y.; Nakazawa, A.; Mogami, Y.

    2001-01-01

    Biological systems have evolved for a long time under the normal gravity. The Belousov-Zhabotinsky (BZ) reaction is a nonlinear chemical system far from the equilibrium that may be considered as a simplified chemical model of the biological systems so as to study the effect of gravity. The reaction solution is comprised of bromate in sulfuric acid as an oxidizing agent, 1,4-cyclohexanedione as an organic substrate, and ferroin as a metal catalyst. Chemical waves in the BZ reaction-diffusion system are visualized as blue and red patterns of ferriin and ferroin, respectively. After an improvement to the tubular reaction vessels in the experimental setup, the traveling velocity of chemical waves in aqueous solutions was measured in time series under normal gravity, microgravity, hyper-gravity, and normal gravity using the free-fall facility of JAMIC (Japan Microgravity Center), Hokkaido, Japan. Chemical patterns were collected as image data via CCD camera and analyzed by the software of NIH image after digitization. The estimated traveling velocity increased with increasing gravity as expected. It was clear experimentally that the traveling velocity of target patterns in reaction diffusion system was influenced by the effect of convection and correlated closely with the gravity field.

  16. Antitumor activity of chemical modified natural compounds.

    PubMed

    de Oliveira, M M

    1991-01-01

    Search of new activity substances starting from chemotherapeutic agents, continuously appears in international literature. Perhaps this search has been done more frequently in the field of antitumor chemotherapy on account of the unsuccess in saving advanced stage patients. The new point in this matter during the last decade was computer aid in planning more rational drugs. In near future "the accessibility of super computers and emergence of computer net systems, will open new avenues to rational drug design" (Portoghese, P. S., J. Med. Chem. 1989, 32, 1). Unknown pharmacological active compounds synthetized by plants can be found even without this electronic devices, as traditional medicine has pointed out in many countries, and give rise to a new drug. These compounds used as found in nature or after chemical modifications have produced successful experimental medicaments as FAA, "flavone acetic acid" with good results as inhibitors of slow growing animal tumors currently in preclinical evaluation for human treatment. In this lecture some international contributions in the field of chemical modified compounds as antineoplastic drugs will be examined, particularly those done by Brazilian researches. PMID:1842015

  17. Chemical reactions studied at ultra-low temperature in liquid helium clusters

    SciTech Connect

    Huisken, Friedrich; Krasnokutski, Serge A.

    2012-11-27

    Low-temperature reaction rates are important ingredients for astrophysical reaction networks modeling the formation of interstellar matter in molecular clouds. Unfortunately, such data is difficult to obtain by experimental means. In an attempt to study low-temperature reactions of astrophysical interest, we have investigated relevant reactions at ultralow temperature in liquid helium droplets. Being prepared by supersonic expansion of helium gas at high pressure through a nozzle into a vacuum, large helium clusters in the form of liquid droplets constitute nano-sized reaction vessels for the study of chemical reactions at ultra-low temperature. If the normal isotope {sup 4}He is used, the helium droplets are superfluid and characterized by a constant temperature of 0.37 K. Here we present results obtained for Mg, Al, and Si reacting with O{sub 2}. Mass spectrometry was employed to characterize the reaction products. As it may be difficult to distinguish between reactions occurring in the helium droplets before they are ionized and ion-molecule reactions taking place after the ionization, additional techniques were applied to ensure that the reactions actually occurred in the helium droplets. This information was provided by measuring the chemiluminescence light emitted by the products, the evaporation of helium atoms by the release of the reaction heat, or by laser-spectroscopic identification of the reactants and products.

  18. Chemical reactions studied at ultra-low temperature in liquid helium clusters

    NASA Astrophysics Data System (ADS)

    Huisken, Friedrich; Krasnokutski, Serge A.

    2012-11-01

    Low-temperature reaction rates are important ingredients for astrophysical reaction networks modeling the formation of interstellar matter in molecular clouds. Unfortunately, such data is difficult to obtain by experimental means. In an attempt to study low-temperature reactions of astrophysical interest, we have investigated relevant reactions at ultralow temperature in liquid helium droplets. Being prepared by supersonic expansion of helium gas at high pressure through a nozzle into a vacuum, large helium clusters in the form of liquid droplets constitute nano-sized reaction vessels for the study of chemical reactions at ultra-low temperature. If the normal isotope 4He is used, the helium droplets are superfluid and characterized by a constant temperature of 0.37 K. Here we present results obtained for Mg, Al, and Si reacting with O2. Mass spectrometry was employed to characterize the reaction products. As it may be difficult to distinguish between reactions occurring in the helium droplets before they are ionized and ion-molecule reactions taking place after the ionization, additional techniques were applied to ensure that the reactions actually occurred in the helium droplets. This information was provided by measuring the chemiluminescence light emitted by the products, the evaporation of helium atoms by the release of the reaction heat, or by laser-spectroscopic identification of the reactants and products.

  19. Chemical and enzymatic reductive activation of acylfulvene to isomeric cytotoxic reactive intermediates

    PubMed Central

    Pietsch, Kathryn E.; Neels, James F.; Yu, Xiang; Gong, Jiachang; Sturla, Shana J.

    2011-01-01

    Acylfulvenes, a class of semisynthetic analogues of the sesquiterpene natural product illudin S, are cytotoxic towards cancer cells. The minor structural changes between illudin S and AFs translate to an improved therapeutic window in preclinical cell-based assays and xenograft models. AFs are, therefore, unique tools for addressing the chemical and biochemical basis of cytotoxic selectivity. AFs elicit cytotoxic responses by alkylation of biological targets, including DNA. While AFs are capable of direct alkylation, cytosolic reductive bioactivation to an electrophilic intermediate is correlated with enhanced cytotoxicity. Data obtained in this study illustrates chemical aspects of the process of AF activation. By tracking reaction mechanisms with stable isotope-labeled reagents, enzymatic versus chemical activation pathways for AF were compared for reactions involving the NADPH-dependent enzyme prostaglandin reductase 1 (PTGR1) or sodium borohydride, respectively. These two processes resulted in isomeric products that appear to give rise to similar patterns of DNA modification. The chemically activated isomer has been newly isolated and chemically characterized in this study, including an assessment of its relative stereochemistry, and stability at varying pH and under bioassay conditions. In mammalian cancer cells, this chemically activated analog was shown to not rely on further cellular activation to significantly enhance cytotoxic potency, in contrast to the requirements of AF. On the basis of this study, we anticipate that the chemically activated form of AF will serve as a useful chemical probe for evaluating biomolecular interactions independent of enzyme-mediated activation. PMID:21939268

  20. Dynamic control and information processing in chemical reaction systems by tuning self-organization behavior

    NASA Astrophysics Data System (ADS)

    Lebiedz, Dirk; Brandt-Pollmann, Ulrich

    2004-09-01

    Specific external control of chemical reaction systems and both dynamic control and signal processing as central functions in biochemical reaction systems are important issues of modern nonlinear science. For example nonlinear input-output behavior and its regulation are crucial for the maintainance of the life process that requires extensive communication between cells and their environment. An important question is how the dynamical behavior of biochemical systems is controlled and how they process information transmitted by incoming signals. But also from a general point of view external forcing of complex chemical reaction processes is important in many application areas ranging from chemical engineering to biomedicine. In order to study such control issues numerically, here, we choose a well characterized chemical system, the CO oxidation on Pt(110), which is interesting per se as an externally forced chemical oscillator model. We show numerically that tuning of temporal self-organization by input signals in this simple nonlinear chemical reaction exhibiting oscillatory behavior can in principle be exploited for both specific external control of dynamical system behavior and processing of complex information.

  1. Measurement of Helical Trajectories in Chemical Reactions by Ion Imaging

    SciTech Connect

    Cline, Joseph I.

    2003-02-10

    resonance-enhanced multiphoton ionization (REMPI) detected by ion imaging is a powerful method for measuring the product state-resolved differential cross section (DCS) of bimolecular scattering reactions. Polarization of the REMPI probe light also makes imaging data potentially sensitive to product angular momentum polarization, as is well known from imaging studies of photodissociation. We exploit this sensitivity to obtain the state-resolved product angular momentum polarization as a function of recoil angle. Previous measurements of molecular angular momentum polarization in bimolecular scattering have either been constrained to detection in the scattering plane or have averaged around the azimuthal angle of the recoil velocity vector in the collision frame. Imaging detection captures the entire product recoil velocity sphere, enabling a more complete determination of product angular momentum polarization than is possible for experiments of lower detection dimensionality.

  2. Photo-induced isomerization and chemical reaction dynamics in superfluid helium droplets

    NASA Astrophysics Data System (ADS)

    Merritt, Jeremy; Douberly, Gary; Miller, Roger

    2008-03-01

    Near threshold photo-induced isomerization and photo-induced chemical reactions have long been sough after as sensitive probes of the underlying potential energy surface. One of the most important questions asked is how the initially bright quantum state couples to the reaction coordinate, and thus relates to energy transfer in general. Helium droplets have now allowed us to stabilize entrance channel clusters behind very small reaction barriers such that vibrational excitation may result in reaction. Through two examples, namely the isomerization of the 2 binary complexes of HF-HCN Douberly et al. PCCP 2005, 7,463, and the induced reaction of the gallium-HCN complex Merritt et al. JPCA 2007, DOI:10.1021/jp074981e we will show how the branching ratios for reaction and predissociation can determined and the influence of the superfluid He solvent.

  3. Coupling quantum interpretative techniques: another look at chemical mechanisms in organic reactions

    PubMed Central

    Gillet, Natacha; Chaudret, Robin; Contreras-Garcίa, Julia; Yang, Weitao; Silvi, Bernard; Piquemal, Jean-Philip

    2012-01-01

    A cross ELF-NCI analysis is tested over prototypical organic reactions. The synergetic use of ELF and NCI enables the understanding of reaction mechanisms since each method can respectively identify regions of strong and weak electron pairing. Chemically intuitive results are recovered and enriched by the identification of new features. Non covalent interactions are found to foresee the evolution of the reaction from the initial steps. Within NCI, no topological catastrophe is observed as changes are continuous to such an extent that future reaction steps can be predicted from the evolution of the initial NCI critical points. Indeed, strong convergences through the reaction paths between ELF and NCI critical points enable to identify key interactions at the origin of the bond formation. VMD scripts enabling the automatic generation of movies depicting the cross NCI/ELF analysis along a reaction path (or following a Born-Oppenheimer molecular dynamics trajectory) are provided as S.I. PMID:23185140

  4. On the possibility of negative activation energies in bimolecular reactions

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.

    1978-01-01

    The temperature dependence of the rate constants for model reacting systems was studied to understand some recent experimental measurements which imply the existence of negative activation energies. A collision theory model and classical trajectory calculations are used to demonstrate that the reaction probability can vary inversely with collision energy for bimolecular reactions occurring on attractive potential energy surfaces. However, this is not a sufficient condition to ensure that the rate constant has a negative temperature dependence. On the basis of these calculations, it seems unlikely that a true bimolecular reaction between neutral molecules will have a negative activation energy.

  5. Coherent chemical kinetics as quantum walks. I. Reaction operators for radical pairs

    NASA Astrophysics Data System (ADS)

    Chia, A.; Tan, K. C.; Pawela, Ł.; Kurzyński, P.; Paterek, T.; Kaszlikowski, D.

    2016-03-01

    Classical chemical kinetics uses rate-equation models to describe how a reaction proceeds in time. Such models are sufficient for describing state transitions in a reaction where coherences between different states do not arise, in other words, a reaction that contains only incoherent transitions. A prominent example of a reaction containing coherent transitions is the radical-pair model. The kinetics of such reactions is defined by the so-called reaction operator that determines the radical-pair state as a function of intermediate transition rates. We argue that the well-known concept of quantum walks from quantum information theory is a natural and apt framework for describing multisite chemical reactions. By composing Kraus maps that act only on two sites at a time, we show how the quantum-walk formalism can be applied to derive a reaction operator for the standard avian radical-pair reaction. Our reaction operator predicts the same recombination dephasing rate as the conventional Haberkorn model, which is consistent with recent experiments [K. Maeda et al., J. Chem. Phys. 139, 234309 (2013), 10.1063/1.4844355], in contrast to previous work by Jones and Hore [J. A. Jones and P. J. Hore, Chem. Phys. Lett. 488, 90 (2010), 10.1016/j.cplett.2010.01.063]. The standard radical-pair reaction has conventionally been described by either a normalized density operator incorporating both the radical pair and reaction products or a trace-decreasing density operator that considers only the radical pair. We demonstrate a density operator that is both normalized and refers only to radical-pair states. Generalizations to include additional dephasing processes and an arbitrary number of sites are also discussed.

  6. Transport and biogeochemical reaction of metals in a physically and chemically heterogeneous aquifer

    SciTech Connect

    Scheibe, Timothy D.; Fang, Yilin; Murray, Christopher J.; Roden, Eric E.; Chen, Jinsong; Chien, Yi-Ju; Brooks, Scott C.; Hubbard, Susan S.

    2006-06-01

    Biologically-mediated reductive dissolution and precipitation of metals and radionuclides plays a key role in their subsurface transport. Physical and chemical properties of natural aquifer systems, such as reactive iron oxide surface area and hydraulic conductivity, are often highly heterogeneous in complex ways that can exert significant control on transport, natural attenuation, and active remediation processes. Typically, however, few data on the detailed distribution of these properties are available for incorporation into predictive models. In this study, we integrate field-scale geophysical, hydrologic, and geochemical data from a well-characterized site with the results of laboratory batch reaction studies to formulate numerical models of reactive transport in a heterogeneous granular aquifer. The models incorporate several levels of coupling, including effects of ferrous iron sorption onto (and associated reduction of reactive surface area of) ferric iron surfaces, microbial growth and transport dynamics, and cross-correlation between hydraulic conductivity and initial ferric iron surface area. These models are then used to evaluate the impacts of physical and chemical heterogeneity on transport of trace levels of uranium under natural conditions, as well as the effectiveness of uranium reduction and immobilization upon introduction of a soluble electron donor (a potential biostimulation remedial strategy).

  7. Transport and biogeochemical reaction of metals in a physically and chemically heterogeneous aquifer

    SciTech Connect

    Scheibe, Timothy D.; Fang, Yilin; Murray, Christopher J; Roden, Eric E; Chen, Jinsong; Chien, Yi-Ju; Brooks, Scott C; Hubbard, Susan S

    2006-01-01

    Biologically mediated reductive dissolution and precipitation of metals and radionuclides play key roles in their subsurface transport. Physical and chemical properties of natural aquifer systems, such as reactive iron-oxide surface area and hydraulic conductivity, are often highly heterogeneous in complex ways that can exert significant control on transport, natural attenuation, and active remediation processes. Typically, however, few data on the detailed distribution of these properties are available for incorporation into predictive models. In this study, we integrate field-scale geophysical, hydrologic, and geochemical data from a well-characterized site with the results of laboratory batch-reaction studies to formulate two-dimensional numerical models of reactive transport in a heterogeneous granular aquifer. The models incorporate several levels of coupling, including effects of ferrous iron sorption onto (and associated reduction of reactive surface area of) ferric iron surfaces, microbial growth and transport dynamics, and cross-correlation between hydraulic conductivity and initial ferric iron surface area. These models are then used to evaluate the impacts of physical and chemical heterogeneity on transport of trace levels of uranium under natural conditions, as well as the effectiveness of uranium reduction and immobilization upon introduction of a soluble electron donor (a potential biostimulation remedial strategy).

  8. Chemical Characterization and Reactivity Testing of Fuel-Oxidizer Reaction Product (Test Report)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The product of incomplete reaction of monomethylhydrazine (MMH) and nitrogen tetroxide (NTO) propellants, or fuel-oxidizer reaction product (FORP), has been hypothesized as a contributory cause of an anomaly which occurred in the chamber pressure (PC) transducer tube on the Reaction Control Subsystem (RCS) aft thruster 467 on flight STS-51. A small hole was found in the titanium-alloy PC tube at the first bend below the pressure transducer. It was surmised that the hole may have been caused by heat and pressure resulting from ignition of FORP. The NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) was requested to define the chemical characteristics of FORP, characterize its reactivity, and simulate the events in a controlled environment which may have lead to the Pc-tube failure. Samples of FORP were obtained from the gas-phase reaction of MMH with NTO under laboratory conditions, the pulsed firings of RCS thrusters with modified PC tubes using varied oxidizer or fuel lead times, and the nominal RCS thruster firings at WSTF and Kaiser-Marquardt. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), accelerating rate calorimetry (ARC), ion chromatography (IC), inductively coupled plasma (ICP) spectrometry, thermogravimetric analysis (TGA) coupled to FTIR (TGA/FTIR), and mechanical impact testing were used to qualitatively and quantitatively characterize the chemical, thermal, and ignition properties of FORP. These studies showed that the composition of FORP is variable but falls within a limited range of compositions that depends on the fuel loxidizer ratio at the time of formation, composition of the post-formation atmosphere (reducing or oxidizing), and reaction or postreaction temperature. A typical composition contains methylhydrazinium nitrate (MMHN), ammonium nitrate (AN), methylammonium nitrate (MAN), and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. The thermal decomposition

  9. Observing single molecule chemical reactions on metal nanoparticles.

    SciTech Connect

    Emory, S. R.; Ambrose, W. Patrick; Goodwin, P. M.; Keller, Richard A.

    2001-01-01

    We report the study of the photodecomposition of single Rhodamine 6G (R6G) dye molecules adsorbed on silver nanoparticles. The nanoparticles were immobilized and spatially isolated on polylysine-derivatized glass coverslips, and confocal laser microspectroscopy was used to obtain surface-enhanced Raman scattering (SERS) spectra from individual R6G molecules. The photodecomposition of these molecules was observed with 150-ms temporal resolution. The photoproduct was identified as graphitic carbon based on the appearance of broad SERS vibrational bands at 1592 cm{sup -1} and 1340 cm{sup -1} observed in both bulk and averaged single-molecule photoproduct spectra. In contrast, when observed at the single-molecule level, the photoproduct yielded sharp SERS spectra. The inhomogeneous broadening of the bulk SERS spectra is due to a variety of photoproducts in different surface orientations and is a characteristic of ensemble-averaged measurements of disordered systems. These single-molecule studies indicate a photodecomposition pathway by which the R6G molecule desorbs from the metal surface, an excited-state photoreaction occurs, and the R6G photoproduct(s) readsorbs to the surface. A SERS spectrum is obtained when either the intact R6G or the R6G photoproduct(s) are adsorbed on a SERS-active site. This work further illustrates the power of single-molecule spectroscopy (SMS) to reveal unique behaviors of single molecules that are not discernable with bulk measurements.

  10. The Role of Comprehensive Detailed Chemical Kinetic Reaction Mechanisms in Combustion Research

    SciTech Connect

    Westbrook, C K; Pitz, W J; Curran, H J; Mehl, M

    2008-07-16

    Recent developments by the authors in the field of comprehensive detailed chemical kinetic reaction mechanisms for hydrocarbon fuels are reviewed. Examples are given of how these mechanisms provide fundamental chemical insights into a range of combustion applications. Practical combustion consists primarily of chemical heat release from reactions between a fuel and an oxidizer, and computer simulations of practical combustion systems have become an essential tool of combustion research (Westbrook et al., 2005). At the heart of most combustion simulations, the chemical kinetic submodel frequently is the most detailed, complex and computationally costly part of a system model. Historically, the chemical submodel equations are solved using time-implicit numerical algorithms, due to the extreme stiffness of the coupled rate equations, with a computational cost that varies roughly with the cube of the number of chemical species in the model. While early mechanisms (c. 1980) for apparently simple fuels such as methane (Warnatz, 1980) or methanol (Westbrook and Dryer, 1979) included perhaps 25 species, current detailed mechanisms for much larger, more complex fuels such as hexadecane (Fournet et al., 2001; Ristori et al., 2001; Westbrook et al., 2008) or methyl ester methyl decanoate (Herbinet et al., 2008) have as many as 2000 or even 3000 species. Rapid growth in capabilities of modern computers has been an essential feature in this rapid growth in the size and complexity of chemical kinetic reaction mechanisms.

  11. Competition between charge exchange and chemical reaction - The D2/+/ + H system

    NASA Technical Reports Server (NTRS)

    Preston, R. K.; Cross, R. J., Jr.

    1973-01-01

    Study of the special features of molecular charge exchange and its competition with chemical reaction in the case of the D2(+) + H system. The trajectory surface hopping (TSH) model proposed by Tully and Preston (1971) is used to study this competition for a number of reactions involving the above system. The diatomics-in-molecules zero-overlap approximation is used to calculate the three adiabatic surfaces - one triplet and two singlet - which are needed to describe this system. One of the significant results of this study is that the chemical reaction and charge exchange are strongly coupled. It is also found that the number of trajectories passing into the chemical regions of the three surfaces depends very strongly on the surface crossings.-

  12. Surface modification of poly(ethylene terephthalate) fabric via photo-chemical reaction of dimethylaminopropyl methacrylamide

    NASA Astrophysics Data System (ADS)

    Mohamed, Nasser H.; Bahners, Thomas; Wego, Andreas; Gutmann, Jochen S.; Ulbricht, Mathias

    2012-10-01

    Photo-chemical reactions and surface modifications of poly(ethylene terephthalate) (PET) fabrics with the monomer dimethylaminopropyl methacrylamide (DMAPMA) and benzophenone (BP) as photo-initiator using a broad-band UV lamp source were investigated. The tertiary amino groups of the grafted poly(DMAPMA) chains were subsequently quaternized with alkyl bromides of different chain lengths to establish antibacterial activity. The surface composition, structure and morphology of modified PET fabrics were characterized by Fourier transform infrared spectroscopy (FTIR/ATR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). To evaluate the amount of quaternary and tertiary ammonium groups on the modified surface, PET was dyed with an acid dye which binds to the ammonium groups. Therefore, the color depth is a direct indicator of the amount of ammonium groups. The resulting antibacterial activity of the modified PET fabrics was tested with Escherichia coli. The results of all experiments show that a photochemical modification of PET is possible using DMAPMA, benzophenone and UV light. Also, the quaternization of tertiary amino groups as well as the increase in antibacterial activity of the modified PET by the established quaternary ammonium groups were successful.

  13. Reaction ensemble molecular dynamics: Direct simulation of the dynamic equilibrium properties of chemically reacting mixtures

    NASA Astrophysics Data System (ADS)

    Brennan, John K.; Lísal, Martin; Gubbins, Keith E.; Rice, Betsy M.

    2004-12-01

    A molecular simulation method to study the dynamics of chemically reacting mixtures is presented. The method uses a combination of stochastic and dynamic simulation steps, allowing for the simulation of both thermodynamic and transport properties. The method couples a molecular dynamics simulation cell (termed dynamic cell) to a reaction mixture simulation cell (termed control cell) that is formulated upon the reaction ensemble Monte Carlo (RxMC) method, hence the term reaction ensemble molecular dynamics. Thermodynamic and transport properties are calculated in the dynamic cell by using a constant-temperature molecular dynamics simulation method. RxMC forward and reverse reaction steps are performed in the control cell only, while molecular dynamics steps are performed in both the dynamic cell and the control cell. The control cell, which acts as a sink and source reservoir, is maintained at reaction equilibrium conditions via the RxMC algorithm. The reaction ensemble molecular dynamics method is analogous to the grand canonical ensemble molecular dynamics technique, while using some elements of the osmotic molecular dynamics method, and so simulates conditions that directly relate to real, open systems. The accuracy and stability of the method is assessed by considering the ammonia synthesis reaction N2+3H2⇔2NH3 . It is shown to be a viable method for predicting the effects of nonideal environments on the dynamic properties (particularly diffusion) as well as reaction equilibria for chemically reacting mixtures.

  14. Stereo and regioselectivity in ''Activated'' tritium reactions

    SciTech Connect

    Ehrenkaufer, R.L.E.; Hembree, W.C.; Wolf, A.P.

    1988-01-01

    To investigate the stereo and positional selectivity of the microwave discharge activation (MDA) method, the tritium labeling of several amino acids was undertaken. The labeling of L-valine and the diastereomeric pair L-isoleucine and L-alloisoleucine showed less than statistical labeling at the ..cap alpha..-amino C-H position mostly with retention of configuration. Labeling predominated at the single ..beta.. C-H tertiary (methyne) position. The labeling of L-valine and L-proline with and without positive charge on the ..cap alpha..-amino group resulted in large increases in specific activity (greater than 10-fold) when positive charge was removed by labeling them as their sodium carboxylate salts. Tritium NMR of L-proline labeled both as its zwitterion and sodium salt showed also large differences in the tritium distribution within the molecule. The distribution preferences in each of the charge states are suggestive of labeling by an electrophilic like tritium species(s). 16 refs., 5 tabs.

  15. Estimating the effective rate of fast chemical reactions with turbulent mixing of reactants

    SciTech Connect

    Vorotilin, V. P. Yanovskii, Yu. G.

    2015-07-15

    On the basis of representation of a turbulent fluid as an aggregation of independent turbulent particles (vortexes), we derive relations for the effective rate of chemical reactions and obtain a closed system of equations describing reactions with turbulent mixing of reactants. A variant of instantaneous reactions is considered that explains the proposed approach simply. In particular, the turbulent mixing events according to this approach are uniquely related to the acts of chemical interaction, which makes it possible to exclude from consideration the mixing of inert impurities–the most difficult point of the theory formulated using classical notions. The obtained system of equations is closed without introducing arbitrarily adopted correlations, by naturally introducing the concept of effective reaction and writing the equations of conservation for both the concentrations of reactants and their volumes.

  16. Estimating the effective rate of fast chemical reactions with turbulent mixing of reactants

    NASA Astrophysics Data System (ADS)

    Vorotilin, V. P.; Yanovskii, Yu. G.

    2015-07-01

    On the basis of representation of a turbulent fluid as an aggregation of independent turbulent particles (vortexes), we derive relations for the effective rate of chemical reactions and obtain a closed system of equations describing reactions with turbulent mixing of reactants. A variant of instantaneous reactions is considered that explains the proposed approach simply. In particular, the turbulent mixing events according to this approach are uniquely related to the acts of chemical interaction, which makes it possible to exclude from consideration the mixing of inert impurities-the most difficult point of the theory formulated using classical notions. The obtained system of equations is closed without introducing arbitrarily adopted correlations, by naturally introducing the concept of effective reaction and writing the equations of conservation for both the concentrations of reactants and their volumes.

  17. Molecular dynamics study of phase separation in fluids with chemical reactions

    NASA Astrophysics Data System (ADS)

    Krishnan, Raishma; Puri, Sanjay

    2015-11-01

    We present results from the first d =3 molecular dynamics (MD) study of phase-separating fluid mixtures (AB) with simple chemical reactions (A ⇌B ). We focus on the case where the rates of forward and backward reactions are equal. The chemical reactions compete with segregation, and the coarsening system settles into a steady-state mesoscale morphology. However, hydrodynamic effects destroy the lamellar morphology which characterizes the diffusive case. This has important consequences for the phase-separating structure, which we study in detail. In particular, the equilibrium length scale (ℓeq) in the steady state suggests a power-law dependence on the reaction rate ɛ :ℓeq˜ɛ-θ with θ ≃1.0 .

  18. Automated Discovery of Elementary Chemical Reaction Steps Using Freezing String and Berny Optimization Methods.

    PubMed

    Suleimanov, Yury V; Green, William H

    2015-09-01

    We present a simple protocol which allows fully automated discovery of elementary chemical reaction steps using in cooperation double- and single-ended transition-state optimization algorithms--the freezing string and Berny optimization methods, respectively. To demonstrate the utility of the proposed approach, the reactivity of several single-molecule systems of combustion and atmospheric chemistry importance is investigated. The proposed algorithm allowed us to detect without any human intervention not only "known" reaction pathways, manually detected in the previous studies, but also new, previously "unknown", reaction pathways which involve significant atom rearrangements. We believe that applying such a systematic approach to elementary reaction path finding will greatly accelerate the discovery of new chemistry and will lead to more accurate computer simulations of various chemical processes. PMID:26575920

  19. Molecular dynamics study of phase separation in fluids with chemical reactions.

    PubMed

    Krishnan, Raishma; Puri, Sanjay

    2015-11-01

    We present results from the first d=3 molecular dynamics (MD) study of phase-separating fluid mixtures (AB) with simple chemical reactions (A⇌B). We focus on the case where the rates of forward and backward reactions are equal. The chemical reactions compete with segregation, and the coarsening system settles into a steady-state mesoscale morphology. However, hydrodynamic effects destroy the lamellar morphology which characterizes the diffusive case. This has important consequences for the phase-separating structure, which we study in detail. In particular, the equilibrium length scale (ℓ(eq)) in the steady state suggests a power-law dependence on the reaction rate ε:ℓ(eq)∼ε(-θ) with θ≃1.0. PMID:26651704

  20. Fluctuation Induced Structure in Chemical Reaction with Small Number of Molecules

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasuhiro

    We investigate the behaviors of chemical reactions of the Lotka-Volterra model with small number of molecules; hence the occurrence of random fluctuations modifies the deterministic behavior and the law of mass action is replaced by a stochastic model. We model it by using Abstract Rewriting System on Multisets, ARMS; ARMS is a stochastic method of simulating chemical reactions and it is based on the reaction rate equation. We confirmed that the magnitude of fluctuations on periodicity of oscillations becomes large, as the number of involved molecules is getting smaller; and these fluctuations induce another structure, which have not observed in the reactions with large number of molecules. We show that the underling mechanism through investigating the coarse grained phase space of ARMS.

  1. Significance of vapor phase chemical reactions on CVD rates predicted by chemically frozen and local thermochemical equilibrium boundary layer theories

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.

    1988-01-01

    This paper investigates the role played by vapor-phase chemical reactions on CVD rates by comparing the results of two extreme theories developed to predict CVD mass transport rates in the absence of interfacial kinetic barrier: one based on chemically frozen boundary layer and the other based on local thermochemical equilibrium. Both theories consider laminar convective-diffusion boundary layers at high Reynolds numbers and include thermal (Soret) diffusion and variable property effects. As an example, Na2SO4 deposition was studied. It was found that gas phase reactions have no important role on Na2SO4 deposition rates and on the predictions of the theories. The implications of the predictions of the two theories to other CVD systems are discussed.

  2. Simulation of chemical isomerization reaction dynamics on a NMR quantum simulator.

    PubMed

    Lu, Dawei; Xu, Nanyang; Xu, Ruixue; Chen, Hongwei; Gong, Jiangbin; Peng, Xinhua; Du, Jiangfeng

    2011-07-01

    Quantum simulation can beat current classical computers with minimally a few tens of qubits. Here we report an experimental demonstration that a small nuclear-magnetic-resonance quantum simulator is already able to simulate the dynamics of a prototype laser-driven isomerization reaction using engineered quantum control pulses. The experimental results agree well with classical simulations. We conclude that the quantum simulation of chemical reaction dynamics not computable on current classical computers is feasible in the near future. PMID:21797586

  3. Characterization of plastic deformation and chemical reaction in titanium-polytetrafluoroethylene mixture

    NASA Astrophysics Data System (ADS)

    Davis, Jeffery Jon

    1998-09-01

    The subject of this dissertation is the deformation process of a single metal - polymer system (titanium - polytetrafluoroethylene) and how this process leads to initiation of chemical reaction. Several different kinds of experiments were performed to characterize the behavior of this material to shock and impact. These mechanical conditions induce a rapid plastic deformation of the sample. All of the samples tested had an initial porosity which increased the plastic flow condition. It is currently believed that during the deformation process two important conditions occur: removal of the oxide layer from the metal and decomposition of the polymer. These conditions allow for rapid chemical reaction. The research from this dissertation has provided insight into the complex behavior of plastic deformation and chemical reactions in titanium - polytetrafluoroethylene (PTFE, Teflon). A hydrodynamic computational code was used to model the plastic flow for correlation with the results from the experiments. The results from this work are being used to develop an ignition and growth model for metal/polymer systems. Three sets of experiments were used to examine deformation of the 80% Ti and 20% Teflon materials: drop- weight, gas gun, and split-Hopkinson pressure bar. Recovery studies included post shot analysis of the samples using x-ray diffraction. Lagrangian hydrocode DYNA2D modeling of the drop-weight tests was performed for comparison with experiments. One of the reactions know to occur is Ti + C → TiC (s) which results in an exothermic release. However, the believed initial reactions occur between Ti and fluorine which produces TixFy gases. The thermochemical code CHEETAH was used to investigate the detonation products and concentrations possible during Ti - Teflon reaction. CHEETAH shows that the Ti - fluorine reactions are thermodynamically favorable. This research represents the most comprehensive to date study of deformation induced chemical reaction in metal/polymers.

  4. Thermodynamical vibronic coupling constant and density: Chemical potential and vibronic coupling in reactions

    NASA Astrophysics Data System (ADS)

    Sato, Tohru; Haruta, Naoki; Tanaka, Kazuyoshi

    2016-05-01

    Vibronic coupling constant (VCC) and density (VCD) defined for a pure state, which have been successfully applied for reactions of fullerenes and nanographenes as reactivity indices, are extended for a mixed state. The extended VCC and VCD, thermodynamical vibronic coupling constant (ThVCC) and density (ThVCD), are formulated in the finite-temperature grand-canonical ensemble. ThVCD can be applied for charge transfer of a fractional number of electron. Based on the total differential of chemical potential, the relationship between chemical potential, absolute hardness, and vibronic coupling in a bimolecular reaction is discussed.

  5. Arrhenius' law in turbulent media and an equivalent tunnel effect. [in binary exchange chemical reactions

    NASA Technical Reports Server (NTRS)

    Tsuge, S.; Sagara, K.

    1978-01-01

    The indeterminacy inherent to the formal extension of Arrhenius' law to reactions in turbulent flows is shown to be surmountable in the case of a binary exchange reaction with a sufficiently high activation energy. A preliminary calculation predicts that the turbulent reaction rate is invariant in the Arrhenius form except for an equivalently lowered activation energy. This is a reflection of turbulence-augmented molecular vigor, and causes an appreciable increase in the reaction rate. A similarity to the tunnel effect in quantum mechanics is indicated. The anomaly associated with the mild ignition of oxy-hydrogen mixtures is discussed in this light.

  6. Reacting gas mixtures in the state-to-state approach: The chemical reaction rates

    SciTech Connect

    Kustova, Elena V.; Kremer, Gilberto M.

    2014-12-09

    In this work chemically reacting mixtures of viscous flows are analyzed within the framework of Boltzmann equation. By applying a modified Chapman-Enskog method to the system of Boltzmann equations general expressions for the rates of chemical reactions and vibrational energy transitions are determined as functions of two thermodynamic forces: the velocity divergence and the affinity. As an application chemically reacting mixtures of N{sub 2} across a shock wave are studied, where the first lowest vibrational states are taken into account. Here we consider only the contributions from the first four single quantum vibrational-translational energy transitions. It is shown that the contribution to the chemical reaction rate related to the affinity is much larger than that of the velocity divergence.

  7. The influence of the "cage" effect on the mechanism of reversible bimolecular multistage chemical reactions proceeding from different sites in solutions.

    PubMed

    Doktorov, Alexander B

    2016-08-28

    Manifestations of the "cage" effect at the encounters of reactants have been theoretically treated on the example of multistage reactions (including bimolecular exchange reactions as elementary stages) proceeding from different active sites in liquid solutions. It is shown that for reactions occurring near the contact of reactants, consistent consideration of quasi-stationary kinetics of such multistage reactions (possible in the framework of the encounter theory only) can be made on the basis of chemical concepts of the "cage complex," just as in the case of one-site model described in the literature. Exactly as in the one-site model, the presence of the "cage" effect gives rise to new channels of reactant transformation that cannot result from elementary event of chemical conversion for the given reaction mechanism. Besides, the multisite model demonstrates new (as compared to one-site model) features of multistage reaction course. PMID:27586911

  8. Chemical Signaling and Functional Activation in Colloidosome-Based Protocells.

    PubMed

    Sun, Shiyong; Li, Mei; Dong, Faqin; Wang, Shengjie; Tian, Liangfei; Mann, Stephen

    2016-04-13

    An aqueous-based microcompartmentalized model involving the integration of partially hydrophobic Fe(III)-rich montmorillonite (FeM) clay particles as structural and catalytic building blocks for colloidosome membrane assembly, self-directed membrane remodeling, and signal-induced protocell communication is described. The clay colloidosomes exhibit size- and charge-selective permeability, and show dual catalytic functions involving spatially confined enzyme-mediated dephosphorylation and peroxidase-like membrane activity. The latter is used for the colloidosome-mediated synthesis and assembly of a temperature-responsive poly(N-isopropylacrylamide)(PNIPAM)/clay-integrated hybrid membrane. In situ PNIPAM elaboration of the membrane is coupled to a glucose oxidase (GOx)-mediated signaling pathway to establish a primitive model of chemical communication and functional activation within a synthetic "protocell community" comprising a mixed population of GOx-containing silica colloidosomes and alkaline phosphatase (ALP)-containing FeM-clay colloidosomes. Triggering the enzyme reaction in the silica colloidosomes gives a hydrogen peroxide signal that induces polymer wall formation in a coexistent population of the FeM-clay colloidosomes, which in turn generates self-regulated membrane-gated ALP-activity within the clay microcompartments. The emergence of new functionalities in inorganic colloidosomes via chemical communication between different protocell populations provides a first step toward the realization of interacting communities of synthetic functional microcompartments. PMID:26923794

  9. A Review of the Thermodynamic, Transport, and Chemical Reaction Rate Properties of High-temperature Air

    NASA Technical Reports Server (NTRS)

    Hansen, C Frederick; Heims, Steve P

    1958-01-01

    Thermodynamic and transport properties of high temperature air, and the reaction rates for the important chemical processes which occur in air, are reviewed. Semiempirical, analytic expressions are presented for thermodynamic and transport properties of air. Examples are given illustrating the use of these properties to evaluate (1) equilibrium conditions following shock waves, (2) stagnation region heat flux to a blunt high-speed body, and (3) some chemical relaxation lengths in stagnation region flow.

  10. Advanced deposition model for thermal activated chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Cai, Dang

    Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface

  11. Ion-Molecule Reactions and Chemical Composition of Emanated from Herculane Spa Geothermal Sources

    PubMed Central

    Cosma, Constantin; Suciu, Ioan; Jäntschi, Lorentz; Bolboacă, Sorana D.

    2008-01-01

    The paper presents a chemical composition analysis of the gases emanated from geothermal sources in the Herculane Spa area (Romania). The upper homologues of methane have been identified in these gases. An ion-molecule reaction mechanism could be implicated in the formation of the upper homologues of methane. The CH4+ ions that appear under the action of radiation are the starting point of these reactions. The presence of hydrogen in the emanated gases may be also a result of these reactions. PMID:19325844

  12. Flow network QSAR for the prediction of physicochemical properties by mapping an electrical resistance network onto a chemical reaction poset.

    PubMed

    Ivanciuc, Ovidiu; Ivanciuc, Teodora; Klein, Douglas J

    2013-06-01

    Usual quantitative structure-activity relationship (QSAR) models are computed from unstructured input data, by using a vector of molecular descriptors for each chemical in the dataset. Another alternative is to consider the structural relationships between the chemical structures, such as molecular similarity, presence of certain substructures, or chemical transformations between compounds. We defined a class of network-QSAR models based on molecular networks induced by a sequence of substitution reactions on a chemical structure that generates a partially ordered set (or poset) oriented graph that may be used to predict various molecular properties with quantitative superstructure-activity relationships (QSSAR). The network-QSAR interpolation models defined on poset graphs, namely average poset, cluster expansion, and spline poset, were tested with success for the prediction of several physicochemical properties for diverse chemicals. We introduce the flow network QSAR, a new poset regression model in which the dataset of chemicals, represented as a reaction poset, is transformed into an oriented network of electrical resistances in which the current flow results in a potential at each node. The molecular property considered in the QSSAR model is represented as the electrical potential, and the value of this potential at a particular node is determined by the electrical resistances assigned to each edge and by a system of batteries. Each node with a known value for the molecular property is attached to a battery that sets the potential on that node to the value of the respective molecular property, and no external battery is attached to nodes from the prediction set, representing chemicals for which the values of the molecular property are not known or are intended to be predicted. The flow network QSAR algorithm determines the values of the molecular property for the prediction set of molecules by applying Ohm's law and Kirchhoff's current law to the poset

  13. Influences of chemical activators on incinerator bottom ash.

    PubMed

    Qiao, X C; Cheeseman, C R; Poon, C S

    2009-02-01

    This research has applied different chemical activators to mechanically and thermally treated fine fraction (<14 mm) of incinerator bottom ash (IBA), in order to investigate the influences of chemical activators on this new pozzolanic material. IBA has been milled and thermally treated at 800 degrees C (TIBA). The TIBA produced was blended with Ca(OH)(2) and evaluated for setting time, reactivity and compressive strength after the addition of 0.0565 mole of Na(2)SO(4), K(2)SO(4), Na(2)CO(3), K(2)CO(3), NaOH, KOH and CaCl(2) into 100g of binder (TIBA+Ca(OH)(2)). The microstructures of activated IBA and hydrated samples have been characterized by X-ray diffraction (XRD) and thermogravimetry (TG) analysis. Thermal treatment is found to produce gehlenite (Ca(2)Al(2)SiO(7)), wollastonite (CaSiO(3)) and mayenite (Ca(12)Al(14)O(33)) phases. The thermally treated IBA samples are significantly more reactive than the milled IBA. The addition of Na(2)CO(3) can increase the compressive strength and calcium hydroxide consumption at 28-day curing ages. However, the addition of Na(2)SO(4), K(2)SO(4), K(2)CO(3), NaOH and KOH reduces the strength and hydration reaction. Moreover, these chemicals produce more porous samples due to increased generation of hydrogen gas. The addition of CaCl(2) has a negative effect on the hydration of TIBA samples. Calcium aluminium oxide carbonate sulphide hydrate (Ca(4)Al(2)O(6)(CO(3))(0.67)(SO(3))(0.33)(H(2)O)(11)) is the main hydration product in the samples with activated IBA, except for the sample containing CaCl(2). PMID:18718749

  14. Differences in the Abilities to Mechanically Eliminate Activation Energies for Unimolecular and Bimolecular Reactions

    NASA Astrophysics Data System (ADS)

    Kochhar, Gurpaul S.; Mosey, Nicholas J.

    2016-03-01

    Mechanochemistry, i.e. the application of forces, F, at the molecular level, has attracted significant interest as a means of controlling chemical reactions. The present study uses quantum chemical calculations to explore the abilities to mechanically eliminate activation energies, ΔE‡, for unimolecular and bimolecular reactions. The results demonstrate that ΔE‡ can be eliminated for unimolecular reactions by applying sufficiently large F along directions that move the reactant and/or transition state (TS) structures parallel to the zero-F reaction coordinate, S0. In contrast, eliminating ΔE‡ for bimolecular reactions requires the reactant to undergo a force-induced shift parallel to S0 irrespective of changes in the TS. Meeting this requirement depends upon the coupling between F and S0 in the reactant. The insights regarding the differences in eliminating ΔE‡ for unimolecular and bimolecular reactions, and the requirements for eliminating ΔE‡, may be useful in practical efforts to control reactions mechanochemically.

  15. Differences in the Abilities to Mechanically Eliminate Activation Energies for Unimolecular and Bimolecular Reactions

    PubMed Central

    Kochhar, Gurpaul S.; Mosey, Nicholas J.

    2016-01-01

    Mechanochemistry, i.e. the application of forces, F, at the molecular level, has attracted significant interest as a means of controlling chemical reactions. The present study uses quantum chemical calculations to explore the abilities to mechanically eliminate activation energies, ΔE‡, for unimolecular and bimolecular reactions. The results demonstrate that ΔE‡ can be eliminated for unimolecular reactions by applying sufficiently large F along directions that move the reactant and/or transition state (TS) structures parallel to the zero-F reaction coordinate, S0. In contrast, eliminating ΔE‡ for bimolecular reactions requires the reactant to undergo a force-induced shift parallel to S0 irrespective of changes in the TS. Meeting this requirement depends upon the coupling between F and S0 in the reactant. The insights regarding the differences in eliminating ΔE‡ for unimolecular and bimolecular reactions, and the requirements for eliminating ΔE‡, may be useful in practical efforts to control reactions mechanochemically. PMID:26972114

  16. O/S-1/ interactions - The product channels. [collisional electron quenching and chemical reaction pathway frequencies

    NASA Technical Reports Server (NTRS)

    Slanger, T. G.; Black, G.

    1978-01-01

    The first measurements are reported of the reaction pathways for the interaction between oxygen atoms in the 4.19 eV S-1 state, and four molecules, N2O, CO2, H2O, and NO. Distinction is made between three possible paths - quenching to O(D-1), quenching to O(P-3), and chemical reaction. With N2O, the most reasonable interpretation of the data indicates that there no reaction, in sharp contrast with the interaction between O(D-1) and N2O, which proceeds entirely by reaction. Similarly, there is no reaction with CO2. With H2O, the reactive pathway is the dominant one, although electronic quenching is not negligible. With NO, O(D-1) is the preferred product.

  17. Charge exchange and chemical reactions with trapped Th{sup 3+}

    SciTech Connect

    Churchill, L. R.; DePalatis, M. V.; Chapman, M. S.

    2011-01-15

    We have measured the reaction rates of trapped, buffer gas cooled Th{sup 3+} and various gases and have analyzed the reaction products using trapped ion mass spectrometry techniques. Ion trap lifetimes are usually limited by reactions with background molecules, and the high electron affinity of multiply charged ions such as Th{sup 3+} make them more prone to loss. Our results show that reactions of Th{sup 3+} with carbon dioxide, methane, and oxygen all occur near the classical Langevin rate, while reaction rates with argon, hydrogen, and nitrogen are orders of magnitude lower. Reactions of Th{sup 3+} with oxygen and methane proceed primarily via charge exchange, while simultaneous charge exchange and chemical reaction occurs between Th{sup 3+} and carbon dioxide. Loss rates of Th{sup 3+} in helium are consistent with reaction with impurities in the gas. Reaction rates of Th{sup 3+} with nitrogen and argon depend on the internal electronic configuration of the Th{sup 3+}.

  18. Eliciting Students' Understandings of Chemical Reactions Using Two Forms of Essay Questions during a Learning Cycle.

    ERIC Educational Resources Information Center

    Cavallo, Ann M. L.; McNeely, Jack C.; Marek, Edmund A.

    2003-01-01

    Examines 9th grade students' explanations of chemical reactions using two forms of open-ended essay questions, those providing students with key terms to be used as "anchors" on which to base their essay, and those that do not provide terms. Results indicate that more misunderstandings were elicited by the use of key terms as compared to the…

  19. Effectiveness of Conceptual Change Text-Oriented Instruction on Students' Understanding of Energy in Chemical Reactions

    ERIC Educational Resources Information Center

    Tastan, Ozgecan; Yalcinkaya, Eylem; Boz, Yezdan

    2008-01-01

    The aim of this study is to compare the effectiveness of conceptual change text instruction (CCT) in the context of energy in chemical reactions. The subjects of the study were 60, 10th grade students at a high school, who were in two different classes and taught by the same teacher. One of the classes was randomly selected as the experimental…

  20. Mapping Students' Modes of Reasoning When Thinking about Chemical Reactions Used to Make a Desired Product

    ERIC Educational Resources Information Center

    Weinrich, M. L.; Talanquer, V.

    2016-01-01

    The central goal of this study was to analyze the complexity of students' explanations about how and why chemical reactions happen in terms of the types of causal connections students built between expressed concepts and ideas. We were particularly interested in characterizing differences in the types of reasoning applied by students with…

  1. Chemical equilibrium and reaction modeling of arsenic and selenium in soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemical processes and soil factors that affect the concentrations of As and Se in soil solution were discussed. Both elements occur in two redox states differing in toxicity and reactivity. Methylation and volatilization reactions occur in soils and can act as detoxification pathways. Precip...

  2. Volatile emission in dry seeds as a way to probe chemical reactions during initial asymptomatic deterioration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nature and kinetics of reactions in dry seeds determines how long they survive. We used gas chromatography to assay volatile organic compounds (VOC) emitted from seeds of three unrelated species as a means to non-invasively probe chemical changes during very dry, dry and humid (15, 33 and 75% RH...

  3. Using Drawing Technology to Assess Students' Visualizations of Chemical Reaction Processes

    ERIC Educational Resources Information Center

    Chang, Hsin-Yi; Quintana, Chris; Krajcik, Joseph

    2014-01-01

    In this study, we investigated how students used a drawing tool to visualize their ideas of chemical reaction processes. We interviewed 30 students using thinking-aloud and retrospective methods and provided them with a drawing tool. We identified four types of connections the students made as they used the tool: drawing on existing knowledge,…

  4. Facilitating High School Students' Use of Multiple Representations to Describe and Explain Simple Chemical Reactions

    ERIC Educational Resources Information Center

    Chandrasegaran, A. L.; Treagust, David F.; Mocerino, Mauro

    2011-01-01

    This study involved the evaluation of the efficacy of a planned instructional program to facilitate understanding of the macroscopic, submicroscopic and symbolic representational systems when describing and explaining chemical reactions by sixty-five Grade 9 students in a Singapore secondary school. A two-tier multiple-choice diagnostic instrument…

  5. Two Experiments to Approach the Boltzmann Factor: Chemical Reaction and Viscous Flow

    ERIC Educational Resources Information Center

    Fazio, Claudio; Battaglia, Onofrio R.; Guastella, Ivan

    2012-01-01

    In this paper we discuss a pedagogical approach aimed at pointing out the role played by the Boltzmann factor in describing phenomena usually perceived as regulated by different mechanisms of functioning. Experimental results regarding some aspects of a chemical reaction and of the viscous flow of some liquids are analysed and described in terms…

  6. Impact of supersonic and subsonic aircraft on ozone: Including heterogeneous chemical reaction mechanisms

    NASA Technical Reports Server (NTRS)

    Kinnison, Douglas E.; Wuebbles, Donald J.

    1994-01-01

    Preliminary calculations suggest that heterogeneous reactions are important in calculating the impact on ozone from emissions of trace gases from aircraft fleets. In this study, three heterogeneous chemical processes that occur on background sulfuric acid aerosols are included and their effects on O3, NO(x), Cl(x), HCl, N2O5, ClONO2 are calculated.

  7. The Effective Concepts on Students' Understanding of Chemical Reactions and Energy

    ERIC Educational Resources Information Center

    Ayyildiz, Yildizay; Tarhan, Leman

    2012-01-01

    The purpose of this study was to determine the relationship between the basic concepts related to the unit of "Chemical Reactions and Energy" and the sub-concepts underlying for meaningful learning of the unit and to investigate the effectiveness of them on students' learning achievements. For this purpose, the basic concepts of the unit were…

  8. Turkish, Indian, and American Chemistry Textbooks Use of Inscriptions to Represent "Types of Chemical Reactions"

    ERIC Educational Resources Information Center

    Aydin, Sevgi; Sinha, Somnath; Izci, Kemal; Volkmann, Mark

    2014-01-01

    The purpose of this study was to investigate inscriptions used in "Types of Chemical Reactions" topic in Turkish, Indian, and American chemistry textbooks. We investigated both the types of inscriptions and how they were used in textbooks to support learning. A conceptual analysis method was employed to determine how those textbooks use…

  9. Motif analysis for small-number effects in chemical reaction dynamics.

    PubMed

    Saito, Nen; Sughiyama, Yuki; Kaneko, Kunihiko

    2016-09-01

    The number of molecules involved in a cell or subcellular structure is sometimes rather small. In this situation, ordinary macroscopic-level fluctuations can be overwhelmed by non-negligible large fluctuations, which results in drastic changes in chemical-reaction dynamics and statistics compared to those observed under a macroscopic system (i.e., with a large number of molecules). In order to understand how salient changes emerge from fluctuations in molecular number, we here quantitatively define small-number effect by focusing on a "mesoscopic" level, in which the concentration distribution is distinguishable both from micro- and macroscopic ones and propose a criterion for determining whether or not such an effect can emerge in a given chemical reaction network. Using the proposed criterion, we systematically derive a list of motifs of chemical reaction networks that can show small-number effects, which includes motifs showing emergence of the power law and the bimodal distribution observable in a mesoscopic regime with respect to molecule number. The list of motifs provided herein is helpful in the search for candidates of biochemical reactions with a small-number effect for possible biological functions, as well as for designing a reaction system whose behavior can change drastically depending on molecule number, rather than concentration. PMID:27608993

  10. Observing Metal-Catalyzed Chemical Reactions in Situ Using Surface-Enhanced Raman Spectroscopy on Pd–Au Nanoshells

    PubMed Central

    Heck, Kimberly N.; Janesko, Benjamin G.; Scuseria, Gustavo E.

    2016-01-01

    Insight into the nature of transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions is obtainable from a number of surface spectroscopic techniques. Carrying out these investigations under actual reaction conditions is preferred but remains challenging, especially for catalytic reactions that occur in water. Here, we report the direct spectroscopic study of the catalytic hydrodechlorination of 1,1-dichloroethene in H2O using surface-enhanced Raman spectroscopy (SERS). With Pd islands grown on Au nanoshell films, this reaction can be followed in situ using SERS, exploiting the high enhancements and large active area of Au nanoshell SERS substrates, the transparency of Raman spectroscopy to aqueous solvents, and the catalytic activity enhancement of Pd by the underlying Au metal. The formation and subsequent transformation of several adsorbate species was observed. These results provide the first direct evidence of the room-temperature catalytic hydrodechlorination of a chlorinated solvent, a potentially important pathway for groundwater cleanup, as a sequence of dechlorination and hydrogenation steps. More broadly, the results highlight the exciting prospects of studying catalytic processes in water in situ, like those involved in biomass conversion and proton-exchange membrane fuel cells. PMID:19554693

  11. Diagnostic Criteria for the Characterization of Electrode Reactions with Chemically Coupled Reactions Preceding the Electron Transfer by Cyclic Square Wave Voltammetry.

    PubMed

    Helfrick, John C; Mann, Megan A; Bottomley, Lawrence A

    2016-08-18

    Theory for cyclic square wave voltammetry of electrode reactions with chemical reactions preceding the electron transfer is presented. Theoretical voltammograms were calculated following systematic variation of empirical parameters to assess their impact on the shape of the voltammogram. From the trends obtained, diagnostic criteria for this mechanism were deduced. When properly applied, these criteria will enable non-experts in voltammetry to assign the electrode reaction mechanism and accurately measure reaction kinetics. PMID:27443581

  12. On a theory of stability for nonlinear stochastic chemical reaction networks

    NASA Astrophysics Data System (ADS)

    Smadbeck, Patrick; Kaznessis, Yiannis N.

    2015-05-01

    We present elements of a stability theory for small, stochastic, nonlinear chemical reaction networks. Steady state probability distributions are computed with zero-information (ZI) closure, a closure algorithm that solves chemical master equations of small arbitrary nonlinear reactions. Stochastic models can be linearized around the steady state with ZI-closure, and the eigenvalues of the Jacobian matrix can be readily computed. Eigenvalues govern the relaxation of fluctuation autocorrelation functions at steady state. Autocorrelation functions reveal the time scales of phenomena underlying the dynamics of nonlinear reaction networks. In accord with the fluctuation-dissipation theorem, these functions are found to be congruent to response functions to small perturbations. Significant differences are observed in the stability of nonlinear reacting systems between deterministic and stochastic modeling formalisms.

  13. Chemical reaction of hexagonal boron nitride and graphite nanoclusters in mechanical milling systems

    SciTech Connect

    Muramatsu, Y.; Grush, M.; Callcott, T.A.

    1997-04-01

    Synthesis of boron-carbon-nitride (BCN) hybrid alloys has been attempted extensively by many researchers because the BCN alloys are considered an extremely hard material called {open_quotes}super diamond,{close_quotes} and the industrial application for wear-resistant materials is promising. A mechanical alloying (MA) method of hexagonal boron nitride (h-BN) with graphite has recently been studied to explore the industrial synthesis of the BCN alloys. To develop the MA method for the BCN alloy synthesis, it is necessary to confirm the chemical reaction processes in the mechanical milling systems and to identify the reaction products. Therefore, the authors have attempted to confirm the chemical reaction process of the h-BN and graphite in mechanical milling systems using x-ray absorption near edge structure (XANES) methods.

  14. On a theory of stability for nonlinear stochastic chemical reaction networks

    SciTech Connect

    Smadbeck, Patrick; Kaznessis, Yiannis N.

    2015-05-14

    We present elements of a stability theory for small, stochastic, nonlinear chemical reaction networks. Steady state probability distributions are computed with zero-information (ZI) closure, a closure algorithm that solves chemical master equations of small arbitrary nonlinear reactions. Stochastic models can be linearized around the steady state with ZI-closure, and the eigenvalues of the Jacobian matrix can be readily computed. Eigenvalues govern the relaxation of fluctuation autocorrelation functions at steady state. Autocorrelation functions reveal the time scales of phenomena underlying the dynamics of nonlinear reaction networks. In accord with the fluctuation-dissipation theorem, these functions are found to be congruent to response functions to small perturbations. Significant differences are observed in the stability of nonlinear reacting systems between deterministic and stochastic modeling formalisms.

  15. Stability of a laminar premixed supersonic free shear layer with chemical reactions

    NASA Technical Reports Server (NTRS)

    Menon, S.; Anderson, J. D., Jr.; Pai, S. I.

    1984-01-01

    The stability of a two-dimensional compressible supersonic flow in the wake of a flat plate is discussed. The fluid is a multi-species mixture which is undergoing finite rate chemical reactions. The spatial stability of an infinitesimal disturbance in the fluid is considered. Numerical solutions of the eigenvalue stability equations for both reactive and nonreactive supersonic flows are presented and discussed. The chemical reactions have significant influence on the stability behavior. For instance, a neutral eigenvalue is observed near the freestream Mach number of 2.375 for the nonreactive case, but disappears when the reaction is turned on. For reactive flows, the eigenvalues are not very dependent on the free stream Mach number.

  16. Highly Stable and Active Catalyst for Sabatier Reactions

    NASA Technical Reports Server (NTRS)

    Hu, Jianli; Brooks, Kriston P.

    2012-01-01

    Highly active Ru/TiO2 catalysts for Sabatier reaction have been developed. The catalysts have shown to be stable under repeated shutting down/startup conditions. When the Ru/TiO2 catalyst is coated on the engineered substrate Fe-CrAlY felt, activity enhancement is more than doubled when compared with an identically prepared engineered catalyst made from commercial Degussa catalyst. Also, bimetallic Ru-Rh/TiO2 catalysts show high activity at high throughput.

  17. Looking for chemical reaction networks exhibiting a drift along a manifold of marginally stable states.

    PubMed

    Brogioli, Doriano

    2013-02-01

    I recently reported some examples of mass-action equations that have a continuous manifold of marginally stable stationary states [Brogioli, D., 2010. Marginally stable chemical systems as precursors of life. Phys. Rev. Lett. 105, 058102; Brogioli, D., 2011. Marginal stability in chemical systems and its relevance in the origin of life. Phys. Rev. E 84, 031931]. The corresponding chemical reaction networks show nonclassical effects, i.e. a violation of the mass-action equations, under the effect of the concentration fluctuations: the chemical system drifts along the marginally stable states. I proposed that this effect is potentially involved in abiogenesis. In the present paper, I analyze the mathematical properties of mass-action equations of marginally stable chemical reaction networks. The marginal stability implies that the mass-action equations obey some conservation law; I show that the mathematical properties of the conserved quantity characterize the motion along the marginally stable stationary state manifold, i.e. they allow to predict if the fluctuations give rise to a random walk or a drift under the effect of concentration fluctuations. Moreover, I show that the presence of the drift along the manifold of marginally stable stationary-states is a critical property, i.e. at least one of the reaction constants must be fine tuned in order to obtain the drift. PMID:23160143

  18. Organo- and nano-catalyst in greener reaction medium: Microwave-assisted expedient synthesis of fine chemicals

    EPA Science Inventory

    The use of emerging microwave (MW) -assisted chemistry techniques is dramatically reducing chemical waste and reaction times in several organic syntheses and chemical transformations. A brief account of our experiences in developing MW-assisted organic transformations, which invo...

  19. Reaction Product Identification in Extreme Chemical Environments by Broadband Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pate, Brooks

    Molecular rotational spectroscopy has several advantages for detection of reaction intermediates and products under extreme laboratory conditions. Rotational spectroscopy has high sensitivity to the molecular structure and provides high spectral resolution in low pressure environments. Furthermore, quantum chemistry provides accurate estimates of the spectroscopic parameters. As a result, rotational spectroscopy can identify molecular species in complex reaction mixtures without the need for chromatographic separation and without the need for a previously recorded ``library spectrum'' of the molecule. The application of chirped pulse Fourier transform rotational spectroscopy methods for the identification of molecules of astrochemical interest formed in pulsed discharge sources will be described including recent advances for high-throughput mm-wave spectroscopy. The set of reaction products created in the experiment can provide insight into the reaction mechanism. Reactions involving the CN radical will be discussed. These reactions can be barrierless making them candidates for interstellar gas reactions. The possibility that interstellar cyanomethanimine is produced by gas phase radical-neutral reactions instead of surface chemistry on grain-supported ices will be discussed using recent spatially resolved chemical images in Sagittarius B2 observed with the Jansky Very Large Array. This work supported by NSF CHE 1213200.

  20. Chemical reactions at metallic and metal/semiconductor interfaces stimulated by pulsed laser annealing

    NASA Astrophysics Data System (ADS)

    Petit, E. J.; Caudano, R.

    1992-01-01

    Multilayer Al/Sb thin films have been evaporated on GaSb single crystals in ultra-high vacuum and pulsed-laser irradiated in-situ above the energy density threshold for surface melting. Superficial and interfacial chemical reactions have been characterized in-situ by Auger electron spectroscopy; and later, by X-ray photoelectron spectroscopy profiling, Rutherford backscattering spectrometry and scanning electron microscopy. The chemical reaction between the Al and Sb films is considered as a model reaction for laser-assisted synthesis of high-purity intermetallic compounds. The observation of a strong interfacial reaction between the melted film and the substrate is also a subject of great concern for optical data recording and laser alloying of ohmic contacts on semiconductors. We show that a suitable choice of the substrate and adding a low surface tension element into the metallic film can improve its stability during melting, and prevent inhomogeneous reaction and formation of holes, cracks and particles. Finally, other solutions are suggested to improve the control of these reactions.

  1. Miscible viscous fingering involving viscosity changes of the displacing fluid by chemical reactions

    NASA Astrophysics Data System (ADS)

    Nagatsu, Yuichiro; Iguchi, Chika; Matsuda, Kenji; Kato, Yoshihito; Tada, Yutaka

    2010-02-01

    In our previous study, we experimentally studied the effects of changes in the viscosity of the displaced more-viscous liquid by instantaneous reactions on miscible viscous fingering pattern [Y. Nagatsu, K. Matsuda, Y. Kato, and Y. Tada, "Experimental study on miscible viscous fingering involving viscosity changes induced by variations in chemical species concentrations due to chemical reactions," J. Fluid Mech. 571, 475 (2007)]. In the present study, experiments have been performed on the miscible viscous fingering involving changes in the viscosity of the displacing less-viscous liquid by instantaneous reactions in a radial Hele-Shaw cell. We have found that the shielding effect is suppressed and the fingers are widened when the viscosity is increased. As a result, the reaction makes the fingering pattern denser. In contrast, the shielding effect is enhanced, and the fingers are narrowed when the viscosity is decreased. As a result, the reaction makes the fingering pattern less dense. These results are essentially same as those obtained by the above-mentioned previous study. This shows that the effects of changes in the viscosity due to the instantaneous reactions are independent of whether the changes occur in the displaced liquid or in the displacing liquid. A mechanism for the independence is discussed.

  2. Chemical Nature and Reaction Mechanisms of the Molybdenum Cofactor of Xanthine Oxidoreductase

    PubMed Central

    Okamoto, Ken; Kusano, Teruo; Nishino, Takeshi

    2013-01-01

    Xanthine oxidoreductase (XOR), a complex flavoprotein, catalyzes the metabolic reactions leading from hypoxanthine to xanthine and from xanthine to urate, and both reactions take place at the molybdenum cofactor. The enzyme is a target of drugs for therapy of gout or hyperuricemia. We review the chemical nature and reaction mechanisms of the molybdenum cofactor of XOR, focusing on molybdenum-dependent reactions of actual or potential medical importance, including nitric oxide (NO) synthesis. It is now generally accepted that XOR transfers the water-exchangeable -OH ligand of the molybdenum atom to the substrate. The hydroxyl group at OH-Mo(IV) can be replaced by urate, oxipurinol and FYX-051 derivatives and the structures of these complexes have been determined by x-ray crystallography under anaerobic conditions. Although formation of NO from nitrite or formation of xanthine from urate by XOR is chemically feasible, it is not yet clear whether these reactions have any physiological significance since the reactions are catalyzed at a slow rate even under anaerobic conditions. PMID:23116398

  3. Chemical kinetic analysis of hydrogen-air ignition and reaction times

    NASA Technical Reports Server (NTRS)

    Rogers, R. C.; Schexnayder, C. J., Jr.

    1981-01-01

    An anaytical study of hydrogen air kinetics was performed. Calculations were made over a range of pressure from 0.2 to 4.0 atm, temperatures from 850 to 2000 K, and mixture equivalence ratios from 0.2 to 2.0. The finite rate chemistry model included 60 reactions in 20 species of the H2-O2-N2 system. The calculations also included an assessment of how small amounts of the chemicals H2O, NOx, H2O2, and O3 in the initial mixture affect ignition and reaction times, and how the variation of the third body efficiency of H2O relative of N2 in certain key reactions may affect reaction time. The results indicate that for mixture equivalence ratios between 0.5 and 1.7, ignition times are nearly constant; however, the presence of H2O and NO can have significant effects on ignition times, depending on the mixture temperature. Reaction time is dominantly influenced by pressure but is nearly independent of initial temperature, equivalence ratio, and the addition of chemicals. Effects of kinetics on reaction at supersonic combustor conditions are discussed.

  4. Dynamics and Kinetics Study of "In-Water" Chemical Reactions by Enhanced Sampling of Reactive Trajectories.

    PubMed

    Zhang, Jun; Yang, Y Isaac; Yang, Lijiang; Gao, Yi Qin

    2015-11-12

    High potential energy barriers and engagement of solvent coordinates set challenges for in silico studies of chemical reactions, and one is quite commonly limited to study reactions along predefined reaction coordinate(s). A systematic protocol, QM/MM MD simulations using enhanced sampling of reactive trajectories (ESoRT), is established to quantitatively study chemical transitions in complex systems. A number of trajectories for Claisen rearrangement in water and toluene were collected and analyzed, respectively. Evidence was found that the bond making and breaking during this reaction are concerted processes in solutions, preferentially through a chairlike configuration. Water plays an important dynamic role that helps stabilize the transition sate, and the dipole-dipole interaction between water and the solute also lowers the transition barrier. The calculated rate coefficient is consistent with the experimental measurement. Compared with water, the reaction pathway in toluene is "narrower" and the reaction rate is slower by almost three orders of magnitude due to the absence of proper interactions to stabilize the transition state. This study suggests that the "in-water" nature of the Claisen rearrangement in aqueous solution influences its thermodynamics, kinetics, as well as dynamics. PMID:26485567

  5. Do high school chemistry examinations inhibit deeper level understanding of dynamic reversible chemical reactions?

    NASA Astrophysics Data System (ADS)

    Wheeldon, R.; Atkinson, R.; Dawes, A.; Levinson, R.

    2012-07-01

    Background and purpose : Chemistry examinations can favour the deployment of algorithmic procedures like Le Chatelier's Principle (LCP) rather than reasoning using chemical principles. This study investigated the explanatory resources which high school students use to answer equilibrium problems and whether the marks given for examination answers require students to use approaches beyond direct application of LCP. Sample : The questionnaire was administered to 162 students studying their first year of advanced chemistry (age 16/17) in three high achieving London high schools. Design and methods : The students' explanations of reversible chemical systems were inductively coded to identify the explanatory approaches used and interviews with 13 students were used to check for consistency. AS level examination questions on reversible reactions were analysed to identify the types of explanations sought and the students' performance in these examinations was compared to questionnaire answers. Results : 19% of students used a holistic explanatory approach: when the rates of forward and reverse reactions are correctly described, recognising their simultaneous and mutually dependent nature. 36% used a mirrored reactions approach when the connected nature of the forward and reverse reactions is identified, but not their mutual dependency. 42% failed to recognize the interdependence of forward and reverse reactions (reactions not connected approach). Only 4% of marks for AS examination questions on reversible chemical systems asked for responses which went beyond either direct application of LCP or recall of equilibrium knowledge. 37% of students attained an A grade in their AS national examinations. Conclusions : Examinations favour the application of LCP making it possible to obtain the highest grade with little understanding of reversible chemical systems beyond a direct application of this algorithm. Therefore students' understanding may be attenuated so that they are

  6. Nonequilibrium thermodynamic formalism of nonlinear chemical reaction systems with Waage-Guldberg's law of mass action

    NASA Astrophysics Data System (ADS)

    Ge, Hao; Qian, Hong

    2016-06-01

    Macroscopic entropy production rate σ (tot) in the general nonlinear isothermal chemical reaction system with mass action kinetics is decomposed into a free energy dissipation rate and a house-keeping heat dissipation rate: σ (tot) =σ (fd) +σ (hk) ; σ (fd) = -d A /d t , where A is a generalized free energy function. This yields a novel nonequilibrium free energy balance equation d A /d t = -σ (tot) +σ (hk) , which is on a par with celebrated entropy balance equation d S /d t =σ (tot) +η (ex) where η (ex) is the rate of entropy exchange with the environment. For kinetic systems with complex balance, σ (fd) and σ (hk) are the macroscopic limits of stochastic free energy dissipation rate and house-keeping heat dissipation rate, which are both nonnegative, in the Delbrück-Gillespie description of the stochastic chemical kinetics. A full kinetic and thermodynamic theory of chemical reaction systems that transcends mesoscopic and macroscopic levels emerges.

  7. Two-scale large deviations for chemical reaction kinetics through second quantization path integral

    NASA Astrophysics Data System (ADS)

    Li, Tiejun; Lin, Feng

    2016-04-01

    Motivated by the study of rare events for a typical genetic switching model in systems biology, in this paper we aim to establish the general two-scale large deviations for chemical reaction systems. We build a formal approach to explicitly obtain the large deviation rate functionals for the considered two-scale processes based upon the second quantization path integral technique. We get three important types of large deviation results when the underlying two timescales are in three different regimes. This is realized by singular perturbation analysis to the rate functionals obtained by the path integral. We find that the three regimes possess the same deterministic mean-field limit but completely different chemical Langevin approximations. The obtained results are natural extensions of the classical large volume limit for chemical reactions. We also discuss its implication on the single-molecule Michaelis-Menten kinetics. Our framework and results can be applied to understand general multi-scale systems including diffusion processes.

  8. STM-based methodologies for molecular identification and studies of chemical reaction mechanisms

    SciTech Connect

    Hamers, R.J.

    1995-12-01

    The use of STM to study chemical reactions has been hampered by the general inability to identify molecules and molecular fragments on surfaces. By combining the ability of the STM to probe local electronic structure with systematic study as a function of temperature and concepts from coordination chemistry, a priori chemical identification can be achieved, and this information can be used to elucidate new information about the mechanisms of chemical reactions. On silicon, this approach has been applied to study the decomposition of disilane, phosphine, and diborane. On metals, the delocalized bonding necessitates different approaches. We have also applied STM and tunneling spectroscopy to study the adsorption and decomposition of thiophene and related molecules on Ag(111) surfaces at 120 Kelvin. Here, voltage-dependent STM imaging is used to identify the rotational orientation of the molecules and to study polymerization at the molecular level. Methodologies for molecular identification will be discussed, with recent applications on semiconductors and metals.

  9. Effect of temperature oscillation on chemical reaction rates in the atmosphere

    NASA Technical Reports Server (NTRS)

    Eberstein, I. J.

    1974-01-01

    The effect of temperature fluctuations on atmospheric ozone chemistry is examined by considering the Chapman photochemical theory of ozone transport to calculate globally averaged ozone production rates from mean reaction rates, activation energies, and recombination processes.

  10. Activity and selectivity of molybdenum catalysts in coal liquefaction reactions

    SciTech Connect

    Curtis, C.W.; Pellegrino, J.L. )

    1988-06-01

    During coal liquefaction, coal fragments forming a liquid product with reduced heteroatom content. Coal can be considered to be a large network of polynuclear aromatic species connected by heteroatoms and alkyl bridging structures. Predominant heteroatoms contained in coal are sulfur, oxygen, and nitrogen. Predominant alkyl bridges are methylene and ethylene structures. The purpose of this work is to evaluate how effectively three different molybdenum catalysts promote reactions involving heteroatom removal and cleavage of alkyl bridge structures. The reactions studied include: hydrogenation (HYD), hydrodeoxygenation (HDO), hydrosulfurization (HDS), hydrodenitrogenation (HDN) and hydrocracking (HYC). Both model and coal liquefaction reactions were performed to test the activity and selectivity of three different molybdenum catalysts. The three catalysts used were molybdenum napththenate, molybdenum supported on gamma alumina (Mo/Al/sub 2/O/sub 3/) and precipitated, poorly crystalline molybdenum disulfide (MoS/sub 2/). The model compounds, chosen to mimic coal structure, on which the effectiveness of the catalysts for the model reactions was tested were: 1-methylnaphthalene, representing aromatic hydrocarbons, for hydrogenation; 1-naphthol, representing oxygen containing compounds, for deoxygenation; benzothiophene, representing sulfur containing compounds, for desulfurization; indole, representing nitrogen containing compounds, for denitrogenation; and bibenzyl, representing alkyl bridging structures, for hydrocracking. Catalytic reactions of combinations of reactants were performed to simulate a complex coal matrix. Thermal and catalytic coal liquefaction reactions were performed using Illinois No. 6 coal with anthracene as a solvent. The efficacy of the catalysts was determined by comparing the product and compound class fractions obtained from the liquefaction reactions.

  11. General chemical kinetics computer program for static and flow reactions, with application to combustion and shock-tube kinetics

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Scullin, V. J.

    1972-01-01

    A general chemical kinetics program is described for complex, homogeneous ideal-gas reactions in any chemical system. Its main features are flexibility and convenience in treating many different reaction conditions. The program solves numerically the differential equations describing complex reaction in either a static system or one-dimensional inviscid flow. Applications include ignition and combustion, shock wave reactions, and general reactions in a flowing or static system. An implicit numerical solution method is used which works efficiently for the extreme conditions of a very slow or a very fast reaction. The theory is described, and the computer program and users' manual are included.

  12. Review and analysis of high temperature chemical reactions and the effect of non-equilibrium conditions

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1986-01-01

    Chemical reactions at high temperatures have been considered extensively because of their importance to the heating effects on re-entry of space vehicles. Data on these reactions however, are not abundant and even when found there are discrepancies in data collected by various investigators. In particular, data for recombination reactions are calculated from the dissociation reactions or vice versa through the equilibrium constant. This involves the use of the principle of detailed balancing. This principle is discussed in reference to conditions where it is valid as well as to those where it is not valid. Related topics that merit further study or for which applicable information was available are briefly mentioned in an appendix to this report.

  13. Ab Initio Calculation of Rate Constants for Molecule-Surface Reactions with Chemical Accuracy.

    PubMed

    Piccini, GiovanniMaria; Alessio, Maristella; Sauer, Joachim

    2016-04-18

    The ab initio prediction of reaction rate constants for systems with hundreds of atoms with an accuracy that is comparable to experiment is a challenge for computational quantum chemistry. We present a divide-and-conquer strategy that departs from the potential energy surfaces obtained by standard density functional theory with inclusion of dispersion. The energies of the reactant and transition structures are refined by wavefunction-type calculations for the reaction site. Thermal effects and entropies are calculated from vibrational partition functions, and the anharmonic frequencies are calculated separately for each vibrational mode. This method is applied to a key reaction of an industrially relevant catalytic process, the methylation of small alkenes over zeolites. The calculated reaction rate constants (free energies), pre-exponential factors (entropies), and enthalpy barriers show that our computational strategy yields results that agree with experiment within chemical accuracy limits (less than one order of magnitude). PMID:27008460

  14. Kinetics and thermodynamics of chemical reactions in Li/SOCl2 cells

    NASA Technical Reports Server (NTRS)

    Hansen, Lee D.; Frank, Harvey

    1987-01-01

    Work is described that was designed to determine the kinetic constants necessary to extrapolate kinetic data on Li/SOCl2 cells over the temperature range from 25 to 75 C. A second objective was to characterize as far as possible the chemical reactions that occur in the cells since these reactions may be important in understanding the potential hazards of these cells. The kinetics of the corrosion processes in undischarged Li/SOCl2 cells were determined and separated according to their occurrence at the anode and cathode; the effects that switching the current on and off has on the corrosion reactions was determined; and the effects of discharge state on the kinetics of the corrosion process were found. A thermodynamic analysis of the current-producing reactions in the cell was done and is included.

  15. Middle atmosphere heating by exothermic chemical reactions involving odd-hydrogen species

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.; Solomon, Susan

    1991-01-01

    The rate of heating which occurs in the middle atmosphere due to four exothermic reactions involving members of the odd-hydrogen family is calculated. The following reactions are considered: O + OH yields O2 + H; H + O2 + M yields HO2 + M; H + O3 yields OH + O2; and O + HO2 yields OH + O2. It is shown that the heating rates due to these reactions rival the oxygen-related heating rates conventionally considered in middle-atmosphere models. The conversion of chemical potential energy into molecular translational energy (heat) by these odd-hydrogen reactions is shown to be a significant energy source in the middle atmosphere that has not been previously considered.

  16. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Wegeng, Robert S [Richland, WA; Gao, Yufei [Kennewick, WA

    2003-04-01

    The present invention is a method and apparatus (vessel) for providing a heat transfer rate from a reaction chamber through a wall to a heat transfer chamber substantially matching a local heat transfer rate of a catalytic thermal chemical reaction. The key to the invention is a thermal distance defined on a cross sectional plane through the vessel inclusive of a heat transfer chamber, reaction chamber and a wall between the chambers. The cross sectional plane is perpendicular to a bulk flow direction of the reactant stream, and the thermal distance is a distance between a coolest position and a hottest position on the cross sectional plane. The thermal distance is of a length wherein the heat transfer rate from the reaction chamber to the heat transfer chamber substantially matches the local heat transfer rate.

  17. Ab Initio Calculation of Rate Constants for Molecule–Surface Reactions with Chemical Accuracy

    PubMed Central

    Piccini, GiovanniMaria; Alessio, Maristella

    2016-01-01

    Abstract The ab initio prediction of reaction rate constants for systems with hundreds of atoms with an accuracy that is comparable to experiment is a challenge for computational quantum chemistry. We present a divide‐and‐conquer strategy that departs from the potential energy surfaces obtained by standard density functional theory with inclusion of dispersion. The energies of the reactant and transition structures are refined by wavefunction‐type calculations for the reaction site. Thermal effects and entropies are calculated from vibrational partition functions, and the anharmonic frequencies are calculated separately for each vibrational mode. This method is applied to a key reaction of an industrially relevant catalytic process, the methylation of small alkenes over zeolites. The calculated reaction rate constants (free energies), pre‐exponential factors (entropies), and enthalpy barriers show that our computational strategy yields results that agree with experiment within chemical accuracy limits (less than one order of magnitude). PMID:27008460

  18. Chemical reactions at CdS heterojunctions with CuInSe{sub 2}

    SciTech Connect

    Aquino, Angel; Rockett, Angus

    2013-03-15

    The stability of the CdS/CuInSe{sub 2} (CIS) heterojunction is critical to understanding the projected lifetime of CIS devices and the effect of processing conditions on the nanoscale chemistry of the heterojunction. This article reports the results of annealing heterojunctions between CdS deposited by chemical bath deposition and single crystal and polycrystalline CIS films between 200 and 500 Degree-Sign C for 10 to 150 min. No atomic movement was observed by secondary ion mass spectrometry at temperatures of 300 Degree-Sign C and below. At 400 Degree-Sign C even for the shortest time studied, Cu and In were found throughout the region initially consisting of CdS only and Cd was found to have moved into the CIS. In the polycrystal, annealing at 500 Degree-Sign C resulted in movement of Cd throughout the CIS layer. No time dependence was observed in the 400 and 500 Degree-Sign C anneals indicating that a reaction had occurred forming a compound that was in thermodynamic equilibrium with the remaining CIS. Diffusion turns on rapidly between 300 and 400 Degree-Sign C, indicating a high activation energy for atomic movement ({approx}2.4 eV). The onset of diffusion is consistent with the onset of Cu diffusion in CIS.

  19. Mass Transfer from Gas Bubbles to Impinging Flow of Biological Fluids with Chemical Reaction

    PubMed Central

    Yang, Wen-Jei; Echigo, R.; Wotton, D. R.; Ou, J. W.; Hwang, J. B.

    1972-01-01

    The rates of mass transfer from a gas bubble to an impinging flow of a biological fluid such as whole blood and plasma are investigated analytically and experimentally. Gases commonly found dissolved in body fluids are included. Consideration is given to the effects of the chemical reaction between the dissolved gas and the liquid on the rate of mass transfer. Through the application of boundary layer theory the over-all transfer is found to be Sh/(Re)1/2 = 0.845 Sc1/3 in the absence of chemical reaction, and Sh/(Re) 1/2 = F′ (0) in the presence of chemical reaction, where Sh, Re, and Sc are the Sherwood, Reynolds, and Schmidt numbers, respectively, and F′ (0) is a function of Sc and the dimensionless reaction rate constant. Analytical results are also obtained for the bubble lifetime and the bubble radius-time history. These results, which are not incompatible with experimental results, can be applied to predict the dissolution of the entrapped gas emboli in the circulatory system of the human body. PMID:4642218

  20. Analysis of initial reactions of MALDI based on chemical properties of matrixes and excitation condition.

    PubMed

    Lai, Yin-Hung; Wang, Chia-Chen; Chen, Chiu Wen; Liu, Bo-Hong; Lin, Sheng Hsien; Lee, Yuan Tseh; Wang, Yi-Sheng

    2012-08-16

    This investigation concerns the initial chemical reactions that affect the ionization of matrixes in matrix-assisted laser desorption/ionization (MALDI). The study focuses on the relaxations of photon energy that occur on a comparable time scale to that of ionization, in which the available laser energy is shared and the ionization condition is changed. The relaxations include fluorescence, fragmentation, and nonradiative relaxation from the excited state to the ground state. With high absorption cross section and long excited-state lifetime, photoionization of matrix plays an important role if sufficient laser energy is used. Under other conditions, thermal ionization of the molecule in the ground state is predicted to be one of the important reactions. Evidence of change in the branching ratio of initial reactions with the matrix and the excitation wavelength was obtained with α-cyano-4-hydroxycinnamic acid, sinapinic acid, 2,5-dihydroxybenzoic acid, and 2,4,6-trihydroxyacetophenone. These matrixes are studied by obtaining their mixed crystal absorption spectra, fluorescence properties, laser-induced infrared emission, and product ions. The exact ionization pathway depends on the chemical properties of matrixes and the excitation conditions. This concept may explain the diversity of experimental results observed in MALDI experiments, which provides an insight into the ensemble of chemical reactions that govern the generation of ions. PMID:22799495

  1. Chemical TOPAZ: Modifications to the heat transfer code TOPAZ: The addition of chemical reaction kinetics and chemical mixtures

    SciTech Connect

    Nichols, A.L. III.

    1990-06-07

    This is a report describing the modifications which have been made to the heat flow code TOPAZ to allow the inclusion of thermally controlled chemical kinetics. This report is broken into parts. The first part is an introduction to the general assumptions and theoretical underpinning that were used to develop the model. The second section describes the changes that have been implemented into the code. The third section is the users manual for the input for the code. The fourth section is a compilation of hints, common errors, and things to be aware of while you are getting started. The fifth section gives a sample problem using the new code. This manual addenda is written with the presumption that most readers are not fluent with chemical concepts. Therefore, we shall in this section endeavor to describe the requirements that must be met before chemistry can occur and how we have modeled the chemistry in the code.

  2. Coupling of hydrologic transport and chemical reactions in a stream affected by acid mine drainage

    USGS Publications Warehouse

    Kimball, B.A.; Broshears, R.E.; Bencala, K.E.; McKnight, Diane M.

    1994-01-01

    Experiments in St. Kevin Gulch, an acid mine drainage stream, examined the coupling of hydrologic transport to chemical reactions affecting metal concentrations. Injection of LiCl as a conservative tracer was used to determine discharge and residence time along a 1497-m reach. Transport of metals downstream from inflows of acidic, metal-rich water was evaluated based on synoptic samples of metal concentrations and the hydrologic characteristics of the stream. Transport of SO4 and Mn was generally conservative, but in the subreaches most affected by acidic inflows, transport was reactive. Both 0.1-??m filtered and particulate Fe were reactive over most of the stream reach. Filtered Al partitioned to the particulate phase in response to high instream concentrations. Simulations that accounted for the removal of SO4, Mn, Fe, and Al with first-order reactions reproduced the steady-state profiles. The calculated rate constants for net removal used in the simulations embody several processes that occur on a stream-reach scale. The comparison between rates of hydrologie transport and chemical reactions indicates that reactions are only important over short distances in the stream near the acidic inflows, where reactions occur on a comparable time scale with hydrologic transport and thus affect metal concentrations.

  3. Analysis of Chemical Reactions by Means of Isoconversion Curves: Kx = Constant

    NASA Astrophysics Data System (ADS)

    Voiculescu, Valeriu; Simoiu, Luminita; Niac, Gavril

    1998-02-01

    For the equilibrium reaction having a gaseous phase, there is established the equation of the isoconversion curve Kx = constant, with variables of pressure and temperature: ln P (atm) = -ln Kx/Delta n -Delta G°T/Delta nRT where Delta G°T is the function of Gibbs for the chemical reaction at the temperature T and pressure p = 1 atm: Delta G°T = Delta H°T -TDelta G°T For the special case of Kx = 1 (or APT = 0) there is obtained "the curve of normal null affinity". This curve divides the plane ln P- T into two regions. On one side of the curve AP,T > 0, Kx > 1, and the reaction is thermodynamically possible; on the other side, APT < 0, 0reaction does not take place. Also discussed are the particularities of these curves for 12 kinds of thermodynamic chemical reactions which are taken in a multivariant or monvariant system.

  4. A Non-Orthogonal Block-Localized Effective Hamiltonian Approach for Chemical and Enzymatic Reactions

    PubMed Central

    Cembran, Alessandro; Payaka, Apirak; Lin, Yen-lin; Xie, Wangshen; Mo, Yirong; Song, Lingchun; Gao, Jiali

    2010-01-01

    The effective Hamiltonian-molecular orbital and valence bond (EH-MOVB) method based on non-orthogonal block-localized fragment orbitals has been implemented into the program CHARMM for molecular dynamics simulations of chemical and enzymatic reactions, making use of semiempirical quantum mechanical models. Building upon ab initio MOVB theory, we make use of two parameters in the EH-MOVB method to fit the barrier height and the relative energy between the reactant and product state for a given chemical reaction to be in agreement with experiment or high-level ab initio or density functional results. Consequently, the EH-MOVB method provides a highly accurate and computationally efficient QM/MM model for dynamics simulation of chemical reactions in solution. The EH-MOVB method is illustrated by examination of the potential energy surface of the hydride transfer reaction from trimethylamine to a flavin cofactor model in the gas phase. In the present study, we employed the semiempirical AM1 model, which yields a reaction barrier that is more than 5 kcal/mol too high. We use a parameter calibration procedure for the EH-MOVB method similar to that employed to adjust the results of semiempirical and empirical models. Thus, the relative energy of these two diabatic states can be shifted to reproduce the experimental energy of reaction, and the barrier height is optimized to reproduce the desired (accurate) value by adding a constant to the off-diagonal matrix element. The present EH-MOVB method offers a viable approach to characterizing solvent and protein-reorganization effects in the realm of combined QM/MM simulations. PMID:20694172

  5. Spatially orthogonal chemical functionalization of a hierarchical pore network for catalytic cascade reactions

    NASA Astrophysics Data System (ADS)

    Parlett, Christopher M. A.; Isaacs, Mark A.; Beaumont, Simon K.; Bingham, Laura M.; Hondow, Nicole S.; Wilson, Karen; Lee, Adam F.

    2016-02-01

    The chemical functionality within porous architectures dictates their performance as heterogeneous catalysts; however, synthetic routes to control the spatial distribution of individual functions within porous solids are limited. Here we report the fabrication of spatially orthogonal bifunctional porous catalysts, through the stepwise template removal and chemical functionalization of an interconnected silica framework. Selective removal of polystyrene nanosphere templates from a lyotropic liquid crystal-templated silica sol-gel matrix, followed by extraction of the liquid crystal template, affords a hierarchical macroporous-mesoporous architecture. Decoupling of the individual template extractions allows independent functionalization of macropore and mesopore networks on the basis of chemical and/or size specificity. Spatial compartmentalization of, and directed molecular transport between, chemical functionalities affords control over the reaction sequence in catalytic cascades; herein illustrated by the Pd/Pt-catalysed oxidation of cinnamyl alcohol to cinnamic acid. We anticipate that our methodology will prompt further design of multifunctional materials comprising spatially compartmentalized functions.

  6. Computational approaches to the determination of active site structures and reaction mechanisms in heterogeneous catalysts.

    PubMed

    Catlow, C R A; French, S A; Sokol, A A; Thomas, J M

    2005-04-15

    We apply quantum chemical methods to the study of active site structures and reaction mechanisms in mesoporous silica and metal oxide catalysts. Our approach is based on the use of both molecular cluster and embedded cluster (QM/MM) techniques, where the active site and molecular complex are described using density functional theory (DFT) and the embedding matrix simulated by shell model potentials. We consider three case studies: alkene epoxidation over the microporous TS-1 catalyst; methanol synthesis on ZnO and Cu/ZnO and C-H bond activation over Li-doped MgO. PMID:15901543

  7. Reactions of oxidatively activated arylamines with thiols: reaction mechanisms and biologic implications. An overview.

    PubMed Central

    Eyer, P

    1994-01-01

    Aromatic amines belong to a group of compounds that exert their toxic effects usually after oxidative biotransformation, primarily in the liver. In addition, aromatic amines also undergo extrahepatic activation to yield free arylaminyl radicals. The reactive intermediates are potential promutagens and procarcinogens, and responsible for target tissue toxicity. Since thiols react with these intermediates at high rates, it is of interest to know the underlying reaction mechanisms and the toxicologic implications. Phenoxyl radicals from aminophenols and aminyl radicals from phenylenediamines quickly disproportionate to quinone imines and quinone diimines. Depending on the structure, Michael addition or reduction reactions with thiols may prevail. Products of sequential oxidation/addition reactions (e.g., S-conjugates of aminophenols) are occasionally more toxic than the parent compounds because of their higher autoxidizability and their accumulation in the kidney. Even after covalent binding of quinone imines to protein SH groups, the resulting thioethers are able to autoxidize. The quinoid thioethers can then cross-link the protein by addition to neighboring nucleophiles. The reactions of nitrosoarenes with thiols yield a so-called "semimercaptal" from which various branching reactions detach, depending on substituents. Compounds with strong pi-donors, like 4-nitrosophenetol, give a resonance-stabilized N-(thiol-S-yl)-arylamine cation that may lead to bicyclic products, thioethers, and DNA adducts. Examples of toxicologic implications of the interactions of nitroso compounds with thiols are given for nitrosoimidazoles, heterocyclic nitroso compounds from protein pyrolysates, and nitrosoarenes. These data indicate that interactions of activated arylamines with thiols may not be regarded exclusively as detoxication reactions. PMID:7889834

  8. Influence of Alumina Reaction Tube Impurities on the Oxidation of Chemically-Vapor-Deposited Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth

    1995-01-01

    Pure coupons of chemically vapor deposited (CVD) SiC were oxidized for 100 h in dry flowing oxygen at 1300 C. The oxidation kinetics were monitored using thermogravimetry (TGA). The experiments were first performed using high-purity alumina reaction tubes. The experiments were then repeated using fused quartz reaction tubes. Differences in oxidation kinetics, scale composition, and scale morphology were observed. These differences were attributed to impurities in the alumina tubes. Investigators interested in high-temperature oxidation of silica formers should be aware that high-purity alumina can have significant effects on experiment results.

  9. Simulations of isoprene: Ozone reactions for a general circulation/chemical transport model

    NASA Technical Reports Server (NTRS)

    Makar, P. A.; Mcconnell, J. C.

    1994-01-01

    A parameterized reaction mechanism has been created to examine the interactions between isoprene and other tropospheric gas-phase chemicals. Tests of the parameterization have shown that its results match those of a more complex reaction set to a high degree of accuracy. Comparisons between test runs have shown that the presence of isoprene at the start of a six day interval can enhance later ozone concentrations by as much as twenty-nine percent. The test cases used no input fluxes beyond the initial time, implying that a single input of a biogenic hydrocarbon to an airmass can alter its ozone chemistry over a time scale on the order of a week.

  10. Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.

  11. Activity and selectivity of molybdenum catalysts in coal liquefaction reactions

    SciTech Connect

    Curtis, C.W.; Pellegrino, J.L. )

    1988-01-01

    The purpose of this work is to evaluate how effectively three different molybdenum catalysts promote reactions involving heteroatom removal and cleavage of alkyl bridge hydrodeoxygenation (HDO), hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrocracking (HYC). Both model and coal liquefaction reactions were performed to test the activity and selectivity of three different molybdenum catalysts. The three catalysts used were molybdenum naphthenate, molybdenum supported on gamma alumina (Mo/Al{sub 2}O{sub 3}) and precipitated, poorly crystalline molybdenum disulfide (MoS{sub 2}). The model compounds, chosen to mimic coal structure, on which the effectiveness of the catalysts for the model reactions was tested were: 1-methylnaphthalene, representing aromatic hydrocarbons, for hydrogenation; 1-naphthol, representing oxygen containing compounds, for deoxygenation; benzothiophene, representing sulfur containing compounds, for desulfurization; indole, representing nitrogen containing compounds, for denitrogenation; and bibenzyl, representing alkyl bridging structures, for hydrocracking. Catalytic reactions of combinations of reactants were performed to simulate a complex coal matrix. Thermal and catalytic coal liquefaction reactions were performed using Illinois No. 6 coal with anthracene as a solvent. The efficacy of the catalysts was determined by comparing the product and compound class fractions obtained from the liquefaction reactions.

  12. Ab initio studies of equations of state and chemical reactions of reactive structural materials

    NASA Astrophysics Data System (ADS)

    Zaharieva, Roussislava

    The motivations for the research issues addressed in this thesis are based on the needs of the aerospace structural analysis and the design community. The specific focus is related to the characterization and shock induced chemical reactions of multi-functional structural-energetic materials that are also known as the reactive structural materials and their reaction capabilities. Usually motivation for selection of aerospace structural materials is to realize required strength characteristics and favorable strength to weight ratios. The term strength implies resistance to loads experienced during the service life of the structure, including resistance to fatigue loads, corrosion and other extreme conditions. Thus, basically the structural materials are single function materials that resist loads experienced during the service life of the structure. However, it is desirable to select materials that are capable of offering more than one basic function of strength. Very often, the second function is the capability to provide functions of sensing and actuation. In this thesis, the second function is different. The second function is the energetic characteristics. Thus, the choice of dual functions of the material are the structural characteristics and energetic characteristics. These materials are also known by other names such as the reactive material structures or dual functional structural energetic materials. Specifically the selected reactive materials include mixtures of selected metals and metal oxides that are also known as thermite mixtures, reacting intermetallic combinations and oxidizing materials. There are several techniques that are available to synthesize these structural energetic materials or reactive material structures and new synthesis techniques constitute an open research area. The focus of this thesis, however, is the characterization of chemical reactions of reactive material structures that involve two or more solids (or condensed matter). The

  13. SCRIPDB: a portal for easy access to syntheses, chemicals and reactions in patents.

    PubMed

    Heifets, Abraham; Jurisica, Igor

    2012-01-01

    The patent literature is a rich catalog of biologically relevant chemicals; many public and commercial molecular databases contain the structures disclosed in patent claims. However, patents are an equally rich source of metadata about bioactive molecules, including mechanism of action, disease class, homologous experimental series, structural alternatives, or the synthetic pathways used to produce molecules of interest. Unfortunately, this metadata is discarded when chemical structures are deposited separately in databases. SCRIPDB is a chemical structure database designed to make this metadata accessible. SCRIPDB provides the full original patent text, reactions and relationships described within any individual patent, in addition to the molecular files common to structural databases. We discuss how such information is valuable in medical text mining, chemical image analysis, reaction extraction and in silico pharmaceutical lead optimization. SCRIPDB may be searched by exact chemical structure, substructure or molecular similarity and the results may be restricted to patents describing synthetic routes. SCRIPDB is available at http://dcv.uhnres.utoronto.ca/SCRIPDB. PMID:22067445

  14. SCRIPDB: a portal for easy access to syntheses, chemicals and reactions in patents

    PubMed Central

    Heifets, Abraham; Jurisica, Igor

    2012-01-01

    The patent literature is a rich catalog of biologically relevant chemicals; many public and commercial molecular databases contain the structures disclosed in patent claims. However, patents are an equally rich source of metadata about bioactive molecules, including mechanism of action, disease class, homologous experimental series, structural alternatives, or the synthetic pathways used to produce molecules of interest. Unfortunately, this metadata is discarded when chemical structures are deposited separately in databases. SCRIPDB is a chemical structure database designed to make this metadata accessible. SCRIPDB provides the full original patent text, reactions and relationships described within any individual patent, in addition to the molecular files common to structural databases. We discuss how such information is valuable in medical text mining, chemical image analysis, reaction extraction and in silico pharmaceutical lead optimization. SCRIPDB may be searched by exact chemical structure, substructure or molecular similarity and the results may be restricted to patents describing synthetic routes. SCRIPDB is available at http://dcv.uhnres.utoronto.ca/SCRIPDB. PMID:22067445

  15. The Dynamics of Molecular Interactions and Chemical Reactions at Metal Surfaces: Testing the Foundations of Theory

    NASA Astrophysics Data System (ADS)

    Golibrzuch, Kai; Bartels, Nils; Auerbach, Daniel J.; Wodtke, Alec M.

    2015-04-01

    We review studies of molecular interactions and chemical reactions at metal surfaces, emphasizing progress toward a predictive theory of surface chemistry and catalysis. For chemistry at metal surfaces, a small number of central approximations are typically made: (a) the Born-Oppenheimer approximation of electronic adiabaticity, (b) the use of density functional theory at the generalized gradient approximation level, (c) the classical approximation for nuclear motion, and (d) various reduced-dimensionality approximations. Together, these approximations constitute a provisional model for surface chemical reactivity. We review work on some carefully studied examples of molecules interacting at metal surfaces that probe the validity of various aspects of the provisional model.

  16. The dynamics of molecular interactions and chemical reactions at metal surfaces: testing the foundations of theory.

    PubMed

    Golibrzuch, Kai; Bartels, Nils; Auerbach, Daniel J; Wodtke, Alec M

    2015-04-01

    We review studies of molecular interactions and chemical reactions at metal surfaces, emphasizing progress toward a predictive theory of surface chemistry and catalysis. For chemistry at metal surfaces, a small number of central approximations are typically made: (a) the Born-Oppenheimer approximation of electronic adiabaticity, (b) the use of density functional theory at the generalized gradient approximation level, (c) the classical approximation for nuclear motion, and (d) various reduced-dimensionality approximations. Together, these approximations constitute a provisional model for surface chemical reactivity. We review work on some carefully studied examples of molecules interacting at metal surfaces that probe the validity of various aspects of the provisional model. PMID:25580627

  17. Numerical simulation of the interaction of transport, diffusion and chemical reactions in an urban plume

    NASA Technical Reports Server (NTRS)

    Vogel, Bernhard; Vogel, Heike; Fiedler, Franz

    1994-01-01

    A model system is presented that takes into account the main physical and chemical processes on the regional scale here in an area of 100x100 sq km. The horizontal gridsize used is 2x2 sq km. For a case study, it is demonstrated how the model system can be used to separate the contributions of the processes advection, turbulent diffusion, and chemical reactions to the diurnal cycle of ozone. In this way, typical features which are visible in observations and are reproduced by the numerical simulations can be interpreted.

  18. Chemical Characterization of Secondary Organic Aerosol Formed from Atmospheric Aqueous-phase Reactions of Phenolic Compounds

    NASA Astrophysics Data System (ADS)

    Yu, L.; Smith, J.; Anastasio, C.; Zhang, Q.

    2012-12-01

    Phenolic compounds, which are released in significant amounts from biomass burning, may undergo fast aqueous-phase reactions to form secondary organic aerosol (SOA) in the atmosphere. Understanding the aqueous-phase reaction mechanisms of these compounds and the composition of their reaction products is thus important for constraining SOA sources and predicting organic aerosol properties in models. In this study, we investigate the aqueous-phase reactions of three phenols (phenol, guaiacol and syringol) with two oxidants - excited triplet states (3C*) of non-phenolic aromatic carbonyls and hydroxyl radical (OH). By employing four analytical methods including high-resolution aerosol mass spectrometry, total organic carbon analysis, ion chromatography, and liquid chromatography-mass spectrometry, we thoroughly characterize the chemical compositions of the low volatility reaction products of phenols and propose formation mechanisms based on this information. Our results indicate that phenolic SOA is highly oxygenated, with O/C ratios in the range of 0.83-1.03, and that the SOA of phenol is usually more oxidized than those of guaiacol and syringol. Among the three precursors, syringol generates the largest fraction of higher molecular weight (MW) products. For the same precursor, the SOA formed via reaction with 3C* is less oxidized than that formed via reaction with OH. In addition, oxidation by 3C* enhances the formation of higher MW species, including phenolic dimers, higher oligomers and hydroxylated products, compared to reactions initiated by OH, which appear to favor the formation of organic acids. However, our results indicate that the yields of small organic acids (e.g., formate, acetate, oxalate, and malate) are low for both reaction pathways, together accounting for less than 5% of total SOA mass.

  19. Activated carbon becomes active for oxygen reduction and hydrogen evolution reactions.

    PubMed

    Yan, Xuecheng; Jia, Yi; Odedairo, Taiwo; Zhao, Xiaojun; Jin, Zhao; Zhu, Zhonghua; Yao, Xiangdong

    2016-06-21

    We utilized a facile method for creating unique defects in the activated carbon (AC), which makes it highly active for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). The ORR activity of the defective AC (D-AC) is comparable to the commercial Pt/C in alkaline medium, and the D-AC also exhibits excellent HER activity in acidic solution. PMID:27277286

  20. Nucleotides as nucleophiles - Reactions of nucleotides with phosphoimidazolide activated guanosine

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia; Rosenbach, Morgan T.; Hurley, T. B.

    1992-01-01

    On the basis of recently discovered RNAs with catalytic capabilities resembling those of enzymes, it is postulated that an 'RNA world' may have played a determining role in prebiotic chemistry and led evolution from prebiological to biological systems. The advent of the RNA world thus postulated, however, entails the preexistence of ribomononucleotides, and presumes that their reactions resulted in templatelike oligonucleotides. Attention is presently given to the reaction of nucleoside monophosphates with the phosphoimidazolide-activated nucleosides that (1) have successfully been used in place of the natural nucleoside triphosphates and (2) for whose prebiotic existence there is now some evidence.