Science.gov

Sample records for activate cre-dependent cyclin

  1. Nerve growth factor enhances the CRE-dependent transcriptional activity activated by nobiletin in PC12 cells.

    PubMed

    Takito, Jiro; Kimura, Junko; Kajima, Koji; Uozumi, Nobuyuki; Watanabe, Makoto; Yokosuka, Akihito; Mimaki, Yoshihiro; Nakamura, Masanori; Ohizumi, Yasushi

    2016-07-01

    Prevention and treatment of Alzheimer disease are urgent problems for elderly people in developed countries. We previously reported that nobiletin, a poly-methoxylated flavone from the citrus peel, improved the symptoms in various types of animal models of memory loss and activated the cAMP responsive element (CRE)-dependent transcription in PC12 cells. Nobiletin activated the cAMP/PKA/MEK/Erk/MAPK signaling pathway without using the TrkA signaling activated by nerve growth factor (NGF). Here, we examined the effect of combination of nobiletin and NGF on the CRE-dependent transcription in PC12 cells. Although NGF alone had little effect on the CRE-dependent transcription, NGF markedly enhanced the CRE-dependent transcription induced by nobiletin. The NGF-induced enhancement was neutralized by a TrkA antagonist, K252a. This effect of NGF was effective on the early signaling event elicited by nobiletin. These results suggested that there was crosstalk between NGF and nobiletin signaling in activating the CRE-dependent transcription in PC12 cells.

  2. Cre-dependent DNA recombination activates a STING-dependent innate immune response

    PubMed Central

    Pépin, Geneviève; Ferrand, Jonathan; Höning, Klara; Jayasekara, W. Samantha N.; Cain, Jason E.; Behlke, Mark A.; Gough, Daniel J.; G. Williams, Bryan R.; Hornung, Veit; Gantier, Michael P.

    2016-01-01

    Gene-recombinase technologies, such as Cre/loxP-mediated DNA recombination, are important tools in the study of gene function, but have potential side effects due to damaging activity on DNA. Here we show that DNA recombination by Cre instigates a robust antiviral response in mammalian cells, independent of legitimate loxP recombination. This is due to the recruitment of the cytosolic DNA sensor STING, concurrent with Cre-dependent DNA damage and the accumulation of cytoplasmic DNA. Importantly, we establish a direct interplay between this antiviral response and cell–cell interactions, indicating that low cell densities in vitro could be useful to help mitigate these effects of Cre. Taking into account the wide range of interferon stimulated genes that may be induced by the STING pathway, these results have broad implications in fields such as immunology, cancer biology, metabolism and stem cell research. Further, this study sets a precedent in the field of gene-engineering, possibly applicable to other enzymatic-based genome editing technologies. PMID:27166376

  3. Cre-dependent DNA recombination activates a STING-dependent innate immune response.

    PubMed

    Pépin, Geneviève; Ferrand, Jonathan; Höning, Klara; Jayasekara, W Samantha N; Cain, Jason E; Behlke, Mark A; Gough, Daniel J; G Williams, Bryan R; Hornung, Veit; Gantier, Michael P

    2016-06-20

    Gene-recombinase technologies, such as Cre/loxP-mediated DNA recombination, are important tools in the study of gene function, but have potential side effects due to damaging activity on DNA. Here we show that DNA recombination by Cre instigates a robust antiviral response in mammalian cells, independent of legitimate loxP recombination. This is due to the recruitment of the cytosolic DNA sensor STING, concurrent with Cre-dependent DNA damage and the accumulation of cytoplasmic DNA. Importantly, we establish a direct interplay between this antiviral response and cell-cell interactions, indicating that low cell densities in vitro could be useful to help mitigate these effects of Cre. Taking into account the wide range of interferon stimulated genes that may be induced by the STING pathway, these results have broad implications in fields such as immunology, cancer biology, metabolism and stem cell research. Further, this study sets a precedent in the field of gene-engineering, possibly applicable to other enzymatic-based genome editing technologies.

  4. A Cre-dependent GCaMP3 reporter mouse for neuronal imaging in vivo

    PubMed Central

    Zariwala, Hatim A.; Borghuis, Bart G.; Hoogland, Tycho M.; Madisen, Linda; Tian, Lin; De Zeeuw, Chris I.; Zeng, Hongkui; Looger, Loren L.; Svoboda, Karel; Chen, Tsai-Wen

    2012-01-01

    Fluorescent calcium indicator proteins, such as GCaMP3, allow imaging of activity in genetically defined neuronal populations. GCaMP3 can be expressed using various gene delivery methods, such as viral infection or electroporation. However, these methods are invasive and provide inhomogeneous and non-stationary expression. Here we developed a genetic reporter mouse, Ai38, which expresses GCaMP3 in a Cre-dependent manner from the ROSA26 locus, driven by a strong CAG promoter. Crossing Ai38 with appropriate Cre mice produced robust GCaMP3 expression in defined cell populations in the retina, cortex and cerebellum. In the primary visual cortex, visually-evoked GCaMP3 signals showed normal orientation and direction selectivity. GCaMP3 signals were rapid, compared to virally expressed GCaMP3 and synthetic calcium indicators. In the retina, Ai38 allowed imaging spontaneous calcium waves in starburst amacrine cells during development, and light-evoked responses in ganglion cells in adult tissue. Our results show that the Ai38 reporter mouse provides a flexible method for targeted expression of GCaMP3. PMID:22378886

  5. A Cre-dependent GCaMP3 reporter mouse for neuronal imaging in vivo.

    PubMed

    Zariwala, Hatim A; Borghuis, Bart G; Hoogland, Tycho M; Madisen, Linda; Tian, Lin; De Zeeuw, Chris I; Zeng, Hongkui; Looger, Loren L; Svoboda, Karel; Chen, Tsai-Wen

    2012-02-29

    Fluorescent calcium indicator proteins, such as GCaMP3, allow imaging of activity in genetically defined neuronal populations. GCaMP3 can be expressed using various gene delivery methods, such as viral infection or electroporation. However, these methods are invasive and provide inhomogeneous and nonstationary expression. Here, we developed a genetic reporter mouse, Ai38, which expresses GCaMP3 in a Cre-dependent manner from the ROSA26 locus, driven by a strong CAG promoter. Crossing Ai38 with appropriate Cre mice produced robust GCaMP3 expression in defined cell populations in the retina, cortex, and cerebellum. In the primary visual cortex, visually evoked GCaMP3 signals showed normal orientation and direction selectivity. GCaMP3 signals were rapid, compared with virally expressed GCaMP3 and synthetic calcium indicators. In the retina, Ai38 allowed imaging spontaneous calcium waves in starburst amacrine cells during development, and light-evoked responses in ganglion cells in adult tissue. Our results show that the Ai38 reporter mouse provides a flexible method for targeted expression of GCaMP3. PMID:22378886

  6. Genetic analysis of the relationship between activation loop phosphorylation and cyclin binding in the activation of the Saccharomyces cerevisiae Cdc28p cyclin-dependent kinase.

    PubMed Central

    Cross, F R; Levine, K

    2000-01-01

    We showed recently that a screen for mutant CDC28 with improved binding to a defective Cln2p G1 cyclin yielded a spectrum of mutations similar to those yielded by a screen for intragenic suppressors of the requirement for activation loop phosphorylation (T169E suppressors). Recombination among these mutations yielded CDC28 mutants that bypassed the G1 cyclin requirement. Here we analyze further the interrelationship between T169E suppression, interaction with defective cyclin, and G1 cyclin bypass. DNA shuffling of mutations from the various screens and recombination onto a T169E-encoding 3' end yielded CDC28 mutants with strong T169E suppression. Some of the strongest T169E suppressors could suppress the defective Cln2p G1 cyclin even while retaining T169E. The strong T169E suppressors did not exhibit bypass of the G1 cyclin requirement but did so when T169E was reverted to T. These results suggested that for these mutants, activation loop phosphorylation and cyclin binding might be alternative means of activation rather than independent requirements for activation (as with wild type). These results suggest mechanistic overlap between the conformational shift induced by cyclin binding and that induced by activation loop phosphorylation. This conclusion was supported by analysis of suppressors of a mutation in the Cdk phosphothreonine-binding pocket created by cyclin binding. PMID:10747052

  7. The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis.

    PubMed Central

    Sudakin, V; Ganoth, D; Dahan, A; Heller, H; Hershko, J; Luca, F C; Ruderman, J V; Hershko, A

    1995-01-01

    The ubiquitin-mediated degradation of mitotic cyclins is required for cells to exit from mitosis. Previous work with cell-free systems has revealed four components required for cyclin-ubiquitin ligation and proteolysis: a nonspecific ubiquitin-activating enzyme E1, a soluble fraction containing a ubiquitin carrier protein activity called E2-C, a crude particulate fraction containing a ubiquitin ligase (E3) activity that is activated during M-phase, and a constitutively active 26S proteasome that degrades ubiquitinated proteins. Here, we identify a novel approximately 1500-kDa complex, termed the cyclosome, which contains a cyclin-selective ubiquitin ligase activity, E3-C. E3-C is present but inactive during interphase; it can be activated in vitro by the addition of cdc2, enabling the transfer of ubiquitin from E2-C to cyclin. The kinetics of E3-C activation suggest the existence of one or more intermediates between cdc2 and E3-C. Cyclosome-associated E3-C acts on both cyclin A and B, and requires the presence of wild-type N-terminal destruction box motifs in each cyclin. Ubiquitinated cyclins are then rapidly recognized and degraded by the proteasome. These results identify the cyclosome-associated E3-C as the component of the cyclin destruction machinery whose activity is ultimately regulated by cdc2 and, as such, the element directly responsible for setting mitotic cyclin levels during early embryonic cell cycles. Images PMID:7787245

  8. Stimulation of hERG1 channel activity promotes a calcium-dependent degradation of cyclin E2, but not cyclin E1, in breast cancer cells.

    PubMed

    Perez-Neut, Mathew; Shum, Andrew; Cuevas, Bruce D; Miller, Richard; Gentile, Saverio

    2015-01-30

    Cyclin E2 gene amplification, but not cyclin E1, has been recently defined as marker for poor prognosis in breast cancer, and appears to play a major role in proliferation and therapeutic resistance in several breast cancer cells. Our laboratory has previously reported that stimulation of the hERG1 potassium channel with selective activators led to down-regulation of cyclin E2 in breast cancer cells. In this work, we demonstrate that stimulation of hERG1 promotes an ubiquitin-proteasome-dependent degradation of cyclin E2 in multiple breast cancer cell lines representing Luminal A, HER2+ and Trastuzumab-resistant breast cancer cells. In addition we have also reveal that hERG1 stimulation induces an increase in intracellular calcium that is required for cyclin E2 degradation. This novel function for hERG1 activity was specific for cyclin E2, as cyclins A, B, D E1 were unaltered by the treatment. Our results reveal a novel mechanism by which hERG1 activation impacts the tumor marker cyclin E2 that is independent of cyclin E1, and suggest a potential therapeutic use for hERG1 channel activators.

  9. PCTAIRE Kinase 3/Cyclin-dependent Kinase 18 Is Activated through Association with Cyclin A and/or Phosphorylation by Protein Kinase A*

    PubMed Central

    Matsuda, Shinya; Kominato, Kyohei; Koide-Yoshida, Shizuyo; Miyamoto, Kenji; Isshiki, Kinuka; Tsuji, Akihiko; Yuasa, Keizo

    2014-01-01

    PCTAIRE kinase 3 (PCTK3)/cyclin-dependent kinase 18 (CDK18) is an uncharacterized member of the CDK family because its activator(s) remains unidentified. Here we describe the mechanisms of catalytic activation of PCTK3 by cyclin A2 and cAMP-dependent protein kinase (PKA). Using a pulldown experiment with HEK293T cells, cyclin A2 and cyclin E1 were identified as proteins that interacted with PCTK3. An in vitro kinase assay using retinoblastoma protein as the substrate showed that PCTK3 was specifically activated by cyclin A2 but not by cyclin E1, although its activity was lower than that of CDK2. Furthermore, immunocytochemistry analysis showed that PCTK3 colocalized with cyclin A2 in the cytoplasm and regulated cyclin A2 stability. Amino acid sequence analysis revealed that PCTK3 contained four putative PKA phosphorylation sites. In vitro and in vivo kinase assays showed that PCTK3 was phosphorylated by PKA at Ser12, Ser66, and Ser109 and that PCTK3 activity significantly increased via phosphorylation at Ser12 by PKA even in the absence of cyclin A2. In the presence of cyclin A2, PCTK3 activity was comparable to CDK2 activity. We also found that PCTK3 knockdown in HEK293T cells induced polymerized actin accumulation in peripheral areas and cofilin phosphorylation. Taken together, our results provide the first evidence for the mechanisms of catalytic activation of PCTK3 by cyclin A2 and PKA and a physiological function of PCTK3. PMID:24831015

  10. Expression and Purification of Recombinant Cyclins and CDKs for Activity Evaluation.

    PubMed

    Gallastegui, Edurne; Bachs, Oriol

    2016-01-01

    Cyclin-dependent kinases (Cdks) belong to a family of key regulators of cell division cycle and transcription. Their activity is mainly regulated by association with regulatory subunits named cyclins but their activities are also regulated by phosphorylation, acetylation, and the association with specific inhibitory proteins (CKIs). The activity of different Cdks is deregulated in many different type of tumors, and thus, Cdks are considered targets for antitumoral therapy. For large screenings of inhibitors the use of purified recombinant Cdks and cyclins is recommended. We report here the current methods to determine their in vitro activity for large screenings of inhibitors.

  11. Regulation of cyclin D-dependent kinase 4 (cdk4) by cdk4-activating kinase.

    PubMed Central

    Kato, J Y; Matsuoka, M; Strom, D K; Sherr, C J

    1994-01-01

    The accumulation of assembled holoenzymes composed of regulatory D-type cyclins and their catalytic partner, cyclin-dependent kinase 4 (cdk4), is rate limiting for progression through the G1 phase of the cell cycle in mammalian fibroblasts. Both the synthesis and assembly of D-type cyclins and cdk4 depend upon serum stimulation, but even when both subunits are ectopically overproduced, they do not assemble into complexes in serum-deprived cells. When coexpressed from baculoviral vectors in intact Sf9 insect cells, cdk4 assembles with D-type cyclins to form active protein kinases. In contrast, recombinant D-type cyclin and cdk4 subunits produced in insect cells or in bacteria do not assemble as efficiently into functional holoenzymes when combined in vitro but can be activated in the presence of lysates obtained from proliferating mammalian cells. Assembly of cyclin D-cdk4 complexes in coinfected Sf9 cells facilitates phosphorylation of cdk4 on threonine 172 by a cdk-activating kinase (CAK). Assembly can proceed in the absence of this modification, but cdk4 mutants which cannot be phosphorylated by CAK remain catalytically inactive. Therefore, formation of the cyclin D-cdk4 complex and phosphorylation of the bound catalytic subunit are independently regulated, and in addition to the requirement for CAK activity, serum stimulation is required to promote assembly of the complexes in mammalian cells. Images PMID:8139570

  12. Structural basis for CDK6 activation by a virus-encoded cyclin

    SciTech Connect

    Schulze-Gahmen, Ursula; Kim, Sung-Hou

    2002-01-17

    Cyclin from herpesvirus saimiri (Vcyclin) preferentially forms complexes with cyclin-dependent kinase 6 (CDK6) from primate host cells. These complexes show higher kinase activity than host cell CDK complexes with cellular cyclins and are resistant to cyclin-dependent inhibitory proteins (CDKIs). The crystal structure of human CDK6-Vcyclin in an active state was determined to 3.1 Angstrom resolution to get a better understanding of the structural basis of CDK6 activation by viral cyclins. The unphosphorylated CDK6 complexed to Vcyclin has many features characteristic of cyclinA-activated, phosphorylated CDK2. There are, however, differences in the conformation at the tip of the T-loop and its interactions with Vcyclin. Residues in the N-terminal extension of Vcyclin wrap around the tip of the CDK6 T-loop and form a short b-sheet with the T-loop backbone. These interactions lead to a 20 percent larger buried surface in the CDK6-Vcyclin interface than in the CDK2-cyclinA complex and are probably largely responsible for Vcyclin specificity for CDK6 and resistance of the complex to inhibition by INK-typeCDKIs.

  13. Inhibition of cyclin D-CDK4/CDK6 activity is associated with an E2F-mediated induction of cyclin kinase inhibitor activity.

    PubMed

    Khleif, S N; DeGregori, J; Yee, C L; Otterson, G A; Kaye, F J; Nevins, J R; Howley, P M

    1996-04-30

    Alterations of various components of the cell cycle regulatory machinery that controls the progression of cells from a quiescent to a growing state contribute to the development of many human cancers. Such alterations include the deregulated expression of G1 cyclins, the loss of function of activities such as those of protein p16INK4a that control G1 cyclin-dependent kinase activity, and the loss of function of the retinoblastoma protein (RB), which is normally regulated by the G1 cyclin-dependent kinases. Various studies have revealed an inverse relationship in the expression of p16INK4a protein and the presence of functional RB in many cell lines. In this study we show that p16INK4a is expressed in cervical cancer cell lines in which the RB gene, Rb, is not functional, either as a consequence of Rb mutation or expression of the human papillomavirus E7 protein. We also demonstrate that p16INK4a levels are increased in primary cells in which RB has been inactivated by DNA tumor virus proteins. Given the role of RB in controlling E2F transcription factor activity, we investigated the role of E2F in controlling p16INK4a expression. We found that E2F1 overexpression leads to an inhibition of cyclin D1-dependent kinase activity and induces the expression of a p16-related transcript. We conclude that the accumulation of G1 cyclin-dependent kinase activity during normal G1 progression leads to E2F accumulation through the inactivation of RB, and that this then leads to the induction of cyclin kinase inhibitor activity and a shutdown of G1 kinase activity.

  14. Cyclin B Translation Depends on mTOR Activity after Fertilization in Sea Urchin Embryos.

    PubMed

    Chassé, Héloïse; Mulner-Lorillon, Odile; Boulben, Sandrine; Glippa, Virginie; Morales, Julia; Cormier, Patrick

    2016-01-01

    The cyclin B/CDK1 complex is a key regulator of mitotic entry. Using PP242, a specific ATP-competitive inhibitor of mTOR kinase, we provide evidence that the mTOR signalling pathway controls cyclin B mRNA translation following fertilization in Sphaerechinus granularis and Paracentrotus lividus. We show that PP242 inhibits the degradation of the cap-dependent translation repressor 4E-BP (eukaryotic initiation factor 4E-Binding Protein). PP242 inhibits global protein synthesis, delays cyclin B accumulation, cyclin B/CDK1 complex activation and consequently entry into the mitotic phase of the cell cycle triggered by fertilization. PP242 inhibits cyclin B mRNA recruitment into active polysomes triggered by fertilization. An amount of cyclin B mRNA present in active polysomes appears to be insensitive to PP242 treatment. Taken together, our results suggest that, following sea urchin egg fertilization, cyclin B mRNA translation is controlled by two independent mechanisms: a PP242-sensitive and an additional PP242-insentitive mechanism.

  15. Cyclin B Translation Depends on mTOR Activity after Fertilization in Sea Urchin Embryos.

    PubMed

    Chassé, Héloïse; Mulner-Lorillon, Odile; Boulben, Sandrine; Glippa, Virginie; Morales, Julia; Cormier, Patrick

    2016-01-01

    The cyclin B/CDK1 complex is a key regulator of mitotic entry. Using PP242, a specific ATP-competitive inhibitor of mTOR kinase, we provide evidence that the mTOR signalling pathway controls cyclin B mRNA translation following fertilization in Sphaerechinus granularis and Paracentrotus lividus. We show that PP242 inhibits the degradation of the cap-dependent translation repressor 4E-BP (eukaryotic initiation factor 4E-Binding Protein). PP242 inhibits global protein synthesis, delays cyclin B accumulation, cyclin B/CDK1 complex activation and consequently entry into the mitotic phase of the cell cycle triggered by fertilization. PP242 inhibits cyclin B mRNA recruitment into active polysomes triggered by fertilization. An amount of cyclin B mRNA present in active polysomes appears to be insensitive to PP242 treatment. Taken together, our results suggest that, following sea urchin egg fertilization, cyclin B mRNA translation is controlled by two independent mechanisms: a PP242-sensitive and an additional PP242-insentitive mechanism. PMID:26962866

  16. Cyclin B Translation Depends on mTOR Activity after Fertilization in Sea Urchin Embryos

    PubMed Central

    Boulben, Sandrine; Glippa, Virginie; Morales, Julia; Cormier, Patrick

    2016-01-01

    The cyclin B/CDK1 complex is a key regulator of mitotic entry. Using PP242, a specific ATP-competitive inhibitor of mTOR kinase, we provide evidence that the mTOR signalling pathway controls cyclin B mRNA translation following fertilization in Sphaerechinus granularis and Paracentrotus lividus. We show that PP242 inhibits the degradation of the cap-dependent translation repressor 4E-BP (eukaryotic initiation factor 4E-Binding Protein). PP242 inhibits global protein synthesis, delays cyclin B accumulation, cyclin B/CDK1 complex activation and consequently entry into the mitotic phase of the cell cycle triggered by fertilization. PP242 inhibits cyclin B mRNA recruitment into active polysomes triggered by fertilization. An amount of cyclin B mRNA present in active polysomes appears to be insensitive to PP242 treatment. Taken together, our results suggest that, following sea urchin egg fertilization, cyclin B mRNA translation is controlled by two independent mechanisms: a PP242-sensitive and an additional PP242-insentitive mechanism. PMID:26962866

  17. Reversible phosphorylation controls the activity of cyclosome-associated cyclin-ubiquitin ligase.

    PubMed Central

    Lahav-Baratz, S; Sudakin, V; Ruderman, J V; Hershko, A

    1995-01-01

    Cyclin B/cdc2 is responsible both for driving cells into mitosis and for activating the ubiquitin-dependent degradation of mitotic cyclins near the end of mitosis, an event required for the completion of mitosis and entry into interphase of the next cell cycle. Previous work with cell-free extracts of rapidly dividing clam embryos has identified two specific components required for the ubiquitination of mitotic cyclins: E2-C, a cyclin-selective ubiquitin carrier protein that is constitutively active during the cell cycle, and E3-C, a cyclin-selective ubiquitin ligase that purifies as part of a approximately 1500-kDa complex, termed the cyclosome, and which is active only near the end of mitosis. Here, we have separated the cyclosome from its ultimate upstream activator, cdc2. The mitotic, active form of the cyclosome can be inactivated by incubation with a partially purified, endogenous okadaic acid-sensitive phosphatase; addition of cdc2 restores activity to the cyclosome after a lag that reproduces that seen previously in intact cells and in crude extracts. These results demonstrate that activity of cyclin-ubiquitin ligase is controlled by reversible phosphorylation of the cyclosome complex. Images Fig. 3 PMID:7568122

  18. Bcl-2 induces cyclin D1 promoter activity in human breast epithelial cells independent of cell anchorage.

    PubMed

    Lin, H M; Lee, Y J; Li, G; Pestell, R G; Kim, H R

    2001-01-01

    Cyclin D1 expression is co-regulated by growth factor and cell adhesion signaling. Cell adhesion to the extracellular matrix activates focal adhesion kinase (FAK), which is essential for cyclin D1 expression. Upon the loss of cell adhesion, cyclin D1 expression is downregulated, followed by apoptosis in normal epithelial cells. Since bcl-2 prevents apoptosis induced by the loss of cell adhesion, we hypothesized that bcl-2 induces survival signaling complementary to cell adhesion-mediated gene regulation. In the present study, we investigated the role of bcl-2 on FAK activity and cyclin D1 expression. We found that bcl-2 overexpression induces cyclin D1 expression in human breast epithelial cell line MCF10A independent of cell anchorage. Increased cyclin D1 expression in stable bcl-2 transfectants is not related to bcl-2-increased G1 duration, but results from cyclin D1 promoter activation. Transient transfection studies confirmed anchorage-independent bcl-2 induction of cyclin D1 promoter activity in human breast epithelial cell lines (MCF10A, BT549, and MCF-7). We provide evidence that bcl-2 induction of cyclin D1 expression involves constitutive activation of focal adhesion kinase, regardless of cell adhesion. The present study suggests a potential oncogenic activity for bcl-2 through cyclin D1 induction, and provides an insight into the distinct proliferation-independent pathway leading to increased cyclin D1 expression in breast cancer.

  19. Cyclin D activates the Rb tumor suppressor by mono-phosphorylation

    PubMed Central

    Narasimha, Anil M; Kaulich, Manuel; Shapiro, Gary S; Choi, Yoon J; Sicinski, Piotr; Dowdy, Steven F

    2014-01-01

    The widely accepted model of G1 cell cycle progression proposes that cyclin D:Cdk4/6 inactivates the Rb tumor suppressor during early G1 phase by progressive multi-phosphorylation, termed hypo-phosphorylation, to release E2F transcription factors. However, this model remains unproven biochemically and the biologically active form(s) of Rb remains unknown. In this study, we find that Rb is exclusively mono-phosphorylated in early G1 phase by cyclin D:Cdk4/6. Mono-phosphorylated Rb is composed of 14 independent isoforms that are all targeted by the E1a oncoprotein, but show preferential E2F binding patterns. At the late G1 Restriction Point, cyclin E:Cdk2 inactivates Rb by quantum hyper-phosphorylation. Cells undergoing a DNA damage response activate cyclin D:Cdk4/6 to generate mono-phosphorylated Rb that regulates global transcription, whereas cells undergoing differentiation utilize un-phosphorylated Rb. These observations fundamentally change our understanding of G1 cell cycle progression and show that mono-phosphorylated Rb, generated by cyclin D:Cdk4/6, is the only Rb isoform in early G1 phase. DOI: http://dx.doi.org/10.7554/eLife.02872.001 PMID:24876129

  20. Incomplete Folding upon Binding Mediates Cdk4/Cyclin D Complex Activation by Tyrosine Phosphorylation of Inhibitor p27 Protein*

    PubMed Central

    Ou, Li; Ferreira, Antonio M.; Otieno, Steve; Xiao, Limin; Bashford, Donald; Kriwacki, Richard W.

    2011-01-01

    p27Kip1 (p27), an intrinsically disordered protein, regulates the various Cdk/cyclin complexes that control cell cycle progression. The kinase inhibitory domain of p27 contains a cyclin-binding subdomain (D1), a Cdk-binding subdomain (D2), and a linker helix subdomain that connects D1 and D2. Here, we report that, despite extensive sequence conservation between Cdk4/cyclin D1 (hereafter Cdk4/cyclin D) and Cdk2/cyclin A, the thermodynamic details describing how the individual p27 subdomains contribute to equally high affinity binding to these two Cdk/cyclin complexes are strikingly different. Differences in enthalpy/entropy compensation revealed that the D2 subdomain of p27 folds incompletely when binding Cdk4/cyclin D versus Cdk2/cyclin A. Incomplete binding-induced folding exposes tyrosine 88 of p27 for phosphorylation by the nonreceptor tyrosine kinase Abl. Importantly, tyrosine phosphorylation (of p27) relieves Cdk inhibition by p27, enabling cell cycle entry. Furthermore, the interaction between a conserved hydrophobic patch on cyclin D and subdomain D1 is much weaker than that with cyclin A; consequently, a construct containing subdomains D1 and LH (p27-D1LH) does not inhibit substrate binding to Cdk4/cyclin D as it does to Cdk2/cyclin A. Our results provide a mechanism by which Cdk4 (within the p27/Cdk4/cyclin D complex) is poised to be activated by extrinsic mitogenic signals that impinge upon p27 at the earliest stage of cell division. More broadly, our results further illustrate the regulatory versatility of intrinsically disordered proteins. PMID:21715330

  1. Cyclin D1 is dispensable for G1 control in retinoblastoma gene-deficient cells independently of cdk4 activity.

    PubMed Central

    Lukas, J; Bartkova, J; Rohde, M; Strauss, M; Bartek, J

    1995-01-01

    To elucidate the regulator-versus-target relationship in the cyclin D1/cdk4/retinoblastoma protein (pRB) pathway, we examined fibroblasts from RB-1 gene-deficient and RB-1 wild-type littermate mouse embryos (ME) and in human tumor cell lines that differed in the status of the RB-1 gene. The RB+/+ and RB-/- ME fibroblasts expressed similar protein levels of D-type cyclins, cdk4, and cdk6, showed analogous spectra and abundance of cellular proteins complexed with cdk4 and/or cyclins D1 and D2, and exhibited comparable associated kinase activities. Of the two human cell lines established from the same sarcoma biopsy, the RB-positive SKUT1B cells contained cdk4 that was mainly associated with D-type cyclins, contrary to a predominant cdk4-p16INK4 complex in the RB-deficient SKUT1A cells. Antibody-mediated neutralization of cyclin D1 arrested the RB-positive ME and SKUT1B cells in G1, whereas this cyclin appeared dispensable in the RB-deficient ME and SKUT1A cells. Lack of requirement for cyclin D1 therefore correlated with absence of functional pRB, regardless of whether active cyclin D1/cdk4 holoenzyme was present in the cells under study. Consistent with a potential role of cyclin D/cdk4 in phosphorylation of pRB, monoclonal anti-cyclin D1 antibodies supporting the associated kinase activity failed to significantly affect proliferation of RB-positive cells, whereas the antibody DCS-6, unable to coprecipitate cdk4, efficiently inhibited G1 progression and prevented pRB phosphorylation in vivo. These data provide evidence for an upstream control function of cyclin D1/cdk4, and a downstream role for pRB, in the order of events regulating transition through late G1 phase of the mammalian cell division cycle. PMID:7739541

  2. Identification of a Myc-dependent step during the formation of active G1 cyclin-cdk complexes.

    PubMed Central

    Steiner, P; Philipp, A; Lukas, J; Godden-Kent, D; Pagano, M; Mittnacht, S; Bartek, J; Eilers, M

    1995-01-01

    Activation of conditional alleles of Myc can induce proliferation in quiescent cells. We now report that induction of Myc in density-arrested fibroblasts triggers rapid hyperphosphorylation of the retinoblastoma protein and activation of both cyclin D1- and cyclin E-associated kinase activities in the absence of significant changes in the amounts of cyclin-cdk complexes. Kinase activation by Myc is blocked by inhibitors of transcription and requires intact DNA binding and heterodimerization domains of Myc. Activation of cyclin E-cdk2 kinase in serum-starved cells occurs in two steps. The first is induced by Myc and involves the release of a 120 kDa cyclin E-cdk2 complex from a 250 kDa inactive complex that is present in starved cells. This is necessary, but not sufficient, to generate full kinase activity, as cdc25 phosphatase activity is limiting in the absence of external growth factors. In vivo cdc25 activity can be supplied by the addition of growth factors. In vitro recombinant cdc25a strongly activates the 120 kDa, but only poorly activates the 250 kDa cyclin E-cdk2 complex. Our data show that two distinct signals, one of which is supplied by Myc, are necessary for consecutive steps during growth factor-induced formation of active cyclin E-cdk2 complexes in G(o)-arrested rodent fibroblasts. Images PMID:7588611

  3. Characterization of the fission yeast mcs2 cyclin and its associated protein kinase activity.

    PubMed Central

    Molz, L; Beach, D

    1993-01-01

    We have previously described the isolation of mcs2-75, a mutation obtained as an allele-specific suppressor of a dominant allele of cdc2. mcs2 was cloned and determined to be an essential gene, the product of which shares homology with the cyclin family of proteins. In contrast to the behavior of some, but not all cyclins, the mcs2 protein is constant in its abundance and localization throughout the cell cycle. A kinase activity that co-precipitates with mcs2 can be detected when myelin basic protein (MBP) is provided as an exogenous substrate. This kinase activity is constant throughout the cell cycle. mcs2 does not appear to associate with the cdc2 protein kinase or an antigenically related kinase. Finally, a protein kinase termed csk1 (cyclin suppressing kinase) was isolated as a high copy suppressor of an mcs2 mutation. csk1 is not essential, however, the level of kinase activity that co-precipitates with mcs2 is reduced approximately 3-fold in strains harboring a csk1 null allele. Therefore, csk1 may encode a protein kinase physically associated with mcs2 or alternatively may function as an upstream activator of the mcs2-associated kinase. Images PMID:8467814

  4. c-Jun induces apoptosis of starved BM2 monoblasts by activating cyclin A-CDK2

    SciTech Connect

    Vanhara, Petr; Bryja, Vitezslav; Horvath, Viktor; Kozubik, Alois; Hampl, Ales; Smarda, Jan . E-mail: smarda@sci.muni.cz

    2007-02-02

    c-Jun is one of the major components of the activating protein-1 (AP-1), the transcription factor that participates in regulation of proliferation, differentiation, and apoptosis. In this study, we explored functional interactions of the c-Jun protein with several regulators of the G1/S transition in serum-deprived v-myb-transformed chicken monoblasts BM2. We show that the c-Jun protein induces expression of cyclin A, thus up-regulating activity of cyclin A-associated cyclin-dependent kinase 2 (CDK2), and causing massive programmed cell death of starved BM2cJUN cells. Specific inhibition of CDK2 suppresses frequency of apoptosis of BM2cJUN cells. We conclude that up-regulation of cyclin A expression and CDK2 activity can represent important link between the c-Jun protein, cell cycle machinery, and programmed cell death pathway in leukemic cells.

  5. Copper Uptake in Mammary Epithelial Cells Activates Cyclins and Triggers Antioxidant Response.

    PubMed

    dos Santos, Nathália Villa; Matias, Andreza Cândido; Higa, Guilherme Shigueto Vilar; Kihara, Alexandre Hiroaki; Cerchiaro, Giselle

    2015-01-01

    The toxicologic effects of copper (Cu) on tumor cells have been studied during the past decades, and it is suggested that Cu ion may trigger antiproliferative effects in vitro. However, in normal cells the toxicologic effects of high exposures of free Cu are not well understood. In this work, Cu uptake, the expression of genes associated with cell cycle regulation, and the levels of ROS production and related oxidative processes were evaluated in Cu-treated mammary epithelial MCF10A nontumoral cells. We have shown that the Cu additive is associated with the activation of cyclin D1 and cyclin B1, as well as cyclin-dependent kinase 2 (CDK2). These nontumor cells respond to Cu-induced changes in the oxidative balance by increase of the levels of reduced intracellular glutathione (GSH), decrease of reactive oxygen species (ROS) generation, and accumulation during progression of the cell cycle, thus preventing the cell abnormal proliferation or death. Taken together, our findings revealed an effect that contributes to prevent a possible damage of normal cells exposed to chemotherapeutic effects of drugs containing the Cu ion.

  6. Protocatechualdehyde possesses anti-cancer activity through downregulating cyclin D1 and HDAC2 in human colorectal cancer cells

    SciTech Connect

    Jeong, Jin Boo; Lee, Seong-Ho

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Protocatechualdehyde (PCA) suppressed cell proliferation and induced apoptosis in human colorectal cancer cells. Black-Right-Pointing-Pointer PCA enhanced transcriptional downregulation of cyclin D1 gene. Black-Right-Pointing-Pointer PCA suppressed HDAC2 expression and activity. Black-Right-Pointing-Pointer These findings suggest that anti-cancer activity of PCA may be mediated by reducing HDAC2-derived cyclin D1 expression. -- Abstract: Protocatechualdehyde (PCA) is a naturally occurring polyphenol found in barley, green cavendish bananas, and grapevine leaves. Although a few studies reported growth-inhibitory activity of PCA in breast and leukemia cancer cells, the underlying mechanisms are still poorly understood. Thus, we performed in vitro study to investigate if treatment of PCA affects cell proliferation and apoptosis in human colorectal cancer cells and define potential mechanisms by which PCA mediates growth arrest and apoptosis of cancer cells. Exposure of PCA to human colorectal cancer cells (HCT116 and SW480 cells) suppressed cell growth and induced apoptosis in dose-dependent manner. PCA decreased cyclin D1 expression in protein and mRNA level and suppressed luciferase activity of cyclin D1 promoter, indicating transcriptional downregulation of cyclin D1 gene by PCA. We also observed that PCA treatment attenuated enzyme activity of histone deacetylase (HDAC) and reduced expression of HDAC2, but not HDAC1. These findings suggest that cell growth inhibition and apoptosis by PCA may be a result of HDAC2-mediated cyclin D1 suppression.

  7. NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation.

    PubMed

    Chen, Zhi-Dong; Xu, Liang; Tang, Kan-Kai; Gong, Fang-Xiao; Liu, Jing-Quan; Ni, Yin; Jiang, Ling-Zhi; Hong, Jun; Han, Fang; Li, Qian; Yang, Xiang-Hong; Sun, Ren-Hua; Mo, Shi-Jing

    2016-09-10

    Apoptosis of neural cells is one of the main pathological features in hypoxic/ischemic brain injury. Nuclear factor-κB (NF-κB) might be a potential therapeutic target for hypoxic/ischemic brain injury since NF-κB has been found to be inactivated after hypoxia exposure, yet the underlying molecular mechanisms of NF-κB inactivation are largely unknown. Here we report that epidermal growth factor receptor (EGFR) activation prevents neuron-like PC12 cells apoptosis in response to hypoxia via restoring NF-κB-dependent transcriptional upregulation of cyclin D1. Functionally, EGFR activation by EGF stimulation mitigates hypoxia-induced PC12 cells apoptosis in both dose- and time-dependent manner. Of note, EGFR activation elevates IKKβ phosphorylation, increases IκBα ubiquitination, promotes P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as upregulates cyclin D1 expression. EGFR activation also abrogates the decrease of IKKβ phosphorylation, reduction of IκBα ubiquitination, blockade of P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as downregulation of cyclin D1 expression induced by hypoxia. Furthermore, NF-κB-dependent upregulation of cyclin D1 is instrumental for the EGFR-mediated cytoprotection against hypoxic apoptosis. In addition, the dephosphorylation of EGFR induced by either EGF siRNA transfection or anti-HB-EGF neutralization antibody treatment enhances hypoxic cytotoxicity, which are attenuated by EGF administration. Our results highlight the essential role of NF-κB-dependent transcriptional upregulation of cyclin D1 in EGFR-mediated cytoprotective effects under hypoxic preconditioning and support further investigation of EGF in clinical trials of patients with hypoxic/ischemic brain injury.

  8. Cyclin E-dependent protein kinase activity regulates niche retention of Drosophila ovarian follicle stem cells

    PubMed Central

    Wang, Zhu A.; Kalderon, Daniel

    2009-01-01

    Whether stem cells have unique cell cycle machineries and how they integrate with niche interactions remains largely unknown. We identified a hypomorphic cyclin E allele WX that strongly impairs the maintenance of follicle stem cells (FSCs) in the Drosophila ovary but does not reduce follicle cell proliferation or germline stem cell maintenance. CycEWX protein can still bind to the cyclin-dependent kinase catalytic subunit Cdk2, but forms complexes with reduced protein kinase activity measured in vitro. By creating additional CycE variants with different degrees of kinase dysfunction and expressing these and CycEWX at different levels, we found that higher CycE-Cdk2 kinase activity is required for FSC maintenance than to support follicle cell proliferation. Surprisingly, cycEWX FSCs were lost from their niches rather than arresting proliferation. Furthermore, FSC function was substantially restored by expressing either excess DE-cadherin or excess E2F1/DP, the transcription factor normally activated by CycE-Cdk2 phosphorylation of retinoblastoma proteins. These results suggest that FSC maintenance through niche adhesion is regulated by inputs that normally control S phase entry, possibly as a quality control mechanism to ensure adequate stem cell proliferation. We speculate that a positive connection between central regulators of the cell cycle and niche retention may be a common feature of highly proliferative stem cells. PMID:19966222

  9. Cyclin D1 and E2F-1 immunoreactivity in bone marrow biopsy specimens of multiple myeloma: relationship to proliferative activity, cytogenetic abnormalities and DNA ploidy.

    PubMed

    Wilson, C S; Butch, A W; Lai, R; Medeiros, L J; Sawyer, J R; Barlogie, B; McCourty, A; Kelly, K; Brynes, R K

    2001-03-01

    Cyclin D1, encoded by the CCND1 gene, is immunohistochemically detectable in up to one-third of cases of multiple myeloma (MM). To examine the mechanism of cyclin D1 overexpression, we compared cyclin D1 immunoreactivity with the results of conventional cytogenetics to determine if the t(11;14)(q13;q32) or other abnormalities of 11q11-14 explained cyclin D1 overexpression. Karyotypic abnormalities were found in 45 out of 67 (67%) MM cases; the t(11;14) was present in seven cases (10%). Additional 11q11-14 abnormalities were not identified. The t(11;14) correlated with cyclin D1 upregulation in low to intermediately proliferative MM, but was not present in highly proliferative tumours (assessed using bromodeoxyuridine labelling index). Cyclin D1 indirectly activates the transcription factor E2F-1. In the bone marrow biopsy specimens of MM cases, E2F-1 was concurrently expressed with cyclin D1 (P = 0.001), indicating that cyclin D1 is functional. However, as neither E2F-1 nor cyclin D1 expression correlated with proliferative activity, the speculation that t(11;14) upregulates the CCND1 gene to induce higher proliferation and possibly more aggressive disease is not supported. We conclude that in low to intermediately proliferative MM cases, cyclin D1 is probably upregulated by t(11;14), but an alternative mechanism is more probable in highly proliferative MM.

  10. Gaseous nitrogen oxides stimulate cell cycle progression by retinoblastoma phosphorylation via activation of cyclins/Cdks [correction].

    PubMed

    Chen, Jing-Hsien; Tseng, Tsui-Hwa; Ho, Yung-Chyan; Lin, Hui-Hsuan; Lin, Wea-Lung; Wang, Chau-Jong

    2003-11-01

    Nitrogen oxides (NOx) are important indoor and outdoor air pollutants. Many studies have indicated that NOx gas causes lung tissue damage by its oxidation properties and its free radicals. In a previous study we demonstrated that NOx gas induced proliferation of human lung fibroblast MRC-5 cells. In this study we show that NOx gas stimulates MRC-5 cell proliferation by retinoblastoma (Rb) phosphorylation via activation of cyclin-cell division protein kinase (cdk) complexes [correction]. Western blot and immunoprecipitation data showed that NOx gas increased the expressions of cyclinA/cdk2, cyclinD1/cdk4, and cyclinE/cdk2 complexes in the cells at 9 h after treatment. The levels of phospho-Rb were also increased and cdk inhibitors (CKIs) p27 and p16 were apparently decreased. These data suggested that NOx gas stimulates cell-cycle progression by Rb phosphorylation via activation of cyclin-cdk complexes and inhibition of CKIs. In conclusion, the NOx-gas that induced lung fibroblast cell proliferation by stimulation of cell-cycle progression may contribute to lung fibrosis by NOx pollutants.

  11. Cyclin-Dependent Kinase Five Mediates Activation of Lung Xanthine Oxidoreductase in Response to Hypoxia

    PubMed Central

    Kim, Bo S.; Serebreni, Leonid; Fallica, Jonathan; Hamdan, Omar; Wang, Lan; Johnston, Laura; Kolb, Todd; Damarla, Mahendra; Damico, Rachel; Hassoun, Paul M.

    2015-01-01

    Background Xanthine oxidoreductase (XOR) is involved in oxidative metabolism of purines and is a source of reactive oxygen species (ROS). As such, XOR has been implicated in oxidant-mediated injury in multiple cardiopulmonary diseases. XOR enzyme activity is regulated, in part, via a phosphorylation-dependent, post-translational mechanism, although the kinase(s) responsible for such hyperactivation are unknown. Methods and Results Using an in silico approach, we identified a cyclin-dependent kinase 5 (CDK5) consensus motif adjacent to the XOR flavin adenine dinucleotide (FAD) binding domain. CDK5 is a proline-directed serine/threonine kinase historically linked to neural development and injury. We tested the hypothesis that CDK5 and its activators are mediators of hypoxia-induced hyperactivation of XOR in pulmonary microvascular endothelial cells (EC) and the intact murine lung. Using complementary molecular and pharmacologic approaches, we demonstrated that hypoxia significantly increased CDK5 activity in EC. This was coincident with increased expression of the CDK5 activators, cyclin-dependent kinase 5 activator 1 (CDK5r1 or p35/p25), and decreased expression of the CDK5 inhibitory peptide, p10. Expression of p35/p25 was necessary for XOR hyperactivation. Further, CDK5 physically associated with XOR and was necessary and sufficient for XOR phosphorylation and hyperactivation both in vitro and in vivo. XOR hyperactivation required the target threonine (T222) within the CDK5-consensus motif. Conclusions and Significance These results indicate that p35/CDK5-mediated phosphorylation of T222 is required for hypoxia-induced XOR hyperactivation in the lung. Recognizing the contribution of XOR to oxidative injury in cardiopulmonary disease, these observations identify p35/CDK5 as novel regulators of XOR and potential modifiers of ROS-mediated injury. PMID:25831123

  12. Activity of cyclin B1 in HL-60 cells treated with etoposide.

    PubMed

    Żuryń, Agnieszka; Krajewski, Adrian; Szulc, Dawid; Litwiniec, Anna; Grzanka, Alina

    2016-06-01

    Cyclin B1 triggers G2/M phase transition phosphorylating with its catalytical partner - Cdc2 many of the molecular targets essential for cell cycle progression. Human leukemia cell line HL-60 were treated with increasing doses of etoposide (ETP) (0.5; 0.75; 1μM) to investigate how the drug affects cell morphology, viability, cell cycle distribution and expression of cyclin B1. To achieve this aim we applied light and transmission electron microscopy to observe morphological and ultra structural changes, image-based cytometry for apoptosis evaluation and cell cycle analysis, and then we conducted immunohistochemical and immunofluorescence staining to visualize cyclin localization and expression. Quantitive data about cyclin B1 expression were obtained from flow cytometry. Etoposide caused decrease in cell viability, induced apoptosis and G2/M arrest accompanied by enhanced expression of cyclin B1. Changes in expression and localization of cyclin B1 may constitute a part of the mechanism responsible for resistance of HL-60 cells to etoposide. Our results may reflect involvement of cyclin B1 in opposite processes - apoptosis induction and maintenance of cell viability in leukemia cells. We hypothesized possible roles and pathways by which cyclin B1 takes part in drug treatment response and chemosensitivity. PMID:27297620

  13. Adapalene inhibits the activity of cyclin-dependent kinase 2 in colorectal carcinoma

    PubMed Central

    SHI, XI-NAN; LI, HONGJIAN; YAO, HONG; LIU, XU; LI, LING; LEUNG, KWONG-SAK; KUNG, HSIANG-FU; LIN, MARIE CHIA-MI

    2015-01-01

    Cyclin-dependent kinase 2 (CDK2) has been reported to be overexpressed in human colorectal cancer; it is responsible for the G1-to-S-phase transition in the cell cycle and its deregulation is a hallmark of cancer. The present study was the first to use idock, a free and open-source protein-ligand docking software developed by our group, to identify potential CDK2 inhibitors from 4,311 US Food and Drug Administration-approved small molecular drugs with a re-purposing strategy. Among the top compounds identified by idock score, nine were selected for further study. Among them, adapalene (ADA; CD271,6-[3-(1-adamantyl)-4-methoxyphenyl]-2-naphtoic acid) exhibited the highest anti-proliferative effects in LoVo and DLD1 human colon cancer cell lines. Consistent with the expected properties of CDK2 inhibitors, the present study demonstrated that ADA significantly increased the G1-phase population and decreased the expression of CDK2, cyclin E and retinoblastoma protein (Rb), as well as the phosphorylation of CDK2 (on Thr-160) and Rb (on Ser-795). Furthermore, the anti-cancer effects of ADA were examined in vivo on xenograft tumors derived from DLD1 human colorectal cancer cells subcutaneously inoculated in BALB/C nude mice. ADA (20 mg/kg orally) exhibited marked anti-tumor activity, comparable to that of oxaliplatin (40 mg/kg), and dose-dependently inhibited tumor growth (P<0.05), while combined administration of ADA and oxaliplatin produced the highest therapeutic effect. To the best of our knowledge, the present study was the first to indicate that ADA inhibits CDK2 and is a potential candidate drug for the treatment of human colorectal cancer. PMID:26398439

  14. Elevated cyclin A associated kinase activity promotes sensitivity of metastatic human cancer cells to DNA antimetabolite drug

    PubMed Central

    WANG, JIN; YIN, HAILIN; PANANDIKAR, ASHWINI; GANDHI, VARSHA; SEN, SUBRATA

    2015-01-01

    Drug resistance is a major obstacle in successful systemic therapy of metastatic cancer. We analyzed the involvement of cell cycle regulatory proteins in eliciting response to N (phosphonoacetyl)-L-aspartate (PALA), an inhibitor of de novo pyrimidine synthesis, in two metastatic variants of human cancer cell line MDA-MB-435 isolated from lung (L-2) and brain (Br-1) in nude mouse, respectively. L-2 and Br-l cells markedly differed in their sensitivity to PALA. While both cell types displayed an initial S phase delay/arrest, Br-l cells proliferated but most L-2 cells underwent apoptosis. There was distinct elevation in cyclin A, and phosphorylated Rb proteins concomitant with decreased expression of bcl-2 protein in the PALA treated L-2 cells undergoing apoptosis. Markedly elevated cyclin A associated and cdk2 kinase activities together with increased E2F1-DNA binding were detected in these L-2 cells. Induced ectopic cyclin A expression sensitized Br-l cells to PALA by activating an apoptotic pathway. Our findings demonstrate that elevated expression of cyclin A and associated kinase can activate an apoptotic pathway in cells exposed to DNA antimetabolites. Abrogation of this pathway can lead to resistance against these drugs in metastatic variants of human carcinoma cells. PMID:26058363

  15. Cyclin-dependent kinase 5 activity controls cell motility and metastatic potential of prostate cancer cells.

    PubMed

    Strock, Christopher J; Park, Jong-In; Nakakura, Eric K; Bova, G Steven; Isaacs, John T; Ball, Douglas W; Nelkin, Barry D

    2006-08-01

    We show here that cyclin-dependent kinase 5 (CDK5), a known regulator of migration in neuronal development, plays an important role in prostate cancer motility and metastasis. P35, an activator of CDK5 that is indicative of its activity, is expressed in a panel of human and rat prostate cancer cell lines, and is also expressed in 87.5% of the human metastatic prostate cancers we examined. Blocking of CDK5 activity with a dominant-negative CDK5 construct, small interfering RNA, or roscovitine resulted in changes in the microtubule cytoskeleton, loss of cellular polarity, and loss of motility. Expression of a dominant-negative CDK5 in the highly metastatic Dunning AT6.3 prostate cancer cell line also greatly impaired invasive capacity. CDK5 activity was important for spontaneous metastasis in vivo; xenografts of AT6.3 cells expressing dominant-negative CDK5 had less than one-fourth the number of lung metastases exhibited by AT6.3 cells expressing the empty vector. These results show that CDK5 activity controls cell motility and metastatic potential in prostate cancer.

  16. Inhibition of Rac1 activity induces G1/S phase arrest through the GSK3/cyclin D1 pathway in human cancer cells.

    PubMed

    Liu, Linna; Zhang, Hongmei; Shi, Lei; Zhang, Wenjuan; Yuan, Juanli; Chen, Xiang; Liu, Juanjuan; Zhang, Yan; Wang, Zhipeng

    2014-10-01

    Rac1 has been shown to regulate the cell cycle in cancer cells. Yet, the related mechanism remains unclear. Thus, the present study aimed to investigate the mechanism involved in the regulation of G1/S phase transition by Rac1 in cancer cells. Inhibition of Rac1 by inhibitor NSC23766 induced G1/S phase arrest and inhibited the proliferation of A431, SW480 and U2-OS cells. Suppression of GSK3 by shRNA partially rescued G1/S phase arrest and inhibition of proliferation. Incubation of cells with NSC23766 reduced p-AKT and inactivated p-GSK3α and p-GSK3β, increased p-cyclin D1 expression and decreased the level of cyclin D1 protein. Consequently, cyclin D1 targeting transcriptional factor E2F1 expression, which promotes G1 to S phase transition, was also reduced. In contrast, constitutive active Rac1 resulted in increased p-AKT and inactivated p-GSK3α and p-GSK3β, decreased p-cyclin D1 expression and enhanced levels of cyclin D1 and E2F1 expression. Moreover, suppression of GSK3 did not alter p-AKT or Rac1 activity, but decreased p-cyclin D1 and increased total cyclin D1 protein. However, neither Rac1 nor GSK3 inhibition altered cyclin D1 at the RNA level. Moreover, after inhibition of Rac1 or GSK3 following proteasome inhibitor MG132 treatment, cyclin D1 expression at the protein level remained constant, indicating that Rac1 and GSK3 may regulate cyclin D1 turnover through phosphorylation and degradation. Therefore, our findings suggest that inhibition of Rac1 induces cell cycle G1/S arrest in cancer cells by regulation of the GSK3/cyclin D1 pathway.

  17. Downregulation of cyclin-dependent kinase 2 activity and cyclin A promoter activity in vascular smooth muscle cells by p27(KIP1), an inhibitor of neointima formation in the rat carotid artery.

    PubMed Central

    Chen, D; Krasinski, K; Sylvester, A; Chen, J; Nisen, P D; Andrés, V

    1997-01-01

    Abnormal proliferation of vascular smooth muscle cells (VSMCs) contributes to intimal hyperplasia during atherosclerosis and restenosis, but the endogenous cell cycle regulatory factors underlying VSMC growth in response to arterial injury are not well understood. In the present study, we report that downregulation of cyclin-dependent kinase 2 (cdk2) activity in serum-deprived VSMCs was associated with the formation of complexes between cdk2 and its inhibitory protein p27(KIP1) (p27). Ectopic overexpression of p27 in serum-stimulated VSMCs resulted in the inhibition of cdk2 activity and repression of cyclin A promoter activity. Collectively, these findings indicate that p27 may contribute to VSMC growth arrest in vitro. Using the rat carotid model of balloon angioplasty, a marked upregulation of p27 was observed in injured arteries. High levels of p27 expression in the media and neointima correlated with downregulation of cdk2 activity at 2 wk after angioplasty, and adenovirus-mediated overexpression of p27 in balloon-injured arteries attenuated neointimal lesion formation. Thus, the inhibition of cdk2 function and repression of cyclin A gene transcription through the induction of the endogenous p27 protein provides a mechanism for the inhibition of VSMC growth at late time points after angioplasty. PMID:9153274

  18. Lack of Cyclin-Dependent Kinase 4 Inhibits c-myc Tumorigenic Activities in Epithelial Tissues

    PubMed Central

    Miliani de Marval, Paula L.; Macias, Everardo; Rounbehler, Robert; Sicinski, Piotr; Kiyokawa, Hiroaki; Johnson, David G.; Conti, Claudio J.; Rodriguez-Puebla, Marcelo L.

    2004-01-01

    The proto-oncogene c-myc encodes a transcription factor that is implicated in the regulation of cellular proliferation, differentiation, and apoptosis and that has also been found to be deregulated in several forms of human and experimental tumors. We have shown that forced expression of c-myc in epithelial tissues of transgenic mice (K5-Myc) resulted in keratinocyte hyperproliferation and the development of spontaneous tumors in the skin and oral cavity. Although a number of genes involved in cancer development are regulated by c-myc, the actual mechanisms leading to Myc-induced neoplasia are not known. Among the genes regulated by Myc is the cyclin-dependent kinase 4 (CDK4) gene. Interestingly, previous studies from our laboratory showed that the overexpression of CDK4 led to keratinocyte hyperproliferation, although no spontaneous tumor development was observed. Thus, we tested the hypothesis that CDK4 may be one of the critical downstream genes involved in Myc carcinogenesis. Our results showed that CDK4 inhibition in K5-Myc transgenic mice resulted in the complete inhibition of tumor development, suggesting that CDK4 is a critical mediator of tumor formation induced by deregulated Myc. Furthermore, a lack of CDK4 expression resulted in marked decreases in epidermal thickness and keratinocyte proliferation compared to the results obtained for K5-Myc littermates. Biochemical analysis of the K5-Myc epidermis showed that CDK4 mediates the proliferative activities of Myc by sequestering p21Cip1 and p27Kip1 and thereby indirectly activating CDK2 kinase activity. These results show that CDK4 mediates the proliferative and oncogenic activities of Myc in vivo through a mechanism that involves the sequestration of specific CDK inhibitors. PMID:15314163

  19. CARMA3 is overexpressed in colon cancer and regulates NF-{kappa}B activity and cyclin D1 expression

    SciTech Connect

    Miao, Zhifeng; Zhao, Tingting; Wang, Zhenning; Xu, Yingying; Song, Yongxi; Wu, Jianhua; Xu, Huimian

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer CARMA3 expression is elevated in colon cancers. Black-Right-Pointing-Pointer CARMA3 promotes proliferation and cell cycle progression in colon cancer cells. Black-Right-Pointing-Pointer CARMA3 upregulates cyclinD1 through NF-{kappa}B activation. -- Abstract: CARMA3 was recently reported to be overexpressed in cancers and associated with the malignant behavior of cancer cells. However, the expression of CARMA3 and its biological roles in colon cancer have not been reported. In the present study, we analyzed the expression pattern of CARMA3 in colon cancer tissues and found that CARMA3 was overexpressed in 30.8% of colon cancer specimens. There was a significant association between CARMA3 overexpression and TNM stage (p = 0.0383), lymph node metastasis (p = 0.0091) and Ki67 proliferation index (p = 0.0035). Furthermore, knockdown of CARMA3 expression in HT29 and HCT116 cells with high endogenous expression decreased cell proliferation and cell cycle progression while overexpression of CARMA3 in LoVo cell line promoted cell proliferation and facilitated cell cycle transition. Further analysis showed that CARMA3 knockdown downregulated and its overexpression upregulated cyclin D1 expression and phospho-Rb levels. In addition, we found that CARMA3 depletion inhibited p-I{kappa}B levels and NF-{kappa}B activity and its overexpression increased p-I{kappa}B expression and NF-{kappa}B activity. NF-{kappa}B inhibitor BAY 11-7082 reversed the role of CARMA3 on cyclin D1 upregulation. In conclusion, our study found that CARMA3 is overexpressed in colon cancers and contributes to malignant cell growth by facilitating cell cycle progression through NF-{kappa}B mediated upregulation of cyclin D1.

  20. Involvement of aberrant cyclin-dependent kinase 5/p25 activity in experimental traumatic brain injury.

    PubMed

    Yousuf, Mohammad A; Tan, Chunfeng; Torres-Altoro, Melissa I; Lu, Fang-Min; Plautz, Erik; Zhang, Shanrong; Takahashi, Masaya; Hernandez, Adan; Kernie, Steven G; Plattner, Florian; Bibb, James A

    2016-07-01

    Traumatic brain injury (TBI) is associated with adverse effects on brain functions, including sensation, language, emotions and/or cognition. Therapies for improving outcomes following TBI are limited. A better understanding of the pathophysiological mechanisms of TBI may suggest novel treatment strategies to facilitate recovery and improve treatment outcome. Aberrant activation of cyclin-dependent kinase 5 (Cdk5) has been implicated in neuronal injury and neurodegeneration. Cdk5 is a neuronal protein kinase activated via interaction with its cofactor p35 that regulates numerous neuronal functions, including synaptic remodeling and cognition. However, conversion of p35 to p25 via Ca(2+) -dependent activation of calpain results in an aberrantly active Cdk5/p25 complex that is associated with neuronal damage and cell death. Here, we show that mice subjected to controlled cortical impact (CCI), a well-established experimental TBI model, exhibit increased p25 levels and consistently elevated Cdk5-dependent phosphorylation of microtubule-associated protein tau and retinoblastoma (Rb) protein in hippocampal lysates. Moreover, CCI-induced neuroinflammation as indicated by increased astrocytic activation and number of reactive microglia. Brain-wide conditional Cdk5 knockout mice (Cdk5 cKO) subjected to CCI exhibited significantly reduced edema, ventricular dilation, and injury area. Finally, neurophysiological recordings revealed that CCI attenuated excitatory post-synaptic potential field responses in the hippocampal CA3-CA1 pathway 24 h after injury. This neurophysiological deficit was attenuated in Cdk5 cKO mice. Thus, TBI induces increased levels of p25 generation and aberrant Cdk5 activity, which contributes to pathophysiological processes underlying TBI progression. Hence, selectively preventing aberrant Cdk5 activity may be an effective acute strategy to improve recovery from TBI. Traumatic brain injury (TBI) increases astrogliosis and microglial activation

  1. Involvement of aberrant cyclin-dependent kinase 5/p25 activity in experimental traumatic brain injury.

    PubMed

    Yousuf, Mohammad A; Tan, Chunfeng; Torres-Altoro, Melissa I; Lu, Fang-Min; Plautz, Erik; Zhang, Shanrong; Takahashi, Masaya; Hernandez, Adan; Kernie, Steven G; Plattner, Florian; Bibb, James A

    2016-07-01

    Traumatic brain injury (TBI) is associated with adverse effects on brain functions, including sensation, language, emotions and/or cognition. Therapies for improving outcomes following TBI are limited. A better understanding of the pathophysiological mechanisms of TBI may suggest novel treatment strategies to facilitate recovery and improve treatment outcome. Aberrant activation of cyclin-dependent kinase 5 (Cdk5) has been implicated in neuronal injury and neurodegeneration. Cdk5 is a neuronal protein kinase activated via interaction with its cofactor p35 that regulates numerous neuronal functions, including synaptic remodeling and cognition. However, conversion of p35 to p25 via Ca(2+) -dependent activation of calpain results in an aberrantly active Cdk5/p25 complex that is associated with neuronal damage and cell death. Here, we show that mice subjected to controlled cortical impact (CCI), a well-established experimental TBI model, exhibit increased p25 levels and consistently elevated Cdk5-dependent phosphorylation of microtubule-associated protein tau and retinoblastoma (Rb) protein in hippocampal lysates. Moreover, CCI-induced neuroinflammation as indicated by increased astrocytic activation and number of reactive microglia. Brain-wide conditional Cdk5 knockout mice (Cdk5 cKO) subjected to CCI exhibited significantly reduced edema, ventricular dilation, and injury area. Finally, neurophysiological recordings revealed that CCI attenuated excitatory post-synaptic potential field responses in the hippocampal CA3-CA1 pathway 24 h after injury. This neurophysiological deficit was attenuated in Cdk5 cKO mice. Thus, TBI induces increased levels of p25 generation and aberrant Cdk5 activity, which contributes to pathophysiological processes underlying TBI progression. Hence, selectively preventing aberrant Cdk5 activity may be an effective acute strategy to improve recovery from TBI. Traumatic brain injury (TBI) increases astrogliosis and microglial activation

  2. CARMA3 is overexpressed in colon cancer and regulates NF-κB activity and cyclin D1 expression.

    PubMed

    Miao, Zhifeng; Zhao, Tingting; Wang, Zhenning; Xu, Yingying; Song, Yongxi; Wu, Jianhua; Xu, Huimian

    2012-09-01

    CARMA3 was recently reported to be overexpressed in cancers and associated with the malignant behavior of cancer cells. However, the expression of CARMA3 and its biological roles in colon cancer have not been reported. In the present study, we analyzed the expression pattern of CARMA3 in colon cancer tissues and found that CARMA3 was overexpressed in 30.8% of colon cancer specimens. There was a significant association between CARMA3 overexpression and TNM stage (p=0.0383), lymph node metastasis (p=0.0091) and Ki67 proliferation index (p=0.0035). Furthermore, knockdown of CARMA3 expression in HT29 and HCT116 cells with high endogenous expression decreased cell proliferation and cell cycle progression while overexpression of CARMA3 in LoVo cell line promoted cell proliferation and facilitated cell cycle transition. Further analysis showed that CARMA3 knockdown downregulated and its overexpression upregulated cyclin D1 expression and phospho-Rb levels. In addition, we found that CARMA3 depletion inhibited p-IκB levels and NF-κB activity and its overexpression increased p-IκB expression and NF-κB activity. NF-κB inhibitor BAY 11-7082 reversed the role of CARMA3 on cyclin D1 upregulation. In conclusion, our study found that CARMA3 is overexpressed in colon cancers and contributes to malignant cell growth by facilitating cell cycle progression through NF-κB mediated upregulation of cyclin D1.

  3. The Interaction between Cyclin B1 and Cytomegalovirus Protein Kinase pUL97 is Determined by an Active Kinase Domain.

    PubMed

    Steingruber, Mirjam; Socher, Eileen; Hutterer, Corina; Webel, Rike; Bergbrede, Tim; Lenac, Tihana; Sticht, Heinrich; Marschall, Manfred

    2015-08-11

    Replication of human cytomegalovirus (HCMV) is characterized by a tight virus-host cell interaction. Cyclin-dependent protein kinases (CDKs) are functionally integrated into viral gene expression and protein modification. The HCMV-encoded protein kinase pUL97 acts as a CDK ortholog showing structural and functional similarities. Recently, we reported an interaction between pUL97 kinase with a subset of host cyclins, in particular with cyclin T1. Here, we describe an interaction of pUL97 at an even higher affinity with cyclin B1. As a striking feature, the interaction between pUL97 and cyclin B1 proved to be strictly dependent on pUL97 activity, as interaction could be abrogated by treatment with pUL97 inhibitors or by inserting mutations into the conserved kinase domain or the nonconserved C-terminus of pUL97, both producing loss of activity. Thus, we postulate that the mechanism of pUL97-cyclin B1 interaction is determined by an active pUL97 kinase domain.

  4. Fluorescent peptide biosensor for monitoring CDK4/cyclin D kinase activity in melanoma cell extracts, mouse xenografts and skin biopsies.

    PubMed

    Prével, Camille; Pellerano, Morgan; González-Vera, Juan A; Henri, Pauline; Meunier, Laurent; Vollaire, Julien; Josserand, Véronique; Morris, May C

    2016-11-15

    Melanoma constitutes the most aggressive form of skin cancer, which further metastasizes into a deadly form of cancer. The p16(INK4a)-Cyclin D-CDK4/6-pRb pathway is dysregulated in 90% of melanomas. CDK4/Cyclin D kinase hyperactivation, associated with mutation of CDK4, amplification of Cyclin D or loss of p16(INK4a) leads to increased risk of developing melanoma. This kinase therefore constitutes a key biomarker in melanoma and an emerging pharmacological target, however there are no tools enabling direct detection or quantification of its activity. Here we report on the design and application of a fluorescent peptide biosensor to quantify CDK4 activity in melanoma cell extracts, skin biopsies and melanoma xenografts. This biosensor provides sensitive means of comparing CDK4 activity between different melanoma cell lines and further responds to CDK4 downregulation by siRNA or small-molecule inhibitors. By affording means of monitoring CDK4 hyperactivity consequent to cancer-associated molecular alterations in upstream signaling pathways that converge upon this kinase, this biosensor offers an alternative to immunological identification of melanoma-specific biomarkers, thereby constituting an attractive tool for diagnostic purposes, providing complementary functional information to histological analysis, of particular utility for detection of melanoma onset in precancerous lesions. This is indeed the first fluorescent peptide biosensor which has been successfully implemented to monitor kinase activity in skin samples and melanoma tumour xenografts. Moreover by enabling to monitor response to CDK4 inhibitors, this biosensor constitutes an attractive companion assay to identify compounds of therapeutic relevance for melanoma. PMID:27203461

  5. Fluorescent peptide biosensor for monitoring CDK4/cyclin D kinase activity in melanoma cell extracts, mouse xenografts and skin biopsies.

    PubMed

    Prével, Camille; Pellerano, Morgan; González-Vera, Juan A; Henri, Pauline; Meunier, Laurent; Vollaire, Julien; Josserand, Véronique; Morris, May C

    2016-11-15

    Melanoma constitutes the most aggressive form of skin cancer, which further metastasizes into a deadly form of cancer. The p16(INK4a)-Cyclin D-CDK4/6-pRb pathway is dysregulated in 90% of melanomas. CDK4/Cyclin D kinase hyperactivation, associated with mutation of CDK4, amplification of Cyclin D or loss of p16(INK4a) leads to increased risk of developing melanoma. This kinase therefore constitutes a key biomarker in melanoma and an emerging pharmacological target, however there are no tools enabling direct detection or quantification of its activity. Here we report on the design and application of a fluorescent peptide biosensor to quantify CDK4 activity in melanoma cell extracts, skin biopsies and melanoma xenografts. This biosensor provides sensitive means of comparing CDK4 activity between different melanoma cell lines and further responds to CDK4 downregulation by siRNA or small-molecule inhibitors. By affording means of monitoring CDK4 hyperactivity consequent to cancer-associated molecular alterations in upstream signaling pathways that converge upon this kinase, this biosensor offers an alternative to immunological identification of melanoma-specific biomarkers, thereby constituting an attractive tool for diagnostic purposes, providing complementary functional information to histological analysis, of particular utility for detection of melanoma onset in precancerous lesions. This is indeed the first fluorescent peptide biosensor which has been successfully implemented to monitor kinase activity in skin samples and melanoma tumour xenografts. Moreover by enabling to monitor response to CDK4 inhibitors, this biosensor constitutes an attractive companion assay to identify compounds of therapeutic relevance for melanoma.

  6. Regulation of Cdc28 Cyclin-Dependent Protein Kinase Activity during the Cell Cycle of the Yeast Saccharomyces cerevisiae

    PubMed Central

    Mendenhall, Michael D.; Hodge, Amy E.

    1998-01-01

    The cyclin-dependent protein kinase (CDK) encoded by CDC28 is the master regulator of cell division in the budding yeast Saccharomyces cerevisiae. By mechanisms that, for the most part, remain to be delineated, Cdc28 activity controls the timing of mitotic commitment, bud initiation, DNA replication, spindle formation, and chromosome separation. Environmental stimuli and progress through the cell cycle are monitored through checkpoint mechanisms that influence Cdc28 activity at key cell cycle stages. A vast body of information concerning how Cdc28 activity is timed and coordinated with various mitotic events has accrued. This article reviews that literature. Following an introduction to the properties of CDKs common to many eukaryotic species, the key influences on Cdc28 activity—cyclin-CKI binding and phosphorylation-dephosphorylation events—are examined. The processes controlling the abundance and activity of key Cdc28 regulators, especially transcriptional and proteolytic mechanisms, are then discussed in detail. Finally, the mechanisms by which environmental stimuli influence Cdc28 activity are summarized. PMID:9841670

  7. Cyclin C is a haploinsufficient tumor suppressor

    PubMed Central

    Li, Na; Fassl, Anne; Chick, Joel; Inuzuka, Hiroyuki; Li, Xiaoyu; Mansour, Marc R.; Liu, Lijun; Wang, Haizhen; King, Bryan; Shaik, Shavali; Gutierrez, Alejandro; Ordureau, Alban; Otto, Tobias; Kreslavsky, Taras; Baitsch, Lukas; Bury, Leah; Meyer, Clifford A.; Ke, Nan; Mulry, Kristin A.; Kluk, Michael J.; Roy, Moni; Kim, Sunkyu; Zhang, Xiaowu; Geng, Yan; Zagozdzon, Agnieszka; Jenkinson, Sarah; Gale, Rosemary E.; Linch, David C.; Zhao, Jean J.; Mullighan, Charles G.; Harper, J. Wade; Aster, Jon C.; Aifantis, Iannis; von Boehmer, Harald; Gygi, Steven P.; Wei, Wenyi; Look, A. Thomas; Sicinski, Piotr

    2014-01-01

    Cyclin C was cloned as a growth-promoting G1 cyclin, and was also shown to regulate gene transcription. Here we report that in vivo cyclin C acts as a haploinsufficient tumor suppressor, by controlling Notch1 oncogene levels. Cyclin C activates an “orphan” CDK19 kinase, as well as CDK8 and CDK3. These cyclin C-CDK complexes phosphorylate Notch1 intracellular domain (ICN1) and promote ICN1 degradation. Genetic ablation of cyclin C blocks ICN1 phosphorylation in vivo, thereby elevating ICN1 levels in cyclin C-knockout mice. Cyclin C ablation or heterozygosity collaborate with other oncogenic lesions and accelerate development of T-cell-acute lymphoblastic leukemia (T-ALL). Furthermore, the cyclin C gene is heterozygously deleted in a significant fraction of human T-ALL, and these tumors express reduced cyclin C levels. We also describe point mutations in human T-ALL that render cyclin C-CDK unable to phosphorylate ICN1. Hence, tumor cells may develop different strategies to evade cyclin C inhibitory function. PMID:25344755

  8. Hesperetin exerts apoptotic effect on A431 skin carcinoma cells by regulating mitogen activated protein kinases and cyclins.

    PubMed

    Smina, T P; Mohan, A; Ayyappa, K A; Sethuraman, S; Krishnan, U M

    2015-10-30

    Dietary agents and phytochemicals have been utilised for the management of cancer for many years. Hesperetin, a dietary flavonoid found abundantly in citrus fruits, was evaluated for its cytotoxic and pro-apoptotic activities in A431 human skin carcinoma cells. Effect of hesperetin in regulating MAPK (Mitogen-Activated Protein Kinase) signalling pathway and levels of various cyclins and other downstream apoptotic proteins were investigated. Its critical role in regulating other apoptotic proteins especially p21, Bcl-2 and Bax were also assessed. Hesperetin stimulated alterations in MAPK (Mitogen-Activated Protein Kinase) signalling pathway by modulating the expression levels of ERK (Extracellular signal Regulated Kinase), JNK (c-Jun NH2-terminal Kinase) and p38; thereby induced apoptosis in A431 cells. Hesperetin regulated the levels of cyclin A2, B1, D1, D3 and E1. It also modulated the levels of various proteins involved in apoptotic pathway especially p21, Bcl-2 and Bax. The study revealed the efficiency of hesperetin against human skin carcinoma cells and proposed its mechanism of action; there by opens up new avenues for the use of this dietary flavonoid against skin malignancies.

  9. leptin-induced growth stimulation of breast cancer cells involves recruitment of histone acetyltransferases and mediator complex to CYCLIN D1 promoter via activation of Stat3.

    PubMed

    Saxena, Neeraj K; Vertino, Paula M; Anania, Frank A; Sharma, Dipali

    2007-05-01

    Numerous epidemiological studies documented that obesity is a risk factor for breast cancer development in postmenopausal women. Leptin, the key player in the regulation of energy balance and body weight control also acts as a growth factor on certain organs in both normal and disease state. In this study, we analyzed the role of leptin and the molecular mechanism(s) underlying its action in breast cancer cells that express both short and long isoforms of leptin receptor. Leptin increased MCF7 cell population in the S-phase of the cell cycle along with a robust increase in CYCLIN D1 expression. Also, leptin induced Stat3-phosphorylation-dependent proliferation of MCF7 cells as blocking Stat3 phosphorylation with a specific inhibitor, AG490, abolished leptin-induced proliferation. Using deletion constructs of CYCLIN D1 promoter and chromatin immunoprecipitation assay, we show that leptin induced increase in CYCLIN D1 promoter activity is mediated through binding of activated Stat3 at the Stat binding sites and changes in histone acetylation and methylation. We also show specific involvement of coactivator molecules, histone acetyltransferase SRC1, and mediator complex in leptin-mediated regulation of CYCLIN D1 promoter. Importantly, silencing of SRC1 and Med1 abolished the leptin induced increase in CYCLIN D1 expression and MCF7 cell proliferation. Intriguingly, recruitment of both SRC1 and Med1 was dependent on phosphorylated Stat3 as AG490 treatment inhibited leptin-induced recruitment of these coactivators to CYCLIN D1 promoter. Our data suggest that CYCLIN D1 may be a target gene for leptin mediated growth stimulation of breast cancer cells and molecular mechanisms involve activated Stat3-mediated recruitment of distinct coactivator complexes.

  10. Cyclic AMP-induced G1 phase arrest mediated by an inhibitor (p27Kip1) of cyclin-dependent kinase 4 activation.

    PubMed

    Kato, J Y; Matsuoka, M; Polyak, K; Massagué, J; Sherr, C J

    1994-11-01

    Cyclic AMP (cAMP) blocks the mitogenic effects of colony-stimulating factor 1 (CSF-1) in macrophages, inducing cell cycle arrest in mid-G1 phase. Complexes between cyclin D1 and cyclin-dependent kinase 4 (cdk4) assemble in growth arrested cells, but cdk4 is not phosphorylated in vivo by the cdk-activating kinase (CAK) and remains inactive. Although undetectable in lysates of cAMP-treated cells, active CAK is recovered after antibody precipitation, indicating that it is not the direct target of inhibition. Levels of the cdk inhibitor p27Klp1 increase in cAMP-treated cells, and its immunodepletion from inhibitory lysates restores CAK-mediated cdk4 activation. Kip1 does not bind to CAK, but its association with cyclin D-cdk4 prevents CAK from phosphorylating and activating the holoenzyme. PMID:7954814

  11. Human Papillomavirus Type 16 E1∧E4-Induced G2 Arrest Is Associated with Cytoplasmic Retention of Active Cdk1/Cyclin B1 Complexes

    PubMed Central

    Davy, Clare E.; Jackson, Deborah J.; Raj, Kenneth; Peh, Woei Ling; Southern, Shirley A.; Das, Papia; Sorathia, Rina; Laskey, Peter; Middleton, Kate; Nakahara, Tomomi; Wang, Qian; Masterson, Phillip J.; Lambert, Paul F.; Cuthill, Scott; Millar, Jonathan B. A.; Doorbar, John

    2005-01-01

    Human papillomavirus type 16 (HPV16) can cause cervical cancer. Expression of the viral E1∧E4 protein is lost during malignant progression, but in premalignant lesions, E1∧E4 is abundant in cells supporting viral DNA amplification. Expression of 16E1∧E4 in cell culture causes G2 cell cycle arrest. Here we show that unlike many other G2 arrest mechanisms, 16E1∧E4 does not inhibit the kinase activity of the Cdk1/cyclin B1 complex. Instead, 16E1∧E4 uses a novel mechanism in which it sequesters Cdk1/cyclin B1 onto the cytokeratin network. This prevents the accumulation of active Cdk1/cyclin B1 complexes in the nucleus and hence prevents mitosis. A mutant 16E1∧E4 (T22A, T23A) which does not bind cyclin B1 or alter its intracellular location fails to induce G2 arrest. The significance of these results is highlighted by the observation that in lesions induced by HPV16, there is evidence for Cdk1/cyclin B1 activity on the keratins of 16E1∧E4-expressing cells. We hypothesize that E1∧E4-induced G2 arrest may play a role in creating an environment optimal for viral DNA replication and that loss of E1∧E4 expression may contribute to malignant progression. PMID:15767402

  12. High nuclear grade, frequent mitotic activity, cyclin D1 and p53 overexpression are associated with stromal invasion in mammary intracystic papillary carcinoma.

    PubMed

    Zhang, Cunxian; Zhang, Peng; Hao, Jie; Quddus, M Ruhul; Steinhoff, Margaret M; Sung, C James

    2005-01-01

    Stromal invasion is identified with difficulty in routine hematoxylin-eosin-stained sections of core needle biopsy specimens from mammary intracystic papillary carcinomas. The goal of this study was to determine if nuclear grade, mitotic activity, and immunohistochemical stains for p53 and cyclin D1 would assist in differentiating intracystic papillary carcinomas without stromal invasion (ICPC) from tumors with stromal invasion (ICPC-INVA). Eight cases of ICPC and 12 cases of ICPC-INVA were reviewed. Hematoxylin-eosin slides were examined to determine the histologic features. Immunohistochemistry was performed using monoclonal antibodies to human p53 and cyclin D1. Fisher's exact test was used to compare the nuclear grade, mitotic activity, and immunoreactivity between ICPC and ICPC-INVA. High nuclear grade was more often associated with ICPC-INVA than with ICPC, although the difference was not statistically significant (p = 0.069). Frequent mitotic activity was associated with ICPC-INVA more than with ICPC (p = 0.0198). All cases of ICPC were negative for either p53 or cyclin D1, whereas 7 of 12 cases (58.3%) of ICPC-INVA were positive for either cyclin D1 alone (3 cases), p53 alone (3 cases), or both cyclin D1 and p53 (1 case) (p = 0.0147). Identical nuclear grade, mitotic activity, and immunostaining patterns were seen in the intracystic and the invasive components, and in the core biopsy and the excision of the same tumor. When any one of the positive indicators (high nuclear grade, frequent mitotic activity, or positive immunostains for cyclin D1 and/or p53) was present, the positive predictive value for stromal invasion was 91.7%. When none of the positive indicators was present, the negative predictive value was 87.5%.

  13. Taspase1 cleaves MLL1 to activate cyclin E for HER2/neu breast tumorigenesis.

    PubMed

    Dong, Yiyu; Van Tine, Brian A; Oyama, Toshinao; Wang, Patricia I; Cheng, Emily H; Hsieh, James J

    2014-11-01

    Taspase1, a highly conserved threonine protease, cleaves nuclear transcriptional regulators mixed-lineage leukemia (MLL, MLL1), MLL2, TFIIA, and ALF to orchestrate a wide variety of biological processes. In vitro studies thus far demonstrated that Taspase1 plays important roles in the proliferation of various cancer cell lines, including HER2-positive breast cancer cells. To investigate the role of Taspase1 in breast tumorigenesis in vivo, we deleted Taspase1 from mouse mammary glands by generating MMTV-neu;MMTV-cre;Tasp1(F/-) mice. We demonstrate that initiation of MMTV-neu- but not MMTV-wnt-driven breast cancer is blocked in the absence of Taspase1. Importantly, Taspase1 loss alone neither impacts normal development nor pregnancy physiology of the mammary gland. In mammary glands Taspase1 deficiency abrogates MMTV-neu-induced cyclins E and A expression, thereby preventing tumorigenesis. The mechanisms were explored in HER2-positive breast cancer cell line BT474 and HER2-transformed MCF10A cells and validated using knockdown-resistant Taspase1. As Taspase1 was shown to cleave MLL which forms complexes with E2F transcription factors to regulate Cyclins E, A, and B expression in mouse embryonic fibroblasts (MEFs), we investigated whether the cleavage of MLL by Taspase1 constitutes an essential in vivo axis for HER2/neu-induced mammary tumorigenesis. To this end, we generated MMTV-neu;MLL(nc/nc) transgenic mice that carry homozygous non-cleavable MLL alleles. Remarkably, these mice are also protected from HER2/neu-driven breast tumorigenesis. Hence, MLL is the primary Taspase1 substrate whose cleavage is required for MMTV-neu-induced tumor formation. As Taspase1 plays critical roles in breast cancer pathology, it may serve as a therapeutic target for HER2-positive human breast cancer. PMID:25267403

  14. Selective anticancer activity of a hexapeptide with sequence homology to a non-kinase domain of Cyclin Dependent Kinase 4

    PubMed Central

    2011-01-01

    Background Cyclin-dependent kinases 2, 4 and 6 (Cdk2, Cdk4, Cdk6) are closely structurally homologous proteins which are classically understood to control the transition from the G1 to the S-phases of the cell cycle by combining with their appropriate cyclin D or cyclin E partners to form kinase-active holoenzymes. Deregulation of Cdk4 is widespread in human cancer, CDK4 gene knockout is highly protective against chemical and oncogene-mediated epithelial carcinogenesis, despite the continued presence of CDK2 and CDK6; and overexpresssion of Cdk4 promotes skin carcinogenesis. Surprisingly, however, Cdk4 kinase inhibitors have not yet fulfilled their expectation as 'blockbuster' anticancer agents. Resistance to inhibition of Cdk4 kinase in some cases could potentially be due to a non-kinase activity, as recently reported with epidermal growth factor receptor. Results A search for a potential functional site of non-kinase activity present in Cdk4 but not Cdk2 or Cdk6 revealed a previously-unidentified loop on the outside of the C'-terminal non-kinase domain of Cdk4, containing a central amino-acid sequence, Pro-Arg-Gly-Pro-Arg-Pro (PRGPRP). An isolated hexapeptide with this sequence and its cyclic amphiphilic congeners are selectively lethal at high doses to a wide range of human cancer cell lines whilst sparing normal diploid keratinocytes and fibroblasts. Treated cancer cells do not exhibit the wide variability of dose response typically seen with other anticancer agents. Cancer cell killing by PRGPRP, in a cyclic amphiphilic cassette, requires cells to be in cycle but does not perturb cell cycle distribution and is accompanied by altered relative Cdk4/Cdk1 expression and selective decrease in ATP levels. Morphological features of apoptosis are absent and cancer cell death does not appear to involve autophagy. Conclusion These findings suggest a potential new paradigm for the development of broad-spectrum cancer specific therapeutics with a companion diagnostic

  15. Cyclin-dependent kinases.

    PubMed

    Malumbres, Marcos

    2014-01-01

    Cyclin-dependent kinases (CDKs) are protein kinases characterized by needing a separate subunit - a cyclin - that provides domains essential for enzymatic activity. CDKs play important roles in the control of cell division and modulate transcription in response to several extra- and intracellular cues. The evolutionary expansion of the CDK family in mammals led to the division of CDKs into three cell-cycle-related subfamilies (Cdk1, Cdk4 and Cdk5) and five transcriptional subfamilies (Cdk7, Cdk8, Cdk9, Cdk11 and Cdk20). Unlike the prototypical Cdc28 kinase of budding yeast, most of these CDKs bind one or a few cyclins, consistent with functional specialization during evolution. This review summarizes how, although CDKs are traditionally separated into cell-cycle or transcriptional CDKs, these activities are frequently combined in many family members. Not surprisingly, deregulation of this family of proteins is a hallmark of several diseases, including cancer, and drug-targeted inhibition of specific members has generated very encouraging results in clinical trials. PMID:25180339

  16. Phosphorylation of cyclin-dependent kinase 5 (Cdk5) at Tyr-15 is inhibited by Cdk5 activators and does not contribute to the activation of Cdk5.

    PubMed

    Kobayashi, Hiroyuki; Saito, Taro; Sato, Ko; Furusawa, Kotaro; Hosokawa, Tomohisa; Tsutsumi, Koji; Asada, Akiko; Kamada, Shinji; Ohshima, Toshio; Hisanaga, Shin-ichi

    2014-07-11

    Cdk5 is a member of the cyclin-dependent kinase (Cdk) family. In contrast to other Cdks that promote cell proliferation, Cdk5 plays a role in regulating various neuronal functions, including neuronal migration, synaptic activity, and neuron death. Cdks responsible for cell proliferation need phosphorylation in the activation loop for activation in addition to binding a regulatory subunit cyclin. Cdk5, however, is activated only by binding to its activator, p35 or p39. Furthermore, in contrast to Cdk1 and Cdk2, which are inhibited by phosphorylation at Tyr-15, the kinase activity of Cdk5 is reported to be stimulated when phosphorylated at Tyr-15 by Src family kinases or receptor-type tyrosine kinases. We investigated the activation mechanism of Cdk5 by phosphorylation at Tyr-15. Unexpectedly, however, it was found that Tyr-15 phosphorylation occurred only on monomeric Cdk5, and the coexpression of activators, p35/p25, p39, or Cyclin I, inhibited the phosphorylation. In neuron cultures, too, the activation of Fyn tyrosine kinase did not increase Tyr-15 phosphorylation of Cdk5. Further, phospho-Cdk5 at Tyr-15 was not detected in the p35-bound Cdk5. In contrast, expression of active Fyn increased p35 in neurons. These results indicate that phosphorylation at Tyr-15 is not an activation mechanism of Cdk5 but, rather, indicate that tyrosine kinases could activate Cdk5 by increasing the protein amount of p35. These results call for reinvestigation of how Cdk5 is regulated downstream of Src family kinases or receptor tyrosine kinases in neurons, which is an important signaling cascade in a variety of neuronal activities.

  17. Cyclin T1-Dependent Genes in Activated CD4+ T and Macrophage Cell Lines Appear Enriched in HIV-1 Co-Factors

    PubMed Central

    Yu, Wendong; Ramakrishnan, Rajesh; Wang, Yan; Chiang, Karen; Sung, Tzu-Ling; Rice, Andrew P.

    2008-01-01

    HIV-1 is dependent upon cellular co-factors to mediate its replication cycle in CD4+ T cells and macrophages, the two major cell types infected by the virus in vivo. One critical co-factor is Cyclin T1, a subunit of a general RNA polymerase II elongation factor known as P-TEFb. Cyclin T1 is targeted directly by the viral Tat protein to activate proviral transcription. Cyclin T1 is up-regulated when resting CD4+ T cells are activated and during macrophage differentiation or activation, conditions that are also necessary for high levels of HIV-1 replication. Because Cyclin T1 is a subunit of a transcription factor, the up-regulation of Cyclin T1 in these cells results in the induction of cellular genes, some of which might be HIV-1 co-factors. Using shRNA depletions of Cyclin T1 and transcriptional profiling, we identified 54 cellular mRNAs that appear to be Cyclin T1-dependent for their induction in activated CD4+ T Jurkat T cells and during differentiation and activation of MM6 cells, a human monocytic cell line. The promoters for these Cyclin T1-dependent genes (CTDGs) are over-represented in two transcription factor binding sites, SREBP1 and ARP1. Notably, 10 of these CTDGs have been reported to be involved in HIV-1 replication, a significant over-representation of such genes when compared to randomly generated lists of 54 genes (p value<0.00021). The results of siRNA depletion and dominant-negative protein experiments with two CTDGs identified here, CDK11 and Casein kinase 1 gamma 1, suggest that these genes are involved either directly or indirectly in HIV-1 replication. It is likely that the 54 CTDGs identified here include novel HIV-1 co-factors. The presence of CTDGs in the protein space that was available for HIV-1 to sample during its evolution and acquisition of Tat function may provide an explanation for why CTDGs are enriched in viral co-factors. PMID:18773076

  18. Staurosporine resistance accompanies DNA tumor virus-induced immortalization and is independent of the expression and activities of ERK1, ERK2, cyclin A, cyclin-dependent kinase (cdk) 2, and cdk4.

    PubMed

    Chang, T; Khalsa, O; Wang, H; Lee, M E; Schlegel, R

    1996-03-01

    Staurosporine, a potent protein kinase inhibitor, has been shown to arrest the growth of a number of normal cell types in the G1 phase of the cell cycle, while having little effect on several transformed lines. We wished to determine whether increased resistance to staurosporine was a common feature of virus-immortalized human cells and whether this phenotype was an early event following the expression of SV40 tumor antigens. Human foreskin keratinocytes immortalized by the SV40 DNA tumor virus displayed an increased resistance to staurosporine-induced growth arrest when compared with normal parental cells, as has been seen in human diploid fibroblasts. Keratinocytes immortalized by human papillomaviruses, or by just the human papillomavirus E6 and E7 oncogenes were also staurosporine resistant, suggesting that this phenotype often accompanies the immortalization of human cells by DNA tumor viruses. Acquisition of staurosporine resistance was a late event during immortalization, because precrisis human diploid fibroblasts that expressed the SV40 large T and small t antigens were not resistant to staurosporine. The same parental cells that were fully immortalized by SV40 were resistant. Staurosporine resistance was not the result of increased activities and/or expression of cyclin A, cyclin-dependent kinase (cdk) 2, cdk4, or the mitogen-activated kinases ERK1 and ERK2. Although increased activities and/or expression of cyclin A and cdk2 and cdk4 proteins, but not ERK1 or ERK2, were associated with immortalization, similar increases were found in staurosporine-sensitive precrisis cells expressing SV40 tumor antigens.

  19. Ectopic expression of cyclin D3 corrects differentiation of DM1 myoblasts through activation of RNA CUG-binding protein, CUGBP1

    SciTech Connect

    Salisbury, Elizabeth; Sakai, Keiko; Schoser, Benedikt; Huichalaf, Claudia; Schneider-Gold, Christiane; Nguyen, Heather; Wang, Gou-Li; Albrecht, Jeffrey H.; Timchenko, Lubov T.

    2008-07-01

    Differentiation of myocytes is impaired in patients with myotonic dystrophy type 1, DM1. CUG repeat binding protein, CUGBP1, is a key regulator of translation of proteins that are involved in muscle development and differentiation. In this paper, we present evidence that RNA-binding activity of CUGBP1 and its interactions with initiation translation complex eIF2 are differentially regulated during myogenesis by specific phosphorylation and that this regulation is altered in DM1. In normal myoblasts, Akt kinase phosphorylates CUGBP1 at Ser28 and increases interactions of CUGBP1 with cyclin D1 mRNA. During differentiation, CUGBP1 is phosphorylated by cyclinD3-cdk4/6 at Ser302, which increases CUGBP1 binding with p21 and C/EBP{beta} mRNAs. While cyclin D3 and cdk4 are elevated in normal myotubes; DM1 differentiating cells do not increase these proteins. In normal myotubes, CUGBP1 interacts with cyclin D3/cdk4/6 and eIF2; however, interactions of CUGBP1 with eIF2 are reduced in DM1 differentiating cells and correlate with impaired muscle differentiation in DM1. Ectopic expression of cyclin D3 in DM1 cells increases the CUGBP1-eIF2 complex, corrects expression of differentiation markers, myogenin and desmin, and enhances fusion of DM1 myoblasts. Thus, normalization of cyclin D3 might be a therapeutic approach to correct differentiation of skeletal muscle in DM1 patients.

  20. Biochemical characterizations reveal different properties between CDK4/cyclin D1 and CDK2/cyclin A.

    PubMed

    Kim, Dong-Myung; Yang, Kyungmi; Yang, Beom-Seok

    2003-10-31

    CDK2 and CDK4 known promoter of cell cycling catalyze phosphorylation of RB protein. Enzyme specificity between two CDKs that work at a different cell cycle phase is not clearly understood. In order to define kinase properties of CDK2 and CDK4 in complex with cycline A or cycline D1 in relation to their respective role in cell cycling regulation, we examined enzymatic properties of both CDK4/cycline D1 and CDK2/cycline A in vitro. Association constant, Km for ATP in CDK4/cyclin D1 was found as 418 microM, a value unusually high whereas CDK2/cyclin A was 23 microM, a value close to most of other regulatory protein kinases. Turnover value for both CDK4/cyclin D1 and CDK2/cyclin A were estimated as 3.4 and 3.9 min(-1) respectively. Kinetic efficiency estimation indicates far over one order magnitude less efficiency for CDK4/cyclin D1 than the value of CDK2/cycline A (9.3 pM(-1) min(-1) and 170 pM(-1) min(-1) respectively). In addition, inhibition of cellular CDK4 caused increase of cellular levels of ATP, even though inhibition of CDK2 did not change it noticeably. These data suggest cellular CDK4/cyclin D1 activity is tightly associated with cellular ATP concentration. Also, analysis of phosphorylated serine/threonine sites on RB catalyzed by CDK4/cyclin D1 and CDK2/cyclin A showed significant differences in their preference of phosphorylation sites in RB C-terminal domain. Since RB is known to regulate various cellular proteins by binding and this binding is controlled by its phosphorylation, these data shown here clearly indicate significant difference in their biochemical properties between CDK4/cyclin D1 and CDK2/cyclin A affecting regulation of cellular RB function. PMID:14646596

  1. Involvement of Cyclin-Dependent Kinase 1 during Postovulatory Aging-Mediated Abortive Spontaneous Egg Activation in Rat Eggs Cultured In Vitro.

    PubMed

    Prasad, Shilpa; Koch, Biplob; Chaube, Shail K

    2016-04-01

    Freshly ovulated rat eggs do not remain arrested at metaphase II (MII) and undergo exit from MII arrest with initiation of extrusion of the second polar body (PBII), a characteristic feature of abortive spontaneous egg activation (SEA). The biochemical and molecular changes during postovulatory aging-mediated abortive SEA remain poorly understood. We investigated the morphological, cellular, and molecular changes during postovulatory aging-mediated abortive SEA in eggs cultured in vitro. Our results suggest that postovulatory egg aging in vitro induced initiation of PBII extrusion in a time-dependent manner. Postovulatory aging increased Wee1 kinase and Thr-14/Tyr-15 phosphorylated cyclin-dependent kinase 1 (Cdk1) levels, whereas Thr-161 phosphorylated Cdk1 and cyclin B1 levels were significantly decreased in eggs cultured in vitro. The early mitotic inhibitor 2 (Emi2) level was significantly reduced, but anaphase promoting complex/cyclosome (APC/C) and mitotic arrest deficient protein (MAD2) levels were increased initially and then reduced during a later period of in vitro culture. These results suggest that an increased Wee1 kinase level modulated the specific phosphorylation status of Cdk1, increased Cdk1 activity, and decreased the cyclin B1 level. Furthermore, the decreased Emi2 level was associated with an increased level of APC/C and decreased level of cyclin B1, which resulted in maturation promoting factor (MPF) destabilization and finally led to postovulatory aging-mediated abortive SEA in rat eggs cultured in vitro. PMID:26982431

  2. Baicalein induces G1 arrest in oral cancer cells by enhancing the degradation of cyclin D1 and activating AhR to decrease Rb phosphorylation

    SciTech Connect

    Cheng, Ya-Hsin; Li, Lih-Ann; Lin, Pinpin; Cheng, Li-Chuan; Hung, Chein-Hui; Chang, Nai Wen; Lin, Chingju

    2012-09-15

    Baicalein is a flavonoid, known to have anti-inflammatory and anti-cancer effects. As an aryl hydrocarbon receptor (AhR) ligand, baicalein at high concentrations blocks AhR-mediated dioxin toxicity. Because AhR had been reported to play a role in regulating the cell cycle, we suspected that the anti-cancer effect of baicalein is associated with AhR. This study investigated the molecular mechanism involved in the anti-cancer effect of baicalein in oral cancer cells HSC-3, including whether such effect would be AhR-mediated. Results revealed that baicalein inhibited cell proliferation and increased AhR activity in a dose-dependent manner. Cell cycle was arrested at the G1 phase and the expression of CDK4, cyclin D1, and phosphorylated retinoblastoma (pRb) was decreased. When the AhR was suppressed by siRNA, the reduction of pRb was partially reversed, accompanied by a decrease of cell population at G1 phase and an increase at S phase, while the reduction of cyclin D1 and CDK4 did not change. This finding suggests that the baicalein activation of AhR is indeed associated with the reduction of pRb, but is independent of the reduction of cyclin D1 and CDK4. When cells were pre-treated with LiCl, the inhibitor of GSK-3β, the decrease of cyclin D1 was blocked and the reduction of pRb was recovered. The data indicates that in HSC-3 the reduction of pRb is both mediated by baicalein through activation of AhR and facilitation of cyclin D1 degradation, which causes cell cycle arrest at the G1 phase, and results in the inhibition of cell proliferation. -- Highlights: ► Baicalein causes the G1 phase arrest by decreasing Rb phosphorylation. ► Baicalein modulates AhR-mediated cell proliferation. ► Both AhR activation and cyclin D1 degradation results in hypophosphorylation of Rb. ► Baicalein facilitates cyclin D1 degradation by signalling the GSK-3β pathway.

  3. Cartilage-Specific and Cre-Dependent Nkx3.2 Overexpression In Vivo Causes Skeletal Dwarfism by Delaying Cartilage Hypertrophy.

    PubMed

    Jeong, Da-Un; Choi, Je-Yong; Kim, Dae-Won

    2017-01-01

    Nkx3.2, the vertebrate homologue of Drosophila bagpipe, has been implicated as playing a role in chondrogenic differentiation. In brief, Nkx3.2 is initially expressed in chondrocyte precursor cells and later during cartilage maturation, its expression is diminished in hypertrophic chondrocytes. In addition to Nkx3.2 expression analyses, previous studies using ex vivo chick embryo cultures and in vitro cell cultures have suggested that Nkx3.2 can suppress chondrocyte hypertrophy. However, it has never been demonstrated that Nkx3.2 functions in regulating chondrocyte hypertrophy during cartilage development in vivo. Here, we show that cartilage-specific and Cre-dependent Nkx3.2 overexpression in mice results in significant postnatal dwarfism in endochondral skeletons, while intramembranous bones remain unaltered. Further, we observed significant delays in cartilage hypertrophy in conditional transgenic ciTg-Nkx3.2 mice. Together, these findings confirm that Nkx3.2 is capable of controlling hypertrophic maturation of cartilage in vivo, and this regulation plays a significant role in endochondral ossification and longitudinal bone growth. J. Cell. Physiol. 232: 78-90, 2017. © 2016 Wiley Periodicals, Inc. PMID:27253464

  4. Unscheduled Akt-Triggered Activation of Cyclin-Dependent Kinase 2 as a Key Effector Mechanism of Apoptin's Anticancer Toxicity▿

    PubMed Central

    Maddika, Subbareddy; Panigrahi, Soumya; Wiechec, Emilia; Wesselborg, Sebastian; Fischer, Ute; Schulze-Osthoff, Klaus; Los, Marek

    2009-01-01

    Apoptin, a protein from the chicken anemia virus, has attracted attention because it specifically kills tumor cells while leaving normal cells unharmed. The reason for this tumor selectivity is unclear and depends on subcellular localization, as apoptin resides in the cytoplasm of normal cells but in the nuclei of transformed cells. It was shown that nuclear localization and tumor-specific killing crucially require apoptin's phosphorylation by an as yet unknown kinase. Here we elucidate the pathway of apoptin-induced apoptosis and show that it essentially depends on abnormal phosphatidylinositol 3-kinase (PI3-kinase)/Akt activation, resulting in the activation of the cyclin-dependent kinase CDK2. Inhibitors as well as dominant-negative mutants of PI3-kinase and Akt not only inhibited CDK2 activation but also protected cells from apoptin-induced cell death. Akt activated CDK2 by direct phosphorylation as well as by the phosphorylation-induced degradation of the inhibitor p27Kip1. Importantly, we also identified CDK2 as the principal kinase that phosphorylates apoptin and is crucially required for apoptin-induced cell death. Immortalized CDK2-deficient fibroblasts and CDK2 knockdown cells were markedly protected against apoptin. Thus, our results not only decipher the pathway of apoptin-induced cell death but also provide mechanistic insights for the selective killing of tumor cells. PMID:19103742

  5. CDK1-Cyclin B1 Activates RNMT, Coordinating mRNA Cap Methylation with G1 Phase Transcription.

    PubMed

    Aregger, Michael; Kaskar, Aneesa; Varshney, Dhaval; Fernandez-Sanchez, Maria Elena; Inesta-Vaquera, Francisco A; Weidlich, Simone; Cowling, Victoria H

    2016-03-01

    The creation of translation-competent mRNA is dependent on RNA polymerase II transcripts being modified by addition of the 7-methylguanosine (m7G) cap. The factors that mediate splicing, nuclear export, and translation initiation are recruited to the transcript via the cap. The cap structure is formed by several activities and completed by RNMT (RNA guanine-7 methyltransferase), which catalyzes N7 methylation of the cap guanosine. We report that CDK1-cyclin B1 phosphorylates the RNMT regulatory domain on T77 during G2/M phase of the cell cycle. RNMT T77 phosphorylation activates the enzyme both directly and indirectly by inhibiting interaction with KPNA2, an RNMT inhibitor. RNMT T77 phosphorylation results in elevated m7G cap methyltransferase activity at the beginning of G1 phase, coordinating mRNA capping with the burst of transcription that occurs following nuclear envelope reformation. RNMT T77 phosphorylation is required for the production of cohort of proteins, and inhibiting T77 phosphorylation reduces the cell proliferation rate. PMID:26942677

  6. CDK1-Cyclin B1 Activates RNMT, Coordinating mRNA Cap Methylation with G1 Phase Transcription

    PubMed Central

    Aregger, Michael; Kaskar, Aneesa; Varshney, Dhaval; Fernandez-Sanchez, Maria Elena; Inesta-Vaquera, Francisco A.; Weidlich, Simone; Cowling, Victoria H.

    2016-01-01

    Summary The creation of translation-competent mRNA is dependent on RNA polymerase II transcripts being modified by addition of the 7-methylguanosine (m7G) cap. The factors that mediate splicing, nuclear export, and translation initiation are recruited to the transcript via the cap. The cap structure is formed by several activities and completed by RNMT (RNA guanine-7 methyltransferase), which catalyzes N7 methylation of the cap guanosine. We report that CDK1-cyclin B1 phosphorylates the RNMT regulatory domain on T77 during G2/M phase of the cell cycle. RNMT T77 phosphorylation activates the enzyme both directly and indirectly by inhibiting interaction with KPNA2, an RNMT inhibitor. RNMT T77 phosphorylation results in elevated m7G cap methyltransferase activity at the beginning of G1 phase, coordinating mRNA capping with the burst of transcription that occurs following nuclear envelope reformation. RNMT T77 phosphorylation is required for the production of cohort of proteins, and inhibiting T77 phosphorylation reduces the cell proliferation rate. PMID:26942677

  7. Alterations in cyclin-dependent protein kinase 5 (CDK5) protein levels, activity and immunocytochemistry in canine motor neuron disease.

    PubMed

    Green, S L; Vulliet, P R; Pinter, M J; Cork, L C

    1998-11-01

    Hereditary canine spinal muscular atrophy (HCSMA) is a dominantly inherited motor neuron disease in Brittany spaniels that is clinically characterized by progressive muscle weakness leading to paralysis. Histopathologically, degeneration is confined to motor neurons with accumulation of phosphorylated neurofilaments in axonal internodes. Cyclin-dependent kinase 5 (CDK5), a kinase related to the cell cycle kinase cdc2, phosphorylates neurofilaments and regulates neurofilament dynamics. We examined CDK5 activity, protein levels, and cellular immunoreactivity in nervous tissue from dogs with HCSMA, from closely age-matched controls and from dogs with other neurological diseases. On immunoblot analysis, CDK5 protein levels were increased in the HCSMA dogs (by approximately 1.5-fold in both the cytosolic and the particulate fractions). CDK5 activity was significantly increased (by approximately 3-fold) in the particulate fractions in the HCSMA dogs compared to all controls. The finding that CDK5 activity was increased in the young HCSMA homozygotes with the accelerated form of the disease, who do not show axonal swellings histologically, suggests that alterations in CDK5 occurs early in the pathogenesis, prior to the development of significant neurofilament pathology. Immunocytochemically, there was strong CDK5 staining of the nuclei, cytoplasm and axonal processes of the motor neurons in both control dogs and dogs with HCSMA. Further immunocytochemical studies demonstrated CDK5 staining where neurofilaments accumulated, in axonal swellings in the dogs with HCSMA. Our observations suggest phosphorylation-dependent events mediated by CDK5 occur in canine motor neuron disease.

  8. Initiation of DNA synthesis by human papillomavirus E7 oncoproteins is resistant to p21-mediated inhibition of cyclin E-cdk2 activity.

    PubMed Central

    Ruesch, M N; Laimins, L A

    1997-01-01

    The E6 and E7 proteins from the high-risk human papillomaviruses (HPVs) bind and inactivate the tumor suppressor proteins p53 and Rb, respectively. In HPV-positive cells, expression of E6 proteins from high-risk types results in increased turnover of p53, which leads to an abrogation of p21-mediated G1/S arrest in response to DNA-damaging agents. In contrast, keratinocytes which express E7 alone have increased levels of p53 but, interestingly, also fail to undergo a G1/S arrest. We investigated the mechanism by which E7 bypasses this p21 arrest by using both keratinocytes which stably express E7 as well as U20S cells which stably or transiently express E7. We observed that E7 does not affect the induction of p21 synthesis by p53. While glutathione S-transferase (GST)-E7 bound a low level of in vitro-translated p21, we were unable to detect E7 and p21 in the same complex by GST-E7 binding assays or immunoprecipitations from cell extracts. Furthermore, E7 did not prevent p21-mediated inhibition of cyclin E kinase activity. In keratinocytes expressing E7, increased levels of p53, p21, and cyclin E, as well as increased cyclin E kinase activity, were observed. To determine if this increase in cyclin E activity was necessary for E7's ability to overcome p21-mediated G1/S arrest, we examined U20S cells in which cyclin E levels are not increased in response to E7 expression. U20S cells which stably express E7 were found to initiate DNA synthesis in the presence of DNA-damaging agents despite the inhibition of cyclin E activity by p21. In transient assays, cotransfection of E7 or E2F-1 along with p21 into U20S cells rescued G1 arrest and resulted in S-phase entry, as measured by the ability to incorporate bromodeoxyuridine. These data indicate that E7 is able to overcome G1/S arrest without directly affecting p21 function and likely acts through deregulation of E2F activity. PMID:9188631

  9. Cyclin D1 Determines Mitochondrial Function In Vivo†

    PubMed Central

    Sakamaki, Toshiyuki; Casimiro, Mathew C.; Ju, Xiaoming; Quong, Andrew A.; Katiyar, Sanjay; Liu, Manran; Jiao, Xuanmao; Li, Anping; Zhang, Xueping; Lu, Yinan; Wang, Chenguang; Byers, Stephen; Nicholson, Robert; Link, Todd; Shemluck, Melvin; Yang, Jianguo; Fricke, Stanley T.; Novikoff, Phyllis M.; Papanikolaou, Alexandros; Arnold, Andrew; Albanese, Christopher; Pestell, Richard

    2006-01-01

    The cyclin D1 gene encodes a regulatory subunit of the holoenzyme that phosphorylates and inactivates the pRb tumor suppressor to promote nuclear DNA synthesis. cyclin D1 is overexpressed in human breast cancers and is sufficient for the development of murine mammary tumors. Herein, cyclin D1 is shown to perform a novel function, inhibiting mitochondrial function and size. Mitochondrial activity was enhanced by genetic deletion or antisense or small interfering RNA to cyclin D1. Global gene expression profiling and functional analysis of mammary epithelial cell-targeted cyclin D1 antisense transgenics demonstrated that cyclin D1 inhibits mitochondrial activity and aerobic glycolysis in vivo. Reciprocal regulation of these genes was observed in cyclin D1-induced mammary tumors. Cyclin D1 thus integrates nuclear DNA synthesis and mitochondrial function. PMID:16809779

  10. Cyclin-dependent kinase 5 activates guanine nucleotide exchange factor GIV/Girdin to orchestrate migration-proliferation dichotomy.

    PubMed

    Bhandari, Deepali; Lopez-Sanchez, Inmaculada; To, Andrew; Lo, I-Chung; Aznar, Nicolas; Leyme, Anthony; Gupta, Vijay; Niesman, Ingrid; Maddox, Adam L; Garcia-Marcos, Mikel; Farquhar, Marilyn G; Ghosh, Pradipta

    2015-09-01

    Signals propagated by receptor tyrosine kinases (RTKs) can drive cell migration and proliferation, two cellular processes that do not occur simultaneously--a phenomenon called "migration-proliferation dichotomy." We previously showed that epidermal growth factor (EGF) signaling is skewed to favor migration over proliferation via noncanonical transactivation of Gαi proteins by the guanine exchange factor (GEF) GIV. However, what turns on GIV-GEF downstream of growth factor RTKs remained unknown. Here we reveal the molecular mechanism by which phosphorylation of GIV by cyclin-dependent kinase 5 (CDK5) triggers GIV's ability to bind and activate Gαi in response to growth factors and modulate downstream signals to establish a dichotomy between migration and proliferation. We show that CDK5 binds and phosphorylates GIV at Ser1674 near its GEF motif. When Ser1674 is phosphorylated, GIV activates Gαi and enhances promigratory Akt signals. Phosphorylated GIV also binds Gαs and enhances endosomal maturation, which shortens the transit time of EGFR through early endosomes, thereby limiting mitogenic MAPK signals. Consequently, this phosphoevent triggers cells to preferentially migrate during wound healing and transmigration of cancer cells. When Ser1674 cannot be phosphorylated, GIV cannot bind either Gαi or Gαs, Akt signaling is suppressed, mitogenic signals are enhanced due to delayed transit time of EGFR through early endosomes, and cells preferentially proliferate. These results illuminate how GIV-GEF is turned on upon receptor activation, adds GIV to the repertoire of CDK5 substrates, and defines a mechanism by which this unusual CDK orchestrates migration-proliferation dichotomy during cancer invasion, wound healing, and development. PMID:26286990

  11. Cyclin-dependent kinase 5 activates guanine nucleotide exchange factor GIV/Girdin to orchestrate migration–proliferation dichotomy

    PubMed Central

    Bhandari, Deepali; Lopez-Sanchez, Inmaculada; To, Andrew; Lo, I-Chung; Aznar, Nicolas; Leyme, Anthony; Gupta, Vijay; Niesman, Ingrid; Maddox, Adam L.; Garcia-Marcos, Mikel; Farquhar, Marilyn G.; Ghosh, Pradipta

    2015-01-01

    Signals propagated by receptor tyrosine kinases (RTKs) can drive cell migration and proliferation, two cellular processes that do not occur simultaneously—a phenomenon called “migration–proliferation dichotomy.” We previously showed that epidermal growth factor (EGF) signaling is skewed to favor migration over proliferation via noncanonical transactivation of Gαi proteins by the guanine exchange factor (GEF) GIV. However, what turns on GIV-GEF downstream of growth factor RTKs remained unknown. Here we reveal the molecular mechanism by which phosphorylation of GIV by cyclin-dependent kinase 5 (CDK5) triggers GIV's ability to bind and activate Gαi in response to growth factors and modulate downstream signals to establish a dichotomy between migration and proliferation. We show that CDK5 binds and phosphorylates GIV at Ser1674 near its GEF motif. When Ser1674 is phosphorylated, GIV activates Gαi and enhances promigratory Akt signals. Phosphorylated GIV also binds Gαs and enhances endosomal maturation, which shortens the transit time of EGFR through early endosomes, thereby limiting mitogenic MAPK signals. Consequently, this phosphoevent triggers cells to preferentially migrate during wound healing and transmigration of cancer cells. When Ser1674 cannot be phosphorylated, GIV cannot bind either Gαi or Gαs, Akt signaling is suppressed, mitogenic signals are enhanced due to delayed transit time of EGFR through early endosomes, and cells preferentially proliferate. These results illuminate how GIV-GEF is turned on upon receptor activation, adds GIV to the repertoire of CDK5 substrates, and defines a mechanism by which this unusual CDK orchestrates migration–proliferation dichotomy during cancer invasion, wound healing, and development. PMID:26286990

  12. Cyclin-dependent kinase 5 activates guanine nucleotide exchange factor GIV/Girdin to orchestrate migration-proliferation dichotomy.

    PubMed

    Bhandari, Deepali; Lopez-Sanchez, Inmaculada; To, Andrew; Lo, I-Chung; Aznar, Nicolas; Leyme, Anthony; Gupta, Vijay; Niesman, Ingrid; Maddox, Adam L; Garcia-Marcos, Mikel; Farquhar, Marilyn G; Ghosh, Pradipta

    2015-09-01

    Signals propagated by receptor tyrosine kinases (RTKs) can drive cell migration and proliferation, two cellular processes that do not occur simultaneously--a phenomenon called "migration-proliferation dichotomy." We previously showed that epidermal growth factor (EGF) signaling is skewed to favor migration over proliferation via noncanonical transactivation of Gαi proteins by the guanine exchange factor (GEF) GIV. However, what turns on GIV-GEF downstream of growth factor RTKs remained unknown. Here we reveal the molecular mechanism by which phosphorylation of GIV by cyclin-dependent kinase 5 (CDK5) triggers GIV's ability to bind and activate Gαi in response to growth factors and modulate downstream signals to establish a dichotomy between migration and proliferation. We show that CDK5 binds and phosphorylates GIV at Ser1674 near its GEF motif. When Ser1674 is phosphorylated, GIV activates Gαi and enhances promigratory Akt signals. Phosphorylated GIV also binds Gαs and enhances endosomal maturation, which shortens the transit time of EGFR through early endosomes, thereby limiting mitogenic MAPK signals. Consequently, this phosphoevent triggers cells to preferentially migrate during wound healing and transmigration of cancer cells. When Ser1674 cannot be phosphorylated, GIV cannot bind either Gαi or Gαs, Akt signaling is suppressed, mitogenic signals are enhanced due to delayed transit time of EGFR through early endosomes, and cells preferentially proliferate. These results illuminate how GIV-GEF is turned on upon receptor activation, adds GIV to the repertoire of CDK5 substrates, and defines a mechanism by which this unusual CDK orchestrates migration-proliferation dichotomy during cancer invasion, wound healing, and development.

  13. Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins.

    PubMed

    Wang, Guanfang; Kong, Hongzhi; Sun, Yujin; Zhang, Xiaohong; Zhang, Wei; Altman, Naomi; DePamphilis, Claude W; Ma, Hong

    2004-06-01

    Cyclins are primary regulators of the activity of cyclin-dependent kinases, which are known to play critical roles in controlling eukaryotic cell cycle progression. While there has been extensive research on cell cycle mechanisms and cyclin function in animals and yeasts, only a small number of plant cyclins have been characterized functionally. In this paper, we describe an exhaustive search for cyclin genes in the Arabidopsis genome and among available sequences from other vascular plants. Based on phylogenetic analysis, we define 10 classes of plant cyclins, four of which are plant-specific, and a fifth is shared between plants and protists but not animals. Microarray and reverse transcriptase-polymerase chain reaction analyses further provide expression profiles of cyclin genes in different tissues of wild-type Arabidopsis plants. Comparative phylogenetic studies of 174 plant cyclins were also performed. The phylogenetic results imply that the cyclin gene family in plants has experienced more gene duplication events than in animals. Expression patterns and phylogenetic analyses of Arabidopsis cyclin genes suggest potential gene redundancy among members belonging to the same group. We discuss possible divergence and conservation of some plant cyclins. Our study provides an opportunity to rapidly assess the position of plant cyclin genes in terms of evolution and classification, serving as a guide for further functional study of plant cyclins.

  14. DNA-binding activity of the transcription factor upstream stimulatory factor 1 (USF-1) is regulated by cyclin-dependent phosphorylation.

    PubMed Central

    Cheung, E; Mayr, P; Coda-Zabetta, F; Woodman, P G; Boam, D S

    1999-01-01

    The ubiquitous transcription factor upstream stimulatory factor (USF) 1 is a member of the bzHLH (leucine zipper-basic-helix-loop-helix) family, which is structurally related to the Myc family of proteins. It plays a role in the regulation of many genes, including the cyclin B1 gene, which is active during the G2/M and M phases of the cell cycle and may also play a role in the regulation of cellular proliferation. We show that the affinity of recombinant USF-1 for DNA is greatly increased by treatment with active cyclin A2-p34(cdc2) or cyclin B1-p34(cdc2) complexes and that its interaction with DNA is dependent on p34(cdc2)-mediated phosphorylation. We have localized the phosphorylation site(s) to a region that lies outside the minimal DNA-binding domain but overlaps with the previously identified USF-specific region. Deletion studies of USF-1 suggest that amino acids 143-197 regulate DNA-binding activity in a phosphorylation-dependent manner. PMID:10548544

  15. Cyclin-dependent kinase-activating kinases CDKD;1 and CDKD;3 are essential for preserving mitotic activity in Arabidopsis thaliana.

    PubMed

    Takatsuka, Hirotomo; Umeda-Hara, Chikage; Umeda, Masaaki

    2015-06-01

    For the full activation of cyclin-dependent kinases (CDKs), not only cyclin binding but also CDK phosphorylation is required. This activating phosphorylation is mediated by CDK-activating kinases (CAKs). Arabidopsis has four genes showing similarity to vertebrate-type CAKs, three CDKDs (CDKD;1-CDKD;3) and one CDKF (CDKF;1). We previously found that the cdkf;1 mutant is defective in post-embryonic development, even though the kinase activities of core CDKs remain unchanged relative to the wild type. This raised a question about the involvement of CDKDs in CDK activation in planta. Here we report that the cdkd;1 cdkd;3 double mutant showed gametophytic lethality. Most cdkd;1-1 cdkd;3-1 pollen grains were defective in pollen mitosis I and II, producing one-cell or two-cell pollen grains that lacked fertilization ability. We also found that the double knock-out of CDKD;1 and CDKD;3 caused arrest and/or delay in the progression of female gametogenesis at multiple steps. Our genetic analyses revealed that the functions of CDKF;1 and CDKD;1 or CDKD;3 do not overlap, either during gametophyte and embryo development or in post-embryonic development. Consistent with these analyses, CDKF;1 expression in the cdkd;1-1 cdkd;3-1 mutant could not rescue the gametophytic lethality. These results suggest that, in Arabidopsis, CDKD;1 and CDKD;3 function as CAKs controlling mitosis, whereas CDKF;1 plays a distinct role, mainly in post-embryonic development. We propose that CDKD;1 and CDKD;3 phosphorylate and activate all core CDKs, CDKA, CDKB1 and CDKB2, thereby governing cell cycle progression throughout plant development.

  16. BAFF induces spleen CD4{sup +} T cell proliferation by down-regulating phosphorylation of FOXO3A and activates cyclin D2 and D3 expression

    SciTech Connect

    Ji, Fang; Chen, Rongjing; Liu, Baojun; Zhang, Xiaoping; Han, Junli; Wang, Haining; Shen, Gang; Tao, Jiang

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Firstly analyze the mechanism of BAFF and anti-CD3 co-stimulation on purified mouse splenic CD4{sup +} T cells. Black-Right-Pointing-Pointer Carrying out siRNA technology to study FOXO3A protein function. Black-Right-Pointing-Pointer Helpful to understand the T cell especially CD4{sup +} T cell's role in immunological reaction. -- Abstract: The TNF ligand family member 'B cell-activating factor belonging to the TNF family' (BAFF, also called BLyS, TALL-1, zTNF-4, and THANK) is an important survival factor for B and T cells. In this study, we show that BAFF is able to induce CD4{sup +} spleen T cell proliferation when co-stimulated with anti-CD3. Expression of phosphorylated FOXO3A was notably down-regulated and cyclins D2 and D3 were up-regulated and higher in the CD4{sup +} T cells when treated with BAFF and anti-CD3, as assessed by Western blotting. Furthermore, after FOXO3A was knocked down, expression of cyclin D1 was unchanged, compared with control group levels, but the expression of cyclins D2 and D3 increased, compared with the control group. In conclusion, our results suggest that BAFF induced CD4{sup +} spleen T cell proliferation by down-regulating the phosphorylation of FOXO3A and then activating cyclin D2 and D3 expression, leading to CD4{sup +} T cell proliferation.

  17. Selective activation of p38alpha and p38gamma by hypoxia. Role in regulation of cyclin D1 by hypoxia in PC12 cells.

    PubMed

    Conrad, P W; Rust, R T; Han, J; Millhorn, D E; Beitner-Johnson, D

    1999-08-13

    Hypoxic/ischemic trauma is a primary factor in the pathology of a multitude of disease states. The effects of hypoxia on the stress- and mitogen-activated protein kinase signaling pathways were studied in PC12 cells. Exposure to moderate hypoxia (5% O(2)) progressively stimulated phosphorylation and activation of p38gamma in particular, and also p38alpha, two stress-activated protein kinases. In contrast, hypoxia had no effect on enzyme activity of p38beta, p38beta(2), p38delta, or on c-Jun N-terminal kinase, another stress-activated protein kinase. Prolonged hypoxia also induced phosphorylation and activation of p42/p44 mitogen-activated protein kinase, although this activation was modest compared with nerve growth factor- and ultraviolet light-induced activation. Hypoxia also dramatically down-regulated immunoreactivity of cyclin D1, a gene that is known to be regulated negatively by p38 at the level of gene expression (Lavoie, J. N., L'Allemain, G., Brunet, A., Muller, R., and Pouyssegur, J. (1996) J. Biol. Chem. 271, 20608-20616). This effect was partially blocked by SB203580, an inhibitor of p38alpha but not p38gamma. Overexpression of a kinase-inactive form of p38gamma was also able to reverse in part the effect of hypoxia on cyclin D1 levels, suggesting that p38alpha and p38gamma converge to regulate cyclin D1 during hypoxia. These studies demonstrate that an extremely typical physiological stress (hypoxia) causes selective activation of specific p38 signaling elements; and they also identify a downstream target of these pathways. PMID:10438538

  18. Quercetin reduces cyclin D1 activity and induces G1 phase arrest in HepG2 cells

    PubMed Central

    ZHOU, JIN; LI, LU; FANG, LI; XIE, HUA; YAO, WENXIU; ZHOU, XIANG; XIONG, ZHUJUAN; WANG, LI; LI, ZHIXI; LUO, FENG

    2016-01-01

    Quercetin is able to inhibit proliferation of malignant tumor cells; however, the exact mechanism involved in this biological process remains unclear. The current study utilized a quantitative proteomic analysis to explore the antitumor mechanisms of quercetin. The leucine of HepG2 cells treated with quercetin was labeled as d3 by stable isotope labeling by amino acids in cell culture (SILAC). The isotope peaks of control HepG2 cells were compared with the d3-labeled HepG2 cells by mass spectrometry (MS) to identify significantly altered proteins. Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analyses were subsequently employed to verify the results of the MS analysis. A flow cytometry assay was designed to observe the influence of various quercetin treatment concentrations on the cell cycle distribution of HepG2 cells. The results indicated that quercetin is able to substantially inhibit proliferation of HepG2 cells and induce an obvious morphological alteration of cells. According to the MS results, the 70 credibly-changed proteins that were identified may play important roles in multiple cellular processes, including protein synthesis, signaling, cytoskeletal processes and metabolism. Among these functional proteins, the expression of cyclin D1 (CCND1) was found to be significantly decreased. RT-PCR and western blot analyses verified the SILAC-MS results of decreased CCND1 expression. In summary, flow cytometry revealed that quercetin is able to induce G1 phase arrest in HepG2 cells. Based on the aforementioned observations, it is suggested that quercetin exerts antitumor activity in HepG2 cells through multiple pathways, including interfering with CCND1 gene expression to disrupt the cell cycle and proliferation of HepG2 cells. In the future, we aim to explore this effect in vivo. PMID:27347174

  19. The CDK4/6 inhibitor PD0332991 reverses epithelial dysplasia associated with abnormal activation of the Cyclin-CDK-Rb pathway

    PubMed Central

    Cabrera, M. Carla; Díaz-Cruz, Edgar S.; Kallakury, Bhaskar V. S.; Pishvaian, Michael J.; Grubbs, Clinton J.; Muccio, Donald D.; Furth, Priscilla A.

    2012-01-01

    Loss of normal growth control is a hallmark of cancer progression. Therefore, understanding the early mechanisms of normal growth regulation and the changes that occur during preneoplasia may provide insights of both diagnostic and therapeutic importance. Models of dysplasia that help elucidate the mechanisms responsible for disease progression are useful in highlighting potential targets for prevention. An important strategy in cancer prevention treatment programs is to reduce hyperplasia and dysplasia. This study identified abnormal up-regulation of cell cycle related proteins Cyclin D1, CDK4, CDK6 and phosphorylated pRb as mechanisms responsible for maintenance of hyperplasia and dysplasia following down-regulation of the initiating viral oncoprotein Simian Virus 40 T Antigen. Significantly, p53 was not required for successful reversal of hyperplasia and dysplasia. Ligand-induced activation of RXR and PPAR gamma agonists attenuated Cyclin D1 and CDK6 but not CDK4 or phosphorylated pRb upregulation with limited reversal of hyperplasia and dysplasia. PD0332991, an orally available CDK4/6 inhibitor, was able to prevent upregulation of Cyclin D1 and CDK6 as well as CDK4 and phosphorylated pRb and this correlated with a more profound reversal of hyperplasia and dysplasia. In summary, the study distinguished CDK4 and phosphorylated pRb as targets for chemoprevention regimens targeting reversal of hyperplasia and dysplasia. PMID:22508966

  20. Proteomic Interaction Patterns between Human Cyclins, the Cyclin-Dependent Kinase Ortholog pUL97 and Additional Cytomegalovirus Proteins.

    PubMed

    Steingruber, Mirjam; Kraut, Alexandra; Socher, Eileen; Sticht, Heinrich; Reichel, Anna; Stamminger, Thomas; Amin, Bushra; Couté, Yohann; Hutterer, Corina; Marschall, Manfred

    2016-01-01

    The human cytomegalovirus (HCMV)-encoded cyclin-dependent kinase (CDK) ortholog pUL97 associates with human cyclin B1 and other types of cyclins. Here, the question was addressed whether cyclin interaction of pUL97 and additional viral proteins is detectable by mass spectrometry-based approaches. Proteomic data were validated by coimmunoprecipitation (CoIP), Western blot, in vitro kinase and bioinformatic analyses. Our findings suggest that: (i) pUL97 shows differential affinities to human cyclins; (ii) pUL97 inhibitor maribavir (MBV) disrupts the interaction with cyclin B1, but not with other cyclin types; (iii) cyclin H is identified as a new high-affinity interactor of pUL97 in HCMV-infected cells; (iv) even more viral phosphoproteins, including all known substrates of pUL97, are detectable in the cyclin-associated complexes; and (v) a first functional validation of pUL97-cyclin B1 interaction, analyzed by in vitro kinase assay, points to a cyclin-mediated modulation of pUL97 substrate preference. In addition, our bioinformatic analyses suggest individual, cyclin-specific binding interfaces for pUL97-cyclin interaction, which could explain the different strengths of interactions and the selective inhibitory effect of MBV on pUL97-cyclin B1 interaction. Combined, the detection of cyclin-associated proteins in HCMV-infected cells suggests a complex pattern of substrate phosphorylation and a role of cyclins in the fine-modulation of pUL97 activities.

  1. Proteomic Interaction Patterns between Human Cyclins, the Cyclin-Dependent Kinase Ortholog pUL97 and Additional Cytomegalovirus Proteins

    PubMed Central

    Steingruber, Mirjam; Kraut, Alexandra; Socher, Eileen; Sticht, Heinrich; Reichel, Anna; Stamminger, Thomas; Amin, Bushra; Couté, Yohann; Hutterer, Corina; Marschall, Manfred

    2016-01-01

    The human cytomegalovirus (HCMV)-encoded cyclin-dependent kinase (CDK) ortholog pUL97 associates with human cyclin B1 and other types of cyclins. Here, the question was addressed whether cyclin interaction of pUL97 and additional viral proteins is detectable by mass spectrometry-based approaches. Proteomic data were validated by coimmunoprecipitation (CoIP), Western blot, in vitro kinase and bioinformatic analyses. Our findings suggest that: (i) pUL97 shows differential affinities to human cyclins; (ii) pUL97 inhibitor maribavir (MBV) disrupts the interaction with cyclin B1, but not with other cyclin types; (iii) cyclin H is identified as a new high-affinity interactor of pUL97 in HCMV-infected cells; (iv) even more viral phosphoproteins, including all known substrates of pUL97, are detectable in the cyclin-associated complexes; and (v) a first functional validation of pUL97-cyclin B1 interaction, analyzed by in vitro kinase assay, points to a cyclin-mediated modulation of pUL97 substrate preference. In addition, our bioinformatic analyses suggest individual, cyclin-specific binding interfaces for pUL97-cyclin interaction, which could explain the different strengths of interactions and the selective inhibitory effect of MBV on pUL97-cyclin B1 interaction. Combined, the detection of cyclin-associated proteins in HCMV-infected cells suggests a complex pattern of substrate phosphorylation and a role of cyclins in the fine-modulation of pUL97 activities. PMID:27548200

  2. Proteomic Interaction Patterns between Human Cyclins, the Cyclin-Dependent Kinase Ortholog pUL97 and Additional Cytomegalovirus Proteins.

    PubMed

    Steingruber, Mirjam; Kraut, Alexandra; Socher, Eileen; Sticht, Heinrich; Reichel, Anna; Stamminger, Thomas; Amin, Bushra; Couté, Yohann; Hutterer, Corina; Marschall, Manfred

    2016-01-01

    The human cytomegalovirus (HCMV)-encoded cyclin-dependent kinase (CDK) ortholog pUL97 associates with human cyclin B1 and other types of cyclins. Here, the question was addressed whether cyclin interaction of pUL97 and additional viral proteins is detectable by mass spectrometry-based approaches. Proteomic data were validated by coimmunoprecipitation (CoIP), Western blot, in vitro kinase and bioinformatic analyses. Our findings suggest that: (i) pUL97 shows differential affinities to human cyclins; (ii) pUL97 inhibitor maribavir (MBV) disrupts the interaction with cyclin B1, but not with other cyclin types; (iii) cyclin H is identified as a new high-affinity interactor of pUL97 in HCMV-infected cells; (iv) even more viral phosphoproteins, including all known substrates of pUL97, are detectable in the cyclin-associated complexes; and (v) a first functional validation of pUL97-cyclin B1 interaction, analyzed by in vitro kinase assay, points to a cyclin-mediated modulation of pUL97 substrate preference. In addition, our bioinformatic analyses suggest individual, cyclin-specific binding interfaces for pUL97-cyclin interaction, which could explain the different strengths of interactions and the selective inhibitory effect of MBV on pUL97-cyclin B1 interaction. Combined, the detection of cyclin-associated proteins in HCMV-infected cells suggests a complex pattern of substrate phosphorylation and a role of cyclins in the fine-modulation of pUL97 activities. PMID:27548200

  3. A novel quantitative model of cell cycle progression based on cyclin-dependent kinases activity and population balances.

    PubMed

    Pisu, Massimo; Concas, Alessandro; Cao, Giacomo

    2015-04-01

    Cell cycle regulates proliferative cell capacity under normal or pathologic conditions, and in general it governs all in vivo/in vitro cell growth and proliferation processes. Mathematical simulation by means of reliable and predictive models represents an important tool to interpret experiment results, to facilitate the definition of the optimal operating conditions for in vitro cultivation, or to predict the effect of a specific drug in normal/pathologic mammalian cells. Along these lines, a novel model of cell cycle progression is proposed in this work. Specifically, it is based on a population balance (PB) approach that allows one to quantitatively describe cell cycle progression through the different phases experienced by each cell of the entire population during its own life. The transition between two consecutive cell cycle phases is simulated by taking advantage of the biochemical kinetic model developed by Gérard and Goldbeter (2009) which involves cyclin-dependent kinases (CDKs) whose regulation is achieved through a variety of mechanisms that include association with cyclins and protein inhibitors, phosphorylation-dephosphorylation, and cyclin synthesis or degradation. This biochemical model properly describes the entire cell cycle of mammalian cells by maintaining a sufficient level of detail useful to identify check point for transition and to estimate phase duration required by PB. Specific examples are discussed to illustrate the ability of the proposed model to simulate the effect of drugs for in vitro trials of interest in oncology, regenerative medicine and tissue engineering.

  4. Two new competing pathways establish the threshold for cyclin-B–Cdk1 activation at the meiotic G2/M transition

    PubMed Central

    Aono, Ryota; Hanada, Shin-ichiro; Okumura, Eiichi; Kishimoto, Takeo

    2016-01-01

    ABSTRACT Extracellular ligands control biological phenomena. Cells distinguish physiological stimuli from weak noise stimuli by establishing a ligand-concentration threshold. Hormonal control of the meiotic G2/M transition in oocytes is essential for reproduction. However, the mechanism for threshold establishment is unclear. In starfish oocytes, maturation-inducing hormones activate the PI3K–Akt pathway through the Gβγ complex of heterotrimeric G-proteins. Akt directly phosphorylates both Cdc25 phosphatase and Myt1 kinase, resulting in activation of cyclin-B–Cdk1, which then induces meiotic G2/M transition. Here, we show that cyclin-B–Cdk1 is partially activated after subthreshold hormonal stimuli, but this triggers negative feedback, resulting in dephosphorylation of Akt sites on Cdc25 and Myt1, thereby canceling the signal. We also identified phosphatase activity towards Akt substrates that exists independent of stimuli. In contrast to these negative regulatory activities, an atypical Gβγ-dependent pathway enhances PI3K–Akt-dependent phosphorylation. Based on these findings, we propose a model for threshold establishment in which hormonal dose-dependent competition between these new pathways establishes a threshold; the atypical Gβγ-pathway becomes predominant over Cdk-dependent negative feedback when the stimulus exceeds this threshold. Our findings provide a regulatory connection between cell cycle and signal transduction machineries. PMID:27390173

  5. Two new competing pathways establish the threshold for cyclin-B-Cdk1 activation at the meiotic G2/M transition.

    PubMed

    Hiraoka, Daisaku; Aono, Ryota; Hanada, Shin-Ichiro; Okumura, Eiichi; Kishimoto, Takeo

    2016-08-15

    Extracellular ligands control biological phenomena. Cells distinguish physiological stimuli from weak noise stimuli by establishing a ligand-concentration threshold. Hormonal control of the meiotic G2/M transition in oocytes is essential for reproduction. However, the mechanism for threshold establishment is unclear. In starfish oocytes, maturation-inducing hormones activate the PI3K-Akt pathway through the Gβγ complex of heterotrimeric G-proteins. Akt directly phosphorylates both Cdc25 phosphatase and Myt1 kinase, resulting in activation of cyclin-B-Cdk1, which then induces meiotic G2/M transition. Here, we show that cyclin-B-Cdk1 is partially activated after subthreshold hormonal stimuli, but this triggers negative feedback, resulting in dephosphorylation of Akt sites on Cdc25 and Myt1, thereby canceling the signal. We also identified phosphatase activity towards Akt substrates that exists independent of stimuli. In contrast to these negative regulatory activities, an atypical Gβγ-dependent pathway enhances PI3K-Akt-dependent phosphorylation. Based on these findings, we propose a model for threshold establishment in which hormonal dose-dependent competition between these new pathways establishes a threshold; the atypical Gβγ-pathway becomes predominant over Cdk-dependent negative feedback when the stimulus exceeds this threshold. Our findings provide a regulatory connection between cell cycle and signal transduction machineries. PMID:27390173

  6. The SH2 domain regulates c-Abl kinase activation by a cyclin-like mechanism and remodulation of the hinge motion.

    PubMed

    Dölker, Nicole; Górna, Maria W; Sutto, Ludovico; Torralba, Antonio S; Superti-Furga, Giulio; Gervasio, Francesco L

    2014-10-01

    Regulation of the c-Abl (ABL1) tyrosine kinase is important because of its role in cellular signaling, and its relevance in the leukemiogenic counterpart (BCR-ABL). Both auto-inhibition and full activation of c-Abl are regulated by the interaction of the catalytic domain with the Src Homology 2 (SH2) domain. The mechanism by which this interaction enhances catalysis is not known. We combined computational simulations with mutagenesis and functional analysis to find that the SH2 domain conveys both local and global effects on the dynamics of the catalytic domain. Locally, it regulates the flexibility of the αC helix in a fashion reminiscent of cyclins in cyclin-dependent kinases, reorienting catalytically important motifs. At a more global level, SH2 binding redirects the hinge motion of the N and C lobes and changes the conformational equilibrium of the activation loop. The complex network of subtle structural shifts that link the SH2 domain with the activation loop and the active site may be partially conserved with other SH2-domain containing kinases and therefore offer additional parameters for the design of conformation-specific inhibitors.

  7. Dixdc1 targets CyclinD1 and p21 via PI3K pathway activation to promote Schwann cell proliferation after sciatic nerve crush.

    PubMed

    Wu, Weijie; Liu, Qingqing; Liu, Yuxi; Yu, Zhaohui; Wang, Youhua

    2016-09-16

    Dixdc1 (DIX domain containing-1), the mammalian homolog of Ccd1 (Coiled-coil-Dishevelled-Axin1), is a protein containing a coiled-coil domain and a Dishevelled-Axin (DIX) domain. As a novel component of the Wnt pathway, Dixdc1 has been reported to be able to promote neural progenitor proliferation and neuronal differentiation via Wnt/β-catenin signaling. But there still remains something unknown about Dixdc1 distribution and functions in the lesion and regeneration of the peripheral nervous system (PNS), so we tried to investigate dynamic changes of Dixdc1 expression in a rat sciatic nerve crush (SNC) model in this study. First of all, we detected SNC-induced increased levels of Dixdc1 in Schwann cells and interestingly identified parallel expression of PCNA (proliferation cell nuclear antigen) with Dixdc1. Besides, we observed up-regulated Dixdc1 during the process of TNF-α-induced Schwann cell proliferation. Also, we discovered that Dixdc1 could promote G1-S phase transition accompanied with the up-regulation of CyclinD1 and down-regulation of p21. More importantly, enhanced effects of Dixdc1 on cell proliferation were confirmed to be associated with PI3K activation. Not only blocking of the PI3K but Dixdc1 knockdown led to significantly decreased ability for proliferation, as well as down-regulation of CyclinD1 and up-regulation of p21. In summary, these data demonstrated that Dixdc1 might participate in Schwann cell proliferation by targeting CyclinD1 and p21 at least partially through the PI3K/AKT activation. PMID:27521891

  8. Nucleolar GTP-binding Protein-1 (NGP-1) Promotes G1 to S Phase Transition by Activating Cyclin-dependent Kinase Inhibitor p21Cip1/Waf1*

    PubMed Central

    Datta, Debduti; Anbarasu, Kumaraswamy; Rajabather, Suryaraja; Priya, Rangasamy Sneha; Desai, Pavitra; Mahalingam, Sundarasamy

    2015-01-01

    Nucleolar GTP-binding protein (NGP-1) is overexpressed in various cancers and proliferating cells, but the functional significance remains unknown. In this study, we show that NGP-1 promotes G1 to S phase transition of cells by enhancing CDK inhibitor p21Cip-1/Waf1 expression through p53. In addition, our results suggest that activation of the cyclin D1-CDK4 complex by NGP-1 via maintaining the stoichiometry between cyclin D1-CDK4 complex and p21 resulted in hyperphosphorylation of retinoblastoma protein at serine 780 (p-RBSer-780) followed by the up-regulation of E2F1 target genes required to promote G1 to S phase transition. Furthermore, our data suggest that ribosomal protein RPL23A interacts with NGP-1 and abolishes NGP-1-induced p53 activity by enhancing Mdm2-mediated p53 polyubiquitination. Finally, reduction of p-RBSer-780 levels and E2F1 target gene expression upon ectopic expression of RPL23a resulted in arrest at the G1 phase of the cell cycle. Collectively, this investigation provides evidence that NGP-1 promotes cell cycle progression through the activation of the p53/p21Cip-1/Waf1 pathway. PMID:26203195

  9. Cyclin E1 and RTK/RAS signaling drive CDK inhibitor resistance via activation of E2F and ETS.

    PubMed

    Taylor-Harding, Barbie; Aspuria, Paul-Joseph; Agadjanian, Hasmik; Cheon, Dong-Joo; Mizuno, Takako; Greenberg, Danielle; Allen, Jenieke R; Spurka, Lindsay; Funari, Vincent; Spiteri, Elizabeth; Wang, Qiang; Orsulic, Sandra; Walsh, Christine; Karlan, Beth Y; Wiedemeyer, W Ruprecht

    2015-01-20

    High-grade serous ovarian cancers (HGSOC) are genomically complex, heterogeneous cancers with a high mortality rate, due to acquired chemoresistance and lack of targeted therapy options. Cyclin-dependent kinase inhibitors (CDKi) target the retinoblastoma (RB) signaling network, and have been successfully incorporated into treatment regimens for breast and other cancers. Here, we have compared mechanisms of response and resistance to three CDKi that target either CDK4/6 or CDK2 and abrogate E2F target gene expression. We identify CCNE1 gain and RB1 loss as mechanisms of resistance to CDK4/6 inhibition, whereas receptor tyrosine kinase (RTK) and RAS signaling is associated with CDK2 inhibitor resistance. Mechanistically, we show that ETS factors are mediators of RTK/RAS signaling that cooperate with E2F in cell cycle progression. Consequently, CDK2 inhibition sensitizes cyclin E1-driven but not RAS-driven ovarian cancer cells to platinum-based chemotherapy. In summary, this study outlines a rational approach for incorporating CDKi into treatment regimens for HGSOC. PMID:25557169

  10. Cyclin E1 and RTK/RAS signaling drive CDK inhibitor resistance via activation of E2F and ETS

    PubMed Central

    Taylor-Harding, Barbie; Aspuria, Paul-Joseph; Agadjanian, Hasmik; Cheon, Dong-Joo; Mizuno, Takako; Greenberg, Danielle; Allen, Jenieke R.; Spurka, Lindsay; Funari, Vincent; Spiteri, Elizabeth; Wang, Qiang; Orsulic, Sandra; Walsh, Christine; Karlan, Beth Y.; Wiedemeyer, W. Ruprecht

    2015-01-01

    High-grade serous ovarian cancers (HGSOC) are genomically complex, heterogeneous cancers with a high mortality rate, due to acquired chemoresistance and lack of targeted therapy options. Cyclin-dependent kinase inhibitors (CDKi) target the retinoblastoma (RB) signaling network, and have been successfully incorporated into treatment regimens for breast and other cancers. Here, we have compared mechanisms of response and resistance to three CDKi that target either CDK4/6 or CDK2 and abrogate E2F target gene expression. We identify CCNE1 gain and RB1 loss as mechanisms of resistance to CDK4/6 inhibition, whereas receptor tyrosine kinase (RTK) and RAS signaling is associated with CDK2 inhibitor resistance. Mechanistically, we show that ETS factors are mediators of RTK/RAS signaling that cooperate with E2F in cell cycle progression. Consequently, CDK2 inhibition sensitizes cyclin E1-driven but not RAS-driven ovarian cancer cells to platinum-based chemotherapy. In summary, this study outlines a rational approach for incorporating CDKi into treatment regimens for HGSOC. PMID:25557169

  11. Lupeol induces p53 and cyclin-B-mediated G2/M arrest and targets apoptosis through activation of caspase in mouse skin

    SciTech Connect

    Nigam, Nidhi Prasad, Sahdeo; George, Jasmine; Shukla, Yogeshwer

    2009-04-03

    Lupeol, present in fruits and medicinal plants, is a biologically active compound that has been shown to have various pharmacological properties in experimental studies. In the present study, we demonstrated the modulatory effect of lupeol on 7,12-dimethylbenz[a]anthracene (DMBA)-induced alterations on cell proliferation in the skin of Swiss albino mice. Lupeol treatment showed significant (p < 0.05) preventive effects with marked inhibition at 48, 72, and 96 h against DMBA-mediated neoplastic events. Cell-cycle analysis showed that lupeol-induced G2/M-phase arrest (16-37%) until 72 h, and these inhibitory effects were mediated through inhibition of the cyclin-B-regulated signaling pathway involving p53, p21/WAF1, cdc25C, cdc2, and cyclin-B gene expression. Further lupeol-induced apoptosis was observed, as shown by an increased sub-G1 peak (28%) at 96 h, with upregulation of bax and caspase-3 genes and downregulation of anti-apoptotic bcl-2 and survivin genes. Thus, our results indicate that lupeol has novel anti-proliferative and apoptotic potential that may be helpful in designing strategies to fight skin cancer.

  12. A kinetic model of the cyclin E/Cdk2 developmental timer in Xenopus laevis embryos.

    PubMed

    Ciliberto, Andrea; Petrus, Matthew J; Tyson, John J; Sible, Jill C

    2003-07-01

    Early cell cycles of Xenopus laevis embryos are characterized by rapid oscillations in the activity of two cyclin-dependent kinases. Cdk1 activity peaks at mitosis, driven by periodic degradation of cyclins A and B. In contrast, Cdk2 activity oscillates twice per cell cycle, despite a constant level of its partner, cyclin E. Cyclin E degrades at a fixed time after fertilization, normally corresponding to the midblastula transition. Based on published data and new experiments, we constructed a mathematical model in which: (1) oscillations in Cdk2 activity depend upon changes in phosphorylation, (2) Cdk2 participates in a negative feedback loop with the inhibitory kinase Wee1; (3) cyclin E is cooperatively removed from the oscillatory system; and (4) removed cyclin E is degraded by a pathway activated by cyclin E/Cdk2 itself. The model's predictions about embryos injected with Xic1, a stoichiometric inhibitor of cyclin E/Cdk2, were experimentally validated. PMID:12914904

  13. Abrogation of p53 by its antisense in MCF-7 breast carcinoma cells increases cyclin D1 via activation of Akt and promotion of cell proliferation

    SciTech Connect

    Chhipa, Rishi Raj; Kumari, Ratna; Upadhyay, Ankur Kumar; Bhat, Manoj Kumar

    2007-11-15

    The p53 protein has been a subject of intense research interest since its discovery as about 50% of human cancers carry p53 mutations. Mutations in the p53 gene are the most frequent genetic lesions in breast cancers suggesting a critical role of p53 in breast cancer development, growth and chemosensitivity. This report describes the derivation and characterization of MCF-7As53, an isogenic cell line derived from MCF-7 breast carcinoma cells in which p53 was abrogated by antisense p53 cDNA. Similar to MCF-7 and simultaneously selected hygromycin resistant MCF-7H cells, MCF-7As53 cells have consistent basal epithelial phenotype, morphology, and estrogen receptor expression levels at normal growth conditions. Present work documents investigation of molecular variations, growth kinetics, and cell cycle related studies in relation to absence of wild-type p53 protein and its transactivation potential as well. Even though wild-type tumor suppressor p53 is an activator of cell growth arrest and apoptosis-mediator genes such as p21, Bax, and GADD45 in MCF-7As53 cells, no alterations in expression levels of these genes were detected. The doubling time of these cells decreased due to depletion of G0/G1 cell phase because of constitutive activation of Akt and increase in cyclin D1 protein levels. This proliferative property was abrogated by wortmannin, an inhibitor of PI3-K/Akt signaling pathway. Therefore this p53 null cell line indicates that p53 is an indispensable component of cellular signaling system which is regulated by caveolin-1 expression, involving Akt activation and increase in cyclin D1, thereby promoting proliferation of breast cancer cells.

  14. Molecular evidence for increased antitumor activity of gemcitabine in combination with a cyclin-dependent kinase inhibitor, P276-00 in pancreatic cancers

    PubMed Central

    2012-01-01

    Background P276-00 is a novel cyclin-dependent kinase inhibitor currently in Phase II clinical trials. Gemcitabine is a standard of care for the treatment of pancreatic cancer. The present study investigated the effect of the combination of P276-00 and gemcitabine in five pancreatic cancer cell lines. Methods Cytotoxic activity was evaluated by Propidium Iodide assay. Cell cycle and apoptosis was analyzed by flow cytometry. Genes and proteins known to inhibit apoptosis and contribute to chemoresistance were analysed using western blot analysis and RT-PCR. In vivo efficacy was studied in PANC-1 xenograft model. Results The combination of gemcitabine followed by P276-00 was found to be highly to weakly synergistic in various pancreatic cancer cell lines as assessed by the combination index. Enhancement of apoptosis in PANC-1 cells and decrease in the antiapoptotic protein Bcl-2 and survivin was seen. P276-00 potentiated the gemcitabine-induced cytotoxicity by modulation of proteins involved in chemoresistance to gemcitabine and cell cycle viz. antiapoptotic proteins p8 and cox-2, proapoptotic protein BNIP3 and cell cycle related proteins Cdk4 and cyclin D1. The above results could explain the novel mechanisms of action of the combination therapy. We also show here that gemcitabine in combination with P276-00 is much more effective as an antitumor agent compared with either agent alone in the PANC-1 xenograft tumor model in SCID mice. Conclusions The chemosensitzation of pancreatic tumors to gemcitabine would likely be an important and novel strategy for treatment of pancreatic cancer and enable the use of lower and safer concentrations, to pave the way for a more effective treatment in this devastating disease. Phase IIb clinical trials of P276-00 in combination with gemcitabine in pancreatic cancer patients are ongoing. PMID:22873289

  15. Kinase-independent role of cyclin D1 in chromosomal instability and mammary tumorigenesis.

    PubMed

    Casimiro, Mathew C; Di Sante, Gabriele; Crosariol, Marco; Loro, Emanuele; Dampier, William; Ertel, Adam; Yu, Zuoren; Saria, Elizabeth A; Papanikolaou, Alexandros; Li, Zhiping; Wang, Chenguang; Addya, Sankar; Lisanti, Michael P; Fortina, Paolo; Cardiff, Robert D; Tozeren, Aydin; Knudsen, Erik S; Arnold, Andrew; Pestell, Richard G

    2015-04-20

    Cyclin D1 is an important molecular driver of human breast cancer but better understanding of its oncogenic mechanisms is needed, especially to enhance efforts in targeted therapeutics. Currently, pharmaceutical initiatives to inhibit cyclin D1 are focused on the catalytic component since the transforming capacity is thought to reside in the cyclin D1/CDK activity. We initiated the following study to directly test the oncogenic potential of catalytically inactive cyclin D1 in an in vivo mouse model that is relevant to breast cancer. Herein, transduction of cyclin D1(-/-) mouse embryonic fibroblasts (MEFs) with the kinase dead KE mutant of cyclin D1 led to aneuploidy, abnormalities in mitotic spindle formation, autosome amplification, and chromosomal instability (CIN) by gene expression profiling. Acute transgenic expression of either cyclin D1(WT) or cyclin D1(KE) in the mammary gland was sufficient to induce a high CIN score within 7 days. Sustained expression of cyclin D1(KE) induced mammary adenocarcinoma with similar kinetics to that of the wild-type cyclin D1. ChIP-Seq studies demonstrated recruitment of cyclin D1(WT) and cyclin D1(KE) to the genes governing CIN. We conclude that the CDK-activating function of cyclin D1 is not necessary to induce either chromosomal instability or mammary tumorigenesis. PMID:25940700

  16. Regulation of cyclin E stability in Xenopus laevis embryos

    NASA Astrophysics Data System (ADS)

    Brandt-(Webb), Yekaterina

    Cyclin-Cdk complexes positively regulate cell cycle progression. Cyclins are regulatory subunits that bind to and activate cyclin-dependent kinases or Cdks. Cyclin E associates with Cdk2 to mediate G1/S phase transition of the cell cycle. Cyclin E is overexpressed in breast, lung, skin, gastrointestinal, cervical, and ovarian cancers. Its overexpression correlates with poor patient prognosis and is involved in the etiology of breast cancer. We have been studying how this protein is downregulated during development in order to determine if these mechanisms are disrupted during tumorigenesis, leading to its overexpression. Using Xenopus laevis embryos as a model, we have shown previously that during the first 12 embryonic cell cycles Cyclin E levels remain constant yet Cdk2 activity oscillates twice per cell cycle. Cyclin E is abruptly destabilized by an undefined mechanism after the 12th cell cycle, which corresponds to the midblastula transition (MBT). Based on work our work and work by others, we have hypothesized that differential phosphorylation and a change in localization result in Cyclin E degradation by the 26S proteasome at the MBT. To test this, we generated a series of point mutations in conserved threonine/serine residues implicated in degradation of human Cyclin E. Using Western blot analysis, we show that similarly to human Cyclin E, mutation of these residues to unphosphorylatable alanine stabilizes Cyclin E past the MBT when they are expressed in vivo. Cyclin E localization was studied by immunofluorescence analysis of endogenous and exogenous protein in pre-MBT, MBT, and post-MBT embryos. In addition, we developed a novel method of conjugating recombinant His6-tagged Cyclin E to fluorescent (CdSe)ZnS nanoparticles (quantum dots) capped with dihydrolipoic acid. Confocal microscopy was used to visualize His6Cyclin E-quantum dot complexes inside embryo cells in real time. We found that re-localization at the MBT from the cytoplasm to the nucleus

  17. Cyclin D1/cyclin dependent kinase 4 interacts with filamin A and affects the migration and invasion potential of breast cancer cells

    PubMed Central

    Zhong, Zhijiu; Yeow, Wen-Shuz; Zou, Chunhua; Wassell, Richard; Wang, Chenguang; Pestell, Richard G.; Quong, Judy N.; Quong, Andrew A.

    2010-01-01

    Cyclin D1 belongs to the family of proteins that regulates progression through the G1-S phase of the cell cycle through binding to cyclin dependent kinase 4 to phosphorylate the retinoblastoma protein and release E2F transcription factors for progression through cell cycle. Several cancers, including breast, colon and prostate over-express the cyclin D1 gene. However, the correlation between cyclin D1 over-expression with E2F target gene regulation or cyclin dependent kinase-dependent cyclin D1 activity with tumor development have not been identified. This suggests that the role of cyclin D1 in oncogenesis may be independent of its function as a cell cycle regulator. One such function is the role of cyclin D1 in cell adhesion and motility. Filamin A, a member of the actin-binding filamin protein family, regulates signaling events involved in cell motility and invasion. Filamin A has also been associated with a variety of cancers including lung, prostate, melanoma, human bladder cancer, and neuroblastoma. We hypothesized that elevated cyclin D1 facilitates motility in the invasive MDA-MB-231 breast cancer cell line. We show that MDA-MB-231 motility is affected by disturbing cyclin D1 levels or cyclin D1-cdk4/6 kinase activity. Using mass spectrometry, we found that cyclin D1 and Filamin A co-immunoprecipitate and that lower levels of cyclin D1 are associated with decreased phosphorylation of FLNa at serine 2152 and 1459. We also identify many proteins related to cytoskeletal function, biomolecular synthesis, organelle biogenesis, and calcium regulation whose levels of expression change concomitant with decreased cell motility induced by decreased cyclin D1 and cyclin D1-cdk4/6 activity. PMID:20179208

  18. Ringo/cyclin-dependent kinase and mitogen-activated protein kinase signaling pathways regulate the activity of the cell fate determinant Musashi to promote cell cycle re-entry in Xenopus oocytes.

    PubMed

    Arumugam, Karthik; MacNicol, Melanie C; Wang, Yiying; Cragle, Chad E; Tackett, Alan J; Hardy, Linda L; MacNicol, Angus M

    2012-03-23

    Cell cycle re-entry during vertebrate oocyte maturation is mediated through translational activation of select target mRNAs, culminating in the activation of mitogen-activated protein kinase and cyclin B/cyclin-dependent kinase (CDK) signaling. The temporal order of targeted mRNA translation is crucial for cell cycle progression and is determined by the timing of activation of distinct mRNA-binding proteins. We have previously shown in oocytes from Xenopus laevis that the mRNA-binding protein Musashi targets translational activation of early class mRNAs including the mRNA encoding the Mos proto-oncogene. However, the molecular mechanism by which Musashi function is activated is unknown. We report here that activation of Musashi1 is mediated by Ringo/CDK signaling, revealing a novel role for early Ringo/CDK function. Interestingly, Musashi1 activation is subsequently sustained through mitogen-activated protein kinase signaling, the downstream effector of Mos mRNA translation, thus establishing a positive feedback loop to amplify Musashi function. The identified regulatory sites are present in mammalian Musashi proteins, and our data suggest that phosphorylation may represent an evolutionarily conserved mechanism to control Musashi-dependent target mRNA translation.

  19. Cyclin-Dependent Kinase 5 Modulates the Transcriptional Activity of the Mineralocorticoid Receptor and Regulates Expression of Brain-Derived Neurotrophic Factor

    PubMed Central

    Kino, Tomoshige; Jaffe, Howard; Amin, Niranjana D.; Chakrabarti, Mayukh; Zheng, Ya-Li; Chrousos, George P.; Pant, Harish C.

    2010-01-01

    Glucocorticoids, major end effectors of the stress response, play an essential role in the homeostasis of the central nervous system (CNS) and contribute to memory consolidation and emotional control through their intracellular receptors, the glucocorticoid and mineralocorticoid receptors. Cyclin-dependent kinase 5 (CDK5), on the other hand, plays important roles in the morphogenesis and functions of the central nervous system, and its aberrant activation has been associated with development of neurodegenerative disorders. We previously reported that CDK5 phosphorylated the glucocorticoid receptor and modulated its transcriptional activity. Here we found that CDK5 also regulated mineralocorticoid receptor-induced transcriptional activity by phosphorylating multiple serine and threonine residues located in its N-terminal domain through physical interaction. Aldosterone and dexamethasone, respectively, increased and suppressed mRNA/protein expression of brain-derived neurotrophic factor (BDNF) in rat cortical neuronal cells, whereas the endogenous glucocorticoid corticosterone showed a biphasic effect. CDK5 enhanced the effect of aldosterone and dexamethasone on BDNF expression. Because this neurotrophic factor plays critical roles in neuronal viability, synaptic plasticity, consolidation of memory, and emotional changes, we suggest that aberrant activation of CDK5 might influence these functions through corticosteroid receptors/BDNF. PMID:20357208

  20. The Activators of Cyclin-Dependent Kinase 5 p35 and p39 Are Essential for Oligodendrocyte Maturation, Process Formation, and Myelination

    PubMed Central

    Luo, Fucheng; Zhang, Jessie; Burke, Kathryn

    2016-01-01

    The regulation of oligodendrocyte development and myelin formation in the CNS is poorly defined. Multiple signals influence the rate and extent of CNS myelination, including the noncanonical cyclin-dependent kinase 5 (Cdk5) whose functions are regulated by its activators p35 and p39. Here we show that selective loss of either p35 or p39 perturbed specific aspects of oligodendrocyte development, whereas loss of both p35 and p39 completely inhibited the development of mature oligodendrocytes and myelination. In the absence of p35, oligodendrocyte differentiation was delayed, process outgrowth was truncated in vitro, and the patterning and extent of myelination were perturbed in the CNS of p35−/− mice. In the absence of p39, oligodendrocyte maturation was transiently affected both in vitro and in vivo. However, loss of both p35 and p39 in oligodendrocyte lineage cells completely inhibited oligodendrocyte progenitor cell differentiation and myelination both in vitro and after transplantation into shiverer slice cultures. Loss of p35 and p39 had a more profound effect on oligodendrocyte development than simply the loss of Cdk5 and could not be rescued by Cdk5 overexpression. These data suggest p35 and p39 have specific and overlapping roles in oligodendrocyte development, some of which may be independent of Cdk5 activation. SIGNIFICANCE STATEMENT The development of oligodendrocytes and myelination is essential for normal CNS function and cyclin-dependent kinase 5 (Cdk5) activity is critical for oligodendrocyte maturation, but how Cdk5 activity is controlled is unclear. Here we show that the coactivators of Cdk5, p35 and p39, regulate distinct stages of oligodendrocyte development and myelination. Loss of p35 perturbs oligodendrocyte progenitor cell differentiation, whereas loss of p39 delays oligodendrocyte maturation. Loss of both completely inhibits oligodendrogenesis and myelination. Disruption of oligodendrocyte development was more pronounced in p35−/−;p39

  1. Cyclin-dependent kinase 5 modulates STAT3 and androgen receptor activation through phosphorylation of Ser⁷²⁷ on STAT3 in prostate cancer cells.

    PubMed

    Hsu, Fu-Ning; Chen, Mei-Chih; Lin, Kuan-Chia; Peng, Yu-Ting; Li, Pei-Chi; Lin, Eugene; Chiang, Ming-Ching; Hsieh, Jer-Tsong; Lin, Ho

    2013-10-15

    Cyclin-dependent kinase 5 (Cdk5) is known to regulate prostate cancer metastasis. Our previous results indicated that Cdk5 activates androgen receptor (AR) and supports prostate cancer growth. We also found that STAT3 is a target of Cdk5 in promoting thyroid cancer cell growth, whereas STAT3 may play a role as a regulator to AR activation under cytokine control. In this study, we investigated the regulation of Cdk5 and its activator p35 on STAT3/AR signaling in prostate cancer cells. Our results show that Cdk5 biochemically interacts with STAT3 and that this interaction depends on Cdk5 activation in prostate cancer cells. The phosphorylation of STAT3 at Ser⁷²⁷ (p-Ser⁷²⁷-STAT3) is regulated by Cdk5 in cells and xenograft tumors. The mutant of STAT3 S727A reduces its interaction with Cdk5. We further show that the nuclear distribution of p-Ser⁷²⁷-STAT3 and the expression of STAT3-regulated genes (junB, c-fos, c-myc, and survivin) are regulated by Cdk5 activation. STAT3 mutant does not further decrease cell proliferation upon Cdk5 inhibition, which implies that the role of STAT3 regulated by Cdk5 correlates to cell proliferation control. Interestingly, Cdk5 may regulate the interaction between STAT3 and AR through phosphorylation of Ser⁷²⁷-STAT3 and therefore upregulate AR protein stability and transactivation. Correspondingly, clinical evidence shows that the level of p-Ser⁷²⁷-STAT3 is significantly correlated with Gleason score and the levels of upstream regulators (Cdk5 and p35) as well as downstream protein (AR). In conclusion, this study demonstrates that Cdk5 regulates STAT3 activation through Ser⁷²⁷ phosphorylation and further promotes AR activation by protein-protein interaction in prostate cancer cells.

  2. Interactions between human cyclin T, Tat, and the transactivation response element (TAR) are disrupted by a cysteine to tyrosine substitution found in mouse cyclin T

    PubMed Central

    Fujinaga, Koh; Taube, Ran; Wimmer, Jörg; Cujec, Thomas P.; Peterlin, B. Matija

    1999-01-01

    The transcriptional transactivator Tat from HIV binds to the transactivation response element (TAR) RNA to increase rates of elongation of viral transcription. Human cyclin T supports these interactions between Tat and TAR. In this study, we report the sequence of mouse cyclin T and identify the residues from positions 1 to 281 in human cyclin T that bind to Tat and TAR. Mouse cyclin T binds to Tat weakly and is unable to facilitate interactions between Tat and TAR. Reciprocal exchanges of the cysteine and tyrosine at position 261 in human and mouse cyclin T proteins also render human cyclin T inactive and mouse cyclin T active. These findings reveal the molecular basis for the restriction of Tat transactivation in rodent cells. PMID:9990016

  3. Proteasome-mediated destruction of the cyclin a/cyclin-dependent kinase 2 complex suppresses tumor cell growth in vitro and in vivo.

    PubMed

    Chen, Wei; Lee, Jeongwu; Cho, Steve Y; Fine, Howard A

    2004-06-01

    Cyclin-dependent kinases (cdks) represent potentially promising molecular targets for cancer therapeutic strategies. To evaluate the antitumor activity of selective cyclin/cdk inhibition, we constructed a chimeric protein composed of a F-box protein (TrCP) fused to a peptide comprising the cyclin/cdk2 binding motif in p21-like cdk inhibitors (TrCP-LFG). We now demonstrate that endogenous cyclin A and its binding substrate, cdk2, can be tethered to beta-TrCP, ubiquitinated, and effectively degraded. Degradation of cdk2 and cyclin A together, but not cdk2 alone, results in massive tumor cell apoptosis in vitro and in vivo in a proteasome-dependent manner with no toxicity to normal tissue. These data demonstrate that cyclin A and/or the cyclin A/cdk2 complex is a promising anticancer target with a high therapeutic index.

  4. Cyclin-dependent kinase-5 and p35/p25 activators in schizophrenia and major depression prefrontal cortex: basal contents and effects of psychotropic medications.

    PubMed

    Ramos-Miguel, Alfredo; Meana, J Javier; García-Sevilla, Jesús A

    2013-04-01

    Cyclin-dependent kinase-5 (CDK5) and p35/p25 activators, interacting with the exocytotic machinery (e.g. munc18-1 and syntaxin-1A), play critical roles in neurosecretion. The basal status of CDK5/p35/p25 and the effect of psychotropic drugs (detected in blood/urine samples) were investigated in post-mortem prefrontal cortex (PFC)/Brodmann's area 9 of schizophrenia (SZ) and major depression (MD) subjects. In SZ (all subjects, n = 24), CDK5 and p35, but not p25, were reduced (-28 to -58%) compared to controls. In SZ antipsychotic-free (n = 12), activator p35 was decreased (-52%). In SZ antipsychotic-treated (n = 12), marked reductions of CDK5 (-47%), p35 (-76%) and p25 (-36%) were quantified. In MD (n = 13), including antidepressant-free/treated subgroups, CDK5, p35 and p25 were unaltered. In SZ (n = 24), CDK5, p35 or p25 correlated with munc18-1a, but not with syntaxin-1A. The results demonstrate reduced p35 basal content and down-regulation of CDK5/p35/p25 by antipsychotics in SZ. The suggested CDK5/munc18-1a functional interaction may lead to dysregulated neurosecretion in SZ PFC.

  5. Decreased Activity in Neuropathic Pain Form and Gene Expression of Cyclin-Dependent Kinase5 and Glycogen Synthase Kinase-3 Beta in Soleus Muscle of Wistar Male Rats

    PubMed Central

    Rahmati, Masoud; Taherabadi, Seyed Jalal; Mehrabi, Mahmoud

    2015-01-01

    Background: The relationship between decreased activity/neuropathic pain and gene expression alterations in soleus muscle has remained elusive. Objectives: In this experimental study, we investigated the effects of decreased activity in neuropathic pain form on Cyclin-Dependent Kinase 5 (CDK5) and Glycogen Synthase Kinase-3 β (GSK-3β) gene expression in soleus muscle of rats. Materials and Methods: Twelve male Wistar rats were randomly divided into three groups: (1) tight ligation of the L5 spinal nerve (SNL: n = 4); (2) sham surgery (Sham: n = 4), and (3) control (C: n = 4). The threshold to produce a withdrawal response to a mechanical and thermal stimulus was measured using von Frey filaments and radiation heat apparatus, respectively. Following 4 weeks after surgery, the left soleus muscle was removed and mRNA levels were determined by real-time Polymerase Chain Reaction (PCR). Results: Compared to control animals, L5 ligated animals developed mechanical and heat hypersensitivity during total period of study. Soleus muscle weight as well as CDK5 mRNA levels (less than ~ 0.4 fold) was decreased and GSK-3β mRNA levels (up to ~ 7 folds) increased in L5 ligated animals. Conclusions: These results showed enhanced muscle atrophy processes following peripheral nerve damage and might provide a useful approach to study underlying muscle mechanisms associated with clinical neuropathic pain syndromes. PMID:26290750

  6. Lipin1 Regulates Skeletal Muscle Differentiation through Extracellular Signal-regulated Kinase (ERK) Activation and Cyclin D Complex-regulated Cell Cycle Withdrawal*

    PubMed Central

    Jiang, Weihua; Zhu, Jing; Zhuang, Xun; Zhang, Xiping; Luo, Tao; Esser, Karyn A.; Ren, Hongmei

    2015-01-01

    Lipin1, an intracellular protein, plays critical roles in controlling lipid synthesis and energy metabolism through its enzymatic activity and nuclear transcriptional functions. Several mouse models of skeletal muscle wasting are associated with lipin1 mutation or altered expression. Recent human studies have suggested that children with homozygous null mutations in the LPIN1 gene suffer from rhabdomyolysis. However, the underlying pathophysiologic mechanism is still poorly understood. In the present study we examined whether lipin1 contributes to regulating muscle regeneration. We characterized the time course of skeletal muscle regeneration in lipin1-deficient fld mice after injury. We found that fld mice exhibited smaller regenerated muscle fiber cross-sectional areas compared with wild-type mice in response to injury. Our results from a series of in vitro experiments suggest that lipin1 is up-regulated and translocated to the nucleus during myoblast differentiation and plays a key role in myogenesis by regulating the cytosolic activation of ERK1/2 to form a complex and a downstream effector cyclin D3-mediated cell cycle withdrawal. Overall, our study reveals a previously unknown role of lipin1 in skeletal muscle regeneration and expands our understanding of the cellular and molecular mechanisms underlying skeletal muscle regeneration. PMID:26296887

  7. Cyclin-dependent kinase-5 and p35/p25 activators in schizophrenia and major depression prefrontal cortex: basal contents and effects of psychotropic medications.

    PubMed

    Ramos-Miguel, Alfredo; Meana, J Javier; García-Sevilla, Jesús A

    2013-04-01

    Cyclin-dependent kinase-5 (CDK5) and p35/p25 activators, interacting with the exocytotic machinery (e.g. munc18-1 and syntaxin-1A), play critical roles in neurosecretion. The basal status of CDK5/p35/p25 and the effect of psychotropic drugs (detected in blood/urine samples) were investigated in post-mortem prefrontal cortex (PFC)/Brodmann's area 9 of schizophrenia (SZ) and major depression (MD) subjects. In SZ (all subjects, n = 24), CDK5 and p35, but not p25, were reduced (-28 to -58%) compared to controls. In SZ antipsychotic-free (n = 12), activator p35 was decreased (-52%). In SZ antipsychotic-treated (n = 12), marked reductions of CDK5 (-47%), p35 (-76%) and p25 (-36%) were quantified. In MD (n = 13), including antidepressant-free/treated subgroups, CDK5, p35 and p25 were unaltered. In SZ (n = 24), CDK5, p35 or p25 correlated with munc18-1a, but not with syntaxin-1A. The results demonstrate reduced p35 basal content and down-regulation of CDK5/p35/p25 by antipsychotics in SZ. The suggested CDK5/munc18-1a functional interaction may lead to dysregulated neurosecretion in SZ PFC. PMID:22964075

  8. The Activators of Cyclin-Dependent Kinase 5 p35 and p39 Are Essential for Oligodendrocyte Maturation, Process Formation, and Myelination.

    PubMed

    Luo, Fucheng; Zhang, Jessie; Burke, Kathryn; Miller, Robert H; Yang, Yan

    2016-03-01

    The regulation of oligodendrocyte development and myelin formation in the CNS is poorly defined. Multiple signals influence the rate and extent of CNS myelination, including the noncanonical cyclin-dependent kinase 5 (Cdk5) whose functions are regulated by its activators p35 and p39. Here we show that selective loss of either p35 or p39 perturbed specific aspects of oligodendrocyte development, whereas loss of both p35 and p39 completely inhibited the development of mature oligodendrocytes and myelination. In the absence of p35, oligodendrocyte differentiation was delayed, process outgrowth was truncated in vitro, and the patterning and extent of myelination were perturbed in the CNS of p35(-/-) mice. In the absence of p39, oligodendrocyte maturation was transiently affected both in vitro and in vivo. However, loss of both p35 and p39 in oligodendrocyte lineage cells completely inhibited oligodendrocyte progenitor cell differentiation and myelination both in vitro and after transplantation into shiverer slice cultures. Loss of p35 and p39 had a more profound effect on oligodendrocyte development than simply the loss of Cdk5 and could not be rescued by Cdk5 overexpression. These data suggest p35 and p39 have specific and overlapping roles in oligodendrocyte development, some of which may be independent of Cdk5 activation.

  9. An enhancer trap line associated with a D-class cyclin gene in Arabidopsis.

    PubMed

    Swaminathan, K; Yang, Y; Grotz, N; Campisi, L; Jack, T

    2000-12-01

    In yeast and animals, cyclins have been demonstrated to be important regulators of cell cycle progression. In recent years, a large number of A-, B-, and D-class cyclins have been isolated from a variety of plant species. One class of cyclins, the D-class cyclins, is important for progression through G1 phase of the cell cycle. In Arabidopsis, four D-class cyclins have been isolated and characterized (CYCLIN-D1;1, CYCLIN-D2;1, CYCLIN-D3;1, and CYCLIN-D4;1). In this report we describe the characterization of a fifth D-class cyclin gene, CYCLIN-D3;2 (CYCD3;2), from Arabidopsis. An enhancer trap line, line 5580, contains a T-DNA insertion in CYCD3;2. Enhancer trap line 5580 exhibits expression in young vegetative and floral primordia. In line 5580, T-DNA is inserted in the first exon of the CYCD3;2 gene; in homozygous 5580 plants CYCD3;2 RNA is not detectable. Even though CYCD3;2 gene function is eliminated, homozygous 5580 plants do not exhibit an obvious growth or developmental phenotype. Via in situ hybridization we demonstrate that CYCD3;2 RNA is expressed in developing vegetative and floral primordia. In addition, CYCD3;2 is also capable of rescuing a yeast strain that is deficient in G1 cyclin activity. PMID:11115883

  10. ATM is required for rapid degradation of cyclin D1 in response to {gamma}-irradiation

    SciTech Connect

    Choo, Dong Wan; Baek, Hye Jung; Motoyama, Noboru; Cho, Kwan Ho; Kim, Hye Sun; Kim, Sang Soo

    2009-01-23

    The cellular response to DNA damage induced by {gamma}-irradiation activates cell-cycle arrest to permit DNA repair and to prevent replication. Cyclin D1 is the key molecule for transition between the G1 and S phases of the cell-cycle, and amplification or overexpression of cyclin D1 plays pivotal roles in the development of several human cancers. To study the regulation of cyclin D1 in the DNA-damaged condition, we analyzed the proteolytic regulation of cyclin D1 expression upon {gamma}-irradiation. Upon {gamma}-irradiation, a rapid reduction in cyclin D1 levels was observed prior to p53 stabilization, indicating that the stability of cyclin D1 is controlled in a p53-independent manner. Further analysis revealed that irradiation facilitated ubiquitination of cyclin D1 and that a proteasome inhibitor blocked cyclin D1 degradation under the same conditions. Interestingly, after mutation of threonine residue 286 of cyclin D1, which is reported to be the GSK-3{beta} phosphorylation site, the mutant protein showed resistance to irradiation-induced proteolysis although inhibitors of GSK-3{beta} failed to prevent cyclin D1 degradation. Rather, ATM inhibition markedly prevented cyclin D1 degradation induced by {gamma}-irradiation. Our data indicate that communication between ATM and cyclin D1 may be required for maintenance of genomic integrity achieved by rapid arrest of the cell-cycle, and that disruption of this crosstalk may increase susceptibility to cancer.

  11. Alternatively Spliced Isoforms of KV10.1 Potassium Channels Modulate Channel Properties and Can Activate Cyclin-dependent Kinase in Xenopus Oocytes*

    PubMed Central

    Ramos Gomes, Fernanda; Romaniello, Vincenzo; Sánchez, Araceli; Weber, Claudia; Narayanan, Pratibha; Psol, Maryna; Pardo, Luis A.

    2015-01-01

    KV10.1 is a voltage-gated potassium channel expressed selectively in the mammalian brain but also aberrantly in cancer cells. In this study we identified short splice variants of KV10.1 resulting from exon-skipping events (E65 and E70) in human brain and cancer cell lines. The presence of the variants was confirmed by Northern blot and RNase protection assays. Both variants completely lacked the transmembrane domains of the channel and produced cytoplasmic proteins without channel function. In a reconstituted system, both variants co-precipitated with the full-length channel and induced a robust down-regulation of KV10.1 current when co-expressed with the full-length form, but their effect was mechanistically different. E65 required a tetramerization domain and induced a reduction in the overall expression of full-length KV10.1, whereas E70 mainly affected its glycosylation pattern. E65 triggered the activation of cyclin-dependent kinases in Xenopus laevis oocytes, suggesting a role in cell cycle control. Our observations highlight the relevance of noncanonical functions for the oncogenicity of KV10.1, which need to be considered when ion channels are targeted for cancer therapy. PMID:26518875

  12. Alternatively Spliced Isoforms of KV10.1 Potassium Channels Modulate Channel Properties and Can Activate Cyclin-dependent Kinase in Xenopus Oocytes.

    PubMed

    Ramos Gomes, Fernanda; Romaniello, Vincenzo; Sánchez, Araceli; Weber, Claudia; Narayanan, Pratibha; Psol, Maryna; Pardo, Luis A

    2015-12-18

    KV10.1 is a voltage-gated potassium channel expressed selectively in the mammalian brain but also aberrantly in cancer cells. In this study we identified short splice variants of KV10.1 resulting from exon-skipping events (E65 and E70) in human brain and cancer cell lines. The presence of the variants was confirmed by Northern blot and RNase protection assays. Both variants completely lacked the transmembrane domains of the channel and produced cytoplasmic proteins without channel function. In a reconstituted system, both variants co-precipitated with the full-length channel and induced a robust down-regulation of KV10.1 current when co-expressed with the full-length form, but their effect was mechanistically different. E65 required a tetramerization domain and induced a reduction in the overall expression of full-length KV10.1, whereas E70 mainly affected its glycosylation pattern. E65 triggered the activation of cyclin-dependent kinases in Xenopus laevis oocytes, suggesting a role in cell cycle control. Our observations highlight the relevance of noncanonical functions for the oncogenicity of KV10.1, which need to be considered when ion channels are targeted for cancer therapy. PMID:26518875

  13. Cyclin A–CDK phosphorylates Sp1 and enhances Sp1-mediated transcription

    PubMed Central

    de Borja, Patrick Fojas; Collins, N.Keith; Du, Ping; Azizkhan-Clifford, Jane; Mudryj, Maria

    2001-01-01

    Cyclin A-mediated activation of cyclin-dependent kinases (CDKs) is essential for cell cycle transversal. Cyclin A activity is regulated on several levels and cyclin A elevation in a number of cancers suggests a role in tumorigenesis. In the present study, we used a modified DNA binding site selection and PCR amplification procedure to identify DNA binding proteins that are potential substrates of cyclin A–CDK. One of the sequences identified is the Sp1 transcription factor binding site. Co-immunoprecipitation experiments show that cyclin A and Sp1 can interact physically. In vitro and in vivo phosphorylation studies indicate that cyclin A–CDK complexes can phosphorylate Sp1. The phosphorylation site is located in the N-terminal region of the protein. Cells overexpressing cyclin A have elevated levels of Sp1 DNA binding activity, suggesting that cyclin A–CDK-mediated phosphorylation augments Sp1 DNA binding properties. In co-transfection studies, cyclin A expression stimulated transcription from an Sp1-regulated promoter. Mutation of the phosphorylation site abrogated cyclin A–CDK-dependent phosphorylation, augmentation of Sp1 transactivation function and DNA binding activity. PMID:11598016

  14. Both cyclin I and p35 are required for maximal survival benefit of cyclin-dependent kinase 5 in kidney podocytes.

    PubMed

    Taniguchi, Yoshinori; Pippin, Jeffrey W; Hagmann, Henning; Krofft, Ronald D; Chang, Alice M; Zhang, Jiong; Terada, Yoshio; Brinkkoetter, Paul; Shankland, Stuart J

    2012-05-01

    Cyclin-dependent kinase (Cdk)-5 is activated by both cyclin I and the noncyclin activator p35 in terminally differentiated cells such as kidney podocytes and neurons. Cyclin I and p35 are restricted to podocytes in the kidney, and each limit podocyte apoptosis by activating Cdk5. To determine whether both activators are necessary, or whether they serve backup roles, a double cyclin I-p35 null mouse was generated. Experimental glomerular disease characterized by podocyte apoptosis was then induced by administering an anti-podocyte antibody. The results showed that under nonstressed conditions double mutants had normal kidney structure and function and were indistinguishable from wild-type, cyclin I(-/-), or p35(-/-) mice. In contrast, when stressed with disease, podocyte apoptosis increased fourfold compared with diseased cyclin I(-/-) or p35(-/-) mice. This resulted in a more pronounced decrease in podocyte number, proteinuria, and glomerulosclerosis. Under normal states and nephritic states, levels for the prosurvival protein Bcl-2 were lower in double cyclin I(-/-) p35(-/-) mice than the other mice. Similarly, levels of Bcl-xL, another prosurvival member, were lower in normal and nephritic double cyclin I(-/-) p35(-/-) mice but similar to single-cyclin I(-/-) mice. Moreover, levels of ERK1/2 and MEK1/2 activation were lower in nephritic double cyclin I(-/-) p35(-/-) mice but similar to single-cyclin I(-/-) mice. The results demonstrate that the activators of Cdk5, p35, and cyclin I are not required for normal kidney function. However, they play pivotal coordinated roles in maintaining podocyte survival during stress states in disease.

  15. Kainate receptor-mediated apoptosis in primary cultures of cerebellar granule cells is attenuated by mitogen-activated protein and cyclin-dependent kinase inhibitors

    PubMed Central

    Giardina, Sarah F; Beart, Philip M

    2002-01-01

    Previous studies have suggested that neuronal apoptosis is the result of an abortive attempt to re-enter the cell cycle, and more recently the cyclin-dependent (CDKs) and the mitogen-activated protein (MAP) kinases, two superfamilies of kinases that influence and control cell cycle progression, have been implicated in neuronal apoptosis. Here, to examine whether CDK/MAPK related pathways are involved in excitotoxicity, we studied the actions of various kinase inhibitors on apoptosis induced by the ionotropic glutamate (Glu) receptor agonist, kainate (KA), in primary cultures of murine cerebellar granule cells (CGCs). KA-mediated neurotoxicity was concentration-dependent, as determined by a cell viability assay monitoring the reduction of 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and largely apoptotic in nature, as shown by morphological examination and labelling of DNA fragmentation in situ using terminal deoxynucleotidyl transferase (TdT)-mediated dUTP digoxigenin nick-end labelling (TUNEL). KA-mediated neurotoxicity and apoptosis was completely attenuated by the mixed CDK and MAP kinase inhibitor, olomoucine, in a concentration-dependent manner (50 – 600 μM), and partially by roscovitine (1 – 100 μM), a more selective CDK inihibitor. The p38 MAP kinase inhibitor, SB203580 (1 – 100 μM), partially attenuated KA receptor-mediated apoptosis, as did the MAP kinase kinase inhibitors PD98509 (1 – 100 μM) and U0126 (1 – 100 μM). These findings provide new evidence for a complex network of interacting pathways involving CDK/MAPK that control apoptosis downstream of KA receptor activation in excitotoxic neuronal cell death. PMID:11934814

  16. Mechanisms and regulation of the degradation of cyclin B.

    PubMed Central

    Hershko, A

    1999-01-01

    The degradation of the cyclin B subunit of protein kinase Cdk1/cyclin B is required for inactivation of the kinase and exit from mitosis. Cyclin B is degraded by the ubiquitin pathway, a system involved in most selective protein degradation in eukaryotic cells. In this pathway, proteins are targeted for degradation by ligation to ubiquitin, a process carried out by the sequential action of three enzymes: the ubiquitin-activating enzyme E1, a ubiquitin-carrier protein E2 and a ubiquitin-protein ligase E3. In the system responsible for cyclin B degradation, the E3-like function is carried out by a large complex called cyclosome or anaphase-promoting complex (APC). In the early embryonic cell cycles, the cyclosome is inactive in the interphase, but becomes active at the end of mitosis. Activation requires phosphorylation of the cyclosome/APC by protein kinase Cdk1/cyclin B. The lag kinetics of cyclosome activation may be explained by Suc1-assisted multiple phosphorylations of partly phosphorylated complex. The presence of a Fizzy/Cdc20-like protein is necessary for maximal activity of the mitotic form of cyclosome/APC in cyclin-ubiquitin ligation. PMID:10582242

  17. MEK2 controls the activation of MKK3/MKK6-p38 axis involved in the MDA-MB-231 breast cancer cell survival: Correlation with cyclin D1 expression.

    PubMed

    Huth, Hugo W; Albarnaz, Jonas D; Torres, Alice A; Bonjardim, Claudio A; Ropert, Catherine

    2016-09-01

    The Ras-Raf-MEK-ERK1/2 signaling pathway regulates fundamental processes in malignant cells. However, the exact contributions of MEK1 and MEK2 to the development of cancer remain to be established. We studied the effects of MEK small-molecule inhibitors (PD98059 and U0126) and MEK1 and MEK2 knock-down on cell proliferation, apoptosis and MAPK activation. We showed a diminution of cell viability that was associated with a downregulation of cyclin D1 expression and an increase of apoptosis marker in MEK2 silenced cells; by contrast, a slight increase of cell survival was observed in the absence of MEK1 that correlated with an augment of cyclin D1 expression. These data indicate that MEK2 but not MEK1 is essential for MDA-MB-231 cell survival. Importantly, the role of MEK2 in cell survival appeared independent on ERK1/2 phosphorylation since its absence did not alter the level of activated ERK1/2. Indeed, we have reported an unrevealed link between MEK2 and MKK3/MKK6-p38 MAPK axis where MEK2 was essential for the phosphorylation of MKK3/MKK6 and p38 MAPK that directly impacted on cyclin D1 expression. Importantly, the MEK1 inhibitor PD98059, like MEK1 silencing, induced an augment of cyclin D1 expression that correlated with an increase of MDA-MB-231 cell proliferation suggesting that MEK1 may play a regulatory role in these cells. In sum, the crucial role of MEK2 in MDA-MB-231 cell viability and the unknown relationship between MEK2 and MKK3/MKK6-p38 axis here revealed may open new therapeutic strategies for aggressive breast cancer.

  18. Two Degradation Pathways of the p35 Cdk5 (Cyclin-dependent Kinase) Activation Subunit, Dependent and Independent of Ubiquitination.

    PubMed

    Takasugi, Toshiyuki; Minegishi, Seiji; Asada, Akiko; Saito, Taro; Kawahara, Hiroyuki; Hisanaga, Shin-ichi

    2016-02-26

    Cdk5 is a versatile protein kinase that is involved in various neuronal activities, such as the migration of newborn neurons, neurite outgrowth, synaptic regulation, and neurodegenerative diseases. Cdk5 requires the p35 regulatory subunit for activation. Because Cdk5 is more abundantly expressed in neurons compared with p35, the p35 protein levels determine the kinase activity of Cdk5. p35 is a protein with a short half-life that is degraded by proteasomes. Although ubiquitination of p35 has been previously reported, the degradation mechanism of p35 is not yet known. Here, we intended to identify the ubiquitination site(s) in p35. Because p35 is myristoylated at the N-terminal glycine, the possible ubiquitination sites are the lysine residues in p35. We mutated all 23 Lys residues to Arg (p35 23R), but p35 23R was still rapidly degraded by proteasomes at a rate similar to wild-type p35. The degradation of p35 23R in primary neurons and the Cdk5 activation ability of p35 23R suggested the occurrence of ubiquitin-independent degradation of p35 in physiological conditions. We found that p35 has the amino acid sequence similar to the ubiquitin-independent degron in the NKX3.1 homeodomain transcription factor. An Ala mutation at Pro-247 in the degron-like sequence made p35 stable. These results suggest that p35 can be degraded by two degradation pathways: ubiquitin-dependent and ubiquitin-independent. The rapid degradation of p35 by two different methods would be a mechanism to suppress the production of p25, which overactivates Cdk5 to induce neuronal cell death.

  19. Saccharomyces cerevisiae G1 cyclins are differentially involved in invasive and pseudohyphal growth independent of the filamentation mitogen-activated protein kinase pathway.

    PubMed Central

    Loeb, J D; Kerentseva, T A; Pan, T; Sepulveda-Becerra, M; Liu, H

    1999-01-01

    Several lines of evidence suggest that the morphogenetic transition from the yeast form to pseudohyphae in Saccharomyces cerevisiae may be regulated by the cyclin-dependent kinase (Cdk). To examine this hypothesis, we mutated all of the G1 cyclin genes in strains competent to form pseudohyphae. Interestingly, mutation of each G1 cyclin results in a different filamentation phenotype, varying from a significant defect in cln1/cln1 strains to enhancement of filament production in cln3/cln3 strains. cln1 cln2 double mutants are more defective in pseudohyphal development and haploid invasive growth than cln1 strains. FLO11 transcription, which correlates with the level of invasive growth, is low in cln1 cln2 mutants and high in grr1 cells (defective in proteolysis of Cln1,2), suggesting that Cln1,2/Cdks regulate the pseudohyphal transcriptional program. Epistasis analysis reveals that Cln1,2/Cdk and the filamentation MAP kinase pathway function in parallel in regulating filamentous and invasive growth. Cln1 and Cln2, but not Ste20 or Ste12, are responsible for most of the elevated FLO11 transcription in grr1 strains. Furthermore, phenotypic comparison of various filamentation mutants illustrates that cell elongation and invasion/cell-cell adhesion during filamentation are separable processes controlled by the pseudohyphal transcriptional program. Potential targets for G1 cyclin/Cdks during filamentous growth are discussed. PMID:10581264

  20. Disruption of transforming growth factor-beta signaling through beta-spectrin ELF leads to hepatocellular cancer through cyclin D1 activation.

    PubMed

    Kitisin, K; Ganesan, N; Tang, Y; Jogunoori, W; Volpe, E A; Kim, S S; Katuri, V; Kallakury, B; Pishvaian, M; Albanese, C; Mendelson, J; Zasloff, M; Rashid, A; Fishbein, T; Evans, S R T; Sidawy, A; Reddy, E P; Mishra, B; Johnson, L B; Shetty, K; Mishra, L

    2007-11-01

    Transforming growth factor-beta (TGF-beta) signaling members, TGF-beta receptor type II (TBRII), Smad2, Smad4 and Smad adaptor, embryonic liver fodrin (ELF), are prominent tumor suppressors in gastrointestinal cancers. Here, we show that 40% of elf(+/-) mice spontaneously develop hepatocellular cancer (HCC) with markedly increased cyclin D1, cyclin-dependent kinase 4 (Cdk4), c-Myc and MDM2 expression. Reduced ELF but not TBRII, or Smad4 was observed in 8 of 9 human HCCs (P<0.017). ELF and TBRII are also markedly decreased in human HCC cell lines SNU-398 and SNU-475. Restoration of ELF and TBRII in SNU-398 cells markedly decreases cyclin D1 as well as hyperphosphorylated-retinoblastoma (hyperphosphorylated-pRb). Thus, we show that TGF-beta signaling and Smad adaptor ELF suppress human hepatocarcinogenesis, potentially through cyclin D1 deregulation. Loss of ELF could serve as a primary event in progression toward a fully transformed phenotype and could hold promise for new therapeutic approaches in human HCCs.

  1. PinX1 suppresses bladder urothelial carcinoma cell proliferation via the inhibition of telomerase activity and p16/cyclin D1 pathway

    PubMed Central

    2013-01-01

    Background PIN2/TRF1-interacting telomerase inhibitor1 (PinX1) was recently suggested as a putative tumor suppressor in several types of human cancer, based on its binding to and inhibition of telomerase. Moreover, loss of PinX1 has been detected in many human malignancies. However, the possible involvement of PinX1 and its clinical/prognostic significance in urothelial carcinoma of the bladder (UCB) are unclear. Methods The PinX1 expression profile was examined by quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry (IHC) in UCB tissues and adjacent normal urothelial bladder epithelial tissues. PinX1 was overexpressed and silenced in UCB cell lines to determine its role in tumorigenesis, development of UCB, and the possible mechanism. Results PinX1 expression in UCB was significantly down-regulated at both mRNA and protein level as compared with that in normal urothelial bladder epithelial tissues. PinX1 levels were inversely correlated with tumor multiplicity, advanced N classification, high proliferation index (Ki-67), and poor survival (P < 0.05). Moreover, overexpression of PinX1 in UCB cells significantly inhibited cell proliferation in vitro and in vivo, whereas silencing PinX1 dramatically enhanced cell proliferation. Overexpression of PinX1 resulted in G1/S phase arrest and cell growth/proliferation inhibition, while silencing PinX1 led to acceleration of G1/S transition, and cell growth/proliferation promotion by inhibiting/enhancing telomerase activity and via the p16/cyclin D1 pathway. Conclusions These findings suggest that down-regulation of PinX1 play an important role in the tumorigenesis and development of UCB and that the expression of PinX1 as detected by IHC is an independent molecular marker in patients with UCB. PMID:24268029

  2. Calcineurin Regulates Cyclin D1 Accumulation in Growth-stimulated Fibroblasts

    PubMed Central

    Kahl, Christina R.; Means, Anthony R.

    2004-01-01

    Calcium (Ca2+) and calmodulin (CaM) are required for progression of mammalian cells from quiescence into S phase. In multiple cell types, cyclosporin A causes a G1 cell cycle arrest, implicating the serine/threonine phosphatase calcineurin as one Ca2+/CaM-dependent enzyme required for G1 transit. Here, we show, in diploid human fibroblasts, that cyclosporin A arrested cells in G1 before cyclin D/cdk4 complex activation and retinoblastoma hyperphosphorylation. This arrest occurred in early G1 with low levels of cyclin D1 protein. Because cyclin D1 mRNA was induced normally in the cyclosporin A-treated cells, we analyzed the half-life of cyclin D1 in the presence of cyclosporin A and found no difference from control cells. However, cyclosporin A treatment dramatically reduced cyclin D1 protein synthesis. Although these pharmacological experiments suggested that calcineurin regulates cyclin D1 synthesis, we evaluated the effects of overexpression of activated calcineurin on cyclin D1 synthesis. In contrast to the reduction of cyclin D1 with cyclosporin A, ectopic expression of calcium/calmodulin-independent calcineurin promoted synthesis of cyclin D1 during G1 progression. Therefore, calcineurin is a Ca2+/CaM-dependent target that regulates cyclin D1 accumulation in G1. PMID:14767060

  3. D-type cyclins and G1 progression during liver development in the rat

    SciTech Connect

    Boylan, Joan M. . E-mail: Joan_Boylan@brown.edu; Gruppuso, Philip A. . E-mail: Philip_Gruppuso@brown.edu

    2005-05-13

    Initiation and progression through G1 requires the activity of signaling complexes containing cyclins (D- or E-type) and cyclin-dependent kinases (CDK4/6 and CDK2, respectively). We set out to identify the G1-phase cyclins and CDKs that are operative during late gestation liver development in the rat. This is a period during which hepatocytes show a high rate of proliferation that is, at least in part, independent of the mitogenic signaling pathways that are functional in mature hepatocytes. RNase protection assay and Western immunoblotting indicated that cyclin D1 is expressed at similar levels in fetal and adult liver. When cyclin D1 was induced after partial hepatectomy, its predominant CDK-binding partner was CDK4. In contrast, cyclins D2 and D3 predominated in fetal liver and were complexed with both CDK4 and CDK6. Little CDK6 protein was expressed in quiescent or regenerating adult liver. Cyclins E1 and E2 were both transcriptionally up-regulated in fetal liver. Activity of complexes containing cyclins E1 and E2 was higher in fetal liver, as was content of the cell cycle regulator, Rb. In fetal liver, Rb was highly phosphorylated at both cyclin D- and cyclin E-dependent sites. In conclusion, liver development is associated with a switch from cyclin D2/D3-containing complexes to cyclin D1:CDK4 complexes. We speculate that the switch in D-type cyclins may be associated with the dependence on mitogenic signaling that develops as hepatocytes mature.

  4. Foci of cyclin A2 interact with actin and RhoA in mitosis

    PubMed Central

    Loukil, Abdelhalim; Izard, Fanny; Georgieva, Mariya; Mashayekhan, Shaereh; Blanchard, Jean-Marie; Parmeggiani, Andrea; Peter, Marion

    2016-01-01

    Cyclin A2 is a key player in the regulation of the cell cycle. Its degradation in mid-mitosis depends primarily on the ubiquitin-proteasome system (UPS), while autophagy also contributes. However, a fraction of cyclin A2 persists beyond metaphase. In this work, we focus on cyclin A2-rich foci detected in mitosis by high resolution imaging and analyse their movements. We demonstrate that cyclin A2 interacts with actin and RhoA during mitosis, and that cyclin A2 depletion induces a dramatic decrease in active RhoA in mitosis. Our data suggest cyclin A2 participation in RhoA activation in late mitosis. PMID:27279564

  5. Silymarin induces cyclin D1 proteasomal degradation via its phosphorylation of threonine-286 in human colorectal cancer cells.

    PubMed

    Eo, Hyun Ji; Park, Gwang Hun; Song, Hun Min; Lee, Jin Wook; Kim, Mi Kyoung; Lee, Man Hyo; Lee, Jeong Rak; Koo, Jin Suk; Jeong, Jin Boo

    2015-01-01

    Silymarin from milk thistle (Silybum marianum) plant has been reported to show anti-cancer, anti-inflammatory, antioxidant and hepatoprotective effects. For anti-cancer activity, silymarin is known to regulate cell cycle progression through cyclin D1 downregulation. However, the mechanism of silymarin-mediated cyclin D1 downregulation still remains unanswered. The current study was performed to elucidate the molecular mechanism of cyclin D1 downregulation by silymarin in human colorectal cancer cells. The treatment of silymarin suppressed the cell proliferation in HCT116 and SW480 cells and decreased cellular accumulation of exogenously-induced cyclin D1 protein. However, silymarin did not change the level of cyclin D1 mRNA. Inhibition of proteasomal degradation by MG132 attenuated silymarin-mediated cyclin D1 downregulation and the half-life of cyclin D1 was decreased in the cells treated with silymarin. In addition, silymarin increased phosphorylation of cyclin D1 at threonine-286 and a point mutation of threonine-286 to alanine attenuated silymarin-mediated cyclin D1 downregulation. Inhibition of NF-κB by a selective inhibitor, BAY 11-7082 suppressed cyclin D1 phosphorylation and downregulation by silymarin. From these results, we suggest that silymarin-mediated cyclin D1 downregulation may result from proteasomal degradation through its threonine-286 phosphorylation via NF-κB activation. The current study provides new mechanistic link between silymarin, cyclin D1 downregulation and cell growth in human colorectal cancer cells. PMID:25479723

  6. Silymarin induces cyclin D1 proteasomal degradation via its phosphorylation of threonine-286 in human colorectal cancer cells.

    PubMed

    Eo, Hyun Ji; Park, Gwang Hun; Song, Hun Min; Lee, Jin Wook; Kim, Mi Kyoung; Lee, Man Hyo; Lee, Jeong Rak; Koo, Jin Suk; Jeong, Jin Boo

    2015-01-01

    Silymarin from milk thistle (Silybum marianum) plant has been reported to show anti-cancer, anti-inflammatory, antioxidant and hepatoprotective effects. For anti-cancer activity, silymarin is known to regulate cell cycle progression through cyclin D1 downregulation. However, the mechanism of silymarin-mediated cyclin D1 downregulation still remains unanswered. The current study was performed to elucidate the molecular mechanism of cyclin D1 downregulation by silymarin in human colorectal cancer cells. The treatment of silymarin suppressed the cell proliferation in HCT116 and SW480 cells and decreased cellular accumulation of exogenously-induced cyclin D1 protein. However, silymarin did not change the level of cyclin D1 mRNA. Inhibition of proteasomal degradation by MG132 attenuated silymarin-mediated cyclin D1 downregulation and the half-life of cyclin D1 was decreased in the cells treated with silymarin. In addition, silymarin increased phosphorylation of cyclin D1 at threonine-286 and a point mutation of threonine-286 to alanine attenuated silymarin-mediated cyclin D1 downregulation. Inhibition of NF-κB by a selective inhibitor, BAY 11-7082 suppressed cyclin D1 phosphorylation and downregulation by silymarin. From these results, we suggest that silymarin-mediated cyclin D1 downregulation may result from proteasomal degradation through its threonine-286 phosphorylation via NF-κB activation. The current study provides new mechanistic link between silymarin, cyclin D1 downregulation and cell growth in human colorectal cancer cells.

  7. Discovery of [4-Amino-2-(1-methanesulfonylpiperidin-4-ylamino)pyrimidin-5-yl](2,3-difluoro-6-methoxyphenyl)methanone (R547), A Potent and Selective Cyclin-Dependent Kinase Inhibitor with Significiant in Vivo Antitumor Activity

    SciTech Connect

    Chu,X.; DePinto, W.; Bartkovitz, D.; So, S.; Vu, B.; Packman, K.; Lukacs, C.; Ding, Q.; Jiang, N.; et al.

    2006-01-01

    The cyclin-dependent kinases (CDKs) and their cyclin partners are key regulators of the cell cycle. Since deregulation of CDKs is found with high frequency in many human cancer cells, pharmacological inhibition of CDKs with small molecules has the potential to provide an effective strategy for the treatment of cancer. The 2,4-diamino-5-ketopyrimidines 6 reported here represent a novel class of potent and ATP-competitive inhibitors that selectively target the cyclin-dependent kinase family. This diaminopyrimidine core with a substituted 4-piperidine moiety on the C2-amino position and 2-methoxybenzoyl at the C5 position has been identified as the critical structure responsible for the CDK inhibitory activity. Further optimization has led to a good number of analogues that show potent inhibitory activities against CDK1, CDK2, and CDK4 but are inactive against a large panel of serine/threonine and tyrosine kinases (K{sub i} > 10 {mu}M). As one of these representative analogues, compound 39 (R547) has the best CDK inhibitory activities (K{sub i} = 0.001, 0.003, and 0.001 M for CDK1, CDK2, and CDK4, respectively) and excellent in vitro cellular potency, inhibiting the growth of various human tumor cell lines including an HCT116 cell line (IC{sub 50} = 0.08 {mu}M). An X-ray crystal structure of 39 bound to CDK2 has been determined in this study, revealing a binding mode that is consistent with our SAR. Compound 39 demonstrates significant in vivo efficacy in the HCT116 human colorectal tumor xenograft model in nude mice with up to 95% tumor growth inhibition. On the basis of its superior overall profile, 39 was chosen for further evaluation and has progressed into Phase I clinical trial for the treatment of cancer.

  8. Cytoplasmic sequestration of cyclin D1 associated with cell cycle withdrawal of neuroblastoma cells

    SciTech Connect

    Sumrejkanchanakij, Piyamas; Eto, Kazuhiro; Ikeda, Masa-Aki . E-mail: mikeda.emb@tmd.ac.jp

    2006-02-03

    The regulation of D-type cyclin-dependent kinase activity is critical for neuronal differentiation and apoptosis. We recently showed that cyclin D1 is sequestered in the cytoplasm and that its nuclear localization induces apoptosis in postmitotic primary neurons. Here, we further investigated the role of the subcellular localization of cyclin D1 in cell cycle withdrawal during the differentiation of N1E-115 neuroblastoma cells. We show that cyclin D1 became predominantly cytoplasmic after differentiation. Targeting cyclin D1 expression to the nucleus induced phosphorylation of Rb and cdk2 kinase activity. Furthermore, cyclin D1 nuclear localization promoted differentiated N1E-115 cells to reenter the cell cycle, a process that was inhibited by p16{sup INK4a}, a specific inhibitor of D-type cyclin activity. These results indicate that cytoplasmic sequestration of cyclin D1 plays a role in neuronal cell cycle withdrawal, and suggests that the abrogation of machinery involved in monitoring aberrant nuclear cyclin D1 activity contributes to neuronal tumorigenesis.

  9. Suberoylanilide hydroxamic acid (SAHA) inhibits EGF-induced cell transformation via reduction of cyclin D1 mRNA stability

    SciTech Connect

    Zhang, Jingjie; Ouyang, Weiming; Li, Jingxia; Zhang, Dongyun; Yu, Yonghui; Wang, York; Li, Xuejun; Huang, Chuanshu

    2012-09-01

    Suberoylanilide hydroxamic acid (SAHA) inhibiting cancer cell growth has been associated with its downregulation of cyclin D1 protein expression at transcription level or translation level. Here, we have demonstrated that SAHA inhibited EGF-induced Cl41 cell transformation via the decrease of cyclin D1 mRNA stability and induction of G0/G1 growth arrest. We found that SAHA treatment resulted in the dramatic inhibition of EGF-induced cell transformation, cyclin D1 protein expression and induction of G0/G1 growth arrest. Further studies showed that SAHA downregulation of cyclin D1 was only observed with endogenous cyclin D1, but not with reconstitutionally expressed cyclin D1 in the same cells, excluding the possibility of SAHA regulating cyclin D1 at level of protein degradation. Moreover, SAHA inhibited EGF-induced cyclin d1 mRNA level, whereas it did not show any inhibitory effect on cyclin D1 promoter-driven luciferase reporter activity under the same experimental conditions, suggesting that SAHA may decrease cyclin D1 mRNA stability. This notion was supported by the results that treatment of cells with SAHA decreased the half-life of cyclin D1 mRNA from 6.95 h to 2.57 h. Consistent with downregulation of cyclin D1 mRNA stability, SAHA treatment also attenuated HuR expression, which has been well-characterized as a positive regulator of cyclin D1 mRNA stability. Thus, our study identifies a novel mechanism responsible for SAHA inhibiting cell transformation via decreasing cyclin D1 mRNA stability and induction of G0/G1 growth arrest in Cl41 cells. -- Highlights: ► SAHA inhibits cell transformation in Cl41 cells. ► SAHA suppresses Cyclin D1 protein expression. ► SAHA decreases cyclin D1 mRNA stability.

  10. 8-60hIPP5(m)-induced G2/M cell cycle arrest involves activation of ATM/p53/p21(cip1/waf1) pathways and delayed cyclin B1 nuclear translocation.

    PubMed

    Zeng, Qi-Yan; Zeng, Lin-Jie; Huang, Yu; Huang, Yong-Qi; Zhu, Qi-Fang; Liao, Zhi-Hong

    2014-01-01

    Protein phosphatase 1 (PP1) is a major serine/threonine phosphatase that controls gene expression and cell cycle progression. The active mutant IPP5 (8-60hIPP5(m)), the latest member of the inhibitory molecules for PP1, has been shown to inhibit the growth of human cervix carcinoma cells (HeLa). In order to elucidate the underlying mechanisms, the present study assessed overexpression of 8-60hIPP5(m) in HeLa cells. Flow cytometric and biochemical analyses showed that overexpression of 8-60hIPP5(m) induced G2/M-phase arrest, which was accompanied by the upregulation of cyclin B1 and phosphorylation of G2/M-phase proteins ATM, p53, p21(cip1/waf1) and Cdc2, suggesting that 8-60hIPP5(m) induces G2/M arrest through activation of the ATM/p53/p21(cip1/waf1)/Cdc2/ cyclin B1 pathways. We further showed that overexpression of 8-60hIPP5(m) led to delayed nuclear translocation of cyclin B1. 8-60hIPP5(m) also could translocate to the nucleus in G2/M phase and interact with pp1α and Cdc2 as demonstrated by co-precipitation assay. Taken together, our data demonstrate a novel role for 8-60hIPP5(m) in regulation of cell cycle in HeLa cells, possibly contributing to the development of new therapeutic strategies for cervix carcinoma.

  11. A novel function for Cyclin A2: Control of cell invasion via RhoA signaling

    PubMed Central

    Arsic, Nikola; Bendris, Nawal; Peter, Marion; Begon-Pescia, Christina; Rebouissou, Cosette; Gadéa, Gilles; Bouquier, Nathalie; Bibeau, Frédéric

    2012-01-01

    Cyclin A2 plays a key role in cell cycle regulation. It is essential in embryonic cells and in the hematopoietic lineage yet dispensable in fibroblasts. In this paper, we demonstrate that Cyclin A2–depleted cells display a cortical distribution of actin filaments and increased migration. These defects are rescued by restoration of wild-type Cyclin A2, which directly interacts with RhoA, or by a Cyclin A2 mutant unable to associate with Cdk. In vitro, Cyclin A2 potentiates the exchange activity of a RhoA-specific guanine nucleotide exchange factor. Consistent with this, Cyclin A2 depletion enhances migration of fibroblasts and invasiveness of transformed cells via down-regulation of RhoA activity. Moreover, Cyclin A2 expression is lower in metastases relative to primary colon adenocarcinoma in matched human tumors. All together, these data show that Cyclin A2 negatively controls cell motility by promoting RhoA activation, thus demonstrating a novel Cyclin A2 function in cytoskeletal rearrangements and cell migration. PMID:22232705

  12. Characterization of a Pyrazolo[4,3-d]pyrimidine Inhibitor of Cyclin-Dependent Kinases 2 and 5 and Aurora A With Pro-Apoptotic and Anti-Angiogenic Activity In Vitro.

    PubMed

    Řezníčková, Eva; Weitensteiner, Sabine; Havlíček, Libor; Jorda, Radek; Gucký, Tomáš; Berka, Karel; Bazgier, Václav; Zahler, Stefan; Kryštof, Vladimír; Strnad, Miroslav

    2015-12-01

    Selective inhibitors of kinases that regulate the cell cycle, such as cyclin-dependent kinases (CDKs) and aurora kinases, could potentially become powerful tools for the treatment of cancer. We prepared and studied a series of 3,5,7-trisubstituted pyrazolo[4,3-d]pyrimidines, a new CDK inhibitor scaffold, to assess their CDK2 inhibitory and antiproliferative activities. A new compound, 2i, which preferentially inhibits CDK2, CDK5, and aurora A was identified. Both biochemical and cellular assays indicated that treatment with compound 2i caused the downregulation of cyclins A and B, the dephosphorylation of histone H3 at Ser10, and the induction of mitochondrial apoptosis in the HCT-116 colon cancer cell line. It also reduced migration as well as tube and lamellipodia formation in human endothelial cells. The kinase inhibitory profile of compound 2i suggests that its anti-angiogenic activity is linked to CDK5 inhibition. This dual mode of action involving apoptosis induction in cancer cells and the blocking of angiogenesis-like activity in endothelial cells offers possible therapeutic potential. PMID:26198005

  13. Rsf-1 is overexpressed in non-small cell lung cancers and regulates cyclinD1 expression and ERK activity

    SciTech Connect

    Li, Qingchang; Dong, Qianze; Wang, Enhua

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Rsf-1 expression is elevated in non-small cell lung cancers. Black-Right-Pointing-Pointer Rsf-1 depletion inhibits proliferation and increased apoptosis in lung cancer cells. Black-Right-Pointing-Pointer Rsf-1 depletion decreases the level of cyclinD1 and phosphor-ERK expression. -- Abstract: Rsf-1 (HBXAP) was recently reported to be overexpressed in various cancers and associated with the malignant behavior of cancer cells. However, the expression of Rsf-1 in primary lung cancer and its biological roles in non-small cell lung cancer (NSCLC) have not been reported. The molecular mechanism of Rsf-1 in cancer aggressiveness remains ambiguous. In the present study, we analyzed the expression pattern of Rsf-1 in NSCLC tissues and found that Rsf-1 was overexpressed at both the mRNA and protein levels. There was a significant association between Rsf-1 overexpression and TNM stage (p = 0.0220) and poor differentiation (p = 0.0013). Furthermore, knockdown of Rsf-1 expression in H1299 and H460 cells with high endogenous Rsf-1 expression resulted in a decrease of colony formation ability and inhibition of cell cycle progression. Rsf-1 knockdown also induced apoptosis in these cell lines. Further analysis showed that Rsf-1 knockdown decreased cyclin D1 expression and phospho-ERK levels. In conclusion, Rsf-1 is overexpressed in NSCLC and contributes to malignant cell growth by cyclin D1 and ERK modulation, which makes Rsf-1 a candidate therapeutic target in lung cancer.

  14. Bromodichloromethane induces cell proliferation in different tissues of male F344 rats by suppression of E-cadherin expression via hypermethylation or transcriptional activation of c-myc and cyclin D1.

    PubMed

    Liao, Jing; Li, Xiao-Feng; Zhou, Shun-Chang; Luo, Yan; Liu, Ai-Lin; Lu, Wen-Qing

    2013-11-25

    The aim of this study was to investigate the mechanism of bromodichloromethane (BDCM) - induced cell proliferation in different tissues of male F344 rats. Rats were administered at doses of 0 and 100mg/kg/day BDCM dissolved in corn oil by gavage for 5 days/week for 1, 4, 8 and 12 weeks. Then the colon, kidney and liver were collected. No histologic lesions were observed in the colon of rats exposed to BDCM, while there were mild nephrotoxicity and marginal hepatotoxicity related to BDCM treatment. Moreover, BDCM enhanced cell proliferation in the colon and kidney but not in the liver. In colons, hypermethylation in E-cadherin promoter might be associated with inhibition of mRNA and protein expression after 12 weeks of BDCM exposure. In kidneys, BDCM decreased E-cadherin mRNA expression, accompanying with transcriptional activation of c-myc and cyclin D1. However, suppression of E-cadherin mRNA and protein expression occurred in the absence of significant changes in DNA methylation. Therefore, suppression of E-cadherin expression via hypermethylation or transcriptional activation of c-myc and cyclin D1 may be involved in BDCM-induced cell proliferation in different tissues of male F344 rats.

  15. A Minimal Cascade Model for the Mitotic Oscillator Involving Cyclin and cdc2 Kinase

    NASA Astrophysics Data System (ADS)

    Goldbeter, Albert

    1991-10-01

    A minimal model for the mitotic oscillator is presented. The model, built on recent experimental advances, is based on the cascade of post-translational modification that modulates the activity of cdc2 kinase during the cell cycle. The model pertains to the situation encountered in early amphibian embryos, where the accumulation of cyclin suffices to trigger the onset of mitosis. In the first cycle of the bicyclic cascade model, cyclin promotes the activation of cdc2 kinase through reversible dephosphorylation, and in the second cycle, cdc2 kinase activates a cyclin protease by reversible phosphorylation. That cyclin activates cdc2 kinase while the kinase triggers the degradation of cyclin has suggested that oscillations may originate from such a negative feedback loop [Felix, M. A., Labbe, J. C., Doree, M., Hunt, T. & Karsenti, E. (1990) Nature (London) 346, 379-382]. This conjecture is corroborated by the model, which indicates that sustained oscillations of the limit cycle type can arise in the cascade, provided that a threshold exists in the activation of cdc2 kinase by cyclin and in the activation of cyclin proteolysis by cdc2 kinase. The analysis shows how mitotic oscillations may readily arise from time lags associated with these thresholds and from the delayed negative feedback provided by cdc2-induced cyclin degradation. A mechanism for the origin of the thresholds is proposed in terms of the phenomenon of zero-order ultrasensitivity previously described for biochemical systems regulated by covalent modification.

  16. Cytotoxicity of diacetoxyscirpenol is associated with apoptosis by activation of caspase-8 and interruption of cell cycle progression by down-regulation of cdk4 and cyclin B1 in human Jurkat T cells

    SciTech Connect

    Jun, Do Youn; Kim, Jun Seok; Park, Hae Sun; Song, Woo Sun; Bae, Young Seuk; Kim, Young Ho . E-mail: ykim@knu.ac.kr

    2007-07-15

    To understand the mechanism underlying T-cell toxicity of diacetoxyscirpenol (DAS) from Fusarium sambucinum, its apoptogenic as well as growth retardation activity was investigated in human Jurkat T cells. Exposure to DAS (0.01-0.15 {mu}M) caused apoptotic DNA fragmentation along with caspase-8 activation, Bid cleavage, mitochondrial cytochrome c release, activation of caspase-9 and caspase-3, and PARP degradation, without any alteration in the levels of Fas or FasL. Under these conditions, necrosis was not accompanied. The cytotoxicity of DAS was not blocked by the anti-Fas neutralizing antibody ZB-4. Although the DAS-induced apoptotic events were completely prevented by overexpression of Bcl-xL, the cells overexpressing Bcl-xL were unable to divide in the presence of DAS, resulting from the failure of cell cycle progression possibly due to down-regulation in the protein levels of cdk4 and cyclin B1. The DAS-mediated apoptosis and activation of caspase-8, -9, and -3 were abrogated by either pan-caspase inhibitor (z-VAD-fmk) or caspase-8 inhibitor (z-IETD-fmk). While the DAS-mediated apoptosis and activation of caspase-9 and caspase-3 were slightly suppressed by the mitochondrial permeability transition pore inhibitor (CsA), both caspase-8 activation and Bid cleavage were not affected by CsA. The activated normal peripheral T cells possessed a similar susceptibility to the cytotoxicity of DAS. These results demonstrate that the T-cell toxicity of DAS is attributable to not only apoptosis initiated by caspase-8 activation and subsequent mitochondrion-dependent or -independent activation of caspase cascades, which can be regulated by Bcl-xL, but also interruption of cell cycle progression caused by down-regulation of cdk4 and cyclin B1 proteins.

  17. Implications of caspase-dependent proteolytic cleavage of cyclin A1 in DNA damage-induced cell death

    SciTech Connect

    Woo, Sang Hyeok; Seo, Sung-Keum; An, Sungkwan; Choe, Tae-Boo; Hong, Seok-Il; Lee, Yun-Han; Park, In-Chul

    2014-10-24

    Highlights: • Caspase-1 mediates doxorubicin-induced downregulation of cyclin A1. • Active caspase-1 effectively cleaved cyclin A1 at D165. • Cyclin A1 expression is involved in DNA damage-induced cell death. - Abstract: Cyclin A1 is an A-type cyclin that directly binds to CDK2 to regulate cell-cycle progression. In the present study, we found that doxorubicin decreased the expression of cyclin A1 at the protein level in A549 lung cancer cells, while markedly downregulating its mRNA levels. Interestingly, doxorubicin upregulated caspase-1 in a concentration-dependent manner, and z-YAVD-fmk, a specific inhibitor of caspase-1, reversed the doxorubicin-induced decrease in cyclin A1 in A549 lung cancer and MCF7 breast cancer cells. Active caspase-1 effectively cleaved cyclin A1 at D165 into two fragments, which in vitro cleavage assays showed were further cleaved by caspase-3. Finally, we found that overexpression of cyclin A1 significantly reduced the cytotoxicity of doxorubicin, and knockdown of cyclin A1 by RNA interference enhanced the sensitivity of cells to ionizing radiation. Our data suggest a new mechanism for the downregulation of cyclin A1 by DNA-damaging stimuli that could be intimately involved in the cell death induced by DNA damage-inducing stimuli, including doxorubicin and ionizing radiation.

  18. Med13p prevents mitochondrial fission and programmed cell death in yeast through nuclear retention of cyclin C.

    PubMed

    Khakhina, Svetlana; Cooper, Katrina F; Strich, Randy

    2014-09-15

    The yeast cyclin C-Cdk8 kinase forms a complex with Med13p to repress the transcription of genes involved in the stress response and meiosis. In response to oxidative stress, cyclin C displays nuclear to cytoplasmic relocalization that triggers mitochondrial fission and promotes programmed cell death. In this report, we demonstrate that Med13p mediates cyclin C nuclear retention in unstressed cells. Deleting MED13 allows aberrant cytoplasmic cyclin C localization and extensive mitochondrial fragmentation. Loss of Med13p function resulted in mitochondrial dysfunction and hypersensitivity to oxidative stress-induced programmed cell death that were dependent on cyclin C. The regulatory system controlling cyclin C-Med13p interaction is complex. First, a previous study found that cyclin C phosphorylation by the stress-activated MAP kinase Slt2p is required for nuclear to cytoplasmic translocation. This study found that cyclin C-Med13p association is impaired when the Slt2p target residue is substituted with a phosphomimetic amino acid. The second step involves Med13p destruction mediated by the 26S proteasome and cyclin C-Cdk8p kinase activity. In conclusion, Med13p maintains mitochondrial structure, function, and normal oxidative stress sensitivity through cyclin C nuclear retention. Releasing cyclin C from the nucleus involves both its phosphorylation by Slt2p coupled with Med13p destruction.

  19. Interactions between Equine Cyclin T1, Tat, and TAR Are Disrupted by a Leucine-to-Valine Substitution Found in Human Cyclin T1

    PubMed Central

    Taube, Ran; Fujinaga, Koh; Irwin, Dan; Wimmer, Jörg; Geyer, Matthias; Peterlin, B. Matija

    2000-01-01

    Transcriptional transactivators (Tat) from human immunodeficiency and equine infectious anemia viruses (HIV and EIAV) interact with their transactivation response elements (TAR) to increase the rates of viral transcription. Whereas the human cyclin T1 is required for the binding of Tat to TAR from HIV, it is unknown how Tat from EIAV interacts with its TAR. Furthermore, Tat from EIAV functions in equine and canine cells but not in human cells. In this study, we present sequences of cyclins T1 from horse and dog and demonstrate that their N-terminal 300 residues rescue the transactivation of Tat from EIAV in human cells. Although human and equine cyclins T1 bind to this Tat, only the equine cyclin T1 supports the binding of Tat to TAR from EIAV. Finally, a reciprocal exchange of the valine for the leucine at position 29 in human and equine cyclins T1, respectively, renders the human cyclin T1 active and the equine cyclin T1 inactive for Tat transactivation from EIAV. Thus, the collaboration between a specific cyclin T1 and Tat for their high-affinity interaction with TAR is a common theme of lentiviral transactivation. PMID:10623752

  20. Enhanced expression of cyclins and cyclin-dependent kinases in aniline-induced cell proliferation in rat spleen.

    PubMed

    Wang, Jianling; Wang, Gangduo; Ma, Huaxian; Khan, M Firoze

    2011-01-15

    Aniline exposure is associated with toxicity to the spleen leading to splenomegaly, hyperplasia, fibrosis and a variety of sarcomas of the spleen on chronic exposure. In earlier studies, we have shown that aniline exposure leads to iron overload, oxidative stress and activation of redox-sensitive transcription factors, which could regulate various genes leading to a tumorigenic response in the spleen. However, molecular mechanisms leading to aniline-induced cellular proliferation in the spleen remain largely unknown. This study was, therefore, undertaken on the regulation of G1 phase cell cycle proteins (cyclins), expression of cyclin-dependent kinases (CDKs), phosphorylation of retinoblastoma protein (pRB) and cell proliferation in the spleen, in an experimental condition preceding a tumorigenic response. Male SD rats were treated with aniline (0.5 mmol/kg/day via drinking water) for 30 days (controls received drinking water only), and splenocyte proliferation, protein expression of G1 phase cyclins, CDKs and pRB were measured. Aniline treatment resulted in significant increases in splenocyte proliferation, based on cell counts, cell proliferation markers including proliferating cell nuclear antigen (PCNA), nuclear Ki67 protein (Ki67) and minichromosome maintenance (MCM), MTT assay and flow cytometric analysis. Western blot analysis of splenocyte proteins from aniline-treated rats showed significantly increased expression of cyclins D1, D2, D3 and E, as compared to the controls. Similarly, real-time PCR analysis showed significantly increased mRNA expression for cyclins D1, D2, D3 and E in the spleens of aniline-treated rats. The overexpression of these cyclins was associated with increases in the expression of CDK4, CDK6, CDK2 as well as phosphorylation of pRB protein. Our data suggest that increased expression of cyclins, CDKs and phosphorylation of pRB protein could be critical in cell proliferation, and may contribute to aniline-induced tumorigenic response in

  1. Enhanced expression of cyclins and cyclin-dependent kinases in aniline-induced cell proliferation in rat spleen

    SciTech Connect

    Wang Jianling; Wang Gangduo; Ma Huaxian; Khan, M. Firoze

    2011-01-15

    Aniline exposure is associated with toxicity to the spleen leading to splenomegaly, hyperplasia, fibrosis and a variety of sarcomas of the spleen on chronic exposure. In earlier studies, we have shown that aniline exposure leads to iron overload, oxidative stress and activation of redox-sensitive transcription factors, which could regulate various genes leading to a tumorigenic response in the spleen. However, molecular mechanisms leading to aniline-induced cellular proliferation in the spleen remain largely unknown. This study was, therefore, undertaken on the regulation of G1 phase cell cycle proteins (cyclins), expression of cyclin-dependent kinases (CDKs), phosphorylation of retinoblastoma protein (pRB) and cell proliferation in the spleen, in an experimental condition preceding a tumorigenic response. Male SD rats were treated with aniline (0.5 mmol/kg/day via drinking water) for 30 days (controls received drinking water only), and splenocyte proliferation, protein expression of G1 phase cyclins, CDKs and pRB were measured. Aniline treatment resulted in significant increases in splenocyte proliferation, based on cell counts, cell proliferation markers including proliferating cell nuclear antigen (PCNA), nuclear Ki67 protein (Ki67) and minichromosome maintenance (MCM), MTT assay and flow cytometric analysis. Western blot analysis of splenocyte proteins from aniline-treated rats showed significantly increased expression of cyclins D1, D2, D3 and E, as compared to the controls. Similarly, real-time PCR analysis showed significantly increased mRNA expression for cyclins D1, D2, D3 and E in the spleens of aniline-treated rats. The overexpression of these cyclins was associated with increases in the expression of CDK4, CDK6, CDK2 as well as phosphorylation of pRB protein. Our data suggest that increased expression of cyclins, CDKs and phosphorylation of pRB protein could be critical in cell proliferation, and may contribute to aniline-induced tumorigenic response in

  2. E2-C, a cyclin-selective ubiquitin carrier protein required for the destruction of mitotic cyclins.

    PubMed Central

    Aristarkhov, A; Eytan, E; Moghe, A; Admon, A; Hershko, A; Ruderman, J V

    1996-01-01

    Ubiquitin-dependent proteolysis of the mitotic cyclins A and B is required for the completion of mitosis and entry into the next cell cycle. This process is catalyzed by the cyclosome, an approximately 22S particle that contains a cyclin-selective ubiquitin ligase activity, E3-C, that requires a cyclin-selective ubiquitin carrier protein (UBC) E2-C. Here we report the purification and cloning of E2-C from clam oocytes. The deduced amino acid sequence of E2-C indicates that it is a new UBC family member. Bacterially expressed recombinant E2-C is active in in vitro cyclin ubiquitination assays, where it exhibits the same substrate specificities seen with native E2-C. These results demonstrate that E2-C is not a homolog of UBC4 or UBC9, proteins previously suggested to be involved in cyclin ubiquitination, but is a new UBC family member with unique properties. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:8633058

  3. Transforming growth factor-β1 induces cell cycle arrest by activating atypical cyclin-dependent kinase 5 through up-regulation of Smad3-dependent p35 expression in human MCF10A mammary epithelial cells.

    PubMed

    Park, Seong Ji; Yang, Sun Woo; Kim, Byung-Chul

    2016-04-01

    Cyclin-dependent kinases (Cdks) play important roles in control of cell division. Cdk5 is an atypical member of Cdk family with non-cyclin-like regulatory subunit, p35, but its role in cell cycle progression is still unclear. In the present study, we investigated the role of Cdk5/p35 on transforming growth factor-β1 (TGF-β1)-induced cell cycle arrest. In human MCF10A mammary epithelial cells, TGF-β1 induced cell cycle arrest at G1 phase and increased p27KIP1 expression. Interestingly, pretreatment with roscovitine, an inhibitor of Cdk5, or transfection with small interfering (si) RNAs specific to Cdk5 and p35 significantly attenuated the TGF-β1-induced p27KIP1 expression and cell cycle arrest. TGF-β1 increased Cdk5 activity via up-regulation of p35 gene at transcriptional level, and these effects were abolished by transfection with Smad3 siRNA or infection of adenovirus carrying Smad3 mutant at the C-tail (3SA). Chromatin immunoprecipitation assay further revealed that wild type Smad3, but not mutant Smad3 (3SA), binds to the region of the p35 promoter region (-1000--755) in a TGF-β1-dependent manner. These results for the first time demonstrate a role of Cdk5/p35 in the regulation of cell cycle progression modulated by TGF-β1. PMID:26966064

  4. Transforming growth factor-β1 induces cell cycle arrest by activating atypical cyclin-dependent kinase 5 through up-regulation of Smad3-dependent p35 expression in human MCF10A mammary epithelial cells.

    PubMed

    Park, Seong Ji; Yang, Sun Woo; Kim, Byung-Chul

    2016-04-01

    Cyclin-dependent kinases (Cdks) play important roles in control of cell division. Cdk5 is an atypical member of Cdk family with non-cyclin-like regulatory subunit, p35, but its role in cell cycle progression is still unclear. In the present study, we investigated the role of Cdk5/p35 on transforming growth factor-β1 (TGF-β1)-induced cell cycle arrest. In human MCF10A mammary epithelial cells, TGF-β1 induced cell cycle arrest at G1 phase and increased p27KIP1 expression. Interestingly, pretreatment with roscovitine, an inhibitor of Cdk5, or transfection with small interfering (si) RNAs specific to Cdk5 and p35 significantly attenuated the TGF-β1-induced p27KIP1 expression and cell cycle arrest. TGF-β1 increased Cdk5 activity via up-regulation of p35 gene at transcriptional level, and these effects were abolished by transfection with Smad3 siRNA or infection of adenovirus carrying Smad3 mutant at the C-tail (3SA). Chromatin immunoprecipitation assay further revealed that wild type Smad3, but not mutant Smad3 (3SA), binds to the region of the p35 promoter region (-1000--755) in a TGF-β1-dependent manner. These results for the first time demonstrate a role of Cdk5/p35 in the regulation of cell cycle progression modulated by TGF-β1.

  5. Blockade of Rac1 activity induces G1 cell cycle arrest or apoptosis in breast cancer cells through downregulation of cyclin D1, survivin, and X-linked inhibitor of apoptosis protein.

    PubMed

    Yoshida, Tatsushi; Zhang, Yaqin; Rivera Rosado, Leslie A; Chen, Junjie; Khan, Tahira; Moon, Sun Young; Zhang, Baolin

    2010-06-01

    Rac1 GTPase regulates a variety of signaling pathways that are implicated in malignant phenotypes. Here, we show that selective inhibition of Rac1 activity by the pharmacologic inhibitor NSC23766 suppressed cell growth in a panel of human breast cancer cell lines, whereas it had little toxicity to normal mammary epithelial cells. NSC23766 elicits its cytotoxicity via two distinct mechanisms in a cell line-dependent manner: induction of G(1) cell cycle arrest in cell lines (MDA-MB-231, MCF7, and T47D) that express retinoblastoma (Rb) protein or apoptosis in Rb-deficient MDA-MB-468 cells. In MDA-MB-231 cells, Rac1 inhibition induced G(1) cell cycle arrest through downregulation of cyclin D1 and subsequent dephosphorylation/inactivation of Rb. By contrast, MDA-MB-468 cells underwent substantial apoptosis that was associated with loss of antiapoptotic proteins survivin and X-linked inhibitor of apoptosis protein (XIAP). Rac1 knockdown by RNAi interference confirmed the specificity of NSC23766 and requirement for Rac1 in the regulation of cyclin D1, survivin, and XIAP in breast cancer cells. Further, NF-kappaB, but not c-Jun NH(2)-terminal kinase or p38 pathways, mediates the survival signal from Rac1. Overall, our results indicate that Rac1 plays a central role in breast cancer cell survival through regulation of NF-kappaB-dependent gene products.

  6. The yeast carboxyl-terminal repeat domain kinase CTDK-I is a divergent cyclin-cyclin-dependent kinase complex.

    PubMed Central

    Sterner, D E; Lee, J M; Hardin, S E; Greenleaf, A L

    1995-01-01

    Saccharomyces cerevisiae CTDK-I is a protein kinase complex that specifically and efficiently hyperphosphorylates the carboxyl-terminal repeat domain (CTD) of RNA polymerase II and is composed of three subunits of 58, 38, and 32 kDa. The kinase is essential in vivo for normal phosphorylation of the CTD and for normal growth and differentiation. We have now cloned the genes for the two smaller kinase subunits, CTK2 and CTK3, and found that they form a unique, divergent cyclin-cyclin-dependent kinase complex with the previously characterized largest subunit protein CTK1, a cyclin-dependent kinase homolog. The CTK2 gene encodes a cyclin-related protein with limited homology to cyclin C, while CTK3 shows no similarity to other known proteins. Copurification of the three gene products with each other and CTDK-I activity by means of conventional chromatography and antibody affinity columns has verified their participation in the complex in vitro. In addition, null mutations of each of the genes and all combinations thereof conferred very similar growth-impaired, cold-sensitive phenotypes, consistent with their involvement in the same function in vivo. These characterizations and the availability of all of the genes encoding CTDK-I and reagents derivable from them will facilitate investigations into CTD phosphorylation and its functional consequences both in vivo and in vitro. PMID:7565723

  7. miR-340 inhibits glioblastoma cell proliferation by suppressing CDK6, cyclin-D1 and cyclin-D2

    SciTech Connect

    Li, Xuesong; Gong, Xuhai; Chen, Jing; Zhang, Jinghui; Sun, Jiahang; Guo, Mian

    2015-05-08

    Glioblastoma development is often associated with alteration in the activity and expression of cell cycle regulators, such as cyclin-dependent kinases (CKDs) and cyclins, resulting in aberrant cell proliferation. Recent studies have highlighted the pivotal roles of miRNAs in controlling the development and growth of glioblastoma. Here, we provide evidence for a function of miR-340 in the inhibition of glioblastoma cell proliferation. We found that miR-340 is downregulated in human glioblastoma tissue samples and several established glioblastoma cell lines. Proliferation and neurosphere formation assays revealed that miR-340 plays an oncosuppressive role in glioblastoma, and that its ectopic expression causes significant defect in glioblastoma cell growth. Further, using bioinformatics, luciferase assay and western blot, we found that miR-340 specifically targets the 3′UTRs of CDK6, cyclin-D1 and cyclin-D2, leading to the arrest of glioblastoma cells in the G0/G1 cell cycle phase. Confirming these results, we found that re-introducing CDK6, cyclin-D1 or cyclin-D2 expression partially, but significantly, rescues cells from the suppression of cell proliferation and cell cycle arrest mediated by miR-340. Collectively, our results demonstrate that miR-340 plays a tumor-suppressive role in glioblastoma and may be useful as a diagnostic biomarker and/or a therapeutic avenue for glioblastoma. - Highlights: • miR-340 is downregulated in glioblastoma samples and cell lines. • miR-340 inhibits glioblastoma cell proliferation. • miR-340 directly targets CDK6, cyclin-D1, and cyclin-D2. • miR-340 regulates glioblastoma cell proliferation via CDK6, cyclin-D1 and cyclin-D2.

  8. Modeling the cell division cycle: cdc2 and cyclin interactions.

    PubMed Central

    Tyson, J J

    1991-01-01

    The proteins cdc2 and cyclin form a heterodimer (maturation promoting factor) that controls the major events of the cell cycle. A mathematical model for the interactions of cdc2 and cyclin is constructed. Simulation and analysis of the model show that the control system can operate in three modes: as a steady state with high maturation promoting factor activity, as a spontaneous oscillator, or as an excitable switch. We associate the steady state with metaphase arrest in unfertilized eggs, the spontaneous oscillations with rapid division cycles in early embryos, and the excitable switch with growth-controlled division cycles typical of nonembryonic cells. PMID:1831270

  9. MicroRNA-143 is a critical regulator of cell cycle activity in stem cells with co-overexpression of Akt and angiopoietin-1 via transcriptional regulation of Erk5/cyclin D1 signaling

    PubMed Central

    Lai, Vien Khach; Ashraf, Muhammad; Jiang, Shujia

    2012-01-01

    We report that simultaneous expression of Akt and angiopoietin-1 (Ang-1) transgenes supported mitogenesis in stem cells with a critical role for microRNA-143 (miR-143) downstream of FoxO1 transcription factor. Mesenchymal stem cells (MSC) from young male rats were transduced with Ad-vectors encoding for Akt (AktMSC) and Ang-1 (Ang-1MSC) transgenes for their individual or simultaneous overexpression (AAMSC; > 5-fold gene level and > 4-fold Akt and Ang-1 protein expression in AAMSC vs. Ad-Empty transduced MSC; EmpMSC). AAMSC had higher phosphorylation of FoxO1, which activated Erk5, a distinct mitogen-induced MAPK that drove transcriptional activation of cyclin D1 and Cdk4. Flow cytometry showed > 10% higher S-phase cell population that was confirmed by BrdU assay (15%) and immunohistology for Ki67 (11%) in AAMSC using EmpMSC as controls. miR array supported by real-time PCR showed induction of miR-143 in AAMSC (4.73-fold vs. EmpMSC). Luciferase assay indicated a dependent relationship between miR-143 and Erk5 in AAMSC. FoxO1-specific siRNA upregulated miR-143, whereas inhibition of miR-143 did not change FoxO1 activation. However, miR-143 inhibition repressed phosphorylation of Erk5 and abrogated cyclin D1 with concomitant reduction in cells entering cell cycle. During in vivo studies, male GFP+ AAMSC transplanted into wild-type female infarcted rat hearts showed significantly higher numbers of Ki67-expressing cells (p < 0.05 vs. EmpMSC) 7 d after engraftment (n = 4 animals/group). In conclusion, co-overexpression of Akt and Ang-1 in MSC activated cell cycle progression by upregulation of miR-143 and stimulation of FoxO1 and Erk5 signaling. PMID:22374674

  10. Cyclin D1 blocks the anti-proliferative function of RUNX3 by interfering with RUNX3-p300 interaction

    SciTech Connect

    Iwatani, Kazunori; Fujimoto, Tetsuhiro; Ito, Takaaki

    2010-09-24

    Research highlights: {yields} Cyclin D1 interacts with RUNX3 and inhibits the interaction and collaboration of RUNX3 with coactivator p300. {yields} Cyclin D1 blocks the ability of RUNX3 to induce the expression of cdk inhibitor p21. {yields} Cyclin D1 releases cancer cells from the inhibition of proliferation induced by RUNX3. -- Abstract: Transcriptional function of cyclin D1, whose deregulation is frequently observed in human cancers, has been suggested to contribute to cancer formation. In the present study, we show that cyclin D1 protein inhibits RUNX3 activity by directly binding to it and interfering with its interaction with p300 interaction in lung cancer cells. Cyclin D1 inhibits p300-dependent RUNX3 acetylation and negatively regulates cyclin-dependent kinase (cdk) inhibitor p21 expression. These transcriptional effects of cyclin D1 do not require cdk4/6 kinase activation. We propose that cyclin D1 provides a transcriptional switch that allows the tumor suppressor activity of RUNX3 to be repressed in cancer cells. Since RUNX3 plays tumor suppressive roles in a wide range of cancers, a non-canonical cyclin D1 function may be critical for neoplastic transformation of the epithelial cells in which RUNX3 regulates proliferation.

  11. Dietary myo-inositol modulates immunity through antioxidant activity and the Nrf2 and E2F4/cyclin signalling factors in the head kidney and spleen following infection of juvenile fish with Aeromonas hydrophila.

    PubMed

    Jiang, Wei-Dan; Hu, Kai; Liu, Yang; Jiang, Jun; Wu, Pei; Zhao, Juan; Zhang, Yong-An; Zhou, Xiao-Qiu; Feng, Lin

    2016-02-01

    This study was conducted to investigate the effects of the dietary vitamin myo-inositol (MI), on the immunity and structural integrity of the head kidney and spleen following infection of fish with the major freshwater pathogen bacterial Aeromonas hydrophila. The results demonstrated for the first time that MI deficiency depressed the lysozyme and acid phosphatase (ACP) activities and the complement 3 (C3) and C4 contents in the head kidney and spleen compared with the optimal MI levels, indicating that MI deficiency decreased the immunity of these important fish immune organs. The depression in immunity due to MI deficiency was partially related to oxidative damage [indicated by increases in the malondialdehyde (MDA) and protein carbonyl (PC) contents] that was in turn partially due to the decreased glutathione (GSH) content and the disturbances in antioxidant enzyme activities [total superoxide dismutase (T-SOD), CuZnSOD, MnSOD, catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR)]. MI deficiency inhibited the antioxidant-related gene transcription [CuZnSOD, MnSOD, CAT, GPx1a, GR and NF-E2-related factor 2 (Nrf2)] in the head kidney and spleen following infection of the fish with A. hydrophila. The oxidative damage due to MI deficiency also resulted in the inhibition of proliferation-associated signalling (cyclin D1, cyclin A, cyclin E and E2F4). Thus, MI deficiency partially inhibited damage repair. Excessive MI exhibited negative effects that were similar to MI deficiency, whereas the optimal MI content reversed those indicators. These observations indicated that an MI deficiency or excess could cause depression of the immune system that might be partially related to oxidative damage, antioxidant disturbances, and the inhibition of the proliferation-associated signalling in the head kidney and spleen following infection of fish with A. hydrophila. Finally, the optimal MI levels were 660.7 (based on ACP) and 736.8 mg kg(-1) diet (based

  12. Cyclin D1 represses gluconeogenesis via inhibition of the transcriptional coactivator PGC1α.

    PubMed

    Bhalla, Kavita; Liu, Wan-Ju; Thompson, Keyata; Anders, Lars; Devarakonda, Srikripa; Dewi, Ruby; Buckley, Stephanie; Hwang, Bor-Jang; Polster, Brian; Dorsey, Susan G; Sun, Yezhou; Sicinski, Piotr; Girnun, Geoffrey D

    2014-10-01

    Hepatic gluconeogenesis is crucial to maintain normal blood glucose during periods of nutrient deprivation. Gluconeogenesis is controlled at multiple levels by a variety of signal transduction and transcriptional pathways. However, dysregulation of these pathways leads to hyperglycemia and type 2 diabetes. While the effects of various signaling pathways on gluconeogenesis are well established, the downstream signaling events repressing gluconeogenic gene expression are not as well understood. The cell-cycle regulator cyclin D1 is expressed in the liver, despite the liver being a quiescent tissue. The most well-studied function of cyclin D1 is activation of cyclin-dependent kinase 4 (CDK4), promoting progression of the cell cycle. We show here a novel role for cyclin D1 as a regulator of gluconeogenic and oxidative phosphorylation (OxPhos) gene expression. In mice, fasting decreases liver cyclin D1 expression, while refeeding induces cyclin D1 expression. Inhibition of CDK4 enhances the gluconeogenic gene expression, whereas cyclin D1-mediated activation of CDK4 represses the gluconeogenic gene-expression program in vitro and in vivo. Importantly, we show that cyclin D1 represses gluconeogenesis and OxPhos in part via inhibition of peroxisome proliferator-activated receptor γ coactivator-1α (PGC1α) activity in a CDK4-dependent manner. Indeed, we demonstrate that PGC1α is novel cyclin D1/CDK4 substrate. These studies reveal a novel role for cyclin D1 on metabolism via PGC1α and reveal a potential link between cell-cycle regulation and metabolic control of glucose homeostasis.

  13. The prognostic significance and value of cyclin D1, CDK4 and p16 in human breast cancer

    PubMed Central

    2013-01-01

    Introduction Loss of the retinoblastoma protein tumor suppressor gene (RB) coding for a nuclear phosphoprotein that regulates the cell cycle is found in many human cancers and probably leads to disruption of the p16-cyclin D1-CDK4/6-RB pathway. Cyclin D1 is known to activate CDK4, which then phosphorylates the RB protein, leading to cell cycle progression. p16 inhibits CDK4, keeping RB hypophosphorylated and preventing cell cycle progression. The significance of these three markers, cyclin D1, CDK4 and p16, for breast cancer and carcinogenesis is nevertheless still controversial. Methods The material consisted of 102 formalin-fixed human breast cancer samples, in which cyclin D1, CDK4 and p16 expression was evaluated immunohistochemically. The amounts of cyclin D1 mRNA present were analyzed by quantitative real time PCR. Results High cyclin D1 expression statistically significantly correlated with lower tumor grade, estrogen and progesterone receptor positivity and lower proliferation activity in breast tumors and increased breast cancer-specific survival and overall survival. Tumors with high cyclin D1 protein had 1.8 times higher expression of cyclin D1 mRNA. CDK4 expression did not correlate with cyclin D1 expression or the survival data. p16 expression was associated with Human Epidermal Growth Factor Receptor 2 (HER2) negativity and increased breast cancer-specific survival and disease-free survival. No statistical correlations between cyclin D1, CDK4 and p16 were found. Conclusions Cyclin D1 was associated with a good breast cancer prognosis but functioned independently of CDK4. High cyclin D1 expression may be partially due to increased CCND1 transcription. p16 correlated with a better prognosis and may function without CDK4. In conclusion, it appears that cyclin D1, CDK4 and p16 function independently in human breast cancer. PMID:23336272

  14. Cyclin B1 Vaccine Delays Spontaneous Tumors

    PubMed Central

    Laura A, Vella; Min, Yu; Amy, Phillips; Olivera J, Finn

    2012-01-01

    We previously identified cyclin B1-specific T cells and antibodies in cancer patients with cyclin B1+ tumors and also in some healthy individuals. We also demonstrated that these responses may be important in cancer immunosurveillance by showing that vaccination against cyclin B1 prevents growth of transplantable cyclin B1+ tumors in mice. Constitutive overexpression of cyclin B1 was determined to correlate with the lack of p53 function. This allowed us to use p53−/− mice as a model that better approximates human disease. p53−/− mice spontaneously develop cyclin B1+ tumors. At 5–6 weeks of age, when the mice were still healthy with no evidence of tumor, they received the cyclin B1 vaccine and were then observed for tumor growth. We demonstrate that cyclin B1 vaccination can delay spontaneous cyclin B1+ tumor growth and increases median survival of tumor bearing p53−/− mice. PMID:19769738

  15. Rictor regulates FBXW7-dependent c-Myc and cyclin E degradation in colorectal cancer cells

    SciTech Connect

    Guo, Zheng; Zhou, Yuning; Evers, B. Mark; Wang, Qingding

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Rictor associates with FBXW7 to form an E3 complex. Black-Right-Pointing-Pointer Knockdown of rictor decreases ubiquitination of c-Myc and cylin E. Black-Right-Pointing-Pointer Knockdown of rictor increases protein levels of c-Myc and cylin E. Black-Right-Pointing-Pointer Overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. Black-Right-Pointing-Pointer Rictor regulation of c-Myc and cyclin E requires FBXW7. -- Abstract: Rictor (Rapamycin-insensitive companion of mTOR) forms a complex with mTOR and phosphorylates and activates Akt. Activation of Akt induces expression of c-Myc and cyclin E, which are overexpressed in colorectal cancer and play an important role in colorectal cancer cell proliferation. Here, we show that rictor associates with FBXW7 to form an E3 complex participating in the regulation of c-Myc and cyclin E degradation. The Rictor-FBXW7 complex is biochemically distinct from the previously reported mTORC2 and can be immunoprecipitated independently of mTORC2. Moreover, knocking down of rictor in serum-deprived colorectal cancer cells results in the decreased ubiquitination and increased protein levels of c-Myc and cyclin E while overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. Genetic knockout of FBXW7 blunts the effects of rictor, suggesting that rictor regulation of c-Myc and cyclin E requires FBXW7. Our findings identify rictor as an important component of FBXW7 E3 ligase complex participating in the regulation of c-Myc and cyclin E protein ubiquitination and degradation. Importantly, our results suggest that elevated growth factor signaling may contribute to decrease rictor/FBXW7-mediated ubiquitination of c-Myc and cyclin E, thus leading to accumulation of cyclin E and c-Myc in colorectal cancer cells.

  16. Induced ICER I{gamma} down-regulates cyclin A expression and cell proliferation in insulin-producing {beta} cells

    SciTech Connect

    Inada, Akari; Weir, Gordon C.; Bonner-Weir, Susan . E-mail: susan.bonner-weir@joslin.harvard.edu

    2005-04-15

    We have previously found that cyclin A expression is markedly reduced in pancreatic {beta}-cells by cell-specific overexpression of repressor inducible cyclic AMP early repressor (ICER I{gamma}) in transgenic mice. Here we further examined regulatory effects of ICER I{gamma} on cyclin A gene expression using Min6 cells, an insulin-producing cell line. The cyclin A promoter luciferase assay showed that ICER I{gamma} directly repressed cyclin A gene transcription. In addition, upon ICER I{gamma} overexpression, cyclin A mRNA levels markedly decreased, thereby confirming an inhibitory effect of ICER I{gamma} on cyclin A expression. Suppression of cyclin A results in inhibition of BrdU incorporation. Under normal culture conditions endogenous cyclin A is abundant in these cells, whereas ICER is hardly detectable. However, serum starvation of Min6 cells induces ICER I{gamma} expression with a concomitant very low expression level of cyclin A. Cyclin A protein is not expressed unless the cells are in active DNA replication. These results indicate a potentially important anti-proliferative effect of ICER I{gamma} in pancreatic {beta} cells. Since ICER I{gamma} is greatly increased in diabetes as well as in FFA- or high glucose-treated islets, this effect may in part exacerbate diabetes by limiting {beta}-cell proliferation.

  17. Identification of human cyclin-dependent kinase 8, a putative protein kinase partner for cyclin C.

    PubMed

    Tassan, J P; Jaquenoud, M; Léopold, P; Schultz, S J; Nigg, E A

    1995-09-12

    Metazoan cyclin C was originally isolated by virtue of its ability to rescue Saccharomyces cerevisiae cells deficient in G1 cyclin function. This suggested that cyclin C might play a role in cell cycle control, but progress toward understanding the function of this cyclin has been hampered by the lack of information on a potential kinase partner. Here we report the identification of a human protein kinase, K35 [cyclin-dependent kinase 8 (CDK8)], that is likely to be a physiological partner of cyclin C. A specific interaction between K35 and cyclin C could be demonstrated after translation of CDKs and cyclins in vitro. Furthermore, cyclin C could be detected in K35 immunoprecipitates prepared from HeLa cells, indicating that the two proteins form a complex also in vivo. The K35-cyclin C complex is structurally related to SRB10-SRB11, a CDK-cyclin pair recently shown to be part of the RNA polymerase II holoenzyme of S. cerevisiae. Hence, we propose that human K35(CDK8)-cyclin C might be functionally associated with the mammalian transcription apparatus, perhaps involved in relaying growth-regulatory signals.

  18. Dissection of Cdk1–cyclin complexes in vivo

    PubMed Central

    Ear, Po Hien; Booth, Michael J.; Abd-Rabbo, Diala; Kowarzyk Moreno, Jacqueline; Hall, Conrad; Chen, Daici; Vogel, Jackie; Michnick, Stephen W.

    2013-01-01

    Cyclin-dependent kinases (Cdks) are regulatory enzymes with temporal and spatial selectivity for their protein substrates that are governed by cell cycle-regulated cyclin subunits. Specific cyclin–Cdk complexes bind to and phosphorylate target proteins, coupling their activity to cell cycle states. The identification of specific cyclin–Cdk substrates is challenging and so far, has largely been achieved through indirect correlation or use of in vitro techniques. Here, we use a protein-fragment complementation assay based on the optimized yeast cytosine deaminase to systematically identify candidate substrates of budding yeast Saccharomyces cerevisiae Cdk1 and show dependency on one or more regulatory cyclins. We identified known and candidate cyclin dependencies for many predicted protein kinase Cdk1 targets and showed elusory Clb3–Cdk1-specific phosphorylation of γ-tubulin, thus establishing the timing of this event in controlling assembly of the mitotic spindle. Our strategy can be generally applied to identify substrates and accessory subunits of multisubunit protein complexes. PMID:24019491

  19. Characterization and expression of a maternal axolotl cyclin B1 during oogenesis and early development.

    PubMed

    Pelczar, Hélène; Caulet, Stéphane; Thibier, Catherine; Aubet, Geneviève; Poulhe, Robert; Vallianou, Ioanna; Yamashita, Masakane; Andéol, Yannick

    2007-06-01

    The M phase promoting factor (MPF) is a dimer composed of a catalytic Cdk1 subunit and a Cyclin B regulatory subunit. We have characterized a cDNA containing the entire coding sequence of an axolotl Cyclin B1 protein that is able to promote MPF activity when added to a fraction from prophase I oocytes that contains monomeric Cdk1. The axolotl cyclin B1 gene is expressed as a maternal mRNA in oocytes and early embryos. Its poly(A) tail length increases in metaphase II oocytes and then decreases regularly during the first embryonic cell cycles. Endogenous Cyclin B1 protein is first expressed during oocyte meiotic maturation. Its level oscillates after fertilization and is coordinated to the phosphorylation level of tyrosine 15 residue of Cdk1 (pTyr15), with both maxima preceding each cell division. As expected, when translated into microinjected oocytes, axolotl Cyclin B1 induces the resumption of meiosis. In electrically activated unfertilized eggs (UFE), Cyclin B1 and pTyr15 cyclic accumulations are observed with kinetics different from those of the early embryonic cycles. The axolotl embryo and UFE provide interesting in vivo comparative models for studying events controlling Cyclin B1 regulation during development. PMID:17428262

  20. The proteolysis of mitotic cyclins in mammalian cells persists from the end of mitosis until the onset of S phase.

    PubMed

    Brandeis, M; Hunt, T

    1996-10-01

    We have studied how the cell cycle-specific oscillations of mitotic B-type cyclins are generated in mouse fibroblasts. A reporter enzyme comprising the N-terminus of a B-type cyclin fused to bacterial chloramphenicol acetyl transferase (CAT) was degraded at the end of mitosis like endogenous cyclins. Point mutations in the destruction box of this construct completely abolished its mitotic instability. When the destructible reporter was driven by the cyclin B2 promoter, CAT activity mimicked the oscillations in the level of the endogenous cyclin B2. These oscillations were largely conserved when the reporter was transcribed constitutively from the SV40 promoter. Pulse-chase experiments or addition of the proteasome inhibitors lactacystin and ALLN showed that cyclin synthesis continued after the end of mitosis. The destruction box-specific degradation of cyclins normally ceases at the onset of S phase, and is active in fibroblasts arrested in G0 and in differentiated C2 myoblasts. We were able to reproduce this proteolysis in vitro in extracts of synchronized cells. Extracts of G1 cells degraded cyclin B1 whereas p27Kip1 was stable, in contrast, cyclin B1 remained stable and p27Kip1 was degraded in extracts of S phase cells. PMID:8895573

  1. Alternate cyclin D1 mRNA splicing modulates p27KIP1 binding and cell migration.

    PubMed

    Li, Zhiping; Wang, Chenguang; Jiao, Xuanmao; Katiyar, Sanjay; Casimiro, Mathew C; Prendergast, George C; Powell, Michael J; Pestell, Richard G

    2008-03-14

    Cyclin D1 is an important cell cycle regulator, but in cancer its overexpression also increases cellular migration mediated by p27 KIP1 stabilization and RhoA inhibition. Recently, a common polymorphism at the exon 4-intron 4 boundary of the human cyclin D1 gene within a splice donor region was associated with an altered risk of developing cancer. Altered RNA splicing caused by this polymorphism gives rise to a variant cyclin D1 isoform termed cyclin D1b, which has the same N terminus as the canonical cyclin D1a isoform but a distinct C terminus. In this study we show that these different isoforms have unique properties with regard to the cellular migration function of cyclin D1. Although they displayed little difference in transcriptional co-repression assays on idealized reporter genes, microarray cDNA expression analysis revealed differential regulation of genes, including those that influence cellular migration. Additionally, whereas cyclin D1a stabilized p27 KIP1 and inhibited RhoA-induced ROCK kinase activity, promoting cellular migration, cyclin D1b failed to stabilize p27 KIP1 or inhibit ROCK kinase activity and had no effect on migration. Our findings argue that alternate splicing is an important determinant of the function of cyclin D1 in cellular migration.

  2. 5-Substituted 3-isopropyl-7-[4-(2-pyridyl)benzyl]amino-1(2)H-pyrazolo[4,3-d]pyrimidines with anti-proliferative activity as potent and selective inhibitors of cyclin-dependent kinases.

    PubMed

    Vymětalová, Ladislava; Havlíček, Libor; Šturc, Antonín; Skrášková, Zuzana; Jorda, Radek; Pospíšil, Tomáš; Strnad, Miroslav; Kryštof, Vladimír

    2016-03-01

    A series of 5-substituted 3-isopropyl-7-[4-(2-pyridyl)benzyl]amino-1(2)H-pyrazolo[4,3-d]pyrimidine derivatives was synthesized and evaluated for their cyclin-dependent kinase (CDK) inhibition activity. The most potent compounds contained various hydroxyalkylamines at the 5 position and possessed low nanomolar IC50 values for CDK2 and CDK5. Preliminary profiling of one of the most active compounds on a panel of 50 protein kinases revealed its high selectivity for CDKs. The compounds arrested cells in S and G2/M phases, and induced apoptosis in various cancer cell lines. Significant dephosphorylation of the C-terminus of RNA polymerase II and focal adhesion kinase (FAK), well-established substrates of CDKs, has been found in treated cells. Cleavage of PARP-1, down-regulation of Mcl-1 and activation of caspases correlated well with CDK inhibition and confirmed apoptosis as the primary type of cell death induced in cancer cells treated with the compounds in vitro. A comparison of known purine-based CDK inhibitor CR8 with its pyrazolo[4,3-d]pyrimidine bioisosteres confirmed that the novel compounds are more potent in cellular assays than purines. Therefore, pyrazolo[4,3-d]pyrimidine may emerge as a novel scaffold in medicinal chemistry and as a source of potent CDK inhibitors. PMID:26851505

  3. Cyclin C stimulates β-cell proliferation in rat and human pancreatic β-cells

    PubMed Central

    Jiménez-Palomares, Margarita; López-Acosta, José Francisco; Villa-Pérez, Pablo; Moreno-Amador, José Luis; Muñoz-Barrera, Jennifer; Fernández-Luis, Sara; Heras-Pozas, Blanca; Perdomo, Germán; Bernal-Mizrachi, Ernesto

    2015-01-01

    Activation of pancreatic β-cell proliferation has been proposed as an approach to replace reduced functional β-cell mass in diabetes. Quiescent fibroblasts exit from G0 (quiescence) to G1 through pRb phosphorylation mediated by cyclin C/cdk3 complexes. Overexpression of cyclin D1, D2, D3, or cyclin E induces pancreatic β-cell proliferation. We hypothesized that cyclin C overexpression would induce β-cell proliferation through G0 exit, thus being a potential therapeutic target to recover functional β-cell mass. We used isolated rat and human islets transduced with adenovirus expressing cyclin C. We measured multiple markers of proliferation: [3H]thymidine incorporation, BrdU incorporation and staining, and Ki67 staining. Furthermore, we detected β-cell death by TUNEL, β-cell differentiation by RT-PCR, and β-cell function by glucose-stimulated insulin secretion. Interestingly, we have found that cyclin C increases rat and human β-cell proliferation. This augmented proliferation did not induce β-cell death, dedifferentiation, or dysfunction in rat or human islets. Our results indicate that cyclin C is a potential target for inducing β-cell regeneration. PMID:25564474

  4. Crystal Structure of Human Cyclin K, A Positive Regulator of Cyclin-Dependent Kinase 9

    SciTech Connect

    Baek,K.; Brown, R.; Birrane, G.; Ladias, J.

    2007-01-01

    K and the closely related cyclins T1, T2a, and T2b interact with cyclin-dependent kinase 9 (CDK9) forming multiple nuclear complexes, referred to collectively as positive transcription elongation factor b (P-TEFb). Through phosphorylation of the C-terminal domain of the RNA polymerase II largest subunit, distinct P-TEFb species regulate the transcriptional elongation of specific genes that play central roles in human physiology and disease development, including cardiac hypertrophy and human immunodeficiency virus-1 pathogenesis. We have determined the crystal structure of human cyclin K (residues 11-267) at 1.5 {angstrom} resolution, which represents the first atomic structure of a P-TEFb subunit. The cyclin K fold comprises two typical cyclin boxes with two short helices preceding the N-terminal box. A prominent feature of cyclin K is an additional helix (H4a) in the first cyclin box that obstructs the binding pocket for the cell-cycle inhibitor p27{sup Kip1}. Modeling of CDK9 bound to cyclin K provides insights into the structural determinants underlying the formation and regulation of this complex. A homology model of human cyclin T1 generated using the cyclin K structure as a template reveals that the two proteins have similar structures, as expected from their high level of sequence identity. Nevertheless, their CDK9-interacting surfaces display significant structural differences, which could potentially be exploited for the design of cyclin-targeted inhibitors of the CDK9-cyclin K and CDK9-cyclin T1 complexes.

  5. Decreased cyclin B1 expression contributes to G2 delay in human brain tumor cells after treatment with camptothecin.

    PubMed Central

    Janss, A. J.; Maity, A.; Tang, C. B.; Muschel, R. J.; McKenna, W. G.; Sutton, L.; Phillips, P. C.

    2001-01-01

    DNA damage produces delayed mitosis (G2/M delay) in proliferating cells, and shortening the delay sensitizes human malignant glioma and medulloblastoma cells to cytotoxic chemotherapy. Although activation of the cyclin-dependent kinase CDC2 mediates G2/M transition in all tumor cells studied to date, regulation of CDC2 varies between tumor types. Persistent hyperphosphorylation of kinase and reduced cyclin expression have been implicated as mediators of treatment-induced G2 delay in different tumor models. To evaluate regulation of G2/M transition in human brain tumors, we studied the expression and/or activity of CDC2 kinase and cyclins A and B1 in U-251 MG and DAOY medulloblastoma cells after their treatment with camptothecin (CPT). Synchronized cells were treated during S phase, then harvested at predetermined intervals for evaluation of cell cycle kinetics, kinase activity mRNA, and protein expression. CPT produced G2 delay associated with decreased CDC2 kinase activity and cyclin B1 expression. Kinase activity was associated with CDC2 bound to cyclin B1, not cyclin A, in both cell lines. Cyclin A mRNA and protein expression were reduced after CPT treatment; however, decreased protein expression was short lived and moderate in the glioma and primitive neuroectodermal tumor/medulloblastoma cells, respectively. We conclude that G2 delay is a common response of brain tumor cells to chemotherapy with topoisomerase I inhibitors and that a mechanism of this delay may be reduced expression of cyclin B1. PMID:11305412

  6. Cyclin D1 functions in cell migration.

    PubMed

    Li, Zhiping; Wang, Chenguang; Prendergast, George C; Pestell, Richard G

    2006-11-01

    Cell migration is essential for developmental morphogenesis, tissue repair, and tumor metastasis. A recent study reveals that cyclin D1 acts to promote cell migration by inhibiting Rho/ROCK signaling and expression of thrombospondin-1 (TSP-1), an extracellular matrix protein that regulates cell migration in many settings including cancer. Given the frequent overexpression of cyclin D1 in cancer cells, due to its upregulation by Ras, Rho, Src, and other genes that drive malignant development, the new findings suggest that cyclin D1 may have a central role in mediating invasion and metastasis of cancer cells by controlling Rho/ROCK signaling and matrix deposition of TSP-1.

  7. Cyclin A2: At the crossroads of cell cycle and cell invasion

    PubMed Central

    Loukil, Abdelhalim; Cheung, Caroline T; Bendris, Nawal; Lemmers, Bénédicte; Peter, Marion; Blanchard, Jean Marie

    2015-01-01

    Cyclin A2 is an essential regulator of the cell division cycle through the activation of kinases that participate to the regulation of S phase as well as the mitotic entry. However, whereas its degradation by the proteasome in mid mitosis was thought to be essential for mitosis to proceed, recent observations show that a small fraction of cyclin A2 persists beyond metaphase and is degraded by autophagy. Its implication in the control of cytoskeletal dynamics and cell movement has unveiled its role in the modulation of RhoA activity. Since this GTPase is involved in both cell rounding early in mitosis and later, in the formation of the cleavage furrow, this suggests that cyclin A2 is a novel actor in cytokinesis. Taken together, these data point to this cyclin as a potential mediator of cell-niche interactions whose dysregulation could be taken as a hallmark of metastasis. PMID:26629317

  8. Cyclin A2: At the crossroads of cell cycle and cell invasion.

    PubMed

    Loukil, Abdelhalim; Cheung, Caroline T; Bendris, Nawal; Lemmers, Bénédicte; Peter, Marion; Blanchard, Jean Marie

    2015-11-26

    Cyclin A2 is an essential regulator of the cell division cycle through the activation of kinases that participate to the regulation of S phase as well as the mitotic entry. However, whereas its degradation by the proteasome in mid mitosis was thought to be essential for mitosis to proceed, recent observations show that a small fraction of cyclin A2 persists beyond metaphase and is degraded by autophagy. Its implication in the control of cytoskeletal dynamics and cell movement has unveiled its role in the modulation of RhoA activity. Since this GTPase is involved in both cell rounding early in mitosis and later, in the formation of the cleavage furrow, this suggests that cyclin A2 is a novel actor in cytokinesis. Taken together, these data point to this cyclin as a potential mediator of cell-niche interactions whose dysregulation could be taken as a hallmark of metastasis.

  9. Complexes of D-type cyclins with CDKs during maize germination.

    PubMed

    Godínez-Palma, Silvia K; García, Elpidio; Sánchez, María de la Paz; Rosas, Fernando; Vázquez-Ramos, Jorge M

    2013-12-01

    The importance of cell proliferation in plant growth and development has been well documented. The majority of studies on basic cell cycle mechanisms in plants have been at the level of gene expression and much less knowledge has accumulated in terms of protein interactions and activation. Two key proteins, cyclins and cyclin-dependent kinases (CDKs) are fundamental for cell cycle regulation and advancement. Our aim has been to understand the role of D-type cyclins and type A and B CDKs in the cell cycle taking place during a developmental process such as maize seed germination. Results indicate that three maize D-type cyclins-D2;2, D4;2, and D5;3-(G1-S cyclins by definition) bind and activate two different types of CDK-A and B1;1-in a differential way during germination. Whereas CDKA-D-type cyclin complexes are more active at early germination times than at later times, it was surprising to observe that CDKB1;1, a supposedly G2-M kinase, bound in a differential way to all D-type cyclins tested during germination. Binding to cyclin D2;2 was detectable at all germination times, forming a complex with kinase activity, whereas binding to D4;2 and D5;3 was more variable; in particular, D5;3 was only detected at late germination times. Results are discussed in terms of cell cycle advancement and its importance for seed germination.

  10. Real-time imaging of transcriptional activation in live cells reveals rapid up-regulation of the cyclin-dependent kinase inhibitor gene CDKN1A in replicative cellular senescence.

    PubMed

    Herbig, Utz; Wei, Wenyi; Dutriaux, Annie; Jobling, Wendy A; Sedivy, John M

    2003-12-01

    Cellular replicative senescence is a permanent growth arrest state that can be triggered by telomere shortening. The cyclin-dependent kinase (Cdk) inhibitor p21(CIP1/WAF1) (p21), encoded by the CDKN1A gene, is a critical cell cycle regulator whose expression increases as cells approach senescence. Although the pathways responsible for its up-regulation are not well understood, compelling evidence indicates that the upstream triggering event is telomere dysfunction. Studies of replicative senescence have been complicated by the asynchrony of its onset, which is caused by the continuous and stochastic variability in individual cell lifespans. In fact, the actual entry into senescence has never been observed in a single unperturbed cell. We report here a new in vitro human model system that allows entry into senescence to be monitored in real-time in individual viable cells. We used homologous recombination to generate non-immortalized fibroblast cells with the enhanced yellow fluorescence protein (EYFP) gene knocked into one CDKN1A gene copy, allowing promoter activity to be visualized as fluorescence intensity. Gamma irradiation, DNA-damaging drugs, expression of p14(ARF) or oncogenic Ras, and replicative exhaustion all resulted in elevated EYFP expression, demonstrating its proper control by physiological signalling circuits. Analysis by time-lapse microscopy of cultures approaching replicative senescence revealed that p21 levels rise abruptly in individual aging cells and remain elevated for extended periods of time. PMID:14677632

  11. Cyclin D2 induces proliferation of cardiac myocytes and represses hypertrophy

    SciTech Connect

    Busk, Peter K. . E-mail: pkbu@novonordisk.com; Hinrichsen, Rebecca; Bartkova, Jirina; Hansen, Ane H.; Christoffersen, Tue E.H.; Bartek, Jiri; Haunso, Stig

    2005-03-10

    The myocytes of the adult mammalian heart are considered unable to divide. Instead, mitogens induce cardiomyocyte hypertrophy. We have investigated the effect of adenoviral overexpression of cyclin D2 on myocyte proliferation and morphology. Cardiomyocytes in culture were identified by established markers. Cyclin D2 induced DNA synthesis and proliferation of cardiomyocytes and impaired hypertrophy induced by angiotensin II and serum. At the molecular level, cyclin D2 activated CDK4/6 and lead to pRB phosphorylation and downregulation of the cell cycle inhibitors p21{sup Waf1/Cip1} and p27{sup Kip1}. Expression of the CDK4/6 inhibitor p16 inhibited proliferation and cyclin D2 overexpressing myocytes became hypertrophic under such conditions. Inhibition of hypertrophy by cyclin D2 correlated with downregulation of p27{sup Kip1}. These data show that hypertrophy and proliferation are highly related processes and suggest that cardiomyocyte hypertrophy is due to low amounts of cell cycle activators unable to overcome the block imposed by cell cycle inhibitors. Cell cycle entry upon hypertrophy may be converted to cell division by increased expression of activators such as cyclin D2.

  12. Epstein-Barr virus Rta-mediated transactivation of p21 and 14-3-3σ arrests cells at the G1/S transition by reducing cyclin E/CDK2 activity.

    PubMed

    Huang, Sheng-Yen; Hsieh, Min-Jie; Chen, Chu-Ying; Chen, Yen-Ju; Chen, Jen-Yang; Chen, Mei-Ru; Tsai, Ching-Hwa; Lin, Su-Fang; Hsu, Tsuey-Ying

    2012-01-01

    Many herpesviral immediate-early proteins promote their robust lytic phase replications by hijacking the cell cycle machinery. Previously, lytic replication of Epstein-Barr virus (EBV) was found to be concurrent with host cell cycle arrest. In this study, we showed that ectopic expression of EBV immediate-early protein Rta in HEp-2 cells resulted in increased G1/S population, hypophosphorylation of pRb and decreased incorporation of 5-bromo-2'-deoxyuridine. In addition, EBV Rta transcriptionally upregulates the expressions of p21 and 14-3-3σ in HEp-2 cells, 293 cells and nasopharyngeal carcinoma TW01 cells. Although p21 and 14-3-3σ are known targets for p53, Rta-mediated p21 and 14-3-3σ transactivation can be detected in the absence of p53. In addition, results from luciferase reporter assays indicated that direct binding of Rta to either promoter sequences is not required for activation. On the other hand, a special class of Sp1-responsive elements was involved in Rta-mediated transcriptional activation on both promoters. Finally, Rta-induced p21 expression diminished the activity of CDK2/cyclin E complex, and, Rta-induced 14-3-3σ expression sequestered CDK1 and CDK2 in the cytoplasm. Based on these results, we hypothesize that through the disruption of CDK1 and CDK2 activities, EBV Rta might contribute to cell cycle arrest in EBV-infected epithelial cells during viral reactivation. PMID:21918011

  13. SCF(Cyclin F)-dependent degradation of CDC6 suppresses DNA re-replication.

    PubMed

    Walter, David; Hoffmann, Saskia; Komseli, Eirini-Stavroula; Rappsilber, Juri; Gorgoulis, Vassilis; Sørensen, Claus Storgaard

    2016-01-28

    Maintenance of genome stability requires that DNA is replicated precisely once per cell cycle. This is believed to be achieved by limiting replication origin licensing and thereby restricting the firing of each replication origin to once per cell cycle. CDC6 is essential for eukaryotic replication origin licensing, however, it is poorly understood how CDC6 activity is constrained in higher eukaryotes. Here we report that the SCF(Cyclin F) ubiquitin ligase complex prevents DNA re-replication by targeting CDC6 for proteasomal degradation late in the cell cycle. We show that CDC6 and Cyclin F interact through defined sequence motifs that promote CDC6 ubiquitylation and degradation. Absence of Cyclin F or expression of a stable mutant of CDC6 promotes re-replication and genome instability in cells lacking the CDT1 inhibitor Geminin. Together, our work reveals a novel SCF(Cyclin F)-mediated mechanism required for precise once per cell cycle replication.

  14. Cyclin G2 is a centrosome-associated nucleocytoplasmic shuttling protein that influences microtubule stability and induces a p53-dependent cell cycle arrest

    SciTech Connect

    Arachchige Don, Aruni S.; Dallapiazza, Robert F.; Bennin, David A.; Brake, Tiffany; Cowan, Colleen E.; Horne, Mary C. . E-mail: mary-horne@uiowa.edu

    2006-12-10

    Cyclin G2 is an atypical cyclin that associates with active protein phosphatase 2A. Cyclin G2 gene expression correlates with cell cycle inhibition; it is significantly upregulated in response to DNA damage and diverse growth inhibitory stimuli, but repressed by mitogenic signals. Ectopic expression of cyclin G2 promotes cell cycle arrest, cyclin dependent kinase 2 inhibition and the formation of aberrant nuclei [Bennin, D. A., Don, A. S., Brake, T., McKenzie, J. L., Rosenbaum, H., Ortiz, L., DePaoli-Roach, A. A., and Horne, M. C. (2002). Cyclin G2 associates with protein phosphatase 2A catalytic and regulatory B' subunits in active complexes and induces nuclear aberrations and a G{sub 1}/S-phase cell cycle arrest. J Biol Chem 277, 27449-67]. Here we report that endogenous cyclin G2 copurifies with centrosomes and microtubules (MT) and that ectopic G2 expression alters microtubule stability. We find exogenous and endogenous cyclin G2 present at microtubule organizing centers (MTOCs) where it colocalizes with centrosomal markers in a variety of cell lines. We previously reported that cyclin G2 forms complexes with active protein phosphatase 2A (PP2A) and colocalizes with PP2A in a detergent-resistant compartment. We now show that cyclin G2 and PP2A colocalize at MTOCs in transfected cells and that the endogenous proteins copurify with isolated centrosomes. Displacement of the endogenous centrosomal scaffolding protein AKAP450 that anchors PP2A at the centrosome resulted in the depletion of centrosomal cyclin G2. We find that ectopic expression of cyclin G2 induces microtubule bundling and resistance to depolymerization, inhibition of polymer regrowth from MTOCs and a p53-dependent cell cycle arrest. Furthermore, we determined that a 100 amino acid carboxy-terminal region of cyclin G2 is sufficient to both direct GFP localization to centrosomes and induce cell cycle inhibition. Colocalization of endogenous cyclin G2 with only one of two GFP-centrin-tagged centrioles

  15. Coordinated regulation of differentiation and proliferation of embryonic cardiomyocytes by a jumonji (Jarid2)-cyclin D1 pathway.

    PubMed

    Nakajima, Kuniko; Inagawa, Masayo; Uchida, Chiharu; Okada, Kumiko; Tane, Shoji; Kojima, Mizuyo; Kubota, Misae; Noda, Masatsugu; Ogawa, Satoko; Shirato, Haruki; Sato, Michio; Suzuki-Migishima, Rika; Hino, Toshiaki; Satoh, Yukio; Kitagawa, Masatoshi; Takeuchi, Takashi

    2011-05-01

    In general, cell proliferation and differentiation show an inverse relationship, and are regulated in a coordinated manner during development. Embryonic cardiomyocytes must support embryonic life by functional differentiation such as beating, and proliferate actively to increase the size of the heart. Therefore, progression of both proliferation and differentiation is indispensable. It remains unknown whether proliferation and differentiation are related in these embryonic cardiomyocytes. We focused on abnormal phenotypes, such as hyperproliferation, inhibition of differentiation and enhanced expression of cyclin D1 in cardiomyocytes of mice with mutant jumonji (Jmj, Jarid2), which encodes the repressor of cyclin D1. Analysis of Jmj/cyclin D1 double mutant mice showed that Jmj was required for normal differentiation and normal expression of GATA4 protein through cyclin D1. Analysis of transgenic mice revealed that enhanced expression of cyclin D1 decreased GATA4 protein expression and inhibited the differentiation of cardiomyocytes in a CDK4/6-dependent manner, and that exogenous expression of GATA4 rescued the abnormal differentiation. Finally, CDK4 phosphorylated GATA4 directly, which promoted the degradation of GATA4 in cultured cells. These results suggest that CDK4 activated by cyclin D1 inhibits differentiation of cardiomyocytes by degradation of GATA4, and that initiation of Jmj expression unleashes the inhibition by repression of cyclin D1 expression and allows progression of differentiation, as well as repression of proliferation. Thus, a Jmj-cyclin D1 pathway coordinately regulates proliferation and differentiation of cardiomyocytes.

  16. Cyclin D1-CDK4 Controls Glucose Metabolism Independently of Cell Cycle Progression

    PubMed Central

    Lee, Yoonjin; Dominy, John E.; Choi, Yoon Jong; Jurczak, Michael; Tolliday, Nicola; Camporez, Joao Paulo; Chim, Helen; Lim, Ji-Hong; Ruan, Hai-Bin; Yang, Xiaoyong; Vazquez, Francisca; Sicinski, Piotr; Shulman, Gerald I.; Puigserver, Pere

    2014-01-01

    Insulin constitutes a major evolutionarily conserved hormonal axis for maintaining glucose homeostasis1-3; dysregulation of this axis causes diabetes2,4. PGC-1α links insulin signaling to the expression of glucose and lipid metabolic genes5-7. GCN5 acetylates PGC-1α and suppresses its transcriptional activity, whereas SIRT1 deacetylates and activates PGC-1α8,9. Although insulin is a mitogenic signal in proliferative cells10,11, whether components of the cell cycle machinery contribute to insulin’s metabolic action is poorly understood. Herein, we report that insulin activates cyclin D1-CDK4, which, in turn, increases GCN5 acetyltransferase activity and suppresses hepatic glucose production independently of cell cycle progression. Through a cell-based high throughput chemical screen, we identified a CDK4 inhibitor that potently decreases PGC-1α acetylation. Insulin/GSK3β signaling induces cyclin D1 protein stability via sequestering cyclin D1 in the nucleus. In parallel, dietary amino acids increase hepatic cyclin D1 mRNA transcripts. Activated cyclin D1-CDK4 kinase phosphorylates and activates GCN5, which then acetylates and inhibits PGC-1α activity on gluconeogenic genes. Loss of hepatic cyclin D1 results in increased gluconeogenesis and hyperglycemia. In diabetic models, cyclin D1-CDK4 is chronically elevated and refractory to fasting/feeding transitions; nevertheless further activation of this kinase normalizes glycemia. Our findings show that insulin uses components of the cell cycle machinery in post-mitotic cells to control glucose homeostasis independently of cell division. PMID:24870244

  17. Artemisinin triggers a G1 cell cycle arrest of human Ishikawa endometrial cancer cells and inhibits cyclin-dependent kinase-4 promoter activity and expression by disrupting nuclear factor-κB transcriptional signaling.

    PubMed

    Tran, Kalvin Q; Tin, Antony S; Firestone, Gary L

    2014-03-01

    Relatively little is known about the antiproliferative effects of artemisinin, a naturally occurring antimalarial compound from Artemisia annua, or sweet wormwood, in human endometrial cancer cells. Artemisinin induced a G1 cell cycle arrest in cultured human Ishikawa endometrial cancer cells and downregulated cyclin-dependent kinase-2 (CDK2) and CDK4 transcript and protein levels. Analysis of CDK4 promoter-luciferase reporter constructs showed that the artemisinin ablation of CDK4 gene expression was accounted for by the loss of CDK4 promoter activity. Chromatin immunoprecipitation demonstrated that artemisinin inhibited nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) subunit p65 and p50 interactions with the endogenous Ishikawa cell CDK4 promoter. Coimmunoprecipitation revealed that artemisinin disrupts endogenous p65 and p50 nuclear translocation through increased protein-protein interactions with IκB-α, an NF-κB inhibitor, and disrupts its interaction with the CDK4 promoter, leading to a loss of CDK4 gene expression. Artemisinin treatment stimulated the cellular levels of IκB-α protein without altering the level of IκB-α transcripts. Finally, expression of exogenous p65 resulted in the accumulation of this NF-κB subunit in the nucleus of artemisinin-treated and artemisinin-untreated cells, reversed the artemisinin downregulation of CDK4 protein expression and promoter activity, and prevented the artemisinin-induced G1 cell cycle arrest. Taken together, our results demonstrate that a key event in the artemisinin antiproliferative effects in endometrial cancer cells is the transcriptional downregulation of CDK4 expression by disruption of NF-κB interactions with the CDK4 promoter. PMID:24296733

  18. Epstein-Barr Virus Nuclear Antigen 3C Facilitates G1-S Transition by Stabilizing and Enhancing the Function of Cyclin D1

    PubMed Central

    Saha, Abhik; Halder, Sabyasachi; Upadhyay, Santosh K.; Lu, Jie; Kumar, Pankaj; Murakami, Masanao; Cai, Qiliang; Robertson, Erle S.

    2011-01-01

    EBNA3C, one of the Epstein-Barr virus (EBV)-encoded latent antigens, is essential for primary B-cell transformation. Cyclin D1, a key regulator of G1 to S phase progression, is tightly associated and aberrantly expressed in numerous human cancers. Previously, EBNA3C was shown to bind to Cyclin D1 in vitro along with Cyclin A and Cyclin E. In the present study, we provide evidence which demonstrates that EBNA3C forms a complex with Cyclin D1 in human cells. Detailed mapping experiments show that a small N-terminal region which lies between amino acids 130–160 of EBNA3C binds to two different sites of Cyclin D1- the N-terminal pRb binding domain (residues 1–50), and C-terminal domain (residues 171–240), known to regulate Cyclin D1 stability. Cyclin D1 is short-lived and ubiquitin-mediated proteasomal degradation has been targeted as a means of therapeutic intervention. Here, we show that EBNA3C stabilizes Cyclin D1 through inhibition of its poly-ubiquitination, and also increases its nuclear localization by blocking GSK3β activity. We further show that EBNA3C enhances the kinase activity of Cyclin D1/CDK6 which enables subsequent ubiquitination and degradation of pRb. EBNA3C together with Cyclin D1-CDK6 complex also efficiently nullifies the inhibitory effect of pRb on cell growth. Moreover, an sh-RNA based strategy for knock-down of both cyclin D1 and EBNA3C genes in EBV transformed lymphoblastoid cell lines (LCLs) shows a significant reduction in cell-growth. Based on these results, we propose that EBNA3C can stabilize as well as enhance the functional activity of Cyclin D1 thereby facilitating the G1-S transition in EBV transformed lymphoblastoid cell lines. PMID:21347341

  19. Involvement of cyclin D1/CDK4 and pRb mediated by PI3K/AKT pathway activation in Pb{sup 2+}-induced neuronal death in cultured hippocampal neurons

    SciTech Connect

    Li Chenchen Xing Tairan Tang Mingliang Yong Wu Yan Dan Deng Hongmin Wang Huili Wang Ming Chen Jutao Ruan Diyun

    2008-06-15

    Lead (Pb) is widely recognized as a neurotoxicant. One of the suggested mechanisms of lead neurotoxicity is apoptotic cell death. And the mechanism by which Pb{sup 2+} causes neuronal death is not well understood. The present study sought to examine the obligate nature of cyclin D1/cyclin-dependent kinase 4 (CDK4), phosphorylation of its substrate retinoblastoma protein (pRb) and its select upstream signal phosphoinositide 3-kinase (PI3K)/AKT pathway in the death of primary cultured rat hippocampal neurons evoked by Pb{sup 2+}. Our data showed that lead treatment of primary hippocampal cultures results in dose-dependent cell death. Inhibition of CDK4 prevented Pb{sup 2+}-induced neuronal death significantly but was incomplete. In addition, we demonstrated that the levels of cyclin D1 and pRb/p107 were increased during Pb{sup 2+} treatment. These elevated expression persisted up to 48 h, returning to control levels after 72 h. We also presented pharmacological and morphological evidences that cyclin D1/CDK4 and pRb/p107 were required for such kind of neuronal death. Addition of the PI3K inhibitor LY294002 (30 {mu}M) or wortmannin (100 nM) significantly rescued the cultured hippocampal neurons from death caused by Pb{sup 2+}. And that Pb{sup 2+}-elicited phospho-AKT (Ser473) participated in the induction of cyclin D1 and partial pRb/p107 expression. These results provide evidences that cell cycle elements play a required role in the death of neurons evoked by Pb{sup 2+} and suggest that certain signaling elements upstream of cyclin D1/CDK4 are modified and/or required for this form of neuronal death.

  20. Folding of a Cyclin Box

    PubMed Central

    Chemes, Lucía B.; Noval, María G.; Sánchez, Ignacio E.; de Prat-Gay, Gonzalo

    2013-01-01

    The retinoblastoma tumor suppressor (Rb) controls the proliferation, differentiation, and survival of cells in most eukaryotes with a role in the fate of stem cells. Its inactivation by mutation or oncogenic viruses is required for cellular transformation and eventually carcinogenesis. The high conservation of the Rb cyclin fold prompted us to investigate the link between conformational stability and ligand binding properties of the RbAB pocket domain. RbAB unfolding presents a three-state transition involving cooperative secondary and tertiary structure changes and a partially folded intermediate that can oligomerize. The first transition corresponds to unfolding of the metastable B subdomain containing the binding site for the LXCXE motif present in cellular and viral targets, and the second transition corresponds to the stable A subdomain. The low thermodynamic stability of RbAB translates into a propensity to rapidly oligomerize and aggregate at 37 °C (T50 = 28 min) that is suppressed by human papillomavirus E7 and E2F peptide ligands, suggesting that Rb is likely stabilized in vivo through binding to target proteins. We propose that marginal stability and associated oligomerization may be conserved for function as a “hub” protein, allowing the formation of multiprotein complexes, which could constitute a robust mechanism to retain its cell cycle regulatory role throughout evolution. Decreased stability and oligomerization are shared with the p53 tumor suppressor, suggesting a link between folding and function in these two essential cell regulators that are inactivated in most cancers and operate within multitarget signaling pathways. PMID:23632018

  1. Cyclin E in centrosome duplication and reduplication in sea urchin zygotes.

    PubMed

    Schnackenberg, Bradley J; Marzluff, William F; Sluder, Greenfield

    2008-12-01

    When protein synthesis is completely blocked from before fertilization, the sea urchin zygote arrests in first S phase and the paternal centrosome reduplicates multiple times. However, when protein synthesis is blocked starting in prophase of first mitosis, the zygote divides and the blastomeres arrest in a G1-like state. The centrosome inherited from this mitosis duplicates only once in each blastomere for reasons that are not understood. The late G1 rise in cyclin E/cdk2 kinase activity initiates centrosome duplication in mammalian cells and its activity is needed for centrosome duplication in Xenopus egg extracts. Since the half-time for cyclin E turnover is normally approximately 1 h in sea urchin zygotes, the different behaviors of centrosomes during G1 and S phase arrests could be due to differential losses of cyclin E and its associated kinase activities at these two arrest points. To better understand the mechanisms that limit centrosome duplication, we characterize the levels of cyclin E and its associated kinase activity at the S phase and G1 arrest points. We first demonstrate that cyclin E/cdk2 kinase activity is required for centrosome duplication and reduplication in sea urchin zygotes. Next we find that cyclin E levels and cyclin E/cdk2 kinase activities are both constitutively and equivalently elevated during both the S phase and G1 arrests. This indicates that centrosome duplication during the G1 arrest is limited by a block to reduplication under conditions permissive for duplication. The cytoplasmic conditions of S phase, however, abrogate this block to reduplication.

  2. Cyclin E in Centrosome Duplication and Reduplication in Sea Urchin Zygotes

    PubMed Central

    Schnackenberg, Bradley J.; Marzluff, William F.; Sluder, Greenfield

    2010-01-01

    When protein synthesis is completely blocked from before fertilization, the sea urchin zygote arrests in first S phase and the paternal centrosome reduplicates multiple times. However, when protein synthesis is blocked starting in prophase of first mitosis, the zygote divides and the blastomeres arrest in a G1-like state. The centrosome inherited from this mitosis duplicates only once in each blastomere for reasons that are not understood. The late G1 rise in cyclin E/cdk2 kinase activity initiates centrosome duplication in mammalian cells and its activity is needed for centrosome duplication in Xenopus egg extracts. Since the half-time for cyclin E turnover is normally ~1 hour in sea urchin zygotes, the different behaviors of centrosomes during G1 and S phase arrests could be due to differential losses of cyclin E and its associated kinase activities at these two arrest points. To better understand the mechanisms that limit centrosome duplication, we characterize the levels of cyclin E and its associated kinase activity at the S phase and G1 arrest points. We first demonstrate that cyclin E/cdk2 kinase activity is required for centrosome duplication and reduplication in sea urchin zygotes. Next we find that cyclin E levels and cyclin E/cdk2 kinase activities are both constitutively and equivalently elevated during both the S phase and G1 arrests. This indicates that centrosome duplication during the G1 arrest is limited by a block to reduplication under conditions permissive for duplication. The cytoplasmic conditions of S phase, however, abrogate this block to reduplication. PMID:18651565

  3. O(2/3) exposure inhibits cell progression affecting cyclin B1/cdk1 activity in SK-N-SH while induces apoptosis in SK-N-DZ neuroblastoma cells.

    PubMed

    Cannizzaro, A; Verga Falzacappa, C Verga; Martinelli, M; Misiti, S; Brunetti, E; Bucci, B

    2007-10-01

    In search for innovative therapeutic agents for children neuroblastoma, the oxygen therapy could be considered an alternative anti-tumoral treatment. Given the physiochemical properties of O(2/3) gas mixture including fairly low aqueous solubility and spreading, and the interesting perspective of hyperoxia, we analyzed the inhibitory effect of O(2/3) treatment on two human neuroblastoma cell lines (SK-N-SH and SK-N-DZ). In this study, we demonstrated that O(2/3) treatment was able to induce cell growth inhibition and cell cycle perturbation in both cell lines. We observed an arrest at G(2) phase, accompanied by an alteration in the expression and localization of cyclin B1/cdk1 complex and a reduction in its activity in SK-N-SH cells. This reduction was consistent with the increase in both Wee1 and chk1 protein levels. On the contrary, O(2/3) induced apoptosis in SK-N-DZ cells via caspase 3 activation and Poly ADP-ribose polymerase-1 (PARP) cleavage, associated with an increase in the pro-apoptotic Bax protein. Consequently, we considered the possibility of improving the responsiveness to chemotherapeutic agents such as Cisplatin, Etoposide, and Gemcitabine in combination with O(2/3) treatment. The combined treatments produced a stronger cell inhibitory effect than Cisplatin and Etoposide used alone in SK-N-SH cells. On the contrary, the combination data were not significantly different from O(2/3) treatment alone in SK-N-DZ cells, thus suggesting that the obtained changes in cell growth inhibition were due to the effect of O(2/3) alone. PMID:17477375

  4. Overexpressed cyclin D3 contributes to retaining the growth inhibitor p27 in the cytoplasm of thyroid tumor cells

    PubMed Central

    Baldassarre, Gustavo; Belletti, Barbara; Bruni, Paola; Boccia, Angelo; Trapasso, Francesco; Pentimalli, Francesca; Barone, Maria Vittoria; Chiappetta, Gennaro; Vento, Maria Teresa; Spiezia, Stefania; Fusco, Alfredo; Viglietto, Giuseppe

    1999-01-01

    The majority of thyroid carcinomas maintain the expression of the cell growth suppressor p27, an inhibitor of cyclin-dependent kinase-2 (Cdk2). However, we find that 80% of p27-expressing tumors show an uncommon cytoplasmic localization of p27 protein, associated with high Cdk2 activity. To reproduce such a situation, a mutant p27 devoid of its COOH-terminal nuclear-localization signal was generated (p27-NLS). p27-NLS accumulates in the cytoplasm and fails to induce growth arrest in 2 different cell lines, indicating that cytoplasm-residing p27 is inactive as a growth inhibitor, presumably because it does not interact with nuclear Cdk2. Overexpression of cyclin D3 may account in part for p27 cytoplasmic localization. In thyroid tumors and cell lines, cyclin D3 expression was associated with cytoplasmic localization of p27. Moreover, expression of cyclin D3 in thyroid carcinoma cells induced cytoplasmic retention of cotransfected p27 and rescued p27-imposed growth arrest. Endogenous p27 also localized prevalently to the cytoplasm in normal thyrocytes engineered to stably overexpress cyclin D3 (PC-D3 cells). In these cells, cyclin D3 induced the formation of cytoplasmic p27–cyclin D3–Cdk complexes, which titrated p27 away from intranuclear complexes that contain cyclins A–E and Cdk2. Our results demonstrate a novel mechanism that may contribute to overcoming the p27 inhibitory threshold in transformed thyroid cells. PMID:10510327

  5. Real time detection of cell cycle regulator cyclin A on living tumor cells with europium emission.

    PubMed

    Li, Hongguang; Chadbourne, Frances L; Lan, Rongfeng; Chan, Chi-Fai; Chan, Wai-Lun; Law, Ga-Lai; Lee, Chi-Sing; Cobb, Steven L; Wong, Ka-Leung

    2013-10-01

    Six water-soluble europium complexes (Eu-L1-P(n) and Eu-L2-P(n), n = 1, 2 and 3) with one antenna chromophore, two different linkers (L1 and L2) and three proposed cyclin A specific peptides (P1: -GAKRRLIF-NH2; P2: -GGAKRRLIF-NH2; P3: -Hex- GAKRRLIF-NH2) have been synthesized. With structural information available, comparisons of the cyclin grooves of cyclin A and the six europium complexes have been made, and insights have been gained into the determinants for peptide binding and the foundation of differential binding. Experiment-wise, the linear and two-photon induced photophysical properties of these conjugates were monitored in aqueous solution. Numerous in situ/in vitro biological assays have been carried out, such as responsive emission changes in situ/in vitro, Western blot and cellular uptake. As imaging agents, complexes with peptides P3: -Hex-GAKRRLIF-NH2 showed high selectivity to cyclin A in numerous cancer cells. When it comes to responsive optical signal changes, complex Eu-L2-P3 exhibited a threefold emission enhancement upon binding with cyclin A (100 nM cyclin A, ϕ = 8% to 21%, log KB = 5.83, detection limit = 5 nM), and this could be initiated by the shortened distance between the antenna and the lanthanide after they bind/get into cyclin A. It is promising that our compounds (especially compound Eu-L2-P3) could serve as the template for structure-guided efforts to develop potential imaging therapeutics on the basis of selective imaging of CDK2/cyclin A activity.

  6. Peptide inhibitors of CDK2-cyclin A that target the cyclin recruitment-site: structural variants of the C-terminal Phe.

    PubMed

    Atkinson, Gail E; Cowan, Angela; McInnes, Campbell; Zheleva, Daniella I; Fischer, Peter M; Chan, Weng C

    2002-09-16

    A focused series of octapeptides based on the lead compound H-His-Ala-Lys-Arg-Arg-Leu-Ile-Phe-NH(2) 1, in which the C-terminal phenylalanine residue was replaced by alpha and/or beta-modified variants, was synthesized using solid-phase chemistry. Both the L-threo-beta-hydroxy-phenylalanine (beta-phenylserine, Pse) and (2S)-phenylalaninol derivatives, as competitive binders at the cyclin-recruitment site, displayed potent inhibitory activity towards the CDK2-cyclin A complex. Unexpectedly, the D-threo-Pse derivatives also showed inhibitory activity. PMID:12182847

  7. Cooperation between Dmp1 Loss and Cyclin D1 Overexpression in Breast Cancer

    PubMed Central

    Zhu, Sinan; Mott, Ryan T.; Fry, Elizabeth A.; Taneja, Pankaj; Kulik, George; Sui, Guangchao; Inoue, Kazushi

    2014-01-01

    Cyclin D1 is a component of the core cell-cycle machinery and is frequently overexpressed in breast cancer. It physically interacts with the tumor suppressor Dmp1 that attenuates the oncogenic signals from Ras and HER2 by inducing Arf/p53-dependent cell-cycle arrest. Currently, the biological significance of Dmp1–cyclin D1 interplay in breast cancer has not been determined. Here, we show that cyclin D1 bound to Dmp1 to activate both Arf and Ink4a promoters and, consequently, induced apoptosis or G2/M cell-cycle delay in normal cells to protect them from neoplastic transformation. The cyclin D1–induced Ink4a/Arf gene expression was dependent on Dmp1 because the induction was not detected in Dmp1-deficient or DMP1-depleted cells. Arf/Ink4a expression was increased in pre-malignant mammary glands from Dmp1+/+;MMTV-cyclin D1 and Dmp1+/+;MMTV-D1T286A mice but significantly down-regulated in those from Dmp1-deficient mice. Selective Dmp1 deletion was found in 21% of the MMTV-D1 and D1T286A mammary carcinomas, and the Dmp1 heterozygous status significantly accelerated mouse mammary tumorigenesis with reduced apoptosis and increased metastasis. Overall, our study reveals a pivotal role of combined Dmp1 loss and cyclin D1 overexpression in breast cancer. PMID:23938323

  8. An APC/C inhibitor stabilizes cyclin B1 by prematurely terminating ubiquitination

    PubMed Central

    Zeng, Xing; King, Randall W.

    2012-01-01

    The Anaphase-Promoting Complex/Cyclosome (APC) is a ubiquitin ligase required for exit from mitosis. We previously showed that Tosyl Arginine Methyl Ester (TAME) inhibits APC-dependent proteolysis by competing with the C-terminal IR-tail of the APC activator Cdc20 for APC binding. Here we show that in the absence of APC substrates, TAME ejects Cdc20 from the APC by promoting Cdc20 auto-ubiquitination in its N-terminal region. Cyclin B1 antagonizes TAME's effect by promoting binding of free Cdc20 to the APC and suppressing Cdc20 auto-ubiquitination. Nevertheless, TAME stabilizes cyclin B1 in Xenopus extract by two mechanisms. First, it reduces the kcat of the APCCdc20/cyclin B1 complex without affecting the Km, slowing the initial ubiquitination of unmodified cyclin B1. Second, as cyclin B1 becomes ubiquitinated, it loses its ability to promote Cdc20 binding to the APC in the presence of TAME. As a result, cyclin B1 ubiquitination terminates before reaching the threshold necessary for proteolysis. PMID:22366722

  9. Stress-induced nuclear-to-cytoplasmic translocation of cyclin C promotes mitochondrial fission in yeast.

    PubMed

    Cooper, Katrina F; Khakhina, Svetlana; Kim, Stephen K; Strich, Randy

    2014-01-27

    Mitochondrial morphology is maintained by the opposing activities of dynamin-based fission and fusion machines. In response to stress, this balance is dramatically shifted toward fission. This study reveals that the yeast transcriptional repressor cyclin C is both necessary and sufficient for stress-induced hyperfission. In response to oxidative stress, cyclin C translocates from the nucleus to the cytoplasm, where it is destroyed. Prior to its destruction, cyclin C both genetically and physically interacts with Mdv1p, an adaptor that links the GTPase Dnm1p to the mitochondrial receptor Fis1p. Cyclin C is required for stress-induced Mdv1p mitochondrial recruitment and the efficient formation of functional Dnm1p filaments. Finally, coimmunoprecipitation studies and fluorescence microscopy revealed an elevated association between Mdv1p and Dnm1p in stressed cells that is dependent on cyclin C. This study provides a mechanism by which stress-induced gene induction and mitochondrial fission are coordinated through translocation of cyclin C.

  10. BRCA1-IRIS regulates cyclin D1 expression in breast cancer cells

    SciTech Connect

    Nakuci, Enkeleda; Mahner, Sven; DiRenzo, James; ElShamy, Wael M. . E-mail: wael_elshamy@dfci.harvard.edu

    2006-10-01

    The regulator of cell cycle progression, cyclin D1, is up-regulated in breast cancer cells; its expression is, in part, dependent on ER{alpha} signaling. However, many ER{alpha}-negative tumors and tumor cell lines (e.g., SKBR3) also show over-expression of cyclin D1. This suggests that, in addition to ER{alpha} signaling, cyclin D1 expression is under the control of other signaling pathways; these pathways may even be over-expressed in the ER{alpha}-negative cells. We previously noticed that both ER{alpha}-positive and -negative cell lines over-express BRCA1-IRIS mRNA and protein. Furthermore, the level of over-expression of BRCA1-IRIS in ER{alpha}-negative cell lines even exceeded its over-expression level in ER{alpha}-positive cell lines. In this study, we show that: (1) BRCA1-IRIS forms complex with two of the nuclear receptor co-activators, namely, SRC1 and SRC3 (AIB1) in an ER{alpha}-independent manner. (2) BRCA1-IRIS alone, or in connection with co-activators, is recruited to the cyclin D1 promoter through its binding to c-Jun/AP1 complex; this binding activates the cyclin D1 expression. (3) Over-expression of BRCA1-IRIS in breast cells over-activates JNK/c-Jun; this leads to the induction of cyclin D1 expression and cellular proliferation. (4) BRCA1-IRIS activation of JNK/c-Jun/AP1 appears to account for this, because in cells that were depleted from BRCA1-IRIS, JNK remained inactive. However, depletion of SRC1 or SRC3 instead reduced c-Jun expression. Our data suggest that this novel signaling pathway links BRCA1-IRIS to cellular proliferation through c-Jun/AP1 nuclear pathway; finally, this culminates in the increased expression of the cyclin D1 gene.

  11. Caenorhabditis elegans Cyclin D/CDK4 and Cyclin E/CDK2 Induce Distinct Cell Cycle Re-Entry Programs in Differentiated Muscle Cells

    PubMed Central

    Korzelius, Jerome; The, Inge; Ruijtenberg, Suzan; Prinsen, Martine B. W.; Portegijs, Vincent; Middelkoop, Teije C.; Groot Koerkamp, Marian J.; Holstege, Frank C. P.; Boxem, Mike; van den Heuvel, Sander

    2011-01-01

    Cell proliferation and differentiation are regulated in a highly coordinated and inverse manner during development and tissue homeostasis. Terminal differentiation usually coincides with cell cycle exit and is thought to engage stable transcriptional repression of cell cycle genes. Here, we examine the robustness of the post-mitotic state, using Caenorhabditis elegans muscle cells as a model. We found that expression of a G1 Cyclin and CDK initiates cell cycle re-entry in muscle cells without interfering with the differentiated state. Cyclin D/CDK4 (CYD-1/CDK-4) expression was sufficient to induce DNA synthesis in muscle cells, in contrast to Cyclin E/CDK2 (CYE-1/CDK-2), which triggered mitotic events. Tissue-specific gene-expression profiling and single molecule FISH experiments revealed that Cyclin D and E kinases activate an extensive and overlapping set of cell cycle genes in muscle, yet failed to induce some key activators of G1/S progression. Surprisingly, CYD-1/CDK-4 also induced an additional set of genes primarily associated with growth and metabolism, which were not activated by CYE-1/CDK-2. Moreover, CYD-1/CDK-4 expression also down-regulated a large number of genes enriched for catabolic functions. These results highlight distinct functions for the two G1 Cyclin/CDK complexes and reveal a previously unknown activity of Cyclin D/CDK-4 in regulating metabolic gene expression. Furthermore, our data demonstrate that many cell cycle genes can still be transcriptionally induced in post-mitotic muscle cells, while maintenance of the post-mitotic state might depend on stable repression of a limited number of critical cell cycle regulators. PMID:22102824

  12. Lysine Acetyltransferase GCN5 Potentiates the Growth of Non-small Cell Lung Cancer via Promotion of E2F1, Cyclin D1, and Cyclin E1 Expression*

    PubMed Central

    Chen, Long; Wei, Tingyi; Si, Xiaoxing; Wang, Qianqian; Li, Yan; Leng, Ye; Deng, Anmei; Chen, Jie; Wang, Guiying; Zhu, Songcheng; Kang, Jiuhong

    2013-01-01

    The lysine acetyltransferases play crucial but complex roles in cancer development. GCN5 is a lysine acetyltransferase that generally regulates gene expression, but its role in cancer development remains largely unknown. In this study, we report that GCN5 is highly expressed in non-small cell lung cancer tissues and that its expression correlates with tumor size. We found that the expression of GCN5 promotes cell growth and the G1/S phase transition in multiple lung cancer cell lines. Further study revealed that GCN5 regulates the expression of E2F1, cyclin D1, and cyclin E1. Our reporter assays indicated that the expression of GCN5 enhances the activities of the E2F1, cyclin D1, and cyclin E1 promoters. ChIP experiments suggested that GCN5 binds directly to these promoters and increases the extent of histone acetylation within these regions. Mechanistic studies suggested that GCN5 interacts with E2F1 and is recruited by E2F1 to the E2F1, cyclin D1, and cyclin E1 promoters. The function of GCN5 in lung cancer cells is abrogated by the knockdown of E2F1. Finally, we confirmed that GCN5 regulates the expression of E2F1, cyclin D1, and cyclin E1 and potentiates lung cancer cell growth in a mouse tumor model. Taken together, our results demonstrate that GCN5 specifically potentiates lung cancer growth by directly promoting the expression of E2F1, cyclin D1, and cyclin E1 in an E2F1-dependent manner. Our study identifies a specific and novel function of GCN5 in lung cancer development and suggests that the GCN5-E2F1 interaction represents a potential target for lung cancer treatment. PMID:23543735

  13. Cyclin G2 is a Centrosome-associated Nucleocytoplasmic Shuttling Protein that Influences Microtubule Stability and Induces a p53-dependent Cell Cycle Arrest

    PubMed Central

    Arachchige Don, Aruni S.; Dallapiazza, Robert F.; Bennin, David A.; Brake, Tiffany; Cowan, Colleen E.; Horne, Mary C.

    2007-01-01

    Cyclin G2 is an atypical cyclin that associates with active protein phosphatase 2A. Cyclin G2 gene expression correlates with cell cycle inhibition; it is significantly upregulated in response to DNA damage and diverse growth inhibitory stimuli, but repressed by mitogenic signals. Ectopic expression of cyclin G2 promotes cell cycle arrest, cyclin dependent kinase 2 inhibition, and the formation of aberrant nuclei [1]. Here we report that endogenous cyclin G2 copurifies with centrosomes and microtubules (MT), and that ectopic G2 expression alters microtubule stability. We find exogenous and endogenous cyclin G2 present at microtubule organizing centers (MTOCs) where it colocalizes with centrosomal markers in a variety of cell lines. We previously reported that cyclin G2 forms complexes with active protein phosphatase 2A (PP2A) and colocalizes with PP2A in a detergent resistant compartment. We now show that cyclin G2 and PP2A colocalize at MTOCs in transfected cells, and that the endogenous proteins copurify with isolated centrosomes. Displacement of the endogenous centrosomal scaffolding protein AKAP450 that anchors PP2A at the centrosome, resulted in the depletion of centrosomal cyclin G2. We find that ectopic expression of cyclin G2 induces microtubule bundling and resistance to depolymerization, inhibition of polymer regrowth from MTOCs, and a p53 dependent cell cycle arrest. Furthermore, we determined that a 100 amino acid carboxy-terminal region of cyclin G2 is sufficient to both direct GFP localization to centrosomes and induce cell cycle inhibition. Colocalization of endogenous cyclin G2 with only one of two GFP-centrin tagged centrioles, the mature centriole present at microtubule foci, indicate that cyclin G2 resides primarily on the mother centriole. Copurification of cyclin G2 and PP2A subunits with microtubules and centrosomes, together with the effects of ectopic cyclin G2 on cell cycle progression, nuclear morphology, and microtubule growth and

  14. Characterization of TcCYC6 from Trypanosoma cruzi, a gene with homology to mitotic cyclins.

    PubMed

    Di Renzo, María Agostina; Laverrière, Marc; Schenkman, Sergio; Wehrendt, Diana Patricia; Tellez-Iñón, María Teresa; Potenza, Mariana

    2016-06-01

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is a protozoan parasite with a life cycle that alternates between replicative and non-replicative forms, but the components and mechanisms that regulate its cell cycle are poorly described. In higher eukaryotes, cyclins are proteins that activate cyclin-dependent kinases (CDKs), by associating with them along the different stages of the cell cycle. These cyclin-CDK complexes exert their role as major modulators of the cell cycle by phosphorylating specific substrates. For the correct progression of the cell cycle, the mechanisms that regulate the activity of cyclins and their associated CDKs are diverse and must be controlled precisely. Different types of cyclins are involved in specific phases of the eukaryotic cell cycle, preferentially activating certain CDKs. In this work, we characterized TcCYC6, a putative coding sequence of T. cruzi which encodes a protein with homology to mitotic cyclins. The overexpression of this sequence, fused to a tag of nine amino acids from influenza virus hemagglutinin (TcCYC6-HA), showed to be detrimental for the proliferation of epimastigotes in axenic culture and affected the cell cycle progression. In silico analysis revealed an N-terminal segment similar to the consensus sequence of the destruction box, a hallmark for the degradation of several mitotic cyclins. We experimentally determined that the TcCYC6-HA turnover decreased in the presence of proteasome inhibitors, suggesting that TcCYC6 degradation occurs via ubiquitin-proteasome pathway. The results obtained in this study provide first evidence that TcCYC6 expression and degradation are finely regulated in T. cruzi.

  15. Cyclin A Degradation by Primate Cytomegalovirus Protein pUL21a Counters Its Innate Restriction of Virus Replication

    PubMed Central

    Yu, Dong

    2013-01-01

    Cyclin A is critical for cellular DNA synthesis and S phase progression of the cell cycle. Human cytomegalovirus (HCMV) can reduce cyclin A levels and block cellular DNA synthesis, and cyclin A overexpression can repress HCMV replication. This interaction has only been previously observed in HCMV as murine CMV does not downregulate cyclin A, and the responsible viral factor has not been identified. We previously reported that the HCMV protein pUL21a disrupted the anaphase-promoting complex (APC), but a point mutant abrogating this activity did not phenocopy a UL21a-deficient virus, suggesting that pUL21a has an additional function. Here we identified a conserved arginine-x-leucine (RxL) cyclin-binding domain within pUL21a, which allowed pUL21a to interact with cyclin A and target it for proteasome degradation. Homologous pUL21a proteins from both chimpanzee and rhesus CMVs also contained the RxL domain and similarly degraded cyclin A, indicating that this function is conserved in primate CMVs. The RxL point mutation disabled the virus' ability to block cellular DNA synthesis and resulted in a growth defect similar to pUL21a-deficient virus. Importantly, knockdown of cyclin A rescued growth of UL21a-deficient virus. Together, these data show that during evolution, the pUL21a family proteins of primate CMVs have acquired a cyclin-binding domain that targets cyclin A for degradation, thus neutralizing its restriction on virus replication. Finally, the combined proteasome-dependent degradation of pUL21a and its cellular targets suggests that pUL21a may act as a novel suicide protein, targeting its protein cargos for destruction. PMID:24385906

  16. PKCeta enhances cell cycle progression, the expression of G1 cyclins and p21 in MCF-7 cells.

    PubMed

    Fima, E; Shtutman, M; Libros, P; Missel, A; Shahaf, G; Kahana, G; Livneh, E

    2001-10-11

    Protein kinase C encodes a family of enzymes implicated in cellular differentiation, growth control and tumor promotion. However, not much is known with respect to the molecular mechanisms that link protein kinase C to cell cycle control. Here we report that the expression of PKCeta in MCF-7 cells, under the control of a tetracycline-responsive inducible promoter, enhanced cell growth and affected the cell cycle at several points. The induced expression of another PKC isoform, PKCdelta, in MCF-7 cells had opposite effects and inhibited their growth. PKCeta expression activated cellular pathways in these cells that resulted in the increased expression of the G1 phase cyclins, cyclin D and cyclin E. Expression of the cyclin-dependent kinase inhibitor p21(WAF1) was also specifically elevated in PKCeta expressing cells, but its overall effects were not inhibitory. Although, the protein levels of the cyclin-dependent kinase inhibitor p27(KIP1) were not altered by the induced expression of PKCeta, the cyclin E associated Cdk2 kinase activity was in correlation with the p27(KIP1) bound to the cyclin E complex and not by p21(WAF1) binding. PKCeta expression enhanced the removal of p27(KIP1) from this complex, and its re-association with the cyclin D/Cdk4 complex. Reduced binding of p27(KIP1) to the cyclin D/Cdk4 complex at early time points of the cell cycle also enhanced the activity of this complex, while at later time points the decrease in bound p21(WAF1) correlated with its increased activity in PKCeta-expressing cells. Thus, PKCeta induces altered expression of several cell cycle functions, which may contribute to its ability to affect cell growth.

  17. PKCeta enhances cell cycle progression, the expression of G1 cyclins and p21 in MCF-7 cells.

    PubMed

    Fima, E; Shtutman, M; Libros, P; Missel, A; Shahaf, G; Kahana, G; Livneh, E

    2001-10-11

    Protein kinase C encodes a family of enzymes implicated in cellular differentiation, growth control and tumor promotion. However, not much is known with respect to the molecular mechanisms that link protein kinase C to cell cycle control. Here we report that the expression of PKCeta in MCF-7 cells, under the control of a tetracycline-responsive inducible promoter, enhanced cell growth and affected the cell cycle at several points. The induced expression of another PKC isoform, PKCdelta, in MCF-7 cells had opposite effects and inhibited their growth. PKCeta expression activated cellular pathways in these cells that resulted in the increased expression of the G1 phase cyclins, cyclin D and cyclin E. Expression of the cyclin-dependent kinase inhibitor p21(WAF1) was also specifically elevated in PKCeta expressing cells, but its overall effects were not inhibitory. Although, the protein levels of the cyclin-dependent kinase inhibitor p27(KIP1) were not altered by the induced expression of PKCeta, the cyclin E associated Cdk2 kinase activity was in correlation with the p27(KIP1) bound to the cyclin E complex and not by p21(WAF1) binding. PKCeta expression enhanced the removal of p27(KIP1) from this complex, and its re-association with the cyclin D/Cdk4 complex. Reduced binding of p27(KIP1) to the cyclin D/Cdk4 complex at early time points of the cell cycle also enhanced the activity of this complex, while at later time points the decrease in bound p21(WAF1) correlated with its increased activity in PKCeta-expressing cells. Thus, PKCeta induces altered expression of several cell cycle functions, which may contribute to its ability to affect cell growth. PMID:11709714

  18. Combined effect of cyclin D3 expression and abrogation of cyclin D1 prevent mouse skin tumor development

    PubMed Central

    Wang, Xian; Sistrunk, Christopher; Miliani de Marval, Paula L; Kim, Yongbaek

    2012-01-01

    We have previously demonstrated that ras-mediated skin tumorigenesis depends on signaling pathways that act preferentially through cyclin D1 and D2. Interestingly, the expression of cyclin D3 inhibits skin tumor development, an observation that conflicts with the oncogenic role of D-type cyclins in the mouse epidermis. Here, we show that simultaneous up and downregulation of particular members of the D-type cyclin family is a valuable approach to reduce skin tumorigenesis. We developed the K5D3/cyclin D1−/− compound mouse, which overexpresses cyclin D3 but lacks expression of cyclin D1 in the skin. Similar to K5D3 transgenic mice, keratinocytes from K5D3/cyclin D1−/− compound mice show a significant reduction of cyclin D2 levels. Therefore, this model allows us to determine the effect of cyclin D3 expression when combined with reduced or absent expression of the remaining two members of the D-type cyclin family in mouse epidermis. Our data show that induced expression of cyclin D3 compensates for the reduced level of cyclin D1 and D2, resulting in normal keratinocyte proliferation. However, simultaneous ablation of cyclin D1 and downregulation of cyclin D2 via cyclin D3 expression resulted in a robust reduction in ras-mediated skin tumorigenesis. We conclude that modulation of the levels of particular members of the D-type cyclin family could be useful to inhibit tumor development and, in particular, ras-mediated tumorigenesis. PMID:22214766

  19. Identification of an Rta responsive promoter involved in driving gammaHV68 v-cyclin expression during virus replication.

    PubMed

    Allen, Robert D; DeZalia, Mark N; Speck, Samuel H

    2007-09-01

    Among the distinguishing characteristics of members of the gamma-2 herpesvirus family is the expression of a mammalian D-type cyclin homolog, termed v-cyclin. Murine gammaherpesvirus 68 (gammaHV68) is a gamma2-herpesvirus that can infect inbred and outbred strains of mice, providing a genetic system for the study of gammaherpesvirus pathogenesis. Disruption of the v-cyclin gene of gammaHV68 results in a virus that establishes latency in infected mice to wild-type levels, but is severely attenuated for virus reactivation [van Dyk, L.F., Virgin IV, H.W., Speck, S.H., 2000. J. Virol. 74:7451-7461]. Transcriptional regulation of the gammaHV68 v-cyclin has not been defined. We report here the initial characterization of the v-cyclin transcript expressed in permissive murine fibroblasts. Based on 5' mapping of the v-cyclin transcript, we identified a promoter that is involved in driving v-cyclin expression during virus replication. In addition, we determined that the promoter is responsive to the major viral lytic transactivator, Rta, encoded by orf 50. Using reporter plasmids we have analyzed both basal and Rta-induced v-cyclin promoter activity, initially identifying two regions of the v-cyclin promoter important for both basal and Rta-induced activity. Notably, only one of these regions could be shown to confer Rta responsiveness on a reporter construct containing the hsp70 TATA box. The importance of this region in regulating v-cyclin expression during virus replication was confirmed by introducing these mutations into the context of the viral genome and assessing v-cyclin expression following infection of permissive murine fibroblasts in tissue culture. In addition, we show that mutations that severely cripple Rta-induction of v-cyclin expression did not adversely impact virus reactivation from splenocytes recovered from latently infected mice, indicating that alternatively regulated v-cyclin gene expression is required for virus reactivation.

  20. Spatial reorganization of the endoplasmic reticulum during mitosis relies on mitotic kinase cyclin A in the early Drosophila embryo.

    PubMed

    Bergman, Zane J; Mclaurin, Justin D; Eritano, Anthony S; Johnson, Brittany M; Sims, Amanda Q; Riggs, Blake

    2015-01-01

    Mitotic cyclin-dependent kinase with their cyclin partners (cyclin:Cdks) are the master regulators of cell cycle progression responsible for regulating a host of activities during mitosis. Nuclear mitotic events, including chromosome condensation and segregation have been directly linked to Cdk activity. However, the regulation and timing of cytoplasmic mitotic events by cyclin:Cdks is poorly understood. In order to examine these mitotic cytoplasmic events, we looked at the dramatic changes in the endoplasmic reticulum (ER) during mitosis in the early Drosophila embryo. The dynamic changes of the ER can be arrested in an interphase state by inhibition of either DNA or protein synthesis. Here we show that this block can be alleviated by micro-injection of Cyclin A (CycA) in which defined mitotic ER clusters gathered at the spindle poles. Conversely, micro-injection of Cyclin B (CycB) did not affect spatial reorganization of the ER, suggesting CycA possesses the ability to initiate mitotic ER events in the cytoplasm. Additionally, RNAi-mediated simultaneous inhibition of all 3 mitotic cyclins (A, B and B3) blocked spatial reorganization of the ER. Our results suggest that mitotic ER reorganization events rely on CycA and that control and timing of nuclear and cytoplasmic events during mitosis may be defined by release of CycA from the nucleus as a consequence of breakdown of the nuclear envelope.

  1. Cyclin D and cdk4 Are Required for Normal Development beyond the Blastula Stage in Sea Urchin Embryos

    PubMed Central

    Moore, Jennifer C.; Sumerel, Jan L.; Schnackenberg, Bradley J.; Nichols, Jason A.; Wikramanayake, Athula; Wessel, Gary M.; Marzluff, William F.

    2002-01-01

    cdk4 mRNA and protein are constitutively expressed in sea urchin eggs and throughout embryonic development. In contrast, cyclin D mRNA is barely detectable in eggs and early embryos, when the cell cycles consist of alternating S and M phases. Cyclin D mRNA increases dramatically in embryos at the early blastula stage and remains at a constant level throughout embryogenesis. An increase in cdk4 kinase activity occurs concomitantly with the increase in cyclin D mRNA. Ectopic expression of cyclin D mRNA in eggs arrests development before the 16-cell stage and causes eventual embryonic death, suggesting that activation of cyclin D/cdk4 in cleavage cell cycles is lethal to the embryo. In contrast, blocking cyclin D or cdk4 expression with morpholino antisense oligonucleotides results in normal development of early gastrula-stage embryos but abnormal, asymmetric larvae. These results suggest that in sea urchins, cyclin D and cdk4 are required for normal development and perhaps the patterning of the developing embryo, but may not be directly involved in regulating entry into the cell cycle. PMID:12052892

  2. A jumonji (Jarid2) protein complex represses cyclin D1 expression by methylation of histone H3-K9.

    PubMed

    Shirato, Haruki; Ogawa, Satoko; Nakajima, Kuniko; Inagawa, Masayo; Kojima, Mizuyo; Tachibana, Makoto; Shinkai, Yoichi; Takeuchi, Takashi

    2009-01-01

    Covalent modifications of histone tails have critical roles in regulating gene expression. Previously, we identified the jumonji (jmj, Jarid2) gene, the jmjC domain, and a Jmj family. Recently, many Jmj family proteins have been shown to be histone demethylases, and jmjC is the catalytic domain. However, Jmj does not have histone demethylase activity because the jmjC domain lacks conserved residues for binding to cofactors. Independently of these studies, we previously showed that Jmj binds to the cyclin D1 promoter and represses the transcription of cyclin D1. Here, we show the mechanisms by which Jmj represses the transcription of cyclin D1. We found that a protein complex of Jmj had histone methyltransferase activity toward histone H3 lysine 9 (H3-K9). We also found that Jmj bound to the H3-K9 methyltransferases G9a and GLP. Expression of Jmj recruited G9a and GLP to the cyclin D1 promoter and increased H3-K9 methylation. Inactivation of both G9a and GLP, but not of only G9a, inhibited the methylation of H3-K9 in the cyclin D1 promoter and repression of cyclin D1 expression by Jmj. These results suggest that Jmj methylates H3-K9 and represses cyclin D1 expression through G9a and GLP, and that Jmj family proteins can regulate gene expression by not only histone demethylation but also other histone modification.

  3. Securin and not CDK1/cyclin B1 regulates sister chromatid disjunction during meiosis II in mouse eggs.

    PubMed

    Nabti, Ibtissem; Reis, Alexandra; Levasseur, Mark; Stemmann, Olaf; Jones, Keith T

    2008-09-15

    Mammalian eggs remain arrested at metaphase of the second meiotic division (metII) for an indeterminate time before fertilization. During this period, which can last several hours, the continued attachment of sister chromatids is thought to be achieved by inhibition of the protease separase. Separase is known to be inhibited by binding either securin or Maturation (M-Phase)-Promoting Factor, a heterodimer of CDK1/cyclin B1. However, the relative contribution of securin and CDK/cyclin B1 to sister chromatid attachment during metII arrest has not been assessed. Although there are conditions in which either CDK1/cyclinB1 activity or securin can prevent sister chromatid disjunction, principally by overexpression of non-degradable cyclin B1 or securin, we find here that separase activity is primarily regulated by securin and not CDK1/cyclin B1. Thus the CDK1 inhibitor roscovitine and an antibody we designed to block the interaction of CDK1/cyclin B1 with separase, both failed to induce sister disjunction. In contrast, securin morpholino knockdown specifically induced loss of sister attachment, that could be restored by securin cRNA rescue. During metII arrest separase appears primarily regulated by securin binding, not CDK1/cyclin B1. PMID:18639540

  4. Differentiation-inducing factor-1 suppresses gene expression of cyclin D1 in tumor cells

    SciTech Connect

    Yasmin, Tania; Takahashi-Yanaga, Fumi . E-mail: yanaga@clipharm.med.kyushu-u.ac.jp; Mori, Jun; Miwa, Yoshikazu; Hirata, Masato; Watanabe, Yutaka; Morimoto, Sachio; Sasaguri, Toshiyuki

    2005-12-16

    To determine the mechanism by which differentiation-inducing factor-1 (DIF-1), a morphogen of Dictyostelium discoideum, inhibits tumor cell proliferation, we examined the effect of DIF-1 on the gene expression of cyclin D1. DIF-1 strongly reduced the expression of cyclin D1 mRNA and correspondingly decreased the amount of {beta}-catenin in HeLa cells and squamous cell carcinoma cells. DIF-1 activated glycogen synthase kinase-3{beta} (GSK-3{beta}) and inhibition of GSK-3{beta} attenuated the DIF-1-induced {beta}-catenin degradation, indicating the involvement of GSK-3{beta} in this effect. Moreover, DIF-1 reduced the activities of T-cell factor (TCF)/lymphoid enhancer factor (LEF) reporter plasmid and a reporter gene driven by the human cyclin D1 promoter. Eliminating the TCF/LEF consensus site from the cyclin D1 promoter diminished the effect of DIF-1. These results suggest that DIF-1 inhibits Wnt/{beta}-catenin signaling, resulting in the suppression of cyclin D1 promoter activity.

  5. DEC1 regulates breast cancer cell proliferation by stabilizing cyclin E protein and delays the progression of cell cycle S phase

    PubMed Central

    Bi, H; Li, S; Qu, X; Wang, M; Bai, X; Xu, Z; Ao, X; Jia, Z; Jiang, X; Yang, Y; Wu, H

    2015-01-01

    Breast cancer that is accompanied by a high level of cyclin E expression usually exhibits poor prognosis and clinical outcome. Several factors are known to regulate the level of cyclin E during the cell cycle progression. The transcription factor DEC1 (also known as STRA13 and SHARP2) plays an important role in cell proliferation and apoptosis. Nevertheless, the mechanism of its role in cell proliferation is poorly understood. In this study, using the breast cancer cell lines MCF-7 and T47D, we showed that DEC1 could inhibit the cell cycle progression of breast cancer cells independently of its transcriptional activity. The cell cycle-dependent timing of DEC1 overexpression could affect the progression of the cell cycle through regulating the level of cyclin E protein. DEC1 stabilized cyclin E at the protein level by interacting with cyclin E. Overexpression of DEC1 repressed the interaction between cyclin E and its E3 ligase Fbw7α, consequently reducing the level of polyunbiquitinated cyclin E and increased the accumulation of non-ubiquitinated cyclin E. Furthermore, DEC1 also promoted the nuclear accumulation of Cdk2 and the formation of cyclin E/Cdk2 complex, as well as upregulating the activity of the cyclin E/Cdk2 complex, which inhibited the subsequent association of cyclin A with Cdk2. This had the effect of prolonging the S phase and suppressing the growth of breast cancers in a mouse xenograft model. These events probably constitute the essential steps in DEC1-regulated cell proliferation, thus opening up the possibility of a protein-based molecular strategy for eliminating cancer cells that manifest a high-level expression of cyclin E. PMID:26402517

  6. Conformational Equilibrium of CDK/Cyclin Complexes by Molecular Dynamics with Excited Normal Modes

    PubMed Central

    Floquet, Nicolas; Costa, Mauricio G.S.; Batista, Paulo R.; Renault, Pedro; Bisch, Paulo M.; Raussin, Florent; Martinez, Jean; Morris, May C.; Perahia, David

    2015-01-01

    Cyclin-dependent kinases (CDKs) and their associated regulatory cyclins are central for timely regulation of cell-cycle progression. They constitute attractive pharmacological targets for development of anticancer therapeutics, since they are frequently deregulated in human cancers and contribute to sustained, uncontrolled tumor proliferation. Characterization of their structural/dynamic features is essential to gain in-depth insight into structure-activity relationships. In addition, the identification of druggable pockets or key intermediate conformations yields potential targets for the development of novel classes of inhibitors. Structural studies of CDK2/cyclin A have provided a wealth of information concerning monomeric/heterodimeric forms of this kinase. There is, however, much less structural information for other CDK/cyclin complexes, including CDK4/cyclin D1, which displays an alternative (open) position of the cyclin partner relative to CDK, contrasting with the closed CDK2/cyclin A conformation. In this study, we carried out normal-mode analysis and enhanced sampling simulations with our recently developed method, molecular dynamics with excited normal modes, to understand the conformational equilibrium on these complexes. Interestingly, the lowest-frequency normal mode computed for each complex described the transition between the open and closed conformations. Exploration of these motions with an explicit-solvent representation using molecular dynamics with excited normal modes confirmed that the closed conformation is the most stable for the CDK2/cyclin A complex, in agreement with their experimentally available structures. On the other hand, we clearly show that an open↔closed equilibrium may exist in CDK4/cyclin D1, with closed conformations resembling that captured for CDK2/cyclin A. Such conformational preferences may result from the distinct distributions of frustrated contacts in each complex. Using the same approach, the putative roles of

  7. Cell cycle-regulated degradation of Xenopus cyclin B2 requires binding to p34cdc2.

    PubMed Central

    van der Velden, H M; Lohka, M J

    1994-01-01

    The protein kinase activity of the cell cycle regulator p34cdc2 is inactivated when the mitotic cyclin to which it is bound is degraded. The amino (N)-terminus of mitotic cyclins includes a conserved "destruction box" sequence that is essential for degradation. Although the N-terminus of sea urchin cyclin B confer cell cycle-regulated degradation to a fusion protein, a truncated protein containing only the N-terminus of Xenopus cyclin B2, including the destruction box, is stable under conditions where full length molecules are degraded. In an attempt to identify regions of cyclin B2, other than the destruction box, involved in degradation, the stability of proteins encoded by C-terminal deletion mutants of cyclin B2 was examined in Xenopus egg extracts. Truncated cyclin with only the first 90 amino acids was stable, but other C-terminal deletions lacking between 14 and 187 amino acids were unstable and were degraded by a mechanism that was neither cell cycle regulated nor dependent upon the destruction box. None of the C-terminal deletion mutants bound p34cdc2. To investigate whether the binding of p34cdc2 is required for cell cycle-regulated degradation, the behavior of proteins encoded by a series of full length Xenopus cyclin B2 cDNA with point mutations in conserved amino acids in the p34cdc2-binding domain was examined. All of the point mutants failed to form stable complexes with p34cdc, and their degradation was markedly reduced compared to wild-type cyclin. Similar results were obtained when the mutant cyclins were synthesized in reticulocyte lysates and when cyclin mRNA was translated directly in a Xenopus egg extract. These results indicate that mutations that interfere with p34cdc2 binding also interfere with cyclin destruction, suggesting that p34cdc2 binding is required for the cell cycle-regulated destruction of Xenopus cyclin B2. Images PMID:7812041

  8. Insights into cyclin groove recognition: complex crystal structures and inhibitor design through ligand exchange.

    PubMed

    Kontopidis, George; Andrews, Martin J I; McInnes, Campbell; Cowan, Angela; Powers, Helen; Innes, Lorraine; Plater, Andy; Griffiths, Gary; Paterson, Dougie; Zheleva, Daniella I; Lane, David P; Green, Stephen; Walkinshaw, Malcolm D; Fischer, Peter M

    2003-12-01

    Inhibition of CDK2/CA (cyclin-dependent kinase 2/cyclin A complex) activity through blocking of the substrate recognition site in the cyclin A subunit has been demonstrated to be an effective method for inducing apoptosis in tumor cells. We have used the cyclin binding motif (CBM) present in the tumor suppressor proteins p21(WAF1) and p27(KIP1) as a template to optimize the minimal sequence necessary for CDK2/CA inhibition. A series of peptides were prepared, containing nonnatural amino acids, which possess nano- to micromolar CDK2-inhibitory activity. Here we present X-ray structures of the protein complex CDK2/CA, together with the cyclin groove-bound peptides H-Ala-Ala-Abu-Arg-Ser-Leu-Ile-(p-F-Phe)-NH(2) (peptide 1), H-Arg-Arg-Leu-Ile-Phe-NH(2) (peptide 2), Ac-Arg-Arg-Leu-Asn-(m-Cl-Phe)-NH(2) (peptide 3), H-Arg-Arg-Leu-Asn-(p-F-Phe)-NH(2) (peptide 4), and H-Cit-Cit-Leu-Ile-(p-F-Phe)-NH(2) (peptide 5). Some of the peptide complexes presented here were obtained through the novel technique of ligand exchange within protein crystals. This method may find general application for obtaining complex structures of proteins with surface-bound ligands.

  9. Centrosomal Localization of Cyclin E-Cdk2 is Required for Initiation of DNA Synthesis

    PubMed Central

    Ferguson, Rebecca L.; Maller, James L.

    2010-01-01

    Summary Cyclin E-Cdk2 is known to regulate both DNA replication and centrosome duplication during the G1-S transition in the cell cycle [1–4], and disruption of centrosomes results in a G1 arrest in some cell types [5–7]. Localization of cyclin E on centrosomes is mediated by a 20 amino acid domain termed the centrosomal localization sequence (CLS), and expression of the GFP-tagged CLS displaces both cyclin E and cyclin A from the centrosome [8]. In asynchronous cells CLS expression inhibits the incorporation of bromodeoxyuridine (BrdU) into DNA, an effect proposed to reflect a G1 arrest. Here we show in synchronized cells that the reduction in BrdU incorporation reflects not a G1 arrest but rather direct inhibition of the initiation of DNA replication in S phase. The loading of essential DNA replication factors such as Cdc45 and PCNA onto chromatin is blocked by CLS expression, but DNA synthesis can be rescued by retargeting active cyclin E-Cdk2 to the centrosome. These results suggest that initial steps of DNA replication require centrosomally localized Cdk activity and link the nuclear cycle with the centrosome cycle at the G1-S transition. PMID:20399658

  10. Competitive Nuclear Export of Cyclin D1 and Hic-5 Regulates Anchorage Dependence of Cell Growth and Survival

    PubMed Central

    Mori, Kazunori; Hirao, Etsuko; Toya, Yosuke; Oshima, Yukiko; Ishikawa, Fumihiro; Nose, Kiyoshi

    2009-01-01

    Anchorage dependence of cell growth and survival is a critical trait that distinguishes nontransformed cells from transformed cells. We demonstrate that anchorage dependence is determined by anchorage-dependent nuclear retention of cyclin D1, which is regulated by the focal adhesion protein, Hic-5, whose CRM1-dependent nuclear export counteracts that of cyclin D1. An adaptor protein, PINCH, interacts with cyclin D1 and Hic-5 and potentially serves as an interface for the competition between cyclin D1 and Hic-5 for CRM1. In nonadherent cells, the nuclear export of Hic-5, which is redox-sensitive, was interrupted due to elevated production of reactive oxygen species, and cyclin D1 was exported from the nucleus. When an Hic-5 mutant that was continuously exported in a reactive oxygen species-insensitive manner was introduced into the cells, cyclin D1 was retained in the nucleus under nonadherent conditions, and a significant population of cells escaped from growth arrest or apoptosis. Interestingly, activated ras achieved predominant cyclin D1 nuclear localization and thus, growth in nonadherent cells. We report a failsafe system for anchorage dependence of cell growth and survival. PMID:18946086

  11. Exit from mitosis is regulated by Drosophila fizzy and the sequential destruction of cyclins A, B and B3.

    PubMed Central

    Sigrist, S; Jacobs, H; Stratmann, R; Lehner, C F

    1995-01-01

    While entry into mitosis is triggered by activation of cdc2 kinase, exit from mitosis requires inactivation of this kinase. Inactivation results from proteolytic degradation of the regulatory cyclin subunits during mitosis. At least three different cyclin types, cyclins A, B and B3, associate with cdc2 kinase in higher eukaryotes and are sequentially degraded in mitosis. We show here that mutations in the Drosophila gene fizzy (fzy) block the mitotic degradation of these cyclins. Moreover, expression of mutant cyclins (delta cyclins) lacking the destruction box motif required for mitotic degradation affects mitotic progression at distinct stages. Deltacyclin A results in a delay in metaphase, deltacyclin B in an early anaphase arrest and deltacyclin B3 in a late anaphase arrest, suggesting that mitotic progression beyond metaphase is ordered by the sequential degradation of these different cyclins. Coexpression of deltacyclins A, B and B3 allows a delayed separation of sister chromosomes, but interferes wit chromosome segregation to the poles. Mutations in fzy block both sister chromosome separation and segregation, indicating that fzy plays a crucial role in the metaphase/anaphase transition. Images PMID:7588612

  12. CyclinD1 protein plays different roles in modulating chemoresponses in MCF7 and MDA-MB231 cells

    PubMed Central

    Sun, Yuan; Luo, Dianzhong; Liao, D. Joshua

    2012-01-01

    Background: CyclinD1 is an essential sensor and activator of cell cycle initiation and progression; overexpression of cyclinD1 is linked to various human cancers, including breast cancer. The elevated cyclinD1 in some types of cancers is believed to be associated with tumor progression and response to systemic treatments. Aims: In this study, we anticipate to address the questions in human breast cancer; the function of cyclinD1 in mediating chemoresponses; and the signaling pathway cooperating with cyclinD1 to interfere with the drug functions. Materials and Methods: Using the cell clones, concurrent ectopic expression of the wild-type or K112E-mutated human cyclinD1 protein in the MCF7 and MDA-MB231 (MB231) breast cancer cells to study the function of cyclinD1 in responses to the chemotherapeutic treatments. Three drugs, cisplatin (CDDP), 5-fluorouracil (5-FU), and Gemzar were used in this study; the 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, cell cycle and cell death analysis, clonogenic survival assay, acridine orange (AO)/ethidium bromide (EB) staining, and Western blot assay were conducted to evaluate the drugs’ effects in the cell clones. Results: The cell clones expressing the D1 protein in MCF7 and MB231 cells result in distinct effects on the responses to chemotherapeutic treatments. Particularly with Gemzar, ectopic expression of cyclinD1 protein in MCF7 cells results in a potentiated effect, which is CDK4 kinase activity dependent, whereas in MB231 cells, an opposite effect was observed. Moreover, our results suggested that the distinct chemosensitivities among those cell clones were not resulted from accelerated cell cycle, cell proliferation driven by the cyclinD1CDK4/6-Rb-E2F signaling chain, rather, they were results of the cell cycle-independent functions led by cyclinD1 alone or in complex with CDK4. Conclusions: Our results suggest that the functions of cyclinD1 protein in modulating chemoresponses in the MCF7

  13. Cyclin D1 expression and HHV8 in Kaposi sarcoma.

    PubMed Central

    Kennedy, M M; Biddolph, S; Lucas, S B; Howells, D D; Picton, S; McGee, J O; Silva, I; Uhlmann, V; Luttich, K; O'Leary, J J

    1999-01-01

    BACKGROUND: Human herpesvirus 8 (HHV8) appears to be the agent responsible for Kaposi sarcoma. The mechanism remains undetermined but may involve cell cycle regulating genes including D type cyclins which are pivotal in cell cycle progression. Recent HHV8 genetic analysis has revealed the presence of a v-cyclin which is homologous to D type cyclins. AIMS: First, to assess whether there is an independent relation between endogenous cyclin D1 expression in Kaposi sarcoma and HHV8 status; second to determine whether v-cyclin mRNA expression varies with Kaposi sarcoma stage. METHODS: Cyclin D1 immunohistochemistry was performed on 17 paraffin embedded Kaposi sarcoma samples from 16 patients. HHV8 status was assessed in 15 of these using nested polymerase chain reaction (PCR) to ORF 26 and the newly described technique of TaqMan PCR. An additional 10 fresh Kaposi sarcoma samples (early and nodular) were examined for HHV8 v-cyclin RNA. RESULTS: One case, which did not contain amplifiable HHV8, showed strong cyclin D1 staining. The remaining cases were negative or weakly staining; v-cyclin transcript load was higher in early Kaposi sarcoma. CONCLUSIONS: While endogenous cyclin D1 expression is independent of HHV8 status, v-cyclin transcription is higher in early lesions, supporting the "viral hit" hypothesis. Images PMID:10645225

  14. NFAT1 transcription factor regulates cell cycle progression and cyclin E expression in B lymphocytes.

    PubMed

    Teixeira, Leonardo K; Carrossini, Nina; Sécca, Cristiane; Kroll, José E; DaCunha, Déborah C; Faget, Douglas V; Carvalho, Lilian D S; de Souza, Sandro J; Viola, João P B

    2016-09-01

    The NFAT family of transcription factors has been primarily related to T cell development, activation, and differentiation. Further studies have shown that these ubiquitous proteins are observed in many cell types inside and outside the immune system, and are involved in several biological processes, including tumor growth, angiogenesis, and invasiveness. However, the specific role of the NFAT1 family member in naive B cell proliferation remains elusive. Here, we demonstrate that NFAT1 transcription factor controls Cyclin E expression, cell proliferation, and tumor growth in vivo. Specifically, we show that inducible expression of NFAT1 inhibits cell cycle progression, reduces colony formation, and controls tumor growth in nude mice. We also demonstrate that NFAT1-deficient naive B lymphocytes show a hyperproliferative phenotype and high levels of Cyclin E1 and E2 upon BCR stimulation when compared to wild-type B lymphocytes. NFAT1 transcription factor directly regulates Cyclin E expression in B cells, inhibiting the G1/S cell cycle phase transition. Bioinformatics analysis indicates that low levels of NFAT1 correlate with high expression of Cyclin E1 in different human cancers, including Diffuse Large B-cell Lymphomas (DLBCL). Together, our results demonstrate a repressor role for NFAT1 in cell cycle progression and Cyclin E expression in B lymphocytes, and suggest a potential function for NFAT1 protein in B cell malignancies.

  15. Synergistic effects of AKAP95, Cyclin D1, Cyclin E1, and Cx43 in the development of rectal cancer

    PubMed Central

    Qi, Fengjie; Yuan, Yangyang; Zhi, Xuehong; Huang, Qian; Chen, Yuexin; Zhuang, Wenxin; Zhang, Dengcheng; Teng, Bogang; Kong, Xiangyu; Zhang, Yongxing

    2015-01-01

    Objective: To explore the expression of A-kinase anchor protein 95 (AKAP95), Cyclin D1, Cyclin E1, and Connexin43 (Cx43) in rectal cancer tissues and assess the associations between each of the proteins and pathological parameters, as well as their inter-relationships. Methods: AKAP95, Cyclin D1, Cyclin E1, and Cx43 protein expression rates were evaluated by immunohistochemistry in 50 rectal cancer specimens and 16 pericarcinoma tissues. Results: The positive rates of AKAP95, Cyclin E1, and Cyclin D1 proteins were 54.00 vs. 18.75%, 62.00 vs. 6.25%, and 72.00 vs. 31.25% in rectal cancer specimens and pericarcinoma tissues, respectively, representing statistically significant differences (P < 0.05). The positive rate of Cx43 protein expression in rectal cancer tissues was 44.00% and 62.50% in pericarcinoma tissues, and the difference between them was not significant (P > 0.05). No significant associations were found between protein expression of AKAP95, Cyclin E1, Cyclin D1, and Cx43, and the degree of differentiation, histological type, and lymph node metastasis of rectal cancer (P > 0.05). However, significant correlations were obtained between the expression rates of AKAP95 and Cyclin E1, Cyclin E1 and Cyclin D1, Cyclin E1 and Cx43 protein, and Cyclin D1 and Cx43, respectively (P < 0.05). Conclusion: AKAP95, Cyclin E1, and Cyclin D1 protein expression rates were significantly higher in rectal cancer tissues compared with pericarcinoma samples, suggesting an association between these proteins and the development and progression of rectal cancer. In addition, the significant correlations between the proteins (AKAP95 and Cyclin E1, Cyclin E1 and Cyclin D1, Cyclin E1 and Cx43 protein, and Cyclin D1 and Cx43) indicate the possible synergistic effects of these factors in the development and progression of rectal cancer. PMID:25973052

  16. Interphase APC/C–Cdc20 inhibition by cyclin A2–Cdk2 ensures efficient mitotic entry

    PubMed Central

    Hein, Jamin B.; Nilsson, Jakob

    2016-01-01

    Proper cell-cycle progression requires tight temporal control of the Anaphase Promoting Complex/Cyclosome (APC/C), a large ubiquitin ligase that is activated by one of two co-activators, Cdh1 or Cdc20. APC/C and Cdc20 are already present during interphase but APC/C–Cdc20 regulation during this window of the cell cycle, if any, is unknown. Here we show that cyclin A2–Cdk2 binds and phosphorylates Cdc20 in interphase and this inhibits APC/C–Cdc20 activity. Preventing Cdc20 phosphorylation results in pre-mature activation of the APC/C–Cdc20 and several substrates, including cyclin B1 and A2, are destabilized which lengthens G2 and slows mitotic entry. Expressing non-degradable cyclin A2 but not cyclin B1 restores mitotic entry in these cells. We have thus uncovered a novel positive feedback loop centred on cyclin A2–Cdk2 inhibition of interphase APC/C–Cdc20 to allow further cyclin A2 accumulation and mitotic entry. PMID:26960431

  17. The Rho GTPase effector ROCK regulates cyclin A, cyclin D1, and p27Kip1 levels by distinct mechanisms.

    PubMed

    Croft, Daniel R; Olson, Michael F

    2006-06-01

    The members of the Rho GTPase family are well known for their regulation of actin cytoskeletal structures. In addition, they influence progression through the cell cycle. The RhoA and RhoC proteins regulate numerous effector proteins, with a central and vital signaling role mediated by the ROCK I and ROCK II serine/threonine kinases. The requirement for ROCK function in the proliferation of numerous cell types has been revealed by studies utilizing ROCK-selective inhibitors such as Y-27632. However, the mechanisms by which ROCK signaling promotes cell cycle progression have not been thoroughly characterized. Using a conditionally activated ROCK-estrogen receptor fusion protein, we found that ROCK activation is sufficient to stimulate G1/S cell cycle progression in NIH 3T3 mouse fibroblasts. Further analysis revealed that ROCK acts via independent pathways to alter the levels of cell cycle regulatory proteins: cyclin D1 and p21(Cip1) elevation via Ras and the mitogen-activated protein kinase pathway, increased cyclin A via LIM kinase 2, and reduction of p27(Kip1) protein levels. Therefore, the influence of ROCK on cell cycle regulatory proteins occurs by multiple independent mechanisms.

  18. ASPM regulates symmetric stem cell division by tuning Cyclin E ubiquitination

    PubMed Central

    Capecchi, Mario R.; Pozner, Amir

    2016-01-01

    We generate a mouse model for the human microcephaly syndrome by mutating the ASPM locus, and demonstrate a premature exhaustion of the neuronal progenitor pool due to dysfunctional self-renewal processes. Earlier studies have linked ASPM mutant progenitor excessive cell cycle exit to a mitotic orientation defect. Here, we demonstrate a mitotic orientation-independent effect of ASPM on cell cycle duration. We pinpoint the cell fate-determining factor to the length of time spent in early G1 before traversing the restriction point. Characterization of the molecular mechanism reveals an interaction between ASPM and the Cdk2/Cyclin E complex, regulating the Cyclin activity by modulating its ubiquitination, phosphorylation and localization into the nucleus, before the cell is fated to transverse the restriction point. Thus, we reveal a novel function of ASPM in mediating the tightly coordinated Ubiquitin- Cyclin E- Retinoblastoma- E2F bistable-signalling pathway controlling restriction point progression and stem cell maintenance. PMID:26581405

  19. A presumptive developmental role for a sea urchin cyclin B splice variant.

    PubMed

    Lozano, J C; Schatt, P; Marquès, F; Peaucellier, G; Fort, P; Féral, J P; Genevière, A M; Picard, A

    1998-01-26

    We show that a splice variant-derived cyclin B is produced in sea urchin oocytes and embryos. This splice variant protein lacks highly conserved sequences in the COOH terminus of the protein. It is found strikingly abundant in growing oocytes and cells committed to differentiation during embryogenesis. Cyclin B splice variant (CBsv) protein associates weakly in the cell with Xenopus cdc2 and with budding yeast CDC28p. In contrast to classical cyclin B, CBsv very poorly complements a triple CLN deletion in budding yeast, and its microinjection prevents an initial step in MPF activation, leading to an important delay in oocyte meiosis reinitiation. CBsv microinjection in fertilized eggs induces cell cycle delay and abnormal development. We assume that CBsv is produced in growing oocytes to keep them in prophase, and during embryogenesis to slow down cell cycle in cells that will be committed to differentiation.

  20. Molecular dynamic behavior and binding affinity of flavonoid analogues to the cyclin dependent kinase 6/cyclin D complex.

    PubMed

    Khuntawee, Wasinee; Rungrotmongkol, Thanyada; Hannongbua, Supot

    2012-01-23

    The cyclin dependent kinases (CDKs), each with their respective regulatory partner cyclin that are involved in the regulation of the cell cycle, apoptosis, and transcription, are potentially interesting targets for cancer therapy. The CDK6 complex with cyclin D (CDK6/cycD) drives cellular proliferation by phosphorylation of specific key target proteins. To understand the flavonoids that inhibit the CDK6/cycD functions, molecular dynamics simulations (MDSs) were performed on three inhibitors, fisetin (FST), apigenin (AGN), and chrysin (CHS), complexed with CDK6/cycD, including the two different binding orientations of CHS: FST-like (CHS_A) and deschloro-flavopiridol-like (CHS_B). For all three inhibitors, including both CHS orientations, the conserved interaction between the 4-keto group of the flavonoid and the backbone V101 nitrogen of CDK6 was strongly detected. The 3'- and 4'-OH groups on the flavonoid phenyl ring and the 3-OH group on the benzopyranone ring of inhibitor were found to significantly increase the binding and inhibitory efficiency. Besides the electrostatic interactions, especially through hydrogen bond formation, the van der Waals (vdW) interactions with the I19, V27, F98, H100, and L152 residues of CDK6 are also important factors in the binding efficiency of flavonoids against the CDK6/cycD complex. On the basis of the docking calculation and MM-PBSA method, the order of the predicted inhibitory affinities of these three inhibitors toward the CDK6/cycD was FST > AGN > CHS, which is in good agreement with the experimental data. In addition, CHS preferentially binds to the active CDK6 in a different orientation to FST and AGN but similar to its related analog, deschloro-flavopiridol. The obtained results are useful as the basic information for the further design of potent anticancer drugs specifically targeting the CDK6 enzyme.

  1. Cell cycle regulation of cyclin A gene expression by the cyclic AMP-responsive transcription factors CREB and CREM.

    PubMed Central

    Desdouets, C; Matesic, G; Molina, C A; Foulkes, N S; Sassone-Corsi, P; Brechot, C; Sobczak-Thepot, J

    1995-01-01

    Cyclin A is a pivotal regulatory protein which, in mammalian cells, is involved in the S phase of the cell cycle. Transcription of the human cyclin A gene is cell cycle regulated. We have investigated the role of the cyclic AMP (cAMP)-dependent signalling pathway in this cell cycle-dependent control. In human diploid fibroblasts (Hs 27), induction of cyclin A gene expression at G1/S is stimulated by 8-bromo-cAMP and suppressed by the protein kinase A inhibitor H89, which was found to delay S phase entry. Transfection experiments showed that the cyclin A promoter is inducible by activation of the adenylyl cyclase signalling pathway. Stimulation is mediated predominantly via a cAMP response element (CRE) located at positions -80 to -73 with respect to the transcription initiation site and is able to bind CRE-binding proteins and CRE modulators. Moreover, activation by phosphorylation of the activators CRE-binding proteins and CRE modulator tau and levels of the inducible cAMP early repressor are cell cycle regulated, which is consistent with the pattern of cyclin A inducibility by cAMP during the cell cycle. These results suggest that the CRE is, at least partly, implicated in stimulation of cyclin A transcription at G1/S. PMID:7760825

  2. Repression of cyclin D1 expression is necessary for the maintenance of cell cycle exit in adult mammalian cardiomyocytes.

    PubMed

    Tane, Shoji; Kubota, Misae; Okayama, Hitomi; Ikenishi, Aiko; Yoshitome, Satoshi; Iwamoto, Noriko; Satoh, Yukio; Kusakabe, Aoi; Ogawa, Satoko; Kanai, Ayumi; Molkentin, Jeffery D; Nakamura, Kazuomi; Ohbayashi, Tetsuya; Takeuchi, Takashi

    2014-06-27

    The hearts of neonatal mice and adult zebrafish can regenerate after injury through proliferation of preexisting cardiomyocytes. However, adult mammals are not capable of cardiac regeneration because almost all cardiomyocytes exit their cell cycle. Exactly how the cell cycle exit is maintained and how many adult cardiomyocytes have the potential to reenter the cell cycle are unknown. The expression and activation levels of main cyclin-cyclin-dependent kinase (CDK) complexes are extremely low or undetectable at adult stages. The nuclear DNA content of almost all cardiomyocytes is 2C, indicating the cell cycle exit from G1-phase. Here, we induced expression of cyclin D1, which regulates the progression of G1-phase, only in differentiated cardiomyocytes of adult mice. In these cardiomyocytes, S-phase marker-positive cardiomyocytes and the expression of main cyclins and CDKs increased remarkably, although cyclin B1-CDK1 activation was inhibited in an ATM/ATR-independent manner. The phosphorylation pattern of CDK1 and expression pattern of Cdc25 subtypes suggested that a deficiency in the increase in Cdc25 (a and -b), which is required for M-phase entry, inhibited the cyclin B1-CDK1 activation. Finally, analysis of cell cycle distribution patterns showed that >40% of adult mouse cardiomyocytes reentered the cell cycle by the induction of cyclin D1. The cell cycle of these binucleated cardiomyocytes was arrested before M-phase, and many mononucleated cardiomyocytes entered endoreplication. These data indicate that silencing the cyclin D1 expression is necessary for the maintenance of the cell cycle exit and suggest a mechanism that involves inhibition of M-phase entry.

  3. Nuclear translocation of Cyclin B1 marks the restriction point for terminal cell cycle exit in G2 phase.

    PubMed

    Müllers, Erik; Silva Cascales, Helena; Jaiswal, Himjyot; Saurin, Adrian T; Lindqvist, Arne

    2014-01-01

    Upon DNA damage, cell cycle progression is temporally blocked to avoid propagation of mutations. While transformed cells largely maintain the competence to recover from a cell cycle arrest, untransformed cells past the G1/S transition lose mitotic inducers, and thus the ability to resume cell division. This permanent cell cycle exit depends on p21, p53, and APC/C(Cdh1). However, when and how permanent cell cycle exit occurs remains unclear. Here, we have investigated the cell cycle response to DNA damage in single cells that express Cyclin B1 fused to eYFP at the endogenous locus. We find that upon DNA damage Cyclin B1-eYFP continues to accumulate up to a threshold level, which is reached only in G2 phase. Above this threshold, a p21 and p53-dependent nuclear translocation required for APC/C(Cdh1)-mediated Cyclin B1-eYFP degradation is initiated. Thus, cell cycle exit is decoupled from activation of the DNA damage response in a manner that correlates to Cyclin B1 levels, suggesting that G2 activities directly feed into the decision for cell cycle exit. Once Cyclin B1-eYFP nuclear translocation occurs, checkpoint inhibition can no longer promote mitotic entry or re-expression of mitotic inducers, suggesting that nuclear translocation of Cyclin B1 marks the restriction point for permanent cell cycle exit in G2 phase.

  4. AKAP95 promotes cell cycle progression via interactions with cyclin E and low molecular weight cyclin E

    PubMed Central

    Kong, Xiang-Yu; Zhang, Deng-Cheng; Zhuang, Wen-Xin; Hua, Su-Hang; Dai, Yue; Yuan, Yang-Yang; Feng, Li-Li; Huang, Qian; Teng, Bo-Gang; Yu, Xiu-Yi; Liu, Wen-Zhi; Zhang, Yong-Xing

    2016-01-01

    AKAP95 in lung cancer tissues showed higher expression than in paracancerous tissues. AKAP95 can bind with cyclin D and cyclin E during G1/S cell cycle transition, but its molecular mechanisms remain unclear. To identify the mechanism of AKAP95 in cell cycle progression, we performed AKAP95 transfection and silencing in A549 cells, examined AKAP95, cyclin E1 and cyclin E2 expression, and the interactions of AKAP95 with cyclins E1 and E2. Results showed that over-expression of AKAP95 promoted cell growth and AKAP95 bound cyclin E1 and E2, low molecular weight cyclin E1 (LWM-E1) and LWM-E2. Additionally AKAP95 bound cyclin E1 and LMW-E2 in the nucleus during G1/S transition, bound LMW-E1 during G1, S and G2/M, and bound cyclin E2 mainly on the nuclear membrane during interphase. Cyclin E2 and LMW-E2 were also detected. AKAP95 over-expression increased cyclin E1 and LMW-E2 expression but decreased cyclin E2 levels. Unlike cyclin E1 and LMW-E2 that were nuclear located during the G1, S and G1/S phases, cyclin E2 and LMW-E1 were expressed in all cell cycle phases, with cyclin E2 present in the cytoplasm and nuclear membrane, with traces in the nucleus. LMW-E1 was present in both the cytoplasm and nucleus. The 20 kDa form of LMW-E1 showed only cytoplasmic expression, while the 40 kDa form was nuclear expressed. The expression of AKAP95, cyclin E1, LMW-E1 and -E2, might be regulated by cAMP. We conclude that AKAP95 might promote cell cycle progression by interacting with cyclin E1 and LMW-E2. LMW-E2, but not cyclin E2, might be involved in G1/S transition. The binding of AKAP95 and LMW-E1 was found throughout cell cycle. PMID:27158371

  5. Acetylation of cyclin-dependent kinase 5 is mediated by GCN5

    SciTech Connect

    Lee, Juhyung; Yun, Nuri; Kim, Chiho; Song, Min-Young; Park, Kang-Sik; Oh, Young J.

    2014-04-25

    Highlights: • Cyclin-dependent kinase 5 (CDK5) is present as an acetylated form. • CDK5 is acetylated by GCN5. • CDK5’s acetylation site is mapped at Lys33. • Its acetylation may affect CDK5’s kinase activity. - Abstract: Cyclin-dependent kinase 5 (CDK5), a member of atypical serine/threonine cyclin-dependent kinase family, plays a crucial role in pathophysiology of neurodegenerative disorders. Its kinase activity and substrate specificity are regulated by several independent pathways including binding with its activator, phosphorylation and S-nitrosylation. In the present study, we report that acetylation of CDK5 comprises an additional posttranslational modification within the cells. Among many candidates, we confirmed that its acetylation is enhanced by GCN5, a member of the GCN5-related N-acetyl-transferase family of histone acetyltransferase. Co-immunoprecipitation assay and fluorescent localization study indicated that GCN5 physically interacts with CDK5 and they are co-localized at the specific nuclear foci. Furthermore, liquid chromatography in conjunction with a mass spectrometry indicated that CDK5 is acetylated at Lys33 residue of ATP binding domain. Considering this lysine site is conserved among a wide range of species and other related cyclin-dependent kinases, therefore, we speculate that acetylation may alter the kinase activity of CDK5 via affecting efficacy of ATP coordination.

  6. Participation of cyclin A in Myc-induced apoptosis.

    PubMed Central

    Hoang, A T; Cohen, K J; Barrett, J F; Bergstrom, D A; Dang, C V

    1994-01-01

    The involvement of c-Myc in cellular proliferation or apoptosis has been linked to differential cyclin gene expression. We observed that in both proliferating cells and cells undergoing apoptosis, cyclin A (but not B, C, D1, and E) mRNA level was elevated in unsynchronized Myc-overexpressing cells when compared with parental Rat1a fibroblasts. We further demonstrated that Zn(2+)-inducible cyclin A expression was sufficient to cause apoptosis. When Myc-induced apoptosis was blocked by coexpression of Bcl-2, the levels of cyclin C, D1, and E mRNAs were also elevated. Thus, while apoptosis induced by c-Myc is associated with an elevated cyclin A mRNA level, protection from apoptosis by coexpressed Bcl-2 is associated with a complementary increase in cyclin C, D1, and E mRNAs. Images PMID:8041712

  7. Phosphorylation of synaptic GTPase-activating protein (synGAP) by Ca2+/calmodulin-dependent protein kinase II (CaMKII) and cyclin-dependent kinase 5 (CDK5) alters the ratio of its GAP activity toward Ras and Rap GTPases.

    PubMed

    Walkup, Ward G; Washburn, Lorraine; Sweredoski, Michael J; Carlisle, Holly J; Graham, Robert L; Hess, Sonja; Kennedy, Mary B

    2015-02-20

    synGAP is a neuron-specific Ras and Rap GTPase-activating protein (GAP) found in high concentrations in the postsynaptic density (PSD) fraction from the mammalian forebrain. We have previously shown that, in situ in the PSD fraction or in recombinant form in Sf9 cell membranes, synGAP is phosphorylated by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), another prominent component of the PSD. Here, we show that recombinant synGAP (r-synGAP), lacking 102 residues at the N terminus, can be purified in soluble form and is phosphorylated by cyclin-dependent kinase 5 (CDK5) as well as by CaMKII. Phosphorylation of r-synGAP by CaMKII increases its HRas GAP activity by 25% and its Rap1 GAP activity by 76%. Conversely, phosphorylation by CDK5 increases r-synGAP's HRas GAP activity by 98% and its Rap1 GAP activity by 20%. Thus, phosphorylation by both kinases increases synGAP activity; CaMKII shifts the relative GAP activity toward inactivation of Rap1, and CDK5 shifts the relative activity toward inactivation of HRas. GAP activity toward Rap2 is not altered by phosphorylation by either kinase. CDK5 phosphorylates synGAP primarily at two sites, Ser-773 and Ser-802. Phosphorylation at Ser-773 inhibits r-synGAP activity, and phosphorylation at Ser-802 increases it. However, the net effect of concurrent phosphorylation of both sites, Ser-773 and Ser-802, is an increase in GAP activity. synGAP is phosphorylated at Ser-773 and Ser-802 in the PSD fraction, and its phosphorylation by CDK5 and CaMKII is differentially regulated by activation of NMDA-type glutamate receptors in cultured neurons.

  8. Arsenic trioxide-mediated growth inhibition in gallbladder carcinoma cells via down-regulation of Cyclin D1 transcription mediated by Sp1 transcription factor

    SciTech Connect

    Ai, Zhilong; Lu, Weiqi; Ton, Saixiong; Liu, Houbao; Sou, Tao; Shen, Zhenbin; Qin, Xinyu . E-mail: smc_jjh@yahoo.com.cn

    2007-08-31

    Gallbladder carcinoma (GBC), an aggressive and mostly lethal malignancy, is known to be resistant to a number of drug stimuli. Here, we demonstrated that arsenic trioxide inhibited the proliferation of gallbladder carcinoma in vivo and in vitro as well as the transcription of cell cycle-related protein Cyclin D1. And, Cyclin D1 overexpression inhibited the negative role of arsenic trioxide in cell cycle progression. We further explored the mechanisms by which arsenic trioxide affected Cyclin D1 transcription and found that the Sp1 transcription factor was down-regulated by arsenic trioxide, with a corresponding decrease in Cyclin D1 promoter activity. Taken together, these results suggested that arsenic trioxide inhibited gallbladder carcinoma cell proliferation via down-regulation of Cyclin D1 transcription in a Sp1-dependent manner, which provided a new mechanism of arsenic trioxide-involved cell proliferation and may have important therapeutic implications in gallbladder carcinoma patients.

  9. The Cyclin-dependent Kinase Inhibitor Dacapo Promotes Genomic Stability during Premeiotic S Phase

    PubMed Central

    Narbonne-Reveau, Karine

    2009-01-01

    The proper execution of premeiotic S phase is essential to both the maintenance of genomic integrity and accurate chromosome segregation during the meiotic divisions. However, the regulation of premeiotic S phase remains poorly defined in metazoa. Here, we identify the p21Cip1/p27Kip1/p57Kip2-like cyclin-dependent kinase inhibitor (CKI) Dacapo (Dap) as a key regulator of premeiotic S phase and genomic stability during Drosophila oogenesis. In dap−/− females, ovarian cysts enter the meiotic cycle with high levels of Cyclin E/cyclin-dependent kinase (Cdk)2 activity and accumulate DNA damage during the premeiotic S phase. High Cyclin E/Cdk2 activity inhibits the accumulation of the replication-licensing factor Doubleparked/Cdt1 (Dup/Cdt1). Accordingly, we find that dap−/− ovarian cysts have low levels of Dup/Cdt1. Moreover, mutations in dup/cdt1 dominantly enhance the dap−/− DNA damage phenotype. Importantly, the DNA damage observed in dap−/− ovarian cysts is independent of the DNA double-strands breaks that initiate meiotic recombination. Together, our data suggest that the CKI Dap promotes the licensing of DNA replication origins for the premeiotic S phase by restricting Cdk activity in the early meiotic cycle. Finally, we report that dap−/− ovarian cysts frequently undergo an extramitotic division before meiotic entry, indicating that Dap influences the timing of the mitotic/meiotic transition. PMID:19211840

  10. PACSIN 2 represses cellular migration through direct association with cyclin D1 but not its alternate splice form cyclin D1b

    PubMed Central

    Zhou, Jie; Li, Zhiping; Jiao, Xuanmao; Li, Wayne W; Plomann, Markus; Xu, Zhishun; Lisanti, Michael P

    2011-01-01

    Cyclin D1 overexpression is a common feature of many human malignancies. Genomic deletion analysis has demonstrated a key role for cyclin D1 in cellular proliferation, angiogenesis and cellular migration. To investigate the mechanisms contributing to cyclin D1 functions, we purified cyclin D1a-associated complexes by affinity chromatography and identified the PACSIN 2 (protein kinase C and casein kinase substrate in neurons 2) protein by mass spectrometry. The PACSIN 2, but not the related PACSIN 1 and 3, directly bound wild-type cyclin D1 (cyclin D1a) at the carboxyl terminus and failed to bind cyclin D1b, the alternative splicing variant of cyclin D1. PACSIN 2 knockdown induced cellular migration and reduced cell spreading in LNCaP cells expressing cyclin D1a. In cyclin D1−/− mouse embryonic fibroblasts (MEFs), cyclin D1a, but not cyclin D1b, reduced the cell spreading to a polarized morphology. siPACSIN 2 had no effect on cellular migration of cyclin D1−/− MEFs. Cyclin D1a restored the migratory ability of cyclin D1−/− MEFs, which was further enhanced by knocking down PACSIN 2 with siRNA. The cyclin D1-associated protein, PACSIN 2, regulates cell spreading and migration, which are dependent on cyclin D1 expression. PMID:21200149

  11. Selective repression of the oncogene cyclin D1 by the tumor suppressor miR-206 in cancers.

    PubMed

    Elliman, S J; Howley, B V; Mehta, D S; Fearnhead, H O; Kemp, D M; Barkley, L R

    2014-01-01

    MicroRNAs (miRNAs) are deregulated in cancer and have been shown to exhibit both oncogenic and tumor suppressive functions. Although the functional effects of several miRNAs have been elucidated, those of many remain to be discovered. In silico analysis identified microRNA-206 (miR-206) binding sites in the 3'-untranslated regions (3'-UTR) of both the mouse and human CCND1 gene. Cyclin D1 is a recognized oncogene involved in direct phosphorylation of the retinoblastoma (Rb) protein and promoting cell cycle transition from G1 to S. miR-206 specifically binds to the CCND1 3'-UTR and mediates reduction of both cyclin D1 protein and mRNA. Expression of miR-206 induced a G1 arrest and a decrease in cell proliferation in breast cancer cells. Ectopic expression of miRNA-resistant cyclin D1 was able to reverse the miR-206-induced decrease in cell proliferation. Therefore, we identified miR-206 as an activator of cell cycle arrest resulting in a decrease in cell proliferation that is dependent on the inhibition of cyclin D1. Interestingly, prostatic cancer (PCa) cells express low levels of miR-206 resulting in deregulated cyclin D1 expression compared with non-transformed primary prostatic epithelial cells (PrEC). Finally, we demonstrate that cyclin D1 is regulated by miR-206 in PrEC but not in PCa cells and this is due to the absence of a CCND1 3'-UTR in these cells. This suggests that miR-206-based anti-cyclin D1 targeted therapy would be beneficial in cancers where cyclin D1 is overexpressed and contains a 3'-UTR. PMID:25111862

  12. DYRK1A controls the transition from proliferation to quiescence during lymphoid development by destabilizing Cyclin D3.

    PubMed

    Thompson, Benjamin J; Bhansali, Rahul; Diebold, Lauren; Cook, Daniel E; Stolzenburg, Lindsay; Casagrande, Anne-Sophie; Besson, Thierry; Leblond, Bertrand; Désiré, Laurent; Malinge, Sébastien; Crispino, John D

    2015-06-01

    Pre-B and pre-T lymphocytes must orchestrate a transition from a highly proliferative state to a quiescent one during development. Cyclin D3 is essential for these cells' proliferation, but little is known about its posttranslational regulation at this stage. Here, we show that the dual specificity tyrosine-regulated kinase 1A (DYRK1A) restrains Cyclin D3 protein levels by phosphorylating T283 to induce its degradation. Loss of DYRK1A activity, via genetic inactivation or pharmacologic inhibition in mice, caused accumulation of Cyclin D3 protein, incomplete repression of E2F-mediated gene transcription, and failure to properly couple cell cycle exit with differentiation. Expression of a nonphosphorylatable Cyclin D3 T283A mutant recapitulated these defects, whereas inhibition of Cyclin D:CDK4/6 mitigated the effects of DYRK1A inhibition or loss. These data uncover a previously unknown role for DYRK1A in lymphopoiesis, and demonstrate how Cyclin D3 protein stability is negatively regulated during exit from the proliferative phases of B and T cell development. PMID:26008897

  13. Hog1 Targets Whi5 and Msa1 Transcription Factors To Downregulate Cyclin Expression upon Stress

    PubMed Central

    González-Novo, Alberto; Jiménez, Javier; Clotet, Josep; Nadal-Ribelles, Mariona; Cavero, Santiago

    2015-01-01

    Yeast cells have developed complex mechanisms to cope with extracellular insults. An increase in external osmolarity leads to activation of the stress-activated protein kinase Hog1, which is the main regulator of adaptive responses, such as gene expression and cell cycle progression, that are essential for cellular survival. Upon osmostress, the G1-to-S transition is regulated by Hog1 through stabilization of the cyclin-dependent kinase inhibitor Sic1 and the downregulation of G1 cyclin expression by an unclear mechanism. Here, we show that Hog1 interacts with and phosphorylates components of the core cell cycle transcriptional machinery such as Whi5 and the coregulator Msa1. Phosphorylation of these two transcriptional regulators by Hog1 is essential for inhibition of G1 cyclin expression, for control of cell morphogenesis, and for maximal cell survival upon stress. The control of both Whi5 and Msa1 by Hog1 also revealed the necessity for proper coordination of budding and DNA replication. Thus, Hog1 regulates G1 cyclin transcription upon osmostress to ensure coherent passage through Start. PMID:25733686

  14. Cyclin Dl expression in B-cell non Hodgkin lymphoma.

    PubMed

    Aref, Salah; Mossad, Y; El-Khodary, T; Awad, M; El-Shahat, E

    2006-10-01

    Disorders of the cell cycle regulatory machinery play a key role in the pathogenesis of cancer. Over-expression of cyclin D1 protein has been reported in several solid tumors and certain lymphoid malignancies, but little is known about the effect of its expression on clinical behavior and outcome in B-cell Non-Hodgkin lymphoma (NHL). In this study, we investigated the expression of cyclin Dl in group of patients with NHL and correlated the results with the clinical and laboratory data. The degree of expression of cyclin Dl protein was evaluated by flow cytometry in a group of NHL patients (n = 46) and in normal control group (n = 10). Cyclin Dl over expression was detected in 10 out of 46 (21.7%) patients; they were 5/5-mantle cell lymphoma (MCL) (100%) and 5/28 large B-cell lymphoma (17.8%). All other NHL subtypes showed normal cyclin D1 expression. The clinical signs (hepatomegaly, splenomegaly and B-symptoms, clinical staging) and laboratory data (hemoglobin, white cell count (WBCs), platelet count, and bone marrow infiltration) were not significantly different between NHL subgroup with cyclin Dl over expression and that with normal cyclin Dl expression. Serum lactic dehydrogenase (LDH) levels and lymphadenopathy were significantly higher in NHL group with cyclin D1 over expression as compared to those without. Also, cyclin D1 over expression is associated with poor outcome of NHL patients. Cyclin Dl over expression was evident among all cases of MCL and few cases of large B-cell lymphoma. Cyclin Dl over expression might be used as adjuvant tool for diagnosis of MCL; has role in NHL biology and is bad prognostic index in NHL. PMID:17607588

  15. Phylogenetic analysis of CDK and cyclin proteins in premetazoan lineages

    PubMed Central

    2014-01-01

    Background The molecular history of animal evolution from single-celled ancestors remains a major question in biology, and little is known regarding the evolution of cell cycle regulation during animal emergence. In this study, we conducted a comprehensive evolutionary analysis of CDK and cyclin proteins in metazoans and their unicellular relatives. Results Our analysis divided the CDK family into eight subfamilies. Seven subfamilies (CDK1/2/3, CDK5, CDK7, CDK 20, CDK8/19, CDK9, and CDK10/11) are conserved in metazoans and fungi, with the remaining subfamily, CDK4/6, found only in eumetazoans. With respect to cyclins, cyclin C, H, L, Y subfamilies, and cyclin K and T as a whole subfamily, are generally conserved in animal, fungi, and amoeba Dictyostelium discoideum. In contrast, cyclin subfamilies B, A, E, and D, which are cell cycle-related, have distinct evolutionary histories. The cyclin B subfamily is generally conserved in D. discoideum, fungi, and animals, whereas cyclin A and E subfamilies are both present in animals and their unicellular relatives such as choanoflagellate Monosiga brevicollis and filasterean Capsaspora owczarzaki, but are absent in fungi and D. discoideum. Although absent in fungi and D. discoideum, cyclin D subfamily orthologs can be found in the early-emerging, non-opisthokont apusozoan Thecamonas trahens. Within opisthokonta, the cyclin D subfamily is conserved only in eumetazoans, and is absent in fungi, choanoflagellates, and the basal metazoan Amphimedon queenslandica. Conclusions Our data indicate that the CDK4/6 subfamily and eumetazoans emerged simultaneously, with the evolutionary conservation of the cyclin D subfamily also tightly linked with eumetazoan appearance. Establishment of the CDK4/6-cyclin D complex may have been the key step in the evolution of cell cycle control during eumetazoan emergence. PMID:24433236

  16. Cyclin D1 expression is regulated by the retinoblastoma protein.

    PubMed Central

    Müller, H; Lukas, J; Schneider, A; Warthoe, P; Bartek, J; Eilers, M; Strauss, M

    1994-01-01

    The product of the retinoblastoma susceptibility gene, pRb, acts as a tumor suppressor and loss of its function is involved in the development of various types of cancer. DNA tumor viruses are supposed to disturb the normal regulation of the cell cycle by inactivating pRb. However, a direct function of pRb in regulation of the cell cycle has hitherto not been shown. We demonstrate here that the cell cycle-dependent expression of one of the G1-phase cyclins, cyclin D1, is dependent on the presence of a functional Rb protein. Rb-deficient tumor cell lines as well as cells expressing viral oncoproteins (large tumor antigen of simian virus 40, early region 1A of adenovirus, early region 7 of papillomavirus) have low or barely detectable levels of cyclin D1. Expression of cyclin D1, but not of cyclins A and E, is induced by transfection of the Rb gene into Rb-deficient tumor cells. Cotransfection of a reporter gene under the control of the D1 promoter, together with the Rb gene, into Rb-deficient cell lines demonstrates stimulation of the D1 promoter by Rb, which parallels the stimulation of endogenous cyclin D1 gene expression. Our finding that pRb stimulates expression of a key component of cell cycle control, cyclin D1, suggests the existence of a regulatory loop between pRb and cyclin D1 and extends existing models of tumor suppressor function. Images PMID:8159685

  17. Cdc20 hypomorphic mice fail to counteract de novo synthesis of cyclin B1 in mitosis

    PubMed Central

    Malureanu, Liviu; Jeganathan, Karthik B.; Jin, Fang; Baker, Darren J.; van Ree, Janine H.; Gullon, Oliver; Chen, Zheyan; Henley, John R.

    2010-01-01

    Cdc20 is an activator of the anaphase-promoting complex/cyclosome that initiates anaphase onset by ordering the destruction of cyclin B1 and securin in metaphase. To study the physiological significance of Cdc20 in higher eukaryotes, we generated hypomorphic mice that express small amounts of this essential cell cycle regulator. In this study, we show that these mice are healthy and not prone to cancer despite substantial aneuploidy. Cdc20 hypomorphism causes chromatin bridging and chromosome misalignment, revealing a requirement for Cdc20 in efficient sister chromosome separation and chromosome–microtubule attachment. We find that cyclin B1 is newly synthesized during mitosis via cytoplasmic polyadenylation element–binding protein-dependent translation, causing its rapid accumulation between prometaphase and metaphase of Cdc20 hypomorphic cells. Anaphase onset is significantly delayed in Cdc20 hypomorphic cells but not when translation is inhibited during mitosis. These data reveal that Cdc20 is particularly rate limiting for cyclin B1 destruction because of regulated de novo synthesis of this cyclin after prometaphase onset. PMID:20956380

  18. Cyclin D2 and the CDK substrate p220(NPAT) are required for self-renewal of human embryonic stem cells.

    PubMed

    Becker, Klaus A; Ghule, Prachi N; Lian, Jane B; Stein, Janet L; van Wijnen, Andre J; Stein, Gary S

    2010-02-01

    Self-renewal of pluripotent human embryonic stem (hES) cells utilizes an abbreviated cell cycle that bypasses E2F/pRB-dependent growth control. We investigated whether self-renewal is alternatively regulated by cyclin/CDK phosphorylation of the p220(NPAT)/HiNF-P complex to activate histone gene expression at the G1/S phase transition. We show that cyclin D2 is prominently expressed in pluripotent hES cells, but cyclin D1 eclipses cyclin D2 during differentiation. Depletion of cyclin D2 or p220(NPAT) causes a cell cycle defect in G1 reflected by diminished phosphorylation of p220(NPAT), decreased cell cycle dependent histone H4 expression and reduced S phase progression. Thus, cyclin D2 and p220(NPAT) are principal cell cycle regulators that determine competency for self-renewal in pluripotent hES cells. While pRB/E2F checkpoint control is relinquished in human ES cells, fidelity of physiological regulation is secured by cyclin D2 dependent activation of the p220(NPAT)/HiNF-P mechanism that may explain perpetual proliferation of hES cells without transformation or tumorigenesis. PMID:19890848

  19. Cyclin D2 and the CDK substrate p220(NPAT) are required for self-renewal of human embryonic stem cells.

    PubMed

    Becker, Klaus A; Ghule, Prachi N; Lian, Jane B; Stein, Janet L; van Wijnen, Andre J; Stein, Gary S

    2010-02-01

    Self-renewal of pluripotent human embryonic stem (hES) cells utilizes an abbreviated cell cycle that bypasses E2F/pRB-dependent growth control. We investigated whether self-renewal is alternatively regulated by cyclin/CDK phosphorylation of the p220(NPAT)/HiNF-P complex to activate histone gene expression at the G1/S phase transition. We show that cyclin D2 is prominently expressed in pluripotent hES cells, but cyclin D1 eclipses cyclin D2 during differentiation. Depletion of cyclin D2 or p220(NPAT) causes a cell cycle defect in G1 reflected by diminished phosphorylation of p220(NPAT), decreased cell cycle dependent histone H4 expression and reduced S phase progression. Thus, cyclin D2 and p220(NPAT) are principal cell cycle regulators that determine competency for self-renewal in pluripotent hES cells. While pRB/E2F checkpoint control is relinquished in human ES cells, fidelity of physiological regulation is secured by cyclin D2 dependent activation of the p220(NPAT)/HiNF-P mechanism that may explain perpetual proliferation of hES cells without transformation or tumorigenesis.

  20. Plant cyclins: a unified nomenclature for plant A-, B- and D-type cyclins based on sequence organization.

    PubMed

    Renaudin, J P; Doonan, J H; Freeman, D; Hashimoto, J; Hirt, H; Inzé, D; Jacobs, T; Kouchi, H; Rouzé, P; Sauter, M; Savouré, A; Sorrell, D A; Sundaresan, V; Murray, J A

    1996-12-01

    The comparative analysis of a large number of plant cyclins of the A/B family has recently revealed that plants possess two distinct B-type groups and three distinct A-type groups of cyclins. Despite earlier uncertainties, this large-scale comparative analysis has allowed an unequivocal definition of plant cyclins into either A or B classes. We present here the most important results obtained in this study, and extend them to the case of plant D-type cyclins, in which three groups are identified. For each of the plant cyclin groups, consensus sequences have been established and a new, rational, plant-wide naming system is proposed in accordance with the guidelines of the Commission on Plant Gene Nomenclature. This nomenclature is based on the animal system indicating cyclin classes by an upper-case roman letter, and distinct groups within these classes by an arabic numeral suffix. The naming of plant cyclin classes is chosen to indicate homology to their closest animal class. The revised nomenclature of all described plant cyclins is presented, with their classification into groups CycA1, CycA2, CycA3, CycB1, CycB2, CycD1, CycD2 and CycD3. PMID:9002599

  1. The cyclin encoded by Kaposi's sarcoma-associated herpesvirus stimulates cdk6 to phosphorylate the retinoblastoma protein and histone H1.

    PubMed Central

    Godden-Kent, D; Talbot, S J; Boshoff, C; Chang, Y; Moore, P; Weiss, R A; Mittnacht, S

    1997-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV or human herpesvirus 8) is a novel gammaherpesvirus implicated in the cause of Kaposi's sarcoma and certain malignancies of lymphatic origin. One of the candidate genes possibly involved in promoting tumor development is an open reading frame (ORF) with sequence similarity to human type D cyclin genes. This cyclin-like gene, when expressed in tissue culture cells, promotes phosphorylation and inactivation of the retinoblastoma tumor suppressor protein and thereby may result in deregulation of cell division control. We report here the biochemical characterization of this cyclin (KSHV-cyc) and the kinase activity that it elicits upon expression in tissue culture cells. We demonstrate that the kinase activity associated with KSHV-cyc is sensitive to the cdk inhibitor p27 (KIP) and due to activation of cdk6. However, in contrast to cdk6 activated by cellular type D cyclins, the cdk6 activated by KSHV-cyc is capable of phosphorylating not only the retinoblastoma protein but also histone H1. This finding implies that activation by KSHV-cyc alters the substrate preference of this cdk. This may have important physiological consequences in that the kinase activity triggered by this viral cyclin may abrogate cell cycle checkpoints in addition to those targeted by cellular cyclin D-cdk6 kinase. PMID:9151805

  2. Epigenetically altered miR-193b targets cyclin D1 in prostate cancer

    PubMed Central

    Kaukoniemi, Kirsi M; Rauhala, Hanna E; Scaravilli, Mauro; Latonen, Leena; Annala, Matti; Vessella, Robert L; Nykter, Matti; Tammela, Teuvo L J; Visakorpi, Tapio

    2015-01-01

    Micro-RNAs (miRNA) are important regulators of gene expression and often differentially expressed in cancer and other diseases. We have previously shown that miR-193b is hypermethylated in prostate cancer (PC) and suppresses cell growth. It has been suggested that miR-193b targets cyclin D1 in several malignancies. Here, our aim was to determine if miR-193b targets cyclin D1 in prostate cancer. Our data show that miR-193b is commonly methylated in PC samples compared to benign prostate hyperplasia. We found reduced miR-193b expression (P < 0.05) in stage pT3 tumors compared to pT2 tumors in a cohort of prostatectomy specimens. In 22Rv1 PC cells with low endogenous miR-193b expression, the overexpression of miR-193b reduced CCND1mRNA levels and cyclin D1 protein levels. In addition, the exogenous expression of miR-193b decreased the phosphorylation level of RB, a target of the cyclin D1-CDK4/6 pathway. Moreover, according to a reporter assay, miR-193b targeted the 3’UTR of CCND1 in PC cells and the CCND1 activity was rescued by expressing CCND1 lacking its 3’UTR. Immunohistochemical analysis of cyclin D1 showed that castration-resistant prostate cancers have significantly (P = 0.0237) higher expression of cyclin D1 compared to hormone-naïve cases. Furthermore, the PC cell lines 22Rv1 and VCaP, which express low levels of miR-193b and high levels of CCND1, showed significant growth retardation when treated with a CDK4/6 inhibitor. In contrast, the inhibitor had no effect on the growth of PC-3 and DU145 cells with high miR-193b and low CCND1 expression. Taken together, our data demonstrate that miR-193b targets cyclin D1 in prostate cancer. PMID:26129688

  3. DNA tumor virus oncoproteins and retinoblastoma gene mutations share the ability to relieve the cell's requirement for cyclin D1 function in G1

    PubMed Central

    1994-01-01

    The retinoblastoma gene product (pRB) participates in the regulation of the cell division cycle through complex formation with numerous cellular regulatory proteins including the potentially oncogenic cyclin D1. Extending the current view of the emerging functional interplay between pRB and D-type cyclins, we now report that cyclin D1 expression is positively regulated by pRB. Cyclin D1 mRNA and protein is specifically downregulated in cells expressing SV40 large T antigen, adenovirus E1A, and papillomavirus E7/E6 oncogene products and this effect requires intact RB-binding, CR2 domain of E1A. Exceptionally low expression of cyclin D1 is also seen in genetically RB-deficient cell lines, in which ectopically expressed wild-type pRB results in specific induction of this G1 cyclin. At the functional level, antibody-mediated cyclin D1 knockout experiments demonstrate that the cyclin D1 protein, normally required for G1 progression, is dispensable for passage through the cell cycle in cell lines whose pRB is inactivated through complex formation with T antigen, E1A, or E7 oncoproteins as well as in cells which have suffered loss-of-function mutations of the RB gene. The requirement for cyclin D1 function is not regained upon experimental elevation of cyclin D1 expression in cells with mutant RB, while reintroduction of wild-type RB into RB-deficient cells leads to restoration of the cyclin D1 checkpoint. These results strongly suggest that pRB serves as a major target of cyclin D1 whose cell cycle regulatory function becomes dispensable in cells lacking functional RB. Based on available data including this study, we propose a model for an autoregulatory feedback loop mechanism that regulates both the expression of the cyclin D1 gene and the activity of pRB, thereby contributing to a G1 phase checkpoint control in cycling mammalian cells. PMID:8175885

  4. DNA tumor virus oncoproteins and retinoblastoma gene mutations share the ability to relieve the cell's requirement for cyclin D1 function in G1.

    PubMed

    Lukas, J; Müller, H; Bartkova, J; Spitkovsky, D; Kjerulff, A A; Jansen-Dürr, P; Strauss, M; Bartek, J

    1994-05-01

    The retinoblastoma gene product (pRB) participates in the regulation of the cell division cycle through complex formation with numerous cellular regulatory proteins including the potentially oncogenic cyclin D1. Extending the current view of the emerging functional interplay between pRB and D-type cyclins, we now report that cyclin D1 expression is positively regulated by pRB. Cyclin D1 mRNA and protein is specifically downregulated in cells expressing SV40 large T antigen, adenovirus E1A, and papillomavirus E7/E6 oncogene products and this effect requires intact RB-binding, CR2 domain of E1A. Exceptionally low expression of cyclin D1 is also seen in genetically RB-deficient cell lines, in which ectopically expressed wild-type pRB results in specific induction of this G1 cyclin. At the functional level, antibody-mediated cyclin D1 knockout experiments demonstrate that the cyclin D1 protein, normally required for G1 progression, is dispensable for passage through the cell cycle in cell lines whose pRB is inactivated through complex formation with T antigen, E1A, or E7 oncoproteins as well as in cells which have suffered loss-of-function mutations of the RB gene. The requirement for cyclin D1 function is not regained upon experimental elevation of cyclin D1 expression in cells with mutant RB, while reintroduction of wild-type RB into RB-deficient cells leads to restoration of the cyclin D1 checkpoint. These results strongly suggest that pRB serves as a major target of cyclin D1 whose cell cycle regulatory function becomes dispensable in cells lacking functional RB. Based on available data including this study, we propose a model for an autoregulatory feedback loop mechanism that regulates both the expression of the cyclin D1 gene and the activity of pRB, thereby contributing to a G1 phase checkpoint control in cycling mammalian cells. PMID:8175885

  5. Tylophorine Analog DCB-3503 Inhibited Cyclin D1 Translation through Allosteric Regulation of Heat Shock Cognate Protein 70

    PubMed Central

    Wang, Ying; Lam, Wing; Chen, Shao-Ru; Guan, Fu-Lan; Dutchman, Ginger E.; Francis, Samson; Baker, David C.; Cheng, Yung-Chi

    2016-01-01

    Tylophorine analog DCB-3503 is a potential anticancer and immunosuppressive agent that suppresses the translation of cellular regulatory proteins, including cyclin D1, at the elongation step. However, the molecular mechanism underlying this phenomenon remains unknown. This study demonstrates that DCB-3503 preferentially binds to heat shock cognate protein 70 (HSC70), which is a determinant for cyclin D1 translation by binding to the 3′-untranslated region (3′ UTR) of its mRNA. DCB-3503 allosterically regulates the ATPase and chaperone activities of HSC70 by promoting ATP hydrolysis in the presence of specific RNA binding motifs (AUUUA) of cyclin D1 mRNA. The suppression of cyclin D1 translation by DCB-3503 is not solely caused by perturbation of the homeostasis of microRNAs, although the microRNA processing complex is dissociated with DCB-3503 treatment. This study highlights a novel regulatory mechanism of protein translation with AUUUA motifs in the 3′ UTR of mRNA by HSC70, and its activity can be allosterically modulated by DCB-3503. DCB-3503 may be used to treat malignancies, such as hepatocellular carcinoma or breast cancer with elevated expression of cyclin D1. PMID:27596272

  6. Tylophorine Analog DCB-3503 Inhibited Cyclin D1 Translation through Allosteric Regulation of Heat Shock Cognate Protein 70.

    PubMed

    Wang, Ying; Lam, Wing; Chen, Shao-Ru; Guan, Fu-Lan; Dutchman, Ginger E; Francis, Samson; Baker, David C; Cheng, Yung-Chi

    2016-01-01

    Tylophorine analog DCB-3503 is a potential anticancer and immunosuppressive agent that suppresses the translation of cellular regulatory proteins, including cyclin D1, at the elongation step. However, the molecular mechanism underlying this phenomenon remains unknown. This study demonstrates that DCB-3503 preferentially binds to heat shock cognate protein 70 (HSC70), which is a determinant for cyclin D1 translation by binding to the 3'-untranslated region (3' UTR) of its mRNA. DCB-3503 allosterically regulates the ATPase and chaperone activities of HSC70 by promoting ATP hydrolysis in the presence of specific RNA binding motifs (AUUUA) of cyclin D1 mRNA. The suppression of cyclin D1 translation by DCB-3503 is not solely caused by perturbation of the homeostasis of microRNAs, although the microRNA processing complex is dissociated with DCB-3503 treatment. This study highlights a novel regulatory mechanism of protein translation with AUUUA motifs in the 3' UTR of mRNA by HSC70, and its activity can be allosterically modulated by DCB-3503. DCB-3503 may be used to treat malignancies, such as hepatocellular carcinoma or breast cancer with elevated expression of cyclin D1. PMID:27596272

  7. Transcriptional analysis of an E2F gene signature as a biomarker of activity of the cyclin-dependent kinase inhibitor PHA-793887 in tumor and skin biopsies from a phase I clinical study.

    PubMed

    Locatelli, Giuseppe; Bosotti, Roberta; Ciomei, Marina; Brasca, Maria G; Calogero, Raffaele; Mercurio, Ciro; Fiorentini, Francesco; Bertolotti, Matteo; Scacheri, Emanuela; Scaburri, Angela; Galvani, Arturo; Pesenti, Enrico; De Baere, Thierry; Soria, Jean-Charles; Lazar, Vladimir; Isacchi, Antonella

    2010-05-01

    A transcriptional signature of the pan-cyclin-dependent kinase (Cdk) inhibitor PHA-793887 was evaluated as a potential pharmacodynamic and/or response biomarker in tumor and skin biopsies from patients treated in a phase I clinical study. We first analyzed the expression of a number of known E2F-dependent genes that were predicted to be modulated after Cdk2 and Cdk4 inhibition in xenograft tumor and skin samples of mice treated with the compound. This panel of 58 selected genes was then analyzed in biopsies from seven patients treated with PHA-793887 in a phase I dose escalation clinical trial in solid tumors. Quantitative real-time PCR or microarray analyses were done in paired skin and tumor biopsies obtained at baseline and at cycle 1. Analysis by quantitative real-time PCR of the signature in skin biopsies of patients treated at three different doses showed significant transcriptional downregulation with a dose-response correlation. These data show that PHA-793887 modulates genes involved in cell cycle regulation and proliferation in a clinical setting. The observed changes are consistent with its mechanism of action and correlate with target modulation in skin and with clinical benefit in tumors. PMID:20423997

  8. Transcriptional analysis of an E2F gene signature as a biomarker of activity of the cyclin-dependent kinase inhibitor PHA-793887 in tumor and skin biopsies from a phase I clinical study.

    PubMed

    Locatelli, Giuseppe; Bosotti, Roberta; Ciomei, Marina; Brasca, Maria G; Calogero, Raffaele; Mercurio, Ciro; Fiorentini, Francesco; Bertolotti, Matteo; Scacheri, Emanuela; Scaburri, Angela; Galvani, Arturo; Pesenti, Enrico; De Baere, Thierry; Soria, Jean-Charles; Lazar, Vladimir; Isacchi, Antonella

    2010-05-01

    A transcriptional signature of the pan-cyclin-dependent kinase (Cdk) inhibitor PHA-793887 was evaluated as a potential pharmacodynamic and/or response biomarker in tumor and skin biopsies from patients treated in a phase I clinical study. We first analyzed the expression of a number of known E2F-dependent genes that were predicted to be modulated after Cdk2 and Cdk4 inhibition in xenograft tumor and skin samples of mice treated with the compound. This panel of 58 selected genes was then analyzed in biopsies from seven patients treated with PHA-793887 in a phase I dose escalation clinical trial in solid tumors. Quantitative real-time PCR or microarray analyses were done in paired skin and tumor biopsies obtained at baseline and at cycle 1. Analysis by quantitative real-time PCR of the signature in skin biopsies of patients treated at three different doses showed significant transcriptional downregulation with a dose-response correlation. These data show that PHA-793887 modulates genes involved in cell cycle regulation and proliferation in a clinical setting. The observed changes are consistent with its mechanism of action and correlate with target modulation in skin and with clinical benefit in tumors.

  9. The coffee diterpene kahweol suppresses the cell proliferation by inducing cyclin D1 proteasomal degradation via ERK1/2, JNK and GKS3β-dependent threonine-286 phosphorylation in human colorectal cancer cells.

    PubMed

    Park, Gwang Hun; Song, Hun Min; Jeong, Jin Boo

    2016-09-01

    Kahweol as a coffee-specific diterpene has been reported to exert anti-cancer properties. However, the mechanism responsible for the anti-cancer effects of kahweol is not fully understood. The main aim of this investigation was to determine the effect of kahweol on cell proliferation and the possible mechanisms in human colorectal cancer cells. Kahweol inhibited markedly the proliferation of human colorectal cancer cell lines such as HCT116, SW480. Kahweol decreased cyclin D1 protein level in HCT116 and SW480 cells. Contrast to protein levels, cyclin D1 mRNA level and promoter activity did not be changed by kahweol treatment. MG132 treatment attenuated kahweol-mediated cyclin D1 downregulation and the half-life of cyclin D1 was decreased in kahweol-treated cells. Kahweol increased phosphorylation of cyclin D1 at threonine-286 and a point mutation of threonine-286 to alanine attenuated cyclin D1 degradation by kahweol. Inhibition of ERK1/2 by PD98059, JNK by SP600125 or GSK3β by LiCl suppressed cyclin D1 phosphorylation and downregulation by kahweol. Furthermore, the inhibition of nuclear export by LMB attenuated cyclin D1 degradation by kahweol. In conclusion, kahweol-mediated cyclin D1 degradation may contribute to the inhibition of the proliferation in human colorectal cancer cells. PMID:27424123

  10. The coffee diterpene kahweol suppresses the cell proliferation by inducing cyclin D1 proteasomal degradation via ERK1/2, JNK and GKS3β-dependent threonine-286 phosphorylation in human colorectal cancer cells.

    PubMed

    Park, Gwang Hun; Song, Hun Min; Jeong, Jin Boo

    2016-09-01

    Kahweol as a coffee-specific diterpene has been reported to exert anti-cancer properties. However, the mechanism responsible for the anti-cancer effects of kahweol is not fully understood. The main aim of this investigation was to determine the effect of kahweol on cell proliferation and the possible mechanisms in human colorectal cancer cells. Kahweol inhibited markedly the proliferation of human colorectal cancer cell lines such as HCT116, SW480. Kahweol decreased cyclin D1 protein level in HCT116 and SW480 cells. Contrast to protein levels, cyclin D1 mRNA level and promoter activity did not be changed by kahweol treatment. MG132 treatment attenuated kahweol-mediated cyclin D1 downregulation and the half-life of cyclin D1 was decreased in kahweol-treated cells. Kahweol increased phosphorylation of cyclin D1 at threonine-286 and a point mutation of threonine-286 to alanine attenuated cyclin D1 degradation by kahweol. Inhibition of ERK1/2 by PD98059, JNK by SP600125 or GSK3β by LiCl suppressed cyclin D1 phosphorylation and downregulation by kahweol. Furthermore, the inhibition of nuclear export by LMB attenuated cyclin D1 degradation by kahweol. In conclusion, kahweol-mediated cyclin D1 degradation may contribute to the inhibition of the proliferation in human colorectal cancer cells.

  11. Establishment of an immortalized cell line derived from the prairie vole via lentivirus-mediated transduction of mutant cyclin-dependent kinase 4, cyclin D, and telomerase reverse transcriptase.

    PubMed

    Katayama, Masafumi; Kiyono, Tohru; Horie, Kengo; Hirayama, Takashi; Eitsuka, Takahiro; Kuroda, Kengo; Donai, Kenichiro; Hidema, Shizu; Nishimori, Katsuhiko; Fukuda, Tomokazu

    2016-01-01

    The prairie vole (Microtus ochrogaster) shows social behaviors such as monogamy and parenting of infants with pair bonding. These social behaviors are specific to the prairie vole and have not been observed in other types of voles, such as mountain voles. Although the prairie vole has several unique characteristics, an in vitro cell culture system has not been established for this species. Furthermore, establishment of cultured cells derived from the prairie vole may be beneficial based on the three Rs (i.e., Replacement, Reduction, and Refinement) concept. Therefore, in this study, we attempted to establish an immortalized cell line derived from the prairie vole. Our previous research has shown that transduction with mutant forms of cyclin-dependent kinase 4 (CDK4), cyclin D, and telomerase reverse transcriptase (TERT) could efficiently immortalize cells from multiple species, including humans, cattle, pigs, and monkeys. Here, we introduced these three genes into prairie vole-derived muscle fibroblasts. The expression of mutant CDK4 and cyclin D proteins was confirmed by western blotting, and telomerase activity was detected in immortalized vole muscle-derived fibroblasts (VMF-K4DT cells or VMFs) by stretch PCR. Population doubling analysis showed that the introduction of mutant CDK4, cyclin D, and TERT extended the lifespan of VMFs. To the best of our knowledge, this is the first report describing the establishment of an immortalized cell line derived from the prairie vole through the expression of mutant CDK4, cyclin D, and human TERT. PMID:26496927

  12. Targeting the AKT/GSK3{beta}/Cyclin D1/Cdk4 Survival Signaling Pathway for Eradication of Tumor Radioresistance Acquired by Fractionated Radiotherapy

    SciTech Connect

    Shimura, Tsutomu; Kakuda, Satoshi; Ochiai, Yasushi; Kuwahara, Yoshikazu; Takai, Yoshihiro; Fukumoto, Manabu

    2011-06-01

    Purpose: Radioresistance is a major cause of treatment failure of radiotherapy (RT) in human cancer. We have recently revealed that acquired radioresistance of tumor cells induced by fractionated radiation is attributable to cyclin D1 overexpression as a consequence of the downregulation of GSK3{beta}-dependent cyclin D1 proteolysis mediated by a constitutively activated serine-threonine kinase, AKT. This prompted us to hypothesize that targeting the AKT/GSK3{beta}/cyclin D1 pathway may improve fractionated RT by suppressing acquired radioresistance of tumor cells. Methods and Materials: Two human tumor cell lines with acquired radioresistance were exposed to X-rays after incubation with either an AKT inhibitor, AKT/PKB signaling inhibitor-2 (API-2), or a Cdk4 inhibitor (Cdk4-I). Cells were then subjected to immunoblotting, clonogenic survival assay, cell growth analysis, and cell death analysis with TUNEL and annexin V staining. In vivo radiosensitivity was assessed by growth of human tumors xenografted into nude mice. Results: Treatment with API-2 resulted in downregulation of cyclin D1 expression in cells with acquired radioresistance. Cellular radioresistance disappeared completely both in vitro and in vivo with accompanying apoptosis when treated with API-2. Furthermore, inhibition of cyclin D1/Cdk4 by Cdk4-I was sufficient for abolishing radioresistance. Treatment with either API-2 or Cdk4-I was also effective in suppressing resistance to cis-platinum (II)-diamine-dichloride in the cells with acquired radioresistance. Interestingly, the radiosensitizing effect of API-2 was canceled by overexpression of cyclin D1 whereas Cdk4-I was still able to sensitize cells with cyclin D1 overexpression. Conclusion: Cyclin D1/Cdk4 is a critical target of the AKT survival signaling pathway responsible for tumor radioresistance. Targeting the AKT/GSK3{beta}/cyclin D1/Cdk4 pathway would provide a novel approach to improve fractionated RT and would have an impact on tumor

  13. Immunohistochemical study of cyclins D and E and cyclin dependent kinase (cdk) 2 and 4 in human endometrial carcinoma.

    PubMed

    Ito, K; Sasano, H; Yoshida, Y; Sato, S; Yajima, A

    1998-01-01

    We studied the immunolocalization of cyclins D1 and E and their corresponding partner cyclin dependent kinases (cdk), cdk4 and cdk2 in 39 cases of human endometrioid endometrial carcinoma and examined the correlations between the labeling indexes of the cyclins, cdks and clinicopathologic parameters and the clinical outcome of the patients. Cyclin D1 immunoreactivity was observed exclusively in the nuclei of tumor cells in 22/39 (56%) of the cases examined. Immunoreactivity for cyclin E, cdk2, and cdk4 was detected in carcinoma cells of 37/39 (95%), 39/39 and 36/39 cases, respectively. There were no significant correlations between the labeling indices of any of the parameters examined. Cyclins D1 and E labeling indices were not significantly correlated with any of the clinicopathologic parameters examined. However, there was a significant correlation between cdk2 labeling index and the histological grade of carcinoma (p < 0.0001), and a significant correlation (p = 0.015) was also detected between the cdk4 labeling index and pathologic stages. There was no significant difference in clinical outcome of the patients according to the cyclin and ckd4 immunostaining patterns. These results indicate that cdk2 and cdk4 overexpression may be involved in the development and/or progression of human endometrioid endometrial carcinoma. PMID:9673386

  14. The G1/S Specific Cyclin D2 Is a Regulator of HIV-1 Restriction in Non-proliferating Cells

    PubMed Central

    Badia, Roger; Pujantell, Maria; Riveira-Muñoz, Eva; Puig, Teresa; Torres-Torronteras, Javier; Martí, Ramón; Clotet, Bonaventura; Ampudia, Rosa M.; Ballana, Ester

    2016-01-01

    Macrophages are a heterogeneous cell population strongly influenced by differentiation stimuli that become susceptible to HIV-1 infection after inactivation of the restriction factor SAMHD1 by cyclin-dependent kinases (CDK). Here, we have used primary human monocyte-derived macrophages differentiated through different stimuli to evaluate macrophage heterogeneity on cell activation and proliferation and susceptibility to HIV-1 infection. Stimulation of monocytes with GM-CSF induces a non-proliferating macrophage population highly restrictive to HIV-1 infection, characterized by the upregulation of the G1/S-specific cyclin D2, known to control early steps of cell cycle progression. Knockdown of cyclin D2, enhances HIV-1 replication in GM-CSF macrophages through inactivation of SAMHD1 restriction factor by phosphorylation. Co-immunoprecipitation experiments show that cyclin D2 forms a complex with CDK4 and p21, a factor known to restrict HIV-1 replication by affecting the function of the downstream cascade that leads to SAMHD1 deactivation. Thus, we demonstrate that cyclin D2 acts as regulator of cell cycle proteins affecting SAMHD1-mediated HIV-1 restriction in non-proliferating macrophages. PMID:27541004

  15. Transgenic Expression of Cyclin-Dependent Kinase 4 Results in Epidermal Hyperplasia, Hypertrophy, and Severe Dermal Fibrosis

    PubMed Central

    Miliani de Marval, Paula L.; Gimenez-Conti, Irma B.; LaCava, Margaret; Martinez, Luis A.; Conti, Claudio J.; Rodriguez-Puebla, Marcelo L.

    2001-01-01

    In a previous report we have described the effects of expression of D-type cyclins in epithelial tissues of transgenic mice. To study the involvement of the D-type cyclin partner cyclin-dependent kinase 4 (CDK4) in epithelial growth and differentiation, transgenic mice were generated carrying the CDK4 gene under the control of a keratin 5 promoter. As expected, transgenic mice showed expression of CDK4 in the epidermal basal-cell layer. Epidermal proliferation increased dramatically and basal cell hyperplasia and hypertrophy were observed. The hyperproliferative phenotype of these transgenic mice was independent of D-type cyclin expression because no overexpression of these proteins was detected. CDK4 and CDK2 kinase activities increased in transgenic animals and were associated with elevated binding of p27Kip1 to CDK4. Expression of CDK4 in the epidermis results in an increased spinous layer compared with normal epidermis, and a mild hyperkeratosis in the cornified layer. In addition to epidermal changes, severe dermal fibrosis was observed and part of the subcutaneous adipose tissue was replaced by connective tissue. Also, abnormal expression of keratin 6 associated with the hyperproliferative phenotype was observed in transgenic epidermis. This model provides in vivo evidence for the role of CDK4 as a mediator of proliferation in epithelial cells independent of D-type cyclin expression. PMID:11438484

  16. Cyclin-dependent kinase 2 protects podocytes from apoptosis

    PubMed Central

    Saurus, Pauliina; Kuusela, Sara; Dumont, Vincent; Lehtonen, Eero; Fogarty, Christopher L.; Lassenius, Mariann I.; Forsblom, Carol; Lehto, Markku; Saleem, Moin A.; Groop, Per-Henrik; Lehtonen, Sanna

    2016-01-01

    Loss of podocytes is an early feature of diabetic nephropathy (DN) and predicts its progression. We found that treatment of podocytes with sera from normoalbuminuric type 1 diabetes patients with high lipopolysaccharide (LPS) activity, known to predict progression of DN, downregulated CDK2 (cyclin-dependent kinase 2). LPS-treatment of mice also reduced CDK2 expression. LPS-induced downregulation of CDK2 was prevented in vitro and in vivo by inhibiting the Toll-like receptor (TLR) pathway using immunomodulatory agent GIT27. We also observed that CDK2 is downregulated in the glomeruli of obese Zucker rats before the onset of proteinuria. Knockdown of CDK2, or inhibiting its activity with roscovitine in podocytes increased apoptosis. CDK2 knockdown also reduced expression of PDK1, an activator of the cell survival kinase Akt, and reduced Akt phosphorylation. This suggests that CDK2 regulates the activity of the cell survival pathway via PDK1. Furthermore, PDK1 knockdown reduced the expression of CDK2 suggesting a regulatory loop between CDK2 and PDK1. Collectively, our data show that CDK2 protects podocytes from apoptosis and that reduced expression of CDK2 associates with the development of DN. Preventing downregulation of CDK2 by blocking the TLR pathway with GIT27 may provide a means to prevent podocyte apoptosis and progression of DN. PMID:26876672

  17. Differential targeting of the cyclin-dependent kinase inhibitor, p21CIP1/WAF1, by chelators with anti-proliferative activity in a range of tumor cell-types

    PubMed Central

    Moussa, Rayan S.; Kovacevic, Zaklina; Richardson, Des R.

    2015-01-01

    Chelators such as 2-hydroxy-1-napthylaldehyde isonicotinoyl hydrazone (311) and di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) target tumor cell iron pools and inhibit proliferation. These agents also modulate multiple targets, one of which is the cyclin-dependent kinase inhibitor, p21. Hence, this investigation examined the mechanism of action of these compounds in targeting p21. All the chelators up-regulated p21 mRNA in the five tumor cell-types assessed. In contrast, examining their effect on total p21 protein levels, these agents induced either: (1) down-regulation in MCF-7 cells; (2) up-regulation in SK-MEL-28 and CFPAC-1 cells; or (3) had no effect in LNCaP and SK-N-MC cells. The nuclear localization of p21 was also differentially affected by the ligands depending upon the cell-type, with it being decreased in MCF-7 cells, but increased in SK-MEL-28 and CFPAC-1 cells. Further studies assessing the mechanisms responsible for these effects demonstrated that p21 expression was not correlated with p53 status, suggesting a p53-independent mechanism. Considering this, we examined proteins that modulate p21 independently of p53, namely NDRG1, MDM2 and ΔNp63. These studies demonstrated that a dominant negative MDM2 isoform (p75MDM2) closely resembled p21 expression in response to chelation in three cell lines. These data suggest MDM2 may be involved in the regulation of p21 by chelators. PMID:26335183

  18. Differential targeting of the cyclin-dependent kinase inhibitor, p21CIP1/WAF1, by chelators with anti-proliferative activity in a range of tumor cell-types.

    PubMed

    Moussa, Rayan S; Kovacevic, Zaklina; Richardson, Des R

    2015-10-01

    Chelators such as 2-hydroxy-1-napthylaldehyde isonicotinoyl hydrazone (311) and di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) target tumor cell iron pools and inhibit proliferation. These agents also modulate multiple targets, one of which is the cyclin-dependent kinase inhibitor, p21. Hence, this investigation examined the mechanism of action of these compounds in targeting p21. All the chelators up-regulated p21 mRNA in the five tumor cell-types assessed. In contrast, examining their effect on total p21 protein levels, these agents induced either: (1) down-regulation in MCF-7 cells; (2) up-regulation in SK-MEL-28 and CFPAC-1 cells; or (3) had no effect in LNCaP and SK-N-MC cells. The nuclear localization of p21 was also differentially affected by the ligands depending upon the cell-type, with it being decreased in MCF-7 cells, but increased in SK-MEL-28 and CFPAC-1 cells. Further studies assessing the mechanisms responsible for these effects demonstrated that p21 expression was not correlated with p53 status, suggesting a p53-independent mechanism. Considering this, we examined proteins that modulate p21 independently of p53, namely NDRG1, MDM2 and ΔNp63. These studies demonstrated that a dominant negative MDM2 isoform (p75(MDM2)) closely resembled p21 expression in response to chelation in three cell lines. These data suggest MDM2 may be involved in the regulation of p21 by chelators. PMID:26335183

  19. Fluorescence energy transfer monitoring of protein-protein interaction in human cells: the Cyclin T1-HIV1 Tat case.

    NASA Astrophysics Data System (ADS)

    Ferrari, Aldo; Cinelli, Riccardo A. G.; Pellegrini, Vittorio; Beltram, Fabio; Marcello, Alessandro; Tyagi, Mudit; Giacca, Mauro

    2001-03-01

    The human immunodeficiency virus type 1 (HIV-1) Tat protein promotes transcriptional elongation of viral RNAs. Here we show that human Cyclin T1 directly binds Tat in cultured cells. By mapping fluorescence resonance energy transfer (FRET) in different cellular compartments we shall present a quantitative analysis of this interaction. The matched tagging pair consists of two optically matched variants of the green fluorescent protein: the enhanced GFP and the blue fluorescent protein. Strong energy transfer was observed between Cyclin T1 and Tat both in the cytoplasm and in specific subnuclear regions. We shall argue that such high-resolution optical studies can provide significant new insight in molecular processes and demonstrate that, for the specific case-study presented, they lead to a model by which Tat recruits Cyclin T1 out of the nuclear compartments where the protein resides to promote transcriptional activation.

  20. Cyclin-dependent kinases in C. elegans

    PubMed Central

    Boxem, Mike

    2006-01-01

    Cell division is an inherent part of organismal development, and defects in this process can lead to developmental abnormalities as well as cancerous growth. In past decades, much of the basic cell-cycle machinery has been identified, and a major challenge in coming years will be to understand the complex interplay between cell division and multicellular development. Inevitably, this requires the use of more complex multicellular model systems. The small nematode Caenorhabditis elegans is an excellent model system to study the regulation of cell division in a multicellular organism, and is poised to make important contributions to this field. The past decade has already seen a surge in cell-cycle research in C. elegans, yielding information on the function of many basic cell-cycle regulators, and making inroads into the developmental control of cell division. This review focuses on the in vivo roles of cyclin-dependent kinases in C. elegans, and highlights novel findings implicating CDKs in coupling development to cell-cycle progression. PMID:16759361

  1. Synergistic cooperation of Sall4 and Cyclin D1 in transcriptional repression

    SciTech Connect

    Boehm, Johann; Kaiser, Frank J.; Borozdin, Wiktor; Depping, Reinhard; Kohlhase, Juergen . E-mail: jkohlhase@humangenetik-freiburg.de

    2007-05-11

    Loss of function mutations in SALL4 cause Okihiro syndrome, an autosomal dominant disorder characterised by radial ray malformations associated with Duane anomaly. In zebrafish and mouse Sall4 interacts with TBX5 during limb and heart development and plays a crucial role for embryonic stem (ES) cell pluripotency. Here we report the nuclear interaction of murine Sall4 with Cyclin D1, one of the main regulators of G{sub 1} to S phase transition in cell cycle, verified by yeast two-hybrid assay, co-immunoprecipitation and intracellular co-localisation. Furthermore, using luciferase reporter gene assays we demonstrate that Sall4 operates as a transcriptional repressor located to heterochromatin and that this activity is modulated by Cyclin D1.

  2. Synthesis and biological evaluation of selective and potent cyclin-dependent kinase inhibitors.

    PubMed

    N'gompaza-Diarra, Joannah; Bettayeb, Karima; Gresh, Nohad; Meijer, Laurent; Oumata, Nassima

    2012-10-01

    A new series of 2,6,9-trisubstituted purines, structurally related to the cyclin-dependent kinase (CDK) inhibitor Roscovitine, has been synthesized. These compounds mainly differ by the substituent on the C-2 position which encompasses a diol group. These compounds were screened for kinase inhibitory activities and antiproliferative effects. They were shown to be potent inhibitors of cyclin-dependent kinases but also, for some of them of casein kinase 1 (CK1) and dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A). The inhibition of kinases was accompanied by an antiproliferative effect against several tumor cell-lines. The most potent derivatives inhibited SH-SY5Y (neuroblastoma) tumor cell line with an IC(50) < 0.5 μM which means approximately a 30 fold increase compared to Roscovitine. A valine ester was also prepared from the most potent inhibitor to serve as a prodrug. PMID:22982525

  3. Crystal structure of a human cyclin-dependent kinase 6 complexwith a flavonol inhibitor, Fisetin

    SciTech Connect

    Lu, Heshu; Chang, Debbie J.; Baratte, Blandine; Meijer, Laurent; Schulze-Gahmen, Ursula

    2005-01-10

    Cyclin-dependent kinases (CDKs) play a central role in cell cycle control, apoptosis, transcription and neuronal functions. They are important targets for the design of drugs with anti-mitotic and/or anti-neurodegenerative effects. CDK4 and CDK6 form a subfamily among the CDKs in mammalian cells, as defined by sequence similarities. Compared to CDK2 and CDK5, structural information on CDK4 and CDK6 is sparse. We describe here the crystal structure of human CDK6 in complex with a viral cyclin and a flavonol inhibitor, fisetin. Fisetin binds to the active form of CDK6, forming hydrogen bonds with the side chains of residues in the binding pocket that undergo large conformational changes during CDK activation by cyclin binding. The 4-keto group and the 3-hydroxyl group of fisetin are hydrogen bonded with the backbone in the hinge region between the N-terminal and C-terminal kinase domain, as has been observed for many CDK inhibitors. However, CDK2 and HCK kinase in complex with other flavone inhibitors such as quercetin and flavopiridol showed a different binding mode with the inhibitor rotated by about 180. The structural information of the CDK6-fisetin complex is correlated with the binding affinities of different flavone inhibitors for CDK6. This complex structure is the first description of an inhibitor complex with a kinase from the CDK4/6 subfamily and can provide a basis for selecting and designing inhibitor compounds with higher affinity and specificity.

  4. Rb and FZR1/Cdh1 determine CDK4/6-cyclin D requirement in C. elegans and human cancer cells.

    PubMed

    The, Inge; Ruijtenberg, Suzan; Bouchet, Benjamin P; Cristobal, Alba; Prinsen, Martine B W; van Mourik, Tim; Koreth, John; Xu, Huihong; Heck, Albert J R; Akhmanova, Anna; Cuppen, Edwin; Boxem, Mike; Muñoz, Javier; van den Heuvel, Sander

    2015-01-01

    Cyclin-dependent kinases 4 and 6 (CDK4/6) in complex with D-type cyclins promote cell cycle entry. Most human cancers contain overactive CDK4/6-cyclin D, and CDK4/6-specific inhibitors are promising anti-cancer therapeutics. Here, we investigate the critical functions of CDK4/6-cyclin D kinases, starting from an unbiased screen in the nematode Caenorhabditis elegans. We found that simultaneous mutation of lin-35, a retinoblastoma (Rb)-related gene, and fzr-1, an orthologue to the APC/C co-activator Cdh1, completely eliminates the essential requirement of CDK4/6-cyclin D (CDK-4/CYD-1) in C. elegans. CDK-4/CYD-1 phosphorylates specific residues in the LIN-35 Rb spacer domain and FZR-1 amino terminus, resembling inactivating phosphorylations of the human proteins. In human breast cancer cells, simultaneous knockdown of Rb and FZR1 synergistically bypasses cell division arrest induced by the CDK4/6-specific inhibitor PD-0332991. Our data identify FZR1 as a candidate CDK4/6-cyclin D substrate and point to an APC/C(FZR1) activity as an important determinant in response to CDK4/6-inhibitors.

  5. Nuclear envelope breakdown may deliver an inhibitor of protein phosphatase 1 which triggers cyclin B translation in starfish oocytes.

    PubMed

    Lapasset, Laure; Pradet-Balade, Bérengère; Lozano, Jean-Claude; Peaucellier, Gérard; Picard, André

    2005-09-01

    In vertebrates, enhanced translation of mRNAs in oocytes and early embryos entering M-phase is thought to occur through polyadenylation, involving binding, hyperphosphorylation and proteolytic degradation of Aurora-activated CPEB. In starfish, an unknown component of the oocyte nucleus is required for cyclin B synthesis following the release of G2/prophase block by hormonal stimulation. We have found that CPEB cannot be hyperphosphorylated following hormonal stimulation in starfish oocytes from which the nucleus has been removed. Activation of Aurora kinase, known to interact with protein phosphatase 1 and its specific inhibitor Inh-2, is also prevented. The microinjection of Inh-2 restores Aurora activation, CPEB hyperphosphorylation and cyclin B translation in enucleated oocytes. Nevertheless, we provide evidence that CPEB is in fact hyperphosphorylated by cdc2, without apparent involvement of Aurora or MAP kinase, and that cyclin B synthesis can be stimulated without previous degradation of phosphorylated CPEB. Thus, the regulation of cyclin B synthesis necessary for progression through meiosis can be explained by an equilibrium between CPEB phosphorylation and dephosphorylation, and both aspects of this control may rely on the sole activation of Cdc2 and subsequent nuclear breakdown.

  6. Enrichment of Cdk1-cyclins at DNA double-strand breaks stimulates Fun30 phosphorylation and DNA end resection

    PubMed Central

    Chen, Xuefeng; Niu, Hengyao; Yu, Yang; Wang, Jingjing; Zhu, Shuangyi; Zhou, Jianjie; Papusha, Alma; Cui, Dandan; Pan, Xuewen; Kwon, Youngho; Sung, Patrick; Ira, Grzegorz

    2016-01-01

    DNA double-strand breaks (DSBs) are one of the most cytotoxic types of DNA lesion challenging genome integrity. The activity of cyclin-dependent kinase Cdk1 is essential for DSB repair by homologous recombination and for DNA damage signaling. Here we identify the Fun30 chromatin remodeler as a new target of Cdk1. Fun30 is phosphorylated by Cdk1 on Serine 28 to stimulate its functions in DNA damage response including resection of DSB ends. Importantly, Cdk1-dependent phosphorylation of Fun30-S28 increases upon DNA damage and requires the recruitment of Fun30 to DSBs, suggesting that phosphorylation increases in situ at the DNA damage. Consistently, we find that Cdk1 and multiple cyclins become highly enriched at DSBs and that the recruitment of Cdk1 and cyclins Clb2 and Clb5 ensures optimal Fun30 phosphorylation and checkpoint activation. We propose that the enrichment of Cdk1-cyclin complexes at DSBs serves as a mechanism for enhanced targeting and modulating of the activity of DNA damage response proteins. PMID:26801641

  7. Targeting Cyclin-Dependent Kinases in Human Cancers: From Small Molecules to Peptide Inhibitors

    PubMed Central

    Peyressatre, Marion; Prével, Camille; Pellerano, Morgan; Morris, May C.

    2015-01-01

    Cyclin-dependent kinases (CDK/Cyclins) form a family of heterodimeric kinases that play central roles in regulation of cell cycle progression, transcription and other major biological processes including neuronal differentiation and metabolism. Constitutive or deregulated hyperactivity of these kinases due to amplification, overexpression or mutation of cyclins or CDK, contributes to proliferation of cancer cells, and aberrant activity of these kinases has been reported in a wide variety of human cancers. These kinases therefore constitute biomarkers of proliferation and attractive pharmacological targets for development of anticancer therapeutics. The structural features of several of these kinases have been elucidated and their molecular mechanisms of regulation characterized in depth, providing clues for development of drugs and inhibitors to disrupt their function. However, like most other kinases, they constitute a challenging class of therapeutic targets due to their highly conserved structural features and ATP-binding pocket. Notwithstanding, several classes of inhibitors have been discovered from natural sources, and small molecule derivatives have been synthesized through rational, structure-guided approaches or identified in high throughput screens. The larger part of these inhibitors target ATP pockets, but a growing number of peptides targeting protein/protein interfaces are being proposed, and a small number of compounds targeting allosteric sites have been reported. PMID:25625291

  8. Unexpected reduction of skin tumorigenesis on expression of cyclin-dependent kinase 6 in mouse epidermis.

    PubMed

    Wang, Xian; Sistrunk, Christopher; Rodriguez-Puebla, Marcelo L

    2011-01-01

    Cyclin-dependent kinases (CDKs) 4 and 6 are important regulators of the G(1) phase of the cell cycle, share 71% amino acid identity, and are expressed ubiquitously. As a result, it was assumed that each of these kinases plays a redundant role regulating normal and neoplastic proliferation. In previous reports, we have described the effects of CDK4 expression in transgenic mice, including the development of epidermal hyperplasia and increased malignant progression to squamous cell carcinoma. To study the role of CDK6 in epithelial growth and tumorigenesis, we generated transgenic mice carrying the CDK6 gene under the keratin 5 promoter (K5CDK6). Similar to K5CDK4 mice, epidermal proliferation increased substantially in K5CDK6 mice; however, no hyperplasia was observed. CDK6 overexpression also triggered keratinocyte apoptosis in interfollicular and follicular epidermis as a compensatory mechanism to override aberrant proliferation. Unexpectedly, CDK6 overexpression results in decreased skin tumor development compared with wild-type siblings. The inhibition in skin tumorigenesis was similar to that previously reported in K5-cyclin D3 mice. Furthermore, biochemical analysis of the K5CDK6 epidermis showed preferential complex formation between CDK6 and cyclin D3, suggesting that this particular complex plays an important role in tumor restraint. These studies provide in vivo evidence that CDK4 and CDK6 play a similar role as a mediator of keratinocyte proliferation but differ in apoptosis activation and skin tumor development.

  9. Unexpected reduction of skin tumorigenesis on expression of cyclin-dependent kinase 6 in mouse epidermis.

    PubMed

    Wang, Xian; Sistrunk, Christopher; Rodriguez-Puebla, Marcelo L

    2011-01-01

    Cyclin-dependent kinases (CDKs) 4 and 6 are important regulators of the G(1) phase of the cell cycle, share 71% amino acid identity, and are expressed ubiquitously. As a result, it was assumed that each of these kinases plays a redundant role regulating normal and neoplastic proliferation. In previous reports, we have described the effects of CDK4 expression in transgenic mice, including the development of epidermal hyperplasia and increased malignant progression to squamous cell carcinoma. To study the role of CDK6 in epithelial growth and tumorigenesis, we generated transgenic mice carrying the CDK6 gene under the keratin 5 promoter (K5CDK6). Similar to K5CDK4 mice, epidermal proliferation increased substantially in K5CDK6 mice; however, no hyperplasia was observed. CDK6 overexpression also triggered keratinocyte apoptosis in interfollicular and follicular epidermis as a compensatory mechanism to override aberrant proliferation. Unexpectedly, CDK6 overexpression results in decreased skin tumor development compared with wild-type siblings. The inhibition in skin tumorigenesis was similar to that previously reported in K5-cyclin D3 mice. Furthermore, biochemical analysis of the K5CDK6 epidermis showed preferential complex formation between CDK6 and cyclin D3, suggesting that this particular complex plays an important role in tumor restraint. These studies provide in vivo evidence that CDK4 and CDK6 play a similar role as a mediator of keratinocyte proliferation but differ in apoptosis activation and skin tumor development. PMID:21224071

  10. Characterization of cytoplasmic cyclin D1 as a marker of invasiveness in cancer

    PubMed Central

    Santacana, Maria; Fernández-Hernández, Rita; Gatius, Sònia; Pedraza, Neus; Pallarés, Judit; Cemeli, Tània; Valls, Joan; Tarres, Marc; Ferrezuelo, Francisco; Dolcet, Xavier; Matias-Guiu, Xavier; Garí, Eloi

    2016-01-01

    Cyclin D1 (Ccnd1) is a proto-oncogen amplified in many different cancers and nuclear accumulation of Ccnd1 is a characteristic of tumor cells. Ccnd1 activates the transcription of a large set of genes involved in cell cycle progress and proliferation. However, Ccnd1 also targets cytoplasmic proteins involved in the regulation of cell migration and invasion. In this work, we have analyzed by immunohistochemistry the localization of Ccnd1 in endometrial, breast, prostate and colon carcinomas with different types of invasion. The number of cells displaying membranous or cytoplasmic Ccnd1 was significantly higher in peripheral cells than in inner cells in both collective and pushing invasion patterns of endometrial carcinoma, and in collective invasion pattern of colon carcinoma. Also, the cytoplasmic localization of Ccnd1 was higher when tumors infiltrated as single cells, budding or small clusters of cells. To evaluate cytoplasmic function of cyclin D1, we have built a variant (Ccnd1-CAAX) that remains attached to the cell membrane therefore sequestering this cyclin in the cytoplasm. Tumor cells harboring Ccnd1-CAAX showed high levels of invasiveness and metastatic potential compared to those containing the wild type allele of Ccnd1. However, Ccnd1-CAAX expression did not alter proliferative rates of tumor cells. We hypothesize that the role of Ccnd1 in the cytoplasm is mainly associated with the invasive capability of tumor cells. Moreover, we propose that subcellular localization of Ccnd1 is an interesting guideline to measure cancer outcome. PMID:27105504

  11. Unexpected Reduction of Skin Tumorigenesis on Expression of Cyclin-Dependent Kinase 6 in Mouse Epidermis

    PubMed Central

    Wang, Xian; Sistrunk, Christopher; Rodriguez-Puebla, Marcelo L.

    2011-01-01

    Cyclin-dependent kinases (CDKs) 4 and 6 are important regulators of the G1 phase of the cell cycle, share 71% amino acid identity, and are expressed ubiquitously. As a result, it was assumed that each of these kinases plays a redundant role regulating normal and neoplastic proliferation. In previous reports, we have described the effects of CDK4 expression in transgenic mice, including the development of epidermal hyperplasia and increased malignant progression to squamous cell carcinoma. To study the role of CDK6 in epithelial growth and tumorigenesis, we generated transgenic mice carrying the CDK6 gene under the keratin 5 promoter (K5CDK6). Similar to K5CDK4 mice, epidermal proliferation increased substantially in K5CDK6 mice; however, no hyperplasia was observed. CDK6 overexpression also triggered keratinocyte apoptosis in interfollicular and follicular epidermis as a compensatory mechanism to override aberrant proliferation. Unexpectedly, CDK6 overexpression results in decreased skin tumor development compared with wild-type siblings. The inhibition in skin tumorigenesis was similar to that previously reported in K5-cyclin D3 mice. Furthermore, biochemical analysis of the K5CDK6 epidermis showed preferential complex formation between CDK6 and cyclin D3, suggesting that this particular complex plays an important role in tumor restraint. These studies provide in vivo evidence that CDK4 and CDK6 play a similar role as a mediator of keratinocyte proliferation but differ in apoptosis activation and skin tumor development. PMID:21224071

  12. Cyclin B1 overexpression induces cell death independent of mitotic arrest.

    PubMed

    Eichhorn, Joshua M; Kothari, Anisha; Chambers, Timothy C

    2014-01-01

    Microtubule inhibitors are widely used in cancer chemotherapy. These drugs characteristically induce mitotic arrest and cell death but the mechanisms linking the two are not firmly established. One of the problems is that cancer cells vary widely in their sensitivity to these agents, and thus comparison of data from different systems is difficult. To alleviate this problem we sought to molecularly induce mitotic death and study its mechanisms, by expressing non-degradable cyclin B (R42A) in HeLa cells. However, this approach failed to induce significant mitotic arrest, Cdk1 activation, or phosphorylation of anti-apoptotic Bcl-2 proteins, all characteristics of cells treated with microtubule inhibitors. Furthermore, cyclin B1-R42A induced rapid cell death, and when expressed in synchronized cells, cell death occurred in G1 phase. Decreasing the plasmid concentration reduced transfection efficiency but restored mitotic arrest and eliminated non-specific death. These results show that inappropriate overexpression of cyclin B1 causes non-specific cell death and suggest caution in its use for the study of mitotic events.

  13. APOLLON Protein Promotes Early Mitotic CYCLIN A Degradation Independent of the Spindle Assembly Checkpoint*

    PubMed Central

    Kikuchi, Ryo; Ohata, Hirokazu; Ohoka, Nobumichi; Kawabata, Atsushi; Naito, Mikihiko

    2014-01-01

    In the mammalian cell cycle, both CYCLIN A and CYCLIN B are required for entry into mitosis, and their elimination is also essential to complete the process. During mitosis, CYCLIN A and CYCLIN B are ubiquitylated by the anaphase-promoting complex/cyclosome (APC/C) and then subjected to proteasomal degradation. However, CYCLIN A, but not CYCLIN B, begins to be degraded in the prometaphase when APC/C is inactivated by the spindle assembly checkpoint (SAC). Here, we show that APOLLON (also known as BRUCE or BIRC6) plays a role in SAC-independent degradation of CYCLIN A in early mitosis. APPOLON interacts with CYCLIN A that is not associated with cyclin-dependent kinases. APPOLON also interacts with APC/C, and it facilitates CYCLIN A ubiquitylation. In APPOLON-deficient cells, mitotic degradation of CYCLIN A is delayed, and the total, but not the cyclin-dependent kinase-bound, CYCLIN A level was increased. We propose APPOLON to be a novel regulator of mitotic CYCLIN A degradation independent of SAC. PMID:24302728

  14. Cyclin D1 Is Transcriptionally Down-Regulated by ZO-2 via an E Box and the Transcription Factor c-Myc

    PubMed Central

    Huerta, Miriam; Muñoz, Rodrigo; Tapia, Rocío; Soto-Reyes, Ernesto; Ramírez, Leticia; Recillas-Targa, Félix; González-Mariscal, Lorenza

    2007-01-01

    Recent reports have indicated the participation of tight junction (TJ) proteins in the regulation of gene expression and cell proliferation. Here, we have studied the role of zona occludens (ZO)-2, a TJ peripheral protein, in the regulation of cyclin D1 transcription. We found that ZO-2 down-regulates cyclin D1 transcription in a dose-dependent manner. To understand how ZO-2 represses cyclin D1 promoter activity, we used deletion analyses and found that ZO-2 negatively regulates cyclin D1 transcription via an E box and that it diminishes cell proliferation. Because ZO-2 does not associate directly with DNA, electrophoretic mobility shift assay and chromatin immunoprecipitation (ChIP) assay were used to identify the transcription factors mediating the ZO-2–repressive effect. c-Myc was found to bind the E box present in the cyclin D1 promoter, and the overexpression of c-Myc augmented the inhibition generated by ZO-2 transfection. The presence of ZO-2 and c-Myc in the same complex was further demonstrated by immunoprecipitation. ChIP and reporter gene assays using histone deacetylases (HDACs) inhibitors demonstrated that HDACs are necessary for ZO-2 repression and that HDAC1 is recruited to the E box. We conclude that ZO-2 down-regulates cyclin D1 transcription by interacting with the c-Myc/E box element and by recruiting HDAC1. PMID:17881732

  15. Cyclin D1 is transcriptionally down-regulated by ZO-2 via an E box and the transcription factor c-Myc.

    PubMed

    Huerta, Miriam; Muñoz, Rodrigo; Tapia, Rocío; Soto-Reyes, Ernesto; Ramírez, Leticia; Recillas-Targa, Félix; González-Mariscal, Lorenza; López-Bayghen, Esther

    2007-12-01

    Recent reports have indicated the participation of tight junction (TJ) proteins in the regulation of gene expression and cell proliferation. Here, we have studied the role of zona occludens (ZO)-2, a TJ peripheral protein, in the regulation of cyclin D1 transcription. We found that ZO-2 down-regulates cyclin D1 transcription in a dose-dependent manner. To understand how ZO-2 represses cyclin D1 promoter activity, we used deletion analyses and found that ZO-2 negatively regulates cyclin D1 transcription via an E box and that it diminishes cell proliferation. Because ZO-2 does not associate directly with DNA, electrophoretic mobility shift assay and chromatin immunoprecipitation (ChIP) assay were used to identify the transcription factors mediating the ZO-2-repressive effect. c-Myc was found to bind the E box present in the cyclin D1 promoter, and the overexpression of c-Myc augmented the inhibition generated by ZO-2 transfection. The presence of ZO-2 and c-Myc in the same complex was further demonstrated by immunoprecipitation. ChIP and reporter gene assays using histone deacetylases (HDACs) inhibitors demonstrated that HDACs are necessary for ZO-2 repression and that HDAC1 is recruited to the E box. We conclude that ZO-2 down-regulates cyclin D1 transcription by interacting with the c-Myc/E box element and by recruiting HDAC1.

  16. Disruption of the G1/S transition in human papillomavirus type 16 E7-expressing human cells is associated with altered regulation of cyclin E.

    PubMed

    Martin, L G; Demers, G W; Galloway, D A

    1998-02-01

    The development of neoplasia frequently involves inactivation of the p53 and retinoblastoma (Rb) tumor suppressor pathways and disruption of cell cycle checkpoints that monitor the integrity of replication and cell division. The human papillomavirus type 16 (HPV-16) oncoproteins, E6 and E7, have been shown to bind p53 and Rb, respectively. To further delineate the mechanisms by which E6 and E7 affect cell cycle control, we examined various aspects of the cell cycle machinery. The low-risk HPV-6 E6 and E7 proteins did not cause any significant change in the levels of cell cycle proteins analyzed. HPV-16 E6 resulted in very low levels of p53 and p21 and globally elevated cyclin-dependent kinase (CDK) activity. In contrast, HPV-16 E7 had a profound effect on several aspects of the cell cycle machinery. A number of cyclins and CDKs were elevated, and despite the elevation of the levels of at least two CDK inhibitors, p21 and p16, CDK activity was globally increased. Most strikingly, cyclin E expression was deregulated both transcriptionally and posttranscriptionally and persisted at high levels in S and G2/M. Transit through G1 was shortened by the premature activation of cyclin E-associated kinase activity. Elevation of cyclin E levels required both the CR1 and CR2 domains of E7. These data suggest that cyclin E may be a critical target of HPV-16 E7 in the disruption of G1/S cell cycle progression and that the ability of E7 to regulate cyclin E involves activities in addition to the release of E2F. PMID:9444990

  17. The 3' Untranslated Region of the Cyclin B mRNA Is Not Sufficient to Enhance the Synthesis of Cyclin B during a Mitotic Block in Human Cells

    PubMed Central

    Schnerch, Dominik; Follo, Marie; Felthaus, Julia; Engelhardt, Monika; Wäsch, Ralph

    2013-01-01

    Antimitotic agents are frequently used to treat solid tumors and hematologic malignancies. However, one major limitation of antimitotic approaches is mitotic slippage, which is driven by slow degradation of cyclin B during a mitotic block. The extent to which cyclin B levels decline is proposed to be governed by an equilibrium between cyclin B synthesis and degradation. It was recently shown that the 3' untranslated region (UTR) of the murine cyclin B mRNA contributes to the synthesis of cyclin B during mitosis in murine cells. Using a novel live-cell imaging-based technique allowing us to study synthesis and degradation of cyclin B simultaneously at the single cell level, we tested here the role of the human cyclin B 3'UTR in regulating cyclin B synthesis during mitosis in human cells. We observed that the cyclin B 3'UTR was not sufficient to enhance cyclin B synthesis in human U2Os, HeLa or hTERT RPE-1 cells. A better understanding of how the equilibrium of cyclin B is regulated in mitosis may contribute to the development of improved therapeutic approaches to prevent mitotic slippage in cancer cells treated with antimitotic agents. PMID:24058555

  18. Opposing roles for DNA replication initiator proteins ORC1 and CDC6 in control of Cyclin E gene transcription

    PubMed Central

    Hossain, Manzar; Stillman, Bruce

    2016-01-01

    Newly born cells either continue to proliferate or exit the cell division cycle. This decision involves delaying expression of Cyclin E that promotes DNA replication. ORC1, the Origin Recognition Complex (ORC) large subunit, is inherited into newly born cells after it binds to condensing chromosomes during the preceding mitosis. We demonstrate that ORC1 represses Cyclin E gene (CCNE1) transcription, an E2F1 activated gene that is also repressed by the Retinoblastoma (RB) protein. ORC1 binds to RB, the histone methyltransferase SUV39H1 and to its repressive histone H3K9me3 mark. ORC1 cooperates with SUV39H1 and RB protein to repress E2F1-dependent CCNE1 transcription. In contrast, the ORC1-related replication protein CDC6 binds Cyclin E-CDK2 kinase and in a feedback loop removes RB from ORC1, thereby hyper-activating CCNE1 transcription. The opposing effects of ORC1 and CDC6 in controlling the level of Cyclin E ensures genome stability and a mechanism for linking directly DNA replication and cell division commitment. DOI: http://dx.doi.org/10.7554/eLife.12785.001 PMID:27458800

  19. Opposing roles for DNA replication initiator proteins ORC1 and CDC6 in control of Cyclin E gene transcription.

    PubMed

    Hossain, Manzar; Stillman, Bruce

    2016-01-01

    Newly born cells either continue to proliferate or exit the cell division cycle. This decision involves delaying expression of Cyclin E that promotes DNA replication. ORC1, the Origin Recognition Complex (ORC) large subunit, is inherited into newly born cells after it binds to condensing chromosomes during the preceding mitosis. We demonstrate that ORC1 represses Cyclin E gene (CCNE1) transcription, an E2F1 activated gene that is also repressed by the Retinoblastoma (RB) protein. ORC1 binds to RB, the histone methyltransferase SUV39H1 and to its repressive histone H3K9me3 mark. ORC1 cooperates with SUV39H1 and RB protein to repress E2F1-dependent CCNE1 transcription. In contrast, the ORC1-related replication protein CDC6 binds Cyclin E-CDK2 kinase and in a feedback loop removes RB from ORC1, thereby hyper-activating CCNE1 transcription. The opposing effects of ORC1 and CDC6 in controlling the level of Cyclin E ensures genome stability and a mechanism for linking directly DNA replication and cell division commitment. PMID:27458800

  20. Mutagenic analysis of the destruction signal of mitotic cyclins and structural characterization of ubiquitinated intermediates.

    PubMed Central

    King, R W; Glotzer, M; Kirschner, M W

    1996-01-01

    Mitotic cyclins are abruptly degraded at the end of mitosis by a cell-cycle-regulated ubiquitin-dependent proteolytic system. To understand how cyclin is recognized for ubiquitin conjugation, we have performed a mutagenic analysis of the destruction signal of mitotic cyclins. We demonstrate that an N-terminal cyclin B segment as short as 27 residues, containing the 9-amino-acid destruction box, is sufficient to destabilize a heterologous protein in mitotic Xenopus extracts. Each of the three highly conserved residues of the cyclin B destruction box is essential for ubiquitination and subsequent degradation. Although an intact destruction box is essential for the degradation of both A- and B-type cyclins, we find that the Xenopus cyclin A1 destruction box cannot functionally substitute for its B-type counterpart, because it does not contain the highly conserved asparagine necessary for cyclin B proteolysis. Physical analysis of ubiquitinated cyclin B intermediates demonstrates that multiple lysine residues function as ubiquitin acceptor sites, and mutagenic studies indicate that no single lysine residue is essential for cyclin B degradation. This study defines the key residues of the destruction box that target cyclin for ubiquitination and suggests there are important differences in the way in which A- and B-type cyclins are recognized by the cyclin ubiquitination machinery. Images PMID:8885231

  1. 4-Hydroxytamoxifen-stimulated processing of cyclin E is mediated via G protein-coupled receptor 30 (GPR30) and accompanied by enhanced migration in MCF-7 breast cancer cells.

    PubMed

    Li, Yang; Chen, Yan; Zhu, Zhu-Xia; Liu, Xiao-Hong; Yang, Li; Wan, Lei; Lei, Ting-Wen; Wang, Xu-Dong

    2013-07-01

    Over-expression of cleaved cyclin E in breast tumors is closely associated with tumor progression and resistance to antiestrogens. 17β-Estradiol (E2) has been recently shown to induce cyclin E processing in breast cancer cells. Tamoxifen has been used in patients with estrogen-sensitive breast cancer, yet resistance to antiestrogens and recurrence will appear in some of the patients after its continued use. We therefore addressed possible effects of tamoxifen on the generation of cleaved cyclin E and its signal mechanism(s) in estrogen-responsive MCF-7 breast cancer cells that express both G protein-coupled protein (GPR) 30 and estrogen receptor α (ERα). 4-Hydroxytamoxifen (OHT, tamoxifen's active form) failed to prevent E2-induced proteolysis of cyclin E and migration, but rather triggered cyclin E cleavage coincident with augmented migration. OHT-induced cyclin E truncation also occurred in SK-BR-3 cells that express GPR30 and lack ERα, but not in MDA-MB-231 cells that express neither GPR30 nor ERα. G1, a specific GPR 30 agonist, caused dramatic proteolysis of cyclin E and enhanced migration. Furthermore, OHT-stimulated cleavage of cyclin E and migration were tremendously attenuated by G15, a GPR30 antagonist, or siRNA against GPR30. In addition, inhibitors for EGFR or ERK1/2 remarkably suppressed OHT-induced truncation of cyclin E, suggesting involvement of EGFR signaling. Collectively, our data indicate that OHT contributes to the production of proteolyzed cyclin E via GPR30 with augmented migration in MCF-7 cells.

  2. Cyclin Y regulates the proliferation, migration, and invasion of ovarian cancer cells via Wnt signaling pathway.

    PubMed

    Liu, Haiyuan; Shi, Honghui; Fan, Qingbo; Sun, Xiangxiu

    2016-08-01

    This study is designated to investigate the roles of cyclin Y (CCNY) and Wnt signaling pathway in regulating ovarian cancer (OC) cell proliferation, migration, and invasion. Quantitative real-time PCR (qRT-PCR), Western blot, MTT assay, cell scratch, and transwell test were used in our study, and transplanted tumor model was constructed on nude mice. C-Myc, cyclin D1, PFTK1, ki67, OGT, and β-catenin protein expressions in tumor tissues were detected. CCNY was significantly upregulated in OC cell lines and tissues (both P < 0.05); significant association was observed between CCNY expression and clinicopathological stage, lymph node metastasis (LNM) (P < 0.05); and the CCNY expression in stages III to IV was higher than that in stages I to II, and patients with LNM had higher CCNY expression when compared with those in patients without LNM (P < 0.05); expressions of c-Myc, cyclin D, PFTK1, ki67, and OGT were upregulated in OC tissues compared with ovarian benign tissues, suggesting that these expressions were significantly different between the two groups (P < 0.05); CCNY significantly exacerbated proliferation, migration, and invasion of A2780 cells; c-Myc and cyclin D1 protein expressions increased as the expression of CCNY increased (P < 0.001); β-catenin expressions in A2780 cells with over-expression of CCNY were significantly increased in the nucleus, but significantly decreased in the cytoplasm (both P < 0.05); high expressions of CCNY exacerbated the proliferation of A2780 cells in nude mice and significantly increased c-Myc, cyclin D1, PFTK1, ki67, and OGT protein expressions in tumor tissues which were transplanted into nude mice (P < 0.01). CCNY might exacerbate the proliferation, migration, and invasion of OC cells via activating the Wnt signaling pathway. Thus, this study provides a theoretical foundation for the development of therapeutic drugs that are able to cure OC by targeting CCNY. PMID:26831658

  3. The Role of EGFR/PI3K/Akt/cyclinD1 Signaling Pathway in Acquired Middle Ear Cholesteatoma

    PubMed Central

    Liu, Wei; Ren, Hongmiao; Ren, Jihao; Yin, Tuanfang; Hu, Bing; Xie, Shumin; Dai, Yinghuan; Wu, Weijing; Xiao, Zian; Yang, Xinming; Xie, Dinghua

    2013-01-01

    Cholesteatoma is a benign keratinizing and hyper proliferative squamous epithelial lesion of the temporal bone. Epidermal growth factor (EGF) is one of the most important cytokines which has been shown to play a critical role in cholesteatoma. In this investigation, we studied the effects of EGF on the proliferation of keratinocytes and EGF-mediated signaling pathways underlying the pathogenesis of cholesteatoma. We examined the expressions of phosphorylated EGF receptor (p-EGFR), phosphorylated Akt (p-Akt), cyclinD1, and proliferating cell nuclear antigen (PCNA) in 40 cholesteatoma samples and 20 samples of normal external auditory canal (EAC) epithelium by immunohistochemical method. Furthermore, in vitro studies were performed to investigate EGF-induced downstream signaling pathways in primary external auditory canal keratinocytes (EACKs). The expressions of p-EGFR, p-Akt, cyclinD1, and PCNA in cholesteatoma epithelium were significantly increased when compared with those of control subjects. We also demonstrated that EGF led to the activation of the EGFR/PI3K/Akt/cyclinD1 signaling pathway, which played a critical role in EGF-induced cell proliferation and cell cycle progression of EACKs. Both EGFR inhibitor AG1478 and PI3K inhibitor wortmannin inhibited the EGF-induced EGFR/PI3K/Akt/cyclinD1 signaling pathway concomitantly with inhibition of cell proliferation and cell cycle progression of EACKs. Taken together, our data suggest that the EGFR/PI3K/Akt/cyclinD1 signaling pathway is active in cholesteatoma and may play a crucial role in cholesteatoma epithelial hyper-proliferation. This study will facilitate the development of potential therapeutic targets for intratympanic drug therapy for cholesteatoma. PMID:24311896

  4. A cyclin D1/cyclin-dependent kinase 4 binding site within the C domain of the retinoblastoma protein.

    PubMed

    Pan, W; Cox, S; Hoess, R H; Grafström, R H

    2001-04-01

    Phosphorylation of the retinoblastoma protein (Rb) by the cyclin D1/cyclin-dependent kinase (cdk) 4 complex (cdk4/D1) is a key regulatory step for maintaining the orderly progression of the cell cycle. The B domain of Rb contains a site that recognizes and binds the LXCXE motif found in D-type cyclins. This interaction is important for phosphorylation of Rb by cdk4/D1, although in vitro the Rb C domain alone is efficiently phosphorylated by cdk4/D1. A mutation in the C domain of Rb, L901Q, has been identified that completely abolishes cdk4/D1 phosphorylation of the isolated C domain. By contrast, the L901Q mutation has no effect on phosphorylation by either cyclin E/cdk2 or cyclin B/cdk1, suggesting that the interaction between L901Q and cdk4/D1 is specific. Introduction of the L901Q mutation into Rb containing the A, B, and C domains results in phosphorylation becoming predominantly dependent on the LXCXE binding region. However, when the LXCXE binding region of Rb is mutated, phosphorylation becomes dependent on the L901 site within the C domain. The L901 binding site can supplant the LXCXE binding site for the cdk4/D1-dependent phosphorylation of S780 and S795 but not S807/S811. Despite the limited homology between C domains of Rb, p107, and p130, the L901 site is conserved and introduction of the L925Q mutation into the isolated C domain of p107 also inhibits phosphorylation by cdk4/D1. These data support a model for cdk4/D1 recognizing two independent binding sites in Rb and suggests a conservation of this C domain binding motif for cyclin D1/cdk4 kinase among the Rb family of proteins. PMID:11306463

  5. Cyclin D1 silencing suppresses tumorigenicity, impairs DNA double strand break repair and thus radiosensitizes androgen-independent prostate cancer cells to DNA damage

    PubMed Central

    Ju, Xiaoming; Vetuschi, Antonella; Sferra, Roberta; Casimiro, Mathew C.; Pompili, Simona; Festuccia, Claudio; Colapietro, Alessandro; Gaudio, Eugenio; Di Cesare, Ernesto; Tombolini, Vincenzo; Pestell, Richard G.

    2016-01-01

    Patients with hormone-resistant prostate cancer (PCa) have higher biochemical failure rates following radiation therapy (RT). Cyclin D1 deregulated expression in PCa is associated with a more aggressive disease: however its role in radioresistance has not been determined. Cyclin D1 levels in the androgen-independent PC3 and 22Rv1 PCa cells were stably inhibited by infecting with cyclin D1-shRNA. Tumorigenicity and radiosensitivity were investigated using in vitro and in vivo experimental assays. Cyclin D1 silencing interfered with PCa oncogenic phenotype by inducing growth arrest in the G1 phase of cell cycle and reducing soft agar colony formation, migration, invasion in vitro and tumor formation and neo-angiogenesis in vivo. Depletion of cyclin D1 significantly radiosensitizes PCa cells by increasing the RT-induced DNA damages by affecting the NHEJ and HR pathways responsible of the DNA double-strand break repair. Following treatment of cells with RT the abundance of a biomarker of DNA damage, γ-H2AX, was dramatically increased in sh-cyclin D1 treated cells compared to shRNA control. Concordant with these observations DNA-PKcs-activation and RAD51-accumulation, part of the DNA double-strand break repair machinery, were reduced in shRNA-cyclin D1 treated cells compared to shRNA control. We further demonstrate the physical interaction between CCND1 with activated-ATM, -DNA-PKcs and RAD51 is enhanced by RT. Finally, siRNA-mediated silencing experiments indicated DNA-PKcs and RAD51 are downstream targets of CCND1-mediated PCa cells radioresistance. In summary, these observations suggest that CCND1 is a key mediator of PCa radioresistance and could represent a potential target for radioresistant hormone-resistant PCa. PMID:26689991

  6. Cyclin D2 Overexpression in Transgenic Mice Induces Thymic and Epidermal Hyperplasia whereas Cyclin D3 Expression Results Only in Epidermal Hyperplasia

    PubMed Central

    Rodriguez-Puebla, Marcelo L.; LaCava, Margaret; Miliani de Marval, Paula L.; Jorcano, Jose L.; Richie, Ellen R.; Conti, Claudio J.

    2000-01-01

    In a previous report, we described the effects of cyclin D1 expression in epithelial tissues of transgenic mice. To study the involvement of D-type cyclins (D1, D2, and D3) in epithelial growth and differentiation and their putative role as oncogenes in skin, transgenic mice were developed which carry cyclin D2 or D3 genes driven by a keratin 5 promoter. As expected, both transgenic lines showed expression of these proteins in most of the squamous tissues analyzed. Epidermal proliferation increased in transgenic animals and basal cell hyperplasia was observed. All of the animals also had a minor thickening of the epidermis. The pattern of expression of keratin 1 and keratin 5 indicated that epidermal differentiation was not affected. Transgenic K5D2 mice developed mild thymic hyperplasia that reversed at 4 months of age. On the other hand, high expression of cyclin D3 in the thymus did not produce hyperplasia. This model provides in vivo evidence of the action of cyclin D2 and cyclin D3 as mediators of proliferation in squamous epithelial cells. A direct comparison among the three D-type cyclin transgenic mice suggests that cyclin D1 and cyclin D2 have similar roles in epithelial thymus cells. However, overexpression of each D-type cyclin produces a distinct phenotype in thymic epithelial cells. PMID:10980142

  7. Nerve Growth Factor Regulation of Cyclin D1 in PC12 Cells through a p21RAS Extracellular Signal-regulated Kinase Pathway Requires Cooperative Interactions between Sp1 and Nuclear Factor-κB

    PubMed Central

    Marampon, Francesco; Casimiro, Mathew C.; Fu, Maofu; Powell, Michael J.; Popov, Vladimir M.; Lindsay, Jaime; Zani, Bianca M.; Ciccarelli, Carmela; Watanabe, Genichi; Lee, Richard J.

    2008-01-01

    The PC12 pheochromocytoma cell line responds to nerve growth factor (NGF) by exiting from the cell cycle and differentiating to induce extending neurites. Cyclin D1 is an important regulator of G1/S phase cell cycle progression, and it is known to play a role in myocyte differentiation in cultured cells. Herein, NGF induced cyclin D1 promoter, mRNA, and protein expression via the p21RAS pathway. Antisense- or small interfering RNA to cyclin D1 abolished NGF-mediated neurite outgrowth, demonstrating the essential role of cyclin D1 in NGF-mediated differentiation. Expression vectors encoding mutants of the Ras/mitogen-activated protein kinase pathway, and chemical inhibitors, demonstrated NGF induction of cyclin D1 involved cooperative interactions of extracellular signal-regulated kinase, p38, and phosphatidylinositol 3-kinase pathways downstream of p21RAS. NGF induced the cyclin D1 promoter via Sp1, nuclear factor-κB, and cAMP-response element/activated transcription factor sites. NGF induction via Sp1 involved the formation of a Sp1/p50/p107 complex. Cyclin D1 induction by NGF governs differentiation and neurite outgrowth in PC12 cells. PMID:18367547

  8. Identification of cyclins A1, E1 and vimentin as downstream targets of heme oxygenase-1 in vascular endothelial growth factor-mediated angiogenesis

    PubMed Central

    Bauer, Andrea; Mylroie, Hayley; Thornton, C. Clare; Calay, Damien; Birdsey, Graeme M.; Kiprianos, Allan P.; Wilson, Garrick K.; Soares, Miguel P.; Yin, Xiaoke; Mayr, Manuel; Randi, Anna M.; Mason, Justin C.

    2016-01-01

    Angiogenesis is an essential physiological process and an important factor in disease pathogenesis. However, its exploitation as a clinical target has achieved limited success and novel molecular targets are required. Although heme oxygenase-1 (HO-1) acts downstream of vascular endothelial growth factor (VEGF) to modulate angiogenesis, knowledge of the mechanisms involved remains limited. We set out identify novel HO-1 targets involved in angiogenesis. HO-1 depletion attenuated VEGF-induced human endothelial cell (EC) proliferation and tube formation. The latter response suggested a role for HO-1 in EC migration, and indeed HO-1 siRNA negatively affected directional migration of EC towards VEGF; a phenotype reversed by HO-1 over-expression. EC from Hmox1−/− mice behaved similarly. Microarray analysis of HO-1-depleted and control EC exposed to VEGF identified cyclins A1 and E1 as HO-1 targets. Migrating HO-1-deficient EC showed increased p27, reduced cyclin A1 and attenuated cyclin-dependent kinase 2 activity. In vivo, cyclin A1 siRNA inhibited VEGF-driven angiogenesis, a response reversed by Ad-HO-1. Proteomics identified structural protein vimentin as an additional VEGF-HO-1 target. HO-1 depletion inhibited VEGF-induced calpain activity and vimentin cleavage, while vimentin silencing attenuated HO-1-driven proliferation. Thus, vimentin and cyclins A1 and E1 represent VEGF-activated HO-1-dependent targets important for VEGF-driven angiogenesis. PMID:27388959

  9. Expression of δ-cyclins of Brassica rapa L. embryos by clinorotation

    NASA Astrophysics Data System (ADS)

    Artemenko, O. A.

    Cyclins is one of the important regulators of cell cycle. There are several types of cyclins exists. They are responding for different phases of cycle and have high homology in plant's and mammalian's cells. δ -cyclins are specific for plants and controlling the presynthetic phase events. These cyclins likes to mammalian D-cyclins and have similar functions. This class consist three types of cyclins -- δ 1, δ 2 and δ 3. Cyclin δ 1 is responding for events in cell, which take place before exiting from stage of quiet (G0). Cyclin δ 1 is responding for entering and outputting from G0, and cyclin δ 3 -- for events, which happen in cell after stage of quiet, by entering to S-phase (phase of DNA's synthesis). In present research was used δ 1- and δ 3-cyclins. For determination of δ -cyclins gene's expression level was excreted RNA from embryos: 3-days (spherical stage), 6-days (heart-shaped stage) and 9-days (generated stage) seedlings of Brassica rapa L. in control and under clinorotation. For definition the cyclins gene's expression level applied Northern Blot Analysis. Obtained data testify about difference in level of gene's expression of cyclin δ 1 between control and clinorotation variants. After three days by pollination the expression of this gene in embryos was observed in control only. By clinorotation the gene's expression was detected on 6 days later, but it level was lower than in control variant. On 9 days it was gently expressed by clinorotation, where as by control it was not detected absolutely. Cyclin δ 3 gene's expression was observed during all time of the experiment. These data also confirm known one about expression δ 1- cyclin, which expressed on beginning of cell cycle only. And δ 3 --cyclin that express during whole presinthetic phase of cell cycle (Sony et al., 1995, Murray, 1994, Inze et al, 1999, Umeda, 2000).

  10. Phylogenetic analysis reveals the evolution and diversification of cyclins in eukaryotes.

    PubMed

    Ma, Zhaowu; Wu, Yuliang; Jin, Jialu; Yan, Jun; Kuang, Shuzhen; Zhou, Mi; Zhang, Yuexuan; Guo, An-Yuan

    2013-03-01

    Cyclins are a family of diverse proteins that play fundamental roles in regulating cell cycle progression in Eukaryotes. Cyclins have been identified from protists to higher Eukaryotes, while its evolution remains vague and the findings turn out controversial. Current classification of cyclins is mainly based on their functions, which may not be appropriate for the systematic evolutionary analysis. In this work, we performed comparative and phylogenetic analysis of cyclins to investigate their classification, origin and evolution. Cyclins originated in early Eukaryotes and evolved from protists to plants, fungi and animals. Based on the phylogenetic tree, cyclins can be divided into three major groups designated as the group I, II and III with different functions and features. Group I plays key roles in cell cycle, group II varied in actions are kingdom (plant, fungi and animal) specific, and group III functions in transcription regulation. Our results showed that the dominating cyclins (group I) diverged from protists to plants, fungi and animals, while divergence of the other cyclins (groups II and III) has occurred in protists. We also discussed the evolutionary relationships between cyclins and cyclin-dependent kinases (CDKs) and found that the cyclins have undergone divergence in protists before the divergence of animal CDKs. This reclassification and evolutionary analysis of cyclins might facilitate understanding eukaryotic cell cycle control.

  11. Natural aristolactams and aporphine alkaloids as inhibitors of CDK1/cyclin B and DYRK1A.

    PubMed

    Marti, Guillaume; Eparvier, Véronique; Morleo, Barbara; Le Ven, Jessica; Apel, Cécile; Bodo, Bernard; Amand, Séverine; Dumontet, Vincent; Lozach, Olivier; Meijer, Laurent; Guéritte, Françoise; Litaudon, Marc

    2013-01-01

    In an effort to find potent inhibitors of the protein kinases DYRK1A and CDK1/Cyclin B, a systematic in vitro evaluation of 2,500 plant extracts from New Caledonia and French Guyana was performed. Some extracts were found to strongly inhibit the activity of these kinases. Four aristolactams and one lignan were purified from the ethyl acetate extracts of Oxandra asbeckii and Goniothalamus dumontetii, and eleven aporphine alkaloids were isolated from the alkaloid extracts of Siparuna pachyantha, S. decipiens, S. guianensis and S. poeppigii. Among these compounds, velutinam, aristolactam AIIIA and medioresinol showed submicromolar IC50 values on DYRK1A. PMID:23467012

  12. Cyclin E/Cdk2, P/CAF, and E1A regulate the transactivation of the c-myc promoter by FOXM1

    SciTech Connect

    Wierstra, Inken Alves, Juergen

    2008-03-28

    FOXM1c transactivates the c-myc promoter by binding directly to its TATA-boxes. The present study demonstrates that the transactivation of the c-myc promoter by FOXM1c is enhanced by the key proliferation signal cyclin E/Cdk2, but repressed by P/CAF and the adenoviral oncoprotein E1A. Furthermore, FOXM1c interacts with the coactivator and histone acetyltransferase P/CAF. This study shows that, on the c-myc-P1 TATA-box, FOXM1c does not function simply as normal transcription factor just binding to an unusual site. Moreover, the inhibitory N-terminus of FOXM1c does not inhibit its transrepression domain or its EDA. Others reported that a cyclin/Cdk-binding LXL-motif of the splice variant FoxM1b is required for its interaction with Cdk2, Cdk1, and p27, its phosphorylation by Cdk1 and its activation by Cdc25B. In contrast, we now demonstrate that this LXL-motif is not required for the activation of FOXM1c by cyclin D1/Cdk4, cyclin E/Cdk and cyclin A/Cdk2 or for the repression of FOXM1c by p27.

  13. Disruption of nucleocytoplasmic trafficking of cyclin D1 and topoisomerase II by sanguinarine

    PubMed Central

    Holy, Jon; Lamont, Genelle; Perkins, Edward

    2006-01-01

    Background The quaternary isoquinoline alkaloid sanguinarine is receiving increasing attention as a potential chemotherapeutic agent in the treatment of cancer. Previous studies have shown that this DNA-binding phytochemical can arrest a number of different types of transformed cells in G0/G1, and upregulate the CKIs p21 and p27 while downregulating multiple cyclins and CDKs. To more closely examine the responses of some of these cell cycle regulatory molecules to sanguinarine, we used immunocytochemical methods to visualize cyclin D1 and topoisomerase II behavior in MCF-7 breast cancer cells. Results 5 – 10 μM sanguinarine effectively inhibits MCF-7 proliferation after a single application of drug. This growth inhibition is accompanied by a striking relocalization of cyclin D1 and topoisomerase II from the nucleus to the cytoplasm, and this effect persists for at least three days after drug addition. DNA synthesis is transiently inhibited by sanguinarine, but cells recover their ability to synthesize DNA within 24 hours. Taking advantage of the fluorescence characteristics of sanguinarine to follow its uptake and distribution suggests that these effects arise from a window of activity of a few hours immediately after drug addition, when sanguinarine is concentrated in the nucleus. These effects occur in morphologically healthy-looking cells, and thus do not simply represent part of an apoptotic response. Conclusion It appears that sub-apoptotic concentrations of sanguinarine can suppress breast cancer cell proliferation for extended lengths of time, and that this effect results from a relatively brief period of activity when the drug is concentrated in the nucleus. Sanguinarine transiently inhibits DNA synthesis, but a novel mechanism of action appears to involve disrupting the trafficking of a number of molecules involved in cell cycle regulation and progression. The ability of sub-apoptotic concentrations of sanguinarine to inhibit cell growth may be a useful

  14. Artemisinin triggers a G1 cell cycle arrest of human Ishikawa endometrial cancer cells and inhibits Cyclin Dependent Kinase-4 promoter activity and expression by disrupting NF-kB transcriptional signaling

    PubMed Central

    Tran, Kalvin Q.; Tin, Antony S.; Firestone, Gary L.

    2014-01-01

    Relatively little is known about the anti-proliferative effects of Artemisinin, a naturally occurring anti-malarial compound from Artemisia annua, or sweet wormwood, in human endometrial cancer cells. Artemisinin induced a G1 cell cycle arrest in cultured human Ishikawa endometrial cancer cells and down regulated CDK2 and CDK4 transcript and protein levels. Analysis of CDK4 promoter-luciferase reporter constructs showed that the artemisinin ablation of CDK4 gene expression was accounted for by the loss of CDK4 promoter activity. Chromatin immunoprecipitation demonstrated that artemisinin inhibited nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) subunit p65 and p50 interactions with the endogenous Ishikawa cell CDK4 promoter. Coimmunoprecipitation revealed that artemisinin disrupts endogenous p65 and p50 nuclear translocation via increased protein-protein interactions with IκB-α, an NF-κB inhibitor, and disrupts its interaction with the CDK4 promoter, leading to a loss of CDK4 gene expression. Artemisinin treatment stimulated the cellular levels of IκB-α protein without altering the level of IκB-α transcripts. Finally, expression of exogenous p65 resulted in the accumulation of this NF-κB subunit in the nucleus of artemisinin treated and untreated cells, reversed the artemisinin down-regulation of CDK4 protein expression and promoter activity and prevented the artemisinin induced G1 cell cycle arrest. Taken together, our results demonstrate that a key event in the artemisinin anti-proliferative effects in endometrial cancer cells is the transcriptional down-regulation of CDK4 expression by disruption of NF-κB interactions with the CDK4 promoter. PMID:24296733

  15. Absence of cyclin D2 expression is associated with promoter hypermethylation in gastric cancer.

    PubMed

    Yu, J; Leung, W K; Ebert, M P A; Leong, R W L; Tse, P C H; Chan, M W Y; Bai, A H C; To, K F; Malfertheiner, P; Sung, J J Y

    2003-05-19

    Expression of cyclin D2 is absent in 30-70% of gastric cancers. We investigated the role of promoter hypermethylation in the transcriptional silencing of cyclin D2 in five gastric cell lines and 47 primary gastric carcinomas. CpG island methylation status of the cyclin D2 gene was studied by methylation-specific polymerase chain reaction and bisulphite sequencing. RNA and protein expression was analysed by reverse transcription-PCR and Western blot, respectively. Dense methylation of cyclin D2 was detected in three cell lines (KATOIII, AGS and NCI-N87), which also lacked cyclin D2 mRNA and protein expression. Bisulphite DNA sequencing revealed that loss of cyclin D2 expression was closely associated with the density of methylation in the promoter region. Treatment with DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine, restored the cyclin D2 expression level in methylated gastric cells. Among the 47 primary gastric cancers, cyclin D2 hypermethylation was detected in 23 (48.9%) cases. None of the 23 normal gastric biopsies from noncancer patients showed hypermethylation. Hypermethylation was associated with loss of mRNA (P&<0.001) and protein (P=0.006) expressions. Our study showed that cyclin D2 hypermethylation is associated with loss of cyclin D2 expression in a subset of gastric cancers, which may suggest an alternative gastric carcinogenesis pathway in the absence of cyclin D2 expression. PMID:12771922

  16. Cdh1-APC/C, cyclin B-Cdc2, and Alzheimer's disease pathology

    SciTech Connect

    Aulia, Selina; Tang, Bor Luen . E-mail: bchtbl@nus.edu.sg

    2006-01-06

    The anaphase-promoting complex/cyclosome (APC/C) is a key E3 ubiquitin ligase complex that functions in regulating cell cycle transitions in proliferating cells and has, as revealed recently, novel roles in postmitotic neurons. Regulated by its activator Cdh1 (or Hct1), whose level is high in postmitotic neurons, APC/C seems to have multiple functions at different cellular locations, modulating diverse processes such as synaptic development and axonal growth. These processes do not, however, appear to be directly connected to cell cycle regulation. It is now shown that Cdh1-APC/C activity may also have a basic role in suppressing cyclin B levels, thus preventing terminally differentiated neurons from aberrantly re-entering the cell cycle. The result of an aberrant cyclin B-induced S-phase entry, at least for some of these neurons, would be death via apoptosis. Cdh1 thus play an active role in maintaining the terminally differentiated, non-cycling state of postmitotic neurons-a function that could become impaired in Alzheimer's and other neurodegenerative diseases.

  17. Therapeutic Targeting of the Cyclin D3:CDK4/6 Complex in T Cell Leukemia

    PubMed Central

    Sawai, Catherine; Freund, Jacquelyn; Oh, Philmo; Ndiaye-Lobry, Delphine; Bretz, Jamieson C.; Strikoudis, Alexandros; Genesca, Lali; Trimarchi, Thomas; Kelliher, Michelle A.; Clark, Marcus; Soulier, Jean; Chen-Kiang, Selina; Aifantis, Iannis

    2012-01-01

    SUMMARY D-type cyclins form complexes with cyclin dependent kinases (CDK4/6), and promote cell cycle progression. Although cyclin D functions appear largely tissue specific, we demonstrate that cyclin D3 has unique functions in lymphocyte development and cannot be replaced by cyclin D2, which is also expressed during blood differentiation. We show that only combined deletion of p27Kip1 and Rb is sufficient to rescue the development of Ccnd3−/− thymocytes. Furthermore, we show that a small molecule targeting the kinase function of cyclin D3:CDK4/6 inhibits both cell cycle entry in human T cell acute lymphoblastic leukemia (T-ALL) and disease progression in animal models of T-ALL. These studies identify unique functions for cyclin D3:CDK4/6 complexes and suggest potential therapeutic protocols for this devastating blood tumor. PMID:23079656

  18. Identification of novel selective antagonists for cyclin C by homology modeling and virtual screening.

    PubMed

    Rajender, P Sarita; Vasavi, M; Vuruputuri, Uma

    2011-03-01

    Cancer is a global multidrug resistant calamity, demanding an urgent need to design a novel/potent anti cancer agent. CDK8, 3/cyclin C biosynthetic pathway plays a specific role in G(0)/G(1)/S phases of cell cycle. Cyclin C is identified as a potential anti cancer target candidate. In order to understand the mechanism of ligand binding and interaction between ligand and cyclin C, a 3D homology model for cyclin C is generated. The cyclin C binding groove can be checked by small ligand molecules leading to inhibition. Virtual screening of molecules from an online data base of ChemBank library throws light to arrive at possible inhibitors for cyclin C inhibition. The molecules with better docking scores and acceptable ADME properties were prioritised to obtain potential lead molecules as cyclin C inhibitors.

  19. Dominant-negative cyclin-selective ubiquitin carrier protein E2-C/UbcH10 blocks cells in metaphase

    PubMed Central

    Townsley, Fiona M.; Aristarkhov, Alexander; Beck, Sharon; Hershko, Avram; Ruderman, Joan V.

    1997-01-01

    Destruction of mitotic cyclins by ubiquitin-dependent proteolysis is required for cells to complete mitosis and enter interphase of the next cell cycle. In clam eggs, this process is catalyzed by a cyclin-selective ubiquitin carrier protein, E2-C, and the cyclosome/anaphase promoting complex (APC), a 20S particle containing cyclin-selective ubiquitin ligase activity. Here we report cloning a human homolog of E2-C, UbcH10, which shares 61% amino acid identity with clam E2-C and can substitute for clam E2-C in vitro. Dominant-negative clam E2-C and human UbcH10 proteins, created by altering the catalytic cysteine to serine, inhibit the in vitro ubiquitination and destruction of cyclin B in clam oocyte extracts. When transfected into mammalian cells, mutant UbcH10 inhibits the destruction of both cyclin A and B, arrests cells in M phase, and inhibits the onset of anaphase, presumably by blocking the ubiquitin-dependent proteolysis of proteins responsible for sister chromatid separation. Thus, E2-C/UbcH10-mediated ubiquitination is involved in both cdc2 inactivation and sister chromatid separation, processes that are normally coordinated during exit from mitosis. PMID:9122200

  20. Induction of Cyclin D2 in Rat Granulosa Cells Requires FSH-dependent Relief from FOXO1 Repression Coupled with Positive Signals from Smad*

    PubMed Central

    Park, Youngkyu; Maizels, Evelyn T.; Feiger, Zachary J.; Alam, Hena; Peters, Carl A.; Woodruff, Teresa K.; Unterman, Terry G.; Lee, Eun Jig; Jameson, J. Larry; Hunzicker-Dunn, Mary

    2006-01-01

    Ovarian follicles undergo exponential growth in response to follicle-stimulating hormone (FSH), largely as a result of the proliferation of granulosa cells (GCs). In vitro under serum-free conditions, rat GCs differentiate in response to FSH but do not proliferate unless activin is also present. In the presence of FSH plus activin, GCs exhibit enhanced expression of cyclin D2 as well as inhibin-α, aromatase, steroidogenic factor-1 (SF-1), cholesterol side chain (SCC), and epiregulin. In this report we sought to identify the signaling pathways by which FSH and activin promote GC proliferation and differentiation. Our results show that these responses are associated with prolonged Akt phosphorylation relative to time-matched controls and are dependent on phosphati-dylinositol 3-kinase (PI 3-kinase) and Smad2/3 signaling, based on the ability of the PI 3-kinase inhibitor LY294002 or infection with adenoviral dominant negative Smad3 (DN-Smad3) mutant to attenuate induction of cyclin D2, inhibin-α, aromatase, SCC, SF-1, and epiregulin. The DN-Smad3 mutant also abolished prolonged Akt phosphorylation stimulated by FSH plus activin 24 h post-treatment. Infection with the adenoviral constitutively active forkhead box-containing protein, O subfamily (FOXO)1 mutant suppressed induction of cyclin D2, aromatase, inhibin-α, SF-1, and epiregulin. Transient transfections of GCs with constitutively active FOXO1 mutant also suppressed cyclin D2, inhibin-α, and epiregulin promoter-reporter activities. Chromatin immunoprecipitation results demonstrate in vivo the association of FOXO1 with the cyclin D2 promoter in untreated GCs and release of FOXO1 from the cyclin D2 promoter upon addition of FSH plus activin. These results suggest that proliferation and differentiation of GCs in response to FSH plus activin requires both removal of FOXO1-dependent repression and positive signaling from Smad2/3. PMID:15613482

  1. Cyclin B interaction with microtubule-associated protein 4 (MAP4) targets p34cdc2 kinase to microtubules and is a potential regulator of M-phase microtubule dynamics

    PubMed Central

    1995-01-01

    We previously demonstrated (Ookata et al., 1992, 1993) that the p34cdc2/cyclin B complex associates with microtubules in the mitotic spindle and premeiotic aster in starfish oocytes, and that microtubule- associated proteins (MAPs) might be responsible for this interaction. In this study, we have investigated the mechanism by which p34cdc2 kinase associates with the microtubule cytoskeleton in primate tissue culture cells whose major MAP is known to be MAP4. Double staining of primate cells with anti-cyclin B and anti-MAP4 antibodies demonstrated these two antigens were colocalized on microtubules and copartitioned following two treatments that altered MAP4 distribution. Detergent extraction before fixation removed cyclin B as well as MAP4 from the microtubules. Depolymerization of some of the cellular microtubules with nocodazole preferentially retained the microtubule localization of both cyclin B and MAP4. The association of p34cdc2/cyclin B kinase with microtubules was also shown biochemically to be mediated by MAP4. Cosedimentation of purified p34cdc2/cyclin B with purified microtubule proteins containing MAP4, but not with MAP-free microtubules, as well as binding of MAP4 to GST-cyclin B fusion proteins, demonstrated an interaction between cyclin B and MAP4. Using recombinant MAP4 fragments, we demonstrated that the Pro-rich C-terminal region of MAP4 is sufficient to mediate the cyclin B-MAP4 interaction. Since p34cdc2/cyclin B physically associated with MAP4, we examined the ability of the kinase complex to phosphorylate MAP4. Incubation of a ternary complex of p34cdc2, cyclin B, and the COOH-terminal domain of MAP4, PA4, with ATP resulted in intracomplex phosphorylation of PA4. Finally, we tested the effects of MAP4 phosphorylation on microtubule dynamics. Phosphorylation of MAP4 by p34cdc2 kinase did not prevent its binding to microtubules, but abolished its microtubule stabilizing activity. Thus, the cyclin B/MAP4 interaction we have described may be

  2. The transcription factor, the Cdk, its cyclin and their regulator: directing the transcriptional response to a nutritional signal.

    PubMed Central

    Hirst, K; Fisher, F; McAndrew, P C; Goding, C R

    1994-01-01

    The Pho80-Pho85 cyclin-cdk complex prevents transcription of PHO5 by inhibiting the ability of the basic-helix-loop-helix transcription factor Pho4 to activate transcription in response to high phosphate conditions. In low phosphate the Pho80-Pho85 complex is inactivated and Pho4 is then able to activate the acid phosphatase gene PHO5. We show here that Pho4 and the homeobox protein Pho2 interact in vivo and act cooperatively to activate the PHO5 UAS, with interaction being regulated by the phosphate switch. In addition, we also demonstrate that an additional factor, Pho81, interacts in high phosphate with both the Pho80 cyclin and with Pho4. In low phosphate, Pho80 and Pho81 dissociate from Pho4, but retain the ability to interact with each other. The evidence presented here supports the idea that Pho81 acts as a phosphate-sensitive trigger that regulates the ability of the Pho80-Pho85 cyclin-cdk complex to bind Pho4, while DNA binding by Pho4 is dependent on the phosphate-sensitive interaction with Pho2. Images PMID:7957107

  3. Pharmacological cyclin dependent kinase inhibitors: Implications for colorectal cancer

    PubMed Central

    Balakrishnan, Archana; Vyas, Arpita; Deshpande, Kaivalya; Vyas, Dinesh

    2016-01-01

    Colorectal cancer accounts for a significant proportion of cancer deaths worldwide. The need to develop more chemotherapeutic agents to combat this disease is critical. Cyclin dependent kinases (CDKs), along with its binding partner cyclins, serve to control the growth of cells through the cell cycle. A new class of drugs, termed CDK inhibitors, has been studied in preclinical and now clinical trials. These inhibitors are believed to act as an anti-cancer drug by blocking CDKs to block the uncontrolled cellular proliferation that is hallmark of cancers like colorectal cancer. CDK article provides overview of the emerging drug class of CDK inhibitors and provides a list of ones that are currently in clinical trials. PMID:26900281

  4. Down-regulation of SOSTDC1 promotes thyroid cancer cell proliferation via regulating cyclin A2 and cyclin E2

    PubMed Central

    He, Xiaoying; Ke, Weijian; Xu, Lijuan; Liu, Liehua; Xiao, Haipeng; Li, Yanbing

    2015-01-01

    Sclerostin domain containing protein 1 (SOSTDC1) is down-regulated and acts as a tumor suppressor in some kinds of cancers. However, the expression pattern and biological significance of SOSTDC1 in thyroid cancer are largely unknown. We demonstrated that SOSTDC1 was significantly down-regulated in thyroid cancer. Ectopic over-expression of SOSTDC1 inhibited proliferation and induced G1/S arrest in thyroid cancer cells. Moreover, SOSTDC1 over-expression suppressed the growth of tumor xenografts in nude mice. We also found that elevated SOSTDC1 led to inhibition of cyclin A2 and cyclin E2. Together, our results demonstrate that SOSTDC1 is down-regulated in thyroid cancer and might be a potential therapeutic target in the treatment of thyroid cancer. PMID:26378658

  5. Measurement variation determines the gene network topology reconstructed from experimental data: a case study of the yeast cyclin network.

    PubMed

    To, Cuong Chieu; Vohradsky, Jiri

    2010-09-01

    Inference of the topology of gene regulatory networks from experimental data is one of the primary challenges of systems biology. In an example of a genetic network of cyclins in the yeast cell cycle, we analyzed static genome-wide location data together with microarray kinetic measurements using a recurrent neural network-based model of gene expression and a newly developed, unbiased algorithm based on evolutionary programming principles. The modeling and simulation of gene expression dynamics identified cyclin genetic networks that were active during the cell cycle. We document that because there is inherent experimental variation, it is not possible to identify a single genetic network, only a set of equivalent networks with the same probability of occurrence. Analysis of these networks showed that each target gene was controlled by only a few regulators and that the control was robust. These results led to the reformulation of the cyclin genetic network in the yeast cell cycle as previously published. The analysis shows that with the methodologies that are currently available, it is not possible to predict only one genetic network; rather, we must work with the hypothesis of multiple, equivalent networks. Chromatin immunoprecipitation (ChIP)-on-chip experiments are not sufficient to predict the functional networks that are active during an investigated process. Such predictions must be considered as only potential, and their actual realization during particular cellular processes must be identified by incorporating both kinetic and other types of data.

  6. Arabidopsis PCNAs form complexes with selected D-type cyclins

    PubMed Central

    Strzalka, Wojciech K.; Aggarwal, Chhavi; Krzeszowiec, Weronika; Jakubowska, Agata; Sztatelman, Olga; Banas, Agnieszka K.

    2015-01-01

    Proliferating Cell Nuclear Antigen (PCNA) is a key nuclear protein of eukaryotic cells. It has been shown to form complexes with cyclin dependent kinases, cyclin dependent kinase inhibitors and the D-type cyclins which are involved in the cell cycle control. In Arabidopsis two genes coding for PCNA1 and PCNA2 proteins have been identified. In this study by analyzing Arabidopsis PCNA/CycD complexes we tested the possible functional differentiation of PCNA1/2 proteins in cell cycle control. Most out of the 10 cyclins investigated showed only nuclear localization except CycD2;1, CycD4;1, and CycD4;2 which were observed both in the nucleus and cytoplasm. Using the Y2H, BiFC and FLIM-FRET techniques we identified D-type cyclins which formed complexes with either PCNA1 or PCNA2. Among the candidates tested only CycD1;1, CycD3;1, and CycD3;3 were not detected in a complex with the PCNA proteins. Moreover, our results indicate that the formation of CycD3;2/PCNA and CycD4;1/PCNA complexes can be regulated by other as yet unidentified factor(s). Additionally, FLIM-FRET analyses suggested that in planta the distance between PCNA1/CycD4;1, PCNA1/CycD6;1, PCNA1/CycD7;1, and PCNA2/CycD4;2 proteins was shorter than that between PCNA2/CycD4;1, PCNA2/CycD6;1, PCNA2/CycD7;1, and PCNA1/CycD4;2 pairs. These data indicate that the nine amino acid differences between PCNA1 and PCNA2 have an impact on the architecture of Arabidopsis CycD/PCNA complexes. PMID:26379676

  7. TSG101 expression in gynecological tumors: relationship to cyclin D1, cyclin E, p53 and p16 proteins.

    PubMed

    Bennett, N A; Pattillo, R A; Lin, R S; Hsieh, C Y; Murphy, T; Lyn, D

    2001-11-01

    Recent studies have shown that in vitro steady-state expression of the tumor susceptibility gene TSG101 is important for maintenance of genomic stability and cell cycle regulation. To determine the contribution of TSG101 expression in neoplastic formation, expression of TSG101 protein levels were evaluated in primary ovarian and endometrial adenocarcinoma tumors. Expression of TSG101 was also examined in various tumor cell lines (PA-1, AN3CA, HeLa, HS578T, HCT116). Full-length TSG101 protein was detected in these tumors and cell lines indicating that intragenic deletions were not characteristic of TSG101. In addition, TSG101 protein levels were compared with aberrations of prominent cell cycle regulatory molecules such as cyclin D1, cyclin E, p16 and p53. Reduced TSG101 protein was observed in 36% (8/22) of ovarian and 17% (1/6) of endometrial adenocarcinoma. Aberrant levels of p53, p16, cyclin D or E were comparable to published studies indicating that the clinicopathological distribution of these cases did not favor advanced stage tumors. Altogether, these findings suggest that a down-regulation of TSG101 is associated with tumorigenesis in a subgroup of gynecological tumors. PMID:11838966

  8. Cell type-specific translational repression of Cyclin B during meiosis in males.

    PubMed

    Baker, Catherine Craig; Gim, Byung Soo; Fuller, Margaret T

    2015-10-01

    The unique cell cycle dynamics of meiosis are controlled by layers of regulation imposed on core mitotic cell cycle machinery components by the program of germ cell development. Although the mechanisms that regulate Cdk1/Cyclin B activity in meiosis in oocytes have been well studied, little is known about the trans-acting factors responsible for developmental control of these factors in male gametogenesis. During meiotic prophase in Drosophila males, transcript for the core cell cycle protein Cyclin B1 (CycB) is expressed in spermatocytes, but the protein does not accumulate in spermatocytes until just before the meiotic divisions. Here, we show that two interacting proteins, Rbp4 and Fest, expressed at the onset of spermatocyte differentiation under control of the developmental program of male gametogenesis, function to direct cell type- and stage-specific repression of translation of the core G2/M cell cycle component cycB during the specialized cell cycle of male meiosis. Binding of Fest to Rbp4 requires a 31-amino acid region within Rbp4. Rbp4 and Fest are required for translational repression of cycB in immature spermatocytes, with Rbp4 binding sequences in a cell type-specific shortened form of the cycB 3' UTR. Finally, we show that Fest is required for proper execution of meiosis I. PMID:26443637

  9. Cell type-specific translational repression of Cyclin B during meiosis in males

    PubMed Central

    Baker, Catherine Craig; Gim, Byung Soo; Fuller, Margaret T.

    2015-01-01

    The unique cell cycle dynamics of meiosis are controlled by layers of regulation imposed on core mitotic cell cycle machinery components by the program of germ cell development. Although the mechanisms that regulate Cdk1/Cyclin B activity in meiosis in oocytes have been well studied, little is known about the trans-acting factors responsible for developmental control of these factors in male gametogenesis. During meiotic prophase in Drosophila males, transcript for the core cell cycle protein Cyclin B1 (CycB) is expressed in spermatocytes, but the protein does not accumulate in spermatocytes until just before the meiotic divisions. Here, we show that two interacting proteins, Rbp4 and Fest, expressed at the onset of spermatocyte differentiation under control of the developmental program of male gametogenesis, function to direct cell type- and stage-specific repression of translation of the core G2/M cell cycle component cycB during the specialized cell cycle of male meiosis. Binding of Fest to Rbp4 requires a 31-amino acid region within Rbp4. Rbp4 and Fest are required for translational repression of cycB in immature spermatocytes, with Rbp4 binding sequences in a cell type-specific shortened form of the cycB 3′ UTR. Finally, we show that Fest is required for proper execution of meiosis I. PMID:26443637

  10. FGF2 and insulin signaling converge to regulate cyclin D expression in multipotent neural stem cells.

    PubMed

    Adepoju, Adedamola; Micali, Nicola; Ogawa, Kazuya; Hoeppner, Daniel J; McKay, Ronald D G

    2014-03-01

    The ex vivo expansion of stem cells is making major contribution to biomedical research. The multipotent nature of neural precursors acutely isolated from the developing central nervous system has been established in a series of studies. Understanding the mechanisms regulating cell expansion in tissue culture would support their expanded use either in cell therapies or to define disease mechanisms. Basic fibroblast growth factor (FGF2) and insulin, ligands for tyrosine kinase receptors, are sufficient to sustain neural stem cells (NSCs) in culture. Interestingly, real-time imaging shows that these cells become multipotent every time they are passaged. Here, we analyze the role of FGF2 and insulin in the brief period when multipotent cells are present. FGF2 signaling results in the phosphorylation of Erk1/2, and activation of c-Fos and c-Jun that lead to elevated cyclin D mRNA levels. Insulin signals through the PI3k/Akt pathway to regulate cyclins at the post-transcriptional level. This precise Boolean regulation extends our understanding of the proliferation of multipotent NSCs and provides a basis for further analysis of proliferation control in the cell states defined by real-time mapping of the cell lineages that form the central nervous system.

  11. The Drosophila Cyclin D–Cdk4 complex promotes cellular growth

    PubMed Central

    Datar, Sanjeev A.; Jacobs, Henning W.; de la Cruz, Aida Flor A.; Lehner, Christian F.; Edgar, Bruce A.

    2000-01-01

    Mammalian cyclin D–Cdk4 complexes have been characterized as growth factor-responsive cell cycle regulators. Their levels rise upon growth factor stimulation, and they can phosphorylate and thus neutralize Retinoblastoma (Rb) family proteins to promote an E2F-dependent transcriptional program and S-phase entry. Here we characterize the in vivo function of Drosophila Cyclin D (CycD). We find that Drosophila CycD–Cdk4 does not act as a direct G1/S-phase regulator, but instead promotes cellular growth (accumulation of mass). The cellular response to CycD–Cdk4-driven growth varied according to cell type. In undifferentiated proliferating wing imaginal cells, CycD–Cdk4 caused accelerated cell division (hyperplasia) without affecting cell cycle phasing or cell size. In endoreplicating salivary gland cells, CycD–Cdk4 caused excessive DNA replication and cell enlargement (hypertrophy). In differentiating eyes, CycD–Cdk4 caused cell enlargement (hypertrophy) in post-mitotic cells. Interaction tests with a Drosophila Rb homolog, RBF, indicate that CycD–Cdk4 can counteract the cell cycle suppressive effects of RBF, but that its growth promoting activity is mediated at least in part via other targets. PMID:10970848

  12. Cell type-specific translational repression of Cyclin B during meiosis in males.

    PubMed

    Baker, Catherine Craig; Gim, Byung Soo; Fuller, Margaret T

    2015-10-01

    The unique cell cycle dynamics of meiosis are controlled by layers of regulation imposed on core mitotic cell cycle machinery components by the program of germ cell development. Although the mechanisms that regulate Cdk1/Cyclin B activity in meiosis in oocytes have been well studied, little is known about the trans-acting factors responsible for developmental control of these factors in male gametogenesis. During meiotic prophase in Drosophila males, transcript for the core cell cycle protein Cyclin B1 (CycB) is expressed in spermatocytes, but the protein does not accumulate in spermatocytes until just before the meiotic divisions. Here, we show that two interacting proteins, Rbp4 and Fest, expressed at the onset of spermatocyte differentiation under control of the developmental program of male gametogenesis, function to direct cell type- and stage-specific repression of translation of the core G2/M cell cycle component cycB during the specialized cell cycle of male meiosis. Binding of Fest to Rbp4 requires a 31-amino acid region within Rbp4. Rbp4 and Fest are required for translational repression of cycB in immature spermatocytes, with Rbp4 binding sequences in a cell type-specific shortened form of the cycB 3' UTR. Finally, we show that Fest is required for proper execution of meiosis I.

  13. Molecular basis of cyclin-CDK-CKI regulation by reversible binding of an inositol pyrophosphate

    PubMed Central

    Lee, Young-Sam; Huang, Kexin; Quiocho, Florante A; O’Shea, Erin K

    2008-01-01

    When Saccharomyces cerevisiae cells are starved of inorganic phosphate, the Pho80-Pho85 cyclin–cyclin-dependent kinase (CDK) is inactivated by the Pho81 CDK inhibitor (CKI). The regulation of Pho80-Pho85 is distinct from previously characterized mechanisms of CDK regulation: the Pho81 CKI is constitutively associated with Pho80-Pho85, and a small-molecule ligand, inositol heptakisphosphate (IP7), is required for kinase inactivation. We investigated the molecular basis of the IP7- and Pho81-dependent Pho80-Pho85 inactivation using electrophoretic mobility shift assays, enzyme kinetics and fluorescence spectroscopy. We found that IP7 interacts noncovalently with Pho80-Pho85-Pho81 and induces additional interactions between Pho81 and Pho80-Pho85 that prevent substrates from accessing the kinase active site. Using synthetic peptides corresponding to Pho81, we define regions of Pho81 responsible for constitutive Pho80-Pho85 binding and IP7-regulated interaction and inhibition. These findings expand our understanding of the mechanisms of cyclin-CDK regulation and of the biochemical mechanisms of IP7 action. PMID:18059263

  14. Phosphorylation of CDC25A on SER283 in late S/G2 by CDK/cyclin complexes accelerates mitotic entry.

    PubMed

    Mazzolini, Laurent; Broban, Anaïs; Froment, Carine; Burlet-Schiltz, Odile; Besson, Arnaud; Manenti, Stéphane; Dozier, Christine

    2016-10-17

    The Cdc25A phosphatase is an essential activator of CDK-cyclin complexes at all steps of the eukaryotic cell cycle. The activity of Cdc25A is itself regulated in part by positive and negative feedback regulatory loops performed by its CDK-cyclin substrates that occur in G1 as well as during the G1/S and G2/M transitions. However, the regulation of Cdc25A during G2 phase progression before mitotic entry has not been intensively characterized. Here, we identify by mass spectrometry analysis a new phosphorylation event of Cdc25A on Serine283. Phospho-specific antibodies revealed that the phosphorylation of this residue appears in late S/G2 phase of an unperturbed cell cycle and is performed by CDK-cyclin complexes. Overexpression studies of wild-type and non-phosphorylatable mutant forms of Cdc25A indicated that Ser283 phosphorylation increases the G2/M-promoting activity of the phosphatase without impacting its stability or subcellular localization. Our results therefore identify a new positive regulatory loop between Cdc25A and its CDK-cyclin substrates which contributes to accelerate entry into mitosis through the regulation of Cdc25A activity in G2. PMID:27580187

  15. Glucose Enhances Basal or Melanocortin-Induced cAMP-Response Element Activity in Hypothalamic Cells.

    PubMed

    Breit, Andreas; Wicht, Kristina; Boekhoff, Ingrid; Glas, Evi; Lauffer, Lisa; Mückter, Harald; Gudermann, Thomas

    2016-07-01

    Melanocyte-stimulating hormone (MSH)-induced activation of the cAMP-response element (CRE) via the CRE-binding protein in hypothalamic cells promotes expression of TRH and thereby restricts food intake and increases energy expenditure. Glucose also induces central anorexigenic effects by acting on hypothalamic neurons, but the underlying mechanisms are not completely understood. It has been proposed that glucose activates the CRE-binding protein-regulated transcriptional coactivator 2 (CRTC-2) in hypothalamic neurons by inhibition of AMP-activated protein kinases (AMPKs), but whether glucose directly affects hypothalamic CRE activity has not yet been shown. Hence, we dissected effects of glucose on basal and MSH-induced CRE activation in terms of kinetics, affinity, and desensitization in murine, hypothalamic mHypoA-2/10-CRE cells that stably express a CRE-dependent reporter gene construct. Physiologically relevant increases in extracellular glucose enhanced basal or MSH-induced CRE-dependent gene transcription, whereas prolonged elevated glucose concentrations reduced the sensitivity of mHypoA-2/10-CRE cells towards glucose. Glucose also induced CRCT-2 translocation into the nucleus and the AMPK activator metformin decreased basal and glucose-induced CRE activity, suggesting a role for AMPK/CRTC-2 in glucose-induced CRE activation. Accordingly, small interfering RNA-induced down-regulation of CRTC-2 expression decreased glucose-induced CRE-dependent reporter activation. Of note, glucose also induced expression of TRH, suggesting that glucose might affect the hypothalamic-pituitary-thyroid axis via the regulation of hypothalamic CRE activity. These findings significantly advance our knowledge about the impact of glucose on hypothalamic signaling and suggest that TRH release might account for the central anorexigenic effects of glucose and could represent a new molecular link between hyperglycaemia and thyroid dysfunction. PMID:27144291

  16. Glucose Enhances Basal or Melanocortin-Induced cAMP-Response Element Activity in Hypothalamic Cells.

    PubMed

    Breit, Andreas; Wicht, Kristina; Boekhoff, Ingrid; Glas, Evi; Lauffer, Lisa; Mückter, Harald; Gudermann, Thomas

    2016-07-01

    Melanocyte-stimulating hormone (MSH)-induced activation of the cAMP-response element (CRE) via the CRE-binding protein in hypothalamic cells promotes expression of TRH and thereby restricts food intake and increases energy expenditure. Glucose also induces central anorexigenic effects by acting on hypothalamic neurons, but the underlying mechanisms are not completely understood. It has been proposed that glucose activates the CRE-binding protein-regulated transcriptional coactivator 2 (CRTC-2) in hypothalamic neurons by inhibition of AMP-activated protein kinases (AMPKs), but whether glucose directly affects hypothalamic CRE activity has not yet been shown. Hence, we dissected effects of glucose on basal and MSH-induced CRE activation in terms of kinetics, affinity, and desensitization in murine, hypothalamic mHypoA-2/10-CRE cells that stably express a CRE-dependent reporter gene construct. Physiologically relevant increases in extracellular glucose enhanced basal or MSH-induced CRE-dependent gene transcription, whereas prolonged elevated glucose concentrations reduced the sensitivity of mHypoA-2/10-CRE cells towards glucose. Glucose also induced CRCT-2 translocation into the nucleus and the AMPK activator metformin decreased basal and glucose-induced CRE activity, suggesting a role for AMPK/CRTC-2 in glucose-induced CRE activation. Accordingly, small interfering RNA-induced down-regulation of CRTC-2 expression decreased glucose-induced CRE-dependent reporter activation. Of note, glucose also induced expression of TRH, suggesting that glucose might affect the hypothalamic-pituitary-thyroid axis via the regulation of hypothalamic CRE activity. These findings significantly advance our knowledge about the impact of glucose on hypothalamic signaling and suggest that TRH release might account for the central anorexigenic effects of glucose and could represent a new molecular link between hyperglycaemia and thyroid dysfunction.

  17. Differentiation-inducing factor-1 induces cyclin D1 degradation through the phosphorylation of Thr{sup 286} in squamous cell carcinoma

    SciTech Connect

    Mori, Jun; Takahashi-Yanaga, Fumi . E-mail: yanaga@clipharm.med.kyushu-u.ac.jp; Miwa, Yoshikazu; Watanabe, Yutaka; Hirata, Masato; Morimoto, Sachio; Shirasuna, Kanemitsu; Sasaguri, Toshiyuki

    2005-11-01

    Differentiation-inducing factors (DIFs) are morphogens which induce cell differentiation in Dictyostelium. We reported that DIF-1 and DIF-3 inhibit proliferation and induce differentiation in mammalian cells. In this study, we investigated the effect of DIF-1 on oral squamous cell carcinoma cell lines NA and SAS, well differentiated and poorly differentiated cell lines, respectively. Although DIF-1 did not induce the expression of cell differentiation makers in these cell lines, it inhibited the proliferation of NA and SAS in a dose-dependent manner by restricting the cell cycle in the G{sub 0}/G{sub 1} phase. DIF-1 induced cyclin D1 degradation, but this effect was prevented by treatment with lithium chloride and SB216763, the inhibitors of glycogen synthase kinase-3{beta} (GSK-3{beta}). Depletion of endogenous GSK-3{beta} by RNA interference also attenuated the effect of DIF-1 on cyclin D1 degradation. Therefore, we investigated the effect of DIF-1 on GSK-3{beta} and found that DIF-1 dephosphorylated GSK-3{beta} on Ser{sup 9} and induced the nuclear translocation of GSK-3{beta}, suggesting that DIF-1 activated GSK-3{beta}. Then, we examined the effect of DIF-1 on cyclin D1 mutants (Thr286Ala, Thr288Ala, and Thr286/288Ala). We revealed that Thr286Ala and Thr286/288Ala mutants were highly resistant to DIF-1-induced degradation compared with wild-type cyclin D1, indicating that the phosphorylation of Thr{sup 286} was critical for cyclin D1 degradation induced by DIF-1. These results suggest that DIF-1 induces degradation of cyclin D1 through the GSK-3{beta}-mediated phosphorylation of Thr{sup 286}.

  18. Recruitment of trimeric proliferating cell nuclear antigen by G1-phase cyclin-dependent kinases following DNA damage with platinum-based antitumour agents

    PubMed Central

    He, G; Kuang, J; Koomen, J; Kobayashi, R; Khokhar, A R; Siddik, Z H

    2013-01-01

    Background: In cycling tumour cells, the binary cyclin-dependent kinase Cdk4/cyclin D or Cdk2/cyclin E complex is inhibited by p21 following DNA damage to induce G1 cell-cycle arrest. However, it is not known whether other proteins are also recruited within Cdk complexes, or their role, and this was investigated. Methods: Ovarian A2780 tumour cells were exposed to the platinum-based antitumour agent 1R,2R-diaminocyclohexane(trans-diacetato)(dichloro)platinum(IV) (DAP), which preferentially induces G1 arrest in a p21-dependent manner. The Cdk complexes were analysed by gel filtration chromatography, immunoblot and mass spectrometry. Results: The active forms of Cdk4 and Cdk2 complexes in control tumour cells have a molecular size of ∼140 kDa, which increased to ∼290 kDa when inhibited following G1 checkpoint activation by DAP. Proteomic analysis identified Cdk, cyclin, p21 and proliferating cell nuclear antigen (PCNA) in the inhibited complex, and biochemical studies provided unequivocal evidence that the increase in ∼150 kDa of the inhibited complex is consistent with p21-dependent recruitment of PCNA as a trimer, likely bound to three molecules of p21. Although p21 alone was sufficient to inhibit the Cdk complex, PCNA was critical for stabilising p21. Conclusion: G1 Cdk complexes inhibited by p21 also recruit PCNA, which inhibits degradation and, thereby, prolongs activity of p21 within the complex. PMID:24104967

  19. The BH3-mimetic gossypol and noncytotoxic doses of valproic acid induce apoptosis by suppressing cyclin-A2/Akt/FOXO3a signaling

    PubMed Central

    Pan, Hao; Lin, Qiu-Ru; Huang, Mei-Yun; Cai, Ji-Ye; Ouyang, Dong-Yun; He, Xian-Hui

    2015-01-01

    Previously we reported that valproic acid (VPA) acts in synergy with GOS to enhance cell death in human DU145 cells. However, the underlying mechanism remains elusive. In this study, we observed that such synergistic cytotoxicity of GOS and VPA could be extended to human A375, HeLa, and PC-3 cancer cells. GOS and VPA co-treatment induced robust apoptosis as evidenced by caspase-8/-9/-3 activation, PARP cleavage, and nuclear fragmentation. GOS and VPA also markedly decreased cyclin A2 protein expression. Owing to the reduction of cyclin A2, Akt signaling was suppressed, leading to dephosphorylation of FOXO3a. Consequently, FOXO3a was activated and the expression of its target genes, including pro-apoptotic FasL and Bim, was upregulated. Supporting this, FOXO3a knockdown attenuated FasL and Bim upregulation and apoptosis induction in GOS+VPA-treated cells. Furthermore, blocking proteasome activity by MG132 prevented the downregulation of cyclin A2, dephosphorylation of Akt and FOXO3a, and induction of apoptosis in cells co-treated with GOS and VPA. In mouse model, GOS and VPA combination significantly inhibited the growth of A375 melanoma xenografts. Our findings indicate that GOS and VPA co-treatment induces apoptosis in human cancer cells by suppressing the cyclin-A2/Akt/FOXO3a pathway. PMID:26517515

  20. Molecular cloning of cDNA coding for rat proliferating cell nuclear antigen (PCNA)/cyclin.

    PubMed Central

    Matsumoto, K; Moriuchi, T; Koji, T; Nakane, P K

    1987-01-01

    The 'proliferating cell nuclear antigen' (PCNA), also known as cyclin, appears at the G1/S boundary in the cell cycle. Because of its possible relationship with cell proliferation, PCNA/cyclin has been receiving attention. PCNA/cyclin is a non-histone acidic nuclear protein with an apparent mol. wt of 33000-36000. The amino acid composition and the sequence of the first 25 amino acids of rabbit PCNA/cyclin are known. Using an oligonucleotide probe corresponding to the sequence of the first five amino acids, a cDNA clone for PCNA/cyclin was isolated from rat thymocyte cDNA library. The cDNA (1195 bases) contains an open reading frame of 813 nucleotides coding for 261 amino acids. The 3'-non-coding region is 312 nucleotides long and contains three putative polyadenylation signals. The mol. wt of rat PCNA/cyclin was calculated to be 28 748. The deduced amino acid sequence and composition of rat PCNA/cyclin are in excellent agreement with the published data. Using the cDNA probe, two species of mRNA (1.1 and 0.98 kb) were detected in rat thymocyte RNA. Southern blot analysis of total human genomic DNA suggests that there is a single gene coding for PCNA/cyclin. The deduced amino acid sequence of rat PCNA/cyclin has a similarity with that of herpes simplex virus type-1 DNA binding protein. Images Fig. 3. Fig. 4. PMID:2884104

  1. The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression.

    PubMed

    Ewald, Jennifer C; Kuehne, Andreas; Zamboni, Nicola; Skotheim, Jan M

    2016-05-19

    Cell division entails a sequence of processes whose specific demands for biosynthetic precursors and energy place dynamic requirements on metabolism. However, little is known about how metabolic fluxes are coordinated with the cell division cycle. Here, we examine budding yeast to show that more than half of all measured metabolites change significantly through the cell division cycle. Cell cycle-dependent changes in central carbon metabolism are controlled by the cyclin-dependent kinase (Cdk1), a major cell cycle regulator, and the metabolic regulator protein kinase A. At the G1/S transition, Cdk1 phosphorylates and activates the enzyme Nth1, which funnels the storage carbohydrate trehalose into central carbon metabolism. Trehalose utilization fuels anabolic processes required to reliably complete cell division. Thus, the cell cycle entrains carbon metabolism to fuel biosynthesis. Because the oscillation of Cdk activity is a conserved feature of the eukaryotic cell cycle, we anticipate its frequent use in dynamically regulating metabolism for efficient proliferation.

  2. Myt1 inhibition of Cyclin A/Cdk1 is essential for fusome integrity and premeiotic centriole engagement in Drosophila spermatocytes.

    PubMed

    Varadarajan, Ramya; Ayeni, Joseph; Jin, Zhigang; Homola, Ellen; Campbell, Shelagh D

    2016-07-01

    Regulation of cell cycle arrest in premeiotic G2 phase coordinates germ cell maturation and meiotic cell division with hormonal and developmental signals by mechanisms that control Cyclin B synthesis and inhibitory phosphorylation of the M-phase kinase, Cdk1. In this study, we investigated how inhibitory phosphorylation of Cdk1 by Myt1 kinase regulates premeiotic G2 phase of Drosophila male meiosis. Immature spermatocytes lacking Myt1 activity exhibit two distinct defects: disrupted intercellular bridges (fusomes) and premature centriole disengagement. As a result, the myt1 mutant spermatocytes enter meiosis with multipolar spindles. These myt1 defects can be suppressed by depletion of Cyclin A activity or ectopic expression of Wee1 (a partially redundant Cdk1 inhibitory kinase) and phenocopied by expression of a Cdk1F mutant defective for inhibitory phosphorylation. We therefore conclude that Myt1 inhibition of Cyclin A/Cdk1 is essential for normal fusome behavior and centriole engagement during premeiotic G2 arrest of Drosophila male meiosis. The novel meiotic functions we discovered for Myt1 kinase are spatially and temporally distinct from previously described functions of Myt1 as an inhibitor of Cyclin B/Cdk1 to regulate G2/MI timing. PMID:27170181

  3. Myt1 inhibition of Cyclin A/Cdk1 is essential for fusome integrity and premeiotic centriole engagement in Drosophila spermatocytes

    PubMed Central

    Varadarajan, Ramya; Ayeni, Joseph; Jin, Zhigang; Homola, Ellen; Campbell, Shelagh D.

    2016-01-01

    Regulation of cell cycle arrest in premeiotic G2 phase coordinates germ cell maturation and meiotic cell division with hormonal and developmental signals by mechanisms that control Cyclin B synthesis and inhibitory phosphorylation of the M-phase kinase, Cdk1. In this study, we investigated how inhibitory phosphorylation of Cdk1 by Myt1 kinase regulates premeiotic G2 phase of Drosophila male meiosis. Immature spermatocytes lacking Myt1 activity exhibit two distinct defects: disrupted intercellular bridges (fusomes) and premature centriole disengagement. As a result, the myt1 mutant spermatocytes enter meiosis with multipolar spindles. These myt1 defects can be suppressed by depletion of Cyclin A activity or ectopic expression of Wee1 (a partially redundant Cdk1 inhibitory kinase) and phenocopied by expression of a Cdk1F mutant defective for inhibitory phosphorylation. We therefore conclude that Myt1 inhibition of Cyclin A/Cdk1 is essential for normal fusome behavior and centriole engagement during premeiotic G2 arrest of Drosophila male meiosis. The novel meiotic functions we discovered for Myt1 kinase are spatially and temporally distinct from previously described functions of Myt1 as an inhibitor of Cyclin B/Cdk1 to regulate G2/MI timing. PMID:27170181

  4. Co-expressed Cyclin D variants cooperate to regulate proliferation of germline nuclei in a syncytium.

    PubMed

    Subramaniam, Gunasekaran; Campsteijn, Coen; Thompson, Eric M

    2015-01-01

    The role of the G1-phase Cyclin D-CDK 4/6 regulatory module in linking germline stem cell (GSC) proliferation to nutrition is evolutionarily variable. In invertebrate Drosophila and C. elegans GSC models, G1 is nearly absent and Cyclin E is expressed throughout the cell cycle, whereas vertebrate spermatogonial stem cells have a distinct G1 and Cyclin D1 plays an important role in GSC renewal. In the invertebrate, chordate, Oikopleura, where germline nuclei proliferate asynchronously in a syncytium, we show a distinct G1-phase in which 2 Cyclin D variants are co-expressed. Cyclin Dd, present in both somatic endocycling cells and the germline, localized to germline nuclei during G1 before declining at G1/S. Cyclin Db, restricted to the germline, remained cytoplasmic, co-localizing in foci with the Cyclin-dependent Kinase Inhibitor, CKIa. These foci showed a preferential spatial distribution adjacent to syncytial germline nuclei at G1/S. During nutrient-restricted growth arrest, upregulated CKIa accumulated in arrested somatic endoreduplicative nuclei but did not do so in germline nuclei. In the latter context, Cyclin Dd levels gradually decreased. In contrast, the Cyclin Dbβ splice variant, lacking the Rb-interaction domain and phosphodegron, was specifically upregulated and the number of cytoplasmic foci containing this variant increased. This upregulation was dependent on stress response MAPK p38 signaling. We conclude that under favorable conditions, Cyclin Dbβ-CDK6 sequesters CKIa in the cytoplasm to cooperate with Cyclin Dd-CDK6 in promoting germline nuclear proliferation. Under nutrient-restriction, this sequestration function is enhanced to permit continued, though reduced, cycling of the germline during somatic growth arrest.

  5. Cyclin A regulates a cell-cycle-dependent expression of CKAP2 through phosphorylation of Sp1

    SciTech Connect

    Kang, Du-Seock; Hong, Kyeong-Man; Park, Joobae; Bae, Chang-Dae

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer We identified a GC box and a CHR element in human CKAP2 minimal promoter. Black-Right-Pointing-Pointer The CHR element repressed the CKAP2 minimal promoter activity at the G1/S phase. Black-Right-Pointing-Pointer The GC box was essential for the basic promoter activity of human CKAP2. Black-Right-Pointing-Pointer The GC box was also essential for the cyclic expression of human CKAP2. Black-Right-Pointing-Pointer The phosphorylation of Sp1, mediated by Cyclin A, underlies the cyclic expression. -- Abstract: CKAP2 plays crucial roles in proper chromosome segregation and maintaining genomic stability. CKAP2 protein showed cell-cycle-dependent expression, which reached a maximum level at the G2/M phase and disappeared at the onset of G1 phase. To elucidate the mechanisms underlying cell cycle-dependent expression of CKAP2, we cloned and analyzed the human CKAP2 promoter. The upstream 115-bp region from the transcription start site was sufficient for minimal CKAP2 promoter activity. We identified 2 regulatory sequences; a CHR (-110 to -104 bp) and a GC box (-41 to -32 bp). We confirmed Sp1 bound to the GC box using a supershift assay and a ChIP assay. Mutation in the GC box resulted in a near complete loss of CKAP2 promoter activity while mutation in the CHR decreased the promoter activity by 50%. The CHR mutation showed enhanced activity at the G1/S phase, but still retained cyclic activity. The Chromatin IP revealed that the amount of Sp1 bound to the GC box gradually increased and reached a maximum level at the G2/M phase. The amount of Sp1 bound to the GC box was greatly reduced when Cyclin A was depleted, which was restored by adding Cyclin A/Cdk2 complex back into the nuclear extracts. Together, we concluded that the GC box was responsible for the cyclic activity of human CKAP2 promoter through the phosphorylation of Sp1, possibly by Cyclin A/Cdk complex.

  6. NFκB-mediated cyclin D1 expression by microRNA-21 influences renal cancer cell proliferation.

    PubMed

    Bera, Amit; Ghosh-Choudhury, Nandini; Dey, Nirmalya; Das, Falguni; Kasinath, Balakuntalam S; Abboud, Hanna E; Choudhury, Goutam Ghosh

    2013-12-01

    MicroRNAs regulate post-transcriptomic landscape in many tumors including renal cell carcinoma. We have recently shown significantly increased expression of miR-21 in renal tumors and that this miRNA contributes to the proliferation of renal cancer cells in culture. However, the mechanism by which miR-21 regulates renal cancer cell proliferation is poorly understood. Addiction to constitutive NFκB activity is hallmark of many cancers including renal cancer. Using miR-21 Sponge in renal cancer cells to block endogenous function of miR-21, we show inhibition of phosphorylation of p65 subunit of NFκB, IKKβ and IκB, which results in attenuation of NFκB transcriptional activity. Subtle reduction in the tumor suppressor PTEN has been linked to various malignancies. We showed previously that miR-21 targeted PTEN in renal cancer cells. Inhibition of PTEN by siRNAs restored miR-21 Sponge-induced suppression of phosphorylation of p65, IKKβ, IκB and NFκB transcriptional activity along with reversal of miR-21 Sponge-reduced phosphorylation of Akt. Expression of constitutively active Akt protected against miR-21 Sponge- and PTEN-mediated decrease in p65/IKKβ/IκB phosphorylation and NFκB transcriptional activity. Furthermore, IKKβ and p65 were required for miR-21-induced renal cancer cell proliferation. Interestingly, miR-21 controlled the expression of cyclin D1 through NFκB-dependent transcription. Finally, we demonstrate that miR-21-regulated renal cancer cell proliferation is mediated by cyclin D1 and CDK4. Together, our results establish a molecular order of a phosphatase-kinase couple involving PTEN/Akt/IKKβ and NFκB-dependent cyclin D1 expression for renal carcinoma cell proliferation by increased miR-21 levels.

  7. Vaccination with cyclin-dependent kinase tick antigen confers protection against Ixodes infestation.

    PubMed

    Gomes, Helga; Moraes, Jorge; Githaka, Naftaly; Martins, Renato; Isezaki, Masayoshi; Vaz, Itabajara da Silva; Logullo, Carlos; Konnai, Satoru; Ohashi, Kazuhiko

    2015-07-30

    Among arthropods, ticks lead as vectors of animal diseases and rank second to mosquitoes in transmitting human pathogens. Cyclin-dependent kinases (CDK) participate in cell cycle control in eukaryotes. CDKs are serine/threonine protein kinases and these catalytic subunits are activated or inactivated at specific stages of the cell cycle. To determine the potential of using CDKs as anti-tick vaccine antigens, hamsters were immunized with recombinant Ixodes persulcatus CDK10, followed by a homologous tick challenge. Though it was not exactly unexpected, IpCDK10 vaccination significantly impaired tick blood feeding and fecundity, which manifested as low engorgement weights, poor oviposition, and a reduction in 80% of hatching rates. These findings may underpin the development of more efficacious anti-tick vaccines based on the targeting of cell cycle control proteins. PMID:26073111

  8. Vaccination with cyclin-dependent kinase tick antigen confers protection against Ixodes infestation.

    PubMed

    Gomes, Helga; Moraes, Jorge; Githaka, Naftaly; Martins, Renato; Isezaki, Masayoshi; Vaz, Itabajara da Silva; Logullo, Carlos; Konnai, Satoru; Ohashi, Kazuhiko

    2015-07-30

    Among arthropods, ticks lead as vectors of animal diseases and rank second to mosquitoes in transmitting human pathogens. Cyclin-dependent kinases (CDK) participate in cell cycle control in eukaryotes. CDKs are serine/threonine protein kinases and these catalytic subunits are activated or inactivated at specific stages of the cell cycle. To determine the potential of using CDKs as anti-tick vaccine antigens, hamsters were immunized with recombinant Ixodes persulcatus CDK10, followed by a homologous tick challenge. Though it was not exactly unexpected, IpCDK10 vaccination significantly impaired tick blood feeding and fecundity, which manifested as low engorgement weights, poor oviposition, and a reduction in 80% of hatching rates. These findings may underpin the development of more efficacious anti-tick vaccines based on the targeting of cell cycle control proteins.

  9. The effect of cyclin-dependent kinases inhibitor treatment on experimental herpes simplex encephalitis mice.

    PubMed

    Zhou, Yu; Zeng, Yan-Ping; Zhou, Qin; Guan, Jing-Xia; Lu, Zu-Neng

    2016-08-01

    Herpes simplex encephalitis(HSE) is the most common and serious viral encephalitis in humans. There is a lack of effective medication to date for HSE. A better understanding of the mediators of tissue damage is essential for finding new targets for therapeutic intervention. In this project, we explored the effect of cyclin-dependent kinases inhibitor olomoucine treatment on experimental HSE mice. The following results were obtained: (1) olomoucine increased survival in HSE mice; (2) olomoucine inhibited microglial activation and reduced HSV-1-induced cytokines release; (3) olomoucine prevented neural cells apoptosis and attenuated brain tissue pathological changes following HSV-1 infection; (4) olomoucine reduced brain edema and improved neurological function in HSE. Overall, olomoucine can induce a blunted inflammatory response, maintain the blood vessel wall intact, improve neurological function and increase survival in HSE mice.

  10. E-type cyclins modulate telomere integrity in mammalian male meiosis.

    PubMed

    Manterola, Marcia; Sicinski, Piotr; Wolgemuth, Debra J

    2016-06-01

    We have shown that E-type cyclins are key regulators of mammalian male meiosis. Depletion of cyclin E2 reduced fertility in male mice due to meiotic defects, involving abnormal pairing and synapsis, unrepaired DNA, and loss of telomere structure. These defects were exacerbated by additional loss of cyclin E1, and complete absence of both E-type cyclins produces a meiotic catastrophe. Here, we investigated the involvement of E-type cyclins in maintaining telomere integrity in male meiosis. Spermatocytes lacking cyclin E2 and one E1 allele (E1+/-E2-/-) displayed a high rate of telomere abnormalities but can progress to pachytene and diplotene stages. We show that their telomeres exhibited an aberrant DNA damage repair response during pachynema and that the shelterin complex proteins TRF2 and RAP2 were significantly decreased in the proximal telomeres. Moreover, the insufficient level of these proteins correlated with an increase of γ-H2AX foci in the affected telomeres and resulted in telomere associations involving TRF1 and telomere detachment in later prophase-I stages. These results suggest that E-type cyclins are key modulators of telomere integrity during meiosis by, at least in part, maintaining the balance of shelterin complex proteins, and uncover a novel role of E-type cyclins in regulating chromosome structure during male meiosis.

  11. A Limited Role for the Cell Cycle Regulator Cyclin A1 in Murine Leukemogenesis

    PubMed Central

    Bäumer, Nicole; Bäumer, Sebastian; Haak, Miriam; Koschmieder, Steffen; Schönig, Kai; Berdel, Wolfgang E.; Müller-Tidow, Carsten

    2015-01-01

    The quest for novel therapeutic targets in acute myeloid leukemia (AML) is still ongoing. One of such targets, cyclin A1, was shown to be overexpressed in AML including AML stem cells. However, the function of cyclin A1 in AML is largely unknown, and the data on its impact on patients´ survival remain controversial. Therefore, we developed a transgenic mouse model of stem cell-directed inducible cyclin A1 overexpression and crossed these mice with PML-RARα-knockin mice, which develop an AML M3-like phenotype. To observe the effects of cyclin A1 loss-of-function, we also crossed PML-RARα-knockin mice to cyclin A1-knockout mice. Neither overexpression nor loss of cyclin A1 significantly altered leukemogenesis in PML-RARα-knockin mice. These findings imply that upregulation of cyclin A1 is not essential for leukemogenesis. Our data suggest that cyclin A1 does not represent a suitable target for AML therapy. PMID:26080083

  12. Up-regulation of cyclin E in breast cancer via estrogen receptor pathway.

    PubMed

    Niu, Dehong; Wang, Gang; Wang, Xiuwen

    2015-01-01

    It is well known that cell cycle dysregulation plays an important role in breast cancer. The mechanism, however, is not fully understood. In this study, we aimed to explore whether estrogen and estrogen receptor pathway play a role in the regulation of cell cycle protein cyclin E expression, and whether the expression of cyclin E is associated with breast cancer prognosis. We first examined the level of cyclin E expression in breast cancer by immunohistochemistry. Benign fibroadenoma was used as controls. Next we cultured MCF-7 cells with different concentration of 17β-estradiol or tamoxifen for 48 hours. Then we employ qRT-PCR to determine changes of cyclin E in MCF-7 cells. Cyclin E is overexpressed in breast cancer and its expression is associated with the status of estrogen receptor and lymph node metastasis. After treatment with 17β-estradiol, the gene expression of cyclin E was enhanced, and as the concentration increased, the enhancement increased. After treatment with tamoxifen, the gene expression of cyclin E was inhibited, and as the concentration decreased, the inhibition increased. We demonstrated that estrogen induces, while tamoxifen inhibits cyclin E expression. This indicate that estrogen receptor pathway play a critical role in cell cycle dysregulation in breast cancer.

  13. Overexpression of Reg3alpha increases cell growth and the levels of cyclin D1 and CDK4 in insulinoma cells.

    PubMed

    Cui, Wei; De Jesus, Kristine; Zhao, Hong; Takasawa, Shin; Shi, Bingyin; Srikant, Coimbatore B; Liu, Jun-Li

    2009-06-01

    Regenerating gene (Reg) family protein Reg3alpha is normally expressed in pancreatic acinar and endocrine cells. In order to explore its effect on islet beta-cell replication, insulinoma MIN6 cells were stably transfected with murine Reg3alpha cDNA. Determined using real-time PCR and Western blots, the levels of Reg3alpha mRNA and protein in Reg3alpha-transfected clones were increased 10- and 6-fold, respectively. Western blots also revealed that the protein was released into the culture medium, consistent with an endocrine effect. In MTT cell proliferation assay, Reg3alpha-overexpressing cells exhibited a 2-fold increase in the rate of cell growth. In order to investigate the intracellular mechanism, we studied cell cycle regulatory proteins. In Reg3alpha-expressing cells, we detected 2.2- and 2.5-fold increased levels of cyclin D1 and CDK4, respectively, which paralleled a 1.8-fold increase in the rate of Akt phosphorylation. It is established that beta-cell replication is associated with increased cyclin D1 and CDK4 levels; deficiency in CDK4 or cyclin D2 results in reduced beta-cell mass and diabetes. Our results suggest that Reg3alpha stimulates beta-cell replication, by activating Akt kinase and increasing the levels of cyclin D1/CDK4.

  14. Redox regulation of cell-cycle re-entry: cyclin D1 as a primary target for the mitogenic effects of reactive oxygen and nitrogen species.

    PubMed

    Burch, Peter M; Heintz, Nicholas H

    2005-01-01

    Reactive oxygen and nitrogen species inhibit or promote cell proliferation by modulating the cell signaling pathways that dictate decisions between cell survival, proliferation, and death. In the growth factor-dependent pathways that regulate mitogenesis, numerous positive and negative effectors of signaling are influenced by physiological fluctuations of oxidants, including receptor tyrosine kinases, small GTPases, mitogen-activated protein kinases, protein phosphatases, and transcription factors. The same mitogenic pathways that are sensitive to oxidant levels also directly regulate the expression of cyclin D1, a labile factor required for progression through the G1 phase on the cell cycle. Because the transition from G0 to G1 is the only phase of the cell cycle that is not regulated by cyclin-dependent kinases, but rather by redox-dependent signaling pathways, expression of cyclin D1 represents a primary regulatory node for the dose-dependent effects of oxidants on the induction of cell growth. We suggest that expression of cyclin D1 represents a useful marker for assessing the integration of proliferative and growth inhibitory effects of oxidants on the redox-dependent signaling events that control reentry into the cell cycle.

  15. Cyclin-dependent kinase 2 is an ideal target for ovary tumors with elevated cyclin E1 expression.

    PubMed

    Yang, Liu; Fang, Dongdong; Chen, Huijun; Lu, Yiyu; Dong, Zheng; Ding, Han-Fei; Jing, Qing; Su, Shi-Bing; Huang, Shuang

    2015-08-28

    CCNE1 gene amplification is present in 15-20% ovary tumor specimens. Here, we showed that Cyclin E1 (CCNE1) was overexpressed in 30% of established ovarian cancer cell lines. We also showed that CCNE1 was stained positive in over 40% of primary ovary tumor specimens regardless of their histological types while CCNE1 staining was either negative or low in normal ovary and benign ovary tumor tissues. However, the status of CCNE1 overexpression was not associated with the tumorigenic potential of ovarian cancer cell lines and also did not correlate with pathological grades of ovary tumor specimens. Subsequent experiments with CCNE1 siRNAs showed that knockdown of CCNE1 reduced cell growth only in cells with inherent CCNE1 overexpression, indicating that these cells may have developed an addiction to CCNE1 for growth/survival. As CCNE1 is a regulatory factor of cyclin-dependent kinase 2 (Cdk2), we investigated the effect of Cdk2 inhibitor on ovary tumorigenecity. Ovarian cancer cells with elevated CCNE1 expression were 40 times more sensitive to Cdk2 inhibitorSNS-032 than those without inherent CCNE1 overexpression. Moreover, SNS-032 greatly prolonged the survival of mice bearing ovary tumors with inherent CCNE1 overexpression. This study suggests that ovary tumors with elevated CCNE1 expression may be staged for Cdk2-targeted therapy. PMID:26204491

  16. Transforming growth factor beta stabilizes p15INK4B protein, increases p15INK4B-cdk4 complexes, and inhibits cyclin D1-cdk4 association in human mammary epithelial cells.

    PubMed Central

    Sandhu, C; Garbe, J; Bhattacharya, N; Daksis, J; Pan, C H; Yaswen, P; Koh, J; Slingerland, J M; Stampfer, M R

    1997-01-01

    The effects of transforming growth factor beta (TGF-beta) were studied in closely related human mammary epithelial cells (HMEC), both finite-life-span 184 cells and immortal derivatives, 184A1S, and 184A1L5R, which differ in their cell cycle responses to TGF-beta but express type I and type II TGF-beta receptors and retain TGF-beta induction of extracellular matrix. The arrest-resistant phenotype was not due to loss of cyclin-dependent kinase (cdk) inhibitors. TGF-beta was shown to regulate p15INK4B expression at at least two levels: mRNA accumulation and protein stability. In TGF-beta-arrested HMEC, there was not only an increase in p15 mRNA but also a major increase in p5INK4B protein stability. As cdk4- and cdk6-associated p15INK4B increased during TGF-beta arrest of sensitive cells, there was a loss of cyclin D1, p21Cip1, and p27Kip1 from these kinase complexes, and cyclin E-cdk2-associated p27Kip1 increased. In HMEC, p15INK4B complexes did not contain detectable cyclin. p15INK4B from both sensitive and resistant cells could displace in vitro cyclin D1, p21Cip1, and p27Kip1 from cdk4 isolated from sensitive cells. Cyclin D1 could not be displaced from cdk4 in the resistant 184A1L5R cell lysates. Thus, in TGF-beta arrest, p15INK4B may displace already associated cyclin D1 from cdks and prevent new cyclin D1-cdk complexes from forming. Furthermore, p27Kip1 binding shifts from cdk4 to cyclin E-cdk2 during TGF-beta-mediated arrest. The importance of posttranslational regulation of p15INK4B by TGF-beta is underlined by the observation that in TGF-beta-resistant 184A1L5R, although the p15 transcript increased, p15INK4B protein was not stabilized and did not accumulate, and cyclin D1-cdk association and kinase activation were not inhibited. PMID:9111314

  17. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain

    PubMed Central

    Deverman, Benjamin E.; Pravdo, Piers L.; Simpson, Bryan P.; Kumar, Sripriya Ravindra; Chan, Ken Y.; Banerjee, Abhik; Wu, Wei-Li; Yang, Bin; Huber, Nina; Pasca, Sergiu P.; Gradinaru, Viviana

    2015-01-01

    Recombinant adeno-associated viruses (rAAVs) are commonly used vehicles for in vivo gene transfer1-6. However, the tropism repertoire of naturally occurring AAVs is limited, prompting a search for novel AAV capsids with desired characteristics7-13. Here we describe a capsid selection method, called Cre-recombination-based AAV targeted evolution (CREATE), that enables the development of AAV capsids that more efficiently transduce defined Cre-expressing cell populations in vivo. We use CREATE to generate AAV variants that efficiently and widely transduce the adult mouse central nervous system (CNS) after intravenous injection. One variant, AAV-PHP.B, transfers genes throughout the CNS with an efficiency that is at least 40-fold greater than that of the current standard, AAV914-17, and transduces the majority of astrocytes and neurons across multiple CNS regions. In vitro, it transduces human neurons and astrocytes more efficiently than does AAV9, demonstrating the potential of CREATE to produce customized AAV vectors for biomedical applications. PMID:26829320

  18. Ethylene-Mediated Regulation of A2-Type CYCLINs Modulates Hyponastic Growth in Arabidopsis1[OPEN

    PubMed Central

    Polko, Joanna K.; van Rooij, Jop A.; Vanneste, Steffen; Pierik, Ronald; Ammerlaan, Ankie M.H.; Vergeer-van Eijk, Marleen H.; McLoughlin, Fionn; Gühl, Kerstin; Van Isterdael, Gert; Voesenek, Laurentius A.C.J.; Millenaar, Frank F.; Beeckman, Tom; Peeters, Anton J.M.; Marée, Athanasius F.M.; van Zanten, Martijn

    2015-01-01

    Upward leaf movement (hyponastic growth) is frequently observed in response to changing environmental conditions and can be induced by the phytohormone ethylene. Hyponasty results from differential growth (i.e. enhanced cell elongation at the proximal abaxial side of the petiole relative to the adaxial side). Here, we characterize Enhanced Hyponasty-d, an activation-tagged Arabidopsis (Arabidopsis thaliana) line with exaggerated hyponasty. This phenotype is associated with overexpression of the mitotic cyclin CYCLINA2;1 (CYCA2;1), which hints at a role for cell divisions in regulating hyponasty. Indeed, mathematical analysis suggested that the observed changes in abaxial cell elongation rates during ethylene treatment should result in a larger hyponastic amplitude than observed, unless a decrease in cell proliferation rate at the proximal abaxial side of the petiole relative to the adaxial side was implemented. Our model predicts that when this differential proliferation mechanism is disrupted by either ectopic overexpression or mutation of CYCA2;1, the hyponastic growth response becomes exaggerated. This is in accordance with experimental observations on CYCA2;1 overexpression lines and cyca2;1 knockouts. We therefore propose a bipartite mechanism controlling leaf movement: ethylene induces longitudinal cell expansion in the abaxial petiole epidermis to induce hyponasty and simultaneously affects its amplitude by controlling cell proliferation through CYCA2;1. Further corroborating the model, we found that ethylene treatment results in transcriptional down-regulation of A2-type CYCLINs and propose that this, and possibly other regulatory mechanisms affecting CYCA2;1, may contribute to this attenuation of hyponastic growth. PMID:26041787

  19. Phospholipase C-delta1 expression is linked to proliferation, DNA synthesis, and cyclin E levels.

    PubMed

    Stallings, Jonathan D; Zeng, Yue X; Narvaez, Francisco; Rebecchi, Mario J

    2008-05-16

    We previously reported that phospholipase C-delta1 (PLC-delta1) accumulates in the nucleus at the G1/S transition, which is largely dependent on its binding to phosphatidylinositol 4,5-bisphosphate ( Stallings, J. D., Tall, E. G., Pentyala, S., and Rebecchi, M. J. (2005) J. Biol. Chem. 280, 22060-22069 ). Here, using small interfering RNA (siRNA) that specifically targets rat PLC-delta1, we investigated whether this enzyme plays a role in cell cycle control. Inhibiting expression of PLC-delta1 significantly decreased proliferation of rat C6 glioma cells and altered S phase progression. [3H]Thymidine labeling and fluorescence-activated cell sorting analysis indicated that the rates of G1/S transition and DNA synthesis were enhanced. On the other hand, knockdown cultures released from the G1/S boundary were slower to reach full G2/M DNA content, consistent with a delay in S phase. The levels of cyclin E, a key regulator of the G1/S transition and DNA synthesis, were elevated in asynchronous cultures as well as those blocked at the G1/S boundary. Epifluorescence imaging showed that transient expression of human phospholipase C-delta1, resistant to these siRNA, suppressed expression of cyclin E at the G1/S boundary despite treatment of cultures with rat-specific siRNA. Although whole cell levels of phosphatidylinositol 4,5-bisphosphate were unchanged, suppression of PLC-delta1 led to a significant rise in the nuclear levels of this phospholipid at the G1/S boundary. These results support a role for PLC-delta1 and nuclear phospholipid metabolism in regulating cell cycle progression.

  20. Ethylene-Mediated Regulation of A2-Type CYCLINs Modulates Hyponastic Growth in Arabidopsis.

    PubMed

    Polko, Joanna K; van Rooij, Jop A; Vanneste, Steffen; Pierik, Ronald; Ammerlaan, Ankie M H; Vergeer-van Eijk, Marleen H; McLoughlin, Fionn; Gühl, Kerstin; Van Isterdael, Gert; Voesenek, Laurentius A C J; Millenaar, Frank F; Beeckman, Tom; Peeters, Anton J M; Marée, Athanasius F M; van Zanten, Martijn

    2015-09-01

    Upward leaf movement (hyponastic growth) is frequently observed in response to changing environmental conditions and can be induced by the phytohormone ethylene. Hyponasty results from differential growth (i.e. enhanced cell elongation at the proximal abaxial side of the petiole relative to the adaxial side). Here, we characterize Enhanced Hyponasty-d, an activation-tagged Arabidopsis (Arabidopsis thaliana) line with exaggerated hyponasty. This phenotype is associated with overexpression of the mitotic cyclin CYCLINA2;1 (CYCA2;1), which hints at a role for cell divisions in regulating hyponasty. Indeed, mathematical analysis suggested that the observed changes in abaxial cell elongation rates during ethylene treatment should result in a larger hyponastic amplitude than observed, unless a decrease in cell proliferation rate at the proximal abaxial side of the petiole relative to the adaxial side was implemented. Our model predicts that when this differential proliferation mechanism is disrupted by either ectopic overexpression or mutation of CYCA2;1, the hyponastic growth response becomes exaggerated. This is in accordance with experimental observations on CYCA2;1 overexpression lines and cyca2;1 knockouts. We therefore propose a bipartite mechanism controlling leaf movement: ethylene induces longitudinal cell expansion in the abaxial petiole epidermis to induce hyponasty and simultaneously affects its amplitude by controlling cell proliferation through CYCA2;1. Further corroborating the model, we found that ethylene treatment results in transcriptional down-regulation of A2-type CYCLINs and propose that this, and possibly other regulatory mechanisms affecting CYCA2;1, may contribute to this attenuation of hyponastic growth.

  1. Drosophila cyclin D/Cdk4 regulates mitochondrial biogenesis and aging and sensitizes animals to hypoxic stress

    PubMed Central

    Icreverzi, Amalia; Flor de la Cruz, Aida; Van Voorhies, Wayne A

    2012-01-01

    Drosophila cyclin D (CycD) is the single fly ortholog of the mammalian cyclin D1 and promotes both cell cycle progression and cellular growth. However, little is known about how CycD promotes cell growth. We show here that CycD/Cdk4 hyperactivity leads to increased mitochondrial biogenesis (mitobiogenesis), mitochondrial mass, NRF-1 activity (Tfam transcript levels) and metabolic activity in Drosophila, whereas loss of CycD/Cdk4 activity has the opposite effects. Surprisingly, both CycD/Cdk4 addition and loss of function increase mitochondrial superoxide production and decrease lifespan, indicating that an imbalance in mitobiogenesis may lead to oxidative stress and aging. In addition, we provide multiple lines of evidence indicating that CycD/Cdk4 activity affects the hypoxic status of cells and sensitizes animals to hypoxia. Both mitochondrial and hypoxia-related effects can be detected at global transcriptional level. We propose that mitobiogenesis and the hypoxic stress response have an antagonistic relationship, and that CycD/Cdk4 levels regulate mitobiogenesis contemporaneous to the cell cycle, such that only when cells are sufficiently oxygenated can they proliferate. PMID:22293404

  2. Cyclin E Associates with the Lipogenic Enzyme ATP-Citrate Lyase to Enable Malignant Growth of Breast Cancer Cells.

    PubMed

    Lucenay, Kimberly S; Doostan, Iman; Karakas, Cansu; Bui, Tuyen; Ding, Zhiyong; Mills, Gordon B; Hunt, Kelly K; Keyomarsi, Khandan

    2016-04-15

    Cyclin E is altered in nearly a third of invasive breast cancers where it is a powerful independent predictor of survival in women with stage I-III disease. Full-length cyclin E is posttranslationally cleaved into low molecular weight (LMW-E) isoforms, which are tumor-specific and accumulate in the cytoplasm because they lack a nuclear localization sequence. We hypothesized that aberrant localization of cytosolic LMW-E isoforms alters target binding and activation ultimately contributing to LMW-E-induced tumorigenicity. To address this hypothesis, we used a retrovirus-based protein complementation assay to find LMW-E binding proteins in breast cancer, identifying ATP-citrate lyase (ACLY), an enzyme in the de novo lipogenesis pathway, as a novel LMW-E-interacting protein in the cytoplasm. LMW-E upregulated ACLY enzymatic activity, subsequently increasing lipid droplet formation, thereby providing cells with essential building blocks to support growth. ACLY was also required for LMW-E-mediated transformation, migration, and invasion of breast cancer cells in vitro along with tumor growth in vivo In clinical specimens of breast cancer, the absence of LMW-E and low expression of adipophilin (PLIN2), a marker of lipid droplet formation, associated with favorable prognosis, whereas overexpression of both proteins correlated with a markedly worse prognosis. Taken together, our findings establish a novel relationship between LMW-E isoforms of cyclin E and aberrant lipid metabolism pathways in breast cancer tumorigenesis, warranting further investigation in additional malignancies exhibiting their expression. Cancer Res; 76(8); 2406-18. ©2016 AACR. PMID:26928812

  3. Cloning and sequence of the human nuclear protein cyclin: homology with DNA-binding proteins.

    PubMed Central

    Almendral, J M; Huebsch, D; Blundell, P A; Macdonald-Bravo, H; Bravo, R

    1987-01-01

    A full-length cDNA clone for the human nuclear protein cyclin has been isolated by using polyclonal antibodies and sequenced. The sequence predicts a protein of 261 amino acids (Mr 29,261) with a high content of acidic (41, aspartic and glutamic acids) versus basic (24, lysine and arginine) amino acids. The identity of the cDNA clone was confirmed by in vitro hybrid-arrested translation of cyclin mRNA. Blot-hybridization analysis of mouse 3T3 and human MOLT-4 cell RNA revealed a mRNA species of approximately the same size as the cDNA insert. Expression of cyclin mRNA was undetectable or very low in quiescent cells, increasing after 8-10 hr of serum stimulation. Inhibition of DNA synthesis by hydroxyurea in serum-stimulated cells did not affect the increase in cyclin mRNA but inhibited 90% the expression of H3 mRNA. These results suggest that expression of cyclin and histone mRNAs are controlled by different mechanisms. A region of the cyclin sequence shows a significant homology with the putative DNA binding site of several proteins, specially with the transcriptional-regulator cAMP-binding protein of Escherichia coli, suggesting that cyclin could play a similar role in eukaryotic cells. Images PMID:2882507

  4. Cyclin A2 promotes DNA repair in the brain during both development and aging

    PubMed Central

    Gygli, Patrick E.; Chang, Joshua C.; Gokozan, Hamza N.; Catacutan, Fay P.; Schmidt, Theresa A.; Kaya, Behiye; Goksel, Mustafa; Baig, Faisal S.; Chen, Shannon; Griveau, Amelie; Michowski, Wojciech; Wong, Michael; Palanichamy, Kamalakannan; Sicinski, Piotr; Nelson, Randy J.; Czeisler, Catherine; Otero, José J.

    2016-01-01

    Various stem cell niches of the brain have differential requirements for Cyclin A2. Cyclin A2 loss results in marked cerebellar dysmorphia, whereas forebrain growth is retarded during early embryonic development yet achieves normal size at birth. To understand the differential requirements of distinct brain regions for Cyclin A2, we utilized neuroanatomical, transgenic mouse, and mathematical modeling techniques to generate testable hypotheses that provide insight into how Cyclin A2 loss results in compensatory forebrain growth during late embryonic development. Using unbiased measurements of the forebrain stem cell niche, we parameterized a mathematical model whereby logistic growth instructs progenitor cells as to the cell-types of their progeny. Our data was consistent with prior findings that progenitors proliferate along an auto-inhibitory growth curve. The growth retardation in CCNA2-null brains corresponded to cell cycle lengthening, imposing a developmental delay. We hypothesized that Cyclin A2 regulates DNA repair and that CCNA2-null progenitors thus experienced lengthened cell cycle. We demonstrate that CCNA2-null progenitors suffer abnormal DNA repair, and implicate Cyclin A2 in double-strand break repair. Cyclin A2's DNA repair functions are conserved among cell lines, neural progenitors, and hippocampal neurons. We further demonstrate that neuronal CCNA2 ablation results in learning and memory deficits in aged mice. PMID:27425845

  5. The role of cyclins in the maturation of Patella vulgata oocytes.

    PubMed

    van Loon, A E; Colas, P; Goedemans, H J; Néant, I; Dalbon, P; Guerrier, P

    1991-11-01

    We have cloned and sequenced the cDNAs encoding Patella vulgata cyclins A and B. The cDNA clones contain an open reading frame of 426 and 408 amino acids respectively, which present similarity with cyclins from other species. Cyclin A and B RNAs are present as polyadenylated and non-polyadenylated RNA in prophase oocytes and are completely polyadenylated in metaphase I. During the first cleavages after fertilization the level of cyclin A and B mRNAs is high and drops when the free swimming stage is reached. Using p13suc1-Sepharose bead precipitation we demonstrate that cyclin synthesis is triggered during maturation and that inhibition of protein synthesis makes the cyclins disappear rapidly from the metaphase I oocytes, which shift to interphase condition. By microinjecting antisense oligonucleotides into metaphase I oocytes, we demonstrate that in vivo ablation of cyclin A and B messengers together gives the same result, whereas microinjection of only one oligonucleotide does not show any effect. PMID:1655419

  6. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes.

    PubMed

    Roques, Magali; Wall, Richard J; Douglass, Alexander P; Ramaprasad, Abhinay; Ferguson, David J P; Kaindama, Mbinda L; Brusini, Lorenzo; Joshi, Nimitray; Rchiad, Zineb; Brady, Declan; Guttery, David S; Wheatley, Sally P; Yamano, Hiroyuki; Holder, Anthony A; Pain, Arnab; Wickstead, Bill; Tewari, Rita

    2015-11-01

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.

  7. Mutual regulation of cyclin-dependent kinase and the mitotic exit network

    PubMed Central

    König, Cornelia; Maekawa, Hiromi

    2010-01-01

    The mitotic exit network (MEN) is a spindle pole body (SPB)–associated, GTPase-driven signaling cascade that controls mitotic exit. The inhibitory Bfa1–Bub2 GTPase-activating protein (GAP) only associates with the daughter SPB (dSPB), raising the question as to how the MEN is regulated on the mother SPB (mSPB). Here, we show mutual regulation of cyclin-dependent kinase 1 (Cdk1) and the MEN. In early anaphase Cdk1 becomes recruited to the mSPB depending on the activity of the MEN kinase Cdc15. Conversely, Cdk1 negatively regulates binding of Cdc15 to the mSPB. In addition, Cdk1 phosphorylates the Mob1 protein to inhibit the activity of Dbf2–Mob1 kinase that regulates Cdc14 phosphatase. Our data revise the understanding of the spatial regulation of the MEN. Although MEN activity in the daughter cells is controlled by Bfa1–Bub2, Cdk1 inhibits MEN activity at the mSPB. Consistent with this model, only triple mutants that lack BUB2 and the Cdk1 phosphorylation sites in Mob1 and Cdc15 show mitotic exit defects. PMID:20123997

  8. A Conserved Gammaherpesvirus Cyclin Specifically Bypasses Host p18INK4c To Promote Reactivation from Latency

    PubMed Central

    Williams, Lisa M.; Niemeyer, Brian F.; Franklin, David S.; Clambey, Eric T.

    2015-01-01

    ABSTRACT Gammaherpesviruses (GHVs) carry homologs of cellular genes, including those encoding a viral cyclin that promotes reactivation from latent infection. The viral cyclin has reduced sensitivity to host cyclin-dependent kinase inhibitors in vitro; however, the in vivo significance of this is unclear. Here, we tested the genetic requirement for the viral cyclin in mice that lack the host inhibitors p27Kip1 and p18INK4c, two cyclin-dependent kinase inhibitors known to be important in regulating B cell proliferation and differentiation. While the viral cyclin was essential for reactivation in wild-type mice, strikingly, it was dispensable for reactivation in mice lacking p27Kip1 and p18INK4c. Further analysis revealed that genetic ablation of only p18INK4c alleviated the requirement for the viral cyclin for reactivation from latency. p18INK4c regulated reactivation in a dose-dependent manner so that the viral cyclin was dispensable in p18INK4c heterozygous mice. Finally, treatment of wild-type cells with the cytokine BAFF, a known attenuator of p18INK4c function in B lymphocytes, was also able to bypass the requirement for the viral cyclin in reactivation. These data show that the gammaherpesvirus viral cyclin functions specifically to bypass the cyclin-dependent kinase inhibitor p18INK4c, revealing an unanticipated specificity between a GHV cyclin and a single cyclin-dependent kinase inhibitor. IMPORTANCE The gammaherpesviruses (GHVs) cause lifelong infection and can cause chronic inflammatory diseases and cancer, especially in immunosuppressed individuals. Many GHVs encode a conserved viral cyclin that is required for infection and disease. While a common property of the viral cyclins is that they resist inhibition by normal cellular mechanisms, it remains unclear how important it is that the GHVs resist this inhibition. We used a mouse GHV that either contained or lacked a viral cyclin to test whether the viral cyclin lost importance when these inhibitory

  9. Cyclin G2 inhibits epithelial-to-mesenchymal transition by disrupting Wnt/β-catenin signaling

    PubMed Central

    Bernaudo, S; Salem, M; Qi, X; Zhou, W; Zhang, C; Yang, W; Rosman, D; Deng, Z; Ye, G; Yang, B; Vanderhyden, B; Wu, Z; Peng, C

    2016-01-01

    Epithelial ovarian cancer (EOC) has the highest mortality rate among gynecological malignancies owing to poor screening methods, non-specific symptoms and limited knowledge of the cellular targets that contribute to the disease. Cyclin G2 is an unconventional cyclin that acts to oppose cell cycle progression. Dysregulation of the cyclin G2 gene (CCNG2) in a variety of human cancers has been reported; however, the role of cyclin G2 in tumorigenesis remains unclear. In this study, we investigated the function of cyclin G2 in EOC. In vitro and in vivo studies using several EOC-derived tumor cell lines revealed that cyclin G2 inhibited cell proliferation, migration, invasion and spheroid formation, as well as tumor formation and invasion. By interrogating cDNA microarray data sets, we found that CCGN2 mRNA is reduced in several large cohorts of human ovarian carcinoma when compared with normal ovarian surface epithelium or borderline tumors of the ovary. Mechanistically, cyclin G2 was found to suppress epithelial-to-mesenchymal transition (EMT), as demonstrated by the differential regulation of various EMT genes, such as Snail, Slug, vimentin and E-cadherin. Moreover, cyclin G2 potently suppressed the Wnt/β-catenin signaling pathway by downregulating key Wnt components, namely LRP6, DVL2 and β-catenin, which could be linked to inhibition of EMT. Taken together, our novel findings demonstrate that cyclin G2 has potent tumor-suppressive effects in EOCs by inhibiting EMT through attenuating Wnt/β-catenin signaling. PMID:26876206

  10. Interleukin 18 augments growth ability via NF-κB and p38/ATF2 pathways by targeting cyclin B1, cyclin B2, cyclin A2, and Bcl-2 in BRL-3A rat liver cells.

    PubMed

    Zhang, Jihong; Pan, Cuiyun; Xu, Tiantian; Niu, Zhipeng; Ma, Chengkai; Xu, Cunshuan

    2015-05-25

    Interleukin 18 (IL-18) is a pleiotropic cytokine and capable of stimulating proliferation of certain cell types. Nonetheless, its effect on normal liver cells cultured remains unclear. In the present study, we discovered that IL-18 expression level was remarkably elevated at 3.3 and 8.6h after synchronized BRL-3A rat liver cells (G0 phase) re-entering the cell cycle. In addition, recombinant rat IL-18 (rrIL-18) at dosages 5-10 ng/ml increased the cell viability compared to untreated cells (with medium only) at 24 and 48 h (P<0.05). At the same time, the percentage of BrdU-labeling cells was also significantly increased (P<0.01). On the other hand, knockdown of IL-18 expression with short interference RNA (siRNA), the cell viability began to decline at 24h and significantly decreased compared to negative control (NC) at 48 and 72 h after transfection (P<0.05). Meanwhile, the number of cells in division phase (G2/M) was reduced in parallel. Further, after treatment with rrIL-18 (5 ng/ml), IL-18 and its receptor subunit IL-18Rα increased both at mRNA and protein levels. Moreover, the expression levels of adaptor molecule MyD88, transcription factor NF-κB and its downstream targets cyclin B1 and cyclin B2 were remarkably enhanced in BRL-3A cells stimulated by rrIL-18. Furthermore, transcription factor ATF2 and its targeted genes cyclin A2, Bcl-2 were also markedly increased after treatment with rrIL-18. These results demonstrated that IL-18 can augment cell proliferation via NF-κB and p38/ATF2 pathway by targeting cyclin B1, cyclin B2, cyclin A2 and Bcl-2 in BRL-3A rat liver cells.

  11. Early Expressed Clb Proteins Allow Accumulation of Mitotic Cyclin by Inactivating Proteolytic Machinery during S Phase

    PubMed Central

    Yeong, Foong May; Lim, Hong Hwa; Wang, Ya; Surana, Uttam

    2001-01-01

    Periodic accumulation and destruction of mitotic cyclins are important for the initiation and termination of M phase. It is known that both APCCdc20 and APCHct1 collaborate to destroy mitotic cyclins during M phase. Here we show that this relationship between anaphase-promoting complex (APC) and Clb proteins is reversed in S phase such that the early Clb kinases (Clb3, Clb4, and Clb5 kinases) inactivate APCHct1 to allow Clb2 accumulation. This alternating antagonism between APC and Clb proteins during S and M phases constitutes an oscillatory system that generates undulations in the levels of mitotic cyclins. PMID:11438663

  12. A novel cyclin gene (CCNF) in the region of the polycystic kidney disease gene (PKD1)

    SciTech Connect

    Kraus, B.; Pohlschmidt, M.; Leung, L.S.

    1994-11-01

    The major locus for autosomal dominant polycystic kidney disease (PKD1) is located in a gene-rich region on chromosome 16p13.3. Recently the identification of the gene responsible for PKD1 has been described. While searching for candidate genes in this region, the authors isolated a new member of the cyclin family. They have characterized the transcript by sequencing, determination of the exon intron boundaries, and Northern blot analysis. Cyclin F is related to A- and B-type cyclins by sequence, but its function is unknown.

  13. PIK3CA mutation uncouples tumor growth and Cyclin D1 regulation from MEK/ERK and mutant KRAS signaling

    PubMed Central

    Halilovic, Ensar; She, Qing-Bai; Ye, Qing; Pagliarini, Raymond; Sellers, William R.; Solit, David B.; Rosen, Neal

    2010-01-01

    Mutational activation of KRAS is a common event in human tumors. Identification of the key signaling pathways downstream of mutant KRAS is essential for our understanding of how to pharmacologically target these cancers in patients. We show that PD0325901, a small molecule MEK inhibitor, decreases MEK/ERK pathway signaling, and destabilizes Cyclin D1, resulting in significant anti-cancer activity in a subset of KRAS mutant tumors in vitro and in vivo. Mutational activation of PIK3CA, which commonly co-occurs with KRAS mutation, provides resistance to MEK inhibition through reactivation of AKT signaling. Genetic ablation of the mutant PIK3CA allele in MEK inhibitor-resistant cells restores MEK pathway sensitivity, and re-expression of mutant PIK3CA reinstates the resistance, highlighting the importance of this mutation in resistance to therapy in human cancers. In KRAS mutant tumors, PIK3CA mutation restores Cyclin D1 expression and G1/S cell cycle progression so that they are no longer dependent on KRAS and MEK/ERK signaling. Furthermore, the growth of KRAS mutant tumors with coexistent PIK3CA mutations in vivo is profoundly inhibited with combined pharmacologic inhibition of MEK and AKT. These data suggest that tumors with both KRAS and PI3K mutations are unlikely to respond to inhibition of the MEK pathway alone but will require effective inhibition of both MEK and PI3K/AKT pathway signaling. PMID:20699365

  14. Ruthenium-Arene-β-Carboline Complexes as Potent Inhibitors of Cyclin-Dependent Kinase 1: Synthesis, Characterization and Anticancer Mechanism Studies.

    PubMed

    He, Liang; Liao, Si-Yan; Tan, Cai-Ping; Ye, Rui-Rong; Xu, Yu-Wen; Zhao, Meng; Ji, Liang-Nian; Mao, Zong-Wan

    2013-09-01

    A series of Ru(II)-arene complexes (1-6) of the general formula [(η(6)-arene)Ru(L)Cl]PF6 (arene=benzene or p-cymene; L=bidentate β-carboline derivative, an indole alkaloid with potential cyclin-dependent kinases (CDKs) inhibitory activities) is reported. All the complexes were fully characterized by classical analytical methods, and three were characterized by X-ray crystallography. Hydrolytic studies show that β-carboline ligands play a vital role in their aqueous behaviour. These complexes are highly active in vitro, with the most active complex 6 displaying a 3- to 12-fold higher anticancer activity than cisplatin against several cancer cell lines. Interestingly, the complexes are able to overcome cross-resistance to cisplatin, and show much lower cytotoxicity against normal cells. Complexes 1-6 may directly target CDK1, because they can block cells in the G2M phase, down-regulate the expression of CDK1 and cyclin B1, and inhibit CDK1/cyclin B in vitro. Further mechanism studies show that the complexes can effectively induce apoptosis through mitochondrial-related pathways and intracellular reactive oxygen species (ROS) elevation.

  15. Structure of cyclin G-associated kinase (GAK) trapped in different conformations using nanobodies

    PubMed Central

    Chaikuad, Apirat; Keates, Tracy; Vincke, Cécile; Kaufholz, Melanie; Zenn, Michael; Zimmermann, Bastian; Gutiérrez, Carlos; Zhang, Rong-guang; Hatzos-Skintges, Catherine; Joachimiak, Andrzej; Muyldermans, Serge; Herberg, Friedrich W.; Knapp, Stefan; Müller, Susanne

    2014-01-01

    GAK (cyclin G-associated kinase) is a key regulator of clathrin-coated vesicle trafficking and plays a central role during development. Additionally, due to the unusually high plasticity of its catalytic domain, it is a frequent ‘off-target’ of clinical kinase inhibitors associated with respiratory side effects of these drugs. In the present paper, we determined the crystal structure of the GAK catalytic domain alone and in complex with specific single-chain antibodies (nanobodies). GAK is constitutively active and weakly associates in solution. The GAK apo structure revealed a dimeric inactive state of the catalytic domain mediated by an unusual activation segment interaction. Co-crystallization with the nanobody NbGAK_4 trapped GAK in a dimeric arrangement similar to the one observed in the apo structure, whereas NbGAK_1 captured the activation segment of monomeric GAK in a well-ordered conformation, representing features of the active kinase. The presented structural and biochemical data provide insight into the domain plasticity of GAK and demonstrate the utility of nanobodies to gain insight into conformational changes of dynamic molecules. In addition, we present structural data on the binding mode of ATP mimetic inhibitors and enzyme kinetic data, which will support rational inhibitor design of inhibitors to reduce the off-target effect on GAK. PMID:24438162

  16. Endoglin inhibits ERK-induced c-Myc and cyclin D1 expression to impede endothelial cell proliferation

    SciTech Connect

    Pan, Christopher C.; Bloodworth, Jeffrey C.; Mythreye, Karthikeyan; Lee, Nam Y.

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Endoglin inhibits ERK activation in endothelial cells. Black-Right-Pointing-Pointer Endoglin is a regulator of c-Myc and cyclin D1 expression. Black-Right-Pointing-Pointer {beta}-arrestin2 interaction with endoglin is required for ERK/c-Myc repression. Black-Right-Pointing-Pointer Endoglin impedes cellular proliferation by targeting ERK-induced mitogenic signaling. -- Abstract: Endoglin is an endothelial-specific transforming growth factor beta (TGF-{beta}) co-receptor essential for angiogenesis and vascular remodeling. Endoglin regulates a wide range of cellular processes, including cell adhesion, migration, and proliferation, through TGF-{beta} signaling to canonical Smad and Smad-independent pathways. Despite its overall pro-angiogenic role in the vasculature, the underlying mechanism of endoglin action is poorly characterized. We previously identified {beta}-arrestin2 as a binding partner that causes endoglin internalization from the plasma membrane and inhibits ERK signaling towards endothelial migration. In the present study, we examined the mechanistic role of endoglin and {beta}-arrestin2 in endothelial cell proliferation. We show that endoglin impedes cell growth through sustained inhibition of ERK-induced c-Myc and cyclin D1 expression in a TGF-{beta}-independent manner. The down-regulation of c-Myc and cyclin D1, along with growth-inhibition, are reversed when the endoglin/{beta}-arrestin2 interaction is disrupted. Given that TGF-{beta}-induced Smad signaling potently represses c-Myc in most cell types, our findings here show a novel mechanism by which endoglin augments growth-inhibition by targeting ERK and key downstream mitogenic substrates.

  17. Methanol extract of wheatgrass induces G1 cell cycle arrest in a p53-dependent manner and down regulates the expression of cyclin D1 in human laryngeal cancer cells-an in vitro and in silico approach

    PubMed Central

    Shakya, Garima; Balasubramanian, Sangeetha; Rajagopalan, Rukkumani

    2015-01-01

    Background: Deregs been implicated in the malignancy of cancer. Since many years investigation on the traditional herbs has been the focus to develop novel and effective drug for cancer remedies. Wheatgrass is a medicinal plant, used in folk medicine to cure various diseases. The present study was undertaken to gain insights into antiproliferative effect of methanol extract of wheatgrass. Materials Methods: Cell viability was assessed via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Lactate Dehydrogenase assays. Cell cycle was analyzed by flow cytometry. Western blot was performed to determine the p53 and cyclin D1 levels. In silico docking interaction of the 14 active components (identified by high-performance liquid chromatography/gas chromatography-mass spectroscopy) of the methanol extract was tested with cyclin D1 (Protein Data Bank ID: 2W96) and compared with the reference cyclin D1/Cdk4 inhibitor. Results: Methanol extract of wheatgrass effectively reduced the cell viability. The cell cycle analysis showed that the extract treatment caused G1 arrest. The level of cyclin D1 was decreased, whereas p53 level was increased. Molecular docking studies revealed interaction of seven active compounds of the extract with the vital residues (Lys112/Glu141) of cyclin D1. Conclusion: These findings indicate that the methanol extract of wheatgrass inhibits human laryngeal cancer cell proliferation via cell cycle G1 arrest and p53 induction. The seven active compounds of the extract were also found to be directly involved in the inhibition of cyclin D1/Cdk4 binding, thus inhibiting the cell proliferation. PMID:26109759

  18. Cybip, a starfish cyclin B-binding protein, is involved in meiotic M-phase exit.

    PubMed

    Offner, Nicolas; Derancourt, Jean; Lozano, Jean Claude; Schatt, Philippe; Picard, André; Peaucellier, Gérard

    2003-01-01

    We designed a screen to identify starfish oocyte proteins able to bind monomeric cyclin B by affinity chromatography on a cyclin B splice variant displaying low affinity for cdc2. We identified a 15kDa protein previously described as a cdk-binding protein [Biochim. Biophys. Acta Mol. Cell Res. 1589 (2002) 219-231]. Cybip is encoded by a single polymorphic gene and the native protein is matured by cleaving a signal peptide. We firmly establish the fact that it is a true cyclin B-binding protein, since the recombinant protein binds recombinant cyclin B in absence of any cdk. Finally, we show that the microinjection of GST-cybip, and of anti-cybip antibody, in maturing starfish oocytes, inhibits H1 kinase and MPF inactivation, and first polar body emission.

  19. The δ-cyclin expression at early stages of embryogenesis of Brassica rapa L. under clinorotation

    NASA Astrophysics Data System (ADS)

    Artemenko, O. A.; Popova, A. F.

    We present some results of comparison studying of Brassica embryo development and the δ-cyclin genes expression under slow horizontal clinorotation and in the laboratory control. Some backlog of the δ1-cyclin genes expression at early stages of embryogenesis under clinorotation was revealed in comparison with the laboratory control. The similar level of the δ3-cyclin expression at all stages of embryo formation (from one to nine days) in both variants is shown. Some delays in the rate of Brassica rapa embryo development under clinorotation in comparison with the laboratory control can be a result of decrease of a level and some backlog of the δ1-cyclin expression at early stages of embryogenesis.

  20. Sulforaphane induced cell cycle arrest in the G2/M phase via the blockade of cyclin B1/CDC2 in human ovarian cancer cells

    PubMed Central

    2013-01-01

    Background Malignant tumors are the single most common cause of death and the mortality rate of ovarian cancer is the highest among gynecological disorders. The excision of benign tumors is generally followed by complete recovery; however, the activity of cancer cells often results in rapid proliferation even after the tumor has been excised completely. Thus, clinical treatment must be supplemented by auxiliary chemotherapy or radiotherapy. Sulforaphane (SFN) is an extract from the mustard family recognized for its anti-oxidation abilities, phase 2 enzyme induction, and anti-tumor activity. Methods This study investigated the cell cycle arrest in G2/M by SFN and the expression of cyclin B1, Cdc2, and the cyclin B1/CDC2 complex in PA-1 cells using western blotting and co-IP western blotting. Results This study investigated the anticancer effects of dietary isothiocyanate SFN on ovarian cancer, using cancer cells line PA-1. SFN-treated cells accumulated in metaphase by CDC2 down-regulation and dissociation of the cyclin B1/CDC2 complex. Conclusion Our findings suggest that, in addition to the known effects on cancer prevention, SFN may also provide antitumor activity in established ovarian cancer. PMID:23799914

  1. MicroRNA-520b Inhibits Growth of Hepatoma Cells by Targeting MEKK2 and Cyclin D1

    PubMed Central

    Zhang, Junping; Wang, Tao; Ye, Lihong; Zhang, Xiaodong

    2012-01-01

    Growing evidence indicates that the deregulation of microRNAs (miRNAs) contributes to the tumorigenesis. We previously revealed that microRNA-520b (miR-520b) was involved in the complement attack and migration of breast cancer cells. In this report, we show that miR-520b is an important miRNA in the development of hepatocellular carcinoma (HCC). Our data showed that the expression levels of miR-520b were significantly reduced in clinical HCC tissues and hepatoma cell lines. We observed that the introduction of miR-520b dramatically suppressed the growth of hepatoma cells by colony formation assays, 5-ethynyl-2-deoxyuridine (EdU) incorporation assays and 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Moreover, ectopic expression of miR-520b was able to inhibit the growth of hepatoma cells in nude mice. Further studies revealed that the mitogen-activated protein kinase kinase kinase 2 (MEKK2) and cyclin D1 were two of direct target genes of miR-520b. Silencing of MEKK2 or cyclin D1 was able to inhibit the growth of hepatoma cells in vitro and in vivo, which is consistent with the effect of miR-520b overexpression on the growth of hepatoma cells. In addition, miR-520b significantly decreased the phosphorylation levels of c-Jun N-terminal kinase (p-JNK, a downstream effector of MEKK2) or retinoblastoma (p-Rb, a downstream effector of cyclin D1). In conclusion, miR-520b is able to inhibit the growth of hepatoma cells by targeting MEKK2 or cyclin D1 in vitro and in vivo. Our findings provide new insights into the role of miR-520b in the development of HCC, and implicate the potential application of miR-520b in cancer therapy. PMID:22319632

  2. C-reactive protein promotes acute kidney injury via Smad3-dependent inhibition of CDK2/cyclin E.

    PubMed

    Lai, Weiyan; Tang, Ying; Huang, Xiao R; Ming-Kuen Tang, Patrick; Xu, Anping; Szalai, Alexander J; Lou, Tan-Qi; Lan, Hui Y

    2016-09-01

    Acute kidney injury (AKI) is exacerbated in C-reactive protein transgenic mice but alleviated in Smad3 knockout mice. Here we used C-reactive protein transgenic/Smad3 wild-type and C-reactive protein transgenic/Smad3 knockout mice to investigate the signaling mechanisms by which C-reactive protein promotes AKI. Serum creatinine was elevated, and the extent of tubular epithelial cell necrosis following ischemia/reperfusion-induced AKI was greater in C-reactive protein transgenics but was blunted when Smad3 was deleted. Exacerbation of AKI in C-reactive protein transgenics was associated with increased TGF-β/Smad3 signaling and expression of the cyclin kinase inhibitor p27, but decreased phosphorylated CDK2 and expression of cyclin E. Concomitantly, tubular epithelial cell proliferation was arrested at the G1 phase in C-reactive protein transgenics with fewer cells entering the S-phase cell cycle as evidenced by fewer bromodeoxyuridine-positive cells. In contrast, the protection from AKI in C-reactive protein transgenic/Smad3 knockout mice was associated with decreased expression of p27 and promotion of CDK2/cyclin E-dependent G1/S transition of tubular epithelial cells. In vitro studies using tubular epithelial cells showed that C-reactive protein activates Smad3 via both TGF-β-dependent and ERK/MAPK cross talk mechanisms, Smad3 bound directly to p27, and blockade of Smad3 or the Fc receptor CD32 prevented C-reactive protein-induced p27-dependent G1 cell cycle arrest. In vivo, treatment of C-reactive protein transgenics with a Smad3 inhibitor largely improved AKI outcomes. Thus, C-reactive protein may promote AKI by impairing tubular epithelial cell regeneration via the CD32-Smad3-p27-driven inhibition of the CDK2/cyclin E complex. Targeting Smad3 may offer a new treatment approach for AKI. PMID:27470679

  3. Expression of Cyclin D1 and P16 in Esophageal Squamous Cell Carcinoma

    PubMed Central

    Dey, Biswajit; Raphael, Vandana; Khonglah, Yookarin; GiriLynrah, Kyrshanlang

    2015-01-01

    BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the lethal cancers with a high incidence rate in Asia. Many genes including cyclin D1 and p16 play important role in its carcinogenesis. We aimed to analyze the expressions of cyclin D1 and p16 with the various clinicopathological characteristics of ESCC. METHODS We examined 30 biopsy samples of ESCC for cyclin D1 and p16 protein expressions using immunohistochemistry. Immunointensity was classified as no immunostaining (-), weakly immunostaining (+), weak immunostaining (++) and strongly positive immunostaining (+++). RESULTS Out of the 30 cases, positive expression of cyclin D1 was detected in 26 cases (86.7%). The percentage of tumors with invasion to the adventitia (88.2%), lymph node metastasis (87.5%), and tumors which were poorly differentiated (92.9%) were higher in cyclin D1 positive tumors than in the cyclin D1 negative tumors. However no significant association was found between cyclin D1 expression and the different clinicopathological parameters.There were 22 cases of ESCC (73.3 %) which showed negativity for p16. The percentage of tumors with invasion to the adventitia (82.4%) and poorly differentiated tumors (92.9%) were higher in the p16 negative tumors than in the p16 positive tumors. There was significant association between the histological grade and p16 expression (p=0.012). However, there were no significant association with regard to site, size and lymph node status of the tumors and p16 expression. CONCLUSION The study shows that alterations of cyclin D1 and p16 play an important role in ESCC. Loss of p16 expression was associated with poor differentiation. PMID:26609350

  4. Cyclin-Dependent Kinase Regulation of Diurnal Transcription in Chlamydomonas

    PubMed Central

    Cross, Frederick R.

    2015-01-01

    We analyzed global transcriptome changes during synchronized cell division in the green alga Chlamydomonas reinhardtii. The Chlamydomonas cell cycle consists of a long G1 phase, followed by an S/M phase with multiple rapid, alternating rounds of DNA replication and segregation. We found that the S/M period is associated with strong induction of ∼2300 genes, many with conserved roles in DNA replication or cell division. Other genes, including many involved in photosynthesis, are reciprocally downregulated in S/M, suggesting a gene expression split correlating with the temporal separation between G1 and S/M. The Chlamydomonas cell cycle is synchronized by light-dark cycles, so in principle, these transcriptional changes could be directly responsive to light or to metabolic cues. Alternatively, cell-cycle-periodic transcription may be directly regulated by cyclin-dependent kinases. To distinguish between these possibilities, we analyzed transcriptional profiles of mutants in the kinases CDKA and CDKB, as well as other mutants with distinct cell cycle blocks. Initial cell-cycle-periodic expression changes are largely CDK independent, but later regulation (induction and repression) is under differential control by CDKA and CDKB. Deviation from the wild-type transcriptional program in diverse cell cycle mutants will be an informative phenotype for further characterization of the Chlamydomonas cell cycle. PMID:26475866

  5. Cyclin-dependent kinase inhibitor therapy for hematologic malignancies

    PubMed Central

    Bose, Prithviraj; Simmons, Gary L; Grant, Steven

    2014-01-01

    INTRODUCTION Cyclin-dependent kinases (CDKs) regulate cell cycle progression. Certain CDKs (e.g., CDK7, CDK9) also control cellular transcription. Consequently, CDKs represent attractive targets for anti-cancer drug development, as their aberrant expression is common in diverse malignancies, and CDK inhibition can trigger apoptosis. CDK inhibition may be particularly successful in hematologic malignancies, which are more sensitive to inhibition of cell cycling and apoptosis induction. AREAS COVERED A number of CDK inhibitors, ranging from pan-CDK inhibitors such as flavopiridol (alvocidib) to highly selective inhibitors of specific CDKs (e.g., CDK4/6), such as PD0332991, that are currently in various phases of development, are profiled in this review. Flavopiridol induces cell cycle arrest, and globally represses transcription via CDK9 inhibition. The latter may represent its major mechanism of action via down-regulation of multiple short-lived proteins. In early phase trials, flavopiridol has shown encouraging efficacy across a wide spectrum of hematologic malignancies. Early results with dinaciclib and PD0332991 also appear promising. EXPERT OPINION In general, the anti-tumor efficacy of CDK inhibitor monotherapy is modest, and rational combinations are being explored, including those involving other targeted agents. While selective CDK4/6 inhibition might be effective against certain malignancies, broad spectrum CDK inhibition will likely be required for most cancers. PMID:23647051

  6. Cyclin-Dependent Kinase Inhibitors as Anticancer Therapeutics.

    PubMed

    Law, Mary E; Corsino, Patrick E; Narayan, Satya; Law, Brian K

    2015-11-01

    Cyclin-dependent kinases (CDKs) have been considered promising drug targets for a number of years, but most CDK inhibitors have failed rigorous clinical testing. Recent studies demonstrating clear anticancer efficacy and reduced toxicity of CDK4/6 inhibitors such as palbociclib and multi-CDK inhibitors such as dinaciclib have rejuvenated the field. Favorable results with palbociclib and its recent U.S. Food and Drug Administration approval demonstrate that CDK inhibitors with narrow selectivity profiles can have clinical utility for therapy based on individual tumor genetics. A brief overview of results obtained with ATP-competitive inhibitors such as palbociclib and dinaciclib is presented, followed by a compilation of new avenues that have been pursued toward the development of novel, non-ATP-competitive CDK inhibitors. These creative ways to develop CDK inhibitors are presented along with crystal structures of these agents complexed with CDK2 to highlight differences in their binding sites and mechanisms of action. The recent successes of CDK inhibitors in the clinic, combined with the potential for structure-based routes to the development of non-ATP-competitive CDK inhibitors, and evidence that CDK inhibitors may have use in suppressing chromosomal instability and in synthetic lethal drug combinations inspire optimism that CDK inhibitors will become important weapons in the fight against cancer.

  7. Stage-specific requirement for cyclin D1 in glial progenitor cells of the cerebral cortex.

    PubMed

    Nobs, Lionel; Baranek, Constanze; Nestel, Sigrun; Kulik, Akos; Kapfhammer, Josef; Nitsch, Cordula; Atanasoski, Suzana

    2014-05-01

    Despite the vast abundance of glial progenitor cells in the mouse brain parenchyma, little is known about the molecular mechanisms driving their proliferation in the adult. Here we unravel a critical role of the G1 cell cycle regulator cyclin D1 in controlling cell division of glial cells in the cortical grey matter. We detect cyclin D1 expression in Olig2-immunopositive (Olig2+) oligodendrocyte progenitor cells, as well as in Iba1+ microglia and S100β+ astrocytes in cortices of 3-month-old mice. Analysis of cyclin D1-deficient mice reveals a cell and stage-specific molecular control of cell cycle progression in the various glial lineages. While proliferation of fast dividing Olig2+ cells at early postnatal stages becomes gradually dependent on cyclin D1, this particular G1 regulator is strictly required for the slow divisions of Olig2+/NG2+ oligodendrocyte progenitors in the adult cerebral cortex. Further, we find that the population of mature oligodendrocytes is markedly reduced in the absence of cyclin D1, leading to a significant decrease in the number of myelinated axons in both the prefrontal cortex and the corpus callosum of 8-month-old mutant mice. In contrast, the pool of Iba1+ cells is diminished already at postnatal day 3 in the absence of cyclin D1, while the number of S100β+ astrocytes remains unchanged in the mutant.

  8. Novel role for cyclin-dependent kinase 2 in neuregulin-induced acetylcholine receptor epsilon subunit expression in differentiated myotubes.

    PubMed

    Lu, Gang; Seta, Karen A; Millhorn, David E

    2005-06-10

    Cyclin-dependent kinases (CDKs) are a family of evolutionarily conserved serine/threonine kinases. CDK2 acts as a checkpoint for the G(1)/S transition in the cell cycle. Despite a down-regulation of CDK2 activity in postmitotic cells, many cell types, including muscle cells, maintain abundant levels of CDK2 protein. This led us to hypothesize that CDK2 may have a function in postmitotic cells. We show here for the first time that CDK2 can be activated by neuregulin (NRG) in differentiated C2C12 myotubes. In addition, this activity is required for expression of the acetylcholine receptor (AChR) epsilon subunit. The switch from the fetal AChRgamma subunit to the adult-type AChRepsilon is required for synapse maturation and the neuromuscular junction. Inhibition of CDK2 activity with either the specific CDK2 inhibitory peptide Tat-LFG or by RNA interference abolished neuregulin-induced AChRepsilon expression. Neuregulin-induced activation of CDK2 also depended on the ErbB receptor, MAPK, and PI3K, all of which have previously been shown to be required for AChRepsilon expression. Neuregulin regulated CDK2 activity through coordinating phosphorylation of CDK2 on Thr-160, accumulation of CDK2 in the nucleus, and down-regulation of the CDK2 inhibitory protein p27 in the nucleus. In addition, we also observed a novel mechanism of regulation of CDK2 activity by a low molecular weight variant of cyclin E in response to NRG. These findings establish CDK2 as an intermediate molecule that integrates NRG-activated signals from both the MAPK and PI3K pathways to AChRepsilon expression and reveal an undiscovered physiological role for CDK2 in postmitotic cells. PMID:15824106

  9. c-Jun/AP-1 pathway-mediated cyclin D1 expression participates in low dose arsenite-induced transformation in mouse epidermal JB6 Cl41 cells

    SciTech Connect

    Zhang Dongyun; Li Jingxia; Gao Jimin; Huang Chuanshu

    2009-02-15

    Arsenic is a well-documented human carcinogen associated with skin carcinogenesis. Our previous work reveals that arsenite exposure is able to induce cell transformation in mouse epidermal cell JB6 Cl41 through the activation of ERK, rather than JNK pathway. Our current studies further evaluate downstream pathway in low dose arsenite-induced cell transformation in JB6 Cl41 cells. Our results showed that treatment of cells with low dose arsenite induced activation of c-Jun/AP-1 pathway, and ectopic expression of dominant negative mutant of c-Jun (TAM67) blocked arsenite-induced transformation. Furthermore, our data indicated that cyclin D1 was an important downstream molecule involved in c-Jun/AP-1-mediated cell transformation upon low dose arsenite exposure, because inhibition of cyclin D1 expression by its specific siRNA in the JB6 Cl41 cells resulted in impairment of anchorage-independent growth of cells induced by low dose arsenite. Collectively, our results demonstrate that c-Jun/AP-1-mediated cyclin D1 expression is at least one of the key events implicated in cell transformation upon low dose arsenite exposure.

  10. MiR-34a Promotes Osteogenic Differentiation of Human Adipose-Derived Stem Cells via the RBP2/NOTCH1/CYCLIN D1 Coregulatory Network.

    PubMed

    Fan, Cong; Jia, Lingfei; Zheng, Yunfei; Jin, Chanyuan; Liu, Yunsong; Liu, Hao; Zhou, Yongsheng

    2016-08-01

    MiR-34a was demonstrated to be upregulated during the osteogenic differentiation of human adipose-derived stem cells (hASCs). Overexpression of miR-34a significantly increased alkaline phosphatase activity, mineralization capacity, and the expression of osteogenesis-associated genes in hASCs in vitro. Enhanced heterotopic bone formation in vivo was also observed upon overexpression of miR-34a in hASCs. Mechanistic investigations revealed that miR-34a inhibited the expression of retinoblastoma binding protein 2 (RBP2) and reduced the luciferase activity of reporter gene construct comprising putative miR-34a binding sites in the 3' UTR of RBP2. Moreover, miR-34a downregulated the expression of NOTCH1 and CYCLIN D1 and upregulated the expression of RUNX2 by targeting RBP2, NOTCH1, and CYCLIN D1. Taken together, our results suggested that miR-34a promotes the osteogenic differentiation of hASCs via the RBP2/NOTCH1/CYCLIN D1 coregulatory network, indicating that miR-34a-targeted therapy could be a valuable approach to promote bone regeneration. PMID:27453008

  11. CYCD3 D-type cyclins regulate cambial cell proliferation and secondary growth in Arabidopsis

    PubMed Central

    Collins, Carl; Maruthi, N. M.; Jahn, Courtney E.

    2015-01-01

    A major proportion of plant biomass is derived from the activity of the cambium, a lateral meristem responsible for vascular tissue formation and radial organ enlargement in a process termed secondary growth. In contrast to our relatively good understanding of the regulation of primary meristems, remarkably little is known concerning the mechanisms controlling secondary growth, particularly how cambial cell divisions are regulated and integrated with vascular differentiation. A genetic loss-of-function approach was used here to reveal a rate-limiting role for the Arabidopsis CYCLIN D3 (CYCD3) subgroup of cell-cycle genes in the control of cambial cell proliferation and secondary growth, providing conclusive evidence of a direct link between the cell cycle and vascular development. It is shown that all three CYCD3 genes are specifically expressed in the cambium throughout vascular development. Analysis of a triple loss-of-function CYCD3 mutant revealed a requirement for CYCD3 in promoting the cambial cell cycle since mutant stems and hypocotyls showed a marked reduction in diameter linked to reduced mitotic activity in the cambium. Conversely, loss of CYCD3 provoked an increase in xylem cell size and the expression of differentiation markers, showing that CYCD3 is required to restrain the differentiation of xylem precursor cells. Together, our data show that tight control of cambial cell division through developmental- and cell type-specific regulation of CYCD3 is required for normal vascular development, constituting part of a novel mechanism controlling organ growth in higher plants. PMID:26022252

  12. Cyclin-Dependent Kinase Inhibitor 1a (p21) Modulates Response to Cocaine and Motivated Behaviors.

    PubMed

    Scholpa, Natalie E; Briggs, Sherri B; Wagner, John J; Cummings, Brian S

    2016-04-01

    This study investigated the functional role of cyclin-dependent kinase inhibitor 1a (Cdkn1a or p21) in cocaine-induced responses using a knockout mouse model. Acute locomotor activity after cocaine administration (15 mg/kg, i.p.) was decreased in p21(-/-) mice, whereas cocaine-induced place preference was enhanced. Interestingly, κ-opioid-induced place aversion was also significantly enhanced. Concentration-dependent analysis of locomotor activity in response to cocaine demonstrated a rightward shift in the p21(-/-) mice. Pretreatment with a 5-hydroxytryptamine receptor antagonist did not alter the enhancement of cocaine-induced conditioned place preference in p21(-/-) mice, indicating a lack of involvement of serotonergic signaling in this response. Cocaine exposure increased p21 expression exclusively in the ventral sector of the hippocampus of rodents after either contingent or noncontingent drug administration. Increased p21 expression was accompanied by increased histone acetylation of the p21 promoter region in rats. Finally, increased neurogenesis in the dorsal hippocampus of p21(-/-) mice was also observed. These results show that functional loss of p21 altered the acute locomotor response to cocaine and the conditioned responses to either rewarding or aversive stimuli. Collectively, these findings demonstrate a previously unreported involvement of p21 in modulating responses to cocaine and in motivated behaviors.

  13. Cytoplasmic cyclin D1 regulates cell invasion and metastasis through the phosphorylation of paxillin

    PubMed Central

    Fusté, Noel P.; Fernández-Hernández, Rita; Cemeli, Tània; Mirantes, Cristina; Pedraza, Neus; Rafel, Marta; Torres-Rosell, Jordi; Colomina, Neus; Ferrezuelo, Francisco; Dolcet, Xavier; Garí, Eloi

    2016-01-01

    Cyclin D1 (Ccnd1) together with its binding partner Cdk4 act as a transcriptional regulator to control cell proliferation and migration, and abnormal Ccnd1·Cdk4 expression promotes tumour growth and metastasis. While different nuclear Ccnd1·Cdk4 targets participating in cell proliferation and tissue development have been identified, little is known about how Ccnd1·Cdk4 controls cell adherence and invasion. Here, we show that the focal adhesion component paxillin is a cytoplasmic substrate of Ccnd1·Cdk4. This complex phosphorylates a fraction of paxillin specifically associated to the cell membrane, and promotes Rac1 activation, thereby triggering membrane ruffling and cell invasion in both normal fibroblasts and tumour cells. Our results demonstrate that localization of Ccnd1·Cdk4 to the cytoplasm does not simply act to restrain cell proliferation, but constitutes a functionally relevant mechanism operating under normal and pathological conditions to control cell adhesion, migration and metastasis through activation of a Ccnd1·Cdk4-paxillin-Rac1 axis. PMID:27181366

  14. Expression of cell-cycle regulatory proteins BUBR1, MAD2, Aurora A, cyclin A and cyclin E in invasive ductal breast carcinomas.

    PubMed

    Du, Juan; Du, Qiang; Zhang, Yang; Sajdik, Constantin; Ruan, Yuan; Tian, Xin-xia; Fang, Wei-gang

    2011-06-01

    Cyclin A, cyclin E, BUBR1, MAD2 and Aurora A are all cell-cycle regulatory proteins and have been proven to play crucial roles in carcinogenesis. However, their expression patterns in invasive ductal breast carcinoma (IDBC) are controversial and unclear. In this study, we examined the expression status of these candidate proteins in a set of 117 invasive ductal carcinomas, and evaluated their associations with known clinicopathological parameters and the expressions of estrogen receptor, progesterone receptor, Ki-67 and Her-2. Univariate and multivariate data analyses both displayed that positive BUBR1 expression was associated with a high Ki-67 labeling index, and negative MAD2 expression was associated with Her-2 overexpression. Positive BUBR1 expression was also associated with a high histological tumor grade in univariate analysis, but not in multivariate analysis. In addition, high Aurora A expression was weakly associated with lymph node metastasis, and cyclin A was strongly associated with the expression of cyclin E in both univariate and multivariate models. In conclusion, this study suggests that evaluation of BUBR1, MAD2 and Aurora A expression levels is likely to improve accuracy of prognostic predictions in IDBC.

  15. Cyc17, a meiosis-specific cyclin, is essential for anaphase initiation and chromosome segregation in Tetrahymena thermophila.

    PubMed

    Yan, Guan-Xiong; Dang, Huai; Tian, Miao; Zhang, Jing; Shodhan, Anura; Ning, Ying-Zhi; Xiong, Jie; Miao, Wei

    2016-07-17

    Although the role of cyclins in controlling nuclear division is well established, their function in ciliate meiosis remains unknown. In ciliates, the cyclin family has undergone massive expansion which suggests that diverse cell cycle systems exist, and this warrants further investigation. A screen for cyclins in the model ciliate Tetrahymena thermophila showed that there are 34 cyclins in this organism. Only 1 cyclin, Cyc17, contains the complete cyclin core and is specifically expressed during meiosis. Deletion of CYC17 led to meiotic arrest at the diakinesis-like metaphase I stage. Expression of genes involved in DNA metabolism and chromosome organization (chromatin remodeling and basic chromosomal structure) was repressed in cyc17 knockout matings. Further investigation suggested that Cyc17 is involved in regulating spindle pole attachment, and is thus essential for chromosome segregation at meiosis. These findings suggest a simple model in which chromosome segregation is influenced by Cyc17.

  16. Cyc17, a meiosis-specific cyclin, is essential for anaphase initiation and chromosome segregation in Tetrahymena thermophila.

    PubMed

    Yan, Guan-Xiong; Dang, Huai; Tian, Miao; Zhang, Jing; Shodhan, Anura; Ning, Ying-Zhi; Xiong, Jie; Miao, Wei

    2016-07-17

    Although the role of cyclins in controlling nuclear division is well established, their function in ciliate meiosis remains unknown. In ciliates, the cyclin family has undergone massive expansion which suggests that diverse cell cycle systems exist, and this warrants further investigation. A screen for cyclins in the model ciliate Tetrahymena thermophila showed that there are 34 cyclins in this organism. Only 1 cyclin, Cyc17, contains the complete cyclin core and is specifically expressed during meiosis. Deletion of CYC17 led to meiotic arrest at the diakinesis-like metaphase I stage. Expression of genes involved in DNA metabolism and chromosome organization (chromatin remodeling and basic chromosomal structure) was repressed in cyc17 knockout matings. Further investigation suggested that Cyc17 is involved in regulating spindle pole attachment, and is thus essential for chromosome segregation at meiosis. These findings suggest a simple model in which chromosome segregation is influenced by Cyc17. PMID:27192402

  17. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes

    PubMed Central

    Ferguson, David J. P.; Kaindama, Mbinda L.; Brusini, Lorenzo; Joshi, Nimitray; Rchiad, Zineb; Brady, Declan; Guttery, David S.; Wheatley, Sally P.; Yamano, Hiroyuki; Holder, Anthony A.; Pain, Arnab; Wickstead, Bill; Tewari, Rita

    2015-01-01

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei. PMID:26565797

  18. Cdk5-mediated inhibition of APC/C-Cdh1 switches on the cyclin D1-Cdk4-pRb pathway causing aberrant S-phase entry of postmitotic neurons

    PubMed Central

    Veas-Pérez de Tudela, Miguel; Maestre, Carolina; Delgado-Esteban, María; Bolaños, Juan P.; Almeida, Angeles

    2015-01-01

    The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that regulates cell cycle progression in proliferating cells. To enter the S-phase, APC/C must be inactivated by phosphorylation of its cofactor, Cdh1. In post-mitotic cells such as neurons APC/C-Cdh1 complex is highly active and responsible for the continuous degradation of mitotic cyclins. However, the specific molecular pathway that determines neuronal cell cycle blockade in post-mitotic neurons is unknown. Here, we show that activation of glutamatergic receptors in rat cortical primary neurons endogenously triggers cyclin-dependent kinase-5 (Cdk5)-mediated phosphorylation of Cdh1 leading to its cytoplasmic accumulation and disassembly from the APC3 core protein, causing APC/C inactivation. Conversely, pharmacological or genetic inhibition of Cdk5 promotes Cdh1 ubiquitination and proteasomal degradation. Furthermore, we show that Cdk5-mediated phosphorylation and inactivation of Cdh1 leads to p27 depletion, which switches on the cyclin D1-cyclin-dependent kinase-4 (Cdk4)-retinoblastoma protein (pRb) pathway to allow the S-phase entry of neurons. However, neurons do not proceed through the cell cycle and die by apoptosis. These results indicate that APC/C-Cdh1 actively suppresses an aberrant cell cycle entry and death of neurons, highlighting its critical function in neuroprotection. PMID:26658992

  19. Negative regulation of cyclin-dependent kinase 5 targets by protein kinase C

    PubMed Central

    Sahin, Bogachan; Hawasli, Ammar H.; Greene, Robert W.; Molkentin, Jeffery D.; Bibb, James A.

    2008-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed protein serine/threonine kinase essential for brain development and implicated in synaptic plasticity, dopaminergic neurotransmission, drug addiction, and neurodegenerative disorders. Relatively little is known about the molecular mechanisms that regulate the activity of Cdk5 in vivo. In order to determine whether protein kinase C (PKC) regulates Cdk5 activity in the central nervous system, the phosphorylation levels of two Cdk5 substrates were evaluated under conditions of altered PKC activity in vivo. Treatment of acute striatal slices with a PKC-activating phorbol ester caused a time- and dose-dependent decrease in the levels of phospho-Ser6 inhibitor-1, phospho-Ser67 inhibitor-1, and phospho-Thr75 dopamine- and cAMP-regulated phosphoprotein, Mr 32,000 (DARPP-32). This effect was reversed by the PKC inhibitor, Ro-32-0432. Moreover, phospho-Ser6 inhibitor-1, phospho-Ser67 inhibitor-1, and phospho-Thr75 DARPP-32 levels were elevated in brain tissue from mice lacking the gene for PKC-α. PKC did not phosphorylate Cdk5 or its cofactor, p25, in vitro. Striatal levels of the Cdk5 cofactor, p35, did not change in response to phorbol ester treatment. Furthermore, Cdk5 immunoprecipitated from striatal slices treated with phorbol ester had unaltered activity toward a control substrate in vitro. These results suggest that PKC exerts its effects on the phosphorylation state of Cdk5 substrates through an indirect mechanism that may involve the regulatory binding partners of Cdk5 other than its neuronal cofactors. PMID:18190909

  20. Negative regulation of cyclin-dependent kinase 5 targets by protein kinase C.

    PubMed

    Sahin, Bogachan; Hawasli, Ammar H; Greene, Robert W; Molkentin, Jeffery D; Bibb, James A

    2008-03-10

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed protein serine/threonine kinase essential for brain development and implicated in synaptic plasticity, dopaminergic neurotransmission, drug addiction, and neurodegenerative disorders. Relatively little is known about the molecular mechanisms that regulate the activity of Cdk5 in vivo. In order to determine whether protein kinase C (PKC) regulates Cdk5 activity in the central nervous system, the phosphorylation levels of two Cdk5 substrates were evaluated under conditions of altered PKC activity in vivo. Treatment of acute striatal slices with a PKC-activating phorbol ester caused a time- and dose-dependent decrease in the levels of phospho-Ser6 inhibitor-1, phospho-Ser67 inhibitor-1, and phospho-Thr75 dopamine- and cAMP-regulated phosphoprotein, Mr 32,000 (DARPP-32). This effect was reversed by the PKC inhibitor, Ro-32-0432. Moreover, phospho-Ser6 inhibitor-1, phospho-Ser67 inhibitor-1, and phospho-Thr75 DARPP-32 levels were elevated in brain tissue from mice lacking the gene for PKC-alpha. PKC did not phosphorylate Cdk5 or its cofactor, p25, in vitro. Striatal levels of the Cdk5 cofactor, p35, did not change in response to phorbol ester treatment. Furthermore, Cdk5 immunoprecipitated from striatal slices treated with phorbol ester had unaltered activity toward a control substrate in vitro. These results suggest that PKC exerts its effects on the phosphorylation state of Cdk5 substrates through an indirect mechanism that may involve the regulatory binding partners of Cdk5 other than its neuronal cofactors.

  1. CyPA-CD147-ERK1/2-cyclin D2 signaling pathway is upregulated during rat left ventricular hypertrophy.

    PubMed

    Tang, Fu-Cai; Wang, Hong-Yan; Ma, Ming-Ming; Guan, Tian-Wang; Pan, Long; Yao, Dun-Chen; Chen, Ya-Lan; Chen, Wei-Bei; Tu, Yong-Sheng; Fu, Xiao-Dong

    2015-08-25

    The changes of serum cyclophilin A (CyPA), its receptor CD147 and the downstream signaling pathway during the process of cardiac hypertrophy remain unknown. The present study aims to investigate the relationships between CyPA-CD147-ERK1/2-cyclin D2 signaling pathway and the development of cardiac hypertrophy. Left ventricular hypertrophy was prepared by 2-kidney, 2-clip in Sprague-Dawley rats and observed for 1 week, 4 and 8 weeks. Left ventricular hypertrophy was evaluated by ratio of left ventricular heart weight to body weight (LVW/BW) and cardiomyocyte cross sectional area (CSA). CyPA levels in serum were determined with a rat CyPA ELISA kit. Expressions of CyPA, CD147, phospho-ERK1/2 and cyclin D2 in left ventricular myocytes were determined by Western blot and immunostaining. Compared with sham groups, systolic blood pressure reached hypertensive levels at 4 weeks in 2K2C groups. LVW/BW and CSA in 2K2C groups were significantly increased at 4 and 8 weeks after clipping. ELISA results indicated a prominent increase in serum CyPA level associated with the degree of left ventricular hypertrophy. Western blot revealed that the expressions of CyPA, CD147, phospho-ERK1/2 and cyclin D2 in left ventricular tissues were also remarkably increased as the cardiac hypertrophy developed. The results of the present study demonstrates that serum CyPA and CyPA-CD147-ERK1/2-cyclin D2 signaling pathway in ventricular tissues are time-dependently upregulated and activated with the process of left ventricular hypertrophy. These data suggest that CyPA-CD147 signaling cascade might play a role in the pathogenesis of left ventricular hypertrophy, and CyPA might be a prognosticator of the degree of left ventricular hypertrophy. PMID:26300251

  2. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3.

    PubMed

    Qi, Peng; Lin, You-Shun; Song, Xian-Jun; Shen, Jin-Bo; Huang, Wei; Shan, Jun-Xiang; Zhu, Mei-Zhen; Jiang, Liwen; Gao, Ji-Ping; Lin, Hong-Xuan

    2012-12-01

    Increased crop yields are required to support rapid population growth worldwide. Grain weight is a key component of rice yield, but the underlying molecular mechanisms that control it remain elusive. Here, we report the cloning and characterization of a new quantitative trait locus (QTL) for the control of rice grain length, weight and yield. This locus, GL3.1, encodes a protein phosphatase kelch (PPKL) family - Ser/Thr phosphatase. GL3.1 is a member of the large grain WY3 variety, which is associated with weaker dephosphorylation activity than the small grain FAZ1 variety. GL3.1-WY3 influences protein phosphorylation in the spikelet to accelerate cell division, thereby resulting in longer grains and higher yields. Further studies have shown that GL3.1 directly dephosphorylates its substrate, Cyclin-T1;3, which has only been rarely studied in plants. The downregulation of Cyclin-T1;3 in rice resulted in a shorter grain, which indicates a novel function for Cyclin-T in cell cycle regulation. Our findings suggest a new mechanism for the regulation of grain size and yield that is driven through a novel phosphatase-mediated process that affects the phosphorylation of Cyclin-T1;3 during cell cycle progression, and thus provide new insight into the mechanisms underlying crop seed development. We bred a new variety containing the natural GL3.1 allele that demonstrated increased grain yield, which indicates that GL3.1 is a powerful tool for breeding high-yield crops. PMID:23147796

  3. Sulforaphane, a Dietary Isothiocyanate, Induces G2/M Arrest in Cervical Cancer Cells through CyclinB1 Downregulation and GADD45β/CDC2 Association

    PubMed Central

    Cheng, Ya-Min; Tsai, Ching-Chou; Hsu, Yi-Chiang

    2016-01-01

    Globally, cervical cancer is the most common malignancy affecting women. The main treatment methods for this type of cancer include conization or hysterectomy procedures. Sulforaphane (SFN) is a natural, compound-based drug derived from dietary isothiocyanates which has previously been shown to possess potent anti-tumor and chemopreventive effects against several types of cancer. The present study investigated the effects of SFN on anti-proliferation and G2/M phase cell cycle arrest in cervical cancer cell lines (Cx, CxWJ, and HeLa). We found that cytotoxicity is associated with an accumulation of cells in the G2/M phases of the cell-cycle. Treatment with SFN led to cell cycle arrest as well as the down-regulation of Cyclin B1 expression, but not of CDC2 expression. In addition, the effects of GADD45β gene activation in cell cycle arrest increase proportionally with the dose of SFN; however, mitotic delay and the inhibition of proliferation both depend on the dosage of SFN used to treat cancer cells. These results indicate that SFN may delay the development of cancer by arresting cell growth in the G2/M phase via down-regulation of Cyclin B1 gene expression, dissociation of the cyclin B1/CDC2 complex, and up-regulation of GADD45β proteins. PMID:27626412

  4. Downregulation of cyclin-dependent kinase inhibitor; p57{sup kip2}, is involved in the cell cycle progression of vascular smooth muscle cells

    SciTech Connect

    Nakano, Noritsugu . E-mail: norida@med.hokudai.ac.jp; Urasawa, Kazushi; Takagi, Yasushi; Saito, Takahiko; Kaneta, Satoshi; Ishikawa, Susumu; Higashi, Hideaki; Tsutsui, Hiroyuki; Hatakeyama, Masanori; Kitabatake, Akira

    2005-12-23

    Immature vascular smooth muscle cells (VSMCs) proliferate responding to extrinsic mitogens and accumulate in neointima after arterial injuries. Cell proliferation is positively regulated by cyclin/cyclin-dependent kinase (CDK) complex and negatively controlled by CDK inhibitors; CKIs such as p27{sup kip1} and p57{sup kip2}. In this study, embryonic rat thoracic aorta VSMCs; A10 were G0/G1 arrested by serum starvation, re-stimulated with serum, and harvested every four hours. Both CKIs co-expressed in quiescent VSMCs and rapidly diminished by stimulation. Protein level of p27{sup kip1} was regulated by both transcription and post-transcription, but that of p57{sup kip2} was mainly by post-transcription. Supplemental overexpression of p57{sup kip2} inhibited the activations of G1 cyclin/CDKs and subsequent hyperphosphorylations of all three retinoblastoma pocket proteins as well as G1/S transition of cell cycle. Our findings suggest that the downregulations of not only p27{sup kip1}, but also p57{sup kip2} responding to mitogenic stimulation, play key roles in the cell cycle progression of VSMCs.

  5. Sulforaphane, a Dietary Isothiocyanate, Induces G₂/M Arrest in Cervical Cancer Cells through CyclinB1 Downregulation and GADD45β/CDC2 Association.

    PubMed

    Cheng, Ya-Min; Tsai, Ching-Chou; Hsu, Yi-Chiang

    2016-01-01

    Globally, cervical cancer is the most common malignancy affecting women. The main treatment methods for this type of cancer include conization or hysterectomy procedures. Sulforaphane (SFN) is a natural, compound-based drug derived from dietary isothiocyanates which has previously been shown to possess potent anti-tumor and chemopreventive effects against several types of cancer. The present study investigated the effects of SFN on anti-proliferation and G₂/M phase cell cycle arrest in cervical cancer cell lines (Cx, CxWJ, and HeLa). We found that cytotoxicity is associated with an accumulation of cells in the G₂/M phases of the cell-cycle. Treatment with SFN led to cell cycle arrest as well as the down-regulation of Cyclin B1 expression, but not of CDC2 expression. In addition, the effects of GADD45β gene activation in cell cycle arrest increase proportionally with the dose of SFN; however, mitotic delay and the inhibition of proliferation both depend on the dosage of SFN used to treat cancer cells. These results indicate that SFN may delay the development of cancer by arresting cell growth in the G₂/M phase via down-regulation of Cyclin B1 gene expression, dissociation of the cyclin B1/CDC2 complex, and up-regulation of GADD45β proteins. PMID:27626412

  6. Protein-Protein Interaction for the De Novo Design of Cyclin-Dependent Kinase Peptide Inhibitors.

    PubMed

    Arumugasamy, Karthiga; Tripathi, Sunil Kumar; Singh, Poonam; Singh, Sanjeev Kumar

    2016-01-01

    The homology of the inhibitor binding site regions on the surface of cyclin-dependent kinases (CDKs) makes actual CDK inhibitors unable to bind specifically to their molecular targets. Most of them are ATP competitive inhibitors with low specificity that also affect the phosphorylation mechanisms of other nontarget kinases giving rise to harmful side effects. So, the search of specific and potent inhibitors able to bind to the desired CDK target is still a pending issue. Structure based drug design minimized the erroneous binding and increased the affinity of the inhibitor interaction. In the case of CDKs their activation and regulation mechanisms mainly depend on protein-protein interactions (PPIs). The design of drugs targeting these PPIs makes feasible and promising towards the discovery of new and specific CDK inhibitors. Development of peptide inhibitors for a target protein is an emerging approach in computer aided drug designing. This chapter describes in detail methodology for use of the VitAL-Viterbi algorithm for de novo peptide design of CDK2 inhibitors.

  7. The history and future of targeting cyclin-dependent kinases in cancer therapy

    PubMed Central

    Asghar, Uzma; Witkiewicz, Agnieszka K.; Turner, Nicholas C.; Knudsen, Erik S.

    2015-01-01

    Cancer represents a pathological manifestation of uncontrolled cell division; therefore, it has long been anticipated that our understanding of the basic principles of cell cycle control would result in effective cancer therapies. In particular, cyclin-dependent kinases (CDKs) that promote transition through the cell cycle were expected to be key therapeutic targets because many tumorigenic events ultimately drive proliferation by impinging on CDK4 or CDK6 complexes in the G1 phase of the cell cycle. Moreover, perturbations in chromosomal stability and aspects of S phase and G2/M control mediated by CDK2 and CDK1 are pivotal tumorigenic events. Translating this knowledge into successful clinical development of CDK inhibitors has historically been challenging, and numerous CDK inhibitors have demonstrated disappointing results in clinical trials. Here, we review the biology of CDKs, the rationale for therapeutically targeting discrete kinase complexes and historical clinical results of CDK inhibitors. We also discuss how CDK inhibitors with high selectivity (particularly for both CDK4 and CDK6), in combination with patient stratification, have resulted in more substantial clinical activity. PMID:25633797

  8. Cyclin-dependent kinase inhibitor dinaciclib potently synergizes with cisplatin in preclinical models of ovarian cancer

    PubMed Central

    Zhu, Xiu-Jie; Lin, Feng; Pan, Shi-Shi; Gong, Li-Hua; Qiu, Jian-Ge; Zhang, Wen-Ji; Jiang, Qi-Wei; Mei, Xiao-Long; Xue, You-Qiu; Qin, Wu-Ming; Shi, Zhi; Yan, Xiao-Jian

    2015-01-01

    Ovarian cancer is one of the most lethal of woman cancers, and its clinical therapeutic outcome currently is unsatisfied. Dinaciclib, a novel small molecule inhibitor of CDK1, CDK2, CDK5 and CDK9, is assessed in clinical trials for the treatment of several types of cancers. In this study, we investigated the anticancer effects and mechanisms of dinaciclib alone or combined with cisplatin in ovarian cancer. Dinaciclib alone actively induced cell growth inhibition, cell cycle arrest and apoptosis with the increased intracellular ROS levels, which were accompanied by obvious alterations of related proteins such as CDKs, Cyclins, Mcl-1, XIAP and survivin. Pretreatment with N-acety-L-cysteine significantly blocked ROS generation but only partially rescued apoptosis triggered by dinaciclib. Moreover, the combination of dinaciclib with cisplatin synergistically promoted cell cycle arrest and apoptosis, and inhibited the subcutaneous xenograft growth of ovarian cancer in nude mice. Altogether, dinaciclib potently synergizes with cisplatin in preclinical models of ovarian cancer, indicating this beneficial combinational therapy may be a promising strategy for treatment of ovarian cancer. PMID:25962959

  9. Cip/Kip cyclin-dependent protein kinase inhibitors and the road to polyploidy

    PubMed Central

    Ullah, Zakir; Lee, Chrissie Y; DePamphilis, Melvin L

    2009-01-01

    Cyclin-dependent kinases (CDKs) play a central role in the orderly transition from one phase of the eukaryotic mitotic cell division cycle to the next. In this context, p27Kip1 (one of the CIP/KIP family of CDK specific inhibitors in mammals) or its functional analogue in other eukarya prevents a premature transition from G1 to S-phase. Recent studies have revealed that expression of a second member of this family, p57Kip2, is induced as trophoblast stem (TS) cells differentiate into trophoblast giant (TG) cells. p57 then inhibits CDK1 activity, an enzyme essential for initiating mitosis, thereby triggering genome endoreduplication (multiple S-phases without an intervening mitosis). Expression of p21Cip1, the third member of this family, is also induced in during differentiation of TS cells into TG cells where it appears to play a role in suppressing the DNA damage response pathway. Given the fact that p21 and p57 are unique to mammals, the question arises as to whether one or both of these proteins are responsible for the induction and maintenance of polyploidy during mammalian development. PMID:19490616

  10. Cyclin-dependent kinase inhibitor dinaciclib potently synergizes with cisplatin in preclinical models of ovarian cancer.

    PubMed

    Chen, Xiu-Xiu; Xie, Feng-Feng; Zhu, Xiu-Jie; Lin, Feng; Pan, Shi-Shi; Gong, Li-Hua; Qiu, Jian-Ge; Zhang, Wen-Ji; Jiang, Qi-Wei; Mei, Xiao-Long; Xue, You-Qiu; Qin, Wu-Ming; Shi, Zhi; Yan, Xiao-Jian

    2015-06-20

    Ovarian cancer is one of the most lethal of woman cancers, and its clinical therapeutic outcome currently is unsatisfied. Dinaciclib, a novel small molecule inhibitor of CDK1, CDK2, CDK5 and CDK9, is assessed in clinical trials for the treatment of several types of cancers. In this study, we investigated the anticancer effects and mechanisms of dinaciclib alone or combined with cisplatin in ovarian cancer. Dinaciclib alone actively induced cell growth inhibition, cell cycle arrest and apoptosis with the increased intracellular ROS levels, which were accompanied by obvious alterations of related proteins such as CDKs, Cyclins, Mcl-1, XIAP and survivin. Pretreatment with N-acety-L-cysteine significantly blocked ROS generation but only partially rescued apoptosis triggered by dinaciclib. Moreover, the combination of dinaciclib with cisplatin synergistically promoted cell cycle arrest and apoptosis, and inhibited the subcutaneous xenograft growth of ovarian cancer in nude mice. Altogether, dinaciclib potently synergizes with cisplatin in preclinical models of ovarian cancer, indicating this beneficial combinational therapy may be a promising strategy for treatment of ovarian cancer. PMID:25962959

  11. The Indispensable Role of Cyclin-Dependent Kinase 1 in Skeletal Development

    PubMed Central

    Saito, Masanori; Mulati, Mieradili; Talib, S. Zakiah A.; Kaldis, Philipp; Takeda, Shu; Okawa, Atsushi; Inose, Hiroyuki

    2016-01-01

    Skeletal development is tightly regulated through the processes of chondrocyte proliferation and differentiation. Although the involvement of transcription and growth factors on the regulation of skeletal development has been extensively studied, the role of cell cycle regulatory proteins in this process remains elusive. To date, through cell-specific loss-of-function experiments in vivo, no cell cycle regulatory proteins have yet been conclusively shown to regulate skeletal development. Here, we demonstrate that cyclin-dependent kinase 1 (Cdk1) regulates skeletal development based on chondrocyte-specific loss-of-function experiments performed in a mouse model. Cdk1 is highly expressed in columnar proliferative chondrocytes and is greatly downregulated upon differentiation into hypertrophic chondrocytes. Cdk1 is essential for proper chondrocyte proliferation and deletion of Cdk1 resulted in accelerated differentiation of chondrocytes. In vitro and ex vivo analyses revealed that Cdk1 is an essential cell cycle regulatory protein for parathyroid hormone-related peptide (PTHrP) signaling pathway, which is critical to chondrocyte proliferation and differentiation. These results demonstrate that Cdk1 functions as a molecular switch from proliferation to hypertrophic differentiation of chondrocytes and thus is indispensable for skeletal development. Given the availability of inhibitors of Cdk1 activity, our results could provide insight for the treatment of diseases involving abnormal chondrocyte proliferation, such as osteoarthritis. PMID:26860366

  12. Development of highly potent and selective diaminothiazole inhibitors of cyclin-dependent kinases

    PubMed Central

    Schonbrunn, Ernst; Betzi, Stephane; Alam, Riazul; Martin, Mathew P.; Becker, Andreas; Han, Huijong; Francis, Rawle; Chakrasali, Ramappa; Jakkaraj, Sudhakar; Kazi, Aslamuzzaman; Sebti, Said M.; Cubitt, Christopher L.; Gebhard, Anthony W.; Hazlehurst, Lori A.; Tash, Joseph S.; Georg, Gunda I.

    2013-01-01

    Cyclin-dependent kinases (CDKs) are serine/threonine protein kinases that act as key regulatory elements in cell cycle progression. We describe the development of highly potent diaminothiazole inhibitors of CDK2 (IC50 = 0.0009 – 0.0015 µM) from a single hit compound with weak inhibitory activity (IC50 = 15 µM), discovered by high-throughput screening. Structure-based design was performed using 35 co-crystal structures of CDK2 liganded with distinct analogues of the parent compound. The profiling of compound 51 against a panel of 339 kinases revealed high selectivity for CDKs, with preference for CDK2 and CDK5 over CDK9, CDK1, CDK4 and CDK6. Compound 51 inhibited the proliferation of 13 out of 15 cancer cell lines with IC50 values between 0.27 and 6.9 µM, which correlated with the complete suppression of retinoblastoma phosphorylation and the onset of apoptosis. Combined, the results demonstrate the potential of this new inhibitors series for further development into CDK-specific chemical probes or therapeutics. PMID:23600925

  13. Regulation of IGF-1-dependent cyclin D1 and E expression by hEag1 channels in MCF-7 cells: the critical role of hEag1 channels in G1 phase progression.

    PubMed

    Borowiec, Anne-Sophie; Hague, Frédéric; Gouilleux-Gruart, Valérie; Lassoued, Kaiss; Ouadid-Ahidouch, Halima

    2011-05-01

    Insulin-like Growth Factor-1 (IGF-1) plays a key role in breast cancer development and cell cycle regulation. It has been demonstrated that IGF-1 stimulates cyclin expression, thus regulating the G1 to S phase transition of the cell cycle. Potassium (K(+)) channels are involved in the G1 phase progression of the cell cycle induced by growth factors. However, mechanisms that allow growth factors to cooperate with K(+) channels in order to modulate the G1 phase progression and cyclin expression remain unknown. Here, we focused on hEag1 K(+) channels which are over-expressed in breast cancer and are involved in the G1 phase progression of breast cancer cells (MCF-7). As expected, IGF-1 increased cyclin D1 and E expression of MCF-7 cells in a cyclic manner, whereas the increase of CDK4 and 2 levels was sustained. IGF-1 stimulated p21(WAF1/Cip1) expression with a kinetic similar to that of cyclin D1, however p27(Kip1) expression was insensitive to IGF-1. Interestingly, astemizole, a blocker of hEag1 channels, but not E4031, a blocker of HERG channels, inhibited the expression of both cyclins after 6-8h of co-stimulation with IGF-1. However, astemizole failed to modulate CDK4, CDK2, p21(WAF1/Cip1) and p27(Kip1) expression. The down-regulation of hEag1 by siRNA provoked a decrease in cyclin expression. This study is the first to demonstrate that K(+) channels such as hEag1 are directly involved in the IGF-1-induced up-regulation of cyclin D1 and E expression in MCF-7 cells. By identifying more specifically the temporal position of the arrest site induced by the inhibition of hEag1 channels, we confirmed that hEag1 activity is predominantly upstream of the arrest site induced by serum-deprivation, prior to the up-regulation of both cyclins D1 and E. This article is part of a Special Issue entitled: 11th European Symposium on Calcium. PMID:21315112

  14. Pyrazolo[3,4-c]pyridazines as novel and selective inhibitors of cyclin-dependent kinases.

    PubMed

    Braña, Miguel F; Cacho, Mónica; García, M Luisa; Mayoral, Elena P; López, Berta; de Pascual-Teresa, Beatriz; Ramos, Ana; Acero, Nuria; Llinares, Francisco; Muñoz-Mingarro, Dolores; Lozach, Olivier; Meijer, Laurent

    2005-11-01

    Pyrazolopyridazine 1a was identified in a high-throughput screening carried out by BASF Bioresearch Corp. (Worcester, MA) as a potent inhibitor of CDK1/cyclin B and shown to have selectivity for the CDK family. Analogues of the lead compound have been synthesized and their antitumor activities have been tested. A molecular model of the complex between the lead compound and the CDK2 ATP binding site has been built using a combination of conformational search and automated docking techniques. The stability of the resulting complex has been assessed by molecular dynamics simulations and the experimental results obtained for the synthesized analogues have been rationalized on the basis of the proposed binding mode for compound 1a. As a result of the SAR study, monofuryl 1o has been synthesized and is one of the most active compounds against CDK1 of this series.

  15. Extracellular alpha-synuclein induces calpain-dependent overactivation of cyclin-dependent kinase 5 in vitro.

    PubMed

    Czapski, Grzegorz A; Gąssowska, Magdalena; Wilkaniec, Anna; Cieślik, Magdalena; Adamczyk, Agata

    2013-09-17

    Extracellular alpha-synuclein (ASN) could be involved in the pathomechanism of Parkinson's disease (PD) via disturbances of calcium homeostasis, activation of nitric oxide synthase and oxidative/nitrosative stress. In this study we analyzed the role of cyclin-dependent kinase 5 (Cdk5) in the molecular mechanism(s) of ASN toxicity. We found that exposure of PC12 cells to ASN increases Cdk5 activity via calpain-dependent p25 formation and by enhancement of Cdk5 phosphorylation at Tyr15. Cdk5 and calpain inhibitors prevented ASN-evoked cell death. Our findings, indicating the participation of Cdk5 in ASN toxicity, provide new insight into how extracellular ASN may trigger dopaminergic cell dysfunction in PD.

  16. Selective cyclin-dependent kinase inhibitors discriminating between cell cycle and transcriptional kinases: future reality or utopia?

    PubMed

    Wesierska-Gadek, Józefa; Krystof, Vladimír

    2009-08-01

    Progression of the cell cycle is controlled by activating and inhibiting cellular factors. The delicate balance between these positive- and negative-acting regulators warrants proper cell cycle progression in normal cells and facilitates cellular response to a variety of stress stimuli. The increased activity of the positive regulators of the cell cycle in cancer cells is frequently accompanied by the loss or inactivation of the inhibitors of cyclin-dependent kinases (CDKs). The supplementation of the cellular CDK inhibitors by the pharmacological counterparts is a very promising therapeutic option. The generated pharmacological inhibitors of CDKs belong to different classes of compounds and display various CDK inhibitory features. In this article the action and specificity of CDK inhibitor roscovitine, belonging to the group of purine analogues, is reviewed and the rationale for dissecting the inhibitory action on cell cycle and transcriptional CDKs is discussed.

  17. Implication of cyclin-dependent kinase 5 in the neuroprotective properties of lithium.

    PubMed

    Jordà, E G; Verdaguer, E; Canudas, A M; Jiménez, A; Garcia de Arriba, S; Allgaier, C; Pallàs, M; Camins, A

    2005-01-01

    Although numerous studies have demonstrated a neuroprotective and anti-apoptotic role of lithium in neuronal cell cultures, the precise mechanism by which this occurs, remains to be elucidated. In this study, we evaluated the lithium-mediated neuroprotection against colchicine-induced apoptosis in cultured cerebellar granule neurons. Previously, it has been demonstrated that colchicine mediates apoptosis in cerebellar granule neurons through cytoskeletal alteration and activation of an intrinsic pro-apoptotic pathway. Recently we also demonstrated a potential role of cyclin-dependent kinase 5 (cdk5) in this pathway. Here we report that colchicine induces dephosphorylation in Ser-9 and phosphorylation in Tyr-216, and thus activation, of glycogen synthase kinase-3beta in cerebellar granule neurons, and that this modification is inhibited by the presence of 5 mM lithium. However, the selective glycogen synthase kinase-3beta inhibitors SB-415286 and SB-216763 were unable to prevent colchicine-induced apoptosis in these cells, suggesting that the anti-apoptotic activity of lithium is not mediated by glycogen synthase kinase-3beta under these conditions. On the other hand, 5 mM lithium prevented the colchicine-induced increase in cdk5 expression and breakdown of cdk5/p35 to cdk5/p25. In addition, we show that up-regulation of cdk5/p25 is unrelated to inhibition of the activity of myocyte enhancer factor 2, a pro-survival transcription factor. These data suggest a previously undescribed neuroprotective mechanism of lithium associated with the modulation of cdk5/p35 or cdk5/p25 expression.

  18. Regulation of hippocampal and behavioral excitability by cyclin-dependent kinase 5.

    PubMed

    Hawasli, Ammar H; Koovakkattu, Della; Hayashi, Kanehiro; Anderson, Anne E; Powell, Craig M; Sinton, Christopher M; Bibb, James A; Cooper, Donald C

    2009-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase that has been implicated in learning, synaptic plasticity, neurotransmission, and numerous neurological disorders. We previously showed that conditional loss of Cdk5 in adult mice enhanced hippocampal learning and plasticity via modulation of calpain-mediated N-methyl-D-aspartic acid receptor (NMDAR) degradation. In the present study, we characterize the enhanced synaptic plasticity and examine the effects of long-term Cdk5 loss on hippocampal excitability in adult mice. Field excitatory post-synaptic potentials (fEPSPs) from the Schaffer collateral CA1 subregion of the hippocampus (SC/CA1) reveal that loss of Cdk5 altered theta burst topography and enhanced post-tetanic potentiation. Since Cdk5 governs NMDAR NR2B subunit levels, we investigated the effects of long-term Cdk5 knockout on hippocampal neuronal excitability by measuring NMDAR-mediated fEPSP magnitudes and population-spike thresholds. Long-term loss of Cdk5 led to increased Mg(2+)-sensitive potentials and a lower threshold for epileptiform activity and seizures. Biochemical analyses were performed to better understand the role of Cdk5 in seizures. Induced-seizures in wild-type animals led to elevated amounts of p25, the Cdk5-activating cofactor. Long-term, but not acute, loss of Cdk5 led to decreased p25 levels, suggesting that Cdk5/p25 may be activated as a homeostatic mechanism to attenuate epileptiform activity. These findings indicate that Cdk5 regulates synaptic plasticity, controls neuronal and behavioral stimulus-induced excitability and may be a novel pharmacological target for cognitive and anticonvulsant therapies. PMID:19529798

  19. Correlation between Cyclin Dependent Kinases and Artemisinin-Induced Dormancy in Plasmodium falciparum In Vitro

    PubMed Central

    Gray, Karen-Ann; Gresty, Karryn J.; Chen, Nanhua; Zhang, Veronica; Gutteridge, Clare E.; Peatey, Christopher L.; Chavchich, Marina; Waters, Norman C.; Cheng, Qin

    2016-01-01

    Background Artemisinin-induced dormancy provides a plausible explanation for recrudescence following artemisinin monotherapy. This phenomenon shares similarities with cell cycle arrest where cyclin dependent kinases (CDKs) and cyclins play an important role. Methods Transcription profiles of Plasmodium falciparum CDKs and cyclins before and after dihydroartemisinin (DHA) treatment in three parasite lines, and the effect of CDK inhibitors on parasite recovery from DHA-induced dormancy were investigated. Results After DHA treatment, parasites enter a dormancy phase followed by a recovery phase. During the dormancy phase parasites up-regulate pfcrk1, pfcrk4, pfcyc2 and pfcyc4, and down-regulate pfmrk, pfpk5, pfpk6, pfcrk3, pfcyc1 and pfcyc3. When entering the recovery phase parasites immediately up-regulate all CDK and cyclin genes. Three CDK inhibitors, olomoucine, WR636638 and roscovitine, produced distinct effects on different phases of DHA-induced dormancy, blocking parasites recovery. Conclusions The up-regulation of PfCRK1 and PfCRK4, and down regulation of other CDKs and cyclins correlate with parasite survival in the dormant state. Changes in CDK expression are likely to negatively regulate parasite progression from G1 to S phase. These findings provide new insights into the mechanism of artemisinin-induced dormancy and cell cycle regulation of P. falciparum, opening new opportunities for preventing recrudescence following artemisinin treatment. PMID:27326764

  20. X-linked Inhibitor of Apoptosis Protein (XIAP) Regulation of Cyclin D1 Protein Expression and Cancer Cell Anchorage-independent Growth via Its E3 Ligase-mediated Protein Phosphatase 2A/c-Jun Axis*

    PubMed Central

    Cao, Zipeng; Zhang, Ruowen; Li, Jingxia; Huang, Haishan; Zhang, Dongyun; Zhang, Jingjie; Gao, Jimin; Chen, Jingyuan; Huang, Chuanshu

    2013-01-01

    The X-linked inhibitor of apoptosis protein (XIAP) is a well known potent inhibitor of apoptosis; however, it is also involved in other cancer cell biological behavior. In the current study, we discovered that XIAP and its E3 ligase played a crucial role in regulation of cyclin D1 expression in cancer cells. We found that deficiency of XIAP expression resulted in a marked reduction in cyclin D1 expression. Consistently, cell cycle transition and anchorage-independent cell growth were also attenuated in XIAP-deficient cancer cells compared with those of the parental wild-type cells. Subsequent studies demonstrated that E3 ligase activity within the RING domain of XIAP is crucial for its ability to regulate cyclin D1 transcription, cell cycle transition, and anchorage-independent cell growth by up-regulating transactivation of c-Jun/AP-1. Moreover, we found that E3 ligase within RING domain was required for XIAP inhibition of phosphatase PP2A activity by up-regulation of PP2A phosphorylation at Tyr-307 in its catalytic subunit. Such PP2A phosphorylation and inactivation resulted in phosphorylation and activation of its downstream target c-Jun in turn leading to cyclin D1 expression. Collectively, our studies uncovered a novel function of E3 ligase activity of XIAP in the up-regulation of cyclin D1 expression, providing significant insight into the understanding of the biomedical significance of overexpressed XIAP in cancer development, further offering a new molecular basis for utilizing XIAP E3 ligase as a cancer therapeutic target. PMID:23720779

  1. A chrysin derivative suppresses skin cancer growth by inhibiting cyclin-dependent kinases.

    PubMed

    Liu, Haidan; Liu, Kangdong; Huang, Zunnan; Park, Chan-Mi; Thimmegowda, N R; Jang, Jae-Hyuk; Ryoo, In-Ja; He, Long; Kim, Sun-Ok; Oi, Naomi; Lee, Ki Won; Soung, Nak-Kyun; Bode, Ann M; Yang, Yifeng; Zhou, Xinmin; Erikson, Raymond L; Ahn, Jong-Seog; Hwang, Joonsung; Kim, Kyoon Eon; Dong, Zigang; Kim, Bo-Yeon

    2013-09-01

    Chrysin (5,7-dihydroxyflavone), a natural flavonoid widely distributed in plants, reportedly has chemopreventive properties against various cancers. However, the anticancer activity of chrysin observed in in vivo studies has been disappointing. Here, we report that a chrysin derivative, referred to as compound 69407, more strongly inhibited EGF-induced neoplastic transformation of JB6 P(+) cells compared with chrysin. It attenuated cell cycle progression of EGF-stimulated cells at the G1 phase and inhibited the G1/S transition. It caused loss of retinoblastoma phosphorylation at both Ser-795 and Ser-807/811, the preferred sites phosphorylated by Cdk4/6 and Cdk2, respectively. It also suppressed anchorage-dependent and -independent growth of A431 human epidermoid carcinoma cells. Compound 69407 reduced tumor growth in the A431 mouse xenograft model and retinoblastoma phosphorylation at Ser-795 and Ser-807/811. Immunoprecipitation kinase assay results showed that compound 69407 attenuated endogenous Cdk4 and Cdk2 kinase activities in EGF-stimulated JB6 P(+) cells. Pulldown and in vitro kinase assay results indicated that compound 69407 directly binds with Cdk2 and Cdk4 in an ATP-independent manner and inhibited their kinase activities. A binding model between compound 69407 and a crystal structure of Cdk2 predicted that compound 69407 was located inside the Cdk2 allosteric binding site. The binding was further verified by a point mutation binding assay. Overall results indicated that compound 69407 is an ATP-noncompetitive cyclin-dependent kinase inhibitor with anti-tumor effects, which acts by binding inside the Cdk2 allosteric pocket. This study provides new insights for creating a general pharmacophore model to design and develop novel ATP-noncompetitive agents with chemopreventive or chemotherapeutic potency.

  2. A chrysin derivative suppresses skin cancer growth by inhibiting cyclin-dependent kinases.

    PubMed

    Liu, Haidan; Liu, Kangdong; Huang, Zunnan; Park, Chan-Mi; Thimmegowda, N R; Jang, Jae-Hyuk; Ryoo, In-Ja; He, Long; Kim, Sun-Ok; Oi, Naomi; Lee, Ki Won; Soung, Nak-Kyun; Bode, Ann M; Yang, Yifeng; Zhou, Xinmin; Erikson, Raymond L; Ahn, Jong-Seog; Hwang, Joonsung; Kim, Kyoon Eon; Dong, Zigang; Kim, Bo-Yeon

    2013-09-01

    Chrysin (5,7-dihydroxyflavone), a natural flavonoid widely distributed in plants, reportedly has chemopreventive properties against various cancers. However, the anticancer activity of chrysin observed in in vivo studies has been disappointing. Here, we report that a chrysin derivative, referred to as compound 69407, more strongly inhibited EGF-induced neoplastic transformation of JB6 P(+) cells compared with chrysin. It attenuated cell cycle progression of EGF-stimulated cells at the G1 phase and inhibited the G1/S transition. It caused loss of retinoblastoma phosphorylation at both Ser-795 and Ser-807/811, the preferred sites phosphorylated by Cdk4/6 and Cdk2, respectively. It also suppressed anchorage-dependent and -independent growth of A431 human epidermoid carcinoma cells. Compound 69407 reduced tumor growth in the A431 mouse xenograft model and retinoblastoma phosphorylation at Ser-795 and Ser-807/811. Immunoprecipitation kinase assay results showed that compound 69407 attenuated endogenous Cdk4 and Cdk2 kinase activities in EGF-stimulated JB6 P(+) cells. Pulldown and in vitro kinase assay results indicated that compound 69407 directly binds with Cdk2 and Cdk4 in an ATP-independent manner and inhibited their kinase activities. A binding model between compound 69407 and a crystal structure of Cdk2 predicted that compound 69407 was located inside the Cdk2 allosteric binding site. The binding was further verified by a point mutation binding assay. Overall results indicated that compound 69407 is an ATP-noncompetitive cyclin-dependent kinase inhibitor with anti-tumor effects, which acts by binding inside the Cdk2 allosteric pocket. This study provides new insights for creating a general pharmacophore model to design and develop novel ATP-noncompetitive agents with chemopreventive or chemotherapeutic potency. PMID:23888052

  3. Regulation of μ and δ opioid receptor functions: involvement of cyclin-dependent kinase 5

    PubMed Central

    Beaudry, H; Mercier-Blais, A-A; Delaygue, C; Lavoie, C; Parent, J-L; Neugebauer, W; Gendron, L

    2015-01-01

    Background and Purpose Phosphorylation of δ opioid receptors (DOP receptors) by cyclin-dependent kinase 5 (CDK5) was shown to regulate the trafficking of this receptor. Therefore, we aimed to determine the role of CDK5 in regulating DOP receptors in rats treated with morphine or with complete Freund's adjuvant (CFA). As μ (MOP) and DOP receptors are known to be co-regulated, we also sought to determine if CDK5-mediated regulation of DOP receptors also affects MOP receptor functions. Experimental Approach The role of CDK5 in regulating opioid receptors in CFA- and morphine-treated rats was studied using roscovitine as a CDK inhibitor and a cell-penetrant peptide mimicking the second intracellular loop of DOP receptors (C11-DOPri2). Opioid receptor functions were assessed in vivo in a series of behavioural experiments and correlated by measuring ERK1/2 activity in dorsal root ganglia homogenates. Key Results Chronic roscovitine treatment reduced the antinociceptive and antihyperalgesic effects of deltorphin II (Dlt II) in morphine- and CFA-treated rats respectively. Repeated administrations of C11-DOPri2 also robustly decreased Dlt II-induced analgesia. Interestingly, DAMGO-induced analgesia was significantly increased by roscovitine and C11-DOPri2. Concomitantly, in roscovitine-treated rats the Dlt II-induced ERK1/2 activation was decreased, whereas the DAMGO-induced ERK1/2 activation was increased. An acute roscovitine treatment had no effect on Dlt II- or DAMGO-induced analgesia. Conclusions and Implications Together, our results demonstrate that CDK5 is a key player in the regulation of DOP receptors in morphine- and CFA-treated rats and that the regulation of DOP receptors by CDK5 is sufficient to modulate MOP receptor functions through an indirect process. PMID:25598508

  4. Colony-stimulating Factor-1 Receptor Utilizes Multiple Signaling Pathways to Induce Cyclin D2 Expression

    PubMed Central

    Dey, Arunangsu; She, Hongyun; Kim, Leopold; Boruch, Allan; Guris, Deborah L.; Carlberg, Kristen; Sebti, Saïd M.; Woodley, David T.; Imamoto, Akira; Li, Wei

    2000-01-01

    Colony-stimulating factor-1 (CSF-1) induces expression of immediate early gene, such as c-myc and c-fos and delayed early genes such as D-type cyclins (D1 and D2), whose products play essential roles in the G1 to S phase transition of the cell cycle. Little is known, however, about the cytoplasmic signal transduction pathways that connect the surface CSF-1 receptor to these genes in the nucleus. We have investigated the signaling mechanism of CSF-1-induced D2 expression. Analyses of CSF-1 receptor autophosphorylation mutants show that, although certain individual mutation has a partial inhibitory effect, only multiple combined mutations completely block induction of D2 in response to CSF-1. We report that at least three parallel pathways, the Src pathway, the MAPK/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway, and the c-myc pathway, are involved. Induction of D2 is partially inhibited in Src−/− bone marrow-derived macrophages and by Src inhibitor PP1 and is enhanced in v-Src-overexpressing cells. Activation of myc's transactivating activity selectively induces D2 but not D1. Blockade of c-myc expression partially blocks CSF-1-induced D2 expression. Complete inhibition of the MEK/ERK pathway causes 50% decrease of D2 expression. Finally, simultaneous inhibition of Src, MEK activation, and c-myc expression additively blocks CSF-1-induced D2 expression. This study indicates that multiple signaling pathways are involved in full induction of a single gene, and this finding may also apply broadly to other growth factor-inducible genes. PMID:11071910

  5. Cdc2/cyclin B1 regulates centrosomal Nlp proteolysis and subcellular localization.

    PubMed

    Zhao, Xuelian; Jin, Shunqian; Song, Yongmei; Zhan, Qimin

    2010-11-01

    The formation of proper mitotic spindles is required for appropriate chromosome segregation during cell division. Aberrant spindle formation often causes aneuploidy and results in tumorigenesis. However, the underlying mechanism of regulating spindle formation and chromosome separation remains to be further defined. Centrosomal Nlp (ninein-like protein) is a recently characterized BRCA1-regulated centrosomal protein and plays an important role in centrosome maturation and spindle formation. In this study, we show that Nlp can be phosphorylated by cell cycle protein kinase Cdc2/cyclin B1. The phosphorylation sites of Nlp are mapped at Ser185 and Ser589. Interestingly, the Cdc2/cyclin B1 phosphorylation site Ser185 of Nlp is required for its recognition by PLK1, which enable Nlp depart from centrosomes to allow the establishment of a mitotic scaffold at the onset of mitosis . PLK1 fails to dissociate the Nlp mutant lacking Ser185 from centrosome, suggesting that Cdc2/cyclin B1 might serve as a primary kinase of PLK1 in regulating Nlp subcellular localization. However, the phosphorylation at the site Ser589 by Cdc2/cyclin B1 plays an important role in Nlp protein stability probably due to its effect on protein degradation. Furthermore, we show that deregulated expression or subcellular localization of Nlp lead to multinuclei in cells, indicating that scheduled levels of Nlp and proper subcellular localization of Nlp are critical for successful completion of normal cell mitosis, These findings demonstrate that Cdc2/cyclin B1 is a key regulator in maintaining appropriate degradation and subcellular localization of Nlp, providing novel insights into understanding on the role of Cdc2/cyclin B1 in mitotic progression.

  6. Antisense inhibition of cyclin D1 expression is equivalent to flavopiridol for radiosensitization of zebrafish embryos

    SciTech Connect

    McAleer, Mary Frances; Duffy, Kevin T.; Davidson, William R.; Kari, Gabor; Dicker, Adam P.; Rodeck, Ulrich; Wickstrom, Eric . E-mail: eric@tesla.jci.tju.edu

    2006-10-01

    Purpose: Flavopiridol, a small molecule pan-cyclin inhibitor, has been shown to enhance Radiation response of tumor cells both in vitro and in vivo. The clinical utility of flavopiridol, however, is limited by toxicity, previously attributed to pleiotropic inhibitory effects on several targets affecting multiple signal transduction pathways. Here we used zebrafish embryos to investigate radiosensitizing effects of flavopiridol in normal tissues. Methods and Materials: Zebrafish embryos at the 1- to 4-cell stage were treated with 500 nM flavopiridol or injected with 0.5 pmol antisense hydroxylprolyl-phosphono nucleic acid oligomers to reduce cyclin D1 expression, then subjected to ionizing radiation (IR) or no radiation. Results: Flavopiridol-treated embryos demonstrated a twofold increase in mortality after exposure to 40 Gy by 96 hpf and developed distinct radiation-induced defects in midline development (designated as the 'curly up' phenotype) at higher rates when compared with embryos receiving IR only. Cyclin D1-deficient embryos had virtually identical IR sensitivity profiles when compared with embryos treated with flavopiridol. This was particularly evident for the IR-induced curly up phenotype, which was greatly exacerbated by both flavopriridol and cyclin D1 downregulation. Conclusions: Treatment of zebrafish embryos with flavopiridol enhanced radiation sensitivity of zebrafish embryos to a degree that was very similar to that associated with downregulation of cyclin D1 expression. These results are consistent with the hypothesis that inhibition of cyclin D1 is sufficient to account for the radiosensitizing action of flavopiridol in the zebrafish embryo vertebrate model.

  7. Placental estrogen suppresses cyclin D1 expression in the nonhuman primate fetal adrenal cortex.

    PubMed

    Dumitrescu, Adina; Aberdeen, Graham W; Pepe, Gerald J; Albrecht, Eugene D

    2014-12-01

    We have previously shown that estrogen selectively suppresses growth of the fetal zone of the baboon fetal adrenal cortex, which produces the C19-steroid precursors, eg, dehydroepiandrosterone sulfate, which are aromatized to estrogen within the placenta. In the present study, we determined whether fetal adrenal expression of cell cycle regulators are altered by estrogen and thus provide a mechanism by which estrogen regulates fetal adrenocortical development. Cyclin D1 mRNA levels in the whole fetal adrenal were increased 50% (P < .05), and the number of cells in the fetal adrenal definitive zone expressing cyclin D1 protein was increased 2.5-fold (P < .05), whereas the total number of cells in the fetal zone and fetal serum dehydroepiandrosterone sulfate levels were elevated 2-fold (P < .05) near term in baboons in which fetal serum estradiol levels were decreased by 95% (P < .05) after maternal administration of the aromatase inhibitor letrozole and restored to normal by concomitant administration of letrozole plus estradiol throughout second half of gestation. However, fetal adrenocortical expression of cyclin D2, the cyclin-dependent kinase (Cdk)-2, Cdk4, and Cdk6, and Cdk regulatory proteins p27(Kip1) and p57(Kip2) were not changed by letrozole or letrozole plus estradiol administration. We suggest that estrogen controls the growth of the fetal zone of the fetal adrenal by down-regulating cyclin D1 expression and thus proliferation of progenitor cells within the definitive zone that migrate to the fetal zone. We propose that estrogen restrains growth and function of the fetal zone via cyclin D1 to maintain estrogen levels in a physiological range during primate pregnancy.

  8. Placental Estrogen Suppresses Cyclin D1 Expression in the Nonhuman Primate Fetal Adrenal Cortex*

    PubMed Central

    Dumitrescu, Adina; Aberdeen, Graham W.; Pepe, Gerald J.

    2014-01-01

    We have previously shown that estrogen selectively suppresses growth of the fetal zone of the baboon fetal adrenal cortex, which produces the C19-steroid precursors, eg, dehydroepiandrosterone sulfate, which are aromatized to estrogen within the placenta. In the present study, we determined whether fetal adrenal expression of cell cycle regulators are altered by estrogen and thus provide a mechanism by which estrogen regulates fetal adrenocortical development. Cyclin D1 mRNA levels in the whole fetal adrenal were increased 50% (P < .05), and the number of cells in the fetal adrenal definitive zone expressing cyclin D1 protein was increased 2.5-fold (P < .05), whereas the total number of cells in the fetal zone and fetal serum dehydroepiandrosterone sulfate levels were elevated 2-fold (P < .05) near term in baboons in which fetal serum estradiol levels were decreased by 95% (P < .05) after maternal administration of the aromatase inhibitor letrozole and restored to normal by concomitant administration of letrozole plus estradiol throughout second half of gestation. However, fetal adrenocortical expression of cyclin D2, the cyclin-dependent kinase (Cdk)-2, Cdk4, and Cdk6, and Cdk regulatory proteins p27Kip1 and p57Kip2 were not changed by letrozole or letrozole plus estradiol administration. We suggest that estrogen controls the growth of the fetal zone of the fetal adrenal by down-regulating cyclin D1 expression and thus proliferation of progenitor cells within the definitive zone that migrate to the fetal zone. We propose that estrogen restrains growth and function of the fetal zone via cyclin D1 to maintain estrogen levels in a physiological range during primate pregnancy. PMID:25247468

  9. Human RAD6 promotes G1-S transition and cell proliferation through upregulation of cyclin D1 expression.

    PubMed

    Cai, Fengfeng; Chen, Ping; Chen, Li; Biskup, Ewelina; Liu, Yan; Chen, Pei-Chao; Chang, Jian-Feng; Jiang, Wenjie; Jing, Yuanya; Chen, Youwei; Jin, Hui; Chen, Su

    2014-01-01

    Protein ubiquitinylation regulates protein stability and activity. RAD6, an E2 ubiquitin-conjugating enzyme, which that has been substantially biochemically characterized, functions in a number of biologically relevant pathways, including cell cycle progression. In this study, we show that RAD6 promotes the G1-S transition and cell proliferation by regulating the expression of cyclin D1 (CCND1) in human cells. Furthermore, our data indicate that RAD6 influences the transcription of CCND1 by increasing monoubiquitinylation of histone H2B and trimethylation of H3K4 in the CCND1 promoter region. Our study presents, for the first time, an evidence for the function of RAD6 in cell cycle progression and cell proliferation in human cells, raising the possibility that RAD6 could be a new target for molecular diagnosis and prognosis in cancer therapeutics.

  10. Human RAD6 Promotes G1-S Transition and Cell Proliferation through Upregulation of Cyclin D1 Expression

    PubMed Central

    Biskup, Ewelina; Liu, Yan; Chen, Pei-Chao; Chang, Jian-Feng; Jiang, Wenjie; Jing, Yuanya; Chen, Youwei; Jin, Hui; Chen, Su

    2014-01-01

    Protein ubiquitinylation regulates protein stability and activity. RAD6, an E2 ubiquitin-conjugating enzyme, which that has been substantially biochemically characterized, functions in a number of biologically relevant pathways, including cell cycle progression. In this study, we show that RAD6 promotes the G1-S transition and cell proliferation by regulating the expression of cyclin D1 (CCND1) in human cells. Furthermore, our data indicate that RAD6 influences the transcription of CCND1 by increasing monoubiquitinylation of histone H2B and trimethylation of H3K4 in the CCND1 promoter region. Our study presents, for the first time, an evidence for the function of RAD6 in cell cycle progression and cell proliferation in human cells, raising the possibility that RAD6 could be a new target for molecular diagnosis and prognosis in cancer therapeutics. PMID:25409181

  11. Human RAD6 promotes G1-S transition and cell proliferation through upregulation of cyclin D1 expression.

    PubMed

    Cai, Fengfeng; Chen, Ping; Chen, Li; Biskup, Ewelina; Liu, Yan; Chen, Pei-Chao; Chang, Jian-Feng; Jiang, Wenjie; Jing, Yuanya; Chen, Youwei; Jin, Hui; Chen, Su

    2014-01-01

    Protein ubiquitinylation regulates protein stability and activity. RAD6, an E2 ubiquitin-conjugating enzyme, which that has been substantially biochemically characterized, functions in a number of biologically relevant pathways, including cell cycle progression. In this study, we show that RAD6 promotes the G1-S transition and cell proliferation by regulating the expression of cyclin D1 (CCND1) in human cells. Furthermore, our data indicate that RAD6 influences the transcription of CCND1 by increasing monoubiquitinylation of histone H2B and trimethylation of H3K4 in the CCND1 promoter region. Our study presents, for the first time, an evidence for the function of RAD6 in cell cycle progression and cell proliferation in human cells, raising the possibility that RAD6 could be a new target for molecular diagnosis and prognosis in cancer therapeutics. PMID:25409181

  12. Alternative splicing variants of human Fbx4 disturb cyclin D1 proteolysis in human cancer

    SciTech Connect

    Chu, Xiufeng; Zhang, Ting; Wang, Jie; Li, Meng; Zhang, Xiaolei; Tu, Jing; Sun, Shiqin; Chen, Xiangmei; Lu, Fengmin

    2014-04-25

    Highlights: • The expression of Fbx4 was significantly lower in HCC tissues. • Novel splicing variants of Fbx4 were identified. • These novel variants are much more abundant in human cancer tissues and cells. • The novel Fbx4 isoforms could promote cell proliferation and migration in vitro. • These isoforms showed less capability for cyclin D1 binding and degradation. - Abstract: Fbx4 is a specific substrate recognition component of SCF ubiquitin ligases that catalyzes the ubiquitination and subsequent degradation of cyclin D1 and Trx1. Two isoforms of human Fbx4 protein, the full length Fbx4α and the C-terminal truncated Fbx4β have been identified, but their functions remain elusive. In this study, we demonstrated that the mRNA level of Fbx4 was significantly lower in hepatocellular carcinoma tissues than that in the corresponding non-tumor tissues. More importantly, we identified three novel splicing variants of Fbx4: Fbx4γ (missing 168–245nt of exon1), Fbx4δ (missing exon6) and a N-terminal reading frame shift variant (missing exon2). Using cloning sequencing and RT-PCR, we demonstrated these novel splice variants are much more abundant in human cancer tissues and cell lines than that in normal tissues. When expressed in Sk-Hep1 and NIH3T3 cell lines, Fbx4β, Fbx4γ and Fbx4δ could promote cell proliferation and migration in vitro. Concordantly, these isoforms could disrupt cyclin D1 degradation and therefore increase cyclin D1 expression. Moreover, unlike the full-length isoform Fbx4α that mainly exists in cytoplasm, Fbx4β, Fbx4γ, and Fbx4δ locate in both cytoplasm and nucleus. Since cyclin D1 degradation takes place in cytoplasm, the nuclear distribution of these Fbx4 isoforms may not be involved in the down-regulation of cytoplasmic cyclin D1. These results define the impact of alternative splicing on Fbx4 function, and suggest that the attenuated cyclin D1 degradation by these novel Fbx4 isoforms provides a new insight for aberrant

  13. Cyclin G Functions as a Positive Regulator of Growth and Metabolism in Drosophila

    PubMed Central

    Schulz, Adriana; Preiss, Anette; Nagel, Anja C.

    2015-01-01

    In multicellular organisms, growth and proliferation is adjusted to nutritional conditions by a complex signaling network. The Insulin receptor/target of rapamycin (InR/TOR) signaling cascade plays a pivotal role in nutrient dependent growth regulation in Drosophila and mammals alike. Here we identify Cyclin G (CycG) as a regulator of growth and metabolism in Drosophila. CycG mutants have a reduced body size and weight and show signs of starvation accompanied by a disturbed fat metabolism. InR/TOR signaling activity is impaired in cycG mutants, combined with a reduced phosphorylation status of the kinase Akt1 and the downstream factors S6-kinase and eukaryotic translation initiation factor 4E binding protein (4E-BP). Moreover, the expression and accumulation of Drosophila insulin like peptides (dILPs) is disturbed in cycG mutant brains. Using a reporter assay, we show that the activity of one of the first effectors of InR signaling, Phosphoinositide 3-kinase (PI3K92E), is unaffected in cycG mutants. However, the metabolic defects and weight loss in cycG mutants were rescued by overexpression of Akt1 specifically in the fat body and by mutants in widerborst (wdb), the B'-subunit of the phosphatase PP2A, known to downregulate Akt1 by dephosphorylation. Together, our data suggest that CycG acts at the level of Akt1 to regulate growth and metabolism via PP2A in Drosophila. PMID:26274446

  14. The Enhancer of Trithorax and Polycomb Corto Interacts with Cyclin G in Drosophila

    PubMed Central

    Salvaing, Juliette; Nagel, Anja C.; Mouchel-Vielh, Emmanuèle; Bloyer, Sébastien; Maier, Dieter; Preiss, Anette; Peronnet, Frédérique

    2008-01-01

    Background Polycomb (PcG) and trithorax (trxG) genes encode proteins involved in the maintenance of gene expression patterns, notably Hox genes, throughout development. PcG proteins are required for long-term gene repression whereas TrxG proteins are positive regulators that counteract PcG action. PcG and TrxG proteins form large complexes that bind chromatin at overlapping sites called Polycomb and Trithorax Response Elements (PRE/TRE). A third class of proteins, so-called “Enhancers of Trithorax and Polycomb” (ETP), interacts with either complexes, behaving sometimes as repressors and sometimes as activators. The role of ETP proteins is largely unknown. Methodology/Principal Findings In a two-hybrid screen, we identified Cyclin G (CycG) as a partner of the Drosophila ETP Corto. Inactivation of CycG by RNA interference highlights its essential role during development. We show here that Corto and CycG directly interact and bind to each other in embryos and S2 cells. Moreover, CycG is targeted to polytene chromosomes where it co-localizes at multiple sites with Corto and with the PcG factor Polyhomeotic (PH). We observed that corto is involved in maintaining Abd-B repression outside its normal expression domain in embryos. This could be achieved by association between Corto and CycG since both proteins bind the regulatory element iab-7 PRE and the promoter of the Abd-B gene. Conclusions/Significance Our results suggest that CycG could regulate the activity of Corto at chromatin and thus be involved in changing Corto from an Enhancer of TrxG into an Enhancer of PcG. PMID:18286205

  15. Enhanced skin carcinogenesis and lack of thymus hyperplasia in transgenic mice expressing human cyclin D1b (CCND1b)

    PubMed Central

    Rojas, Paola; Benavides, Fernando; Blando, Jorge; Perez, Carlos; Cardenas, Kim; Richie, Ellen; Knudsen, Erik S.; Johnson, David G.; Senderowicz, Adrian M.; Rodriguez-Puebla, Marcelo L.; Conti, Claudio J.

    2009-01-01

    Cyclin D1b is an alternative transcript of the cyclin D1 gene (CCND1) expressed in human tumors. Its abundance is regulated by a single base pair polymorphism at the exon 4/intron 4 boundary (nucleotide 870). Epidemiological studies have shown a correlation between the presence of the G870A allele (that favors the splicing for cyclin D1b) with increased risk and less favorable outcome in several forms of cancer. More recently, it has been shown that, unlike cyclin D1a, the alternative transcript D1b by itself has the capacity to transform fibroblasts in vitro. In order to study the oncogenic potential of cyclin D1b, we developed transgenic mice expressing human cyclin D1b under the control of the bovine K5 promoter (K5D1b mice). Seven founders were obtained and none of them presented any significant phenotype or developed spontaneous tumors. Interestingly, K5D1b mice do not develop the fatal thymic hyperplasia, which is characteristic of the cyclin D1a transgenic mice (K5D1a). Susceptibility to skin carcinogenesis was tested in K5D1b mice using two-stage carcinogenesis protocols. In two independent experiments, K5D1b mice developed higher papilloma multiplicity as compared with wild-type littermates. However, when K5D1b mice were crossed with cyclin D1KO mice, the expression of cyclin D1b was unable to rescue the carcinogenesis-resistant phenotype of the cyclin D1 KO mice. To further explore the role of cyclin D1b in mouse models of carcinogenesis we carried out in silico analysis and in vitro experiments to evaluate the existence of a mouse homologous of the human cyclin D1b transcript. We were unable to find any evidence of an alternatively spliced transcript in mouse Ccnd1. These results show that human cyclin D1b has different biological functions than cyclin D1a and confirm its oncogenic properties. PMID:18942117

  16. Transcription factor FBI-1 acts as a dual regulator in adipogenesis by coordinated regulation of cyclin-A and E2F-4.

    PubMed

    Laudes, Matthias; Bilkovski, Roman; Oberhauser, Frank; Droste, Andrea; Gomolka, Matthias; Leeser, Uschi; Udelhoven, Michael; Krone, Wilhelm

    2008-05-01

    Generation of new adipocytes plays a major role in the development of obesity. We previously have shown that transcriptional repressor factor that binds to IST (FBI)-1 exerts a dual effect in the process of adipogenesis by inhibiting proliferation and promoting differentiation of preadipocytes. The aim of the present study was to identify FBI-1 regulated molecular effectors that could account for these effects. Overexpressing FBI-1 in preadipocytes resulted in reduced expression of the cell cycle regulator cyclin A, which may explain FBI-1 induced inhibition of proliferation. Interestingly, FBI-1 repressed cyclin A promoter activity through an indirect mechanisms that did not involve direct binding of FBI-1 to the promoter sequence, but rather FBI-1 inhibition of transcriptional activator Sp1 binding to a regulatory element at -452 to -443. We also show that FBI-1 promotes terminal preadipocyte differentiation through a mechanism involving decreased levels of expression of the PPARgamma inhibitor E2F-4. FBI-1 significantly reduced E2F-4 promoter activity. Contrary to cyclin A, we found FBI-1-induced repression of E2F-4 is mediated by a direct mechanism via a FBI-1 regulatory element at -11 to -5. As function of transcriptional repressors normally depends on the presence of regulatory co-factors we also performed expression profiling of potential FBI-1 co-repressors throughout adipogenesis. In these experiments Sin3A and histon deacetylase (HDAC)-1 showed a similar expression pattern compared to FBI-1. Strikingly, co-immunoprecipitation studies revealed that FBI-1 binds Sin3A and HDAC-1 to form a repressor complex. Furthermore, by mutational analysis the amino terminal Poxvirus (POZ) domain of FBI-1 was found to be important for Sin3A and HDAC-1 binding. Taken together, FBI-1 is the first transcriptional repressor shown to act as a dual regulator in adipogenesis exerting repressor activities on target genes by both, direct and indirect mechanisms.

  17. MicroRNA-16 Modulates HuR Regulation of Cyclin E1 in Breast Cancer Cells

    PubMed Central

    Guo, Xun; Connick, Melanie C.; Vanderhoof, Jennifer; Ishak, Mohammad-Ali; Hartley, Rebecca S.

    2015-01-01

    RNA binding protein (RBPs) and microRNAs (miRNAs or miRs) are post-transcriptional regulators of gene expression that are implicated in development of cancers. Although their individual roles have been studied, the crosstalk between RBPs and miRNAs is under intense investigation. Here, we show that in breast cancer cells, cyclin E1 upregulation by the RBP HuR is through specific binding to regions in the cyclin E1 mRNA 3' untranslated region (3'UTR) containing U-rich elements. Similarly, miR-16 represses cyclin E1, dependent on its cognate binding sites in the cyclin E1 3'UTR. Evidence in the literature indicates that HuR can regulate miRNA expression and recruit or dissociate RNA-induced silencing complexes (RISC). Despite this, miR-16 and HuR do not affect the other’s expression level or binding to the cyclin E1 3'UTR. While HuR overexpression partially blocks miR-16 repression of a reporter mRNA containing the cyclin E1 3'UTR, it does not block miR-16 repression of endogenous cyclin E1 mRNA. In contrast, miR-16 blocks HuR-mediated upregulation of cyclin E1. Overall our results suggest that miR-16 can override HuR upregulation of cyclin E1 without affecting HuR expression or association with the cyclin E1 mRNA. PMID:25830480

  18. MicroRNA-16 modulates HuR regulation of cyclin E1 in breast cancer cells.

    PubMed

    Guo, Xun; Connick, Melanie C; Vanderhoof, Jennifer; Ishak, Mohammad-Ali; Hartley, Rebecca S

    2015-03-30

    RNA binding protein (RBPs) and microRNAs (miRNAs or miRs) are post-transcriptional regulators of gene expression that are implicated in development of cancers. Although their individual roles have been studied, the crosstalk between RBPs and miRNAs is under intense investigation. Here, we show that in breast cancer cells, cyclin E1 upregulation by the RBP HuR is through specific binding to regions in the cyclin E1 mRNA 3' untranslated region (3'UTR) containing U-rich elements. Similarly, miR-16 represses cyclin E1, dependent on its cognate binding sites in the cyclin E1 3'UTR. Evidence in the literature indicates that HuR can regulate miRNA expression and recruit or dissociate RNA-induced silencing complexes (RISC). Despite this, miR-16 and HuR do not affect the other's expression level or binding to the cyclin E1 3'UTR. While HuR overexpression partially blocks miR-16 repression of a reporter mRNA containing the cyclin E1 3'UTR, it does not block miR-16 repression of endogenous cyclin E1 mRNA. In contrast, miR-16 blocks HuR-mediated upregulation of cyclin E1. Overall our results suggest that miR-16 can override HuR upregulation of cyclin E1 without affecting HuR expression or association with the cyclin E1 mRNA.

  19. CDK8-Cyclin C Mediates Nutritional Regulation of Developmental Transitions through the Ecdysone Receptor in Drosophila

    PubMed Central

    Xie, Xiao-Jun; Hsu, Fu-Ning; Gao, Xinsheng; Xu, Wu; Ni, Jian-Quan; Xing, Yue; Huang, Liying; Hsiao, Hao-Ching; Zheng, Haiyan; Wang, Chenguang; Zheng, Yani; Xiaoli, Alus M.; Yang, Fajun; Bondos, Sarah E.; Ji, Jun-Yuan

    2015-01-01

    The steroid hormone ecdysone and its receptor (EcR) play critical roles in orchestrating developmental transitions in arthropods. However, the mechanism by which EcR integrates nutritional and developmental cues to correctly activate transcription remains poorly understood. Here, we show that EcR-dependent transcription, and thus, developmental timing in Drosophila, is regulated by CDK8 and its regulatory partner Cyclin C (CycC), and the level of CDK8 is affected by nutrient availability. We observed that cdk8 and cycC mutants resemble EcR mutants and EcR-target genes are systematically down-regulated in both mutants. Indeed, the ability of the EcR-Ultraspiracle (USP) heterodimer to bind to polytene chromosomes and the promoters of EcR target genes is also diminished. Mass spectrometry analysis of proteins that co-immunoprecipitate with EcR and USP identified multiple Mediator subunits, including CDK8 and CycC. Consistently, CDK8-CycC interacts with EcR-USP in vivo; in particular, CDK8 and Med14 can directly interact with the AF1 domain of EcR. These results suggest that CDK8-CycC may serve as transcriptional cofactors for EcR-dependent transcription. During the larval–pupal transition, the levels of CDK8 protein positively correlate with EcR and USP levels, but inversely correlate with the activity of sterol regulatory element binding protein (SREBP), the master regulator of intracellular lipid homeostasis. Likewise, starvation of early third instar larvae precociously increases the levels of CDK8, EcR and USP, yet down-regulates SREBP activity. Conversely, refeeding the starved larvae strongly reduces CDK8 levels but increases SREBP activity. Importantly, these changes correlate with the timing for the larval–pupal transition. Taken together, these results suggest that CDK8-CycC links nutrient intake to developmental transitions (EcR activity) and fat metabolism (SREBP activity) during the larval–pupal transition. PMID:26222308

  20. Molecular Characterization and Expression Profiles of Cyclin B1, B2 and Cdc2 Kinase during Oogenesis and Spermatogenesis in Rainbow Trout (Oncorhynchus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The meiotic maturation of oocytes and spermatocytes is controlled by the maturation promotion factor (MPF), a complex of the Cdc2 and cyclin B proteins. To better understand the mechanism of oocyte and spermatocyte maturation in fish, the expression of cyclin B1 (CB1), cyclin B2 (CB2) and Cdc2 kinas...

  1. Pho85p, a cyclin-dependent protein kinase, and the Snf1p protein kinase act antagonistically to control glycogen accumulation in Saccharomyces cerevisiae.

    PubMed Central

    Huang, D; Farkas, I; Roach, P J

    1996-01-01

    In Saccharomyces cerevisiae, nutrient levels control multiple cellular processes. Cells lacking the SNF1 gene cannot express glucose-repressible genes and do not accumulate the storage polysaccharide glycogen. The impaired glycogen synthesis is due to maintenance of glycogen synthase in a hyperphosphorylated, inactive state. In a screen for second site suppressors of the glycogen storage defect of snf1 cells, we identified a mutant gene that restored glycogen accumulation and which was allelic with PHO85, which encodes a member of the cyclin-dependent kinase family. In cells with disrupted PHO85 genes, we observed hyperaccumulation of glycogen, activation of glycogen synthase, and impaired glycogen synthase kinase activity. In snf1 cells, glycogen synthase kinase activity was elevated. Partial purification of glycogen synthase kinase activity from yeast extracts resulted in the separation of two fractions by phenyl-Sepharose chromatography, both of which phosphorylated and inactivated glycogen synthase. The activity of one of these, GPK2, was inhibited by olomoucine, which potently inhibits cyclin-dependent protein kinases, and contained an approximately 36-kDa species that reacted with antibodies to Pho85p. Analysis of Ser-to-Ala mutations at the three potential Gsy2p phosphorylation sites in pho85 cells implicated Ser-654 and/or Thr-667 in PHO85 control of glycogen synthase. We propose that Pho85p is a physiological glycogen synthase kinase, possibly acting downstream of Snf1p. PMID:8754836

  2. Differential roles of cyclin D1 and D3 in pancreatic ductal adenocarcinoma

    PubMed Central

    2010-01-01

    Background The cyclin D1 (CCND1) and cyclin D3 (CCND3) are frequently co-overexpressed in pancreatic ductal adenocarcinoma (PDAC). Here we examine their differential roles in PDAC. Results CCND1 and CCND3 expression were selectively suppressed by shRNA in PDAC cell lines with expression levels of equal CCND1 and CCND3 (BxPC3), enhanced CCND1 (HPAC) or enhanced CCND3 (PANC1). Suppression of cell proliferation was greater with CCND3 than CCND1 downregulation. CCND3 suppression led to a reduced level of phosphorylated retinoblastoma protein (Ser795p-Rb/p110) and resulted in decreased levels of cyclin A mRNA and protein. A global gene expression analysis identified deregulated genes in D1- or D3-cyclin siRNA-treated PANC1 cells. The downregulated gene targets in CCND3 suppressed cells were significantly enriched in cell cycle associated processes (p < 0.005). In contrast, focal adhesion/actin cytoskeleton, MAPK and NF B signaling appeared to characterize the target genes and their interacting proteins in CCND1 suppressed PANC1 cells. Conclusions Our results suggest that CCND3 is the primary driver of the cell cycle, in cooperation with CCND1 that integrates extracellular mitogenic signaling. We also present evidence that CCND1 plays a role in tumor cell migration. The results provide novel insights for common and differential targets of CCND1 and CCND3 overexpression during pancreatic duct cell carcinogenesis. PMID:20113529

  3. Cyclin D1 and Ki-67 expression correlates to tumor staging in tongue squamous cell carcinoma

    PubMed Central

    de Carli, Marina-Lara; Sperandio, Felipe-Fornias; Hanemann, João-Adolfo-Costa; Pereira, Alessandro-Antônio-Costa

    2015-01-01

    Background The immunohistochemical expression of Cyclin D1 and Ki-67 were analyzed in tongue squamous cell carcinomas (SCC), relating them to the clinical and morphological exhibition of these tumors. Material and Methods Twenty-nine patients fulfilled the inclusion criteria; clinical data included gender, age, ethnicity and use of licit drugs such as alcohol and tobacco. The TNM staging and histopathological differentiation grading was assessed for each case. In addition, T1 patients were gathered with T2 patients; and T3 patients were gathered with T4 patients to assemble two distinct groups: (T1/T2) and (T3/T4). Results The mean follow-up time was 24 months and 30% of the patients died as a consequence of the disease, while 23.3% lived with the disease and 46.7% lived lesion-free. T1 and T2 tumors showed statistically lesser Ki-67 and Cyclin D1 staining when compared to T3 and T4 tumors. Conclusions Ki-67 and Cyclin D1 pose as auxiliary tools when determining the progression of tongue SCC at the time of diagnosis. Key words:Carcinoma, squamous cell, cyclin D, immunohistochemistry, Ki-67 antigen, prognosis. PMID:26449430

  4. Problem-Solving Test: Analysis of the Role of Cyclin B

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2011-01-01

    An experiment is described in this test that was designed to study the role of the cyclin B protein in a cell-free system. The work was performed in the lab of Tim Hunt who, together with Hartwell and Nurse, received the Nobel Prize in Physiology or Medicine in 2001 "for their discoveries of key chemicals that regulate the cell division cycle." It…

  5. p21/Cyclin E pathway modulates anticlastogenic function of Bmi-1 in cancer cells.

    PubMed

    Deng, Wen; Zhou, Yuan; Tiwari, Agnes F Y; Su, Hang; Yang, Jie; Zhu, Dandan; Lau, Victoria Ming Yi; Hau, Pok Man; Yip, Yim Ling; Cheung, Annie L M; Guan, Xin-Yuan; Tsao, Sai Wah

    2015-03-15

    Apart from regulating stem cell self-renewal, embryonic development and proliferation, Bmi-1 has been recently reported to be critical in the maintenance of genome integrity. In searching for novel mechanisms underlying the anticlastogenic function of Bmi-1, we observed, for the first time, that Bmi-1 positively regulates p21 expression. We extended the finding that Bmi-1 deficiency induced chromosome breaks in multiple cancer cell models. Interestingly, we further demonstrated that knockdown of cyclin E or ectopic overexpression of p21 rescued Bmi-1 deficiency-induced chromosome breaks. We therefore conclude that p21/cyclin E pathway is crucial in modulating the anticlastogenic function of Bmi-1. As it is well established that the overexpression of cyclin E potently induces genome instability and p21 suppresses the function of cyclin E, the novel and important implication from our findings is that Bmi-1 plays an important role in limiting genomic instability in cylin E-overexpressing cancer cells by positive regulation of p21.

  6. Transgenic expression of cyclin D1 in thymic epithelial precursors promotes epithelial and T cell development.

    PubMed

    Klug, D B; Crouch, E; Carter, C; Coghlan, L; Conti, C J; Richie, E R

    2000-02-15

    We previously reported that precursors within the keratin (K) 8+5+ thymic epithelial cell (TEC) subset generate the major cortical K8+5- TEC population in a process dependent on T lineage commitment. This report demonstrates that expression of a cyclin D1 transgene in K8+5+ TECs expands this subset and promotes TEC and thymocyte development. Cyclin D1 transgene expression is not sufficient to induce TEC differentiation in the absence of T lineage-committed thymocytes because TECs from both hCD3epsilon transgenic and hCD3epsilon/cyclin D1 double transgenic mice remain blocked at the K8+5+ maturation stage. However, enforced cyclin D1 expression does expand the developmental window during which K8+5+ cells can differentiate in response to normal hemopoietic precursors. Thus, enhancement of thymic function may be achieved by manipulating the growth and/or survival of TEC precursors within the K8+5+ subset.

  7. Lefty inhibits in vitro decidualization by regulating P57 and cyclin D1 expressions.

    PubMed

    Li, Hong; Li, Hui; Bai, Liang; Yu, Hua

    2014-12-01

    Endometrial decidualization is highly important for successful construction and maintenance of embryo implantation and pregnancy. Lefty gene at different menstrual cycle phases has different expressions, indicating its regulatory significance. To study the mechanism of Lefty in decidualization, human endometrial stromal cells (hESCs) were cultured and induced with medroxyprogesterone acetate (MPA) and 8-bromoadenosine-cAMP (8-Br-cAMP) in vitro as a research model. Our results showed that Lefty1 overexpression inhibited MPA- and 8-Br-cAMP-induced hESC decidualization and significantly reduced the secretion of prolactin (PRL) and insulin-like growth factor-binding protein 1 (IGFBP-1). With the inhibition of Lefty1 expression, hESC decidualization induced by MPA and 8-Br-cAMP became more remarkable, and the secretions of PRL and IGFBP-1 were higher too. Further tests indicated that during the process of decidualization, P57 expression increased, whereas cyclin D1 expression decreased. Although Lefty1 overexpression did not significantly change the expressions of P57 and cyclin D1, inhibition of Lefty1 expression resulted in more evident changes in P57 and cyclin D1 expressions. Meanwhile, cell cycle examination showed that Lefty1 overexpression reduced the cell cycle arrest at G1/S phase in the in vitro hESC decidualization model. Therefore, Lefty1 could regulate the cell cycle via modulating the expressions of P57 and cyclin D1 and then inhibit the decidualization in vitro. PMID:25339094

  8. Isolation of a dinoflagellate mitotic cyclin by functional complementation in yeast.

    PubMed

    Bertomeu, Thierry; Morse, David

    2004-10-29

    Dinoflagellates are protists with permanently condensed chromosomes that lack histones and whose nuclear membrane remains intact during mitosis. These unusual nuclear characters have suggested that the typical cell cycle regulators might be slightly different than those in more typical eukaryotes. To test this, a cyclin has been isolated from the dinoflagellate Gonyaulax polyedra by functional complementation in cln123 mutant yeast. This GpCyc1 sequence contains two cyclin domains in its C-terminal region and a degradation box typical of mitotic cyclins. Similar to other dinoflagellate genes, GpCyc1 has a high copy number, with approximately 5000 copies found in the Gonyaulax genome. An antibody raised against the N-terminal region of the GpCYC1 reacts with a 68kDa protein on Western blots that is more abundant in cell cultures enriched for G2-phase cells than in those containing primarily G1-phase cells, indicating its cellular level follows a pattern expected for a mitotic cyclin. This is the first report of a cell cycle regulator cloned and sequenced from a dinoflagellate, and our results suggest control of the dinoflagellate cell cycle will be very similar to that of other organisms.

  9. Post-translational modification and stability of low molecular weight cyclin E.

    PubMed

    Mull, B B; Cox, J; Bui, T; Keyomarsi, K

    2009-09-01

    Our laboratory has previously described the presence of five tumor-specific low molecular weight isoforms of cyclin E in both tumor cell lines and breast cancer patient biopsies. We have also shown that one of these low forms arises from an alternate start site, whereas the other four appear as two sets of doublets following cleavage through an elastase-like enzyme. However, the origin of both sets of doublets was unknown. Here, we demonstrate that the larger isoform of each doublet is the result of phosphorylation at a key degradation site. Through site-directed mutagenesis of different phosphorylation sites within the cyclin E protein, we discovered that phosphorylation of threonine 395 is responsible for generating the larger isoform of each doublet. Because phosphorylation of threonine 395 has been linked to the proteasome-mediated degradation of full length cyclin E, we examined the stability of T395A phospho-mutants in both non-tumorigenic mammary epithelial cells and tumor cells. The results revealed that the low molecular weight isoforms appear to be stable in both a tumor cell line and a non-tumor forming cell line regardless of the presence of this critical phosphorylation site. The stability of low molecular weight cyclin E may have implications for both tumorigenesis and treatment of tumors expressing them.

  10. Differential regulation of cyclin-dependent kinase inhibitors in neuroblastoma cells

    SciTech Connect

    Qiao, Lan; Paul, Pritha; Lee, Sora; Qiao, Jingbo; Wang, Yongsheng; Chung, Dai H.

    2013-05-31

    Highlights: •GRP-R signaling differentially regulated the expression of p21 and p27. •Silencing GRP/GRP-R downregulated p21, while p27 expression was upregulated. •Inhibition of GRP/GRP-R signaling enhanced PTEN expression, correlative to the increased expression of p27. •PTEN and p27 co-localized in cytoplasm and silencing PTEN decreased p27 expression. -- Abstract: Gastrin-releasing peptide (GRP) and its receptor (GRP-R) are highly expressed in undifferentiated neuroblastoma, and they play critical roles in oncogenesis. We previously reported that GRP activates the PI3K/AKT signaling pathway to promote DNA synthesis and cell cycle progression in neuroblastoma cells. Conversely, GRP-R silencing induces cell cycle arrest. Here, we speculated that GRP/GRP-R signaling induces neuroblastoma cell proliferation via regulation of cyclin-dependent kinase (CDK) inhibitors. Surprisingly, we found that GRP/GRP-R differentially induced expressions of p21 and p27. Silencing GRP/GRP-R decreased p21, but it increased p27 expressions in neuroblastoma cells. Furthermore, we found that the intracellular localization of p21 and p27 in the nuclear and cytoplasmic compartments, respectively. In addition, we found that GRP/GRP-R silencing increased the expression and accumulation of PTEN in the cytoplasm of neuroblastoma cells where it co-localized with p27, thus suggesting that p27 promotes the function of PTEN as a tumor suppressor by stabilizing PTEN in the cytoplasm. GRP/GRP-R regulation of CDK inhibitors and tumor suppressor PTEN may be critical for tumoriogenesis of neuroblastoma.

  11. Phosphorylation of AIB1 at Mitosis Is Regulated by CDK1/CYCLIN B

    PubMed Central

    Ferrero, Macarena; Ferragud, Juan; Orlando, Leonardo; Valero, Luz; Sánchez del Pino, Manuel; Farràs, Rosa; Font de Mora, Jaime

    2011-01-01

    Background Although the AIB1 oncogene has an important role during the early phase of the cell cycle as a coactivator of E2F1, little is known about its function during mitosis. Methodology/Principal Findings Mitotic cells isolated by nocodazole treatment as well as by shake-off revealed a post-translational modification occurring in AIB1 specifically during mitosis. This modification was sensitive to the treatment with phosphatase, suggesting its modification by phosphorylation. Using specific inhibitors and in vitro kinase assays we demonstrate that AIB1 is phosphorylated on Ser728 and Ser867 by Cdk1/cyclin B at the onset of mitosis and remains phosphorylated until exit from M phase. Differences in the sensitivity to phosphatase inhibitors suggest that PP1 mediates dephosphorylation of AIB1 at the end of mitosis. The phosphorylation of AIB1 during mitosis was not associated with ubiquitylation or degradation, as confirmed by western blotting and flow cytometry analysis. In addition, luciferase reporter assays showed that this phosphorylation did not alter the transcriptional properties of AIB1. Importantly, fluorescence microscopy and sub-cellular fractionation showed that AIB1 phosphorylation correlated with the exclusion from the condensed chromatin, thus preventing access to the promoters of AIB1-dependent genes. Phospho-specific antibodies developed against Ser728 further demonstrated the presence of phosphorylated AIB1 only in mitotic cells where it was localized preferentially in the periphery of the cell. Conclusions Collectively, our results describe a new mechanism for the regulation of AIB1 during mitosis, whereby phosphorylation of AIB1 by Cdk1 correlates with the subcellular redistribution of AIB1 from a chromatin-associated state in interphase to a more peripheral localization during mitosis. At the exit of mitosis, AIB1 is dephosphorylated, presumably by PP1. This exclusion from chromatin during mitosis may represent a mechanism for governing the

  12. D-type cyclins control cell division and developmental rate during Arabidopsis seed development.

    PubMed

    Collins, Carl; Dewitte, Walter; Murray, James A H

    2012-06-01

    Seed development in Arabidopsis is characterized by stereotypical division patterns, suggesting that coordinated control of cell cycle may be required for correct patterning and growth of the embryo and endosperm. D-type cyclins (CYCD) are key cell cycle regulators with roles in developmental processes, but knowledge regarding their involvement in seed development remains limited. Here, a family-wide gene expression, and loss- and gain-of-function approach was adopted to reveal additional functions for CYCDs in the development of seed tissues. CYCD genes have both discrete and overlapping tissue-specific expression patterns in the seed as revealed by GUS reporter gene expression. Analysis of different mutant combinations revealed that correct CYCD levels are required in seed development. The CYCD3 subgroup is specifically required as its loss caused delayed development, whereas overexpression in the embryo and endosperm of CYCD3;1 or a previously uncharacterized gene, CYCD7;1, variously leads to induced proliferation, abnormal phenotypes, and elevated seed abortion. CYCD3;1 overexpression provoked a delay in embryonic developmental progression and abnormalities including additional divisions of the hypophysis and suspensor, regions where CYCD3 genes are normally expressed, but did not affect endosperm development. Overexpression of CYCD7;1, not normally expressed in seed development, promoted overgrowth of both embryo and endosperm through increased division and cell enlargement. In contrast to post-germination growth, where pattern and organ size is not generally related to division, results suggest that a close control of cell division through regulation of CYCD activity is important during seed development in conferring both developmental rate and correct patterning. PMID:22412186

  13. Cyclin dependent kinase 5 is required for the normal development of oligodendrocytes and myelin formation.

    PubMed

    Yang, Yan; Wang, Haibo; Zhang, Jie; Luo, Fucheng; Herrup, Karl; Bibb, James A; Lu, Richard; Miller, Robert H

    2013-06-15

    The development of oligodendrocytes, the myelinating cells of the vertebrate CNS, is regulated by a cohort of growth factors and transcription factors. Less is known about the signaling pathways that integrate extracellular signals with intracellular transcriptional regulators to control oligodendrocyte development. Cyclin dependent kinase 5 (Cdk5) and its co-activators play critical roles in the regulation of neuronal differentiation, cortical lamination, neuronal cell migration and axon outgrowth. Here we demonstrate a previously unrecognized function of Cdk5 in regulating oligodendrocyte maturation and myelination. During late embryonic development Cdk5 null animals displayed a reduction in the number of MBP+ cells in the spinal cord, but no difference in the number of OPCs. To determine whether the reduction of oligodendrocytes reflected a cell-intrinsic loss of Cdk5, it was selectively deleted from Olig1+ oligodendrocyte lineage cells. In Olig1(Cre/+); Cdk5(fl/fl) conditional mutants, reduced levels of expression of MBP and PLP mRNA were observed throughout the CNS and ultrastructural analyses demonstrated a significant reduction in the proportion of myelinated axons in the optic nerve and spinal cord. Pharmacological inhibition or RNAi knockdown of Cdk5 in vitro resulted in the reduction in oligodendrocyte maturation, but had no effect on OPC cell proliferation. Conversely, over-expression of Cdk5 promoted oligodendrocyte maturation and enhanced process outgrowth. Consistent with this data, Cdk5(-/-) oligodendrocytes developed significantly fewer primary processes and branches than control cells. Together, these findings suggest that Cdk5 function as a signaling integrator to regulate oligodendrocyte maturation and myelination.

  14. Overexpression of PIN1 Enhances Cancer Growth and Aggressiveness with Cyclin D1 Induction in EBV-Associated Nasopharyngeal Carcinoma

    PubMed Central

    Xu, Meng; Cheung, Chartia Ching-Mei; Chow, Chit; Lun, Samantha Wei-Man; Cheung, Siu-Tim; Lo, Kwok-Wai

    2016-01-01

    Background Nasopharyngeal carcinoma (NPC) is a peculiar Epstein Barr virus (EBV)-associated malignancy that is prevalent in South-East Asia. Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) isomerizes specific phosphorylated amino acid residues, which makes it an important regulator in cell survival and apoptosis. In this study, we investigated the contribution made by PIN1 in NPC tumorigenesis and PIN1’s potential role as a therapeutic target. Methods The expression of PIN1 was examined in a panel of NPC cell lines, xenografts and primary tumors. The functional roles of PIN1 in NPC cells were elucidated by the knockdown and overexpression of PIN1 in in vitro and in vivo nude mice models by siRNA and lenti-viral transfection, respectively. The antitumor effects of the PIN1 inhibitor Juglone in NPC cells were also evaluated. Results We revealed the consistent overexpression of PIN1 in almost all EBV-associated NPC cell lines, xenografts and primary tumors. PIN1 suppression was capable of inhibiting cyclin D1 expression and activating caspase-3 in NPC cells. It positively regulated NPC cell proliferation, colony formation and anchorage-independent growth. The inhibition of PIN1 suppressed tumor growth in vitro and in vivo. Conclusions This study demonstrates the oncogenic role of PIN1 in NPC tumorigenesis, and shows that its overexpression can enhance tumor cell growth via the upregulation of cyclinD1. Our findings inform the development of novel treatments targeting PIN1 for NPC patients. PMID:27258148

  15. Differential Roles of Two Homologous Cyclin-Dependent Kinase Inhibitor Genes in Regulating Cell Cycle and Innate Immunity in Arabidopsis.

    PubMed

    Hamdoun, Safae; Zhang, Chong; Gill, Manroop; Kumar, Narender; Churchman, Michelle; Larkin, John C; Kwon, Ashley; Lu, Hua

    2016-01-01

    Precise cell-cycle control is critical for plant development and responses to pathogen invasion. Two homologous cyclin-dependent kinase inhibitor genes, SIAMESE (SIM) and SIM-RELATED 1 (SMR1), were recently shown to regulate Arabidopsis (Arabidopsis thaliana) defense based on phenotypes conferred by a sim smr1 double mutant. However, whether these two genes play differential roles in cell-cycle and defense control is unknown. In this report, we show that while acting synergistically to promote endoreplication, SIM and SMR1 play different roles in affecting the ploidy of trichome and leaf cells, respectively. In addition, we found that the smr1-1 mutant, but not sim-1, was more susceptible to a virulent Pseudomonas syringae strain, and this susceptibility could be rescued by activating salicylic acid (SA)-mediated defense. Consistent with these results, smr1-1 partially suppressed the dwarfism, high SA levels, and cell death phenotypes in acd6-1, a mutant used to gauge the change of defense levels. Thus, SMR1 functions partly through SA in defense control. The differential roles of SIM and SMR1 are due to differences in temporal and spatial expression of these two genes in Arabidopsis tissues and in response to P. syringae infection. In addition, flow-cytometry analysis of plants with altered SA signaling revealed that SA is necessary, but not sufficient, to change cell-cycle progression. We further found that a mutant with three CYCD3 genes disrupted also compromised disease resistance to P. syringae. Together, this study reveals differential roles of two homologous cyclin-dependent kinase inhibitors in regulating cell-cycle progression and innate immunity in Arabidopsis and provides insights into the importance of cell-cycle control during host-pathogen interactions. PMID:26561564

  16. Cyclin-Dependent Kinase Suppression by WEE1 Kinase Protects the Genome through Control of Replication Initiation and Nucleotide Consumption

    PubMed Central

    Beck, Halfdan; Nähse-Kumpf, Viola; Larsen, Marie Sofie Yoo; O'Hanlon, Karen A.; Patzke, Sebastian; Holmberg, Christian; Mejlvang, Jakob; Groth, Anja; Nielsen, Olaf

    2012-01-01

    Activation of oncogenes or inhibition of WEE1 kinase deregulates cyclin-dependent kinase (CDK) activity and leads to replication stress; however, the underlying mechanism is not understood. We now show that elevation of CDK activity by inhibition of WEE1 kinase rapidly increases initiation of replication. This leads to nucleotide shortage and reduces replication fork speed, which is followed by SLX4/MUS81-mediated DNA double-strand breakage. Fork speed is normalized and DNA double-strand break (DSB) formation is suppressed when CDT1, a key factor for replication initiation, is depleted. Furthermore, addition of nucleosides counteracts the effects of unscheduled CDK activity on fork speed and DNA DSB formation. Finally, we show that WEE1 regulates the ionizing radiation (IR)-induced S-phase checkpoint, consistent with its role in control of replication initiation. In conclusion, these results suggest that deregulated CDK activity, such as that occurring following inhibition of WEE1 kinase or activation of oncogenes, induces replication stress and loss of genomic integrity through increased firing of replication origins and subsequent nucleotide shortage. PMID:22907750

  17. The integration of HR-HPV increases the expression of cyclins A and E in cytologies with and without low-grade lesions

    PubMed Central

    Zubillaga-Guerrero, MI; Illades-Aguiar, B; Leyva-Vazquez, MA; Flores-Alfaro, E; Castañeda-Saucedo, E; Muñoz-Valle, JF; Alarcón-Romero, LC

    2013-01-01

    Background: Cyclin-A and cyclin-E are regulators of G1–S phase of normal cell cycle. Integration of human papilloma virus high-risk (HR-HPV) could alter this mechanism, and its overexpression has been associated with poor prognosis in cervical cancer. Aim: To determine the expression of cyclin-A and cyclin-E, types of HR-HPV and physical state of DNA in cytologies with the diagnosis of low-grade squamous intraepithelial lesion (LSIL). Materials and Methods: 115 cytological specimens in liquid base (liquid-PREP™) were analyzed. 25 specimens were with no signs of SIL (NSIL) and without HPV; 30 with NSIL with low-risk HPV (LR-HPV); 30 with NSIL with HR-HPV; and 30 with both LSIL and HR-HPV. The expression of cyclins was evaluated by immunocytochemistry; and the detection of viral DNA was done by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLPs) for genotyping or sequencing of HPV. The physical state of HPV was evaluated by in situ hybridization with amplification with tyramide. Results: In the cytologies NSIL with LR-HPV, the expression of cyclin-A and cyclin-E was found respectively in 23.3% and 33.3% of the specimens. Among the specimens of NSIL with HR-HPV, 33.3% expressed cyclin-A and 40% cyclin-E, while 100% of the LSILs expressed the 2 cyclins. On the other hand, 100% of the samples NSIL with LR-HPV presented an episomal pattern. Of the specimens of NSIL with HR-HPV, 56.6% exhibited an episomal pattern, 23.3% integrated and 20%, mixed. Among the LSILs, 90% were mixed and 10% integrated. Conclusions: The cyclins A and E are present in the LSILs that occur predominantly in mixed state in the presence of HR-HPV. PMID:23661932

  18. LPLUNC1 Inhibits Nasopharyngeal Carcinoma Cell Growth via Down-Regulation of the MAP Kinase and Cyclin D1/E2F Pathways

    PubMed Central

    Li, Xiaoling; Zhang, Wenling; Fan, Songqing; Shi, Lei; Li, Xiayu; Gong, Zhaojian; Ma, Jian; Zhou, Ming; Xiang, Juanjuan; Peng, Shuping; Xiang, Bo; Deng, Hao; Yang, Yunbo; Li, Yong; Xiong, Wei; Zeng, Zhaoyang; Li, Guiyuan

    2013-01-01

    Long-palate, lung and nasal epithelium clone 1 (LPLUNC1) gene expression is relatively tissue specific. It is highly expressed in nontumor nasopharyngeal epithelial tissues, but its expression is reduced in nasopharyngeal carcinoma (NPC), indicating that LPLUNC1 may be associated with the tumorigenesis of NPC. To study the effects of LPLUNC1 on NPC tumorigenesis, a full-length LPLUNC1 expression plasmid was stably transfected into the NPC cell line, 5-8F. Our data indicated that LPLUNC1 inhibited NPC cell proliferation in vitro and tumor formation in vivo. LPLUNC1 also delayed cell cycle progression from G1 to S phase and inhibited the expression of cyclin D1, cyclin-dependent kinase 4 (CDK4) and phosphorylated Rb. To further investigate the molecular mechanisms underlying the suppressive effects of LPLUNC1 on NPC tumorigenesis, cDNA microarray was performed. These studies revealed that LPLUNC1 inhibited the expression of certain mitogen-activated protein (MAP) kinases (MAPK) kinases and cell cycle-related molecules. Western blotting confirmed that the expression of MEK1, phosphorylated ERK1/2, phosphorylated JNK1/2, c-Myc and c-Jun were inhibited by LPLUNC1. Furthermore, the transcriptional activity of AP-1 was down-regulated by LPLUNC1, suggesting that the MAPK signaling pathway is regulated by LPLUNC1. Taken together, the present study indicates that LPLUNC1 delays NPC cell growth by inhibiting the MAPK and cyclin D1/E2F pathways and suggests that LPLUNC1 may represent a promising candidate tumor suppressor gene associated with NPC. PMID:23650533

  19. Prognostic Value of Expression of Cyclin E in Gastrointestinal Cancer: A Systematic Review and Meta-Analysis.

    PubMed

    Huang, Lanshan; Ren, Fanghui; Tang, Ruixue; Feng, Zhenbo; Chen, Gang

    2016-02-01

    Cyclin E is a critical regulator in cell cycle and promotes the initiation of DNA replication and centrosome duplication in late G1. The overexpression of cyclin E is common in cancers of the digestive system. However, whether cyclin E represents a prognostic biomarker in gastrointestinal cancer remains controversial. We reviewed the published literatures to clarify the association between cyclin E determined by immunohistochemistry (IHC) and survival in gastrointestinal cancer. Literatures were searched in PubMed and Cochrane Library published up to December 1, 2014. A total of 282 articles were initially identified, and 14 articles were included in this study. Meta-analysis was performed for 10 studies with a total of 1300 patients. Combined hazard risk (HR) and corresponding 95% confidence interval (CI) were calculated by random-effect model due to the heterogeneity. The quality of included studies was assessed by the Newcastle-Ottawa Scale and the Methodological Index for Non-Randomized Studies (MINORS). We found that high level of cyclin E was a predicator of poor prognosis among patients with gastrointestinal cancer (HR = 1.67, 95% CI = 1.06-2.63, P = .028). In summary, overexpression of cyclin E is associated with poor prognosis in gastrointestinal cancer and expression of cyclin E determined by IHC might be a prognostic marker for gastrointestinal cancer in clinical practice.

  20. Correlation between cyclin D1 expression and standard clinicopathological variables in invasive breast cancer in Eastern India

    PubMed Central

    Sarkar, Santanu; Kanoi, Aditya; Bain, Jayanta; Gayen, Rajarshi; Das, Kashi Nath

    2015-01-01

    Introduction: Breast cancer is the leading oncogenic threat in South-East Asian women showing an inexplicable biological aggressiveness. High expression of cyclin D1, a key molecule in breast cancer pathogenesis, has been shown by previous studies in the Western world to be associated with favorable tumoral characteristics. Apart from determining the correlation between cyclin D1 expression and standard clinicopathological variables in invasive breast cancer in Eastern India, questions that we aimed to answer through this study included: Is there a significant regional difference in expression patterns of this protein? And if yes, can it possibly account for the epidemiological differences in breast cancer occurrence and biological behavior? Finally, is testing for overexpression of this protein in regions with limited resources beneficial? Materials and Methods: The present study was carried out on 110 previously untreated, female patients with primary breast carcinoma. Cyclin D1 expression was determined by immunohistochemistry using specific anti-cyclin D1 monoclonal antibodies. Results: Overexpression of cyclin Dl was found in 78 of 110 cases (70.9%). High expression of cyclin D1 showed a significant negative correlation with tumor size (P = 0.023) and tumor grade (P = 0.045). Estrogen receptor and progesterone receptor positive cases showed a significantly positive correlation with cyclin D1 overexpression (P = 0.026 and 0.046, respectively). Interestingly, cyclin D1 positivity showed a strong correlation with the type of surgical procedure performed (P = 0.002). Conclusion: Cyclin D1 overexpression in breast cancer is associated with less aggressive tumoral characteristics. Furthermore, its potential epidemiological role and utility as a prognostic marker have been discussed. PMID:26981504

  1. SOX11 expression is highly specific for mantle cell lymphoma and identifies the cyclin D1-negative subtype

    PubMed Central

    Mozos, Ana; Royo, Cristina; Hartmann, Elena; De Jong, Daphne; Baró, Cristina; Valera, Alexandra; Fu, Kai; Weisenburger, Dennis D.; Delabie, Jan; Chuang, Shih-Sung; Jaffe, Elaine S.; Ruiz-Marcellan, Carmen; Dave, Sandeep; Rimsza, Lisa; Braziel, Rita; Gascoyne, Randy D.; Solé, Francisco; López-Guillermo, Armando; Colomer, Dolors; Staudt, Louis M.; Rosenwald, Andreas; Ott, German; Jares, Pedro; Campo, Elias

    2009-01-01

    Background Cyclin D1-negative mantle cell lymphoma is difficult to distinguish from other small B-cell lymphomas. The clinical and pathological characteristics of patients with this form of lymphoma have not been well defined. Overexpression of the transcription factor SOX11 has been observed in conventional mantle cell lymphoma. The aim of this study was to determine whether this gene is expressed in cyclin D1-negative mantle cell lymphoma and whether its detection may be useful to identify these tumors. Design and Methods The microarray database of 238 mature B-cell neoplasms was re-examined. SOX11 protein expression was investigated immunohistochemically in 12 cases of cyclin D1-negative mantle cell lymphoma, 54 cases of conventional mantle cell lymphoma, and 209 additional lymphoid neoplasms. Results SOX11 mRNA was highly expressed in conventional and cyclin D1-negative mantle cell lymphoma and in 33% of the cases of Burkitt’s lymphoma but not in any other mature lymphoid neoplasm. SOX11 nuclear protein was detected in 50 cases (93%) of conventional mantle cell lymphoma and also in the 12 cyclin D1-negative cases of mantle cell lymphoma, the six cases of lymphoblastic lymphomas, in two of eight cases of Burkitt’s lymphoma, and in two of three T-prolymphocytic leukemias but was negative in the remaining lymphoid neoplasms. Cyclin D2 and D3 mRNA levels were significantly higher in cyclin D1-negative mantle cell lymphoma than in conventional mantle cell lymphoma but the protein expression was not discriminative. The clinico-pathological features and outcomes of the patients with cyclin D1-negative mantle cell lymphoma identified by SOX11 expression were similar to those of patients with conventional mantle cell lymphoma. Conclusions SOX11 mRNA and nuclear protein expression is a highly specific marker for both cyclin D1-positive and negative mantle cell lymphoma. PMID:19880778

  2. Cyclin D1 cooperates with p21 to regulate TGFβ-mediated breast cancer cell migration and tumor local invasion

    PubMed Central

    2013-01-01

    Introduction Deregulation of the cell cycle machinery is often found in human cancers. Modulations in the cell cycle regulator function and expression result not only in proliferative advantages, but also lead to tumor progression and invasiveness of the cancer. In particular, cyclin D1 and p21 are often over-expressed in human cancers, correlating with high tumor grade, poor prognosis and increased metastasis. This prompted us to investigate the role of the cyclin D1/p21 signaling axis downstream of transforming growth factor beta (TGFβ) in breast cancer progression. Methods Cyclins mRNA and protein expressions were assessed by quantitative real-time PCR and Western blot in triple negative breast cancer cell lines. Co-localization and interaction between cyclin D1 and p21 were performed by immunocytochemistry and co-immunoprecipitation, respectively. Cell migration was assessed by wound healing and quantitative time-lapse imaging assays. In addition, the effects of cyclin D1 on cellular structure and actin organization were examined by staining with F-actin marker phalloidin and mesenchymal intermediate filament vimentin. Finally, a mammary fat pad xenograft mouse model was used to assess mammary tumor growth and local invasion. Results We found TGFβ to specifically up-regulate the expression of cyclin D1 in triple negative breast cancer cells. Induction of cyclin D1 is also required for TGFβ-mediated cell migration. Suppression of cyclin D1 expression not only resulted in a rounded and epithelial-like phenotype, but also prevented TGFβ-induced vimentin and F-actin co-localization at the cell edge as well as invadopodia formation. Furthermore, TGFβ promoted the nuclear co-localization and physical interaction between cyclin D1 and p21. The co-expression of cyclin D1 and p21 proteins are required for the initial steps of tumor development, as double knockdown of these two molecules prevented primary tumor formation in a Xenograft mouse model. Moreover, the in

  3. Zebrafish cyclin Dx is required for development of motor neuron progenitors, and its expression is regulated by hypoxia-inducible factor 2α.

    PubMed

    Lien, Huang-Wei; Yuan, Rey-Yue; Chou, Chih-Ming; Chen, Yi-Chung; Hung, Chin-Chun; Hu, Chin-Hwa; Hwang, Sheng-Ping L; Hwang, Pung-Pung; Shen, Chia-Ning; Chen, Chih-Lung; Cheng, Chia-Hsiung; Huang, Chang-Jen

    2016-06-21

    Cyclins play a central role in cell-cycle regulation; in mammals, the D family of cyclins consists of cyclin D1, D2, and D3. In Xenopus, only homologs of cyclins D1 and D2 have been reported, while a novel cyclin, cyclin Dx (ccndx), was found to be required for the maintenance of motor neuron progenitors during embryogenesis. It remains unknown whether zebrafish possess cyclin D3 or cyclin Dx. In this study, we identified a zebrafish ccndx gene encoding a protein which can form a complex with Cdk4. Through whole-mount in situ hybridization, we observed that zccndx mRNA is expressed in the motor neurons of hindbrain and spinal cord during development. Analysis of a 4-kb promoter sequence of the zccndx gene revealed the presence of HRE sites, which can be regulated by HIF2α. Morpholino knockdown of zebrafish Hif2α and cyclin Dx resulted in the abolishment of isl1 and oligo2 expression in the precursors of motor neurons, and also disrupted axon growth. Overexpression of cyclin Dx mRNA in Hif2α morphants partially rescued zccndx expression. Taken together, our data indicate that zebrafish cyclin Dx plays a role in maintaining the precursors of motor neurons.

  4. Zebrafish cyclin Dx is required for development of motor neuron progenitors, and its expression is regulated by hypoxia-inducible factor 2α.

    PubMed

    Lien, Huang-Wei; Yuan, Rey-Yue; Chou, Chih-Ming; Chen, Yi-Chung; Hung, Chin-Chun; Hu, Chin-Hwa; Hwang, Sheng-Ping L; Hwang, Pung-Pung; S