Science.gov

Sample records for activate defense mechanisms

  1. Defense Mechanisms: A Bibliography.

    ERIC Educational Resources Information Center

    Pedrini, D. T.; Pedrini, Bonnie C.

    This bibliography includes studies of defense mechanisms, in general, and studies of multiple mechanisms. Defense mechanisms, briefly and simply defined, are the unconscious ego defendants against unpleasure, threat, or anxiety. Sigmund Freud deserves the clinical credit for studying many mechanisms and introducing them in professional literature.…

  2. [Defense mechanism to prevent ectopic activation of pancreatic digestive enzymes under physiological conditions and its breakdown in acute pancreatitis].

    PubMed

    Kaku, Midori; Otsuko, Makoto

    2004-11-01

    Independent of the etiology, acute pancreatitis is associated with significant morbidity and the potential for mortality. In most patients, acute pancreatitis follows an uncomplicated or mild course. Recent studies in hereditary pancreatitis have clearly revealed that trypsin is the key enzyme at the onset of pancreatitis. However, there are several defense mechanisms to prevent ectopic activation of trypsin under physiological conditions. If the defense mechanisms failed or activation of trypsin occurred over defense ability, trypsin would activate other digestive enzymes and self-digestion of the pancreas would occur.

  3. Thermoregulatory defense mechanisms.

    PubMed

    Sessler, Daniel I

    2009-07-01

    Core body temperature is normally tightly regulated by an effective thermoregulatory system. Thermoregulatory control is sometimes impaired by serious illness, but more typically remains intact. The primary autonomic defenses against heat are sweating and active precapillary vasodilation; the primary autonomic defenses against cold are arteriovenous shunt vasoconstriction and shivering. The core temperature triggering each response defines its activation threshold. Temperatures between the sweating and vasoconstriction thresholds define the inter-threshold range. The shivering threshold is usually a full 1 degrees C below the vasoconstriction threshold and is therefore a "last resort" response. Both vasoconstriction and shivering are associated with autonomic and hemodynamic activation; and each response is effective, thus impeding induction of therapeutic hypothermia. It is thus helpful to accompany core cooling with drugs that pharmacologically induce a degree of thermal tolerance. No perfect drug or drug combination has been identified. Anesthetics, for example, induce considerable tolerance, but are rarely suitable. Meperidine-especially in combination with buspirone-is especially effective while provoking only modest toxicity. The combination of buspirone and dexmedetomidine is comparably effective while avoiding the respiratory depression association with opioid administration.

  4. Mechanisms of intracellular defense and activity of free radical oxidation in rat myocardium in the dynamics of chronic fluorine intoxication.

    PubMed

    Zhukova, A G; Alekhina, D A; Sazontova, T G; Prokop'ev, Yu A; Gorokhova, L G; Stryapko, N V; Mikhailova, N N

    2013-12-01

    The mechanisms of intracellular defense and activity of free radical oxidation in the myocardium were studied in the dynamics of chronic fluorine intoxication. At the early stages of fluorine intoxication (day 3-week 3), the concentrations of defense proteins HIF-1α, HSC73, and HOx-2 and activity of the main metabolic enzymes increased, which promoted maintenance of cardiomyocyte structure and function at the normal physiological level. At late stages of fluorine intoxication (weeks 6 and 9), metabolic changes in the myocardium attest to high strain of the adaptive mechanisms.

  5. Activation of defense mechanism in wheat by polyphenol oxidase from aphid saliva.

    PubMed

    Ma, Rui; Chen, Ju-Lian; Cheng, Deng-Fa; Sun, Jing-Rui

    2010-02-24

    The saliva of two cereal aphids, Sitobion avenae and Schizaphis graminum in third-instar nymphs, was collected after 24 h of feeding by 30 aphids, separately, on artificial diet sachets, and the salivary enzymes were determined. The result showed that polyphenol oxidase (PPO) existed in the saliva of both aphid species, and the enzymatic activities were 6.2 x 10(-3) U/g for S. avenae and 2.37 x 10(-1) U/g for S. graminum, revealing a 38-fold higher activity in the saliva of S. graminum than in the saliva of S. avenae. It was speculated that the higher PPO activity in S. graminum saliva was a contributing factor to the light yellow spot left on the feeding site of the wheat leaf by S. graminum; no such spot was left by S. avenae. After treatment of a wheat seedling with the saliva of S. avenae and S. graminum and PPO at the concentration of aphid saliva, transcript profiling data showed that aphid saliva and PPO significantly induced expression of the genes aos and fps. Because genes aos and fps encode the key enzymes in the defense signal pathways jasmonic acid and terpene signal pathways, respectively, it was deduced that PPO from aphid saliva, as the main elicitor, triggers an appropriate defense response in wheat through jasmonic acid and terpene signal pathways. PMID:20112908

  6. Plant storage proteins with antimicrobial activity: novel insights into plant defense mechanisms.

    PubMed

    Cândido, Elizabete de Souza; Pinto, Michelle Flaviane Soares; Pelegrini, Patrícia Barbosa; Lima, Thais Bergamin; Silva, Osmar Nascimento; Pogue, Robert; Grossi-de-Sá, Maria Fátima; Franco, Octávio Luiz

    2011-10-01

    Storage proteins perform essential roles in plant survival, acting as molecular reserves important for plant growth and maintenance, as well as being involved in defense mechanisms by virtue of their properties as insecticidal and antimicrobial proteins. These proteins accumulate in storage vacuoles inside plant cells, and, in response to determined signals, they may be used by the different plant tissues in response to pathogen attack. To shed some light on these remarkable proteins with dual functions, storage proteins found in germinative tissues, such as seeds and kernels, and in vegetative tissues, such as tubercles and leaves, are extensively discussed here, along with the related mechanisms of protein expression. Among these proteins, we focus on 2S albumins, Kunitz proteinase inhibitors, plant lectins, glycine-rich proteins, vicilins, patatins, tarins, and ocatins. Finally, the potential use of these molecules in development of drugs to combat human and plant pathogens, contributing to the development of new biotechnology-based medications and products for agribusiness, is also presented.

  7. Caspase-8 activity is part of the BeWo trophoblast cell defense mechanisms against Trypanosoma cruzi infection.

    PubMed

    Carrillo, Ileana; Droguett, Daniel; Castillo, Christian; Liempi, Ana; Muñoz, Lorena; Maya, Juan Diego; Galanti, Norbel; Kemmerling, Ulrike

    2016-09-01

    Congenital Chagas disease is caused by the protozoan parasite Trypanosoma cruzi that must cross the placental barrier during transmission. The trophoblast constitutes the first tissue in contact with the maternal-blood circulating parasite. Importantly, the congenital transmission rates are low, suggesting the presence of local placental defense mechanisms. Cellular proliferation and differentiation as well as apoptotic cell death are induced by the parasite and constitute part of the epithelial turnover of the trophoblast, which has been suggested to be part of those placental defenses. On the other hand, caspase-8 is an essential molecule in the modulation of trophoblast turnover by apoptosis and by epithelial differentiation. As an approach to study whether T. cruzi induced trophoblast turnover and infection is mediated by caspase-8, we infected BeWo cells (a trophoblastic cell line) with the parasite and determined in the infected cells the expression and enzymatic activity of caspase-8, DNA synthesis (as proliferation marker), β-human chorionic gonadotropin (β-hCG) (as differentiation marker) and activity of Caspase-3 (as apoptotic death marker). Parasite load in BeWo cells was measured by DNA quantification using qPCR and cell counting. Our results show that T. cruzi induces caspase-8 activity and that its inhibition increases trophoblast cells infection while decreases parasite induced cellular differentiation and apoptotic cell death, but not cellular proliferation. Thus, caspase-8 activity is part of the BeWo trophoblast cell defense mechanisms against T. cruzi infection. Together with our previous results, we suggest that the trophoblast turnover is part of local placental anti-parasite mechanisms.

  8. Plant Defense Mechanisms Are Activated during Biotrophic and Necrotrophic Development of Colletotricum graminicola in Maize1[W][OA

    PubMed Central

    Vargas, Walter A.; Martín, José M. Sanz; Rech, Gabriel E.; Rivera, Lina P.; Benito, Ernesto P.; Díaz-Mínguez, José M.; Thon, Michael R.; Sukno, Serenella A.

    2012-01-01

    Hemibiotrophic plant pathogens first establish a biotrophic interaction with the host plant and later switch to a destructive necrotrophic lifestyle. Studies of biotrophic pathogens have shown that they actively suppress plant defenses after an initial microbe-associated molecular pattern-triggered activation. In contrast, studies of the hemibiotrophs suggest that they do not suppress plant defenses during the biotrophic phase, indicating that while there are similarities between the biotrophic phase of hemibiotrophs and biotrophic pathogens, the two lifestyles are not analogous. We performed transcriptomic, histological, and biochemical studies of the early events during the infection of maize (Zea mays) with Colletotrichum graminicola, a model pathosystem for the study of hemibiotrophy. Time-course experiments revealed that mRNAs of several defense-related genes, reactive oxygen species, and antimicrobial compounds all begin to accumulate early in the infection process and continue to accumulate during the biotrophic stage. We also discovered the production of maize-derived vesicular bodies containing hydrogen peroxide targeting the fungal hyphae. We describe the fungal respiratory burst during host infection, paralleled by superoxide ion production in specific fungal cells during the transition from biotrophy to a necrotrophic lifestyle. We also identified several novel putative fungal effectors and studied their expression during anthracnose development in maize. Our results demonstrate a strong induction of defense mechanisms occurring in maize cells during C. graminicola infection, even during the biotrophic development of the pathogen. We hypothesize that the switch to necrotrophic growth enables the fungus to evade the effects of the plant immune system and allows for full fungal pathogenicity. PMID:22247271

  9. Prevalence and Mechanisms of Dynamic Chemical Defenses in Tropical Sponges

    PubMed Central

    Rohde, Sven; Nietzer, Samuel; Schupp, Peter J.

    2015-01-01

    Sponges and other sessile invertebrates are lacking behavioural escape or defense mechanisms and rely therefore on morphological or chemical defenses. Studies from terrestrial systems and marine algae demonstrated facultative defenses like induction and activation to be common, suggesting that sessile marine organisms also evolved mechanisms to increase the efficiency of their chemical defense. However, inducible defenses in sponges have not been investigated so far and studies on activated defenses are rare. We investigated whether tropical sponge species induce defenses in response to artificial predation and whether wounding triggers defense activation. Additionally, we tested if these mechanisms are also used to boost antimicrobial activity to avoid bacterial infection. Laboratory experiments with eight pacific sponge species showed that 87% of the tested species were chemically defended. Two species, Stylissa massa and Melophlus sarasinorum, induced defenses in response to simulated predation, which is the first demonstration of induced antipredatory defenses in marine sponges. One species, M. sarasinorum, also showed activated defense in response to wounding. Interestingly, 50% of the tested sponge species demonstrated induced antimicrobial defense. Simulated predation increased the antimicrobial defenses in Aplysinella sp., Cacospongia sp., M. sarasinorum, and S. massa. Our results suggest that wounding selects for induced antimicrobial defenses to protect sponges from pathogens that could otherwise invade the sponge tissue via feeding scars. PMID:26154741

  10. Prevalence and Mechanisms of Dynamic Chemical Defenses in Tropical Sponges.

    PubMed

    Rohde, Sven; Nietzer, Samuel; Schupp, Peter J

    2015-01-01

    Sponges and other sessile invertebrates are lacking behavioural escape or defense mechanisms and rely therefore on morphological or chemical defenses. Studies from terrestrial systems and marine algae demonstrated facultative defenses like induction and activation to be common, suggesting that sessile marine organisms also evolved mechanisms to increase the efficiency of their chemical defense. However, inducible defenses in sponges have not been investigated so far and studies on activated defenses are rare. We investigated whether tropical sponge species induce defenses in response to artificial predation and whether wounding triggers defense activation. Additionally, we tested if these mechanisms are also used to boost antimicrobial activity to avoid bacterial infection. Laboratory experiments with eight pacific sponge species showed that 87% of the tested species were chemically defended. Two species, Stylissa massa and Melophlus sarasinorum, induced defenses in response to simulated predation, which is the first demonstration of induced antipredatory defenses in marine sponges. One species, M. sarasinorum, also showed activated defense in response to wounding. Interestingly, 50% of the tested sponge species demonstrated induced antimicrobial defense. Simulated predation increased the antimicrobial defenses in Aplysinella sp., Cacospongia sp., M. sarasinorum, and S. massa. Our results suggest that wounding selects for induced antimicrobial defenses to protect sponges from pathogens that could otherwise invade the sponge tissue via feeding scars.

  11. Coordinated Activation of Programmed Cell Death and Defense Mechanisms in Transgenic Tobacco Plants Expressing a Bacterial Proton Pump.

    PubMed Central

    Mittler, R.; Shulaev, V.; Lam, E.

    1995-01-01

    In plants, programmed cell death is thought to be activated during the hypersensitive response to certain avirulent pathogens and in the course of several differentiation processes. We describe a transgenic model system that mimics the activation of programmed cell death in higher plants. In this system, expression of a bacterial proton pump in transgenic tobacco plants activates a cell death pathway that may be similar to that triggered by recognition of an incompatible pathogen. Thus, spontaneous lesions that resemble hypersensitive response lesions are formed, multiple defense mechanisms are apparently activated, and systemic resistance is induced in the absence of a pathogen. Interestingly, mutation of a single amino acid in the putative channel of this proton pump renders it inactive with respect to lesion formation and induction of resistance to pathogen challenge. This transgenic model system may provide insights into the mechanisms involved in mediating cell death in higher plants. In addition, it may also be used as a general agronomic tool to enhance disease protection. PMID:12242350

  12. Pulmonary defense mechanisms against opportunistic fungal pathogens.

    PubMed

    Waldorf, A R

    1989-01-01

    Though of critical importance, nonimmune host defense mechanisms against aspergillosis and mucormycosis are not completely understood. Prevention of these infections presumably requires control of either spore germination and/or hyphal growth by the host. The data suggest that the host provides an important barrier to infection by control of spore or conidia germination, the critical step involving conversion of the fungus to its tissue-invasive form. The mechanisms of host defense against A. fumigatus are not strictly dependent on inhibition of conidia germination. Rather, pulmonary defense against Aspergillus appears to depend to a greater degree on early killing of fungal conidia by alveolar macrophages. In contrast, prevention of mucormycosis appears to require inhibition of fungal spore germination by the bronchoalveolar macrophage, thereby preventing conversion of the fungus to its hyphal form, although resident bronchoalveolar macrophages are unable to kill R. oryzae spores. Thus, host pulmonary defenses to Rhizopus and Aspergillus vary, even in normal animals. The tissue-invasive hyphal forms of the fungi which cause aspergillosis and mucormycosis are too large to be ingested by phagocytic cells. Although macrophages and monocytes can damage hyphae, the bulk of this role appears to fall upon the neutrophil. However, antihyphal mechanisms of neutrophils may not necessarily be identical for all types of hyphae. Moreover, interactions of several potential oxidative and nonoxidative antihyphal mechanisms may define the host's ability to limit fungal infections. In individuals where concentrations of oxidative or nonoxidative substances are limiting or suboptimal, interactions of mechanisms may be required for antihyphal activity, and studies of these interactions are important to gain better knowledge of the defense mechanisms against opportunistic mycoses in the intact host. In summary, at least two distinct lines of defense against Aspergillus and Rhizopus

  13. Rock mechanics contributions from defense programs

    SciTech Connect

    Heuze, F.E.

    1992-02-01

    An attempt is made at illustrating the many contributions to rock mechanics from US defense programs, over the past 30-plus years. Large advances have been achieved in the technology-base area covering instrumentation, material properties, physical modeling, constitutive relations and numerical simulations. In the applications field, much progress has been made in understanding and being able to predict rock mass behavior related to underground explosions, cratering, projectile penetration, and defense nuclear waste storage. All these activities stand on their own merit as benefits to national security. But their impact is even broader, because they have found widespread applications in the non-defense sector; to name a few: the prediction of the response of underground structures to major earthquakes, the physics of the earth`s interior at great depths, instrumentation for monitoring mine blasting, thermo-mechanical instrumentation useful for civilian nuclear waste repositories, dynamic properties of earthquake faults, and transient large-strain numerical modeling of geological processes, such as diapirism. There is not pretense that this summary is exhaustive. It is meant to highlight success stories representative of DOE and DOD geotechnical activities, and to point to remaining challenges.

  14. Lysozyme- and chitinase activity in latex bearing plants of genus Euphorbia--A contribution to plant defense mechanism.

    PubMed

    Sytwala, Sonja; Günther, Florian; Melzig, Matthias F

    2015-10-01

    Occurrence of latices in plants is widespread, there are 40 families of plants characterized to establish lactiferous structures. Latices exhibit a constitutive part of plant defense due to the stickiness. The appearance of proteins incorporated in latices is well characterized, and hydrolytic active proteins are considerable. A lot of plants constitute so-called pathogenesis-related (PR) proteins, to overcome stressful conditions. In our investigation we are focused on latex bearing plants of Euphorbiaceae Juss., and investigated the appearance of chitinase- and lysozyme activity in particular. The present outcomes represent a comprehensive study, relating to the occurrence of lysozyme and chitinase activity of genus Euphorbia at the first time. 110 different species of genus Euphorbia L. were tested, and the appearance of chitinase and lysozyme were determined in different quantities. The appearance itself, and the physicochemical properties of latices indicate an efficient interaction for plant defense against pathogen attack.

  15. Protecting the Self: Defense Mechanisms in Action

    ERIC Educational Resources Information Center

    Cramer, Phebe

    2006-01-01

    Integrating theory, research, and practical applications, this book provides a comprehensive examination of defense mechanisms and their role in both normal development and psychopathology. The author describes how children and adults mobilize specific kinds of defenses to maintain their psychological equilibrium and preserve self-esteem,…

  16. The Defense Mechanisms of Coronary Patients.

    ERIC Educational Resources Information Center

    Peglar, Marian; Borgen, Fred H.

    1984-01-01

    Tested 73 male inpatients with coronary heart disease on the Defense Mechanisms Inventory, State-Trait Anxiety Inventory, and a perception of health measure. Subjects were followed for five years. Principalization was discovered to be the most successful and projection the least successful defense. (JAC)

  17. Macrophage defense mechanisms against intracellular bacteria

    PubMed Central

    Weiss, Günter; Schaible, Ulrich E

    2015-01-01

    Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics. PMID:25703560

  18. Macrophage defense mechanisms against intracellular bacteria.

    PubMed

    Weiss, Günter; Schaible, Ulrich E

    2015-03-01

    Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics. PMID:25703560

  19. Defense mechanisms: 40 years of empirical research.

    PubMed

    Cramer, Phebe

    2015-01-01

    This article reviews research on defense mechanisms carried out over the past 40 years with children, adolescents, adults, and psychiatric patients. Both experimental and observational studies are included.

  20. Mechanisms of plant defense against insect herbivores.

    PubMed

    War, Abdul Rashid; Paulraj, Michael Gabriel; Ahmad, Tariq; Buhroo, Abdul Ahad; Hussain, Barkat; Ignacimuthu, Savarimuthu; Sharma, Hari Chand

    2012-10-01

    Plants respond to herbivory through various morphological, biochemicals, and molecular mechanisms to counter/offset the effects of herbivore attack. The biochemical mechanisms of defense against the herbivores are wide-ranging, highly dynamic, and are mediated both by direct and indirect defenses. The defensive compounds are either produced constitutively or in response to plant damage, and affect feeding, growth, and survival of herbivores. In addition, plants also release volatile organic compounds that attract the natural enemies of the herbivores. These strategies either act independently or in conjunction with each other. However, our understanding of these defensive mechanisms is still limited. Induced resistance could be exploited as an important tool for the pest management to minimize the amounts of insecticides used for pest control. Host plant resistance to insects, particularly, induced resistance, can also be manipulated with the use of chemical elicitors of secondary metabolites, which confer resistance to insects. By understanding the mechanisms of induced resistance, we can predict the herbivores that are likely to be affected by induced responses. The elicitors of induced responses can be sprayed on crop plants to build up the natural defense system against damage caused by herbivores. The induced responses can also be engineered genetically, so that the defensive compounds are constitutively produced in plants against are challenged by the herbivory. Induced resistance can be exploited for developing crop cultivars, which readily produce the inducible response upon mild infestation, and can act as one of components of integrated pest management for sustainable crop production.

  1. Mechanisms of plant defense against insect herbivores

    PubMed Central

    War, Abdul Rashid; Paulraj, Michael Gabriel; Ahmad, Tariq; Buhroo, Abdul Ahad; Hussain, Barkat; Ignacimuthu, Savarimuthu; Sharma, Hari Chand

    2012-01-01

    Plants respond to herbivory through various morphological, biochemicals, and molecular mechanisms to counter/offset the effects of herbivore attack. The biochemical mechanisms of defense against the herbivores are wide-ranging, highly dynamic, and are mediated both by direct and indirect defenses. The defensive compounds are either produced constitutively or in response to plant damage, and affect feeding, growth, and survival of herbivores. In addition, plants also release volatile organic compounds that attract the natural enemies of the herbivores. These strategies either act independently or in conjunction with each other. However, our understanding of these defensive mechanisms is still limited. Induced resistance could be exploited as an important tool for the pest management to minimize the amounts of insecticides used for pest control. Host plant resistance to insects, particularly, induced resistance, can also be manipulated with the use of chemical elicitors of secondary metabolites, which confer resistance to insects. By understanding the mechanisms of induced resistance, we can predict the herbivores that are likely to be affected by induced responses. The elicitors of induced responses can be sprayed on crop plants to build up the natural defense system against damage caused by herbivores. The induced responses can also be engineered genetically, so that the defensive compounds are constitutively produced in plants against are challenged by the herbivory. Induced resistance can be exploited for developing crop cultivars, which readily produce the inducible response upon mild infestation, and can act as one of components of integrated pest management for sustainable crop production. PMID:22895106

  2. Polyphenol oxidase as a biochemical seed defense mechanism

    PubMed Central

    Fuerst, E. Patrick; Okubara, Patricia A.; Anderson, James V.; Morris, Craig F.

    2014-01-01

    Seed dormancy and resistance to decay are fundamental survival strategies, which allow a population of seeds to germinate over long periods of time. Seeds have physical, chemical, and biological defense mechanisms that protect their food reserves from decay-inducing organisms and herbivores. Here, we hypothesize that seeds also possess enzyme-based biochemical defenses, based on induction of the plant defense enzyme, polyphenol oxidase (PPO), when wild oat (Avena fatua L.) caryopses and seeds were challenged with seed-decaying Fusarium fungi. These studies suggest that dormant seeds are capable of mounting a defense response to pathogens. The pathogen-induced PPO activity from wild oat was attributed to a soluble isoform of the enzyme that appeared to result, at least in part, from proteolytic activation of a latent PPO isoform. PPO activity was also induced in wild oat hulls (lemma and palea), non-living tissues that cover and protect the caryopsis. These results are consistent with the hypothesis that seeds possess inducible enzyme-based biochemical defenses arrayed on the exterior of seeds and these defenses represent a fundamental mechanism of seed survival and longevity in the soil. Enzyme-based biochemical defenses may have broader implications since they may apply to other defense enzymes as well as to a diversity of plant species and ecosystems. PMID:25540647

  3. Defense mechanisms and psychological adjustment in childhood.

    PubMed

    Sandstrom, Marlene J; Cramer, Phebe

    2003-08-01

    The association between maturity of defense use and psychological functioning was assessed in a group of 95 elementary school children. Defense mechanisms were measured using a valid and reliable storytelling task, and psychological adjustment was assessed through a combination of parent and self-report questionnaires. Correlational analyses indicated that children who relied on the developmentally immature defense of denial reported higher levels of self-rated social anxiety and depression and received higher ratings of parent-reported internalizing and externalizing behavior problems. However, children who made use of the developmentally mature defense of identification exhibited higher scores on perceived competence in social, academic, conduct, athletic, and global domains. Significantly, there was no relationship between children's use of denial and their level of perceived competence or between children's use of identification and their degree of maladjustment.

  4. Defense Mechanisms of Conifers 1

    PubMed Central

    Lewinsohn, Efraim; Gijzen, Mark; Savage, Thomas J.; Croteau, Rodney

    1991-01-01

    Cell-free extracts from Pinus ponderosa Lawson (ponderosa pine) and Pinus sylvestris L. (Scotch pine) wood exhibited high levels of monoterpene synthase (cyclase) activity, whereas bark extracts of these species contained no detectable activity, and they inhibited cyclase activity when added to extracts from wood, unless polyvinylpyrrolidone was included in the preparation. The molecular mass of the polyvinylpyrrolidone added was of little consequence; however, polyvinylpolypyrrolidone (a cross-linked insoluble form of the polymer) was ineffective in protecting enzyme activity. Based on these observations, methods were developed for the efficient extraction and assay of monoterpene cyclase activity from conifer stem (wood and bark) tissue. The level of monoterpene cyclase activity for a given conifer species was shown to correlate closely with the monoterpene content of the oleoresin and with the degree of anatomical complexity of the specialized resin-secreting structures. Cyclase activity and monoterpene content were lowest in the stems of species containing only isolated resin cells, such as western red cedar (Thuja plicata D. Don). Increasing levels of cyclase activity and oleoresin monoterpenes were observed in advancing from species with multicellular resin blisters (true firs [Abies]) to those with organized resin passages, such as western larch (Larix occidentalis Nutt.), Colorado blue spruce (Picea pungens Engelm.) and Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco). The highest levels of cyclase activity and oleoresin monoterpenes were noted in Pinus species that contain the most highly developed resin duct systems. The relationship between biosynthetic capacity, as measured by cyclase activity, monoterpene content, and the degree of organization of the secretory structures for a given species, may reflect the total number of specialized resin-producing cells per unit mass of stem tissue. PMID:16668182

  5. Antiviral Defense Mechanisms in Honey Bees

    PubMed Central

    Brutscher, Laura M.; Daughenbaugh, Katie F.; Flenniken, Michelle L.

    2015-01-01

    Honey bees are significant pollinators of agricultural crops and other important plant species. High annual losses of honey bee colonies in North America and in some parts of Europe have profound ecological and economic implications. Colony losses have been attributed to multiple factors including RNA viruses, thus understanding bee antiviral defense mechanisms may result in the development of strategies that mitigate colony losses. Honey bee antiviral defense mechanisms include RNA-interference, pathogen-associated molecular pattern (PAMP) triggered signal transduction cascades, and reactive oxygen species generation. However, the relative importance of these and other pathways is largely uncharacterized. Herein we review the current understanding of honey bee antiviral defense mechanisms and suggest important avenues for future investigation. PMID:26273564

  6. Defense Mechanisms: Discussions and Bibliographies; General or Multiple, and Specific.

    ERIC Educational Resources Information Center

    Pedrini, D. T.; Pedrini, Bonnie C.

    This publication considers some Freudian ego mechanisms. The first discussion and bibliography concerns defense mechanisms, in general or in multiple; after which, the discussions and bibliographies concern specific defense mechanisms: denial; displacement, substitution, sublimation; fixation; identification, introjection, incorporation,…

  7. Pythium infection activates conserved plant defense responses in mosses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The moss Physcomitrella patens (P. patens) is a useful model to study abiotic stress responses since it is highly tolerant to drought, salt and osmotic stress. However, little is known about the defense mechanisms activated in this moss after pathogen assault. Here the induction of defense responses...

  8. Current concepts on pulmonary host defense mechanisms in children.

    PubMed

    Wilmott, R W; Khurana-Hershey, G; Stark, J M

    2000-06-01

    The respiratory tract is exposed continuously to noxious agents, microbial organisms, particles, and allergens. It has therefore evolved both innate and specific defense mechanisms. The innate host defense mechanisms include components such as collectins, beta-defensins, lactoferrin, and complement, all of which have an important role in modulating the immune response. Immune protection of the lungs by specific antibody is reviewed. The airways are protected by alveolar macrophages, neutrophils, and lymphocytes, and their origins, regulation, functions, and antimicrobial activity are summarized. Antimicrobial peptides and immune-modulating peptides are likely to have a significant therapeutic role for infection and inflammation in the respiratory tract.

  9. Induction of Nrf2-mediated cellular defenses and alteration of phase I activities as mechanisms of chemoprotective effects of coffee in the liver.

    PubMed

    Cavin, C; Marin-Kuan, M; Langouët, S; Bezençon, C; Guignard, G; Verguet, C; Piguet, D; Holzhäuser, D; Cornaz, R; Schilter, B

    2008-04-01

    Coffee consumption has been associated with a significant decrease in the risk of developing chronic diseases such as Parkinson disease, diabetes type-2 and several types of cancers (e.g. colon, liver). In the present study, a coffee-dependent induction of enzymes involved in xenobiotic detoxification processes was observed in rat liver and primary hepatocytes. In addition, coffee was found to induce the mRNA and protein expression of enzymes involved in cellular antioxidant defenses. These inductions were correlated with the activation of the Nrf2 transcription factor as shown using an ARE-reporter luciferase assay. The induction of detoxifying enzymes GSTs and AKR is compatible with a protection against both genotoxicity and cytotoxicity of aflatoxin B1 (AFB1). This hypothesis was confirmed in in vitro and ex vivo test systems, where coffee reduced both AFB1-DNA and protein adducts. Interestingly, coffee was also found to inhibit cytochrome CYP1A1/2, indicating that other mechanisms different from a stimulation of detoxification may also play a significant role in the chemoprotective effects of coffee. Further investigations in either human liver cell line and primary hepatocytes indicated that the chemoprotective effects of coffee against AFB1 genotoxicity are likely to be of relevance for humans. These data strongly suggest that coffee may protect against the adverse effects of AFB1. In addition, the coffee-mediated stimulation of the Nrf2-ARE pathway resulting in increased endogenous defense mechanisms against electrophilic but also oxidative insults further support that coffee may be associated with a protection against various types of chemical stresses.

  10. Induction of Nrf2-mediated cellular defenses and alteration of phase I activities as mechanisms of chemoprotective effects of coffee in the liver.

    PubMed

    Cavin, C; Marin-Kuan, M; Langouët, S; Bezençon, C; Guignard, G; Verguet, C; Piguet, D; Holzhäuser, D; Cornaz, R; Schilter, B

    2008-04-01

    Coffee consumption has been associated with a significant decrease in the risk of developing chronic diseases such as Parkinson disease, diabetes type-2 and several types of cancers (e.g. colon, liver). In the present study, a coffee-dependent induction of enzymes involved in xenobiotic detoxification processes was observed in rat liver and primary hepatocytes. In addition, coffee was found to induce the mRNA and protein expression of enzymes involved in cellular antioxidant defenses. These inductions were correlated with the activation of the Nrf2 transcription factor as shown using an ARE-reporter luciferase assay. The induction of detoxifying enzymes GSTs and AKR is compatible with a protection against both genotoxicity and cytotoxicity of aflatoxin B1 (AFB1). This hypothesis was confirmed in in vitro and ex vivo test systems, where coffee reduced both AFB1-DNA and protein adducts. Interestingly, coffee was also found to inhibit cytochrome CYP1A1/2, indicating that other mechanisms different from a stimulation of detoxification may also play a significant role in the chemoprotective effects of coffee. Further investigations in either human liver cell line and primary hepatocytes indicated that the chemoprotective effects of coffee against AFB1 genotoxicity are likely to be of relevance for humans. These data strongly suggest that coffee may protect against the adverse effects of AFB1. In addition, the coffee-mediated stimulation of the Nrf2-ARE pathway resulting in increased endogenous defense mechanisms against electrophilic but also oxidative insults further support that coffee may be associated with a protection against various types of chemical stresses. PMID:17976884

  11. Validity of Self-Report Measures of Defense Mechanisms

    PubMed

    Mehlman; Slane

    1994-06-01

    The Life Style Index (LSI), the Defense Style Questionnaire (DSQ), the Defense Mechanisms Inventory (DMI), and the FIRO Coping Operations Preferences Enquiry (FIRO) were administered to 187 undergraduates in order to determine convergent and discriminant validity of self-report measures of defense mechanisms. A correlational analysis of the four scales resulted in low correlations among subscales measuring similar defense mechanisms. A factor analysis produced factors based on particular scales rather than identical or similar constructs. Results suggest that self-report measures may not be an effective method for assessing various ego defense strategies.

  12. Defense mechanisms development in typical children.

    PubMed

    Tallandini, Maria Anna; Caudek, Corrado

    2010-09-01

    The defense mechanisms (DMs) of 103 nonreferred children ages 47 to 102 months were assessed through dollhouse play. The authors measured the children's temperament (Temperament Assessment Battery for Children-Teacher Form [TABC]) and verbal capacities (Wechsler Preschool and Primary Scale of Intelligence or Wechsler Intelligence Scale for Children). Four main findings were derived: (1) DM use decreased with age with different developmental trajectories; (2) regression, displacement, and reaction formation were more frequent in girls and denial more frequent in boys; (3) the number of DMs used was negatively associated with the TABC Adaptability score and positively with the TABC Approach/Withdrawal score; and (4) children who used rationalization and did not use identification and suppression scored better on verbal capacities.

  13. In Defense of Active Learning

    ERIC Educational Resources Information Center

    Pica, Rae

    2008-01-01

    Effective early childhood teachers use what they know about and have observed in young children to design programs to meet children's developmental needs. Play and active learning are key tools to address those needs and facilitate children's early education. In this article, the author discusses the benefits of active learning in the education of…

  14. Denial Defense Mechanism in Dialyzed Patients

    PubMed Central

    Nowak, Zbigniew; Wańkowicz, Zofia; Laudanski, Krzysztof

    2015-01-01

    Background It is a struggle to identify the most adaptive coping strategies with disease-mediated stress. Here, we hypothesize that intensity of coping strategies, including denial, in patients with end-stage renal disease (ESRD), varies with type of renal replacement therapy (RRT). Material/Methods We enrolled 60 in-center hemodialyzed patients (HD) and 55 patients treated with continuous ambulatory peritoneal dialysis (CAPD). We administered the Coping Inventory with Stressful Situation, Profile of Mood States, and Stroop Anxiety Inventory to measure patient coping strategies in the context of their ESRD. Denial defense mechanism was measured via the IBS-R/ED. The Nottingham Health Profile was used to evaluate self-perceived quality of life. Serum potassium, urea, creatinine, phosphorus, calcium, albumin, and hematocrit were utilized as the measurements of adequacy of dialysis. Results HD patients had higher self-reported intensity of denial mechanism and avoidance-oriented strategies versus CAPD patients. Because a single strategy is almost never employed, we conducted cluster analysis. We identify 3 patterns of coping strategies using cluster analysis. “Repressors” employed denial and avoidance strategies and were predominant in HD. The second cluster consists of subjects employing predominantly task-oriented strategies with equal distribution among dialyzed patients. The third cluster encompassed a small group of patients who shared higher intensity of both denial and task-oriented strategies. Health-related outcome, anxiety, and mood profile were similar across all patients. Conclusions HD patients predominantly used “repressive” strategies. Patients on RRT utilized denial and avoidance-based strategies to achieve satisfactory outcome in terms of perceived quality of life. We conclude that these coping mechanisms that were previously thought to be inferior are beneficial to patient compliance with RRT. PMID:26094792

  15. Defense mechanisms in adolescent conduct disorder and adjustment reaction.

    PubMed

    Cramer, Phebe; Kelly, Francis D

    2004-02-01

    The use of defense mechanisms by male and female adolescents with a diagnosis of conduct disorder was compared with the defense use of adolescents with a diagnosis of adjustment reaction. Because conduct disorder has been shown to be associated with a developmental lag in several areas of psychological functioning, we expected that these adolescents would show immaturity in the use of defenses. This expectation was confirmed. As compared with adjustment reaction, conduct disordered youths were more likely to use the immature defense of denial and less likely to use the mature defense of identification.

  16. Ego Defenses and Reaction to Stress: A Validation Study of the Defense Mechanisms Inventory

    ERIC Educational Resources Information Center

    Gleser, Goldine C.; Sacks, Marilyn

    1973-01-01

    This study investigated the relationship between scores on the Defense Mechanisms Inventory and reaction to an experimental conflict situation in which Ss (85 undergraduate college students) were led to believe that their performance was deficient on a new test of scholastic ability. The pattern of defenses predicted residual posttest estimates of…

  17. Adversity Quotient and Defense Mechanism of Secondary School Students

    ERIC Educational Resources Information Center

    Nikam, Vibhawari B.; Uplane, Megha M.

    2013-01-01

    The present study was conducted to explore the relationship between Adversity Quotient (AQ) and Defense Mechanism (DM) of secondary school students. The aim of the study was to ascertain relationship between Adversity Quotient and Defense mechanism i. e. Turning against object (TAO), Projection (PRO), Turning against self (TAS), Principalisation…

  18. Plant defense activators: applications and prospects in cereal crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review addresses the current understanding of the plant immune response and the molecular mechanisms responsible for systemic acquired resistance as well as the phenomenon of "priming" in plant defense. A detailed discussion of the role of salicylic acid in activating the plant transcription c...

  19. Defense mechanisms in schizotypal, borderline, antisocial, and narcissistic personality disorders.

    PubMed

    Perry, J Christopher; Presniak, Michelle D; Olson, Trevor R

    2013-01-01

    Numerous authors have theorized that defense mechanisms play a role in personality disorders. We reviewed theoretical writings and empirical studies about defenses in schizotypal, borderline, antisocial, and narcissistic personality disorders, developing hypotheses about these differential relationships. We then examined these hypotheses using dynamic interview data rated for defenses in a study of participants (n = 107) diagnosed with these four personality disorder types. Overall, the prevalence of immature defenses was substantial, and all four disorders fit within the broad borderline personality organization construct. Defenses predicted the most variance in borderline and the least variance in schizotypal personality disorder, suggesting that dynamic factors played the largest role in borderline and the least in schizotypal personality. Central to borderline personality were strong associations with major image-distorting defenses, primarily splitting of self and other's images, and the hysterical level defenses, dissociation and repression. Narcissistic and antisocial personality disorders shared minor image-distorting defenses, such as omnipotence or devaluation, while narcissistic also used splitting of self-images and antisocial used disavowal defenses like denial. Overall, differential relationships between specific defenses and personality disorder types were largely consistent with the literature, and consistent with the importance that the treatment literature ascribes to working with defenses.

  20. The Sweet Potato NAC-Domain Transcription Factor IbNAC1 Is Dynamically Coordinated by the Activator IbbHLH3 and the Repressor IbbHLH4 to Reprogram the Defense Mechanism against Wounding

    PubMed Central

    Chen, Shi-Peng; Kuo, Chih-Hsien; Lu, Hsueh-Han; Lo, Hui-Shan; Yeh, Kai-Wun

    2016-01-01

    IbNAC1 is known to activate the defense system by reprogramming a genetic network against herbivory in sweet potato. This regulatory activity elevates plant defense potential but relatively weakens plants by IbNAC1-mediated JA response. The mechanism controlling IbNAC1 expression to balance plant vitality and survival remains unclear. In this study, a wound-responsive G-box cis-element in the IbNAC1 promoter from -1484 to -1479 bp was identified. From a screen of wound-activated transcriptomic data, one transcriptional activator, IbbHLH3, and one repressor, IbbHLH4, were selected that bind to and activate or repress, respectively, the G-box motif in the IbNAC1 promoter to modulate the IbNAC1-mediated response. In the early wound response, the IbbHLH3-IbbHLH3 protein complex binds to the G-box motif to activate IbNAC1 expression. Thus, an elegant defense network is activated against wounding stress. Until the late stages of wounding, IbbHLH4 interacts with IbbHLH3, and the IbbHLH3-IbbHLH4 heterodimer competes with the IbbHLH3-IbbHLH3 complex to bind the G-box and suppress IbNAC1 expression and timely terminates the defense network. Moreover, the JAZs and IbEIL1 proteins interact with IbbHLH3 to repress the transactivation function of IbbHLH3 in non-wounded condition, but their transcription is immediately inhibited upon early wounding. Our work provides a genetic model that accurately switches the regulatory mechanism of IbNAC1 expression to adjust wounding physiology and represents a delicate defense regulatory network in plants. PMID:27780204

  1. Do toxic heavy metals affect antioxidant defense mechanisms in humans?

    PubMed

    Wieloch, Monika; Kamiński, Piotr; Ossowska, Anna; Koim-Puchowska, Beata; Stuczyński, Tomasz; Kuligowska-Prusińska, Magdalena; Dymek, Grażyna; Mańkowska, Aneta; Odrowąż-Sypniewska, Grażyna

    2012-04-01

    The aim of this study was to prove whether anthropogenic pollution affects antioxidant defense mechanisms such as superoxide dismutase (SOD) and catalase (CAT) activity, ferritin (FRT) concentration and total antioxidant status (TAS) in human serum. The study area involves polluted and salted environment (Kujawy region; northern-middle Poland) and Tuchola Forestry (unpolluted control area). We investigated 79 blood samples of volunteers from polluted area and 82 from the control in 2008 and 2009. Lead, cadmium and iron concentrations were measured in whole blood by the ICP-MS method. SOD and CAT activities were measured in serum using SOD and CAT Assay Kits by the standardized colorimetric method. Serum TAS was measured spectrophotometrically by the modified Benzie and Strain (1996) method and FRT concentration-by the immunonefelometric method. Pb and Cd levels and SOD activity were higher in volunteers from polluted area as compared with those from the control (0.0236 mg l(-1) vs. 0.014 mg l(-1); 0.0008 mg l(-1) vs. 0.0005 mg l(-1); 0.137 Um l(-1) vs. 0.055 Um l(-1), respectively). Fe level, CAT activity and TAS were lower in serum of volunteers from polluted area (0.442 g l(-1) vs. 0.476 gl(-1); 3.336 nmol min(-1)ml(-1) vs. 6.017 nmol min(-1)ml(-1); 0.731 Trolox-equivalents vs. 0.936 Trolox-equivalents, respectively), whilst differences in FRT concentration were not significant (66.109 μg l(-1) vs. 37.667 μg l(-1), p=0.3972). Positive correlations between Pb (r=0.206), Cd (r=0.602) and SOD in the inhabitants of polluted area, and between Cd and SOD in the control (r=0.639) were shown. In volunteers from both studied environments TAS-FRT (polluted: r=0.625 vs. control: r=0.837) and Fe-FRT (polluted area: r=0.831 vs. control: r=0.407) correlations, and Pb-FRT (r=0.360) and Pb-TAS (r=0.283) in the control were stated. The higher lead and cadmium concentrations in blood cause an increase of SOD activity. It suggests that this is one of the defense mechanisms of an

  2. Girls' use of defense mechanisms following peer rejection.

    PubMed

    Sandstrom, Marlene J; Cramer, Phebe

    2003-08-01

    This study explores the relation between girls' social adjustment and their use of defense mechanisms. We recruited girls representing four sociometric status classifications (rejected, neglected, average, and popular), and assessed their use of defense mechanisms both before and after encountering a peer rejection experience in the laboratory. We hypothesized that increasing degrees of social maladjustment would be associated with higher levels of defense use, particularly after encountering a rejection experience. Our results supported these hypotheses. There was a significant negative relationship between social adjustment and defense use, both prior to and immediately following the rejection experience. Categorical analyses revealed that rejected and neglected girls used more defenses following the rejection experience than did popular and average girls.

  3. A content validity study of the defense mechanism inventory.

    PubMed

    Blacha, M D; Fancher, R E

    1977-08-01

    The content validity of the Defense Mechanism Inventory was tested by 20 raters who evaluated each item in terms of which 15 defenses and three ego threats it represented. Items purportedly measuring the global defense categories of principalization, turning against self, and reversal, achieved relatively high rater agreement (over 70%) while projection and turning against Object fared poorly (29% and 39% respectively). Differential content validity was found in the levels and areas of the Inventory, indicating that the context in which items appear affect their representativeness of defensive behaviors. The individual defense mechanisms were disproportionately represented by the Inventory. Ratings suggested that aggressiveness was the major ego threat being measured by the items. Most of the problems appear correctable through rewriting many of the items.

  4. Defense mechanisms development in children, adolescents, and late adolescents.

    PubMed

    Porcerelli, J H; Thomas, S; Hibbard, S; Cogan, R

    1998-12-01

    To replicate and extend Cramer's (1987) original cross-sectional study concerning the development of defense mechanisms, the Thematic Apperception Test responses of 148 students in Grades 2, 5, 8, 11, and college freshmen were collected and scored for denial, projection, and identification using Cramer's Defense Mechanisms Manual (1991). Our results supported the notion that the relative use of denial and projection decreases and identification increases as a function of grade level. The findings provide additional support for the psychoanalytic view (Freud, 1966) of an ontogenetic developmental line of defense.

  5. Heavy Metal Stress and Some Mechanisms of Plant Defense Response

    PubMed Central

    Emamverdian, Abolghassem; Ding, Yulong; Mokhberdoran, Farzad; Xie, Yinfeng

    2015-01-01

    Unprecedented bioaccumulation and biomagnification of heavy metals (HMs) in the environment have become a dilemma for all living organisms including plants. HMs at toxic levels have the capability to interact with several vital cellular biomolecules such as nuclear proteins and DNA, leading to excessive augmentation of reactive oxygen species (ROS). This would inflict serious morphological, metabolic, and physiological anomalies in plants ranging from chlorosis of shoot to lipid peroxidation and protein degradation. In response, plants are equipped with a repertoire of mechanisms to counteract heavy metal (HM) toxicity. The key elements of these are chelating metals by forming phytochelatins (PCs) or metallothioneins (MTs) metal complex at the intra- and intercellular level, which is followed by the removal of HM ions from sensitive sites or vacuolar sequestration of ligand-metal complex. Nonenzymatically synthesized compounds such as proline (Pro) are able to strengthen metal-detoxification capacity of intracellular antioxidant enzymes. Another important additive component of plant defense system is symbiotic association with arbuscular mycorrhizal (AM) fungi. AM can effectively immobilize HMs and reduce their uptake by host plants via binding metal ions to hyphal cell wall and excreting several extracellular biomolecules. Additionally, AM fungi can enhance activities of antioxidant defense machinery of plants. PMID:25688377

  6. Heavy metal stress and some mechanisms of plant defense response.

    PubMed

    Emamverdian, Abolghassem; Ding, Yulong; Mokhberdoran, Farzad; Xie, Yinfeng

    2015-01-01

    Unprecedented bioaccumulation and biomagnification of heavy metals (HMs) in the environment have become a dilemma for all living organisms including plants. HMs at toxic levels have the capability to interact with several vital cellular biomolecules such as nuclear proteins and DNA, leading to excessive augmentation of reactive oxygen species (ROS). This would inflict serious morphological, metabolic, and physiological anomalies in plants ranging from chlorosis of shoot to lipid peroxidation and protein degradation. In response, plants are equipped with a repertoire of mechanisms to counteract heavy metal (HM) toxicity. The key elements of these are chelating metals by forming phytochelatins (PCs) or metallothioneins (MTs) metal complex at the intra- and intercellular level, which is followed by the removal of HM ions from sensitive sites or vacuolar sequestration of ligand-metal complex. Nonenzymatically synthesized compounds such as proline (Pro) are able to strengthen metal-detoxification capacity of intracellular antioxidant enzymes. Another important additive component of plant defense system is symbiotic association with arbuscular mycorrhizal (AM) fungi. AM can effectively immobilize HMs and reduce their uptake by host plants via binding metal ions to hyphal cell wall and excreting several extracellular biomolecules. Additionally, AM fungi can enhance activities of antioxidant defense machinery of plants. PMID:25688377

  7. Physcomitrella patens Activates Defense Responses against the Pathogen Colletotrichum gloeosporioides

    PubMed Central

    Reboledo, Guillermo; del Campo, Raquel; Alvarez, Alfonso; Montesano, Marcos; Mara, Héctor; Ponce de León, Inés

    2015-01-01

    The moss Physcomitrella patens is a suitable model plant to analyze the activation of defense mechanisms after pathogen assault. In this study, we show that Colletotrichum gloeosporioides isolated from symptomatic citrus fruit infects P. patens and cause disease symptoms evidenced by browning and maceration of tissues. After C. gloeosporioides infection, P. patens reinforces the cell wall by the incorporation of phenolic compounds and induces the expression of a Dirigent-protein-like encoding gene that could lead to the formation of lignin-like polymers. C. gloeosporioides-inoculated protonemal cells show cytoplasmic collapse, browning of chloroplasts and modifications of the cell wall. Chloroplasts relocate in cells of infected tissues toward the initially infected C. gloeosporioides cells. P. patens also induces the expression of the defense genes PAL and CHS after fungal colonization. P. patens reporter lines harboring the auxin-inducible promoter from soybean (GmGH3) fused to β-glucuronidase revealed an auxin response in protonemal tissues, cauloids and leaves of C. gloeosporioides-infected moss tissues, indicating the activation of auxin signaling. Thus, P. patens is an interesting plant to gain insight into defense mechanisms that have evolved in primitive land plants to cope with microbial pathogens. PMID:26389888

  8. Pulmonary defense mechanisms in Boa constrictor.

    PubMed

    Grant, M M; Brain, J D; Vinegar, A

    1981-05-01

    We studied aerosol deposition and the response to inhaled particles and irritants in lungs of Boa constrictor. Snakes which breathed submicrometric particles radiolabeled with 99mTc retained 41.4 +/- 9.9% of the aerosol in the trachea, 42.5 +/- 8.8% in the anterior faveolar regions, and 8.7 +/- 4.1% in the posterior saccular regions of the lungs. Low activity recovered in the gastrointestinal tract over a 5-h period following aerosol exposure indicated slow clearance of inhaled particles. In contrast to mammalian lungs, there are no macrophages resident on the surface of boa lungs, and uningested particles persist for up to 4 days without being phagocytized. Particles and irritant stimuli (Fe2O3, endotoxin, and N-formylmethionylphenylalanine) elicited only eosinophilic granulocytes that were not phagocytic. The numbers of these cells peaked at 24 h following exposure and declined gradually over the next 7 days. Lavage fluid from stimulated snake lungs contained many large lamellar figures continuous with tubular myelin, a form of surfactant. Very little of this material was recovered from control lungs. Response to inhaled particles and lung injury in boas increased surfactant release, elicited eosinophilic granulocytes, but did not recruit phagocytic mononuclear cells.

  9. Defense-Inducing Volatiles: In Search of the Active Motif

    PubMed Central

    Lion, Ulrich; Boland, Wilhelm

    2008-01-01

    Herbivore-induced volatile organic compounds (VOCs) are widely appreciated as an indirect defense mechanism since carnivorous arthropods use VOCs as cues for host localization and then attack herbivores. Another function of VOCs is plant–plant signaling. That VOCs elicit defensive responses in neighboring plants has been reported from various species, and different compounds have been found to be active. In order to search for a structural motif that characterizes active VOCs, we used lima bean (Phaseolus lunatus), which responds to VOCs released from damaged plants with an increased secretion of extrafloral nectar (EFN). We exposed lima bean to (Z)-3-hexenyl acetate, a substance naturally released from damaged lima bean and known to induce EFN secretion, and to several structurally related compounds. (E)-3-hexenyl acetate, (E)-2-hexenyl acetate, 5-hexenyl acetate, (Z)-3-hexenylisovalerate, and (Z)-3-hexenylbutyrate all elicited significant increases in EFN secretion, demonstrating that neither the (Z)-configuration nor the position of the double-bond nor the size of the acid moiety are critical for the EFN-inducing effect. Our result is not consistent with previous concepts that postulate reactive electrophile species (Michael-acceptor-systems) for defense-induction in Arabidopsis. Instead, we postulate that physicochemical processes, including interactions with odorant binding proteins and resulting in changes in transmembrane potentials, can underlie VOCs-mediated signaling processes. PMID:18408973

  10. Host defense mechanism-based rational design of live vaccine.

    PubMed

    Jang, Yo Han; Byun, Young Ho; Lee, Kwang-Hee; Park, Eun-Sook; Lee, Yun Ha; Lee, Yoon-Jae; Lee, Jinhee; Kim, Kyun-Hwan; Seong, Baik Lin

    2013-01-01

    Live attenuated vaccine (LAV), mimicking natural infection, provides an excellent protection against microbial infection. The development of LAV, however, still remains highly empirical and the rational design of clinically useful LAV is scarcely available. Apoptosis and caspase activation are general host antiviral responses in virus-infected cells. Utilizing these tightly regulated host defense mechanisms, we present a novel apoptosis-triggered attenuation of viral virulence as a rational design of live attenuated vaccine with desired levels of safety, efficacy, and productivity. Mutant influenza viruses carrying caspase recognition motifs in viral NP and the interferon-antagonist NS1 proteins were highly attenuated both in vitro and in vivo by caspase-mediated cleavage of those proteins in infected cells. Both viral replication and interferon-resistance were substantially reduced, resulting in a marked attenuation of virulence of the virus. Despite pronounced attenuation, the viruses demonstrated high growth phenotype in embryonated eggs at lower temperature, ensuring its productivity. A single dose vaccination with the mutant virus elicited high levels of systemic and mucosal antibody responses and provided complete protection against both homologous and heterologous lethal challenges in mouse model. While providing a practical means to generate seasonal or pandemic influenza live vaccines, the sensitization of viral proteins to pathogen-triggered apoptotic signals presents a potentially universal, mechanism-based rational design of live vaccines against many viral infections.

  11. Grooming Behavior as a Mechanism of Insect Disease Defense

    PubMed Central

    Zhukovskaya, Marianna; Yanagawa, Aya; Forschler, Brian T.

    2013-01-01

    Grooming is a well-recognized, multipurpose, behavior in arthropods and vertebrates. In this paper, we review the literature to highlight the physical function, neurophysiological mechanisms, and role that grooming plays in insect defense against pathogenic infection. The intricate relationships between the physical, neurological and immunological mechanisms of grooming are discussed to illustrate the importance of this behavior when examining the ecology of insect-pathogen interactions. PMID:26462526

  12. Serine/threonine protein phosphatases: multi-purpose enzymes in control of defense mechanisms.

    PubMed

    Bajsa, Joanna; Pan, Zhiqiang; Duke, Stephen O

    2011-12-01

    Depending on the threat to a plant, different pattern recognition receptors, such as receptor-like kinases, identify the stress and trigger action by appropriate defense response development. The plant immunity system primary response to these challenges is rapid accumulation of phytohormones, such as ethylene (ET), salicylic acid (SA), and jasmonic acid (JA) and its derivatives. These phytohormones induce further signal transduction and appropriate defenses against biotic threats. Phytohormones play crucial roles not only in the initiation of diverse downstream signaling events in plant defense but also in the activation of effective defenses through an essential process called signaling pathway crosstalk, a mechanism involved in transduction signals between two or more distinct, "linear signal transduction pathways simultaneously activated in the same cell."

  13. 6-Benzylaminopurine inhibits growth of Monilinia fructicola and induces defense-related mechanism in peach fruit.

    PubMed

    Zhang, Yangyang; Zeng, Lizhen; Yang, Jiali; Zheng, Xiaodong; Yu, Ting

    2015-11-15

    This study demonstrated the inhibitory effect of 6-benzylaminopurine (BAP), the first generation synthetic cytokinin, on the invasion of Monilinia fructicola in peach fruit and the possible mechanism involved for the first time. Our results suggested that BAP treatment had a 63% lower disease incidence and approximately 10 times lower lesion diameter compared to the control throughout the incubation period. In vitro BAP showed a direct inhibitory effect on M. fructicola spore germination. BAP could prevent fruit texture deterioration and protect the cell membrane from oxidative stress, while no adverse effects were observed on fruit quality maintenance. Analysis of defense-related enzymes activities indicated that the use of BAP induced higher specific polyphenol oxidase and peroxidase activities which triggered stronger host defensive responses. Thus, our results verified the proposed mechanism of BAP in controlling M. fructicola by direct inhibitory effect, delay peach senescence and activation of defensive enzymes.

  14. The Venturia Apple Pathosystem: Pathogenicity Mechanisms and Plant Defense Responses

    PubMed Central

    Jha, Gopaljee; Thakur, Karnika; Thakur, Priyanka

    2009-01-01

    Venturia inaequalis is the causal agent of apple scab, a devastating disease of apple. We outline several unique features of this pathogen which are useful for molecular genetics studies intended to understand plant-pathogen interactions. The pathogenicity mechanisms of the pathogen and overview of apple defense responses, monogenic and polygenic resistance, and their utilization in scab resistance breeding programs are also reviewed. PMID:20150969

  15. Department of Defense Education Activity. An Overview.

    ERIC Educational Resources Information Center

    US Department of Defense, 2004

    2004-01-01

    DoDEA operates 223 public schools in 16 districts located in seven states, Puerto Rico, Guam, and 13 foreign countries to serve the children of military service members and Department of Defense civilian employees. Approximately 104,935 students are enrolled in DoDEA schools, with approximately 73,200 students in the DoDDS system, and…

  16. Massive Activation of Archaeal Defense Genes during Viral Infection

    PubMed Central

    Voet, Marleen; Sismeiro, Odile; Dillies, Marie-Agnes; Jagla, Bernd; Coppée, Jean-Yves; Sezonov, Guennadi; Forterre, Patrick; van der Oost, John; Lavigne, Rob

    2013-01-01

    Archaeal viruses display unusually high genetic and morphological diversity. Studies of these viruses proved to be instrumental for the expansion of knowledge on viral diversity and evolution. The Sulfolobus islandicus rod-shaped virus 2 (SIRV2) is a model to study virus-host interactions in Archaea. It is a lytic virus that exploits a unique egress mechanism based on the formation of remarkable pyramidal structures on the host cell envelope. Using whole-transcriptome sequencing, we present here a global map defining host and viral gene expression during the infection cycle of SIRV2 in its hyperthermophilic host S. islandicus LAL14/1. This information was used, in combination with a yeast two-hybrid analysis of SIRV2 protein interactions, to advance current understanding of viral gene functions. As a consequence of SIRV2 infection, transcription of more than one-third of S. islandicus genes was differentially regulated. While expression of genes involved in cell division decreased, those genes playing a role in antiviral defense were activated on a large scale. Expression of genes belonging to toxin-antitoxin and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems was specifically pronounced. The observed different degree of activation of various CRISPR-Cas systems highlights the specialized functions they perform. The information on individual gene expression and activation of antiviral defense systems is expected to aid future studies aimed at detailed understanding of the functions and interplay of these systems in vivo. PMID:23698312

  17. Longitudinal study of defense mechanisms: late childhood to late adolescence.

    PubMed

    Cramer, Phebe

    2007-02-01

    Based on longitudinal data from the Institute of Human Development Intergenerational Study, the use and change in defense mechanisms of more than 150 individuals, as assessed from TAT stories, was studied across ages 11, 12, and 18. The findings of this study, based on an earlier generation, were generally consistent with cross-sectional findings from current samples, showing that the defenses of projection and identification were used more frequently than denial at all three ages and that the use of projection and identification increased from early to late adolescence. However, unlike current findings, the 18-year-olds did not show greater use of identification than of projection, perhaps due to IQ differences between this community sample and the samples of more recent studies.

  18. The strawberry plant defense mechanism: a molecular review.

    PubMed

    Amil-Ruiz, Francisco; Blanco-Portales, Rosario; Muñoz-Blanco, Juan; Caballero, José L

    2011-11-01

    Strawberry, a small fruit crop of great importance throughout the world, has been considered a model plant system for Rosaceae, and is susceptible to a large variety of phytopathogenic organisms. Most components and mechanisms of the strawberry defense network remain poorly understood. However, from current knowledge, it seems clear that the ability of a strawberry plant to respond efficiently to pathogens relies first on the physiological status of injured tissue (pre-formed mechanisms of defense) and secondly on the general ability to recognize and identify the invaders by surface plant receptors, followed by a broad range of induced mechanisms, which include cell wall reinforcement, production of reactive oxygen species, phytoalexin generation and pathogenesis-related protein accumulation. Dissection of these physiological responses at a molecular level will provide valuable information to improve future breeding strategies for new strawberry varieties and to engineer strawberry plants for durable and broad-spectrum disease resistance. In turn, this will lead to a reduction in use of chemicals and in environmental risks. Advances in the understanding of the molecular interplay between plant (mainly those considered model systems) and various classes of microbial pathogens have been made in the last two decades. However, major progress in the genetics and molecular biology of strawberry is still needed to uncover fully the way in which this elaborate plant innate immune system works. These fundamental insights will provide a conceptual framework for rational human intervention through new strawberry research approaches. In this review, we will provide a comprehensive overview and discuss recent advances in molecular research on strawberry defense mechanisms against pathogens.

  19. Respiratory infections may reflect deficiencies in host defense mechanisms.

    PubMed

    Reynolds, H Y

    1985-02-01

    Serious respiratory tract infections are rare in the healthy individual and most of the nuisance morbidity that occurs results from nasopharyngeal viral infections that many people get once or twice a year. The economic impact from these upper respiratory tract infections is appreciable, however, in terms of absenteeism from school or work, but unfortunately there is little that can be done to ward them off in a practical way. Pneumonia is an infrequent lifetime experience for most non-smoking adults and when it occurs, unusual circumstances may pertain--a particularly virulent microorganism is in circulation, or perhaps one has been exposed to a newly recognized germ, such as has occurred with Legionella species in the past 8 years or so. What protects us the great majority of the time is a very effective network of respiratory tract host defenses. These include many mechanical and anatomical barrier mechanisms concentrated in nose and throat; mucociliary clearance, coughing and mucosal immunoglobulins in the conducting airways and in the air-exchange region of the alveolar structures, phagocytes, opsonins, complement, surfactant and many other factors combine to clear infectious agents. The ability to mount an inflammatory response in the alveoli may represent the maximal and ultimate expression of local host defense. In some way these host defenses are combating constantly the influx of micro-organisms, usually inhaled or aspirated into the airways, that try to gain a foothold on the mucosal surface and colonize it. But many general changes in overall health such as debility, poor nutrition, metabolic derangements, bone marrow suppression and perhaps aging promote abnormal microbial colonization and undermine the body's defenses that try to cope with the situation. It is a dynamic struggle. The departure from normal respiratory health may not be obvious immediately to the patient or to the physician and repeated episodes of infection or persisting symptoms of

  20. Defense Mechanisms in Adolescence as Predictors of Adult Personality Disorders.

    PubMed

    Strandholm, Thea; Kiviruusu, Olli; Karlsson, Linnea; Miettunen, Jouko; Marttunen, Mauri

    2016-05-01

    Our study examines whether defense styles and separate defenses in depressed adolescent outpatients predict adult personality disorders (PDs). We obtained data from consecutive adolescent outpatients who participated in the Adolescent Depression Study at baseline and at the 8-year follow-up (N = 140). Defense styles were divided into mature, neurotic, image-distorting, and immature and a secondary set of analyses were made with separate defenses as predictors of a PD diagnosis. Neurotic, image-distorting, and immature defense styles in adolescence were associated with adulthood PDs. Neurotic defense style associated with cluster B diagnosis and image-distorting defense style associated with cluster A diagnosis. Separate defenses of displacement, isolation, and reaction formation were independent predictors of adult PD diagnosis even after adjusting for PD diagnosis in adolescence. Defense styles and separate defenses predict later PDs and could be used in the focusing of treatment interventions for adolescents.

  1. Activated chemical defenses suppress herbivory on freshwater red algae.

    PubMed

    Goodman, Keri M; Hay, Mark E

    2013-04-01

    The rapid life cycles of freshwater algae are hypothesized to suppress selection for chemical defenses against herbivores, but this notion remains untested. Investigations of chemical defenses are rare for freshwater macrophytes and absent for freshwater red algae. We used crayfish to assess the palatability of five freshwater red algae relative to a palatable green alga and a chemically defended aquatic moss. We then assessed the roles of structural, nutritional, and chemical traits in reducing palatability. Both native and non-native crayfish preferred the green alga Cladophora glomerata to four of the five red algae. Batrachospermum helminthosum, Kumanoa holtonii, and Tuomeya americana employed activated chemical defenses that suppressed feeding by 30-60 % following damage to algal tissues. Paralemanea annulata was defended by its cartilaginous structure, while Boldia erythrosiphon was palatable. Activated defenses are thought to reduce ecological costs by expressing potent defenses only when actually needed; thus, activation might be favored in freshwater red algae whose short-lived gametophytes must grow and reproduce rapidly over a brief growing season. The frequency of activated chemical defenses found here (three of five species) is 3-20× higher than for surveys of marine algae or aquatic vascular plants. If typical for freshwater red algae, this suggests that (1) their chemical defenses may go undetected if chemical activation is not considered and (2) herbivory has been an important selective force in the evolution of freshwater Rhodophyta. Investigations of defenses in freshwater rhodophytes contribute to among-system comparisons and provide insights into the generality of plant-herbivore interactions and their evolution.

  2. Defense High-Level Waste Leaching Mechanisms Program. Final report

    SciTech Connect

    Mendel, J.E.

    1984-08-01

    The Defense High-Level Waste Leaching Mechanisms Program brought six major US laboratories together for three years of cooperative research. The participants reached a consensus that solubility of the leached glass species, particularly solubility in the altered surface layer, is the dominant factor controlling the leaching behavior of defense waste glass in a system in which the flow of leachant is constrained, as it will be in a deep geologic repository. Also, once the surface of waste glass is contacted by ground water, the kinetics of establishing solubility control are relatively rapid. The concentrations of leached species reach saturation, or steady-state concentrations, within a few months to a year at 70 to 90/sup 0/C. Thus, reaction kinetics, which were the main subject of earlier leaching mechanisms studies, are now shown to assume much less importance. The dominance of solubility means that the leach rate is, in fact, directly proportional to ground water flow rate. Doubling the flow rate doubles the effective leach rate. This relationship is expected to obtain in most, if not all, repository situations.

  3. The comprehensive assessment of defense style: measuring defense mechanisms in children and adolescents.

    PubMed

    Laor, N; Wolmer, L; Cicchetti, D V

    2001-06-01

    This study introduces the Comprehensive Assessment of Defense Style (CADS), a new method to assess descriptively the defensive behavior of children and adolescents. Parents of 124 children and adolescents referred to a mental health clinic, of 104 nontreated children, and of 15 children whose fathers were treated for posttraumatic stress disorder completed the CADS. Factor analysis of 28 defenses yielded one mature factor, one immature factor of defenses expressed in relations with the environment (other-oriented), and one of defenses expressed in relations with the self (self-oriented). The CADS significantly discriminated between patients and nonpatients. Psychiatric patients used more immature and fewer mature defenses than control subjects, and adolescents used more mature and fewer other-oriented defenses than children. Girls used more mature and fewer other-oriented defenses than boys. The reliability and validity data of the CADS are encouraging. The three defense factors may be implemented for diagnostic and clinical purposes as well as for screening for psychopathology risk in untreated populations.

  4. Partially resistant Cucurbita pepo showed late onset of the Zucchini yellow mosaic virus infection due to rapid activation of defense mechanisms as compared to susceptible cultivar

    PubMed Central

    Nováková, Slavomíra; Flores-Ramírez, Gabriela; Glasa, Miroslav; Danchenko, Maksym; Fiala, Roderik; Skultety, Ludovit

    2015-01-01

    Zucchini yellow mosaic virus (ZYMV) is an emerging viral pathogen in cucurbit-growing areas wordwide. Infection causes significant yield losses in several species of the family Cucurbitaceae. To identify proteins potentially involved with resistance toward infection by the severe ZYMV-H isolate, two Cucurbita pepo cultivars (Zelena susceptible and Jaguar partially resistant) were analyzed using a two-dimensional gel electrophoresis-based proteomic approach. Initial symptoms on leaves (clearing veins) developed 6–7 days post-inoculation (dpi) in the susceptible C. pepo cv. Zelena. In contrast, similar symptoms appeared on the leaves of partially resistant C. pepo cv. Jaguar only after 15 dpi. This finding was confirmed by immune-blot analysis which showed higher levels of viral proteins at 6 dpi in the susceptible cultivar. Leaf proteome analyses revealed 28 and 31 spots differentially abundant between cultivars at 6 and 15 dpi, respectively. The variance early in infection can be attributed to a rapid activation of proteins involved with redox homeostasis in the partially resistant cultivar. Changes in the proteome of the susceptible cultivar are related to the cytoskeleton and photosynthesis. PMID:25972878

  5. Partially resistant Cucurbita pepo showed late onset of the Zucchini yellow mosaic virus infection due to rapid activation of defense mechanisms as compared to susceptible cultivar.

    PubMed

    Nováková, Slavomíra; Flores-Ramírez, Gabriela; Glasa, Miroslav; Danchenko, Maksym; Fiala, Roderik; Skultety, Ludovit

    2015-01-01

    Zucchini yellow mosaic virus (ZYMV) is an emerging viral pathogen in cucurbit-growing areas wordwide. Infection causes significant yield losses in several species of the family Cucurbitaceae. To identify proteins potentially involved with resistance toward infection by the severe ZYMV-H isolate, two Cucurbita pepo cultivars (Zelena susceptible and Jaguar partially resistant) were analyzed using a two-dimensional gel electrophoresis-based proteomic approach. Initial symptoms on leaves (clearing veins) developed 6-7 days post-inoculation (dpi) in the susceptible C. pepo cv. Zelena. In contrast, similar symptoms appeared on the leaves of partially resistant C. pepo cv. Jaguar only after 15 dpi. This finding was confirmed by immune-blot analysis which showed higher levels of viral proteins at 6 dpi in the susceptible cultivar. Leaf proteome analyses revealed 28 and 31 spots differentially abundant between cultivars at 6 and 15 dpi, respectively. The variance early in infection can be attributed to a rapid activation of proteins involved with redox homeostasis in the partially resistant cultivar. Changes in the proteome of the susceptible cultivar are related to the cytoskeleton and photosynthesis. PMID:25972878

  6. Partially resistant Cucurbita pepo showed late onset of the Zucchini yellow mosaic virus infection due to rapid activation of defense mechanisms as compared to susceptible cultivar.

    PubMed

    Nováková, Slavomíra; Flores-Ramírez, Gabriela; Glasa, Miroslav; Danchenko, Maksym; Fiala, Roderik; Skultety, Ludovit

    2015-01-01

    Zucchini yellow mosaic virus (ZYMV) is an emerging viral pathogen in cucurbit-growing areas wordwide. Infection causes significant yield losses in several species of the family Cucurbitaceae. To identify proteins potentially involved with resistance toward infection by the severe ZYMV-H isolate, two Cucurbita pepo cultivars (Zelena susceptible and Jaguar partially resistant) were analyzed using a two-dimensional gel electrophoresis-based proteomic approach. Initial symptoms on leaves (clearing veins) developed 6-7 days post-inoculation (dpi) in the susceptible C. pepo cv. Zelena. In contrast, similar symptoms appeared on the leaves of partially resistant C. pepo cv. Jaguar only after 15 dpi. This finding was confirmed by immune-blot analysis which showed higher levels of viral proteins at 6 dpi in the susceptible cultivar. Leaf proteome analyses revealed 28 and 31 spots differentially abundant between cultivars at 6 and 15 dpi, respectively. The variance early in infection can be attributed to a rapid activation of proteins involved with redox homeostasis in the partially resistant cultivar. Changes in the proteome of the susceptible cultivar are related to the cytoskeleton and photosynthesis.

  7. Developmental patterns of antioxidant defense mechanisms in human erythrocytes.

    PubMed

    Ripalda, M J; Rudolph, N; Wong, S L

    1989-10-01

    To obtain a profile of erythrocyte antioxidant defense potential during late fetal development, we studied selected antioxidant parameters in blood samples from 65 neonates with birth wt between 520 and 4210 g and from 12 healthy adults. Erythrocyte superoxide dismutase activity did not change significantly with maturation and no significant differences were observed among preterm infants grouped in increasing birth wt categories, term neonates, and adults. Erythrocyte catalase and glutathione peroxidase, as well as plasma vitamin E levels, showed highly significant positive correlations (p less than 0.001) with increasing fetal wt and gestational age; by term, CAT activity reached a level similar to the adult control group, but glutathione peroxidase activity, as well as plasma vitamin E levels, were markedly lower in all the preterm and in the term groups than in adults (p less than 0.01). Erythrocyte glutathione S-transferase activity showed a negative correlation with increasing gestational age (p less than 0.01) and the adult values were considerably lower than any of the neonatal levels (p less than 0.001). The role of glutathione S-transferase in erythrocyte metabolism remains obscure. Maturational changes in the activity of the red cell enzymes that were studied and in the plasma vitamin E level were apparent from about 31-36 wk of gestation, suggesting that the stimulation for these changes may have commenced from about 28-31 wk.

  8. Change in Coping and Defense Mechanisms across Adulthood: Longitudinal Findings in a European American Sample

    ERIC Educational Resources Information Center

    Diehl, Manfred; Chui, Helena; Hay, Elizabeth L.; Lumley, Mark A.; Grühn, Daniel; Labouvie-Vief, Gisela

    2014-01-01

    This study examined longitudinal changes in coping and defense mechanisms in an age- and gender-stratified sample of 392 European American adults. Nonlinear age-related changes were found for the coping mechanisms of sublimation and suppression and the defense mechanisms of intellectualization, doubt, displacement, and regression. The change…

  9. Ego defense mechanisms in Pakistani medical students: a cross sectional analysis

    PubMed Central

    2010-01-01

    Background Ego defense mechanisms (or factors), defined by Freud as unconscious resources used by the ego to reduce conflict between the id and superego, are a reflection of how an individual deals with conflict and stress. This study assesses the prevalence of various ego defense mechanisms employed by medical students of Karachi, which is a group with higher stress levels than the general population. Methods A questionnaire based cross-sectional study was conducted on 682 students from five major medical colleges of Karachi over 4 weeks in November 2006. Ego defense mechanisms were assessed using the Defense Style Questionnaire (DSQ-40) individually and as grouped under Mature, Immature, and Neurotic factors. Results Lower mean scores of Immature defense mechanisms (4.78) were identified than those for Neurotic (5.62) and Mature (5.60) mechanisms among medical students of Karachi. Immature mechanisms were more commonly employed by males whereas females employed more Neurotic mechanisms than males. Neurotic and Immature defenses were significantly more prevalent in first and second year students. Mature mechanisms were significantly higher in students enrolled in Government colleges than Private institutions (p < 0.05). Conclusions Immature defense mechanisms were less commonly employed than Neurotic and Mature mechanisms among medical students of Karachi. The greater employment of Neurotic defenses may reflect greater stress levels than the general population. Employment of these mechanisms was associated with female gender, enrollment in a private medical college, and students enrolled in the first 2 years of medical school. PMID:20109240

  10. Defense mechanisms of Solanum tuberosum L. in response to attack by plant-pathogenic bacteria.

    PubMed

    Poiatti, Vera A D; Dalmas, Fernando R; Astarita, Leandro V

    2009-01-01

    The natural resistance of plants to disease is based not only on preformed mechanisms, but also on induced mechanisms. The defense mechanisms present in resistant plants may also be found in susceptible ones. This study attempted to analyze the metabolic alterations in plants of the potato Solanum tuberosum L. cv. Agata that were inoculated with the incompatible plant-pathogenic bacteria X. axonopodis and R. solanacearum, and the compatible bacterium E. carotovora. Levels of total phenolic compounds, including the flavonoid group, and the activities of polyphenol oxidase (PPO) and peroxidase (POX) were evaluated. Bacteria compatibility was evaluated by means of infiltration of tubers. The defense response was evaluated in the leaves of the potato plants. Leaves were inoculated depending on their number and location on the stem. Multiple-leaf inoculation was carried out on basal, intermediate, and apical leaves, and single inoculations on intermediate leaves. Leaves inoculated with X. axonopodis and with R. solanacearum showed hypersensitive responses within 24 hours post-inoculation, whereas leaves inoculated with E. carotovora showed disease symptoms. Therefore, the R. solanacearum isolate used in the experiments did not exhibit virulence to this potato cultivar. Regardless of the bacterial treatments, the basal leaves showed higher PPO and POX activities and lower levels of total phenolic compounds and flavonoids, compared to the apical leaves. However, basal and intermediate leaves inoculated with R. solanacearum and X. axonopodis showed increases in total phenolic compounds and flavonoid levels. In general, multiple-leaf inoculation showed the highest levels of total phenolics and flavonoids, whereas the single inoculations resulted in the highest increase in PPO activity. The POX activity showed no significant difference between single- and multiple-leaf inoculations. Plants inoculated with E. carotovora showed no significant increase in defense mechanisms

  11. Serine/threonine protein phosphatases: multi-purpose enzymes in control of defense mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serine/threonine protein phosphatases are a group of enzymes involved in the regulation of defense mechanisms in plants. This paper describes the effects of an inhibitor of these enzymes on the expression of all of the genes associated with these defense mechanisms. The results suggest that inhibi...

  12. Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction.

    PubMed

    Amil-Ruiz, Francisco; Garrido-Gala, José; Gadea, José; Blanco-Portales, Rosario; Muñoz-Mérida, Antonio; Trelles, Oswaldo; de Los Santos, Berta; Arroyo, Francisco T; Aguado-Puig, Ana; Romero, Fernando; Mercado, José-Ángel; Pliego-Alfaro, Fernando; Muñoz-Blanco, Juan; Caballero, José L

    2016-01-01

    Understanding the nature of pathogen host interaction may help improve strawberry (Fragaria × ananassa) cultivars. Plant resistance to pathogenic agents usually operates through a complex network of defense mechanisms mediated by a diverse array of signaling molecules. In strawberry, resistance to a variety of pathogens has been reported to be mostly polygenic and quantitatively inherited, making it difficult to associate molecular markers with disease resistance genes. Colletotrichum acutatum spp. is a major strawberry pathogen, and completely resistant cultivars have not been reported. Moreover, strawberry defense network components and mechanisms remain largely unknown and poorly understood. Assessment of the strawberry response to C. acutatum included a global transcript analysis, and acidic hormones SA and JA measurements were analyzed after challenge with the pathogen. Induction of transcripts corresponding to the SA and JA signaling pathways and key genes controlling major steps within these defense pathways was detected. Accordingly, SA and JA accumulated in strawberry after infection. Contrastingly, induction of several important SA, JA, and oxidative stress-responsive defense genes, including FaPR1-1, FaLOX2, FaJAR1, FaPDF1, and FaGST1, was not detected, which suggests that specific branches in these defense pathways (those leading to FaPR1-2, FaPR2-1, FaPR2-2, FaAOS, FaPR5, and FaPR10) were activated. Our results reveal that specific aspects in SA and JA dependent signaling pathways are activated in strawberry upon interaction with C. acutatum. Certain described defense-associated transcripts related to these two known signaling pathways do not increase in abundance following infection. This finding suggests new insight into a specific putative molecular strategy for defense against this pathogen. PMID:27471515

  13. Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction.

    PubMed

    Amil-Ruiz, Francisco; Garrido-Gala, José; Gadea, José; Blanco-Portales, Rosario; Muñoz-Mérida, Antonio; Trelles, Oswaldo; de Los Santos, Berta; Arroyo, Francisco T; Aguado-Puig, Ana; Romero, Fernando; Mercado, José-Ángel; Pliego-Alfaro, Fernando; Muñoz-Blanco, Juan; Caballero, José L

    2016-01-01

    Understanding the nature of pathogen host interaction may help improve strawberry (Fragaria × ananassa) cultivars. Plant resistance to pathogenic agents usually operates through a complex network of defense mechanisms mediated by a diverse array of signaling molecules. In strawberry, resistance to a variety of pathogens has been reported to be mostly polygenic and quantitatively inherited, making it difficult to associate molecular markers with disease resistance genes. Colletotrichum acutatum spp. is a major strawberry pathogen, and completely resistant cultivars have not been reported. Moreover, strawberry defense network components and mechanisms remain largely unknown and poorly understood. Assessment of the strawberry response to C. acutatum included a global transcript analysis, and acidic hormones SA and JA measurements were analyzed after challenge with the pathogen. Induction of transcripts corresponding to the SA and JA signaling pathways and key genes controlling major steps within these defense pathways was detected. Accordingly, SA and JA accumulated in strawberry after infection. Contrastingly, induction of several important SA, JA, and oxidative stress-responsive defense genes, including FaPR1-1, FaLOX2, FaJAR1, FaPDF1, and FaGST1, was not detected, which suggests that specific branches in these defense pathways (those leading to FaPR1-2, FaPR2-1, FaPR2-2, FaAOS, FaPR5, and FaPR10) were activated. Our results reveal that specific aspects in SA and JA dependent signaling pathways are activated in strawberry upon interaction with C. acutatum. Certain described defense-associated transcripts related to these two known signaling pathways do not increase in abundance following infection. This finding suggests new insight into a specific putative molecular strategy for defense against this pathogen.

  14. Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction

    PubMed Central

    Amil-Ruiz, Francisco; Garrido-Gala, José; Gadea, José; Blanco-Portales, Rosario; Muñoz-Mérida, Antonio; Trelles, Oswaldo; de los Santos, Berta; Arroyo, Francisco T.; Aguado-Puig, Ana; Romero, Fernando; Mercado, José-Ángel; Pliego-Alfaro, Fernando; Muñoz-Blanco, Juan; Caballero, José L.

    2016-01-01

    Understanding the nature of pathogen host interaction may help improve strawberry (Fragaria × ananassa) cultivars. Plant resistance to pathogenic agents usually operates through a complex network of defense mechanisms mediated by a diverse array of signaling molecules. In strawberry, resistance to a variety of pathogens has been reported to be mostly polygenic and quantitatively inherited, making it difficult to associate molecular markers with disease resistance genes. Colletotrichum acutatum spp. is a major strawberry pathogen, and completely resistant cultivars have not been reported. Moreover, strawberry defense network components and mechanisms remain largely unknown and poorly understood. Assessment of the strawberry response to C. acutatum included a global transcript analysis, and acidic hormones SA and JA measurements were analyzed after challenge with the pathogen. Induction of transcripts corresponding to the SA and JA signaling pathways and key genes controlling major steps within these defense pathways was detected. Accordingly, SA and JA accumulated in strawberry after infection. Contrastingly, induction of several important SA, JA, and oxidative stress-responsive defense genes, including FaPR1-1, FaLOX2, FaJAR1, FaPDF1, and FaGST1, was not detected, which suggests that specific branches in these defense pathways (those leading to FaPR1-2, FaPR2-1, FaPR2-2, FaAOS, FaPR5, and FaPR10) were activated. Our results reveal that specific aspects in SA and JA dependent signaling pathways are activated in strawberry upon interaction with C. acutatum. Certain described defense-associated transcripts related to these two known signaling pathways do not increase in abundance following infection. This finding suggests new insight into a specific putative molecular strategy for defense against this pathogen. PMID:27471515

  15. Anomalies and specific functions in the clinical identification of defense mechanisms.

    PubMed

    Perry, J Christopher

    2014-05-01

    Standard teaching about defense mechanisms generally focuses on definitions, which do not readily aid the clinician in identifying defenses whenever individuals use them. This report demonstrates a process by which the clinician can identify when a defense is used, which ones are likely being used, and with what aim. Clinicians first notice that a defense may be operating whenever the other individual presents with anomalies in the expression of affect, behavior, speech, or its content. Some of these anomalies are described. Next, to identify the specific defense or general level of defensive functioning used, the clinician must identify the specific function of the defense in context using a process of guided clinical inference. This report examines 2 verbatim examples from recorded interviews of one case to demonstrate this process. The examples present a microcosm of clinical concerns that have a surprising relationship to the individual's course and prognosis.

  16. Activation of Hepatic STAT3 Maintains Pulmonary Defense during Endotoxemia

    PubMed Central

    Hilliard, Kristie L.; Allen, Eri; Traber, Katrina E.; Kim, Yuri; Wasserman, Gregory A.; Jones, Matthew R.; Mizgerd, Joseph P.

    2015-01-01

    Pneumonia and infection-induced sepsis are worldwide public health concerns. Both pathologies elicit systemic inflammation and induce a robust acute-phase response (APR). Although APR activation is well regarded as a hallmark of infection, the direct contributions of liver activation to pulmonary defense during sepsis remain unclear. By targeting STAT3-dependent acute-phase changes in the liver, we evaluated the role of liver STAT3 activity in promoting host defense in the context of sepsis and pneumonia. We employed a two-hit endotoxemia/pneumonia model, whereby administration of 18 h of intraperitoneal lipopolysaccharide (LPS; 5 mg/kg of body weight) was followed by intratracheal Escherichia coli (106 CFU) in wild-type mice or those lacking hepatocyte STAT3 (hepSTAT3−/−). Pneumonia alone (without endotoxemia) was effectively controlled in the absence of liver STAT3. Following endotoxemia and pneumonia, however, hepSTAT3−/− mice, with significantly reduced levels of circulating and airspace acute-phase proteins, exhibited significantly elevated lung and blood bacterial burdens and mortality. These data suggested that STAT3-dependent liver responses are necessary to promote host defense. While neither recruited airspace neutrophils nor lung injury was altered in endotoxemic hepSTAT3−/− mice, alveolar macrophage reactive oxygen species generation was significantly decreased. Additionally, bronchoalveolar lavage fluid from this group of hepSTAT3−/− mice allowed greater bacterial growth ex vivo. These results suggest that hepatic STAT3 activation promotes both cellular and humoral lung defenses. Taken together, induction of liver STAT3-dependent gene expression programs is essential to countering the deleterious consequences of sepsis on pneumonia susceptibility. PMID:26216424

  17. Endurance Training and Glutathione-Dependent Antioxidant Defense Mechanism in Heart of the Diabetic Rats

    PubMed Central

    Gül, Mustafa; Atalay, Mustafa; Hänninen, Osmo

    2003-01-01

    Regular physical exercise beneficially influences cardiac antioxidant defenses in normal rats. The aim of this study was to test whether endurance training can strengthen glutathione-dependent antioxidant defense mechanism and decrease lipid peroxidation in heart of the streptozotocin-induced diabetic rats. Redox status of glutathione in blood of diabetic rats in response to training and acute exercise was also examined. Eight weeks of treadmill training increased the endurance in streptozotocin-induced diabetic rats. It did not affect glutathione level in heart tissue at rest and also after exercise. On the other hand, endurance training decreased glutathione peroxidase activity in heart, while glutathione reductase and glutathione S-transferase activities were not affected either by acute exhaustive exercise or endurance training. Reduced and oxidized glutathione levels in blood were not affected by either training or acute exercise. Conjugated dienes levels in heart tissue were increased by acute exhaustive exercise and also 8 weeks treadmill training. Longer duration of exhaustion in trained group may have contributed to the increased conjugated dienes levels in heart after acute exercise. Our results suggest that endurance type exercise may make heart more susceptible to oxidative stress. Therefore it may be wise to combine aerobic exercise with insulin treatment to prevent its adverse effects on antioxidant defense in heart in patients with diabetes mellitus. PMID:24616611

  18. Mechanical defenses of plant extrafloral nectaries against herbivory

    PubMed Central

    Gish, Moshe; Mescher, Mark C.; De Moraes, Consuelo M.

    2016-01-01

    ABSTRACT Extrafloral nectaries play an important role in plant defense against herbivores by providing nectar rewards that attract ants and other carnivorous insects. However, extrafloral nectaries can themselves be targets of herbivory, in addition to being exploited by nectar-robbing insects that do not provide defensive services. We recently found that the extrafloral nectaries of Vicia faba plants, as well as immediately adjacent tissues, exhibit high concentrations of chemical toxins, apparently as a defense against herbivory. Here we report that the nectary tissues of this plant also exhibit high levels of structural stiffness compared to surrounding tissues, likely due to cell wall lignification and the concentration of calcium oxalate crystals in nectary tissues, which may provide an additional deterrent to herbivore feeding on nectary tissues. PMID:27489584

  19. Mechanical defenses of plant extrafloral nectaries against herbivory.

    PubMed

    Gish, Moshe; Mescher, Mark C; De Moraes, Consuelo M

    2016-01-01

    Extrafloral nectaries play an important role in plant defense against herbivores by providing nectar rewards that attract ants and other carnivorous insects. However, extrafloral nectaries can themselves be targets of herbivory, in addition to being exploited by nectar-robbing insects that do not provide defensive services. We recently found that the extrafloral nectaries of Vicia faba plants, as well as immediately adjacent tissues, exhibit high concentrations of chemical toxins, apparently as a defense against herbivory. Here we report that the nectary tissues of this plant also exhibit high levels of structural stiffness compared to surrounding tissues, likely due to cell wall lignification and the concentration of calcium oxalate crystals in nectary tissues, which may provide an additional deterrent to herbivore feeding on nectary tissues. PMID:27489584

  20. [The defense and regulatory mechanisms during development of legume-Rhizobium symbiosis].

    PubMed

    Glian'ko, A K; Akimova, G P; Sokolova, M G; Makarova, L E; Vasil'eva, G G

    2007-01-01

    The roles of indolylacetic acid, the peroxidase system, catalase, active oxygen species, and phenolic compounds in the physiological and biochemical mechanisms involved in the autoregulation of nodulation in the developing legume-Rhizobium symbiosis were studied. It was inferred that the concentration of indolylacetic acid in the roots of inoculated plants, controlled by the enzymes of the peroxidase complex, is the signal permitting or limiting nodulation at the initial stages of symbiotic interaction. Presumably, the change in the level of active oxygen species is determined by an antioxidant activity of phenolic compounds. During the development of symbiosis, phytohormones, antioxidant enzymes, and active oxygen species may be involved in the regulation of infection via both a direct antibacterial action and regulation of functional activity of the host plant defense systems. PMID:17619575

  1. Change in coping and defense mechanisms across adulthood: longitudinal findings in a European American sample.

    PubMed

    Diehl, Manfred; Chui, Helena; Hay, Elizabeth L; Lumley, Mark A; Grühn, Daniel; Labouvie-Vief, Gisela

    2014-02-01

    This study examined longitudinal changes in coping and defense mechanisms in an age- and gender-stratified sample of 392 European American adults. Nonlinear age-related changes were found for the coping mechanisms of sublimation and suppression and the defense mechanisms of intellectualization, doubt, displacement, and regression. The change trajectories for sublimation and suppression showed that their use increased from adolescence to late middle age and early old age and remained mostly stable into late old age. The change trajectory for intellectualization showed that the use of this defense mechanism increased from adolescence to middle age, remained stable until late midlife, and started to decline thereafter. The defense mechanisms of doubt, displacement, and regression showed decreases from adolescence until early old age, with increases occurring again after the age of 65. Linear age-related decreases were found for the coping mechanism of ego regression and the defense mechanisms of isolation and rationalization. Gender and socioeconomic status were associated with the mean levels of several coping and defense mechanisms but did not moderate age-related changes. Increases in ego level were associated with increased use of the defense mechanism intellectualization and decreased use of the defense mechanisms of doubt and displacement. Overall, these findings in a European American sample suggest that most individuals showed development in the direction of more adaptive and less maladaptive coping and defense strategies from adolescence until late middle age or early old age. However, in late old age this development was reversed, presenting potential challenges to the adaptive capacity of older adults.

  2. Guardian of the Human Genome: Host Defense Mechanisms against LINE-1 Retrotransposition

    PubMed Central

    Ariumi, Yasuo

    2016-01-01

    Long interspersed element type 1 (LINE-1, L1) is a mobile genetic element comprising about 17% of the human genome, encoding a newly identified ORF0 with unknown function, ORF1p with RNA-binding activity and ORF2p with endonuclease and reverse transcriptase activities required for L1 retrotransposition. L1 utilizes an endonuclease (EN) to insert L1 cDNA into target DNA, which induces DNA double-strand breaks (DSBs). The ataxia-telangiectasia mutated (ATM) is activated by DSBs and subsequently the ATM-signaling pathway plays a role in regulating L1 retrotransposition. In addition, the host DNA repair machinery such as non-homologous end-joining (NHEJ) repair pathway is also involved in L1 retrotransposition. On the other hand, L1 is an insertional mutagenic agent, which contributes to genetic change, genomic instability, and tumorigenesis. Indeed, high-throughput sequencing-based approaches identified numerous tumor-specific somatic L1 insertions in variety of cancers, such as colon cancer, breast cancer, and hepatocellular carcinoma (HCC). In fact, L1 retrotransposition seems to be a potential factor to reduce the tumor suppressive property in HCC. Furthermore, recent study demonstrated that a specific viral-human chimeric transcript, HBx-L1, contributes to hepatitis B virus (HBV)-associated HCC. In contrast, host cells have evolved several defense mechanisms protecting cells against retrotransposition including epigenetic regulation through DNA methylation and host defense factors, such as APOBEC3, MOV10, and SAMHD1, which restrict L1 mobility as a guardian of the human genome. In this review, I focus on somatic L1 insertions into the human genome in cancers and host defense mechanisms against deleterious L1 insertions. PMID:27446907

  3. Guardian of the Human Genome: Host Defense Mechanisms against LINE-1 Retrotransposition.

    PubMed

    Ariumi, Yasuo

    2016-01-01

    Long interspersed element type 1 (LINE-1, L1) is a mobile genetic element comprising about 17% of the human genome, encoding a newly identified ORF0 with unknown function, ORF1p with RNA-binding activity and ORF2p with endonuclease and reverse transcriptase activities required for L1 retrotransposition. L1 utilizes an endonuclease (EN) to insert L1 cDNA into target DNA, which induces DNA double-strand breaks (DSBs). The ataxia-telangiectasia mutated (ATM) is activated by DSBs and subsequently the ATM-signaling pathway plays a role in regulating L1 retrotransposition. In addition, the host DNA repair machinery such as non-homologous end-joining (NHEJ) repair pathway is also involved in L1 retrotransposition. On the other hand, L1 is an insertional mutagenic agent, which contributes to genetic change, genomic instability, and tumorigenesis. Indeed, high-throughput sequencing-based approaches identified numerous tumor-specific somatic L1 insertions in variety of cancers, such as colon cancer, breast cancer, and hepatocellular carcinoma (HCC). In fact, L1 retrotransposition seems to be a potential factor to reduce the tumor suppressive property in HCC. Furthermore, recent study demonstrated that a specific viral-human chimeric transcript, HBx-L1, contributes to hepatitis B virus (HBV)-associated HCC. In contrast, host cells have evolved several defense mechanisms protecting cells against retrotransposition including epigenetic regulation through DNA methylation and host defense factors, such as APOBEC3, MOV10, and SAMHD1, which restrict L1 mobility as a guardian of the human genome. In this review, I focus on somatic L1 insertions into the human genome in cancers and host defense mechanisms against deleterious L1 insertions. PMID:27446907

  4. Evaluating ego defense mechanisms using clinical interviews: an empirical study of adolescent diabetic and psychiatric patients.

    PubMed

    Jacobson, A M; Beardslee, W; Hauser, S T; Noam, G G; Powers, S I; Houlihan, J; Rider, E

    1986-12-01

    Ego defense mechanisms were studied in three groups of early adolescents: diabetic patients, non-psychotic psychiatric patients, and healthy high school students. Defenses were assessed from ratings of open-ended, in-depth interviews. High levels of denial and low levels of asceticism were found in all three groups. Comparisons between groups indicated that psychiatric patients had a distinctive profile of defense usage, in comparison to adolescents from the other two groups. An independent measure of ego development was positively correlated with the defenses of altruism, intellectualization, and suppression, while it was negatively correlated with acting out, avoidance, denial, displacement, projection, and repression. The findings of substantial differences in defense usage between the psychiatric and non-psychiatric samples, and the size and directions of the correlations with ego development level, lend support to the validity of the defense codes.

  5. Mechanisms of Defense against Intracellular Pathogens Mediated by Human Macrophages.

    PubMed

    Bloom, Barry R; Modlin, Robert L

    2016-06-01

    The key question our work has sought to address has been, "What are the necessary and sufficient conditions that engender protection from intracellular pathogens in the human host?" The origins of this work derive from a long-standing interest in the mechanisms of protection against two such paradigmatic intracellular pathogens, Mycobacterium tuberculosis and Mycobacterium leprae, that have brilliantly adapted to the human host. It was obvious that these pathogens, which cause chronic diseases and persist in macrophages, must have acquired subtle strategies to resist host microbicidal mechanisms, yet since the vast majority of individuals infected with M. tuberculosis do not develop disease, there must be some potent human antimicrobial mechanisms. What follows is not a comprehensive review of the vast literature on the role of human macrophages in protection against infectious disease, but a summary of the research in our two laboratories with collaborators that we hope has contributed to some understanding of mechanisms of resistance and pathogenesis. While mouse models revealed some necessary conditions for protection, e.g., innate immunity, Th1 cells and their cytokines, and major histocompatibility complex class I-restricted T cells, here we emphasize multiple antimicrobial mechanisms that exist in human macrophages that differ from those of most experimental animals. Prominent here is the vitamin D-dependent antimicrobial pathway common to human macrophages activated by innate and acquired immune responses, mediated by antimicrobial peptides, e.g., cathelicidin, through an interleukin-15- and interleukin-32-dependent common pathway that is necessary for macrophage killing of M. tuberculosis in vitro. PMID:27337485

  6. The Child's Demystification of Psychological Defense Mechanisms: A Structural and Developmental Analysis.

    ERIC Educational Resources Information Center

    Chandler, Michael J.; And Others

    1978-01-01

    Explored the relationships between the cognitive developmental level of preoperational, concrete operational, and formal operational children (N=10) and their success in interpreting and explaining each of eight commonly described mechanisms of psychological defense. (JMB)

  7. Active, Non-Intrusive Inspection Technologies for Homeland Defense

    SciTech Connect

    James L. Jones

    2003-06-01

    Active, non-intrusive inspection or interrogation technologies have been used for 100 years - with the primary focus being radiographic imaging. During the last 50 years, various active interrogation systems have been investigated and most have revealed many unique and interesting capabilities and advantages that have already benefited the general public. Unfortunately, except for medical and specific industrial applications, these unique capabilities have not been widely adopted, largely due to the complexity of the technology, the overconfident reliance on passive detection systems to handle most challenges, and the unrealistic public concerns regarding radiation safety issues for a given active inspection deployment. The unique homeland security challenges facing the United States today are inviting more "out-of-the-box" solutions and are demanding the effective technological solutions that only active interrogation systems can provide. While revolutionary new solutions are always desired, these technology advancements are rare, and when found, usually take a long time to fully understand and implement for a given application. What's becoming more evident is that focusing on under-developed, but well-understood, active inspection technologies can provide many of the needed "out-of-the-box" solutions. This paper presents a brief historical overview of active interrogation. It identifies some of the major homeland defense challenges being confronted and the commercial and research technologies presently available and being pursued. Finally, the paper addresses the role of the Idaho National Engineering and Environmental Laboratory and its partner, the Idaho Accelerator Center at Idaho State University, in promoting and developing active inspection technologies for homeland defense.

  8. Non-canonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens

    PubMed Central

    Knodler, Leigh A.; Crowley, Shauna M.; Sham, Ho Pan; Yang, Hyungjun; Wrande, Marie; Ma, Caixia; Ernst, Robert K.; Steele-Mortimer, Olivia; Celli, Jean; Vallance, Bruce A.

    2014-01-01

    Summary Inflammasome-mediated host defenses have been extensively studied in innate immune cells. Whether inflammasomes function for innate defense in intestinal epithelial cells, which represent the first line of defense against enteric pathogens, remains unknown. We observed enhanced Salmonella enterica serovar Typhimurium colonization in the intestinal epithelium of caspase-11 deficient mice, but not at systemic sites. In polarized epithelial monolayers, siRNA-mediated depletion of caspase-4, a human orthologue of caspase-11, also led to increased bacterial colonization. Decreased rates of pyroptotic cell death, a host defense mechanism that extrudes S. Typhimurium infected cells from the polarized epithelium, accounted for increased pathogen burdens. The caspase-4 inflammasome also governs activation of the proinflammatory cytokine, interleukin (IL)-18, in response to intracellular (S. Typhimurium) and extracellular (enteropathogenic Escherichia coli) enteric pathogens, via intracellular LPS sensing. Therefore an epithelial cell intrinsic non-canonical inflammasome plays a critical role in antimicrobial defense at the intestinal mucosal surface. PMID:25121752

  9. Erwinia carotovora elicitors and Botrytis cinerea activate defense responses in Physcomitrella patens

    PubMed Central

    Ponce de León, Inés; Oliver, Juan Pablo; Castro, Alexandra; Gaggero, Carina; Bentancor, Marcel; Vidal, Sabina

    2007-01-01

    Background Vascular plants respond to pathogens by activating a diverse array of defense mechanisms. Studies with these plants have provided a wealth of information on pathogen recognition, signal transduction and the activation of defense responses. However, very little is known about the infection and defense responses of the bryophyte, Physcomitrella patens, to well-studied phytopathogens. The purpose of this study was to determine: i) whether two representative broad host range pathogens, Erwinia carotovora ssp. carotovora (E.c. carotovora) and Botrytis cinerea (B. cinerea), could infect Physcomitrella, and ii) whether B. cinerea, elicitors of a harpin (HrpN) producing E.c. carotovora strain (SCC1) or a HrpN-negative strain (SCC3193), could cause disease symptoms and induce defense responses in Physcomitrella. Results B. cinerea and E.c. carotovora were found to readily infect Physcomitrella gametophytic tissues and cause disease symptoms. Treatments with B. cinerea spores or cell-free culture filtrates from E.c. carotovoraSCC1 (CF(SCC1)), resulted in disease development with severe maceration of Physcomitrella tissues, while CF(SCC3193) produced only mild maceration. Although increased cell death was observed with either the CFs or B. cinerea, the occurrence of cytoplasmic shrinkage was only visible in Evans blue stained protonemal cells treated with CF(SCC1) or inoculated with B. cinerea. Most cells showing cytoplasmic shrinkage accumulated autofluorescent compounds and brown chloroplasts were evident in a high proportion of these cells. CF treatments and B. cinerea inoculation induced the expression of the defense-related genes: PR-1, PAL, CHS and LOX. Conclusion B. cinerea and E.c. carotovora elicitors induce a defense response in Physcomitrella, as evidenced by enhanced expression of conserved plant defense-related genes. Since cytoplasmic shrinkage is the most common morphological change observed in plant PCD, and that harpins and B. cinerea induce this

  10. Biomembrane interactions reveal the mechanism of action of surface-immobilized host defense IDR-1010 peptide.

    PubMed

    Gao, Guangzheng; Cheng, John T J; Kindrachuk, Jason; Hancock, Robert E W; Straus, Suzana K; Kizhakkedathu, Jayachandran N

    2012-02-24

    Dissecting the mechanism of action of surface-tethered antimicrobial and immunomodulatory peptides is critical to the design of optimized anti-infection coatings on biomedical devices. To address this, we compared the biomembrane interactions of host defense peptide IDR-1010cys (1) in free form, (2) as a soluble polymer conjugate, and (3) with one end tethered to a solid support with model bacterial and mammalian lipid membranes. Our results show that IDR-1010cys in all three distinct forms interacted with bacterial and mammalian lipid vesicles, but the extent of the interactions as monitored by the induction of secondary structure varied. The enhanced interaction of surface-tethered peptides is well correlated with their very good antimicrobial activities. Our results demonstrate that there may be a difference in the mechanism of action of surface-tethered versus free IDR-1010cys.

  11. Modulation of host defense peptide-mediated human mast cell activation by LPS

    PubMed Central

    Gupta, Kshitij; Subramanian, Hariharan; Ali, Hydar

    2016-01-01

    Human β-defensin3 (hBD3) and the cathelicidin LL-37 are host defense peptides (HDPs) that directly kill microbes and display immunomodulatory/wound healing properties via the activation of chemokine, formylpeptide and epidermal growth factor receptors on monocytes and epithelial cells. A C-terminal 14 amino acid hBD3 peptide with all Cys residues replaced with Ser (CHRG01) and an LL-37 peptide consisting of residues 17-29 (FK-13) display antimicrobial activity but lack immunomodulatory property. Surprisingly, we found that CHRG01 and FK-13 caused Ca2+ mobilization and degranulation in human mast cells via a novel G protein coupled receptor (GPCR) known as Mas-related gene-X2 (MrgX2). At local sites of bacterial infection, the negatively charged LPS likely interacts with cationic HDPs to inhibit their activity and thus providing a mechanism for pathogens to escape the host defense mechanisms. We found that LPS caused almost complete inhibition of hBD3 and LL-37-induced Ca2+ mobilization and mast cell degranulation. In contrast, it had no effect on CHRG01 and FK-13-induced mast cell responses. These findings suggest that HDP derivatives that kill microbes, harness mast cell’s host defense and wound healing properties via the activation of MrgX2 but are resistant to inhibition by LPS could be utilized for the treatment of antibiotic-resistant microbial infections. PMID:26511058

  12. Study of Defensive Methods and Mechanisms in Developmental, Emotional (Internalization), and Disruptive Behavior (Externalization) Disorders

    PubMed Central

    Jamilian, H. R.; Zamani, N.; Darvishi, M.; Khansari, M. R.

    2014-01-01

    We need to find a way for adaptation with inherent unpleasantness of being human condition and conflicts that it caused, as we did not fail. Methods that we used for adaptation are named defense. This research have performed with the aim of study and compare defensive mechanisms and methods of Developmental, Emotional (Internalization), and Disruptive behavior (Externalization) disorders. Method, sample of this research included 390 family that are by available sampling method are selected. Tools of research were structured clinical interview of forth cognitive and statistical guide of psychopathic disorders for axis I and the way used for assess defensive mechanisms is defensive method 40 question’s questionnaires of Andrews (1993). The data are compared by statistical methods comparison of averages and one way variance analysis and HSD tests and results show that undeveloped defensive mechanisms in by developmental disorder family(25.2± 3.7) mean and standard deviation, it is most used mechanism and in disruptive behavior disorder family by (11.2 ±1.9) mean and standard deviation is used least mechanism and in developed mechanism of emotional disorder family by (7.8 ± 3.1) mean and standard deviation is most used mechanism and in developmental disorder family by (4.3 ±1.5) mean and standard deviation is least mechanism in neuroticism patient, social phobia affected emotional disorder family (15.6±2.6) and disruptive behavior disorder family have least mean and standard deviation(9.2±1.7) (p< 0.005). Recent research shows significant of study defensive mechanism in psychopathic family of disorder children that affecting on the way of life of persons and interpersonal and intrapersonal relations and method of solving problem in family of them in life, so defensive mechanisms require more attention. PMID:25363187

  13. Hepatocyte-mediated cytotoxicity and host defense mechanisms in the alcohol-injured liver.

    PubMed

    McVicker, Benita L; Thiele, Geoffrey M; Tuma, Dean J; Casey, Carol A

    2014-09-01

    The consumption of alcohol is associated with many health issues including alcoholic liver disease (ALD). The natural history of ALD involves the development of steatosis, inflammation (steatohepatitis), fibrosis and cirrhosis. During the stage of steatohepatitis, the combination of inflammation and cellular damage can progress to a severe condition termed alcoholic hepatitis (AH). Unfortunately, the pathogenesis of AH remains uncharacterized. Some modulations have been identified in host defense and liver immunity mechanisms during AH that highlight the role of intrahepatic lymphocyte accumulation and associated inflammatory cytokine responses. Also, it is hypothesized that alcohol-induced injury to liver cells may significantly contribute to the aberrant lymphocytic distribution that is seen in AH. In particular, the regulation of lymphocytes by hepatocytes may be disrupted in the alcoholic liver resulting in altered immunologic homeostasis and perpetuation of disease. In recent studies, it was demonstrated that the direct killing of activated T lymphocytes by hepatocytes is facilitated by the asialoglycoprotein receptor (ASGPR). The ASGPR is a well-characterized glycoprotein receptor that is exclusively expressed by hepatocytes. This hepatic receptor is known for its role in the clearance of desialylated glycoproteins or cells, yet neither its physiological function nor its role in disease states has been determined. Interestingly, alcohol markedly impairs ASGPR function; however, the effect alcohol has on ASGPR-mediated cytotoxicity of lymphocytes remains to be elucidated. This review discusses the contribution of hepatocytes in immunological regulation and, importantly, how pathological effects of ethanol disrupt hepatocellular-mediated defense mechanisms.

  14. Trichoderma viride Laccase Plays a Crucial Role in Defense Mechanism against Antagonistic Organisms

    PubMed Central

    Divya, Lakshmanan; Sadasivan, C.

    2016-01-01

    Fungal laccases are involved in a variety of physiological functions such as delignification, morphogenesis, and parasitism. In addition to these functions, we suggest that fungal laccases are involved in defense mechanisms. When the laccase secreting Trichoderma viride was grown in the presence of a range of microorganisms including bacteria and fungi, laccase secretion was enhanced in response to antagonistic organisms alone. In addition, growth of antagonistic microbes was restricted by the secreting fungi. Besides, our study for the first time shows the inability of the secreting fungi (T. viride) to compete with antagonistic organism when laccase activity is inhibited, further emphasizing its involvement in rendering a survival advantage to the secreting organism. When laccase inhibitor was added to the media, the zone of inhibition exerted by the antagonist organism was more pronounced and consequently growth of T. viride was significantly restricted. Based on these observations we accentuate that, laccase plays an important role in defense mechanism and provides endurance to the organism when encountered with an antagonistic organism in its surrounding. PMID:27242756

  15. Trichoderma viride Laccase Plays a Crucial Role in Defense Mechanism against Antagonistic Organisms.

    PubMed

    Divya, Lakshmanan; Sadasivan, C

    2016-01-01

    Fungal laccases are involved in a variety of physiological functions such as delignification, morphogenesis, and parasitism. In addition to these functions, we suggest that fungal laccases are involved in defense mechanisms. When the laccase secreting Trichoderma viride was grown in the presence of a range of microorganisms including bacteria and fungi, laccase secretion was enhanced in response to antagonistic organisms alone. In addition, growth of antagonistic microbes was restricted by the secreting fungi. Besides, our study for the first time shows the inability of the secreting fungi (T. viride) to compete with antagonistic organism when laccase activity is inhibited, further emphasizing its involvement in rendering a survival advantage to the secreting organism. When laccase inhibitor was added to the media, the zone of inhibition exerted by the antagonist organism was more pronounced and consequently growth of T. viride was significantly restricted. Based on these observations we accentuate that, laccase plays an important role in defense mechanism and provides endurance to the organism when encountered with an antagonistic organism in its surrounding. PMID:27242756

  16. Change in children's externalizing and internalizing behavior problems: the role of defense mechanisms.

    PubMed

    Cramer, Phebe

    2015-03-01

    This study investigates the relation of defense mechanism to children's externalizing and internalizing behavior problems, as assessed from mothers' report at age 9 and 12 years, based on archival data. The defense mechanisms of denial, projection, and identification were assessed from Thematic Apperception Test stories told by the children at age 9 years, using the Defense Mechanism Manual (Cramer, The development of defense mechanisms: Theory, research and assessment. New York: Springer-Verlag, 1991a; Protecting the self: Defense mechanisms in action. New York: Guilford Press, 2006). The results showed that the use of identification predicted a decrease in externalizing behaviors between age 9 and 12 years. In contrast, change in internalizing behaviors was not predicted by defense use, but the use of projection was related to fewer internalizing behaviors at both ages. These findings are consistent with the idea that behavioral intervention stressing self-regulation can be effective in reducing externalizing problems, but internalizing problems require an intervention that is sensitive to the underlying behavioral inhibition in these children.

  17. Change in children's externalizing and internalizing behavior problems: the role of defense mechanisms.

    PubMed

    Cramer, Phebe

    2015-03-01

    This study investigates the relation of defense mechanism to children's externalizing and internalizing behavior problems, as assessed from mothers' report at age 9 and 12 years, based on archival data. The defense mechanisms of denial, projection, and identification were assessed from Thematic Apperception Test stories told by the children at age 9 years, using the Defense Mechanism Manual (Cramer, The development of defense mechanisms: Theory, research and assessment. New York: Springer-Verlag, 1991a; Protecting the self: Defense mechanisms in action. New York: Guilford Press, 2006). The results showed that the use of identification predicted a decrease in externalizing behaviors between age 9 and 12 years. In contrast, change in internalizing behaviors was not predicted by defense use, but the use of projection was related to fewer internalizing behaviors at both ages. These findings are consistent with the idea that behavioral intervention stressing self-regulation can be effective in reducing externalizing problems, but internalizing problems require an intervention that is sensitive to the underlying behavioral inhibition in these children. PMID:25668653

  18. Autophagy is an inflammation-related defensive mechanism against disease.

    PubMed

    Joven, Jorge; Guirro, Maria; Mariné-Casadó, Roger; Rodríguez-Gallego, Esther; Menéndez, Javier A

    2014-01-01

    The inflammatory response is an energy-intensive process. Consequently, metabolism is closely associated with immune function. The autophagy machinery plays a role in metabolism by providing energy but may also be used to attack invading pathogens (xenophagy). The autophagy machinery may function to protect against not only the threats of infection but also the threats of the host's own response acting on the central immunological tolerance and the negative regulation of innate and inflammatory signaling. The balance between too little and too much autophagy is critical for the survival of immune cells because autophagy is linked to type 2-cell death programmed necrosis and apoptosis. Changes in inflammatory cells are driven by extracellular signals; however, the mechanisms by which cytokines mediate autophagy regulation and govern immune cell function remain unknown. Certain cytokines increase autophagy, whereas others inhibit autophagy. The relationship between autophagy and inflammation is also important in the pathogenesis of metabolic, non-communicable diseases. Inflammation per se is not the cause of obesity-associated diseases, but it is secondary to both the positive energy balance and the specific cellular responses. In metabolic tissues, the suppression of autophagy increases inflammation with the overexpression of cytokines, resulting in an activation of autophagy. The physiological role of these apparently contradictory findings remains uncertain but exemplifies future challenges in the therapeutic modulation of autophagy in the management of disease.

  19. [Psychometric assessment of defense mechanisms: correlation between questionnaire and expert rating. Initial study of validity].

    PubMed

    Reister, G; Fellhauer, R F; Franz, M; Wirth, T; Schellberg, D; Schepank, H; Tress, W

    1993-01-01

    Within the limits of an epidemiological longitudinal field survey on prevalence and course of psychogenic disorders a high-risk-population suffering from medical psychogenic impairment was investigated. The study was conducted in order to verify an etiological multi-level-model of psychogenic disorders in relation to the socialempiric variables "critical life events" and "social support" as well as the depth psychological oriented construct "personality". Besides other instruments a self rating scale based on Vallant's hierarchical model of defense, i.e. the german adaptation of the DSQ (Defense Style Questionnaire) of Bond and coworkers, was used for the accurate measurement of relevant personality parameters. Although defense processes predominantly work unconscious, manifestations of defense mechanisms could be measured indirectly by means of the rating scale. Its essential dimensions separated clinical patients from a group of healthy controls. Furthermore an immature organisation of defense was found to be related to psychogenic impairment. Concerning self- and expert-rating a significant correlation between "immature defense" and the defense mechanisms "schizoid phantasy", "projection" and "acting out" was proved.

  20. NVLAP activities at Department of Defense calibration laboratories

    SciTech Connect

    Schaeffer, D.M.

    1993-12-31

    There are 367 active radiological instrument calibration laboratories within the U.S. Department of Defense (DoD). Each of the four services in DoD manages, operates, and certifies the technical proficiency and competency of those laboratories under their cognizance. Each service has designated secondary calibration laboratories to trace all calibration source standards to the National Institute of Standards and Technology. Individual service radiological calibration programs and capabilities, present and future, are described, as well as the measurement quality assurance (MQA) processes for their traceability. National Voluntary Laboratory Accreditation Program (NVLAP) programs for dosimetry systems are briefly summarized. Planned NVLAP accreditation of secondary laboratories is discussed in the context of current technical challenges and future efforts.

  1. In Defense of a Heuristic Interpretation of Quantum Mechanics

    ERIC Educational Resources Information Center

    Healy, Eamonn F.

    2010-01-01

    Although the presentation of quantum mechanics found in traditional textbooks is intellectually well founded, it suffers from a number of deficiencies. Specifically introducing quantum mechanics as a solution to the arcane dilemma, the ultraviolet catastrophe, does little to impress a nonscientific audience of the tremendous paradigmatic shift…

  2. Luminal l-glutamate enhances duodenal mucosal defense mechanisms via multiple glutamate receptors in rats

    PubMed Central

    Watanabe, Chikako; Mizumori, Misa; Kaunitz, Jonathan D.

    2009-01-01

    Presence of taste receptor families in the gastrointestinal mucosa suggests a physiological basis for local and early detection of a meal. We hypothesized that luminal l-glutamate, which is the primary nutrient conferring fundamental umami or proteinaceous taste, influences mucosal defense mechanisms in rat duodenum. We perfused the duodenal mucosa of anesthetized rats with l-glutamate (0.1–10 mM). Intracellular pH (pHi) of the epithelial cells, blood flow, and mucus gel thickness (MGT) were simultaneously and continuously measured in vivo. Some rats were pretreated with indomethacin or capsaicin. Duodenal bicarbonate secretion (DBS) was measured with flow-through pH and CO2 electrodes. We tested the effects of agonists or antagonists for metabotropic glutamate receptor (mGluR) 1 or 4 or calcium-sensing receptor (CaSR) on defense factors. Luminal l-glutamate dose dependently increased pHi and MGT but had no effect on blood flow in the duodenum. l-glutamate (10 mM)-induced cellular alkalinization and mucus secretion were inhibited by pretreatment with indomethacin or capsaicin. l-glutamate effects on pHi and MGT were mimicked by mGluR4 agonists and inhibited by an mGluR4 antagonist. CaSR agonists acidified cells with increased MGT and DBS, unlike l-glutamate. Perfusion of l-glutamate with inosinate (inosine 5′-monophosphate, 0.1 mM) enhanced DBS only in combination, suggesting synergistic activation of the l-glutamate receptor, typical of taste receptor type 1. l-leucine or l-aspartate had similar effects on DBS without any effect on pHi and MGT. Preperfusion of l-glutamate prevented acid-induced cellular injury, suggesting that l-glutamate protects the mucosa by enhancing mucosal defenses. Luminal l-glutamate may activate multiple receptors and afferent nerves and locally enhance mucosal defenses to prevent subsequent injury attributable to acid exposure in the duodenum. PMID:19643955

  3. An empirical look at the Defense Mechanism Test (DMT): reliability and construct validity.

    PubMed

    Ekehammar, Bo; Zuber, Irena; Konstenius, Marja-Liisa

    2005-07-01

    Although the Defense Mechanism Test (DMT) has been in use for almost half a century, there are still quite contradictory views about whether it is a reliable instrument, and if so, what it really measures. Thus, based on data from 39 female students, we first examined DMT inter-coder reliability by analyzing the agreement among trained judges in their coding of the same DMT protocols. Second, we constructed a "parallel" photographic picture that retained all structural characteristic of the original and analyzed DMT parallel-test reliability. Third, we examined the construct validity of the DMT by (a) employing three self-report defense-mechanism inventories and analyzing the intercorrelations between DMT defense scores and corresponding defenses in these instruments, (b) studying the relationships between DMT responses and scores on trait and state anxiety, and (c) relating DMT-defense scores to measures of self-esteem. The main results showed that the DMT can be coded with high reliability by trained coders, that the parallel-test reliability is unsatisfactory compared to traditional psychometric standards, that there is a certain generalizability in the number of perceptual distortions that people display from one picture to another, and that the construct validation provided meager empirical evidence for the conclusion that the DMT measures what it purports to measure, that is, psychological defense mechanisms.

  4. Attenuation of cellular antioxidant defense mechanisms in kidney of rats intoxicated with carbofuran.

    PubMed

    Kaur, Bhupindervir; Khera, Alka; Sandhir, Rajat

    2012-10-01

    Carbofuran, an anticholinestrase carbamate, is commonly used as an insecticide. Its toxic effect on kidney is less established. The present study was designed to investigate the effect of carbofuran on kidneys and to understand the mechanism involved in its nephrotoxicity. Male Wistar rats were divided into two groups of eight animals each; control animals received sunflower oil (vehicle) and carbofuran exposed animals were treated with carbofuran (1 mg/kg body weight) orally for 28 days. At the end of the treatment, significant increase was observed in urea and creatinine levels in serum along with the inhibition of acetylcholinesterase, suggesting nephrotoxicity. The antioxidant defense system of animals treated with carbofuran was altered in terms of increased lipid peroxidation, reduced glutathione, and total thiols and decreased activity of antioxidant enzymes (superoxide dismutase and catalase). The results indicate that carbofuran is nephrotoxic and increased oxidative stress appears to be involved in its nephrotoxic effects.

  5. In Vivo NMR Metabolic Profiling of Fabrea salina Reveals Sequential Defense Mechanisms against Ultraviolet Radiation

    PubMed Central

    Marangoni, Roberto; Paris, Debora; Melck, Dominique; Fulgentini, Lorenzo; Colombetti, Giuliano; Motta, Andrea

    2011-01-01

    Fabrea salina is a hypersaline ciliate that is known to be among the strongest ultraviolet (UV)-resistant microorganisms; however, the molecular mechanisms of this resistance are almost unknown. By means of in vivo NMR spectroscopy, we determined the metabolic profile of living F. salina cells exposed to visible light and to polychromatic UV-B + UV-A + Vis radiation for several different exposure times. We used unsupervised pattern-recognition analysis to compare these profiles and discovered some metabolites whose concentration changed specifically upon UV exposure and in a dose-dependent manner. This variation was interpreted in terms of a two-phase cell reaction involving at least two different pathways: an early response consisting of degradation processes, followed by a late response activating osmoprotection mechanisms. The first step alters the concentration of formate, acetate, and saturated fatty-acid metabolites, whereas the osmoprotection modifies the activity of betaine moieties and other functionally related metabolites. In the latter pathway, alanine, proline, and sugars suggest a possible incipient protein synthesis as defense and/or degeneration mechanisms. We conclude that NMR spectroscopy on in vivo cells is an optimal approach for investigating the effect of UV-induced stress on the whole metabolome of F. salina because it minimizes the invasiveness of the measurement. PMID:21190674

  6. Academic cheating as a function of defense mechanisms and object relations.

    PubMed

    Juni, Samuel; Gross, Julie; Sokolowska, Joanna

    2006-06-01

    This study examined relationships between academic cheating behaviors by using self-reports of past cheating behavior, providing a situational experiment with the opportunity to cheat, and evaluating defense mechanisms and object relations as measured by the Defense Mechanisms Inventory. Subjects included 75 female and 8 male university students ranging in age from 18 to 51 years (M=25.5, SD=6.9). Analysis showed variations in students' self-reported cheating history relative to their measured object relations status and type of defense mechanisms. Actual cheating in the experimental setting was not significantly related to any of these variables. Findings are discussed based on a critique of heterogeneity of the cheating construct.

  7. Coping and Defense Mechanisms of Mothers of Learning Disabled Children.

    ERIC Educational Resources Information Center

    Faerstein, Leslie Morrison

    1986-01-01

    Mothers (N=24) generally evidenced coping mechanisms when involved with medical, social, and educational agencies, and were able to obtain services. However, coping functions broke down in direct confrontation with the child. Mothers, contrary to traditional attitudes, experienced relief at receiving a diagnosis, confirming their suspicions rather…

  8. DNA Damage Response and Immune Defense: Links and Mechanisms.

    PubMed

    Nakad, Rania; Schumacher, Björn

    2016-01-01

    DNA damage plays a causal role in numerous human pathologies including cancer, premature aging, and chronic inflammatory conditions. In response to genotoxic insults, the DNA damage response (DDR) orchestrates DNA damage checkpoint activation and facilitates the removal of DNA lesions. The DDR can also arouse the immune system by for example inducing the expression of antimicrobial peptides as well as ligands for receptors found on immune cells. The activation of immune signaling is triggered by different components of the DDR including DNA damage sensors, transducer kinases, and effectors. In this review, we describe recent advances on the understanding of the role of DDR in activating immune signaling. We highlight evidence gained into (i) which molecular and cellular pathways of DDR activate immune signaling, (ii) how DNA damage drives chronic inflammation, and (iii) how chronic inflammation causes DNA damage and pathology in humans. PMID:27555866

  9. DNA Damage Response and Immune Defense: Links and Mechanisms

    PubMed Central

    Nakad, Rania; Schumacher, Björn

    2016-01-01

    DNA damage plays a causal role in numerous human pathologies including cancer, premature aging, and chronic inflammatory conditions. In response to genotoxic insults, the DNA damage response (DDR) orchestrates DNA damage checkpoint activation and facilitates the removal of DNA lesions. The DDR can also arouse the immune system by for example inducing the expression of antimicrobial peptides as well as ligands for receptors found on immune cells. The activation of immune signaling is triggered by different components of the DDR including DNA damage sensors, transducer kinases, and effectors. In this review, we describe recent advances on the understanding of the role of DDR in activating immune signaling. We highlight evidence gained into (i) which molecular and cellular pathways of DDR activate immune signaling, (ii) how DNA damage drives chronic inflammation, and (iii) how chronic inflammation causes DNA damage and pathology in humans. PMID:27555866

  10. Physcomitrella patens activates reinforcement of the cell wall, programmed cell death and accumulation of evolutionary conserved defense signals...upon Botrytis cinerea infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The moss Physcomitrella patens is an evolutionarily basal model system suitable to analyze plant defense responses activated after pathogen assault. Upon infection with the necrotroph Botrytis cinerea (B. cinerea), several defense mechanisms are induced in P. patens, including the fortification of t...

  11. [Genetic and biochemical mechanisms of involvement of antioxidant defense enzymes in the development of bronchial asthma].

    PubMed

    Polonikov, A V; Ivanov, V P; Bogomazov, A D; Solodilova, M A

    2015-01-01

    In the present review we have analyzed and summarized recent literature data on genetic and biochemical mechanisms responsible for involvement of antioxidant defense enzymes in the etiology and pathogenesis of bronchial asthma. It has been shown that the mechanisms of asthma development are linked with genetically determined abnormalities in the functioning of antioxidant defense enzymes. These alterations are accompanied by a systemic imbalance between oxidative and anti-oxidative reactions with the shift of the redox state toward increased free radical production and oxidative stress, a key element in the pathogenesis of bronchial asthma. PMID:26350733

  12. [Genetic and biochemical mechanisms of involvement of antioxidant defense enzymes in the development of bronchial asthma].

    PubMed

    Polonikov, A V; Ivanov, V P; Bogomazov, A D; Solodilova, M A

    2015-01-01

    In the present review we have analyzed and summarized recent literature data on genetic and biochemical mechanisms responsible for involvement of antioxidant defense enzymes in the etiology and pathogenesis of bronchial asthma. It has been shown that the mechanisms of asthma development are linked with genetically determined abnormalities in the functioning of antioxidant defense enzymes. These alterations are accompanied by a systemic imbalance between oxidative and anti-oxidative reactions with the shift of the redox state toward increased free radical production and oxidative stress, a key element in the pathogenesis of bronchial asthma.

  13. Strong down-regulation of glycophorin genes: A host defense mechanism against rotavirus infection.

    PubMed

    Salas, Antonio; Marco-Puche, Guillermo; Triviño, Juan Carlos; Gómez-Carballa, Alberto; Cebey-López, Miriam; Rivero-Calle, Irene; Vilanova-Trillo, Lucía; Rodríguez-Tenreiro, Carmen; Gómez-Rial, José; Martinón-Torres, Federico

    2016-10-01

    The mechanisms of rotavirus (RV) infection have been analyzed from different angles but the way in which RV modifies the transcriptome of the host is still unknown. Whole transcriptome shotgun sequencing of peripheral blood samples was used to reveal patterns of expression from the genome of RV-infected patients. RV provokes global changes in the transcriptome of infected cells, involving an over-expression of genes involved in cell cycle and chromatin condensation. While interferon IFI27 was hyper-activated, interferon type II was not suggesting that RV has developed mechanisms to evade the innate response by host cells after virus infection. Most interesting was the inhibition of genes of the glycophorins A and B (GYPA/B) family, which are the major sialoglycoproteins of the human erythrocyte membrane and receptor of several viruses for host invasion. RV infection induces a complex and global response in the host. The strong inhibition of glycophorins suggests a novel defense mechanism of the host to prevent viral infection, inhibiting the expression of receptors used by the virus for infection. The present results add further support to the systemic nature of RV infection.

  14. Strong down-regulation of glycophorin genes: A host defense mechanism against rotavirus infection.

    PubMed

    Salas, Antonio; Marco-Puche, Guillermo; Triviño, Juan Carlos; Gómez-Carballa, Alberto; Cebey-López, Miriam; Rivero-Calle, Irene; Vilanova-Trillo, Lucía; Rodríguez-Tenreiro, Carmen; Gómez-Rial, José; Martinón-Torres, Federico

    2016-10-01

    The mechanisms of rotavirus (RV) infection have been analyzed from different angles but the way in which RV modifies the transcriptome of the host is still unknown. Whole transcriptome shotgun sequencing of peripheral blood samples was used to reveal patterns of expression from the genome of RV-infected patients. RV provokes global changes in the transcriptome of infected cells, involving an over-expression of genes involved in cell cycle and chromatin condensation. While interferon IFI27 was hyper-activated, interferon type II was not suggesting that RV has developed mechanisms to evade the innate response by host cells after virus infection. Most interesting was the inhibition of genes of the glycophorins A and B (GYPA/B) family, which are the major sialoglycoproteins of the human erythrocyte membrane and receptor of several viruses for host invasion. RV infection induces a complex and global response in the host. The strong inhibition of glycophorins suggests a novel defense mechanism of the host to prevent viral infection, inhibiting the expression of receptors used by the virus for infection. The present results add further support to the systemic nature of RV infection. PMID:27491455

  15. Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana

    PubMed Central

    Lassowskat, Ines; Böttcher, Christoph; Eschen-Lippold, Lennart; Scheel, Dierk; Lee, Justin

    2014-01-01

    Mitogen-activated protein kinases (MAPKs) target a variety of protein substrates to regulate cellular signaling processes in eukaryotes. In plants, the number of identified MAPK substrates that control plant defense responses is still limited. Here, we generated transgenic Arabidopsis thaliana plants with an inducible system to simulate in vivo activation of two stress-activated MAPKs, MPK3, and MPK6. Metabolome analysis revealed that this artificial MPK3/6 activation (without any exposure to pathogens or other stresses) is sufficient to drive the production of major defense-related metabolites, including various camalexin, indole glucosinolate and agmatine derivatives. An accompanying (phospho)proteome analysis led to detection of hundreds of potential phosphoproteins downstream of MPK3/6 activation. Besides known MAPK substrates, many candidates on this list possess typical MAPK-targeted phosphosites and in many cases, the corresponding phosphopeptides were detected by mass spectrometry. Notably, several of these putative phosphoproteins have been reported to be associated with the biosynthesis of antimicrobial defense substances (e.g., WRKY transcription factors and proteins encoded by the genes from the “PEN” pathway required for penetration resistance to filamentous pathogens). Thus, this work provides an inventory of candidate phosphoproteins, including putative direct MAPK substrates, for future analysis of MAPK-mediated defense control. (Proteomics data are available with the identifier PXD001252 via ProteomeXchange, http://proteomecentral.proteomexchange.org). PMID:25368622

  16. Anti-inflammatory defense mechanisms of Entamoeba histolytica.

    PubMed

    Silva-García, Raúl; Rico-Rosillo, Guadalupe

    2011-02-01

    The monocyte locomotion inhibitory factor (MLIF), a heat-stable oligopeptide found in the supernatant fluid of Entamoeba histolytica axenic cultures, may contribute to the delayed inflammation observed in amoebic hepatic abscess. This factor was isolated by ultra-filtration and high powered liquid chromatography, obtaining a primary Met-Gln-Cys-Asn-Ser structure, identified afterwards as the carboxyl-terminal (…Cys-Asn-Ser) active site. The selective anti-inflammatory effects of the pentapeptide have been observed in both in vitro and in vivo models, using a synthetic pentapeptide to maintain the same anti-inflammatory conditions during the experimental assays. Anti-inflammatory effects observed include inhibition of human monocyte locomotion and the respiratory burst in monocytes and neutrophils, increasing expression of anti-inflammatory cytokines and inhibiting expression of the adhesion molecules VLA-4 and VCAM, among others. In this review, we will describe the effects of MLIF detected so far and how it might be used as a therapeutical agent against inflammatory diseases.

  17. Learning to Recognize Ego Defense Mechanisms: Results of a Structured Teaching Experience for Psychiatric Residents

    ERIC Educational Resources Information Center

    Beresford, Thomas P.

    2005-01-01

    Objective: Ego defense mechanism (EDM) recognition can offer a powerful and practical tool in clinical psychiatry. However, recognition skill learning can be difficult to assess and may account for the lack of formal EDM recognition training in residency courses. Method: This study hypothesized that mean test scores would increase significantly…

  18. Effects of Sex, Social Desirability, and Birth Order on the Defense Mechanisms Inventory.

    ERIC Educational Resources Information Center

    Dudley, Gary E.

    1978-01-01

    Investigated effects of sex difference, social desirability instructions, and birth order of respondents on defense mechanisms inventory (DMI). Sex difference was found in projection only. Social desirability effects were found in turning-against-others, projection, principalization, and reversal. Thus, an interpretive caution is in order…

  19. Psychogenic non-epileptic seizures: so-called psychiatric comorbidity and underlying defense mechanisms

    PubMed Central

    Beghi, Massimiliano; Negrini, Paola Beffa; Perin, Cecilia; Peroni, Federica; Magaudda, Adriana; Cerri, Cesare; Cornaggia, Cesare Maria

    2015-01-01

    In Diagnostic and Statistical Manual of Mental Disorders, fifth edition, psychogenic non-epileptic seizures (PNES) do not have a unique classification as they can be found within different categories: conversion, dissociative, and somatization disorders. The ICD-10, instead, considers PNES within dissociative disorders, merging the dissociative disorders and conversion disorders, although the underlying defense mechanisms are different. The literature data show that PNES are associated with cluster B (mainly borderline) personality disorders and/or to people with depressive or anxiety disorders. Defense mechanisms in patients with PNES with a prevalence of anxious/depressive symptoms are of “neurotic” type; their goal is to lead to a “split”, either vertical (dissociation) or horizontal (repression). The majority of patients with this type of PNES have alexithymia traits, meaning that they had difficulties in feeling or perceiving emotions. In subjects where PNES are associated with a borderline personality, in which the symbolic function is lost, the defense mechanisms are of a more archaic nature (denial). PNES with different underlying defense mechanisms have different prognoses (despite similar severity of PNES) and need usually a different treatment (pharmacological or psychological). Thus, it appears superfluous to talk about psychiatric comorbidity, since PNES are a different symptomatic expression of specific psychiatric disorders. PMID:26491330

  20. DNA DAMAGE REPAIR AND CELL CYCLE CONTROL: A NATURAL BIO-DEFENSE MECHANISM

    EPA Science Inventory

    DNA DAMAGE REPAIR AND CELL CYCLE CONTROL: A natural bio-defense mechanism
    Anuradha Mudipalli.

    Maintenance of genetic information, including the correct sequence of nucleotides in DNA, is essential for replication, gene expression, and protein synthesis. DNA lesions onto...

  1. Brief Report: The Defense Mechanisms of Homophobic Adolescent Males--A Descriptive Discriminant Analysis

    ERIC Educational Resources Information Center

    Lewis, Andrew J.; White, Jennifer

    2009-01-01

    The study examined the role of defense mechanisms in homophobic attitudes of older male adolescents aged 17-18 years. A cross-sectional survey collected data from final year high school students (N = 86) attending an all male school in a regional centre in Victoria, Australia. The school was identified by teachers as having a problematic culture…

  2. Orientations of psychotic activity in defensive pathological organizations.

    PubMed

    Williams, Paul

    2014-06-01

    The author reviews some clinical experiences of the treatment of personality disordered patients suffering from internal domination of ego functioning by a defensive pathological organization. In particular, the function and purpose of perverse, sadistic attacks by the organization on the ego are considered and questions pertaining to technique are raised. It is suggested that different forms of sadistic, subjugating activity by pathological organizations may denote differences in intent borne of the type and severity of the psychopathology of the individual. Patients with severe narcissistic psychopathology for whom object contact has become associated with the arousal of intense psychotic anxieties seem more likely to be subjected to an invasive, annihilatory imperative by the pathological organization, the purpose of which appears to be to obliterate the experience of contact with any differentiated object, to avoid emotion and to use coercion to enforce a primitive identification by the ego with the psychotic organization in the mind. Certain patients with less severe narcissistic psychopathology, yet for whom object contact can also be associated with the arousal of psychotic anxieties due to intense or persistent conflict with the object, sometimes expressed as organized sadomasochistic clinging to a punishing and punished object (for example, in certain borderline or depressed patients) exhibit sadistic attacks that serve less to annihilate object contact and more to intrusively control and punish the object. Observations of these phenomena have been made by a number of psychoanalysts in recent decades and these contributions are discussed. This paper is addressed primarily to the implications for technique with such patients, particularly a need for triangulation of their experiences of oppression in order to loosen the controls over the ego by the pathological organization. PMID:24620792

  3. Differences between matched heterosexual and non-heterosexual college students on defense mechanisms and psychopathological symptoms.

    PubMed

    Biernbaum, Mark A; Ruscio, Michele

    2004-01-01

    Differences between heterosexual and non-heterosexual college students on measures of defense mechanisms and psychopathological symptoms were examined. Fifty-six (28 heterosexual, 28 non-heterosexual) subjects were drawn from a larger study of college student adjustment. Non-heterosexual subjects were matched to a heterosexual peer on several demographic variables as well as on attachment security/insecurity. Differences between the two groups on the Defense Mechanism Inventory and the Brief Symptom Inventory were tested. Contrary to traditional psychoanalytic conceptions of homosexuality, no differences were found between the two groups on any subscale of the Defense Mechanism Inventory, thereby repudiating one important aspect of traditional psychoanalytic theories on the development of homosexuality. Non-heterosexual students reported significantly higher levels of anxiety, depression, somaticization, paranoid ideation, general symptom severity, and suicidal ideation. These students appear to be at increased risk for psychopathology and suicidal ideation, despite similar defense profiles, when compared to matched heterosexual peers. Additional research is needed to determine the origins of this increased risk, and comprehensive and targeted prevention and intervention programs must be established to ameliorate such risks.

  4. Attachment style and defense mechanisms in parents who abuse their children.

    PubMed

    Cramer, Phebe; Kelly, Francis D

    2010-09-01

    Adult attachment style, defense mechanisms, and personal history of abuse was studied in a group of abusive parents. As a group, these parents made unusually high use of the defense of denial; this was especially true of those with a Fearful attachment style. However, the use of Identification was characteristic of those with a Preoccupied attachment style. Further, personal abuse history was related to adult attachment style. Those who reported having been abused as a child were less likely to have a Secure attachment style, and a history of physical or sexual abuse was associated with a Preoccupied style. In general, these findings support the deactivating/hyperactivating defensive theory of Mikulincer et al (Emotion Regulation in Couples and Families: Pathways to Dysfunction and Health. 2006; pp 77-99. Washington (WA): American Psychological Association).

  5. Convergent evolution of defense mechanisms in oribatid mites (Acari, Oribatida) shows no "ghosts of predation past".

    PubMed

    Pachl, Patrick; Domes, Katja; Schulz, Garvin; Norton, Roy A; Scheu, Stefan; Schaefer, Ina; Maraun, Mark

    2012-11-01

    Oribatid mites are diverse and abundant terrestrial soil arthropods that are involved in decomposition of organic matter and nutrient cycling. As indicated by fossils starting from the Devonian, they evolved varied mechanisms and structures for defense from predators. We investigated four of these defensive structures (ptychoid body, hologastry, mineralization and opisthonotal glands) and used ancestral character state reconstruction to determine whether they evolved convergently and how many times this may have happened. Phylogenetic trees based on 18S rDNA were constructed for 42 oribatid mite species and two outgroup taxa using likelihood and Bayesian algorithms. The results suggest that at least three of the four defensive structures evolved convergently several times; for opisthonotal glands convergent evolution remains equivocal. This high level of convergence indicates that predation has been an important factor throughout the evolution of oribatid mites, contributing to morphological diversity and potentially also to species richness, as there are indications that some taxa radiated after the evolution of defense structures. Despite the ancientness of oribatid mites, defense structures seems to have been rarely lost, suggesting that they still are functional and necessary to reduce predation, rather than being 'ghosts of predation past'.

  6. [Features of brain oscillatory activity and cardiac defense in treatment arterial hypertensives].

    PubMed

    Aftanas, L I; Brak, I V; Gilinskaia, O M; Pavlov, S V; Reva, N V

    2014-01-01

    Stress reactivity of the motivational system of defense can be assessed with the aid the cardiac defense response (CDR) - the reaction of the cardiovascular system to unexpected aversive unconditioned stimulus. The main objective of the study was revealing putative contribution of oscillatory systems of the brain into central pathogenic mechanisms of enhanced blood pressure (BP) stress-reactivity in naive patients with arterial hypertension (AH) of the 1st-2nd degrees (n = 17) and healthy control (n = 19) subjects. Using dynamic registration "beat-by-beat" arterial pressure, and oscillatory activity related EEG (64 channels) is estimated using the event-related synchronization/desynchronization (ERD/ERS). Along with abnormally high blood pressure in patients with hypertension background set significantly lower concentrations of serotonin blood platelets and increased tonic activation of the left hemisphere, reflected in the asymmetric reduction of delta- (2-4 Hz) and theta-1 (4-6 Hz) power in the central and parietal cortex in the hemisphere CDR of the patients are characterized by hyperactivity both short- and long-latency components of blood pressure. According to the dynamic analysis of the concomitant EEG, long-latency BP components may be accounted by, among other mechanisms, weakening of the descending ("top-down") inhibitory control, hypothetically implemented with the high-frequency EEG alpha (10-12 Hz) oscillations from the medial central-parietal cortex of both hemispheres of the brain. PMID:25464727

  7. Lico A Enhances Nrf2-Mediated Defense Mechanisms against t-BHP-Induced Oxidative Stress and Cell Death via Akt and ERK Activation in RAW 264.7 Cells

    PubMed Central

    Lv, Hongming; Ren, Hua; Wang, Lidong; Chen, Wei; Ci, Xinxin

    2015-01-01

    Licochalcone A (Lico A) exhibits various biological properties, including anti-inflammatory and antioxidant activities. In this study, we investigated the antioxidative potential and mechanisms of Lico A against tert-butyl hydroperoxide- (t-BHP-) induced oxidative damage in RAW 264.7 cells. Our results indicated that Lico A significantly inhibited t-BHP-induced cytotoxicity, apoptosis, and reactive oxygen species (ROS) generation and reduced glutathione (GSH) depletion but increased the glutamate-cysteine ligase modifier (GCLM) subunit and the glutamate-cysteine ligase catalytic (GCLC) subunit genes expression. Additionally, Lico A dramatically upregulated the antioxidant enzyme heme oxygenase 1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2), which were associated with inducing Nrf2 nuclear translocation, decreasing Keap1 protein expression and increasing antioxidant response element (ARE) promoter activity. Lico A also obviously induced the activation of serine/threonine kinase (Akt) and extracellular signal-regulated kinase (ERK), but PI3K/Akt and ERK inhibitors treatment displayed clearly decreased levels of LicoA-induced Nrf2 nuclear translocation and HO-1 expression, respectively. Furthermore, Lico A treatment markedly attenuated t-BHP-induced oxidative damage, which was reduced by treatment with PI3K/Akt, ERK, and HO-1 inhibitors. Therefore, Lico A might have a protective role against t-BHP-induced cytotoxicity by modulating HO-1 and by scavenging ROS via the activation of the PI3K/Akt and ERK/Nrf2 signaling pathways. PMID:26576227

  8. Assessment of Defense Styles and Mechanisms in Iranian Patients Suffering from Obsessive Compulsive or Panic Disorders versus Normal Controls using Persian Version of Defense Style Questionnaire-40

    PubMed Central

    Shabanpour, Ruhollah; Zahiroddin, Ali Reza; Janbozorgi, Masoud

    2012-01-01

    Objective The aim of this study was to compare defense styles and mechanisms in adult patients suffering from obsessive-compulsive disorder (OCD), and panic disorder (PD) with normal subjects in Iran. Methods Defensive patterns of 22 patients with OCD, 28 patients with PD and those of 116 normal individuals (as a control group) were assessed using the Farsi version of Defense Style Questionnaire-40 (DSQ-40). The content validity of this questionnaire was done prior to the initiation of the present study. Results Both groups of patients with OCD or PD used more immature and less mature styles compared to the control group. No significant difference was observed in the use of neurotic style between the two groups. Conclusion It is suggested that immature defenses may have an important role in the pathogenesis of OCD and PD. PMID:23056115

  9. A Systems Biology Approach to the Coordination of Defensive and Offensive Molecular Mechanisms in the Innate and Adaptive Host-Pathogen Interaction Networks.

    PubMed

    Wu, Chia-Chou; Chen, Bor-Sen

    2016-01-01

    Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host-pathogen dynamic interaction networks. The consideration of host-pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host-pathogen molecular interaction networks, and consequent inferences of the host-pathogen relationship could be translated into biomedical applications.

  10. Exploring the association of ego defense mechanisms with problematic internet use in a Pakistani medical school.

    PubMed

    Waqas, Ahmed; Rehman, Abdul; Malik, Aamenah; Aftab, Ramsha; Allah Yar, Aroosa; Allah Yar, Arooj; Rai, Aitzaz Bin Sultan

    2016-09-30

    The present study was designed to analyze association between problematic internet use and use of ego defense mechanisms in medical students. This cross-sectional study was undertaken at CMH Lahore Medical College (CMH LMC) in Lahore, Pakistan from 1st March, 2015 to 30th May, 2015. 522 medical and dental students were included in the study. The questionnaire consisted of three sections: a) demographic characteristics of respondent b) the Defense Style Questionnaire-40 (DSQ-40) and c) the Internet Addiction Test (IAT). All data were analyzed in SPSS v20. Chi square, Independent sample t test and One Way ANOVA were run to analyze association of different variables with scores on IAT. Multiple regression analysis was used to delineate ego defenses as predictors of problematic internet use. A total of 32 (6.1%) students reported severe problems with internet usage. Males had higher scores on IAT i.e had more problematic use of internet. Scores on internet addiction test (IAT) were negatively associated with sublimation and positively associated with projection, denial, autistic fantasy, passive aggression and displacement. There was a high prevalence of problematic use of internet among medical and dental students. It had significant associations with several defense mechanisms.

  11. Exploring the association of ego defense mechanisms with problematic internet use in a Pakistani medical school.

    PubMed

    Waqas, Ahmed; Rehman, Abdul; Malik, Aamenah; Aftab, Ramsha; Allah Yar, Aroosa; Allah Yar, Arooj; Rai, Aitzaz Bin Sultan

    2016-09-30

    The present study was designed to analyze association between problematic internet use and use of ego defense mechanisms in medical students. This cross-sectional study was undertaken at CMH Lahore Medical College (CMH LMC) in Lahore, Pakistan from 1st March, 2015 to 30th May, 2015. 522 medical and dental students were included in the study. The questionnaire consisted of three sections: a) demographic characteristics of respondent b) the Defense Style Questionnaire-40 (DSQ-40) and c) the Internet Addiction Test (IAT). All data were analyzed in SPSS v20. Chi square, Independent sample t test and One Way ANOVA were run to analyze association of different variables with scores on IAT. Multiple regression analysis was used to delineate ego defenses as predictors of problematic internet use. A total of 32 (6.1%) students reported severe problems with internet usage. Males had higher scores on IAT i.e had more problematic use of internet. Scores on internet addiction test (IAT) were negatively associated with sublimation and positively associated with projection, denial, autistic fantasy, passive aggression and displacement. There was a high prevalence of problematic use of internet among medical and dental students. It had significant associations with several defense mechanisms. PMID:27504797

  12. Temporal accumulation of salicylic acid activates the defense response against Colletotrichum in strawberry.

    PubMed

    Grellet-Bournonville, Carlos F; Martinez-Zamora, Martín G; Castagnaro, Atilio P; Díaz-Ricci, Juan Carlos

    2012-05-01

    Many authors have reported interactions between strawberry cultivars and pathogenic microorganisms, yet little is known about the mechanisms triggered in the plant. In this paper we examine the participation of the salicylic acid (SA) signaling pathway involved in the response of Fragaria x ananassa cv. Pájaro plants to pathogens. Strawberry plants were challenged with the virulent strain M11 of Colletotrichum acutatum, or with the avirulent strain M23 of Colletotrichum fragariae which confers resistance to the former. Our study showed that the isolate M23 induced a temporal SA accumulation that was accompanied with the induction of PR-1 gene expression in strawberry plants. Such events occured after the oxidative burst, evaluated as the accumulation of hydrogen peroxide and superoxide anion, and many hours before the protection could be detected. Similar results were obtained with exogenously applied SA. Results obtained supports the hypothesis that strawberry plants activate a SA mediated defense mechanisms that is effective against a causal agent of anthracnose. In contrast, plants inoculated with M11 did not show oxidative burst, SA accumulation or PR1 gene induction. This is the first report about a defense response signaling pathway studied in strawberry plants. PMID:22366637

  13. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes.

    PubMed

    Shen, Ding-Wu; Pouliot, Lynn M; Hall, Matthew D; Gottesman, Michael M

    2012-07-01

    Cisplatin is one of the most effective broad-spectrum anticancer drugs. Its effectiveness seems to be due to the unique properties of cisplatin, which enters cells via multiple pathways and forms multiple different DNA-platinum adducts while initiating a cellular self-defense system by activating or silencing a variety of different genes, resulting in dramatic epigenetic and/or genetic alternations. As a result, the development of cisplatin resistance in human cancer cells in vivo and in vitro by necessity stems from bewilderingly complex genetic and epigenetic changes in gene expression and alterations in protein localization. Extensive published evidence has demonstrated that pleiotropic alterations are frequently detected during development of resistance to this toxic metal compound. Changes occur in almost every mechanism supporting cell survival, including cell growth-promoting pathways, apoptosis, developmental pathways, DNA damage repair, and endocytosis. In general, dozens of genes are affected in cisplatin-resistant cells, including pathways involved in copper metabolism as well as transcription pathways that alter the cytoskeleton, change cell surface presentation of proteins, and regulate epithelial-to-mesenchymal transition. Decreased accumulation is one of the most common features resulting in cisplatin resistance. This seems to be a consequence of numerous epigenetic and genetic changes leading to the loss of cell-surface binding sites and/or transporters for cisplatin, and decreased fluid phase endocytosis. PMID:22659329

  14. A proteomics perspective on viral DNA sensors in host defense and viral immune evasion mechanisms.

    PubMed

    Crow, Marni S; Javitt, Aaron; Cristea, Ileana M

    2015-06-01

    The sensing of viral DNA is an essential step of cellular immune response to infections with DNA viruses. These human pathogens are spread worldwide, triggering a wide range of virus-induced diseases, and are associated with high levels of morbidity and mortality. Despite similarities between DNA molecules, mammalian cells have the remarkable ability to distinguish viral DNA from their own DNA. This detection is carried out by specialized antiviral proteins, called DNA sensors. These sensors bind to foreign DNA to activate downstream immune signaling pathways and alert neighboring cells by eliciting the expression of antiviral cytokines. The sensing of viral DNA was shown to occur both in the cytoplasm and in the nucleus of infected cells, disproving the notion that sensing occurred by simple spatial separation of viral and host DNA. A number of omic approaches, in particular, mass-spectrometry-based proteomic methods, have significantly contributed to the constantly evolving field of viral DNA sensing. Here, we review the impact of omic methods on the identification of viral DNA sensors, as well as on the characterization of mechanisms involved in host defense or viral immune evasion.

  15. Cisplatin Resistance: A Cellular Self-Defense Mechanism Resulting from Multiple Epigenetic and Genetic Changes

    PubMed Central

    Shen, Ding-Wu; Pouliot, Lynn M.; Hall, Matthew D.

    2012-01-01

    Cisplatin is one of the most effective broad-spectrum anticancer drugs. Its effectiveness seems to be due to the unique properties of cisplatin, which enters cells via multiple pathways and forms multiple different DNA-platinum adducts while initiating a cellular self-defense system by activating or silencing a variety of different genes, resulting in dramatic epigenetic and/or genetic alternations. As a result, the development of cisplatin resistance in human cancer cells in vivo and in vitro by necessity stems from bewilderingly complex genetic and epigenetic changes in gene expression and alterations in protein localization. Extensive published evidence has demonstrated that pleiotropic alterations are frequently detected during development of resistance to this toxic metal compound. Changes occur in almost every mechanism supporting cell survival, including cell growth-promoting pathways, apoptosis, developmental pathways, DNA damage repair, and endocytosis. In general, dozens of genes are affected in cisplatin-resistant cells, including pathways involved in copper metabolism as well as transcription pathways that alter the cytoskeleton, change cell surface presentation of proteins, and regulate epithelial-to-mesenchymal transition. Decreased accumulation is one of the most common features resulting in cisplatin resistance. This seems to be a consequence of numerous epigenetic and genetic changes leading to the loss of cell-surface binding sites and/or transporters for cisplatin, and decreased fluid phase endocytosis. PMID:22659329

  16. Active-passive bistatic surveillance for long range air defense

    SciTech Connect

    Wardrop, B.; Molyneux-Berry, M.R.B. )

    1992-06-01

    A hypothetical mobile support receiver capable of working within existing and future air defense networks as a means to maintain essential surveillance functions is considered. It is shown how multibeam receiver architecture supported by digital signal processing can substantially improve surveillance performance against chaff and jamming threats. A dual-mode support receiver concept is proposed which is based on the state-of-the-art phased-array technology, modular processing in industry standard hardware and existing networks. 20 refs.

  17. Temporal and Spatial Resolution of Activated Plant Defense Responses in Leaves of Nicotiana benthamiana Infected with Dickeya dadantii

    PubMed Central

    Pérez-Bueno, María L.; Granum, Espen; Pineda, Mónica; Flors, Víctor; Rodriguez-Palenzuela, Pablo; López-Solanilla, Emilia; Barón, Matilde

    2016-01-01

    The necrotrophic bacteria Dickeya dadantii is the causal agent of soft-rot disease in a broad range of hosts. The model plant Nicotiana benthamiana, commonly used as experimental host for a very broad range of plant pathogens, is susceptible to infection by D. dadantii. The inoculation with D. dadantii at high dose seems to overcome the plant defense capacity, inducing maceration and death of the tissue, although restricted to the infiltrated area. By contrast, the output of the defense response to low dose inoculation is inhibition of maceration and limitation in the growth, or even eradication, of bacteria. Responses of tissue invaded by bacteria (neighboring the infiltrated areas after 2–3 days post-inoculation) included: (i) inhibition of photosynthesis in terms of photosystem II efficiency; (ii) activation of energy dissipation as non-photochemical quenching in photosystem II, which is related to the activation of plant defense mechanisms; and (iii) accumulation of secondary metabolites in cell walls of the epidermis (lignins) and the apoplast of the mesophyll (phytoalexins). Infiltrated tissues showed an increase in the content of the main hormones regulating stress responses, including abscisic acid, jasmonic acid, and salicylic acid. We propose a mechanism involving the three hormones by which N. benthamiana could activate an efficient defense response against D. dadantii. PMID:26779238

  18. General beliefs about the world as defensive mechanisms against death anxiety.

    PubMed

    Hui, Victoria Ka-Ying; Bond, Michael Harris; Ng, Timmy Sze Wing

    Death ideation and death anxiety represent the cognitive and affective dimensions of death attitudes, respectively. General beliefs about the world are proposed to be useful defensive mechanisms protecting persons against the death anxiety provoked by death ideation. SEM is employed to test the proposed mediation model, using a sample of 133 Hong Kong Chinese university students. Results showed that death ideation was significantly and inversely linked to belief in social cynicism, reward for application, and fate control. Moreover, higher levels of belief in fate control and lower levels of religiosity predicted greater death anxiety. Only belief in fate control partially mediated the relationship between death ideation and death anxiety. Discussion focused on how social axioms serve as useful defensive mechanisms against death anxiety.

  19. Activated chemical defense in marine sponges--a case study on Aplysinella rhax.

    PubMed

    Thoms, Carsten; Schupp, Peter J

    2008-09-01

    Activated chemical defense, i.e., the rapid conversion of precursor molecules to defensive compounds following tissue damage, has been well documented for terrestrial and marine plants; but evidence for its presence in sessile marine invertebrates remains scarce. We observed a wound-activated conversion of psammaplin A sulfate to psammaplin A in tissue of the tropical sponge Aplysinella rhax. The conversion is rapid (requiring only seconds), the turnover rate increases with increasing wounding activity (e.g., approximately 20% after tissue stabbing vs. approximately 85% after tissue grinding), and is likely enzyme-catalyzed (no reaction in the absence of water and inhibition of the conversion by heat). Fish feeding assays with the pufferfish Canthigaster solandri, an omnivorous sponge predator, revealed an increased anti-feeding activity by the conversion product psammaplin A compared to the precursor psammaplin A sulfate. We propose that the wound-activated formation of psammaplin A in A. rhax is an activated defense targeted against predator species that are not efficiently repelled by the sponge's constitutive chemical defense. Recent observations of conversion reactions also in other sponge species indicate that more activated defenses may exist in this phylum. Based on the findings of this study, we address the question whether activated defenses may be more common in sponges--and perhaps also in other sessile marine invertebrates--than hitherto believed.

  20. UVR defense mechanisms in eurytopic and invasive Gracilaria vermiculophylla (Gracilariales, Rhodophyta).

    PubMed

    Roleda, Michael Y; Nyberg, Cecilia D; Wulff, Angela

    2012-10-01

    The invasive success of Gracilaria vermiculophylla has been attributed to its wide tolerance range to different abiotic factors, but its response to ultraviolet radiation (UVR) is yet to be investigated. In the laboratory, carpospores and vegetative thalli of an Atlantic population were exposed to different radiation treatments consisting of high PAR (photosynthetically active radiation) only (P), PAR+UV-A (PA) and PAR+UV-A+UV-B (PAB). Photosynthesis of carpospores was photoinhibited under different radiation treatments but photosystem II (PSII) function was restored after 12 h under dim white light. Growth of vegetative thalli was significantly higher under radiation supplemented with UVR. Decrease in chlorophyll a (Chl a) under daily continuous 16-h exposure to 300 µmol photons m(-2) s(-1) of PAR suggests preventive accumulation of excited chlorophyll molecules within the antennae to minimize the generation of dangerous reactive oxygen species. Moreover, an increase in total carotenoids and xanthophyll cycle pigments (i.e. violaxanthin, antheraxanthin and zeaxanthin) further suggests effective photoprotection under UVR. The presence of the ketocarotenoid β-cryptoxanthin also indicates protection against UVR and oxidative stress. The initial concentration of total mycosporine-like amino acids (MAAs) in freshly-released spores increased approximately four times after 8-h laboratory radiation treatments. On the other hand, initial specific MAAs in vegetative thalli changed in composition after 7-day exposure to laboratory radiation conditions without affecting the total concentration. The above responses suggest that G. vermiculophylla have multiple UVR defense mechanisms to cope with the dynamic variation in light quantity and quality encountered in its habitat. Beside being eurytopic, the UVR photoprotective mechanisms likely contribute to the current invasive success of the species in shallow lagoons and estuaries exposed to high solar radiation. PMID:22420775

  1. UVR defense mechanisms in eurytopic and invasive Gracilaria vermiculophylla (Gracilariales, Rhodophyta).

    PubMed

    Roleda, Michael Y; Nyberg, Cecilia D; Wulff, Angela

    2012-10-01

    The invasive success of Gracilaria vermiculophylla has been attributed to its wide tolerance range to different abiotic factors, but its response to ultraviolet radiation (UVR) is yet to be investigated. In the laboratory, carpospores and vegetative thalli of an Atlantic population were exposed to different radiation treatments consisting of high PAR (photosynthetically active radiation) only (P), PAR+UV-A (PA) and PAR+UV-A+UV-B (PAB). Photosynthesis of carpospores was photoinhibited under different radiation treatments but photosystem II (PSII) function was restored after 12 h under dim white light. Growth of vegetative thalli was significantly higher under radiation supplemented with UVR. Decrease in chlorophyll a (Chl a) under daily continuous 16-h exposure to 300 µmol photons m(-2) s(-1) of PAR suggests preventive accumulation of excited chlorophyll molecules within the antennae to minimize the generation of dangerous reactive oxygen species. Moreover, an increase in total carotenoids and xanthophyll cycle pigments (i.e. violaxanthin, antheraxanthin and zeaxanthin) further suggests effective photoprotection under UVR. The presence of the ketocarotenoid β-cryptoxanthin also indicates protection against UVR and oxidative stress. The initial concentration of total mycosporine-like amino acids (MAAs) in freshly-released spores increased approximately four times after 8-h laboratory radiation treatments. On the other hand, initial specific MAAs in vegetative thalli changed in composition after 7-day exposure to laboratory radiation conditions without affecting the total concentration. The above responses suggest that G. vermiculophylla have multiple UVR defense mechanisms to cope with the dynamic variation in light quantity and quality encountered in its habitat. Beside being eurytopic, the UVR photoprotective mechanisms likely contribute to the current invasive success of the species in shallow lagoons and estuaries exposed to high solar radiation.

  2. Mechanically Activated Ion Channels

    PubMed Central

    Ranade, Sanjeev S.; Syeda, Ruhma; Patapoutian, Ardem

    2015-01-01

    Mechanotransduction, the conversion of physical forces into biochemical signals, is an essential component of numerous physiological processes including not only conscious senses of touch and hearing, but also unconscious senses such as blood pressure regulation. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels. PMID:26402601

  3. Investigating Aggressive Styles and Defense Mechanisms in Bipolar Patients and in their Parents.

    PubMed

    Bragazzi, Nicola Luigi; Pezzoni, Franca; Del Puente, Giovanni

    2014-11-01

    Bipolar disorder (BD) is a very common mental health disorder, whose etiology concerning aggressive styles and defense mechanisms is still poorly known despite the efforts dedicated to develop psychological and biological theories. After obtaining written signed informed consent, this study will recruit inpatients with a clinical diagnosis of BD, based on Structured Clinical Interview and the Diagnostic and Statistical Manual of Mental Disorders criteria, and their parents. The Bus-Perry Aggression Questionnaire, the Defense Style Questionnaire 40, the Symptom check list SCL-90-R, developed by DeRogatis will be administered to the participants, together with a semi-structured questionnaire concerning demographic data (age, gender, employment, education) and only for the patients clinical information (onset year of the disorder, presence of co-morbidities, alcohol and drug use, suicide tendencies, kind of treatment). All the questionnaires are in the Italian validated version. The successful completion of this study will shed light on the relationship between aggressive styles and defensive mechanisms in bipolar inpatients and in their parents, helping the clinicians to develop ad hoc psychological interventions.

  4. Priming by Rhizobacterium Protects Tomato Plants from Biotrophic and Necrotrophic Pathogen Infections through Multiple Defense Mechanisms

    PubMed Central

    Ahn, Il-Pyung; Lee, Sang-Woo; Kim, Min Gab; Park, Sang-Ryeol; Hwang, Duk-Ju; Bae, Shin-Chul

    2011-01-01

    A selected strain of rhizobacterium, Pseudomonas putida strain LSW17S (LSW17S), protects tomato plants (Lycopersicon esculentum L. cv. Seokwang) from bacterial speck by biotrophic Pseudomonas syringae pv. tomato strain DC3000 (DC3000) and bacterial wilt by necrotrophic Ralstonia solanacearum KACC 10703 (Rs10703). To investigate defense mechanisms induced by LSW17S in tomato plants, transcription patterns of pathogenesis-related (PR) genes and H2O2 production were analyzed in plants treated with LSW17S and subsequent pathogen inoculation. LSW17S alone did not induce transcriptions of employed PR genes in leaves and roots. DC3000 challenge following LSW17S triggered rapid transcriptions of PR genes and H2O2 production in leaves and roots. Catalase infiltration with DC3000 attenuated defense-related responses and resistance against DC3000 infection. Despite depriving H2O2 production and PR1b transcription by the same treatment, resistance against Rs10703 infection was not deterred significantly. H2O2 is indispensable for defense signaling and/or mechanisms primed by LSW17S and inhibition of bacterial speck, however, it is not involved in resistance against bacterial wilt. PMID:21710203

  5. Investigating Aggressive Styles and Defense Mechanisms in Bipolar Patients and in their Parents

    PubMed Central

    Bragazzi, Nicola Luigi; Pezzoni, Franca; Del Puente, Giovanni

    2014-01-01

    Bipolar disorder (BD) is a very common mental health disorder, whose etiology concerning aggressive styles and defense mechanisms is still poorly known despite the efforts dedicated to develop psychological and biological theories. After obtaining written signed informed consent, this study will recruit inpatients with a clinical diagnosis of BD, based on Structured Clinical Interview and the Diagnostic and Statistical Manual of Mental Disorders criteria, and their parents. The Bus-Perry Aggression Questionnaire, the Defense Style Questionnaire 40, the Symptom check list SCL-90-R, developed by DeRogatis will be administered to the participants, together with a semi-structured questionnaire concerning demographic data (age, gender, employment, education) and only for the patients clinical information (onset year of the disorder, presence of co-morbidities, alcohol and drug use, suicide tendencies, kind of treatment). All the questionnaires are in the Italian validated version. The successful completion of this study will shed light on the relationship between aggressive styles and defensive mechanisms in bipolar inpatients and in their parents, helping the clinicians to develop ad hoc psychological interventions. PMID:26973942

  6. Molecular Dynamics Simulation and Statistics Analysis Reveals the Defense Response Mechanism in Plants

    NASA Astrophysics Data System (ADS)

    Liu, Zhichao; Zhao, Yunjie; Zeng, Chen; Computational Biophysics Lab Team

    As the main protein of the bacterial flagella, flagellin plays an important role in perception and defense response. The newly discovered locus, FLS2, is ubiquitously expressed. FLS2 encodes a putative receptor kinase and shares many homologies with some plant resistance genes and even with some components of immune system of mammals and insects. In Arabidopsis, FLS2 perception is achieved by the recognition of epitope flg22, which induces FLS2 heteromerization with BAK1 and finally the plant immunity. Here we use both analytical methods such as Direct Coupling Analysis (DCA) and Molecular Dynamics (MD) Simulations to get a better understanding of the defense mechanism of FLS2. This may facilitate a redesign of flg22 or de-novo design for desired specificity and potency to extend the immune properties of FLS2 to other important crops and vegetables.

  7. Mechanism of bystander-blaming: defensive attribution, counterfactual thinking, and gender.

    PubMed

    Levy, Inna; Ben-David, Sarah

    2015-01-01

    Contemporary victimology recognizes that an understanding of the mechanism of blaming requires a comprehensive approach that includes the victim, the offender, and the bystander. However, most of the existing research on blaming focuses on the victim and the offender, ignoring the issue of bystander-blaming. This study highlights the bystander and investigates bystander-blaming by exploring some theoretical explanations, including counterfactual thinking, defensive attribution, and gender differences. The study included 363 young male and female participants, who read vignettes describing the behavior of the victim and the bystander in a rape scenario and answered questions regarding bystander-blaming. The results show that both counterfactual thinking and defensive attribution play a role in bystander-blaming. This article addresses the theoretical and practical implications of these findings.

  8. Essential Functional Modules for Pathogenic and Defensive Mechanisms in Candida albicans Infections

    PubMed Central

    Tsai, I-Chun; Lin, Che; Chuang, Yung-Jen

    2014-01-01

    The clinical and biological significance of the study of fungal pathogen Candida albicans (C. albicans) has markedly increased. However, the explicit pathogenic and invasive mechanisms of such host-pathogen interactions have not yet been fully elucidated. Therefore, the essential functional modules involved in C. albicans-zebrafish interactions were investigated in this study. Adopting a systems biology approach, the early-stage and late-stage protein-protein interaction (PPI) networks for both C. albicans and zebrafish were constructed. By comparing PPI networks at the early and late stages of the infection process, several critical functional modules were identified in both pathogenic and defensive mechanisms. Functional modules in C. albicans, like those involved in hyphal morphogenesis, ion and small molecule transport, protein secretion, and shifts in carbon utilization, were seen to play important roles in pathogen invasion and damage caused to host cells. Moreover, the functional modules in zebrafish, such as those involved in immune response, apoptosis mechanisms, ion transport, protein secretion, and hemostasis-related processes, were found to be significant as defensive mechanisms during C. albicans infection. The essential functional modules thus determined could provide insights into the molecular mechanisms of host-pathogen interactions during the infection process and thereby devise potential therapeutic strategies to treat C. albicans infection. PMID:24757665

  9. Jasmonic acid and salicylic acid activate a common defense system in rice

    PubMed Central

    Tamaoki, Daisuke; Seo, Shigemi; Yamada, Shoko; Kano, Akihito; Miyamoto, Ayumi; Shishido, Hodaka; Miyoshi, Seika; Taniguchi, Shiduku; Akimitsu, Kazuya; Gomi, Kenji

    2013-01-01

    Jasmonic acid (JA) and salicylic acid (SA) play important roles in plant defense systems. JA and SA signaling pathways interact antagonistically in dicotyledonous plants, but, the status of crosstalk between JA and SA signaling is unknown in monocots. Our rice microarray analysis showed that more than half of the genes upregulated by the SA analog BTH are also upregulated by JA, suggesting that a major portion of the SA-upregulated genes are regulated by JA-dependent signaling in rice. A common defense system that is activated by both JA and SA is thus proposed which plays an important role in pathogen defense responses in rice. PMID:23518581

  10. A defense in depth approach to radiation protection for 125I production activities.

    PubMed

    Culp, T; Potter, C A

    2001-08-01

    Not all operational radiation protection situations lend themselves to simple solutions. Often a Radiation Protection Program must be developed and implemented for difficult situations. A defense in depth approach to radiation protection was developed for 125I production activities. Defense in depth relies on key radiation protection elements that tend to be mutually supportive and in combination provide reasonable assurance that the overall desired level of protection has been provided. For difficult situations, defense in depth can provide both a reasonable and appropriate approach to radiation protection.

  11. Of Amoebae and Men: Extracellular DNA Traps as an Ancient Cell-Intrinsic Defense Mechanism

    PubMed Central

    Zhang, Xuezhi; Soldati, Thierry

    2016-01-01

    Since the discovery of the formation of DNA-based extracellular traps (ETs) by neutrophils as an innate immune defense mechanism (1), hundreds of articles describe the involvement of ETs in physiological and pathological human and animal conditions [reviewed in Ref. (2), and the previous Frontiers Research Topic on NETosis: http://www.frontiersin.org/books/NETosis_At_the_Intersection_of_Cell_Biology_Microbiology_and_Immunology/195]. Interestingly, a few reports reveal that ETs can be formed by immune cells of more ancient organisms, as far back as the common ancestor of vertebrates and invertebrates (3). Recently, we reported that the Sentinel cells of the multicellular slug of the social amoeba Dictyostelium discoideum also produce ETs to trap and kill slug-invading bacteria [see Box 1; and Figure 1 Ref. (4)]. This is a strong evidence that DNA-based cell-intrinsic defense mechanisms emerged much earlier than thought, about 1.3 billion years ago. Amazingly, using extrusion of DNA as a weapon to capture and kill uningestable microbes has its rationale. During the emergence of multicellularity, a primitive innate immune system developed in the form of a dedicated set of specialized phagocytic cells. This professionalization of immunity allowed the evolution of sophisticated defense mechanisms including the sacrifice of a small set of cells by a mechanism related to NETosis. This altruistic behavior likely emerged in steps, starting from the release of “dispensable” mitochondrial DNA by D. discoideum Sentinel cells. Grounded in this realization, one can anticipate that in the near future, many more examples of the invention and fine-tuning of ETs by early metazoan ancestors will be identified. Consequently, it can be expected that this more complete picture of the evolution of ETs will impact our views of the involvement and pathologies linked to ETs in human and animals. PMID:27458458

  12. Of Amoebae and Men: Extracellular DNA Traps as an Ancient Cell-Intrinsic Defense Mechanism.

    PubMed

    Zhang, Xuezhi; Soldati, Thierry

    2016-01-01

    Since the discovery of the formation of DNA-based extracellular traps (ETs) by neutrophils as an innate immune defense mechanism (1), hundreds of articles describe the involvement of ETs in physiological and pathological human and animal conditions [reviewed in Ref. (2), and the previous Frontiers Research Topic on NETosis: http://www.frontiersin.org/books/NETosis_At_the_Intersection_of_Cell_Biology_Microbiology_and_Immunology/195]. Interestingly, a few reports reveal that ETs can be formed by immune cells of more ancient organisms, as far back as the common ancestor of vertebrates and invertebrates (3). Recently, we reported that the Sentinel cells of the multicellular slug of the social amoeba Dictyostelium discoideum also produce ETs to trap and kill slug-invading bacteria [see Box 1; and Figure 1 Ref. (4)]. This is a strong evidence that DNA-based cell-intrinsic defense mechanisms emerged much earlier than thought, about 1.3 billion years ago. Amazingly, using extrusion of DNA as a weapon to capture and kill uningestable microbes has its rationale. During the emergence of multicellularity, a primitive innate immune system developed in the form of a dedicated set of specialized phagocytic cells. This professionalization of immunity allowed the evolution of sophisticated defense mechanisms including the sacrifice of a small set of cells by a mechanism related to NETosis. This altruistic behavior likely emerged in steps, starting from the release of "dispensable" mitochondrial DNA by D. discoideum Sentinel cells. Grounded in this realization, one can anticipate that in the near future, many more examples of the invention and fine-tuning of ETs by early metazoan ancestors will be identified. Consequently, it can be expected that this more complete picture of the evolution of ETs will impact our views of the involvement and pathologies linked to ETs in human and animals. PMID:27458458

  13. Bacterial meningitis in the patient at risk: intrinsic risk factors and host defense mechanisms.

    PubMed

    Scheld, W M

    1984-05-15

    Bacterial meningitis remains a relatively common disease worldwide (40,000 cases per year in the United States) and the mortality rate has not improved in over 30 years. Certain host factors increase the risk of acquiring meningitis and include: age (increased at extremes of life), male sex, low socioeconomic status (crowding), black race, recent nasopharyngeal carriage of a virulent strain, absence of specific bactericidal antibody, maternal factors at birth (neonatal disease), various immunologic defects (neonates, antibody or terminal complement component deficiency, splenectomy, and immunosuppression including the acquired immune deficiency syndrome), and certain chronic diseases (such as alcoholism, cirrhosis, and diabetes mellitus). Bacterial meningitis represents an infection in an area of impaired host resistance. The blood-brain barrier is a major protective mechanism for the central nervous system against circulating bacteria. However, once bacteria gain entry into the subarachnoid space, host defenses are inadequate. Polymorphonuclear leukocytes are at a disadvantage in the fluid medium of the cerebrospinal fluid and surface phagocytosis is inefficient. In addition, antibody and complement concentrations are low (or absent) in purulent cerebrospinal fluid early in the disease course. Functional opsonic and bactericidal activity is lacking; therefore, efficient phagocytosis of encapsulated meningeal pathogens is limited. The result is huge population densities (often 10(7) to 10(8) cfu per milliliter) of bacteria in cerebrospinal fluid. This finding suggests that bactericidal antibiotics with cerebrospinal fluid concentrations much greater than the minimal bacterial concentration of the pathogen are optimal for therapy of meningitis; this principle has been shown in experimental animal models and supported by therapeutic studies in human subjects.

  14. Molecular insights into mechanisms of lepidopteran serine proteinase resistance to natural plant defenses.

    PubMed

    Tamaki, Fábio K; Terra, Walter R

    2015-11-27

    Plants have a wide range of chemical defenses against predation, including substances that target digestive serine proteinases of herbivorous. Previous works demonstrated that lepidopteran insects have digestive serine proteinases resistant to plant proteinase inhibitors (PPIs) and ketone modifications, while coleopteran ones are sensitive to those plant defenses. This paper focuses on molecular aspects that lead lepidopteran serine proteinases to PPI and ketone modification resistance. Using biochemical experiments and computer 3D modeling we demonstrated that lepidopteran trypsins are more hydrophobic than coleopteran ones, a feature associated to trypsin oligomerization and decreased inhibition by PPI. Moreover, the determination of pKa values of chymotrypsin catalytic residues obtained by TPCK modification indicates that the environment around the active site of ketone-resistant and -sensitive chymotrypsins are different. Structural analysis using resistant and sensitive chymotrypsins data allowed us to point 2 hotspot regions around the active site that could explain the observed differences. Our set of results highlights features of serine proteinases important for understanding the resistance of insects to plant chemical defenses.

  15. Human Macrophage SCN5A Activates an Innate Immune Signaling Pathway for Antiviral Host Defense*

    PubMed Central

    Jones, Alexis; Kainz, Danielle; Khan, Faatima; Lee, Cara; Carrithers, Michael D.

    2014-01-01

    Pattern recognition receptors contain a binding domain for pathogen-associated molecular patterns coupled to a signaling domain that regulates transcription of host immune response genes. Here, a novel mechanism that links pathogen recognition to channel activation and downstream signaling is proposed. We demonstrate that an intracellular sodium channel variant, human macrophage SCN5A, initiates signaling and transcription through a calcium-dependent isoform of adenylate cyclase, ADCY8, and the transcription factor, ATF2. Pharmacological stimulation with a channel agonist or treatment with cytoplasmic poly(I:C), a mimic of viral dsRNA, activates this pathway to regulate expression of SP100-related genes and interferon β. Electrophysiological analysis reveals that the SCN5A variant mediates nonselective outward currents and a small, but detectable, inward current. Intracellular poly(I:C) markedly augments an inward voltage-sensitive sodium current and inhibits the outward nonselective current. These results suggest human macrophage SCN5A initiates signaling in an innate immune pathway relevant to antiviral host defense. It is postulated that SCN5A is a novel pathogen sensor and that this pathway represents a channel activation-dependent mechanism of transcriptional regulation. PMID:25368329

  16. A subtilisin-like protein from soybean contains an embedded, cryptic signal that activates defense-related genes

    PubMed Central

    Pearce, Gregory; Yamaguchi, Yube; Barona, Guido; Ryan, Clarence A.

    2010-01-01

    Among the arsenal of plant-derived compounds activated upon attack by herbivores and pathogens are small peptides that initiate and amplify defense responses. However, only a handful of plant signaling peptides have been reported. Here, we have isolated a 12-aa peptide from soybean (Glycine max) leaves that causes a pH increase of soybean suspension-cultured cell media within 10 min at low nanomolar concentrations, a response that is typical of other endogenous peptide elicitors and pathogen-derived elicitors. The amino acid sequence was determined and was found to be derived from a member of the subtilisin-like protease (subtilase) family. The sequence of the peptide was located within a region of the protein that is unique to subtilases in legume plants and not found within any other plant subtilases thus far identified. We have named this peptide signal Glycine max Subtilase Peptide (GmSubPep). The gene (Glyma18g48580) was expressed in all actively growing tissues of the soybean plant. Although transcription of Glyma18g48580 was not induced by wounding, methyl jasmonate, methyl salicylate, or ethephon, synthetic GmSubPep peptide, when supplied to soybean cultures, induced the expression of known defense-related genes, such as Cyp93A1, Chib-1b, PDR12, and achs. GmSubPep is a unique plant defense peptide signal, cryptically embedded within a plant protein with an independent metabolic role, providing insights into plant defense mechanisms. PMID:20679205

  17. Antimicrobial terpenes from oleoresin of ponderosa pine tree Pinus ponderosa: A defense mechanism against microbial invasion

    SciTech Connect

    Himejima, Masaki; Hobson, K.R.; Otsuka, Toshikazu; Wood, D.L.; Kubo, Isao )

    1992-10-01

    The oleoresin of the ponderosa pine, Pinus ponderosa (Pinaceae) exhibited broad antimicrobial activity. In order to identify the active compounds, the oleoresin was steam distilled to give a distillate and residue. The distillate contained mainly monoterpenes and some sesquiterpenes, while the residue consisted chiefly of four structurally related diterpene acids. An antimicrobial assay with the pure compounds indicated that the monoterpenes were active primarily against fungi, but there was also some activity against gram-positive bacteria. The diterpene acids, in contrast, only exhibited activity against gram-positive bacteria. Although not all of the identified sesquiterpenes could be tested, longifolene showed activity only against gram-positive bacteria. Therefore, it appears that the oleoresin of P. ponderosa functions as a biochemical defense against microbial invasion.

  18. Effects of provinol and its combinations with clinically used antiasthmatics on airway defense mechanisms in experimental allergic asthma.

    PubMed

    Kazimierová, I; Jošková, M; Pecháňová, O; Šutovská, M; Fraňová, S

    2015-01-01

    Our previous studies show that provinol, a polyphenolic compound, has anti-inflammatory activity during allergic inflammation. In the present study we investigated the effects of provinol and its combinations with clinically used antiasthmatics: budesonide or theophylline on airway defense mechanisms during experimental allergic asthma. Separate groups of guinea pigs were treated during the course of 21-day ovalbumin sensitization with provinol (20 mg/kg/day, p.o.), or budesonide (1 mM by inhalation), or theophylline (10 mg/kg/day, i.p.), and with a half-dose combination of provinol+budesonide or provinol+theophylline. Airways defense mechanisms: cough reflex and specific airway resistance (sRaw) were evaluated in vivo. Tracheal smooth muscle reactivity and mucociliary clearance were examined in vitro. The findings were that provinol caused significant decreases in sRaw and in tracheal smooth muscle contractility, a suppression of cough reflex, and positively modulated ciliary beat frequency. The bronchodilatory and antitussive effects of provinol were comparable with those of budesonide and theophylline. Provinol given as add-on treatment significantly potentiated the effects of budesonide or theophylline, although the doses of each were halved. We conclude that provinol not only has bronchodilatory and antitussive effects, but also potentiates similar effects exerted by budesonide and theophylline.

  19. Passive and active defense in toads: the parotoid macroglands in Rhinella marina and Rhaebo guttatus.

    PubMed

    Mailho-Fontana, Pedro L; Antoniazzi, Marta M; Toledo, Luís F; Verdade, Vanessa K; Sciani, Juliana M; Barbaro, Katia C; Pimenta, Daniel C; Rodrigues, Miguel T; Jared, Carlos

    2014-02-01

    Amphibians have many skin poison glands used in passive defense, in which the aggressor causes its own poisoning when biting prey. In some amphibians the skin glands accumulate in certain regions forming macroglands, such as the parotoids of toads. We have discovered that the toad Rhaebo guttatus is able to squirt jets of poison towards the aggressor, contradicting the typical amphibian defense. We studied the R. guttatus chemical defense, comparing it with Rhinella marina, a sympatric species showing typical toad passive defense. We found that only in R. guttatus the parotoid is adhered to the scapula and do not have a calcified dermal layer. In addition, in this species, the plugs obstructing the glandular ducts are more fragile when compared to R. marina. As a consequence, the manual pressure necessary to extract the poison from the parotoid is twice as high in R. marina when compared to that used in R. guttatus. Compared to R. marina, the poison of R. guttatus is less lethal, induces edema and provokes nociception four times more intense. We concluded that the ability of R. guttatus to voluntary squirt poison is directly related to its stereotyped defensive behavior, together with the peculiar morphological characteristics of its parotoids. Since R. guttatus poison is practically not lethal, it is possibly directed to predators' learning, causing disturbing effects such as pain and edema. The unique mechanism of defense of R. guttatus may mistakenly justify the popular myth that toads, in general, squirt poison into people's eyes. PMID:24130001

  20. Analysis of Active Sensor Discrimination Requirements for Various Defense Missile Defense Scenarios Final Report 1999(99-ERD-080)

    SciTech Connect

    Ledebuhr, A.G.; Ng, L.C.; Gaughan, R.J.

    2000-02-15

    During FY99, we have explored and analyzed a combined passive/active sensor concept to support the advanced discrimination requirements for various missile defense scenario. The idea is to combine multiple IR spectral channels with an imaging LIDAR (Light Detection and Ranging) behind a common optical system. The imaging LIDAR would itself consist of at least two channels; one at the fundamental laser wavelength (e.g., the 1.064 {micro}m for Nd:YAG) and one channel at the frequency doubled (at 532 nm for Nd:YAG). two-color laser output would, for example, allow the longer wavelength for a direct detection time of flight ranger and an active imaging channel at the shorter wavelength. The LIDAR can function as a high-resolution 2D spatial image either passively or actively with laser illumination. Advances in laser design also offer three color (frequency tripled) systems, high rep-rate operation, better pumping efficiencies that can provide longer distance acquisition, and ranging for enhanced discrimination phenomenology. New detector developments can enhance the performance and operation of both LIDAR channels. A real time data fusion approach that combines multi-spectral IR phenomenology with LIDAR imagery can improve both discrimination and aim-point selection capability.

  1. The nuclear immune receptor RPS4 is required for RRS1SLH1-dependent constitutive defense activation in Arabidopsis thaliana.

    PubMed

    Sohn, Kee Hoon; Segonzac, Cécile; Rallapalli, Ghanasyam; Sarris, Panagiotis F; Woo, Joo Yong; Williams, Simon J; Newman, Toby E; Paek, Kyung Hee; Kobe, Bostjan; Jones, Jonathan D G

    2014-10-01

    on mechanisms by which NB-LRR protein pairs activate defense signaling, or are held inactive in the absence of a pathogen effector. PMID:25340333

  2. Contrasting Potato Foliage and Tuber Defense Mechanisms against the Late Blight Pathogen Phytophthora infestans

    PubMed Central

    Bradeen, James M.

    2016-01-01

    The late blight pathogen Phytophthora infestans can attack both potato foliage and tubers. When inoculated with P. infestans, foliage of nontransformed ‘Russet Burbank’ (WT) develops late blight disease while that of transgenic ‘Russet Burbank’ line SP2211 (+RB) does not. We compared the foliar transcriptome responses of these two lines to P. infestans inoculation using an RNA-seq approach. A total of 515 million paired end RNA-seq reads were generated, representing the transcription of 29,970 genes. We also compared the differences and similarities of defense mechanisms against P. infestans in potato foliage and tubers. Differentially expressed genes, gene groups and ontology bins were identified to show similarities and differences in foliage and tuber defense mechanisms. Our results suggest that R gene dosage and shared biochemical pathways (such as ethylene and stress bins) contribute to RB-mediated incompatible potato-P. infestans interactions in both the foliage and tubers. Certain ontology bins such as cell wall and lipid metabolisms are potentially organ-specific. PMID:27441721

  3. Contrasting Potato Foliage and Tuber Defense Mechanisms against the Late Blight Pathogen Phytophthora infestans.

    PubMed

    Gao, Liangliang; Bradeen, James M

    2016-01-01

    The late blight pathogen Phytophthora infestans can attack both potato foliage and tubers. When inoculated with P. infestans, foliage of nontransformed 'Russet Burbank' (WT) develops late blight disease while that of transgenic 'Russet Burbank' line SP2211 (+RB) does not. We compared the foliar transcriptome responses of these two lines to P. infestans inoculation using an RNA-seq approach. A total of 515 million paired end RNA-seq reads were generated, representing the transcription of 29,970 genes. We also compared the differences and similarities of defense mechanisms against P. infestans in potato foliage and tubers. Differentially expressed genes, gene groups and ontology bins were identified to show similarities and differences in foliage and tuber defense mechanisms. Our results suggest that R gene dosage and shared biochemical pathways (such as ethylene and stress bins) contribute to RB-mediated incompatible potato-P. infestans interactions in both the foliage and tubers. Certain ontology bins such as cell wall and lipid metabolisms are potentially organ-specific. PMID:27441721

  4. Association of Ego Defense Mechanisms with Academic Performance, Anxiety and Depression in Medical Students: A Mixed Methods Study

    PubMed Central

    Waqas, Ahmed; Malik, Aamenah; Muhammad, Umer; Khan, Sarah; Mahmood, Nadia

    2015-01-01

    Background: Ego defense mechanisms are unconscious psychological processes that help an individual to prevent anxiety when exposed to a stressful situation. These mechanisms are important in psychiatric practice to assess an individual’s personality dynamics, psychopathologies, and modes of coping with stressful situations, and hence, to design appropriate individualized treatment. Our study delineates the relationship of ego defense mechanisms with anxiety, depression, and academic performance of Pakistani medical students. Methods: This cross-sectional study was done at CMH Lahore Medical College and Fatima Memorial Hospital Medical and Dental College, both in Lahore, Pakistan, from December 1, 2014 to January 15, 2015. Convenience sampling was used and only students who agreed to take part in this study were included. The questionnaire consisted of three sections: 1) Demographics, documenting demographic data and academic scores on participants’ most recent exams; 2) Hospital Anxiety and Depression Scale (HADS); and 3) Defense Style Questionnaire-40 (DSQ-40). The data were analyzed with SPSS v. 20. Mean scores and frequencies were calculated for demographic variables and ego defense mechanisms. Bivariate correlations, one-way ANOVA, and multiple linear regression were used to identify associations between academic scores, demographics, ego defense mechanisms, anxiety, and depression. Results: A total of 409 medical students participated, of whom 286 (70%) were females and 123 (30%) were males. Mean percentage score on the most recent exams was 75.6% in medical students. Bivariate correlation revealed a direct association between mature and neurotic ego defense mechanisms and academic performance, and an indirect association between immature mechanisms and academic performance. One-way ANOVA showed that moderate levels of anxiety (P < .05) and low levels of depression (P < .05) were associated with higher academic performance. Conclusion: There was a

  5. Systemic Acquired Resistance in Moss: Further Evidence for Conserved Defense Mechanisms in Plants

    PubMed Central

    Winter, Peter S.; Bowman, Collin E.; Villani, Philip J.; Dolan, Thomas E.; Hauck, Nathanael R.

    2014-01-01

    Vascular plants possess multiple mechanisms for defending themselves against pathogens. One well-characterized defense mechanism is systemic acquired resistance (SAR). In SAR, a plant detects the presence of a pathogen and transmits a signal throughout the plant, inducing changes in the expression of various pathogenesis-related (PR) genes. Once SAR is established, the plant is capable of mounting rapid responses to subsequent pathogen attacks. SAR has been characterized in numerous angiosperm and gymnosperm species; however, despite several pieces of evidence suggesting SAR may also exist in non-vascular plants6–8, its presence in non-vascular plants has not been conclusively demonstrated, in part due to the lack of an appropriate culture system. Here, we describe and use a novel culture system to demonstrate that the moss species Amblystegium serpens does initiate a SAR-like reaction upon inoculation with Pythium irregulare, a common soil-borne oomycete. Infection of A. serpens gametophores by P. irregulare is characterized by localized cytoplasmic shrinkage within 34 h and chlorosis and necrosis within 7 d of inoculation. Within 24 h of a primary inoculation (induction), moss gametophores grown in culture became highly resistant to infection following subsequent inoculation (challenge) by the same pathogen. This increased resistance was a response to the pathogen itself and not to physical wounding. Treatment with β-1,3 glucan, a structural component of oomycete cell walls, was equally effective at triggering SAR. Our results demonstrate, for the first time, that this important defense mechanism exists in a non-vascular plant, and, together with previous studies, suggest that SAR arose prior to the divergence of vascular and non-vascular plants. In addition, this novel moss – pathogen culture system will be valuable for future characterization of the mechanism of SAR in moss, which is necessary for a better understanding of the evolutionary history of SAR

  6. The nature of antioxidant defense mechanisms: a lesson from transgenic studies.

    PubMed Central

    Ho, Y S; Magnenat, J L; Gargano, M; Cao, J

    1998-01-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of many clinical disorders such as adult respiratory distress syndrome, ischemia-reperfusion injury, atherosclerosis, neurodegenerative diseases, and cancer. Genetically engineered animal models have been used as a tool for understanding the function of various antioxidant enzymes in cellular defense mechanisms against various types of oxidant tissue injury. Transgenic mice overexpressing three isoforms of superoxide dismutase, catalase, and the cellular glutathione peroxidase (GSHPx-1) in various tissues show an increased tolerance to ischemia-reperfusion heart and brain injury, hyperoxia, cold-induced brain edema, adriamycin, and paraquat toxicity. These results have provided for the first time direct evidence demonstrating the importance of each of these antioxidant enzymes in protecting the animals against the injury resulting from these insults, as well as the effect of an enhanced level of antioxidant in ameliorating the oxidant tissue injury. To evaluate further the nature of these enzymes in antioxidant defense, gene knockout mice deficient in copper-zinc superoxide dismutase (CuZnSOD) and GSHPx-1 have also been generated in our laboratory. These mice developed normally and showed no marked pathologic changes under normal physiologic conditions. In addition, a deficiency in these genes had no effects on animal survival under hyperoxida. However, these knockout mice exhibited a pronounced susceptibility to paraquat toxicity and myocardial ischemia-reperfusion injury. Furthermore, female mice lacking CuZnSOD also displayed a marked increase in postimplantation embryonic lethality. These animals should provide a useful model for uncovering the identity of ROS that participate in the pathogenesis of various clinical disorders and for defining the role of each antioxidant enzyme in cellular defense against oxidant-mediated tissue injury. Images Figure 1 Figure 3 Figure 4 PMID:9788901

  7. Geodetic activities of the Department of Defense under IGY programs

    SciTech Connect

    Williams, O.W.; Daugherty, K.I.

    1983-10-16

    Attention is given to the U.S. Department of Defence (DOD) activities that contributed to the International Geophysical Year's active, passive, and cooperative satellite programs. The DOD continues to support the deployment, enhancement, and application of novel technology in such areas as satellite altimetry, gravity radiometry, inertial surveying, interferometry, airborne gravimetry, inertial surveying, and CCD and laser methods for geodetic astronomy. Also noted are such major department initiatives as the Global Positioning System, which will become operational toward the end of this decade.

  8. The evolution of advanced mechanical defenses and potential technological applications of diatom shells.

    PubMed

    Hamm, Christian E

    2005-01-01

    Diatoms are unicellular algae with silicified cell walls, which exhibit a high degree of symmetry and complexity. Their diversity is extraordinarily high; estimates suggest that about 10(5) marine and limnic species may exist. Recently, it was shown that diatom frustules are mechanically resilient, statically sophisticated structures made of a tough glass-like composite. Consequently, to break the frustules, predators have to generate large forces and invest large amounts of energy. In addition, they need feeding tools (e.g., mandibles or gastric mills) which are hard, tough, and resilient enough to resist high stress and wear, which are bound to occur when they feed on biomineralized objects such as diatoms or other biomineralized protists. Indeed, many copepods feeding on diatoms possess, in analogy to the enamelcoated teeth of mammals, amazingly complex, silica-laced mandibles. The highly developed adaptations both to protect and to break diatoms indicate that selection pressure is high to optimize material properties and the geometry of the shells to achieve mechanical strength of the overall structure. This paper discusses the mechanical challenges which force the development of mechanical defenses, and the structural components of the diatom frustules which indicate that evolutionary optimization has led to mechanically sophisticated structures. Understanding the diatom frustule from the nanometer scale up to the whole shell will provide new insights to advanced combinations of nanostructured composite ceramic materials and lightweight architecture for technological applications.

  9. Monuments of memory: defensive mechanisms of the collective psyche and their manifestation in the memorialization process.

    PubMed

    Kalinowska, Malgorzata

    2012-09-01

    The paper searches for insight in the area of collective memory as a part of collective consciousness, a phenomenon understood as a stabilizing factor for a society's self-image and identity. Collective memories are seen as originating from shared communications transmitting and creating the meaning of the past in the form of narrative, symbols and signs. As such, they contain the individual, embodied and lived side of our relations to the past. As well as the identity-building and meaning-making functions of collective memories, their defensive function is discussed with a focus on commemorative practices taking place in a transitional space between psychic and social life. Fears of a lack of collective identity and coherence have contributed to the way Polish commemorative practices have been shaped. This is considered in relation to the Smolensk catastrophe in 2010, viewed in the context of the Jungian concept of the collective psyche and the psychoanalytical understanding of defensive group mechanisms against trauma, especially those relating to loss and mourning. It leads to a consideration of how historical experiences and the experience of history can be accessed, as well as their meaning for individual and group development. PMID:22954041

  10. Preventive role of lens antioxidant defense mechanism against riboflavin-mediated sunlight damaging of lens crystallins.

    PubMed

    Anbaraki, Afrooz; Khoshaman, Kazem; Ghasemi, Younes; Yousefi, Reza

    2016-10-01

    The main components of sunlight reaching the eye lens are UVA and visible light exerting their photo-damaging effects indirectly by the aid of endogenous photosensitizer molecules such as riboflavin (RF). In this study, lens proteins solutions were incubated with RF and exposed to the sunlight. Then, gel mobility shift analysis and different spectroscopic assessments were applied to examine the structural damaging effects of solar radiation on these proteins. Exposure of lens proteins to direct sunlight, in the presence of RF, leads to marked structural crosslinking, oligomerization and proteolytic instability. These structural damages were also accompanied with reduction in the emission fluorescence of Trp and Tyr and appearance of a new absorption peak between 300 and 400nm which can be related to formation of new chromophores. Also, photo-oxidation of lens crystallins increases their oligomeric size distribution as examined by dynamic light scattering analysis. The above mentioned structural insults, as potential sources of sunlight-induced senile cataract and blindness, were significantly attenuated in the presence of ascorbic acid and glutathione which are two important components of lens antioxidant defense system. Therefore, the powerful antioxidant defense mechanism of eye lens is an important barrier against molecular photo-damaging effects of solar radiations during the life span. PMID:27316765

  11. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms.

    PubMed

    Rajjou, Loïc; Belghazi, Maya; Huguet, Romain; Robin, Caroline; Moreau, Adrien; Job, Claudette; Job, Dominique

    2006-07-01

    The influence of salicylic acid (SA) on elicitation of defense mechanisms in Arabidopsis (Arabidopsis thaliana) seeds and seedlings was assessed by physiological measurements combined with global expression profiling (proteomics). Parallel experiments were carried out using the NahG transgenic plants expressing the bacterial gene encoding SA hydroxylase, which cannot accumulate the active form of this plant defense elicitor. SA markedly improved germination under salt stress. Proteomic analyses disclosed a specific accumulation of protein spots regulated by SA as inferred by silver-nitrate staining of two-dimensional gels, detection of carbonylated (oxidized) proteins, and neosynthesized proteins with [35S]-methionine. The combined results revealed several processes potentially affected by SA. This molecule enhanced the reinduction of the late maturation program during early stages of germination, thereby allowing the germinating seeds to reinforce their capacity to mount adaptive responses in environmental water stress. Other processes affected by SA concerned the quality of protein translation, the priming of seed metabolism, the synthesis of antioxidant enzymes, and the mobilization of seed storage proteins. All the observed effects are likely to improve seed vigor. Another aspect revealed by this study concerned the oxidative stress entailed by SA in germinating seeds, as inferred from a characterization of the carbonylated (oxidized) proteome. Finally, the proteomic data revealed a close interplay between abscisic signaling and SA elicitation of seed vigor.

  12. Repeated exposures to roadside particulate matter extracts suppresses pulmonary defense mechanisms, resulting in lipid and protein oxidative damage.

    PubMed

    Pardo, Michal; Porat, Ziv; Rudich, Assaf; Schauer, James J; Rudich, Yinon

    2016-03-01

    Exposure to particulate matter (PM) pollution in cities and urban canyons can be harmful to the exposed population. However, the underlying mechanisms that lead to health effects are not yet elucidated. It is postulated that exposure to repeated, small, environmentally relevant concentrations can affect lung homeostasis. This study examines the impact of repeated exposures to urban PM on mouse lungs with focus on inflammatory and oxidative stress parameters. Aqueous extracts from collected urban PM were administered to mice by 5 repeated intra-tracheal instillations (IT). Multiple exposures, led to an increase in cytokine levels in both bronchoalveolar lavage fluid and in the blood serum, indicating a systemic reaction. Lung mRNA levels of antioxidant/phase II detoxifying enzymes decreased by exposure to the PM extract, but not when metals were removed by chelation. Finally, disruption of lung tissue oxidant-inflammatory/defense balance was evidenced by increased levels of lipid and protein oxidation. Unlike response to a single IT exposure to the same dose and source of extract, multiple exposures result in lung oxidative damage and a systemic inflammatory reaction. These could be attributed to compromised capacity to activate the protective Nrf2 tissue defense system. It is suggested that water-soluble metals present in urban PM, potentially from break and tire wear, may constitute major drivers of the pulmonary and systemic responses to multiple exposure to urban PM.

  13. Dysfunctionality of the xylem in Olea europaea L. Plants associated with the infection process by Verticillium dahliae Kleb. Role of phenolic compounds in plant defense mechanism.

    PubMed

    Báidez, Ana G; Gómez, Pedro; Del Río, José A; Ortuño, Ana

    2007-05-01

    Xylem ultrastructural modification and the possible participation of phenolic compounds in the natural defense or resistance mechanisms of olive plants infected with Verticillium dahliae Kleb. were studied. Microscopic study showed that the mycelium propagated and passed from one element to another through the pit. The formation of tyloses and aggregates contributed to obstruction of the xylem lumen. In vivo changes in the levels of these phenolic compounds in infected olive plants and their antifungal activity against Verticillium dahliae Kleb., as revealed by in vitro study, strongly suggest that they are involved in natural defense or resistance mechanisms in this plant material, the most active being quercetin and luteolin aglycons, followed by rutin, oleuropein, luteolin-7-glucoside, tyrosol, p-coumaric acid, and catechin. . PMID:17394331

  14. Fiscal Year 1985 Congressional budget request. Volume 1. Atomic energy defense activities

    SciTech Connect

    Not Available

    1984-02-01

    Contents include: summaries of estimates by appropriation, savings from management initiatives, staffing by subcommittee, staffing appropriation; appropriation language; amounts available for obligation; estimates by major category; program overview; weapons activities; verification and control technology; materials production; defense waste and by-products management; nuclear safeguards and security; security investigations; and naval reactors development.

  15. Mechanical Properties of Sialic Foamed Ceramic and Applications in Defense Structure

    NASA Astrophysics Data System (ADS)

    Li, Xu-Yang; Li, Yong-Chi; Zhao, Kai; Gao, Guang-Fa

    2014-08-01

    Mechanical properties of a closed-cellular sialic foamed ceramic are investigated by compressive tests. The sialic foamed ceramic under uniaxial stress compression shows brittleness and the flow stress increases with the strain rate. The engineering stress-engineering strain curve under uniaxial strain compression could be divided into three stages: linear elasticity, collapsed plateau and densification. The unloading elastic modulus, Poisson ratio and energy absorption ability are discussed. Shelly cellular material made by sialic foamed ceramic is applied into the stress distribution layer in the defense structure. Field explosion experiments are performed for the sand based stress distribution layer and shelly cellular material based layer. Compared with sand, the shelly cellular material reduces the peak stress of the blast wave.

  16. Roles of small RNAs in the immune defense mechanisms of crustaceans.

    PubMed

    He, Yaodong; Ju, Chenyu; Zhang, Xiaobo

    2015-12-01

    Small RNAs, 21-24 nucleotides in length, are non-coding RNAs found in most multicellular organisms, as well as in some viruses. There are three main types of small RNAs including microRNA (miRNA), small-interfering RNA (siRNA), and piwi-interacting RNA (piRNA). Small RNAs play key roles in the genetic regulation of eukaryotes; at least 50% of all eukaryote genes are the targets of small RNAs. In recent years, studies have shown that some unique small RNAs are involved in the immune response of crustaceans, leading to lower or higher immune responses to infections and diseases. SiRNAs could be used as therapy for virus infection. In this review, we provide an overview of the diverse roles of small RNAs in the immune defense mechanisms of crustaceans. PMID:26210184

  17. Stress defense mechanisms of NADPH-dependent thioredoxin reductases (NTRs) in plants.

    PubMed

    Cha, Joon-Yung; Barman, Dhirendra Nath; Kim, Min Gab; Kim, Woe-Yeon

    2015-01-01

    Plants establish highly and systemically organized stress defense mechanisms against unfavorable living conditions. To interpret these environmental stimuli, plants possess communication tools, referred as secondary messengers, such as Ca(2+) signature and reactive oxygen species (ROS) wave. Maintenance of ROS is an important event for whole lifespan of plants, however, in special cases, toxic ROS molecules are largely accumulated under excess stresses and diverse enzymes played as ROS scavengers. Arabidopsis and rice contain 3 NADPH-dependent thioredoxin reductases (NTRs) which transfer reducing power to Thioredoxin/Peroxiredoxin (Trx/Prx) system for scavenging ROS. However, due to functional redundancy between cytosolic and mitochondrial NTRs (NTRA and NTRB, respectively), their functional involvements under stress conditions have not been well characterized. Recently, we reported that cytosolic NTRA confers the stress tolerance against oxidative and drought stresses via regulation of ROS amounts using NTRA-overexpressing plants. With these findings, mitochondrial NTRB needs to be further elucidated.

  18. Discrimination of Arabidopsis PAD4 activities in defense against green peach aphid and pathogens.

    PubMed

    Louis, Joe; Gobbato, Enrico; Mondal, Hossain A; Feys, Bart J; Parker, Jane E; Shah, Jyoti

    2012-04-01

    The Arabidopsis (Arabidopsis thaliana) lipase-like protein PHYTOALEXIN DEFICIENT4 (PAD4) is essential for defense against green peach aphid (GPA; Myzus persicae) and the pathogens Pseudomonas syringae and Hyaloperonospora arabidopsidis. In basal resistance to virulent strains of P. syringae and H. arabidopsidis, PAD4 functions together with its interacting partner ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) to promote salicylic acid (SA)-dependent and SA-independent defenses. By contrast, dissociated forms of PAD4 and EDS1 signal effector-triggered immunity to avirulent strains of these pathogens. PAD4-controlled defense against GPA requires neither EDS1 nor SA. Here, we show that resistance to GPA is unaltered in an eds1 salicylic acid induction deficient2 (sid2) double mutant, indicating that redundancy between EDS1 and SID2-dependent SA, previously reported for effector-triggered immunity conditioned by certain nucleotide-binding-leucine-rich repeat receptors, does not explain the dispensability of EDS1 and SID2 in defense against GPA. Mutation of a conserved serine (S118) in the predicted lipase catalytic triad of PAD4 abolished PAD4-conditioned antibiosis and deterrence against GPA feeding, but S118 was dispensable for deterring GPA settling and promoting senescence in GPA-infested plants as well as for pathogen resistance. These results highlight distinct molecular activities of PAD4 determining particular aspects of defense against aphids and pathogens.

  19. Defense mechanisms of sargassacean species against the epiphytic red alga Neosiphonia harveyi.

    PubMed

    Nakajima, Noboru; Ohki, Kaori; Kamiya, Mitsunobu

    2015-08-01

    Flora diversity and abundance of epiphytes are specific to their basiphyte species and may relate to variations in the defensive abilities of basiphytes. Thus, investigating the interactions between epiphytes and basiphytes is useful for a better understanding of the biological impact of epiphytism and the survival strategies of basiphytes. We examined the epiphyte density on five sargassacean species at six locations between two study sites, which showed that the epiphytic red alga Neosiphonia harveyi was remarkably less abundant on Sargassum siliquastrum at all locations. To assess its defense mechanism against N. harveyi, we performed bioassays of phlorotannins, which are considered effective in deterring fouling, by culturing sargassacean blades with N. harveyi carpospores and observed the process by which sargassacean blades remove epiphytes. When the carpospores were incubated with various concentrations of dissolved phlorotannins, settlement and germination were inhibited only at the highest concentrations (>0.1 g · L(-1) ), and this effect did not significantly differ among the five sargassacean species. When the carpospores were combined with blades from the five species, many of the spores attached and germinated on every blade. Because N. harveyi penetrated rhizoids into basiphyte tissues, cuticle peeling observed in all five sargassacean species could not remove this epiphyte after germination. However, in S. siliquastrum, the blade tissues around the germlings became swollen and disintegrative, and were removed together with the germlings. The spores normally grew on the dead blades, suggesting that the tissue degradation of S. siliquastrum is triggered by the infection of N. harveyi. PMID:26986791

  20. Drought resistance in rice seedlings conferred by seed priming : role of the anti-oxidant defense mechanisms.

    PubMed

    Goswami, Alakananda; Banerjee, Rahul; Raha, Sanghamitra

    2013-10-01

    Seed priming is a method by which seeds are subjected to different stress conditions to impart stress adaptation in seedlings germinating and growing under stressful situations. Drought stress is a major reason behind failure of crops. We studied the effects of hydropriming, dehydration priming (induced by PEG), and osmopriming (induced by NaCl and KH(2)PO(4)) on subsequent germination, growth and anti-oxidant defense mechanisms of 2-week-old rice seedlings under continuing dehydration stress. Unprimed seeds grown in PEG showed significantly lower germination and growth along with significantly higher reactive oxygen species (ROS) and lipid peroxidation levels. Among the priming methods, 5 % PEG priming was found to be the best in terms of germination and growth rate along with the lowest amount of ROS and lipid peroxidation (malondialdehyde [MDA]) values. MDA levels were reduced significantly by all of the priming methods. Hence, reduction of lipid peroxidation may be a key factor underlying the drought tolerance produced by the priming treatments. Glutathione peroxidase (GPX) activity seemed to bear an excellent correlation with oxidative stress resistance through seed priming. The PEG priming produced minimum peroxidative damage and superior germination and growth rate along with efficient GPX activity, overexpressed MnSOD and maintenance of HSP70 expression in normal as well as in drought condition. Therefore, in PEG-primed seeds the existence of robust protective mechanisms is definitely indicated.

  1. Systemic Activation of TLR3-Dependent TRIF Signaling Confers Host Defense against Gram-Negative Bacteria in the Intestine.

    PubMed

    Ruiz, Jose; Kanagavelu, Saravana; Flores, Claudia; Romero, Laura; Riveron, Reldy; Shih, David Q; Fukata, Masayuki

    2015-01-01

    Recognition of Gram-negative bacteria by toll-like receptor (TLR)4 induces MyD88 and TRIF mediated responses. We have shown that TRIF-dependent responses play an important role in intestinal defense against Gram-negative enteropathogens. In the current study, we examined underlying mechanisms of how systemic TRIF activation enhances intestinal immune defense against Gram-negative bacteria. First we confirmed that the protective effect of poly I:C against enteric infection of mice with Yersinia enterocolitica was dependent on TLR3-mediated TRIF signaling by using TLR3-deficient mice. This protection was unique in TRIF-dependent TLR signaling because systemic stimulation of mice with agonists for TLR2 (Pam3CSK4) or TLR5 (flagellin) did not reduce mortality on Y. enterocolitica infection. Systemic administration of poly I:C mobilized CD11c+, F4/80+, and Gr-1(hi) cells from lamina propria and activated NK cells in the mesenteric lymph nodes (MLN) within 24 h. This innate immune cell rearrangement was type I IFN dependent and mediated through upregulation of TLR4 followed by CCR7 expression in these innate immune cells found in the intestinal mucosa. Poly I:C induced IFN-γ expression by NK cells in the MLN, which was mediated through type I IFNs and IL-12p40 from antigen presenting cells and consequent activation of STAT1 and STAT4 in NK cells. This formation of innate immunity significantly contributed to the elimination of bacteria in the MLN. Our results demonstrated an innate immune network in the intestine that can be established by systemic stimulation of TRIF, which provides a strong host defense against Gram-negative pathogens. The mechanism underlying TRIF-mediated protective immunity may be useful to develop novel therapies for enteric bacterial infection.

  2. Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants.

    PubMed Central

    Schaller, A; Oecking, C

    1999-01-01

    Systemin is an important mediator of wound-induced defense gene activation in tomato plants, and it elicits a rapid alkalinization of the growth medium of cultured Lycopersicon peruvianum cells. A possible mechanistic link between proton fluxes across the plasma membrane and the induction of defense genes was investigated by modulating plasma membrane H+-ATPase activity. Inhibitors of H+-ATPase (erythrosin B, diethyl stilbestrol, and vanadate) were found to alkalinize the growth medium of L. peruvianum cell cultures and to induce wound response genes in whole tomato plants. Conversely, an activator of the H+-ATPase (fusicoccin) acidified the growth medium of L. peruvianum cell cultures and suppressed systemin-induced medium alkalinization. Likewise, in fusicoccin-treated tomato plants, the wound- and systemin-triggered accumulation of wound-responsive mRNAs was found to be suppressed. However, fusicoccin treatment of tomato plants led to the accumulation of salicylic acid and the expression of pathogenesis-related genes. Apparently, the wound and pathogen defense signaling pathways are differentially regulated by changes in the proton electrochemical gradient across the plasma membrane. In addition, alkalinization of the L. peruvianum cell culture medium was found to depend on the influx of Ca2+ and the activity of a protein kinase. Reversible protein phosphorylation was also shown to be involved in the induction of wound response genes. The plasma membrane H+-ATPase as a possible target of a Ca2+-activated protein kinase and its role in defense signaling are discussed. PMID:9927643

  3. Mechanically Active Electrospun Materials

    NASA Astrophysics Data System (ADS)

    Robertson, Jaimee M.

    Electrospinning, a technique used to fabricate small diameter polymer fibers, has been employed to develop unique, active materials falling under two categories: (1) shape memory elastomeric composites (SMECs) and (2) water responsive fiber mats. (1) Previous work has characterized in detail the properties and behavior of traditional SMECs with isotropic fibers embedded in an elastomer matrix. The current work has two goals: (i) characterize laminated anisotropic SMECs and (ii) develop a fabrication process that is scalable for commercial SMEC manufacturing. The former ((i)) requires electrospinning aligned polymer fibers. The aligned fibers are similarly embedded in an elastomer matrix and stacked at various fiber orientations. The resulting laminated composite has a unique response to tensile deformation: after stretching and releasing, the composite curls. This curling response was characterized based on fiber orientation. The latter goal ((ii)) required use of a dual-electrospinning process to simultaneously electrospin two polymers. This fabrication approach incorporated only industrially relevant processing techniques, enabling the possibility of commercial application of a shape memory rubber. Furthermore, the approach had the added benefit of increased control over composition and material properties. (2) The strong elongational forces experienced by polymer chains during the electrospinning process induce molecular alignment along the length of electrospun fibers. Such orientation is maintained in the fibers as the polymer vitrifies. Consequently, residual stress is stored in electrospun fiber mats and can be recovered by heating through the polymer's glass transition temperature. Alternatively, the glass transition temperature can be depressed by introducing a plasticizing agent. Poly(vinyl acetate) (PVAc) is plasticized by water, and its glass transition temperature is lowered below room temperature. Therefore, the residual stress can be relaxed at room

  4. Chromosome-level genome map provides insights into diverse defense mechanisms in the medicinal fungus Ganoderma sinense

    PubMed Central

    Zhu, Yingjie; Xu, Jiang; Sun, Chao; Zhou, Shiguo; Xu, Haibin; Nelson, David R.; Qian, Jun; Song, Jingyuan; Luo, Hongmei; Xiang, Li; Li, Ying; Xu, Zhichao; Ji, Aijia; Wang, Lizhi; Lu, Shanfa; Hayward, Alice; Sun, Wei; Li, Xiwen; Schwartz, David C.; Wang, Yitao; Chen, Shilin

    2015-01-01

    Fungi have evolved powerful genomic and chemical defense systems to protect themselves against genetic destabilization and other organisms. However, the precise molecular basis involved in fungal defense remain largely unknown in Basidiomycetes. Here the complete genome sequence, as well as DNA methylation patterns and small RNA transcriptomes, was analyzed to provide a holistic overview of secondary metabolism and defense processes in the model medicinal fungus, Ganoderma sinense. We reported the 48.96 Mb genome sequence of G. sinense, consisting of 12 chromosomes and encoding 15,688 genes. More than thirty gene clusters involved in the biosynthesis of secondary metabolites, as well as a large array of genes responsible for their transport and regulation were highlighted. In addition, components of genome defense mechanisms, namely repeat-induced point mutation (RIP), DNA methylation and small RNA-mediated gene silencing, were revealed in G. sinense. Systematic bioinformatic investigation of the genome and methylome suggested that RIP and DNA methylation combinatorially maintain G. sinense genome stability by inactivating invasive genetic material and transposable elements. The elucidation of the G. sinense genome and epigenome provides an unparalleled opportunity to advance our understanding of secondary metabolism and fungal defense mechanisms. PMID:26046933

  5. Chromosome-level genome map provides insights into diverse defense mechanisms in the medicinal fungus Ganoderma sinense.

    PubMed

    Zhu, Yingjie; Xu, Jiang; Sun, Chao; Zhou, Shiguo; Xu, Haibin; Nelson, David R; Qian, Jun; Song, Jingyuan; Luo, Hongmei; Xiang, Li; Li, Ying; Xu, Zhichao; Ji, Aijia; Wang, Lizhi; Lu, Shanfa; Hayward, Alice; Sun, Wei; Li, Xiwen; Schwartz, David C; Wang, Yitao; Chen, Shilin

    2015-06-05

    Fungi have evolved powerful genomic and chemical defense systems to protect themselves against genetic destabilization and other organisms. However, the precise molecular basis involved in fungal defense remain largely unknown in Basidiomycetes. Here the complete genome sequence, as well as DNA methylation patterns and small RNA transcriptomes, was analyzed to provide a holistic overview of secondary metabolism and defense processes in the model medicinal fungus, Ganoderma sinense. We reported the 48.96 Mb genome sequence of G. sinense, consisting of 12 chromosomes and encoding 15,688 genes. More than thirty gene clusters involved in the biosynthesis of secondary metabolites, as well as a large array of genes responsible for their transport and regulation were highlighted. In addition, components of genome defense mechanisms, namely repeat-induced point mutation (RIP), DNA methylation and small RNA-mediated gene silencing, were revealed in G. sinense. Systematic bioinformatic investigation of the genome and methylome suggested that RIP and DNA methylation combinatorially maintain G. sinense genome stability by inactivating invasive genetic material and transposable elements. The elucidation of the G. sinense genome and epigenome provides an unparalleled opportunity to advance our understanding of secondary metabolism and fungal defense mechanisms.

  6. Secretions from the ventral eversible gland of Spodoptera exigua caterpillars activate defense-related genes and induce emission of volatile organic compounds in tomato, Solanum lycopersicum

    PubMed Central

    2014-01-01

    Background Plant induced defense against herbivory are generally associated with metabolic costs that result in the allocation of photosynthates from growth and reproduction to the synthesis of defense compounds. Therefore, it is essential that plants are capable of sensing and differentiating mechanical injury from herbivore injury. Studies have shown that oral secretions (OS) from caterpillars contain elicitors of induced plant responses. However, studies that shows whether these elicitors originated from salivary glands or from other organs associated with feeding, such as the ventral eversible gland (VEG) are limited. Here, we tested the hypothesis that the secretions from the VEG gland of Spodoptera exigua caterpillars contain elicitors that induce plant defenses by regulating the expression of genes involved in the biosynthesis of volatile organic compounds (VOCs) and other defense-related genes. To test this hypothesis, we quantified and compared the activity of defense-related enzymes, transcript levels of defense-related genes and VOC emission in tomato plants damaged by S. exigua caterpillars with the VEG intact (VEGI) versus plants damaged by caterpillars with the VEG ablated (VEGA). Results The quantified defense-related enzymes (i.e. peroxidase, polyphenol oxidase, and lipoxigenase) were expressed in significantly higher amounts in plants damaged by VEGI caterpillars than in plants damaged by VEGA caterpillars. Similarly, the genes that encode for the key enzymes involved in the biosynthesis of jasmonic acid and terpene synthase genes that regulate production of terpene VOCs, were up-regulated in plants damaged by VEGI caterpillars. Moreover, the OS of VEGA caterpillars were less active in inducing the expression of defense genes in tomato plants. Increased emissions of VOCs were detected in the headspace of plants damaged by VEGI caterpillars compared to plants damaged by VEGA caterpillars. Conclusion These results suggest that the VEG of S. exigua

  7. Evolution and development of gastropod larval shell morphology: experimental evidence for mechanical defense and repair.

    PubMed

    Hickman, C S

    2001-01-01

    The structural diversity of gastropod veliger larvae offers an instructive counterpoint to the view of larval forms as conservative archetypes. Larval structure, function, and development are fine-tuned for survival in the plankton. Accordingly, the study of larval adaptation provides an important perspective for evolutionary-developmental biology as an integrated science. Patterns of breakage and repair in the field, as well as patterns of breakage in arranged encounters with zooplankton under laboratory conditions, are two powerful sources of data on the adaptive significance of morphological and microsculptural features of the gastropod larval shell. Shells of the planktonic veliger larvae of the caenogastropod Nassarius paupertus [GOULD] preserve multiple repaired breaks, attributed to unsuccessful zooplankton predators. In culture, larvae isolated from concentrated zooplankton samples rapidly repaired broken apertural margins and restored the "ideal" apertural form, in which an elaborate projection or "beak" covers the head of the swimming veliger. When individuals with repaired apertures were reintroduced to a concentrated mixture of potential zooplankton predators, the repaired margins were rapidly chipped and broken back. The projecting beak of the larval shell is the first line of mechanical defense, covering the larval head and mouth and potentially the most vulnerable part of the shell to breakage. Patterns of mechanical failure show that spiral ridges do reinforce the beak and retard breakage. The capacity for rapid shell repair and regeneration, and the evolution of features that resist or retard mechanical damage, may play a more prominent role than previously thought in enhancing the ability of larvae to survive in the plankton.

  8. The mtDNA NARP mutation activates the actin-Nrf2 signaling of antioxidant defenses

    SciTech Connect

    Dassa, Emmanuel Philippe; Paupe, Vincent; Goncalves, Sergio; Rustin, Pierre

    2008-04-11

    An efficient handling of superoxides by antioxidant defenses is a crucial issue for cells with respiratory chain deficient mitochondria. We used human cultured skin fibroblasts to delineate the mechanism controlling the expression of antioxidant defenses in the case of a severe ATPase deficiency resulting from an 8993T>G mutation in the mitochondrial ATPase6 gene. We observed the nuclear translocation of the transcription factor Nrf2 associated with thinning of the actin stress fibers. The mobilization of the Nrf2 signaling pathway could be mimicked by a chemical blockade of the ATPase with a specific inhibitor, oligomycin. Interestingly enough, Nrf2 nuclear translocation was not observed in the case of a severe cytochrome oxidase deficiency, indicating that studying the status of this signaling pathway could throw some light on the importance of the oxidative insult associated with different respiratory chain defects.

  9. Lifestyle and Host Defense Mechanisms of the Dung Beetle, Euoniticellus intermedius: The Toll Signaling Pathway

    PubMed Central

    Hull, Rodney; Alaouna, Mohamed; Khanyile, Lucky; Byrne, Marcus; Ntwasa, Monde

    2013-01-01

    The dung beetle, Euoniticellus intermedius (Reiche) (Coleoptera: Scarabaeidae) is an important ecological and agricultural agent. Their main activity, the burying of dung, improves quality of the soil and reduces pests that could cause illness in animals. E. intermedius are therefore important for agriculture and for good maintenance of the environment, and are regarded as effective biological control agents for parasites of the gastrointestinal tract in livestock. The ability of E. intermedius to co-exist comfortably with many microorganisms, some of which are important human pathogens, stimulated our interest in its host defense strategies. The aim of this study was to investigate the Toll signaling pathway, which is strongly activated by fungi. Gene expression associated with fungal infection was analyzed by using 2-D gel electrophoresis and mass spectroscopy. Furthermore, the partial adult transcriptome was investigated for the presence of known immune response genes by using high-throughput sequencing and bioinformatics. The results presented here suggest that E. intermedius responds to fungal challenge via the Toll signaling pathway. PMID:24735102

  10. Defense Mechanisms Reported by Patients with Borderline Personality Disorder and Axis II Comparison Subjects Over 16 Years of Prospective Follow-up: Description and Prediction of Recovery

    PubMed Central

    Zanarini, Mary C.; Frankenburg, Frances R.; Fitzmaurice, Garrett

    2012-01-01

    Objective This study assessed the defensive functioning of 290 borderline patients and compared it to that of 72 patients with other forms of axis II psychopathology over 16 years of prospective follow-up. It also assessed the relationship between time-varying defenses and recovery from borderline personality disorder. Method The Defense Style Questionnaire, a self-report measure with demonstrated criterion validity and internal consistency, was initially administered at study entry. It was readministered at eight contiguous two-year long follow-up periods. Results Borderline patients had significantly lower scores than axis II comparison subjects on one mature defense mechanism (suppression) and significantly higher scores on seven of the other 18 defenses studied. More specifically, borderline patients had significantly higher scores on one neurotic-level defense (undoing), four immature defenses (acting out, emotional hypochondriasis, passive aggression, and projection), and two image-distorting/borderline defenses (projective identification and splitting). In terms of change, borderline patients were found to have had significant improvement on 13 of the 19 defenses studied. More specifically, they had significantly higher scores over time on one mature defense (anticipation) and significantly lower scores on two neurotic defenses (isolation and undoing), all immature defenses, and all image-distorting/borderline defenses except primitive idealization. In addition, four time-varying defense mechanisms were found to predict time-to-recovery: humor, acting out, emotional hypochondriasis, and projection. Conclusions Taken together, the results of this study suggest that the longitudinal defensive functioning of borderline patients is both distinct and improves substantially over time. They also suggest that immature defenses are the best predictors of time-to-recovery. PMID:23223866

  11. Cosmic bombardment V: Threat object-dispersing approaches to active planetary defense

    SciTech Connect

    Teller, E.; Wood, L. |; Ishikawa, M. |; Hyde, R.

    1995-05-24

    Earth-impacting comets and asteroids with diameters {approx}0.03 - 10 km pose the greatest threats to the terrestrial biosphere in terms of impact frequency-weighted impact consequences, and thus are of most concern to designers of active planetary defenses. Specific gravitational binding energies of such objects range from 10{sup -7} to 10{sup -2} J/gm, and are small compared with the specific energies of 1x10{sup 3} to 3x10{sup 3} J/gm required to vaporize objects of typical composition or the specific energies required to pulverize them, which are 10{sup -1} to 10 J/gm. All of these are small compared to the specific kinetic energy of these objects in the Earth- centered frame, which is 2x10{sup 5} to 2x10{sup 6} J/gm. The prospect naturally arises of negating all such threats by deflecting, pulverizing or vaporizing the objects. Pulverization-with-dispersal is an attractive option of reasonable defensive robustness. Examples of such equipments - which employ no explosives of any type - are given. Vaporization is the maximally robust defensive option, and may be invoked to negate threat objects not observed until little time is left until Earth-strike, and pulverization-with-dispersal has proven inadequate. Physically larger threats may be vaporized with nuclear explosives. No contemporary technical means of any kind appear capable of directly dispersing the -100 km diameter scale Charon- class cometary objects recently observed in the outer solar system, although such objects may be deflected to defensively useful extents. Means of implementing defenses of each of these types are proposed for specificity, and areas for optimization noted. Biospheric impacts of threat object debris are briefly considered, for bounding purposes. Experiments are suggested on cometary and asteroidal objects.

  12. Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings

    PubMed Central

    Denoux, Carine; Galletti, Roberta; Mammarella, Nicole; Gopalan, Suresh; Werck, Danièle; De Lorenzo, Giulia; Ferrari, Simone; Ausubel, Frederick M.; Dewdney, Julia

    2010-01-01

    We carried out transcriptional profiling analysis in 10 day-old Arabidopsis thaliana seedlings treated with oligogalacturonides (OGs), oligosaccharides derived from the plant cell wall, or the bacterial flagellin peptide Flg22, general elicitors of the basal defense response in plants. Although detected by different receptors, both OGs and Flg22 trigger a fast and transient response that is both similar and comprehensive, and characterized by activation of early stages of multiple defense signaling pathways, particularly JA-associated processes. However, the response to Flg22 is stronger in both the number of genes differentially expressed and the amplitude of change. The magnitude of induction of individual genes is in both cases dose dependent, but even at very high concentrations, OGs do not induce a response that is as comprehensive as that seen with Flg22. While high doses of either microbe-associated molecular pattern (MAMP) elicit a late response that includes activation of senescence processes, SA-dependent secretory pathway genes and PR1 expression are substantially induced only by Flg22. These results suggest a lower threshold for activation of early responses than for sustained or SA-mediated late defenses. Expression patterns of aminocyclopropane-carboxylate synthase genes also implicate ethylene biosynthesis in regulation of the late innate immune response. PMID:19825551

  13. Priming of antiherbivore defensive responses in plants.

    PubMed

    Kim, Jinwon; Felton, Gary W

    2013-06-01

    Defense priming is defined as increased readiness of defense induction. A growing body of literature indicates that plants (or intact parts of a plant) are primed in anticipation of impending environmental stresses, both biotic and abiotic, and upon the following stimulus, induce defenses more quickly and strongly. For instance, some plants previously exposed to herbivore-inducible plant volatiles (HIPVs) from neighboring plants under herbivore attack show faster or stronger defense activation and enhanced insect resistance when challenged with secondary insect feeding. Research on priming of antiherbivore defense has been limited to the HIPV-mediated mechanism until recently, but significant advances were made in the past three years, including non-HIPV-mediated defense priming, epigenetic modifications as the molecular mechanism of priming, and others. It is timely to consider the advances in research on defense priming in the plant-insect interactions.

  14. The Role of Defense Mechanisms, Personality and Demographical Factors on Complicated Grief following Death of a loved one by Cancer

    PubMed Central

    Rahimian Boogar, Isaac; Talepasand, Siavash

    2015-01-01

    Objective: Identification of the risk factors and psychological correlates of prolonged grief disorder is vital for health promotions in relatives of persons who died of cancer. The aim of this research was to investigate the role of defense mechanisms, character dimension of personality and demographic factors on complicated grief following a loss of a family member to cancer. Method: A number of 226 persons who had lost a family member to cancer in a cancer institute at Tehran University of Medical Science were selected through compliance sampling and completed the Inventory of complicated Grief-Revised (ICG-R), the Defense Styles Questionnaire (DSQ), the Character dimension of Temperament and Character Inventory (TCI), and the Demographical questionnaire. Data were analyzed by stepwise multiple regression analysis, using the PASW version 18. Results: Findings revealed that neurotic defense style had a significant positive predictive role in the complicated grief; and cooperativeness, age of the deceased person, self-transcendence and mature defense style had a significant negative predictive role in complicated grief (p<0.001). R2 was 0.73 for the final model (p<.001). Conclusion: The results revealed that two character dimensions (low cooperativeness and self-transcendence), high neurotic defense style and young age of the deceased person were involved in the psychopathological course of the complicated and prolonged grief. It was concluded that personality characteristics of the grieving persons and demographics of the deceased person should be addressed in designing tailored interventions for complicated grief. PMID:26884783

  15. Calmodulin-binding transcription activator (CAMTA) 3 mediates biotic defense responses in Arabidopsis.

    PubMed

    Galon, Yael; Nave, Roy; Boyce, Joy M; Nachmias, Dikla; Knight, Marc R; Fromm, Hillel

    2008-03-19

    Calmodulin-binding transcription activator (CAMTA) 3 (also called SR1) is a calmodulin-binding transcription factor in Arabidopsis. Two homozygous T-DNA insertion mutants (camta3-1, camta3-2) showed enhanced spontaneous lesions. Transcriptome analysis of both mutants revealed 6 genes with attenuated expression and 99 genes with elevated expression. Of the latter, 32 genes are related to defense against pathogens (e.g. WRKY33, PR1 and chitinase). Propagation of a virulent strain of the bacterial pathogen Pseudomonas syringae and the fungal pathogen Botrytis cinerea were attenuated in both mutants. Moreover, both mutants accumulated high levels of H2O2. We suggest that CAMTA3 regulates the expression of a set of genes involved in biotic defense responses.

  16. Active Auditory Mechanics in Insects

    NASA Astrophysics Data System (ADS)

    Robert, D.; Göpfert, M. C.

    2003-02-01

    Evidence is presented that hearing in some insects is an active process. Audition in mosquitoes is used for mate-detection and is supported by antennal receivers, whose sound-induced vibrations are transduced by Johnston's organs. Each of these sensory organs contains ca. 15,000 sensory neurons. As shown by mechanical analysis, a physiologically vulnerable mechanism is at work that nonlinearly enhances the sensitivity and frequency selectivity of antennal hearing. This process of amplification correlates with the electrical activity of the auditory mechanoreceptor units in Johnston's organ.

  17. First evidence for toxic defense based on the multixenobiotic resistance (MXR) mechanism in Daphnia magna.

    PubMed

    Campos, Bruno; Altenburger, Rolf; Gómez, Cristian; Lacorte, Silvia; Piña, Benjamin; Barata, Carlos; Luckenbach, Till

    2014-03-01

    The water flea Daphnia magna is widely used as test species in ecotoxicological bioassays. So far, there is no information available to which extent ATP binding cassette (ABC) transporter based multixenobiotic resistance (MXR) counteracts adverse chemical effects in this species. This, however, would be important for assessing to which extent the bio-active potential of a compound determined with this species depends on this cellular defense. We here present molecular, functional and toxicological studies that provide first evidence for ABC transporter-based MXR in D. magna. We cloned putatively MXR-related partial abcb1, abcc1/3, abcc4 and abcc5 coding sequences; respective transcripts were constitutively expressed in different D. magna life stages. MXR associated efflux activity was monitored in D. magna using the fluorescent substrate dyes rhodamine 123, rhodamine B and calcein-AM combined with inhibitors of human ABCB1 and/or ABCC transporter activities reversin 205, MK571 and cyclosporin A. With inhibitors present, efflux of dye substrates was reduced in D. magna in a concentration-dependent mode, as indicated by elevated accumulation of the dyes in D. magna tissues. In animals pre-exposed to mercury, pentachlorophenol or dacthal applied as inducers of ABC transporter expression, levels of some ABC transporter transcripts were increased in some cases showing that these genes can be chemically induced. Likewise, pre-exposure of animals to these chemicals decreased dye accumulation in tissue, indicating enhanced MXR transporter activity, likely associated with higher transporter protein levels. Toxicity assays with toxic transporter substrates mitoxantrone and chlorambucil that were applied singly and in combination with inhibitors were performed to study the tolerance role of Abcb1 and Abcc efflux transporters in D. magna. Joint toxicities of about half of the binary combinations of test compounds applied (substrate/inhibitor, substrate/substrate, inhibitor

  18. Analysis of the Molecular Dialogue Between Gray Mold (Botrytis cinerea) and Grapevine (Vitis vinifera) Reveals a Clear Shift in Defense Mechanisms During Berry Ripening.

    PubMed

    Kelloniemi, Jani; Trouvelot, Sophie; Héloir, Marie-Claire; Simon, Adeline; Dalmais, Bérengère; Frettinger, Patrick; Cimerman, Agnès; Fermaud, Marc; Roudet, Jean; Baulande, Sylvain; Bruel, Christophe; Choquer, Mathias; Couvelard, Linhdavanh; Duthieuw, Mathilde; Ferrarini, Alberto; Flors, Victor; Le Pêcheur, Pascal; Loisel, Elise; Morgant, Guillaume; Poussereau, Nathalie; Pradier, Jean-Marc; Rascle, Christine; Trdá, Lucie; Poinssot, Benoit; Viaud, Muriel

    2015-11-01

    Mature grapevine berries at the harvesting stage (MB) are very susceptible to the gray mold fungus Botrytis cinerea, while veraison berries (VB) are not. We conducted simultaneous microscopic and transcriptomic analyses of the pathogen and the host to investigate the infection process developed by B. cinerea on MB versus VB, and the plant defense mechanisms deployed to stop the fungus spreading. On the pathogen side, our genome-wide transcriptomic data revealed that B. cinerea genes upregulated during infection of MB are enriched in functional categories related to necrotrophy, such as degradation of the plant cell wall, proteolysis, membrane transport, reactive oxygen species (ROS) generation, and detoxification. Quantitative-polymerase chain reaction on a set of representative genes related to virulence and microscopic observations further demonstrated that the infection is also initiated on VB but is stopped at the penetration stage. On the plant side, genome-wide transcriptomic analysis and metabolic data revealed a defense pathway switch during berry ripening. In response to B. cinerea inoculation, VB activated a burst of ROS, the salicylate-dependent defense pathway, the synthesis of the resveratrol phytoalexin, and cell-wall strengthening. On the contrary, in infected MB, the jasmonate-dependent pathway was activated, which did not stop the fungal necrotrophic process. PMID:26267356

  19. Analysis of the Molecular Dialogue Between Gray Mold (Botrytis cinerea) and Grapevine (Vitis vinifera) Reveals a Clear Shift in Defense Mechanisms During Berry Ripening.

    PubMed

    Kelloniemi, Jani; Trouvelot, Sophie; Héloir, Marie-Claire; Simon, Adeline; Dalmais, Bérengère; Frettinger, Patrick; Cimerman, Agnès; Fermaud, Marc; Roudet, Jean; Baulande, Sylvain; Bruel, Christophe; Choquer, Mathias; Couvelard, Linhdavanh; Duthieuw, Mathilde; Ferrarini, Alberto; Flors, Victor; Le Pêcheur, Pascal; Loisel, Elise; Morgant, Guillaume; Poussereau, Nathalie; Pradier, Jean-Marc; Rascle, Christine; Trdá, Lucie; Poinssot, Benoit; Viaud, Muriel

    2015-11-01

    Mature grapevine berries at the harvesting stage (MB) are very susceptible to the gray mold fungus Botrytis cinerea, while veraison berries (VB) are not. We conducted simultaneous microscopic and transcriptomic analyses of the pathogen and the host to investigate the infection process developed by B. cinerea on MB versus VB, and the plant defense mechanisms deployed to stop the fungus spreading. On the pathogen side, our genome-wide transcriptomic data revealed that B. cinerea genes upregulated during infection of MB are enriched in functional categories related to necrotrophy, such as degradation of the plant cell wall, proteolysis, membrane transport, reactive oxygen species (ROS) generation, and detoxification. Quantitative-polymerase chain reaction on a set of representative genes related to virulence and microscopic observations further demonstrated that the infection is also initiated on VB but is stopped at the penetration stage. On the plant side, genome-wide transcriptomic analysis and metabolic data revealed a defense pathway switch during berry ripening. In response to B. cinerea inoculation, VB activated a burst of ROS, the salicylate-dependent defense pathway, the synthesis of the resveratrol phytoalexin, and cell-wall strengthening. On the contrary, in infected MB, the jasmonate-dependent pathway was activated, which did not stop the fungal necrotrophic process.

  20. Flagellum-Mediated Biofilm Defense Mechanisms of Pseudomonas aeruginosa against Host-Derived Lactoferrin ▿

    PubMed Central

    Leid, Jeff G.; Kerr, Mathias; Selgado, Candice; Johnson, Chelsa; Moreno, Gabriel; Smith, Alyssa; Shirtliff, Mark E.; O'Toole, George A.; Cope, Emily K.

    2009-01-01

    Chronic infection with the gram-negative organism Pseudomonas aeruginosa is a leading cause of morbidity and mortality in human patients, despite high doses of antibiotics used to treat the various diseases this organism causes. These infections are chronic because P. aeruginosa readily forms biofilms, which are inherently resistant to antibiotics as well as the host's immune system. Our laboratory has been investigating specific mutations in P. aeruginosa that regulate biofilm bacterial susceptibility to the host. To continue our investigation of the role of genetics in bacterial biofilm host resistance, we examined P. aeruginosa biofilms that lack the flgK gene. This mutant lacks flagella, which results in defects in early biofilm development (up to 36 h). For these experiments, the flgK-disrupted strain and the parental strain (PA14) were used in a modified version of the 96-well plate microtiter assay. Biofilms were challenged with freshly isolated human leukocytes for 4 to 6 h and viable bacteria enumerated by CFU. Subsequent to the challenge, both mononuclear cells (monocytes and lymphocytes) and neutrophils, along with tumor necrosis factor alpha (TNF-α), were required for optimal killing of the flgK biofilm bacteria. We identified a cytokine cross talk network between mononuclear cells and neutrophils that was essential to the production of lactoferrin and bacterial killing. Our data suggest that TNF-α is secreted from mononuclear cells, causing neutrophil activation, resulting in the secretion of bactericidal concentrations of lactoferrin. These results extend previous studies of the importance of lactoferrin in the innate immune defense against bacterial biofilms. PMID:19651866

  1. Dual ligand/receptor interactions activate urothelial defenses against uropathogenic E. coli.

    PubMed

    Liu, Yan; Mémet, Sylvie; Saban, Ricardo; Kong, Xiangpeng; Aprikian, Pavel; Sokurenko, Evgeni; Sun, Tung-Tien; Wu, Xue-Ru

    2015-11-09

    During urinary tract infection (UTI), the second most common bacterial infection, dynamic interactions take place between uropathogenic E. coli (UPEC) and host urothelial cells. While significant strides have been made in the identification of the virulence factors of UPEC, our understanding of how the urothelial cells mobilize innate defenses against the invading UPEC remains rudimentary. Here we show that mouse urothelium responds to the adhesion of type 1-fimbriated UPEC by rapidly activating the canonical NF-κB selectively in terminally differentiated, superficial (umbrella) cells. This activation depends on a dual ligand/receptor system, one between FimH adhesin and uroplakin Ia and another between lipopolysaccharide and Toll-like receptor 4. When activated, all the nuclei (up to 11) of a multinucleated umbrella cell are affected, leading to significant amplification of proinflammatory signals. Intermediate and basal cells of the urothelium undergo NF-κB activation only if the umbrella cells are detached or if the UPEC persistently express type 1-fimbriae. Inhibition of NF-κB prevents the urothelium from clearing the intracellular bacterial communities, leading to prolonged bladder colonization by UPEC. Based on these data, we propose a model of dual ligand/receptor system in innate urothelial defenses against UPEC.

  2. From emotional abuse in childhood to psychopathology in adulthood: a path mediated by immature defense mechanisms and self-esteem.

    PubMed

    Finzi-Dottan, Ricky; Karu, Toby

    2006-08-01

    The present study examined the course traveled from childhood emotional abuse to adulthood psychopathology. One hundred ninety-six undergraduate students age 20 to 45 (M = 27; SD = 8.17), answered self-report questionnaires assessing emotional abuse in childhood (Childhood Trauma Questionnaire), parental attitudes (Parental Bonding Instrument), psychopathological symptomatology (Brief Symptom Inventory), self-esteem (Rosenberg Self-Esteem Scale), and defense mechanism organization (Defense Style Questionnaire). Results indicated that reported psychopathological symptomatology highly exceeded the Israeli norm. Structure Equation Modeling provided a statistically significant explanation (52%) of the target variable of psychopathological symptomatology. According to the path model, emotional abuse in childhood and perceptions of controlling and noncaring parents had an indirect effect on the psychopathology. This was mediated by immature defenses and low self-esteem. We conclude that the manifest psychopathology among adults who suffered emotional abuse in childhood is produced by the detrimental effect of abuse on personality, and takes the form of immature defense organization and damaged self-representation.

  3. Activation of Molecular Signatures for Antimicrobial and Innate Defense Responses in Skin with Transglutaminase 1 Deficiency.

    PubMed

    Haneda, Takashi; Imai, Yasutomo; Uchiyama, Ryosuke; Jitsukawa, Orie; Yamanishi, Kiyofumi

    2016-01-01

    Mutations of the transglutaminase 1 gene (TGM1) are a major cause of autosomal recessive congenital ichthyoses (ARCIs) that are associated with defects in skin barrier structure and function. However, the molecular processes induced by the transglutaminase 1 deficiency are not fully understood. The aim of the present study was to uncover those processes by analysis of cutaneous molecular signatures. Gene expression profiles of wild-type and Tgm1-/-epidermis were assessed using microarrays. Gene ontology analysis of the data showed that genes for innate defense responses were up-regulated in Tgm1-/-epidermis. Based on that result, the induction of Il1b and antimicrobial peptide genes, S100a8, S100a9, Defb14, Camp, Slpi, Lcn2, Ccl20 and Wfdc12, was confirmed by quantitative real-time PCR. A protein array revealed that levels of IL-1β, G-CSF, GM-CSF, CXCL1, CXCL2, CXCL9 and CCL2 were increased in Tgm1-/-skin. Epidermal growth factor receptor (EGFR) ligand genes, Hbegf, Areg and Ereg, were activated in Tgm1-/-epidermis. Furthermore, the antimicrobial activity of an epidermal extract from Tgm1-/-mice was significantly increased against both Escherichia coli and Staphylococcus aureus. In the epidermis of ichthyosiform skins from patients with TGM1 mutations, S100A8/9 was strongly positive. The expression of those antimicrobial and defense response genes was also increased in the lesional skin of an ARCI patient with TGM1 mutations. These results suggest that the up-regulation of molecular signatures for antimicrobial and innate defense responses is characteristic of skin with a transglutaminase 1 deficiency, and this autonomous process might be induced to reinforce the defective barrier function of the skin. PMID:27442430

  4. Activation of Molecular Signatures for Antimicrobial and Innate Defense Responses in Skin with Transglutaminase 1 Deficiency

    PubMed Central

    Uchiyama, Ryosuke; Jitsukawa, Orie; Yamanishi, Kiyofumi

    2016-01-01

    Mutations of the transglutaminase 1 gene (TGM1) are a major cause of autosomal recessive congenital ichthyoses (ARCIs) that are associated with defects in skin barrier structure and function. However, the molecular processes induced by the transglutaminase 1 deficiency are not fully understood. The aim of the present study was to uncover those processes by analysis of cutaneous molecular signatures. Gene expression profiles of wild-type and Tgm1–/–epidermis were assessed using microarrays. Gene ontology analysis of the data showed that genes for innate defense responses were up-regulated in Tgm1–/–epidermis. Based on that result, the induction of Il1b and antimicrobial peptide genes, S100a8, S100a9, Defb14, Camp, Slpi, Lcn2, Ccl20 and Wfdc12, was confirmed by quantitative real-time PCR. A protein array revealed that levels of IL-1β, G-CSF, GM-CSF, CXCL1, CXCL2, CXCL9 and CCL2 were increased in Tgm1–/–skin. Epidermal growth factor receptor (EGFR) ligand genes, Hbegf, Areg and Ereg, were activated in Tgm1–/–epidermis. Furthermore, the antimicrobial activity of an epidermal extract from Tgm1–/–mice was significantly increased against both Escherichia coli and Staphylococcus aureus. In the epidermis of ichthyosiform skins from patients with TGM1 mutations, S100A8/9 was strongly positive. The expression of those antimicrobial and defense response genes was also increased in the lesional skin of an ARCI patient with TGM1 mutations. These results suggest that the up-regulation of molecular signatures for antimicrobial and innate defense responses is characteristic of skin with a transglutaminase 1 deficiency, and this autonomous process might be induced to reinforce the defective barrier function of the skin. PMID:27442430

  5. Parallel activities and interactions between antimicrobial peptides and complement in host defense at the airway epithelial surface.

    PubMed

    Hiemstra, Pieter S

    2015-11-01

    Antimicrobial peptides and complement components contribute to host defense as well as inflammation and tissue injury in the respiratory tract. The airway epithelial surface is the main site of action of these immune effectors, and airway epithelial cells contribute markedly to their local production. Whereas both antimicrobial peptides and complement display overlapping functions, it is increasingly clear that both effector mechanisms also interact. Furthermore, excessive or uncontrolled release of antimicrobial peptides as well as complement activation may contribute to inflammatory lung diseases. Therefore, further knowledge of interactions between these systems may provide more insight into the pathogenesis of a range of lung diseases. In this review, recent findings on the functions, collaborations and other interactions between antimicrobial peptides and complement are discussed with a specific focus on the airway epithelium.

  6. Zinc triggers signaling mechanisms and defense responses promoting resistance to Alternaria brassicicola in Arabidopsis thaliana.

    PubMed

    Martos, Soledad; Gallego, Berta; Cabot, Catalina; Llugany, Mercè; Barceló, Juan; Poschenrieder, Charlotte

    2016-08-01

    According to the elemental defense hypothesis the accumulation of trace elements by plants may substitute for organic defenses, while the joint effects hypothesis proposes that trace elements and organic defenses can have additive or synergistic effects against pathogens or herbivores. To evaluate these hypotheses the response of the pathosystem Alternaria brassicicola-Arabidopsis thaliana to control (2μM) and surplus (12μM) Zn was evaluated using the camalexin deficient mutant pad3-1 and mtp1-1, a mutant with impaired Zn vacuolar storage, along with the corresponding wildtypes. In vitro, a 50% inhibition of fungal growth was achieved by 440μM Zn. A. thaliana leaves could accumulate equivalent concentrations without harm. In fact, surplus Zn enhanced the resistance of A. thaliana to fungal attack in Columbia (Col-0), Wassilewskija (WS), and mtp1-1. However, surplus Zn was unable to protect pad3-1 demonstrating that Zn cannot substitute for camalexin, the main organic defense in A. thaliana. High, non phytotoxic leaf Zn concentrations enhanced the resistance to A. brassicicola of A. thaliana genotypes able to produce camalexin. This was mainly due to Zn-induced enhancement of the JA/ETH signaling pathway leading to enhanced PAD3 expression. These results support the joint effects hypothesis and highlight the importance of adequate Zn supply for reinforced pathogen resistance. PMID:27297986

  7. Increased Antioxidant Defense Mechanism in Human Adventitia-Derived Progenitor Cells Is Associated with Therapeutic Benefit in Ischemia

    PubMed Central

    Iacobazzi, Dominga; Mangialardi, Giuseppe; Gubernator, Miriam; Hofner, Manuela; Wielscher, Matthias; Vierlinger, Klemens; Reni, Carlotta; Oikawa, Atsuhiko; Spinetti, Gaia; Vono, Rosa; Sangalli, Elena; Montagnani, Monica

    2014-01-01

    Abstract Aims: Vascular wall-resident progenitor cells hold great promise for cardiovascular regenerative therapy. This study evaluates the impact of oxidative stress on the viability and functionality of adventitia-derived progenitor cells (APCs) from vein remnants of coronary artery bypass graft (CABG) surgery. We also investigated the antioxidant enzymes implicated in the resistance of APCs to oxidative stress-induced damage and the effect of interfering with one of them, the extracellular superoxide dismutase (EC-SOD/SOD3), on APC therapeutic action in a model of peripheral ischemia. Results: After exposure to hydrogen peroxide, APCs undergo apoptosis to a smaller extent than endothelial cells (ECs). This was attributed to up-regulation of antioxidant enzymes, especially SODs and catalase. Pharmacological inhibition of SODs increases reactive oxygen species (ROS) levels in APCs and impairs their survival. Likewise, APC differentiation results in SOD down-regulation and ROS-induced apoptosis. Oxidative stress increases APC migratory activity, while being inhibitory for ECs. In addition, oxidative stress does not impair APC capacity to promote angiogenesis in vitro. In a mouse limb ischemia model, an injection of naïve APCs, but not SOD3-silenced APCs, helps perfusion recovery and neovascularization, thus underlining the importance of this soluble isoform in protection from ischemia. Innovation: This study newly demonstrates that APCs are endowed with enhanced detoxifier and antioxidant systems and that SOD3 plays an important role in their therapeutic activity in ischemia. Conclusions: APCs from vein remnants of CABG patients express antioxidant defense mechanisms, which enable them to resist stress. These properties highlight the potential of APCs in cardiovascular regenerative medicine. Antioxid. Redox Signal. 21, 1591–1604. PMID:24512058

  8. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of plant defenses in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant defense responses have been studied through a limited number of models that may have constrained our view of plant-pathogen interactions. Discovery of new defense mechanisms should be favored by broadening the range of pathogens under study. With this aim, Arabidopsis defense response to the ‘...

  9. Brief Report: Self-Harm Is Associated with Immature Defense Mechanisms but Not Substance Use in a Nonclinical Scottish Adolescent Sample

    ERIC Educational Resources Information Center

    Brody, Stuart; Carson, Carron Maryjane

    2012-01-01

    It has been unclear whether adolescent deliberate self-harm (DSH) is more associated with substance use or with characterological impairments. Multivariate determination of (N = 114 Scottish adolescents) ever engaging in DSH (Youth Risk Behavior Survey) from alcohol use, other substance use, and immature defense mechanism use (Defense Style…

  10. Arabidopsis sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense.

    PubMed

    Lai, Zhibing; Li, Ying; Wang, Fei; Cheng, Yuan; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2011-10-01

    Necrotrophic pathogens are important plant pathogens that cause many devastating plant diseases. Despite their impact, our understanding of the plant defense response to necrotrophic pathogens is limited. The WRKY33 transcription factor is important for plant resistance to necrotrophic pathogens; therefore, elucidation of its functions will enhance our understanding of plant immunity to necrotrophic pathogens. Here, we report the identification of two WRKY33-interacting proteins, nuclear-encoded SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2, which also interact with plastid-encoded plastid RNA polymerase SIGMA FACTOR1. Both SIB1 and SIB2 contain an N-terminal chloroplast targeting signal and a putative nuclear localization signal, suggesting that they are dual targeted. Bimolecular fluorescence complementation indicates that WRKY33 interacts with SIBs in the nucleus of plant cells. Both SIB1 and SIB2 contain a short VQ motif that is important for interaction with WRKY33. The two VQ motif-containing proteins recognize the C-terminal WRKY domain and stimulate the DNA binding activity of WRKY33. Like WRKY33, both SIB1 and SIB2 are rapidly and strongly induced by the necrotrophic pathogen Botrytis cinerea. Resistance to B. cinerea is compromised in the sib1 and sib2 mutants but enhanced in SIB1-overexpressing transgenic plants. These results suggest that dual-targeted SIB1 and SIB2 function as activators of WRKY33 in plant defense against necrotrophic pathogens.

  11. A background traffic activity analysis in a canonical NATO (North Atlantic Treaty Organization) defense

    SciTech Connect

    Rogers, J.N.; Tooman, T.P.

    1989-04-01

    A canonical defense study in a NATO brigade sector on the northern flank of the US V Corps sector in the Federal Republic of Germany is wargamed to depict the expected vehicular movements during a 24 hour time period. All NATO and Warsaw Pact situations and forces played intentionally portray a ''normal'' battlefield situation, that is one in which events occur according to the established tactics and doctrines for both NATO and WP forces. Activity details which are almost always ignored in broader studies are included. The periodic displacement of high value units (e.g., artillery, air defense, headquarters and target acquisition) to preclude enemy fixing and targeting; the resupply down to company and occasionally platoon level of ammunition, petroleum, rations, etc.; the movement of commanders and staffs; the activity of combat engineers to include site preparation, construction and minefield emplacement; the action of reconnaissance and patrol units; the security of the rear area and POW processing; and the evacuation of casualties are analyzed. The resulting database records the position for every vehicle in both forces at each minute during the period of analysis and is thus an ideal framework for a variety of further studies, such as analyses of intelligence collection devices and modern ordinances. 9 refs., 30 figs., 9 tabs.

  12. Tissue-specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach.

    PubMed

    Ahsan, Nagib; Donnart, Tifenn; Nouri, Mohammad-Zaman; Komatsu, Setsuko

    2010-08-01

    A comparative proteomic approach was employed to explore tissue-specific protein expression patterns in soybean seedlings under heat stress. The changes in the protein expression profiles of soybean seedling leaves, stems, and roots were analyzed after exposure to high temperatures. A total of 54, 35, and 61 differentially expressed proteins were identified from heat-treated leaves, stems, and roots, respectively. Differentially expressed heat shock proteins (HSPs) and proteins involved in antioxidant defense were mostly up-regulated, whereas proteins associated with photosynthesis, secondary metabolism, and amino acid and protein biosynthesis were down-regulated in response to heat stress. A group of proteins, specifically low molecular weight HSPs and HSP70, were up-regulated and expressed in a similar manner in all tissues. Proteomic analysis indicated that the responses of HSP70, CPN-60 beta, and ChsHSP were tissue specific, and this observation was validated by immunoblot analysis. The heat-responsive sHSPs were not induced by other stresses such as cold and hydrogen peroxide. Taken together, these results suggest that to cope with heat stress soybean seedlings operate tissue-specific defenses and adaptive mechanisms, whereas a common defense mechanism associated with the induction of several HSPs was employed in all three tissues. In addition, tissue-specific proteins may play a crucial role in defending each type of tissues against thermal stress.

  13. A shared mechanism of defense against predators and parasites: chitin regulation and its implications for life-history theory

    PubMed Central

    Beckerman, Andrew P; de Roij, Job; Dennis, Stuart R; Little, Tom J

    2013-01-01

    Defenses against predators and parasites offer excellent illustrations of adaptive phenotypic plasticity. Despite vast knowledge about such induced defenses, they have been studied largely in isolation, which is surprising, given that predation and parasitism are ubiquitous and act simultaneously in the wild. This raises the possibility that victims must trade-off responses to predation versus parasitism. Here, we propose that arthropod responses to predators and parasites will commonly be based on the endocrine regulation of chitin synthesis and degradation. The proposal is compelling because many inducible defenses are centered on temporal or spatial modifications of chitin-rich structures. Moreover, we show how the chitin synthesis pathway ends in a split to carapace or gut chitin, and how this form of molecular regulation can be incorporated into theory on life-history trade-offs, specifically the Y-model. Our hypothesis thus spans several biological scales to address advice from Stearns that “Endocrine mechanisms may prove to be only the tip of an iceberg of physiological mechanisms that modulate the expression of genetic covariance”. PMID:24455141

  14. A shared mechanism of defense against predators and parasites: chitin regulation and its implications for life-history theory.

    PubMed

    Beckerman, Andrew P; de Roij, Job; Dennis, Stuart R; Little, Tom J

    2013-12-01

    Defenses against predators and parasites offer excellent illustrations of adaptive phenotypic plasticity. Despite vast knowledge about such induced defenses, they have been studied largely in isolation, which is surprising, given that predation and parasitism are ubiquitous and act simultaneously in the wild. This raises the possibility that victims must trade-off responses to predation versus parasitism. Here, we propose that arthropod responses to predators and parasites will commonly be based on the endocrine regulation of chitin synthesis and degradation. The proposal is compelling because many inducible defenses are centered on temporal or spatial modifications of chitin-rich structures. Moreover, we show how the chitin synthesis pathway ends in a split to carapace or gut chitin, and how this form of molecular regulation can be incorporated into theory on life-history trade-offs, specifically the Y-model. Our hypothesis thus spans several biological scales to address advice from Stearns that "Endocrine mechanisms may prove to be only the tip of an iceberg of physiological mechanisms that modulate the expression of genetic covariance".

  15. Defense use and defense understanding in children.

    PubMed

    Cramer, P; Brilliant, M A

    2001-04-01

    This study investigated the relation between children's use of defense mechanisms and their understanding of those defenses. We hypothesized that, once a child understands how a particular defense functions, the use of that defense will no longer be successful and will be replaced by another defense mechanism that is not yet understood. Defense use was assessed from the Thematic Appreception Test (TAT) stories told by 122 children; defense understanding was determined from the children's understanding of stories portraying defenses. The results indicated that younger children (mean age = 7-8) used the defense of denial more than the older children (mean age = 9-11). Older children understood the functioning of denial and projection better than the younger children. A comparison of children who did and did not understand a defense showed that younger children who understood the functioning of denial were less likely to themselves use denial. Likewise, older children who understood the functioning of projection were less likely to use this defense.

  16. Oxidative Damage and Cellular Defense Mechanisms in Sea Urchin Models of Aging

    PubMed Central

    Du, Colin; Anderson, Arielle; Lortie, Mae; Parsons, Rachel; Bodnar, Andrea

    2013-01-01

    The free radical or oxidative stress theory of aging proposes that the accumulation of oxidative cellular damage is a major contributor to the aging process and a key determinant of species longevity. This study investigates the oxidative stress theory in a novel model for aging research, the sea urchin. Sea urchins present a unique model for the study of aging due to the existence of species with tremendously different natural life spans including some species with extraordinary longevity and negligible senescence. Cellular oxidative damage, antioxidant capacity and proteasome enzyme activities were measured in the tissues of three sea urchin species: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus and Strongylocentrotus purpuratus which has an intermediate lifespan. Levels of protein carbonyls and 4-hydroxynonenal (HNE) measured in tissues (muscle, nerve, esophagus, gonad, coelomocytes, ampullae) and 8-hydroxy-2’-deoxyguanosine (8-OHdG) measured in cell-free coelomic fluid showed no general increase with age. The fluorescent age-pigment lipofuscin measured in muscle, nerve and esophagus, increased with age however it appeared to be predominantly extracellular. Antioxidant mechanisms (total antioxidant capacity, superoxide dismutase) and proteasome enzyme activities were maintained with age. In some instances, levels of oxidative damage were lower and antioxidant activity higher in cells or tissues of the long-lived species compared to the short-lived species, however further studies are required to determine the relationship between oxidative damage and longevity in these animals. Consistent with the predictions of the oxidative stress theory of aging, the results suggest that negligible senescence is accompanied by a lack of accumulation of cellular oxidative damage with age and maintenance of antioxidant capacity and proteasome enzyme activities may be important mechanisms to mitigate damage. PMID:23707327

  17. The Integrity of the Esophageal Mucosa. Balance Between Offensive and Defensive Mechanisms

    PubMed Central

    Orlando, Roy C.

    2010-01-01

    Heartburn is the most common and characteristic symptom of gastroesophageal reflux disease. It ultimately results from contact of refluxed gastric acid with nociceptors within the esophageal mucosa and transmission of this peripheral signal to the central nervous system for cognition. Healthy esophageal epithelium provides an effective barrier between refluxed gastric acid and esophageal nociceptors; but this barrier is vulnerable to attack and damage, particularly by acidic gastric contents. How gastric acid is countered by defensive elements within the esophageal mucosa is a major focus of this discussion. When the defense is successful, the subject is asymptomatic and when unsuccessful, the subject experiences heartburn. Those with heartburn commonly fall into one of three endoscopic types: nonerosive reflux disease, erosive esophagitis and Barrett's esophagus. Although what determines endoscopic type remains unknown; it is proposed herein that inflammation plays a key, modulating role. PMID:21126700

  18. Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity.

    PubMed

    Takahashi, Daisuke; Shukla, Sanjeev K; Prakash, Om; Zhang, Guolong

    2010-09-01

    Antimicrobial host defense peptides (HDPs) are a critical component of the innate immunity with microbicidal, endotoxin-neutralizing, and immunostimulatory properties. HDPs kill bacteria primarily through non-specific membrane lysis, therefore with a less likelihood of provoking resistance. Extensive structure-activity relationship studies with a number of HDPs have revealed that net charge, amphipathicity, hydrophobicity, and structural propensity are among the most important physicochemical and structural parameters that dictate their ability to interact with and disrupt membranes. A delicate balance among these factors, rather than a mere alteration of a single factor, is critically important for HDPs to ensure the antimicrobial potency and target cell selectivity. With a better understanding of the structural determinants of HDPs for their membrane-lytic activities, it is expected that novel HDP-based antimicrobials with minimum toxicity to eukaryotic cells can be developed for resistant infections, which have become a global public health crisis.

  19. NODULES WITH ACTIVATED DEFENSE 1 is required for maintenance of rhizobial endosymbiosis in Medicago truncatula.

    PubMed

    Wang, Chao; Yu, Haixiang; Luo, Li; Duan, Liujian; Cai, Liuyang; He, Xinxing; Wen, Jiangqi; Mysore, Kirankumar S; Li, Guoliang; Xiao, Aifang; Duanmu, Deqiang; Cao, Yangrong; Hong, Zonglie; Zhang, Zhongming

    2016-10-01

    The symbiotic interaction between legume plants and rhizobia results in the formation of root nodules, in which symbiotic plant cells host and harbor thousands of nitrogen-fixing rhizobia. Here, a Medicago truncatula nodules with activated defense 1 (nad1) mutant was identified using reverse genetics methods. The mutant phenotype was characterized using cell and molecular biology approaches. An RNA-sequencing technique was used to analyze the transcriptomic reprogramming of nad1 mutant nodules. In the nad1 mutant plants, rhizobial infection and propagation in infection threads are normal, whereas rhizobia and their symbiotic plant cells become necrotic immediately after rhizobia are released from infection threads into symbiotic cells of nodules. Defense-associated responses were detected in nad1 nodules. NAD1 is specifically present in root nodule symbiosis plants with the exception of Morus notabilis, and the transcript is highly induced in nodules. NAD1 encodes a small uncharacterized protein with two predicted transmembrane helices and is localized at the endoplasmic reticulum. Our data demonstrate a positive role for NAD1 in the maintenance of rhizobial endosymbiosis during nodulation. PMID:27245091

  20. Defense/stress responses activated by chitosan in sycamore cultured cells.

    PubMed

    Malerba, Massimo; Crosti, Paolo; Cerana, Raffaella

    2012-01-01

    Chitosan (CHT) is a natural, non-toxic, and inexpensive compound obtained by partial alkaline deacetylation of chitin, the main component of the exoskeleton of crustaceans and other arthropods. The unique physiological and biological properties of CHT make this polymer useful for a wide range of industries. In agriculture, CHT is used to control numerous pre- and postharvest diseases on various horticultural commodities. In recent years, much attention has been devoted to CHT as an elicitor of defense responses in plants, which include raising of cytosolic Ca(2+), activation of MAP kinases, callose apposition, oxidative burst, hypersensitive response, synthesis of abscisic acid, jasmonate, phytoalexins, and pathogenesis-related proteins. In this work, we investigated the effects of different CHT concentrations on some defense/stress responses of sycamore (Acer pseudoplatanus L.) cultured cells. CHT induced accumulation of dead cells, and of cells with fragmented DNA, production of H(2)O(2) and nitric oxide, release of cytochrome c from the mitochondrion, accumulation of regulative 14-3-3 proteins in the cytosol and of HSP70 molecular chaperone binding protein in the endoplasmic reticulum, accompanied by marked modifications in the architecture of this cell organelle.

  1. Immune regulatory activities of fowlicidin-1, a cathelicidin host defense peptide.

    PubMed

    Bommineni, Yugendar R; Pham, Giang H; Sunkara, Lakshmi T; Achanta, Mallika; Zhang, Guolong

    2014-05-01

    Appropriate modulation of immunity is beneficial in antimicrobial therapy and vaccine development. Host defense peptides (HDPs) constitute critically important components of innate immunity with both antimicrobial and immune regulatory activities. We previously showed that a chicken HDP, namely fowlicidin-1(6-26), has potent antibacterial activities in vitro and in vivo. Here we further revealed that fowl-1(6-26) possesses strong immunomodulatory properties. The peptide is chemotactic specifically to neutrophils, but not monocytes or lymphocytes, after injected into the mouse peritoneum. Fowl-1(6-26) also has the capacity to activate macrophages by inducing the expression of inflammatory mediators including IL-1β, CCL2, and CCL3. However, unlike bacterial lipopolysaccharide that triggers massive production of inflammatory cytokines and chemokines, fowl-1(6-26) only marginally increased their expression in mouse RAW264.7 macrophages. Additionally, fowl-1(6-26) enhanced the surface expression of MHC II and CD86 on RAW264.7 cells, suggesting that it may facilitate development of adaptive immune response. Indeed, co-immunization of mice with chicken ovalbumin (OVA) and fowl-1(6-26) augmented both OVA-specific IgG1 and IgG2a titers, relative to OVA alone. We further showed that fowl-1(6-26) is capable of preventing a methicillin-resistant Staphylococcus aureus (MRSA) infection due to its enhancement of host defense. All mice survived from an otherwise lethal infection when the peptide was administered 1-2 days prior to MRSA infection, and 50% mice were protected if receiving the peptide 4 days before infection. Taken together, with a strong capacity to stimulate innate and adaptive immunity, fowl-1(6-26) may have potential to be developed as a novel antimicrobial and a vaccine adjuvant.

  2. Antioxidant defense parameters as predictive biomarkers for fermentative capacity of active dried wine yeast.

    PubMed

    Gamero-Sandemetrio, Esther; Gómez-Pastor, Rocío; Matallana, Emilia

    2014-08-01

    The production of active dried yeast (ADY) is a common practice in industry for the maintenance of yeast starters and as a means of long term storage. The process, however, causes multiple cell injuries, with oxidative damage being one of the most important stresses. Consequentially, dehydration tolerance is a highly appreciated property in yeast for ADY production. In this study we analyzed the cellular redox environment in three Saccharomyces cerevisiae wine strains, which show markedly different fermentative capacities after dehydration. To measure/quantify the effect of dehydration on the S. cerevisiae strains, we used: (i) fluorescent probes; (ii) antioxidant enzyme activities; (ii) intracellular damage; (iii) antioxidant metabolites; and (iv) gene expression, to select a minimal set of biochemical parameters capable of predicting desiccation tolerance in wine yeasts. Our results show that naturally enhanced antioxidant defenses prevent oxidative damage after wine yeast biomass dehydration and improve fermentative capacity. Based on these results we chose four easily assayable parameters/biomarkers for the selection of industrial yeast strains of interest for ADY production: trehalose and glutathione levels, and glutathione reductase and catalase enzymatic activities. Yeast strains selected in accordance with this process display high levels of trehalose, low levels of oxidized glutathione, a high induction of glutathione reductase activity, as well as a high basal level and sufficient induction of catalase activity, which are properties inherent in superior ADY strains.

  3. Activity of potent and selective host defense peptide mimetics in mouse models of oral candidiasis.

    PubMed

    Ryan, Lisa K; Freeman, Katie B; Masso-Silva, Jorge A; Falkovsky, Klaudia; Aloyouny, Ashwag; Markowitz, Kenneth; Hise, Amy G; Fatahzadeh, Mahnaz; Scott, Richard W; Diamond, Gill

    2014-07-01

    There is a strong need for new broadly active antifungal agents for the treatment of oral candidiasis that not only are active against many species of Candida, including drug-resistant strains, but also evade microbial countermeasures which may lead to resistance. Host defense peptides (HDPs) can provide a foundation for the development of such agents. Toward this end, we have developed fully synthetic, small-molecule, nonpeptide mimetics of the HDPs that improve safety and other pharmaceutical properties. Here we describe the identification of several HDP mimetics that are broadly active against C. albicans and other species of Candida, rapidly fungicidal, and active against yeast and hyphal cultures and that exhibit low cytotoxicity for mammalian cells. Importantly, specificity for Candida over commensal bacteria was also evident, thereby minimizing potential damage to the endogenous microbiome which otherwise could favor fungal overgrowth. Three compounds were tested as topical agents in two different mouse models of oral candidiasis and were found to be highly active. Following single-dose administrations, total Candida burdens in tongues of infected animals were reduced up to three logs. These studies highlight the potential of HDP mimetics as a new tool in the antifungal arsenal for the treatment of oral candidiasis.

  4. Activity of Potent and Selective Host Defense Peptide Mimetics in Mouse Models of Oral Candidiasis

    PubMed Central

    Ryan, Lisa K.; Freeman, Katie B.; Masso-Silva, Jorge A.; Falkovsky, Klaudia; Aloyouny, Ashwag; Markowitz, Kenneth; Hise, Amy G.; Fatahzadeh, Mahnaz; Scott, Richard W.

    2014-01-01

    There is a strong need for new broadly active antifungal agents for the treatment of oral candidiasis that not only are active against many species of Candida, including drug-resistant strains, but also evade microbial countermeasures which may lead to resistance. Host defense peptides (HDPs) can provide a foundation for the development of such agents. Toward this end, we have developed fully synthetic, small-molecule, nonpeptide mimetics of the HDPs that improve safety and other pharmaceutical properties. Here we describe the identification of several HDP mimetics that are broadly active against C. albicans and other species of Candida, rapidly fungicidal, and active against yeast and hyphal cultures and that exhibit low cytotoxicity for mammalian cells. Importantly, specificity for Candida over commensal bacteria was also evident, thereby minimizing potential damage to the endogenous microbiome which otherwise could favor fungal overgrowth. Three compounds were tested as topical agents in two different mouse models of oral candidiasis and were found to be highly active. Following single-dose administrations, total Candida burdens in tongues of infected animals were reduced up to three logs. These studies highlight the potential of HDP mimetics as a new tool in the antifungal arsenal for the treatment of oral candidiasis. PMID:24752272

  5. Low Concentrations of Hydrogen Peroxide Activate the Antioxidant Defense System in Human Sperm Cells.

    PubMed

    Evdokimov, V V; Barinova, K V; Turovetskii, V B; Muronetz, V I; Schmalhausen, E V

    2015-09-01

    The effect of low concentrations of hydrogen peroxide (10-100 µM) on sperm motility and on the activity of the sperm enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDS) was investigated. Incubation of semen samples with 10 and 100 µM hydrogen peroxide increased the content of spermatozoa with progressive motility by 20 and 18%, respectively, and enhanced the activity of GAPDS in the sperm cells by 27 and 20% compared to a semen sample incubated without additions. It was also found that incubation with 10 µM hydrogen peroxide increased the content of reduced glutathione (GSH) in sperm cells by 50% on average compared to that in the control samples. It is supposed that low concentrations of hydrogen peroxide activate the pentose phosphate pathway, resulting in NADPH synthesis and the reduction of the oxidized glutathione by glutathione reductase yielding GSH. The formed GSH reduces the oxidized cysteine residues of the GAPDS active site, increasing the activity of the enzyme, which in turn enhances the content of sperm cells with progressive motility. Thus, the increase in motile spermatozoa in the presence of low concentrations of hydrogen peroxide can serve as an indicator of normal functioning of the antioxidant defense system in sperm cells.

  6. Antioxidant defense parameters as predictive biomarkers for fermentative capacity of active dried wine yeast.

    PubMed

    Gamero-Sandemetrio, Esther; Gómez-Pastor, Rocío; Matallana, Emilia

    2014-08-01

    The production of active dried yeast (ADY) is a common practice in industry for the maintenance of yeast starters and as a means of long term storage. The process, however, causes multiple cell injuries, with oxidative damage being one of the most important stresses. Consequentially, dehydration tolerance is a highly appreciated property in yeast for ADY production. In this study we analyzed the cellular redox environment in three Saccharomyces cerevisiae wine strains, which show markedly different fermentative capacities after dehydration. To measure/quantify the effect of dehydration on the S. cerevisiae strains, we used: (i) fluorescent probes; (ii) antioxidant enzyme activities; (ii) intracellular damage; (iii) antioxidant metabolites; and (iv) gene expression, to select a minimal set of biochemical parameters capable of predicting desiccation tolerance in wine yeasts. Our results show that naturally enhanced antioxidant defenses prevent oxidative damage after wine yeast biomass dehydration and improve fermentative capacity. Based on these results we chose four easily assayable parameters/biomarkers for the selection of industrial yeast strains of interest for ADY production: trehalose and glutathione levels, and glutathione reductase and catalase enzymatic activities. Yeast strains selected in accordance with this process display high levels of trehalose, low levels of oxidized glutathione, a high induction of glutathione reductase activity, as well as a high basal level and sufficient induction of catalase activity, which are properties inherent in superior ADY strains. PMID:24644263

  7. Tetraploidization of diploid Dioscorea results in activation of the antioxidant defense system and increased heat tolerance.

    PubMed

    Zhang, Xiao-Yi; Hu, Chun-Gen; Yao, Jia-Ling

    2010-01-15

    Polyploidy is reported to show increased tolerance to environmental stress. In this work, tetraploid plants of Dioscorea zingiberensis were obtained by colchicine treatment of shoots propagated in vitro. The highest tetraploid induction rate was achieved by treatment with 0.15% colchicine for 24h. Diploid and tetraploid plants were exposed to normal (28 degrees C) and high temperature (42 degrees C) for 5d during which physiological indices were measured. Compared with diploid plants, relative electrolyte leakage and contents of malondialdehyde, superoxide anions and hydrogen peroxide were lower in tetraploids, while activities of antioxidant enzymes, such as superoxide dismutase, peroxidase, catalase, ascorbate peroxidase and glutathione reductase, were stimulated and antioxidants (ascorbic acid and glutathione) were maintained at high concentrations. These results indicate that tetraploid plants possess a stronger antioxidant defense system and increased heat tolerance. PMID:19692145

  8. Defensive activation during the rubber hand illusion: Ownership versus proprioceptive drift.

    PubMed

    Riemer, Martin; Bublatzky, Florian; Trojan, Jörg; Alpers, Georg W

    2015-07-01

    A strong link between body perception and emotional experience has been proposed. To examine the interaction between body perception and anticipatory anxiety, two well-established paradigms were combined: The rubber hand illusion (RHI) and the threat-of-shock paradigm. An artificial hand and the participants' own hand (hidden from sight) were touched synchronously or asynchronously, while either threat-of-shock or safety was cued. Potentiated startle reflexes and enhanced skin conductance responses were observed during threat as compared to safety conditions, but threat conditions did not interact with illusory body perceptions. Thus, defense system activation was not modulated by altered body representations. Physiological responses increased with the sense of ownership for the artificial limb, but not with proprioceptive drift towards its location. The results indicate that ownership ratings and proprioceptive drift capture different aspects of the RHI. The study presents a new approach to investigate the relationship between body representations and emotional states.

  9. Identification of Synthetic and Natural Host Defense Peptides with Leishmanicidal Activity

    PubMed Central

    Marr, A. K.; Cen, S.; Hancock, R. E. W.

    2016-01-01

    Leishmania parasites are a major public health problem worldwide. Effective treatment of leishmaniasis is hampered by the high incidence of adverse effects to traditional drug therapy and the emergence of resistance to current therapeutics. A vaccine is currently not available. Host defense peptides have been investigated as novel therapeutic agents against a wide range of pathogens. Here we demonstrate that the antimicrobial peptide LL-37 and the three synthetic peptides E6, L-1018, and RI-1018 exhibit leishmanicidal activity against promastigotes and intramacrophage amastigotes of Leishmania donovani and Leishmania major. We also report that the Leishmania protease/virulence factor GP63 confers protection to Leishmania from the cytolytic properties of all l-form peptides (E6, L-1018, and LL-37) but not the d-form peptide RI-1018. The results suggest that RI-1018, E6, and LL-37 are promising peptides to develop further into components for antileishmanial therapy. PMID:26883699

  10. Defensive activation during the rubber hand illusion: Ownership versus proprioceptive drift.

    PubMed

    Riemer, Martin; Bublatzky, Florian; Trojan, Jörg; Alpers, Georg W

    2015-07-01

    A strong link between body perception and emotional experience has been proposed. To examine the interaction between body perception and anticipatory anxiety, two well-established paradigms were combined: The rubber hand illusion (RHI) and the threat-of-shock paradigm. An artificial hand and the participants' own hand (hidden from sight) were touched synchronously or asynchronously, while either threat-of-shock or safety was cued. Potentiated startle reflexes and enhanced skin conductance responses were observed during threat as compared to safety conditions, but threat conditions did not interact with illusory body perceptions. Thus, defense system activation was not modulated by altered body representations. Physiological responses increased with the sense of ownership for the artificial limb, but not with proprioceptive drift towards its location. The results indicate that ownership ratings and proprioceptive drift capture different aspects of the RHI. The study presents a new approach to investigate the relationship between body representations and emotional states. PMID:25960069

  11. Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions.

    PubMed

    Greenberg, J T; Guo, A; Klessig, D F; Ausubel, F M

    1994-05-20

    In plants, the hypersensitive response (HR) to pathogens involves rapid cell death, which is hypothesized to arise from the activation of a cell death program. We describe mutant A. thaliana plants that contain lesions in a single accelerated cell death (ACD) gene called ACD2 and that bypass the need for pathogen exposure to induce the HR. acd2 plants that develop spontaneous lesions show typical HR characteristics both within the necrotic tissue and within the healthy part of the plant, including: modification of plant cell walls, resistance to bacterial pathogens, and accumulation of defense-related gene transcripts, the signal molecule salicylic acid and an antimicrobial compound. We propose that the ACD2 gene is involved in a pathway(s) that negatively regulates a genetically programmed HR.

  12. The use of the insanity defense as a jail diversion mechanism for mentally ill persons charged with misdemeanors.

    PubMed

    Schaefer, Michele N; Bloom, Joseph D

    2005-01-01

    Heightened awareness and concern regarding the large number of mentally ill misdemeanants in jails has led to a search for alternatives to jail and to the development nationwide of jail diversion programs for offenders with mental illness. Two such mechanisms-diversion to civil commitment and the use of mental health courts-are briefly reviewed. In Oregon, however, a rather unique mechanism is used to defer mentally ill misdemeanants (in addition to felons) from the criminal justice system: the insanity defense, with subsequent placement of the individual under Psychiatric Security Review Board jurisdiction. Statistics regarding such use from 1978 to 2001 are provided. The authors compare and contrast this jail alternative with both mental health courts and diversion to civil commitment, and discuss questions related to the feasibility of larger-scale use of this mechanism.

  13. Increased proliferation and decreased membrane permeability as defense mechanisms of Fusobacterium nucleatum against human neutrophilic peptide-1.

    PubMed

    Keskin, Mutlu; Könönen, Eija; Söderling, Eva; Isik, Gülden; Firatli, Erhan; Uitto, Veli-Jukka; Gürsoy, Ulvi Kahraman

    2014-12-01

    Human neutrophilic peptides (HNPs) constitute a class of host defense molecules, which contribute to the non-oxidative killing of bacteria and other microorganisms. Since the adaptability is crucial to bacterial survival in changing environments, it is of interest to know how Fusobacterium nucleatum, the major bridge organism connecting early and late colonizers in dental biofilms, defends itself against HNPs. This study aimed to examine the planktonic growth, membrane permeability, and biofilm formation characteristics as defense mechanisms of F. nucleatum against HNP-1. In all experiments, the type strain of F. nucleatum (ssp. nucleatum ATCC 25586) and two clinical strains (ssp. nucleatum AHN 9508 and ssp. polymorphum AHN 9910) were used. Planktonic growth (measured in colony forming units), capsular polysaccharide production (visualized by Ziehl-Neelsen stain), membrane permeability (demonstrated as N-phenyl-1-naphthylamine uptake), biofilm formation, and established biofilm development (measured as total mass and polysaccharide levels) were analyzed in the presence of 0 μg/ml (control), 1 μg/ml, 5 μg/ml, and 10 μg/ml of HNP-1. Planktonic growth of the strains AHN 9508 and ATCC 25586 were significantly (p<0.05) increased in the presence of HNP-1, while their membrane permeability decreased (p<0.005) in the planktonic form. HNP-1 decreased the biofilm formation of the strains ATCC 25586 and AHN 9910, whereas it increased the growth of the strain AHN 9508 in established biofilms. Capsule formation and polysaccharide production were not observed in any strain. We conclude that the inhibition of the membrane permeability and the increase in planktonic and established biofilm growth could act as bacterial defense mechanisms against neutrophilic defensins. In addition, this strain-dependent survival ability against HNP-1 may explain the variation in the virulence of different F. nucleatum strains.

  14. Pterostilbene Decreases the Antioxidant Defenses of Aggressive Cancer Cells In Vivo: A Physiological Glucocorticoids- and Nrf2-Dependent Mechanism

    PubMed Central

    Benlloch, María; Obrador, Elena; Valles, Soraya L.; Rodriguez, María L.; Sirerol, J. Antoni; Alcácer, Javier; Pellicer, José A.; Salvador, Rosario; Cerdá, Concha; Sáez, Guillermo T.

    2016-01-01

    Abstract Aims: Polyphenolic phytochemicals have anticancer properties. However, in mechanistic studies, lack of correlation with the bioavailable concentrations is a critical issue. Some reports had suggested that these molecules downregulate the stress response, which may affect growth and the antioxidant protection of malignant cells. Initially, we studied this potential underlying mechanism using different human melanomas (with genetic backgrounds correlating with most melanomas), growing in nude mice as xenografts, and pterostilbene (Pter, a natural dimethoxylated analog of resveratrol). Results: Intravenous administration of Pter decreased human melanoma growth in vivo. However, Pter, at levels measured within the tumors, did not affect melanoma growth in vitro. Pter inhibited pituitary production of the adrenocorticotropin hormone (ACTH), decreased plasma levels of corticosterone, and thereby downregulated the glucocorticoid receptor- and nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-dependent antioxidant defense system in growing melanomas. Exogenous corticosterone or genetically induced Nrf2 overexpression in melanoma cells prevented the inhibition of tumor growth and decreased antioxidant defenses in these malignant cells. These effects and mechanisms were also found in mice bearing different human pancreatic cancers. Glutathione depletion (selected as an antimelanoma strategy) facilitated the complete elimination by chemotherapy of melanoma cells isolated from mice treated with Pter. Innovation: Although bioavailability-related limitations may preclude direct anticancer effects in vivo, natural polyphenols may also interfere with the growth and defense of cancer cells by downregulating the pituitary gland-dependent ACTH synthesis. Conclusions: Pter downregulates glucocorticoid production, thus decreasing the glucocorticoid receptor and Nrf2-dependent signaling/transcription and the antioxidant protection of melanoma and pancreatic cancer cells

  15. Lead tolerance mechanism in Conyza canadensis: subcellular distribution, ultrastructure, antioxidative defense system, and phytochelatins.

    PubMed

    Li, Ying; Zhou, Chuifan; Huang, Meiying; Luo, Jiewen; Hou, Xiaolong; Wu, Pengfei; Ma, Xiangqing

    2016-03-01

    We used hydroponic experiments to examine the effects of different concentrations of lead (Pb) on the performance of the Pb-tolerable plant Conyza canadensis. In these experiments, most of the Pb was accumulated in the roots; there was very little Pb accumulated in stems and leaves. C. canadensis is able to take up significant amounts of Pb whilst greatly restricting its transportation to specific parts of the aboveground biomass. High Pb concentrations inhibited plant growth, increased membrane permeability, elevated antioxidant enzyme activity in roots, and caused a significant increase in root H2O2 and malondialdehyde content. Analysis of Pb content at the subcellular level showed that most Pb was associated with the cell wall fraction, followed by the nucleus-rich fraction, and with a minority present in the mitochondrial and soluble fractions. Furthermore, transmission electron microscopy and energy dispersive X-ray analysis of root cells revealed that the cell wall and intercellular space in C. canadensis roots are the main locations of Pb accumulation. Additionally, high Pb concentrations adversely affected the cellular structure of C. canadensis roots. The increased enzyme activity suggests that the antioxidant system may play an important role in eliminating or alleviating Pb toxicity in C. canadensis roots. However, the levels of non-protein sulfhydryl compounds, glutathione, and phytochelatin did not significantly change in either the roots or leaves under Pb-contaminated treatments. Our results provide strong evidence that cell walls restrict Pb uptake into the root and act as an important barrier protecting root cells, while demonstrating that antioxidant enzyme levels are correlated with Pb exposure. These findings demonstrate the roles played by these detoxification mechanisms in supporting Pb tolerance in C. canadensis. PMID:26733305

  16. Lead tolerance mechanism in Conyza canadensis: subcellular distribution, ultrastructure, antioxidative defense system, and phytochelatins.

    PubMed

    Li, Ying; Zhou, Chuifan; Huang, Meiying; Luo, Jiewen; Hou, Xiaolong; Wu, Pengfei; Ma, Xiangqing

    2016-03-01

    We used hydroponic experiments to examine the effects of different concentrations of lead (Pb) on the performance of the Pb-tolerable plant Conyza canadensis. In these experiments, most of the Pb was accumulated in the roots; there was very little Pb accumulated in stems and leaves. C. canadensis is able to take up significant amounts of Pb whilst greatly restricting its transportation to specific parts of the aboveground biomass. High Pb concentrations inhibited plant growth, increased membrane permeability, elevated antioxidant enzyme activity in roots, and caused a significant increase in root H2O2 and malondialdehyde content. Analysis of Pb content at the subcellular level showed that most Pb was associated with the cell wall fraction, followed by the nucleus-rich fraction, and with a minority present in the mitochondrial and soluble fractions. Furthermore, transmission electron microscopy and energy dispersive X-ray analysis of root cells revealed that the cell wall and intercellular space in C. canadensis roots are the main locations of Pb accumulation. Additionally, high Pb concentrations adversely affected the cellular structure of C. canadensis roots. The increased enzyme activity suggests that the antioxidant system may play an important role in eliminating or alleviating Pb toxicity in C. canadensis roots. However, the levels of non-protein sulfhydryl compounds, glutathione, and phytochelatin did not significantly change in either the roots or leaves under Pb-contaminated treatments. Our results provide strong evidence that cell walls restrict Pb uptake into the root and act as an important barrier protecting root cells, while demonstrating that antioxidant enzyme levels are correlated with Pb exposure. These findings demonstrate the roles played by these detoxification mechanisms in supporting Pb tolerance in C. canadensis.

  17. Model Wheat Genotypes as Tools to Uncover Effective Defense Mechanisms Against the Hemibiotrophic Fungus Bipolaris sorokiniana.

    PubMed

    Ibeagha, Aloysius Ebelechukwu; Hückelhoven, Ralph; Schäfer, Patrick; Singh, Devendra Pal; Kogel, Karl-Heinz

    2005-05-01

    ABSTRACT We investigated the interaction of several differentially resistant wheatwith the hemibiotrophic phytopathogenic fungus Bipolaris sorokiniana (teleomorph Cochliobolus sativus). Wheat genotypes Yangmai, M 3 (W7976), Shanghai 4, and Chirya 7 showed higher levels of resistancewith cv. Sonalika, used as a susceptible control. In amicroscopic inspection, we found that fungal penetration intoepidermal layer failed mostly through a cell wall-associated defense. In cases where the fungus successfully overcame epidermal, its spread within the mesophyll tissue (necrotrophic phase) wasin the more resistant genotypes. Epidermal cell wall-associated, spreading as well as the extent of electrolyte leakage of infected, correlated well with field resistance. We propose that cellular hostsuch as formation of cell wall appositions as well as the degreeearly mesophyll spreading of fungal hyphae are indicative of thepotential of the respective host genotype and, therefore, could befor the characterization of new spot blotch resistance traits in cereals.

  18. Evidence that ferritin is UV inducible in human skin: part of a putative defense mechanism.

    PubMed

    Applegate, L A; Scaletta, C; Panizzon, R; Frenk, E

    1998-07-01

    As ferritin has been identified as an important factor in antioxidant defense in cultured human skin cells we evaluated the presence of ferritin in human skin in vivo and the modifications following irradiation with UVA I, UVA I + II, and solar simulating light by immunohistochemical analysis. We report that the putative protective protein ferritin is regularly present in the basal layer of unirradiated epidermis in vivo and that the induction of ferritin was dependent on wavelength and cell type. Following UVA I radiation, ferritin increased both in epidermal and in dermal tissue. The same response occurred, although to a lesser extent, with UVA I + II but did not occur following solar simulating radiation. Quantitative analysis for ferritin in cultured keratinocytes and fibroblasts from seven individuals following each UV spectra were also assessed by enzyme-linked immunosorbent assay. The induction of ferritin by UV was highly dependent on the waveband and cell type. UVA I and UVA I + II radiations induced ferritin expression in dermal fibroblasts up to 260% and 200% over basal levels, respectively. Solar simulating radiation produced only a small induction of approximately 130% over basal ferritin levels in dermal fibroblasts. Ferritin increased in cultured fibroblasts as early as 3 h post-UVA with a peak at 6 h that remained until 48 h; there was no observable qualitative or quantitative increase seen in the undifferentiated cultured epidermal keratinocytes. Our findings indicate that the putative defense system of ferritin exists in human skin in vivo and its induction is dependent on UV spectra and cell type. The increased concentrations of this antioxidant in human skin following acute UV radiation could afford increased protection against subsequent oxidative stress.

  19. Sulforaphane prevents pulmonary damage in response to inhaled arsenic by activating the Nrf2-defense response

    SciTech Connect

    Zheng, Yi; Tao, Shasha; Lian, Fangru; Chau, Binh T.; Chen, Jie; Sun, Guifan; Fang, Deyu; Lantz, R. Clark; Zhang, Donna D.

    2012-12-15

    Exposure to arsenic is associated with an increased risk of lung disease. Novel strategies are needed to reduce the adverse health effects associated with arsenic exposure in the lung. Nrf2, a transcription factor that mediates an adaptive cellular defense response, is effective in detoxifying environmental insults and prevents a broad spectrum of diseases induced by environmental exposure to harmful substances. In this report, we tested whether Nrf2 activation protects mice from arsenic-induced toxicity. We used an in vivo arsenic inhalation model that is highly relevant to low environmental human exposure to arsenic-containing dusts. Two-week exposure to arsenic-containing dust resulted in pathological alterations, oxidative DNA damage, and mild apoptotic cell death in the lung; all of which were blocked by sulforaphane (SF) in an Nrf2-dependent manner. Mechanistically, SF-mediated activation of Nrf2 alleviated inflammatory responses by modulating cytokine production. This study provides strong evidence that dietary intervention targeting Nrf2 activation is a feasible approach to reduce adverse health effects associated with arsenic exposure. -- Highlights: ► Exposed to arsenic particles and/or SF have elevated Nrf2 and its target genes. ► Sulforaphane prevents pathological alterations, oxidative damage and cell death. ► Sulforaphane alleviates infiltration of inflammatory cells into the lungs. ► Sulforaphane suppresses arsenic-induced proinflammatory cytokine production.

  20. Overlapping and complementary oxidative stress defense mechanisms in nontypeable Haemophilus influenzae.

    PubMed

    Harrison, Alistair; Baker, Beth D; Munson, Robert S

    2015-01-01

    The Gram-negative commensal bacterium nontypeable Haemophilus influenzae (NTHI) can cause respiratory tract diseases that include otitis media, sinusitis, exacerbations of chronic obstructive pulmonary disease, and bronchitis. During colonization and infection, NTHI withstands oxidative stress generated by reactive oxygen species produced endogenously, by the host, and by other copathogens and flora. These reactive oxygen species include superoxide, hydrogen peroxide (H2O2), and hydroxyl radicals, whose killing is amplified by iron via the Fenton reaction. We previously identified genes that encode proteins with putative roles in protection of the NTHI isolate strain 86-028NP against oxidative stress. These include catalase (HktE), peroxiredoxin/glutaredoxin (PgdX), and a ferritin-like protein (Dps). Strains were generated with mutations in hktE, pgdX, and dps. The hktE mutant and a pgdX hktE double mutant were more sensitive than the parent to killing by H2O2. Conversely, the pgdX mutant was more resistant to H2O2 due to increased catalase activity. Supporting the role of killing via the Fenton reaction, binding of iron by Dps significantly mitigated the effect of H2O2-mediated killing. NTHI thus utilizes several effectors to resist oxidative stress, and regulation of free iron is critical to this protection. These mechanisms will be important for successful colonization and infection by this opportunistic human pathogen. PMID:25368297

  1. Overlapping and complementary oxidative stress defense mechanisms in nontypeable Haemophilus influenzae.

    PubMed

    Harrison, Alistair; Baker, Beth D; Munson, Robert S

    2015-01-01

    The Gram-negative commensal bacterium nontypeable Haemophilus influenzae (NTHI) can cause respiratory tract diseases that include otitis media, sinusitis, exacerbations of chronic obstructive pulmonary disease, and bronchitis. During colonization and infection, NTHI withstands oxidative stress generated by reactive oxygen species produced endogenously, by the host, and by other copathogens and flora. These reactive oxygen species include superoxide, hydrogen peroxide (H2O2), and hydroxyl radicals, whose killing is amplified by iron via the Fenton reaction. We previously identified genes that encode proteins with putative roles in protection of the NTHI isolate strain 86-028NP against oxidative stress. These include catalase (HktE), peroxiredoxin/glutaredoxin (PgdX), and a ferritin-like protein (Dps). Strains were generated with mutations in hktE, pgdX, and dps. The hktE mutant and a pgdX hktE double mutant were more sensitive than the parent to killing by H2O2. Conversely, the pgdX mutant was more resistant to H2O2 due to increased catalase activity. Supporting the role of killing via the Fenton reaction, binding of iron by Dps significantly mitigated the effect of H2O2-mediated killing. NTHI thus utilizes several effectors to resist oxidative stress, and regulation of free iron is critical to this protection. These mechanisms will be important for successful colonization and infection by this opportunistic human pathogen.

  2. RNase 7 in Cutaneous Defense

    PubMed Central

    Rademacher, Franziska; Simanski, Maren; Harder, Jürgen

    2016-01-01

    RNase 7 belongs to the RNase A superfamily and exhibits a broad spectrum of antimicrobial activity against various microorganisms. RNase 7 is expressed in human skin, and expression in keratinocytes can be induced by cytokines and microbes. These properties suggest that RNase 7 participates in innate cutaneous defense. In this review, we provide an overview about the role of RNase 7 in cutaneous defense with focus on the molecular mechanism of the antimicrobial activity of RNase 7, the regulation of RNase 7 expression, and the role of RNase 7 in skin diseases. PMID:27089327

  3. Activation of the Nrf2 Cell Defense Pathway by Ancient Foods: Disease Prevention by Important Molecules and Microbes Lost from the Modern Western Diet.

    PubMed

    Senger, Donald R; Li, Dan; Jaminet, Shou-Ching; Cao, Shugeng

    2016-01-01

    The Nrf2 (NFE2L2) cell defense pathway protects against oxidative stress and disorders including cancer and neurodegeneration. Although activated modestly by oxidative stress alone, robust activation of the Nrf2 defense mechanism requires the additional presence of co-factors that facilitate electron exchange. Various molecules exhibit this co-factor function, including sulforaphane from cruciferous vegetables. However, natural co-factors that are potent and widely available from dietary sources have not been identified previously. The objectives of this study were to investigate support of the Nrf2 cell defense pathway by the alkyl catechols: 4-methylcatechol, 4-vinylcatechol, and 4-ethylcatechol. These small electrochemicals are naturally available from numerous sources but have not received attention. Findings reported here illustrate that these compounds are indeed potent co-factors for activation of the Nrf2 pathway both in vitro and in vivo. Each strongly supports expression of Nrf2 target genes in a variety of human cell types; and, in addition, 4-ethylcatechol is orally active in mice. Furthermore, findings reported here identify important and previously unrecognized sources of these compounds, arising from biotransformation of common plant compounds by lactobacilli that express phenolic acid decarboxylase. Thus, for example, Lactobacillus plantarum, Lactobacillus brevis, and Lactobacillus collinoides, which are consumed from a diet rich in traditionally fermented foods and beverages, convert common phenolic acids found in fruits and vegetables to 4-vinylcatechol and/or 4-ethylcatechol. In addition, all of the alkyl catechols are found in wood smoke that was used widely for food preservation. Thus, the potentially numerous sources of alkyl catechols in traditional foods suggest that these co-factors were common in ancient diets. However, with radical changes in food preservation, alkyl catechols have been lost from modern foods. The absence of alkyl

  4. Activation of the Nrf2 Cell Defense Pathway by Ancient Foods: Disease Prevention by Important Molecules and Microbes Lost from the Modern Western Diet.

    PubMed

    Senger, Donald R; Li, Dan; Jaminet, Shou-Ching; Cao, Shugeng

    2016-01-01

    The Nrf2 (NFE2L2) cell defense pathway protects against oxidative stress and disorders including cancer and neurodegeneration. Although activated modestly by oxidative stress alone, robust activation of the Nrf2 defense mechanism requires the additional presence of co-factors that facilitate electron exchange. Various molecules exhibit this co-factor function, including sulforaphane from cruciferous vegetables. However, natural co-factors that are potent and widely available from dietary sources have not been identified previously. The objectives of this study were to investigate support of the Nrf2 cell defense pathway by the alkyl catechols: 4-methylcatechol, 4-vinylcatechol, and 4-ethylcatechol. These small electrochemicals are naturally available from numerous sources but have not received attention. Findings reported here illustrate that these compounds are indeed potent co-factors for activation of the Nrf2 pathway both in vitro and in vivo. Each strongly supports expression of Nrf2 target genes in a variety of human cell types; and, in addition, 4-ethylcatechol is orally active in mice. Furthermore, findings reported here identify important and previously unrecognized sources of these compounds, arising from biotransformation of common plant compounds by lactobacilli that express phenolic acid decarboxylase. Thus, for example, Lactobacillus plantarum, Lactobacillus brevis, and Lactobacillus collinoides, which are consumed from a diet rich in traditionally fermented foods and beverages, convert common phenolic acids found in fruits and vegetables to 4-vinylcatechol and/or 4-ethylcatechol. In addition, all of the alkyl catechols are found in wood smoke that was used widely for food preservation. Thus, the potentially numerous sources of alkyl catechols in traditional foods suggest that these co-factors were common in ancient diets. However, with radical changes in food preservation, alkyl catechols have been lost from modern foods. The absence of alkyl

  5. Activation of the Nrf2 Cell Defense Pathway by Ancient Foods: Disease Prevention by Important Molecules and Microbes Lost from the Modern Western Diet

    PubMed Central

    Senger, Donald R.; Li, Dan; Jaminet, Shou-Ching; Cao, Shugeng

    2016-01-01

    The Nrf2 (NFE2L2) cell defense pathway protects against oxidative stress and disorders including cancer and neurodegeneration. Although activated modestly by oxidative stress alone, robust activation of the Nrf2 defense mechanism requires the additional presence of co-factors that facilitate electron exchange. Various molecules exhibit this co-factor function, including sulforaphane from cruciferous vegetables. However, natural co-factors that are potent and widely available from dietary sources have not been identified previously. The objectives of this study were to investigate support of the Nrf2 cell defense pathway by the alkyl catechols: 4-methylcatechol, 4-vinylcatechol, and 4-ethylcatechol. These small electrochemicals are naturally available from numerous sources but have not received attention. Findings reported here illustrate that these compounds are indeed potent co-factors for activation of the Nrf2 pathway both in vitro and in vivo. Each strongly supports expression of Nrf2 target genes in a variety of human cell types; and, in addition, 4-ethylcatechol is orally active in mice. Furthermore, findings reported here identify important and previously unrecognized sources of these compounds, arising from biotransformation of common plant compounds by lactobacilli that express phenolic acid decarboxylase. Thus, for example, Lactobacillus plantarum, Lactobacillus brevis, and Lactobacillus collinoides, which are consumed from a diet rich in traditionally fermented foods and beverages, convert common phenolic acids found in fruits and vegetables to 4-vinylcatechol and/or 4-ethylcatechol. In addition, all of the alkyl catechols are found in wood smoke that was used widely for food preservation. Thus, the potentially numerous sources of alkyl catechols in traditional foods suggest that these co-factors were common in ancient diets. However, with radical changes in food preservation, alkyl catechols have been lost from modern foods. The absence of alkyl

  6. Subchronic atrazine exposure changes defensive behaviour profile and disrupts brain acetylcholinesterase activity of zebrafish.

    PubMed

    Schmidel, Ademir J; Assmann, Karla L; Werlang, Chariane C; Bertoncello, Kanandra T; Francescon, Francini; Rambo, Cassiano L; Beltrame, Gabriela M; Calegari, Daiane; Batista, Cibele B; Blaser, Rachel E; Roman Júnior, Walter A; Conterato, Greicy M M; Piato, Angelo L; Zanatta, Leila; Magro, Jacir Dal; Rosemberg, Denis B

    2014-01-01

    Animal behaviour is the interaction between environment and an individual organism, which also can be influenced by its neighbours. Variations in environmental conditions, as those caused by contaminants, may lead to neurochemical impairments altering the pattern of the behavioural repertoire of the species. Atrazine (ATZ) is an herbicide widely used in agriculture that is frequently detected in surface water, affecting non-target species. The zebrafish is a valuable model organism to assess behavioural and neurochemical effects of different contaminants since it presents a robust behavioural repertoire and also all major neurotransmitter systems described for mammalian species. The goal of this study was to evaluate the effects of subchronic ATZ exposure in defensive behaviours of zebrafish (shoaling, thigmotaxis, and depth preference) using the split depth tank. Furthermore, to investigate a putative role of cholinergic signalling on ATZ-mediated effects, we tested whether this herbicide alters acetylcholinesterase (AChE) activity in brain and muscle preparations. Fish were exposed to ATZ for 14days and the following groups were tested: control (0.2% acetone) and ATZ (10 and 1000μg/L). The behaviour of four animals in the same tank was recorded for 6min and biological samples were prepared. Our results showed that 1000μg/L ATZ significantly increased the inter-fish distance, as well as the nearest and farthest neighbour distances. This group also presented an increase in the shoal area with decreased social interaction. No significant differences were detected for the number of animals in the shallow area, latency to enter the shallow and time spent in shallow and deep areas of the apparatus, but the ATZ 1000 group spent significantly more time near the walls. Although ATZ did not affect muscular AChE, it significantly reduced AChE activity in brain. Exposure to 10μg/L ATZ did not affect behaviour or AChE activity. These data suggest that ATZ impairs defensive

  7. The circadian clock regulates rhythmic activation of the NRF2/glutathione-mediated antioxidant defense pathway to modulate pulmonary fibrosis

    PubMed Central

    Pekovic-Vaughan, Vanja; Gibbs, Julie; Yoshitane, Hikari; Yang, Nan; Pathiranage, Dharshika; Guo, Baoqiang; Sagami, Aya; Taguchi, Keiko; Bechtold, David; Loudon, Andrew; Yamamoto, Masayuki; Chan, Jefferson; van der Horst, Gijsbertus T.J.; Fukada, Yoshitaka; Meng, Qing-Jun

    2014-01-01

    The disruption of the NRF2 (nuclear factor erythroid-derived 2-like 2)/glutathione-mediated antioxidant defense pathway is a critical step in the pathogenesis of several chronic pulmonary diseases and cancer. While the mechanism of NRF2 activation upon oxidative stress has been widely investigated, little is known about the endogenous signals that regulate the NRF2 pathway in lung physiology and pathology. Here we show that an E-box-mediated circadian rhythm of NRF2 protein is essential in regulating the rhythmic expression of antioxidant genes involved in glutathione redox homeostasis in the mouse lung. Using an in vivo bleomycin-induced lung fibrosis model, we reveal a clock “gated” pulmonary response to oxidative injury, with a more severe fibrotic effect when bleomycin was applied at a circadian nadir in NRF2 levels. Timed administration of sulforaphane, an NRF2 activator, significantly blocked this phenotype. Moreover, in the lungs of the arrhythmic ClockΔ19 mice, the levels of NRF2 and the reduced glutathione are constitutively low, associated with increased protein oxidative damage and a spontaneous fibrotic-like pulmonary phenotype. Our findings reveal a pivotal role for the circadian control of the NRF2/glutathione pathway in combating oxidative/fibrotic lung damage, which might prompt new chronotherapeutic strategies for the treatment of human lung diseases, including idiopathic pulmonary fibrosis. PMID:24637114

  8. Intracellular Oxidant Activity, Antioxidant Enzyme Defense System, and Cell Senescence in Fibroblasts with Trisomy 21

    PubMed Central

    Rodríguez-Sureda, Víctor; Vilches, Ángel; Sánchez, Olga; Audí, Laura; Domínguez, Carmen

    2015-01-01

    Down's syndrome (DS) is characterized by a complex phenotype associated with chronic oxidative stress and mitochondrial dysfunction. Overexpression of genes on chromosome-21 is thought to underlie the pathogenesis of the major phenotypic features of DS, such as premature aging. Using cultured fibroblasts with trisomy 21 (T21F), this study aimed to ascertain whether an imbalance exists in activities, mRNA, and protein expression of the antioxidant enzymes SOD1, SOD2, glutathione-peroxidase, and catalase during the cell replication process in vitro. T21F had high SOD1 expression and activity which led to an interenzymatic imbalance in the antioxidant defense system, accentuated with replicative senescence. Intracellular ROS production and oxidized protein levels were significantly higher in T21F compared with control cells; furthermore, a significant decline in intracellular ATP content was detected in T21F. Cell senescence was found to appear prematurely in DS cells as shown by SA-β-Gal assay and p21 assessment, though not apoptosis, as neither p53 nor the proapoptotic proteins cytochrome c and caspase 9 were altered in T21F. These novel findings would point to a deleterious role of oxidatively modified molecules in early cell senescence of T21F, thereby linking replicative and stress-induced senescence in cultured cells to premature aging in DS. PMID:25852816

  9. Intracellular oxidant activity, antioxidant enzyme defense system, and cell senescence in fibroblasts with trisomy 21.

    PubMed

    Rodríguez-Sureda, Víctor; Vilches, Ángel; Sánchez, Olga; Audí, Laura; Domínguez, Carmen

    2015-01-01

    Down's syndrome (DS) is characterized by a complex phenotype associated with chronic oxidative stress and mitochondrial dysfunction. Overexpression of genes on chromosome-21 is thought to underlie the pathogenesis of the major phenotypic features of DS, such as premature aging. Using cultured fibroblasts with trisomy 21 (T21F), this study aimed to ascertain whether an imbalance exists in activities, mRNA, and protein expression of the antioxidant enzymes SOD1, SOD2, glutathione-peroxidase, and catalase during the cell replication process in vitro. T21F had high SOD1 expression and activity which led to an interenzymatic imbalance in the antioxidant defense system, accentuated with replicative senescence. Intracellular ROS production and oxidized protein levels were significantly higher in T21F compared with control cells; furthermore, a significant decline in intracellular ATP content was detected in T21F. Cell senescence was found to appear prematurely in DS cells as shown by SA-β-Gal assay and p21 assessment, though not apoptosis, as neither p53 nor the proapoptotic proteins cytochrome c and caspase 9 were altered in T21F. These novel findings would point to a deleterious role of oxidatively modified molecules in early cell senescence of T21F, thereby linking replicative and stress-induced senescence in cultured cells to premature aging in DS.

  10. A Role for Host Activation-Induced Cytidine Deaminase in Innate Immune Defense against KSHV

    PubMed Central

    Bekerman, Elena; Jeon, Diana; Ardolino, Michele; Coscoy, Laurent

    2013-01-01

    Activation-induced cytidine deaminase (AID) is specifically induced in germinal center B cells to carry out somatic hypermutation and class-switch recombination, two processes responsible for antibody diversification. Because of its mutagenic potential, AID expression and activity are tightly regulated to minimize unwanted DNA damage. Surprisingly, AID expression has been observed ectopically during pathogenic infections. However, the function of AID outside of the germinal centers remains largely uncharacterized. In this study, we demonstrate that infection of human primary naïve B cells with Kaposi's sarcoma-associated herpesvirus (KSHV) rapidly induces AID expression in a cell intrinsic manner. We find that infected cells are marked for elimination by Natural Killer cells through upregulation of NKG2D ligands via the DNA damage pathway, a pathway triggered by AID. Moreover, without having a measurable effect on KSHV latency, AID impinges directly on the viral fitness by inhibiting lytic reactivation and reducing infectivity of KSHV virions. Importantly, we uncover two KSHV-encoded microRNAs that directly regulate AID abundance, further reinforcing the role for AID in the antiviral response. Together our findings reveal additional functions for AID in innate immune defense against KSHV with implications for a broader involvement in innate immunity to other pathogens. PMID:24244169

  11. The GraS Sensor in Staphylococcus aureus Mediates Resistance to Host Defense Peptides Differing in Mechanisms of Action

    PubMed Central

    Chaili, Siyang; Cheung, Ambrose L.; Bayer, Arnold S.; Xiong, Yan Q.; Waring, Alan J.; Memmi, Guido; Donegan, Niles; Yang, Soo-Jin

    2015-01-01

    Staphylococcus aureus uses the two-component regulatory system GraRS to sense and respond to host defense peptides (HDPs). However, the mechanistic impact of GraS or its extracellular sensing loop (EL) on HDP resistance is essentially unexplored. Strains with null mutations in the GraS holoprotein (ΔgraS) or its EL (ΔEL) were compared for mechanisms of resistance to HDPs of relevant immune sources: neutrophil α-defensin (human neutrophil peptide 1 [hNP-1]), cutaneous β-defensin (human β-defensin 2 [hBD-2]), or the platelet kinocidin congener RP-1. Actions studied by flow cytometry included energetics (ENR); membrane permeabilization (PRM); annexin V binding (ANX), and cell death protease activation (CDP). Assay conditions simulated bloodstream (pH 7.5) or phagolysosomal (pH 5.5) pH contexts. S. aureus strains were more susceptible to HDPs at pH 7.5 than at pH 5.5, and each HDP exerted a distinct effect signature. The impacts of ΔgraS and ΔΕL on HDP resistance were peptide and pH dependent. Both mutants exhibited defects in ANX response to hNP-1 or hBD-2 at pH 7.5, but only hNP-1 did so at pH 5.5. Both mutants exhibited hyper-PRM, -ANX, and -CDP responses to RP-1 at both pHs and hypo-ENR at pH 5.5. The actions correlated with ΔgraS or ΔΕL hypersusceptibility to hNP-1 or RP-1 (but not hBD-2) at pH 7.5 and to all study HDPs at pH 5.5. An exogenous EL mimic protected mutant strains from hNP-1 and hBD-2 but not RP-1, indicating that GraS and its EL play nonredundant roles in S. aureus survival responses to specific HDPs. These findings suggest that GraS mediates specific resistance countermeasures to HDPs in immune contexts that are highly relevant to S. aureus pathogenesis in humans. PMID:26597988

  12. Fungal mitochondrial DNases: effectors with the potential to activate plant defenses in nonhost resistance.

    PubMed

    Hadwiger, Lee A; Polashock, James

    2013-01-01

    Previous reports on the model nonhost resistance interaction between Fusarium solani f. sp. phaseoli and pea endocarp tissue have described the disease resistance-signaling role of a fungal DNase1-like protein. The response resulted in no further growth beyond spore germination. This F. solani f. sp. phaseoli DNase gene, constructed with a pathogenesis-related (PR) gene promoter, when transferred to tobacco, generated resistance against Pseudomonas syringe pv. tabaci. The current analytical/theoretical article proposes similar roles for the additional nuclear and mitochondrial nucleases, the coding regions for which are identified in newly available fungal genome sequences. The amino acid sequence homologies within functional domains are conserved within a wide array of fungi. The potato pathogen Verticillium dahliae nuclease was divergent from that of the saprophyte, yeast; however, the purified DNase from yeast also elicited nonhost defense responses in pea, including pisatin accumulation, PR gene induction, and resistance against a true pea pathogen. The yeast mitochondrial DNase gene (open reading frame) predictably codes for a signal peptide providing the mechanism for secretion. Mitochondrial DNase genes appear to provide an unlimited source of components for developing transgenic resistance in all transformable plants. PMID:23228145

  13. 10 CFR 50.13 - Attacks and destructive acts by enemies of the United States; and defense activities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Attacks and destructive acts by enemies of the United States; and defense activities. 50.13 Section 50.13 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Requirement of License, Exceptions § 50.13 Attacks and destructive acts by enemies of the United...

  14. 10 CFR 50.13 - Attacks and destructive acts by enemies of the United States; and defense activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Attacks and destructive acts by enemies of the United... destructive acts by enemies of the United States; and defense activities. An applicant for a license to... an enemy of the United States, whether a foreign government or other person, or (b) use or...

  15. 18 CFR 2.60 - Facilities and activities during an emergency-accounting treatment of defense-related expenditures.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Facilities and activities during an emergency-accounting treatment of defense-related expenditures. 2.60 Section 2.60 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY...

  16. 18 CFR 2.60 - Facilities and activities during an emergency-accounting treatment of defense-related expenditures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Facilities and activities during an emergency-accounting treatment of defense-related expenditures. 2.60 Section 2.60 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY...

  17. 18 CFR 2.60 - Facilities and activities during an emergency-accounting treatment of defense-related expenditures.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Facilities and activities during an emergency-accounting treatment of defense-related expenditures. 2.60 Section 2.60 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY...

  18. 18 CFR 2.60 - Facilities and activities during an emergency-accounting treatment of defense-related expenditures.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Facilities and activities during an emergency-accounting treatment of defense-related expenditures. 2.60 Section 2.60 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY...

  19. 18 CFR 2.60 - Facilities and activities during an emergency-accounting treatment of defense-related expenditures.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Natural Gas Act § 2.60 Facilities and activities during an emergency—accounting treatment of defense-related expenditures. The Commission, cognizant of the need of the natural gas industry for advice with respect to the applicability of the Natural Gas Act and the Commission's regulations thereunder...

  20. Sulfur volatiles in guava (Psidium guajava L.) leaves: possible defense mechanism.

    PubMed

    Rouseff, Russell L; Onagbola, Ebenezer O; Smoot, John M; Stelinski, Lukasz L

    2008-10-01

    Volatiles from crushed and intact guava leaves (Psidium guajava L.) were collected using static headspace SPME and determined using GC-PFPD, pulsed flame photometric detection, and GC-MS. Leaf volatiles from four common citrus culitvars were examined similarly to determine the potential component(s) responsible for guava's protective effect against the Asian citrus psyllid (Diaphorina citri Kuwayama), which is the insect vector of Huanglongbing (HLB) or citrus greening disease. Seven sulfur volatiles were detected: hydrogen sulfide, sulfur dioxide, methanethiol, dimethyl sulfide (DMS), dimethyl disulfide (DMDS), methional, and dimethyl trisulfide (DMTS). Identifications were based on matching linear retention index values on ZB-5, DB-Wax, and PLOT columns and MS spectra in the case of DMDS and DMS. DMDS is an insect toxic, defensive volatile produced only by wounded guava but not citrus leaves and, thus, may be the component responsible for the protective effect of guava against the HLB vector. DMDS is formed immediately after crushing, becoming the major headspace volatile within 10 min. Forty-seven additional leaf volatiles were identified from LRI and MS data in the crushed guava leaf headspace.

  1. When Threat Is Near, Get Out of Here: Dynamics of Defensive Behavior During Freezing and Active Avoidance.

    PubMed

    Löw, Andreas; Weymar, Mathias; Hamm, Alfons O

    2015-11-01

    When detecting a threat, humans and other animals engage in defensive behaviors and supporting physiological adjustments that vary with threat imminence and potential response options. In the present study, we shed light on the dynamics of defensive behaviors and associated physiological adjustments in humans using multiple psychophysiological and brain measures. When participants were exposed to a dynamically approaching, uncontrollable threat, attentive freezing was augmented, as indicated by an increase in skin conductance, fear bradycardia, and potentiation of the startle reflex. In contrast, when participants had the opportunity to actively avoid the approaching threat, attention switched to response preparation, as indicated by an inhibition of the startle magnitude and by a sharp drop of the probe-elicited P3 component of the evoked brain potentials. These new findings on the dynamics of defensive behaviors form an important intersection between animal and human research and have important implications for understanding fear and anxiety-related disorders.

  2. De novo Transcriptome Analysis Reveals Distinct Defense Mechanisms by Young and Mature Leaves of Hevea brasiliensis (Para Rubber Tree).

    PubMed

    Fang, Yongjun; Mei, Hailiang; Zhou, Binhui; Xiao, Xiaohu; Yang, Meng; Huang, Yacheng; Long, Xiangyu; Hu, Songnian; Tang, Chaorong

    2016-01-01

    Along with changes in morphology in the course of maturation, leaves of Hevea brasiliensis become more resistant to leaf diseases, including the South American Leaf Blight (SALB), a devastating fungal disease of this economically important tree species. To understand the underlying mechanisms of this defense, and to identify the candidate genes involved, we sequenced the Hevea leaf transcriptome at four developmental stages (I to IV) by Illumina sequencing. A total of 62.6 million high-quality reads were generated, and assembled into 98,796 unique transcripts. We identified 3,905 differentially expressed genes implicated in leaf development, 67.8% (2,651) of which were during the transition to leaf maturation. The genes involved in cyanogenic metabolism, lignin and anthocyanin biosynthesis were noteworthy for their distinct patterns of expression between developing leaves (stages I to III) and mature leaves (stage IV), and the correlation with the change in resistance to SALB and the Oidium/Colletotrichum leaf fall. The results provide a first profile of the molecular events that relate to the dynamics of leaf morphology and defense strategies during Hevea leaf development. This dataset is beneficial to devising strategies to engineer resistance to leaf diseases as well as other in-depth studies in Hevea tree. PMID:27619402

  3. De novo Transcriptome Analysis Reveals Distinct Defense Mechanisms by Young and Mature Leaves of Hevea brasiliensis (Para Rubber Tree)

    PubMed Central

    Fang, Yongjun; Mei, Hailiang; Zhou, Binhui; Xiao, Xiaohu; Yang, Meng; Huang, Yacheng; Long, Xiangyu; Hu, Songnian; Tang, Chaorong

    2016-01-01

    Along with changes in morphology in the course of maturation, leaves of Hevea brasiliensis become more resistant to leaf diseases, including the South American Leaf Blight (SALB), a devastating fungal disease of this economically important tree species. To understand the underlying mechanisms of this defense, and to identify the candidate genes involved, we sequenced the Hevea leaf transcriptome at four developmental stages (I to IV) by Illumina sequencing. A total of 62.6 million high-quality reads were generated, and assembled into 98,796 unique transcripts. We identified 3,905 differentially expressed genes implicated in leaf development, 67.8% (2,651) of which were during the transition to leaf maturation. The genes involved in cyanogenic metabolism, lignin and anthocyanin biosynthesis were noteworthy for their distinct patterns of expression between developing leaves (stages I to III) and mature leaves (stage IV), and the correlation with the change in resistance to SALB and the Oidium/Colletotrichum leaf fall. The results provide a first profile of the molecular events that relate to the dynamics of leaf morphology and defense strategies during Hevea leaf development. This dataset is beneficial to devising strategies to engineer resistance to leaf diseases as well as other in-depth studies in Hevea tree. PMID:27619402

  4. De novo Transcriptome Analysis Reveals Distinct Defense Mechanisms by Young and Mature Leaves of Hevea brasiliensis (Para Rubber Tree).

    PubMed

    Fang, Yongjun; Mei, Hailiang; Zhou, Binhui; Xiao, Xiaohu; Yang, Meng; Huang, Yacheng; Long, Xiangyu; Hu, Songnian; Tang, Chaorong

    2016-09-13

    Along with changes in morphology in the course of maturation, leaves of Hevea brasiliensis become more resistant to leaf diseases, including the South American Leaf Blight (SALB), a devastating fungal disease of this economically important tree species. To understand the underlying mechanisms of this defense, and to identify the candidate genes involved, we sequenced the Hevea leaf transcriptome at four developmental stages (I to IV) by Illumina sequencing. A total of 62.6 million high-quality reads were generated, and assembled into 98,796 unique transcripts. We identified 3,905 differentially expressed genes implicated in leaf development, 67.8% (2,651) of which were during the transition to leaf maturation. The genes involved in cyanogenic metabolism, lignin and anthocyanin biosynthesis were noteworthy for their distinct patterns of expression between developing leaves (stages I to III) and mature leaves (stage IV), and the correlation with the change in resistance to SALB and the Oidium/Colletotrichum leaf fall. The results provide a first profile of the molecular events that relate to the dynamics of leaf morphology and defense strategies during Hevea leaf development. This dataset is beneficial to devising strategies to engineer resistance to leaf diseases as well as other in-depth studies in Hevea tree.

  5. Protective effect of butyrate against ethanol-induced gastric ulcers in mice by promoting the anti-inflammatory, anti-oxidant and mucosal defense mechanisms.

    PubMed

    Liu, Jiaming; Wang, Fangyan; Luo, Haihua; Liu, Aihua; Li, Kangxin; Li, Cui; Jiang, Yong

    2016-01-01

    Gastric ulcers (GUs) are a common type of peptic ulcer. Alcohol overdose is one of the main causes of GU, which is difficult to prevent. Although the protective effect of butyrate on inflammation-related diseases is well understood, its effect on GUs has not been reported. We investigated the protective effects of butyrate against ethanol-induced lesions to the gastric mucosa in mice and the underlying mechanisms. BALB/c mice were orally pretreated with butyrate for 30min prior to the establishment of the GU model by challenge with absolute ethanol. Ethanol administration produced apparent mucosal injuries with morphological and histological damage, whereas butyrate pretreatment reduced the gastric mucosal injuries in a dose-dependent manner. Butyrate pretreatment also significantly ameliorated contents of malondialdehyde (MDA) and carbonyl proteins, and decreased levels of IL-1β, TNF-α and IL-6. The Western blot results consistently demonstrated that butyrate pretreatment attenuated the phosphorylation of NF-κB p65, p38 MAPK and ERKs in the gastric tissues. Additionally, gastric wall mucus (GWM), a parameter reflecting mucosal defense, was clearly increased by butyrate pretreatment. Butyrate pretreatment protects the gastric mucosa against ethanol-induced lesions by strengthening the mucosal defense and anti-oxidant and anti-inflammatory activities. As a necessary substance for the body, butyrate may be applied to the prevention and treatment of GUs.

  6. Detection of neural activity in the brains of Japanese honeybee workers during the formation of a "hot defensive bee ball".

    PubMed

    Ugajin, Atsushi; Kiya, Taketoshi; Kunieda, Takekazu; Ono, Masato; Yoshida, Tadaharu; Kubo, Takeo

    2012-01-01

    Anti-predator behaviors are essential to survival for most animals. The neural bases of such behaviors, however, remain largely unknown. Although honeybees commonly use their stingers to counterattack predators, the Japanese honeybee (Apis cerana japonica) uses a different strategy to fight against the giant hornet (Vespa mandarinia japonica). Instead of stinging the hornet, Japanese honeybees form a "hot defensive bee ball" by surrounding the hornet en masse, killing it with heat. The European honeybee (A. mellifera ligustica), on the other hand, does not exhibit this behavior, and their colonies are often destroyed by a hornet attack. In the present study, we attempted to analyze the neural basis of this behavior by mapping the active brain regions of Japanese honeybee workers during the formation of a hot defensive bee ball. First, we identified an A. cerana homolog (Acks = Apis cerana kakusei) of kakusei, an immediate early gene that we previously identified from A. mellifera, and showed that Acks has characteristics similar to kakusei and can be used to visualize active brain regions in A. cerana. Using Acks as a neural activity marker, we demonstrated that neural activity in the mushroom bodies, especially in Class II Kenyon cells, one subtype of mushroom body intrinsic neurons, and a restricted area between the dorsal lobes and the optic lobes was increased in the brains of Japanese honeybee workers involved in the formation of a hot defensive bee ball. In addition, workers exposed to 46°C heat also exhibited Acks expression patterns similar to those observed in the brains of workers involved in the formation of a hot defensive bee ball, suggesting that the neural activity observed in the brains of workers involved in the hot defensive bee ball mainly reflects thermal stimuli processing. PMID:22431987

  7. The evolution of defense mechanisms correlate with the explosive diversification of autodigesting Coprinellus mushrooms (Agaricales, Fungi).

    PubMed

    Nagy, László G; Házi, Judit; Szappanos, Balázs; Kocsubé, Sándor; Bálint, Balázs; Rákhely, Gábor; Vágvölgyi, Csaba; Papp, Tamás

    2012-07-01

    Bursts of diversification are known to have contributed significantly to the extant morphological and species diversity, but evidence for many of the theoretical predictions about adaptive radiations have remained contentious. Despite their tremendous diversity, patterns of evolutionary diversification and the contribution of explosive episodes in fungi are largely unknown. Here, using the genus Coprinellus (Psathyrellaceae, Agaricales) as a model, we report the first explosive fungal radiation and infer that the onset of the radiation correlates with a change from a multilayered to a much simpler defense structure on the fruiting bodies. We hypothesize that this change constitutes a key innovation, probably relaxing constraints on diversification imposed by nutritional investment into the development of protective tissues of fruiting bodies. Fossil calibration suggests that Coprinellus mushrooms radiated during the Miocene coinciding with global radiation of large grazing mammals following expansion of dry open grasslands. In addition to diversification rate-based methods, we test the hard polytomy hypothesis, by analyzing the resolvability of internal nodes of the backbone of the putative radiation using Reversible-Jump MCMC. We discuss potential applications and pitfalls of this approach as well as how biologically meaningful polytomies can be distinguished from alignment shortcomings. Our data provide insights into the nature of adaptive radiations in general by revealing a deceleration of morphological diversification through time. The dynamics of morphological diversification was approximated by obtaining the temporal distribution of state changes in discrete traits along the trees and comparing it with the tempo of lineage accumulation. We found that the number of state changes correlate with the number of lineages, even in parts of the tree with short internal branches, and peaks around the onset of the explosive radiation followed by a slowdown, most

  8. Neonatal host defense mechanisms against Listeria monocytogenes infection: the role of lipopolysaccharides and interferons.

    PubMed

    Bortolussi, R; Issekutz, T; Burbridge, S; Schellekens, H

    1989-03-01

    The human newborn infant is susceptible to lethal infection caused by a number of bacterial species including Listeria monocytogenes, a gram-positive rod which is pathogenic by virtue of its ability to survive intracellularly. In adult animals interferon (IFN)-alpha/beta and IFN-gamma or agents that induce or augment IFN production confer protection against lethal L. monocytogenes infection. Regulation and production of IFN is poorly understood during the neonatal period. We therefore evaluated the role of IFN-alpha/beta and IFN-gamma, IFN-inducers (polyinosinic:polycytidylic acid, amino-bromo-phenyl-pyrimidinone, amino-iodophenyl pyrimidinone) and lipopolysaccharide in modifying neonatal L. monocytogenes infection. Pretreatment of juvenile rats with polyinosinic:polycytidylic acid or lipopolysaccharide protected them against a lethal challenge with L. monocytogenes. Among newborn rats, polyinosinic:polycytidylic acid, amino-iodo-phenyl pyrimidinone and amino-bromophenyl-pyrimidinone gave significant protection, however, lipopolysaccharide did not influence survival. The role of IFN was further examined. Pretreatment of 3-d-old rats with purified IFN-alpha/beta, native rat IFN-gamma or rDNA rat IFN-gamma protected them against the lethality of subsequent L. monocytogenes injection. At 3 d after bacterial challenge, bacterial content in the spleens of 3-d-old rats pretreated with rIFN-gamma were significantly decreased compared to controls: IFN-alpha/beta-pretreated animals had less of a decrease, which become significant only 5 d after challenge. Our experiments indicate a role for IFN in neonatal host defense against L. monocytogenes infection.

  9. Active cell mechanics: Measurement and theory.

    PubMed

    Ahmed, Wylie W; Fodor, Étienne; Betz, Timo

    2015-11-01

    Living cells are active mechanical systems that are able to generate forces. Their structure and shape are primarily determined by biopolymer filaments and molecular motors that form the cytoskeleton. Active force generation requires constant consumption of energy to maintain the nonequilibrium activity to drive organization and transport processes necessary for their function. To understand this activity it is necessary to develop new approaches to probe the underlying physical processes. Active cell mechanics incorporates active molecular-scale force generation into the traditional framework of mechanics of materials. This review highlights recent experimental and theoretical developments towards understanding active cell mechanics. We focus primarily on intracellular mechanical measurements and theoretical advances utilizing the Langevin framework. These developing approaches allow a quantitative understanding of nonequilibrium mechanical activity in living cells. This article is part of a Special Issue entitled: Mechanobiology.

  10. Host defense mechanisms of human milk and their relations to enteric infections and necrotizing enterocolitis.

    PubMed

    Buescher, E S

    1994-06-01

    Human milk contains components that can mediate protection against symptomatic infection by means of classical and novel mechanisms. It has been demonstrated to protect infants against symptomatic infection by a variety of enteric pathogens. To date, mechanisms involving pathogen-specific sIgA are the best documented; however, roles for nonimmunoglobulin glycoconjugate and anti-inflammatory components may also exist. Based on both laboratory and clinical studies, human milk feeding appears to have protective effects against development of necrotizing enterocolitis.

  11. Involvement of Trichoderma Trichothecenes in the Biocontrol Activity and Induction of Plant Defense-Related Genes

    PubMed Central

    Malmierca, M. G.; Cardoza, R. E.; Alexander, N. J.; McCormick, S. P.; Hermosa, R.; Monte, E.

    2012-01-01

    Trichoderma species produce trichothecenes, most notably trichodermin and harzianum A (HA), by a biosynthetic pathway in which several of the involved proteins have significant differences in functionality compared to their Fusarium orthologues. In addition, the genes encoding these proteins show a genomic organization differing from that of the Fusarium tri clusters. Here we describe the isolation of Trichoderma arundinaceum IBT 40837 transformants which have a disrupted or silenced tri4 gene, a gene encoding a cytochrome P450 monooxygenase that oxygenates trichodiene to give rise to isotrichodiol, and the effect of tri4 gene disruption and silencing on the expression of other tri genes. Our results indicate that the tri4 gene disruption resulted in a reduced antifungal activity against Botrytis cinerea and Rhizoctonia solani and also in a reduced ability to induce the expression of tomato plant defense-related genes belonging to the salicylic acid (SA) and jasmonate (JA) pathways against B. cinerea, in comparison to the wild-type strain, indicating that HA plays an important function in the sensitization of Trichoderma-pretreated plants against this fungal pathogen. Additionally, the effect of the interaction of T. arundinaceum with B. cinerea or R. solani and with tomato seedlings on the expressions of the tri genes was studied. PMID:22562989

  12. Chitosan controls postharvest anthracnose in bell pepper by activating defense-related enzymes.

    PubMed

    Edirisinghe, Madushani; Ali, Asgar; Maqbool, Mehdi; Alderson, Peter G

    2014-12-01

    Anthracnose, a postharvest disease caused by the fungus Colletotrichum capsici is the most devastating disease of bell pepper that causes great economic losses especially in tropical climates. Therefore, the objective of this study was to evaluate the antifungal properties of chitosan (low molecular weight from crab shell, Mw: 50 kDa and 75-85 % deacetylated) against anthracnose by inducing defense-related enzymes. The concentrations of 0, 0.5, 1.0, 1.5 and 2.0 % chitosan were used to control the fungus in vitro and postharvest. There was a reduction in C. capsici mycelial growth and the highest chitosan concentration (2.0 %) reduced the growth by 70 % after 7 days incubation. In germination test, the concentration of 1.5 and 2.0 % chitosan reduced spore germination in C. capsici between 80 % and 84 %, respectively. In postharvest trial the concentration of 1.5 % decreased the anthracnose severity in pepper fruit by approximately 76 % after 28 days of storage (10 ± 1 °C; 80 % RH). For enzymatic activities, the concentration of 1.5 and 2.0 % chitosan increased the polyphenol oxidase (PPO), peroxidase (POD) and total phenolics in inoculated bell pepper during storage. Based on these results, the chitosan presents antifungal properties against C. capsici, as well as potential to induce resistance on bell pepper.

  13. Sulforaphane protects Microcystin-LR-induced toxicity through activation of the Nrf2-mediated defensive response

    SciTech Connect

    Gan Nanqin; Mi Lixin; Sun Xiaoyun; Dai Guofei; Chung Funglung; Song Lirong

    2010-09-01

    Microcystins (MCs), a cyclic heptapeptide hepatotoxins, are mainly produced by the bloom-forming cyanobacerium Microcystis, which has become an environmental hazard worldwide. Long term consumption of MC-contaminated water may induce liver damage, liver cancer, and even human death. Therefore, in addition to removal of MCs in drinking water, novel strategies that prevent health damages are urgently needed. Sulforaphane (SFN), a natural-occurring isothiocyanate from cruciferous vegetables, has been reported to reduce and eliminate toxicities from xenobiotics and carcinogens. The purpose of the present study was to provide mechanistic insights into the SFN-induced antioxidative defense system against MC-LR-induced cytotoxicity. We performed cell viability assays, including MTS assay, colony formation assay and apoptotic cell sorting, to study MC-LR-induced cellular damage and the protective effects by SFN. The results showed that SFN protected MC-LR-induced damages at a nontoxic and physiological relevant dose in HepG2, BRL-3A and NIH 3 T3 cells. The protection was Nrf2-mediated as evident by transactivation of Nrf2 and activation of its downstream genes, including NQO1 and HO-1, and elevated intracellular GSH level. Results of our studies indicate that pretreatment of cells with 10 {mu}M SFN for 12 h significantly protected cells from MC-LR-induced damage. SFN-induced protective response was mediated through Nrf2 pathway.

  14. Ozone Sensitivity in Hybrid Poplar Is Correlated with a Lack of Defense-Gene Activation1

    PubMed Central

    Riehl Koch, Jennifer; Scherzer, Amy J.; Eshita, Steven M.; Davis, Keith R.

    1998-01-01

    Ozone is a major gaseous pollutant thought to contribute to forest decline. Although the physiological and morphological responses of forest trees to ozone have been well characterized, little is known about the molecular basis for these responses. Our studies compared the response to ozone of ozone-sensitive and ozone-tolerant clones of hybrid poplar (Populus maximowizii × Populus trichocarpa) at the physiological and molecular levels. Gas-exchange analyses demonstrated clear differences between the ozone-sensitive clone 388 and the ozone-tolerant clone 245. Although ozone induced a decrease in photosynthetic rate and stomatal conductance in both clones, the magnitude of the decrease in stomatal conductance was significantly greater in the ozone-tolerant clone. RNA-blot analysis established that ozone-induced mRNA levels for phenylalanine ammonia-lyase, O-methyltransferase, a pathogenesis-related protein, and a wound-inducible gene were significantly higher in the ozone-tolerant than in the ozone-sensitive plants. Wound- and pathogen-induced levels of these mRNAs were also higher in the ozone-tolerant compared with the ozone-sensitive plants. The different physiological and molecular responses to ozone exposure exhibited by clones 245 and 388 suggest that ozone tolerance involves the activation of salicylic-acid- and jasmonic-acid-mediated signaling pathways, which may be important in triggering defense responses against oxidative stress. PMID:9847098

  15. Chitosan controls postharvest anthracnose in bell pepper by activating defense-related enzymes.

    PubMed

    Edirisinghe, Madushani; Ali, Asgar; Maqbool, Mehdi; Alderson, Peter G

    2014-12-01

    Anthracnose, a postharvest disease caused by the fungus Colletotrichum capsici is the most devastating disease of bell pepper that causes great economic losses especially in tropical climates. Therefore, the objective of this study was to evaluate the antifungal properties of chitosan (low molecular weight from crab shell, Mw: 50 kDa and 75-85 % deacetylated) against anthracnose by inducing defense-related enzymes. The concentrations of 0, 0.5, 1.0, 1.5 and 2.0 % chitosan were used to control the fungus in vitro and postharvest. There was a reduction in C. capsici mycelial growth and the highest chitosan concentration (2.0 %) reduced the growth by 70 % after 7 days incubation. In germination test, the concentration of 1.5 and 2.0 % chitosan reduced spore germination in C. capsici between 80 % and 84 %, respectively. In postharvest trial the concentration of 1.5 % decreased the anthracnose severity in pepper fruit by approximately 76 % after 28 days of storage (10 ± 1 °C; 80 % RH). For enzymatic activities, the concentration of 1.5 and 2.0 % chitosan increased the polyphenol oxidase (PPO), peroxidase (POD) and total phenolics in inoculated bell pepper during storage. Based on these results, the chitosan presents antifungal properties against C. capsici, as well as potential to induce resistance on bell pepper. PMID:25477684

  16. Chemical and Mechanical Defenses Vary among Maternal Lines and Leaf Ages in Verbascum thapsus L. (Scrophulariaceae) and Reduce Palatability to a Generalist Insect

    PubMed Central

    Alba, Christina; Bowers, M. Deane; Blumenthal, Dana; Hufbauer, Ruth A.

    2014-01-01

    Intra-specific variation in host-plant quality affects herbivore foraging decisions and, in turn, herbivore foraging decisions mediate plant fitness. In particular, variation in defenses against herbivores, both among and within plants, shapes herbivore behavior. If variation in defenses is genetically based, it can respond to natural selection by herbivores. We quantified intra-specific variation in iridoid glycosides, trichome length, and leaf strength in common mullein (Verbascum thapsus L, Scrophulariaceae) among maternal lines within a population and among leaves within plants, and related this variation to feeding preferences of a generalist herbivore, Trichopulsia ni Hübner. We found significant variation in all three defenses among maternal lines, with T. ni preferring plants with lower investment in chemical, but not mechanical, defense. Within plants, old leaves had lower levels of all defenses than young leaves, and were strongly preferred by T. ni. Caterpillars also preferred leaves with trichomes removed to leaves with trichomes intact. Differences among maternal lines indicate that phenotypic variation in defenses likely has a genetic basis. Furthermore, these results reveal that the feeding behaviors of T. ni map onto variation in plant defense in a predictable way. This work highlights the importance of variation in host-plant quality in driving interactions between plants and their herbivores. PMID:25127229

  17. Activities report in fluid mechanics

    NASA Astrophysics Data System (ADS)

    1986-10-01

    The research conducted at the Lille Institute of Fluid Mechanics (IMFL) concerns four areas: flight mechanics, structural mechanics, aerodynamics and applied fluid mechanics. Within these four areas, these topics are discussed: characterization of the unsteady pressures on an airfoil in turbulence; adaptation of the Kalman-Rauch filtering-smoothing method to instrumented free spin tests; vulnerability of aircraft fuel tanks; water surface impact; influence of an oscillating spoiler on the surrounding aerodynamic field; gunfiring similarity theory and rules; flow around a cylinder at low Reynolds number by holographic velocimetry and laser Doppler velocimetry; compressible turbulent flow computation; and the wake of wind turbine towers are discussed.

  18. Seasonal variations of the activity of antioxidant defense enzymes in the red mullet (Mullus barbatus l.) from the Adriatic Sea.

    PubMed

    Pavlović, Sladjan Z; Borković Mitić, Slavica S; Radovanović, Tijana B; Perendija, Branka R; Despotović, Svetlana G; Gavrić, Jelena P; Saicić, Zorica S

    2010-02-26

    This study investigated seasonal variations of antioxidant defense enzyme activities: total, manganese, copper zinc containing superoxide dismutase (Tot SOD, Mn SOD, CuZn SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR) and biotransformation phase II enzyme glutathione-S-transferase (GST) activity in the liver and white muscle of red mullet (Mullus barbatus). The investigations were performed in winter and spring at two localities: Near Bar (NB) and Estuary of the River Bojana (EB) in the Southern Adriatic Sea. At both sites, Mn SOD, GSH-Px, GR and GST activities decreased in the liver in spring. In the white muscle, activities of Mn SOD, GSH-Px, GR and GST in NB decreased in spring. GR decreased in spring in EB, while CAT activity was higher in spring at both sites. The results of Principal Component Analysis (PCA) based on correlations indicated a clear separation of various sampling periods for both investigated tissues and a marked difference between two seasons. Our study is the first report on antioxidant defense enzyme activities in the red mullet in the Southern Adriatic Sea. It indicates that seasonal variations of antioxidant defense enzyme activities should be used in further biomonitoring studies in fish species.

  19. Annual Report To Congress. Department of Energy Activities Relating to the Defense Nuclear Facilities Safety Board, Calendar Year 2003

    SciTech Connect

    None, None

    2004-02-28

    The Department of Energy (Department) submits an Annual Report to Congress each year detailing the Department’s activities relating to the Defense Nuclear Facilities Safety Board (Board), which provides advice and recommendations to the Secretary of Energy (Secretary) regarding public health and safety issues at the Department’s defense nuclear facilities. In 2003, the Department continued ongoing activities to resolve issues identified by the Board in formal recommendations and correspondence, staff issue reports pertaining to Department facilities, and public meetings and briefings. Additionally, the Department is implementing several key safety initiatives to address and prevent safety issues: safety culture and review of the Columbia accident investigation; risk reduction through stabilization of excess nuclear materials; the Facility Representative Program; independent oversight and performance assurance; the Federal Technical Capability Program (FTCP); executive safety initiatives; and quality assurance activities. The following summarizes the key activities addressed in this Annual Report.

  20. Defense mechanisms and implicit emotion regulation: a comparison of a psychodynamic construct with one from contemporary neuroscience.

    PubMed

    Rice, Timothy R; Hoffman, Leon

    2014-08-01

    A growing interest in the neuroscience of emotion regulation, particularly the subfield of implicit emotion regulation, brings new opportunity for the psychodynamic treatment of neuropsychiatric disorders of childhood. At the same time, psychodynamic theorists have become more aware of the centrality of affects in mental life. This paper introduces a manualized psychodynamic approach called Regulation-Focused Dynamic Psychotherapy (RFP-C). Theoretically based on the domain construct of implicit emotion regulation (ER), this approach posits that contemporary affect-oriented conceptualizations of defense mechanisms are theoretically similar to the neuroscience construct of implicit emotion regulation. To illustrate this theoretical similarity, the literature connected with both concepts is reviewed. The implications of this idea, which could promote an interface between psychodynamics and contemporary academic psychiatry and psychology, are discussed.

  1. Reactive oxygen and nitrogen species in defense/stress responses activated by chitosan in sycamore cultured cells.

    PubMed

    Malerba, Massimo; Cerana, Raffaella

    2015-01-29

    Chitosan (CHT) is a non-toxic and inexpensive compound obtained by deacetylation of chitin, the main component of the exoskeleton of arthropods as well as of the cell walls of many fungi. In agriculture CHT is used to control numerous diseases on various horticultural commodities but, although different mechanisms have been proposed, the exact mode of action of CHT is still unknown. In sycamore (Acer pseudoplatanus L.) cultured cells, CHT induces a set of defense/stress responses that includes production of H2O2 and nitric oxide (NO). We investigated the possible signaling role of these reactive molecules in some CHT-induced responses by means of inhibitors of production and/or scavengers. The results show that both reactive nitrogen and oxygen species are not only a mere symptom of stress conditions but are involved in the responses induced by CHT in sycamore cells. In particular, NO appears to be involved in a cell death form induced by CHT that shows apoptotic features like DNA fragmentation, increase in caspase-3-like activity and release of cytochrome c from the mitochondrion. On the contrary, reactive oxygen species (ROS) appear involved in a cell death form induced by CHT that does not show these apoptotic features but presents increase in lipid peroxidation.

  2. Reactive oxygen and nitrogen species in defense/stress responses activated by chitosan in sycamore cultured cells.

    PubMed

    Malerba, Massimo; Cerana, Raffaella

    2015-01-01

    Chitosan (CHT) is a non-toxic and inexpensive compound obtained by deacetylation of chitin, the main component of the exoskeleton of arthropods as well as of the cell walls of many fungi. In agriculture CHT is used to control numerous diseases on various horticultural commodities but, although different mechanisms have been proposed, the exact mode of action of CHT is still unknown. In sycamore (Acer pseudoplatanus L.) cultured cells, CHT induces a set of defense/stress responses that includes production of H2O2 and nitric oxide (NO). We investigated the possible signaling role of these reactive molecules in some CHT-induced responses by means of inhibitors of production and/or scavengers. The results show that both reactive nitrogen and oxygen species are not only a mere symptom of stress conditions but are involved in the responses induced by CHT in sycamore cells. In particular, NO appears to be involved in a cell death form induced by CHT that shows apoptotic features like DNA fragmentation, increase in caspase-3-like activity and release of cytochrome c from the mitochondrion. On the contrary, reactive oxygen species (ROS) appear involved in a cell death form induced by CHT that does not show these apoptotic features but presents increase in lipid peroxidation. PMID:25642757

  3. Priming for JA-dependent defenses using hexanoic acid is an effective mechanism to protect Arabidopsis against B. cinerea.

    PubMed

    Kravchuk, Zhana; Vicedo, Begonya; Flors, Víctor; Camañes, Gemma; González-Bosch, Carmen; García-Agustín, Pilar

    2011-03-01

    Soil drench treatments with hexanoic acid can effectively protect Arabidopsis plants against Botrytis cinerea through a mechanism based on a stronger and faster accumulation of JA-dependent defenses. Plants impaired in ethylene, salicylic acid, abscisic acid or glutathion pathways showed intact protection by hexanoic acid upon B. cinerea infection. Accordingly, no significant changes in the SA marker gene PR-1 in either the SA or ABA hormone balance were observed in the infected and treated plants. In contrast, the JA signaling pathway showed dramatic changes after hexanoic acid treatment, mainly when the pathogen was present. The impaired JA mutants, jin1-2 and jar1, were unable to display hexanoic acid priming against the necrotroph. In addition, hexanoic acid-treated plants infected with B. cinerea showed priming in the expression of the PDF1.2, PR-4 and VSP1 genes implicated in the JA pathways. Moreover, JA and OPDA levels were primed at early stages by hexanoic acid. Treatments also stimulated increased callose accumulation in response to the pathogen. Although callose accumulation has proved an effective IR mechanism against B. cinerea, it is apparently not essential to express hexanoic acid-induced resistance (HxAc-IR) because the mutant pmr4.1 (callose synthesis defective mutant) is protected by treatment. We recently described how hexanoic acid treatments can protect tomato plants against B. cinerea by stimulating ABA-dependent callose deposition and by priming OPDA and JA-Ile production. We clearly demonstrate here that Hx-IR is a dependent plant species, since this acid protects Arabidopsis plants against the same necrotroph by priming JA-dependent defenses without enhancing callose accumulation.

  4. Combined Activity of DCL2 and DCL3 Is Crucial in the Defense against Potato Spindle Tuber Viroid

    PubMed Central

    Katsarou, Konstantina; Mavrothalassiti, Eleni; Dermauw, Wannes; Van Leeuwen, Thomas; Kalantidis, Kriton

    2016-01-01

    Viroids are self replicating non-coding RNAs capable of infecting a wide range of plant hosts. They do not encode any proteins, thus the mechanism by which they escape plant defenses remains unclear. RNAi silencing is a major defense mechanism against virus infections, with the four DCL proteins being principal components of the pathway. We have used Nicotiana benthamiana as a model to study Potato spindle tuber viroid infection. This viroid is a member of the Pospiviroidae family and replicates in the nucleus via an asymmetric rolling circle mechanism. We have created knock-down plants for all four DCL genes and their combinations. Previously, we showed that DCL4 has a positive effect on PSTVd infectivity since viroid levels drop when DCL4 is suppressed. Here, we show that PSTVd levels remain decreased throughout infection in DCL4 knockdown plants, and that simultaneous knockdown of DCL1, DCL2 or DCL3 together with DCL4 cannot reverse this effect. Through infection of plants suppressed for multiple DCLs we further show that a combined suppression of DCL2 and DCL3 has a major effect in succumbing plant antiviral defense. Based on our results, we further suggest that Pospoviroids may have evolved to be primarily processed by DCL4 as it seems to be a DCL protein with less detrimental effects on viroid infectivity. These findings pave the way to delineate the complexity of the relationship between viroids and plant RNA silencing response. PMID:27732664

  5. Hepatitis C virus, mitochondria and auto/mitophagy: exploiting a host defense mechanism.

    PubMed

    Ruggieri, Vitalba; Mazzoccoli, Carmela; Pazienza, Valerio; Andriulli, Angelo; Capitanio, Nazzareno; Piccoli, Claudia

    2014-03-14

    Hepatitis C virus (HCV) is the major reason for liver transplantation and the main cause of liver-related morbidity and mortality in a great number of countries. As for the other viruses, this pathogen interferes in more than one process and in more than one way with host cell biology. A mounting body of evidence points, in particular, toward the drastic alterations of mitochondrial physiology and functions that virus is able to induce, albeit the mechanisms have partly remained elusive. Role of the mitochondria in immunity and in quality control systems, as autophagy, as well as the strategies that HCV has evolved to evade and even to manipulate mitochondrial surveillance for its benefit, highlights the importance of deepening the mechanisms that modulate this virus-mitochondrion interaction, not only to intensify our knowledge of the HCV infection pathogenesis but also to design efficient antiviral strategies.

  6. Gall insects and indirect plant defenses: A case of active manipulation?

    PubMed

    Tooker, John F; De Moraes, Consuelo M

    2008-07-01

    Many plants can defend themselves against insect herbivory by attracting natural enemies that kill feeding herbivores and limit the damage they inflict. Such "indirect defenses" can be induced by insects feeding on different plant tissues and using a variety of feeding styles. However, we have recently shown that gall-inducing insect species can avoid the indirect defenses of their host plant species and even alter volatile emissions following subsequent herbivory. One of the species we studied, Eurosta solidaginis, induces galls on goldenrod (Solidago altissima) and appears to exert a unique influence over the indirect defenses of its host plant that is not readily explained by levels of defense-related phytohormones, gall formation or resource depletion. Our evidence suggests that this gall-insect species may be able to manipulate its host plant species to avoid and/or modify its defensive responses. The results also provide insight into gall induction because the gall-insect species that we screened did not increase levels of jasmonic acid, which, in addition to triggering volatile emissions, is a powerful growth regulator that could prevent the cell growth and division that leads to gall formation.

  7. Impaired antioxidant defense mechanisms in two children with hemolytic-uremic syndrome.

    PubMed

    Li Volti, S; Di Giacomo, C; Garozzo, R; Campisi, A; Mollica, F; Vanella, A

    1993-01-01

    In the present study we have assayed antioxidant enzymatic activities of SOD, CAT, GSH-Px, GSH-Red, and G6PD in erythrocytes from two children with hemolytic-uremic syndrome (HUS) during the acute phase of the disease and after their recovery; in addition, we have tested the percentage of hemolysis after 24-h incubation in PBS containing glucose (1 g/1000 mL) or in the presence of their own plasma. Endogenous plasmatic MDA levels were also evaluated as lipid peroxidation marker. A significant decrease in SOD activity was found in erythrocytes from HUS patients, and the addition of their own plasma further decreased SOD activity. Elevated percentage of hemolysis was found in HUS patients when RBCs were incubated in their own plasma; this last effect was less evident in PBS + glucose.

  8. Crosstalk of Signaling Mechanisms Involved in Host Defense and Symbiosis Against Microorganisms in Rice.

    PubMed

    Akamatsu, Akira; Shimamoto, Ko; Kawano, Yoji

    2016-08-01

    Rice is one of the most important food crops, feeding about half population in the world. Rice pathogens cause enormous damage to rice production worldwide. In plant immunity research, considerable progress has recently been made in our understanding of the molecular mechanisms underlying microbe-associated molecular pattern (MAMP)-triggered immunity. Using genome sequencing and molecular techniques, a number of new MAMPs and their receptors have been identified in the past two decades. Notably, the mechanisms for chitin perception via the lysine motif (LysM) domain-containing receptor OsCERK1, as well as the mechanisms for bacterial MAMP (e.g. flg22, elf18) perception via the leucine-rich repeat (LRR) domain-containing receptors FLS2 and EFR, have been clarified in rice and Arabidopsis, respectively. In chitin signaling in rice, two direct substrates of OsCERK1, Rac/ROP GTPase guanine nucleotide exchange factor OsRacGEF1 and receptor-like cytoplasmic kinase OsRLCK185, have been identified as components of the OsCERK1 complex and are rapidly phosphorylated by OsCERK1 in response to chitin. Interestingly, OsCERK1 also participates in symbiosis with arbuscular mycorrhizal fungi (AMF) in rice and plays a role in the recognition of short-chitin molecules (CO4/5), which are symbiotic signatures included in AMF germinated spore exudates and induced by synthetic strigolactone. Thus, OsCERK1 contributes to both immunity and symbiotic responses. In this review, we describe recent studies on pathways involved in rice immunity and symbiotic signaling triggered by interactions with microorganisms. In addition, we describe recent advances in genetic engineering by using plant immune receptors and symbiotic microorganisms to enhance disease resistance of rice. PMID:27499679

  9. Protozoan-induced regulation of cycliclipopeptide biosythesis is an effective predation defense mechanism for Pseudomonas fluorescens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The grazing activity of protozoa significantly impacts the dynamics, diversification and evolution of bacterial communities in soil ecosystems. The feeding preference of protozoa is related to their inability to ingest or digest specific bacteria. Pseudomonas fluorescens strains SBW25 and SS101 used...

  10. Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms.

    PubMed

    Majumdar, Sanghamitra; Peralta-Videa, Jose R; Bandyopadhyay, Susmita; Castillo-Michel, Hiram; Hernandez-Viezcas, Jose-Angel; Sahi, Shivendra; Gardea-Torresdey, Jorge L

    2014-08-15

    Overwhelming use of engineered nanoparticles demands rapid assessment of their environmental impacts. The transport of cerium oxide nanoparticles (nCeO2) in plants and their impact on cellular homeostasis as a function of exposure duration is not well understood. In this study, kidney bean plants were exposed to suspensions of ∼ 8 ± 1 nm nCeO2 (62.5 to 500 mg/L) for 15 days in hydroponic conditions. Plant parts were analyzed for cerium accumulation after one, seven, and 15 days of nCeO2 exposure. The primary indicators of stress like lipid peroxidation, antioxidant enzyme activities, total soluble protein and chlorophyll contents were studied. Cerium in tissues was localized using scanning electron microscopy and synchrotron μ-XRF mapping, and the chemical forms were identified using μ-XANES. In the root epidermis, cerium was primarily shown to exist as nCeO2, although a small fraction (12%) was biotransformed to Ce(III) compound. Cerium was found to reach the root vascular tissues and translocate to aerial parts with time. Upon prolonged exposure to 500 mg nCeO2/L, the root antioxidant enzyme activities were significantly reduced, simultaneously increasing the root soluble protein by 204%. In addition, leaf's guaiacol peroxidase activity was enhanced with nCeO2 exposure in order to maintain cellular homeostasis. PMID:24981679

  11. New host defense mechanisms against Candida species clarify the basis of clinical phenotypes.

    PubMed

    Hanna, Suheir; Etzioni, Amos; Etzoni, Amos

    2011-06-01

    Chronic Candida species infection of the skin and mucosal membranes is viewed as a group of disorders all sharing a similar clinical condition, the susceptibility to localized fungal infections, which can be isolated or as a feature associated with various other entities. Although the pathogenesis underlying such a tendency had previously been poorly understood, the last decade has witnessed significant progress in revealing the molecular and immunologic mechanisms involved in antifungal immunity. T(H)17 cells and their specific cytokines (IL-17A and IL-17F cytokines and IL-22) are the main players in conferring antifungal protection. Autoimmune polyendocrinopathy and ectodermal dystrophy and hyper-IgE syndrome are 2 entities caused by different genetic mutations affecting distinct immune pathways but eventually share a similar clinical phenotype of Candida species infection. Impaired T(H)17 responses, although mediated by different mechanisms, seem to underlie this common feature: neutralizing autoantibodies against IL-17A and 1L-22 are involved in patients with autoimmune polyendocrinopathy and ectodermal dystrophy syndrome, whereas abnormal T(H)17 proliferation and IL-17 production are observed in the latter. Although various degrees of T(H)17 dysfunction were also observed in most cases of isolated chronic mucocutaneous candidiasis, only in very few families was a distinct mutation detected (caspase recruitment domain family, member 9 [CARD9]), thus indicating certain forms of chronic mucocutaneous candidiasis as monogenic with a Mendelian pattern of inheritance. Hopefully, these data will open the way for further searches for other genes and for introducing new treatment modalities. PMID:21497889

  12. New host defense mechanisms against Candida species clarify the basis of clinical phenotypes.

    PubMed

    Hanna, Suheir; Etzioni, Amos; Etzoni, Amos

    2011-06-01

    Chronic Candida species infection of the skin and mucosal membranes is viewed as a group of disorders all sharing a similar clinical condition, the susceptibility to localized fungal infections, which can be isolated or as a feature associated with various other entities. Although the pathogenesis underlying such a tendency had previously been poorly understood, the last decade has witnessed significant progress in revealing the molecular and immunologic mechanisms involved in antifungal immunity. T(H)17 cells and their specific cytokines (IL-17A and IL-17F cytokines and IL-22) are the main players in conferring antifungal protection. Autoimmune polyendocrinopathy and ectodermal dystrophy and hyper-IgE syndrome are 2 entities caused by different genetic mutations affecting distinct immune pathways but eventually share a similar clinical phenotype of Candida species infection. Impaired T(H)17 responses, although mediated by different mechanisms, seem to underlie this common feature: neutralizing autoantibodies against IL-17A and 1L-22 are involved in patients with autoimmune polyendocrinopathy and ectodermal dystrophy syndrome, whereas abnormal T(H)17 proliferation and IL-17 production are observed in the latter. Although various degrees of T(H)17 dysfunction were also observed in most cases of isolated chronic mucocutaneous candidiasis, only in very few families was a distinct mutation detected (caspase recruitment domain family, member 9 [CARD9]), thus indicating certain forms of chronic mucocutaneous candidiasis as monogenic with a Mendelian pattern of inheritance. Hopefully, these data will open the way for further searches for other genes and for introducing new treatment modalities.

  13. Application of an Improved Proteomics Method for Abundant Protein Cleanup: Molecular and Genomic Mechanisms Study in Plant Defense*

    PubMed Central

    Zhang, Yixiang; Gao, Peng; Xing, Zhuo; Jin, Shumei; Chen, Zhide; Liu, Lantao; Constantino, Nasie; Wang, Xinwang; Shi, Weibing; Yuan, Joshua S.; Dai, Susie Y.

    2013-01-01

    High abundance proteins like ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) impose a consistent challenge for the whole proteome characterization using shot-gun proteomics. To address this challenge, we developed and evaluated Polyethyleneimine Assisted Rubisco Cleanup (PARC) as a new method by combining both abundant protein removal and fractionation. The new approach was applied to a plant insect interaction study to validate the platform and investigate mechanisms for plant defense against herbivorous insects. Our results indicated that PARC can effectively remove Rubisco, improve the protein identification, and discover almost three times more differentially regulated proteins. The significantly enhanced shot-gun proteomics performance was translated into in-depth proteomic and molecular mechanisms for plant insect interaction, where carbon re-distribution was used to play an essential role. Moreover, the transcriptomic validation also confirmed the reliability of PARC analysis. Finally, functional studies were carried out for two differentially regulated genes as revealed by PARC analysis. Insect resistance was induced by over-expressing either jacalin-like or cupin-like genes in rice. The results further highlighted that PARC can serve as an effective strategy for proteomics analysis and gene discovery. PMID:23943779

  14. Application of an improved proteomics method for abundant protein cleanup: molecular and genomic mechanisms study in plant defense.

    PubMed

    Zhang, Yixiang; Gao, Peng; Xing, Zhuo; Jin, Shumei; Chen, Zhide; Liu, Lantao; Constantino, Nasie; Wang, Xinwang; Shi, Weibing; Yuan, Joshua S; Dai, Susie Y

    2013-11-01

    High abundance proteins like ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) impose a consistent challenge for the whole proteome characterization using shot-gun proteomics. To address this challenge, we developed and evaluated Polyethyleneimine Assisted Rubisco Cleanup (PARC) as a new method by combining both abundant protein removal and fractionation. The new approach was applied to a plant insect interaction study to validate the platform and investigate mechanisms for plant defense against herbivorous insects. Our results indicated that PARC can effectively remove Rubisco, improve the protein identification, and discover almost three times more differentially regulated proteins. The significantly enhanced shot-gun proteomics performance was translated into in-depth proteomic and molecular mechanisms for plant insect interaction, where carbon re-distribution was used to play an essential role. Moreover, the transcriptomic validation also confirmed the reliability of PARC analysis. Finally, functional studies were carried out for two differentially regulated genes as revealed by PARC analysis. Insect resistance was induced by over-expressing either jacalin-like or cupin-like genes in rice. The results further highlighted that PARC can serve as an effective strategy for proteomics analysis and gene discovery.

  15. NLRP7 and related inflammasome activating pattern recognition receptors and their function in host defense and disease.

    PubMed

    Radian, Alexander D; de Almeida, Lucia; Dorfleutner, Andrea; Stehlik, Christian

    2013-01-01

    Host defense requires the maturation and release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 and the induction of pyroptotic cell death, which depends on the activation of inflammatory Caspases within inflammasomes by innate immune cells. Several cytosolic pattern recognition receptors (PRRs) have been implicated in this process in response to infectious and sterile agonists. Here we summarize the current knowledge on inflammasome-organizing PRRs, emphasizing the recently described NLRP7, and their implications in human disease.

  16. Polycyclic aromatic hydrocarbons, particulates, and defense mechanisms (VKC-BAB-145). Final report

    SciTech Connect

    Hahon, N.

    1988-09-01

    The interaction of polycyclic aromatic hydrocarbons, represented by benzo(a)pyrene (BaP), and particulates in carcinogenesis was investigated. The systemic administration of BaP has been shown to significantly depress the whole animal interferon response to viral stimulation, suggesting this may be an early expression of immunotoxicity. BaP requires bioactivation to inhibit interferon induction. The research activities and significant findings and accomplishments germane to BaP interaction with the interferon system were reviewed. It was noted that BaP metabolites can be discriminated by their adverse effect on interferon induction which correlated with mutagenic activity. The adverse effect of BaP on interferon induction was intensified when BaP was absorbed onto asbestos, coal dust, and metal particles but not when interacted with silicates. The authors conclude that the inhibition of virus induction of interferon may be gainfully used to detect and assess quantitatively the interactions of occupational-disease-related particles as well as mutacarcinogenic chemicals with other biologic systems and cellular elements.

  17. High level resistance against rhizomania disease by simultaneously integrating two distinct defense mechanisms.

    PubMed

    Pavli, Ourania I; Tampakaki, Anastasia P; Skaracis, George N

    2012-01-01

    With the aim of achieving durable resistance against rhizomania disease of sugar beet, the employment of different sources of resistance to Beet necrotic yellow vein virus was pursued. To this purpose, Nicotiana benthamiana transgenic plants that simultaneously produce dsRNA originating from a conserved region of the BNYVV replicase gene and the HrpZ(Psph) protein in a secreted form (SP/HrpZ(Psph)) were produced. The integration and expression of both transgenes as well as proper production of the harpin protein were verified in all primary transformants and selfed progeny (T1, T2). Transgenic resistance was assessed by BNYVV-challenge inoculation on T2 progeny by scoring disease symptoms and DAS-ELISA at 20 and 30 dpi. Transgenic lines possessing single transformation events for both transgenes as well as wild type plants were included in inoculation experiments. Transgenic plants were highly resistant to virus infection, whereas in some cases immunity was achieved. In all cases, the resistant phenotype of transgenic plants carrying both transgenes was superior in comparison with the ones carrying a single transgene. Collectively, our findings demonstrate, for a first time, that the combination of two entirely different resistance mechanisms provide high level resistance or even immunity against the virus. Such a novel approach is anticipated to prevent a rapid virus adaptation that could potentially lead to the emergence of isolates with resistance breaking properties.

  18. The antiviral defense mechanisms in mandarin fish induced by DNA vaccination against a rhabdovirus.

    PubMed

    Chen, Zhong-Yuan; Lei, Xiao-Ying; Zhang, Qi-Ya

    2012-06-15

    Plasmid DNAs containing Siniperca chuatsi rhabdovirus (SCRV) glycoprotein gene (pcDNA-G) and nucleoprotein gene (pcDNA-N) were constructed, and used to determine the antiviral immune response elicited by DNA vaccination in mandarin fish. In vitro and in vivo expression of the plasmid constructs was confirmed in transfected cells and muscle tissues of vaccinated fish by Western blot, indirect immunofluorescence or RT-PCR analysis. Fish injected with pcDNA-G exhibited protective effect against SCRV challenge with a relative percent survival (RPS) of 77.5%, but no significant protection (RPS of 2.5%) was observed in fish vaccinated with pcDNA-N. Immunohistochemical analysis showed that vaccination with pcDNA-G decreased histological lesions and suppressed the virus replication in fish target organs, e.g. kidney, liver, spleen, gill and heart. Transcriptional analysis further revealed that the expression levels of type I IFN system genes including interferon regulation factor-7 (IRF-7) gene, myxovirus resistance (Mx) gene and virus inhibitory protein (Viperin) gene were strongly up-regulated after injection with pcDNA-G, whereas the level of transcription of immunoglobulin M (IgM) gene did not show a statistically significant change. These results reveal that type I IFN antiviral immune response is rapidly triggered by the plasmid DNA containing rhabdovirus glycoprotein gene in fish, which offers an explanation of molecular mechanisms for DNA vaccination inducing mandarin fish resist to SCRV disease.

  19. High level resistance against rhizomania disease by simultaneously integrating two distinct defense mechanisms.

    PubMed

    Pavli, Ourania I; Tampakaki, Anastasia P; Skaracis, George N

    2012-01-01

    With the aim of achieving durable resistance against rhizomania disease of sugar beet, the employment of different sources of resistance to Beet necrotic yellow vein virus was pursued. To this purpose, Nicotiana benthamiana transgenic plants that simultaneously produce dsRNA originating from a conserved region of the BNYVV replicase gene and the HrpZ(Psph) protein in a secreted form (SP/HrpZ(Psph)) were produced. The integration and expression of both transgenes as well as proper production of the harpin protein were verified in all primary transformants and selfed progeny (T1, T2). Transgenic resistance was assessed by BNYVV-challenge inoculation on T2 progeny by scoring disease symptoms and DAS-ELISA at 20 and 30 dpi. Transgenic lines possessing single transformation events for both transgenes as well as wild type plants were included in inoculation experiments. Transgenic plants were highly resistant to virus infection, whereas in some cases immunity was achieved. In all cases, the resistant phenotype of transgenic plants carrying both transgenes was superior in comparison with the ones carrying a single transgene. Collectively, our findings demonstrate, for a first time, that the combination of two entirely different resistance mechanisms provide high level resistance or even immunity against the virus. Such a novel approach is anticipated to prevent a rapid virus adaptation that could potentially lead to the emergence of isolates with resistance breaking properties. PMID:23284692

  20. Ethanol Extract of Ganoderma lucidum Augments Cellular Anti-oxidant Defense through Activation of Nrf2/HO-1

    PubMed Central

    Lee, Yoo-hwan; Kim, Jung-hee; Song, Choon-ho; Jang, Kyung-jeon; kim, Cheol-hong; Kang, Ji- Sook; Choi, Yung-hyun

    2016-01-01

    Objectives: The mushroom Ganoderma lucidum has been widely used as a traditional herbal medicine for many years. Although several studies have focused on the anti-oxidative activity of this mushroom, the molecular mechanisms underlying its activity have not yet been clearly established. The present study investigated the cytoprotective effect of ethanol extract of Ganoderma lucidum (EGL) against oxidative stress (hydrogen peroxide, H2O2) and elucidated the underlying mechanisms in a C2C12 myoblast cell line. Methods: Oxidative stress markers were determined by using the comet assay to measure reactive oxygen species (ROS) generation and deoxyribonucleic acid (DNA) damage. Cell viability and Western blotting analyses were employed to evaluate the cellular response to EGL and H2O2 in C2C12 cells. Transfection with nuclear factor erythroid 2-related factor 2 (Nrf2)-specific small interfering ribonucleic acid (siRNA) was conducted to understand the relationship between Nrf2 expression and H2O2-induced growth inhibition. Results: The results showed that EGL effectively inhibited H2O2-induced growth and the generation of ROS. EGL markedly suppressed H2O2-induced comet-like DNA formation and phosphorylation of histone H2AX at serine 139 (p-γH2AX), a widely used marker of DNA damage, suggesting that EGL prevented H2O2-induced DNA damage. Furthermore, the EGL treatment effectively induced the expression of Nrf2, as well as heme oxygenase-1 (HO-1), with parallel phosphorylation and nuclear translocation of Nrf2 in the C2C12 myoblasts. However, zinc protoporphyrin IX, a HO-1 inhibitor, significantly abolished the protective effects of EGL against H2O2-induced accumulation of ROS and reduced cell growth. Notably, transient transfection with Nrf2-specific siRNA attenuated the cytoprotective effects and HO-1 induction by EGL, indicating that EGL induced the expression of HO-1 in an Nrf2-dependent manner. Conclusion: Collectively, these results demonstrate that EGL augments the

  1. Projected near-future CO2 levels increase activity and alter defensive behaviours in the tropical squid Idiosepius pygmaeus

    PubMed Central

    Spady, Blake L.; Watson, Sue-Ann; Chase, Tory J.; Munday, Philip L.

    2014-01-01

    ABSTRACT Carbon dioxide (CO2) levels projected to occur in the oceans by the end of this century cause a range of behavioural effects in fish, but whether other highly active marine organisms, such as cephalopods, are similarly affected is unknown. We tested the effects of projected future CO2 levels (626 and 956 µatm) on the behaviour of male two-toned pygmy squid, Idiosepius pygmaeus. Exposure to elevated CO2 increased the number of active individuals by 19–25% and increased movement (number of line-crosses) by nearly 3 times compared to squid at present-day CO2. Squid vigilance and defensive behaviours were also altered by elevated CO2 with >80% of individuals choosing jet escape responses over defensive arm postures in response to a visual startle stimulus, compared with 50% choosing jet escape responses at control CO2. In addition, more escape responses were chosen over threat behaviours in body pattern displays at elevated CO2 and individuals were more than twice as likely to use ink as a defence strategy at 956 µatm CO2, compared with controls. Increased activity could lead to adverse effects on energy budgets as well as increasing visibility to predators. A tendency to respond to a stimulus with escape behaviours could increase survival, but may also be energetically costly and could potentially lead to more chases by predators compared with individuals that use defensive postures. These results demonstrate that projected future ocean acidification affects the behaviours of a tropical squid species. PMID:25326517

  2. Receptor-mediated activation of a plant Ca2+-permeable ion channel involved in pathogen defense

    PubMed Central

    Zimmermann, Sabine; Nürnberger, Thorsten; Frachisse, Jean-Marie; Wirtz, Wolfgang; Guern, Jean; Hedrich, Rainer; Scheel, Dierk

    1997-01-01

    Pathogen recognition at the plant cell surface typically results in the initiation of a multicomponent defense response. Transient influx of Ca2+ across the plasma membrane is postulated to be part of the signaling chain leading to pathogen resistance. Patch-clamp analysis of parsley protoplasts revealed a novel Ca2+-permeable, La3+-sensitive plasma membrane ion channel of large conductance (309 pS in 240 mM CaCl2). At an extracellular Ca2+ concentration of 1 mM, which is representative of the plant cell apoplast, unitary channel conductance was determined to be 80 pS. This ion channel (LEAC, for large conductance elicitor-activated ion channel) is reversibly activated upon treatment of parsley protoplasts with an oligopeptide elicitor derived from a cell wall protein of Phytophthora sojae. Structural features of the elicitor found previously to be essential for receptor binding, induction of defense-related gene expression, and phytoalexin formation are identical to those required for activation of LEAC. Thus, receptor-mediated stimulation of this channel appears to be causally involved in the signaling cascade triggering pathogen defense in parsley. PMID:11038609

  3. Heat treatment in combination with antagonistic yeast reduces diseases and elicits the active defense responses in harvested cherry tomato fruit.

    PubMed

    Zhao, Yan; Tu, Kang; Su, Jing; Tu, Sicong; Hou, Yuepeng; Liu, Fengjuan; Zou, Xiurong

    2009-08-26

    This study investigated the effects of heat treatment (hot air at 38 degrees C) and antagonistic yeast (Pichia guilliermondii) alone or in combination against postharvest diseases (Botrytis cinerea, Alternaria alternata and Rhizopus nigricans) on cherry tomato fruit, and evaluated the elicitation of active defense responses. Results showed that heat treatment at 38 degrees C for 24 h in combination with P. guilliermondii at 1 x 10(8) CFU mL(-1) was the most effective approach to reduce various infections on cherry tomato fruit's wounds. Moreover, the combined heat and P. guilliermondii treatment stimulated a rapid increase of H(2)O(2) and higher lignin deposition in cherry tomato fruit showing that the oxidative burst and biological synthesis of lignin might play important roles in the fruit's active defense responses. In addition, the reduction of the fruit's susceptibility to pathogens by the combined treatment was positively correlated with higher activities of phenylalanine ammonia-lyase (PAL) and beta-1,3-glucanase in cherry tomato fruits, both of which are associated with plant defense responses.

  4. Projected near-future CO2 levels increase activity and alter defensive behaviours in the tropical squid Idiosepius pygmaeus.

    PubMed

    Spady, Blake L; Watson, Sue-Ann; Chase, Tory J; Munday, Philip L

    2014-10-17

    Carbon dioxide (CO2) levels projected to occur in the oceans by the end of this century cause a range of behavioural effects in fish, but whether other highly active marine organisms, such as cephalopods, are similarly affected is unknown. We tested the effects of projected future CO2 levels (626 and 956 µatm) on the behaviour of male two-toned pygmy squid, Idiosepius pygmaeus. Exposure to elevated CO2 increased the number of active individuals by 19-25% and increased movement (number of line-crosses) by nearly 3 times compared to squid at present-day CO2. Squid vigilance and defensive behaviours were also altered by elevated CO2 with >80% of individuals choosing jet escape responses over defensive arm postures in response to a visual startle stimulus, compared with 50% choosing jet escape responses at control CO2. In addition, more escape responses were chosen over threat behaviours in body pattern displays at elevated CO2 and individuals were more than twice as likely to use ink as a defence strategy at 956 µatm CO2, compared with controls. Increased activity could lead to adverse effects on energy budgets as well as increasing visibility to predators. A tendency to respond to a stimulus with escape behaviours could increase survival, but may also be energetically costly and could potentially lead to more chases by predators compared with individuals that use defensive postures. These results demonstrate that projected future ocean acidification affects the behaviours of a tropical squid species.

  5. Low Levels of Polymorphism in Genes That Control the Activation of Defense Response in Arabidopsis thaliana

    PubMed Central

    Bakker, Erica G.; Traw, M. Brian; Toomajian, Christopher; Kreitman, Martin; Bergelson, Joy

    2008-01-01

    Plants use signaling pathways involving salicylic acid, jasmonic acid, and ethylene to defend against pathogen and herbivore attack. Many defense response genes involved in these signaling pathways have been characterized, but little is known about the selective pressures they experience. A representative set of 27 defense response genes were resequenced in a worldwide set of 96 Arabidopsis thaliana accessions, and patterns of single nucleotide polymorphisms (SNPs) were evaluated in relation to an empirical distribution of SNPs generated from either 876 fragments or 236 fragments with >400 bp coding sequence (this latter set was selected for comparisons with coding sequences) distributed across the genomes of the same set of accessions. Defense response genes have significantly fewer protein variants, display lower levels of nonsynonymous nucleotide diversity, and have fewer nonsynonymous segregating sites. The majority of defense response genes appear to be experiencing purifying selection, given the dearth of protein variation in this set of genes. Eight genes exhibit some evidence of partial selective sweeps or transient balancing selection. These results therefore provide a strong contrast to the high levels of balancing selection exhibited by genes at the upstream positions in these signaling pathways. PMID:18245336

  6. Alternative activation deprives macrophages of a coordinated defense program to Mycobacterium tuberculosis.

    PubMed

    Kahnert, Antje; Seiler, Peter; Stein, Maik; Bandermann, Silke; Hahnke, Karin; Mollenkopf, Hans; Kaufmann, Stefan H E

    2006-03-01

    A potent Th1 immune response is critical to the control of tuberculosis. The impact of an additive Th2 response on the course of disease has so far been insufficiently characterized, despite increased morbidity after co-infection with Mycobacterium tuberculosis and Th2-eliciting helminths and possible involvement of Th2 polarization in reactivation of latent tuberculosis. Here, we describe the gene expression profile of murine bone marrow-derived macrophages alternatively activated by IL-4 in response to infection with M. tuberculosis. Comparison of transcriptional profiles of infected IL-4- and IFN-gamma-activated macrophages revealed delayed and partially diminished responses to intracellular bacteria in alternatively activated macrophages, characterized by reduced exposure to nitrosative stress and increased iron availability, respectively. Alternative activation of host macrophages correlated with elevated expression of the M. tuberculosis iron storage protein bacterioferritin as well as reduced expression of the mycobactin synthesis genes mbtI and mbtJ. The extracellular matrix-remodeling enzyme matrix metalloproteinase (MMP)-12 was induced in alternatively activated macrophages in vitro, and MMP-12-expressing macrophages were abundant at late, but not early, stages of tuberculosis in murine lungs. Our findings emphasize that alternative activation deprives macrophages of control mechanisms that limit mycobacterial growth in vivo, thus supporting intracellular persistence of M. tuberculosis. PMID:16479545

  7. Immune-related transcriptome of Coptotermes formosanus Shiraki workers: the defense mechanism.

    PubMed

    Hussain, Abid; Li, Yi-Feng; Cheng, Yu; Liu, Yang; Chen, Chuan-Cheng; Wen, Shuo-Yang

    2013-01-01

    Formosan subterranean termites, Coptotermes formosanus Shiraki, live socially in microbial-rich habitats. To understand the molecular mechanism by which termites combat pathogenic microbes, a full-length normalized cDNA library and four Suppression Subtractive Hybridization (SSH) libraries were constructed from termite workers infected with entomopathogenic fungi (Metarhizium anisopliae and Beauveria bassiana), Gram-positive Bacillus thuringiensis and Gram-negative Escherichia coli, and the libraries were analyzed. From the high quality normalized cDNA library, 439 immune-related sequences were identified. These sequences were categorized as pattern recognition receptors (47 sequences), signal modulators (52 sequences), signal transducers (137 sequences), effectors (39 sequences) and others (164 sequences). From the SSH libraries, 27, 17, 22 and 15 immune-related genes were identified from each SSH library treated with M. anisopliae, B. bassiana, B. thuringiensis and E. coli, respectively. When the normalized cDNA library was compared with the SSH libraries, 37 immune-related clusters were found in common; 56 clusters were identified in the SSH libraries, and 259 were identified in the normalized cDNA library. The immune-related gene expression pattern was further investigated using quantitative real time PCR (qPCR). Important immune-related genes were characterized, and their potential functions were discussed based on the integrated analysis of the results. We suggest that normalized cDNA and SSH libraries enable us to discover functional genes transcriptome. The results remarkably expand our knowledge about immune-inducible genes in C. formosanus Shiraki and enable the future development of novel control strategies for the management of Formosan subterranean termites.

  8. Immune-Related Transcriptome of Coptotermes formosanus Shiraki Workers: The Defense Mechanism

    PubMed Central

    Hussain, Abid; Li, Yi-Feng; Cheng, Yu; Liu, Yang; Chen, Chuan-Cheng; Wen, Shuo-Yang

    2013-01-01

    Formosan subterranean termites, Coptotermes formosanus Shiraki, live socially in microbial-rich habitats. To understand the molecular mechanism by which termites combat pathogenic microbes, a full-length normalized cDNA library and four Suppression Subtractive Hybridization (SSH) libraries were constructed from termite workers infected with entomopathogenic fungi (Metarhizium anisopliae and Beauveria bassiana), Gram-positive Bacillus thuringiensis and Gram-negative Escherichia coli, and the libraries were analyzed. From the high quality normalized cDNA library, 439 immune-related sequences were identified. These sequences were categorized as pattern recognition receptors (47 sequences), signal modulators (52 sequences), signal transducers (137 sequences), effectors (39 sequences) and others (164 sequences). From the SSH libraries, 27, 17, 22 and 15 immune-related genes were identified from each SSH library treated with M. anisopliae, B. bassiana, B. thuringiensis and E. coli, respectively. When the normalized cDNA library was compared with the SSH libraries, 37 immune-related clusters were found in common; 56 clusters were identified in the SSH libraries, and 259 were identified in the normalized cDNA library. The immune-related gene expression pattern was further investigated using quantitative real time PCR (qPCR). Important immune-related genes were characterized, and their potential functions were discussed based on the integrated analysis of the results. We suggest that normalized cDNA and SSH libraries enable us to discover functional genes transcriptome. The results remarkably expand our knowledge about immune-inducible genes in C. formosanus Shiraki and enable the future development of novel control strategies for the management of Formosan subterranean termites. PMID:23874972

  9. DIGESTIVE PHYSIOLOGY OF THE PIG SYMPOSIUM: Involvement of gut chemosensing in the regulation of mucosal barrier function and defense mechanisms1,2

    PubMed Central

    Kaji, I.; Akiba, Y.; Kaunitz, J. D.

    2016-01-01

    Meal ingestion is followed by release of numerous hormones from enteroendocrine cells interspersed among the epithelial cells lining the intestine. Recently, the de-orphanization of G protein-coupled receptor (GPCR)-type nutrient receptors, expressed on the apical membranes of enteroendocrine cells, has suggested a plausible mechanism whereby luminal nutrients trigger the release of gut hormones. Activation of nutrient receptors triggers intracellular signaling mechanisms that promote exocytosis of hormone-containing granules into the submucosal space. Hormones released by foregut enteroendocrine cells include the glucagon-like peptides (GLP) affecting glycemic control (GLP-1) and releasing pro-proliferative, hypertrophy-inducing growth factors (GLP-2). The foregut mucosa, being exposed to pulses of concentrated HCl, is protected by a system of defense mechanisms, which includes epithelial bicarbonate and mucus secretion and augmentation of mucosal blood flow. We have reported that luminal co-perfusion of AA with nucleotides in anesthetized rats releases GLP-2 into the portal vein, associated with increased bicarbonate and mucus secretion and mucosal blood flow. The GLP-2 increases bicarbonate secretion via release of vasoactive intestinal peptide (VIP) from myenteric nerves. Luminal bile acids also release gut hormones due to activation of the bile-acid receptor known as G Protein-Coupled Receptor (GPR) 131, G Protein Bile Acid Receptor (GPBAR) 1, or Takeda G Protein-Coupled Receptor (TGR) 5, also expressed on enteroendocrine cells. The GLP are metabolized by dipeptidyl peptidase IV (DPPIV), an enzyme of particular interest to pharmaceutical, because its inhibition increases plasma concentrations of GLP-1 to treat diabetes. We have also reported that DPPIV inhibition enhances the secretory effects of nutrient-evoked GLP-2. Understanding the release mechanism and the metabolic pathways of gut hormones is of potential utility to the formulation of feedstuff

  10. How Lower- and Working-Class Youth Become Middle-Class Adults: The Association between Ego Defense Mechanisms and Upward Social Mobility.

    ERIC Educational Resources Information Center

    Snarey, John R.; Vaillant, George E.

    1985-01-01

    Among 278 inner-city men studied for four decades and over three generations, eight variables captured 28 percent of the explained variance in upward social mobility: IQ, mother's education, mother's occupation, boyhood ego strength, and four ego defense mechanisms--intellectualization, dissociation, sublimation, and anticipation.…

  11. Low-dose AgNPs reduce lung mechanical function and innate immune defense in the absence of cellular toxicity

    PubMed Central

    Botelho, Danielle J.; Leo, Bey Fen; Massa, Christopher B.; Sarkar, Srijata; Tetley, Terry D.; Chung, Kian Fan; Chen, Shu; Ryan, Mary P.; Porter, Alexandra E.; Zhang, Junfeng; Schwander, Stephan K.; Gow, Andrew J.

    2016-01-01

    Multiple studies have examined the direct cellular toxicity of silver nanoparticles (AgNPs). However, the lung is a complex biological system with multiple cell types and a lipid-rich surface fluid; therefore, organ level responses may not depend on direct cellular toxicity. We hypothesized that interaction with the lung lining is a critical determinant of organ level responses. Here, we have examined the effects of low dose intratracheal instillation of AgNPs (0.05 µg/g body weight) 20 and 110nm diameter in size, and functionalized with citrate or polyvinylpyrrolidone. Both size and functionalization were significant factors in particle aggregation and lipid interaction in vitro. One day post-intratracheal instillation lung function was assessed, and bronchoalveolar lavage (BAL) and lung tissue collected. There were no signs of overt inflammation. There was no change in surfactant protein-B content in the BAL but there was loss of surfactant protein-D with polyvinylpyrrolidone (PVP)-stabilized particles. Mechanical impedance data demonstrated a significant increase in pulmonary elastance as compared to control, greatest with 110nm PVP-stabilized particles. Seven days post-instillation of PVP-stabilized particles increased BAL cell counts, and reduced lung function was observed. These changes resolved by 21 days. Hence, AgNP-mediated alterations in the lung lining and mechanical function resolve by 21 days. Larger particles and PVP stabilization produce the largest disruptions. These studies demonstrate that low dose AgNPs elicit deficits in both mechanical and innate immune defense function, suggesting that organ level toxicity should be considered. PMID:26152688

  12. Low-dose AgNPs reduce lung mechanical function and innate immune defense in the absence of cellular toxicity.

    PubMed

    Botelho, Danielle J; Leo, Bey Fen; Massa, Christopher B; Sarkar, Srijata; Tetley, Terry D; Chung, Kian Fan; Chen, Shu; Ryan, Mary P; Porter, Alexandra E; Zhang, Junfeng; Schwander, Stephan K; Gow, Andrew J

    2016-01-01

    Multiple studies have examined the direct cellular toxicity of silver nanoparticles (AgNPs). However, the lung is a complex biological system with multiple cell types and a lipid-rich surface fluid; therefore, organ level responses may not depend on direct cellular toxicity. We hypothesized that interaction with the lung lining is a critical determinant of organ level responses. Here, we have examined the effects of low dose intratracheal instillation of AgNPs (0.05 μg/g body weight) 20 and 110 nm diameter in size, and functionalized with citrate or polyvinylpyrrolidone. Both size and functionalization were significant factors in particle aggregation and lipid interaction in vitro. One day post-intratracheal instillation lung function was assessed, and bronchoalveolar lavage (BAL) and lung tissue collected. There were no signs of overt inflammation. There was no change in surfactant protein-B content in the BAL but there was loss of surfactant protein-D with polyvinylpyrrolidone (PVP)-stabilized particles. Mechanical impedance data demonstrated a significant increase in pulmonary elastance as compared to control, greatest with 110 nm PVP-stabilized particles. Seven days post-instillation of PVP-stabilized particles increased BAL cell counts, and reduced lung function was observed. These changes resolved by 21 days. Hence, AgNP-mediated alterations in the lung lining and mechanical function resolve by 21 days. Larger particles and PVP stabilization produce the largest disruptions. These studies demonstrate that low dose AgNPs elicit deficits in both mechanical and innate immune defense function, suggesting that organ level toxicity should be considered.

  13. Prunus domestica pathogenesis-related protein-5 activates the defense response pathway and enhances the resistance to fungal infection.

    PubMed

    El-kereamy, Ashraf; El-sharkawy, Islam; Ramamoorthy, Rengasamy; Taheri, Ali; Errampalli, Deena; Kumar, Prakash; Jayasankar, Subramanian

    2011-03-23

    Pathogenesis-related protein-5 (PR-5) has been implicated in plant disease resistance and its antifungal activity has been demonstrated in some fruit species. However, their roles, especially their interactions with the other defense responses in plant cells, are still not fully understood. In this study, we have cloned and characterized a new PR-5 cDNA named PdPR5-1 from the European plum (Prunus domestica). Expression of PdPR5-1 was studied in different cultivars varying in resistance to the brown rot disease caused by the necrotrophic fungus Monilinia fructicola. In addition transgenic Arabidopsis, ectopically expressing PdPR5-1 was used to study its role in other plant defense responses after fungal infection. We show that the resistant cultivars exhibited much higher levels of transcripts than the susceptible cultivars during fruit ripening. However, significant rise in the transcript levels after infection with M. fructicola was observed in the susceptible cultivars too. Transgenic Arabidopsis plants exhibited more resistance to Alternaria brassicicola. Further, there was a significant increase in the transcripts of genes involved in the phenylpropanoid biosynthesis pathway such as phenylalanine ammonia-lyase (PAL) and phytoalexin (camalexin) pathway leading to an increase in camalexin content after fungal infection. Our results show that PdPR5-1 gene, in addition to its anti-fungal properties, has a possible role in activating other defense pathways, including phytoalexin production.

  14. Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 1998

    SciTech Connect

    1999-02-01

    This is the ninth Annual Report to the Congress describing Department of Energy (Department) activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of energy regarding public health and safety issues at the Department`s defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department`s defense nuclear facilities. The locations of the major Department facilities are provided. During 1998, Departmental activities resulted in the proposed closure of one Board recommendation. In addition, the Department has completed all implementation plan milestones associated with four other Board recommendations. Two new Board recommendations were received and accepted by the Department in 1998, and two new implementation plans are being developed to address these recommendations. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, a renewed effort to increase the technical capabilities of the federal workforce, and a revised plan for stabilizing excess nuclear materials to achieve significant risk reduction.

  15. Response and Defense Mechanisms of Taxus chinensis Leaves Under UV-A Radiation are Revealed Using Comparative Proteomics and Metabolomics Analyses.

    PubMed

    Zheng, Wen; Komatsu, Setsuko; Zhu, Wei; Zhang, Lin; Li, Ximin; Cui, Lei; Tian, Jingkui

    2016-09-01

    Taxus chinensis var. mairei is a species endemic to south-eastern China and one of the natural sources for the anticancer medicine paclitaxel. To investigate the molecular response and defense mechanisms of T. chinensis leaves to enhanced ultraviolet-A (UV-A) radiation, gel-free/label-free and gel-based proteomics and gas chromatography-mass spectrometry (GC-MS) analyses were performed. The transmission electron microscopy results indicated damage to the chloroplast under UV-A radiation. Proteomics analyses in leaves and chloroplasts showed that photosynthesis-, glycolysis-, secondary metabolism-, stress-, and protein synthesis-, degradation- and activation-related systems were mainly changed under UV-A radiation. Forty-seven PSII proteins and six PSI proteins were identified as being changed in leaves and chloroplasts under UV-A treatment. This indicated that PSII was more sensitive to UV-A than PSI as the target of UV-A light. Enhanced glycolysis, with four glycolysis-related key enzymes increased, provided precursors for secondary metabolism. The 1-deoxy-d-xylulose-5-phosphate reductoisomerase and 4-hydroxy-3-methylbut-2-enyl diphosphate reductase were identified as being significantly increased during UV-A radiation, which resulted in paclitaxel enhancement. Additionally, mRNA expression levels of genes involved in the paclitaxel biosynthetic pathway indicated a down-regulation under UV-A irradiation and up-regulation in dark incubation. These results reveal that a short-term high dose of UV-A radiation could stimulate the plant stress defense system and paclitaxel production. PMID:27318281

  16. Characterization of Hg-phytochelatins complexes in vines (Vitis vinifera cv Malbec) as defense mechanism against metal stress.

    PubMed

    Spisso, Adrian A; Cerutti, Soledad; Silva, Fernanda; Pacheco, Pablo H; Martinez, Luis D

    2014-06-01

    An approach to understand vines (Vitis vinifera) defense mechanism against heavy metal stress by isolation and determination of Hg-phytochelatins (PCs) complexes was performed. PCs are important molecules involved in the control of metal concentration in plants. PCs complex toxic metals through -SH groups and stores them inside cells vacuole avoiding any toxic effect of free metals in the cytosol. The Hg-PCs identification was achieved by determination of Hg and S as hetero-tagged atoms. A method involving two-dimensional chromatographic analysis coupled to atomic spectrometry and confirmation by tandem mass spectrometry is proposed. An approach involving size exclusion chromatography coupled to inductively coupled plasma mass spectrometry on roots, stems, and leaves extracts describing Hg distribution according to molecular weight and sulfur associations is proposed for the first time. Medium-low molecular weight Hg-S associations of 29-100 kDa were found, suggesting PCs presence. A second approach employing reversed-phase chromatography coupled to atomic fluorescence spectrometry analysis allowed the determination of Hg-PCs complexes within the mentioned fractions. Chromatograms showed Hg-PC2, Hg-PC3 and Hg-PC4 presence only in roots. Hg-PCs presence in roots was confirmed by ESI-MS/MS analysis. PMID:24715273

  17. Effect of Calendula officinalis Flower Extract on Acute Phase Proteins, Antioxidant Defense Mechanism and Granuloma Formation During Thermal Burns.

    PubMed

    Chandran, Preethi K; Kuttan, Ramadasan

    2008-09-01

    Effect of Calendula officinalis flower extract was investigated against experimentally induced thermal burns in rats. Burn injury was made on the shaven back of the rats under anesthesia and the animals were treated orally with different doses of the flower extract (20 mg, 100 mg and 200 mg/kg body weight). The animals treated with the extract showed significant improvement in healing when compared with the control untreated animals. The indicators of the wound healing such as collagen-hydroxyproline and hexosamine contents were significantly increased in the treated group indicating accelerated wound healing in the treated animals. The acute phase proteins-haptoglobin and orosomucoid which were increased due to burn injury were found to be decreased significantly in 200 mg/kg body weight extract treated animals. The antioxidant defense mechanism, which was decreased in the liver during burn injury, was found to be enhanced in treated animals. The lipid peroxidation was significantly lowered in the treated group when compared to control animals. Tissue damage marker enzymes- alkaline phosphatase, alanine and aspartate transaminases were significantly lowered in the treated groups in a dose dependant manner. The histopathological analyses of skin tissue also give the evidence of the increased healing potential of the extract after burn injury.

  18. Characterization of Hg-phytochelatins complexes in vines (Vitis vinifera cv Malbec) as defense mechanism against metal stress.

    PubMed

    Spisso, Adrian A; Cerutti, Soledad; Silva, Fernanda; Pacheco, Pablo H; Martinez, Luis D

    2014-06-01

    An approach to understand vines (Vitis vinifera) defense mechanism against heavy metal stress by isolation and determination of Hg-phytochelatins (PCs) complexes was performed. PCs are important molecules involved in the control of metal concentration in plants. PCs complex toxic metals through -SH groups and stores them inside cells vacuole avoiding any toxic effect of free metals in the cytosol. The Hg-PCs identification was achieved by determination of Hg and S as hetero-tagged atoms. A method involving two-dimensional chromatographic analysis coupled to atomic spectrometry and confirmation by tandem mass spectrometry is proposed. An approach involving size exclusion chromatography coupled to inductively coupled plasma mass spectrometry on roots, stems, and leaves extracts describing Hg distribution according to molecular weight and sulfur associations is proposed for the first time. Medium-low molecular weight Hg-S associations of 29-100 kDa were found, suggesting PCs presence. A second approach employing reversed-phase chromatography coupled to atomic fluorescence spectrometry analysis allowed the determination of Hg-PCs complexes within the mentioned fractions. Chromatograms showed Hg-PC2, Hg-PC3 and Hg-PC4 presence only in roots. Hg-PCs presence in roots was confirmed by ESI-MS/MS analysis.

  19. Effect of Calendula officinalis Flower Extract on Acute Phase Proteins, Antioxidant Defense Mechanism and Granuloma Formation During Thermal Burns

    PubMed Central

    Chandran, Preethi K.; Kuttan, Ramadasan

    2008-01-01

    Effect of Calendula officinalis flower extract was investigated against experimentally induced thermal burns in rats. Burn injury was made on the shaven back of the rats under anesthesia and the animals were treated orally with different doses of the flower extract (20 mg, 100 mg and 200 mg/kg body weight). The animals treated with the extract showed significant improvement in healing when compared with the control untreated animals. The indicators of the wound healing such as collagen-hydroxyproline and hexosamine contents were significantly increased in the treated group indicating accelerated wound healing in the treated animals. The acute phase proteins—haptoglobin and orosomucoid which were increased due to burn injury were found to be decreased significantly in 200 mg/kg body weight extract treated animals. The antioxidant defense mechanism, which was decreased in the liver during burn injury, was found to be enhanced in treated animals. The lipid peroxidation was significantly lowered in the treated group when compared to control animals. Tissue damage marker enzymes- alkaline phosphatase, alanine and aspartate transaminases were significantly lowered in the treated groups in a dose dependant manner. The histopathological analyses of skin tissue also give the evidence of the increased healing potential of the extract after burn injury. PMID:18818737

  20. (1)H NMR and GC-MS Based Metabolomics Reveal Defense and Detoxification Mechanism of Cucumber Plant under Nano-Cu Stress.

    PubMed

    Zhao, Lijuan; Huang, Yuxiong; Hu, Jerry; Zhou, Hongjun; Adeleye, Adeyemi S; Keller, Arturo A

    2016-02-16

    Because copper nanoparticles are being increasingly used in agriculture as pesticides, it is important to assess their potential implications for agriculture. Concerns have been raised about the bioaccumulation of nano-Cu and their toxicity to crop plants. Here, the response of cucumber plants in hydroponic culture at early development stages to two concentrations of nano-Cu (10 and 20 mg/L) was evaluated by proton nuclear magnetic resonance spectroscopy ((1)H NMR) and gas chromatography-mass spectrometry (GC-MS) based metabolomics. Changes in mineral nutrient metabolism induced by nano-Cu were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Results showed that nano-Cu at both concentrations interferes with the uptake of a number of micro- and macro-nutrients, such as Na, P, S, Mo, Zn, and Fe. Metabolomics data revealed that nano-Cu at both levels triggered significant metabolic changes in cucumber leaves and root exudates. The root exudate metabolic changes revealed an active defense mechanism against nano-Cu stress: up-regulation of amino acids to sequester/exclude Cu/nano-Cu; down-regulation of citric acid to reduce the mobilization of Cu ions; ascorbic acid up-regulation to combat reactive oxygen species; and up-regulation of phenolic compounds to improve antioxidant system. Thus, we demonstrate that nontargeted (1)H NMR and GC-MS based metabolomics can successfully identify physiological responses induced by nanoparticles. Root exudates metabolomics revealed important detoxification mechanisms.

  1. (1)H NMR and GC-MS Based Metabolomics Reveal Defense and Detoxification Mechanism of Cucumber Plant under Nano-Cu Stress.

    PubMed

    Zhao, Lijuan; Huang, Yuxiong; Hu, Jerry; Zhou, Hongjun; Adeleye, Adeyemi S; Keller, Arturo A

    2016-02-16

    Because copper nanoparticles are being increasingly used in agriculture as pesticides, it is important to assess their potential implications for agriculture. Concerns have been raised about the bioaccumulation of nano-Cu and their toxicity to crop plants. Here, the response of cucumber plants in hydroponic culture at early development stages to two concentrations of nano-Cu (10 and 20 mg/L) was evaluated by proton nuclear magnetic resonance spectroscopy ((1)H NMR) and gas chromatography-mass spectrometry (GC-MS) based metabolomics. Changes in mineral nutrient metabolism induced by nano-Cu were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Results showed that nano-Cu at both concentrations interferes with the uptake of a number of micro- and macro-nutrients, such as Na, P, S, Mo, Zn, and Fe. Metabolomics data revealed that nano-Cu at both levels triggered significant metabolic changes in cucumber leaves and root exudates. The root exudate metabolic changes revealed an active defense mechanism against nano-Cu stress: up-regulation of amino acids to sequester/exclude Cu/nano-Cu; down-regulation of citric acid to reduce the mobilization of Cu ions; ascorbic acid up-regulation to combat reactive oxygen species; and up-regulation of phenolic compounds to improve antioxidant system. Thus, we demonstrate that nontargeted (1)H NMR and GC-MS based metabolomics can successfully identify physiological responses induced by nanoparticles. Root exudates metabolomics revealed important detoxification mechanisms. PMID:26751164

  2. Anticonvulsant and analgesic activities of crude extract and its fractions of the defensive secretion from the Mediterranean sponge, Spongia officinalis

    PubMed Central

    2012-01-01

    This study progresses in the direction of identifying component(s) from the Mediterranean sponge, Spongia officinalis with anticonvulsant and analgesic activities. We investigated the efficacy of crude extract and its semi-purified fractions (F1-F3) of the defensive secretion from Spongia officinalis for their in vivo anticonvulsant activity using the pentylenetetrazole (PTZ) seizure model and analgesic activity using the writhing test in mice. Among the series the crude extract exhibited interesting analgesic activity in a dose dependent manner. Similarly the fraction F2 showed a partial protection of mice from PTZ-induced seizure and interesting analgesic activity in a dose dependent manner. The purification and the determination of chemical structure(s) of compound(s) of this active fraction are under investigation. PMID:22494441

  3. Activation of defense against Phytophthora infestans in potato by down-regulation of syntaxin gene expression.

    PubMed

    Eschen-Lippold, Lennart; Landgraf, Ramona; Smolka, Ulrike; Schulze, Sebastian; Heilmann, Mareike; Heilmann, Ingo; Hause, Gerd; Rosahl, Sabine

    2012-03-01

    The oomycete Phytophthora infestans is the causal agent of late blight, the most devastating disease of potato. The importance of vesicle fusion processes and callose deposition for defense of potato against Phytophthora infestans was analyzed. Transgenic plants were generated, which express RNA interference constructs targeted against plasma membrane-localized SYNTAXIN-RELATED 1 (StSYR1) and SOLUBLE N-ETHYLMALEIMIDE-SENSITIVE FACTOR ADAPTOR PROTEIN 33 (StSNAP33), the potato homologs of Arabidopsis AtSYP121 and AtSNAP33, respectively. Phenotypically, transgenic plants grew normally, but showed spontaneous necrosis and chlorosis formation at later stages. In response to infection with Phytophthora infestans, increased resistance of StSYR1-RNAi plants, but not StSNAP33-RNAi plants, was observed. This increased resistance correlated with the constitutive accumulation of salicylic acid and PR1 transcripts. Aberrant callose deposition in Phytophthora infestans-infected StSYR1-RNAi plants coincided with decreased papilla formation at penetration sites. Resistance against the necrotrophic fungus Botrytis cinerea was not significantly altered. Infiltration experiments with bacterial solutions of Agrobacterium tumefaciens and Escherichia coli revealed a hypersensitive phenotype of both types of RNAi lines. The enhanced defense status and the reduced growth of Phytophthora infestans on StSYR1-RNAi plants suggest an involvement of syntaxins in secretory defense responses of potato and, in particular, in the formation of callose-containing papillae. PMID:22243492

  4. Defense styles of pedophilic offenders.

    PubMed

    Drapeau, Martin; Beretta, Véronique; de Roten, Yves; Koerner, Annett; Despland, Jean-Nicolas

    2008-04-01

    This pilot study investigated the defense styles of pedophile sexual offenders. Interviews with 20 pedophiles and 20 controls were scored using the Defense Mechanisms Rating Scales. Results showed that pedophiles had a significantly lower overall defensive functioning score than the controls. Pedophiles used significantly fewer obsessional-level defenses but more major image-distorting and action-level defenses. Results also suggested differences in the prevalence of individual defenses where pedophiles used more dissociation, displacement, denial, autistic fantasy, splitting of object, projective identification, acting out, and passive aggressive behavior but less intellectualization and rationalization.

  5. [Molecular mechanisms regulating the activity of macrophages].

    PubMed

    Onoprienko, L V

    2011-01-01

    This article reviews modern concepts of the most common types of macrophage activation: classical, alternative, and type II. Molecular mechanisms of induction and regulation of these three types of activation are discussed. Any population of macrophages was shown to change its properties depending on its microenvironment and concrete biological situation (the "functional plasticity of macrophages"). Many intermediate states of macrophages were described along with the most pronounced and well-known activation types (classical activation, alternative activation, and type II activation). These intermediate states are characterized by a variety of combinations of their biological properties, including elements of the three afore mentioned types of activation. Macrophage activity is regulated by a complex network of interrelated cascade mechanisms.

  6. Nonenzymatic Lipid Peroxidation Reprograms Gene Expression and Activates Defense Markers in Arabidopsis Tocopherol-Deficient Mutants[W

    PubMed Central

    Sattler, Scott E.; Mène-Saffrané, Laurent; Farmer, Edward E.; Krischke, Markus; Mueller, Martin J.; DellaPenna, Dean

    2006-01-01

    Tocopherols (vitamin E) are lipophilic antioxidants that are synthesized by all plants and are particularly abundant in seeds. Two tocopherol-deficient mutant loci in Arabidopsis thaliana were used to examine the functions of tocopherols in seedlings: vitamin e1 (vte1), which accumulates the pathway intermediate 2,3-dimethyl-5-phytyl-1,4-benzoquinone (DMPBQ); and vte2, which lacks all tocopherols and pathway intermediates. Only vte2 displayed severe seedling growth defects, which corresponded with massively increased levels of the major classes of nonenzymatic lipid peroxidation products: hydroxy fatty acids, malondialdehyde, and phytoprostanes. In the absence of pathogens, the phytoalexin camalexin accumulated in vte2 seedlings to levels 100-fold higher than in wild-type or vte1 seedlings. Similarly, gene expression profiling in wild-type, vte1, and vte2 seedlings indicated that increased levels of nonenzymatic lipid peroxidation in vte2 corresponded to increased expression of many defense-related genes, which were not induced in vte1. Both biochemical and transcriptional analyses of vte2 seedlings indicate that nonenzymatic lipid peroxidation plays a significant role in modulating plant defense responses. Together, these results establish that tocopherols in wild-type plants or DMPBQ in vte1 plants limit nonenzymatic lipid peroxidation during germination and early seedling development, thereby preventing the inappropriate activation of transcriptional and biochemical defense responses. PMID:17194769

  7. Mechanism for the activation of glutamate receptors

    Cancer.gov

    Scientists at the NIH have used a technique called cryo-electron microscopy to determine a molecular mechanism for the activation and desensitization of ionotropic glutamate receptors, a prominent class of neurotransmitter receptors in the brain and spina

  8. Infection of goats with goatpox virus triggers host antiviral defense through activation of innate immune signaling.

    PubMed

    Zeng, Xiancheng; Wang, Song; Chi, Xiaojuan; Chen, Shi-long; Huang, Shile; Lin, Qunqun; Xie, Baogui; Chen, Ji-Long

    2016-02-01

    Goatpox, caused by goatpox virus (GTPV), is one of the most serious infectious diseases associated with high morbidity and mortality in goats. However, little is known about involvement of host innate immunity during the GTPV infection. For this, goats were experimentally infected with GTPV. The results showed that GTPV infection significantly induced mRNA expression of type I interferon (IFN)-α and IFN-β in peripheral blood lymphocytes, spleen and lung. In addition, GTPV infection enhanced expression of several inflammatory cytokines, including interleukin (IL)-1β, IL-6, IL-18; and tumor necrosis factor-α (TNF-α). Strikingly, infection with GTPV activated signal transducers and activators of transcription 3 (STAT3), a critical cytokine signaling molecule. Interestingly, the virus infection induced expression of suppressor of cytokine signaling (SOCS)-1. Importantly, the infection resulted in an increased expression of some critical interferon-stimulated genes, such as interferon-induced transmembrane protein (IFITM) 1, IFITM3, interferon stimulated gene (ISG) 15 and ISG20. Furthermore, we found that infection with GTPV up-regulated expression of Toll-like receptor (TLR) 2 and TLR9. These results revealed that GTPV infection activated host innate immune signaling and thereby triggered antiviral innate immunity. The findings provide novel insights into complex mechanisms underlying GTPV-host interaction and pathogenesis of GTPV. PMID:26850535

  9. Fowlicidin-3 is an alpha-helical cationic host defense peptide with potent antibacterial and lipopolysaccharide-neutralizing activities.

    PubMed

    Bommineni, Yugendar R; Dai, Huaien; Gong, Yu-Xi; Soulages, Jose L; Fernando, Samodha C; Desilva, Udaya; Prakash, Om; Zhang, Guolong

    2007-01-01

    Cathelicidins are an important family of cationic host defense peptides in vertebrates with both antimicrobial and immunomodulatory activities. Fowlicidin-1 and fowlicidin-2 are two newly identified chicken cathelicidins with potent antibacterial activities. Here we report structural and functional characterization of the putatively mature form of the third chicken cathelicidin, fowlicidin-3, for exploration of its therapeutic potential. NMR spectroscopy revealed that fowlicidin-3 comprises 27 amino-acid residues and adopts a predominantly alpha-helical structure extending from residue 9 to 25 with a slight kink induced by a glycine at position 17. It is highly potent against a broad range of Gram-negative and Gram-positive bacteria in vitro, including antibiotic-resistant strains, with minimum inhibitory concentrations in the range 1-2 microM. It kills bacteria quickly, permeabilizing cytoplasmic membranes immediately on coming into contact with them. Unlike many other host defense peptides with antimicrobial activities that are diminished by serum or salt, fowlicidin-3 retains bacteria-killing activities in the presence of 50% serum or physiological concentrations of salt. Furthermore, it is capable of suppressing lipopolysaccharide-induced expression of proinflammatory genes in mouse macrophage RAW264.7 cells, with nearly complete blockage at 10 microM. Fowlicidin-3 appears to be an excellent candidate for future development as a novel antimicrobial and antisepsis agent, particularly against antibiotic-resistant pathogens.

  10. Protective effect of AVS073, a polyherbal formula, against UVA-induced melanogenesis through a redox mechanism involving glutathione-related antioxidant defense

    PubMed Central

    2013-01-01

    Background Ayurved Siriraj Brand Wattana formula (AVS073), a Thai herbal formula, has traditionally been used for health promotion and prevention of age-related problems. Ultraviolet A (UVA) is recognized to play a vital role in stimulation of melanin synthesis responsible for abnormal skin pigmentation possibly mediated by photooxidative stress. We thus aimed to study the inhibitory effect of AVS073 extracts on UVA-induced melanogenesis via a redox mechanism involving glutathione (GSH) synthesis and glutathione S-transferase (GST) using human melanoma (G361) cell culture. Methods The standardization of AVS073 extracts was carried out by TLC and UHPLC to obtain fingerprinting profiles of the formula, which identified several phenolic compounds including gallic acid (GA) in the formula. Antimelanogenic actions of AVS073 (up to 60 μg/ml) and GA (up to 10 μg/ml) were investigated by measuring tyrosinase activity and mRNA as well as melanin level in G361 cells irradiated with UVA. Moreover, antioxidant actions of the herbal formula and GA were determined by evaluating oxidant formation and modulation of GSH-related antioxidant defenses including GSH content, GST activity and mRNA level of γ-glutamate cysteine ligase catalytic (γ-GCLC) and modifier (γ-GCLM) subunit and GST. Results AVS073 extracts and GA, used as a reference compound, suppressed UVA-augmented tyrosinase activity and mRNA and melanin formation. In addition, pretreatment with AVS073 and GA was able to inhibit cellular oxidative stress, GSH depletion, GST inactivation and downregulation of γ-GCLC, γ-GCLM and GST mRNA in G361 cells exposed to UVA radiation. Conclusions AVS073 formula exerted antimelanogenic effects possibly through improving the redox state by upregulation of GSH and GST. Moreover, pharmacological activity of the polyherbal formula would be attributed to combined action of different phenolic compounds present in the formula. PMID:23826868

  11. Salicylic acid-mediated and RNA-silencing defense mechanisms cooperate in the restriction of systemic spread of plum pox virus in tobacco.

    PubMed

    Alamillo, Josefa M; Saénz, Pilar; García, Juan Antonio

    2006-10-01

    Plum pox virus (PPV) is able to replicate in inoculated leaves of Nicotiana tabacum, but is defective in systemic movement in this host. However, PPV produces a systemic infection in transgenic tobacco expressing the silencing suppressor P1/HC-Pro from tobacco etch virus (TEV). In this work we show that PPV is able to move to upper non-inoculated leaves of tobacco plants expressing bacterial salicylate hydroxylase (NahG) that degrades salicylic acid (SA). Replication and accumulation of PPV is higher in the locally infected leaves of plants deficient in SA or expressing TEV P1/HC-Pro silencing suppressor. Accumulation of viral derived small RNAs was reduced in the NahG transgenic plants, suggesting that SA might act as an enhancer of the RNA-silencing antiviral defense in tobacco. Besides, expression of SA-mediated defense transcripts, such as those of pathogenesis-related (PR) proteins PR-1 and PR-2 or alternative oxidase-1, as well as that of the putative RNA-dependent RNA polymerase NtRDR1, is induced in response to PPV infection, and the expression patterns of these defense transcripts are altered in the TEV P1/HC-Pro transgenic plants. Long-distance movement of PPV is highly enhanced in NahG x P1/HC-Pro double-transgenic plants and systemic symptoms in these plants reveal that the expression of an RNA-silencing suppressor and the lack of SA produce additive but distinct effects. Our results suggest that SA might act as an enhancer of the RNA-silencing antiviral defense in tobacco, and that silencing suppressors, such as P1/HC-Pro, also alter the SA-mediated defense. Both an RNA-silencing and an SA-mediated defense mechanism could act together to limit PPV infection.

  12. PeBL1, a Novel Protein Elicitor from Brevibacillus laterosporus Strain A60, Activates Defense Responses and Systemic Resistance in Nicotiana benthamiana

    PubMed Central

    Wang, Haoqian; Yang, Xiufen; Guo, Lihua; Zeng, Hongmei

    2015-01-01

    We report the identification, characterization, and gene cloning of a novel protein elicitor (PeBL1) secreted from Brevibacillus laterosporus strain A60. Through a purification process consisting of ion-exchange chromatography and high-performance liquid chromatography (HPLC), we isolated a protein that was identified by electrospray ionization quadrupole time of flight tandem mass spectrometry (ESI–Q-TOF–MS-MS). The 351-bp PeBL1 gene produces a 12,833-Da protein with 116 amino acids that contains a 30-residue signal peptide. The PeBL1 protein was expressed in Escherichia coli. The recombinant protein can induce a typical hypersensitive response (HR) and systemic resistance in Nicotiana benthamiana, like the endogenous protein. PeBL1-treated N. benthamiana exhibited strong resistance to the infection of tobacco mosaic virus-green fluorescent protein (TMV-GFP) and Pseudomonas syringae pv. tabaci compared to control N. benthamiana. In addition, PeBL1 triggered a cascade of events that resulted in defense responses in plants, including reactive oxygen species (ROS) production, extracellular-medium alkalization, phenolic-compound deposition, and expression of several defense-related genes. Real-time quantitative-PCR analysis indicated that the known defense-related genes PR-1, PR-5, PDF1.2, NPR1, and PAL were upregulated to varying degrees by PeBL1. This research not only provides insights into the mechanism by which beneficial bacteria activate plant systemic resistance, but also sheds new light on a novel strategy for biocontrol using strain A60. PMID:25662975

  13. Defensive activation to (un)predictable interoceptive threat: The NPU respiratory threat test (NPUr).

    PubMed

    Schroijen, Mathias; Fantoni, Simona; Rivera, Carmen; Vervliet, Bram; Schruers, Koen; van den Bergh, Omer; van Diest, Ilse

    2016-06-01

    Potentially life-threatening interoceptive sensations easily engage the behavioral defensive system. Resulting fear and anxiety toward interoceptive threat are functionally distinct states that are hypothesized to play a prominent role in the etiology of panic disorder. The present study aimed to investigate whether fear- and anxiety-potentiated startle responses occur to predictable and unpredictable interoceptive threat, respectively. Therefore, we modified the NPU threat test (Schmitz & Grillon, ) and replaced the aversive electrocutaneous stimulus with an aversive interoceptive stimulus (a breathing occlusion, making it briefly impossible to breathe). Healthy participants (N = 48) underwent three instructed conditions. A visual cue signaled the occlusion in the predictable condition (P), whereas another cue was unrelated to the occurrence of the occlusion in the unpredictable condition (U). The safe condition (N) also had a visual cue, but no occlusion. Both fear- and anxiety-potentiated startle blink responses were observed in response to predictable and unpredictable respiratory threat, respectively. The current study presents and validates the NPU respiratory threat test (NPUr) as an ecologically valid paradigm to study both anxiety and fear in response to a panic-relevant interoceptive threat. The paradigm allows future testing of contextual generalization, investigation of different clinical groups, and more explicit comparisons of defensive responding to interoceptive versus exteroceptive threats.

  14. Defensive activation to (un)predictable interoceptive threat: The NPU respiratory threat test (NPUr).

    PubMed

    Schroijen, Mathias; Fantoni, Simona; Rivera, Carmen; Vervliet, Bram; Schruers, Koen; van den Bergh, Omer; van Diest, Ilse

    2016-06-01

    Potentially life-threatening interoceptive sensations easily engage the behavioral defensive system. Resulting fear and anxiety toward interoceptive threat are functionally distinct states that are hypothesized to play a prominent role in the etiology of panic disorder. The present study aimed to investigate whether fear- and anxiety-potentiated startle responses occur to predictable and unpredictable interoceptive threat, respectively. Therefore, we modified the NPU threat test (Schmitz & Grillon, ) and replaced the aversive electrocutaneous stimulus with an aversive interoceptive stimulus (a breathing occlusion, making it briefly impossible to breathe). Healthy participants (N = 48) underwent three instructed conditions. A visual cue signaled the occlusion in the predictable condition (P), whereas another cue was unrelated to the occurrence of the occlusion in the unpredictable condition (U). The safe condition (N) also had a visual cue, but no occlusion. Both fear- and anxiety-potentiated startle blink responses were observed in response to predictable and unpredictable respiratory threat, respectively. The current study presents and validates the NPU respiratory threat test (NPUr) as an ecologically valid paradigm to study both anxiety and fear in response to a panic-relevant interoceptive threat. The paradigm allows future testing of contextual generalization, investigation of different clinical groups, and more explicit comparisons of defensive responding to interoceptive versus exteroceptive threats. PMID:26879710

  15. Potential fluid mechanic pathways of platelet activation

    PubMed Central

    Shadden, Shawn C.; Hendabadi, Sahar

    2012-01-01

    Platelet activation is a precursor for blood clotting, which plays leading roles in many vascular complications and causes of death. Platelets can be activated by chemical or mechanical stimuli. Mechanically, platelet activation has been shown to be a function of elevated shear stress and exposure time. These contributions can be combined by considering the cumulative stress or strain on a platelet as it is transported. Here we develop a framework for computing a hemodynamic-based activation potential that is derived from a Lagrangian integral of strain rate magnitude. We demonstrate that such a measure is generally maximized along, and near to, distinguished material surfaces in the flow. The connections between activation potential and these structures are illustrated through stenotic flow computations. We uncover two distinct structures that may explain observed thrombus formation at the apex and downstream of stenoses. More broadly, these findings suggest fundamental relationships may exist between potential fluid mechanic pathways for mechanical platelet activation and the mechanisms governing their transport. PMID:22782543

  16. White Spot Syndrome Virus Protein Kinase 1 Defeats the Host Cell's Iron-Withholding Defense Mechanism by Interacting with Host Ferritin

    PubMed Central

    Lin, Shin-Jen; Lee, Der-Yen; Wang, Hao-Ching; Kang, Shih-Ting; Hwang, Pung-Pung; Kou, Guang-Hsiung; Huang, Ming-Fen

    2014-01-01

    ABSTRACT Iron is an essential nutrient for nearly all living organisms, including both hosts and invaders. Proteins such as ferritin regulate the iron levels in a cell, and in the event of a pathogenic invasion, the host can use an iron-withholding mechanism to restrict the availability of this essential nutrient to the invading pathogens. However, pathogens use various strategies to overcome this host defense. In this study, we demonstrated that white spot syndrome virus (WSSV) protein kinase 1 (PK1) interacted with shrimp ferritin in the yeast two-hybrid system. A pulldown assay and 27-MHz quartz crystal microbalance (QCM) analysis confirmed the interaction between PK1 and both ferritin and apoferritin. PK1 did not promote the release of iron ions from ferritin, but it prevented apoferritin from binding ferrous ions. When PK1 was overexpressed in Sf9 cells, the cellular labile iron pool (LIP) levels were elevated significantly. Immunoprecipitation and atomic absorption spectrophotometry (AAS) further showed that the number of iron ions bound by ferritin decreased significantly at 24 h post-WSSV infection. Taken together, these results suggest that PK1 prevents apoferritin from iron loading, and thus stabilizes the cellular LIP levels, and that WSSV uses this novel mechanism to counteract the host cell's iron-withholding defense mechanism. IMPORTANCE We show here that white spot syndrome virus (WSSV) ensures the availability of iron by using a previously unreported mechanism to defeat the host cell's iron-withholding defense mechanism. This defense is often implemented by ferritin, which can bind up to 4,500 iron atoms and acts to sequester free iron within the cell. WSSV's novel counterstrategy is mediated by a direct protein-protein interaction between viral protein kinase 1 (PK1) and host ferritin. PK1 interacts with both ferritin and apoferritin, suppresses apoferritin's ability to sequester free iron ions, and maintains the intracellular labile iron pool (LIP

  17. Identification of soybean MYC2-like transcription factors and overexpression of GmMYC1 could stimulate defense mechanism against common cutworm in transgenic tobacco.

    PubMed

    Wang, Hui; Ding, Changwen; Du, Haiping; Liu, Hailun; Wang, Yongli; Yu, Deyue

    2014-09-01

    MYC2 is a basic helix-loop-helix Leu zipper transcription factor (TF). Here, 22 putative soybean MYC-like TFs were identified bioinformatically. Of these TFs, seven MYC2-like genes without introns were isolated and characterized. All seven GmMYCs displayed transactivation activity in yeast cells. Six genes (excepting GmMYC3) were expressed in the roots, stems, leaves, flowers, and seed wall but not in the developing seeds and up-regulated after insect feeding. The GmMYC1 transgenic tobacco rejected common cutworm (CCW, Spodoptera litura Fabricius) more strongly and lost less leaf area than the control (2.94 ± 2.36 vs 7.84 ± 4.63 cm(2)). The average relative growth rate of CCW feeding on transgenic tobacco leaves was lower than on control tobacco leaves (136 ± 60 vs 271 ± 76 %). These results indicated that GmMYC could stimulate the defense mechanism against insects in plants.

  18. Commercializing Defense Technologies and Helping Defense Firms Succeed in Commercial Markets: A Report on the Objectives, Activities, and Accomplishments of the TAP-IN Program

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Technology Access for Product Innovation (TAP-IN), the largest technology deployment project funded by TRP, was competitively selected through a national solicitation for proposals. TAP-IN was created to help companies access and apply defense technologies and help defense-dependent companies enter new commercial markets. Defense technologies included technologies developed by DoD, DOE, NASA, and their contractors. TAP-IN was structured to provide region-based technology access services that were able to draw on technology resources nationwide. TAP-IN provided expert assistance in all stages of the commercialization process from concept through prototype design to capital sourcing and marketing strategy. TAP-IN helped companies locate new technology, identify business partners, secure financing, develop ideas for new products, identify new markets, license technology, solve technical problems, and develop company-specific applications of federal technology. TAP-IN leveraged NASA's existing commercial technology network to create an integrated national network of organizations that assisted companies in every state. In addition to NASA's six regional technology transfer centers (RTTCs), TAP-IN included business and technology development organizations in every state, the Industrial Designers Society of America, and the Federal Laboratory Consortium (FLC).

  19. Borderline personality organization in violent offenders: correlations of identity diffusion and primitive defense mechanisms with antisocial features, neuroticism, and interpersonal problems.

    PubMed

    Leichsenring, Falk; Kunst, Heike; Hoyer, Jürgen

    2003-01-01

    Although theoretical assumptions and empirical evidence suggest an association between borderline personality disorder (BPD) and antisocial behavior or even antisocial personality disorder (APD), there is no study relating the psychodynamic aspects of BPD to antisocial behavior. In this study, the authors tested the correlation between the structural criteria of borderline personality organization (BPO)--that is, identity diffusion, primitive defense mechanisms, and reality testing--and antisocial features, neuroticism, and interpersonal problems. A sample of imprisoned violent offenders (N = 91) was studied using the Antisocial Personality Questionnaire (APQ), the Borderline Personality Inventory (BPI), the Neo-Five-Factor-Inventory (Neo-FFI), and the Inventory of Interpersonal Problems (IIP). Significant correlations were predicted and found between the BPI scales of identity diffusion, primitive defense mechanisms, impaired reality testing, and fear of closeness and antisocial features, neuroticism, agreeableness, and interpersonal problems. The results are consistent with both object relations theory and attachment theory.

  20. The reproductive toxicity on the rotifer Brachionus plicatilis induced by BDE-47 and studies on the effective mechanism based on antioxidant defense system changes.

    PubMed

    Wang, Hong; Tang, Xuexi; Sha, Jingjing; Chen, Hongmei; Sun, Tianli; Wang, You

    2015-09-01

    2,2',4,4'-Tetrabromodiphenyl ether (BDE-47), a low-brominated Tetra-BDE that is widely distributed in the marine ecosystem, was selected to investigate the reproductive toxicity on the rotifer, Brachionus plicatilis, and the possible mechanism based on antioxidant defense system changes were studied. The results showed the following: (1) A low concentration of BDE-47 had a slight effect on the egg production of individual females and the egg production rate (EPR) of the population. In fact, BDE-47 exerted reproductive inhibition effects in a time- and concentration-dependent manner. The obtained life tables indicated that BDE-47 at a high concentration prolonged the generation time, whereas low and moderate concentrations of BDE-47 had the opposite effects. BDE-47 at a medium concentration significantly decreased the life expectancy and net reproductive rate (P<0.05). Additionally, a high concentration of BDE-47 markedly decreased the net reproductive rate and intrinsic increase rate (P<0.05). The ultra-structure of the ovary showed that BDE-47 severely damaged the ovary. (2) BDE-47 stress elevated the ROS level in B. plicatilis. The GST activity was induced significantly by the low concentration of BDE-47 and inhibited by the highest concentration tested. The GPx activity and GSH content were significant decreased in all the tested groups, and GR activity was induced. GST and GSH appeared to be sensitive to oxidative stress, and all of the glutathione-related enzymes were found to play an important role in maintaining the antioxidant/pro-oxidant balance based on Pearson's correlation analysis. The results indicated that BDE-47 causes reproductive toxicity in B. plicatilis and that the ROS-mediated pathway is responsible for the observed toxicity.

  1. Suppression of a phospholipase D gene, OsPLDbeta1, activates defense responses and increases disease resistance in rice.

    PubMed

    Yamaguchi, Takeshi; Kuroda, Masaharu; Yamakawa, Hiromoto; Ashizawa, Taketo; Hirayae, Kazuyuki; Kurimoto, Leona; Shinya, Tomonori; Shibuya, Naoto

    2009-05-01

    Phospholipase D (PLD) plays an important role in plants, including responses to abiotic as well as biotic stresses. A survey of the rice (Oryza sativa) genome database indicated the presence of 17 PLD genes in the genome, among which OsPLDalpha1, OsPLDalpha5, and OsPLDbeta1 were highly expressed in most tissues studied. To examine the physiological function of PLD in rice, we made knockdown plants for each PLD isoform by introducing gene-specific RNA interference constructs. One of them, OsPLDbeta1-knockdown plants, showed the accumulation of reactive oxygen species in the absence of pathogen infection. Reverse transcription-polymerase chain reaction and DNA microarray analyses revealed that the knockdown of OsPLDbeta1 resulted in the up-/down-regulation of more than 1,400 genes, including the induction of defense-related genes such as pathogenesis-related protein genes and WRKY/ERF family transcription factor genes. Hypersensitive response-like cell death and phytoalexin production were also observed at a later phase of growth in the OsPLDbeta1-knockdown plants. These results indicated that the OsPLDbeta1-knockdown plants spontaneously activated the defense responses in the absence of pathogen infection. Furthermore, the OsPLDbeta1-knockdown plants exhibited increased resistance to the infection of major pathogens of rice, Pyricularia grisea and Xanthomonas oryzae pv oryzae. These results suggested that OsPLDbeta1 functions as a negative regulator of defense responses and disease resistance in rice. PMID:19286937

  2. 47 CFR 0.181 - The Defense Commissioner.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... in public safety, homeland security, national security, emergency preparedness, disaster management..., Defense and Emergency Preparedness Functions § 0.181 The Defense Commissioner. The Defense Commissioner is... emergency preparedness, and defense activities of the Commission and has the following duties...

  3. 47 CFR 0.181 - The Defense Commissioner.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... in public safety, homeland security, national security, emergency preparedness, disaster management..., Defense and Emergency Preparedness Functions § 0.181 The Defense Commissioner. The Defense Commissioner is... emergency preparedness, and defense activities of the Commission and has the following duties...

  4. 47 CFR 0.181 - The Defense Commissioner.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... in public safety, homeland security, national security, emergency preparedness, disaster management..., Defense and Emergency Preparedness Functions § 0.181 The Defense Commissioner. The Defense Commissioner is... emergency preparedness, and defense activities of the Commission and has the following duties...

  5. 47 CFR 0.181 - The Defense Commissioner.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... in public safety, homeland security, national security, emergency preparedness, disaster management..., Defense and Emergency Preparedness Functions § 0.181 The Defense Commissioner. The Defense Commissioner is... emergency preparedness, and defense activities of the Commission and has the following duties...

  6. 47 CFR 0.181 - The Defense Commissioner.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... in public safety, homeland security, national security, emergency preparedness, disaster management..., Defense and Emergency Preparedness Functions § 0.181 The Defense Commissioner. The Defense Commissioner is... emergency preparedness, and defense activities of the Commission and has the following duties...

  7. Complement System Part I – Molecular Mechanisms of Activation and Regulation

    PubMed Central

    Merle, Nicolas S.; Church, Sarah Elizabeth; Fremeaux-Bacchi, Veronique; Roumenina, Lubka T.

    2015-01-01

    Complement is a complex innate immune surveillance system, playing a key role in defense against pathogens and in host homeostasis. The complement system is initiated by conformational changes in recognition molecular complexes upon sensing danger signals. The subsequent cascade of enzymatic reactions is tightly regulated to assure that complement is activated only at specific locations requiring defense against pathogens, thus avoiding host tissue damage. Here, we discuss the recent advances describing the molecular and structural basis of activation and regulation of the complement pathways and their implication on physiology and pathology. This article will review the mechanisms of activation of alternative, classical, and lectin pathways, the formation of C3 and C5 convertases, the action of anaphylatoxins, and the membrane-attack-complex. We will also discuss the importance of structure–function relationships using the example of atypical hemolytic uremic syndrome. Lastly, we will discuss the development and benefits of therapies using complement inhibitors. PMID:26082779

  8. Obligate Biotroph Pathogens of the Genus Albugo Are Better Adapted to Active Host Defense Compared to Niche Competitors.

    PubMed

    Ruhe, Jonas; Agler, Matthew T; Placzek, Aleksandra; Kramer, Katharina; Finkemeier, Iris; Kemen, Eric M

    2016-01-01

    Recent research suggested that plants behave differently under combined versus single abiotic and biotic stress conditions in controlled environments. While this work has provided a glimpse into how plants might behave under complex natural conditions, it also highlights the need for field experiments using established model systems. In nature, diverse microbes colonize the phyllosphere of Arabidopsis thaliana, including the obligate biotroph oomycete genus Albugo, causal agent of the common disease white rust. Biotrophic, as well as hemibiotrophic plant pathogens are characterized by efficient suppression of host defense responses. Lab experiments have even shown that Albugo sp. can suppress non-host resistance, thereby enabling otherwise avirulent pathogen growth. We asked how a pathogen that is vitally dependent on a living host can compete in nature for limited niche space while paradoxically enabling colonization of its host plant for competitors? To address this question, we used a proteomics approach to identify differences and similarities between lab and field samples of Albugo sp.-infected and -uninfected A. thaliana plants. We could identify highly similar apoplastic proteomic profiles in both infected and uninfected plants. In wild plants, however, a broad range of defense-related proteins were detected in the apoplast regardless of infection status, while no or low levels of defense-related proteins were detected in lab samples. These results indicate that Albugo sp. do not strongly affect immune responses and leave distinct branches of the immune signaling network intact. To validate our findings and to get mechanistic insights, we tested a panel of A. thaliana mutant plants with induced or compromised immunity for susceptibility to different biotrophic pathogens. Our findings suggest that the biotroph pathogen Albugo selectively interferes with host defense under different environmental and competitive pressures to maintain its ecological niche

  9. Obligate Biotroph Pathogens of the Genus Albugo Are Better Adapted to Active Host Defense Compared to Niche Competitors.

    PubMed

    Ruhe, Jonas; Agler, Matthew T; Placzek, Aleksandra; Kramer, Katharina; Finkemeier, Iris; Kemen, Eric M

    2016-01-01

    Recent research suggested that plants behave differently under combined versus single abiotic and biotic stress conditions in controlled environments. While this work has provided a glimpse into how plants might behave under complex natural conditions, it also highlights the need for field experiments using established model systems. In nature, diverse microbes colonize the phyllosphere of Arabidopsis thaliana, including the obligate biotroph oomycete genus Albugo, causal agent of the common disease white rust. Biotrophic, as well as hemibiotrophic plant pathogens are characterized by efficient suppression of host defense responses. Lab experiments have even shown that Albugo sp. can suppress non-host resistance, thereby enabling otherwise avirulent pathogen growth. We asked how a pathogen that is vitally dependent on a living host can compete in nature for limited niche space while paradoxically enabling colonization of its host plant for competitors? To address this question, we used a proteomics approach to identify differences and similarities between lab and field samples of Albugo sp.-infected and -uninfected A. thaliana plants. We could identify highly similar apoplastic proteomic profiles in both infected and uninfected plants. In wild plants, however, a broad range of defense-related proteins were detected in the apoplast regardless of infection status, while no or low levels of defense-related proteins were detected in lab samples. These results indicate that Albugo sp. do not strongly affect immune responses and leave distinct branches of the immune signaling network intact. To validate our findings and to get mechanistic insights, we tested a panel of A. thaliana mutant plants with induced or compromised immunity for susceptibility to different biotrophic pathogens. Our findings suggest that the biotroph pathogen Albugo selectively interferes with host defense under different environmental and competitive pressures to maintain its ecological niche

  10. Obligate Biotroph Pathogens of the Genus Albugo Are Better Adapted to Active Host Defense Compared to Niche Competitors

    PubMed Central

    Ruhe, Jonas; Agler, Matthew T.; Placzek, Aleksandra; Kramer, Katharina; Finkemeier, Iris; Kemen, Eric M.

    2016-01-01

    Recent research suggested that plants behave differently under combined versus single abiotic and biotic stress conditions in controlled environments. While this work has provided a glimpse into how plants might behave under complex natural conditions, it also highlights the need for field experiments using established model systems. In nature, diverse microbes colonize the phyllosphere of Arabidopsis thaliana, including the obligate biotroph oomycete genus Albugo, causal agent of the common disease white rust. Biotrophic, as well as hemibiotrophic plant pathogens are characterized by efficient suppression of host defense responses. Lab experiments have even shown that Albugo sp. can suppress non-host resistance, thereby enabling otherwise avirulent pathogen growth. We asked how a pathogen that is vitally dependent on a living host can compete in nature for limited niche space while paradoxically enabling colonization of its host plant for competitors? To address this question, we used a proteomics approach to identify differences and similarities between lab and field samples of Albugo sp.-infected and -uninfected A. thaliana plants. We could identify highly similar apoplastic proteomic profiles in both infected and uninfected plants. In wild plants, however, a broad range of defense-related proteins were detected in the apoplast regardless of infection status, while no or low levels of defense-related proteins were detected in lab samples. These results indicate that Albugo sp. do not strongly affect immune responses and leave distinct branches of the immune signaling network intact. To validate our findings and to get mechanistic insights, we tested a panel of A. thaliana mutant plants with induced or compromised immunity for susceptibility to different biotrophic pathogens. Our findings suggest that the biotroph pathogen Albugo selectively interferes with host defense under different environmental and competitive pressures to maintain its ecological niche

  11. Disaster relief activities of the Japan self-defense force following the Great East Japan Earthquake.

    PubMed

    Nishiyama, Yasumasa

    2014-06-01

    Cooperation between civilian and military forces, including the Japan Self-Defense Force (JSDF), enabled wide-ranging disaster relief after the Great East Japan Earthquake. Nevertheless, many preventable fatalities occurred, particularly related to an inability to treat chronic disease, indicating the need to plan for the provision of long-term medical aid after natural disasters in stricken areas and evacuation shelters. To assist in this effort, this report (1) provides an overview of the consequences of the medical response to the Great East Japan Earthquake, the largest natural disaster ever to hit Japan, focusing on the role and actions of the JSDF; (2) discusses the lessons learned regarding the provision of medical aid and management by the JSDF after this disaster, looking at the special challenges of meeting the needs of a rapidly aging population in a disaster situation; and (3) provides recommendations for the development of strategies for the long-term medical aid and support after natural disasters, especially with regard to the demographics of the Japanese population.

  12. Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses

    DOE PAGES

    Schwessinger, Benjamin; Bahar, Ofir; Thomas, Nicolas; Holton, Nicolas; Nekrasov, Vladimir; Ruan, Deling; Canlas, Patrick E.; Daudi, Arsalan; Petzold, Christopher J.; Singan, Vasanth R.; et al

    2015-03-30

    Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistancemore » to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components.« less

  13. Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections.

    PubMed

    Lai, Yuping; Cogen, Anna L; Radek, Katherine A; Park, Hyun Jeong; Macleod, Daniel T; Leichtle, Anke; Ryan, Allen F; Di Nardo, Anna; Gallo, Richard L

    2010-09-01

    Production of antimicrobial peptides by epithelia is an essential defense against infectious pathogens. In this study we evaluated whether the commensal microorganism Staphylococcus epidermidis may enhance production of antimicrobial peptides by keratinocytes and thus augment skin defense against infection. Exposure of cultured undifferentiated human keratinocytes to a sterile nontoxic small molecule of <10 kDa from S. epidermidis conditioned culture medium (SECM), but not similar preparations from other bacteria, enhanced human beta-defensin 2 (hBD2) and hBD3 mRNA expression and increased the capacity of cell lysates to inhibit the growth of group A Streptococcus (GAS) and S. aureus. Partial gene silencing of hBD3 inhibited this antimicrobial action. This effect was relevant in vivo as administration of SECM to mice decreased susceptibility to infection by GAS. Toll-like receptor 2 (TLR2) was important to this process as a TLR2-neutralizing antibody blocked induction of hBDs 2 and 3, and Tlr2-deficient mice did not show induction of mBD4. Taken together, these findings reveal a potential use for normal commensal bacterium S. epidermidis to activate TLR2 signaling and induce antimicrobial peptide expression, thus enabling the skin to mount an enhanced response to pathogens. PMID:20463690

  14. Transgenic Expression of the Dicotyledonous Pattern Recognition Receptor EFR in Rice Leads to Ligand-Dependent Activation of Defense Responses

    PubMed Central

    Thomas, Nicolas; Holton, Nicolas; Nekrasov, Vladimir; Ruan, Deling; Canlas, Patrick E.; Daudi, Arsalan; Petzold, Christopher J.; Singan, Vasanth R.; Kuo, Rita; Chovatia, Mansi; Daum, Christopher; Heazlewood, Joshua L.; Zipfel, Cyril; Ronald, Pamela C.

    2015-01-01

    Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components. PMID:25821973

  15. Mechanics of light-activated network polymers

    NASA Astrophysics Data System (ADS)

    Long, Kevin Nicholas

    Mechanically responsive, environmentally activated polymers can undergo large, complex deformation in response to external stimuli such as thermal, luminous, and chemical changes to the environment. Light as a stimulus provides unique application potential because it allows for remote, rapid, and isothermal activation of the material with precise spatial control via existing optical technologies. While certain systems have received considerable attention, the state of the art of most light-activated polymers is limited to basic characterization and demonstrations. To make such materials available to the engineering and scientific communities, physically based theoretical and computational tools are required to guide experimental and design efforts that capitalize on their complex photo-mechanical couplings. The central objective of this thesis is to develop a multi-physics constitutive modeling framework to simulate the continuum scale, photo mechanical behavior of light-activated polymers and implement it into a finite element analysis setting. This framework is independent of specific underlying photo-stimulation mechanisms and is discussed in the context of photo-activated shape memory polymers and network rearranging polymers. Next, the framework is applied to the light-activated network rearranging polymer system, which is relaxed of stress upon irradiation with UV light, and a suite of characterization and application oriented experiments are carried out to calibrate and validate the model's predictive capabilities. The calibrated model is used to investigate several applications such as photo-activated stress relaxation of notched specimens, bending actuation, creep, the buckling of equi-biaxially deformed and irradiated films, and photomechanically formed 1D channels and ridges. Modeling creep involves additional complexity through simultaneous deformation and irradiation, and so the model framework is extended to cover such scenarios. Experiments, finite

  16. Molecular mechanisms regulating NLRP3 inflammasome activation

    PubMed Central

    Jo, Eun-Kyeong; Kim, Jin Kyung; Shin, Dong-Min; Sasakawa, Chihiro

    2016-01-01

    Inflammasomes are multi-protein signaling complexes that trigger the activation of inflammatory caspases and the maturation of interleukin-1β. Among various inflammasome complexes, the NLRP3 inflammasome is best characterized and has been linked with various human autoinflammatory and autoimmune diseases. Thus, the NLRP3 inflammasome may be a promising target for anti-inflammatory therapies. In this review, we summarize the current understanding of the mechanisms by which the NLRP3 inflammasome is activated in the cytosol. We also describe the binding partners of NLRP3 inflammasome complexes activating or inhibiting the inflammasome assembly. Our knowledge of the mechanisms regulating NLRP3 inflammasome signaling and how these influence inflammatory responses offers further insight into potential therapeutic strategies to treat inflammatory diseases associated with dysregulation of the NLRP3 inflammasome. PMID:26549800

  17. Adolescent Suicide and Defensive Style.

    ERIC Educational Resources Information Center

    Recklitis, Christopher J.; And Others

    1992-01-01

    Examined relationship between ego defense mechanisms, diagnoses, and suicidality among 200 adolescent psychiatric patients classified as suicide attempters, suicidal ideators, and nonsuicidal patients. Using Defense Mechanisms Inventory, found the suicidal adolescents score higher on turning-against-self and lower on reversal, as compared to…

  18. BQ123 Stimulates Skeletal Muscle Antioxidant Defense via Nrf2 Activation in LPS-Treated Rats

    PubMed Central

    Jeleń, Agnieszka; Żebrowska, Marta; Balcerczak, Ewa; Gorąca, Anna

    2016-01-01

    Little is understood of skeletal muscle tissue in terms of oxidative stress and inflammation. Endothelin-1 is an endogenous, vasoconstrictive peptide which can induce overproduction of reactive oxygen species and proinflammatory cytokines. The aim of this study was to evaluate whether BQ123, an endothelin-A receptor antagonist, influences the level of TNF-α, IL-6, SOD-1, HO-1, Nrf2 mRNA, and NF-κB subunit RelA/p65 mRNA in the femoral muscle obtained from endotoxemic rats. Male Wistar rats were divided into 4 groups (n = 6) and received iv (1) saline (control), (2) LPS (15 mg/kg), (3) BQ123 (1 mg/kg), (4) BQ123 (1 mg/kg), and LPS (15 mg/kg, resp.) 30 min later. Injection of LPS led to significant increase in levels of RelA/p65 mRNA, TNF-α, and IL-6, while content of SOD-1, HO-1, and Nrf2 mRNA was unchanged. Administration of BQ123 prior to LPS challenge resulted in a significant reduction in RelA/p65 mRNA, TNF-α, and IL-6 levels, as well as markedly elevated concentrations of SOD-1, HO-1, and Nrf2 mRNA. BQ123 appears to enhance antioxidant defense and prevent production of TNF-α and IL-6 in skeletal muscle of LPS-treated rat. In conclusion, endothelin-A receptor antagonism exerts significant impact on the skeletal muscle favouring anti-inflammatory effects and protection against oxidative stress. PMID:26823945

  19. Activation of the Nrf2 defense pathway contributes to neuroprotective effects of phloretin on oxidative stress injury after cerebral ischemia/reperfusion in rats.

    PubMed

    Liu, Yu; Zhang, Lei; Liang, Jiangjiu

    2015-04-15

    Oxidative stress is considered a major contributing factor in cerebral ischemia/reperfusion injury. Phloretin, a dihydrochalcone belonging to the flavonoid family, is particularly rich in apples and apple-derived products. A large body of evidence demonstrates that phloretin exhibits anti-oxidant properties, and phloretin has potential implications for treating oxidative stress injuries in cerebral ischemia/reperfusion. Therefore, the neuroprotective and antioxidant effects of phloretin against ischemia/reperfusion injury, as well as related probable mechanisms, were investigated. The cerebral ischemic/reperfusion injury model was reproduced in male Sprague-Dawley rats through middle cerebral artery occlusion. At 24h after reperfusion, neurological score, infarct volume, and brain water content were assessed. Oxidative stress was evaluated by superoxide dismutases (SOD), glutathione (GSH), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) levels. Nrf2 expression was measured by RT-PCR and western blot. Consequently, results showed that phloretin pretreatment for 14days significantly reduced infarct volume and brain edema, and ameliorated neurological scores in focal cerebral ischemia/reperfusion rats. SOD, GSH and GSH-Px activities were greatly decreased, and MDA levels significantly increased after ischemia/reperfusion injury. However, phloretin pretreatment dramatically suppressed these oxidative stress processes. Furthermore, phloretin upregulated Nrf2 mRNA and protein expression of in ischemia/reperfusion brain tissue. Taken together, phloretin exhibited neuroprotective effects in cerebral ischemia/reperfusion, and the mechanisms are associated with oxidative stress inhibition and Nrf2 defense pathway activation. PMID:25770876

  20. A transcriptional profile of metallophyte Viola baoshanensis involved in general and species-specific cadmium-defense mechanisms.

    PubMed

    Zhang, Jun; Hu, Min; Li, Jin-Tian; Guan, Jian-Ping; Yang, Bin; Shu, Wen-Sheng; Liao, Bin

    2009-05-15

    Viola baoshanensis Shu, Liu et Lan is a newly identified metallophyte, and its defensive strategies against heavy metals are still unclear. In the present study, we firstly constructed a root cDNA library of the plant subjected to 300muM Cd for 48h by using suppression subtractive hybridization (SSH), and 43 unique cDNA fragments were further isolated from the library. Sequence homology analysis showed that half of the identified genes were involved in general stress defense, such as antioxidative enzymes, protein degradation and stress signal transduction. After RT-PCR and RACE analysis, a Cd-responsive gene Vb40 was identified, which could deduce a novel cysteine-rich mini-protein. Meanwhile, five cyclotide precursor genes (VbCP1-VbCP5) were also identified. The Vb40 and the VbCP1-VbCP5 were further investigated by yeast expression analysis, and they could improve copper (Cu) tolerance in hosted yeast, indicating that these species-specific genes possibly functioned in V. baoshanensis heavy metals tolerance. Our results suggested that heavy metal tolerance in V. baoshanensis relied on both general and species-specific defense.

  1. Comets: mechanisms of x-ray activity

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon

    2016-07-01

    Basic mechanisms of X-ray activity of comets are considered, including D-D mechanism corresponding to generation of X-rays due to production of hot short-living plasma clumps at high-velocity collisions between cometary and interplanetary dust particles as well as M-M one corresponding to production of X-rays due to recombination of multicharge ions of solar wind plasma via charge exchange process at their collisions with molecules/atoms of the cometary atmospheres. Peculiarities of the variation of the comet X-ray spectrum and X-ray luminosity with variation of its heliocentric distance are revealed.

  2. Annual report to Congress. Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 2000

    SciTech Connect

    2001-03-01

    This Annual Report to the Congress describes the Department of Energy's activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board. During 2000, the Department completed its implementation and proposed closure of one Board recommendation and completed all implementation plan milestones associated with two additional Board recommendations. Also in 2000, the Department formally accepted two new Board recommendations and developed implementation plans in response to those recommendations. The Department also made significant progress with a number of broad-based safety initiatives. These include initial implementation of integrated safety management at field sites and within headquarters program offices, issuance of a nuclear safety rule, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.

  3. Topological mechanics: from metamaterials to active matter

    NASA Astrophysics Data System (ADS)

    Vitelli, Vincenzo

    2015-03-01

    Mechanical metamaterials are artificial structures with unusual properties, such as negative Poisson ratio, bistability or tunable acoustic response, which originate in the geometry of their unit cell. At the heart of such unusual behavior is often a mechanism: a motion that does not significantly stretch or compress the links between constituent elements. When activated by motors or external fields, these soft motions become the building blocks of robots and smart materials. In this talk, we discuss topological mechanisms that possess two key properties: (i) their existence cannot be traced to a local imbalance between degrees of freedom and constraints (ii) they are robust against a wide range of structural deformations or changes in material parameters. The continuum elasticity of these mechanical structures is captured by non-linear field theories with a topological boundary term similar to topological insulators and quantum Hall systems. We present several applications of these concepts to the design and experimental realization of 2D and 3D topological structures based on linkages, origami, buckling meta-materials and lastly active media that break time-reversal symmetry.

  4. Mechanically activated artificial cell by using microfluidics

    PubMed Central

    Ho, Kenneth K. Y.; Lee, Lap Man; Liu, Allen P.

    2016-01-01

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology. PMID:27610921

  5. Mechanically activated artificial cell by using microfluidics.

    PubMed

    Ho, Kenneth K Y; Lee, Lap Man; Liu, Allen P

    2016-01-01

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology. PMID:27610921

  6. Mechanically activated artificial cell by using microfluidics.

    PubMed

    Ho, Kenneth K Y; Lee, Lap Man; Liu, Allen P

    2016-01-01

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology.

  7. Induction of DIMBOA accumulation and systemic defense responses as a mechanism of enhanced resistance of mycorrhizal corn (Zea mays L.) to sheath blight.

    PubMed

    Song, Yuan Yuan; Cao, Man; Xie, Li Jun; Liang, Xiao Ting; Zeng, Ren Sen; Su, Yi Juan; Huang, Jing Hua; Wang, Rui Long; Luo, Shi Ming

    2011-11-01

    Arbuscular mycorrhizas are the most important symbioses in terrestrial ecosystems and they enhance the plant defense against numerous soil-borne pathogenic fungi and nematodes. Two corn (Zea mays) varieties, Gaoyou-115 that is susceptible to sheath blight disease caused by Rhizoctonia solani and Yuenong-9 that is resistant, were used for mycorrhizal inoculation in this study. Pre-inoculation of susceptible Gaoyou-115 with arbuscular mycorrhizal fungus (AMF) Glomus mosseae significantly reduced the disease incidence and disease severity of sheath blight of corn. HPLC analysis showed that AMF inoculation led to significant increase in 2,4-dihydroxy-7-methoxy-2 H-1,4-benzoxazin-3(4 H)-one (DIMBOA) accumulation in the roots of both corn varieties and in leaves of resistant Yuenong-9. R. solani inoculation alone did not result in accumulation of DIMBOA in both roots and leaves of the two corn varieties. Our previous study showed that DIMBOA strongly inhibited mycelial growth of R. solani in vitro. Real-time PCR analysis showed that mycorrhizal inoculation itself did not affect the transcripts of most genes tested. However, pre-inoculation with G. mosseae induced strong responses of three defense-related genes PR2a, PAL, and AOS, as well as BX9, one of the key genes in DIMBOA biosynthesis pathway, in the leaves of corn plants of both Yuenong-9 and Gaoyou-115 after the pathogen attack. Induction of defense responses in pre-inoculated plants was much higher and quicker than that in non-inoculated plants upon R. solani infection. These results indicate that induction of accumulation of DIMBOA, an important phytoalexin in corn, and systemic defense responses by AMF, plays a vital role in enhanced disease resistance of mycorrhizal plants of corn against sheath blight. This study also suggests that priming is an important mechanism in mycorrhiza-induced resistance.

  8. D2 dopamine receptor-mediated mechanisms in the medial preoptic-anterior hypothalamus regulate effective defense behavior in the cat.

    PubMed

    Sweidan, S; Edinger, H; Siegel, A

    1991-05-17

    The role of the dopaminergic innervation of the medial preoptic-anterior hypothalamus (mPO-AH) in regulating the expression of affective defense behavior in the cat has been investigated in the present study. Feline affective defense behavior, characterized mainly by autonomic arousal, ear retraction, growling, hissing and paw striking, was elicited by electrical stimulation of the ventromedial hypothalamic nucleus (VMH). Following the establishment of a stable threshold current for eliciting the hissing response of the behavior, the effect of injecting various DAergic agonists and antagonists into the mPO-AH on the hissing threshold was determined. The microinjection of the non-selective DA agonist apomorphine (0.03, 0.16, 0.33, 0.66, 1.56 and 3.3 nmol) into the mPO-AH facilitated hissing in a time- and dose-dependent manner. This effect was mimicked by the D2-selective agonist LY 171555 (0.2 and 1.0 nmol) but not by the D1-selective agonist SKF 38393 (1.7 and 17 nmol), and was blocked by the non-selective and the D2-selective antagonists haloperidol (1.3 nmol) and sulpiride (14.5 nmol), respectively. The injection of the D1-selective antagonist SCH 23390 (0.3 nmol), however, did not inhibit apomorphine-induced facilitation of hissing. In addition, the injection of haloperidol (1.3 nmol) and sulpiride (14.5 nmol), but not SCH 23390 (0.3 nmol), alone inhibited the behavior. It was therefore concluded that dopaminergic stimulation of the mPO-AH may facilitate the expression of affective defense behavior in the cat via a D2 receptor-mediated mechanism. The physiological significance of this effect and the interaction between dopaminergic, noradrenergic and serotonergic innervation of the mPO-AH in modulating the expression of affective defense behavior in response to threatening stimuli are discussed. PMID:1680019

  9. Selection on defensive traits in a sterile caste - caste evolution: a mechanism to overcome life-history trade-offs?

    PubMed

    Roux, Estelle A; Roux, Maurice; Korb, Judith

    2009-01-01

    During development and evolution individuals generally face a trade-off between the development of weapons and gonads. In termites, characterized by reproductive division of labor, a caste evolved-the soldiers-which is completely sterile and which might be released from developmental trade-offs between weapons and testes. These soldiers are exclusively dedicated to defense. First, we investigated whether defensive traits are under selection in sterile termite soldiers using allometric analyses. In soldiers of the genus Cryptotermes phragmotic traits such as a sculptured and foreshortened head evolve rapidly but were also lost twice. Second, we compared the scaling relationships of these weapons with those in solitary insects facing a trade-off between weapons and gonads. Defensive traits consistently had lower slopes than nondefensive traits which supports the existence of stabilizing selection on soldier phragmotic traits in order to plug galleries. Moreover, soldier head widths were colony specific and correlated with the minimum gallery diameter of a colony. This can proximately be explained by soldiers developing from different instars. The scaling relationships of these termite soldiers contrast strikingly with those of weapons of solitary insects, which are generally exaggerated (i.e., overscaling) male traits. These differences may provide important insights into trait evolution. Trade-offs constraining the development of individuals may have been uncoupled in termites by evolving different castes, each specialized for one function. When individuals in social insect are "released" from developmental constraints through the evolution of castes, this certainly contributed to the ecological and evolutionary success of social insects.

  10. Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses

    SciTech Connect

    Schwessinger, Benjamin; Bahar, Ofir; Thomas, Nicolas; Holton, Nicolas; Nekrasov, Vladimir; Ruan, Deling; Canlas, Patrick E.; Daudi, Arsalan; Petzold, Christopher J.; Singan, Vasanth R.; Kuo, Rita; Chovatia, Mansi; Daum, Christopher; Heazlewood, Joshua L.; Zipfel, Cyril; Ronald, Pamela C.

    2015-03-30

    Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components.

  11. Dormancy activation mechanism of tracheal stem cells

    PubMed Central

    Li, Xin; Xu, Jing-xian; Jia, Xin-Shan; Li, Wen-ya; Han, Yi-chen; Wang, En-hua; Li, Fang

    2016-01-01

    Accurate markers and molecular mechanisms of stem cell dormancy and activation are poorly understood. In this study, the anti-cancer drug, 5-fluorouracil, was used to selectively kill proliferating cells of human bronchial epithelial (HBE) cell line. This method can enrich and purify stem cell population. The dormant versus active status of stem cells was determined by phosphorylation of RNAp II Ser2. The surviving stem cells were cultured to form stem cell spheres expressing stem cell markers and transplanted into nude mice to form a teratoma. The results demonstrated the properties of stem cells and potential for multi-directional differentiation. Bisulfite sequencing polymerase chain reaction showed that demethylation of the Sox2 promoter by 5-FU resulted in Sox2 expression in the dormant stem cells. This study shows that the dormancy and activation of HBE stem cells is closely related to epigenetic modification. PMID:27009861

  12. Mechanism of FGF receptor dimerization and activation

    PubMed Central

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-01-01

    Fibroblast growth factors (fgfs) are widely believed to activate their receptors by mediating receptor dimerization. Here we show, however, that the FGF receptors form dimers in the absence of ligand, and that these unliganded dimers are phosphorylated. We further show that ligand binding triggers structural changes in the FGFR dimers, which increase FGFR phosphorylation. The observed effects due to the ligands fgf1 and fgf2 are very different. The fgf2-bound dimer structure ensures the smallest separation between the transmembrane (TM) domains and the highest possible phosphorylation, a conclusion that is supported by a strong correlation between TM helix separation in the dimer and kinase phosphorylation. The pathogenic A391E mutation in FGFR3 TM domain emulates the action of fgf2, trapping the FGFR3 dimer in its most active state. This study establishes the existence of multiple active ligand-bound states, and uncovers a novel molecular mechanism through which FGFR-linked pathologies can arise. PMID:26725515

  13. Combined activation of the energy and cellular-defense pathways may explain the potent anti-senescence activity of methylene blue.

    PubMed

    Atamna, Hani; Atamna, Wafa; Al-Eyd, Ghaith; Shanower, Gregory; Dhahbi, Joseph M

    2015-12-01

    Methylene blue (MB) delays cellular senescence, induces complex-IV, and activates Keap1/Nrf2; however, the molecular link of these effects to MB is unclear. Since MB is redox-active, we investigated its effect on the NAD/NADH ratio in IMR90 cells. The transient increase in NAD/NADH observed in MB-treated cells triggered an investigation of the energy regulator AMPK. MB induced AMPK phosphorylation in a transient pattern, which was followed by the induction of PGC1α and SURF1: both are inducers of mitochondrial and complex-IV biogenesis. Subsequently MB-treated cells exhibited >100% increase in complex-IV activity and a 28% decline in cellular oxidants. The telomeres erosion rate was also significantly lower in MB-treated cells. A previous research suggested that the pattern of AMPK activation (i.e., chronic or transient) determines the AMPK effect on cell senescence. We identified that the anti-senescence activity of MB (transient activator) was 8-times higher than that of AICAR (chronic activator). Since MB lacked an effect on cell cycle, an MB-dependent change to cell cycle is unlikely to contribute to the anti-senescence activity. The current findings in conjunction with the activation of Keap1/Nrf2 suggest a synchronized activation of the energy and cellular defense pathways as a possible key factor in MB's potent anti-senescence activity.

  14. Combined activation of the energy and cellular-defense pathways may explain the potent anti-senescence activity of methylene blue

    PubMed Central

    Atamna, Hani; Atamna, Wafa; Al-Eyd, Ghaith; Shanower, Gregory; Dhahbi, Joseph M.

    2015-01-01

    Methylene blue (MB) delays cellular senescence, induces complex-IV, and activates Keap1/Nrf2; however, the molecular link of these effects to MB is unclear. Since MB is redox-active, we investigated its effect on the NAD/NADH ratio in IMR90 cells. The transient increase in NAD/NADH observed in MB-treated cells triggered an investigation of the energy regulator AMPK. MB induced AMPK phosphorylation in a transient pattern, which was followed by the induction of PGC1α and SURF1: both are inducers of mitochondrial and complex-IV biogenesis. Subsequently MB-treated cells exhibited >100% increase in complex-IV activity and a 28% decline in cellular oxidants. The telomeres erosion rate was also significantly lower in MB-treated cells. A previous research suggested that the pattern of AMPK activation (i.e., chronic or transient) determines the AMPK effect on cell senescence. We identified that the anti-senescence activity of MB (transient activator) was 8-times higher than that of AICAR (chronic activator). Since MB lacked an effect on cell cycle, an MB-dependent change to cell cycle is unlikely to contribute to the anti-senescence activity. The current findings in conjunction with the activation of Keap1/Nrf2 suggest a synchronized activation of the energy and cellular defense pathways as a possible key factor in MB's potent anti-senescence activity. PMID:26386875

  15. Unbalanced activation of glutathione metabolic pathways suggests potential involvement in plant defense against the gall midge Mayetiola destructor in wheat.

    PubMed

    Liu, Xuming; Zhang, Shize; Whitworth, R Jeff; Stuart, Jeffrey J; Chen, Ming-Shun

    2015-01-01

    Glutathione, γ-glutamylcysteinylglycine, exists abundantly in nearly all organisms. Glutathione participates in various physiological processes involved in redox reactions by serving as an electron donor/acceptor. We found that the abundance of total glutathione increased up to 60% in resistant wheat plants within 72 hours following attack by the gall midge Mayetiola destructor, the Hessian fly. The increase in total glutathione abundance, however, is coupled with an unbalanced activation of glutathione metabolic pathways. The activity and transcript abundance of glutathione peroxidases, which convert reduced glutathione (GSH) to oxidized glutathione (GSSG), increased in infested resistant plants. However, the enzymatic activity and transcript abundance of glutathione reductases, which convert GSSG back to GSH, did not change. This unbalanced regulation of the glutathione oxidation/reduction cycle indicates the existence of an alternative pathway to regenerate GSH from GSSG to maintain a stable GSSG/GSH ratio. Our data suggest the possibility that GSSG is transported from cytosol to apoplast to serve as an oxidant for class III peroxidases to generate reactive oxygen species for plant defense against Hessian fly larvae. Our results provide a foundation for elucidating the molecular processes involved in glutathione-mediated plant resistance to Hessian fly and potentially other pests as well. PMID:25627558

  16. A Novel Transcription Mechanism Activated by Ethanol

    PubMed Central

    Lin, Xinghua; Yang, Hong; Zhang, Hongfeng; Zhou, LiChun; Guo, ZhongMao

    2013-01-01

    Solute carrier family 7, member 11 (Slc7a11) is a plasma membrane cystine/glutamate exchanger that provides intracellular cystine to produce glutathione, a major cellular antioxidant. Oxidative and endoplasmic reticulum stresses up-regulate Slc7a11 expression by activation of nuclear factor erythroid 2-related factor 2 and transcription factor 4. This study examined the effect of ethanol on Slc7a11 expression and the underlying mechanism involved. Treatment of mouse hepatic stellate cells with ethanol significantly increased Slc7a11 mRNA and protein levels. Deletion of a 20-bp DNA sequence between −2044 to −2024 upstream of the transcription start site significantly increased basal activity and completely abolished the ethanol-induced activity of the Slc7a11 promoter. This deletion did not affect Slc7a11 promoter activity induced by oxidative or endoplasmic reticulum stress. DNA sequence analysis revealed a binding motif for octamer-binding transcription factor 1 (OCT-1) in the deleted fragment. Mutation of this OCT-1 binding motif resulted in a similar effect as the deletion experiment, i.e. it increased the basal promoter activity and abolished the response to ethanol. Ethanol exposure significantly inhibited OCT-1 binding to the Slc7a11 promoter region, although it did not alter OCT-1 mRNA and protein levels. OCT-1 reportedly functions as either a transcriptional enhancer or repressor, depending on the target genes. Results from this study suggest that OCT-1 functions as a repressor on the Slc7a11 promoter and that ethanol inhibits OCT-1 binding to the Slc7a11 promoter, thereby increasing Slc7a11 expression. Taken together, inhibition of the DNA binding activity of transcriptional repressor OCT-1 is a mechanism by which ethanol up-regulates Slc711 expression. PMID:23592778

  17. Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes.

    PubMed

    Al-Attar, Sinan; Westra, Edze R; van der Oost, John; Brouns, Stan J J

    2011-04-01

    Many prokaryotes contain the recently discovered defense system against mobile genetic elements. This defense system contains a unique type of repetitive DNA stretches, termed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs). CRISPRs consist of identical repeated DNA sequences (repeats), interspaced by highly variable sequences referred to as spacers. The spacers originate from either phages or plasmids and comprise the prokaryotes' 'immunological memory'. CRISPR-associated (cas) genes encode conserved proteins that together with CRISPRs make-up the CRISPR/Cas system, responsible for defending the prokaryotic cell against invaders. CRISPR-mediated resistance has been proposed to involve three stages: (i) CRISPR-Adaptation, the invader DNA is encountered by the CRISPR/Cas machinery and an invader-derived short DNA fragment is incorporated in the CRISPR array. (ii) CRISPR-Expression, the CRISPR array is transcribed and the transcript is processed by Cas proteins. (iii) CRISPR-Interference, the invaders' nucleic acid is recognized by complementarity to the crRNA and neutralized. An application of the CRISPR/Cas system is the immunization of industry-relevant prokaryotes (or eukaryotes) against mobile-genetic invasion. In addition, the high variability of the CRISPR spacer content can be exploited for phylogenetic and evolutionary studies. Despite impressive progress during the last couple of years, the elucidation of several fundamental details will be a major challenge in future research.

  18. Lipase Activity in Insect Oral Secretions Mediates Defense Responses in Arabidopsis1[C][W][OA

    PubMed Central

    Schäfer, Martin; Fischer, Christine; Meldau, Stefan; Seebald, Eileen; Oelmüller, Ralf; Baldwin, Ian T.

    2011-01-01

    How plants perceive herbivory is not yet well understood. We investigated early responses of the model plant Arabidopsis (Arabidopsis thaliana) to attack from the generalist grasshopper herbivore, Schistocerca gregaria (Caelifera). When compared with wounding alone, S. gregaria attack and the application of grasshopper oral secretions (GS) to puncture wounds elicited a rapid accumulation of various oxylipins, including 13-hydroperoxy octadecatrienoic acid, 12-oxo-phytodienoic acid (OPDA), jasmonic acid, and jasmonic acid-isoleucine. Additionally, GS increased cytosolic calcium levels, mitogen-activated protein kinase (MPK3 and MPK6) activity, and ethylene emission but not the accumulation of hydrogen peroxide. Although GS contain caeliferin A16:0, a putative elicitor of caeliferan herbivores, treatment with pure, synthetic caeliferin A16:0 did not induce any of the observed responses. With mutant plants, we demonstrate that the observed changes in oxylipin levels are independent of MPK3 and MPK6 activity but that MPK6 is important for the GS-induced ethylene release. Biochemical and pharmacological analyses revealed that the lipase activity of GS plays a central role in the GS-induced accumulation of oxylipins, especially OPDA, which could be fully mimicked by treating puncture wounds only with a lipase from Rhizopus arrhizus. GS elicitation increased the levels of OPDA-responsive transcripts. Because the oral secretions of most insects used to study herbivory-induced responses in Arabidopsis rapidly elicit similar accumulations of OPDA, we suggest that lipids containing OPDA (arabidopsides) play an important role in the activation of herbivory-induced responses. PMID:21546453

  19. ShadowNet: An Active Defense Infrastructure for Insider Cyber Attack Prevention

    SciTech Connect

    Cui, Xiaohui; Beaver, Justin M; Treadwell, Jim N

    2012-01-01

    The ShadowNet infrastructure for insider cyber attack prevention is comprised of a tiered server system that is able to dynamically redirect dangerous/suspicious network traffic away from production servers that provide web, ftp, database and other vital services to cloned virtual machines in a quarantined environment. This is done transparently from the point of view of both the attacker and normal users. Existing connections, such as SSH sessions, are not interrupted. Any malicious activity performed by the attacker on a quarantined server is not reflected on the production server. The attacker is provided services from the quarantined server, which creates the impression that the attacks performed are successful. The activities of the attacker on the quarantined system are able to be recorded much like a honeypot system for forensic analysis.

  20. Activities of the Institute for Mechanical Engineering

    NASA Astrophysics Data System (ADS)

    The Institute of Mechanical Engineering (IME) is part of Canada's National Research Council. Its mission is to undertake, support, promote, and disseminate research and development in the mechanical engineering aspects of three vital sectors of the Canadian economy: transportation, resource industries, and manufacturing. The IME achieves its mission by performing research and development in its own facilities; by developing, providing, and transferring expertise and knowledge; by making its research facilities available to collaborators and clients; and by participating in international liaison and collaborative research activities. Six research programs are conducted in the IME: Advanced Manufacturing Technology; Coastal Zone Engineering; Cold Regions Engineering; Combustion and Fluids Engineering; Ground Transportation Technology; and Machinery and Engine Technology. The rationale and major research thrusts of each program are described, and specific achievements in 1991-92 are reviewed. Lists of technical reports and papers presented by IME personnel are also included.

  1. Interferon-induced guanylate-binding proteins in inflammasome activation and host defense.

    PubMed

    Kim, Bae-Hoon; Chee, Jonathan D; Bradfield, Clinton J; Park, Eui-Soon; Kumar, Pradeep; MacMicking, John D

    2016-05-01

    Traditional views of the inflammasome highlight the assembly of pre-existing core components shortly after infection or tissue damage. Emerging work, however, suggests that the inflammasome machinery is also subject to 'tunable' or inducible signals that might accelerate its autocatalytic properties and dictate where inflammasome assembly takes place in the cell. Many of these signals operate downstream of interferon receptors to elicit inflammasome regulators, including a new family of interferon-induced GTPases called 'guanylate-binding proteins' (GBPs). Here we investigate the critical roles of interferon-induced GBPs in directing inflammasome subtype-specific responses and their consequences for cell-autonomous immunity to a wide variety of microbial pathogens. We discuss emerging mechanisms of action and the potential effect of these GBPs on predisposition to sepsis and other infectious or inflammatory diseases. PMID:27092805

  2. Interferon-induced guanylate-binding proteins in inflammasome activation and host defense.

    PubMed

    Kim, Bae-Hoon; Chee, Jonathan D; Bradfield, Clinton J; Park, Eui-Soon; Kumar, Pradeep; MacMicking, John D

    2016-05-01

    Traditional views of the inflammasome highlight the assembly of pre-existing core components shortly after infection or tissue damage. Emerging work, however, suggests that the inflammasome machinery is also subject to 'tunable' or inducible signals that might accelerate its autocatalytic properties and dictate where inflammasome assembly takes place in the cell. Many of these signals operate downstream of interferon receptors to elicit inflammasome regulators, including a new family of interferon-induced GTPases called 'guanylate-binding proteins' (GBPs). Here we investigate the critical roles of interferon-induced GBPs in directing inflammasome subtype-specific responses and their consequences for cell-autonomous immunity to a wide variety of microbial pathogens. We discuss emerging mechanisms of action and the potential effect of these GBPs on predisposition to sepsis and other infectious or inflammatory diseases.

  3. IFN-induced Guanylate Binding Proteins in Inflammasome Activation and Host Defense

    PubMed Central

    Kim, Bae-Hoon; Chee, Jonathan D.; Bradfield, Clinton J.; Park, Eui-Soon; Kumar, Pradeep; MacMicking, John D.

    2016-01-01

    Traditional views of the inflammasome highlight pre-existing core components being assembled under basal conditions shortly after infection or tissue damage. Recent work, however, suggests the inflammasome machinery is also subject to tunable or inducible signals that may accelerate its autocatalytic properties and dictate where inflammasome assembly takes place in the cell. Many of these immune signals operate downstream of interferon (IFN) receptors to elicit inflammasome regulators, including a new family of IFN-induced GTPases termed guanylate binding proteins (GBPs). Here, we examine the critical roles for IFN-induced GBPs in directing inflammasome subtype-specific responses and their consequences for cell-autonomous immunity against a wide variety of microbial pathogens. We discuss emerging mechanisms of action and the potential impact of these GBPs on predisposition to sepsis and other infectious or inflammatory diseases. PMID:27092805

  4. Effect of dietary vitamin E and selenium supplementation on growth, body composition, and antioxidant defense mechanism in juvenile largemouth bass (Micropterus salmoides) fed oxidized fish oil.

    PubMed

    Chen, Yong-Jun; Liu, Yong-Jian; Tian, Li-Xia; Niu, Jin; Liang, Gui-Ying; Yang, Hui-Jun; Yuan, Yuan; Zhang, Yun-Qiang

    2013-06-01

    Six oxidized fish oil contained diets were formulated to investigate the effect of graded levels of vitamin E (V(E)) (α-tocopherol acetate: 160, 280, and 400 mg kg(-1)) associated with either 1.2 or 1.8 mg kg(-1) selenium (Se) on growth, body composition, and antioxidant defense mechanism of juvenile largemouth bass. Another control diet containing fresh fish oil with 160 mg kg(-1) V(E) and 1.2 mg kg(-1) Se was also prepared. Over a 12-week feeding trial, about 5 % of Micropterus salmoide fed diet OxSe1.2/V(E)160 showed inflammation and hemorrhage symptoms at the base of dorsal, pectoral, and tail fin. Fish in all treatments survived well (above 90 %). Feed intakes (88.42-89.58 g fish(-1)) of all treatments were comparable. Growth performances (weight gain and specific growth rate) and feed utilization (feed and protein efficiency ratio) were significantly impaired by dietary oil oxidation, and they did not benefit from neither V(E) nor Se supplementation. Regardless of dietary V(E) and Se supplementation, oxidized oil ingestion resulted in markedly decreased hepatosomatic index and intraperitoneal fat ratio. Oxidized oil ingestion also induced markedly lower liver and muscle lipid contents, and these effects could be alleviated by dietary Se supplementation. Dietary oil oxidation stimulated hepatic catalase activities relative to the control, and supplementation of V(E) abrogated this effect. Hepatic reduced glutathione content in the control was markedly higher than that of treatment OxSe1.2/V(E)160, without any significant differences comparing with the other oxidized oil receiving groups. Hepatic glutathione peroxidase activity and liver Se concentration reflected dietary Se profile, whereas liver V(E) level reflected dietary V(E) profile. Compared with the control, fish fed diet OxSe1.2/V(E)160 obtained markedly higher serum, liver and muscle malondialdehyde contents, which droppe significantly with increasing either V(E) or Se supplementation. In conclusion

  5. Effect of dietary vitamin E and selenium supplementation on growth, body composition, and antioxidant defense mechanism in juvenile largemouth bass (Micropterus salmoides) fed oxidized fish oil.

    PubMed

    Chen, Yong-Jun; Liu, Yong-Jian; Tian, Li-Xia; Niu, Jin; Liang, Gui-Ying; Yang, Hui-Jun; Yuan, Yuan; Zhang, Yun-Qiang

    2013-06-01

    Six oxidized fish oil contained diets were formulated to investigate the effect of graded levels of vitamin E (V(E)) (α-tocopherol acetate: 160, 280, and 400 mg kg(-1)) associated with either 1.2 or 1.8 mg kg(-1) selenium (Se) on growth, body composition, and antioxidant defense mechanism of juvenile largemouth bass. Another control diet containing fresh fish oil with 160 mg kg(-1) V(E) and 1.2 mg kg(-1) Se was also prepared. Over a 12-week feeding trial, about 5 % of Micropterus salmoide fed diet OxSe1.2/V(E)160 showed inflammation and hemorrhage symptoms at the base of dorsal, pectoral, and tail fin. Fish in all treatments survived well (above 90 %). Feed intakes (88.42-89.58 g fish(-1)) of all treatments were comparable. Growth performances (weight gain and specific growth rate) and feed utilization (feed and protein efficiency ratio) were significantly impaired by dietary oil oxidation, and they did not benefit from neither V(E) nor Se supplementation. Regardless of dietary V(E) and Se supplementation, oxidized oil ingestion resulted in markedly decreased hepatosomatic index and intraperitoneal fat ratio. Oxidized oil ingestion also induced markedly lower liver and muscle lipid contents, and these effects could be alleviated by dietary Se supplementation. Dietary oil oxidation stimulated hepatic catalase activities relative to the control, and supplementation of V(E) abrogated this effect. Hepatic reduced glutathione content in the control was markedly higher than that of treatment OxSe1.2/V(E)160, without any significant differences comparing with the other oxidized oil receiving groups. Hepatic glutathione peroxidase activity and liver Se concentration reflected dietary Se profile, whereas liver V(E) level reflected dietary V(E) profile. Compared with the control, fish fed diet OxSe1.2/V(E)160 obtained markedly higher serum, liver and muscle malondialdehyde contents, which droppe significantly with increasing either V(E) or Se supplementation. In conclusion

  6. Bi-functional peptides with both trypsin-inhibitory and antimicrobial activities are frequent defensive molecules in Ranidae amphibian skins.

    PubMed

    Yan, Xiuwen; Liu, Huan; Yang, Xuening; Che, Qiaolin; Liu, Rui; Yang, Hailong; Liu, Xiuhong; You, Dewen; Wang, Aili; Li, Jianxu; Lai, Ren

    2012-07-01

    Amphibian skins act as the first line against noxious aggression by microorganisms, parasites, and predators. Anti-microorganism activity is an important task of amphibian skins. A large amount of gene-encoded antimicrobial peptides (AMPs) has been identified from amphibian skins. Only a few of small protease inhibitors have been found in amphibian skins. From skin secretions of 5 species (Odorrana livida, Hylarana nigrovittata, Limnonectes kuhlii, Odorrana grahami, and Amolops loloensis) of Ranidae frogs, 16 small serine protease inhibitor peptides have been purified and characterized. They have lengths of 17-20 amino acid residues (aa). All of them are encoded by precursors with length of 65-70 aa. These small peptides show strong trypsin-inhibitory abilities. Some of them can exert antimicrobial activities. They share the conserved GCWTKSXXPKPC fragment in their primary structures, suggesting they belong to the same families of peptide. Signal peptides of precursors encoding these serine protease inhibitors share obvious sequence similarity with those of precursors encoding AMPs from Ranidae frogs. The current results suggest that these small serine protease inhibitors are the common defensive compounds in frog skin of Ranidae as amphibian skin AMPs. PMID:21927839

  7. Bi-functional peptides with both trypsin-inhibitory and antimicrobial activities are frequent defensive molecules in Ranidae amphibian skins.

    PubMed

    Yan, Xiuwen; Liu, Huan; Yang, Xuening; Che, Qiaolin; Liu, Rui; Yang, Hailong; Liu, Xiuhong; You, Dewen; Wang, Aili; Li, Jianxu; Lai, Ren

    2012-07-01

    Amphibian skins act as the first line against noxious aggression by microorganisms, parasites, and predators. Anti-microorganism activity is an important task of amphibian skins. A large amount of gene-encoded antimicrobial peptides (AMPs) has been identified from amphibian skins. Only a few of small protease inhibitors have been found in amphibian skins. From skin secretions of 5 species (Odorrana livida, Hylarana nigrovittata, Limnonectes kuhlii, Odorrana grahami, and Amolops loloensis) of Ranidae frogs, 16 small serine protease inhibitor peptides have been purified and characterized. They have lengths of 17-20 amino acid residues (aa). All of them are encoded by precursors with length of 65-70 aa. These small peptides show strong trypsin-inhibitory abilities. Some of them can exert antimicrobial activities. They share the conserved GCWTKSXXPKPC fragment in their primary structures, suggesting they belong to the same families of peptide. Signal peptides of precursors encoding these serine protease inhibitors share obvious sequence similarity with those of precursors encoding AMPs from Ranidae frogs. The current results suggest that these small serine protease inhibitors are the common defensive compounds in frog skin of Ranidae as amphibian skin AMPs.

  8. Jasmonate-dependent modifications of the pectin matrix during potato development function as a defense mechanism targeted by Dickeya dadantii virulence factors.

    PubMed

    Taurino, Marco; Abelenda, Jose A; Río-Alvarez, Isabel; Navarro, Cristina; Vicedo, Begonya; Farmaki, Theodora; Jiménez, Pedro; García-Agustín, Pilar; López-Solanilla, Emilia; Prat, Salomé; Rojo, Enrique; Sánchez-Serrano, José J; Sanmartín, Maite

    2014-02-01

    The plant cell wall constitutes an essential protection barrier against pathogen attack. In addition, cell-wall disruption leads to accumulation of jasmonates (JAs), which are key signaling molecules for activation of plant inducible defense responses. However, whether JAs in return modulate the cell-wall composition to reinforce this defensive barrier remains unknown. The enzyme 13-allene oxide synthase (13-AOS) catalyzes the first committed step towards biosynthesis of JAs. In potato (Solanum tuberosum), there are two putative St13-AOS genes, which we show here to be differentially induced upon wounding. We also determine that both genes complement an Arabidopsis aos null mutant, indicating that they encode functional 13-AOS enzymes. Indeed, transgenic potato plants lacking both St13-AOS genes (CoAOS1/2 lines) exhibited a significant reduction of JAs, a concomitant decrease in wound-responsive gene activation, and an increased severity of soft rot disease symptoms caused by Dickeya dadantii. Intriguingly, a hypovirulent D. dadantii pel strain lacking the five major pectate lyases, which causes limited tissue maceration on wild-type plants, regained infectivity in CoAOS1/2 plants. In line with this, we found differences in pectin methyl esterase activity and cell-wall pectin composition between wild-type and CoAOS1/2 plants. Importantly, wild-type plants had pectins with a lower degree of methyl esterification, which are the substrates of the pectate lyases mutated in the pel strain. These results suggest that, during development of potato plants, JAs mediate modification of the pectin matrix to form a defensive barrier that is counteracted by pectinolytic virulence factors from D. dadantii.

  9. Mechanism and active variety of allelochemicals

    USGS Publications Warehouse

    Peng, S.-L.; Wen, J.; Guo, Q.-F.

    2004-01-01

    This article summarizes allelochemicals' active variety, its potential causes and function mechanisms. Allelochemicals' activity varies with temperature, photoperiod, water and soils during natural processes, with its initial concentration, compound structure and mixed degree during functional processes, with plant accessions, tissues and maturity within-species, and with research techniques and operation processes. The prospective developmental aspects of allelopathy studies in the future are discussed. Future research should focus on: (1) to identify and purify allelochemicals more effectively, especially for agriculture, (2) the functions of allelopathy at the molecular structure level, (3) using allelopathy to explain plant species interactions, (4) allelopathy as a driving force of succession, and (5) the significance of allelopathy in the evolutionary processes.

  10. Onset of herbivore-induced resistance in systemic tissue primed for jasmonate-dependent defenses is activated by abscisic acid

    PubMed Central

    Vos, Irene A.; Verhage, Adriaan; Schuurink, Robert C.; Watt, Lewis G.; Pieterse, Corné M. J.; Van Wees, Saskia C. M.

    2013-01-01

    In Arabidopsis, the MYC2 transcription factor on the one hand and the AP2/ERF transcription factors ORA59 and ERF1 on the other hand regulate distinct branches of the jasmonic acid (JA) signaling pathway in an antagonistic fashion, co-regulated by abscisic acid (ABA) and ethylene, respectively. Feeding by larvae of the specialist herbivorous insect Pieris rapae (small cabbage white butterfly) results in activation of the MYC-branch and concomitant suppression of the ERF-branch in insect-damaged leaves. Here we investigated differential JA signaling activation in undamaged systemic leaves of P. rapae-infested plants. We found that the MYC2 transcription factor gene was induced both in the local insect-damaged leaves and the systemic undamaged leaves of P. rapae-infested Arabidopsis plants. However, in contrast to the insect-damaged leaves, the undamaged tissue did not show activation of the MYC-branch marker gene VSP1. Comparison of the hormone signal signature revealed that the levels of JA and (+)-7-iso-jasmonoyl-L-isoleucine raised to similar extents in locally damaged and systemically undamaged leaves, but the production of ABA and the JA precursor 12-oxo-phytodienoic acid was enhanced only in the local herbivore-damaged leaves, and not in the distal undamaged leaves. Challenge of undamaged leaves of pre-infested plants with either P. rapae larvae or exogenously applied ABA led to potentiated expression levels of MYC2 and VSP1, with the latter reaching extremely high expression levels. Moreover, P. rapae-induced resistance, as measured by reduction of caterpillar growth on pre-infested plants, was blocked in the ABA biosynthesis mutant aba2-1, that was also impaired in P. rapae-induced expression of VSP1. Together, these results suggest that ABA is a crucial regulator of herbivore-induced resistance by activating primed JA-regulated defense responses upon secondary herbivore attack in Arabidopsis. PMID:24416038

  11. Priming maize resistance by its neighbors: activating 1,4-benzoxazine-3-ones synthesis and defense gene expression to alleviate leaf disease

    PubMed Central

    Ding, Xupo; Yang, Min; Huang, Huichuan; Chuan, Youcong; He, Xiahong; Li, Chengyun; Zhu, Youyong; Zhu, Shusheng

    2015-01-01

    Plant disease can be effectively suppressed in intercropping systems. Our previous study demonstrated that neighboring maize plants can restrict the spread of soil-borne pathogens of pepper plants by secreting defense compounds into the soil. However, whether maize plant can receive benefits from its neighboring pepper plants in an intercropping system is little attention. We examined the effects of maize roots treated with elicitors from the pepper pathogen Phytophthora capsici and pepper root exudates on the synthesis of 1,4-benzoxazine-3-ones (BXs), the expression of defense-related genes in maize, and their ability to alleviate the severity of southern corn leaf blight (SCLB) caused by Bipolaris maydis. We found that SCLB was significantly reduced after the above treatments. The contents of 1,4-benzoxazine-3-ones (BXs: DIBOA, DIMBOA, and MBOA) and the expression levels of BX synthesis and defense genes in maize roots and shoots were up-regulated. DIMBOA and MBOA effectively inhibited the mycelium growth of Bipolaris maydis at physiological concentrations in maize shoots. Further studies suggested that the defense related pathways or genes in maize roots and shoots were activated by elicitors from the P. capsici or pepper root exudates. In conclusion, maize increased the levels of BXs and defense gene expression both in roots and shoots after being triggered by root exudates and pathogen from neighboring pepper plants, eventually enhancing its resistance. PMID:26528303

  12. Identification of Synthetic Host Defense Peptide Mimics That Exert Dual Antimicrobial and Anti-Inflammatory Activities

    PubMed Central

    Som, Abhigyan; Navasa, Nicolás; Percher, Avital; Scott, Richard W.

    2012-01-01

    A group of synthetic antimicrobial oligomers, inspired by naturally occurring antimicrobial peptides, were analyzed for the ability to modulate innate immune responses to Toll-like receptor (TLR) ligands. These synthetic mimics of antimicrobial peptides (SMAMPs) specifically reduced cytokine production in response to Staphylococcus aureus and the S. aureus component lipoteichoic acid (LTA), a TLR2 agonist. Anti-inflammatory SMAMPs prevented the induction of tumor necrosis factor (TNF), interleukin 6 (IL-6), and IL-10 in response to S. aureus or LTA, but no other TLR2 ligands. We show that these SMAMPs bind specifically to LTA in vitro and prevent its interaction with TLR2. Importantly, the SMAMP greatly reduced the induction of TNF and IL-6 in vivo in mice acutely infected with S. aureus while simultaneously reducing bacterial loads dramatically (4 log10). Thus, these SMAMPs can eliminate the damage induced by pathogen-associated molecular patterns (PAMPs) while simultaneously eliminating infection in vivo. They are the first known SMAMPs to demonstrate anti-inflammatory and antibacterial activities in vivo. PMID:22956655

  13. [The evolutionary role of nitric oxide in circadian activity and defense of the organism from cosmic rays].

    PubMed

    Iamshanov, V A

    2009-01-01

    The cosmic rays are one of the constantly acting factors influencing on genetic apparatus and depending from sun activity, which have the circadian rhythm. The nature creates a number of mechanisms, which defend the organism from cosmic rays and free radicals as consequence. However, the malfunctions of these mechanisms damage the genetic apparatus, accelerate the aging and bring to a number of illnesses. It is supposed that to neutralise the free radicals as cosmic rays consequence the organism uses its own free radicals, which have the physiological functions, for example, the nitric oxide. To limit the nitric oxide production, the mechanism of melatonin formation is used, which has a circadian rhythm.

  14. Detection of Neural Activity in the Brains of Japanese Honeybee Workers during the Formation of a “Hot Defensive Bee Ball”

    PubMed Central

    Ugajin, Atsushi; Kiya, Taketoshi; Kunieda, Takekazu; Ono, Masato; Yoshida, Tadaharu; Kubo, Takeo

    2012-01-01

    Anti-predator behaviors are essential to survival for most animals. The neural bases of such behaviors, however, remain largely unknown. Although honeybees commonly use their stingers to counterattack predators, the Japanese honeybee (Apis cerana japonica) uses a different strategy to fight against the giant hornet (Vespa mandarinia japonica). Instead of stinging the hornet, Japanese honeybees form a “hot defensive bee ball” by surrounding the hornet en masse, killing it with heat. The European honeybee (A. mellifera ligustica), on the other hand, does not exhibit this behavior, and their colonies are often destroyed by a hornet attack. In the present study, we attempted to analyze the neural basis of this behavior by mapping the active brain regions of Japanese honeybee workers during the formation of a hot defensive bee ball. First, we identified an A. cerana homolog (Acks = Apis cerana kakusei) of kakusei, an immediate early gene that we previously identified from A. mellifera, and showed that Acks has characteristics similar to kakusei and can be used to visualize active brain regions in A. cerana. Using Acks as a neural activity marker, we demonstrated that neural activity in the mushroom bodies, especially in Class II Kenyon cells, one subtype of mushroom body intrinsic neurons, and a restricted area between the dorsal lobes and the optic lobes was increased in the brains of Japanese honeybee workers involved in the formation of a hot defensive bee ball. In addition, workers exposed to 46°C heat also exhibited Acks expression patterns similar to those observed in the brains of workers involved in the formation of a hot defensive bee ball, suggesting that the neural activity observed in the brains of workers involved in the hot defensive bee ball mainly reflects thermal stimuli processing. PMID:22431987

  15. A nanosized Ag-silica hybrid complex prepared by γ-irradiation activates the defense response in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Chu, Hyosub; Kim, Hwa-Jung; Su Kim, Joong; Kim, Min-Soo; Yoon, Byung-Dae; Park, Hae-Jun; Kim, Cha Young

    2012-02-01

    Silver nanoparticles have antimicrobial activity against many pathogenic microbes. Here, the preparation of a nanosized Ag-silica hybrid complex (NSS) prepared by γ-irradiation is described. The effects of both NSS and reduced Ag nanoparticles (Ag 0) on the growth of the model plant Arabidopsis thaliana were tested. The application of 1-10 ppm NSS complex improved Arabidopsis growth in soil, whereas 100 ppm NSS resulted in weakly curled leaves. In addition, supplementation of Murashige and Skoog (MS) growth medium with 1 ppm NSS promoted the root growth of Arabidopsis seedlings, but root growth was inhibited by supplementation with 10 ppm NSS. To investigate whether the NSS complex could induce plant defense responses, the expression of pathogenesis-related ( PR) genes that are implicated in systemic acquired resistance (SAR) in Arabidopsis plants was examined. PR1, PR2 and PR5 were significantly up-regulated by each application of 10 ppm NSS complex or Ag 0 to the rosette leaves. Furthermore, pretreatment with the NSS complex induced more pathogen resistance to the virulent pathogen Pseudomonas syringae pv. tomato DC3000 ( Pst) compared to water treatment in Arabidopsis plants.

  16. Acclimation of hydrogen peroxide enhances salt tolerance by activating defense-related proteins in Panax ginseng C.A. Meyer.

    PubMed

    Sathiyaraj, Gayathri; Srinivasan, Sathiyaraj; Kim, Yu-Jin; Lee, Ok Ran; Parvin, Shonana; Balusamy, Sri Renuka Devi; Khorolragchaa, Atlanzul; Yang, Deok Chun

    2014-06-01

    The effect of exogenously applied hydrogen peroxide on salt stress tolerance was investigated in Panax ginseng. Pretreatment of ginseng seedlings with 100 μM H2O2 increased the physiological salt tolerance of the ginseng plant and was used as the optimum concentration to induce salt tolerance capacity. Treatment with exogenous H2O2 for 2 days significantly enhanced salt stress tolerance in ginseng seedlings by increasing the activities of ascorbate peroxidase, catalase and guaiacol peroxidase and by decreasing the concentrations of malondialdehyde (MDA) and endogenous H2O2 as well as the production rate of superoxide radical (O2(-)). There was a positive physiological effect on the growth and development of salt-stressed seedlings by exogenous H2O2 as measured by ginseng dry weight and both chlorophyll and carotenoid contents. Exogenous H2O2 induced changes in MDA, O2(-), antioxidant enzymes and antioxidant compounds, which are responsible for increases in salt stress tolerance. Salt treatment caused drastic declines in ginseng growth and antioxidants levels; whereas, acclimation treatment with H2O2 allowed the ginseng seedlings to recover from salt stress by up-regulation of defense-related proteins such as antioxidant enzymes and antioxidant compounds.

  17. Peripheral mechanisms II: the pharmacology of peripherally active antitussive drugs.

    PubMed

    Spina, D; McFadzean, I; Bertram, F K R; Page, C P

    2009-01-01

    Cough is an indispensable defensive reflex. Although generally beneficial, it is also a common symptom of diseases such as asthma, chronic obstructive pulmonary disease, upper respiratory tract infections, idiopathic pulmonary fibrosis and lung cancer. Cough remains a major unmet medical need and although the centrally acting opioids have remained the antitussive of choice for decades, they have many unwanted side effects. However, new research into the behaviour of airway sensory nerves has provided greater insight into the mechanisms of cough and new avenues for the discovery of novel non-opioid antitussive drugs. In this review, the pathophysiological mechanisms of cough and the development of novel antitussive drugs are reviewed.

  18. JAV1 controls jasmonate-regulated plant defense.

    PubMed

    Hu, Po; Zhou, Wu; Cheng, Zhiwei; Fan, Meng; Wang, Lei; Xie, Daoxin

    2013-05-23

    Plants evolve effective mechanisms to protect themselves from environmental stresses and employ jasmonates as vital defense signals to defend against insect attack and pathogen infection. Jasmonates are also recognized as an essential growth regulator by which diverse developmental processes are mediated. Despite substantial research, there are no key signaling components reported yet to control jasmonate-regulated plant defense independent of developmental responses. We identify JAV1, a key gene in the jasmonate pathway, which functions as a negative regulator to control plant defense but does not play a detectable role in plant development. Our results suggest that when encountering insect attack and pathogen infection, plants accumulate jasmonates that trigger JAV1 degradation via the 26S proteasome to activate defensive gene expression and elevate resistances against both insects and pathogens. These findings have provided insight into the molecular mechanism by which plants integrate jasmonate signals to protect themselves from insect attack and pathogen infection.

  19. Constitutively Active Mitogen-Activated Protein Kinase Versions Reveal Functions of Arabidopsis MPK4 in Pathogen Defense Signaling[C][W

    PubMed Central

    Berriri, Souha; Garcia, Ana Victoria; dit Frey, Nicolas Frei; Rozhon, Wilfried; Pateyron, Stéphanie; Leonhardt, Nathalie; Montillet, Jean-Luc; Leung, Jeffrey; Hirt, Heribert; Colcombet, Jean

    2012-01-01

    Plant mitogen-activated protein kinases (MAPKs) are involved in important processes, including stress signaling and development. In a functional yeast screen, we identified mutations that render Arabidopsis thaliana MAPKs constitutively active (CA). Importantly, CA-MAPKs maintain their specificity toward known activators and substrates. As a proof-of-concept, Arabidopsis MAPK4 (MPK4) function in plant immunity was investigated. In agreement with the phenotype of mpk4 mutants, CA-MPK4 plants were compromised in pathogen-induced salicylic acid accumulation and disease resistance. MPK4 activity was found to negatively regulate pathogen-associated molecular pattern-induced reactive oxygen species production but had no impact on callose deposition, indicating that CA-MPK4 allows discriminating between processes regulated by MPK4 activity from processes indirectly affected by mpk4 mutation. Finally, MPK4 activity was also found to compromise effector-triggered immunity conditioned by the Toll Interleukin-1 Receptor–nucleotide binding (NB)–Leu-rich repeat (LRR) receptors RPS4 and RPP4 but not by the coiled coil–NB-LRR receptors RPM1 and RPS2. Overall, these data reveal important insights on how MPK4 regulates plant defenses and establishes that CA-MAPKs offer a powerful tool to analyze the function of plant MAPK pathways. PMID:23115249

  20. Cannabidiol Post-Treatment Alleviates Rat Epileptic-Related Behaviors and Activates Hippocampal Cell Autophagy Pathway Along with Antioxidant Defense in Chronic Phase of Pilocarpine-Induced Seizure.

    PubMed

    Hosseinzadeh, Mahshid; Nikseresht, Sara; Khodagholi, Fariba; Naderi, Nima; Maghsoudi, Nader

    2016-04-01

    Abnormal and sometimes severe behavioral and molecular symptoms are usually observed in epileptic humans and animals. To address this issue, we examined the behavioral and molecular aspects of seizure evoked by pilocarpine. Autophagy can promote both cell survival and death, but there are controversial reports about the neuroprotective or neurodegenerative effects of autophagy in seizure. Cannabidiol has anticonvulsant properties in some animal models when used as a pretreatment. In this study, we investigated alteration of seizure scores, autophagy pathway proteins, and antioxidant status in hippocampal cells during the chronic phase of pilocarpine-induced epilepsy after treatment with cannabidiol. Cannabidiol (100 ng, intracerebroventricular injection) delayed the chronic phase of epilepsy. Single administration of cannabidiol during the chronic phase of seizure significantly diminished seizure scores such as mouth clonus, head nodding, monolateral and bilateral forelimb clonus and increased the activity of catalase enzyme and reduced glutathione content. Such a protective effect in the behavioral scores of epileptic rats was also observed after repeated administrations of cannabidiol at the onset of the silent phase. Moreover, the amount of Atg7, conjugation of Atg5/12, Atg12, and LC3II/LC3I ratio increased significantly in epileptic rats treated with repeated injections of cannabidiol. In short, our results suggest that post-treatment of Cannabidiol could enhance the induction of autophagy pathway and antioxidant defense in the chronic phase of epilepsy, which could be considered as the protective mechanisms of cannabidiol in a temporal lobe epilepsy model.

  1. Current understanding of grapevine defense mechanisms against the biotrophic fungus (Erysiphe necator), the causal agent of powdery mildew disease.

    PubMed

    Qiu, Wenping; Feechan, Angela; Dry, Ian

    2015-01-01

    The most economically important disease of cultivated grapevines worldwide is powdery mildew (PM) caused by the ascomycete fungus Erysiphe necator. The majority of grapevine cultivars used for wine, table grape, and dried fruit production are derived from the Eurasian grape species Vitis vinifera because of its superior aroma and flavor characteristics. However, this species has little genetic resistance against E. necator meaning that grape production is highly dependent on the frequent use of fungicides. The integration of effective genetic resistance into cultivated grapevines would lead to significant financial and environmental benefits and represents a major challenge for viticultural industries and researchers worldwide. This review will outline the strategies being used to increase our understanding of the molecular basis of V. vinifera susceptibility to this fungal pathogen. It will summarize our current knowledge of different resistance loci/genes that have evolved in wild grapevine species to restrict PM infection and assess the potential application of these defense genes in the generation of PM-resistant grapevine germplasm. Finally, it addresses future research priorities which will be important in the rapid identification, evaluation, and deployment of new PM resistance genes which are capable of conferring effective and durable resistance in the vineyard. PMID:26504571

  2. Disentangling Detoxification: Gene Expression Analysis of Feeding Mountain Pine Beetle Illuminates Molecular-Level Host Chemical Defense Detoxification Mechanisms

    PubMed Central

    Robert, Jeanne A.; Pitt, Caitlin; Bonnett, Tiffany R.; Yuen, Macaire M. S.; Keeling, Christopher I.; Bohlmann, Jörg; Huber, Dezene P. W.

    2013-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae) that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq) of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle. PMID:24223726

  3. Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases.

    PubMed

    Gang, D R; Kasahara, H; Xia, Z Q; Vander Mijnsbrugge, K; Bauw, G; Boerjan, W; Van Montagu, M; Davin, L B; Lewis, N G

    1999-03-12

    Pinoresinol-lariciresinol and isoflavone reductase classes are phylogenetically related, as is a third, the so-called "isoflavone reductase homologs." This study establishes the first known catalytic function for the latter, as being able to engender the NADPH-dependent reduction of phenylcoumaran benzylic ethers. Accordingly, all three reductase classes are involved in the biosynthesis of important and related phenylpropanoid-derived plant defense compounds. In this investigation, the phenylcoumaran benzylic ether reductase from the gymnosperm, Pinus taeda, was cloned, with the recombinant protein heterologously expressed in Escherichia coli. The purified enzyme reduces the benzylic ether functionalities of both dehydrodiconiferyl alcohol and dihydrodehydrodiconiferyl alcohol, with a higher affinity for the former, as measured by apparent Km and Vmax values and observed kinetic 3H-isotope effects. It abstracts the 4R-hydride of the required NADPH cofactor in a manner analogous to that of the pinoresinol-lariciresinol reductases and isoflavone reductases. A similar catalytic function was observed for the corresponding recombinant reductase whose gene was cloned from the angiosperm, Populus trichocarpa. Interestingly, both pinoresinol-lariciresinol reductases and isoflavone reductases catalyze enantiospecific conversions, whereas the phenylcoumaran benzylic ether reductase only shows regiospecific discrimination. A possible evolutionary relationship among the three reductase classes is proposed, based on the supposition that phenylcoumaran benzylic ether reductases represent the progenitors of pinoresinol-lariciresinol and isoflavone reductases.

  4. Disentangling detoxification: gene expression analysis of feeding mountain pine beetle illuminates molecular-level host chemical defense detoxification mechanisms.

    PubMed

    Robert, Jeanne A; Pitt, Caitlin; Bonnett, Tiffany R; Yuen, Macaire M S; Keeling, Christopher I; Bohlmann, Jörg; Huber, Dezene P W

    2013-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae) that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq) of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle.

  5. Current understanding of grapevine defense mechanisms against the biotrophic fungus (Erysiphe necator), the causal agent of powdery mildew disease

    PubMed Central

    Qiu, Wenping; Feechan, Angela; Dry, Ian

    2015-01-01

    The most economically important disease of cultivated grapevines worldwide is powdery mildew (PM) caused by the ascomycete fungus Erysiphe necator. The majority of grapevine cultivars used for wine, table grape, and dried fruit production are derived from the Eurasian grape species Vitis vinifera because of its superior aroma and flavor characteristics. However, this species has little genetic resistance against E. necator meaning that grape production is highly dependent on the frequent use of fungicides. The integration of effective genetic resistance into cultivated grapevines would lead to significant financial and environmental benefits and represents a major challenge for viticultural industries and researchers worldwide. This review will outline the strategies being used to increase our understanding of the molecular basis of V. vinifera susceptibility to this fungal pathogen. It will summarize our current knowledge of different resistance loci/genes that have evolved in wild grapevine species to restrict PM infection and assess the potential application of these defense genes in the generation of PM-resistant grapevine germplasm. Finally, it addresses future research priorities which will be important in the rapid identification, evaluation, and deployment of new PM resistance genes which are capable of conferring effective and durable resistance in the vineyard. PMID:26504571

  6. Ornithine and Homocitrulline Impair Mitochondrial Function, Decrease Antioxidant Defenses and Induce Cell Death in Menadione-Stressed Rat Cortical Astrocytes: Potential Mechanisms of Neurological Dysfunction in HHH Syndrome.

    PubMed

    Zanatta, Ângela; Rodrigues, Marília Danyelle Nunes; Amaral, Alexandre Umpierrez; Souza, Débora Guerini; Quincozes-Santos, André; Wajner, Moacir

    2016-09-01

    Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is caused by deficiency of ornithine translocase leading to predominant tissue accumulation and high urinary excretion of ornithine (Orn), homocitrulline (Hcit) and ammonia. Although affected patients commonly present neurological dysfunction manifested by cognitive deficit, spastic paraplegia, pyramidal and extrapyramidal signs, stroke-like episodes, hypotonia and ataxia, its pathogenesis is still poorly known. Although astrocytes are necessary for neuronal protection. Therefore, in the present study we investigated the effects of Orn and Hcit on cell viability (propidium iodide incorporation), mitochondrial function (thiazolyl blue tetrazolium bromide-MTT-reduction and mitochondrial membrane potential-ΔΨm), antioxidant defenses (GSH) and pro-inflammatory response (NFkB, IL-1β, IL-6 and TNF-α) in unstimulated and menadione-stressed cortical astrocytes that were previously shown to be susceptible to damage by neurotoxins. We first observed that Orn decreased MTT reduction, whereas both amino acids decreased GSH levels, without altering cell viability and the pro-inflammatory factors in unstimulated astrocytes. Furthermore, Orn and Hcit decreased cell viability and ΔΨm in menadione-treated astrocytes. The present data indicate that the major compounds accumulating in HHH syndrome impair mitochondrial function and reduce cell viability and the antioxidant defenses in cultured astrocytes especially when stressed by menadione. It is presumed that these mechanisms may be involved in the neuropathology of this disease. PMID:27161368

  7. Ornithine and Homocitrulline Impair Mitochondrial Function, Decrease Antioxidant Defenses and Induce Cell Death in Menadione-Stressed Rat Cortical Astrocytes: Potential Mechanisms of Neurological Dysfunction in HHH Syndrome.

    PubMed

    Zanatta, Ângela; Rodrigues, Marília Danyelle Nunes; Amaral, Alexandre Umpierrez; Souza, Débora Guerini; Quincozes-Santos, André; Wajner, Moacir

    2016-09-01

    Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is caused by deficiency of ornithine translocase leading to predominant tissue accumulation and high urinary excretion of ornithine (Orn), homocitrulline (Hcit) and ammonia. Although affected patients commonly present neurological dysfunction manifested by cognitive deficit, spastic paraplegia, pyramidal and extrapyramidal signs, stroke-like episodes, hypotonia and ataxia, its pathogenesis is still poorly known. Although astrocytes are necessary for neuronal protection. Therefore, in the present study we investigated the effects of Orn and Hcit on cell viability (propidium iodide incorporation), mitochondrial function (thiazolyl blue tetrazolium bromide-MTT-reduction and mitochondrial membrane potential-ΔΨm), antioxidant defenses (GSH) and pro-inflammatory response (NFkB, IL-1β, IL-6 and TNF-α) in unstimulated and menadione-stressed cortical astrocytes that were previously shown to be susceptible to damage by neurotoxins. We first observed that Orn decreased MTT reduction, whereas both amino acids decreased GSH levels, without altering cell viability and the pro-inflammatory factors in unstimulated astrocytes. Furthermore, Orn and Hcit decreased cell viability and ΔΨm in menadione-treated astrocytes. The present data indicate that the major compounds accumulating in HHH syndrome impair mitochondrial function and reduce cell viability and the antioxidant defenses in cultured astrocytes especially when stressed by menadione. It is presumed that these mechanisms may be involved in the neuropathology of this disease.

  8. Molecular cloning of the tomato Hairless gene implicates actin dynamics in trichome-mediated defense and mechanical properties of stem tissue

    PubMed Central

    Kang, Jin-Ho; Campos, Marcelo L.; Zemelis-Durfee, Starla; Al-Haddad, Jameel M.; Jones, A. Daniel; Telewski, Frank W.; Brandizzi, Federica; Howe, Gregg A.

    2016-01-01

    Trichomes are epidermal structures that provide a first line of defense against arthropod herbivores. The recessive hairless (hl) mutation in tomato (Solanum lycopersicum L.) causes severe distortion of trichomes on all aerial tissues, impairs the accumulation of sesquiterpene and polyphenolic compounds in glandular trichomes, and compromises resistance to the specialist herbivore Manduca sexta. Here, we demonstrate that the tomato Hl gene encodes a subunit (SRA1) of the highly conserved WAVE regulatory complex that controls nucleation of actin filaments in a wide range of eukaryotic cells. The tomato SRA1 gene spans a 42-kb region containing both Solyc11g013280 and Solyc11g013290. The hl mutation corresponds to a complex 3-kb deletion that removes the last exon of the gene. Expression of a wild-type SRA1 cDNA in the hl mutant background restored normal trichome development, accumulation of glandular trichome-derived metabolites, and resistance to insect herbivory. These findings establish a role for SRA1 in the development of tomato trichomes and also implicate the actin-cytoskeleton network in cytosolic control of specialized metabolism for plant defense. We also show that the brittleness of hl mutant stems is associated with altered mechanical and cell morphological properties of stem tissue, and demonstrate that this defect is directly linked to the mutation in SRA1. PMID:27481446

  9. Antioxidant defense mechanisms of endothelial cells and renal tubular epithelial cells in vitro: role of the glutathione redox cycle and catalase.

    PubMed

    Andreoli, S P; Mallett, C; McAteer, J A; Williams, L V

    1992-09-01

    We recently demonstrated that endothelial cells are more susceptible than renal tubular epithelial cells to oxidant injury and that renal tubular epithelial cells with proximal tubular characteristics including porcine proximal tubular epithelial cells, opossum kidney proximal tubular epithelial cells, and normal human kidney cortical epithelial cells are more susceptible to oxidant injury than the distal nephron-derived Madin Darby canine kidney cell line. To determine the basis of this differential response, we evaluated several antioxidant defenses in the five cell lines. Glutathione levels were not significantly different among the five cell lines, but catalase and glutathione reductase levels were significantly (p less than 0.01) lower in endothelial cells compared to all renal tubular epithelial cells. Among renal tubular epithelial cells, Madin Darby canine kidney cells had significantly (p less than 0.05) higher glutathione peroxidase activity. To further evaluate the role of antioxidant defenses in limiting oxidant injury, we determined two responses to oxidant injury (ATP depletion and 51Cr release) when glutathione was depleted with buthionine sulfoxamine and when catalase was inhibited with aminotriazole. Oxidant-induced ATP depletion was accentuated when catalase was inhibited as well as when glutathione was depleted with buthionine sulfoxamine. In contrast, inhibition of catalase had little or no effect on 51Cr release, whereas glutathione depletion resulted in accentuated 51Cr release. We conclude that the increased susceptibility of endothelial cells to oxidant injury as compared with epithelial cells is associated with lower antioxidant defenses. Disruption of the glutathione redox cycle results in accentuated ATP depletion and lytic injury, whereas inhibition of catalase results in accentuated ATP depletion with little effect on lytic injury.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Suppression of native defense mechanisms, SIRT1 and PPARγ, by dietary glycoxidants precedes disease in adult humans; relevance to lifestyle-engendered chronic diseases.

    PubMed

    Uribarri, Jaime; Cai, Weijing; Pyzik, Renata; Goodman, Susan; Chen, Xue; Zhu, Li; Ramdas, Maya; Striker, Gary E; Vlassara, Helen

    2014-02-01

    SIRT1 and PPARγ, host defenses regulating inflammation and metabolic functions, are suppressed under chronic high oxidant stress and inflammation (OS/Infl) conditions. In diabetes, dietary advanced glycation end products (dAGEs) cause OS/Infl and suppress SIRT1. Herein, we ask whether dAGEs also suppress host defense in adults without diabetes. The relationships between dAGEs and basal SIRT1 mRNA, PPARγ protein levels in mononuclear cells (MNC) and circulating inflammatory/metabolic markers were examined in 67 healthy adults aged >60 years and in 18 subjects, before and after random assignment to either a standard diet (regular >15 AGE Eq/day) or an isocaloric AGE-restricted diet (<10 AGE Eq/day) for 4 months. Also, the interactions of AGEs and anti-AGE receptor-1 (AGER1) with SIRT1 and PPARγ were assessed in wild type (WT) and AGER1-transduced (AGER1(+)) MNC-like THP-1 cells. We found that dAGE, but not caloric intake, correlated negatively with MNC SIRT1 mRNA levels and positively with circulating AGEs (sAGEs), OS/infl, MNC TNFα and RAGE. Basal MNC PPARγ protein was also lower in consumers of regular vs. AGE-restricted diet. AGE restriction restored MNC SIRT1 and PPARγ, and significantly decreased sAGEs, 8-isoprostanes, VCAM-1, MNC TNFα and RAGE. Model AGEs suppressed SIRT1 protein and activity, and PPARγ protein in WT, but not in AGER1(+) cells in vitro. In conclusion, chronic consumption of high-AGE diets depletes defenses such as SIRT1 and PPARγ, independent of calories, predisposing to OS/Infl and chronic metabolic disease. Restricted entry of oral AGEs may offer a disease-prevention alternative for healthy adults.

  11. Activation of Antioxidant Defenses in Whole Saliva by Psychosocial Stress Is More Manifested in Young Women than in Young Men

    PubMed Central

    Tsuber, Viktoriia; Kadamov, Yunus; Tarasenko, Lydia

    2014-01-01

    Psychosocial stress has been long known to have deleterious effects on health. Nevertheless, an exposure to moderate stressors enhances resilience and promotes health benefits. Male and female organisms differ in many aspects of health and disease. The aim of this study was to investigate antioxidant activity and oxidative damage in saliva in a psychosocial stress paradigm in men and women. Here, we show that an acute stressor of moderate strength augments antioxidant activity and decreases oxidative damage in whole saliva of young people. An examination stress caused a significant increase of catalase activity, accompanied by a decrease of levels of oxidized proteins. Levels of thiobarbituric acid-reacting substances did not increase at stress, indicating that lipid peroxidation was not activated. The stress-induced alterations were more manifested in young women compared to young men. Thus, antioxidant protective mechanisms are more activated by a moderate stressor in young women than in young men. PMID:25525800

  12. Electro-Mechanical Manipulator for Use in the Remote Equipment Decontamination Cell at the Defense Waste Processing Facility, Savannah River Site - 12454

    SciTech Connect

    Lambrecht, Bill; Dixon, Joe; Neuville, John R.

    2012-07-01

    One of the legacies of the cold war is millions of liters of radioactive waste. One of the locations where this waste is stored is at the Savannah River Site (SRS) in South Carolina. A major effort to clean up this waste is on-going at the defense waste processing facility (DWPF) at SRS. A piece of this effort is decontamination of the equipment used in the DWPF to process the waste. The remote equipment decontamination cell (REDC) in the DWPF uses electro-mechanical manipulators (EMM) arms manufactured and supplied by PaR Systems to decontaminate DWPF process equipment. The decontamination fluid creates a highly corrosive environment. After 25 years of operational use the original EMM arms are aging and need replacement. To support continued operation of the DWPF, two direct replacement EMM arms were delivered to the REDC in the summer of 2011. (authors)

  13. Modulation of Potassium Channel Activity in the Balance of ROS and ATP Production by Durum Wheat Mitochondria-An Amazing Defense Tool Against Hyperosmotic Stress.

    PubMed

    Trono, Daniela; Laus, Maura N; Soccio, Mario; Alfarano, Michela; Pastore, Donato

    2015-01-01

    (mannitol or NaCl), PmitoKATP was found to be activated by ROS, so inhibiting further large-scale ROS production according to a feedback mechanism; moreover, a stress-activated phospholipase A2 may generate FFAs, further activating the channel. In conclusion, a main property of PmitoKATP is the ability to keep in balance the control of harmful ROS with the mitochondrial/cellular bioenergetics, thus preserving ATP for energetic needs of cell defense under stress. PMID:26648958

  14. Modulation of Potassium Channel Activity in the Balance of ROS and ATP Production by Durum Wheat Mitochondria—An Amazing Defense Tool Against Hyperosmotic Stress

    PubMed Central

    Trono, Daniela; Laus, Maura N.; Soccio, Mario; Alfarano, Michela; Pastore, Donato

    2015-01-01

    (mannitol or NaCl), PmitoKATP was found to be activated by ROS, so inhibiting further large-scale ROS production according to a feedback mechanism; moreover, a stress-activated phospholipase A2 may generate FFAs, further activating the channel. In conclusion, a main property of PmitoKATP is the ability to keep in balance the control of harmful ROS with the mitochondrial/cellular bioenergetics, thus preserving ATP for energetic needs of cell defense under stress. PMID:26648958

  15. TGA Transcription Factors Activate the Salicylic Acid-Suppressible Branch of the Ethylene-Induced Defense Program by Regulating ORA59 Expression.

    PubMed

    Zander, Mark; Thurow, Corinna; Gatz, Christiane

    2014-07-01

    Salicylic acid (SA), a hormone essential for defense against biotrophic pathogens, triggers increased susceptibility of plants against necrotrophic attackers by suppressing the jasmonic acid-ethylene (ET) defense response. Here, we show that this disease-promoting SA effect is abolished in plants lacking the three related TGACG sequence-specific binding proteins TGA2, TGA5, and TGA6 (class II TGAs). After treatment of plants with the ET precursor 1-aminocyclopropane-1-carboxylic acid (ACC), activation of all those genes that are suppressed by SA depended on class II TGAs. Rather than TGA binding sites, GCC-box motifs were significantly enriched in the corresponding promoters. GCC-box motifs are recognized by members of the superfamily of APETALA2/ETHYLENE RESPONSE FACTORs (ERFs). Of 11 activating ACC-induced APETALA2/ERFs, only ORA59 (for OCTADECANOID-RESPONSIVE ARABIDOPSIS APETALA2/ETHYLENE RESPONSE FACTOR domain protein59) and ERF96 were strongly suppressed by SA. ORA59 is the master regulator of the jasmonic acid-ET-induced defense program. ORA59 transcript levels do not reach maximal levels in the tga2 tga5 tga6 triple mutant, and this residual activity cannot be suppressed by SA. The ORA59 promoter contains an essential TGA binding site and is a direct target of class II TGAs as revealed by chromatin immunoprecipitation experiments. We suggest that class II TGAs at the ORA59 promoter constitute an important regulatory hub for the activation and SA suppression of ACC-induced genes.

  16. TGA Transcription Factors Activate the Salicylic Acid-Suppressible Branch of the Ethylene-Induced Defense Program by Regulating ORA59 Expression1[C][W

    PubMed Central

    Zander, Mark; Thurow, Corinna; Gatz, Christiane

    2014-01-01

    Salicylic acid (SA), a hormone essential for defense against biotrophic pathogens, triggers increased susceptibility of plants against necrotrophic attackers by suppressing the jasmonic acid-ethylene (ET) defense response. Here, we show that this disease-promoting SA effect is abolished in plants lacking the three related TGACG sequence-specific binding proteins TGA2, TGA5, and TGA6 (class II TGAs). After treatment of plants with the ET precursor 1-aminocyclopropane-1-carboxylic acid (ACC), activation of all those genes that are suppressed by SA depended on class II TGAs. Rather than TGA binding sites, GCC-box motifs were significantly enriched in the corresponding promoters. GCC-box motifs are recognized by members of the superfamily of APETALA2/ETHYLENE RESPONSE FACTORs (ERFs). Of 11 activating ACC-induced APETALA2/ERFs, only ORA59 (for OCTADECANOID-RESPONSIVE ARABIDOPSIS APETALA2/ETHYLENE RESPONSE FACTOR domain protein59) and ERF96 were strongly suppressed by SA. ORA59 is the master regulator of the jasmonic acid-ET-induced defense program. ORA59 transcript levels do not reach maximal levels in the tga2 tga5 tga6 triple mutant, and this residual activity cannot be suppressed by SA. The ORA59 promoter contains an essential TGA binding site and is a direct target of class II TGAs as revealed by chromatin immunoprecipitation experiments. We suggest that class II TGAs at the ORA59 promoter constitute an important regulatory hub for the activation and SA suppression of ACC-induced genes. PMID:24989234

  17. EROD activity and antioxidant defenses of sea bass (Dicentrarchus labrax) after an in vivo chronic hydrocarbon pollution followed by a post-exposure period.

    PubMed

    Danion, Morgane; Le Floch, Stéphane; Lamour, François; Quentel, Claire

    2014-12-01

    Chronic concentrations of polycyclic aromatic hydrocarbons (PAHs) have been commonly detected in international estuaries ecosystems. Reliable indicators still need to be found in order to properly assess the impact of PAHs in fish. After an in vivo chronic exposure to hydrocarbons, the enzymatic activity of 7-ethoxyresorufin O-deethylase (EROD) and the antioxidant defense system were assessed in sea bass, Dicentrarchus labrax. A total of 45 fish were exposed to the water-soluble fraction of Arabian crude oil, similar to a complex pollution by hydrocarbons chronically observed in situ, while 45 other control fish sustained the same experimental conditions in clean seawater. Fish samples were made after a 21-day exposure period and after a 15-day recovery period in clean fresh water. Throughout the experiment, liver EROD activity was significantly higher in contaminated fish than in control fish. In addition, nonenzymatic (total glutathione) and enzymatic (GPx, SOD, and CAT) antioxidant defense parameters measured in liver were not significantly different in fish. Furthermore, in gills, glutathione content had significantly increased while SOD activity had significantly decreased in contaminated fish compared to controls. On the other hand, CAT and GPx activities were not affected. Chronic exposure to PAHs disturbing the first step (SOD) and inhibiting the second step (GPx and CAT) could induce oxidative stress in tissues by the formation of oxygen radicals. After the postexposure period, there was no significant difference between control and contaminated fish in any of the antioxidant defense parameters measured in gills, attesting to the reversibility of the effects.

  18. Mechanisms of Specificity for Hox Factor Activity

    PubMed Central

    Zandvakili, Arya; Gebelein, Brian

    2016-01-01

    Metazoans encode clusters of paralogous Hox genes that are critical for proper development of the body plan. However, there are a number of unresolved issues regarding how paralogous Hox factors achieve specificity to control distinct cell fates. First, how do Hox paralogs, which have very similar DNA binding preferences in vitro, drive different transcriptional programs in vivo? Second, the number of potential Hox binding sites within the genome is vast compared to the number of sites bound. Hence, what determines where in the genome Hox factors bind? Third, what determines whether a Hox factor will activate or repress a specific target gene? Here, we review the current evidence that is beginning to shed light onto these questions. In particular, we highlight how cooperative interactions with other transcription factors (especially PBC and HMP proteins) and the sequences of cis-regulatory modules provide a basis for the mechanisms of Hox specificity. We conclude by integrating a number of the concepts described throughout the review in a case study of a highly interrogated Drosophila cis-regulatory module named “The Distal-less Conserved Regulatory Element” (DCRE). PMID:27583210

  19. Antioxidant Defense Mechanisms in Pseudomonas aeruginosa: Role of Iron-Cofactored Superoxide Dismutase in Response to UV-C Radiations.

    PubMed

    Ghorbal, Salma Kloula Ben; Maalej, Lobna; Chourabi, Kalthoum; Khefacha, Sana; Ouzari, Hadda-Imene; Chatti, Abdelwaheb

    2016-08-01

    The role of SOD gene in response to UV-C radiations was studied in Pseudomonas aeruginosa. Firstly, our results showed that the inactivation of sodM and/or sodB genes decreases the resistance of P. aeruginosa after exposure to UV-C rays. Furthermore, our results showed that SOD activity is dose dependant in all strains. However, significant increase in SOD activity was only shown at UV-C exposure time of 5 min in sodB mutant. At an elevated dose equivalent to 30 min of exposure, significant increase in SOD activity was observed in sodM. Catalase activities showed significant decrease in WT and in sodB mutant after an exposure time of 30 min. CAT enzyme was present at higher levels than SOD, reflecting that alternate enzymes such as POX, is poorly associated with CAT activity, and an increase in POX activity is related to increase in stress tolerance. The overall results showed that sodB gene has an important protective role against UV-C radiations in P. aeruginosa, compared to SodM isoform. PMID:27094998

  20. 76 FR 64960 - Extension of Agency Information Collection Activity Under OMB Review: Flight Crew Self-Defense...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-19

    ..., 2011 (76 FR 27656). Upon registering for a voluntary advanced self-defense training class provided by TSA, the collection process involves requesting, the name, contact information, airline employee... are flight and cabin crew members of a U.S. airline conducting scheduled passenger operations. As...

  1. Review of Department of Defense Education Activity (DoDEA) Schools. Volume I: Main Report and Appendixes. IDA Paper.

    ERIC Educational Resources Information Center

    Wright, Richard K.

    During school year 1998-99, military leaders and parents expressed discontent about the quality of education in Department of Defense (DoD) dependent schools in Europe. Concerned that these education issues were having an adverse impact on the quality of life of military members and families in Europe, and were creating morale and potential…

  2. Civil Defense, U. S. A.: A Programmed Orientation to Civil Defense. Unit 5. Governmental Responsibilities for Civil Defense.

    ERIC Educational Resources Information Center

    Defense Civil Preparedness Agency (DOD), Battle Creek, MI.

    A description of the laws and orders that provide necessary legal authorization for civil defense activities is provided. In addition, an outline of the responsibilities of all governments and the role of the private sector in civil defense is presented. Topics discussed include: (1) Legal authority for civil defense, (2) Civil defense…

  3. Soluble Host Defense Lectins in Innate Immunity to Influenza Virus

    PubMed Central

    Ng, Wy Ching; Tate, Michelle D.; Brooks, Andrew G.; Reading, Patrick C.

    2012-01-01

    Host defenses against viral infections depend on a complex interplay of innate (nonspecific) and adaptive (specific) components. In the early stages of infection, innate mechanisms represent the main line of host defense, acting to limit the spread of virus in host tissues prior to the induction of the adaptive immune response. Serum and lung fluids contain a range of lectins capable of recognizing and destroying influenza A viruses (IAV). Herein, we review the mechanisms by which soluble endogenous lectins mediate anti-IAV activity, including their role in modulating IAV-induced inflammation and disease and their potential as prophylactic and/or therapeutic treatments during severe IAV-induced disease. PMID:22665991

  4. The role of multixenobiotic transporters in predatory marine molluscs as counter-defense mechanisms against dietary allelochemicals.

    PubMed

    Whalen, Kristen E; Sotka, Erik E; Goldstone, Jared V; Hahn, Mark E

    2010-09-01

    Multixenobiotic transporters have been extensively studied for their ability to modulate the disposition and toxicity of pharmacological agents, yet their influence in regulating the levels of dietary toxins within marine consumers has only recently been explored. This study presents functional and molecular evidence for multixenobiotic transporter-mediated efflux activity and expression in the generalist gastropod Cyphoma gibbosum, and the specialist nudibranch Tritonia hamnerorum, obligate predators of chemically defended gorgonian corals. Immunochemical analysis revealed that proteins with homology to permeability glycoprotein (P-gp) were highly expressed in T. hamnerorum whole animal homogenates and localized to the apical tips of the gut epithelium, a location consistent with a role in protection against ingested prey toxins. In vivo dye assays with specific inhibitors of efflux transporters demonstrated the activity of P-gp and multidrug resistance-associated protein (MRP) families of ABC transporters in T. hamnerorum. In addition, we identified eight partial cDNA sequences encoding two ABCB and two ABCC proteins from each molluscan species. Digestive gland transcripts of C. gibbosum MRP-1, which have homology to vertebrate glutathione-conjugate transporters, were constitutively expressed regardless of gorgonian diet. This constitutive expression may reflect the ubiquitous presence of high affinity substrates for C. gibbosum glutathione transferases in gorgonian tissues likely necessitating export by MRPs. Our results suggest that differences in multixenobiotic transporter expression patterns and activity in molluscan predators may stem from the divergent foraging strategies of each consumer.

  5. The role of multixenobiotic transporters in predatory marine molluscs as counter-defense mechanisms against dietary allelochemicals.

    PubMed

    Whalen, Kristen E; Sotka, Erik E; Goldstone, Jared V; Hahn, Mark E

    2010-09-01

    Multixenobiotic transporters have been extensively studied for their ability to modulate the disposition and toxicity of pharmacological agents, yet their influence in regulating the levels of dietary toxins within marine consumers has only recently been explored. This study presents functional and molecular evidence for multixenobiotic transporter-mediated efflux activity and expression in the generalist gastropod Cyphoma gibbosum, and the specialist nudibranch Tritonia hamnerorum, obligate predators of chemically defended gorgonian corals. Immunochemical analysis revealed that proteins with homology to permeability glycoprotein (P-gp) were highly expressed in T. hamnerorum whole animal homogenates and localized to the apical tips of the gut epithelium, a location consistent with a role in protection against ingested prey toxins. In vivo dye assays with specific inhibitors of efflux transporters demonstrated the activity of P-gp and multidrug resistance-associated protein (MRP) families of ABC transporters in T. hamnerorum. In addition, we identified eight partial cDNA sequences encoding two ABCB and two ABCC proteins from each molluscan species. Digestive gland transcripts of C. gibbosum MRP-1, which have homology to vertebrate glutathione-conjugate transporters, were constitutively expressed regardless of gorgonian diet. This constitutive expression may reflect the ubiquitous presence of high affinity substrates for C. gibbosum glutathione transferases in gorgonian tissues likely necessitating export by MRPs. Our results suggest that differences in multixenobiotic transporter expression patterns and activity in molluscan predators may stem from the divergent foraging strategies of each consumer. PMID:20546934

  6. Water-borne cues induce chemical defense in a marine alga (Ascophyllum nodosum).

    PubMed

    Toth, G B; Pavia, H

    2000-12-19

    It is well known that herbivores can induce chemical defenses in terrestrial vascular plants, but few examples of inducible production of defense chemicals have been reported for aquatic macrophytes. Furthermore, it is well established that water-borne chemical cues from predators or predator-wounded conspecifics can induce defensive changes of aquatic prey animals, but no such communication between aquatic herbivores and seaweeds has been reported. Here we show that water-borne cues from actively feeding herbivorous gastropods, flat periwinkles (Littorina obtusata), can serve as external signals to induce production of defense chemicals (phlorotannins) in unharmed individuals of seaweeds, knotted wrack (Ascophyllum nodosum), and that the increased levels of defense chemicals deter further feeding by periwinkles. Because seaweeds have poorly developed internal-transport systems and may not be able to elicit systemic-induced chemical defenses through conveyance of internal signals, this mechanism ensures that seaweeds can anticipate future periwinkle attacks without receiving direct damage by herbivores. PMID:11106371

  7. Water-borne cues induce chemical defense in a marine alga (Ascophyllum nodosum)

    PubMed Central

    Toth, Gunilla B.; Pavia, Henrik

    2000-01-01

    It is well known that herbivores can induce chemical defenses in terrestrial vascular plants, but few examples of inducible production of defense chemicals have been reported for aquatic macrophytes. Furthermore, it is well established that water-borne chemical cues from predators or predator-wounded conspecifics can induce defensive changes of aquatic prey animals, but no such communication between aquatic herbivores and seaweeds has been reported. Here we show that water-borne cues from actively feeding herbivorous gastropods, flat periwinkles (Littorina obtusata), can serve as external signals to induce production of defense chemicals (phlorotannins) in unharmed individuals of seaweeds, knotted wrack (Ascophyllum nodosum), and that the increased levels of defense chemicals deter further feeding by periwinkles. Because seaweeds have poorly developed internal-transport systems and may not be able to elicit systemic-induced chemical defenses through conveyance of internal signals, this mechanism ensures that seaweeds can anticipate future periwinkle attacks without receiving direct damage by herbivores. PMID:11106371

  8. Heterogeneity in signaled active avoidance learning: substantive and methodological relevance of diversity in instrumental defensive responses to threat cues

    PubMed Central

    Galatzer-Levy, Isaac R.; Moscarello, Justin; Blessing, Esther M.; Klein, JoAnna; Cain, Christopher K.; LeDoux, Joseph E.

    2014-01-01

    Individuals exposed to traumatic stressors follow divergent patterns including resilience and chronic stress. However, researchers utilizing animal models that examine learned or instrumental threat responses thought to have translational relevance for Posttraumatic Stress Disorder (PTSD) and resilience typically use central tendency statistics that assume population homogeneity. This approach potentially overlooks fundamental differences that can explain human diversity in response to traumatic stressors. The current study tests this assumption by identifying and replicating common heterogeneous patterns of response to signaled active avoidance (AA) training. In this paradigm, rats are trained to prevent an aversive outcome (shock) by performing a learned instrumental behavior (shuttling between chambers) during the presentation of a conditioned threat cue (tone). We test the hypothesis that heterogeneous trajectories of threat avoidance provide more accurate model fit compared to a single mean trajectory in two separate studies. Study 1 conducted 3 days of signaled AA training (n = 81 animals) and study 2 conducted 5 days of training (n = 186 animals). We found that four trajectories in both samples provided the strongest model fit. Identified populations included animals that acquired and retained avoidance behavior on the first day (Rapid Avoiders: 22 and 25%); those who never successfully acquired avoidance (Non-Avoiders; 20 and 16%); a modal class who acquired avoidance over 3 days (Modal Avoiders; 37 and 50%); and a population who demonstrated a slow pattern of avoidance, failed to fully acquire avoidance in study 1 and did acquire avoidance on days 4 and 5 in study 2 (Slow Avoiders; 22.0 and 9%). With the exception of the Slow Avoiders in Study 1, populations that acquired demonstrated rapid step-like increases leading to asymptotic levels of avoidance. These findings indicate that avoidance responses are heterogeneous in a way that may be informative for

  9. Plant self-defense mechanisms against oxidative injury and protection of the forest by planting trees of triploids and tetraploids.

    PubMed

    Niwa, Yukie; Sasaki, Yoshinori

    2003-05-01

    The depletion of the ozone layer, and the resulting substantial increase in incident ultraviolet (UV) irradiation and subsequent oxygen radical formation on the Earth, have caused an extensive variety of damage to the world's forests. Superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH-Px), which scavenge harmful oxygen radicals and inhibit lipid peroxides, were examined in two types of Japanese cedars, black pines, and cypresses, namely those with leaves showing premature withering, shedding, or dying and those with leaves not showing these effects prematurely. The effect of homogenates from these trees on lipid peroxide formation in a reaction system which UV light induces was also studied. The results indicate that strong black pines have significantly higher SOD activities than ordinary black pines, the leaves of which prematurely wither or die. Remarkably, trees that had triploid or tetraploid chromosomes showed higher SOD levels than diploid trees and markedly inhibited lipid peroxide formation since the SOD gene resides on a chromosome. This was especially true of plus trees of Japanese cypress, some of which had five times higher SOD activities than common Japanese cypresses although GSH-Px appears to play less of a role in this regard. Rice leaves and osmunda which are resistant to UV damage showed markedly higher SOD and GSH-Px activity. Our experiments suggest that the trees that have high SOD can protect themselves by scavenging oxygen radicals induced by UV irradiation and inhibit harmful lipid peroxide formation. In order to protect forests from oxidative damage by UV light, we should plant trees of natural mutants and artificially crossed triploids and tetraploids.

  10. ER Quality Control Components UGGT and STT3a Are Required for Activation of Defense Responses in Bir1-1

    PubMed Central

    Zhang, Qian; Sun, Tongjun; Zhang, Yuelin

    2015-01-01

    The receptor-like kinase SUPPRESSOR OF BIR1, 1 (SOBIR1) functions as a critical regulator in plant immunity. It is required for activation of cell death and defense responses in Arabidopsis bak1-interacting receptor-like kinase 1,1 (bir1-1) mutant plants. Here we report that the ER quality control component UDP-glucose:glycoprotein glucosyltransferase (UGGT) is required for the biogenesis of SOBIR1 and mutations in UGGT suppress the spontaneous cell death and constitutive defense responses in bir1-1. Loss of function of STT3a, which encodes a subunit of the oligosaccharyltransferase complex, also suppresses the autoimmune phenotype in bir1-1. However, it has no effect on the accumulation of SOBIR1, suggesting that additional signaling components other than SOBIR1 may be regulated by ER quality control. Our study provides clear evidence that ER quality control play critical roles in regulating defense activation in bir1-1. PMID:25775181

  11. The mechanism of copper activation of sphalerite

    NASA Astrophysics Data System (ADS)

    Gerson, Andrea R.; Lange, Angela G.; Prince, Kathryn E.; Smart, Roger St. C.

    1999-01-01

    On the basis of recent SIMS and XAFS measurements in conjunction with already published XPS results, a mechanism for the adsorption/absorption of Cu onto sphalerite is proposed. Under conditions of high pH and high nominal surface coverage of the sphalerite by the Cu, Cu(OH) 2 colloidal particles are observed on the sphalerite surfaces using SIMS. Under other conditions, SIMS measurements have indicated that adsorption of the Cu is essentially uniform over the sphalerite surface and is not related to low coordination sites on the surface of the sphalerite. Depth profiling of sphalerite surfaces with Cu adsorbed under conditions that do not result in Cu(OH) 2 colloidal particles show that the Cu adsorbed/absorbed on the sphalerite surface is largely in the first few atomic layers. XAFS analysis of Cu activated sphalerite has indicated that the Cu occupies a distorted trigonal planar geometry, coordinated to three S atoms, in both surface and bulk sites. In addition Cu(1s), absorption edges in XAFS show that both bulk and surface adsorbed copper have an oxidation state less than +1 with the surface Cu being slightly more oxidised than the bulk absorbed Cu. On the basis of the combined XPS, SIMS, XAFS and solution studies, a model is proposed that, on surface adsorption of Cu, the surface Zn(II) atoms are replaced by Cu(II) atoms which are then reduced in situ to Cu(I). This reduction is accompanied by the oxidation of the three neighbouring S atoms to an oxidation state of approximately -1.5. On bulk absorption of Cu atoms into the sphalerite lattice a distorted trigonal planar configuration is achieved through the breakage of a formerly tetrahedral Zn-S bond. The breakage of this bond results in a 3-fold coordinated Cu plus one S 3-fold coordinated to Zn atoms. The breakage of this bond leads to a greater reduction of the Cu than on surface absorption and also oxidation of the 3-fold coordinated S atom to an approximately -0.5 oxidation state. This model does not

  12. A Role for the Anti-Viral Host Defense Mechanism in the Phylogenetic Divergence in Baculovirus Evolution

    PubMed Central

    Nagamine, Toshihiro; Sako, Yasushi

    2016-01-01

    Although phylogenic analysis often suggests co-evolutionary relationships between viruses and host organisms, few examples have been reported at the microevolutionary level. Here, we show a possible example in which a species-specific anti-viral response may drive phylogenic divergence in insect virus evolution. Two baculoviruses, Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and Bombyx mori nucleopolyhedrovirus (BmNPV), have a high degree of DNA sequence similarity, but exhibit non-overlapping host specificity. In our study of their host-range determination, we found that BmNPV replication in B. mori cells was prevented by AcMNPV-P143 (AcP143), but not BmNPV-P143 (BmP143) or a hybrid P143 protein from a host-range expanded phenotype. This suggests that AcMNPV resistance in B. mori cells depends on AcP143 recognition and that BmNPV uses BmP143 to escapes this recognition. Based on these data, we propose an insect-baculovirus co-evolution scenario in which an ancestor of silkworms exploited an AcMNPV-resistant mechanism; AcMNPV counteracted this resistance via P143 mutations, resulting in the birth of BmNPV. PMID:27244571

  13. A Role for the Anti-Viral Host Defense Mechanism in the Phylogenetic Divergence in Baculovirus Evolution.

    PubMed

    Nagamine, Toshihiro; Sako, Yasushi

    2016-01-01

    Although phylogenic analysis often suggests co-evolutionary relationships between viruses and host organisms, few examples have been reported at the microevolutionary level. Here, we show a possible example in which a species-specific anti-viral response may drive phylogenic divergence in insect virus evolution. Two baculoviruses, Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and Bombyx mori nucleopolyhedrovirus (BmNPV), have a high degree of DNA sequence similarity, but exhibit non-overlapping host specificity. In our study of their host-range determination, we found that BmNPV replication in B. mori cells was prevented by AcMNPV-P143 (AcP143), but not BmNPV-P143 (BmP143) or a hybrid P143 protein from a host-range expanded phenotype. This suggests that AcMNPV resistance in B. mori cells depends on AcP143 recognition and that BmNPV uses BmP143 to escapes this recognition. Based on these data, we propose an insect-baculovirus co-evolution scenario in which an ancestor of silkworms exploited an AcMNPV-resistant mechanism; AcMNPV counteracted this resistance via P143 mutations, resulting in the birth of BmNPV. PMID:27244571

  14. Reorganization of extracellular matrix in placentas from women with asymptomatic chagas disease: mechanism of parasite invasion or local placental defense?

    PubMed

    Duaso, Juan; Yanez, Erika; Castillo, Christian; Galanti, Norbel; Cabrera, Gonzalo; Corral, Gabriela; Maya, Juan Diego; Zulantay, Inés; Apt, Werner; Kemmerling, Ulrike

    2012-01-01

    Chagas disease, produced by the protozoan Trypanosoma cruzi (T. cruzi), is one of the most frequent endemic diseases in Latin America. In spite the fact that in the past few years T. cruzi congenital transmission has become of epidemiological importance, studies about this mechanism of infection are scarce. In order to explore some morphological aspects of this infection in the placenta, we analyzed placentas from T. cruzi-infected mothers by immunohistochemical and histochemical methods. Infection in mothers, newborns, and placentas was confirmed by PCR and by immunofluorescence in the placenta. T. cruzi-infected placentas present destruction of the syncytiotrophoblast and villous stroma, selective disorganization of the basal lamina, and disorganization of collagen I in villous stroma. Our results suggest that the parasite induces reorganization of this tissue component and in this way may regulate both inflammatory and immune responses in the host. Changes in the ECM of placental tissues, together with the immunological status of mother and fetus, and parasite load may determine the probability of congenital transmission of T. cruzi.

  15. Reorganization of Extracellular Matrix in Placentas from Women with Asymptomatic Chagas Disease: Mechanism of Parasite Invasion or Local Placental Defense?

    PubMed Central

    Duaso, Juan; Yanez, Erika; Castillo, Christian; Galanti, Norbel; Cabrera, Gonzalo; Corral, Gabriela; Maya, Juan Diego; Zulantay, Inés; Apt, Werner; Kemmerling, Ulrike

    2012-01-01

    Chagas disease, produced by the protozoan Trypanosoma cruzi (T. cruzi), is one of the most frequent endemic diseases in Latin America. In spite the fact that in the past few years T. cruzi congenital transmission has become of epidemiological importance, studies about this mechanism of infection are scarce. In order to explore some morphological aspects of this infection in the placenta, we analyzed placentas from T. cruzi-infected mothers by immunohistochemical and histochemical methods. Infection in mothers, newborns, and placentas was confirmed by PCR and by immunofluorescence in the placenta. T. cruzi-infected placentas present destruction of the syncytiotrophoblast and villous stroma, selective disorganization of the basal lamina, and disorganization of collagen I in villous stroma. Our results suggest that the parasite induces reorganization of this tissue component and in this way may regulate both inflammatory and immune responses in the host. Changes in the ECM of placental tissues, together with the immunological status of mother and fetus, and parasite load may determine the probability of congenital transmission of T. cruzi. PMID:22007243

  16. Shift in aggregation, ROS generation, antioxidative defense, lysozyme and acetylcholinesterase activities in the cells of an Indian freshwater sponge exposed to washing soda (sodium carbonate).

    PubMed

    Mukherjee, Soumalya; Ray, Mitali; Ray, Sajal

    2016-09-01

    Washing soda, chemically identified as anhydrous sodium carbonate, is a popular cleaning agent among the rural and urban populations of India which often contaminates the freshwater ponds and lakes, the natural habitat of sponge Eunapius carteri. Present investigation deals with estimation of cellular aggregation, generation of ROS and activities of antioxidant enzymes, lysozyme and acetylcholinesterase in the cells of E. carteri under the environmentally realistic concentrations of washing soda. Prolonged treatment of washing soda inhibited the degree of cellular aggregation. Experimental exposure of 8 and 16mg/l of sodium carbonate for 48h elevated the physiological level of reactive oxygen species (ROS) generation in the agranulocytes, semigranulocytes and granulocytes of E. carteri, whereas, treatment of 192h inhibited the ROS generation in three cellular morphotypes. Activities of superoxide dismutase, catalase and glutathione-S-transferase were recorded to be inhibited under prolonged exposure of washing soda. Washing soda mediated inhibition of ROS generation and depletion in the activities of antioxidant enzymes were indicative to an undesirable shift in cytotoxic status and antioxidative defense in E. carteri. Inhibition in the activity of lysozyme under the treatment of sodium carbonate was suggestive to a severe impairment of the innate immunological efficiency of E. carteri distributed in the washing soda contaminated habitat. Washing soda mediated inhibition in the activity of acetylcholinesterase indicated its neurotoxicity in E. carteri. Washing soda, a reported environmental contaminant, affected adversely the immunophysiological status of E. carteri with reference to cellular aggregation, oxidative stress, antioxidative defense, lysozyme and acetylcholinesterase activity.

  17. Maintaining tissue selenium species distribution as a potential defense mechanism against methylmercury toxicity in juvenile white sturgeon (Acipenser transmontanus).

    PubMed

    Huang, Susie Shih-Yin; Hung, Silas S O; Chan, Hing Man

    2014-11-01

    Selenium (Se) has been shown to antagonize mercury (Hg) toxicity. We have previously demonstrated that orally intubated selenomethionine (SeMet) and methylmercury (MeHg) reduced tissue Se accumulation, as well as blood and kidney Hg concentrations in juvenile white sturgeon (Acipenser transmontanus). However, the form of Se accumulated is not known. In this study, three organoseleniums: selenocysteine (Sec), Se-methyl-selenocysteine (MSeCys), and SeMet and two inorganic Se species: selenate and selenite were determined and quantified in the blood at different post-intubation periods (12, 24, 48h) and in the muscle, liver, and kidneys at 48h in white sturgeon orally intubated with a single dose of control (carrier), SeMet (500μg Se/kg body weight; BW), MeHg (850μg Hg/kg BW), and both (Se+Hg; at 500μg Se/kg and 850μg Hg/kg BW). When only SeMet was intubated, the accumulative/unmodified pathway took precedent in the blood, white muscle, liver, and kidneys. In the presence of MeHg, however, active metabolic transformation and de novo synthesis of biologically active Se forms are seen in the liver and kidneys, as indicated by a gradual increase in blood Sec:SeMet ratios and Se metabolites. In the white muscle, mobilization of endogenous Se storage by MeHg is supported by the absence of tissue SeMet and detectable levels of blood SeMet. In contrast, co-intubation with SeMet increased muscle SeMet. The high levels of unknown Se metabolites and detectable levels of selenite in the kidney reflect its role as the major excretory organ for Se. Selenium metabolism is highly regulated in the kidneys, as Se speciation was not affected by MeHg or by its co-intubation with SeMet. In the Se+Hg group, the proportion of SeMet in the liver has decreased to nearly 1/8th of that of the SeMet only group, resulting in a more similar selenocompound distribution profile to that of the MeHg only group. This is likely due to the increased need for Se metabolites necessary for Me

  18. Investigating Therapeutic Potential of Trigonella foenum-graecum L. as Our Defense Mechanism against Several Human Diseases

    PubMed Central

    Goyal, Shivangi; Gupta, Nidhi; Chatterjee, Sreemoyee

    2016-01-01

    Current lifestyle, stress, and pollution have dramatically enhanced the progression of several diseases in human. Globally, scientists are looking for therapeutic agents that can either cure or delay the onset of diseases. Medicinal plants from time immemorial have been used frequently in therapeutics. Of many such plants, fenugreek is one of the oldest herbs which have been identified as an important medicinal plant by the researchers around the world. It is potentially beneficial in a number of diseases such as diabetes, hypercholesterolemia, and inflammation and probably in several kinds of cancers. It has industrial applications such as synthesis of steroidal hormones. Its medicinal properties and their role in clinical domain can be attributed to its chemical constituents. The 3 major chemical constituents which have been identified as responsible for principle health effects are galactomannan, 4-OH isoleucine, and steroidal saponin. Numerous experiments have been carried out in vivo and in vitro for beneficial effects of both the crude chemical and of its active constituent. Due to its role in health care, the functional food industry has referred to it as a potential nutraceutical. This paper is about various medicinal benefits of fenugreek and its potential application as therapeutic agent against several diseases. PMID:26884758

  19. Investigating Therapeutic Potential of Trigonella foenum-graecum L. as Our Defense Mechanism against Several Human Diseases.

    PubMed

    Goyal, Shivangi; Gupta, Nidhi; Chatterjee, Sreemoyee

    2016-01-01

    Current lifestyle, stress, and pollution have dramatically enhanced the progression of several diseases in human. Globally, scientists are looking for therapeutic agents that can either cure or delay the onset of diseases. Medicinal plants from time immemorial have been used frequently in therapeutics. Of many such plants, fenugreek is one of the oldest herbs which have been identified as an important medicinal plant by the researchers around the world. It is potentially beneficial in a number of diseases such as diabetes, hypercholesterolemia, and inflammation and probably in several kinds of cancers. It has industrial applications such as synthesis of steroidal hormones. Its medicinal properties and their role in clinical domain can be attributed to its chemical constituents. The 3 major chemical constituents which have been identified as responsible for principle health effects are galactomannan, 4-OH isoleucine, and steroidal saponin. Numerous experiments have been carried out in vivo and in vitro for beneficial effects of both the crude chemical and of its active constituent. Due to its role in health care, the functional food industry has referred to it as a potential nutraceutical. This paper is about various medicinal benefits of fenugreek and its potential application as therapeutic agent against several diseases. PMID:26884758

  20. Control of plant defense mechanisms and fire blight pathogenesis through the regulation of 6-thioguanine biosynthesis in Erwinia amylovora.

    PubMed

    Coyne, Sébastien; Litomska, Agnieszka; Chizzali, Cornelia; Khalil, Mohammed N A; Richter, Klaus; Beerhues, Ludger; Hertweck, Christian

    2014-02-10

    Fire blight is a devastating disease of Rosaceae plants, such as apple and pear trees. It is characterized by necrosis of plant tissue, caused by the phytopathogenic bacterium Erwinia amylovora. The plant pathogen produces the well-known antimetabolite 6-thioguanine (6TG), which plays a key role in fire blight pathogenesis. Here we report that YcfR, a member of the LTTR family, is a major regulator of 6TG biosynthesis in E. amylovora. Inactivation of the regulator gene (ycfR) led to dramatically decreased 6TG production. Infection assays with apple plants (Malus domestica cultivar Holsteiner Cox) and cell cultures of Sorbus aucuparia (mountain ash, rowan) revealed abortive fire blight pathogenesis and reduced plant response (biphenyl and dibenzofuran phytoalexin production). In the presence of the ΔycfR mutant, apple trees were capable of activating the abscission machinery to remove infected tissue. In addition to unveiling the regulation of 6TG biosynthesis in a major plant pathogen, we demonstrate for the first time that this antimetabolite plays a pivotal role in dysregulating the plant response to infection.

  1. Comparative proteome analysis of the strawberry-Fusarium oxysporum f. sp. fragariae pathosystem reveals early activation of defense responses as a crucial determinant of host resistance.

    PubMed

    Fang, Xiangling; Jost, Ricarda; Finnegan, Patrick M; Barbetti, Martin J

    2013-04-01

    Fusarium wilt on strawberry caused by Fusarium oxysporum f. sp. fragariae (Fof) is a serious threat to commercial strawberry production worldwide. However, resistance mechanisms of strawberry against Fof remain unknown. To reveal the defense responses of strawberry against Fof, comparative proteome analyses were conducted to determine temporal changes in root proteomes of the resistant cv. Festival and susceptible cv. Camarosa from 4 to 72 h post inoculation with Fof. Analysis of proteins separated by two-dimensional gel electrophoresis revealed 79 Fof-responsive proteins with significant differences in abundance (P < 0.05 and greater than 2-fold) in the resistant and/or susceptible cultivar. The 79 proteins were identified through MALDI-TOF/TOF MS/MS analysis, and were mainly involved in primary, secondary and protein metabolism, stress and defense responses, antioxidant and detoxification mechanisms, and hormone biosynthesis. Among these, pathogenesis-related proteins and proteins involved in reactive oxygen species detoxification, ethylene/jasmonic acid signaling pathways, secondary metabolite biosynthesis, glycolysis and/or ubiquitin/26S proteasome-mediated protein degradation have great potential in mediating strawberry resistance against Fof. Protein modification may also have an important contribution. This study provides the first insights into strawberry resistance mechanisms against Fof, opening novel avenues to engineer new strawberry cultivars with improved disease resistance and to develop more effective and sustainable disease management strategies. PMID:23495785

  2. Origin and Functional Diversification of an Amphibian Defense Peptide Arsenal

    PubMed Central

    Roelants, Kim; Fry, Bryan G.; Ye, Lumeng; Stijlemans, Benoit; Brys, Lea; Kok, Philippe; Clynen, Elke; Schoofs, Liliane; Cornelis, Pierre; Bossuyt, Franky

    2013-01-01

    The skin secretion of many amphibians contains an arsenal of bioactive molecules, including hormone-like peptides (HLPs) acting as defense toxins against predators, and antimicrobial peptides (AMPs) providing protection against infectious microorganisms. Several amphibian taxa seem to have independently acquired the genes to produce skin-secreted peptide arsenals, but it remains unknown how these originated from a non-defensive ancestral gene and evolved diverse defense functions against predators and pathogens. We conducted transcriptome, genome, peptidome and phylogenetic analyses to chart the full gene repertoire underlying the defense peptide arsenal of the frog Silurana tropicalis and reconstruct its evolutionary history. Our study uncovers a cluster of 13 transcriptionally active genes, together encoding up to 19 peptides, including diverse HLP homologues and AMPs. This gene cluster arose from a duplicated gastrointestinal hormone gene that attained a HLP-like defense function after major remodeling of its promoter region. Instead, new defense functions, including antimicrobial activity, arose by mutation of the precursor proteins, resulting in the proteolytic processing of secondary peptides alongside the original ones. Although gene duplication did not trigger functional innovation, it may have subsequently facilitated the convergent loss of the original function in multiple gene lineages (subfunctionalization), completing their transformation from HLP gene to AMP gene. The processing of multiple peptides from a single precursor entails a mechanism through which peptide-encoding genes may establish new functions without the need for gene duplication to avoid adaptive conflicts with older ones. PMID:23935531

  3. Intracellular mechanisms of lymphoid cell activation.

    PubMed

    Fresa, K; Hameed, M; Cohen, S

    1989-01-01

    Activation of lymphocytes for proliferation is associated with the appearance of an intracellular factor (ADR) that can induce DNA synthesis in isolated quiescent nuclei. ADR plays a role in the sequence of intracellular events leading to activation for IL-2-mediated proliferation. Because of the nature of the defining assay, the locus of ADR action appears to be near the terminal end of the transduction pathway. Interestingly, although lymphocytes from aged individuals respond poorly to proliferative stimuli, they appear to produce normal to above-normal levels of ADR. In contrast, their nuclei are only poorly responsive to stimulation by ADR. Preparations rich in ADR activity have proteolytic activity as well. In addition, aprotinin, as well as a variety of other protease inhibitors, suppresses ADR-induced DNA synthesis in a dose-dependent manner. ADR activity can be removed from active extracts by absorption with aprotinin-conjugated agarose beads, and can be removed from the beads by elution at pH 5.0. This latter suggests that ADR itself is a protease. However, its endogenous substrate is not yet known. We have also detected an inhibitor of ADR activity in the cytoplasm of resting lymphocytes. This is a heat-stable protein of approximately 60,000 Da. In addition to suppressing the interaction of ADR with quiescent nuclei, the inhibitor can suppress DNA synthetic activity of replicative nuclei isolated from mitogen-activated lymphocytes. Interestingly, these preparations had little or no activity on replicative nuclei derived from several neoplastic cell lines. The resistance of tumor cell nuclei to spontaneously occurring cytoplasmic inhibitory factors such as the one described here may provide one explanation for the loss of growth control in neoplastic cells. PMID:2642767

  4. Activity of Uncleaved Caspase-8 Controls Anti-bacterial Immune Defense and TLR-Induced Cytokine Production Independent of Cell Death

    PubMed Central

    DeLaney, Alexandra; Santos-Marrero, Melanie; Grier, Jennifer T.; Sun, Yan; Zwack, Erin E.; Hu, Baofeng; Olsen, Tayla M.; Rongvaux, Anthony; López, Carolina B.; Oberst, Andrew; Beiting, Daniel P.; Brodsky, Igor E.

    2016-01-01

    Caspases regulate cell death programs in response to environmental stresses, including infection and inflammation, and are therefore critical for the proper operation of the mammalian immune system. Caspase-8 is necessary for optimal production of inflammatory cytokines and host defense against infection by multiple pathogens including Yersinia, but whether this is due to death of infected cells or an intrinsic role of caspase-8 in TLR-induced gene expression is unknown. Caspase-8 activation at death signaling complexes results in its autoprocessing and subsequent cleavage and activation of its downstream apoptotic targets. Whether caspase-8 activity is also important for inflammatory gene expression during bacterial infection has not been investigated. Here, we report that caspase-8 plays an essential cell-intrinsic role in innate inflammatory cytokine production in vivo during Yersinia infection. Unexpectedly, we found that caspase-8 enzymatic activity regulates gene expression in response to bacterial infection as well as TLR signaling independently of apoptosis. Using newly-generated mice in which caspase-8 autoprocessing is ablated (Casp8DA/DA), we now demonstrate that caspase-8 enzymatic activity, but not autoprocessing, mediates induction of inflammatory cytokines by bacterial infection and a wide variety of TLR stimuli. Because unprocessed caspase-8 functions in an enzymatic complex with its homolog cFLIP, our findings implicate the caspase-8/cFLIP heterodimer in control of inflammatory cytokines during microbial infection, and provide new insight into regulation of antibacterial immune defense. PMID:27737018

  5. Insights into Mechanism of Glucokinase Activation

    PubMed Central

    Liu, Shenping; Ammirati, Mark J.; Song, Xi; Knafels, John D.; Zhang, Jeff; Greasley, Samantha E.; Pfefferkorn, Jeffrey A.; Qiu, Xiayang

    2012-01-01

    Human glucokinase (GK) is a principal regulating sensor of plasma glucose levels. Mutations that inactivate GK are linked to diabetes, and mutations that activate it are associated with hypoglycemia. Unique kinetic properties equip GK for its regulatory role: although it has weak basal affinity for glucose, positive cooperativity in its binding of glucose causes a rapid increase in catalytic activity when plasma glucose concentrations rise above euglycemic levels. In clinical trials, small molecule GK activators (GKAs) have been efficacious in lowering plasma glucose and enhancing glucose-stimulated insulin secretion, but they carry a risk of overly activating GK and causing hypoglycemia. The theoretical models proposed to date attribute the positive cooperativity of GK to the existence of distinct protein conformations that interconvert slowly and exhibit different affinities for glucose. Here we report the respective crystal structures of the catalytic complex of GK and of a GK-glucose complex in a wide open conformation. To assess conformations of GK in solution, we also carried out small angle x-ray scattering experiments. The results showed that glucose dose-dependently converts GK from an apo conformation to an active open conformation. Compared with wild type GK, activating mutants required notably lower concentrations of glucose to be converted to the active open conformation. GKAs decreased the level of glucose required for GK activation, and different compounds demonstrated distinct activation profiles. These results lead us to propose a modified mnemonic model to explain cooperativity in GK. Our findings may offer new approaches for designing GKAs with reduced hypoglycemic risk. PMID:22298776

  6. Mycorrhiza-induced resistance and priming of plant defenses.

    PubMed

    Jung, Sabine C; Martinez-Medina, Ainhoa; Lopez-Raez, Juan A; Pozo, Maria J

    2012-06-01

    Symbioses between plants and beneficial soil microorganisms like arbuscular-mycorrhizal fungi (AMF) are known to promote plant growth and help plants to cope with biotic and abiotic stresses. Profound physiological changes take place in the host plant upon root colonization by AMF affecting the interactions with a wide range of organisms below- and above-ground. Protective effects of the symbiosis against pathogens, pests, and parasitic plants have been described for many plant species, including agriculturally important crop varieties. Besides mechanisms such as improved plant nutrition and competition, experimental evidence supports a major role of plant defenses in the observed protection. During mycorrhiza establishment, modulation of plant defense responses occurs thus achieving a functional symbiosis. As a consequence of this modulation, a mild, but effective activation of the plant immune responses seems to occur, not only locally but also systemically. This activation leads to a primed state of the plant that allows a more efficient activation of defense mechanisms in response to attack by potential enemies. Here, we give an overview of the impact on interactions between mycorrhizal plants and pathogens, herbivores, and parasitic plants, and we summarize the current knowledge of the underlying mechanisms. We focus on the priming of jasmonate-regulated plant defense mechanisms that play a central role in the induction of resistance by arbuscular mycorrhizas.

  7. Proteome changes in tomato fruits prior to visible symptoms of chilling injury are linked to defensive mechanisms, uncoupling of photosynthetic processes and protein degradation machinery.

    PubMed

    Sanchez-Bel, Paloma; Egea, Isabel; Sanchez-Ballesta, María Teresa; Sevillano, Laura; Del Carmen Bolarin, Maria; Flores, Francisco B

    2012-02-01

    A comparative proteomic analysis between tomato fruits stored at chilling and non-chilling temperatures was carried out just before the appearance of visible symptoms of chilling injury. At this stage of the stress period it was possible to discriminate between proteins involved in symptoms and proteins implicated in response. To investigate the changes in the tomato fruit proteome under this specific stressful condition, two-dimensional differential in-gel electrophoresis coupled with spot identification by mass spectrometry was applied. This proteomic approach allowed the identification of differentially expressed proteins which are involved in two main biological functions: (i) defensive mechanisms represented by small heat shock and late embryogenesis proteins; and (ii) reaction to the uncoupling of photosynthetic processes and the protein degradation machinery. One of the first changes observed in chilled fruits is the down-regulation of ATP synthase, 26S proteasome subunit RPN11 and aspartic proteinase, whereas the first responses in order to deal with the stress are mainly multifunctional proteins involved not only in metabolism but also in stress regulation such as glyceraldehyde phosphate dehydrogenase, 2-oxoglutarate dehydrogenase and invertase. In addition, our data seem to indicate a possible candidate to be used as a protein marker for further studies on cold stress: aldose-1-epimerase, which seems to have an important role in low temperature tolerance. PMID:22227396

  8. A Diverse Family of Host-Defense Peptides (Piscidins) Exhibit Specialized Anti-Bacterial and Anti-Protozoal Activities in Fishes.

    PubMed

    Salger, Scott A; Cassady, Katherine R; Reading, Benjamin J; Noga, Edward J

    2016-01-01

    Conventional antibiotics and other chemical-based drugs are currently one of the most common methods used to control disease-related mortality in animal agriculture. Use of the innate immune system to decrease disease related mortalities is a novel alternative to conventional drugs. One component of the innate immune system is the host-defense peptides, also known as antimicrobial peptides. Host-defense peptides are typically small, amphipathic, α-helical peptides with a broad-spectrum of action against viral, bacterial, fungal, and/or protozoal pathogens. Piscidins are host-defense peptides first discovered in the hybrid striped bass (white bass, Morone chrysops, x striped bass, M. saxatilis). In this paper we identify four new piscidin isoforms in the hybrid striped bass and describe their tissue distributions. We also determine the progenitor species of origin of each piscidin (orthology) and propose a revised nomenclature for this newly described piscidin family based on a three class system. The Class I piscidins (22 amino acids in length; striped bass and white bass piscidin 1 and piscidin 3) show broad-spectrum activity against bacteria and ciliated protozoans, while the Class III piscidins (55 amino acids in length; striped bass and white bass piscidin 6 and striped bass piscidin 7) primarily show anti-protozoal activity. The Class II piscidins (44-46 amino acids in length; striped bass and white bass piscidin 4 and white bass piscidin 5) have a level of activity against bacteria and protozoans intermediate to Classes I and III. Knowledge of piscidin function and activity may help in the future development of disease-resistant lines of striped bass and white bass that could be used to produce superior hybrids for aquaculture. PMID:27552222

  9. A Diverse Family of Host-Defense Peptides (Piscidins) Exhibit Specialized Anti-Bacterial and Anti-Protozoal Activities in Fishes

    PubMed Central

    Cassady, Katherine R.; Noga, Edward J.

    2016-01-01

    Conventional antibiotics and other chemical-based drugs are currently one of the most common methods used to control disease-related mortality in animal agriculture. Use of the innate immune system to decrease disease related mortalities is a novel alternative to conventional drugs. One component of the innate immune system is the host-defense peptides, also known as antimicrobial peptides. Host-defense peptides are typically small, amphipathic, α-helical peptides with a broad-spectrum of action against viral, bacterial, fungal, and/or protozoal pathogens. Piscidins are host-defense peptides first discovered in the hybrid striped bass (white bass, Morone chrysops, x striped bass, M. saxatilis). In this paper we identify four new piscidin isoforms in the hybrid striped bass and describe their tissue distributions. We also determine the progenitor species of origin of each piscidin (orthology) and propose a revised nomenclature for this newly described piscidin family based on a three class system. The Class I piscidins (22 amino acids in length; striped bass and white bass piscidin 1 and piscidin 3) show broad-spectrum activity against bacteria and ciliated protozoans, while the Class III piscidins (55 amino acids in length; striped bass and white bass piscidin 6 and striped bass piscidin 7) primarily show anti-protozoal activity. The Class II piscidins (44–46 amino acids in length; striped bass and white bass piscidin 4 and white bass piscidin 5) have a level of activity against bacteria and protozoans intermediate to Classes I and III. Knowledge of piscidin function and activity may help in the future development of disease-resistant lines of striped bass and white bass that could be used to produce superior hybrids for aquaculture. PMID:27552222

  10. High humidity suppresses ssi4-mediated cell death and disease resistance upstream of MAP kinase activation, H2O2 production and defense gene expression.

    PubMed

    Zhou, Fasong; Menke, Frank L H; Yoshioka, Keiko; Moder, Wolfgang; Shirano, Yumiko; Klessig, Daniel F

    2004-09-01

    The Arabidopsis ssi4 mutant, which exhibits spontaneous lesion formation, constitutive expression of pathogenesis-related (PR) genes and enhanced resistance to virulent bacterial and oomycete pathogens, contains a gain-of-function mutation in a TIR-NBS-LRR type R gene. Epistatic analyses revealed that both PR gene expression and disease resistance are activated via a salicylic acid (SA)- and EDS1-dependent, but NPR1- and NDR1-independent signaling pathway. In this study, we demonstrate that in moderate relative humidity (RH; 60%), the ssi4 mutant accumulates H(2)O(2) and SA prior to lesion formation and displays constitutive activation of the MAP kinases AtMPK6 and AtMPK3. It also constitutively expresses a variety of defense-associated genes, including those encoding the WRKY transcription factors AtWRKY29 and AtWRKY6, the MAP kinases AtMPK6 and AtMPK3, the powdery mildew R proteins RPW8.1 and RPW8.2, EDS1 and PR proteins. All of these ssi4-induced responses, as well as the chlorotic, stunted morphology and enhanced disease resistance phenotype, are suppressed by high RH (95%) growth conditions. Thus, a humidity sensitive factor (HSF) appears to function at an early point in the ssi4 signaling pathway. All ssi4 phenotypes, except for MAP kinase activation, also were suppressed by the eds1-1 mutation. Thus, ssi4-induced MAP kinase activation occurs downstream of the HSF but either upstream of EDS1 or on a separate branch of the ssi4 signaling pathway. SA is a critical signaling component in ssi4-mediated defense responses. However, exogenously supplied SA failed to restore lesion formation in high RH-grown ssi4 plants, although it induced defense gene expression. Thus, additional signals also are involved.

  11. A Diverse Family of Host-Defense Peptides (Piscidins) Exhibit Specialized Anti-Bacterial and Anti-Protozoal Activities in Fishes.

    PubMed

    Salger, Scott A; Cassady, Katherine R; Reading, Benjamin J; Noga, Edward J

    2016-01-01

    Conventional antibiotics and other chemical-based drugs are currently one of the most common methods used to control disease-related mortality in animal agriculture. Use of the innate immune system to decrease disease related mortalities is a novel alternative to conventional drugs. One component of the innate immune system is the host-defense peptides, also known as antimicrobial peptides. Host-defense peptides are typically small, amphipathic, α-helical peptides with a broad-spectrum of action against viral, bacterial, fungal, and/or protozoal pathogens. Piscidins are host-defense peptides first discovered in the hybrid striped bass (white bass, Morone chrysops, x striped bass, M. saxatilis). In this paper we identify four new piscidin isoforms in the hybrid striped bass and describe their tissue distributions. We also determine the progenitor species of origin of each piscidin (orthology) and propose a revised nomenclature for this newly described piscidin family based on a three class system. The Class I piscidins (22 amino acids in length; striped bass and white bass piscidin 1 and piscidin 3) show broad-spectrum activity against bacteria and ciliated protozoans, while the Class III piscidins (55 amino acids in length; striped bass and white bass piscidin 6 and striped bass piscidin 7) primarily show anti-protozoal activity. The Class II piscidins (44-46 amino acids in length; striped bass and white bass piscidin 4 and white bass piscidin 5) have a level of activity against bacteria and protozoans intermediate to Classes I and III. Knowledge of piscidin function and activity may help in the future development of disease-resistant lines of striped bass and white bass that could be used to produce superior hybrids for aquaculture.

  12. Universal allosteric mechanism for Gα activation by GPCRs

    PubMed Central

    Flock, Tilman; Venkatakrishnan, A. J.; Kayikci, Melis; Tate, Christopher G.; Veprintsev, Dmitry B.; Babu, M. Madan

    2016-01-01

    G protein-coupled receptors (GPCRs) allosterically activate heterotrimeric G proteins and trigger GDP release. Given that there are ~800 human GPCRs and 16 different Gα proteins, does a universal allosteric mechanism govern Gα activation? Here we show that different GPCRs interact and activate Gα proteins through a highly conserved mechanism. Comparison of Gα with the small G protein Ras reveals how the evolution of short segments that can undergo disorder-order transitions decouple regions important for allosteric activation from receptor binding specificity. This might explain how the GPCR-Gα system diversified rapidly, whilst conserving the allosteric activation mechanism. PMID:26147082

  13. Universal allosteric mechanism for Gα activation by GPCRs.

    PubMed

    Flock, Tilman; Ravarani, Charles N J; Sun, Dawei; Venkatakrishnan, A J; Kayikci, Melis; Tate, Christopher G; Veprintsev, Dmitry B; Babu, M Madan

    2015-08-13

    G protein-coupled receptors (GPCRs) allosterically activate heterotrimeric G proteins and trigger GDP release. Given that there are ∼800 human GPCRs and 16 different Gα genes, this raises the question of whether a universal allosteric mechanism governs Gα activation. Here we show that different GPCRs interact with and activate Gα proteins through a highly conserved mechanism. Comparison of Gα with the small G protein Ras reveals how the evolution of short segments that undergo disorder-to-order transitions can decouple regions important for allosteric activation from receptor binding specificity. This might explain how the GPCR-Gα system diversified rapidly, while conserving the allosteric activation mechanism. PMID:26147082

  14. Secured network sensor-based defense system

    NASA Astrophysics Data System (ADS)

    Wei, Sixiao; Shen, Dan; Ge, Linqiang; Yu, Wei; Blasch, Erik P.; Pham, Khanh D.; Chen, Genshe

    2015-05-01

    Network sensor-based defense (NSD) systems have been widely used to defend against cyber threats. Nonetheless, if the adversary finds ways to identify the location of monitor sensors, the effectiveness of NSD systems can be reduced. In this paper, we propose both temporal and spatial perturbation based defense mechanisms to secure NSD systems and make the monitor sensor invisible to the adversary. The temporal-perturbation based defense manipulates the timing information of published data so that the probability of successfully recognizing monitor sensors can be reduced. The spatial-perturbation based defense dynamically redeploys monitor sensors in the network so that the adversary cannot obtain the complete information to recognize all of the monitor sensors. We carried out experiments using real-world traffic traces to evaluate the effectiveness of our proposed defense mechanisms. Our data shows that our proposed defense mechanisms can reduce the attack accuracy of recognizing detection sensors.

  15. Hydrogen-Rich Water Intake Accelerates Oral Palatal Wound Healing via Activation of the Nrf2/Antioxidant Defense Pathways in a Rat Model.

    PubMed

    Tamaki, Naofumi; Orihuela-Campos, Rita Cristina; Fukui, Makoto; Ito, Hiro-O

    2016-01-01

    The wound healing process attempts to restore the integrity and function of the injured tissue. Additionally, proinflammatory cytokines, growth factors, and oxidative stress play important roles in wound healing. The aim of this study was to determine whether hydrogen-rich water intake induces the activation of the Nrf2/antioxidant defense pathway in rat palatal tissue, thereby reducing systemic oxidative stress and proinflammatory cytokine levels and promoting healing-associated genes. A circular excisional wound was created in the oral palatal region, and the wound healing process was observed. The rats were divided into two experimental groups in which either hydrogen-rich water or distilled water was consumed. In the drinking hydrogen-rich water, the palatal wound healing process was accelerated compared to that in the control group. As molecular hydrogen upregulated the Nrf2 pathway, systemic oxidative stresses were decreased by the activation of antioxidant activity. Furthermore, hydrogen-rich water intake reduced proinflammatory cytokine levels and promoted the expression of healing-associated factors in rat palatal tissue. In conclusion, hydrogen-rich water intake exhibited multiple beneficial effects through activation of the Nrf2/antioxidant defense pathway. The results of this study support the hypothesis that oral administration of hydrogen-rich water benefits the wound healing process by decreasing oxidative stress and inflammatory responses.

  16. Hydrogen-Rich Water Intake Accelerates Oral Palatal Wound Healing via Activation of the Nrf2/Antioxidant Defense Pathways in a Rat Model

    PubMed Central

    Orihuela-Campos, Rita Cristina; Fukui, Makoto; Ito, Hiro-O

    2016-01-01

    The wound healing process attempts to restore the integrity and function of the injured tissue. Additionally, proinflammatory cytokines, growth factors, and oxidative stress play important roles in wound healing. The aim of this study was to determine whether hydrogen-rich water intake induces the activation of the Nrf2/antioxidant defense pathway in rat palatal tissue, thereby reducing systemic oxidative stress and proinflammatory cytokine levels and promoting healing-associated genes. A circular excisional wound was created in the oral palatal region, and the wound healing process was observed. The rats were divided into two experimental groups in which either hydrogen-rich water or distilled water was consumed. In the drinking hydrogen-rich water, the palatal wound healing process was accelerated compared to that in the control group. As molecular hydrogen upregulated the Nrf2 pathway, systemic oxidative stresses were decreased by the activation of antioxidant activity. Furthermore, hydrogen-rich water intake reduced proinflammatory cytokine levels and promoted the expression of healing-associated factors in rat palatal tissue. In conclusion, hydrogen-rich water intake exhibited multiple beneficial effects through activation of the Nrf2/antioxidant defense pathway. The results of this study support the hypothesis that oral administration of hydrogen-rich water benefits the wound healing process by decreasing oxidative stress and inflammatory responses. PMID:26798423

  17. Effects of exposure to sublethal propiconazole on the antioxidant defense system and Na+-K+-ATPase activity in brain of rainbow trout, Oncorhynchus mykiss.

    PubMed

    Li, Zhi-Hua; Zlabek, Vladimir; Grabic, Roman; Li, Ping; Machova, Jana; Velisek, Josef; Randak, Tomas

    2010-07-01

    Propiconazole (PCZ), a triazole fungicide, is widely present in the aquatic environment, but little is known regarding its chronic toxicity in the fish brain. This study assessed the effects of long-term exposure to PCZ on the antioxidant defense system and Na(+)-K(+)-ATPase activity of rainbow trout brain. Fish were exposed to sublethal concentrations of PCZ (0.2, 50, and 500 microg/l) for 7, 20, and 30 days, respectively. Oxidative stress indices (reactive oxygen species, lipid peroxidation, and carbonyl protein) and antioxidant parameters (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and reduced glutathione) were measured, as well as Na(+)-K(+)-ATPase activity. Adaptive responses to PCZ-induced stress were observed at 7 days. With prolonged exposure, significantly higher levels of oxidative indices were indicative of oxidative stress, as also were the significant inhibition of antioxidant enzyme activity and reduced glutathione content. Na(+)-K(+)-ATPase activity was significantly inhibited after prolonged exposure. Chemometrics of all parameters by principal component analysis, enabled the separation of sampled individuals into four groups with 93.39% of total accumulated variance. A low level of oxidative stress can induce the adaptive responses of the antioxidant defense system, while prolonged exposure to PCZ may lead to serious oxidative damage in fish brain. We suggest that selected biochemical markers in fish brain could be used as potential biomarkers for monitoring residual fungicides present in the aquatic environments.

  18. Defense waste processing facility startup progress report

    SciTech Connect

    Iverson, D.C.; Elder, H.H.

    1992-01-01

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950's to produce nuclear materials in support of the national defense effort. About 83 million gallons of high level waste produced since operation began have been consolidated into 33 million gallons by evaporation at the waste tank farm. The Department of Energy has authorized the construction of the Defense Waste Processing Facility (DWPF) to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters, prior to emplacement in a federal repository. The DWPF is now mechanically complete and undergoing commissioning and run-in activities. Cold startup testing using simulated non-radioactive feeds is scheduled to begin in November 1992 with radioactive operation scheduled to begin in May 1994. While technical issues have been identified which can potentially affect DWPF operation, they are not expected to negatively impact the start of non-radioactive startup testing.

  19. Defense waste processing facility startup progress report

    SciTech Connect

    Iverson, D.C.; Elder, H.H.

    1992-07-01

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950`s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high level waste produced since operation began have been consolidated into 33 million gallons by evaporation at the waste tank farm. The Department of Energy has authorized the construction of the Defense Waste Processing Facility (DWPF) to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters, prior to emplacement in a federal repository. The DWPF is now mechanically complete and undergoing commissioning and run-in activities. Cold startup testing using simulated non-radioactive feeds is scheduled to begin in November 1992 with radioactive operation scheduled to begin in May 1994. While technical issues have been identified which can potentially affect DWPF operation, they are not expected to negatively impact the start of non-radioactive startup testing.

  20. Activation Mechanisms in Ion-Implanted Gallium -

    NASA Astrophysics Data System (ADS)

    Morris, Neil

    Available from UMI in association with The British Library. Rapid Thermal Annealing has been used to study the electrical activation of a range of donor and acceptor species in ion-implanted GaAs. By varying the time and temperature of the post implant anneal, it was found that the activation processes for most implants can be characterised in terms of two distinct regions. The first of these occurs at short annealing times, where the electrical activity is seen to follow a time-dependent behaviour. At longer annealing times, however, a time-independent saturation value is reached, this value being dependent on the annealing temperature. By analysing the data from Be, Mg, S and Se implants in GaAs, a comprehensive model has been evolved for the time and temperature dependence of the sheet electrical properties. Application of this model to each of the ions studied suggests that the activation processes may be dominated by the extent to which ions form impurity-vacancy complexes. An analysis of the time-dependent regime also shows that, at short annealing times, the mobile species is more likely to be the substrate atoms (or vacancies) rather than the implanted impurities. In the time-dependent region, the values of diffusion energy were found to be between 2.3 to 3.0 eV for all ions, these values corresponding to a diffusion of Ga or As vacancies (or atoms). In the saturation region, activation energies of 0.3 to 0.4 eV and 1.0 to 1.2 eV were obtained for the activation processes of interstitial or complexed impurities respectively.

  1. Defensive weapons and defense signals in plants: some metabolites serve both roles.

    PubMed

    Maag, Daniel; Erb, Matthias; Köllner, Tobias G; Gershenzon, Jonathan

    2015-02-01

    The defense of plants against herbivores and pathogens involves the participation of an enormous range of different metabolites, some of which act directly as defensive weapons against enemies (toxins or deterrents) and some of which act as components of the complex internal signaling network that insures that defense is timed to enemy attack. Recent work reveals a surprising trend: The same compounds may act as both weapons and signals of defense. For example, two groups of well-studied defensive weapons, glucosinolates and benzoxazinoids, trigger the accumulation of the protective polysaccharide callose as a barrier against aphids and pathogens. In the other direction, several hormones acting in defense signaling (and their precursors and products) exhibit activity as weapons against pathogens. Knowing which compounds are defensive weapons, which are defensive signals and which are both is vital for understanding the functioning of plant defense systems.

  2. Epigenetic Control of Defense Signaling and Priming in Plants.

    PubMed

    Espinas, Nino A; Saze, Hidetoshi; Saijo, Yusuke

    2016-01-01

    Immune recognition of pathogen-associated molecular patterns or effectors leads to defense activation at the pathogen challenged sites. This is followed by systemic defense activation at distant non-challenged sites, termed systemic acquired resistance (SAR). These inducible defenses are accompanied by extensive transcriptional reprogramming of defense-related genes. SAR is associated with priming, in which a subset of these genes is kept at a poised state to facilitate subsequent transcriptional regulation. Transgenerational inheritance of defense-related priming in plants indicates the stability of such primed states. Recent studies have revealed the importance and dynamic engagement of epigenetic mechanisms, such as DNA methylation and histone modifications that are closely linked to chromatin reconfiguration, in plant adaptation to different biotic stresses. Herein we review current knowledge regarding the biological significance and underlying mechanisms of epigenetic control for immune responses in plants. We also argue for the importance of host transposable elements as critical regulators of interactions in the evolutionary "arms race" between plants and pathogens. PMID:27563304

  3. Epigenetic Control of Defense Signaling and Priming in Plants

    PubMed Central

    Espinas, Nino A.; Saze, Hidetoshi; Saijo, Yusuke

    2016-01-01

    Immune recognition of pathogen-associated molecular patterns or effectors leads to defense activation at the pathogen challenged sites. This is followed by systemic defense activation at distant non-challenged sites, termed systemic acquired resistance (SAR). These inducible defenses are accompanied by extensive transcriptional reprogramming of defense-related genes. SAR is associated with priming, in which a subset of these genes is kept at a poised state to facilitate subsequent transcriptional regulation. Transgenerational inheritance of defense-related priming in plants indicates the stability of such primed states. Recent studies have revealed the importance and dynamic engagement of epigenetic mechanisms, such as DNA methylation and histone modifications that are closely linked to chromatin reconfiguration, in plant adaptation to different biotic stresses. Herein we review current knowledge regarding the biological significance and underlying mechanisms of epigenetic control for immune responses in plants. We also argue for the importance of host transposable elements as critical regulators of interactions in the evolutionary “arms race” between plants and pathogens. PMID:27563304

  4. Interferon-γ Is a Crucial Activator of Early Host Immune Defense against Mycobacterium ulcerans Infection in Mice

    PubMed Central

    Bieri, Raphael; Bolz, Miriam; Ruf, Marie-Thérèse; Pluschke, Gerd

    2016-01-01

    Buruli ulcer (BU), caused by infection with Mycobacterium ulcerans, is a chronic necrotizing human skin disease associated with the production of the cytotoxic macrolide exotoxin mycolactone. Despite extensive research, the type of immune responses elicited against this pathogen and the effector functions conferring protection against BU are not yet fully understood. While histopathological analyses of advanced BU lesions have demonstrated a mainly extracellular localization of the toxin producing acid fast bacilli, there is growing evidence for an early intra-macrophage growth phase of M. ulcerans. This has led us to investigate whether interferon-γ might play an important role in containing M. ulcerans infections. In an experimental Buruli ulcer mouse model we found that interferon-γ is indeed a critical regulator of early host immune defense against M. ulcerans infections. Interferon-γ knockout mice displayed a faster progression of the infection compared to wild-type mice. This accelerated progression was reflected in faster and more extensive tissue necrosis and oedema formation, as well as in a significantly higher bacterial burden after five weeks of infection, indicating that mice lacking interferon-γ have a reduced capacity to kill intracellular bacilli during the early intra-macrophage growth phase of M. ulcerans. This data demonstrates a prominent role of interferon-γ in early defense against M. ulcerans infection and supports the view that concepts for vaccine development against tuberculosis may also be valid for BU. PMID:26863011

  5. Interferon-γ Is a Crucial Activator of Early Host Immune Defense against Mycobacterium ulcerans Infection in Mice.

    PubMed

    Bieri, Raphael; Bolz, Miriam; Ruf, Marie-Thérèse; Pluschke, Gerd

    2016-02-01

    Buruli ulcer (BU), caused by infection with Mycobacterium ulcerans, is a chronic necrotizing human skin disease associated with the production of the cytotoxic macrolide exotoxin mycolactone. Despite extensive research, the type of immune responses elicited against this pathogen and the effector functions conferring protection against BU are not yet fully understood. While histopathological analyses of advanced BU lesions have demonstrated a mainly extracellular localization of the toxin producing acid fast bacilli, there is growing evidence for an early intra-macrophage growth phase of M. ulcerans. This has led us to investigate whether interferon-γ might play an important role in containing M. ulcerans infections. In an experimental Buruli ulcer mouse model we found that interferon-γ is indeed a critical regulator of early host immune defense against M. ulcerans infections. Interferon-γ knockout mice displayed a faster progression of the infection compared to wild-type mice. This accelerated progression was reflected in faster and more extensive tissue necrosis and oedema formation, as well as in a significantly higher bacterial burden after five weeks of infection, indicating that mice lacking interferon-γ have a reduced capacity to kill intracellular bacilli during the early intra-macrophage growth phase of M. ulcerans. This data demonstrates a prominent role of interferon-γ in early defense against M. ulcerans infection and supports the view that concepts for vaccine development against tuberculosis may also be valid for BU.

  6. AMPK activators: mechanisms of action and physiological activities.

    PubMed

    Kim, Joungmok; Yang, Goowon; Kim, Yeji; Kim, Jin; Ha, Joohun

    2016-01-01

    AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis, which coordinates metabolic pathways and thus balances nutrient supply with energy demand. Because of the favorable physiological outcomes of AMPK activation on metabolism, AMPK has been considered to be an important therapeutic target for controlling human diseases including metabolic syndrome and cancer. Thus, activators of AMPK may have potential as novel therapeutics for these diseases. In this review, we provide a comprehensive summary of both indirect and direct AMPK activators and their modes of action in relation to the structure of AMPK. We discuss the functional differences among isoform-specific AMPK complexes and their significance regarding the development of novel AMPK activators and the potential for combining different AMPK activators in the treatment of human disease. PMID:27034026

  7. AMPK activators: mechanisms of action and physiological activities

    PubMed Central

    Kim, Joungmok; Yang, Goowon; Kim, Yeji; Kim, Jin; Ha, Joohun

    2016-01-01

    AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis, which coordinates metabolic pathways and thus balances nutrient supply with energy demand. Because of the favorable physiological outcomes of AMPK activation on metabolism, AMPK has been considered to be an important therapeutic target for controlling human diseases including metabolic syndrome and cancer. Thus, activators of AMPK may have potential as novel therapeutics for these diseases. In this review, we provide a comprehensive summary of both indirect and direct AMPK activators and their modes of action in relation to the structure of AMPK. We discuss the functional differences among isoform-specific AMPK complexes and their significance regarding the development of novel AMPK activators and the potential for combining different AMPK activators in the treatment of human disease. PMID:27034026

  8. [Molecular mechanism at the presynaptic active zone].

    PubMed

    Ohtsuka, Toshihisa

    2011-07-01

    Our higher brain functions such as learning and memory, emotion, and consciousness depend on the precise regulation of complicated neural networks in the brain. Neurons communicate with each other through the synapse, which comprise 3 regions: the presynapse, synaptic cleft, and postsynapse. The active zone (AZ) beneath the presynaptic membrane is the principal site for Ca2+ -dependent neurotransmitter release: AZ is involved in determining the site for docking and synaptic vesicle fusion. Presently, the full molecular composition of AZ is unclear, but it is known to contain several AZ-specific proteins, including cytomatrix of the active zone-associated protein (CAST)/ERC2, ELKS, RIM1, Munc13-1, Piccolo/Aczonin, and Bassoon. CAST and ELKS are novel active zone proteins that directly bind to Rab3-interacting molecules (RIMs), Bassoon, and Piccolo, and are thought to play a role in neurotransmitter release by binding these to AZ proteins. In this review, current advances in studies on AZ structure and function have been summarized, and the focus is mainly on protein-protein interactions among the AZ proteins.

  9. Natural History of Innate Host Defense Peptides.

    PubMed

    Linde, A; Wachter, B; Höner, O P; Dib, L; Ross, C; Tamayo, A R; Blecha, F; Melgarejo, T

    2009-12-01

    Host defense peptides act on the forefront of innate immunity, thus playing a central role in the survival of animals and plants. Despite vast morphological changes in species through evolutionary history, all animals examined to date share common features in their innate immune defense strategies, hereunder expression of host defense peptides (HDPs). Most studies on HDPs have focused on humans, domestic and laboratory animals. More than a thousand different sequences have been identified, yet data on HDPs in wild-living animals are sparse. The biological functions of HDPs include broad-spectrum antimicrobial activity and immunomodulation. Natural selection and coevolutionary host-pathogen arms race theory suggest that the extent and specificity of the microbial load influences the spectrum and potency of HDPs in different species. Individuals of extant species-that have lived for an extended period in evolutionary history amid populations with intact processes of natural selection-likely possess the most powerful and well-adapted "natural antibiotics". Research on the evolutionary history of the innate defense system and the host in context of the consequences of challenges as well as the efficacy of the innate immune system under natural conditions is therefore of immediate interest. This review focuses on evolutionary aspects of immunophysiology, with emphasis on innate effector molecules. Studies on host defense in wild-living animals may significantly enhance our understanding of inborn immune mechanisms, and help identify molecules that may assist us to cope better with the increasing microbial challenges that likely follow from the continuous amplification of biodiversity levels on Earth. PMID:26783164

  10. A Comprehensive Mutational Analysis of the Arabidopsis Resistance Protein RPW8.2 Reveals Key Amino Acids for Defense Activation and Protein Targeting[W

    PubMed Central

    Wang, Wenming; Zhang, Yi; Wen, Yingqiang; Berkey, Robert; Ma, Xianfeng; Pan, Zhiyong; Bendigeri, Dipti; King, Harlan; Zhang, Qiong; Xiao, Shunyuan

    2013-01-01

    The Arabidopsis thaliana RESISTANCE TO POWDERY MILDEW8.2 (RPW8.2) protein is specifically targeted to the extrahaustorial membrane (EHM) encasing the haustorium, or fungal feeding structure, where RPW8.2 activates broad-spectrum resistance against powdery mildew pathogens. How RPW8.2 activates defenses at a precise subcellular locale is not known. Here, we report a comprehensive mutational analysis in which more than 100 RPW8.2 mutants were functionally evaluated for their defense and trafficking properties. We show that three amino acid residues (i.e., threonine-64, valine-68, and aspartic acid-116) are critical for RPW8.2-mediated cell death and resistance to powdery mildew (Golovinomyces cichoracearum UCSC1). Also, we reveal that two arginine (R)– or lysine (K)–enriched short motifs (i.e., R/K-R/K-x-R/K) make up the likely core EHM-targeting signals, which, together with the N-terminal transmembrane domain, define a minimal sequence of 60 amino acids that is necessary and sufficient for EHM localization. In addition, some RPW8.2 mutants localize to the nucleus and/or to a potentially novel membrane that wraps around plastids or plastid-derived stromules. Results from this study not only reveal critical amino acid elements in RPW8.2 that enable haustorium-targeted trafficking and defense, but also provide evidence for the existence of a specific, EHM-oriented membrane trafficking pathway in leaf epidermal cells invaded by powdery mildew. PMID:24151293

  11. Mechanism for Clastogenic Activity of Naphthalene

    SciTech Connect

    Buchholz, Bruce A.

    2015-09-29

    Naphthalene incubations form DNA adducts in vitro in a dose dependent manner in both mouse and rat tissues. Rodent tissue incubations with naphthalene indicate that naphthalene forms as many DNA adducts as Benzo(a)pyrene, a known DNA binding carcinogen. The mouse airway has the greatest number of DNA adducts, corresponding to the higher metabolic activation of naphthalene in this location. Both rat tissues, the rat olfactory (tumor target) and the airways (non-tumor target), have similar levels of NA-DNA adducts, indicating that short term measures of initial adduct formation do not directly correlate with sites of tumor formation in the NTP bioassays.

  12. Mechanism of antibacterial activity of copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arijit Kumar; Chakraborty, Ruchira; Basu, Tarakdas

    2014-04-01

    In a previous communication, we reported a new method of synthesis of stable metallic copper nanoparticles (Cu-NPs), which had high potency for bacterial cell filamentation and cell killing. The present study deals with the mechanism of filament formation and antibacterial roles of Cu-NPs in E. coli cells. Our results demonstrate that NP-mediated dissipation of cell membrane potential was the probable reason for the formation of cell filaments. On the other hand, Cu-NPs were found to cause multiple toxic effects such as generation of reactive oxygen species, lipid peroxidation, protein oxidation and DNA degradation in E. coli cells. In vitro interaction between plasmid pUC19 DNA and Cu-NPs showed that the degradation of DNA was highly inhibited in the presence of the divalent metal ion chelator EDTA, which indicated a positive role of Cu2+ ions in the degradation process. Moreover, the fast destabilization, i.e. the reduction in size, of NPs in the presence of EDTA led us to propose that the nascent Cu ions liberated from the NP surface were responsible for higher reactivity of the Cu-NPs than the equivalent amount of its precursor CuCl2; the nascent ions were generated from the oxidation of metallic NPs when they were in the vicinity of agents, namely cells, biomolecules or medium components, to be reduced simultaneously.

  13. Mechanism of antibacterial activity of copper nanoparticles.

    PubMed

    Chatterjee, Arijit Kumar; Chakraborty, Ruchira; Basu, Tarakdas

    2014-04-01

    In a previous communication, we reported a new method of synthesis of stable metallic copper nanoparticles (Cu-NPs), which had high potency for bacterial cell filamentation and cell killing. The present study deals with the mechanism of filament formation and antibacterial roles of Cu-NPs in E. coli cells. Our results demonstrate that NP-mediated dissipation of cell membrane potential was the probable reason for the formation of cell filaments. On the other hand, Cu-NPs were found to cause multiple toxic effects such as generation of reactive oxygen species, lipid peroxidation, protein oxidation and DNA degradation in E. coli cells. In vitro interaction between plasmid pUC19 DNA and Cu-NPs showed that the degradation of DNA was highly inhibited in the presence of the divalent metal ion chelator EDTA, which indicated a positive role of Cu(2+) ions in the degradation process. Moreover, the fast destabilization, i.e. the reduction in size, of NPs in the presence of EDTA led us to propose that the nascent Cu ions liberated from the NP surface were responsible for higher reactivity of the Cu-NPs than the equivalent amount of its precursor CuCl2; the nascent ions were generated from the oxidation of metallic NPs when they were in the vicinity of agents, namely cells, biomolecules or medium components, to be reduced simultaneously. PMID:24584282

  14. Expression of the lipid transfer protein Ace-AMP1 in transgenic wheat enhances antifungal activity and defense responses.

    PubMed

    Roy-Barman, Subhankar; Sautter, Christof; Chattoo, Bharat B

    2006-08-01

    To enhance fungal disease resistance, wheat plants (cv. Bobwhite) were engineered to constitutively express the potent antimicrobial protein Ace-AMP1 from Allium cepa, driven by a maize ubiquitin promoter along with its first intron. The bar gene was used for selection of putative transformants on medium containing phosphinothricin (PPT). Transgene inheritance, integration and stability of expression were confirmed over two generations by PCR, Southern, northern and western blot analyses, respectively. The levels of Ace-AMP1 in different transgenic lines correlated with the transcript levels of the transgene. Up to 50% increase in resistance to Blumeria graminis f. sp. tritici was detected in detached leaf assays. In ears of transgenic wheat inoculated with Neovossia indica, Ace-AMP1 intensified expression of defense-related genes. Elevated levels of salicylic acid and of transcripts of phenylalanine ammonia lyase (PAL), glucanase (PR2) and chitinase (PR3) in the transgenic plants indicated manifestation of systemic acquired resistance (SAR). PMID:16906444

  15. The Inflammasome in Host Defense

    PubMed Central

    Chen, Gang; Pedra, Joao H.F.

    2010-01-01

    Nod-like receptors have emerged as an important family of sensors in host defense. These receptors are expressed in macrophages, dendritic cells and monocytes and play an important role in microbial immunity. Some Nod-like receptors form the inflammasome, a protein complex that activates caspase-1 in response to several stimuli. Caspase-1 activation leads to processing and secretion of pro-inflammatory cytokines such as interleukin (IL)-1β and IL-18. Here, we discuss recent advances in the inflammasome field with an emphasis on host defense. We also compare differential requirements for inflammasome activation in dendritic cells, macrophages and monocytes. PMID:22315529

  16. Strategic defense initiative: critical issues

    SciTech Connect

    Nuckolls, J.H.

    1985-06-01

    The objectives of the Strategic Defense Initiative (SDI) as outlined by President Reagan are discussed. The principal objective for SDI is as a defense against ballistic missiles. Soviet objections and a summary of US-USSR dialogue on the subject are reviewed. Most US studies have been critical of SDI. Four critical issues are addressed in depth: are defense weapons technologically feasible which have high economic leverage relative to offensive ballistic missiles; would the defense feasibility and leverage be degraded or enhanced in the technological race between weapons innovation and countermeasures; could stability be achieved during and after the transition to the defense dominated world envisioned by SDI proponents; would the deployment of high leverage defensive weapons increase or decrease the security of NATO Europe, and the probability of major conventional or nuclear wars. The issue of SDI may lead to a paradox that contains the seeds of catastrophe. The author concludes by warning that nuclear disarmament may eliminate the highly successful deterrent mechanism for avoiding another major world war. In a world made safe for major conventional wars by the apparent ''elimination'' of nuclear weapons, the leaders in a conventional World War III - involving unimaginable suffering, hatred, terror, and death - would be strongly motivated to introduce nuclear weapons in the crucial decisive battles. Even if diplomacy could ''eliminate'' nuclear weapons, man's knowledge of nuclear weapons can never be eliminated. The paradox is the attempt to eliminate nuclear weapons may maximize the probability of their use. (DMC)

  17. Over-expression of rice leucine-rich repeat protein results in activation of defense response, thereby enhancing resistance to bacterial soft rot in Chinese cabbage.

    PubMed

    Park, Young Ho; Choi, Changhyun; Park, Eun Mi; Kim, Hyo Sun; Park, Hong Jae; Bae, Shin Cheol; Ahn, Ilpyung; Kim, Min Gab; Park, Sang Ryeol; Hwang, Duk-Ju

    2012-10-01

    Pectobacterium carotovorum subsp. carotovorum causes soft rot disease in various plants, including Chinese cabbage. The simple extracellular leucine-rich repeat (eLRR) domain proteins have been implicated in disease resistance. Rice leucine-rich repeat protein (OsLRP), a rice simple eLRR domain protein, is induced by pathogens, phytohormones, and salt. To see whether OsLRP enhances disease resistance to bacterial soft rot, OsLRP was introduced into Chinese cabbage by Agrobacterium-mediated transformation. Two independent transgenic lines over-expressing OsLRP were generated and further analyzed. Transgenic lines over-expressing OsLRP showed enhanced disease resistance to bacterial soft rot compared to non-transgenic control. Bacterial growth was retarded in transgenic lines over-expressing OsLRP compared to non-transgenic controls. We propose that OsLRP confers enhanced resistance to bacterial soft rot. Monitoring expression of defense-associated genes in transgenic lines over-expressing OsLRP, two different glucanases and Brassica rapa polygalacturonase inhibiting protein 2, PDF1 were constitutively activated in transgenic lines compared to non-transgenic control. Taken together, heterologous expression of OsLRP results in the activation of defense response and enhanced resistance to bacterial soft rot.

  18. Short-term overcrowding of Atlantic cod, Gadus morhua: effects on serum-mediated antibacterial activity and transcription of glucose transport and antioxidant defense related genes.

    PubMed

    Caipang, Christopher Marlowe A; Brinchmann, Monica F; Kiron, Viswanath

    2008-12-01

    Serum-mediated control of Listonella anguillarum and transcriptional profiles of selected glucose transport and antioxidant defense genes, following short-term overcrowding in Atlantic cod, Gadus morhua were determined. Fish were subjected to overcrowding by reducing the water level in the tank for 1 h and this was repeated thrice over a 12 h period. Blood samples were collected before overcrowding (initial group) and at 2, 24 and 72 h post-crowding. The sera from fish obtained at 2 h post-crowding caused a significant reduction in L. anguillarum counts compared to the initial samples. There was a transcriptional upregulation of the glucose transport-4 and glyceraldehyde-3-phosphate dehydrogenase genes at 2 h after crowding. Gene transcripts of the antioxidant enzymes, Cu/Zn superoxide dismutase (Cu/Zn SOD), catalase and phospholipid hydroperoxide glutathione peroxidase also significantly increased at 2 h post-crowding, but thereafter they returned to their pre-crowding levels with the exception of Cu/Zn SOD that remained significantly higher than the initial group until 72 h. Thus, short-term overcrowding of Atlantic cod leads to a transient enhancement of in vitro serum antibacterial activity and enhanced transcriptional activity of glucose transport and antioxidant defense genes.

  19. [Transsexual defense].

    PubMed

    Pfäfflin, F

    1994-01-01

    The prevalent approach to the treatment of patients displaying transsexual symptoms is one that favours somatic intervention of either a hormonal or surgical nature. Normally these patients refuse to avail themselves of the possibility of psychotherapy and are indeed regarded by many therapists as largely inaccessible to therapy of this kind. Pfäfflin looks into the factors involved in the disinclination displayed by both patients and therapists to embark upon such a process. He discusses the unconscious defence mechanisms operative in this disinclination with particular reference to the incipient stages of a course of treatment extending over a number of years and involving a patient initially determined to undergo a surgical "sex change". The patient's insistence on being acknowledged as a woman is regarded here as a creative defence against a major diffusion of identity from a genetically earlier phase, connected with incomplete separation and individuation. In the author's opinion the patient's ability to relinquish this defence will depend largely on the therapist's ability to acknowledge its creativity. PMID:7972887

  20. The neuroecology of chemical defenses.

    PubMed

    Derby, Charles D; Aggio, Juan F

    2011-11-01

    Chemicals are a frequent means whereby organisms defend themselves against predators, competitors, parasites, microbes, and other potentially harmful organisms. Much progress has been made in understanding how a phylogenetic diversity of organisms living in a variety of environments uses chemical defenses. Chief among these advances is determining the molecular identity of defensive chemicals and the roles they play in shaping interactions between individuals. Some progress has been made in deciphering the molecular, cellular, and systems level mechanisms underlying these interactions, as well as how these interactions can lead to structuring of communities and even ecosystems. The neuroecological approach unifies practices and principles from these diverse disciplines and at all scales as it attempts to explain in a single conceptual framework the abundances of organisms and the distributions of species within natural habitats. This article explores the neuroecology of chemical defenses with a focus on aquatic organisms and environments. We review the concept of molecules of keystone significance, including examples of how saxitoxin and tetrodotoxin can shape the organization and dynamics of marine and riparian communities, respectively. We also describe the current status and future directions of a topic of interest to our research group-the use of ink by marine molluscs, especially sea hares, in their defense. We describe a diversity of molecules and mechanisms mediating the protective effects of sea hares' ink, including use as chemical defenses against predators and as alarm cues toward conspecifics, and postulate that some defensive molecules may function as molecules of keystone significance. Finally, we propose future directions for studying the neuroecology of the chemical defenses of sea hares and their molluscan relatives, the cephalopods.

  1. Gamma Band Activity in the RAS-intracellular mechanisms

    PubMed Central

    Garcia-Rill, E.; Kezunovic, N.; D’Onofrio, S.; Luster, B.; Hyde, J.; Bisagno, V.; Urbano, F.J.

    2014-01-01

    Gamma band activity participates in sensory perception, problem solving, and memory. This review considers recent evidence showing that cells in the reticular activating system (RAS) exhibit gamma band activity, and describes the intrinsic membrane properties behind such manifestation. Specifically, we discuss how cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine Subcoeruleus nucleus dorsalis (SubCD) all fire in the gamma band range when maximally activated, but no higher. The mechanisms involve high threshold, voltage-dependent P/Q-type calcium channels or sodium-dependent subthreshold oscillations. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. We address three necessary next steps resulting from these discoveries, an intracellular mechanism responsible for maintaining gamma band activity based on persistent G-protein activation, separate intracellular pathways that differentiate between gamma band activity during waking vs during REM sleep, and an intracellular mechanism responsible for the dysregulation in gamma band activity in schizophrenia. These findings open several promising research avenues that have not been thoroughly explored. What are the effects of sleep or REM sleep deprivation on these RAS mechanisms? Are these mechanisms involved in memory processing during waking and/or during REM sleep? Does gamma band processing differ during waking vs REM sleep after sleep or REM sleep deprivation? PMID:24309750

  2. Cotton WRKY1 mediates the plant defense-to-development transition during infection of cotton by Verticillium dahliae by activating JASMONATE ZIM-DOMAIN1 expression.

    PubMed

    Li, Chao; He, Xin; Luo, Xiangyin; Xu, Li; Liu, Linlin; Min, Ling; Jin, Li; Zhu, Longfu; Zhang, Xianlong

    2014-12-01

    Plants have evolved an elaborate signaling network to ensure an appropriate level of immune response to meet the differing demands of developmental processes. Previous research has demonstrated that DELLA proteins physically interact with JASMONATE ZIM-DOMAIN1 (JAZ1) and dynamically regulate the interaction of the gibberellin (GA) and jasmonate (JA) signaling pathways. However, whether and how the JAZ1-DELLA regulatory node is regulated at the transcriptional level in plants under normal growth conditions or during pathogen infection is not known. Here, we demonstrate multiple functions of cotton (Gossypium barbadense) GbWRKY1 in the plant defense response and during development. Although GbWRKY1 expression is induced rapidly by methyl jasmonate and infection by Verticillium dahliae, our results show that GbWRKY1 is a negative regulator of the JA-mediated defense response and plant resistance to the pathogens Botrytis cinerea and V. dahliae. Under normal growth conditions, GbWRKY1-overexpressing lines displayed GA-associated phenotypes, including organ elongation and early flowering, coupled with the down-regulation of the putative targets of DELLA. We show that the GA-related phenotypes of GbWRKY1-overexpressing plants depend on the constitutive expression of Gossypium hirsutum GhJAZ1. We also show that GhJAZ1 can be transactivated by GbWRKY1 through TGAC core sequences, and the adjacent sequences of this binding site are essential for binding specificity and affinity to GbWRKY1, as revealed by dual-luciferase reporter assays and electrophoretic mobility shift assays. In summary, our data suggest that GbWRKY1 is a critical regulator mediating the plant defense-to-development transition during V. dahliae infection by activating JAZ1 expression.

  3. Mechanical Activation of Construction Binder Materials by Various Mills

    NASA Astrophysics Data System (ADS)

    Fediuk, R. S.

    2016-04-01

    The paper deals with the mechanical grinding down to the nano powder of construction materials. During mechanical activation a composite bin