Science.gov

Sample records for activate downstream targets

  1. NF-kB activation and its downstream target genes expression after heavy ions exposure

    NASA Astrophysics Data System (ADS)

    Chishti, Arif Ali; Baumstark-Khan, Christa; Hellweg, Christine; Schmitz, Claudia; Koch, Kristina; Feles, Sebastian

    2016-07-01

    To enable long-term human space flight cellular radiation response to densely ionizing radiation needs to be better understood for developing appropriate countermeasures to mitigate acute effects and late radiation risks for the astronaut. The biological effectiveness of accelerated heavy ions (which constitute the most important radiation type in space) with high linear energy transfer (LET) for effecting DNA damage response pathways as a gateway to cell death or survival is of major concern not only for space missions but also for new regimes of tumor radiotherapy. In the current research study, the contribution of NF-κB in response to space-relevant radiation qualities was determined by a NF-κB reporter cell line (HEK-pNF-κB-d2EGFP/Neo L2). The NF-κB dependent reporter gene expression (d2EGFP) after ionizing radiation (X-rays and heavy ions) exposure was evaluated by flow cytometry. Because of differences in the extent of NF-κB activation after X-irradiation and heavy ions exposure, it was expected that radiation quality (LET) might play an important role in the cellular radiation response. In addition, the biological effectiveness (RBE) of NF-κB activation and reduction of cellular survival was examined for heavy ions having a broad range of LET (˜0.3 - 9674 keV/µm). Furthermore, the effect of LET on NF-κB target gene expression was analyzed by real time reverse transcriptase quantitative PCR (RT-qPCR). In this study it was proven that NF-κB activation and NF-κB dependent gene expression comprises an early step in cellular radiation response. Taken together, this study clearly demonstrates that NF-κB activation and NF-κB-dependent gene expression by heavy ions are highest in the LET range of ˜50-200 keV/μupm. The up-regulated chemokines and cytokines (CXCL1, CXCL2, CXCL10, IL-8 and TNF) might be important for cell-cell communication among hit as well as unhit cells (bystander effect). The results obtained suggest the NF-κB pathway to be a

  2. Downstream targets of WRKY33.

    PubMed

    Petersen, Klaus; Fiil, Berthe Katrine; Mundy, John; Petersen, Morten

    2008-11-01

    Innate immunity signaling pathways in both animals and plants are regulated by mitogen-activated protein kinase (MAPK) cascades. In a recent publication we show that MPK4 and its substrate MKS1 interact with WRKY33 in vivo, and that WRKY33 is released from complexes with MPK4 upon infection. Transcriptome analysis of a wrky33 loss-of-function mutant identified a subset of defense-related genes as putative targets of WRKY33. These genes include PAD3 and CYP71A13, which encode cytochrome P450 monoxygenases required for synthesis of the antimicrobial phytoalexin camalexin. Chromatin immunoprecipitation confirmed that WRKY33 bound the promoter of PAD3 when plants were inoculated with pathogens. Here we further discuss the involvement of two other targets of WRKY33, NUDT6 and ROF2 in defense responses against invading pathogens.

  3. Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence.

    PubMed

    Kortlever, Roderik M; Higgins, Paul J; Bernards, René

    2006-08-01

    p53 limits the proliferation of primary diploid fibroblasts by inducing a state of growth arrest named replicative senescence - a process which protects against oncogenic transformation and requires integrity of the p53 tumour suppressor pathway. However, little is known about the downstream target genes of p53 in this growth-limiting response. Here, we report that suppression of the p53 target gene encoding plasminogen activator inhibitor-1 (PAI-1) by RNA interference (RNAi) leads to escape from replicative senescence both in primary mouse embryo fibroblasts and primary human BJ fibroblasts. PAI-1 knockdown results in sustained activation of the PI(3)K-PKB-GSK3beta pathway and nuclear retention of cyclin D1, consistent with a role for PAI-1 in regulating growth factor signalling. In agreement with this, we find that the PI(3)K-PKB-GSK3beta-cyclin D1 pathway is also causally involved in cellular senescence. Conversely, ectopic expression of PAI-1 in proliferating p53-deficient murine or human fibroblasts induces a phenotype displaying all the hallmarks of replicative senescence. Our data indicate that PAI-1 is not merely a marker of senescence, but is both necessary and sufficient for the induction of replicative senescence downstream of p53.

  4. Fn14, a Downstream Target of the TGF-β Signaling Pathway, Regulates Fibroblast Activation

    PubMed Central

    Yang, Min; Lai, Wen; Ye, Litong; Chen, Jing; Hou, Xinghua; Ding, Hong; Zhang, Wenwei; Wu, Yueheng; Liu, Xiaoying; Huang, Shufang; Yu, Xiyong; Xiao, Dingzhang

    2015-01-01

    Fibrosis, the hallmark of human injuries and diseases such as serious burns, is characterized by excessive collagen synthesis and myofibroblast accumulation. Transforming growth factor-β (TGF-β), a potent inducer of collagen synthesis, has been implicated in fibrosis in animals. In addition to TGF-β, fibroblast growth factor-inducible molecule 14 (Fn14) has been reported to play an important role in fibrotic diseases, such as cardiac fibrosis. However, the function and detailed regulatory mechanism of Fn14 in fibrosis are unclear. Here, we investigated the effect of Fn14 on the activation of human dermal fibroblasts. In normal dermal fibroblasts, TGF-β signaling increased collagen production and Fn14 expression. Furthermore, Fn14 siRNA blocked extracellular matrix gene expression; even when TGF-β signaling was activated by TGF-β1, fibroblast activation remained blocked in the presence of Fn14 siRNA. Overexpressing Fn14 increased extracellular matrix gene expression. In determining the molecular regulatory mechanism, we discovered that SMAD4, an important TGF-β signaling co-mediator, bound to the Fn14 promoter and activated Fn14 transcription. Taken together, these results indicate that the TGF-β signaling pathway activates Fn14 expression through the transcription factor SMAD4 and that activated Fn14 expression increases extracellular matrix synthesis and fibroblast activation. Therefore, Fn14 may represent a promising approach to preventing the excessive accumulation of collagen or ECM in skin fibrosis. PMID:26625141

  5. T3-induced liver AMP-activated protein kinase signaling: Redox dependency and upregulation of downstream targets

    PubMed Central

    Videla, Luis A; Fernández, Virginia; Cornejo, Pamela; Vargas, Romina; Morales, Paula; Ceballo, Juan; Fischer, Alvaro; Escudero, Nicolás; Escobar, Oscar

    2014-01-01

    AIM: To investigate the redox dependency and promotion of downstream targets in thyroid hormone (T3)-induced AMP-activated protein kinase (AMPK) signaling as cellular energy sensor to limit metabolic stresses in the liver. METHODS: Fed male Sprague-Dawley rats were given a single ip dose of 0.1 mg T3/kg or T3 vehicle (NaOH 0.1 N; controls) and studied at 8 or 24 h after treatment. Separate groups of animals received 500 mg N-acetylcysteine (NAC)/kg or saline ip 30 min prior T3. Measurements included plasma and liver 8-isoprostane and serum β-hydroxybutyrate levels (ELISA), hepatic levels of mRNAs (qPCR), proteins (Western blot), and phosphorylated AMPK (ELISA). RESULTS: T3 upregulates AMPK signaling, including the upstream kinases Ca2+-calmodulin-dependent protein kinase kinase-β and transforming growth factor-β-activated kinase-1, with T3-induced reactive oxygen species having a causal role due to its suppression by pretreatment with the antioxidant NAC. Accordingly, AMPK targets acetyl-CoA carboxylase and cyclic AMP response element binding protein are phosphorylated, with the concomitant carnitine palmitoyltransferase-1α (CPT-1α) activation and higher expression of peroxisome proliferator-activated receptor-γ co-activator-1α and that of the fatty acid oxidation (FAO)-related enzymes CPT-1α, acyl-CoA oxidase 1, and acyl-CoA thioesterase 2. Under these conditions, T3 induced a significant increase in the serum levels of β-hydroxybutyrate, a surrogate marker for hepatic FAO. CONCLUSION: T3 administration activates liver AMPK signaling in a redox-dependent manner, leading to FAO enhancement as evidenced by the consequent ketogenic response, which may constitute a key molecular mechanism regulating energy dynamics to support T3 preconditioning against ischemia-reperfusion injury. PMID:25516653

  6. Nuclear cereblon modulates transcriptional activity of Ikaros and regulates its downstream target, enkephalin, in human neuroblastoma cells.

    PubMed

    Wada, Takeyoshi; Asahi, Toru; Sawamura, Naoya

    2016-08-26

    The gene coding cereblon (CRBN) was originally identified in genetic linkage analysis of mild autosomal recessive nonsyndromic intellectual disability. CRBN has broad localization in both the cytoplasm and nucleus. However, the significance of nuclear CRBN remains unknown. In the present study, we aimed to elucidate the role of CRBN in the nucleus. First, we generated a series of CRBN deletion mutants and determined the regions responsible for the nuclear localization. Only CRBN protein lacking the N-terminal region was localized outside of the nucleus, suggesting that the N-terminal region is important for its nuclear localization. CRBN was also identified as a thalidomide-binding protein and component of the cullin-4-containing E3 ubiquitin ligase complex. Thalidomide has been reported to be involved in the regulation of the transcription factor Ikaros by CRBN-mediated degradation. To investigate the nuclear functions of CRBN, we performed co-immunoprecipitation experiments and evaluated the binding of CRBN to Ikaros. As a result, we found that CRBN was associated with Ikaros protein, and the N-terminal region of CRBN was required for Ikaros binding. In luciferase reporter gene experiments, CRBN modulated transcriptional activity of Ikaros. Furthermore, we found that CRBN modulated Ikaros-mediated transcriptional repression of the proenkephalin gene by binding to its promoter region. These results suggest that CRBN binds to Ikaros via its N-terminal region and regulates transcriptional activities of Ikaros and its downstream target, enkephalin. PMID:27329811

  7. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Signalling Exerts Chondrogenesis Promoting and Protecting Effects: Implication of Calcineurin as a Downstream Target

    PubMed Central

    Juhász, Tamás; Matta, Csaba; Katona, Éva; Somogyi, Csilla; Takács, Roland; Gergely, Pál; Csernoch, László; Panyi, Gyorgy; Tóth, Gábor; Reglődi, Dóra; Tamás, Andrea; Zákány, Róza

    2014-01-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is an important neurotrophic factor influencing differentiation of neuronal elements and exerting protecting role during traumatic injuries or inflammatory processes of the central nervous system. Although increasing evidence is available on its presence and protecting function in various peripheral tissues, little is known about the role of PACAP in formation of skeletal components. To this end, we aimed to map elements of PACAP signalling in developing cartilage under physiological conditions and during oxidative stress. mRNAs of PACAP and its receptors (PAC1,VPAC1, VPAC2) were detectable during differentiation of chicken limb bud-derived chondrogenic cells in micromass cell cultures. Expression of PAC1 protein showed a peak on days of final commitment of chondrogenic cells. Administration of either the PAC1 receptor agonist PACAP 1-38, or PACAP 6-38 that is generally used as a PAC1 antagonist, augmented cartilage formation, stimulated cell proliferation and enhanced PAC1 and Sox9 protein expression. Both variants of PACAP elevated the protein expression and activity of the Ca-calmodulin dependent Ser/Thr protein phosphatase calcineurin. Application of PACAPs failed to rescue cartilage formation when the activity of calcineurin was pharmacologically inhibited with cyclosporine A. Moreover, exogenous PACAPs prevented diminishing of cartilage formation and decrease of calcineurin activity during oxidative stress. As an unexpected phenomenon, PACAP 6-38 elicited similar effects to those of PACAP 1-38, although to a different extent. On the basis of the above results, we propose calcineurin as a downstream target of PACAP signalling in differentiating chondrocytes either in normal or pathophysiological conditions. Our observations imply the therapeutical perspective that PACAP can be applied as a natural agent that may have protecting effect during joint inflammation and/or may promote cartilage regeneration

  8. Comparative analyses of downstream signal transduction targets modulated after activation of the AT1 receptor by two β-arrestin-biased agonists.

    PubMed

    Santos, Geisa A; Duarte, Diego A; Parreiras-E-Silva, Lucas T; Teixeira, Felipe R; Silva-Rocha, Rafael; Oliveira, Eduardo B; Bouvier, Michel; Costa-Neto, Claudio M

    2015-01-01

    G protein-coupled receptors (GPCRs) are involved in essentially all physiological processes in mammals. The classical GPCR signal transduction mechanism occurs by coupling to G protein, but it has recently been demonstrated that interaction with β-arrestins leads to activation of pathways that are independent of the G protein pathway. Also, it has been reported that some ligands can preferentially activate one of these signaling pathways; being therefore called biased agonists for G protein or β-arrestin pathways. The angiotensin II (AngII) AT1 receptor is a prototype GPCR in the study of biased agonism due to the existence of well-known β-arrestin-biased agonists, such as [Sar(1), Ile(4), Ile(8)]-AngII (SII), and [Sar(1), D-Ala(8)]-AngII (TRV027). The aim of this study was to comparatively analyze the two above mentioned β-arrestin-biased agonists on downstream phosphorylation events and gene expression profiles. Our data reveal that activation of AT1 receptor by each ligand led to a diversity of activation profiles that is far broader than that expected from a simple dichotomy between "G protein-dependent" and "β-arrestin-dependent" signaling. We observed clusters of activation profiles common to AngII, SII, and TRV027, as well as downstream effector activation that are unique to AngII, SII, or TRV027. Analyses of β-arrestin conformational changes after AT1 receptor stimulation with SII or TRV027 suggests that the observed differences could account, at least partially, for the diversity of modulated targets observed. Our data reveal that, although the categorization "G protein-dependent" vs. "β-arrestin-dependent" signaling can be of pharmacological relevance, broader analyses of signaling pathways and downstream targets are necessary to generate an accurate activation profile for a given ligand. This may bring relevant information for drug development, as it may allow more refined comparison of drugs with similar mechanism of action and effects, but with

  9. The mitogen-activated protein kinase pathway can mediate growth inhibition and proliferation in smooth muscle cells. Dependence on the availability of downstream targets.

    PubMed Central

    Bornfeldt, K E; Campbell, J S; Koyama, H; Argast, G M; Leslie, C C; Raines, E W; Krebs, E G; Ross, R

    1997-01-01

    Activation of the classical mitogen-activated protein kinase (MAPK) pathway leads to proliferation of many cell types. Accordingly, an inhibitor of MAPK kinase, PD 098059, inhibits PDGF-induced proliferation of human arterial smooth muscle cells (SMCs) that do not secrete growth-inhibitory PGs such as PGE2. In striking contrast, in SMCs that express the inducible form of cyclooxygenase (COX-2), activation of MAPK serves as a negative regulator of proliferation. In these cells, PDGF-induced MAPK activation leads to cytosolic phospholipase A2 activation, PGE2 release, and subsequent activation of the cAMP-dependent protein kinase (PKA), which acts as a strong inhibitor of SMC proliferation. Inhibition of either MAPK kinase signaling or of COX-2 in these cells releases them from the influence of the growth-inhibitory PGs and results in the subsequent cell cycle traverse and proliferation. Thus, the MAPK pathway mediates either proliferation or growth inhibition in human arterial SMCs depending on the availability of specific downstream enzyme targets. PMID:9259587

  10. Adiponectin, a downstream target gene of peroxisome proliferator-activated receptor {gamma}, controls hepatitis B virus replication

    SciTech Connect

    Yoon, Sarah; Jung, Jaesung; Kim, Taeyeung; Park, Sun; Chwae, Yong-Joon; Shin, Ho-Joon; Kim, Kyongmin

    2011-01-20

    In this study, HepG2-hepatitis B virus (HBV)-stable cells that did not overexpress HBx and HBx-deficient mutant-transfected cells were analyzed for their expression of HBV-induced, upregulated adipogenic and lipogenic genes. The mRNAs of CCAAT enhancer binding protein {alpha} (C/EBP{alpha}), peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), adiponectin, liver X receptor {alpha} (LXR{alpha}), sterol regulatory element binding protein 1c (SREBP1c), and fatty acid synthase (FAS) were expressed at higher levels in HepG2-HBV and lamivudine-treated stable cells and HBx-deficient mutant-transfected cells than in the HepG2 cells. Lamivudine treatment reduced the mRNA levels of PPAR{gamma} and C/EBP{alpha}. Conversely, HBV replication was upregulated by adiponectin and PPAR{gamma} agonist rosiglitazone treatments and was downregulated by adiponectin siRNAs. Collectively, our results demonstrate that HBV replication and/or protein expression, even in the absence of HBx, upregulated adipogenic or lipogenic genes, and that the control of adiponectin might prove useful as a therapeutic modality for the treatment of chronic hepatitis B.

  11. Turbulence decay downstream of an active grid

    NASA Astrophysics Data System (ADS)

    Bewley, Gregory; Bodenschatz, Eberhard

    2015-11-01

    A grid in a wind tunnel stirs up turbulence that has a certain large-scale structure. The moving parts in a so-called ``active grid'' can be programmed to produce different structures. We use a special active grid in which each of 129 paddles on the grid has its own position-controlled servomotor that can move independently of the others. We observe among other things that the anisotropy in the amplitude of the velocity fluctuations and in the correlation lengths can be set and varied with an algorithm that oscillates the paddles in a specified way. The variation in the anisotropies that we observe can be explained by our earlier analysis of anisotropic ``soccer ball'' turbulence (Bewley, Chang and Bodenschatz 2012, Phys. Fluids). We define the influence of this variation in structure on the downstream evolution of the turbulence. with Eberhard Bodenschatz and others.

  12. The MSX1 homeobox transcription factor is a downstream target of PHOX2B and activates the Delta-Notch pathway in neuroblastoma

    SciTech Connect

    Revet, Ingrid; Huizenga, Gerda; Chan, Alvin; Koster, Jan; Volckmann, Richard; Sluis, Peter van; Ora, Ingrid; Versteeg, Rogier; Geerts, Dirk

    2008-02-15

    Neuroblastoma is an embryonal tumour of the peripheral sympathetic nervous system (SNS). One of the master regulator genes for peripheral SNS differentiation, the homeobox transcription factor PHOX2B, is mutated in familiar and sporadic neuroblastomas. Here we report that inducible expression of PHOX2B in the neuroblastoma cell line SJNB-8 down-regulates MSX1, a homeobox gene important for embryonic neural crest development. Inducible expression of MSX1 in SJNB-8 caused inhibition of both cell proliferation and colony formation in soft agar. Affymetrix micro-array and Northern blot analysis demonstrated that MSX1 strongly up-regulated the Delta-Notch pathway genes DLK1, NOTCH3, and HEY1. In addition, the proneural gene NEUROD1 was down-regulated. Western blot analysis showed that MSX1 induction caused cleavage of the NOTCH3 protein to its activated form, further confirming activation of the Delta-Notch pathway. These experiments describe for the first time regulation of the Delta-Notch pathway by MSX1, and connect these genes to the PHOX2B oncogene, indicative of a role in neuroblastoma biology. Affymetrix micro-array analysis of a neuroblastic tumour series consisting of neuroblastomas and the more benign ganglioneuromas showed that MSX1, NOTCH3 and HEY1 are more highly expressed in ganglioneuromas. This suggests a block in differentiation of these tumours at distinct developmental stages or lineages.

  13. EVALUATING THE EFFECT OF UPSTREAM WATERSHED ACTIVITIES TO DOWNSTREAM STREAMFLOW

    EPA Science Inventory

    Linking the impacts of upstream activities such as urban development to changes in downstream streamflow is critical to achieving a balance between economic development and environmental protection as a basis for sustainable watershed development. This paper presents a modeling a...

  14. Effects of inhibitors of vascular endothelial growth factor receptor 2 and downstream pathways of receptor tyrosine kinases involving phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin or mitogen-activated protein kinase in canine hemangiosarcoma cell lines.

    PubMed

    Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Sakai, Hiroki; Takagi, Satoshi

    2016-07-01

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm with no current effective treatment. Previous studies showed that receptor tyrosine kinases and molecules within their downstream pathways involving phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (m-TOR) or mitogen-activated protein kinase (MAPK) were overexpressed in canine, human, and murine tumors, including HSA. The present study investigated the effects of inhibitors of these pathways in canine splenic and hepatic HSA cell lines using assays of cell viability and apoptosis. Inhibitors of the MAPK pathway did not affect canine HSA cell viability. However, cell viability was significantly reduced by exposure to inhibitors of vascular endothelial growth factor receptor 2 and the PI3K/Akt/m-TOR pathway; these inhibitors also induced apoptosis in these cell lines. These results suggest that these inhibitors reduce the proliferation of canine HSA cells by inducing apoptosis. Further study of these inhibitors, using xenograft mouse models of canine HSA, are warranted to explore their potential for clinical application. PMID:27408334

  15. Alternative Activation Mechanisms of Protein Kinase B Trigger Distinct Downstream Signaling Responses*

    PubMed Central

    Balzano, Deborah; Fawal, Mohamad-Ali; Velázquez, Jose V.; Santiveri, Clara M.; Yang, Joshua; Pastor, Joaquín; Campos-Olivas, Ramón; Djouder, Nabil; Lietha, Daniel

    2015-01-01

    Protein kinase B (PKB/Akt) is an important mediator of signals that control various cellular processes including cell survival, growth, proliferation, and metabolism. PKB promotes these processes by phosphorylating many cellular targets, which trigger distinct downstream signaling events. However, how PKB is able to selectively target its substrates to induce specific cellular functions remains elusive. Here we perform a systematic study to dissect mechanisms that regulate intrinsic kinase activity versus mechanisms that specifically regulate activity toward specific substrates. We demonstrate that activation loop phosphorylation and the C-terminal hydrophobic motif are essential for high PKB activity in general. On the other hand, we identify membrane targeting, which for decades has been regarded as an essential step in PKB activation, as a mechanism mainly affecting substrate selectivity. Further, we show that PKB activity in cells can be triggered independently of PI3K by initial hydrophobic motif phosphorylation, presumably through a mechanism analogous to other AGC kinases. Importantly, different modes of PKB activation result in phosphorylation of distinct downstream targets. Our data indicate that specific mechanisms have evolved for signaling nodes, like PKB, to select between various downstream events. Targeting such mechanisms selectively could facilitate the development of therapeutics that might limit toxic side effects. PMID:26286748

  16. Mechanisms contributing to differential regulation of PAX3 downstream target genes in normal human epidermal melanocytes versus melanoma cells.

    PubMed

    Bartlett, Danielle; Boyle, Glen M; Ziman, Mel; Medic, Sandra

    2015-01-01

    Melanoma is a highly aggressive and drug resistant form of skin cancer. It arises from melanocytes, the pigment producing cells of the skin. The formation of these melanocytes is driven by the transcription factor PAX3 early during embryonic development. As a result of alternative splicing, the PAX3 gene gives rise to eight different transcripts which encode isoforms that have different structures and activate different downstream target genes involved in pathways of cell proliferation, migration, differentiation and survival. Furthermore, post-translational modifications have also been shown to alter the functions of PAX3. We previously identified PAX3 downstream target genes in melanocytes and melanoma cells. Here we assessed the effects of PAX3 down-regulation on this panel of target genes in primary melanocytes versus melanoma cells. We show that PAX3 differentially regulates various downstream target genes involved in cell proliferation in melanoma cells compared to melanocytes. To determine mechanisms behind this differential downstream target gene regulation, we performed immunoprecipitation to assess post-translational modifications of the PAX3 protein as well as RNAseq to determine PAX3 transcript expression profiles in melanocytes compared to melanoma cells. Although PAX3 was found to be post-translationally modified, there was no qualitative difference in phosphorylation and ubiquitination between melanocytes and melanoma cells, while acetylation of PAX3 was reduced in melanoma cells. Additionally, there were differences in PAX3 transcript expression profiles between melanocytes and melanoma cells. In particular the PAX3E transcript, responsible for reducing melanocyte proliferation and increasing apoptosis, was found to be down-regulated in melanoma cells compared to melanocytes. These results suggest that alternate transcript expression profiles activate different downstream target genes leading to the melanoma phenotype.

  17. Targeting the cis-dimerization of LINGO-1 with low MW compounds affects its downstream signalling

    PubMed Central

    Cobret, L; De Tauzia, M L; Ferent, J; Traiffort, E; Hénaoui, I; Godin, F; Kellenberger, E; Rognan, D; Pantel, J; Bénédetti, H; Morisset-Lopez, S

    2015-01-01

    Background and Purpose The transmembrane protein LINGO-1 is a negative regulator in the nervous system mainly affecting axonal regeneration, neuronal survival, oligodendrocyte differentiation and myelination. However, the molecular mechanisms regulating its functions are poorly understood. In the present study, we investigated the formation and the role of LINGO-1 cis-dimers in the regulation of its biological activity. Experimental Approach LINGO-1 homodimers were identified in both HEK293 and SH-SY5Y cells using co-immunoprecipitation experiments and BRET saturation analysis. We performed a hypothesis-driven screen for identification of small-molecule protein–protein interaction modulators of LINGO-1 using a BRET-based assay, adapted for screening. The compound identified was further assessed for effects on LINGO-1 downstream signalling pathways using Western blotting analysis and AlphaScreen technology. Key Results LINGO-1 was present as homodimers in primary neuronal cultures. LINGO-1 interacted homotypically in cis-orientation and LINGO-1 cis-dimers were formed early during LINGO-1 biosynthesis. A BRET-based assay allowed us to identify phenoxybenzamine as the first conformational modulator of LINGO-1 dimers. In HEK-293 cells, phenoxybenzamine was a positive modulator of LINGO-1 function, increasing the LINGO-1-mediated inhibition of EGF receptor signalling and Erk phosphorylation. Conclusions and Implications Our data suggest that LINGO-1 forms constitutive cis-dimers at the plasma membrane and that low MW compounds affecting the conformational state of these dimers can regulate LINGO-1 downstream signalling pathways. We propose that targeting the LINGO-1 dimerization interface opens a new pharmacological approach to the modulation of its function and provides a new strategy for drug discovery. PMID:25257685

  18. Human muscle fibre type-specific regulation of AMPK and downstream targets by exercise

    PubMed Central

    Kristensen, Dorte E; Albers, Peter H; Prats, Clara; Baba, Otto; Birk, Jesper B; Wojtaszewski, Jørgen F P

    2015-01-01

    AMP-activated protein kinase (AMPK) is a regulator of energy homeostasis during exercise. Studies suggest muscle fibre type-specific AMPK expression. However, fibre type-specific regulation of AMPK and downstream targets during exercise has not been demonstrated. We hypothesized that AMPK subunits are expressed in a fibre type-dependent manner and that fibre type-specific activation of AMPK and downstream targets is dependent on exercise intensity. Pools of type I and II fibres were prepared from biopsies of vastus lateralis muscle from healthy men before and after two exercise trials: (1) continuous cycling (CON) for 30 min at 69 ± 1% peak rate of O2 consumption () or (2) interval cycling (INT) for 30 min with 6 × 1.5 min high-intensity bouts peaking at 95 ± 2% . In type I vs. II fibres a higher β1 AMPK (+215%) and lower γ3 AMPK expression (−71%) was found. α1, α2, β2 and γ1 AMPK expression was similar between fibre types. In type I vs. II fibres phosphoregulation after CON was similar (AMPKThr172, ACCSer221, TBC1D1Ser231 and GS2+2a) or lower (TBC1D4Ser704). Following INT, phosphoregulation in type I vs. II fibres was lower (AMPKThr172, TBC1D1Ser231, TBC1D4Ser704 and ACCSer221) or higher (GS2+2a). Exercise-induced glycogen degradation in type I vs. II fibres was similar (CON) or lower (INT). In conclusion, a differentiated response to exercise of metabolic signalling/effector proteins in human type I and II fibres was evident during interval exercise. This could be important for exercise type-specific adaptations, i.e. insulin sensitivity and mitochondrial density, and highlights the potential for new discoveries when investigating fibre type-specific signalling. PMID:25640469

  19. RNA Interference Mediated Interleukin-1β Silencing in Inflamed Chondrocytes Decreases Target and Downstream Catabolic Responses.

    PubMed

    Ortved, Kyla F; Austin, Bethany S; Scimeca, Michael S; Nixon, Alan J

    2016-01-01

    Posttraumatic activation of the catabolic cascade plays a major role in degradation of cartilage. Interleukin-1β (IL-1β), a primary instigator in the catabolic axis, is upregulated in chondrocytes following injury. IL-1β activates key degradative enzymes, including MMPs and aggrecanases, and other proinflammatory mediators such as PGE2 which contribute to ECM breakdown. Posttranscriptional silencing of IL-1β by RNA interference (RNAi) may drive a reduction in IL-1β. We hypothesized that transduction of chondrocytes using rAAV2 expressing a short hairpin RNAi motif targeting IL-1β (shIL-1β) would significantly decrease IL-1β expression and, in turn, decrease expression of other catabolic enzymes. Chondrocyte cultures were transduced with rAAV2-tdT-shIL-1β in serum-free media. The fluorescent protein, tdTomato, was used to determine transduction efficiency via flow cytometry and fluorescent microscopy. Cells were stimulated with lipopolysaccharide (LPS) 48 hours following transduction. After 24-hour stimulation, supernatants were collected for cytokine analysis, and cells lysed for gene expression analysis. IL-1β knockdown led to significantly decreased expression of IL-1β, TNF-α, and ADAMTS5. PGE2 synthesis was also significantly downregulated. Overall, effective silencing of IL-1β using rAAV2 vector expressing a short hairpin IL-1β knockdown sequence was shown. Additionally, significant downstream effects were evident, including decreased expression of TNF-α and ADAMTS5. Targeted silencing of catabolic cytokines may provide a promising treatment avenue for osteoarthritic (OA) joints. PMID:27073697

  20. MicroRNA-145 suppresses hepatocellular carcinoma by targeting IRS1 and its downstream Akt signaling

    SciTech Connect

    Wang, Yelin; Hu, Chen; Cheng, Jun; Chen, Binquan; Ke, Qinghong; Lv, Zhen; Wu, Jian; Zhou, Yanfeng

    2014-04-18

    Highlights: • MiR-145 expression is down-regulated in HCC tissues and inversely related with IRS1 levels. • MiR-145 directly targets IRS1 in HCC cells. • Restored expression of miR-145 suppressed HCC cell proliferation and growth. • MiR-145 induced IRS1 under-expression potentially reduced downstream AKT signaling. - Abstract: Accumulating evidences have proved that dysregulation of microRNAs (miRNAs) is involved in cancer initiation and progression. In this study, we showed that miRNA-145 level was significantly decreased in hepatocellular cancer (HCC) tissues and cell lines, and its low expression was inversely associated with the abundance of insulin receptor substrate 1 (IRS1), a key mediator in oncogenic insulin-like growth factor (IGF) signaling. We verified IRS1 as a direct target of miR-145 using Western blotting and luciferase reporter assay. Further, the restoration of miR-145 in HCC cell lines suppressed cancer cell growth, owing to down-regulated IRS1 expression and its downstream Akt/FOXO1 signaling. Our results demonstrated that miR-145 could inhibit HCC through targeting IRS1 and its downstream signaling, implicating the loss of miR-145 regulation may be a potential molecular mechanism causing aberrant oncogenic signaling in HCC.

  1. Pharmacologically targeting the primary defect and downstream pathology in Duchenne muscular dystrophy.

    PubMed

    Fairclough, Rebecca J; Perkins, Kelly J; Davies, Kay E

    2012-06-01

    DMD is a devastatingly progressive muscle wasting disorder of childhood that significantly shortens life expectancy. Despite efforts to develop an effective therapy that dates back over a century, clinical interventions are still restricted to management of symptoms rather than a cure. The rationale to develop effective therapies changed in 1986 with the discovery of the dystrophin gene. Since then extensive research into both the molecular basis and pathophysiology of DMD has paved the way not only for development of strategies which aim to correct the primary defect, but also towards the identification of countless therapeutic targets with the potential to alleviate the downstream pathology. In addition to gene and cell-based therapies, which aim to deliver the missing gene and/or protein, an exciting spectrum of pharmacological approaches aimed at modulating therapeutic targets within DMD muscle cells through the use of small drugs are also being developed. This review presents promising pharmacological approaches aimed at targeting the primary defect, including suppression of nonsense mutations and functional compensation by upregulation of the dystrophin homologue, utrophin. Downstream of the primary membrane fragility, inflammation and fibrosis are reduced by blocking NF-κB, TGF-α and TGF-β, and free radical damage has been targeted using antioxidants and dietary/nutritional supplements. There are new hopes that ACE and PDE5 inhibitors can protect against skeletal as well as cardiac pathology, and modulating Ca2+ influx, NO, BMP, protein degradation and the mitochondrial permeability pore hold further promise in tackling the complex pathogenesis of this multifaceted disorder. PMID:22571500

  2. Nordihydroguaiaretic Acid Inhibits an Activated FGFR3 Mutant, and Blocks Downstream Signaling in Multiple Myeloma Cells

    PubMed Central

    Meyer, April N.; McAndrew, Christopher W.; Donoghue, Daniel J.

    2008-01-01

    Activating mutations within Fibroblast Growth Factor Receptor 3 (FGFR3), a receptor tyrosine kinase, are responsible for human skeletal dysplasias including achondroplasia and the neonatal lethal syndromes, Thanatophoric Dysplasia (TD) type I and II. Several of these same FGFR3 mutations have also been identified somatically in human cancers, including multiple myeloma, bladder carcinoma and cervical cancer. Based on reports that strongly activated mutants of FGFR3 such as the TDII (K650E) mutant signal preferentially from within the secretory pathway, the inhibitory properties of nordihydroguaiaretic acid (NDGA), which blocks protein transport through the Golgi, were investigated. NDGA was able to inhibit FGFR3 autophosphorylation both in vitro and in vivo. In addition, signaling molecules downstream of FGFR3 activation such as STAT1, STAT3 and MAPK were inhibited by NDGA treatment. Using HEK293 cells expressing activated FGFR3-TDII, together with several multiple myeloma cell lines expressing activated forms of FGFR3, NDGA generally resulted in a decrease in MAPK activation by 1 hour, and resulted in increased apoptosis over 24 hours. The effects of NDGA on activated FGFR3 derivatives targeted either to the plasma membrane or the cytoplasm were also examined. These results suggest that inhibitory small molecules such as NDGA that target a specific subcellular compartment may be beneficial in the inhibition of activated receptors such as FGFR3 that signal from the same compartment. PMID:18794123

  3. Proliferating cell nuclear antigen (Pcna) as a direct downstream target gene of Hoxc8

    SciTech Connect

    Min, Hyehyun; Lee, Ji-Yeon; Bok, Jinwoong; Chung, Hyun Joo; Kim, Myoung Hee

    2010-02-19

    Hoxc8 is a member of Hox family transcription factors that play crucial roles in spatiotemporal body patterning during embryogenesis. Hox proteins contain a conserved 61 amino acid homeodomain, which is responsible for recognition and binding of the proteins onto Hox-specific DNA binding motifs and regulates expression of their target genes. Previously, using proteome analysis, we identified Proliferating cell nuclear antigen (Pcna) as one of the putative target genes of Hoxc8. Here, we asked whether Hoxc8 regulates Pcna expression by directly binding to the regulatory sequence of Pcna. In mouse embryos at embryonic day 11.5, the expression pattern of Pcna was similar to that of Hoxc8 along the anteroposterior body axis. Moreover, Pcna transcript levels as well as cell proliferation rate were increased by overexpression of Hoxc8 in C3H10T1/2 mouse embryonic fibroblast cells. Characterization of 2.3 kb genomic sequence upstream of Pcna coding region revealed that the upstream sequence contains several Hox core binding sequences and one Hox-Pbx binding sequence. Direct binding of Hoxc8 proteins to the Pcna regulatory sequence was verified by chromatin immunoprecipitation assay. Taken together, our data suggest that Pcna is a direct downstream target of Hoxc8.

  4. Subthalamic, not striatal, activity correlates with basal ganglia downstream activity in normal and parkinsonian monkeys

    PubMed Central

    Deffains, Marc; Iskhakova, Liliya; Katabi, Shiran; Haber, Suzanne N; Israel, Zvi; Bergman, Hagai

    2016-01-01

    The striatum and the subthalamic nucleus (STN) constitute the input stage of the basal ganglia (BG) network and together innervate BG downstream structures using GABA and glutamate, respectively. Comparison of the neuronal activity in BG input and downstream structures reveals that subthalamic, not striatal, activity fluctuations correlate with modulations in the increase/decrease discharge balance of BG downstream neurons during temporal discounting classical condition task. After induction of parkinsonism with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), abnormal low beta (8-15 Hz) spiking and local field potential (LFP) oscillations resonate across the BG network. Nevertheless, LFP beta oscillations entrain spiking activity of STN, striatal cholinergic interneurons and BG downstream structures, but do not entrain spiking activity of striatal projection neurons. Our results highlight the pivotal role of STN divergent projections in BG physiology and pathophysiology and may explain why STN is such an effective site for invasive treatment of advanced Parkinson's disease and other BG-related disorders. DOI: http://dx.doi.org/10.7554/eLife.16443.001 PMID:27552049

  5. Identification of aurora kinase B and Wee1-like protein kinase as downstream targets of (V600E)B-RAF in melanoma.

    PubMed

    Sharma, Arati; Madhunapantula, SubbaRao V; Gowda, Raghavendra; Berg, Arthur; Neves, Rogerio I; Robertson, Gavin P

    2013-04-01

    BRAF is the most mutated gene in melanoma, with approximately 50% of patients containing V600E mutant protein. (V600E)B-RAF can be targeted using pharmacological agents, but resistance develops in patients by activating other proteins in the signaling pathway. Identifying downstream members in this signaling cascade is important to design strategies to avoid the development of resistance. Unfortunately, downstream proteins remain to be identified and therapeutic potential requires validation. A kinase screen was undertaken to identify downstream targets in the (V600E)B-RAF signaling cascade. Involvement of aurora kinase B (AURKB) and Wee1-like protein kinase (WEE1) as downstream proteins in the (V600E)B-RAF pathway was validated in xenografted tumors, and mechanisms of action were characterized in size- and time-matched tumors. Levels of only AURKB and WEE1 decreased in melanoma cells, when (V600E)B-RAF, mitogen-activated protein kinase 1/2, or extracellular signal-regulated kinase 1/2 protein levels were reduced using siRNA compared with other identified kinases. AURKB and WEE1 were expressed in tumors of patients with melanoma at higher levels than observed in normal human melanocytes. Targeting these proteins reduced tumor development by approximately 70%, similar to that observed when inhibiting (V600E)B-RAF. Furthermore, protein or activity levels of AURKB and WEE1 decreased in melanoma cells when pharmacological agents targeting upstream (V600E)B-RAF or mitogen-activated protein kinase were used to inhibit the (V600E)B-RAF pathway. Thus, AURKB and WEE1 are targets and biomarkers of therapeutic efficacy, lying downstream of (V600E)B-RAF in melanomas.

  6. Identification of Aurora Kinase B and Wee1-Like Protein Kinase as Downstream Targets of V600EB-RAF in Melanoma

    PubMed Central

    Sharma, Arati; Madhunapantula, SubbaRao V.; Gowda, Raghavendra; Berg, Arthur; Neves, Rogerio I.; Robertson, Gavin P.

    2014-01-01

    BRAF is the most mutated gene in melanoma, with approximately 50% of patients containing V600E mutant protein. V600EB-RAF can be targeted using pharmacological agents, but resistance develops in patients by activating other proteins in the signaling pathway. Identifying downstream members in this signaling cascade is important to design strategies to avoid the development of resistance. Unfortunately, downstream proteins remain to be identified and therapeutic potential requires validation. A kinase screen was undertaken to identify downstream targets in the V600EB-RAF signaling cascade. Involvement of aurora kinase B (AURKB) and Wee1-like protein kinase (WEE1) as downstream proteins in the V600EB-RAF pathway was validated in xenografted tumors, and mechanisms of action were characterized in size- and time-matched tumors. Levels of only AURKB and WEE1 decreased in melanoma cells, when V600EB-RAF, mitogen-activated protein kinase 1/2, or extracellular signal–regulated kinase 1/2 protein levels were reduced using siRNA compared with other identified kinases. AURKB and WEE1 were expressed in tumors of patients with melanoma at higher levels than observed in normal human melanocytes. Targeting these proteins reduced tumor development by approximately 70%, similar to that observed when inhibiting V600EB-RAF. Furthermore, protein or activity levels of AURKB and WEE1 decreased in melanoma cells when pharmacological agents targeting upstream V600EB-RAF or mitogen-activated protein kinase were used to inhibit the V600EB-RAF pathway. Thus, AURKB and WEE1 are targets and biomarkers of therapeutic efficacy, lying downstream of V600EB-RAF in melanomas. PMID:23416158

  7. Activation of HuR downstream of p38 MAPK promotes cardiomyocyte hypertrophy.

    PubMed

    Slone, Samuel; Anthony, Sarah R; Wu, Xiaoqing; Benoit, Joshua B; Aube, Jeffrey; Xu, Liang; Tranter, Michael

    2016-11-01

    The RNA binding protein Human antigen R (HuR) interacts with specific AU-rich domains in target mRNAs and is highly expressed in many cell types, including cardiomyocytes. However, the role of HuR in cardiac physiology is largely unknown. Our results show that HuR undergoes cytoplasmic translocation, indicative of its activation, in hypertrophic cardiac myocytes. Specifically, HuR cytoplasmic translocation is significantly increased in NRVMs (neonatal rat ventricular myocytes) following treatment with phenylephrine or angiotensin II, agonists of two independent Gαq-coupled GPCRs known to induce hypertrophy. This Gq-mediated HuR activation is dependent on p38 MAP kinase, but not canonical Gq-PKC signaling. Furthermore, we show that HuR activation is necessary for Gq-mediated hypertrophic growth of NRVMs as siRNA-mediated knockdown of HuR inhibits hypertrophy as measured by cell size and expression of ANF (atrial natriuretic factor). Additionally, HuR overexpression is sufficient to induce hypertrophic cell growth. To decipher the downstream mechanisms by which HuR translocation promotes cardiomyocyte hypertrophy, we assessed the role of HuR in the transcriptional activity of NFAT (nuclear factor of activated T cells), the activation of which is a hallmark of cardiac hypertrophy. Using an NFAT-luciferase reporter assay, we show an acute inhibition of NFAT transcriptional activity following pharmacological inhibition of HuR. In conclusion, our results identify HuR as a novel mediator of cardiac hypertrophy downstream of the Gq-p38 MAPK pathway, and suggest modulation of NFAT activity as a potential mechanism.

  8. Depletion of Mouse Cells from Human Tumor Xenografts Significantly Improves Downstream Analysis of Target Cells.

    PubMed

    Agorku, David J; Tomiuk, Stefan; Klingner, Kerstin; Wild, Stefan; Rüberg, Silvia; Zatrieb, Lisa; Bosio, Andreas; Schueler, Julia; Hardt, Olaf

    2016-01-01

    The use of in vitro cell line models for cancer research has been a useful tool. However, it has been shown that these models fail to reliably mimic patient tumors in different assays(1). Human tumor xenografts represent the gold standard with respect to tumor biology, drug discovery, and metastasis research (2-4). Tumor xenografts can be derived from different types of material like tumor cell lines, tumor tissue from primary patient tumors(4) or serially transplanted tumors. When propagated in vivo, xenografted tissue is infiltrated and vascularized by cells of mouse origin. Multiple factors such as the tumor entity, the origin of xenografted material, growth rate and region of transplantation influence the composition and the amount of mouse cells present in tumor xenografts. However, even when these factors are kept constant, the degree of mouse cell contamination is highly variable. Contaminating mouse cells significantly impair downstream analyses of human tumor xenografts. As mouse fibroblasts show high plating efficacies and proliferation rates, they tend to overgrow cultures of human tumor cells, especially slowly proliferating subpopulations. Mouse cell derived DNA, mRNA, and protein components can bias downstream gene expression analysis, next-generation sequencing, as well as proteome analysis (5). To overcome these limitations, we have developed a fast and easy method to isolate untouched human tumor cells from xenografted tumor tissue. This procedure is based on the comprehensive depletion of cells of mouse origin by combining automated tissue dissociation with the benchtop tissue dissociator and magnetic cell sorting. Here, we demonstrate that human target cells can be can be obtained with purities higher than 96% within less than 20 min independent of the tumor type. PMID:27501218

  9. Mammalian TBX1 preferentially binds and regulates downstream targets via a tandem T-site repeat.

    PubMed

    Castellanos, Raquel; Xie, Qing; Zheng, Deyou; Cvekl, Ales; Morrow, Bernice E

    2014-01-01

    Haploinsufficiency or mutation of TBX1 is largely responsible for the etiology of physical malformations in individuals with velo-cardio-facial/DiGeorge syndrome (VCFS/DGS/22q11.2 deletion syndrome). TBX1 encodes a transcription factor protein that contains an evolutionarily conserved DNA binding domain termed the T-box that is shared with other family members. All T-box proteins, examined so far, bind to similar but not identical consensus DNA sequences, indicating that they have specific binding preferences. To identify the TBX1 specific consensus sequence, Systematic Evolution of Ligands by Exponential Enrichment (SELEX) was performed. In contrast to other TBX family members recognizing palindrome sequences, we found that TBX1 preferentially binds to a tandem repeat of 5'-AGGTGTGAAGGTGTGA-3'. We also identified a second consensus sequence comprised of a tandem repeat with a degenerated downstream site. We show that three known human disease-causing TBX1 missense mutations (F148Y, H194Q and G310S) do not alter nuclear localization, or disrupt binding to the tandem repeat consensus sequences, but they reduce transcriptional activity in cell culture reporter assays. To identify Tbx1-downstream genes, we performed an in silico genome wide analysis of potential cis-acting elements in DNA and found strong enrichment of genes required for developmental processes and transcriptional regulation. We found that TBX1 binds to 19 different loci in vitro, which may correspond to putative cis-acting binding sites. In situ hybridization coupled with luciferase gene reporter assays on three gene loci, Fgf8, Bmper, Otog-MyoD, show that these motifs are directly regulated by TBX1 in vitro. Collectively, the present studies establish new insights into molecular aspects of TBX1 binding to DNA. This work lays the groundwork for future in vivo studies, including chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq) to further elucidate the molecular

  10. Activation of the Syk tyrosine kinase is insufficient for downstream signal transduction in B lymphocytes

    PubMed Central

    Hsueh, Robert C; Hammill, Adrienne M; Lee, Jamie A; Uhr, Jonathan W; Scheuermann, Richard H

    2002-01-01

    Background Immature B lymphocytes and certain B cell lymphomas undergo apoptotic cell death following activation of the B cell antigen receptor (BCR) signal transduction pathway. Several biochemical changes occur in response to BCR engagement, including activation of the Syk tyrosine kinase. Although Syk activation appears to be necessary for some downstream biochemical and cellular responses, the signaling events that precede Syk activation remain ill defined. In addition, the requirements for complete activation of the Syk-dependent signaling step remain to be elucidated. Results A mutant form of Syk carrying a combination of a K395A substitution in the kinase domain and substitutions of three phenylalanines (3F) for the three C-terminal tyrosines was expressed in a murine B cell lymphoma cell line, BCL1.3B3 to interfere with normal Syk regulation as a means to examine the Syk activation step in BCR signaling. Introduction of this kinase-inactive mutant led to the constitutive activation of the endogenous wildtype Syk enzyme in the absence of receptor engagement through a 'dominant-positive' effect. Under these conditions, Syk kinase activation occurred in the absence of phosphorylation on Syk tyrosine residues. Although Syk appears to be required for BCR-induced apoptosis in several systems, no increase in spontaneous cell death was observed in these cells. Surprisingly, although the endogenous Syk kinase was enzymatically active, no enhancement in the phosphorylation of cytoplasmic proteins, including phospholipase Cγ2 (PLCγ2), a direct Syk target, was observed. Conclusion These data indicate that activation of Syk kinase enzymatic activity is insufficient for Syk-dependent signal transduction. This observation suggests that other events are required for efficient signaling. We speculate that localization of the active enzyme to a receptor complex specifically assembled for signal transduction may be the missing event. PMID:12470302

  11. PKN3 is required for malignant prostate cell growth downstream of activated PI 3-kinase

    PubMed Central

    Leenders, Frauke; Möpert, Kristin; Schmiedeknecht, Anett; Santel, Ansgar; Czauderna, Frank; Aleku, Manuela; Penschuck, Silke; Dames, Sibylle; Sternberger, Maria; Röhl, Thomas; Wellmann, Axel; Arnold, Wolfgang; Giese, Klaus; Kaufmann, Jörg; Klippel, Anke

    2004-01-01

    Chronic activation of the phosphoinositide 3-kinase (PI3K)/PTEN signal transduction pathway contributes to metastatic cell growth, but up to now effectors mediating this response are poorly defined. By simulating chronic activation of PI3K signaling experimentally, combined with three-dimensional (3D) culture conditions and gene expression profiling, we aimed to identify novel effectors that contribute to malignant cell growth. Using this approach we identified and validated PKN3, a barely characterized protein kinase C-related molecule, as a novel effector mediating malignant cell growth downstream of activated PI3K. PKN3 is required for invasive prostate cell growth as assessed by 3D cell culture assays and in an orthotopic mouse tumor model by inducible expression of short hairpin RNA (shRNA). We demonstrate that PKN3 is regulated by PI3K at both the expression level and the catalytic activity level. Therefore, PKN3 might represent a preferred target for therapeutic intervention in cancers that lack tumor suppressor PTEN function or depend on chronic activation of PI3K. PMID:15282551

  12. Grainyhead-like 2 downstream targets act to suppress epithelial-to-mesenchymal transition during neural tube closure

    PubMed Central

    Ray, Heather J.; Niswander, Lee A.

    2016-01-01

    The transcription factor grainyhead-like 2 (GRHL2) is expressed in non-neural ectoderm (NNE) and Grhl2 loss results in fully penetrant cranial neural tube defects (NTDs) in mice. GRHL2 activates expression of several epithelial genes; however, additional molecular targets and functional processes regulated by GRHL2 in the NNE remain to be determined, as well as the underlying cause of the NTDs in Grhl2 mutants. Here, we find that Grhl2 loss results in abnormal mesenchymal phenotypes in the NNE, including aberrant vimentin expression and increased cellular dynamics that affects the NNE and neural crest cells. The resulting loss of NNE integrity contributes to an inability of the cranial neural folds to move toward the midline and results in NTD. Further, we identified Esrp1, Sostdc1, Fermt1, Tmprss2 and Lamc2 as novel NNE-expressed genes that are downregulated in Grhl2 mutants. Our in vitro assays show that they act as suppressors of the epithelial-to-mesenchymal transition (EMT). Thus, GRHL2 promotes the epithelial nature of the NNE during the dynamic events of neural tube formation by both activating key epithelial genes and actively suppressing EMT through novel downstream EMT suppressors. PMID:26903501

  13. Neurotensin-induced miR-133α expression regulates neurotensin receptor 1 recycling through its downstream target aftiphilin.

    PubMed

    Law, Ivy Ka Man; Jensen, Dane; Bunnett, Nigel W; Pothoulakis, Charalabos

    2016-01-01

    Neurotensin (NT) triggers signaling in human colonic epithelial cells by activating the G protein-coupled receptor, the neurotensin receptor 1 (NTR1). Activated NTR1 traffics from the plasma membrane to early endosomes, and then recycles. Although sustained NT/NTR1 signaling requires efficient NTR1 recycling, little is known about the regulation of NTR1 recycling. We recently showed that NT/NTR1 signaling increases expression of miR-133α. Herein, we studied the mechanism of NT-regulated miR-133α expression and examined the role of miR-133α in intracellular NTR1 trafficking in human NCM460 colonocytes. We found that NT-induced miR-133α upregulation involves the negative transcription regulator, zinc finger E-box binding homeobox 1. Silencing of miR-133α or overexpression of aftiphilin (AFTPH), a binding target of miR-133α, attenuated NTR1 trafficking to plasma membrane in human colonocytes, without affecting NTR1 internalization. We localized AFTPH to early endosomes and the trans-Golgi network (TGN) in unstimulated human colonic epithelial cells. AFTPH overexpression reduced NTR1 localization in early endosomes and increased expression of proteins related to endosomes and the TGN trafficking pathway. AFTPH overexpression and de-acidification of intracellular vesicles increased NTR1 expression. Our results suggest a novel mechanism of GPCR trafficking in human colonic epithelial cells by which a microRNA, miR-133α regulates NTR1 trafficking through its downstream target AFTPH. PMID:26902265

  14. Neurotensin-induced miR-133α expression regulates neurotensin receptor 1 recycling through its downstream target aftiphilin

    PubMed Central

    Law, Ivy Ka Man; Jensen, Dane; Bunnett, Nigel W.; Pothoulakis, Charalabos

    2016-01-01

    Neurotensin (NT) triggers signaling in human colonic epithelial cells by activating the G protein-coupled receptor, the neurotensin receptor 1 (NTR1). Activated NTR1 traffics from the plasma membrane to early endosomes, and then recycles. Although sustained NT/NTR1 signaling requires efficient NTR1 recycling, little is known about the regulation of NTR1 recycling. We recently showed that NT/NTR1 signaling increases expression of miR-133α. Herein, we studied the mechanism of NT-regulated miR-133α expression and examined the role of miR-133α in intracellular NTR1 trafficking in human NCM460 colonocytes. We found that NT-induced miR-133α upregulation involves the negative transcription regulator, zinc finger E-box binding homeobox 1. Silencing of miR-133α or overexpression of aftiphilin (AFTPH), a binding target of miR-133α, attenuated NTR1 trafficking to plasma membrane in human colonocytes, without affecting NTR1 internalization. We localized AFTPH to early endosomes and the trans-Golgi network (TGN) in unstimulated human colonic epithelial cells. AFTPH overexpression reduced NTR1 localization in early endosomes and increased expression of proteins related to endosomes and the TGN trafficking pathway. AFTPH overexpression and de-acidification of intracellular vesicles increased NTR1 expression. Our results suggest a novel mechanism of GPCR trafficking in human colonic epithelial cells by which a microRNA, miR-133α regulates NTR1 trafficking through its downstream target AFTPH. PMID:26902265

  15. Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway

    PubMed Central

    Leon-Reyes, Antonio; Van der Does, Dieuwertje; De Lange, Elvira S.; Delker, Carolin; Wasternack, Claus; Van Wees, Saskia C. M.; Ritsema, Tita

    2010-01-01

    Jasmonates (JAs) and salicylic acid (SA) are plant hormones that play pivotal roles in the regulation of induced defenses against microbial pathogens and insect herbivores. Their signaling pathways cross-communicate providing the plant with a regulatory potential to finely tune its defense response to the attacker(s) encountered. In Arabidopsis thaliana, SA strongly antagonizes the jasmonic acid (JA) signaling pathway, resulting in the downregulation of a large set of JA-responsive genes, including the marker genes PDF1.2 and VSP2. Induction of JA-responsive marker gene expression by different JA derivatives was equally sensitive to SA-mediated suppression. Activation of genes encoding key enzymes in the JA biosynthesis pathway, such as LOX2, AOS, AOC2, and OPR3 was also repressed by SA, suggesting that the JA biosynthesis pathway may be a target for SA-mediated antagonism. To test this, we made use of the mutant aos/dde2, which is completely blocked in its ability to produce JAs because of a mutation in the ALLENE OXIDE SYNTHASE gene. Mutant aos/dde2 plants did not express the JA-responsive marker genes PDF1.2 or VSP2 in response to infection with the necrotrophic fungus Alternaria brassicicola or the herbivorous insect Pieris rapae. Bypassing JA biosynthesis by exogenous application of methyl jasmonate (MeJA) rescued this JA-responsive phenotype in aos/dde2. Application of SA suppressed MeJA-induced PDF1.2 expression to the same level in the aos/dde2 mutant as in wild-type Col-0 plants, indicating that SA-mediated suppression of JA-responsive gene expression is targeted at a position downstream of the JA biosynthesis pathway. PMID:20839007

  16. Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1.

    PubMed

    Lai, Yu-Chiang; Kondapalli, Chandana; Lehneck, Ronny; Procter, James B; Dill, Brian D; Woodroof, Helen I; Gourlay, Robert; Peggie, Mark; Macartney, Thomas J; Corti, Olga; Corvol, Jean-Christophe; Campbell, David G; Itzen, Aymelt; Trost, Matthias; Muqit, Miratul Mk

    2015-11-12

    Mutations in the PTEN-induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser(65)) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1-dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub-family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser(111)) in response to PINK1 activation. Using phospho-specific antibodies raised against Ser(111) of each of the Rabs, we demonstrate that Rab Ser(111) phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient-derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser(111) phosphorylation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser(111) phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser(65). We further show mechanistically that phosphorylation at Ser(111) significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser(111) may represent novel biomarkers of PINK1 activity in vivo. Our findings also suggest that disruption of Rab GTPase-mediated signalling may represent a major mechanism

  17. Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1.

    PubMed

    Lai, Yu-Chiang; Kondapalli, Chandana; Lehneck, Ronny; Procter, James B; Dill, Brian D; Woodroof, Helen I; Gourlay, Robert; Peggie, Mark; Macartney, Thomas J; Corti, Olga; Corvol, Jean-Christophe; Campbell, David G; Itzen, Aymelt; Trost, Matthias; Muqit, Miratul Mk

    2015-11-12

    Mutations in the PTEN-induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser(65)) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1-dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub-family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser(111)) in response to PINK1 activation. Using phospho-specific antibodies raised against Ser(111) of each of the Rabs, we demonstrate that Rab Ser(111) phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient-derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser(111) phosphorylation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser(111) phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser(65). We further show mechanistically that phosphorylation at Ser(111) significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser(111) may represent novel biomarkers of PINK1 activity in vivo. Our findings also suggest that disruption of Rab GTPase-mediated signalling may represent a major mechanism

  18. Er81 is a downstream target of Pax6 in cortical progenitors

    PubMed Central

    Tuoc, Tran Cong; Stoykova, Anastassia

    2008-01-01

    Background Although the transcription factor Pax6 plays an essential role in neurogenesis, layer formation and arealization in the developing mammalian cortex, the mechanisms by which it accomplishes these regulatory functions are largely unknown. Pax6 and the ETS family transcription factor Er81, which is presumed to play a role in the specification of a sublineage of layer 5 projection neurons, are expressed with a prominent rostrolateral-high to caudomedial-low gradient in cortical progenitors. In the absence of functional Pax6, progenitors do not express Er81 and the rostrolateral cortex lacks Er81-positive layer 5 neurons. In this study, we investigated the transcriptional regulation of Er81 and provide evidence that Er81 is a direct target of Pax6. Results We identified and analyzed the regulatory function of an evolutionarily conserved upstream DNA sequence in the putative mouse Er81 promoter. Three potential Pax6 binding sites were identified in this region. We found that the presence of one of these sites is necessary and sufficient for full activation of the Er81 promoter in Pax6-transfected HeLa cells, while other still unknown factors appear to contribute to Er81 promoter activity in cortical progenitors and neuronal cells. The results suggest that endogenous Pax6, which is expressed at the highest level in progenitors of the rostrolateral cortex, exerts region-specific control of Er81 activity, thus specifying a subpopulation of layer 5 projection neurons. Conclusion We conclude that the genetic interplay between the transcription factors, Pax6 and Er81, is responsible, in part, for the regional specification of a distinct sublineage of layer 5 projection neurons. PMID:18307776

  19. Recombinant expression and downstream processing of the disulfide-rich tumor-targeting peptide chlorotoxin.

    PubMed

    Wang, Xiao-Min; Luo, Xiao; Guo, Zhan-Yun

    2013-10-01

    Chlorotoxin (CTX) is a scorpion-derived disulfide-rich peptide that targets malignant tumors by binding the cell surface matrix metalloproteinase-2 and annexin A2. Various CTXs labeled with functional moieties have shown great potential for tumor diagnosis and treatment. In the present study, we established an efficient approach for preparing mature CTX that may be used for experimental and therapeutic purposes. The designed CTX precursors carried either a 6xHis-tag or a 6xHis-tag and a glutathione transferase (GST)-tag and were recombinantly expressed in Escherichia coli. Following S-sulfonation, the precursors were purified using immobilized metal-ion affinity chromatography. Subsequent to the removal of the tag by enterokinase cleavage and in vitro oxidative refolding, mature CTX was obtained with a considerable yield. The yield of mature CTX whose precursors carried a 6xHis-tag and a GST-tag (2 mg per liter of culture) was ∼10-fold that of the mature CTX whose precursors carried a 6xHis-tag (150-200 μg per liter of culture). The folded CTX inhibited the migration of glioma cells in a concentration-dependent manner, suggesting it was biologically active.

  20. Downstream effect of ramping neural activity through synapses with short-term plasticity

    PubMed Central

    Wei, Wei; Wang, Xiao-Jing

    2016-01-01

    Ramping neuronal activity has been observed in multiple cortical areas correlated with evidence accumulation processes or timing. In this work we investigate the downstream effect of ramping neuronal activity through synapses that display short-term facilitation (STF) or depression (STD). We obtain an analytical result for a synapse driven by deterministic linear ramping input that exhibits pure STF or STD, and investigate the general case when both STF and STD exist numerically. In neural circuits, the ramping inputs usually have strong fluctuation and each downstream neuron receives converging inputs from many presynaptic neurons. We show that the analytical deterministic solution gives an accurate description of the averaging synaptic activation that a postsynaptic neuron receives in a neural circuit, even when the fluctuation in ramping input is strong. Therefore our work provides insights on the impact of ramping neuronal activity on downstream neurons through synapses displaying short-term plasticity. Specifically, activation of a synapse with STF shows a sublinear increase with time and is insensitive to the slopes of ramping inputs during the initial period, followed by a linear ramping similar to a synapse without STF. Activation of a synapse with STD, on the other hand, develops a local maximum before reaching a steady state, which is independent of the slope of ramping input. For a synapse displaying both STF and STD, increase of the depression time constant from a value much smaller than the facilitation time constant τF to a value much larger than τF leads to a transition from facilitation domination to depression domination. By utilizing STD in the corticostriatal synapses, our work provides an understanding of the saturation of striatal activity as observed for monkeys performing evidence accumulation. Our work also predicts that in the fixed duration version of motion discrimination tasks the stationary state of neuronal activity downstream to the

  1. Identification of cyclins A1, E1 and vimentin as downstream targets of heme oxygenase-1 in vascular endothelial growth factor-mediated angiogenesis

    PubMed Central

    Bauer, Andrea; Mylroie, Hayley; Thornton, C. Clare; Calay, Damien; Birdsey, Graeme M.; Kiprianos, Allan P.; Wilson, Garrick K.; Soares, Miguel P.; Yin, Xiaoke; Mayr, Manuel; Randi, Anna M.; Mason, Justin C.

    2016-01-01

    Angiogenesis is an essential physiological process and an important factor in disease pathogenesis. However, its exploitation as a clinical target has achieved limited success and novel molecular targets are required. Although heme oxygenase-1 (HO-1) acts downstream of vascular endothelial growth factor (VEGF) to modulate angiogenesis, knowledge of the mechanisms involved remains limited. We set out identify novel HO-1 targets involved in angiogenesis. HO-1 depletion attenuated VEGF-induced human endothelial cell (EC) proliferation and tube formation. The latter response suggested a role for HO-1 in EC migration, and indeed HO-1 siRNA negatively affected directional migration of EC towards VEGF; a phenotype reversed by HO-1 over-expression. EC from Hmox1−/− mice behaved similarly. Microarray analysis of HO-1-depleted and control EC exposed to VEGF identified cyclins A1 and E1 as HO-1 targets. Migrating HO-1-deficient EC showed increased p27, reduced cyclin A1 and attenuated cyclin-dependent kinase 2 activity. In vivo, cyclin A1 siRNA inhibited VEGF-driven angiogenesis, a response reversed by Ad-HO-1. Proteomics identified structural protein vimentin as an additional VEGF-HO-1 target. HO-1 depletion inhibited VEGF-induced calpain activity and vimentin cleavage, while vimentin silencing attenuated HO-1-driven proliferation. Thus, vimentin and cyclins A1 and E1 represent VEGF-activated HO-1-dependent targets important for VEGF-driven angiogenesis. PMID:27388959

  2. Drosophila Fascin is a novel downstream target of prostaglandin signaling during actin remodeling.

    PubMed

    Groen, Christopher M; Spracklen, Andrew J; Fagan, Tiffany N; Tootle, Tina L

    2012-12-01

    Although prostaglandins (PGs)-lipid signals produced downstream of cyclooxygenase (COX) enzymes-regulate actin cytoskeletal dynamics, their mechanisms of action are unknown. We previously established Drosophila oogenesis, in particular nurse cell dumping, as a new model to determine how PGs regulate actin remodeling. PGs, and thus the Drosophila COX-like enzyme Pxt, are required for both the parallel actin filament bundle formation and the cortical actin strengthening required for dumping. Here we provide the first link between Fascin (Drosophila Singed, Sn), an actin-bundling protein, and PGs. Loss of either pxt or fascin results in similar actin defects. Fascin interacts, both pharmacologically and genetically, with PGs, as reduced Fascin levels enhance the effects of COX inhibition and synergize with reduced Pxt levels to cause both parallel bundle and cortical actin defects. Conversely, overexpression of Fascin in the germline suppresses the effects of COX inhibition and genetic loss of Pxt. These data lead to the conclusion that PGs regulate Fascin to control actin remodeling. This novel interaction has implications beyond Drosophila, as both PGs and Fascin-1, in mammalian systems, contribute to cancer cell migration and invasion.

  3. Uncovering potential downstream targets of oncogenic GRPR overexpression in prostate carcinomas harboring ETS rearrangements

    PubMed Central

    Santos, Joana; Mesquita, Diana; Barros-Silva, João D.; Jerónimo, Carmen; Henrique, Rui; Morais, António; Paulo, Paula; Teixeira, Manuel R.

    2015-01-01

    Gastrin-releasing peptide receptor (GRPR) is known to be overexpressed in several human malignancies, including prostate cancer, and has been implicated in multiple important neoplastic signaling pathways. We recently have shown that GRPR is an ERG and ETV1 target gene in prostate cancer, using a genome-wide scale and exon-level expression microarray platform. Due to its cellular localization, the relevance of its function and the availability of blocking agents, GRPR seems to be a promising candidate as therapeutic target. Our present work shows that effective knockdown of GRPR in LNCaP and VCaP cells attenuates their malignant phenotype by decreasing proliferation, invasion and anchorage-independent growth, while increasing apoptosis. Using an antibody microarray we were able to validate known and identify new targets of GRPR pathway, namely AKT1, PKCε, TYK2 and MST1. Finally, we show that overexpression of these GRPR targets is restricted to prostate carcinomas harboring ERG and/or ETV1 rearrangements, establishing their potential as therapeutic targets for these particular molecular subsets of the disease. PMID:26097883

  4. Downstream Effect of Ramping Neuronal Activity through Synapses with Short-Term Plasticity.

    PubMed

    Wei, Wei; Wang, Xiao-Jing

    2016-04-01

    Ramping neuronal activity refers to spiking activity with a rate that increases quasi-linearly over time. It has been observed in multiple cortical areas and is correlated with evidence accumulation processes or timing. In this work, we investigated the downstream effect of ramping neuronal activity through synapses that display short-term facilitation (STF) or depression (STD). We obtained an analytical result for a synapse driven by deterministic linear ramping input that exhibits pure STF or STD and numerically investigated the general case when a synapse displays both STF and STD. We show that the analytical deterministic solution gives an accurate description of the averaging synaptic activation of many inputs converging onto a postsynaptic neuron, even when fluctuations in the ramping input are strong. Activation of a synapse with STF shows an initial cubical increase with time, followed by a linear ramping similar to a synapse without STF. Activation of a synapse with STD grows in time to a maximum before falling and reaching a plateau, and this steady state is independent of the slope of the ramping input. For a synapse displaying both STF and STD, an increase in the depression time constant from a value much smaller than the facilitation time constant τ(F) to a value much larger than τ(F) leads to a transition from facilitation dominance to depression dominance. Therefore, our work provides insights into the impact of ramping neuronal activity on downstream neurons through synapses that display short-term plasticity. In a perceptual decision-making process, ramping activity has been observed in the parietal and prefrontal cortices, with a slope that decreases with task difficulty. Our work predicts that neurons downstream from such a decision circuit could instead display a firing plateau independent of the task difficulty, provided that the synaptic connection is endowed with short-term depression. PMID:26890350

  5. GTP-dependent association of Raf-1 with Ha-Ras: identification of Raf as a target downstream of Ras in mammalian cells.

    PubMed Central

    Koide, H; Satoh, T; Nakafuku, M; Kaziro, Y

    1993-01-01

    Ras is involved in signal transduction of various factors for growth, differentiation, and oncogenesis. Recent studies have revealed several proteins that function upstream and downstream of the Ras signaling pathway. However, its immediate downstream target molecular has not yet been identified. In an effort to identify the Ras-associated downstream proteins, we added recombinant Ha-Ras in a GTP-bound form to cell-free lysates and used several antibodies against Ras to immunoprecipitate Ras complexes. We found that a serine/threonine kinase, Raf-1, was coimmunoprecipitated with Ha-Ras by two anti-Ras antibodies (LA069 and Y13-238), whereas a neutralizing antibody against Ras (Y13-259) could not precipitate Raf-1. The coimmunoprecipitation was observed with a complex of Ras and guanosine 5'-[gamma- thio]triphosphate but not with a complex of Ras and guanosine 5'-[beta-thio]diphosphate. The GTP-dependent association of Ha-Ras with Raf-1 was observed with lysates of various types of cultured cells, including NIH 3T3, pheochromocytoma (PC) 12, Ba/F3, and Jurkat T cells, and also with crude extracts from rat brain. Furthermore, Raf-1 was precipitated with a transforming Ha-Ras mutant ([Val12]Ras) and wild-type Ha-Ras but not with an effector-region mutant ([Leu35,ARg37]Ras) that lacks transforming activity. These results indicate that Ras.GTP physically associates with Raf either directly or through other component(s) and strongly suggest that Raf functions in close downstream proximity to Ras in mammalian cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8378348

  6. Fyn is a downstream target of the pleiotrophin/receptor protein tyrosine phosphatase beta/zeta-signaling pathway: regulation of tyrosine phosphorylation of Fyn by pleiotrophin.

    PubMed

    Pariser, Harold; Ezquerra, Laura; Herradon, Gonzalo; Perez-Pinera, Pablo; Deuel, Thomas F

    2005-07-01

    Pleiotrophin (PTN the protein, Ptn the gene) signals downstream targets through inactivation of its receptor, the transmembrane receptor protein tyrosine phosphatase (RPTP)beta/zeta, disrupting the balanced activity of RPTPbeta/zeta and the activity of a constitutively active tyrosine kinase. As a consequence of the inactivation of RPTPbeta/zeta, PTN stimulates a sharp increase in the levels of tyrosine phosphorylation of the substrates of RPTPbeta/zeta in PTN-stimulated cells. We now report that the Src family member Fyn interacts with the intracellular domain of RPTPbeta/zeta in a yeast two-hybrid system. We further demonstrate that Fyn is a substrate of RPTPbeta/zeta, and that tyrosine phosphorylation of Fyn is sharply increased in PTN-stimulated cells. In previous studies, we demonstrated that beta-catenin and beta-adducin are targets of the PTN/RPTPbeta/zeta-signaling pathway and defined the mechanisms through which tyrosine phosphorylation of beta-catenin and beta-adducin disrupts cytoskeletal protein complexes. We conclude that Fyn is a downstream target of the PTN/RPTPbeta/zeta-signaling pathway and suggest that PTN coordinately regulates tyrosine phosphorylation of beta-catenin, beta-adducin, and Fyn through the PTN/RPTPbeta/zeta-signaling pathway and that together Fyn, beta-adducin, and beta-catenin may be effectors of the previously described PTN-stimulated disruption of cytoskeletal stability, increased cell plasticity, and loss of cell-cell adhesion that are characteristic of PTN-stimulated cells and a feature of many human malignant cells in which mutations have established constitutive expression of the Ptn gene.

  7. Transcription Factors Expressed in Lateral Organ Boundaries: Identification of Downstream Targets

    SciTech Connect

    Springer, Patricia S

    2010-07-12

    The processes of lateral organ initiation and patterning are central to the generation of mature plant form. Characterization of the molecular mechanisms underlying these processes is essential to our understanding of plant development. Communication between the shoot apical meristem and initiating organ primordia is important both for functioning of the meristem and for proper organ patterning, and very little is known about this process. In particular, the boundary between meristem and leaf is emerging as a critical region that is important for SAM maintenance and regulation of organogenesis. The goal of this project was to characterize three boundary-expressed genes that encode predicted transcription factors. Specifically, we have studied LATERAL ORGAN BOUNDARIES (LOB), LATERAL ORGAN FUSION1 (LOF1), and LATERAL ORGAN FUSION2 (LOF2). LOB encodes the founding member of the LOB-DOMAIN (LBD) plant-specific DNA binding transcription factor family and LOF1 and LOF2 encode paralogous MYB-domain transcription factors. We characterized the genetic relationship between these three genes and other boundary and meristem genes. We also used an ectopic inducible expression system to identify direct targets of LOB.

  8. Nek7 is an essential mediator of NLRP3 activation downstream of potassium efflux

    PubMed Central

    He, Yuan; Zeng, Melody Y.; Yang, Dahai; Motro, Benny; Núñez, Gabriel

    2016-01-01

    Inflammasomes are intracellular protein complexes that drive the activation of inflammatory caspases1. To date, four inflammasomes involving NLRP1, NLRP3, NLRC4 and AIM2 have been described that recruit the common adaptor ASC to activate caspase-1, leading to the secretion of mature IL-1β and IL-182,3. The NLRP3 inflammasome has been implicated in the pathogenesis of several acquired inflammatory diseases4,5 as well as Cryopyrin-associated periodic fever syndromes (CAPS) caused by inherited NLRP3 mutations6,7. Potassium efflux is a common step that is essential for NLRP3 inflammasome activation induced by multiple stimuli8,9. Despite extensive investigation, the molecular mechanism leading to NLRP3 activation in response to potassium efflux remains unknown. We report here the identification of Nek7, a member of the family of mammalian NIMA-related kinases (Neks)10, as an NLRP3-binding protein that acts downstream of potassium efflux to regulate NLRP3 oligomerization and activation. In the absence of Nek7, caspase-1 activation and IL-1β release were abrogated in response to signals that activate NLRP3, but not NLRC4 or AIM2 inflammasome. NLRP3-activating stimuli promoted the NLRP3-Nek7 interaction in a process dependent on potassium efflux. NLRP3 associated with the catalytic domain of Nek7, but the catalytic activity of Nek7 was dispensable for activation of the NLRP3 inflammasome. Activated macrophages formed a high-molecular-mass NLRP3-Nek7 complex, which along with ASC oligomerization and ASC speck formation were abrogated in the absence of Nek7. Nek7 was required for macrophages harboring the CAPS-associated NLRP3R258W activating mutation to activate caspase-1. Mouse chimeras reconstituted with wild-type, Nek7−/− or Nlrp3−/− hematopoietic cells revealed that Nek7 was required for NLRP3 inflammasome activation in vivo. These studies demonstrate that Nek7 is an essential protein that acts downstream of potassium efflux to mediate NLRP3 inflammasome

  9. AKT-STAT3 Pathway as a Downstream Target of EGFR Signaling to Regulate PD-L1 Expression on NSCLC cells

    PubMed Central

    Abdelhamed, Sherif; Ogura, Keisuke; Yokoyama, Satoru; Saiki, Ikuo; Hayakawa, Yoshihiro

    2016-01-01

    While cancer development and progression can be controlled by cytotoxic T cells, it is also known that tumor-specific CD8+T cells become functionally impaired by acquiring a group of inhibitory receptors known as immune checkpoints. Amongst those, programmed death-1 (PD-1) is one of the most recognized negative regulators of T cell function. In non-small lung cancers (NSCLCs), the aberrant activation of epidermal growth factor receptor (EGFR) is known to induce PD-L1 expression and further the treatment with gefitinib, a tyrosine kinase inhibitor (TKI) for EGFR, decrease the expression of PD-L1 on NSCLC. Given the acquired resistance to gefitinib treatment frequently observed by developing secondary-site mutations limiting its efficacy, it is important to understand the downstream mechanism of activated-EGFR signaling for regulating PD-L1 in NSCLC. In this study, we demonstrated that AKT-STAT3 pathway could be a potential target for regulating the surface expression of PD-L1 on NSCLCs with aberrant EGFR activity and, further, the inhibition of AKT or STAT3 activity could down-regulate the expression of PD-L1 even in gefitinib-resistant NSCLCs. These results highlight an importance of AKT-STAT3 pathway as a promising target for potentiating anti-tumor immune responses by regulating PD-L1 expression on cancer cells with aberrant EGFR activity.

  10. The Mediator Complex MED15 Subunit Mediates Activation of Downstream Lipid-Related Genes by the WRINKLED1 Transcription Factor.

    PubMed

    Kim, Mi Jung; Jang, In-Cheol; Chua, Nam-Hai

    2016-07-01

    The Mediator complex is known to be a master coordinator of transcription by RNA polymerase II, and this complex is recruited by transcription factors (TFs) to target promoters for gene activation or repression. The plant-specific TF WRINKLED1 (WRI1) activates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. However, no Mediator subunit has yet been identified that mediates WRI1 transcriptional activity. Promoter-β-glucuronidase fusion experiments showed that MEDIATOR15 (MED15) is expressed in the same cells in the embryo as WRI1. We found that the Arabidopsis (Arabidopsis thaliana) MED15 subunit of the Mediator complex interacts directly with WRI1 in the nucleus. Overexpression of MED15 or WRI1 increased transcript levels of WRI1 target genes involved in glycolysis and fatty acid biosynthesis; these genes were down-regulated in wild-type or WRI1-overexpressing plants by silencing of MED15 However, overexpression of MED15 in the wri1 mutant also increased transcript levels of WRI1 target genes, suggesting that MED15 also may act with other TFs to activate downstream lipid-related genes. Chromatin immunoprecipitation assays confirmed the association of MED15 with six WRI1 target gene promoters. Additionally, silencing of MED15 resulted in reduced fatty acid content in seedlings and mature seeds, whereas MED15 overexpression increased fatty acid content in both developmental stages. Similar results were found in wri1 mutant and WRI1 overexpression lines. Together, our results indicate that the WRI1/MED15 complex transcriptionally regulates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. PMID:27246098

  11. Anomalous altered expressions of downstream gene-targets in TP53-miRNA pathways in head and neck cancer.

    PubMed

    Mitra, Sanga; Mukherjee, Nupur; Das, Smarajit; Das, Pijush; Panda, Chinmay Kumar; Chakrabarti, Jayprokas

    2014-01-01

    The prevalence of head and neck squamous cell carcinoma, HNSCC, continues to grow. Change in the expression of TP53 in HNSCC affects its downstream miRNAs and their gene targets, anomalously altering the expressions of the five genes, MEIS1, AGTR1, DTL, TYMS and BAK1. These expression alterations follow the repression of TP53 that upregulates miRNA-107, miRNA- 215, miRNA-34 b/c and miRNA-125b, but downregulates miRNA-155. The above five so far unreported genes are the targets of these miRNAs. Meta-analyses of microarray and RNA-Seq data followed by qRT-PCR validation unravel these new ones in HNSCC. The regulatory roles of TP53 on miRNA-155 and miRNA-125b differentiate the expressions of AGTR1 and BAK1in HNSCC vis-à-vis other carcinogenesis. Expression changes alter cell cycle regulation, angiogenic and blood cell formation, and apoptotic modes in affliction. Pathway analyses establish the resulting systems-level functional and mechanistic insights into the etiology of HNSCC.

  12. Rbfox proteins regulate microRNA biogenesis by sequence-specific binding to their precursors and target downstream Dicer

    PubMed Central

    Chen, Yu; Zubovic, Lorena; Yang, Fan; Godin, Katherine; Pavelitz, Tom; Castellanos, Javier; Macchi, Paolo; Varani, Gabriele

    2016-01-01

    Rbfox proteins regulate tissue-specific splicing by targeting a conserved GCAUG sequence within pre-mRNAs. We report here that sequence-specific binding of the conserved Rbfox RRM to miRNA precursors containing the same sequence motif in their terminal loops, including miR-20b and miR-107, suppresses their nuclear processing. The structure of the complex between precursor miR-20b and Rbfox RRM shows the molecular basis for recognition, and reveals changes in the stem-loop upon protein binding. In mammalian cells, Rbfox2 downregulates mature miR-20b and miR-107 levels and increases the expression of their downstream targets PTEN and Dicer, respectively, suggesting that Rbfox2 indirectly regulates many more cellular miRNAs. Thus, some of the widespread cellular functions of Rbfox2 protein are attributable to regulation of miRNA biogenesis, and might include the mis-regulation of miR-20b and miR-107 in cancer and neurodegeneration. PMID:27001519

  13. Rbfox proteins regulate microRNA biogenesis by sequence-specific binding to their precursors and target downstream Dicer.

    PubMed

    Chen, Yu; Zubovic, Lorena; Yang, Fan; Godin, Katherine; Pavelitz, Tom; Castellanos, Javier; Macchi, Paolo; Varani, Gabriele

    2016-05-19

    Rbfox proteins regulate tissue-specific splicing by targeting a conserved GCAUG sequence within pre-mRNAs. We report here that sequence-specific binding of the conserved Rbfox RRM to miRNA precursors containing the same sequence motif in their terminal loops, including miR-20b and miR-107, suppresses their nuclear processing. The structure of the complex between precursor miR-20b and Rbfox RRM shows the molecular basis for recognition, and reveals changes in the stem-loop upon protein binding. In mammalian cells, Rbfox2 downregulates mature miR-20b and miR-107 levels and increases the expression of their downstream targets PTEN and Dicer, respectively, suggesting that Rbfox2 indirectly regulates many more cellular miRNAs. Thus, some of the widespread cellular functions of Rbfox2 protein are attributable to regulation of miRNA biogenesis, and might include the mis-regulation of miR-20b and miR-107 in cancer and neurodegeneration. PMID:27001519

  14. Therapeutic effects of cell-permeant peptides that activate G proteins downstream of growth factors

    PubMed Central

    Ma, Gary S.; Aznar, Nicolas; Kalogriopoulos, Nicholas; Midde, Krishna K.; Lopez-Sanchez, Inmaculada; Sato, Emi; Dunkel, Ying; Gallo, Richard L.; Ghosh, Pradipta

    2015-01-01

    In eukaryotes, receptor tyrosine kinases (RTKs) and trimeric G proteins are two major signaling hubs. Signal transduction via trimeric G proteins has long been believed to be triggered exclusively by G protein-coupled receptors (GPCRs). This paradigm has recently been challenged by several studies on a multimodular signal transducer, Gα-Interacting Vesicle associated protein (GIV/Girdin). We recently demonstrated that GIV’s C terminus (CT) serves as a platform for dynamic association of ligand-activated RTKs with Gαi, and for noncanonical transactivation of G proteins. However, exogenous manipulation of this platform has remained beyond reach. Here we developed cell-permeable GIV-CT peptides by fusing a TAT-peptide transduction domain (TAT-PTD) to the minimal modular elements of GIV that are necessary and sufficient for activation of Gi downstream of RTKs, and used them to engineer signaling networks and alter cell behavior. In the presence of an intact GEF motif, TAT-GIV-CT peptides enhanced diverse processes in which GIV’s GEF function has previously been implicated, e.g., 2D cell migration after scratch-wounding, invasion of cancer cells, and finally, myofibroblast activation and collagen production. Furthermore, topical application of TAT-GIV-CT peptides enhanced the complex, multireceptor-driven process of wound repair in mice in a GEF-dependent manner. Thus, TAT-GIV peptides provide a novel and versatile tool to manipulate Gαi activation downstream of growth factors in a diverse array of pathophysiologic conditions. PMID:25926659

  15. PREX1 Protein Function Is Negatively Regulated Downstream of Receptor Tyrosine Kinase Activation by p21-activated Kinases (PAKs).

    PubMed

    Barrows, Douglas; He, John Z; Parsons, Ramon

    2016-09-16

    Downstream of receptor tyrosine kinase and G protein-coupled receptor (GPCR) stimulation, the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchange factor (PREX) family of guanine nucleotide exchange factors (GEFs) activates Rho GTPases, leading to important roles for PREX proteins in numerous cellular processes and diseases, including cancer. PREX1 and PREX2 GEF activity is activated by the second messengers PIP3 and Gβγ, and further regulation of PREX GEF activity occurs by phosphorylation. Stimulation of receptor tyrosine kinases by neuregulin and insulin-like growth factor 1 (IGF1) leads to the phosphorylation of PREX1; however, the kinases that phosphorylate PREX1 downstream of these ligands are not known. We recently reported that the p21-activated kinases (PAKs), which are activated by GTP-bound Ras-related C3 botulinum toxin substrate 1 (Rac1), mediate the phosphorylation of PREX2 after insulin receptor activation. Here we show that certain phosphorylation events on PREX1 after insulin, neuregulin, and IGF1 treatment are PAK-dependent and lead to a reduction in PREX1 binding to PIP3 Like PREX2, PAK-mediated phosphorylation also negatively regulates PREX1 GEF activity. Furthermore, the onset of PREX1 phosphorylation was delayed compared with the phosphorylation of AKT, supporting a model of negative feedback downstream of PREX1 activation. We also found that the phosphorylation of PREX1 after isoproterenol and prostaglandin E2-mediated GPCR activation is partially PAK-dependent and likely also involves protein kinase A, which is known to reduce PREX1 function. Our data point to multiple mechanisms of PREX1 negative regulation by PAKs within receptor tyrosine kinase and GPCR-stimulated signaling pathways that have important roles in diseases such as diabetes and cancer. PMID:27481946

  16. Identification of Candidate Downstream Targets of TGFβ Signaling During Palate Development by Genome-Wide Transcript Profiling

    PubMed Central

    Suzuki, Akiko; Chai, Yang; Hacia, Joseph G.

    2013-01-01

    Nonsyndromic orofacial clefts are common birth defects whose etiology is influenced by complex genetic and environmental factors and gene–environment interactions. Although these risk factors are not yet fully elucidated, it is known that alterations in transforming growth factor-beta (TGFβ) signaling can cause craniofacial abnormalities, including cleft palate, in mammals. To elucidate the downstream targets of TGFβ signaling in palatogenesis, we analyzed the gene expression profiles of Tgfbr2fl/fl;Wnt1-Cre mouse embryos with cleft palate and other craniofacial deformities resulting from the targeted inactivation of the Tgfbr2 gene in their cranial neural crest (CNC) cells. Relative to controls, palatal tissues obtained from Tgfbr2fl/fl;Wnt1-Cre mouse embryos at embryonic day 14.5 (E14.5) of gestation have a robust gene expression signature reflective of known defects in CNC-derived mesenchymal cell proliferation. Groups of differentially expressed genes (DEGs) were involved in diverse cellular processes and components associated with orofacial clefting, including the extracellular matrix, cholesterol metabolism, ciliogenesis, and multiple signaling pathways. A subset of the DEGs are known or suspected to be associated with an increased risk of orofacial clefting in humans and/or genetically engineered mice. Based on bioinformatics analyses, we highlight the functional relationships among differentially expressed transcriptional regulators of palatogenesis as well as transcriptional factors not previously associated with this process. We suggest that gene expression profiling studies of mice with TGFβ signaling defects provide a valuable approach for identifying candidate mechanisms by which this pathway controls cell fate during palatogenesis and its role in the etiology of human craniofacial abnormalities. PMID:23060211

  17. Salicylic Acid Suppresses Jasmonic Acid Signaling Downstream of SCFCOI1-JAZ by Targeting GCC Promoter Motifs via Transcription Factor ORA59[C][W][OA

    PubMed Central

    Van der Does, Dieuwertje; Leon-Reyes, Antonio; Koornneef, Annemart; Van Verk, Marcel C.; Rodenburg, Nicole; Pauwels, Laurens; Goossens, Alain; Körbes, Ana P.; Memelink, Johan; Ritsema, Tita; Van Wees, Saskia C.M.; Pieterse, Corné M.J.

    2013-01-01

    Antagonism between the defense hormones salicylic acid (SA) and jasmonic acid (JA) plays a central role in the modulation of the plant immune signaling network, but the molecular mechanisms underlying this phenomenon are largely unknown. Here, we demonstrate that suppression of the JA pathway by SA functions downstream of the E3 ubiquitin-ligase Skip-Cullin-F-box complex SCFCOI1, which targets JASMONATE ZIM-domain transcriptional repressor proteins (JAZs) for proteasome-mediated degradation. In addition, neither the stability nor the JA-induced degradation of JAZs was affected by SA. In silico promoter analysis of the SA/JA crosstalk transcriptome revealed that the 1-kb promoter regions of JA-responsive genes that are suppressed by SA are significantly enriched in the JA-responsive GCC-box motifs. Using GCC:GUS lines carrying four copies of the GCC-box fused to the β-glucuronidase reporter gene, we showed that the GCC-box motif is sufficient for SA-mediated suppression of JA-responsive gene expression. Using plants overexpressing the GCC-box binding APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factors ERF1 or ORA59, we found that SA strongly reduces the accumulation of ORA59 but not that of ERF1. Collectively, these data indicate that the SA pathway inhibits JA signaling downstream of the SCFCOI1-JAZ complex by targeting GCC-box motifs in JA-responsive promoters via a negative effect on the transcriptional activator ORA59. PMID:23435661

  18. Targeting TRAP1 as a downstream effector of BRAF cytoprotective pathway: A novel strategy for human BRAF-driven colorectal carcinoma

    PubMed Central

    Sisinni, Lorenza; Lettini, Giacomo; Matassa, Danilo Swann; Piscazzi, Annamaria; Palladino, Giuseppe; Amoroso, Maria Rosaria; Esposito, Franca; Landriscina, Matteo

    2015-01-01

    The HSP90 chaperone TRAP1 is translational regulator of BRAF synthesis/ubiquitination, since BRAF down-regulation, ERK signaling inhibition and delay of cell cycle progression occur upon TRAP1 silencing/inhibition. Since TRAP1 is upregulated in human colorectal carcinomas (CRCs) and involved in protection from apoptosis and as human BRAF-driven CRCs are poorly responsive to anticancer therapies, the relationship between TRAP1 regulation of mitochondrial apoptotic pathway and BRAF antiapoptotic signaling has been further evaluated. This study reports that BRAF cytoprotective signaling involves TRAP1-dependent inhibition of the mitochondrial apoptotic pathway. It is worth noting that BRAF and TRAP1 interact and that the activation of BRAF signaling results in enhanced TRAP1 serine-phosphorylation, a condition associated with resistance to apoptosis. Consistently, a BRAF dominant-negative mutant prevents TRAP1 serine phosphorylation and restores drug sensitivity in BRAFV600E CRC drug-resistant cells with high TRAP1 levels. In addition, TRAP1 targeting by the mitochondria-directed HSP90 chaperones inhibitor gamitrinib induces apoptosis and inhibits colony formation in BRAF-driven CRC cells. Thus, TRAP1 is a downstream effector of BRAF cytoprotective pathway in mitochondria and TRAP1 targeting may represent a novel strategy to improve the activity of proapoptotic agents in BRAF-driven CRC cells. PMID:26084290

  19. Arsenic-induced mitochondrial oxidative damage is mediated by decreased PGC-1α expression and its downstream targets in rat brain.

    PubMed

    Prakash, Chandra; Kumar, Vijay

    2016-08-25

    The present study was carried out to investigate the molecular mechanism of arsenic-induced mitochondrial oxidative damage and its relation to biogenesis in rat brain. Chronic sodium arsenite (25 ppm, orally) administration for 12 weeks decreased mitochondrial complexes activities and mRNA expression of selective complexes subunits. The expression of mitochondrial biogenesis regulator PGC-1α, and its downstream targets NRF-1, NRF-2 and Tfam were decreased significantly both at mRNA and protein levels suggesting impaired biogenesis following chronic arsenic-exposure. In addition to this, protein expression analysis also revealed activation of Bax and caspase-3, leading to translocation of cytochrome c from mitochondria to cytosol suggesting induction of apoptotic pathway under oxidative stress. This was further confirmed by electron microscopy study which depicted morphological changes in mitochondria in terms of altered nuclear and mitochondrial shape and chromatin condensation in arsenic-treated rats. The immunohistochemical studies showed both nuclear and cytosolic localization of NRF-1 and NRF-2 in arsenic-exposed rat brain further suggesting regulatory role of these transcription factors under arsenic neurotoxicity. The results of present study indicate that arsenic-induced mitochondrial oxidative damage is associated with decreased mitochondrial biogenesis in rat brain that may present as important target to reveal the mechanism for arsenic-induced neurotoxicity. PMID:27425645

  20. Targeting TRAP1 as a downstream effector of BRAF cytoprotective pathway: a novel strategy for human BRAF-driven colorectal carcinoma.

    PubMed

    Condelli, Valentina; Maddalena, Francesca; Sisinni, Lorenza; Lettini, Giacomo; Matassa, Danilo Swann; Piscazzi, Annamaria; Palladino, Giuseppe; Amoroso, Maria Rosaria; Esposito, Franca; Landriscina, Matteo

    2015-09-01

    The HSP90 chaperone TRAP1 is translational regulator of BRAF synthesis/ubiquitination, since BRAF down-regulation, ERK signaling inhibition and delay of cell cycle progression occur upon TRAP1 silencing/inhibition. Since TRAP1 is upregulated in human colorectal carcinomas (CRCs) and involved in protection from apoptosis and as human BRAF-driven CRCs are poorly responsive to anticancer therapies, the relationship between TRAP1 regulation of mitochondrial apoptotic pathway and BRAF antiapoptotic signaling has been further evaluated. This study reports that BRAF cytoprotective signaling involves TRAP1-dependent inhibition of the mitochondrial apoptotic pathway. It is worth noting that BRAF and TRAP1 interact and that the activation of BRAF signaling results in enhanced TRAP1 serine-phosphorylation, a condition associated with resistance to apoptosis. Consistently, a BRAF dominant-negative mutant prevents TRAP1 serine phosphorylation and restores drug sensitivity in BRAFV600E CRC drug-resistant cells with high TRAP1 levels. In addition, TRAP1 targeting by the mitochondria-directed HSP90 chaperones inhibitor gamitrinib induces apoptosis and inhibits colony formation in BRAF-driven CRC cells. Thus, TRAP1 is a downstream effector of BRAF cytoprotective pathway in mitochondria and TRAP1 targeting may represent a novel strategy to improve the activity of proapoptotic agents in BRAF-driven CRC cells. PMID:26084290

  1. Epigenetic regulation of miRNA-124 and multiple downstream targets is associated with treatment response in myeloid malignancies

    PubMed Central

    Liu, Hongbin; Pattie, Phillip; Chandrasekara, Sahan; Spencer, Andrew; Dear, Anthony E.

    2016-01-01

    Epigenetic regulation of microRNA (miRNA) expression has recently been implicated in the pathogenesis of myelodysplastic syndrome (MDS). Particular interest has focused on miRNA-124 expression, which is inhibited in MDS and has recently been demonstrated to be upregulated in response to epigenetic treatment (EGT). Previous studies have determined the in vitro and in vivo expression of miRNA-124 and several molecular targets, including cyclin-dependent kinase (CDK) 4, CDK6 and enhancer of zeste homolog 2 (EZH2), in order to elucidate the molecular mechanisms associated with the miRNA-124-mediated therapeutic response to EGT in MDS and identify additional potential biomarkers of early EGT treatment response in myeloid malignancies. In vitro studies in the HL60 leukemic cell line identified upregulation of miRNA-124 expression in response to single-agent EGT with either azacytidine (AZA) or the histone deacetylase inhibitor panobinostat (LBH589). Combination EGT with AZA and LBH589 resulted in significant additive induction of miRNA-124 expression. Expression of downstream targets of miRNA-124, including CDK4, CDK6 and EZH2, in response to single agent and combined EGT was determined in HL60 cells. Single and combination EGT treatment resulted in inhibition of CDK4, CDK6 and EZH2 expression with combination EGT resulting in a significant and additive inhibitory effect. In vivo studies using peripheral blood mononuclear cells from patients receiving combination EGT for high risk MDS or acute myeloid leukemia demonstrated significant induction of miRNA-124 and inhibition CDK4 and CDK6 messenger (m)RNA expression in patients that responded to combination EGT. A trend to inhibited EZH2 mRNA expression was also identified in response to combination EGT. Overall, the present observations identify a potential molecular mechanism for miRNA-124-mediated response to EGT involving regulation of CDK4, CDK6 and EZH2 expression. In addition, the present findings further qualify mi

  2. Epigenetic regulation of miRNA-124 and multiple downstream targets is associated with treatment response in myeloid malignancies

    PubMed Central

    Liu, Hongbin; Pattie, Phillip; Chandrasekara, Sahan; Spencer, Andrew; Dear, Anthony E.

    2016-01-01

    Epigenetic regulation of microRNA (miRNA) expression has recently been implicated in the pathogenesis of myelodysplastic syndrome (MDS). Particular interest has focused on miRNA-124 expression, which is inhibited in MDS and has recently been demonstrated to be upregulated in response to epigenetic treatment (EGT). Previous studies have determined the in vitro and in vivo expression of miRNA-124 and several molecular targets, including cyclin-dependent kinase (CDK) 4, CDK6 and enhancer of zeste homolog 2 (EZH2), in order to elucidate the molecular mechanisms associated with the miRNA-124-mediated therapeutic response to EGT in MDS and identify additional potential biomarkers of early EGT treatment response in myeloid malignancies. In vitro studies in the HL60 leukemic cell line identified upregulation of miRNA-124 expression in response to single-agent EGT with either azacytidine (AZA) or the histone deacetylase inhibitor panobinostat (LBH589). Combination EGT with AZA and LBH589 resulted in significant additive induction of miRNA-124 expression. Expression of downstream targets of miRNA-124, including CDK4, CDK6 and EZH2, in response to single agent and combined EGT was determined in HL60 cells. Single and combination EGT treatment resulted in inhibition of CDK4, CDK6 and EZH2 expression with combination EGT resulting in a significant and additive inhibitory effect. In vivo studies using peripheral blood mononuclear cells from patients receiving combination EGT for high risk MDS or acute myeloid leukemia demonstrated significant induction of miRNA-124 and inhibition CDK4 and CDK6 messenger (m)RNA expression in patients that responded to combination EGT. A trend to inhibited EZH2 mRNA expression was also identified in response to combination EGT. Overall, the present observations identify a potential molecular mechanism for miRNA-124-mediated response to EGT involving regulation of CDK4, CDK6 and EZH2 expression. In addition, the present findings further qualify mi

  3. Inhibition of Rac GTPase signaling and downstream prosurvival Bcl-2 proteins as combination targeted therapy in MLL-AF9 leukemia.

    PubMed

    Mizukawa, Benjamin; Wei, Junping; Shrestha, Mahesh; Wunderlich, Mark; Chou, Fu-Sheng; Griesinger, Andrea; Harris, Chad E; Kumar, Ashish R; Zheng, Yi; Williams, David A; Mulloy, James C

    2011-11-10

    The Rac family of small Rho GTPases coordinates diverse cellular functions in hematopoietic cells including adhesion, migration, cytoskeleton rearrangements, gene transcription, proliferation, and survival. The integrity of Rac signaling has also been found to critically regulate cellular functions in the initiation and maintenance of hematopoietic malignancies. Using an in vivo gene targeting approach, we demonstrate that Rac2, but not Rac1, is critical to the initiation of acute myeloid leukemia in a retroviral expression model of MLL-AF9 leukemogenesis. However, loss of either Rac1 or Rac2 is sufficient to impair survival and growth of the transformed MLL-AF9 leukemia. Rac2 is known to positively regulate expression of Bcl-2 family proteins toward a prosurvival balance. We demonstrate that disruption of downstream survival signaling through antiapoptotic Bcl-2 proteins is implicated in mediating the effects of Rac2 deficiency in MLL-AF9 leukemia. Indeed, overexpression of Bcl-xL is able to rescue the effects of Rac2 deficiency and MLL-AF9 cells are exquisitely sensitive to direct inhibition of Bcl-2 family proteins by the BH3-mimetic, ABT-737. Furthermore, concurrent exposure to NSC23766, a small-molecule inhibitor of Rac activation, increases the apoptotic effect of ABT-737, indicating the Rac/Bcl-2 survival pathway may be targeted synergistically.

  4. NLRP3 inflammasome activation downstream of cytoplasmic LPS recognition by both caspase-4 and caspase-5.

    PubMed

    Baker, Paul J; Boucher, Dave; Bierschenk, Damien; Tebartz, Christina; Whitney, Paul G; D'Silva, Damian B; Tanzer, Maria C; Monteleone, Mercedes; Robertson, Avril A B; Cooper, Matthew A; Alvarez-Diaz, Silvia; Herold, Marco J; Bedoui, Sammy; Schroder, Kate; Masters, Seth L

    2015-10-01

    Humans encode two inflammatory caspases that detect cytoplasmic LPS, caspase-4 and caspase-5. When activated, these trigger pyroptotic cell death and caspase-1-dependent IL-1β production; however the mechanism underlying this process is not yet confirmed. We now show that a specific NLRP3 inhibitor, MCC950, prevents caspase-4/5-dependent IL-1β production elicited by transfected LPS. Given that both caspase-4 and caspase-5 can detect cytoplasmic LPS, it is possible that these proteins exhibit some degree of redundancy. Therefore, we generated human monocytic cell lines in which caspase-4 and caspase-5 were genetically deleted either individually or together. We found that the deletion of caspase-4 suppressed cell death and IL-1β production following transfection of LPS into the cytoplasm, or in response to infection with Salmonella typhimurium. Although deletion of caspase-5 did not confer protection against transfected LPS, cell death and IL-1β production were reduced after infection with Salmonella. Furthermore, double deletion of caspase-4 and caspase-5 had a synergistic effect in the context of Salmonella infection. Our results identify the NLRP3 inflammasome as the specific platform for IL-1β maturation, downstream of cytoplasmic LPS detection by caspase-4/5. We also show that both caspase-4 and caspase-5 are functionally important for appropriate responses to intracellular Gram-negative bacteria.

  5. Egr1 protein acts downstream of estrogen-leukemia inhibitory factor (LIF)-STAT3 pathway and plays a role during implantation through targeting Wnt4.

    PubMed

    Liang, Xiao-Huan; Deng, Wen-Bo; Li, Ming; Zhao, Zhen-Ao; Wang, Tong-Song; Feng, Xu-Hui; Cao, Yu-Jing; Duan, En-Kui; Yang, Zeng-Ming

    2014-08-22

    Embryo implantation is a highly synchronized process between an activated blastocyst and a receptive uterus. Successful implantation relies on the dynamic interplay of estrogen and progesterone, but the key mediators underlying embryo implantation are not fully understood. Here we show that transcription factor early growth response 1 (Egr1) is regulated by estrogen as a downstream target through leukemia inhibitory factor (LIF) signal transducer and activator of transcription 3 (STAT3) pathway in mouse uterus. Egr1 is localized in the subluminal stromal cells surrounding the implanting embryo on day 5 of pregnancy. Estrogen rapidly, markedly, and transiently enhances Egr1 expression in uterine stromal cells, which fails in estrogen receptor α knock-out mouse uteri. STAT3 is phosphorylated by LIF and subsequently recruited on Egr1 promoter to induce its expression. Our results of Egr1 expression under induced decidualization in vivo and in vitro show that Egr1 is rapidly induced after deciduogenic stimulus. Egr1 knockdown can inhibit in vitro decidualization of cultured uterine stromal cells. Chromatin immunoprecipitation data show that Egr1 is recruited to the promoter of wingless-related murine mammary tumor virus integration site 4 (Wnt4). Collectively, our study presents for the first time that estrogen regulates Egr1 expression through LIF-STAT3 signaling pathway in mouse uterus, and Egr1 functions as a critical mediator of stromal cell decidualization by regulating Wnt4. PMID:25012664

  6. Plk3 Interacts with and Specifically Phosphorylates VRK1 in Ser342, a Downstream Target in a Pathway That Induces Golgi Fragmentation▿ †

    PubMed Central

    López-Sánchez, Inmaculada; Sanz-García, Marta; Lazo, Pedro A.

    2009-01-01

    Golgi fragmentation is a process that is necessary to allow its redistribution into daughter cells during mitosis, a process controlled by serine-threonine kinases. This Golgi fragmentation is activated by MEK1 and Plk3. Plk3 is a kinase that is a downstream target in the Golgi fragmentation pathway induced by MEK1 or by nocodazole. In this work, we have identified that Plk3 and VRK1 are two consecutive steps in this signaling pathway. Plk3 interacts with VRK1, forming a stable complex detected by reciprocal immunoprecipitations and pull-down assays; VRK1 colocalizes with giantin in the Golgi apparatus, as Plk3 also does, forming clearly detectable granules. VRK1 does not phosphorylate Plk3, but Plk3 phosphorylates the C-terminal region of VRK1 in Ser342. VRK1 with substitutions in S342 is catalytically active but blocks Golgi fragmentation, indicating that its specific phosphorylation is necessary for this process. The induction of Golgi fragmentation by MEK1 and Plk3 can be inhibited by kinase-dead VRK1, the knockdown of VRK1 by siVRK1, kinase-dead Plk3, or PD98059, a MEK1 inhibitor. The Plk3-VRK1 kinase module might represent two consecutive steps of a signaling cascade that participates in the regulation of Golgi fragmentation. PMID:19103756

  7. LATERAL ROOT PRIMORDIA 1 of maize acts as a transcriptional activator in auxin signalling downstream of the Aux/IAA gene rootless with undetectable meristem 1.

    PubMed

    Zhang, Yanxiang; von Behrens, Inga; Zimmermann, Roman; Ludwig, Yvonne; Hey, Stefan; Hochholdinger, Frank

    2015-07-01

    Only little is known about target genes of auxin signalling downstream of the Aux/IAA-ARF module. In the present study, it has been demonstrated that maize lateral root primordia 1 (lrp1) encodes a transcriptional activator that is directly regulated by the Aux/IAA protein ROOTLESS WITH UNDETECTABLE MERISTEM 1 (RUM1). Expression of lrp1 is confined to early root primordia and meristems and is auxin-inducible. Based on its primary protein structure, LRP1 is predicted to be a transcription factor. This notion is supported by exclusive LRP1 localization in the nucleus and its ability to activate downstream gene activity. Based on the observation that lrp1 transcription is completely repressed in the semi-dominant gain of function mutant rum1, it was demonstrated that the lrp1 promoter is a direct target of RUM1 proteins. Subsequently, promoter activation assays indicated that RUM1 represses the expression of a GFP reporter fused to the native promoter of lrp1. Constitutive repression of lrp1 in rum1 mutants is a consequence of the stability of mutated rum1 proteins which cannot be degraded by the proteasome and thus constitutively bind to the lrp1 promoter and repress transcription. Taken together, the repression of the transcriptional activator lrp1 by direct binding of RUM1 to its promoter, together with specific expression of lrp1 in root meristems, suggests a function in maize root development via the RUM1-dependent auxin signalling pathway. PMID:25911745

  8. Occurrence, bioaccumulation and risk assessment of lipophilic pharmaceutically active compounds in the downstream rivers of sewage treatment plants.

    PubMed

    Liu, Jianchao; Lu, Guanghua; Xie, Zhengxin; Zhang, Zhenghua; Li, Sheng; Yan, Zhenhua

    2015-04-01

    The occurrence, bioaccumulation and risk assessment of lipophilic pharmaceutically active compounds (LPhACs), such as antibiotics (roxithromycin, erythromycin and ketoconazole), anti-inflammatories (ibuprofen and diclofenac), β-blockers (propranolol), antiepileptics (carbamazepine) and steroid hormones (17α-ethinylestradiol), were investigated in the downstream rivers of sewage treatment plants in Nanjing, China. The results indicate that these LPhACs were widely detected in the surface water and fish samples, with the mean concentrations of the total LPhACs (ΣLPhACs) being in the range of 15.4 and 384.5 ng/L and 3.0 and 128.4 ng/g (wet weight), respectively. The bioaccumulation of the ΣLPhACs in wild fish tissues was generally in the order the liver>brain>gill>muscle. Among the target LPhACs, however, an interspecies difference in tissue distribution was evident for erythromycin. The bioaccumulation factors of LPhACs in the liver and brain, the two major targeted storage sites for toxicants, exhibited an obvious negative correlation with the aquatic concentrations (P<0.05). Finally, risk quotients posed by pharmaceuticals were assessed by comprehensive and comparative methods for different aquatic organisms (algae, daphnids and fish). The overall relative order of susceptibility was estimated to be algae>daphnids>fish. However, the results indicate that diclofenac, ibuprofen and 17α-ethinylestradiol each posed chronic risks for high trophic level organisms (fish). In all of the risk assessments, erythromycin was found to be the most harmful for the most sensitive algae group. In this work, however, the total BAF and toxicological interactions of pharmaceuticals were not performed due to the lack of metabolite information and combined toxicity data, which represents a major hindrance to the effective risk assessment of pharmaceuticals. PMID:25531589

  9. Occurrence, bioaccumulation and risk assessment of lipophilic pharmaceutically active compounds in the downstream rivers of sewage treatment plants.

    PubMed

    Liu, Jianchao; Lu, Guanghua; Xie, Zhengxin; Zhang, Zhenghua; Li, Sheng; Yan, Zhenhua

    2015-04-01

    The occurrence, bioaccumulation and risk assessment of lipophilic pharmaceutically active compounds (LPhACs), such as antibiotics (roxithromycin, erythromycin and ketoconazole), anti-inflammatories (ibuprofen and diclofenac), β-blockers (propranolol), antiepileptics (carbamazepine) and steroid hormones (17α-ethinylestradiol), were investigated in the downstream rivers of sewage treatment plants in Nanjing, China. The results indicate that these LPhACs were widely detected in the surface water and fish samples, with the mean concentrations of the total LPhACs (ΣLPhACs) being in the range of 15.4 and 384.5 ng/L and 3.0 and 128.4 ng/g (wet weight), respectively. The bioaccumulation of the ΣLPhACs in wild fish tissues was generally in the order the liver>brain>gill>muscle. Among the target LPhACs, however, an interspecies difference in tissue distribution was evident for erythromycin. The bioaccumulation factors of LPhACs in the liver and brain, the two major targeted storage sites for toxicants, exhibited an obvious negative correlation with the aquatic concentrations (P<0.05). Finally, risk quotients posed by pharmaceuticals were assessed by comprehensive and comparative methods for different aquatic organisms (algae, daphnids and fish). The overall relative order of susceptibility was estimated to be algae>daphnids>fish. However, the results indicate that diclofenac, ibuprofen and 17α-ethinylestradiol each posed chronic risks for high trophic level organisms (fish). In all of the risk assessments, erythromycin was found to be the most harmful for the most sensitive algae group. In this work, however, the total BAF and toxicological interactions of pharmaceuticals were not performed due to the lack of metabolite information and combined toxicity data, which represents a major hindrance to the effective risk assessment of pharmaceuticals.

  10. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5

    PubMed Central

    Nezich, Catherine L.; Wang, Chunxin; Fogel, Adam I.

    2015-01-01

    The kinase PINK1 and ubiquitin ligase Parkin can regulate the selective elimination of damaged mitochondria through autophagy (mitophagy). Because of the demand on lysosomal function by mitophagy, we investigated a role for the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, in this process. We show that during mitophagy TFEB translocates to the nucleus and displays transcriptional activity in a PINK1- and Parkin-dependent manner. MITF and TFE3, homologues of TFEB belonging to the same microphthalmia/transcription factor E (MiT/TFE) family, are similarly regulated during mitophagy. Unlike TFEB translocation after starvation-induced mammalian target of rapamycin complex 1 inhibition, Parkin-mediated TFEB relocalization required Atg9A and Atg5 activity. However, constitutively active Rag guanosine triphosphatases prevented TFEB translocation during mitophagy, suggesting cross talk between these two MiT/TFE activation pathways. Analysis of clustered regularly interspaced short palindromic repeats–generated TFEB/MITF/TFE3/TFEC single, double, and triple knockout cell lines revealed that these proteins partly facilitate Parkin-mediated mitochondrial clearance. These results illuminate a pathway leading to MiT/TFE transcription factor activation, distinct from starvation-induced autophagy, which occurs during mitophagy. PMID:26240184

  11. Activation of p53 Facilitates the Target Search in DNA by Enhancing the Target Recognition Probability.

    PubMed

    Itoh, Yuji; Murata, Agato; Sakamoto, Seiji; Nanatani, Kei; Wada, Takehiko; Takahashi, Satoshi; Kamagata, Kiyoto

    2016-07-17

    Tumor suppressor p53 binds to the target in a genome and regulates the expression of downstream genes. p53 searches for the target by combining three-dimensional diffusion and one-dimensional sliding along the DNA. To examine the regulation mechanism of the target binding, we constructed the pseudo-wild type (pseudo-WT), activated (S392E), and inactive (R248Q) mutants of p53 and observed their target binding in long DNA using single-molecule fluorescence imaging. The pseudo-WT sliding along the DNA showed many pass events over the target and possessed target recognition probability (TRP) of 7±2%. The TRP increased to 18±2% for the activated mutant but decreased to 0% for the inactive mutant. Furthermore, the fraction of the target binding by the one-dimensional sliding among the total binding events increased from 63±9% for the pseudo-WT to 87±2% for the activated mutant. Control of TRP upon activation, as demonstrated here for p53, might be a general activation mechanism of transcription factors.

  12. Oligoribonuclease is a common downstream target of lithium-induced pAp accumulation in Escherichia coli and human cells

    PubMed Central

    Mechold, Undine; Ogryzko, Vasily; Ngo, Saravuth; Danchin, Antoine

    2006-01-01

    We identified Oligoribonuclease (Orn), an essential Escherichia coli protein and the only exonuclease degrading small ribonucleotides (5mer to 2mer) and its human homologue, small fragment nuclease (Sfn), in a screen for proteins that are potentially regulated by 3′-phosphoadenosine 5′-phosphate (pAp). We show that both enzymes are sensitive to micromolar amounts of pAp in vitro. We also demonstrate that Orn can degrade short DNA oligos in addition to its activity on RNA oligos, similar to what was documented for Sfn. pAp was shown to accumulate as a result of inhibition of the pAp-degrading enzyme by lithium, widely used to treat bipolar disorder, thus its regulatory targets are of significant medical interest. CysQ, the E.coli pAp-phosphatase is strongly inhibited by lithium and calcium in vitro and is a main target of lithium toxicity in vivo. Our findings point to remarkable conservation of the connection between sulfur- and RNA metabolism between E.coli and humans. PMID:16682444

  13. Autophagy fosters myofibroblast differentiation through MTORC2 activation and downstream upregulation of CTGF

    PubMed Central

    Bernard, Monique; Dieudé, Mélanie; Yang, Bing; Hamelin, Katia; Underwood, Katy; Hébert, Marie-Josée

    2015-01-01

    Recent evidence suggests that autophagy may favor fibrosis through enhanced differentiation of fibroblasts in myofibroblasts. Here, we sought to characterize the mediators and signaling pathways implicated in autophagy-induced myofibroblast differentiation. Fibroblasts, serum starved for up to 4 d, showed increased LC3-II/-I ratios and decreased SQSTM1/p62 levels. Autophagy was associated with acquisition of markers of myofibroblast differentiation including increased protein levels of ACTA2/αSMA (actin, α 2, smooth muscle, aorta), enhanced gene and protein levels of COL1A1 (collagen, type I, α 1) and COL3A1, and the formation of stress fibers. Inhibiting autophagy with 3 different class I phosphoinositide 3-kinase and class III phosphatidylinositol 3-kinase (PtdIns3K) inhibitors or through ATG7 silencing prevented myofibroblast differentiation. Autophagic fibroblasts showed increased expression and secretion of CTGF (connective tissue growth factor), and CTGF silencing prevented myofibroblast differentiation. Phosphorylation of the MTORC1 target RPS6KB1/p70S6K kinase was abolished in starved fibroblasts. Phosphorylation of AKT at Ser473, a MTORC2 target, was reduced after initiation of starvation but was followed by spontaneous rephosphorylation after 2 d of starvation, suggesting the reactivation of MTORC2 with sustained autophagy. Inhibiting MTORC2 activation with long-term exposure to rapamycin or by silencing RICTOR, a central component of the MTORC2 complex abolished AKT rephosphorylation. Both RICTOR silencing and rapamycin treatment prevented CTGF and ACTA2 upregulation, demonstrating the central role of MTORC2 activation in CTGF induction and myofibroblast differentiation. Finally, inhibition of autophagy with PtdIns3K inhibitors or ATG7 silencing blocked AKT rephosphorylation. Collectively, these results identify autophagy as a novel activator of MTORC2 signaling leading to CTGF induction and myofibroblast differentiation. PMID:25495560

  14. Autophagy fosters myofibroblast differentiation through MTORC2 activation and downstream upregulation of CTGF.

    PubMed

    Bernard, Monique; Dieudé, Mélanie; Yang, Bing; Hamelin, Katia; Underwood, Katy; Hébert, Marie-Josée

    2014-01-01

    Recent evidence suggests that autophagy may favor fibrosis through enhanced differentiation of fibroblasts in myofibroblasts. Here, we sought to characterize the mediators and signaling pathways implicated in autophagy-induced myofibroblast differentiation. Fibroblasts, serum starved for up to 4 d, showed increased LC3-II/-I ratios and decreased SQSTM1/p62 levels. Autophagy was associated with acquisition of markers of myofibroblast differentiation including increased protein levels of ACTA2/αSMA (actin, α 2, smooth muscle, aorta), enhanced gene and protein levels of COL1A1 (collagen, type I, α 1) and COL3A1, and the formation of stress fibers. Inhibiting autophagy with 3 different class I phosphoinositide 3-kinase and class III phosphatidylinositol 3-kinase (PtdIns3K) inhibitors or through ATG7 silencing prevented myofibroblast differentiation. Autophagic fibroblasts showed increased expression and secretion of CTGF (connective tissue growth factor), and CTGF silencing prevented myofibroblast differentiation. Phosphorylation of the MTORC1 target RPS6KB1/p70S6K kinase was abolished in starved fibroblasts. Phosphorylation of AKT at Ser473, a MTORC2 target, was reduced after initiation of starvation but was followed by spontaneous rephosphorylation after 2 d of starvation, suggesting the reactivation of MTORC2 with sustained autophagy. Inhibiting MTORC2 activation with long-term exposure to rapamycin or by silencing RICTOR, a central component of the MTORC2 complex abolished AKT rephosphorylation. Both RICTOR silencing and rapamycin treatment prevented CTGF and ACTA2 upregulation, demonstrating the central role of MTORC2 activation in CTGF induction and myofibroblast differentiation. Finally, inhibition of autophagy with PtdIns3K inhibitors or ATG7 silencing blocked AKT rephosphorylation. Collectively, these results identify autophagy as a novel activator of MTORC2 signaling leading to CTGF induction and myofibroblast differentiation. PMID:25495560

  15. Autophagy fosters myofibroblast differentiation through MTORC2 activation and downstream upregulation of CTGF.

    PubMed

    Bernard, Monique; Dieudé, Mélanie; Yang, Bing; Hamelin, Katia; Underwood, Katy; Hébert, Marie-Josée

    2014-01-01

    Recent evidence suggests that autophagy may favor fibrosis through enhanced differentiation of fibroblasts in myofibroblasts. Here, we sought to characterize the mediators and signaling pathways implicated in autophagy-induced myofibroblast differentiation. Fibroblasts, serum starved for up to 4 d, showed increased LC3-II/-I ratios and decreased SQSTM1/p62 levels. Autophagy was associated with acquisition of markers of myofibroblast differentiation including increased protein levels of ACTA2/αSMA (actin, α 2, smooth muscle, aorta), enhanced gene and protein levels of COL1A1 (collagen, type I, α 1) and COL3A1, and the formation of stress fibers. Inhibiting autophagy with 3 different class I phosphoinositide 3-kinase and class III phosphatidylinositol 3-kinase (PtdIns3K) inhibitors or through ATG7 silencing prevented myofibroblast differentiation. Autophagic fibroblasts showed increased expression and secretion of CTGF (connective tissue growth factor), and CTGF silencing prevented myofibroblast differentiation. Phosphorylation of the MTORC1 target RPS6KB1/p70S6K kinase was abolished in starved fibroblasts. Phosphorylation of AKT at Ser473, a MTORC2 target, was reduced after initiation of starvation but was followed by spontaneous rephosphorylation after 2 d of starvation, suggesting the reactivation of MTORC2 with sustained autophagy. Inhibiting MTORC2 activation with long-term exposure to rapamycin or by silencing RICTOR, a central component of the MTORC2 complex abolished AKT rephosphorylation. Both RICTOR silencing and rapamycin treatment prevented CTGF and ACTA2 upregulation, demonstrating the central role of MTORC2 activation in CTGF induction and myofibroblast differentiation. Finally, inhibition of autophagy with PtdIns3K inhibitors or ATG7 silencing blocked AKT rephosphorylation. Collectively, these results identify autophagy as a novel activator of MTORC2 signaling leading to CTGF induction and myofibroblast differentiation.

  16. Functional cross-talk between Cdc42 and two downstream targets, Par6B and PAK4.

    PubMed

    Jin, Dan; Durgan, Joanne; Hall, Alan

    2015-04-15

    The establishment of polarity is an essential step in epithelial morphogenesis. Polarity proteins promote an apical/basal axis, which, together with the assembly of apical adherens and tight junctions, directed vesicle transport and the reorganization of the actomyosin filament network, generate a stable epithelium. The regulation of these cellular activities is complex, but the Rho family GTPase Cdc42 (cell division cycle 42) is known to play a key role in the establishment of polarity from yeast to humans. Two Cdc42 target proteins, the kinase PAK4 [p21 protein (Cdc42/Rac)-activated kinase 4] and the scaffold partitioning defective (Par) 6B, are required to promote the assembly of apical junctions in human bronchial epithelial cells. We show in the present paper that PAK4 phosphorylates Par6B at Ser143 blocking its interaction with Cdc42. This provides a potential new mechanism for controlling the subcellular localization of Par6B and its interaction with other proteins.

  17. FOXM1 is a downstream target of LPA and YAP oncogenic signaling pathways in high grade serous ovarian cancer.

    PubMed

    Fan, Qipeng; Cai, Qingchun; Xu, Yan

    2015-09-29

    Lysophosphatidic acid (LPA), a prototypical ligand for G protein coupled receptors, and Forkhead box protein M1 (FOXM1), a transcription factor that regulates expression of a wide array of genes involved in cancer initiation and progression, are two important oncogenic signaling molecules in human epithelial ovarian cancers (EOC). We conducted in vitro mechanistic studies using pharmacological inhibitors, genetic forms of the signaling molecules, and RNAi-mediated gene knock-down to uncover the molecular mechanisms of how these two molecules interact in EOC cells. Additionally, in vivo mouse studies were performed to confirm the functional involvement of FOXM1 in EOC tumor formation and progression. We show for the first time that LPA up-regulates expression of active FOXM1 splice variants in a time- and dose-dependent manner in the human EOC cell lines OVCA433, CAOV3, and OVCAR5. Gi-PI3K-AKT and G12/13-Rho-YAP signaling pathways were both involved in the LPA receptor (LPA1-3) mediated up-regulation of FOXM1 at the transcriptional level. In addition, down-regulation of FOXM1 in CAOV3 xenografts significantly reduced tumor and ascites formation, metastasis, and expression of FOXM1 target genes involved in cell proliferation, migration, or invasion. Collectively, our data link the oncolipid LPA, the oncogene YAP, and the central regulator of cell proliferation/mutagenesis FOXM1 in EOC cells. Moreover, these results provide further support for the importance of these pathways as potential therapeutic targets in EOC. PMID:26299613

  18. TRAP1 is involved in BRAF regulation and downstream attenuation of ERK phosphorylation and cell-cycle progression: a novel target for BRAF-mutated colorectal tumors.

    PubMed

    Condelli, Valentina; Piscazzi, Annamaria; Sisinni, Lorenza; Matassa, Danilo Swann; Maddalena, Francesca; Lettini, Giacomo; Simeon, Vittorio; Palladino, Giuseppe; Amoroso, Maria Rosaria; Trino, Stefania; Esposito, Franca; Landriscina, Matteo

    2014-11-15

    Human BRAF-driven tumors are aggressive malignancies with poor clinical outcome and lack of sensitivity to therapies. TRAP1 is a HSP90 molecular chaperone deregulated in human tumors and responsible for specific features of cancer cells, i.e., protection from apoptosis, drug resistance, metabolic regulation, and protein quality control/ubiquitination. The hypothesis that TRAP1 plays a regulatory function on the BRAF pathway, arising from the observation that BRAF levels are decreased upon TRAP1 interference, was tested in human breast and colorectal carcinoma in vitro and in vivo. This study shows that TRAP1 is involved in the regulation of BRAF synthesis/ubiquitination, without affecting its stability. Indeed, BRAF synthesis is facilitated in a TRAP1-rich background, whereas increased ubiquitination occurs upon disruption of the TRAP1 network that correlates with decreased protein levels. Remarkably, BRAF downstream pathway is modulated by TRAP1 regulatory activity: indeed, TRAP1 silencing induces (i) ERK phosphorylation attenuation, (ii) cell-cycle inhibition with cell accumulation in G0-G1 and G2-M transitions, and (iii) extensive reprogramming of gene expression. Interestingly, a genome-wide profiling of TRAP1-knockdown cells identified cell growth and cell-cycle regulation as the most significant biofunctions controlled by the TRAP1 network. It is worth noting that TRAP1 regulation on BRAF is conserved in human colorectal carcinomas, with the two proteins being frequently coexpressed. Finally, the dual HSP90/TRAP1 inhibitor HSP990 showed activity against the TRAP1 network and high cytostatic potential in BRAF-mutated colorectal carcinoma cells. Therefore, this novel TRAP1 function represents an attractive therapeutic window to target dependency of BRAF-driven tumors on TRAP1 translational/quality control machinery. PMID:25239454

  19. TRAP1 is involved in BRAF regulation and downstream attenuation of ERK phosphorylation and cell-cycle progression: a novel target for BRAF-mutated colorectal tumors.

    PubMed

    Condelli, Valentina; Piscazzi, Annamaria; Sisinni, Lorenza; Matassa, Danilo Swann; Maddalena, Francesca; Lettini, Giacomo; Simeon, Vittorio; Palladino, Giuseppe; Amoroso, Maria Rosaria; Trino, Stefania; Esposito, Franca; Landriscina, Matteo

    2014-11-15

    Human BRAF-driven tumors are aggressive malignancies with poor clinical outcome and lack of sensitivity to therapies. TRAP1 is a HSP90 molecular chaperone deregulated in human tumors and responsible for specific features of cancer cells, i.e., protection from apoptosis, drug resistance, metabolic regulation, and protein quality control/ubiquitination. The hypothesis that TRAP1 plays a regulatory function on the BRAF pathway, arising from the observation that BRAF levels are decreased upon TRAP1 interference, was tested in human breast and colorectal carcinoma in vitro and in vivo. This study shows that TRAP1 is involved in the regulation of BRAF synthesis/ubiquitination, without affecting its stability. Indeed, BRAF synthesis is facilitated in a TRAP1-rich background, whereas increased ubiquitination occurs upon disruption of the TRAP1 network that correlates with decreased protein levels. Remarkably, BRAF downstream pathway is modulated by TRAP1 regulatory activity: indeed, TRAP1 silencing induces (i) ERK phosphorylation attenuation, (ii) cell-cycle inhibition with cell accumulation in G0-G1 and G2-M transitions, and (iii) extensive reprogramming of gene expression. Interestingly, a genome-wide profiling of TRAP1-knockdown cells identified cell growth and cell-cycle regulation as the most significant biofunctions controlled by the TRAP1 network. It is worth noting that TRAP1 regulation on BRAF is conserved in human colorectal carcinomas, with the two proteins being frequently coexpressed. Finally, the dual HSP90/TRAP1 inhibitor HSP990 showed activity against the TRAP1 network and high cytostatic potential in BRAF-mutated colorectal carcinoma cells. Therefore, this novel TRAP1 function represents an attractive therapeutic window to target dependency of BRAF-driven tumors on TRAP1 translational/quality control machinery.

  20. Krüppel-like factor 6 is a co-activator of NF-κB that mediates p65-dependent transcription of selected downstream genes.

    PubMed

    Zhang, Yu; Lei, Cao-Qi; Hu, Yun-Hong; Xia, Tian; Li, Mi; Zhong, Bo; Shu, Hong-Bing

    2014-05-01

    The transcription factor NF-κB plays a pivotal role in a broad range of physiological and pathological processes, including development, inflammation, and immunity. How NF-κB integrates activating signals to expression of specific sets of target genes is of great interest. Here, we identified Krüppel-like factor 6 (KLF6) as a co-activator of NF-κB after TNFα and IL-1β stimulation. Overexpression of KLF6 enhanced TNFα- and IL-1β-induced activation of NF-κB and transcription of a subset of downstream genes, whereas knockdown of KLF6 had opposite effects. KLF6 interacted with p65 in the nucleus and bound to the promoters of target genes. Upon IL-1β stimulation, KLF6 was recruited to promoters of a subset of NF-κB target genes in a p65-dependent manner, which was in turn required for the optimal binding of p65 to the target gene promoters. Our findings thus identified KLF6 as a previously unknown but essential co-activator of NF-κB and provided new insight into the molecular regulation of p65-dependent gene expression.

  1. MLL1, a H3K4 methyltransferase, regulates the TNFα-stimulated activation of genes downstream of NF-κB.

    PubMed

    Wang, Xiang; Zhu, Kun; Li, Shangze; Liao, Yifang; Du, Runlei; Zhang, Xiaodong; Shu, Hong-Bing; Guo, An-Yuan; Li, Lianyun; Wu, Min

    2012-09-01

    Genes of the mixed lineage leukemia (MLL) family regulate transcription by methylating histone H3K4. Six members of the MLL family exist in humans, including SETD1A, SETD1B and MLL1-MLL4. Each of them plays non-redundant roles in development and disease genesis. MLL1 regulates the cell cycle and the oscillation of circadian gene expression. Its fusion proteins are involved in leukemogenesis. Here, we studied the role of MLL1 in innate immunity and found it selectively regulates the activation of genes downstream of NF-κB mediated by tumor necrosis factor (TNFα) and lipopolysaccharide (LPS). Real-time PCR and genome-wide gene expression profile analysis proved that the deficiency of MLL1 reduced the expression of a group of genes downstream of nuclear factor κB (NF-κB). However, the activation of NF-κB itself was not affected. The MLL1 complex is found both in the nucleus and cytoplasm and is associated with NF-κB. CHIP assays proved that the translocation of MLL1 to chromatin was dependent on NF-κB. Our results suggest that MLL1 is recruited to its target genes by activated NF-κB and regulates their transcription. PMID:22623725

  2. Human sperm liver receptor homolog-1 (LRH-1) acts as a downstream target of the estrogen signaling pathway.

    PubMed

    Montanaro, Daniela; Santoro, Marta; Carpino, Amalia; Perrotta, Ida; De Amicis, Francesca; Sirianni, Rosa; Rago, Vittoria; Gervasi, Serena; Aquila, Saveria

    2015-10-01

    In the last decade, the study of human sperm anatomy, at molecular level, has revealed the presence of several nuclear protein receptors. In this work, we examined the expression profile and the ultrastructural localization of liver receptor homolog-1 (LRH-1) in human spermatozoa. We evidenced the presence of the receptor by Western blotting and real time-RT-PCR. Furthermore, we used immunogold electron microscopy to investigate the sperm anatomical regions containing LRH-1. The receptor was mainly located in the sperm head, whereas its expression was reduced in the neck and across the tail. Interestingly, we observed the presence of LRH-1 in different stages of testicular germ cell development by immunohistochemistry. In somatic cells, it has been suggested that the LRH-1 pathway is tightly linked with estrogen signaling and the important role of estradiol has been widely studied in sperm cells. To assess the significance of LRH-1 in male gametes and to deepen understanding of the role of estrogens in these cells, we investigated important sperm features such as motility, survival and capacitation. Spermatozoa were treated with 10 nm estradiol and the inhibition of LRH-1 reversed the estradiol stimulatory action. From our data, we discovered that human spermatozoa can be considered a new site of expression for LRH-1, evidencing its role in sperm motility, survival and cholesterol efflux. Furthermore, we may presume that in spermatozoa the LRH-1 effects are closely integrated with the estrogen signaling, supporting LRH-1 as a downstream effector of the estradiol pathway on some sperm functions.

  3. HAESA and HAESA-LIKE2 activate organ abscission downstream of NEVERSHED and EVERSHED in Arabidopsis flowers

    PubMed Central

    Gubert, Catherine M; Liljegren, Sarah J

    2014-01-01

    A ligand-receptor module comprised of the peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) and the receptor-like kinases HAESA (HAE) and HAESA-LIKE2 (HSL2) activates organ abscission in Arabidopsis flowers. Another set of receptor-like kinases, including EVERSHED (EVR), restricts the extent of cell separation in abscission zones by potentially altering HAE/HSL2 localization or activity. The NEVERSHED (NEV) ADP-ribosylation factor GTPase-activating protein facilitates the intracellular movement of molecules required for organ abscission and fruit growth. Here we report further analysis of the relationship between NEV-mediated intracellular traffic, EVR activity and IDA-HAE/HSL2 signaling during flower development. Our results support a model in which cell separation is mediated by HAE/HSL2 signaling downstream of NEV and EVR. We discuss the possibility that conserved circuits control organ abscission and modulate fruit growth. PMID:25763490

  4. Novel angiogenesis inhibitory activity in cinnamon extract blocks VEGFR2 kinase and downstream signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    VEGF is one of the most critical factors that induce angiogenesis, and has thus become an attractive target for anti-angiogenesis treatment. However, most of the current anti-VEGF agents that often cause side effects cannot be recommended for long term use. Identification of natural VEGF inhibitors...

  5. The Mediator Complex MED15 Subunit Mediates Activation of Downstream Lipid-Related Genes by the WRINKLED1 Transcription Factor1[OPEN

    PubMed Central

    Kim, Mi Jung

    2016-01-01

    The Mediator complex is known to be a master coordinator of transcription by RNA polymerase II, and this complex is recruited by transcription factors (TFs) to target promoters for gene activation or repression. The plant-specific TF WRINKLED1 (WRI1) activates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. However, no Mediator subunit has yet been identified that mediates WRI1 transcriptional activity. Promoter-β-glucuronidase fusion experiments showed that MEDIATOR15 (MED15) is expressed in the same cells in the embryo as WRI1. We found that the Arabidopsis (Arabidopsis thaliana) MED15 subunit of the Mediator complex interacts directly with WRI1 in the nucleus. Overexpression of MED15 or WRI1 increased transcript levels of WRI1 target genes involved in glycolysis and fatty acid biosynthesis; these genes were down-regulated in wild-type or WRI1-overexpressing plants by silencing of MED15. However, overexpression of MED15 in the wri1 mutant also increased transcript levels of WRI1 target genes, suggesting that MED15 also may act with other TFs to activate downstream lipid-related genes. Chromatin immunoprecipitation assays confirmed the association of MED15 with six WRI1 target gene promoters. Additionally, silencing of MED15 resulted in reduced fatty acid content in seedlings and mature seeds, whereas MED15 overexpression increased fatty acid content in both developmental stages. Similar results were found in wri1 mutant and WRI1 overexpression lines. Together, our results indicate that the WRI1/MED15 complex transcriptionally regulates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. PMID:27246098

  6. LRF is an essential downstream target of GATA1 in erythroid development and regulates BIM-dependent apoptosis.

    PubMed

    Maeda, Takahiro; Ito, Keisuke; Merghoub, Taha; Poliseno, Laura; Hobbs, Robin M; Wang, Guocan; Dong, Lin; Maeda, Manami; Dore, Louis C; Zelent, Arthur; Luzzatto, Lucio; Teruya-Feldstein, Julie; Weiss, Mitchell J; Pandolfi, Pier Paolo

    2009-10-01

    GATA-1-dependent transcription is essential for erythroid differentiation and maturation. Suppression of programmed cell death is also thought to be critical for this process; however, the link between these two features of erythropoiesis has remained elusive. Here, we show that the POZ-Krüppel family transcription factor, LRF (also known as Zbtb7a/Pokemon), is a direct target of GATA1 and plays an essential antiapoptotic role during terminal erythroid differentiation. We find that loss of Lrf leads to lethal anemia in embryos, due to increased apoptosis of late-stage erythroblasts. This programmed cell death is Arf and p53 independent and is instead mediated by upregulation of the proapoptotic factor Bim. We identify Lrf as a direct repressor of Bim transcription. In strong support of this mechanism, genetic Bim loss delays the lethality of Lrf-deficient embryos and rescues their anemia phenotype. Thus, our data define a key transcriptional cascade for effective erythropoiesis, whereby GATA-1 suppresses BIM-mediated apoptosis via LRF. PMID:19853566

  7. LRF is an essential downstream target of GATA1 in erythroid development and regulates BIM-dependent apoptosis.

    PubMed

    Maeda, Takahiro; Ito, Keisuke; Merghoub, Taha; Poliseno, Laura; Hobbs, Robin M; Wang, Guocan; Dong, Lin; Maeda, Manami; Dore, Louis C; Zelent, Arthur; Luzzatto, Lucio; Teruya-Feldstein, Julie; Weiss, Mitchell J; Pandolfi, Pier Paolo

    2009-10-01

    GATA-1-dependent transcription is essential for erythroid differentiation and maturation. Suppression of programmed cell death is also thought to be critical for this process; however, the link between these two features of erythropoiesis has remained elusive. Here, we show that the POZ-Krüppel family transcription factor, LRF (also known as Zbtb7a/Pokemon), is a direct target of GATA1 and plays an essential antiapoptotic role during terminal erythroid differentiation. We find that loss of Lrf leads to lethal anemia in embryos, due to increased apoptosis of late-stage erythroblasts. This programmed cell death is Arf and p53 independent and is instead mediated by upregulation of the proapoptotic factor Bim. We identify Lrf as a direct repressor of Bim transcription. In strong support of this mechanism, genetic Bim loss delays the lethality of Lrf-deficient embryos and rescues their anemia phenotype. Thus, our data define a key transcriptional cascade for effective erythropoiesis, whereby GATA-1 suppresses BIM-mediated apoptosis via LRF.

  8. Raf-1 Activation Prevents Caspase 9 Processing Downstream of Apoptosome Formation

    PubMed Central

    Cagnol, Sébastien; Mansour, Anna; Van Obberghen-Schilling, Ellen; Chambard, Jean-Claude

    2011-01-01

    In many cell types, growth factor removal induces the release of cytochrome-c from mitochondria that leads to activation of caspase-9 in the apoptosome complex. Here, we show that sustained stimulation of the Raf-1/MAPK1,3 pathway prevents caspase-9 activation induced by serum depletion in CCL39/ΔRaf-1:ER fibroblasts. The protective effect mediated by Raf-1 is sensitive to MEK inhibition that is sufficient to induce caspase-9 cleavage in exponentially growing cells. Raf-1 activation does not inhibit the release of cytochrome-c from mitochondria while preventing caspase-9 activation. Gel filtration chromatography analysis of apoptosome formation in cells shows that Raf-1/MAPK1,3 activation does not interfere with APAF-1 oligomerization and recruitment of caspase 9. Raf-1-mediated caspase-9 inhibition is sensitive to emetine, indicating that the protective mechanism requires protein synthesis. However, the Raf/MAPK1,3 pathway does not regulate XIAP. Taken together, these results indicate that the Raf-1/MAPK1,3 pathway controls an apoptosis regulator that prevents caspase-9 activation in the apoptosome complex. PMID:21637382

  9. Bcl-2 overexpression blocks caspase activation and downstream apoptotic events instigated by photodynamic therapy

    PubMed Central

    Granville, D J; Jiang, H; An, M T; Levy, J G; McManus, B M; Hunt, D W C

    1999-01-01

    Treatment with the photosensitizer benzoporphyrin derivative monoacid ring A (BPD-MA, verteporfin) followed by irradiation with visible light induces apoptosis in human acute myelogenous leukaemia HL-60 cells. Photoactivation of BPD-MA induces procaspase 3 (CPP32/Yama/apopain) and procaspase 6 (Mch2) cleavage into their proteolytically active subunits in these cells. The Bcl-2 proto-oncogene product has been shown to protect cells from a number of proapoptotic stimuli. In the present study, the influence of Bcl-2 overexpression on cellular resistance to photoactivation of BPD-MA was studied. Overexpression of Bcl-2 in HL-60 cells prevented apoptosis-related events including caspase 3 and 6 activation, poly(ADP-ribose) polymerase cleavage and the formation of hypodiploid DNA produced by BPD-MA (0–200 ng ml−1) and light. However, Bcl-2 overexpression was less effective at preventing cell death that occurred after photoactivation at high levels (50–100 ng ml−1) compared with lower doses (10–25 ng ml−1) of BPD-MA. These results indicate that caspase 3 and 6 activation and their regulation by Bcl-2 may play important roles in photodynamic therapy (PDT)-induced cell killing. © 1999 Cancer Research Campaign PMID:10408699

  10. Proteome Analysis for Downstream Targets of Oncogenic KRAS - the Potential Participation of CLIC4 in Carcinogenesis in the Lung

    PubMed Central

    Okudela, Koji; Katayama, Akira; Woo, Tetsukan; Mitsui, Hideaki; Suzuki, Takehisa; Tateishi, Yoko; Umeda, Shigeaki; Tajiri, Michihiko; Masuda, Munetaka; Nagahara, Noriyuki; Kitamura, Hitoshi; Ohashi, Kenichi

    2014-01-01

    This study investigated the proteome modulated by oncogenic KRAS in immortalized airway epithelial cells. Chloride intracellular channel protein 4 (CLIC4), S100 proteins (S100A2 and S100A11), tropomyosin 2, cathepsin L1, integrinsα3, eukaryotic elongation factor 1, vimentin, and others were discriminated. We here focused on CLIC4 to investigate its potential involvement in carcinogenesis in the lung because previous studies suggested that some chloride channels and chloride channel regulators could function as tumor suppressors. CILC4 protein levels were reduced in some lung cancer cell lines. The restoration of CLIC4 in lung cancer cell lines in which CLIC4 expression was reduced attenuated their growth activity. The immunohistochemical expression of the CLIC4 protein was weaker in primary lung cancer cells than in non-tumorous airway epithelial cells and was occasionally undetectable in some tumors. CLIC4 protein levels were significantly lower in a subtype of mucinous ADC than in others, and were also significantly lower in KRAS-mutated ADC than in EGFR-mutated ADC. These results suggest that the alteration in CLIC4 could be involved in restrictedly the development of a specific fraction of lung adenocarcinomas. The potential benefit of the proteome modulated by oncogenic KRAS to lung cancer research has been demonstrated. PMID:24503901

  11. H2O2 is required for UVB-induced EGF receptor and downstream signaling pathway activation.

    PubMed

    Peus, D; Meves, A; Vasa, R A; Beyerle, A; O'Brien, T; Pittelkow, M R

    1999-12-01

    Ultraviolet radiation (UVR)-induced receptor phosphorylation is increasingly recognized as a widely occurring phenomenon. However, the mechanisms, mediators, and sequence of events involved in this process remain ill-defined. We have recently shown that exposure of human keratinocytes to physiologic doses of ultraviolet B radiation (UVB) activates epidermal growth factor receptor (EGFR)/extracellular-regulated kinase 1 and 2 (ERK1/2), and p38 signaling pathways via reactive oxygen species. Here we demonstrate that UVB exposure increased intra- and extracellular H2O2 production rapidly in a time-dependent manner. An EGFR-specific monoclonal antibody abrogated EGFR autophosphorylation and markedly decreased the phosphorylation of ERK1/2 whereas p38 activation was unaffected. Overexpression of catalase strongly inhibited UVB-induced EGFR/ERK1/2 pathway activation. These findings establish the sequence of events after UVB irradiation: (i) H2O2 generation, (ii) EGFR phosphorylation, and (iii) ERK activation. Our results identify UVB-induced H2O2 as a second messenger that is required for EGFR and dependent downstream signaling pathways activation.

  12. Mechanism of IRSp53 inhibition and combinatorial activation by Cdc42 and downstream effectors

    PubMed Central

    Kast, David J; Yang, Changsong; Disanza, Andrea; Boczkowska, Malgorzata; Madasu, Yadaiah; Scita, Giorgio; Svitkina, Tatyana; Dominguez, Roberto

    2014-01-01

    The Rho family GTPase effector IRSp53 has essential roles in filopodia formation and neuronal development, but its regulatory mechanism is poorly understood. IRSp53 contains a membrane-binding BAR domain followed by an unconventional CRIB motif that overlaps with a proline-rich region (CRIB–PR) and an SH3 domain that recruits actin cytoskeleton effectors. Using a fluorescence reporter assay, we show that human IRSp53 adopts a closed inactive conformation that opens synergistically with the binding of human Cdc42 to the CRIB–PR and effector proteins, such as the tumor-promoting factor Eps8, to the SH3 domain. The crystal structure of Cdc42 bound to the CRIB–PR reveals a new mode of effector binding to Rho family GTPases. Structure-inspired mutations disrupt autoinhibition and Cdc42 binding in vitro and decouple Cdc42- and IRSp53-dependent filopodia formation in cells. The data support a combinatorial mechanism of IRSp53 activation. PMID:24584464

  13. Proteinase-activated receptors (PARs) as targets for antiplatelet therapy.

    PubMed

    Cunningham, Margaret; McIntosh, Kathryn; Bushell, Trevor; Sloan, Graeme; Plevin, Robin

    2016-04-15

    Since the identification of the proteinase-activated receptor (PAR) family as mediators of serine protease activity in the 1990s, there has been tremendous progress in the elucidation of their pathophysiological roles. The development of drugs that target PARs has been the focus of many laboratories for the potential treatment of thrombosis, cancer and other inflammatory diseases. Understanding the mechanisms of PAR activation and G protein signalling pathways evoked in response to the growing list of endogenous proteases has yielded great insight into receptor regulation at the molecular level. This has led to the development of new selective modulators of PAR activity, particularly PAR1. The mixed success of targeting PARs has been best exemplified in the context of inhibiting PAR1 as a new antiplatelet therapy. The development of the competitive PAR1 antagonist, vorapaxar (Zontivity), has clearly shown the value in targeting PAR1 in acute coronary syndrome (ACS); however the severity of associated bleeding with this drug has limited its use in the clinic. Due to the efficacy of thrombin acting via PAR1, strategies to selectively inhibit specific PAR1-mediated G protein signalling pathways or to target the second thrombin platelet receptor, PAR4, are being devised. The rationale behind these alternative approaches is to bias downstream thrombin activity via PARs to allow for inhibition of pro-thrombotic pathways but maintain other pathways that may preserve haemostatic balance and improve bleeding profiles for widespread clinical use. This review summarizes the structural determinants that regulate PARs and the modulators of PAR activity developed to date.

  14. Target activation by regulatory RNAs in bacteria

    PubMed Central

    Papenfort, Kai; Vanderpool, Carin K.

    2015-01-01

    Bacterial small regulatory RNAs (sRNAs) are commonly known to repress gene expression by base pairing to target mRNAs. In many cases, sRNAs base pair with and sequester mRNA ribosome-binding sites, resulting in translational repression and accelerated transcript decay. In contrast, a growing number of examples of translational activation and mRNA stabilization by sRNAs have now been documented. A given sRNA often employs a conserved region to interact with and regulate both repressed and activated targets. However, the mechanisms underlying activation differ substantially from repression. Base pairing resulting in target activation can involve sRNA interactions with the 5′ untranslated region (UTR), the coding sequence or the 3′ UTR of the target mRNAs. Frequently, the activities of protein factors such as cellular ribonucleases and the RNA chaperone Hfq are required for activation. Bacterial sRNAs, including those that function as activators, frequently control stress response pathways or virulence-associated functions required for immediate responses to changing environments. This review aims to summarize recent advances in knowledge regarding target mRNA activation by bacterial sRNAs, highlighting the molecular mechanisms and biological relevance of regulation. PMID:25934124

  15. Identification of Pou5f1, Sox2, and Nanog downstream target genes with statistical confidence by applying a novel algorithm to time course microarray and genome-wide chromatin immunoprecipitation data

    PubMed Central

    Sharov, Alexei A; Masui, Shinji; Sharova, Lioudmila V; Piao, Yulan; Aiba, Kazuhiro; Matoba, Ryo; Xin, Li; Niwa, Hitoshi; Ko, Minoru SH

    2008-01-01

    Background Target genes of a transcription factor (TF) Pou5f1 (Oct3/4 or Oct4), which is essential for pluripotency maintenance and self-renewal of embryonic stem (ES) cells, have previously been identified based on their response to Pou5f1 manipulation and occurrence of Chromatin-immunoprecipitation (ChIP)-binding sites in promoters. However, many responding genes with binding sites may not be direct targets because response may be mediated by other genes and ChIP-binding site may not be functional in terms of transcription regulation. Results To reduce the number of false positives, we propose to separate responding genes into groups according to direction, magnitude, and time of response, and to apply the false discovery rate (FDR) criterion to each group individually. Using this novel algorithm with stringent statistical criteria (FDR < 0.2) to a compendium of published and new microarray data (3, 6, 12, and 24 hr after Pou5f1 suppression) and published ChIP data, we identified 420 tentative target genes (TTGs) for Pou5f1. The majority of TTGs (372) were down-regulated after Pou5f1 suppression, indicating that the Pou5f1 functions as an activator of gene expression when it binds to promoters. Interestingly, many activated genes are potent suppressors of transcription, which include polycomb genes, zinc finger TFs, chromatin remodeling factors, and suppressors of signaling. Similar analysis showed that Sox2 and Nanog also function mostly as transcription activators in cooperation with Pou5f1. Conclusion We have identified the most reliable sets of direct target genes for key pluripotency genes – Pou5f1, Sox2, and Nanog, and found that they predominantly function as activators of downstream gene expression. Thus, most genes related to cell differentiation are suppressed indirectly. PMID:18522731

  16. Suramin blocks interaction between human FGF1 and FGFR2 D2 domain and reduces downstream signaling activity.

    PubMed

    Wu, Zong-Sian; Liu, Che Fu; Fu, Brian; Chou, Ruey-Hwang; Yu, Chin

    2016-09-01

    The extracellular portion of the human fibroblast growth factor receptor2 D2 domain (FGFR2 D2) interacts with human fibroblast growth factor 1 (hFGF1) to activate a downstream signaling cascade that ultimately affects mitosis and differentiation. Suramin is an antiparasiticdrug and a potent inhibitor of FGF-induced angiogenesis. Suramin has been shown to bind to hFGF1, and might block the interaction between hFGF1 and FGFR2 D2. Here, we titrated hFGF1 with FGFR2 D2 and suramin to elucidate their interactions using the detection of NMR. The docking results of both hFGF1-FGFR2 D2 domain and hFGF1-suramin complex were superimposed. The results indicate that suramin blocks the interaction between hFGF1 and FGFR2 D2. We used the PyMOL software to show the hydrophobic interaction of hFGF1-suramin. In addition, we used a Water-soluble Tetrazolium salts assay (WST1) to assess hFGF1 bioactivity. The results will be useful for the development of new antimitogenic activity drugs.

  17. Improved algorithms in the CE-QUAL-W2 water-quality model for blending dam releases to meet downstream water-temperature targets

    USGS Publications Warehouse

    Rounds, Stewart A.; Buccola, Norman L.

    2015-01-01

    Water-quality models allow water resource professionals to examine conditions under an almost unlimited variety of potential future scenarios. The two-dimensional (longitudinal, vertical) water-quality model CE-QUAL-W2, version 3.7, was enhanced and augmented with new features to help dam operators and managers explore and optimize potential solutions for temperature management downstream of thermally stratified reservoirs. Such temperature management often is accomplished by blending releases from multiple dam outlets that access water of different temperatures at different depths. The modified blending algorithm in version 3.7 of CE-QUAL-W2 allows the user to specify a time-series of target release temperatures, designate from 2 to 10 floating or fixed-elevation outlets for blending, impose minimum and maximum head and flow constraints for any blended outlet, and set priority designations for each outlet that allow the model to choose which outlets to use and how to balance releases among them. The modified model was tested with a variety of examples and against a previously calibrated model of Detroit Lake on the North Santiam River in northwestern Oregon, and the results compared well. These updates to the blending algorithms will allow more complicated dam-operation scenarios to be evaluated somewhat automatically with the model, with decreased need for multiple model runs or preprocessing of model inputs to fully characterize the operational constraints.

  18. Video Guidance Sensors Using Remotely Activated Targets

    NASA Technical Reports Server (NTRS)

    Bryan, Thomas C.; Howard, Richard T.; Book, Michael L.

    2004-01-01

    Four updated video guidance sensor (VGS) systems have been proposed. As described in a previous NASA Tech Briefs article, a VGS system is an optoelectronic system that provides guidance for automated docking of two vehicles. The VGS provides relative position and attitude (6-DOF) information between the VGS and its target. In the original intended application, the two vehicles would be spacecraft, but the basic principles of design and operation of the system are applicable to aircraft, robots, objects maneuvered by cranes, or other objects that may be required to be aligned and brought together automatically or under remote control. In the first two of the four VGS systems as now proposed, the tracked vehicle would include active targets that would light up on command from the tracking vehicle, and a video camera on the tracking vehicle would be synchronized with, and would acquire images of, the active targets. The video camera would also acquire background images during the periods between target illuminations. The images would be digitized and the background images would be subtracted from the illuminated-target images. Then the position and orientation of the tracked vehicle relative to the tracking vehicle would be computed from the known geometric relationships among the positions of the targets in the image, the positions of the targets relative to each other and to the rest of the tracked vehicle, and the position and orientation of the video camera relative to the rest of the tracking vehicle. The major difference between the first two proposed systems and prior active-target VGS systems lies in the techniques for synchronizing the flashing of the active targets with the digitization and processing of image data. In the prior active-target VGS systems, synchronization was effected, variously, by use of either a wire connection or the Global Positioning System (GPS). In three of the proposed VGS systems, the synchronizing signal would be generated on, and

  19. A novel AKT inhibitor, AZD5363, inhibits phosphorylation of AKT downstream molecules, and activates phosphorylation of mTOR and SMG-1 dependent on the liver cancer cell type

    PubMed Central

    ZHANG, YUNCHENG; ZHENG, YUANWEN; FAHEEM, ALI; SUN, TIANTONG; LI, CHUNYOU; LI, ZHE; ZHAO, DIANTANG; WU, CHAO; LIU, JUN

    2016-01-01

    Due to frequent phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway dysregulation, AKT is typically accepted as a promising anticancer therapeutic target. mTOR, in particular, represents a suitable therapeutic target for hepatocellular carcinoma, whilst suppressor with morphogenetic effect on genitalia family member-1 (SMG-1) is believed to serve a potential tumor suppressor role in human cancer. Despite SMG-1 and mTOR belonging to the same PI3K-related kinase family, the interactions between them are not yet fully understood. In the present study, a novel pyrrolopyrimidine-derived compound, AZD5363, was observed to suppress proliferation in liver cancer Hep-G2 and Huh-7 cells by inhibiting the phosphorylation of downstream molecules in the AKT signal pathway, in a dose- and time-dependent manner. AZD5363 activated the phosphorylation of mTOR, dependent on the liver cancer cell type, as it may have differing effects in various liver cancer cell lines. Additionally, AZD5363 also activated SMG-1 within the same liver cancer cells types, which subsequently activated the phosphorylation of mTOR. In conclusion, the present study indicates that AZD5363 inhibited phosphorylation of AKT downstream molecules, and activated phosphorylation of mTOR and SMG-1, dependent on the liver cancer type. PMID:26998062

  20. Two Redundant Receptor-Like Cytoplasmic Kinases Function Downstream of Pattern Recognition Receptors to Regulate Activation of SA Biosynthesis.

    PubMed

    Kong, Qing; Sun, Tongjun; Qu, Na; Ma, Junling; Li, Meng; Cheng, Yu-Ti; Zhang, Qian; Wu, Di; Zhang, Zhibin; Zhang, Yuelin

    2016-06-01

    Salicylic acid (SA) serves as a critical signaling molecule in plant defense. Two transcription factors, SARD1 and CBP60g, control SA biosynthesis through regulating pathogen-induced expression of Isochorismate Synthase1, which encodes a key enzyme for SA biosynthesis. Here, we report that Pattern-Triggered Immunity Compromised Receptor-like Cytoplasmic Kinase1 (PCRK1) and PCRK2 function as key regulators of SA biosynthesis. In the pcrk1 pcrk2 double mutant, pathogen-induced expression of SARD1, CBP60g, and ICS1 is greatly reduced. The pcrk1 pcrk2 double mutant, but neither of the single mutants, exhibits reduced accumulation of SA and enhanced disease susceptibility to bacterial pathogens. Both PCRK1 and PCRK2 interact with the pattern recognition receptor FLS2, and treatment with pathogen-associated molecular patterns leads to rapid phosphorylation of PCRK2. Our data suggest that PCRK1 and PCRK2 function downstream of pattern recognition receptor in a signal relay leading to the activation of SA biosynthesis. PMID:27208222

  1. Thermoperiodic control of hypocotyl elongation depends on auxin-induced ethylene signaling that controls downstream PHYTOCHROME INTERACTING FACTOR3 activity.

    PubMed

    Bours, Ralph; Kohlen, Wouter; Bouwmeester, Harro J; van der Krol, Alexander

    2015-02-01

    We show that antiphase light-temperature cycles (negative day-night temperature difference [-DIF]) inhibit hypocotyl growth in Arabidopsis (Arabidopsis thaliana). This is caused by reduced cell elongation during the cold photoperiod. Cell elongation in the basal part of the hypocotyl under -DIF was restored by both 1-aminocyclopropane-1-carboxylic acid (ACC; ethylene precursor) and auxin, indicating limited auxin and ethylene signaling under -DIF. Both auxin biosynthesis and auxin signaling were reduced during -DIF. In addition, expression of several ACC Synthase was reduced under -DIF but could be restored by auxin application. In contrast, the reduced hypocotyl elongation of ethylene biosynthesis and signaling mutants could not be complemented by auxin, indicating that auxin functions upstream of ethylene. The PHYTOCHROME INTERACTING FACTORS (PIFs) PIF3, PIF4, and PIF5 were previously shown to be important regulators of hypocotyl elongation. We now show that, in contrast to pif4 and pif5 mutants, the reduced hypocotyl length in pif3 cannot be rescued by either ACC or auxin. In line with this, treatment with ethylene or auxin inhibitors reduced hypocotyl elongation in PIF4 overexpressor (PIF4ox) and PIF5ox but not PIF3ox plants. PIF3 promoter activity was strongly reduced under -DIF but could be restored by auxin application in an ACC Synthase-dependent manner. Combined, these results show that PIF3 regulates hypocotyl length downstream, whereas PIF4 and PIF5 regulate hypocotyl length upstream of an auxin and ethylene cascade. We show that, under -DIF, lower auxin biosynthesis activity limits the signaling in this pathway, resulting in low activity of PIF3 and short hypocotyls.

  2. CCAAT-enhancer-binding Protein β (C/EBPβ) and Downstream Human Placental Growth Hormone Genes Are Targets for Dysregulation in Pregnancies Complicated by Maternal Obesity*

    PubMed Central

    Vakili, Hana; Jin, Yan; Menticoglou, Savas; Cattini, Peter A.

    2013-01-01

    Human chorionic somatomammotropin (CS) and placental growth hormone variant (GH-V) act as metabolic adaptors in response to maternal insulin resistance, which occurs in “normal” pregnancy. Maternal obesity can exacerbate this “resistance,” suggesting that CS, GH-V, or transcription factors that regulate their production might be targets. The human CS genes, hCS-A and hCS-B, flank the GH-V gene. A significant decrease in pre-term placental CS/GH-V RNA levels was observed in transgenic mice containing the CS/GH-V genes in a model of high fat diet (HFD)-induced maternal obesity. Similarly, a decrease in CS/GH-V RNA levels was detected in term placentas from obese (body mass index (BMI) ≥ 35 kg/m2) versus lean (BMI 20–25 kg/m2) women. A specific decrease in transcription factor CCAAT-enhancer-binding protein β (C/EBPβ) RNA levels was also seen with obesity; C/EBPβ is required for mouse placenta development and is expressed, like CS and GH-V, in syncytiotrophoblasts. Binding of C/EBPβ to the CS gene downstream enhancer regions, which by virtue of their position distally flank the GH-V gene, was reduced in placenta chromatin from mice on a HFD and in obese women; a corresponding decrease in RNA polymerase II associated with CS/GH-V promoters was also observed. Detection of decreased endogenous CS/GH-V RNA levels in human placental tumor cells treated with C/EBPβ siRNA is consistent with a direct effect. These data provide evidence for CS/GH-V dysregulation in acute HFD-induced obesity in mouse pregnancy and chronic obesity in human pregnancy and implicate C/EBPβ, a factor associated with CS regulation and placental development. PMID:23782703

  3. CCAAT-enhancer-binding protein β (C/EBPβ) and downstream human placental growth hormone genes are targets for dysregulation in pregnancies complicated by maternal obesity.

    PubMed

    Vakili, Hana; Jin, Yan; Menticoglou, Savas; Cattini, Peter A

    2013-08-01

    Human chorionic somatomammotropin (CS) and placental growth hormone variant (GH-V) act as metabolic adaptors in response to maternal insulin resistance, which occurs in "normal" pregnancy. Maternal obesity can exacerbate this "resistance," suggesting that CS, GH-V, or transcription factors that regulate their production might be targets. The human CS genes, hCS-A and hCS-B, flank the GH-V gene. A significant decrease in pre-term placental CS/GH-V RNA levels was observed in transgenic mice containing the CS/GH-V genes in a model of high fat diet (HFD)-induced maternal obesity. Similarly, a decrease in CS/GH-V RNA levels was detected in term placentas from obese (body mass index (BMI) ≥ 35 kg/m(2)) versus lean (BMI 20-25 kg/m(2)) women. A specific decrease in transcription factor CCAAT-enhancer-binding protein β (C/EBPβ) RNA levels was also seen with obesity; C/EBPβ is required for mouse placenta development and is expressed, like CS and GH-V, in syncytiotrophoblasts. Binding of C/EBPβ to the CS gene downstream enhancer regions, which by virtue of their position distally flank the GH-V gene, was reduced in placenta chromatin from mice on a HFD and in obese women; a corresponding decrease in RNA polymerase II associated with CS/GH-V promoters was also observed. Detection of decreased endogenous CS/GH-V RNA levels in human placental tumor cells treated with C/EBPβ siRNA is consistent with a direct effect. These data provide evidence for CS/GH-V dysregulation in acute HFD-induced obesity in mouse pregnancy and chronic obesity in human pregnancy and implicate C/EBPβ, a factor associated with CS regulation and placental development.

  4. Targeting downstream transcription factors and epigenetic modifications following Toll-like receptor 7/8 ligation to forestall tissue injury in anti-Ro60 associated heart block.

    PubMed

    Clancy, Robert M; Markham, Androo J; Reed, Joanne H; Blumenberg, Miroslav; Halushka, Marc K; Buyon, Jill P

    2016-02-01

    Based on the consistent demonstration of fibrosis of the atrioventricular node surrounded by macrophages and multinucleated giant cells in anti-Ro antibody exposed fetuses dying with heart block, this study focuses on macrophage signaling stimulated by ssRNA associated with the Ro60 protein and the impact of antagonizing innate cell drivers such as TLR7/8. Transcriptome and epigenetic modifications which affect transcription factors, NF-κB and STAT1, were selected to evaluate the phenotype of macrophages in which TLR7/8 was ligated following treatment with either anti-Ro60/Ro60/hY3 RNA immune complexes or transfection with hY3. Based on microarray, TNF and IL6 were among the most highly upregulated genes in both stimulated conditions, each of which was significantly inhibited by preincubation with hydroxychloroquine (HCQ). In contrast, following stimulation of macrophages with either TNF-α or IFN-α, which do not signal through TLR, the resultant gene expression was refractory to HCQ. Ligation of TLR7/8 resulted in increased histone methylation as measured by increased H3K4me2, a requirement for binding of NF-κB at certain promoters, specifically the kB1 region in the TNF promoter (ChIP-qPCR), which was significantly decreased by HCQ. In summary, these results support that the HCQ-sensitive phenotype of hY3 stimulated macrophages reflects the bifurcation of TLR downstream signals involving NF-κB and STAT 1 pathways and for the former dimethylation of H3K4. Accordingly, HCQ may act more as a preventive measure in downregulating the initial production of IFN-α or TNF-α and not affect the resultant autocoid stimulation reflected in TNF-α and IFN-α responsive genes. The beneficial scope of antimalarials in the prevention of organ damage, inclusive of heart block in an anti-Ro offspring or more broadly SLE, may include in part, a mechanism targeting TLR-dependent epigenetic modification.

  5. Designing an Active Target Test Projection Chamber

    NASA Astrophysics Data System (ADS)

    Koci, James; Tan Ahn Collaboration, Dr.; Nicolas Dixneuf Collaboration

    2015-10-01

    The development of instrumentation in nuclear physics is crucial for advancing our ability to measure the properties of exotic nuclei. One limitation of the use of exotic nuclei in experiment is their very low production intensities. Recently, detectors, called active-target dectectors, have been developed to address this issue. Active-target detectors use a gas medium to image charged-particle tracks that are emitted in nuclear reactions. Last semester, I designed a vacuum chamber to be used in developing Micro-Pattern Gas detectors that will upgrade the capabilities of an active-target detector called the Prototype AT-TPC. With the exterior of the chamber complete, I have now been using an electric field modeling program, Garfield, developed by CERN to design a field cage to be placed within the vacuum chamber. The field cage will be a box-like apparatus consisting of two parallel metal plates connected with a resistor chain and attached to wires wrapped between them. The cage will provide a uniform electric field within the chamber to drift electrons from nuclear reactions down to the detector in the bottom of the chamber. These signals are then amplified by a proportional counter, and the data is sent to a computer. For the long term, we would like to incorporate a Micro-Pattern Gas Detectors in the interior of the chamber and eventually use the AT-TPC to examine various nuclei. Dr. Ahn is my advising professor.

  6. Characterising low molecular weight dissolved organic carbon compounds in subglacial systems; implications for subglacial metabolic activity and potential downstream export

    NASA Astrophysics Data System (ADS)

    Lawson, Emily; Wadham, Jemma; Lis, Grzegorz; Telling, Jon

    2010-05-01

    Glaciers and ice sheets represent ~10% of the contemporary global surface coverage, yet remain one of the least explored sectors of the Earth's biosphere. The basal regions of these ice masses, known as subglacial environments, are capable of harbouring a diverse range of microorganisms that are often metabolically active despite the lack of sunlight, the cold temperatures and nutrient scarcity. Here, we consider the potential for such environments to be active components of the Earth's biogeochemical cycles. Subglacial environments have traditionally been excluded from global carbon budgets because they were assumed to be predominantly abiotic. Organic carbon (OC) reservoirs and transformations were also believed to be limited. However, significant stores of bioavailable carbon are thought to be present in glacially-overridden material, providing a potential substrate for in situ microbial metabolism. We examine the molecular characteristics of dissolved OC in basal ice and subglacial runoff from two glacier/ice-sheet systems with contrasting organic carbon substrates; Russell/Leverett Glacier, Greenland ice sheet, and Engabreen, Norway, to determine the range of dissolved low molecular weight OC (LMWOC) compounds and their relative bioavailability. Overridden material beneath the Greenland ice sheet is relatively young and organic-rich, contrasting with the older crystalline bedrock/continental shield that was overridden during glaciation at Engabreen. We first utilise a combination of fluorescence spectroscopy and ion chromatography to identify and quantify volatile fatty acids, carbohydrates and amino acids in basal ice. Volatile fatty acids are key metabolic substrates and their provision is thought to be a primary control on subglacial metabolic activity. We then provide a temporal record of amino acids and carbohydrates in subglacial runoff from Leverett Glacier (June 23rd - August 18th 2009), and compare this with subglacial runoff from Engabreen (2008 melt

  7. Targeting the Channel Activity of Viroporins.

    PubMed

    To, Janet; Surya, Wahyu; Torres, Jaume

    2016-01-01

    Since the discovery that certain small viral membrane proteins, collectively termed as viroporins, can permeabilize host cellular membranes and also behave as ion channels, attempts have been made to link this feature to specific biological roles. In parallel, most viroporins identified so far are virulence factors, and interest has focused toward the discovery of channel inhibitors that would have a therapeutic effect, or be used as research tools to understand the biological roles of viroporin ion channel activity. However, this paradigm is being shifted by the difficulties inherent to small viral membrane proteins, and by the realization that protein-protein interactions and other diverse roles in the virus life cycle may represent an equal, if not, more important target. Therefore, although targeting the channel activity of viroporins can probably be therapeutically useful in some cases, the focus may shift to their other functions in following years. Small-molecule inhibitors have been mostly developed against the influenza A M2 (IAV M2 or AM2). This is not surprising since AM2 is the best characterized viroporin to date, with a well-established biological role in viral pathogenesis combined the most extensive structural investigations conducted, and has emerged as a validated drug target. For other viroporins, these studies are still mostly in their infancy, and together with those for AM2, are the subject of the present review.

  8. The Activation of Nrf2 and Its Downstream Regulated Genes Mediates the Antioxidative Activities of Xueshuan Xinmaining Tablet in Human Umbilical Vein Endothelial Cells

    PubMed Central

    Xiong, Lingxin; Xie, Jingshu; Song, Chenxue; Liu, Jinping; Zheng, Jingtong; Liu, Chuangui; Zhang, Xiaotian; Li, Pingya; Wang, Fang

    2015-01-01

    Epidemiological studies have verified the critical role that antioxidative stress plays in protecting vascular endothelial cells. The aims of the present study were to investigate the antioxidative activities and differential regulation of nuclear erythroid-related factor 2- (Nrf2-) mediated gene expression by Xueshuan Xinmaining Tablet (XXT), a traditional Chinese medicine with the effect of treating cardiovascular diseases. The antioxidative activities of XXT were investigated using quantitative real-time PCR (qPCR), a PCR array, and western blotting. Our results indicated that XXT exhibited potent antioxidative activities by suppressing the levels of hydrogen peroxide- (H2O2-) induced reactive oxygen species (ROS) in human umbilical vein endothelial cells (HUVECs). We were also conscious of strong Nrf2-mediated antioxidant induction. XXT enhanced the expressions of Keap1, Nrf2, and Nrf2-mediated genes, such as glutamate-cysteine ligase modifier subunit (GCLM), NAD(P)H: quinine oxidoreductase 1 (NQO1), heme oxygenase 1 (HMOX1), and glutathione peroxidase (GPX) in HUVECs. In summary, XXT strongly activated Nrf2 and its downstream regulated genes, which may contribute to the antioxidative and vascular endothelial cell protective activities of XXT. PMID:26681964

  9. An Upstream By-product from Ester Activation via NHC-Catalysis Catalyzes Downstream Sulfonyl Migration Reaction.

    PubMed

    Han, Runfeng; He, Liwenze; Liu, Lin; Xie, Xingang; She, Xuegong

    2016-01-01

    A sequential reaction combining N-heterocyclic carbene (NHC) and N-hydroxyphthalimide (NHPI) catalysis allowed for the upstream by-product NHPI, which was generated in the NHC-catalyzed cycloaddition reaction, to act as the catalyst for a downstream nitrogen-to-carbon sulfonyl migration reaction. Enantiomeric excess of the major product in the cycloaddition reaction remained intact in the follow-up sulfonyl migration reaction.

  10. Up-stream and Down-stream Events in the NF-kB Activation Cascade in Response to Sparsely and Densely Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Langen, Britta; Hellweg, Christine; Baumstark-Khan, Christa; Ruscher, Roland; Schmitz, Claudia; Arenz, Andrea; Lau, Patrick; Meier, Matthias M.; Testard, Isabelle; Reitz, Guenther

    Radiation is a potentially limiting factor for long term orbital and interplanetary missions. Long-term exposure to galactic cosmic rays may shorten the healthy life-span after return to Earth due to cancer induction. During the mission, a solar flare can be life threatening. For better risk estimation and development of appropriate countermeasures, the study of the cellular radiation response is necessary. As an antiapoptotic factor, if activated in human cells by exposure to components of cosmic rays, the transcription factor nuclear factor κB (NF- κB) could influence the cancer risk of astronauts exposed to cosmic radiation and improve cellular survival after exposure to high radiation doses. In previous studies using a screening assay for the detection of NF-κB-dependent gene induction (HEK-pNF-κB-d2EGFP/Neo cells), the activation of this transcription factor by heavy ions was shown (Radiat. Res. 164: 527- 530, 2005). In this work, the events upstream of NF-κB attachment to its promoter and enhancer binding sites, and downstream expression of target genes were analysed. It is supposed that the ATM kinase mediates the signal from damaged DNA in the nucleus to kinases in the cytoplasm, such as NF-κB essential modulator (NEMO). For liberation of NF-κB and its nuclear translocation, the inhibitor of NF-κB (IκB) has to be degraded in the proteasom. In order to evaluate a role of NEMO in the radiation response, the survival of murine embryonic fibroblasts expressing wildtype NEMO and lacking NEMO in response to ionizing radiation was analyzed. Lack of NEMO impairs survival after X-ray exposure. The inhibition of ATM by KU-55933 suppresses the X-ray and heavy ion (13C, 35 MeV/u, LET 70 keV/µm) induced activation of NF-κB dependent gene expression, indicating the central position of ATM in radiation induced NF-κB activation. Short-term incubation with the proteasome inhibitor MG-132 also blocks NF-κB activation by radiation. These results suggest a role of

  11. A negative element in the downstream region of the Rice tungro bacilliform virus promoter is orientation- and position-independent and is active with heterologous promoters.

    PubMed

    Purkayastha, Arunima; Sharma, Shweta; Dasgupta, Indranil

    2010-10-01

    The promoter of an Indian isolate of the pararetrovirus Rice tungro bacilliform virus (RTBV-WB) contains a negative element downstream of the transcription start site (TSS), between nucleotide residues +58 and +195 (Mathur and Dasgupta, 2007). To further characterize the element, we show, by using transient gus reporter gene assays in the cells of onion peel, rice calli and Arabidopsis leaves, that it down-regulates heterologous promoters CaMV35S and Maize ubiquitin. Quantitative measurements of transient GUS activity indicated more than 90% inhibition of reporter gene expression by the negative element. We also show, by reversing the orientation of the element downstream and by placing it in a position upstream to a constitutively expressing RTBV promoter, that the negative element is orientation- and position-independent, pointing towards its activity at the transcriptional and not post-transcriptional level. PMID:20621135

  12. Oligodendroglial Argonaute protein Ago2 associates with molecules of the Mbp mRNA localization machinery and is a downstream target of Fyn kinase

    PubMed Central

    Müller, Christina; Schäfer, Isabelle; Luhmann, Heiko J.; White, Robin

    2015-01-01

    Oligodendrocytes myelinate neuronal axons in the central nervous system (CNS) facilitating rapid transmission of action potentials by saltatory conduction. Myelin basic protein (MBP) is an essential component of myelin and its absence results in severe hypomyelination in the CNS of rodents. Mbp mRNA is not translated immediately after exit from the nucleus in the cytoplasm, but is transported to the plasma membrane in RNA transport granules in a translationally silenced state. We have previously identified the small non-coding RNA 715 (sncRNA715) as an inhibitor of Mbp translation associated with RNA granules. Argonaute (Ago) proteins and small RNAs form the minimal core of the RNA induced silencing complex and together recognize target mRNAs to be translationally inhibited or degraded. Recently, tyrosine phosphorylation of Ago2 was reported to be a regulator of small RNA binding. The oligodendroglial non-receptor tyrosine kinase Fyn is activated by neuronal signals and stimulates the translation of Mbp mRNA at the axon-glial contact site. Here we analyzed the expression of Ago proteins in oligodendrocytes, if they associate with Mbp mRNA transport granules and are tyrosine phosphorylated by Fyn. We show that all Ago proteins (Ago1-4) are expressed by oligodendrocytes and that Ago2 colocalizes with hnRNP A2 in granular cytoplasmic structures. Ago2 associates with hnRNP A2, Mbp mRNA, sncRNA715 and Fyn kinase and is tyrosine phosphorylated in response to Fyn activity. Our findings suggest an involvement of Ago2 in the translational regulation of Mbp. The identification of Ago proteins as Fyn targets will foster further research to understand in more molecular detail how Fyn activity regulates Mbp translation. PMID:26379499

  13. microRNA-340-5p Functions Downstream of Cardiotrophin-1 to Regulate Cardiac Eccentric Hypertrophy and Heart Failure via Target Gene Dystrophin.

    PubMed

    Zhou, Jian; Gao, Jie; Zhang, Xiaoya; Liu, Yan; Gu, Song; Zhang, Xitao; An, Xiangguang; Yan, Jun; Xin, Yue; Su, Pixiong

    2015-01-01

    Pathological cardiac hypertrophy inevitably leads to the unfavorable outcomes of heart failure (HF) or even sudden death. microRNAs are key regulation factors participating in many pathophysiological processes. Recently, we observed upregulation of microRNA-340-5p (miR-340) in failing human hearts because of dilated cardiomyopathy, but the functional consequence of miR-340 remains to be clarified.We transfected neonatal cardiomyocytes with miR-340 and found fetal gene expression including Nppa, Nppb and Myh7. We also observed eccentric hypertrophy development upon treatment which was analogous to the phenotype after cardiotrophin-1 (CT-1) stimulation. As a potent inducer of cardiac eccentric hypertrophy, treatment by IL-6 family members CT-1 and leukemia inhibitory factor (LIF) led to the elevation of miR-340. Knockdown of miR-340 using antagomir attenuated fetal gene expression and hypertrophy formation, which means miR-340 could convey the hypertrophic signal of CT-1. To demonstrate the initial factor of miR-340 activation, we constructed a volume overloaded abdominal aorta-inferior vena cava fistula rat HF model. miR-340 and CT-1 were found to be up-regulated in the left ventricle. Dystrophin (DMD), a putative target gene of miR-340 which is eccentric hypertrophy-susceptible, was decreased in this HF model upon Western blotting and immunohistochemistry tests. Luciferase assay constructed in two seed sequence of DMD gene 3'UTR showed decreased luciferase activities, and miR-340 transfected cells resulted in the degradation of DMD.miR-340 is a pro-eccentric hypertrophy miRNA, and its expression is dependent on volume overload and cytokine CT-1 activation. Cardiomyocyte structure protein DMD is a target of miR-340.

  14. Transcriptional activation of the herpes simplex virus type 1 UL38 promoter conferred by the cis-acting downstream activation sequence is mediated by a cellular transcription factor.

    PubMed Central

    Guzowski, J F; Singh, J; Wagner, E K

    1994-01-01

    The herpes simplex virus (HSV) type 1 strict late (gamma) UL38 promoter contains three cis-acting transcriptional elements: a TATA box, a specific initiator element, and the downstream activation sequence (DAS). DAS is located between positions +20 and +33 within the 5' untranslated leader region and strongly influences transcript levels during productive infection. In this communication, we further characterize DAS and investigate its mechanism of action. DAS function has a strict spacing requirement, and DAS contains an essential 6-bp core element. A similarly positioned element from the gamma gC gene (UL44) has partial DAS function within the UL38 promoter context, and the promoter controlling expression of the gamma US11 transcript contains an identically located element with functional and sequence similarity to UL38 DAS. These data suggest that downstream elements are a common feature of many HSV gamma promoters. Results with recombinant viruses containing modifications of the TATA box or initiator element of the UL38 promoter suggest that DAS functions to increase transcription initiation and not the efficiency of transcription elongation. In vitro transcription assays using uninfected HeLa nuclear extracts show that, as in productive infection with recombinant viruses, the deletion of DAS from the UL38 promoter dramatically decreases RNA expression. Finally, electrophoretic mobility shift assays and UV cross-linking experiments show that DAS DNA forms a specific, stable complex with a cellular protein (the DAS-binding factor) of approximately 35 kDa. These data strongly suggest that the interaction of cellular DAS-binding factor with DAS is required for efficient expression of UL38 and other HSV late genes. Images PMID:7966567

  15. GM1 ganglioside activates ERK1/2 and Akt downstream of Trk tyrosine kinase and protects PC12 cells against hydrogen peroxide toxicity.

    PubMed

    Zakharova, Irina O; Sokolova, Tatyana V; Vlasova, Yulia A; Furaev, Victor V; Rychkova, Maria P; Avrova, Natalia F

    2014-11-01

    Ganglioside GM1 at micro- and nanomolar concentrations was shown to increase the viability of pheochromocytoma PC12 cells exposed to hydrogen peroxide and diminish the accumulation of reactive oxygen species and oxidative inactivation of Na(+),K(+)-ATPase, the effects of micromolar GM1 being more pronounced than those of nanomolar GM1. These effects of GM1 were abolished by Trk receptor tyrosine kinase inhibitor and diminished by MEK1/2, phosphoinositide 3-kinase and protein kinase C inhibitors. Hydrogen peroxide activates Trk tyrosine kinase; Akt and ERK1/2 are activated downstream of this protein kinase. GM1 was found to activate Trk receptor tyrosine kinase in PC12 cells. GM1 (100 nM and 10 µM) increased the basal activity of Akt, but did not change Akt activity in cells exposed to hydrogen peroxide. Basal ERK1/2 activity in PC12 cells was increased by GM1 at a concentration of 10 µM, but not at nanomolar concentrations. Activation of ERK1/2 by hydrogen peroxide was enhanced by GM1 at a concentration of 10 µM and to a lesser extent at a concentration of 100 nM. Thus, the protective and metabolic effects of GM1 ganglioside on PC12 cells exposed to hydrogen peroxide appear to depend on the activation of Trk receptor tyrosine kinase and downstream activation of Akt and ERK1/2.

  16. Global Oct4 target gene analysis reveals novel downstream PTEN and TNC genes required for drug-resistance and metastasis in lung cancer.

    PubMed

    Tang, Yen-An; Chen, Chi-Hsin; Sun, H Sunny; Cheng, Chun-Pei; Tseng, Vincent S; Hsu, Han-Shui; Su, Wu-Chou; Lai, Wu-Wei; Wang, Yi-Ching

    2015-02-18

    Overexpression of Oct4, a stemness gene encoding a transcription factor, has been reported in several cancers. However, the mechanism by which Oct4 directs transcriptional program that leads to somatic cancer progression remains unclear. In this study, we provide mechanistic insight into Oct4-driven transcriptional network promoting drug-resistance and metastasis in lung cancer cell, animal and clinical studies. Through an integrative approach combining our Oct4 chromatin-immunoprecipitation sequencing and ENCODE datasets, we identified the genome-wide binding regions of Oct4 in lung cancer at promoter and enhancer of numerous genes involved in critical pathways which promote tumorigenesis. Notably, PTEN and TNC were previously undefined targets of Oct4. In addition, novel Oct4-binding motifs were found to overlap with DNA elements for Sp1 transcription factor. We provided evidence that Oct4 suppressed PTEN in an Sp1-dependent manner by recruitment of HDAC1/2, leading to activation of AKT signaling and drug-resistance. In contrast, Oct4 transactivated TNC independent of Sp1 and resulted in cancer metastasis. Clinically, lung cancer patients with Oct4 high, PTEN low and TNC high expression profile significantly correlated with poor disease-free survival. Our study reveals a critical Oct4-driven transcriptional program that promotes lung cancer progression, illustrating the therapeutic potential of targeting Oc4 transcriptionally regulated genes.

  17. Examining the critical roles of human CB2 receptor residues Valine 3.32 (113) and Leucine 5.41 (192) in ligand recognition and downstream signaling activities.

    PubMed

    Alqarni, Mohammed; Myint, Kyaw Zeyar; Tong, Qin; Yang, Peng; Bartlow, Patrick; Wang, Lirong; Feng, Rentian; Xie, Xiang-Qun

    2014-09-26

    We performed molecular modeling and docking to predict a putative binding pocket and associated ligand-receptor interactions for human cannabinoid receptor 2 (CB2). Our data showed that two hydrophobic residues came in close contact with three structurally distinct CB2 ligands: CP-55,940, SR144528 and XIE95-26. Site-directed mutagenesis experiments and subsequent functional assays implicated the roles of Valine residue at position 3.32 (V113) and Leucine residue at position 5.41 (L192) in the ligand binding function and downstream signaling activities of the CB2 receptor. Four different point mutations were introduced to the wild type CB2 receptor: V113E, V113L, L192S and L192A. Our results showed that mutation of Val113 with a Glutamic acid and Leu192 with a Serine led to the complete loss of CB2 ligand binding as well as downstream signaling activities. Substitution of these residues with those that have similar hydrophobic side chains such as Leucine (V113L) and Alanine (L192A), however, allowed CB2 to retain both its ligand binding and signaling functions. Our modeling results validated by competition binding and site-directed mutagenesis experiments suggest that residues V113 and L192 play important roles in ligand binding and downstream signaling transduction of the CB2 receptor.

  18. Assembly-driven activation of the AIM2 foreign-dsDNA sensor provides a polymerization template for downstream ASC

    NASA Astrophysics Data System (ADS)

    Morrone, Seamus R.; Matyszewski, Mariusz; Yu, Xiong; Delannoy, Michael; Egelman, Edward H.; Sohn, Jungsan

    2015-07-01

    AIM2 recognizes foreign dsDNA and assembles into the inflammasome, a filamentous supramolecular signalling platform required to launch innate immune responses. We show here that the pyrin domain of AIM2 (AIM2PYD) drives both filament formation and dsDNA binding. In addition, the dsDNA-binding domain of AIM2 also oligomerizes and assists in filament formation. The ability to oligomerize is critical for binding dsDNA, and in turn permits the size of dsDNA to regulate the assembly of the AIM2 polymers. The AIM2PYD oligomers define the filamentous structure, and the helical symmetry of the AIM2PYD filament is consistent with the filament assembled by the PYD of the downstream adaptor ASC. Our results suggest that the role of AIM2PYD is not autoinhibitory, but generating a structural template by coupling ligand binding and oligomerization is a key signal transduction mechanism in the AIM2 inflammasome.

  19. Fimbrolide Natural Products Disrupt Bioluminescence of Vibrio By Targeting Autoinducer Biosynthesis and Luciferase Activity.

    PubMed

    Zhao, Weining; Lorenz, Nicola; Jung, Kirsten; Sieber, Stephan A

    2016-01-18

    Vibrio is a model organism for the study of quorum sensing (QS) signaling and is used to identify QS-interfering drugs. Naturally occurring fimbrolides are important tool compounds known to affect QS in various organisms; however, their cellular targets have so far remained elusive. Here we identify the irreversible fimbrolide targets in the proteome of living V. harveyi and V. campbellii via quantitative mass spectrometry utilizing customized probes. Among the major hits are two protein targets with essential roles in Vibrio QS and bioluminescence. LuxS, responsible for autoinducer 2 biosynthesis, and LuxE, a subunit of the luciferase complex, were both covalently modified at their active-site cysteines leading to inhibition of activity. The identification of LuxE unifies previous reports suggesting inhibition of bioluminescence downstream of the signaling cascade and thus contributes to a better mechanistic understanding of these QS tool compounds.

  20. Transcriptomic-based effects monitoring for endocrine active chemicals: Assessing relative contribution of treated wastewater to downstream pollution

    EPA Science Inventory

    The present study investigated whether combining of targeted analytical chemistry methods with unsupervised, data-rich methodologies (i.e. transcriptomics) can be utilized to evaluate relative contributions of wastewater treatment plant (WWTP) effluents to biological effects. The...

  1. cis-acting sequences located downstream of the human immunodeficiency virus type 1 promoter affect its chromatin structure and transcriptional activity.

    PubMed

    el Kharroubi, A; Martin, M A

    1996-06-01

    We have examined the roles of AP-1, AP-3-like, DBF1, and Sp1 binding sites, which are located downstream of the human immunodeficiency virus type 1 (HIV-1) promoter, in regulating basal transcriptional activity directed by the integrated viral long terminal repeat (LTR). Point mutations affecting all four of these elements functionally inactivated the HIV-1 LTR when it was constrained in a chromatin configuration. Analyses of the chromatin structures of the transcriptionally active wild-type and inactive mutated HIV-1 promoters revealed several differences. In the active promoter, the 3' half of the U3 region, including the basal promoter, the enhancer, and the putative upstream regulatory sequences are situated within a nuclease-hypersensitive region. However, the far upstream U3 region appears to be packaged into a nuclease-resistant nucleosomal structure, whereas the R, U5, and gag leader sequences are associated with a region of altered chromatin that is sensitive to restriction endonucleases. In the inactive template, only the basal promoter and enhancer element remain sensitive to nucleases, and the adjacent upstream and downstream regions are incorporated into nuclease-resistant nucleosomal structures. Taken together, these results indicate that the chromatin structure of the integrated HIV-1 LTR plays a critical role in modulating basal transcriptional activity. PMID:8649407

  2. Diversity of Stability, Localization, Interaction and Control of Downstream Gene Activity in the Maize Aux/IAA Protein Family

    PubMed Central

    Ludwig, Yvonne; Berendzen, Kenneth W.; Xu, Changzheng; Piepho, Hans-Peter; Hochholdinger, Frank

    2014-01-01

    AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins are central regulators of auxin signal transduction. They control many aspects of plant development, share a conserved domain structure and are localized in the nucleus. In the present study, five maize Aux/IAA proteins (ZmIAA2, ZmIAA11, ZmIAA15, ZmIAA20 and ZmIAA33) representing the evolutionary, phylogenetic and expression diversity of this gene family were characterized. Subcellular localization studies revealed that ZmIAA2, ZmIAA11 and ZmIAA15 are confined to the nucleus while ZmIAA20 and ZmIAA33 are localized in both the nucleus and the cytoplasm. Introduction of specific point mutations in the degron sequence (VGWPPV) of domain II by substituting the first proline by serine or the second proline by leucine stabilized the Aux/IAA proteins. While protein half-life times between ∼11 min (ZmIAA2) to ∼120 min (ZmIAA15) were observed in wild-type proteins, the mutated forms of all five proteins were almost as stable as GFP control proteins. Moreover, all five maize Aux/IAA proteins repressed downstream gene expression in luciferase assays to different degrees. In addition, bimolecular fluorescence complementation (BiFC) analyses demonstrated interaction of all five Aux/IAA proteins with RUM1 (ROOTLESS WITH UNDETECTABLE MERISTEM 1, ZmIAA10) while only ZmIAA15 and ZmIAA33 interacted with the RUM1 paralog RUL1 (RUM-LIKE 1, ZmIAA29). Moreover, ZmIAA11, ZmIAA15 ZmIAA33 displayed homotypic interaction. Hence, despite their conserved domain structure, maize Aux/IAA proteins display a significant variability in their molecular characteristics which is likely associated with the wide spectrum of their developmental functions. PMID:25203637

  3. JNK Pathway Activation Modulates Acquired Resistance to EGFR/HER2-Targeted Therapies.

    PubMed

    Manole, Simin; Richards, Edward J; Meyer, Aaron S

    2016-09-15

    Resistance limits the effectiveness of receptor tyrosine kinase (RTK)-targeted therapies. Combination therapies targeting resistance mechanisms can considerably improve response, but will require an improved understanding of when particular combinations will be effective. One common form of resistance is bypass signaling, wherein RTKs not targeted by an inhibitor can direct reactivation of pathways essential for survival. Although this mechanism of resistance is well appreciated, it is unclear which downstream signaling events are responsible. Here, we apply a combined experimental- and statistical modeling-based approach to identify a set of pathway reactivation essential for RTK-mediated bypass resistance. Differences in the downstream pathway activation provided by particular RTKs lead to qualitative differences in the capacity of each receptor to drive therapeutic resistance. We identify and validate that the JNK pathway is activated during and strongly modulates bypass resistance. These results identify effective therapeutic combinations that block bypass-mediated resistance and provide a basic understanding of this network-level change in kinase dependence that will inform the design of prognostic assays for identifying effective therapeutic combinations in individual patients. Cancer Res; 76(18); 5219-28. ©2016 AACR. PMID:27450453

  4. Comparison of the Gene Expression Profiles from Normal and Fgfrl1 Deficient Mouse Kidneys Reveals Downstream Targets of Fgfrl1 Signaling

    PubMed Central

    Gerber, Simon D.; Amann, Ruth; Wyder, Stefan; Trueb, Beat

    2012-01-01

    Fgfrl1 (fibroblast growth factor receptor-like 1) is a transmembrane receptor that is essential for the development of the metanephric kidney. It is expressed in all nascent nephrogenic structures and in the ureteric bud. Fgfrl1 null mice fail to develop the metanephric kidneys. Mutant kidney rudiments show a dramatic reduction of ureteric branching and a lack of mesenchymal-to-epithelial transition. Here, we compared the expression profiles of wildtype and Fgfrl1 mutant kidneys to identify genes that act downstream of Fgfrl1 signaling during the early steps of nephron formation. We detected 56 differentially expressed transcripts with 2-fold or greater reduction, among them many genes involved in Fgf, Wnt, Bmp, Notch, and Six/Eya/Dach signaling. We validated the microarray data by qPCR and whole-mount in situ hybridization and showed the expression pattern of candidate genes in normal kidneys. Some of these genes might play an important role during early nephron formation. Our study should help to define the minimal set of genes that is required to form a functional nephron. PMID:22432025

  5. Cosmogenic activation of a natural tellurium target

    NASA Astrophysics Data System (ADS)

    Lozza, V.; Petzoldt, J.

    2015-02-01

    130Te is one of the candidates for the search for neutrinoless double beta decay. It is currently planned to be used in two experiments: CUORE and SNO+. In the CUORE experiment TeO2 crystals cooled at cryogenic temperatures will be used. In the SNO+ experiment natTe will be deployed up to 0.3% loading in the liquid scintillator volume. A possible background for the signal searched for, are the high Q-value, long-lived isotopes, produced by cosmogenic neutron and proton spallation reaction on the target material. A total of 18 isotopes with Q-value larger than 2 MeV and T1/2 > 20 days have been identified as potential backgrounds. In addition low Q-value, high rate isotopes can be problematic due to pile-up effects, specially in liquid scintillator based detectors. Production rates have been calculated using the ACTIVIA program, the TENDL library, and the cosmogenic neutron and proton flux parametrization at sea level from Armstrong and Gehrels for both long and short lived isotopes. The obtained values for the cross sections are compared with the existing experimental data and calculations. Good agreement has been generally found. The results have been applied to the SNO+ experiment for one year of exposure at sea level. Two possible cases have been considered: a two years of cooling down period deep underground, or a first purification on surface and 6 months of cooling down deep underground. Deep underground activation at the SNOLAB location has been considered.

  6. How targets select activation or repression in response to Wnt.

    PubMed

    Murgan, Sabrina; Bertrand, Vincent

    2015-01-01

    In metazoans, the Wnt signaling pathway plays a key role in the regulation of binary decisions during development. During this process different sets of target genes are activated in cells where the Wnt pathway is active (classic target genes) versus cells where the pathway is inactive (opposite target genes). While the mechanism of transcriptional activation is well understood for classic target genes, how opposite target genes are activated in the absence of Wnt remains poorly characterized. Here we discuss how the key transcriptional mediator of the Wnt pathway, the TCF family member POP-1, regulates opposite target genes during C. elegans development. We examine recent findings suggesting that the direction of the transcriptional output (activation or repression) can be determined by the way TCF is recruited and physically interacts with its target gene. PMID:27123368

  7. Na(+)/H(+) exchanger 1 directly binds to calcineurin A and activates downstream NFAT signaling, leading to cardiomyocyte hypertrophy.

    PubMed

    Hisamitsu, Takashi; Nakamura, Tomoe Y; Wakabayashi, Shigeo

    2012-08-01

    The calcineurin A (CaNA) subunit was identified as a novel binding partner of plasma membrane Na(+)/H(+) exchanger 1 (NHE1). CaN is a Ca(2+)-dependent phosphatase involved in many cellular functions, including cardiac hypertrophy. Direct binding of CaN to the (715)PVITID(720) sequence of NHE1, which resembles the consensus CaN-binding motif (PXIXIT), was observed. Overexpression of NHE1 promoted serum-induced CaN/nuclear factor of activated T cells (NFAT) signaling in fibroblasts, as indicated by enhancement of NFAT promoter activity and nuclear translocation, which was attenuated by NHE1 inhibitor. In neonatal rat cardiomyocytes, NHE1 stimulated hypertrophic gene expression and the NFAT pathway, which were inhibited by a CaN inhibitor, FK506. Importantly, CaN activity was strongly enhanced with increasing pH, so NHE1 may promote CaN/NFAT signaling via increased intracellular pH. Indeed, Na(+)/H(+) exchange activity was required for NHE1-dependent NFAT signaling. Moreover, interaction of CaN with NHE1 and clustering of NHE1 to lipid rafts were also required for this response. Based on these results, we propose that NHE1 activity may generate a localized membrane microdomain with higher pH, thereby sensitizing CaN to activation and promoting NFAT signaling. In cardiomyocytes, such signaling can be a pathway of NHE1-dependent hypertrophy.

  8. Ethylene-Induced Vinblastine Accumulation Is Related to Activated Expression of Downstream TIA Pathway Genes in Catharanthus roseus

    PubMed Central

    Wang, Xi; Pan, Ya-Jie; Chang, Bo-Wen; Hu, Yan-Bo; Guo, Xiao-Rui; Tang, Zhong-Hua

    2016-01-01

    We selected different concentrations of ethephon, to stress C. roseus. We used qRT-PCR and HPLC followed by PCA to obtain comprehensive profiling of the vinblastine biosynthesis in response to ethephon. Based on our findings, the results showed that the high concentration of ethephon had a positive effect at both transcriptional and metabolite level. Meanwhile, there was a remarkable decrease of hydrogen peroxide content and a promoted peroxidase activity in leaves. The loading plot combination with correlation analysis suggested that CrPrx1 could be regarded as a positive regulator and interacts with ethylene response factor (ERF) to play a key role in vinblastine content and peroxidase (POD) activity. This study provides the foundation for a better understanding of the regulation and accumulation of vinblastine in response to ethephon. PMID:27314017

  9. GPR30 Promotes Prostate Stromal Cell Activation via Suppression of ERα Expression and Its Downstream Signaling Pathway.

    PubMed

    Jia, Bona; Gao, Yu; Li, Mingming; Shi, Jiandang; Peng, Yanfei; Du, Xiaoling; Klocker, Helmut; Sampson, Natalie; Shen, Yongmei; Liu, Mengyang; Zhang, Ju

    2016-08-01

    Cancer-associated fibroblasts (CAFs) play a vital role in malignant transformation and progression of prostate cancer (PCa), and accumulating evidence suggests an enhancing effect of estrogens on PCa. The present study aimed to investigate the possible origin of prostate CAFs and the effects of estrogen receptors, G protein-coupled receptor 30 (GPR30) and estrogen receptor (ER)-α, on stromal cell activation. High expression of fibroblast activation protein (FAP), CD44, and nonmuscle myosin heavy chain B (SMemb) accompanied by low expression of smooth muscle differentiation markers was found in the stromal cells of PCa tissues and in cultured human prostate CAFs. Additionally, SMemb expression, which is coupled to cell phenotype switching and proliferation, was coexpressed with FAP, a marker of activated stromal cells, and with the stem cell marker CD44 in the stromal cells of PCa tissue. Prostate CAFs showed high GPR30 and low ERα expression. Moreover, GPR30 was coexpressed with FAP, CD44, and SMemb. Furthermore, the study demonstrated that the overexpression of GPR30 or the knockdown of ERα in prostate stromal cells induced the up-regulation of FAP, CD44, Smemb, and the down-regulation of smooth muscle markers. The conditioned medium from these cells promoted the proliferation and migration of LNCaP and PC3 PCa cells. GPR30 knockdown or ERα overexpression showed opposite effects. Finally, we present a novel mechanism whereby GPR30 limits ERα expression via inhibition of the cAMP/protein kinase A signaling pathway. These results suggest that stem-like cells within the stroma are a possible source of prostate CAFs and that the negative regulation of ERα expression by GPR30 is centrally involved in prostate stromal cell activation. PMID:27163843

  10. The roles of Ca2+, downstream protein kinases, and oscillatory signaling in regulating fertilization and the activation of development

    PubMed Central

    Ducibella, Tom; Fissore, Rafael

    2008-01-01

    Reviews in Developmental Biology have covered the pathways that generate the all-important intracellular calcium (Ca2+) signal at fertilization (Miyazaki et al., 1993a; Runft et al., 2002) and the different temporal responses of Ca2+ in many organisms (Stricker, 1999). Those reviews raise the importance of identifying how Ca2+ causes the events of egg activation (EEA) and to what extent these temporal Ca2+ responses encode developmental information. This review covers recent studies that have analyzed how these Ca2+ signals are interpreted by specific proteins, and how these proteins regulate various EEA responsible for the onset of development. Many of these proteins are protein kinases (CaMKII, PKC, MPF, MAPK, MLCK) whose activity is directly or indirectly regulated by Ca2+, and whose amount increases during late oocyte maturation. We cover biochemical progress in defining the signaling pathways between Ca2+ and the EEA, as well as discuss how oscillatory or multiple Ca2+ signals are likely to have specific advantages biochemically and/or developmentally. These emerging concepts are put into historical context, emphasizing that key contributions have come from many organisms. The intricate interdependence of Ca2+, Ca2+-dependent proteins, and the EEA raise many new questions for future investigations that will provide insight into the extent to which fertilization-associated signaling has long-range implications for development. In addition, answers to these questions should be beneficial to establishing parameters of egg quality for human and animal IVF, as well as improving egg activation protocols for somatic cell nuclear transfer to generate stem cells and save endangered species. PMID:18255053

  11. Chemical downstream etching of tungsten

    SciTech Connect

    Blain, M.G.; Jarecki, R.L.; Simonson, R.J.

    1998-07-01

    The downstream etching of tungsten and tungsten oxide has been investigated. Etching of chemical vapor deposited tungsten and e-beam deposited tungsten oxide samples was performed using atomic fluorine generated by a microwave discharge of argon and NF{sub 3}. Etching was found to be highly activated with activation energies approximated to be 6.0{plus_minus}0.5thinspkcal/mol and 5.4{plus_minus}0.4thinspkcal/mol for W and WO{sub 3}, respectively. In the case of F etching of tungsten, the addition of undischarged nitric oxide (NO) directly into the reaction chamber results in the competing effects of catalytic etch rate enhancement and the formation of a nearly stoichiometric WO{sub 3} passivating tungsten oxide film, which ultimately stops the etching process. For F etching of tungsten oxide, the introduction of downstream NO reduces the etch rate. {copyright} {ital 1998 American Vacuum Society.}

  12. Activation of RAF/MEK/ERK and PI3K/AKT/mTOR pathways in pituitary adenomas and their effects on downstream effectors.

    PubMed

    Dworakowska, D; Wlodek, E; Leontiou, C A; Igreja, S; Cakir, M; Teng, M; Prodromou, N; Góth, M I; Grozinsky-Glasberg, S; Gueorguiev, M; Kola, B; Korbonits, M; Grossman, A B

    2009-12-01

    Raf/MEK/ERK and phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) cascades are key signalling pathways interacting with each other to regulate cell growth and tumourigenesis. We have previously shown B-Raf and Akt overexpression and/or overactivation in pituitary adenomas. The aim of this study is to assess the expression of their downstream components (MEK1/2, ERK1/2, mTOR, TSC2, p70S6K) and effectors (c-MYC and CYCLIN D1). We studied tissue from 16 non-functioning pituitary adenomas (NFPAs), six GH-omas, six prolactinomas and six ACTH-omas, all collected at transsphenoidal surgery; 16 normal autopsy pituitaries were used as controls. The expression of phospho and total protein was assessed with western immunoblotting, and the mRNA expression with quantitative RT-PCR. The expression of pSer217/221 MEK1/2 and pThr183 ERK1/2 (but not total MEK1/2 or ERK1/2) was significantly higher in all tumour subtypes in comparison to normal pituitaries. There was no difference in the expression of phosphorylated/total mTOR, TSC2 or p70S6K between pituitary adenomas and controls. Neither c-MYC phosphorylation at Ser 62 nor total c-MYC was changed in the tumours. However, c-MYC phosphorylation at Thr58/Ser62 (a response target for Akt) was decreased in all tumour types. CYCLIN D1 expression was higher only in NFPAs. The mRNA expression of MEK1, MEK2, ERK1, ERK2, c-MYC and CCND1 was similar in all groups. Our data indicate that in pituitary adenomas both the Raf/MEK/ERK and PI3K/Akt/mTOR pathways are upregulated in their initial cascade, implicating a pro-proliferative signal derangement upstream to their point of convergence. However, we speculate that other processes, such as senescence, attenuate the changes downstream in these benign tumours. PMID:19620247

  13. A conserved Polϵ binding module in Ctf18-RFC is required for S-phase checkpoint activation downstream of Mec1.

    PubMed

    García-Rodríguez, Luis J; De Piccoli, Giacomo; Marchesi, Vanessa; Jones, Richard C; Edmondson, Ricky D; Labib, Karim

    2015-10-15

    Defects during chromosome replication in eukaryotes activate a signaling pathway called the S-phase checkpoint, which produces a multifaceted response that preserves genome integrity at stalled DNA replication forks. Work with budding yeast showed that the 'alternative clamp loader' known as Ctf18-RFC acts by an unknown mechanism to activate the checkpoint kinase Rad53, which then mediates much of the checkpoint response. Here we show that budding yeast Ctf18-RFC associates with DNA polymerase epsilon, via an evolutionarily conserved 'Pol ϵ binding module' in Ctf18-RFC that is produced by interaction of the carboxyl terminus of Ctf18 with the Ctf8 and Dcc1 subunits. Mutations at the end of Ctf18 disrupt the integrity of the Pol ϵ binding module and block the S-phase checkpoint pathway, downstream of the Mec1 kinase that is the budding yeast orthologue of mammalian ATR. Similar defects in checkpoint activation are produced by mutations that displace Pol ϵ from the replisome. These findings indicate that the association of Ctf18-RFC with Pol ϵ at defective replication forks is a key step in activation of the S-phase checkpoint. PMID:26250113

  14. A conserved Polϵ binding module in Ctf18-RFC is required for S-phase checkpoint activation downstream of Mec1

    PubMed Central

    García-Rodríguez, Luis J.; De Piccoli, Giacomo; Marchesi, Vanessa; Jones, Richard C.; Edmondson, Ricky D.; Labib, Karim

    2015-01-01

    Defects during chromosome replication in eukaryotes activate a signaling pathway called the S-phase checkpoint, which produces a multifaceted response that preserves genome integrity at stalled DNA replication forks. Work with budding yeast showed that the ‘alternative clamp loader’ known as Ctf18-RFC acts by an unknown mechanism to activate the checkpoint kinase Rad53, which then mediates much of the checkpoint response. Here we show that budding yeast Ctf18-RFC associates with DNA polymerase epsilon, via an evolutionarily conserved ‘Pol ϵ binding module’ in Ctf18-RFC that is produced by interaction of the carboxyl terminus of Ctf18 with the Ctf8 and Dcc1 subunits. Mutations at the end of Ctf18 disrupt the integrity of the Pol ϵ binding module and block the S-phase checkpoint pathway, downstream of the Mec1 kinase that is the budding yeast orthologue of mammalian ATR. Similar defects in checkpoint activation are produced by mutations that displace Pol ϵ from the replisome. These findings indicate that the association of Ctf18-RFC with Pol ϵ at defective replication forks is a key step in activation of the S-phase checkpoint. PMID:26250113

  15. A conserved Polϵ binding module in Ctf18-RFC is required for S-phase checkpoint activation downstream of Mec1.

    PubMed

    García-Rodríguez, Luis J; De Piccoli, Giacomo; Marchesi, Vanessa; Jones, Richard C; Edmondson, Ricky D; Labib, Karim

    2015-10-15

    Defects during chromosome replication in eukaryotes activate a signaling pathway called the S-phase checkpoint, which produces a multifaceted response that preserves genome integrity at stalled DNA replication forks. Work with budding yeast showed that the 'alternative clamp loader' known as Ctf18-RFC acts by an unknown mechanism to activate the checkpoint kinase Rad53, which then mediates much of the checkpoint response. Here we show that budding yeast Ctf18-RFC associates with DNA polymerase epsilon, via an evolutionarily conserved 'Pol ϵ binding module' in Ctf18-RFC that is produced by interaction of the carboxyl terminus of Ctf18 with the Ctf8 and Dcc1 subunits. Mutations at the end of Ctf18 disrupt the integrity of the Pol ϵ binding module and block the S-phase checkpoint pathway, downstream of the Mec1 kinase that is the budding yeast orthologue of mammalian ATR. Similar defects in checkpoint activation are produced by mutations that displace Pol ϵ from the replisome. These findings indicate that the association of Ctf18-RFC with Pol ϵ at defective replication forks is a key step in activation of the S-phase checkpoint.

  16. Effects of urine composition on epithelial Na+ channel-targeted protease activity

    PubMed Central

    Berman, Jonathan M; Awayda, Ryan G; Awayda, Mouhamed S

    2015-01-01

    We examined human urinary proteolytic activity toward the Epithelial Sodium Channel (ENaC). We focused on two sites in each of alpha and gamma ENaC that are targets of endogenous and exogenous proteases. We examined the effects of ionic strength, pH and urinary H+-buffers, metabolic intermediates, redox molecules, and large urinary proteins. Monoatomic cations caused the largest effect, with sodium inhibiting activity in the 15–515 mEq range. Multivalent cations zinc and copper inhibited urinary proteolytic activity at concentrations below 100 μmol/L. Similar to sodium, urea caused a 30% inhibition in the 0–500 mmol/L range. This was not observed with acetone and ethanol. Modulating urinary redox status modified activity with H2O2 stimulated and ascorbate inhibited activity. Minimal effects (<10%) were observed with caffeine, glucose, several TCA cycle intermediates, salicylic acid, inorganic phosphate, albumin, creatinine, and Tamm–Horsfall protein. The cumulative activity of ENaC-cleaving proteases was highest at neutral pH, however, alpha and gamma proteases exhibited an inverse dependence with alpha stimulated at acidic and gamma stimulated at alkaline pH. These data indicate that ENaC-targeting urinary proteolytic activity is sensitive to sodium, urea and pH and changes in these components can modify channel cleavage and activation status, and likely downstream sodium absorption unrelated to changes in protein or channel density. PMID:26564065

  17. Effects of urine composition on epithelial Na+ channel-targeted protease activity.

    PubMed

    Berman, Jonathan M; Awayda, Ryan G; Awayda, Mouhamed S

    2015-11-01

    We examined human urinary proteolytic activity toward the Epithelial Sodium Channel (ENaC). We focused on two sites in each of alpha and gamma ENaC that are targets of endogenous and exogenous proteases. We examined the effects of ionic strength, pH and urinary H(+)-buffers, metabolic intermediates, redox molecules, and large urinary proteins. Monoatomic cations caused the largest effect, with sodium inhibiting activity in the 15-515 mEq range. Multivalent cations zinc and copper inhibited urinary proteolytic activity at concentrations below 100 μmol/L. Similar to sodium, urea caused a 30% inhibition in the 0-500 mmol/L range. This was not observed with acetone and ethanol. Modulating urinary redox status modified activity with H2O2 stimulated and ascorbate inhibited activity. Minimal effects (<10%) were observed with caffeine, glucose, several TCA cycle intermediates, salicylic acid, inorganic phosphate, albumin, creatinine, and Tamm-Horsfall protein. The cumulative activity of ENaC-cleaving proteases was highest at neutral pH, however, alpha and gamma proteases exhibited an inverse dependence with alpha stimulated at acidic and gamma stimulated at alkaline pH. These data indicate that ENaC-targeting urinary proteolytic activity is sensitive to sodium, urea and pH and changes in these components can modify channel cleavage and activation status, and likely downstream sodium absorption unrelated to changes in protein or channel density. PMID:26564065

  18. SIRT1, AMP-activated protein kinase phosphorylation and downstream kinases in response to a single bout of sprint exercise: influence of glucose ingestion.

    PubMed

    Guerra, Borja; Guadalupe-Grau, Amelia; Fuentes, Teresa; Ponce-González, Jesús Gustavo; Morales-Alamo, David; Olmedillas, Hugo; Guillén-Salgado, José; Santana, Alfredo; Calbet, José A L

    2010-07-01

    This study was designed to examine potential in vivo mechanisms of AMP-activated protein kinase (AMPK) phosphorylation inhibition and its downstream signaling consequences during the recovery period after a single bout of sprint exercise. Sprint exercise induces Thr(172)-AMPK phosphorylation and increased PGC-1alpha mRNA, by an unknown mechanism. Muscle biopsies were obtained in 15 young healthy men in response to a 30-s sprint exercise (Wingate test) randomly distributed into two groups: the fasting (n = 7, C) and the glucose group (n = 8, G), who ingested 75 g of glucose 1 h before exercising to inhibit AMPKalpha phosphorylation. Exercise elicited different patterns of Ser(221)-ACCbeta, Ser(473)-Akt and Thr(642)-AS160 phosphorylation, during the recovery period after glucose ingestion. Thirty minutes after the control sprint, Ser(485)-AMPKalpha1/Ser(491)-AMPKalpha2 phosphorylation was reduced by 33% coinciding with increased Thr(172)-AMPKalpha phosphorylation (both, P < 0.05). Glucose abolished the 30-min Thr(172)-AMPKalpha phosphorylation. Ser(221)-ACCbeta phosphorylation was elevated immediately following and 30 min after exercise in C and G, implying a dissociation between Thr(172)-AMPKalpha and Ser(221)-ACCbeta phosphorylation. Two hours after the sprint, PGC-1alpha protein expression remained unchanged while SIRT1 (its upstream deacetylase) was increased. Glucose ingestion abolished the SIRT1 response without any significant effect on PGC-1alpha protein expression. In conclusion, glucose ingestion prior to a sprint exercise profoundly affects Thr(172)-AMPKalpha phosphorylation and its downstream signaling during the recovery period.

  19. Nuclease Target Site Selection for Maximizing On-target Activity and Minimizing Off-target Effects in Genome Editing

    PubMed Central

    Lee, Ciaran M; Cradick, Thomas J; Fine, Eli J; Bao, Gang

    2016-01-01

    The rapid advancement in targeted genome editing using engineered nucleases such as ZFNs, TALENs, and CRISPR/Cas9 systems has resulted in a suite of powerful methods that allows researchers to target any genomic locus of interest. A complementary set of design tools has been developed to aid researchers with nuclease design, target site selection, and experimental validation. Here, we review the various tools available for target selection in designing engineered nucleases, and for quantifying nuclease activity and specificity, including web-based search tools and experimental methods. We also elucidate challenges in target selection, especially in predicting off-target effects, and discuss future directions in precision genome editing and its applications. PMID:26750397

  20. Targeted, noninvasive blockade of cortical neuronal activity

    NASA Astrophysics Data System (ADS)

    McDannold, Nathan; Zhang, Yongzhi; Power, Chanikarn; Arvanitis, Costas D.; Vykhodtseva, Natalia; Livingstone, Margaret

    2015-11-01

    Here we describe a novel method to noninvasively modulate targeted brain areas through the temporary disruption of the blood-brain barrier (BBB) via focused ultrasound, enabling focal delivery of a neuroactive substance. Ultrasound was used to locally disrupt the BBB in rat somatosensory cortex, and intravenous administration of GABA then produced a dose-dependent suppression of somatosensory-evoked potentials in response to electrical stimulation of the sciatic nerve. No suppression was observed 1-5 days afterwards or in control animals where the BBB was not disrupted. This method has several advantages over existing techniques: it is noninvasive; it is repeatable via additional GABA injections; multiple brain regions can be affected simultaneously; suppression magnitude can be titrated by GABA dose; and the method can be used with freely behaving subjects. We anticipate that the application of neuroactive substances in this way will be a useful tool for noninvasively mapping brain function, and potentially for surgical planning or novel therapies.

  1. EWS/FLI and its downstream target NR0B1 interact directly to modulate transcription and oncogenesis in Ewing's sarcoma.

    PubMed

    Kinsey, Michelle; Smith, Richard; Iyer, Anita K; McCabe, Edward R B; Lessnick, Stephen L

    2009-12-01

    Most Ewing's sarcomas harbor chromosomal translocations that encode fusions between EWS and ETS family members. The most common fusion, EWS/FLI, consists of an EWSR1-derived strong transcriptional activation domain fused, in-frame, to the DNA-binding domain-containing portion of FLI1. EWS/FLI functions as an aberrant transcription factor to regulate genes that mediate the oncogenic phenotype of Ewing's sarcoma. One of these regulated genes, NR0B1, encodes a corepressor protein, and likely plays a transcriptional role in tumorigenesis. However, the genes that NR0B1 regulates and the transcription factors it interacts with in Ewing's sarcoma are largely unknown. We used transcriptional profiling and chromatin immunoprecipitation to identify genes that are regulated by NR0B1, and compared these data to similar data for EWS/FLI. Although the transcriptional profile overlapped as expected, we also found that the genome-wide localization of NR0B1 and EWS/FLI overlapped as well, suggesting that they regulate some genes coordinately. Further analysis revealed that NR0B1 and EWS/FLI physically interact. This protein-protein interaction is likely to be relevant for the development of Ewing's sarcoma because mutations in NR0B1 that disrupt the interaction have transcriptional consequences and also abrogate oncogenic transformation. Taken together, these data suggest that EWS/FLI and NR0B1 physically interact, coordinately modulate gene expression, and mediate the transformed phenotype of Ewing's sarcoma. PMID:19920188

  2. Active calibration target for bistatic radar cross-section measurements

    NASA Astrophysics Data System (ADS)

    Pienaar, M.; Odendaal, J. W.; Joubert, J.; Cilliers, J. E.; Smit, J. C.

    2016-05-01

    Either passive calibration targets are expensive and complex to manufacture or their bistatic radar cross section (RCS) levels are significantly lower than the monostatic RCS levels of targets such as spheres, dihedral, and trihedral corner reflectors. In this paper the performance of an active calibration target with relative high bistatic RCS values is illustrated as a reference target for bistatic RCS measurements. The reference target is simple to manufacture, operates over a wide frequency range, and can be configured to calibrate all four polarizations (VV, HH, HV, and VH). Bistatic RCS measurements of canonical targets, performed in a controlled environment, are calibrated with the reference target and the results are compared to simulated results using FEKO.

  3. Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis.

    PubMed

    Li, Guojing; Meng, Xiangzong; Wang, Ruigang; Mao, Guohong; Han, Ling; Liu, Yidong; Zhang, Shuqun

    2012-06-01

    Plants under pathogen attack produce high levels of ethylene, which plays important roles in plant immunity. Previously, we reported the involvement of ACS2 and ACS6, two Type I ACS isoforms, in Botrytis cinerea-induced ethylene biosynthesis and their regulation at the protein stability level by MPK3 and MPK6, two Arabidopsis pathogen-responsive mitogen-activated protein kinases (MAPKs). The residual ethylene induction in the acs2/acs6 double mutant suggests the involvement of additional ACS isoforms. It is also known that a subset of ACS genes, including ACS6, is transcriptionally induced in plants under stress or pathogen attack. However, the importance of ACS gene activation and the regulatory mechanism(s) are not clear. In this report, we demonstrate using genetic analysis that ACS7 and ACS11, two Type III ACS isoforms, and ACS8, a Type II ACS isoform, also contribute to the B. cinerea-induced ethylene production. In addition to post-translational regulation, transcriptional activation of the ACS genes also plays a critical role in sustaining high levels of ethylene induction. Interestingly, MPK3 and MPK6 not only control the stability of ACS2 and ACS6 proteins via direct protein phosphorylation but also regulate the expression of ACS2 and ACS6 genes. WRKY33, another MPK3/MPK6 substrate, is involved in the MPK3/MPK6-induced ACS2/ACS6 gene expression based on genetic analyses. Furthermore, chromatin-immunoprecipitation assay reveals the direct binding of WRKY33 to the W-boxes in the promoters of ACS2 and ACS6 genes in vivo, suggesting that WRKY33 is directly involved in the activation of ACS2 and ACS6 expression downstream of MPK3/MPK6 cascade in response to pathogen invasion. Regulation of ACS activity by MPK3/MPK6 at both transcriptional and protein stability levels plays a key role in determining the kinetics and magnitude of ethylene induction.

  4. Target Fishing for Chemical Compounds using Target-Ligand Activity data and Ranking based Methods

    PubMed Central

    Wale, Nikil; Karypis, George

    2009-01-01

    In recent years the development of computational techniques that identify all the likely targets for a given chemical compound, also termed as the problem of Target Fishing, has been an active area of research. Identification of likely targets of a chemical compound helps to understand problems such as toxicity, lack of efficacy in humans, and poor physical properties associated with that compound in the early stages of drug discovery. In this paper we present a set of techniques whose goal is to rank or prioritize targets in the context of a given chemical compound such that most targets that this compound may show activity against appear higher in the ranked list. These methods are based on our extensions to the SVM and Ranking Perceptron algorithms for this problem. Our extensive experimental study shows that the methods developed in this work outperform previous approaches by 2% to 60% under different evaluation criterions. PMID:19764745

  5. Rgnef (p190RhoGEF) Knockout Inhibits RhoA Activity, Focal Adhesion Establishment, and Cell Motility Downstream of Integrins

    PubMed Central

    Miller, Nichol L. G.; Lawson, Christine; Chen, Xiao Lei; Lim, Ssang-Taek; Schlaepfer, David D.

    2012-01-01

    Background Cell migration is a highly regulated process that involves the formation and turnover of cell-matrix contact sites termed focal adhesions. Rho-family GTPases are molecular switches that regulate actin and focal adhesion dynamics in cells. Guanine nucleotide exchange factors (GEFs) activate Rho-family GTPases. Rgnef (p190RhoGEF) is a ubiquitous 190 kDa GEF implicated in the control of colon carcinoma and fibroblast cell motility. Principal Findings Rgnef exon 24 floxed mice (Rgnefflox) were created and crossed with cytomegalovirus (CMV)-driven Cre recombinase transgenic mice to inactivate Rgnef expression in all tissues during early development. Heterozygous RgnefWT/flox (Cre+) crosses yielded normal Mendelian ratios at embryonic day 13.5, but Rgnefflox/flox (Cre+) mice numbers at 3 weeks of age were significantly less than expected. Rgnefflox/flox (Cre+) (Rgnef−/−) embryos and primary mouse embryo fibroblasts (MEFs) were isolated and verified to lack Rgnef protein expression. When compared to wildtype (WT) littermate MEFs, loss of Rgnef significantly inhibited haptotaxis migration, wound closure motility, focal adhesion number, and RhoA GTPase activation after fibronectin-integrin stimulation. In WT MEFs, Rgnef activation occurs within 60 minutes upon fibronectin plating of cells associated with RhoA activation. Rgnef−/− MEF phenotypes were rescued by epitope-tagged Rgnef re-expression. Conclusions Rgnef−/− MEF phenotypes were due to Rgnef loss and support an essential role for Rgnef in RhoA regulation downstream of integrins in control of cell migration. PMID:22649559

  6. Cancer active targeting by nanoparticles: a comprehensive review of literature

    PubMed Central

    Bazak, Remon; Houri, Mohamad; Achy, Samar El; Kamel, Serag

    2016-01-01

    Purpose Cancer is one of the leading causes of death, and thus, the scientific community has but great efforts to improve cancer management. Among the major challenges in cancer management is development of agents that can be used for early diagnosis and effective therapy. Conventional cancer management frequently lacks accurate tools for detection of early tumors and has an associated risk of serious side effects of chemotherapeutics. The need to optimize therapeutic ratio as the difference with which a treatment affects cancer cells versus healthy tissues lead to idea that it is needful to have a treatment that could act a the “magic bullet”—recognize cancer cells only. Nanoparticle platforms offer a variety of potentially efficient solutions for development of targeted agents that can be exploited for cancer diagnosis and treatment. There are two ways by which targeting of nanoparticles can be achieved, namely passive and active targeting. Passive targeting allows for the efficient localization of nanoparticles within the tumor microenvironment. Active targeting facilitates the active uptake of nanoparticles by the tumor cells themselves. Methods Relevant English electronic databases and scientifically published original articles and reviews were systematically searched for the purpose of this review. Results In this report, we present a comprehensive review of literatures focusing on the active targeting of nanoparticles to cancer cells, including antibody and antibody fragment-based targeting, antigen-based targeting, aptamer-based targeting, as well as ligand-based targeting. Conclusion To date, the optimum targeting strategy has not yet been announced, each has its own advantages and disadvantages even though a number of them have found their way for clinical application. Perhaps, a combination of strategies can be employed to improve the precision of drug delivery, paving the way for a more effective personalized therapy. PMID:25005786

  7. DNA G-quadruplex formation in response to remote downstream transcription activity: long-range sensing and signal transducing in DNA double helix.

    PubMed

    Zhang, Chao; Liu, Hong-He; Zheng, Ke-Wei; Hao, Yu-Hua; Tan, Zheng

    2013-08-01

    G-quadruplexes, four-stranded structures formed by Guanine-rich nucleic acids, are implicated in many physiological and pathological processes. G-quadruplex-forming sequences are abundant in genomic DNA, and G-quadruplexes have recently been shown to exist in the genome of mammalian cells. However, how G-quadruplexes are formed in the genomes remains largely unclear. Here, we show that G-quadruplex formation can be remotely induced by downstream transcription events that are thousands of base pairs away. The induced G-quadruplexes alter protein recognition and cause transcription termination at the local region. These results suggest that a G-quadruplex-forming sequence can serve as a sensor or receiver to sense remote DNA tracking activity in response to the propagation of mechanical torsion in a DNA double helix. We propose that the G-quadruplex formation may provide a mean for long-range sensing and communication between distal genomic locations to coordinate regulatory transactions in genomic DNA. PMID:23716646

  8. Two Redundant Receptor-Like Cytoplasmic Kinases Function Downstream of Pattern Recognition Receptors to Regulate Activation of SA Biosynthesis1[OPEN

    PubMed Central

    Kong, Qing; Qu, Na; Ma, Junling; Li, Meng; Cheng, Yu-ti; Zhang, Qian; Wu, Di; Zhang, Zhibin; Zhang, Yuelin

    2016-01-01

    Salicylic acid (SA) serves as a critical signaling molecule in plant defense. Two transcription factors, SARD1 and CBP60g, control SA biosynthesis through regulating pathogen-induced expression of Isochorismate Synthase1, which encodes a key enzyme for SA biosynthesis. Here, we report that Pattern-Triggered Immunity Compromised Receptor-like Cytoplasmic Kinase1 (PCRK1) and PCRK2 function as key regulators of SA biosynthesis. In the pcrk1 pcrk2 double mutant, pathogen-induced expression of SARD1, CBP60g, and ICS1 is greatly reduced. The pcrk1 pcrk2 double mutant, but neither of the single mutants, exhibits reduced accumulation of SA and enhanced disease susceptibility to bacterial pathogens. Both PCRK1 and PCRK2 interact with the pattern recognition receptor FLS2, and treatment with pathogen-associated molecular patterns leads to rapid phosphorylation of PCRK2. Our data suggest that PCRK1 and PCRK2 function downstream of pattern recognition receptor in a signal relay leading to the activation of SA biosynthesis. PMID:27208222

  9. Thermoperiodic Control of Hypocotyl Elongation Depends on Auxin-Induced Ethylene Signaling That Controls Downstream PHYTOCHROME INTERACTING FACTOR3 Activity1

    PubMed Central

    Bours, Ralph; Kohlen, Wouter; Bouwmeester, Harro J.

    2015-01-01

    We show that antiphase light-temperature cycles (negative day-night temperature difference [−DIF]) inhibit hypocotyl growth in Arabidopsis (Arabidopsis thaliana). This is caused by reduced cell elongation during the cold photoperiod. Cell elongation in the basal part of the hypocotyl under −DIF was restored by both 1-aminocyclopropane-1-carboxylic acid (ACC; ethylene precursor) and auxin, indicating limited auxin and ethylene signaling under −DIF. Both auxin biosynthesis and auxin signaling were reduced during −DIF. In addition, expression of several ACC Synthase was reduced under −DIF but could be restored by auxin application. In contrast, the reduced hypocotyl elongation of ethylene biosynthesis and signaling mutants could not be complemented by auxin, indicating that auxin functions upstream of ethylene. The PHYTOCHROME INTERACTING FACTORS (PIFs) PIF3, PIF4, and PIF5 were previously shown to be important regulators of hypocotyl elongation. We now show that, in contrast to pif4 and pif5 mutants, the reduced hypocotyl length in pif3 cannot be rescued by either ACC or auxin. In line with this, treatment with ethylene or auxin inhibitors reduced hypocotyl elongation in PIF4 overexpressor (PIF4ox) and PIF5ox but not PIF3ox plants. PIF3 promoter activity was strongly reduced under −DIF but could be restored by auxin application in an ACC Synthase-dependent manner. Combined, these results show that PIF3 regulates hypocotyl length downstream, whereas PIF4 and PIF5 regulate hypocotyl length upstream of an auxin and ethylene cascade. We show that, under −DIF, lower auxin biosynthesis activity limits the signaling in this pathway, resulting in low activity of PIF3 and short hypocotyls. PMID:25516603

  10. FOXO1 activates glutamine synthetase gene in mouse skeletal muscles through a region downstream of 3'-UTR: possible contribution to ammonia detoxification.

    PubMed

    Kamei, Yasutomi; Hattori, Maki; Hatazawa, Yukino; Kasahara, Tomomi; Kanou, Masanobu; Kanai, Sayaka; Yuan, Xunmei; Suganami, Takayoshi; Lamers, Wouter H; Kitamura, Tadahiro; Ogawa, Yoshihiro

    2014-09-15

    Skeletal muscle is a reservoir of energy in the form of protein, which is degraded under catabolic conditions, resulting in the formation of amino acids and ammonia as a byproduct. The expression of FOXO1, a forkhead-type transcription factor, increases during starvation and exercise. In agreement, transgenic FOXO1-Tg mice that overexpress FOXO1 in skeletal muscle exhibit muscle atrophy. The aim of this study was to examine the role of FOXO1 in amino acid metabolism. The mRNA and protein expressions of glutamine synthetase (GS) were increased in skeletal muscle of FOXO1-Tg mice. Fasting induced FOXO1 and GS expression in wild-type mice but hardly increased GS expression in muscle-specific FOXO1 knockout (FOXO1-KO) mice. Activation of FOXO1 also increased GS mRNA and protein expression in C2C12 myoblasts. Using a transient transfection reporter assay, we observed that FOXO1 activated the GS reporter construct. Mutation of a putative FOXO1-binding consensus sequence in the downstream genomic region of GS decreased basal and FOXO1-dependent reporter activity significantly. A chromatin immunoprecipitation assay showed that FOXO1 was recruited to the 3' region of GS in C2C12 myoblasts. These results suggest that FOXO1 directly upregulates GS expression. GS is considered to mediate ammonia clearance in skeletal muscle. In agreement, an intravenous ammonia challenge increased blood ammonia concentrations to a twofold higher level in FOXO1-KO than in wild-type mice, demonstrating that the capacity for ammonia disposal correlated inversely with the expression of GS in muscle. These data indicate that FOXO1 plays a role in amino acid metabolism during protein degradation in skeletal muscle. PMID:25074987

  11. FOXO1 activates glutamine synthetase gene in mouse skeletal muscles through a region downstream of 3'-UTR: possible contribution to ammonia detoxification.

    PubMed

    Kamei, Yasutomi; Hattori, Maki; Hatazawa, Yukino; Kasahara, Tomomi; Kanou, Masanobu; Kanai, Sayaka; Yuan, Xunmei; Suganami, Takayoshi; Lamers, Wouter H; Kitamura, Tadahiro; Ogawa, Yoshihiro

    2014-09-15

    Skeletal muscle is a reservoir of energy in the form of protein, which is degraded under catabolic conditions, resulting in the formation of amino acids and ammonia as a byproduct. The expression of FOXO1, a forkhead-type transcription factor, increases during starvation and exercise. In agreement, transgenic FOXO1-Tg mice that overexpress FOXO1 in skeletal muscle exhibit muscle atrophy. The aim of this study was to examine the role of FOXO1 in amino acid metabolism. The mRNA and protein expressions of glutamine synthetase (GS) were increased in skeletal muscle of FOXO1-Tg mice. Fasting induced FOXO1 and GS expression in wild-type mice but hardly increased GS expression in muscle-specific FOXO1 knockout (FOXO1-KO) mice. Activation of FOXO1 also increased GS mRNA and protein expression in C2C12 myoblasts. Using a transient transfection reporter assay, we observed that FOXO1 activated the GS reporter construct. Mutation of a putative FOXO1-binding consensus sequence in the downstream genomic region of GS decreased basal and FOXO1-dependent reporter activity significantly. A chromatin immunoprecipitation assay showed that FOXO1 was recruited to the 3' region of GS in C2C12 myoblasts. These results suggest that FOXO1 directly upregulates GS expression. GS is considered to mediate ammonia clearance in skeletal muscle. In agreement, an intravenous ammonia challenge increased blood ammonia concentrations to a twofold higher level in FOXO1-KO than in wild-type mice, demonstrating that the capacity for ammonia disposal correlated inversely with the expression of GS in muscle. These data indicate that FOXO1 plays a role in amino acid metabolism during protein degradation in skeletal muscle.

  12. Effects of fucoidan on proliferation, AMP-activated protein kinase, and downstream metabolism- and cell cycle-associated molecules in poorly differentiated human hepatoma HLF cells.

    PubMed

    Kawaguchi, Takumi; Hayakawa, Masako; Koga, Hironori; Torimura, Takuji

    2015-05-01

    Survival rates are low in patients with poorly differentiated hepatocellular carcinoma (HCC). Fucoidan, a sulfated polysaccharide derived from brown seaweed, has anticancer activity; however, the effects of fucoidan on poorly differentiated HCC remain unclear. In this study, we investigated the effects of fucoidan on AMP-activated protein kinase (AMPK), a proliferation regulator, and its downstream metabolism- and cell cycle-related molecules in a poorly differentiated human hepatoma HLF cell line. HLF cells were treated with fucoidan (10, 50, or 100 µg/ml; n=4) or phosphate buffered saline (control; n=4) for 96 h. Proliferation was evaluated by counting cells every 24 h. AMPK, TSC2, mTOR, GSK3β, acetyl-CoA carboxylase (ACC), ATP-citrate lyase, p53, cyclin D1, cyclin-dependent kinase (CDK) 4, and CDK6 expression and/or phosphorylation were examined by immunoblotting 24 h after treatment with 100 µg/ml fucoidan. Cell cycle progression was analyzed by fluorescence-activated cell sorter 48 h after treatment. Treatment with 50 or 100 µg/ml fucoidan significantly and dose- and time-dependently suppressed HLF cell proliferation (P<0.0001). Fucoidan induced AMPK phosphorylation on Ser172 24 h after treatment. Although no differences were seen in expression and phosphorylation levels of TSC2, mTOR, GSK3β, ATP-citrate lyase, and p53 between the control and fucoidan-treated HLF cells, fucoidan induced ACC phosphorylation on Ser79. Moreover, fucoidan decreased cyclin D1, CDK4 and CDK6 expression 24 h after treatment. Furthermore, HLF cells were arrested in the G1/S phase 48 h after fucoidan treatment. We demonstrated that fucoidan suppressed HLF cell proliferation with AMPK phosphorylation. We showed that fucoidan phosphorylated ACC and downregulated cyclin D1, CDK4 and CDK6 expression. Our findings suggest that fucoidan inhibits proliferation through AMPK-associated suppression of fatty acid synthesis and G1/S transition in HLF cells.

  13. Targeted Deficiency of the Transcriptional Activator Hnf1α Alters Subnuclear Positioning of Its Genomic Targets

    PubMed Central

    Sadoni, Nicolas; Zink, Daniele; Ferrer, Jorge

    2008-01-01

    DNA binding transcriptional activators play a central role in gene-selective regulation. In part, this is mediated by targeting local covalent modifications of histone tails. Transcriptional regulation has also been associated with the positioning of genes within the nucleus. We have now examined the role of a transcriptional activator in regulating the positioning of target genes. This was carried out with primary β-cells and hepatocytes freshly isolated from mice lacking Hnf1α, an activator encoded by the most frequently mutated gene in human monogenic diabetes (MODY3). We show that in Hnf1a−/− cells inactive endogenous Hnf1α-target genes exhibit increased trimethylated histone H3-Lys27 and reduced methylated H3-Lys4. Inactive Hnf1α-targets in Hnf1a−/− cells are also preferentially located in peripheral subnuclear domains enriched in trimethylated H3-Lys27, whereas active targets in wild-type cells are positioned in more central domains enriched in methylated H3-Lys4 and RNA polymerase II. We demonstrate that this differential positioning involves the decondensation of target chromatin, and show that it is spatially restricted rather than a reflection of non-specific changes in the nuclear organization of Hnf1a-deficient cells. This study, therefore, provides genetic evidence that a single transcriptional activator can influence the subnuclear location of its endogenous genomic targets in primary cells, and links activator-dependent changes in local chromatin structure to the spatial organization of the genome. We have also revealed a defect in subnuclear gene positioning in a model of a human transcription factor disease. PMID:18497863

  14. Enhanced Active Targeting via Cooperative Binding of Ligands on Liposomes to Target Receptors

    PubMed Central

    Sugiyama, Tomoki; Asai, Tomohiro; Nedachi, Yuki Murase; Katanasaka, Yasufumi; Shimizu, Kosuke; Maeda, Noriyuki; Oku, Naoto

    2013-01-01

    To achieve effective active targeting in a drug delivery system, we previously developed dual-targeting (DT) liposomes decorated with both vascular endothelial growth factor receptor-1 (VEGFR-1)-targeted APRPG and CD13-targeted GNGRG peptide ligands for tumor neovessels, and observed the enhanced suppression of tumor growth in Colon26 NL-17 tumor-bearing mice by the treatment with the DT liposomes encapsulating doxorubicin. In this present study, we examined the binding characteristics of DT liposomes having a different couple of ligands, namely, APRPG and integrin αvβ3-targeted GRGDS peptides. These DT liposomes synergistically associated to stimulated human umbilical vein endothelial cells compared with single-targeting (ST) liposomes decorated with APRPG or GRGDS. The results of a surface plasmon resonance assay showed that ST liposomes modified with APRPG or GRGDS peptide selectively bound to immobilized VEGFR-1 or integrin αvβ3, respectively. DT liposomes showed a higher affinity for a mixture of VEGFR-1 and integrin αvβ3 compared with ST liposomes, suggesting the cooperative binding of these 2 kinds of ligand on the liposomal surface. In a biodistribution assay, the DT liposomes accumulated to a significantly greater extent in the tumors of Colon26 NL-17 tumor-bearing mice compared with other liposomes. Moreover, the intratumoral distribution of the liposomes examined by confocal microscopy suggested that the DT liposomes targeted not only angiogenic endothelial cells but also tumor cells due to GRGDS-decoration. These findings suggest that "dual-targeting" augmented the affinity of the liposomes for the target cells and would thus be useful for active-targeting drug delivery for cancer treatment. PMID:23840738

  15. High efficiency cell-specific targeting of cytokine activity

    NASA Astrophysics Data System (ADS)

    Garcin, Geneviève; Paul, Franciane; Staufenbiel, Markus; Bordat, Yann; van der Heyden, José; Wilmes, Stephan; Cartron, Guillaume; Apparailly, Florence; de Koker, Stefaan; Piehler, Jacob; Tavernier, Jan; Uzé, Gilles

    2014-01-01

    Systemic toxicity currently prevents exploiting the huge potential of many cytokines for medical applications. Here we present a novel strategy to engineer immunocytokines with very high targeting efficacies. The method lies in the use of mutants of toxic cytokines that markedly reduce their receptor-binding affinities, and that are thus rendered essentially inactive. Upon fusion to nanobodies specifically binding to marker proteins, activity of these cytokines is selectively restored for cell populations expressing this marker. This ‘activity-by-targeting’ concept was validated for type I interferons and leptin. In the case of interferon, activity can be directed to target cells in vitro and to selected cell populations in mice, with up to 1,000-fold increased specific activity. This targeting strategy holds promise to revitalize the clinical potential of many cytokines.

  16. Mitochondrial Nitroreductase Activity Enables Selective Imaging and Therapeutic Targeting.

    PubMed

    Chevalier, Arnaud; Zhang, Yanmin; Khdour, Omar M; Kaye, Justin B; Hecht, Sidney M

    2016-09-21

    Nitroreductase (NTR) activities have been known for decades, studied extensively in bacteria and also in systems as diverse as yeast, trypanosomes, and hypoxic tumors. The putative bacterial origin of mitochondria prompted us to explore the possible existence of NTR activity within this organelle and to probe its behavior in a cellular context. Presently, by using a profluorescent near-infrared (NIR) dye, we characterize the nature of NTR activity localized in mammalian cell mitochondria. Further, we demonstrate that this mitochondrially localized enzymatic activity can be exploited both for selective NIR imaging of mitochondria and for mitochondrial targeting by activating a mitochondrial poison specifically within that organelle. This constitutes a new mechanism for mitochondrial imaging and targeting. These findings represent the first use of mitochondrial enzyme activity to unmask agents for mitochondrial fluorescent imaging and therapy, which may prove to be more broadly applicable.

  17. Thailand's downstream projects proliferate

    SciTech Connect

    Not Available

    1991-06-03

    Thailand continues to press expansion and modernization of its downstream sector. Among recent developments: Construction of an olefins unit at Thailand's second major petrochemical complex and a worldscale aromatics unit in Thailand is threatened by rising costs. Thailand's National Petrochemical Corp (NPC) let a 9 billion yen contract to Mitsui Engineering and Shipbuilding Co. and C. Itoh and Co. for a dual fuel cogeneration power plant at its Mab Ta Phud, Rayong province, petrochemical complex. Financing is in place to flash a green light for a $530 million Belgian-Thai joint venture sponsoring a worldscale polyvinyl chloride/vinyl chloride monomer plant in Thailand. Work is more than 50% complete on the $345 million second phase expansion of Thai Oil's Sri Racha refinery in Chon Buri province. Petroleum Authority of Thailand (PTT) endorsed a plan to install two more natural gas processing plants in Thailand to meet rapidly growing domestic demand for petroleum gas.

  18. Activation of Smurf E3 Ligase Promoted by Smoothened Regulates Hedgehog Signaling through Targeting Patched Turnover

    PubMed Central

    Zheng, Xiudeng; Chen, Zhenping; Sun, Liwei; Wang, Hailong; Zhu, Yuanxiang; Zhang, Jing; Yang, Shuyan; Lu, Yi; Sun, Qinmiao; Tao, Yi; Liu, Feng; Zhao, Yun; Chen, Dahua

    2013-01-01

    Hedgehog signaling plays conserved roles in controlling embryonic development; its dysregulation has been implicated in many human diseases including cancers. Hedgehog signaling has an unusual reception system consisting of two transmembrane proteins, Patched receptor and Smoothened signal transducer. Although activation of Smoothened and its downstream signal transduction have been intensively studied, less is known about how Patched receptor is regulated, and particularly how this regulation contributes to appropriate Hedgehog signal transduction. Here we identified a novel role of Smurf E3 ligase in regulating Hedgehog signaling by controlling Patched ubiquitination and turnover. Moreover, we showed that Smurf-mediated Patched ubiquitination depends on Smo activity in wing discs. Mechanistically, we found that Smo interacts with Smurf and promotes it to mediate Patched ubiquitination by targeting the K1261 site in Ptc. The further mathematic modeling analysis reveals that a bidirectional control of activation of Smo involving Smurf and Patched is important for signal-receiving cells to precisely interpret external signals, thereby maintaining Hedgehog signaling reliability. Finally, our data revealed an evolutionarily conserved role of Smurf proteins in controlling Hh signaling by targeting Ptc during development. PMID:24302888

  19. Targeted Gene Activation Using RNA-Guided Nucleases.

    PubMed

    Brown, Alexander; Woods, Wendy S; Perez-Pinera, Pablo

    2017-01-01

    The discovery of the prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) system and its adaptation for targeted manipulation of DNA in diverse species has revolutionized the field of genome engineering. In particular, the fusion of catalytically inactive Cas9 to any number of transcriptional activator domains has resulted in an array of easily customizable synthetic transcription factors that are capable of achieving robust, specific, and tunable activation of target gene expression within a wide variety of tissues and cells. This chapter describes key experimental design considerations, methods for plasmid construction, gene delivery protocols, and procedures for analysis of targeted gene activation in mammalian cell lines using CRISPR-Cas transcription factors. PMID:27662880

  20. IKK is a therapeutic target in KRAS-Induced lung cancer with disrupted p53 activity

    PubMed Central

    Bassères, Daniela S.; Ebbs, Aaron; Cogswell, Patricia C.; Baldwin, Albert S.

    2014-01-01

    Activating mutations in KRAS are prevalent in cancer, but therapies targeted to oncogenic RAS have been ineffective to date. These results argue that targeting downstream effectors of RAS will be an alternative route for blocking RAS-driven oncogenic pathways. We and others have shown that oncogenic RAS activates the NF-κB transcription factor pathway and that KRAS-induced lung tumorigenesis is suppressed by expression of a degradation-resistant form of the IκBα inhibitor or by genetic deletion of IKKβ or the RELA/p65 subunit of NF-κB. Here, genetic and pharmacological approaches were utilized to inactivate IKK in human primary lung epithelial cells transformed by KRAS, as well as KRAS mutant lung cancer cell lines. Administration of the highly specific IKKβ inhibitor Compound A (CmpdA) led to NF-κB inhibition in different KRAS mutant lung cells and siRNA-mediated knockdown of IKKα or IKKβ reduced activity of the NF-κB canonical pathway. Next, we determined that both IKKα and IKKβ contribute to oncogenic properties of KRAS mutant lung cells, particularly when p53 activity is disrupted. Based on these results, CmpdA was tested for potential therapeutic intervention in the Kras-induced lung cancer mouse model (LSL-KrasG12D) combined with loss of p53 (LSL-KrasG12D/p53fl/fl). CmpdA treatment was well tolerated and mice treated with this IKKβ inhibitor presented smaller and lower grade tumors than mice treated with placebo. Additionally, IKKβ inhibition reduced inflammation and angiogenesis. These results support the concept of targeting IKK as a therapeutic approach for oncogenic RAS-driven tumors with altered p53 activity. PMID:24955217

  1. Representation of multi-target activity landscapes through target pair-based compound encoding in self-organizing maps.

    PubMed

    Iyer, Preeti; Bajorath, Jürgen

    2011-11-01

    Activity landscape representations provide access to structure-activity relationships information in compound data sets. In general, activity landscape models integrate molecular similarity relationships with biological activity data. Typically, activity against a single target is monitored. However, for steadily increasing numbers of compounds, activity against multiple targets is reported, resulting in an opportunity, and often a need, to explore multi-target structure-activity relationships. It would be attractive to utilize activity landscape representations to aid in this process, but the design of activity landscapes for multiple targets is a complicated task. Only recently has a first multi-target landscape model been introduced, consisting of an annotated compound network focused on the systematic detection of activity cliffs. Herein, we report a conceptually different multi-target activity landscape design that is based on a 2D projection of chemical reference space using self-organizing maps and encodes compounds as arrays of pair-wise target activity relationships. In this context, we introduce the concept of discontinuity in multi-target activity space. The well-ordered activity landscape model highlights centers of discontinuity in activity space and is straightforward to interpret. It has been applied to analyze compound data sets with three, four, and five target annotations and identify multi-target structure-activity relationships determinants in analog series.

  2. Targeting the Metastasis Suppressor, N-Myc Downstream Regulated Gene-1, with Novel Di-2-Pyridylketone Thiosemicarbazones: Suppression of Tumor Cell Migration and Cell-Collagen Adhesion by Inhibiting Focal Adhesion Kinase/Paxillin Signaling.

    PubMed

    Wangpu, Xiongzhi; Lu, Jiaoyang; Xi, Ruxing; Yue, Fei; Sahni, Sumit; Park, Kyung Chan; Menezes, Sharleen; Huang, Michael L H; Zheng, Minhua; Kovacevic, Zaklina; Richardson, Des R

    2016-05-01

    Metastasis is a complex process that is regulated by multiple signaling pathways, with the focal adhesion kinase (FAK)/paxillin pathway playing a major role in the formation of focal adhesions and cell motility. N-myc downstream regulated gene-1 (NDRG1) is a potent metastasis suppressor in many solid tumor types, including prostate and colon cancer. Considering the antimetastatic effect of NDRG1 and the crucial involvement of the FAK/paxillin pathway in cellular migration and cell-matrix adhesion, we assessed the effects of NDRG1 on this important oncogenic pathway. In the present study, NDRG1 overexpression and silencing models of HT29 colon cancer and DU145 prostate cancer cells were used to examine the activation of FAK/paxillin signaling and the formation of focal adhesions. The expression of NDRG1 resulted in a marked and significant decrease in the activating phosphorylation of FAK and paxillin, whereas silencing of NDRG1 resulted in an opposite effect. The expression of NDRG1 also inhibited the formation of focal adhesions as well as cell migration and cell-collagen adhesion. Incubation of cells with novel thiosemicarbazones, namely di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone and di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone, that upregulate NDRG1 also resulted in decreased phosphorylation of FAK and paxillin. The ability of these thiosemicarbazones to inhibit cell migration and metastasis could be mediated, at least in part, through the FAK/paxillin pathway. PMID:26895766

  3. A cascading activity-based probe sequentially targets E1-E2-E3 ubiquitin enzymes.

    PubMed

    Mulder, Monique P C; Witting, Katharina; Berlin, Ilana; Pruneda, Jonathan N; Wu, Kuen-Phon; Chang, Jer-Gung; Merkx, Remco; Bialas, Johanna; Groettrup, Marcus; Vertegaal, Alfred C O; Schulman, Brenda A; Komander, David; Neefjes, Jacques; El Oualid, Farid; Ovaa, Huib

    2016-07-01

    Post-translational modifications of proteins with ubiquitin (Ub) and ubiquitin-like modifiers (Ubls), orchestrated by a cascade of specialized E1, E2 and E3 enzymes, control a wide range of cellular processes. To monitor catalysis along these complex reaction pathways, we developed a cascading activity-based probe, UbDha. Similarly to the native Ub, upon ATP-dependent activation by the E1, UbDha can travel downstream to the E2 (and subsequently E3) enzymes through sequential trans-thioesterifications. Unlike the native Ub, at each step along the cascade, UbDha has the option to react irreversibly with active site cysteine residues of target enzymes, thus enabling their detection. We show that our cascading probe 'hops' and 'traps' catalytically active Ub-modifying enzymes (but not their substrates) by a mechanism diversifiable to Ubls. Our founder methodology, amenable to structural studies, proteome-wide profiling and monitoring of enzymatic activity in living cells, presents novel and versatile tools to interrogate Ub and Ubl cascades. PMID:27182664

  4. Active Targeted Drug Delivery for Microbes Using Nano-Carriers

    PubMed Central

    Lin, Yung-Sheng; Lee, Ming-Yuan; Yang, Chih-Hui; Huang, Keng-Shiang

    2015-01-01

    Although vaccines and antibiotics could kill or inhibit microbes, many infectious diseases remain difficult to treat because of acquired resistance and adverse side effects. Nano-carriers-based technology has made significant progress for a long time and is introducing a new paradigm in drug delivery. However, it still has some challenges like lack of specificity toward targeting the infectious site. Nano-carriers utilized targeting ligands on their surface called ‘active target’ provide the promising way to solve the problems like accelerating drug delivery to infectious areas and preventing toxicity or side-effects. In this mini review, we demonstrate the recent studies using the active targeted strategy to kill or inhibit microbes. The four common nano-carriers (e.g. liposomes, nanoparticles, dendrimers and carbon nanotubes) delivering encapsulated drugs are introduced. PMID:25877093

  5. A CONSTANS-like transcriptional activator, OsCOL13, functions as a negative regulator of flowering downstream of OsphyB and upstream of Ehd1 in rice.

    PubMed

    Sheng, Peike; Wu, Fuqing; Tan, Junjie; Zhang, Huan; Ma, Weiwei; Chen, Liping; Wang, Jiachang; Wang, Jie; Zhu, Shanshan; Guo, Xiuping; Wang, Jiulin; Zhang, Xin; Cheng, Zhijun; Bao, Yiqun; Wu, Chuanyin; Liu, Xuanming; Wan, Jianmin

    2016-09-01

    Flowering time determines the adaptability of crop plants to different local environments, thus being one of the most important agronomic traits targeted in breeding programs. Photoperiod is one of the key factors that control flowering in plant. A number of genes that participate in the photoperiod pathway have been characterized in long-day plants such as Arabidopsis, as well as in short-day plants such as Oryza sativa. Of those, CONSTANS (CO) as a floral integrator promotes flowering in Arabidopsis under long day conditions. In rice, Heading date1 (Hd1), a homologue of CO, functions in an opposite way, which inhibits flowering under long day conditions and induces flowering under short day conditions. Here, we show that another CONSTANS-like (COL) gene, OsCOL13, negatively regulates flowering in rice under both long and short day conditions. Overexpression of OsCOL13 delays flowering regardless of day length. We also demonstrated that OsCOL13 has a constitutive and rhythmic expression pattern, and that OsCOL13 is localized to the nucleus. OsCOL13 displays transcriptional activation activity in the yeast assays and likely forms homodimers in vivo. OsCOL13 suppresses the florigen genes Hd3a and RFT1 by repressing Ehd1, but has no relationship with other known Ehd1 regulators as determined by using mutants or near isogenic lines. In addition, the transcriptional level of OsCOL13 significantly decreased in the osphyb mutant, but remained unchanged in the osphya and osphyc mutants. Thus, we conclude that OsCOL13 functions as a negative regulator downstream of OsphyB and upstream of Ehd1 in the photoperiodic flowering in rice. PMID:27405463

  6. Effect of target probability on pre-stimulus brain activity.

    PubMed

    Lucci, G; Berchicci, M; Perri, R L; Spinelli, D; Di Russo, F

    2016-05-13

    Studies on perceptual decision-making showed that manipulating the proportion of target and non-target stimuli affects the behavioral performance. Tasks with high frequency of targets are associated to faster response times (RTs) conjunctively to higher number of errors (reflecting a response bias characterized by speed/accuracy trade-off) when compared to conditions with low frequency of targets. Electroencephalographic studies well described modulations of post-stimulus event-related potentials as effect of the stimulus probability; in contrast, in the present study we focused on the pre-stimulus preparatory activities subtending the response bias. Two versions of a Go/No-go task characterized by different proportion of Go stimuli (88% vs. 12%) were adopted. In the task with frequent go trials, we observed a strong enhancement in the motor preparation as indexed by the Bereitschaftspotential (BP, previously associated with activity within the supplementary motor area), faster RTs, and larger commission error rate than in the task with rare go trials. Contemporarily with the BP, a right lateralized prefrontal negativity (lateral pN, previously associated with activity within the dorsolateral prefrontal cortex) was larger in the task with rare go trial. In the post-stimulus processing stage, we confirmed that the N2 and the P3 components were larger for rare trials, irrespective of the Go/No-go stimulus category. The increase of activities recorded in the preparatory phase related to frequency of targets is consistent with the view proposed in accumulation models of perceptual decision for which target frequency affects the subjective baseline, reducing the distance between the starting-point and the response boundary, which determines the response speed. PMID:26912279

  7. Eliciting Production of L2 Target Structures through Priming Activities

    ERIC Educational Resources Information Center

    McDonough, Kim; Trofimovich, Pavel; Neumann, Heike

    2015-01-01

    This study focuses on the pedagogical applications of structural priming research in an English for academic purposes (EAP) context, investigating whether priming activities are an effective tool for eliciting production of target grammatical structures. University students across four EAP classes carried out a total of 6 information-exchange…

  8. Active helium target: Neutron scalar polarizability extraction via Compton scattering

    SciTech Connect

    Morris, Meg Hornidge, David; Annand, John; Strandberg, Bruno

    2015-12-31

    Precise measurement of the neutron scalar polarizabilities has been a lasting challenge because of the lack of a free-neutron target. Led by the University of Glasgow and the Mount Allison University groups of the A2 collaboration in Mainz, Germany, preparations have begun to test a recent theoretical model with an active helium target with the hope of determining these elusive quantities with small statistical, systematic, and model-dependent errors. Apparatus testing and background-event simulations have been carried out, with the full experiment projected to run in 2015. Once determined, these values can be applied to help understand quantum chromodynamics in the nonperturbative region.

  9. Evaluation of Intracellular Signaling Downstream Chimeric Antigen Receptors

    PubMed Central

    Karlsson, Hannah; Svensson, Emma; Gigg, Camilla; Jarvius, Malin; Olsson-Strömberg, Ulla; Savoldo, Barbara; Dotti, Gianpietro; Loskog, Angelica

    2015-01-01

    CD19-targeting CAR T cells have shown potency in clinical trials targeting B cell leukemia. Although mainly second generation (2G) CARs carrying CD28 or 4-1BB have been investigated in patients, preclinical studies suggest that third generation (3G) CARs with both CD28 and 4-1BB have enhanced capacity. However, little is known about the intracellular signaling pathways downstream of CARs. In the present work, we have analyzed the signaling capacity post antigen stimulation in both 2G and 3G CARs. 3G CAR T cells expanded better than 2G CAR T cells upon repeated stimulation with IL-2 and autologous B cells. An antigen-driven accumulation of CAR+ cells was evident post antigen stimulation. The cytotoxicity of both 2G and 3G CAR T cells was maintained by repeated stimulation. The phosphorylation status of intracellular signaling proteins post antigen stimulation showed that 3G CAR T cells had a higher activation status than 2G. Several proteins involved in signaling downstream the TCR were activated, as were proteins involved in the cell cycle, cell adhesion and exocytosis. In conclusion, 3G CAR T cells had a higher degree of intracellular signaling activity than 2G CARs which may explain the increased proliferative capacity seen in 3G CAR T cells. The study also indicates that there may be other signaling pathways to consider when designing or evaluating new generations of CARs. PMID:26700307

  10. p53 activated by AND gate genetic circuit under radiation and hypoxia for targeted cancer gene therapy.

    PubMed

    Ding, Miao; Li, Rong; He, Rong; Wang, Xingyong; Yi, Qijian; Wang, Weidong

    2015-09-01

    Radio-activated gene therapy has been developed as a novel therapeutic strategy against cancer; however, expression of therapeutic gene in peritumoral tissues will result in unacceptable toxicity to normal cells. To restrict gene expression in targeted tumor mass, we used hypoxia and radiation tolerance features of tumor cells to develop a synthetic AND gate genetic circuit through connecting radiation sensitivity promoter cArG6 , heat shock response elements SNF1, HSF1 and HSE4 with retroviral vector plxsn. Their construction and dynamic activity process were identified through downstream enhanced green fluorescent protein and wtp53 expression in non-small cell lung cancer A549 cells and in a nude mice model. The result showed that AND gate genetic circuit could be activated by lower required radiation dose (6 Gy) and after activated, AND gate could induce significant apoptosis effects and growth inhibition of cancer cells in vitro and in vivo. The radiation- and hypoxia-activated AND gate genetic circuit, which could lead to more powerful target tumoricidal activity represented a promising strategy for both targeted and effective gene therapy of human lung adenocarcinoma and low dose activation character of the AND gate genetic circuit implied that this model could be further exploited to decrease side-effects of clinical radiation therapy.

  11. Buoyancy-Activated Cell Sorting Using Targeted Biotinylated Albumin Microbubbles

    PubMed Central

    Liou, Yu-Ren; Wang, Yu-Hsin; Lee, Chia-Ying; Li, Pai-Chi

    2015-01-01

    Cell analysis often requires the isolation of certain cell types. Various isolation methods have been applied to cell sorting, including florescence-activated cell sorting and magnetic-activated cell sorting. However, these conventional approaches involve exerting mechanical forces on the cells, thus risking cell damage. In this study we applied a novel isolation method called buoyancy-activated cell sorting, which involves using biotinylated albumin microbubbles (biotin-MBs) conjugated with antibodies (i.e., targeted biotin-MBs). Albumin MBs are widely used as contrast agents in ultrasound imaging due to their good biocompatibility and stability. For conjugating antibodies, biotin is conjugated onto the albumin MB shell via covalent bonds and the biotinylated antibodies are conjugated using an avidin-biotin system. The albumin microbubbles had a mean diameter of 2μm with a polydispersity index of 0.16. For cell separation, the MDA-MB-231 cells are incubated with the targeted biotin-MBs conjugated with anti-CD44 for 10 min, centrifuged at 10g for 1 min, and then allowed 1 hour at 4°C for separation. The results indicate that targeted biotin-MBs conjugated with anti-CD44 antibodies can be used to separate MDA-MB-231 breast cancer cells; more than 90% of the cells were collected in the MB layer when the ratio of the MBs to cells was higher than 70:1. Furthermore, we found that the separating efficiency was higher for targeted biotin-MBs than for targeted avidin-incorporated albumin MBs (avidin-MBs), which is the most common way to make targeted albumin MBs. We also demonstrated that the recovery rate of targeted biotin-MBs was up to 88% and the sorting purity was higher than 84% for a a heterogenous cell population containing MDA-MB-231 cells (CD44+) and MDA-MB-453 cells (CD44–), which are classified as basal-like breast cancer cells and luminal breast cancer cells, respectively. Knowing that the CD44+ is a commonly used cancer-stem-cell biomarker, our targeted

  12. Berberine modulates AP-1 activity to suppress HPV transcription and downstream signaling to induce growth arrest and apoptosis in cervical cancer cells

    PubMed Central

    2011-01-01

    Background- Specific types of high risk Human papillomaviruses (HR-HPVs) particularly, HPV types 16 and 18 cause cervical cancer and while the two recently developed vaccines against these HPV types are prophylactic in nature, therapeutic options for treatment and management of already existing HPV infection are not available as yet. Because transcription factor, Activator Protein-1 (AP-1) plays a central role in HPV-mediated cervical carcinogenesis, we explored the possibility of its therapeutic targeting by berberine, a natural alkaloid derived from a medicinal plant species, Berberis which has been shown to possess anti-inflammatory and anti-cancer properties with no known toxicity; however, the effect of berberine against HPV has not been elucidated. Results- We studied the effect of berberine on HPV16-positive cervical cancer cell line, SiHa and HPV18-positive cervical cancer cell line, HeLa using electrophoretic mobility gel shift assays, western and northern blotting which showed that berberine could selectively inhibit constitutively activated AP-1 in a dose- and time-dependent manner and downregulates HPV oncogenes expression. Inhibition of AP-1 was also accompanied by changes in the composition of their DNA-binding complex. Berberine specifically downregulated expression of oncogenic c-Fos which was also absent in the AP-1 binding complex. Treatment with berberine resulted in repression of E6 and E7 levels and concomitant increase in p53 and Rb expression in both cell types. Berberine also suppressed expression of telomerase protein, hTERT, which translated into growth inhibition of cervical cancer cells. Interestingly, a higher concentration of berberine was found to reduce the cell viability through mitochondria-mediated pathway and induce apoptosis by activating caspase-3. Conclusion- These results indicate that berberine can effectively target both the host and viral factors responsible for development of cervical cancer through inhibition of AP-1 and

  13. Heat-activated liposome targeting to streptavidin-coated surfaces.

    PubMed

    Jing, Yujia; Trefná, Hana Dobšíček; Persson, Mikael; Svedhem, Sofia

    2015-06-01

    There is a great need of improved anticancer drugs and corresponding drug carriers. In particular, liposomal drug carriers with heat-activated release and targeting functions are being developed for combined hyperthermia and chemotherapy treatments of tumors. The aim of this study is to demonstrate the heat-activation of liposome targeting to biotinylated surfaces, in model experiments where streptavidin is used as a pretargeting protein. The design of the heat-activated liposomes is based on liposomes assembled in an asymmetric structure and with a defined phase transition temperature. Asymmetry between the inside and the outside of the liposome membrane was generated through the enzymatic action of phospholipase D, where lipid head groups in the outer membrane leaflet, i.e. exposed to the enzyme, were hydrolyzed. The enzymatically treated and purified liposomes did not bind to streptavidin-modified surfaces. When activation heat was applied, starting from 22°C, binding of the liposomes occurred once the temperature approached 33±0.5°C. Moreover, it was observed that the asymmetric structure remained stable for at least 2 weeks. These results show the potential of asymmetric liposomes for the targeted binding to cell membranes in response to (external) temperature stimulus. By using pretargeting proteins, this approach can be further developed for personalized medicine, where tumor-specific antibodies can be selected for the conjugation of pretargeting agents.

  14. Downstream in Mawrth Valles

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image is from further downstream in Mawrth Valles than yesterday's image. The channel here is at the end of the vallis. This image was collected during the Northern Spring season.

    Image information: VIS instrument. Latitude 26.7, Longitude 340.2 East (19.8 West). 37 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages

  15. Feasibility study of an active target for the MEG experiment

    NASA Astrophysics Data System (ADS)

    Papa, A.; Cavoto, G.; Ripiccini, E.

    2014-03-01

    We consider the possibility to have an active target for the upgrade of the MEG experiment (MEG II). The active target should work as (1) a beam monitoring, to continuously measure the muon stopping rate and therefore provide a direct evaluation of the detector acceptance (or an absolute normalization of the stopped muon); and as (2) an auxiliary device for the spectrometer, to improve the determination of the muon decay vertex and consequently to achieve a better positron momentum and angular resolutions, detecting the positron from the muon decay. In this work we studied the feasibility of detecting minimum ionizing particle with a single layer of 250 μm fiber and the capability to discriminate between the signal induced by either a muon or a positron.

  16. The Platin-X series: activation, targeting, and delivery.

    PubMed

    Basu, Uttara; Banik, Bhabatosh; Wen, Ru; Pathak, Rakesh K; Dhar, Shanta

    2016-08-16

    Anticancer platinum (Pt) complexes have long been considered to be one of the biggest success stories in the history of medicinal inorganic chemistry. Yet there remains the hunt for the "magic bullet" which can satisfy the requirements of an effective chemotherapeutic drug formulation. Pt(iv) complexes are kinetically more inert than the Pt(ii) congeners and offer the opportunity to append additional functional groups/ligands for prodrug activation, tumor targeting, or drug delivery. The ultimate aim of functionalization is to enhance the tumor selective action and attenuate systemic toxicity of the drugs. Moreover, an increase in cellular accumulation to surmount the resistance of the tumor against the drugs is also of paramount importance in drug development and discovery. In this review, we will address the attempts made in our lab to develop Pt(iv) prodrugs that can be activated and delivered using targeted nanotechnology-based delivery platforms. PMID:27493131

  17. Brain Activation Underlying Threat Detection to Targets of Different Races

    PubMed Central

    Senholzi, Keith B.; Depue, Brendan E.; Correll, Joshua; Banich, Marie T.; Ito, Tiffany A.

    2016-01-01

    The current study examined blood oxygen level dependent (BOLD) signal underlying racial differences in threat detection. During fMRI, participants determined whether pictures of Black or White individuals held weapons. They were instructed to make shoot responses when the picture showed armed individuals but don’t shoot responses to unarmed individuals, with the cost of not shooting armed individuals being greater than that of shooting unarmed individuals. Participants were faster to shoot armed Blacks than Whites, but faster in making don’t shoot responses to unarmed Whites than Blacks. Brain activity differed to armed versus unarmed targets depending on target race, suggesting different mechanisms underlying threat versus safety decisions. Anterior cingulate cortex was preferentially engaged for unarmed Whites than Blacks. Parietal and visual cortical regions exhibited greater activity for armed Blacks than Whites. Seed-based functional connectivity of the amygdala revealed greater coherence with parietal and visual cortices for armed Blacks than Whites. Furthermore, greater implicit Black-danger associations were associated with increased amygdala activation to armed Blacks, compared to armed Whites. Our results suggest that different neural mechanisms may underlie racial differences in responses to armed versus unarmed targets. PMID:26357911

  18. Brain activation underlying threat detection to targets of different races.

    PubMed

    Senholzi, Keith B; Depue, Brendan E; Correll, Joshua; Banich, Marie T; Ito, Tiffany A

    2015-01-01

    The current study examined blood oxygen level-dependent signal underlying racial differences in threat detection. During functional magnetic resonance imaging, participants determined whether pictures of Black or White individuals held weapons. They were instructed to make shoot responses when the picture showed armed individuals but don't shoot responses to unarmed individuals, with the cost of not shooting armed individuals being greater than that of shooting unarmed individuals. Participants were faster to shoot armed Blacks than Whites, but faster in making don't shoot responses to unarmed Whites than Blacks. Brain activity differed to armed versus unarmed targets depending on target race, suggesting different mechanisms underlying threat versus safety decisions. Anterior cingulate cortex was preferentially engaged for unarmed Whites than Blacks. Parietal and visual cortical regions exhibited greater activity for armed Blacks than Whites. Seed-based functional connectivity of the amygdala revealed greater coherence with parietal and visual cortices for armed Blacks than Whites. Furthermore, greater implicit Black-danger associations were associated with increased amygdala activation to armed Blacks, compared to armed Whites. Our results suggest that different neural mechanisms may underlie racial differences in responses to armed versus unarmed targets. PMID:26357911

  19. Active multispectral near-IR detection of small surface targets

    NASA Astrophysics Data System (ADS)

    de Jong, Arie N.; Winkel, Hans; Roos, Marco J. J.

    2001-10-01

    The detection and identification of small surface targets with Electro-Optical sensors is seriously hampered by ground clutter, leading to false alarms and reduced detection probabilities. Active ground illumination can improve the detection performance of EO sensors compared to passive skylight illumination because of the knowledge of the illumination level and of its temporal stability. Sun and sky cannot provide this due to the weather variability. In addition multispectral sensors with carefully chosen spectral bands ranging from the visual into the near IR from 400-2500 nm wavelength can take benefit of a variety of cheap active light sources, ranging from lasers to Xenon or halogen lamps. Results are presented, obtained with a two- color laser scanner with one wavelength in the chlorophyll absorption dip. Another active scanner is described operating at 4 wavebands between 1400 and 2300 nm, using tungsten halogen lamps. Finally a simple TV camera was used with either a ste of narrow band spectral filters or polarization filters in front of the lamps. The targets consisted of an array of mixed objects, most of them real mines. The results how great promise in enhancing the detection and identification probabilities of EO sensors against small surface targets.

  20. Expression of nuclear factor of activated T cells (NFAT) and downstream muscle-specific proteins in ground squirrel skeletal and heart muscle during hibernation.

    PubMed

    Zhang, Yichi; Storey, Kenneth B

    2016-01-01

    The thirteen-lined ground squirrel (Ictidomys tridecemlineatus) undergoes remarkable adaptive changes during hibernation. Interestingly, skeletal muscle remodelling occurs during the torpor-arousal cycle of hibernation to prevent net muscle loss despite inactivity. Reversible cardiomyocyte hypertrophy occurs in cardiac muscle, allowing the heart to preserve cardiac output during hibernation, while avoiding chronic maladaptive hypertrophy post-hibernation. We propose that calcium signalling proteins [calcineurin (Cn), calmodulin (CaM), and calpain], the nuclear factor of activated T cell (NFAT) family of transcription factors, and the NFAT targets myoferlin and myomaker contribute significantly to adaptations taking place in skeletal and cardiac muscle during hibernation. Protein-level analyses were performed over several conditions: euthermic room temperature (ER), euthermic cold room (EC), entrance into (EN), early (ET), and late torpor (LT) time points, in addition to early (EA), interbout (IA), and late arousal (LA) time points using immunoblotting and DNA-protein interaction (DPI) enzyme-linked immunosorbent assay (ELISAs). In skeletal and cardiac muscle, NFATc2 protein levels were elevated during torpor. NFATc4 increased throughout the torpor-arousal cycle in both tissues, and NFATc1 showed this trend in cardiac muscle only. NFATc3 showed an elevation in DNA-binding activity but not expression during torpor. Myoferlin protein levels dramatically increased during torpor in both skeletal and cardiac muscle. Myomaker levels also increased significantly in cardiac muscle during torpor. Cardiac Cn levels remained stable, whereas CaM and calpain decreased throughout the torpor-arousal cycle. Activation and/or upregulation of NFATc2, c3, myoferlin, and myomaker at torpor could be part of a stress-response mechanism to preserve skeletal muscle mass, whereas CaM and calpain appear to initiate the rapid reversal of cardiac hypertrophy during arousal through

  1. Mitogen-activated protein kinases: a new therapeutic target in cardiac pathology.

    PubMed

    Ravingerová, Tána; Barancík, Miroslav; Strnisková, Monika

    2003-05-01

    Eukaryotic cells respond to different external stimuli by activation of mechanisms of cell signaling. One of the major systems participating in the transduction of signal from the cell membrane to nuclear and other intracellular targets is the highly conserved mitogen-activated protein kinase (MAPK) superfamily. The members of MAPK family are involved in the regulation of a large variety of cellular processes such as cell growth, differentiation, development, cell cycle, death and survival. Several MAPK subfamilies, each with apparently unique signaling pathway, have been identified in the mammalian myocardium. These cascades differ in their upstream activation sequence and in downstream substrate specifity. Each pathway follows the same conserved three-kinase module consisting of MAPK, MAPK kinase (MAPKK, MKK or MEK), and MAPK kinase kinase (MAPKKK, MEKK). The major groups of MAPKs found in cardiac tissue include the extracellular signal-regulated kinases (ERKs), the stress-activated/c-Jun NH2-terminal kinases (SAPK/JNKs), p38-MAPK, and ERK5/big MAPK 1 (BMK1). The ERKs are strongly activated by mitogenic and growth factors and by physical stress, whereas SAPK/JNKs and p38-MAPK can be activated by various cell stresses, such as hyperosmotic shock, metabolic stress or protein synthesis inhibitors, UV radiation, heat shock, cytokines, and ischemia. Activation of MAPKs family plays a key role in the pathogenesis of various processes in the heart, e.g. myocardial hypertrophy and its transition to heart failure, in ischemic and reperfusion injury, as well in the cardioprotection conferred by ischemia- or pharmacologically-induced preconditioning. The following approaches are currently utilized to elucidate the role of MAPKs in the myocardium: (i) studies of the effects of myocardial processes on the activity of these kinases; (ii) pharmacological modulations of MAPKs activity and evaluation of their impact on the (patho)physiological processes in the heart; (iii) gene

  2. Graded Smad2/3 Activation Is Converted Directly into Levels of Target Gene Expression in Embryonic Stem Cells

    PubMed Central

    Mavrakis, Konstantinos J.; Goggolidou, Paraskevi; Norris, Dominic P.; Episkopou, Vasso

    2009-01-01

    The Transforming Growth Factor (TGF) β signalling family includes morphogens, such as Nodal and Activin, with important functions in vertebrate development. The concentration of the morphogen is critical for fate decisions in the responding cells. Smad2 and Smad3 are effectors of the Nodal/Activin branch of TGFβ signalling: they are activated by receptors, enter the nucleus and directly transcribe target genes. However, there have been no studies correlating levels of Smad2/3 activation with expression patterns of endogenous target genes in a developmental context over time. We used mouse Embryonic Stem (ES) cells to create a system whereby levels of activated Smad2/3 can be manipulated by an inducible constitutively active receptor (Alk4*) and an inhibitor (SB-431542) that blocks specifically Smad2/3 activation. The transcriptional responses were analysed by microarrays at different time points during activation and repression. We identified several genes that follow faithfully and reproducibly the Smad2/3 activation profile. Twenty-seven of these were novel and expressed in the early embryo downstream of Smad2/3 signalling. As they responded to Smad2/3 activation in the absence of protein synthesis, they were considered direct. These immediate responsive genes included negative intracellular feedback factors, like SnoN and I-Smad7, which inhibit the transcriptional activity of Smad2/3. However, their activation did not lead to subsequent repression of target genes over time, suggesting that this type of feedback is inefficient in ES cells or it is counteracted by mechanisms such as ubiquitin-mediated degradation by Arkadia. Here we present an ES cell system along with a database containing the expression profile of thousands of genes downstream of Smad2/3 activation patterns, in the presence or absence of protein synthesis. Furthermore, we identify primary target genes that follow proportionately and with high sensitivity changes in Smad2/3 levels over 15–30

  3. Factor XI and Contact Activation as Targets for Antithrombotic Therapy

    PubMed Central

    Gailani, David; Bane, Charles E.; Gruber, Andras

    2015-01-01

    Summary The most commonly used anticoagulants produce therapeutic antithrombotic effects either by inhibiting thrombin or factor Xa, or by lowering the plasma levels of the precursors of these key enzymes, prothrombin and factor X. These drugs do not distinguish between thrombin generation contributing to thrombosis from thrombin generation required for hemostasis. Thus, anticoagulants increase bleeding risk, and many patients who would benefit from therapy go untreated because of comorbidities that place them at unacceptable risk for hemorrhage. Studies in animals demonstrate that components of the plasma contact activation system contribute to experimentally-induced thrombosis, despite playing little or no role in hemostasis. Attention has focused on factor XII, the zymogen of a protease (factor XIIa) that initiates contact activation when blood is exposed to foreign surfaces; and factor XI, the zymogen of the protease factor XIa, which links contact activation to the thrombin generation mechanism. In the case of factor XI, epidemiologic data indicate this protein contributes to stroke and venous thromboembolism, and perhaps myocardial infarction, in humans. A phase 2 trial showing that reduction of factor XI may be more effective than low-molecular-weight heparin at preventing venous thrombosis during knee replacement surgery provides proof of concept for the premise that an antithrombotic effect can be uncoupled from an anticoagulant effect in humans by targeting components of contact activation. Here we review data on the role of factor XI and factor XII in thrombosis, and results of pre-clinical and human trials for therapies targeting these proteins. PMID:25976012

  4. HER2 activating mutations are targets for colorectal cancer treatment

    PubMed Central

    Kavuri, Shyam M.; Jain, Naveen; Galimi, Francesco; Cottino, Francesca; Leto, Simonetta M.; Migliardi, Giorgia; Searleman, Adam C.; Shen, Wei; Monsey, John; Trusolino, Livio; Jacobs, Samuel A.; Bertotti, Andrea; Bose, Ron

    2015-01-01

    The Cancer Genome Atlas project identified HER2 somatic mutations and gene amplification in 7% of colorectal cancer patients. Introduction of the HER2 mutations, S310F, L755S, V777L, V842I, and L866M, into colon epithelial cells increased signaling pathways and anchorage-independent cell growth, indicating that they are activating mutations. Introduction of these HER2 activating mutations into colorectal cancer cell lines produced resistance to cetuximab and panitumumab by sustaining MAPK phosphorylation. HER2 mutations are potently inhibited by low nanomolar doses of the irreversible tyrosine kinase inhibitors, neratinib and afatinib. HER2 gene sequencing of 48 cetuximab resistant, quadruple (KRAS, NRAS, BRAF, and PIK3CA) WT colorectal cancer patient-derived xenografts (PDX’s) identified 4 PDX’s with HER2 mutations. HER2 targeted therapies were tested on two PDX’s. Treatment with a single HER2 targeted drug (trastuzumab, neratinib, or lapatinib) delayed tumor growth, but dual HER2 targeted therapy with trastuzumab plus tyrosine kinase inhibitors produced regression of these HER2 mutated PDX’s. PMID:26243863

  5. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum

    PubMed Central

    Wang, Jigang; Zhang, Chong-Jing; Chia, Wan Ni; Loh, Cheryl C. Y.; Li, Zhengjun; Lee, Yew Mun; He, Yingke; Yuan, Li-Xia; Lim, Teck Kwang; Liu, Min; Liew, Chin Xia; Lee, Yan Quan; Zhang, Jianbin; Lu, Nianci; Lim, Chwee Teck; Hua, Zi-Chun; Liu, Bin; Shen, Han-Ming; Tan, Kevin S. W.; Lin, Qingsong

    2015-01-01

    The mechanism of action of artemisinin and its derivatives, the most potent of the anti-malarial drugs, is not completely understood. Here we present an unbiased chemical proteomics analysis to directly explore this mechanism in Plasmodium falciparum. We use an alkyne-tagged artemisinin analogue coupled with biotin to identify 124 artemisinin covalent binding protein targets, many of which are involved in the essential biological processes of the parasite. Such a broad targeting spectrum disrupts the biochemical landscape of the parasite and causes its death. Furthermore, using alkyne-tagged artemisinin coupled with a fluorescent dye to monitor protein binding, we show that haem, rather than free ferrous iron, is predominantly responsible for artemisinin activation. The haem derives primarily from the parasite's haem biosynthesis pathway at the early ring stage and from haemoglobin digestion at the latter stages. Our results support a unifying model to explain the action and specificity of artemisinin in parasite killing. PMID:26694030

  6. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum.

    PubMed

    Wang, Jigang; Zhang, Chong-Jing; Chia, Wan Ni; Loh, Cheryl C Y; Li, Zhengjun; Lee, Yew Mun; He, Yingke; Yuan, Li-Xia; Lim, Teck Kwang; Liu, Min; Liew, Chin Xia; Lee, Yan Quan; Zhang, Jianbin; Lu, Nianci; Lim, Chwee Teck; Hua, Zi-Chun; Liu, Bin; Shen, Han-Ming; Tan, Kevin S W; Lin, Qingsong

    2015-01-01

    The mechanism of action of artemisinin and its derivatives, the most potent of the anti-malarial drugs, is not completely understood. Here we present an unbiased chemical proteomics analysis to directly explore this mechanism in Plasmodium falciparum. We use an alkyne-tagged artemisinin analogue coupled with biotin to identify 124 artemisinin covalent binding protein targets, many of which are involved in the essential biological processes of the parasite. Such a broad targeting spectrum disrupts the biochemical landscape of the parasite and causes its death. Furthermore, using alkyne-tagged artemisinin coupled with a fluorescent dye to monitor protein binding, we show that haem, rather than free ferrous iron, is predominantly responsible for artemisinin activation. The haem derives primarily from the parasite's haem biosynthesis pathway at the early ring stage and from haemoglobin digestion at the latter stages. Our results support a unifying model to explain the action and specificity of artemisinin in parasite killing. PMID:26694030

  7. Calcium-Activated Potassium Channels: Potential Target for Cardiovascular Diseases.

    PubMed

    Dong, De-Li; Bai, Yun-Long; Cai, Ben-Zhi

    2016-01-01

    Ca(2+)-activated K(+) channels (KCa) are classified into three subtypes: big conductance (BKCa), intermediate conductance (IKCa), and small conductance (SKCa) KCa channels. The three types of KCa channels have distinct physiological or pathological functions in cardiovascular system. BKCa channels are mainly expressed in vascular smooth muscle cells (VSMCs) and inner mitochondrial membrane of cardiomyocytes, activation of BKCa channels in these locations results in vasodilation and cardioprotection against cardiac ischemia. IKCa channels are expressed in VSMCs, endothelial cells, and cardiac fibroblasts and involved in vascular smooth muscle proliferation, migration, vessel dilation, and cardiac fibrosis. SKCa channels are widely expressed in nervous and cardiovascular system, and activation of SKCa channels mainly contributes membrane hyperpolarization. In this chapter, we summarize the physiological and pathological roles of the three types of KCa channels in cardiovascular system and put forward the possibility of KCa channels as potential target for cardiovascular diseases.

  8. Utilization of a BGO detector as an active oxygen target

    NASA Astrophysics Data System (ADS)

    Loveman, R.; Gozani, T.; Bendahan, J.; Krivicich, J.; Elias, E.; Altschuler, E.

    1994-12-01

    The (n, n'γx) cross section for the 6.13 MeV state in oxygen has recently become of general interest because of the possibility of using this process to assay oxygen as a part of non-intrusive inspections. Localized densities of carbon, oxygen, and nitrogen are particularly useful in determining the presence of explosives and/or drugs in containers of all sizes, from suitcases to cargo containers. The presence of oxygen in BGO (Bi 4Ge 3O 12) scintillator makes this detector suitable for use as an active target for the measurement of the energy dependence of the excitation, of the first (6.049 MeV O +) and second (6.130 MeV 3 -) excited states in 16O by fast neutron interactions. An active target functions as both a target and an active device such as a detector. The de-excitations of the 6.049 and 6.130 states take place by nuclear pair production and γ-ray emission respectively. There is a large probability of absorbing all of the de-excitation energy in the scintillator in either of these cases. Since the energies deposited in the scintillator by these transitions are very close, the de-excitations are indistinguishable. However, since the cross section for the excitation of the 6.13 MeV state is believed to be larger than that of the 6.049 MeV, the major measured features of the energy variations are those related to the second state. The validity of the technique was initially tested using (MCNP) calculations. The calculations established that the detected neutron count rate in the crystal was proportional to the cross-sections used as input for the calculations, and that the constant of proportionality did not vary with neutron energy. Subsequently, measurements were made with a BGO detector as an active oxygen target. The results clearly show a strong energy dependence including several resonances.

  9. Activity based chemical proteomics: profiling proteases as drug targets.

    PubMed

    Heal, William Percy; Wickramasinghe, Sasala Roshinie; Tate, Edward William

    2008-09-01

    The pivotal role of proteases in many diseases has generated considerable interest in their basic biology, and in the potential to target them for chemotherapy. Although fundamental to the initiation and progression of diseases such as cancer, diabetes, arthritis and malaria, in many cases their precise role remains unknown. Activity-based chemical proteomics-an emerging field involving a combination of organic synthesis, biochemistry, cell biology, biophysics and bioinformatics-allows the detection, visualisation and activity quantification of whole families or selected sub-sets of proteases based upon their substrate specificity. This approach can be applied for drug target/lead identification and validation, the fundamentals of drug discovery. The activity-based probes discussed in this review contain three key features; a 'warhead' (binds irreversibly but selectively to the active site), a 'tag' (allowing enzyme 'handling', with a combination of fluorescent, affinity and/or radio labels), and a linker region between warhead and tag. From the design and synthesis of the linker arise some of the latest developments discussed here; not only can the physical properties (e.g., solubility, localisation) of the probe be tuned, but the inclusion of a cleavable moiety allows selective removal of tagged enzyme from affinity beads etc. The design and synthesis of recently reported probes is discussed, including modular assembly of highly versatile probes via solid phase synthesis. Recent applications of activity-based protein profiling to specific proteases (serine, threonine, cysteine and metalloproteases) are reviewed as are demonstrations of their use in the study of disease function in cancer and malaria.

  10. A Deterministic Approach to Active Debris Removal Target Selection

    NASA Astrophysics Data System (ADS)

    Lidtke, A.; Lewis, H.; Armellin, R.

    2014-09-01

    Many decisions, with widespread economic, political and legal consequences, are being considered based on space debris simulations that show that Active Debris Removal (ADR) may be necessary as the concerns about the sustainability of spaceflight are increasing. The debris environment predictions are based on low-accuracy ephemerides and propagators. This raises doubts about the accuracy of those prognoses themselves but also the potential ADR target-lists that are produced. Target selection is considered highly important as removal of many objects will increase the overall mission cost. Selecting the most-likely candidates as soon as possible would be desirable as it would enable accurate mission design and allow thorough evaluation of in-orbit validations, which are likely to occur in the near-future, before any large investments are made and implementations realized. One of the primary factors that should be used in ADR target selection is the accumulated collision probability of every object. A conjunction detection algorithm, based on the smart sieve method, has been developed. Another algorithm is then applied to the found conjunctions to compute the maximum and true probabilities of collisions taking place. The entire framework has been verified against the Conjunction Analysis Tools in AGIs Systems Toolkit and relative probability error smaller than 1.5% has been achieved in the final maximum collision probability. Two target-lists are produced based on the ranking of the objects according to the probability they will take part in any collision over the simulated time window. These probabilities are computed using the maximum probability approach, that is time-invariant, and estimates of the true collision probability that were computed with covariance information. The top-priority targets are compared, and the impacts of the data accuracy and its decay are highlighted. General conclusions regarding the importance of Space Surveillance and Tracking for the

  11. Small Molecule Inhibitors Targeting Activator Protein 1 (AP-1)

    PubMed Central

    2015-01-01

    Activator protein 1 (AP-1) is a pivotal transcription factor that regulates a wide range of cellular processes including proliferation, apoptosis, differentiation, survival, cell migration, and transformation. Accumulating evidence supports that AP-1 plays an important role in several severe disorders including cancer, fibrosis, and organ injury, as well as inflammatory disorders such as asthma, psoriasis, and rheumatoid arthritis. AP-1 has emerged as an actively pursued drug discovery target over the past decade. Excitingly, a selective AP-1 inhibitor T-5224 (51) has been investigated in phase II human clinical trials. Nevertheless, no effective AP-1 inhibitors have yet been approved for clinical use. Despite significant advances achieved in understanding AP-1 biology and function, as well as the identification of small molecules modulating AP-1 associated signaling pathways, medicinal chemistry efforts remain an urgent need to yield selective and efficacious AP-1 inhibitors as a viable therapeutic strategy for human diseases. PMID:24831826

  12. Semiconducting Polymer Nanobioconjugates for Targeted Photothermal Activation of Neurons.

    PubMed

    Lyu, Yan; Xie, Chen; Chechetka, Svetlana A; Miyako, Eijiro; Pu, Kanyi

    2016-07-27

    Optogenetics provides powerful means for precise control of neuronal activity; however, the requirement of transgenesis and the incapability to extend the neuron excitation window into the deep-tissue-penetrating near-infrared (NIR) region partially limit its application. We herein report a potential alternative approach to optogenetics using semiconducting polymer nanobioconjugates (SPNsbc) as the photothermal nanomodulator to control the thermosensitive ion channels in neurons. SPNsbc are designed to efficiently absorb the NIR light at 808 nm and have a photothermal conversion efficiency higher than that of gold nanorods. By virtue of the fast heating capability in conjunction with the precise targeting to the thermosensitive ion channel, SPNsbc can specifically and rapidly activate the intracellular Ca(2+) influx of neuronal cells in a reversible and safe manner. Our study provides an organic nanoparticle based strategy that eliminates the need for genetic transfection to remotely regulate cellular machinery. PMID:27404507

  13. Novel strategies for ultrahigh specific activity targeted nanoparticles

    SciTech Connect

    Zhou, Dong

    2012-12-13

    We have developed novel strategies optimized for preparing high specific activity radiolabeled nanoparticles, targeting nuclear imaging of low abundance biomarkers. Several compounds have been labeled with F-18 and Cu-64 for radiolabeling of SCK-nanoparticles via Copper(I) catalyzed or copper-free alkyne-azide cyclolization. Novel strategies have been developed to achieve ultrahigh specific activity with administrable amount of dose for human study using copper-free chemistry. Ligands for carbonic anhydrase 12 (CA12), a low abundance extracellular biomarker for the responsiveness of breast cancer to endocrine therapie, have been labeled with F-18 and Cu-64, and one of them has been evaluated in animal models. The results of this project will lead to major improvements in the use of nanoparticles in nuclear imaging and will significantly advance their potential for detecting low abundance biomarkers of medical importance.

  14. Targeting Energy Metabolic and Oncogenic Signaling Pathways in Triple-negative Breast Cancer by a Novel Adenosine Monophosphate-activated Protein Kinase (AMPK) Activator*

    PubMed Central

    Lee, Kuen-Haur; Hsu, En-Chi; Guh, Jih-Hwa; Yang, Hsiao-Ching; Wang, Dasheng; Kulp, Samuel K.; Shapiro, Charles L.; Chen, Ching-Shih

    2011-01-01

    The antitumor activities of the novel adenosine monophosphate-activated protein kinase (AMPK) activator, OSU-53, were assessed in in vitro and in vivo models of triple-negative breast cancer. OSU-53 directly stimulated recombinant AMPK kinase activity (EC50, 0.3 μm) and inhibited the viability and clonogenic growth of MDA-MB-231 and MDA-MB-468 cells with equal potency (IC50, 5 and 2 μm, respectively) despite lack of LKB1 expression in MDA-MB-231 cells. Nonmalignant MCF-10A cells, however, were unaffected. Beyond AMPK-mediated effects on mammalian target of rapamycin signaling and lipogenesis, OSU-53 also targeted multiple AMPK downstream pathways. Among these, the protein phosphatase 2A-dependent dephosphorylation of Akt is noteworthy because it circumvents the feedback activation of Akt that results from mammalian target of rapamycin inhibition. OSU-53 also modulated energy homeostasis by suppressing fatty acid biosynthesis and shifting the metabolism to oxidation by up-regulating the expression of key regulators of mitochondrial biogenesis, such as a peroxisome proliferator-activated receptor γ coactivator 1α and the transcription factor nuclear respiratory factor 1. Moreover, OSU-53 suppressed LPS-induced IL-6 production, thereby blocking subsequent Stat3 activation, and inhibited hypoxia-induced epithelial-mesenchymal transition in association with the silencing of hypoxia-inducible factor 1a and the E-cadherin repressor Snail. In MDA-MB-231 tumor-bearing mice, daily oral administration of OSU-53 (50 and 100 mg/kg) suppressed tumor growth by 47–49% and modulated relevant intratumoral biomarkers of drug activity. However, OSU-53 also induced protective autophagy that attenuated its antiproliferative potency. Accordingly, cotreatment with the autophagy inhibitor chloroquine increased the in vivo tumor-suppressive activity of OSU-53. OSU-53 is a potent, orally bioavailable AMPK activator that acts through a broad spectrum of antitumor activities. PMID

  15. Molecular-targeted antitumor agents. 19. Furospongolide from a marine Lendenfeldia sp. sponge inhibits hypoxia-inducible factor-1 activation in breast tumor cells.

    PubMed

    Liu, Yang; Liu, Rui; Mao, Shui-Chun; Morgan, J Brian; Jekabsons, Mika B; Zhou, Yu-Dong; Nagle, Dale G

    2008-11-01

    A natural product chemistry-based approach was employed to discover small-molecule inhibitors of the important tumor-selective molecular target hypoxia-inducible factor-1 (HIF-1). Bioassay-guided isolation of an active lipid extract of a Saipan collection of the marine sponge Lendenfeldia sp. afforded the terpene-derived furanolipid furospongolide as the primary inhibitor of hypoxia-induced HIF-1 activation (IC(50) 2.9 μM, T47D breast tumor cells). The active component of the extract also contained one new cytotoxic scalarane sesterterpene and two previously reported scalaranes. Furospongolide blocked the induction of the downstream HIF-1 target secreted vascular endothelial growth factor (VEGF) and was shown to suppress HIF-1 activation by inhibiting the hypoxic induction of HIF-1α protein. Mechanistic studies indicate that furospongolide inhibits HIF-1 activity primarily by suppressing tumor cell respiration via the blockade of NADH-ubiquinone oxidoreductase (complex I)-mediated mitochondrial electron transfer.

  16. Hyaluronic acid-coated liposomes for active targeting of gemcitabine.

    PubMed

    Arpicco, Silvia; Lerda, Carlotta; Dalla Pozza, Elisa; Costanzo, Chiara; Tsapis, Nicolas; Stella, Barbara; Donadelli, Massimo; Dando, Ilaria; Fattal, Elias; Cattel, Luigi; Palmieri, Marta

    2013-11-01

    The aim of this work was the preparation, characterization, and preliminary evaluation of the targeting ability toward pancreatic adenocarcinoma cells of liposomes containing the gemcitabine lipophilic prodrug [4-(N)-lauroyl-gemcitabine, C12GEM]. Hyaluronic acid (HA) was selected as targeting agent since it is biodegradable, biocompatible, and can be chemically modified and its cell surface receptor CD44 is overexpressed on various tumors. For this purpose, conjugates between a phospholipid, the 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), and HA of two different low molecular weights 4800 Da (12 disaccharidic units) and 12,000 Da (32 disaccharidic units), were prepared, characterized, and introduced in the liposomes during the preparation. Different liposomal formulations were prepared and their characteristics were analyzed: size, Z potential, and TEM analyses underline a difference in the HA-liposomes from the non-HA ones. In order to better understand the HA-liposome cellular localization and to evaluate their interaction with CD44 receptor, confocal microscopy studies were performed. The results demonstrate that HA facilitates the recognition of liposomes by MiaPaCa2 cells (CD44(+)) and that the uptake increases with increase in the polymer molecular weight. Finally, the cytotoxicity of the different preparations was evaluated and data show that incorporation of C12GEM increases their cytotoxic activity and that HA-liposomes inhibit cell growth more than plain liposomes. Altogether, the results demonstrate the specificity of C12GEM targeting toward CD44-overexpressing pancreatic adenocarcinoma cell line using HA as a ligand.

  17. Hyaluronic acid-coated liposomes for active targeting of gemcitabine.

    PubMed

    Arpicco, Silvia; Lerda, Carlotta; Dalla Pozza, Elisa; Costanzo, Chiara; Tsapis, Nicolas; Stella, Barbara; Donadelli, Massimo; Dando, Ilaria; Fattal, Elias; Cattel, Luigi; Palmieri, Marta

    2013-11-01

    The aim of this work was the preparation, characterization, and preliminary evaluation of the targeting ability toward pancreatic adenocarcinoma cells of liposomes containing the gemcitabine lipophilic prodrug [4-(N)-lauroyl-gemcitabine, C12GEM]. Hyaluronic acid (HA) was selected as targeting agent since it is biodegradable, biocompatible, and can be chemically modified and its cell surface receptor CD44 is overexpressed on various tumors. For this purpose, conjugates between a phospholipid, the 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), and HA of two different low molecular weights 4800 Da (12 disaccharidic units) and 12,000 Da (32 disaccharidic units), were prepared, characterized, and introduced in the liposomes during the preparation. Different liposomal formulations were prepared and their characteristics were analyzed: size, Z potential, and TEM analyses underline a difference in the HA-liposomes from the non-HA ones. In order to better understand the HA-liposome cellular localization and to evaluate their interaction with CD44 receptor, confocal microscopy studies were performed. The results demonstrate that HA facilitates the recognition of liposomes by MiaPaCa2 cells (CD44(+)) and that the uptake increases with increase in the polymer molecular weight. Finally, the cytotoxicity of the different preparations was evaluated and data show that incorporation of C12GEM increases their cytotoxic activity and that HA-liposomes inhibit cell growth more than plain liposomes. Altogether, the results demonstrate the specificity of C12GEM targeting toward CD44-overexpressing pancreatic adenocarcinoma cell line using HA as a ligand. PMID:23791684

  18. Active targeting schemes for nanoparticle systems in cancer therapeutics.

    PubMed

    Byrne, James D; Betancourt, Tania; Brannon-Peppas, Lisa

    2008-12-14

    The objective of this review is to outline current major cancer targets for nanoparticle systems and give insight into the direction of the field. The major targeting strategies that have been used for the delivery of therapeutic or imaging agents to cancer have been broken into three sections. These sections are angiogenesis-associated targeting, targeting to uncontrolled cell proliferation markers, and tumor cell targeting. The targeting schemes explored for many of the reported nanoparticle systems suggest the great potential of targeted delivery to revolutionize cancer treatment.

  19. Canine adenovirus downstream processing protocol.

    PubMed

    Puig, Meritxell; Piedra, Jose; Miravet, Susana; Segura, María Mercedes

    2014-01-01

    Adenovirus vectors are efficient gene delivery tools. A major caveat with vectors derived from common human adenovirus serotypes is that most adults are likely to have been exposed to the wild-type virus and exhibit active immunity against the vectors. This preexisting immunity limits their clinical success. Strategies to circumvent this problem include the use of nonhuman adenovirus vectors. Vectors derived from canine adenovirus type 2 (CAV-2) are among the best-studied representatives. CAV-2 vectors are particularly attractive for the treatment of neurodegenerative disorders. In addition, CAV-2 vectors have shown great promise as oncolytic agents in virotherapy approaches and as vectors for recombinant vaccines. The rising interest in CAV-2 vectors calls for the development of scalable GMP compliant production and purification strategies. A detailed protocol describing a complete scalable downstream processing strategy for CAV-2 vectors is reported here. Clarification of CAV-2 particles is achieved by microfiltration. CAV-2 particles are subsequently concentrated and partially purified by ultrafiltration-diafiltration. A Benzonase(®) digestion step is carried out between ultrafiltration and diafiltration operations to eliminate contaminating nucleic acids. Chromatography purification is accomplished in two consecutive steps. CAV-2 particles are first captured and concentrated on a propyl hydrophobic interaction chromatography column followed by a polishing step using DEAE anion exchange monoliths. Using this protocol, high-quality CAV-2 vector preparations containing low levels of contamination with empty viral capsids and other inactive vector forms are typically obtained. The complete process yield was estimated to be 38-45 %. PMID:24132487

  20. Epigenetic drugs that do not target enzyme activity.

    PubMed

    Owen, Dafydd R; Trzupek, John D

    2014-06-01

    While the installation and removal of epigenetic post-translational modifications or ‘marks’ on both DNA and histone proteins are the tangible outcome of enzymatically catalyzed processes, the role of the epigenetic reader proteins looks, at first, less obvious. As they do not catalyze a chemical transformation or process as such, their role is not enzymatic. However, this does not preclude them from being potential targets for drug discovery as their function is clearly correlated to transcriptional activity and as a class of proteins, they appear to have binding sites of sufficient definition and size to be inhibited by small molecules. This suggests that this third class of epigenetic proteins that are involved in the interpretation of post-translational marks (as opposed to the creation or deletion of marks) may represent attractive targets for drug discovery efforts. This review mainly summarizes selected publications, patent literature and company disclosures on these non-enzymatic epigenetic reader proteins from 2009 to the present.

  1. Rubisco activity and regulation as targets for crop improvement.

    PubMed

    Parry, Martin A J; Andralojc, P John; Scales, Joanna C; Salvucci, Michael E; Carmo-Silva, A Elizabete; Alonso, Hernan; Whitney, Spencer M

    2013-01-01

    Rubisco (ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase) enables net carbon fixation through the carboxylation of RuBP. However, some characteristics of Rubisco make it surprisingly inefficient and compromise photosynthetic productivity. For example, Rubisco catalyses a wasteful reaction with oxygen that leads to the release of previously fixed CO(2) and NH(3) and the consumption of energy during photorespiration. Furthermore, Rubisco is slow and large amounts are needed to support adequate photosynthetic rates. Consequently, Rubisco has been studied intensively as a prime target for manipulations to 'supercharge' photosynthesis and improve both productivity and resource use efficiency. The catalytic properties of Rubiscos from diverse sources vary considerably, suggesting that changes in turnover rate, affinity, or specificity for CO(2) can be introduced to improve Rubisco performance in specific crops and environments. While attempts to manipulate plant Rubisco by nuclear transformation have had limited success, modifying its catalysis by targeted changes to its catalytic large subunit via chloroplast transformation have been much more successful. However, this technique is still in need of development for most major food crops including maize, wheat, and rice. Other bioengineering approaches for improving Rubisco performance include improving the activity of its ancillary protein, Rubisco activase, in addition to modulating the synthesis and degradation of Rubisco's inhibitory sugar phosphate ligands. As the rate-limiting step in carbon assimilation, even modest improvements in the overall performance of Rubisco pose a viable pathway for obtaining significant gains in plant yield, particularly under stressful environmental conditions.

  2. Targeting silymarin for improved hepatoprotective activity through chitosan nanoparticles

    PubMed Central

    Gupta, Swati; Singh, Shailendra Kumar; Girotra, Priti

    2014-01-01

    Introduction: Silymarin is one of the best known hepatoprotective drugs, which is obtained from the seeds of Silybum marianum L., Family: Asteraceae or Compositae. The plant has traditionally been used for centuries as a natural remedy for liver and biliary tract diseases. The aim of the present investigation was to enhance the hepatoprotective activity of silymarin by incorporating it in chitosan (Ch) nanoparticles (NPs) for passive targeted delivery, thereby prolonging its retention time. Materials and Methods: Silymarin loaded NPs were prepared by ionic gelation technique, which were then optimized using a central composite design in order to minimize the particle size and maximize the drug entrapment efficiency. The optimized formulation was evaluated for in vitro drug release study and in vitro study on Swiss Albino mice using carbon tetrachloride (CCL4) induced hepatotoxicity model. Results: In vitro dissolution studies illustrated sustained, zero order drug release from optimized formulation; also its therapeutic potential was amplified during in vitro studies on Swiss Albino mice using CCL4 induced hepatotoxicity model. Conclusion: The results suggested that NPs of silymarin could successfully enhance its hepatoprotective effect by passive targeting and sustained release. PMID:25426436

  3. Thrombin-Mediated Direct Activation of Proteinase-Activated Receptor-2: Another Target for Thrombin Signaling.

    PubMed

    Mihara, Koichiro; Ramachandran, Rithwik; Saifeddine, Mahmoud; Hansen, Kristina K; Renaux, Bernard; Polley, Danny; Gibson, Stacy; Vanderboor, Christina; Hollenberg, Morley D

    2016-05-01

    Thrombin is known to signal to cells by cleaving/activating a G-protein-coupled family of proteinase-activated receptors (PARs). The signaling mechanism involves the proteolytic unmasking of an N-terminal receptor sequence that acts as a tethered receptor-activating ligand. To date, the recognized targets of thrombin cleavage and activation for signaling are PAR1 and PAR4, in which thrombin cleaves at a conserved target arginine to reveal a tethered ligand. PAR2, which like PAR1 is also cleaved at an N-terminal arginine to unmask its tethered ligand, is generally regarded as a target for trypsin but not for thrombin signaling. We now show that thrombin, at concentrations that can be achieved at sites of acute injury or in a tumor microenvironment, can directly activate PAR2 vasorelaxation and signaling, stimulating calcium and mitogen-activated protein kinase responses along with triggeringβ-arrestin recruitment. Thus, PAR2 can be added alongside PAR1 and PAR4 to the targets, whereby thrombin can affect tissue function.

  4. Phosphatidylinositol 4-kinase III beta is the target of oxoglaucine and pachypodol (Ro 09-0179) for their anti-poliovirus activities, and is located at upstream of the target step of brefeldin A.

    PubMed

    Arita, Minetaro; Philipov, Stefan; Galabov, Angel S

    2015-06-01

    In recent years, phosphatidylinositol 4-kinase III beta (PI4KB) has emerged as a conserved target of anti-picornavirus compounds. In the present study, PI4KB was identified as the direct target of the plant-derived anti-picornavirus compounds, oxoglaucine and pachypodol (also known as Ro 09-0179). PI4KB was also identified as the target via which pachypodol interferes with brefeldin A (BFA)-induced Golgi disassembly in non-infected cells. Oxysterol-binding protein (OSBP) inhibitor also has interfering activity against BFA. It seems that this interference is not essential for the anti-poliovirus (PV) activities of BFA and PI4KB/OSBP inhibitors. BFA inhibited early to late phase PV replication (0 to 6 hr postinfection) as well as PI4KB inhibitor, but with some delay compared to guanidine hydrochloride treatment. In contrast with PI4KB/OSBP inhibitors, BFA inhibited viral nascent RNA synthesis, suggesting that BFA targets some step of viral RNA synthesis located downstream of the PI4KB/OSBP pathway in PV replication. Our results suggest that PI4KB is a major target of anti-picornavirus compounds identified in vitro for their anti-picornavirus activities and for some uncharacterized biological phenomena caused by these compounds, and that BFA and PI4KB/OSBP inhibitors synergistically repress PV replication by targeting distinct steps in viral RNA replication.

  5. Activating frataxin expression by repeat-targeted nucleic acids.

    PubMed

    Li, Liande; Matsui, Masayuki; Corey, David R

    2016-02-04

    Friedreich's ataxia is an incurable genetic disorder caused by a mutant expansion of the trinucleotide GAA within an intronic FXN RNA. This expansion leads to reduced expression of frataxin (FXN) protein and evidence suggests that transcriptional repression is caused by an R-loop that forms between the expanded repeat RNA and complementary genomic DNA. Synthetic agents that increase levels of FXN protein might alleviate the disease. We demonstrate that introducing anti-GAA duplex RNAs or single-stranded locked nucleic acids into patient-derived cells increases FXN protein expression to levels similar to analogous wild-type cells. Our data are significant because synthetic nucleic acids that target GAA repeats can be lead compounds for restoring curative FXN levels. More broadly, our results demonstrate that interfering with R-loop formation can trigger gene activation and reveal a new strategy for upregulating gene expression.

  6. Stepwise phosphorylation of p65 promotes NF-κB activation and NK cell responses during target cell recognition

    PubMed Central

    Kwon, Hyung-Joon; Choi, Go-Eun; Ryu, Sangryeol; Kwon, Soon Jae; Kim, Sun Chang; Booth, Claire; Nichols, Kim E.; Kim, Hun Sik

    2016-01-01

    NF-κB is a key transcription factor that dictates the outcome of diverse immune responses. How NF-κB is regulated by multiple activating receptors that are engaged during natural killer (NK)-target cell contact remains undefined. Here we show that sole engagement of NKG2D, 2B4 or DNAM-1 is insufficient for NF-κB activation. Rather, cooperation between these receptors is required at the level of Vav1 for synergistic NF-κB activation. Vav1-dependent synergistic signalling requires a separate PI3K-Akt signal, primarily mediated by NKG2D or DNAM-1, for optimal p65 phosphorylation and NF-κB activation. Vav1 controls downstream p65 phosphorylation and NF-κB activation. Synergistic signalling is defective in X-linked lymphoproliferative disease (XLP1) NK cells entailing 2B4 dysfunction and required for p65 phosphorylation by PI3K-Akt signal, suggesting stepwise signalling checkpoint for NF-κB activation. Thus, our study provides a framework explaining how signals from different activating receptors are coordinated to determine specificity and magnitude of NF-κB activation and NK cell responses. PMID:27221592

  7. Isorhamnetin protects against oxidative stress by activating Nrf2 and inducing the expression of its target genes

    SciTech Connect

    Yang, Ji Hye; Shin, Bo Yeon; Han, Jae Yun; Kim, Mi Gwang; Wi, Ji Eun; Kim, Young Woo; Cho, Il Je; Kim, Sang Chan; Shin, Sang Mi; Ki, Sung Hwan

    2014-01-15

    Isorhamentin is a 3′-O-methylated metabolite of quercetin, and has been reported to have anti-inflammatory and anti-proliferative effects. However, the effects of isorhamnetin on Nrf2 activation and on the expressions of its downstream genes in hepatocytes have not been elucidated. Here, we investigated whether isorhamnetin has the ability to activate Nrf2 and induce phase II antioxidant enzyme expression, and to determine the protective role of isorhamnetin on oxidative injury in hepatocytes. In HepG2 cells, isorhamnetin increased the nuclear translocation of Nrf2 in a dose- and time-dependent manner, and consistently, increased antioxidant response element (ARE) reporter gene activity and the protein levels of hemeoxygenase (HO-1) and of glutamate cysteine ligase (GCL), which resulted in intracellular GSH level increases. The specific role of Nrf2 in isorhamnetin-induced Nrf2 target gene expression was verified using an ARE-deletion mutant plasmid and Nrf2-knockout MEF cells. Deletion of the ARE in the promoter region of the sestrin2 gene, which is recently identified as the Nrf2 target gene by us, abolished the ability of isorhamnetin to increase luciferase activity. In addition, Nrf2 deficiency completely blocked the ability of isorhamnetin to induce HO-1 and GCL. Furthermore, isorhamnetin pretreatment blocked t-BHP-induced ROS production and reversed GSH depletion by t-BHP and consequently, due to reduced ROS levels, decreased t-BHP-induced cell death. In addition isorhamnetin increased ERK1/2, PKCδ and AMPK phosphorylation. Finally, we showed that Nrf2 deficiency blocked the ability of isorhamnetin to protect cells from injury induced by t-BHP. Taken together, our results demonstrate that isorhamnetin is efficacious in protecting hepatocytes against oxidative stress by Nrf2 activation and in inducing the expressions of its downstream genes. - Highlights: • We investigated the effect of isorhamnetin on Nrf2 activation. • Isorhamnetin increased Nrf2

  8. 13 CFR 124.509 - What are non-8(a) business activity targets?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... activity targets? 124.509 Section 124.509 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION 8(a... Contractual Assistance § 124.509 What are non-8(a) business activity targets? (a) General. (1) To ensure that...) business activity targets during transitional stage—(1) General. During the transitional stage of the...

  9. 13 CFR 124.509 - What are non-8(a) business activity targets?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... activity targets? 124.509 Section 124.509 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION 8(a... Contractual Assistance § 124.509 What are non-8(a) business activity targets? (a) General. (1) To ensure that...) business activity targets during transitional stage—(1) General. During the transitional stage of the...

  10. 13 CFR 124.509 - What are non-8(a) business activity targets?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... activity targets? 124.509 Section 124.509 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION 8(a... Contractual Assistance § 124.509 What are non-8(a) business activity targets? (a) General. (1) To ensure that...) business activity targets during transitional stage—(1) General. During the transitional stage of the...

  11. Active Targeted Nanoparticles for Oral Administration of Gastric Cancer Therapy.

    PubMed

    Lin, Yu-Hsin; Chen, Zih-Rou; Lai, Chih-Ho; Hsieh, Chia-Hung; Feng, Chun-Lung

    2015-09-14

    Gastric carcinogenesis is a commonly diagnosed type of cancer and has a dismal prognosis because of the rate at which it aggressively spreads and because of the lack of effective therapies to stop its progression. This study evaluated a type of oral drug delivery system of a potential target-activated nanosizer comprising a fucose-conjugated chitosan and polyethylene glycol-conjugated chitosan complex with gelatin containing encapsulated green tea polyphenol extract epigallocatechin-3-gallate, allowing oral administration of the drug through a site-specific release in gastric cancer cells. The results demonstrated that the nanoparticles effectively reduced drug release within gastric acids and that a controlled epigallocatechin-3-gallate release inhibited gastric cancer cell growth, induced cell apoptosis, and reduced vascular endothelial growth factor protein expression. Furthermore, in vivo assay results indicated that the prepared epigallocatechin-3-gallate-loaded fucose-chitosan/polyethylene glycol-chitosan/gelatin nanoparticles significantly affected gastric tumor activity and reduced gastric and liver tissue inflammatory reaction in an orthotopic gastric tumor mouse model.

  12. Genetic influences on composite neural activations supporting visual target identification.

    PubMed

    Ethridge, Lauren E; Malone, Stephen M; Iacono, William G; Clementz, Brett A

    2013-02-01

    Behavior genetic studies of brain activity associated with complex cognitive operations may further elucidate the genetic and physiological underpinnings of basic and complex neural processing. In the present project, monozygotic (N=51 pairs) and dizygotic (N=48 pairs) twins performed a visual oddball task with dense-array EEG. Using spatial PCA, two principal components each were retained for targets and standards; wavelets were used to obtain time-frequency maps of eigenvalue-weighted event-related oscillations for each individual. Distribution of inter-trial phase coherence (ITC) and single trial power (STP) over time indicated that the early principal component was primarily associated with ITC while the later component was associated with a mixture of ITC and STP. Spatial PCA on point-by-point broad sense heritability matrices revealed data-derived frequency bands similar to those well established in EEG literature. Biometric models of eigenvalue-weighted time-frequency data suggest a link between physiology of oscillatory brain activity and patterns of genetic influence. PMID:23201034

  13. Transforming growth factor-beta requires its target plasminogen activator inhibitor-1 for cytostatic activity.

    PubMed

    Kortlever, Roderik M; Nijwening, Jeroen H; Bernards, René

    2008-09-01

    The cytokine transforming growth factor beta (TGFbeta) has strong antiproliferative activity in most normal cells but contributes to tumor progression in the later stages of oncogenesis. It is not fully understood which TGFbeta target genes are causally involved in mediating its cytostatic activity. We report here that suppression of the TGFbeta target gene encoding plasminogen activator inhibitor-1 (PAI-1) by RNA interference leads to escape from the cytostatic activity of TGFbeta both in human keratinocytes (HaCaTs) and primary mouse embryo fibroblasts. Consistent with this, PAI-1 knock-out mouse embryo fibroblasts are also resistant to TGFbeta growth arrest. Conversely, we show that ectopic expression of PAI-1 in proliferating HaCaT cells induces a growth arrest. PAI-1 knockdown does not interfere with canonical TGFbeta signaling as judged by SMAD phosphorylation and induction of bona fide TGFbeta target genes. Instead, knockdown of PAI-1 results in sustained activation of protein kinase B. Significantly, we find that constitutive protein kinase B activity leads to evasion of the growth-inhibitory action of TGFbeta. Our data are consistent with a model in which induction of PAI-1 by TGFbeta is critical for the induction of proliferation arrest.

  14. Target of rapamycin activation predicts lifespan in fruit flies

    PubMed Central

    Scialò, Filippo; Sriram, Ashwin; Naudí, Alba; Ayala, Victoria; Jové, Mariona; Pamplona, Reinald; Sanz, Alberto

    2015-01-01

    Aging and age-related diseases are one of the most important health issues that the world will confront during the 21st century. Only by understanding the proximal causes will we be able to find treatments to reduce or delay the onset of degenerative diseases associated with aging. Currently, the prevalent paradigm in the field is the accumulation of damage. However, a new theory that proposes an alternative explanation is gaining momentum. The hyperfunction theory proposes that aging is not a consequence of a wear and tear process, but a result of the continuation of developmental programs during adulthood. Here we use Drosophila melanogaster, where evidence supporting both paradigms has been reported, to identify which parameters that have been previously related with lifespan best predict the rate of aging in wild type flies cultured at different temperatures. We find that mitochondrial function and mitochondrial reactive oxygen species (mtROS) generation correlates with metabolic rate, but not with the rate of aging. Importantly, we find that activation of nutrient sensing pathways (i.e. insulin-PI3K/Target of rapamycin (Tor) pathway) correlates with lifespan, but not with metabolic rate. Our results, dissociate metabolic rate and lifespan in wild type flies and instead link nutrient sensing signaling with longevity as predicted by the hyperfunction theory. PMID:26259964

  15. Identification of Novel Gene Targets and Functions of p21-Activated Kinase 1 during DNA Damage by Gene Expression Profiling

    PubMed Central

    Motwani, Mona; Li, Da-Qiang; Horvath, Anelia; Kumar, Rakesh

    2013-01-01

    P21-activated kinase 1 (PAK1), a serine/threonine protein kinase, modulates many cellular processes by phosphorylating its downstream substrates. In addition to its role in the cytoplasm, PAK1 also affects gene transcription due to its nuclear localization and association with chromatin. It is now recognized that PAK1 kinase activity and its nuclear translocation are rapidly stimulated by ionizing radiation (IR), and that PAK1 activation is a component of the DNA damage response. Owing to the role of PAK1 in the cell survival, its association with the chromatin, and now, stimulation by ionizing radiation, we hypothesize that PAK1 may be contributing to modulation of genes with roles in cellular processes that might be important in the DNA damage response. The purpose of this study was to identify new PAK1 targets in response to ionizing radiation with putative role in the DNA damage response. We examined the effect of IR on the gene expression patterns in the murine embryonic fibroblasts with or without Pak1 using microarray technology. Differentially expressed transcripts were identified using Gene Spring GX 10.0.2. Pathway, network, functional analyses and gene family classification were carried out using Kyoto Encyclopedia of Genes and Genomes (KEGG), Ingenuity Pathway, Gene Ontology and PANTHER respectively. Selective targets of PAK1 were validated by RT-qPCR. For the first time, we provide a genome-wide analysis of PAK1 and identify its targets with potential roles in the DNA damage response. Gene Ontology analysis identified genes in the IR-stimulated cells that were involved in cell cycle arrest and cell death. Pathway analysis revealed p53 pathway being most influenced by IR responsive, PAK1 targets. Gene family of transcription factors was over represented and gene networks involved in DNA replication, repair and cellular signaling were identified. In brief, this study identifies novel PAK1 dependent IR responsive genes which reveal new aspects of PAK1

  16. Continuous downstream processing of biopharmaceuticals.

    PubMed

    Jungbauer, Alois

    2013-08-01

    Continuous manufacturing has been applied in many different industries but has been pursued reluctantly in biotechnology where the batchwise process is still the standard. A shift to continuous operation can improve productivity of a process and substantially reduce the footprint. Continuous operation also allows robust purification of labile biomolecules. A full set of unit operations is available to design continuous downstream processing of biopharmaceuticals. Chromatography, the central unit operation, is most advanced in respect to continuous operation. Here, the problem of 'batch' definition has been solved. This has also paved the way for implementation of continuous downstream processing from a regulatory viewpoint. Economic pressure, flexibility, and parametric release considerations will be the driving force to implement continuous manufacturing strategies in future.

  17. Continuous downstream processing of biopharmaceuticals.

    PubMed

    Jungbauer, Alois

    2013-08-01

    Continuous manufacturing has been applied in many different industries but has been pursued reluctantly in biotechnology where the batchwise process is still the standard. A shift to continuous operation can improve productivity of a process and substantially reduce the footprint. Continuous operation also allows robust purification of labile biomolecules. A full set of unit operations is available to design continuous downstream processing of biopharmaceuticals. Chromatography, the central unit operation, is most advanced in respect to continuous operation. Here, the problem of 'batch' definition has been solved. This has also paved the way for implementation of continuous downstream processing from a regulatory viewpoint. Economic pressure, flexibility, and parametric release considerations will be the driving force to implement continuous manufacturing strategies in future. PMID:23849674

  18. PI3K-C2γ is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling

    PubMed Central

    Braccini, Laura; Ciraolo, Elisa; Campa, Carlo C.; Perino, Alessia; Longo, Dario L.; Tibolla, Gianpaolo; Pregnolato, Marco; Cao, Yanyan; Tassone, Beatrice; Damilano, Federico; Laffargue, Muriel; Calautti, Enzo; Falasca, Marco; Norata, Giuseppe D.; Backer, Jonathan M.; Hirsch, Emilio

    2015-01-01

    In the liver, insulin-mediated activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway is at the core of metabolic control. Multiple PI3K and Akt isoenzymes are found in hepatocytes and whether isoform-selective interplays exist is currently unclear. Here we report that insulin signalling triggers the association of the liver-specific class II PI3K isoform γ (PI3K-C2γ) with Rab5-GTP, and its recruitment to Rab5-positive early endosomes. In these vesicles, PI3K-C2γ produces a phosphatidylinositol-3,4-bisphosphate pool specifically required for delayed and sustained endosomal Akt2 stimulation. Accordingly, loss of PI3K-C2γ does not affect insulin-dependent Akt1 activation as well as S6K and FoxO1-3 phosphorylation, but selectively reduces Akt2 activation, which specifically inhibits glycogen synthase activity. As a consequence, PI3K-C2γ-deficient mice display severely reduced liver accumulation of glycogen and develop hyperlipidemia, adiposity as well as insulin resistance with age or after consumption of a high-fat diet. Our data indicate PI3K-C2γ supports an isoenzyme-specific forking of insulin-mediated signal transduction to an endosomal pool of Akt2, required for glucose homeostasis. PMID:26100075

  19. Mammalian target of rapamycin is activated in association with myometrial proliferation during pregnancy.

    PubMed

    Jaffer, Shabana; Shynlova, Oksana; Lye, Stephen

    2009-10-01

    The adaptive growth of the uterus during gestation involves gradual changes in cellular phenotypes from the early proliferative to the intermediate synthetic phase of cellular hypertrophy, ending in the final contractile/labour phenotype. The mammalian target of rapamycin (mTOR) signaling pathway regulates cell growth and proliferation in many tissues. We hypothesized that mTOR was a mediator of hormone-initiated myometrial hyperplasia during gestation. The protein expression and phosphorylation levels of mTOR, its upstream regulators [insulin receptor substrate-1, phosphoinositide-3-kinase (PI3K), Akt], and downstream effectors [S6-kinase-1 (S6K1) and eI4FE-binding protein 1 (4EBP1)] were analyzed throughout normal pregnancy in rats. In addition, we used an ovariectomized (OVX) rat model to analyze the modulation of the mTOR pathway and proliferative activity of the uterine myocytes by estradiol alone and in combination with the mTOR-specific inhibitor rapamycin. Our results demonstrate that insulin receptor substrate-1 protein levels and the phosphorylated (activated) forms of PI3K, mTOR, and S6K1 were significantly up-regulated in the rat myometrium during the proliferative phase of pregnancy. Treatment of the OVX rats with estradiol caused a transient increase in IGF-I followed by an up-regulation of the PI3K/mTOR pathway, which became apparent by a cascade of phosphorylation reactions (P-P85, P-Akt, P-mTOR, P-S6K1, and P-4EBP1). Rapamycin blocked activation of P-mTOR, P-S6K1, and P-4EBP1 proteins and significantly reduced the number of proliferating cells in the myometrium of OVX rats. Our in vivo data demonstrate that estradiol was able to activate the PI3K/mTOR signaling pathway in uterine myocytes and suggest that this activation is responsible for the induction of myometrial hyperplasia during early gestation.

  20. Leader cells regulate collective cell migration via Rac activation in the downstream signaling of integrin β1 and PI3K.

    PubMed

    Yamaguchi, Naoya; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi

    2015-01-07

    Collective cell migration plays a crucial role in several biological processes, such as embryonic development, wound healing, and cancer metastasis. Here, we focused on collectively migrating Madin-Darby Canine Kidney (MDCK) epithelial cells that follow a leader cell on a collagen gel to clarify the mechanism of collective cell migration. First, we removed a leader cell from the migrating collective with a micromanipulator. This then caused disruption of the cohesive migration of cells that followed in movement, called "follower" cells, which showed the importance of leader cells. Next, we observed localization of active Rac, integrin β1, and PI3K. These molecules were clearly localized in the leading edge of leader cells, but not in follower cells. Live cell imaging using active Rac and active PI3K indicators was performed to elucidate the relationship between Rac, integrin β1, and PI3K. Finally, we demonstrated that the inhibition of these molecules resulted in the disruption of collective migration. Our findings not only demonstrated the significance of a leader cell in collective cell migration, but also showed that Rac, integrin β1, and PI3K are upregulated in leader cells and drive collective cell migration.

  1. 78 FR 35612 - Agency Information Collection Activities; Comment Request; Targeted Teacher Shortage Areas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ... collection of information from Chief State School Officers to support and document the request for teacher... Agency Information Collection Activities; Comment Request; Targeted Teacher Shortage Areas Nationwide... to this notice will be considered public records. Title of Collection: Targeted Teacher...

  2. Bypassing Protein Corona Issue on Active Targeting: Zwitterionic Coatings Dictate Specific Interactions of Targeting Moieties and Cell Receptors.

    PubMed

    Safavi-Sohi, Reihaneh; Maghari, Shokoofeh; Raoufi, Mohammad; Jalali, Seyed Amir; Hajipour, Mohammad J; Ghassempour, Alireza; Mahmoudi, Morteza

    2016-09-01

    Surface functionalization strategies for targeting nanoparticles (NP) to specific organs, cells, or organelles, is the foundation for new applications of nanomedicine to drug delivery and biomedical imaging. Interaction of NPs with biological media leads to the formation of a biomolecular layer at the surface of NPs so-called as "protein corona". This corona layer can shield active molecules at the surface of NPs and cause mistargeting or unintended scavenging by the liver, kidney, or spleen. To overcome this corona issue, we have designed biotin-cysteine conjugated silica NPs (biotin was employed as a targeting molecule and cysteine was used as a zwitterionic ligand) to inhibit corona-induced mistargeting and thus significantly enhance the active targeting capability of NPs in complex biological media. To probe the targeting yield of our engineered NPs, we employed both modified silicon wafer substrates with streptavidin (i.e., biotin receptor) to simulate a target and a cell-based model platform using tumor cell lines that overexpress biotin receptors. In both cases, after incubation with human plasma (thus forming a protein corona), cellular uptake/substrate attachment of the targeted NPs with zwitterionic coatings were significantly higher than the same NPs without zwitterionic coating. Our results demonstrated that NPs with a zwitterionic surface can considerably facilitate targeting yield of NPs and provide a promising new type of nanocarriers in biological applications.

  3. Bypassing Protein Corona Issue on Active Targeting: Zwitterionic Coatings Dictate Specific Interactions of Targeting Moieties and Cell Receptors.

    PubMed

    Safavi-Sohi, Reihaneh; Maghari, Shokoofeh; Raoufi, Mohammad; Jalali, Seyed Amir; Hajipour, Mohammad J; Ghassempour, Alireza; Mahmoudi, Morteza

    2016-09-01

    Surface functionalization strategies for targeting nanoparticles (NP) to specific organs, cells, or organelles, is the foundation for new applications of nanomedicine to drug delivery and biomedical imaging. Interaction of NPs with biological media leads to the formation of a biomolecular layer at the surface of NPs so-called as "protein corona". This corona layer can shield active molecules at the surface of NPs and cause mistargeting or unintended scavenging by the liver, kidney, or spleen. To overcome this corona issue, we have designed biotin-cysteine conjugated silica NPs (biotin was employed as a targeting molecule and cysteine was used as a zwitterionic ligand) to inhibit corona-induced mistargeting and thus significantly enhance the active targeting capability of NPs in complex biological media. To probe the targeting yield of our engineered NPs, we employed both modified silicon wafer substrates with streptavidin (i.e., biotin receptor) to simulate a target and a cell-based model platform using tumor cell lines that overexpress biotin receptors. In both cases, after incubation with human plasma (thus forming a protein corona), cellular uptake/substrate attachment of the targeted NPs with zwitterionic coatings were significantly higher than the same NPs without zwitterionic coating. Our results demonstrated that NPs with a zwitterionic surface can considerably facilitate targeting yield of NPs and provide a promising new type of nanocarriers in biological applications. PMID:27526263

  4. DNA element downstream of the κB site in the Lcn2 promoter is required for transcriptional activation by IκBζ and NF-κB p50.

    PubMed

    Kohda, Akira; Yamazaki, Soh; Sumimoto, Hideki

    2014-08-01

    The nuclear protein IκBζ activates transcription of a subset of NF-κB-dependent innate immune genes such as Lcn2 encoding the antibacterial protein lipocalin-2. IκBζ functions as a coactivator via its interaction with NF-κB p50, which contains a DNA-binding Rel-homology domain but lacks a transcriptional activation domain. However cis-regulatory elements involved in IκBζ function have remained unknown. Here, we show that, although IκBζ by itself is unable to associate with the Lcn2 promoter, IκBζ interacts with the promoter via p50 binding to the NF-κB-binding site (κB site) and the interaction also requires the pyrimidine-rich site (CCCCTC) that localizes seven bases downstream of the κB site. The pyrimidine-rich site is also essential for IκBζ-mediated activation of the Lcn2 gene. Introduction of both sites into an IκBζ-independent gene culminates in IκBζ-p50-DNA complex formation and transcriptional activation. Furthermore, spacing between the two sites is crucial for both IκBζ-DNA interaction and IκBζ-mediated gene activation. Thus, the pyrimidine-rich IκBζ-responsive site plays an essential role in productive interaction of IκBζ with the p50-DNA complex.

  5. Utilizing the folate receptor for active targeting of cancer nanotherapeutics

    PubMed Central

    Zwicke, Grant L.; Mansoori, G. Ali; Jeffery, Constance J.

    2012-01-01

    The development of specialized nanoparticles for use in the detection and treatment of cancer is increasing. Methods are being proposed and tested that could target treatments more directly to cancer cells, which could lead to higher efficacy and reduced toxicity, possibly even eliminating the adverse effects of damage to the immune system and the loss of quick replicating cells. In this mini-review we focus on recent studies that employ folate nanoconjugates to target the folate receptor. Folate receptors are highly overexpressed on the surface of many tumor types. This expression can be exploited to target imaging molecules and therapeutic compounds directly to cancerous tissues. PMID:23240070

  6. Novel role of the small GTPase Rheb: its implication in endocytic pathway independent of the activation of mammalian target of rapamycin.

    PubMed

    Saito, Kota; Araki, Yasuhiro; Kontani, Kenji; Nishina, Hiroshi; Katada, Toshiaki

    2005-03-01

    The Ras-homologous GTPase Rheb that is conserved from yeast to human appears to be involved not only in cell growth but also in nutrient uptake. Recent biochemical analysis revealed that tuberous sclerosis complex (TSC), a GTPase-activating protein (GAP), deactivates Rheb and that phosphatidylinositol 3'-kinase (PI3k)-Akt/PKB kinase pathway activates Rheb through inhibition of the GAP-mediated deactivation. Although mammalian target of rapamycin (mTOR) kinase is implicated in the downstream target of Rheb, the direct effector(s) and exact functions of Rheb have not been fully elucidated. Here we identified that Rheb expression in cultured cells induces the formation of large cytoplasmic vacuoles, which are characterized as late endocytic (late endosome- and lysosome-like) components. The vacuole formation required the GTP form of Rheb, but not the activation of the downstream mTOR kinase. These results suggest that Rheb regulates endocytic trafficking pathway independent of the previously identified mTOR pathway. The physiological roles of the two Rheb-dependent signaling pathways are discussed in terms of nutrient uptake and cell growth or cell cycle progression. PMID:15809346

  7. Target Assembly to Check Boresight Alignment of Active Sensors

    NASA Technical Reports Server (NTRS)

    Ramos-Izquierdo, Luis; Scott, V. Stanley; Riris, Haris; Cavanaugh, John; Liiva, Peter; Rodriguez, Michael

    2011-01-01

    A compact and portable target assembly (Fig. 1) has been developed to measure the boresite alignment of LRO's Lunar Orbiter Laser Altimeter (LOLA) instrument at the spacecraft level. The concept for this target assembly has evolved over many years with earlier versions used to test the Mars Observer Laser Altimeter (MOLA), the Geoscience Laser Altimeter System (GLAS), and the Mercury Laser Altimeter (MLA) space-based instruments.

  8. Using chromatography in downstream processing.

    PubMed

    Becker, C

    1989-01-01

    This article concludes the series on the use of chromatography for downstream processing. Although it has only scratched the surface when considering the number of parameters involved in process chromatography, it does give a broad overview including the choice of components through process standards. Pharmacia LKB Biotechnology has had more than 15 years experience in the design development and running of large scale chromatographic processes. During this time the company has gathered a vast amount of experience and information on the key points to successful product purification. Pharmacia LKB can advise on the choice of techniques and the development of a separation process up to full production scale.

  9. Ionizing Radiation Activates AMP-Activated Kinase (AMPK): A Target for Radiosensitization of Human Cancer Cells

    SciTech Connect

    Sanli, Toran; Rashid, Ayesha; Liu Caiqiong

    2010-09-01

    Purpose: Adenosine monophosphate (AMP)-activated kinase (AMPK) is a molecular energy sensor regulated by the tumor suppressor LKB1. Starvation and growth factors activate AMPK through the DNA damage sensor ataxia-telangiectasia mutated (ATM). We explored the regulation of AMPK by ionizing radiation (IR) and its role as a target for radiosensitization of human cancer cells. Methods and Materials: Lung, prostate, and breast cancer cells were treated with IR (2-8 Gy) after incubation with either ATM or AMPK inhibitors or the AMPK activator metformin. Then, cells were subjected to either lysis and immunoblotting, immunofluorescence microscopy, clonogenic survival assays, or cell cycle analysis. Results: IR induced a robust phosphorylation and activation of AMPK in all tumor cells, independent of LKB1. IR activated AMPK first in the nucleus, and this extended later into cytoplasm. The ATM inhibitor KU-55933 blocked IR activation of AMPK. AMPK inhibition with Compound C or anti-AMPK {alpha} subunit small interfering RNA (siRNA) blocked IR induction of the cell cycle regulators p53 and p21{sup waf/cip} as well as the IR-induced G2/M arrest. Compound C caused resistance to IR, increasing the surviving fraction after 2 Gy, but the anti-diabetic drug metformin enhanced IR activation of AMPK and lowered the surviving fraction after 2 Gy further. Conclusions: We provide evidence that IR activates AMPK in human cancer cells in an LKB1-independent manner, leading to induction of p21{sup waf/cip} and regulation of the cell cycle and survival. AMPK appears to (1) participate in an ATM-AMPK-p21{sup waf/cip} pathway, (2) be involved in regulation of the IR-induced G2/M checkpoint, and (3) may be targeted by metformin to enhance IR responses.

  10. Zinc deficiency impairs the renewal of hippocampal neural stem cells in adult rats: involvement of FoxO3a activation and downstream p27(kip1) expression.

    PubMed

    Han, Jingling; Zhao, Jianya; Jiang, Junkang; Ma, Xia; Liu, Xinhang; Wang, Cheng; Jiang, Shengyang; Wan, Chunhua

    2015-09-01

    Zinc plays an important role in the development and maintenance of central neural system. Zinc deficiency has been known to alter normal brain function, whose molecular mechanism remains largely elusive. In the present study, we established a zinc deficiency-exposed rat model, and, using western blot and immunohistochemical analyses, found that the expression of FoxO3a and p27(kip1) was remarkably up-regulated in the rat brain hippocampus. Immunofluorescence assay showed that FOXO3a and p27(kip1) were significantly co-localized with nestin, the marker of neural stem cells (NSCs). Furthermore, we identified that the proportion of proliferating NSCs was markedly decreased in zinc-deficient rat hippocampaus. Using C17.2 neural stem cells, it was revealed that exposure to zinc chelator N,N,N',N'-tetrakis-(2-pyridylmethy) ethylenediamine induced the expression of FoxO3a and p27(kip1) , which coincided with reduced NSC proliferation. Furthermore, depletion of FoxO3a inhibited p27(kip1) expression and restored the growth of NSCs. On the basis of these data, we concluded that FoxO3a/p27(kip1) signaling might play a significant role in zinc deficiency-induced growth impairment of NSCs and consequent neurological disorders. We describe here that zinc deficiency induces the proliferative impairment of hippocampal neural stem cells partially through the activation of FOXO3a-p27 axis in rats. Neural progenitor cells exhibited significantly up-regulated expression of FOXO3a and p27 after zinc deficiency in vivo and in vitro. Depletion of FOXO3a ameliorates zinc deficiency-induced expression of p27 and growth impairment of neural stem cells. We provide novel insight into the mechanisms underlying zinc deficiency-induced neurological deficits.

  11. Aryl hydrocarbon receptor SNP -130 C/T associates with dioxins susceptibility through regulating its receptor activity and downstream effectors including interleukin 24.

    PubMed

    Liu, Ge; Asanoma, Kazuo; Takao, Tomoka; Tsukimori, Kiyomi; Uchi, Hiroshi; Furue, Masutaka; Kato, Kiyoko; Wake, Norio

    2015-01-22

    Dioxins are persistent environmental pollutants that cause multiple adverse health effects in humans, mainly through binding to the ligand-activated transcription factor, aryl hydrocarbon receptor (AhR). Genetic variation in AhR may modulate the susceptibility to dioxins. In this study, we aimed to evaluate the effects of the single nucleotide polymorphism (SNP) -130 C/T in the AhR promoter on dioxin-inducible gene transcription, and to investigate interleukin-24 (IL-24) and interleukin-1β (IL-1β) as proxies for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure. Using primary human chorionic stromal cells, we found that cells with the TT genotype showed higher AhR mRNA and protein levels than did those of the CC genotype. Microarray was carried out to analyze the gene expression profiles of cells (CC and TT genotype) after exposing the cells to TCDD. Several genes associated with human disorders were more highly up-regulated in cells of the TT genotype. Higher up-regulation of IL-24 and IL-1β mRNA in cells with the TT genotype was observed. Furthermore, blood samples from 64 Yusho patients who were accidentally exposed to high concentrations of dioxins were analyzed for the genotype, dioxins concentrations and serum levels of IL-24 and IL-1β. We observed higher serum IL-24 levels and lower serum IL-1β levels in Yusho patients with the TT genotype than in those with the CC genotype. AhR SNP -130 C/T affects serum IL-24 and IL-1β levels, independently of serum dioxins concentrations in Yusho patients. Our observations demonstrate that SNP -130 C/T modulates AhR expression and expression levels of IL-24 and IL-1β, and suggest an association of AhR SNP -130 C/T with the susceptibility to dioxins.

  12. Analysis of receptor tyrosine kinases (RTKs) and downstream pathways in chordomas†

    PubMed Central

    Tamborini, Elena; Virdis, Emanuela; Negri, Tiziana; Orsenigo, Marta; Brich, Silvia; Conca, Elena; Gronchi, Alessandro; Stacchiotti, Silvia; Manenti, Giacomo; Casali, Paolo G.; Pierotti, Marco A.; Pilotti, Silvana

    2010-01-01

    We have previously demonstrated that chordomas express activated platelet-derived growth factor receptor (PDGFRB) and that treatment with imatinib, which is capable of switching off the activation of various receptor tyrosine kinases (RTKs) including PDGFRB, benefits a number of patients. The aim of this study was to identify the possible presence of other activated RTKs and their downstream signaling effectors. Cryopreserved material from 22 naïve sporadic chordomas was investigated for the presence of activated RTKs and their cognate ligands and downstream signaling effectors by means of human phospho-RTK antibody arrays, Western blotting, and molecular analysis; immunohistochemistry and fluorescence in situ hybridization were used to analyze the corresponding formalin-fixed and paraffin-embedded samples. We detected activated PDGFRB, FLT3, and colony stimulating factor 1 receptor (CSF1R) of the PDGFR family and highly phosphorylated EGFR, HER2/neu, and (to a lesser extent) HER4 of the EGFR family. The detection of PDGFRB/PDGFB confirmed our previous data. The presence of activated EGFR was paralleled by the finding of high levels of epidermal growth factor (EGF) and transforming growth factor α (TGFα) and PDGFB co-expression and PDGFRB co-immunoprecipitation. Of the downstream effectors, the PI3K/AKT and RAS/MAPK pathways were both activated, thus leading to the phosphorylation of mammalian target of rapamycin (mTOR) and 4E-BP1 among the regulators involved in translational control. Taken together, our results (i) provide a rationale for tailored treatments targeting upstream activated receptors, including the PDGFR and EGFR families; (ii) support the idea that a combination of upstream antagonists and mTOR inhibitors enhances the control of tumor growth; and (iii) indicate that the 4E-BP1/eIF4E pathway is a major regulator of protein synthesis in chordoma. PMID:20164240

  13. CCAAT Enhancer Binding Protein and Nuclear Factor of Activated T Cells Regulate HIV-1 LTR via a Novel Conserved Downstream Site in Cells of the Monocyte-Macrophage Lineage

    PubMed Central

    Dahiya, Satinder; Liu, Yujie; Nonnemacher, Michael R.; Dampier, Will; Wigdahl, Brian

    2014-01-01

    Transcriptional control of the human immunodeficiency virus type 1 (HIV-1) promoter, the long terminal repeat (LTR), is achieved by interactions with cis-acting elements present both upstream and downstream of the start site. In silico transcription factor binding analysis of the HIV-1 subtype B LTR sequences revealed a potential downstream CCAAT enhancer binding protein (C/EBP) binding site. This binding site (+158 to+172), designated DS3, was found to be conserved in 67% of 3,858 unique subtype B LTR sequences analyzed in terms of nucleotide sequence as well as physical location in the LTR. DS3 was found to be well represented in other subtypes as well. Interestingly, DS3 overlaps with a previously identified region that bind members of the nuclear factor of activated T cells (NFAT) family of proteins. NFATc2 exhibited a higher relative affinity for DS3 as compared with members of the C/EBP family (C/EBP α and β). DS3 was able to compete efficiently with the low-affinity upstream C/EBP binding site I with respect to C/EBP binding, suggesting utilization of both NFAT and C/EBP. Moreover, cyclosporine A treatment, which has been shown to prevent dephosphorylation and nuclear translocation of NFAT isoforms, resulted in enhanced C/EBPα binding. The interactions at DS3 were also validated in an integrated HIV-1 LTR in chronically infected U1 cells. A binding knockout of DS3 demonstrated reduced HIV-1 LTR-directed transcription under both basal and interleukin-6-stimulated conditions only in cells of the monocyte-macrophage lineage cells and not in cells of T-cell origin. Thus, the events at DS3 positively regulate the HIV-1 promoter in cells of the monocyte-macrophage lineage. PMID:24551078

  14. GSK621 Targets Glioma Cells via Activating AMP-Activated Protein Kinase Signalings

    PubMed Central

    Jiang, Hong; Liu, Wei; Zhan, Shi-Kun; Pan, Yi-Xin; Bian, Liu-Guan; Sun, Bomin; Sun, Qing-Fang; Pan, Si-Jian

    2016-01-01

    Here, we studied the anti-glioma cell activity by a novel AMP-activated protein kinase (AMPK) activator GSK621. We showed that GSK621 was cytotoxic to human glioma cells (U87MG and U251MG lines), possibly via provoking caspase-dependent apoptotic cell death. Its cytotoxicity was alleviated by caspase inhibitors. GSK621 activated AMPK to inhibit mammalian target of rapamycin (mTOR) and downregulate Tetraspanin 8 (Tspan8) in glioma cells. AMPK inhibition, through shRNA knockdown of AMPKα or introduction of a dominant negative (T172A) AMPKα, almost reversed GSK621-induced AMPK activation, mTOR inhibition and Tspan8 degradation. Consequently, GSK621’s cytotoxicity in glioma cells was also significantly attenuated by AMPKα knockdown or mutation. Further studies showed that GSK621, at a relatively low concentration, significantly potentiated temozolomide (TMZ)’s sensitivity and lethality against glioma cells. We summarized that GSK621 inhibits human glioma cells possibly via activating AMPK signaling. This novel AMPK activator could be a novel and promising anti-glioma cell agent. PMID:27532105

  15. Downstream class switching leads to IgE antibody production by B lymphocytes lacking IgM switch regions.

    PubMed

    Zhang, Tingting; Franklin, Andrew; Boboila, Cristian; McQuay, Amy; Gallagher, Michael P; Manis, John P; Khamlichi, Ahmed Amine; Alt, Frederick W

    2010-02-16

    Ig heavy chain (IgH) class-switch recombination (CSR) replaces the IgH C mu constant region exons with one of several sets of downstream IgH constant region exons (e.g., C gamma, C epsilon, or C alpha), which affects switching from IgM to another IgH class (e.g., IgG, IgE, or IgA). Activation-induced cytidine deaminase (AID) initiates CSR by promoting DNA double-strand breaks (DSBs) within switch (S) regions flanking the donor C mu (S mu) and a downstream acceptor C(H) (e.g., S gamma, S epsilon, S alpha) that are then joined to complete CSR. DSBs generated in S mu frequently are joined within S mu to form internal switch region deletions (ISD). AID-induced ISD and mutations have been considered rare in downstream S regions, suggesting that AID targeting to these S regions requires its prior recruitment to S mu. We have now assayed for CSR and ISD in B cells lacking S mu (S mu(-/-) B cells). In S mu(-/-) B cells activated for CSR to IgG1 and IgE, CSR to IgG1 was greatly reduced; but, surprisingly, CSR to IgE occurred at nearly normal levels. Moreover, normal B cells had substantial S gamma1 ISD and increased mutations in and near S gamma1, and levels of both were greatly increased in S mu(-/-) B cells. Finally, S mu(-/-) B cells underwent downstream CSR between S gamma1 and S epsilon on alleles that lacked S mu CSR to these sequences. Our findings show that AID targets downstream S regions independently of CSR with Smu and implicate an alternative pathway for IgE class switching that involves generation and joining of DSBs within two different downstream S regions before S mu joining.

  16. 27 CFR 478.35 - Skeet, trap, target, and similar shooting activities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2013-04-01 2013-04-01 false Skeet, trap, target, and... FIREARMS AND AMMUNITION Administrative and Miscellaneous Provisions § 478.35 Skeet, trap, target, and... records, for skeet, trap, target, and similar organized activities shall be determined by the Director...

  17. 27 CFR 478.35 - Skeet, trap, target, and similar shooting activities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Skeet, trap, target, and... FIREARMS AND AMMUNITION Administrative and Miscellaneous Provisions § 478.35 Skeet, trap, target, and... records, for skeet, trap, target, and similar organized activities shall be determined by the Director...

  18. 27 CFR 478.35 - Skeet, trap, target, and similar shooting activities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2012-04-01 2010-04-01 true Skeet, trap, target, and... FIREARMS AND AMMUNITION Administrative and Miscellaneous Provisions § 478.35 Skeet, trap, target, and... records, for skeet, trap, target, and similar organized activities shall be determined by the Director...

  19. 27 CFR 478.35 - Skeet, trap, target, and similar shooting activities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2014-04-01 2014-04-01 false Skeet, trap, target, and... FIREARMS AND AMMUNITION Administrative and Miscellaneous Provisions § 478.35 Skeet, trap, target, and... records, for skeet, trap, target, and similar organized activities shall be determined by the Director...

  20. 27 CFR 478.35 - Skeet, trap, target, and similar shooting activities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2011-04-01 2010-04-01 true Skeet, trap, target, and... FIREARMS AND AMMUNITION Administrative and Miscellaneous Provisions § 478.35 Skeet, trap, target, and... records, for skeet, trap, target, and similar organized activities shall be determined by the Director...

  1. 13 CFR 124.509 - What are non-8(a) business activity targets?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... competitive marketplace after graduating from the 8(a) BD program, Participants must make maximum efforts to... reasonable marketing strategy, to attain the targeted dollar levels of non-8(a) revenue established in its... source or competitive 8(a) contracts). These targets are called non-8(a) business activity targets...

  2. Immuno-magnetoliposomes targeting activated platelets as a potentially human-compatible MRI contrast agent for targeting atherothrombosis.

    PubMed

    Meier, S; Pütz, G; Massing, U; Hagemeyer, C E; von Elverfeldt, D; Meissner, M; Ardipradja, K; Barnert, S; Peter, K; Bode, C; Schubert, R; von zur Muhlen, C

    2015-06-01

    To detect unstable atherosclerotic plaques early and noninvasively would be of great clinical interest. Activated platelets are an interesting molecular target for detecting early lesions or unstable plaques. We therefore developed an MRI contrast agent consisting of magnetoliposomes (ML) linked to an antibody (anti-LIBS) specifically targeting the ligand-induced binding site of the activated GPIIb/IIIa receptor of platelets. ML were prepared by dual centrifugation (DC). ML pegylation up to a total PEG content of 7.5 mol% positively influenced the stability and amount of entrapped SPIOs, and also reduced SPIO-membrane interactions, while higher PEG contents destabilized PEG-ML. Stable anti-LIBS-ML with high amounts of entrapped SPIOs (∼86%, ∼0.22 mol Fe/mol liposomal lipid) and high MRI sensitivity (relaxivity r2 = 422 s(-1) mM(-1) and r2(∗) = 452 s(-1) mM(-1)) were obtained by coupling anti-LIBS to ML in a two-step post-insertion technique. We confirmed specific binding to the GPIIb/IIIa receptor's activated conformation on activated human platelets and cell lines expressing activated GPIIb/IIIa receptor ex vivo. The immuno-ML obtained in this study constitute an important step towards developing a potentially human-compatible MRI contrast agent for the timely detection of plaque rupture by targeting activated platelets.

  3. Wave and particle evolution downstream of quasi-perpendicular shocks

    NASA Technical Reports Server (NTRS)

    Mckean, M. E.; Omidi, N.; Krauss-Varban, D.; Karimabadi, H.

    1995-01-01

    Distributions of ions heated in quasi-perpendicular bow shocks have large perpendicular temperature anisotropies that provide free energy for the growth of Alfven ion cyclotron (AIC) and mirror waves. These modes are often obsreved in the Earth's magnetosheath. Using two-dimensional hybrid simulations, we show that these waves are produced near the shock front and convected downstream rather than being produced locally downstream. The wave activity reduces the proton anisotropy to magnetosheath levels within a few tens of gyroradii of the shock but takes significantly longer to reduce the anisotropy of He(++) ions. The waves are primarily driven by proton anisotropy and the dynamics of the helium ions is controlled by the proton waves. Downstream of high Mach number shocks, mirror waves compete effectively with AIC waves. Downstream of low Mach number shocks, AIC waves dominate.

  4. Selective Activation of Neuronal Targets With Sinusoidal Electric Stimulation

    PubMed Central

    Freeman, Daniel K.; Eddington, Donald K.; Rizzo, Joseph F.

    2010-01-01

    Electric stimulation of the CNS is being evaluated as a treatment modality for a variety of neurological, psychiatric, and sensory disorders. Despite considerable success in some applications, existing stimulation techniques offer little control over which cell types or neuronal substructures are activated by stimulation. The ability to more precisely control neuronal activation would likely improve the clinical outcomes associated with these applications. Here, we show that specific frequencies of sinusoidal stimulation can be used to preferentially activate certain retinal cell types: photoreceptors are activated at 5 Hz, bipolar cells at 25 Hz, and ganglion cells at 100 Hz. In addition, low-frequency stimulation (≤25 Hz) did not activate passing axons but still elicited robust synaptically mediated responses in ganglion cells; therefore, elicited neural activity is confined to within a focal region around the stimulating electrode. Our results suggest that sinusoidal stimulation provides significantly improved control over elicited neural activity relative to conventional pulsatile stimulation. PMID:20810683

  5. Aptamers: Active Targeting Ligands for Cancer Diagnosis and Therapy

    PubMed Central

    Wu, Xu; Chen, Jiao; Wu, Min; Zhao, Julia Xiaojun

    2015-01-01

    Aptamers, including DNA, RNA and peptide aptamers, are a group of promising recognition units that can specifically bind to target molecules and cells. Due to their excellent specificity and high affinity to targets, aptamers have attracted great attention in various fields in which selective recognition units are required. They have been used in biosensing, drug delivery, disease diagnosis and therapy (especially for cancer treatment). In this review, we summarized recent applications of DNA and RNA aptamers in cancer theranostics. The specific binding ability of aptamers to cancer-related markers and cancer cells ensured their high performance for early diagnosis of cancer. Meanwhile, the efficient targeting ability of aptamers to cancer cells and tissues provided a promising way to deliver imaging agents and drugs for cancer imaging and therapy. Furthermore, with the development of nanoscience and nanotechnology, the conjugation of aptamers with functional nanomaterials paved an exciting way for the fabrication of theranostic agents for different types of cancers, which might be a powerful tool for cancer treatment. PMID:25699094

  6. Compound Structure-Independent Activity Prediction in High-Dimensional Target Space.

    PubMed

    Balfer, Jenny; Hu, Ye; Bajorath, Jürgen

    2014-08-01

    Profiling of compound libraries against arrays of targets has become an important approach in pharmaceutical research. The prediction of multi-target compound activities also represents an attractive task for machine learning with potential for drug discovery applications. Herein, we have explored activity prediction in high-dimensional target space. Different types of models were derived to predict multi-target activities. The models included naïve Bayesian (NB) and support vector machine (SVM) classifiers based upon compound structure information and NB models derived on the basis of activity profiles, without considering compound structure. Because the latter approach can be applied to incomplete training data and principally depends on the feature independence assumption, SVM modeling was not applicable in this case. Furthermore, iterative hybrid NB models making use of both activity profiles and compound structure information were built. In high-dimensional target space, NB models utilizing activity profile data were found to yield more accurate activity predictions than structure-based NB and SVM models or hybrid models. An in-depth analysis of activity profile-based models revealed the presence of correlation effects across different targets and rationalized prediction accuracy. Taken together, the results indicate that activity profile information can be effectively used to predict the activity of test compounds against novel targets.

  7. Neurogenin 3 Recruits CBP Co-activator to Facilitate Histone H3/H4 Acetylation in the Target Gene INSM1

    PubMed Central

    Breslin, Mary B.; Wang, Hong-Wei; Pierce, Amy; Aucoin, Rebecca; Lan, Michael S.

    2007-01-01

    INSM1 is a downstream target gene of ngn3. A promoter construct containing the −426/+40bp region transiently co-transfected into NIH-3T3 cells with a ngn3 expression plasmid resulted in a 12 fold increase in promoter activity. The ngn3/E47 heterodimer selectively binds and activates the E-box3 of the INSM1 promoter. The endogenous ngn3 and CBP co-activator occupy the INSM1 promoter, resulting in hyper-acetylation of histone H3/H4 chromatin in a human neuroblastoma cell line, IMR-32. Additionally, adenoviral ngn3 can induce endogenous INSM-1 expression in PANC-1 cells through the recruitment of CBP to the INSM1 promoter and increase the acetylation of the INSM1 promoter region. PMID:17300785

  8. RUNX1 Is a Key Target in t(4;11) Leukemias that Contributes to Gene Activation through an AF4-MLL Complex Interaction

    PubMed Central

    Wilkinson, Adam C.; Ballabio, Erica; Geng, Huimin; North, Phillip; Tapia, Marta; Kerry, Jon; Biswas, Debabrata; Roeder, Robert G.; Allis, C. David; Melnick, Ari; de Bruijn, Marella F.T.R.; Milne, Thomas A.

    2013-01-01

    Summary The Mixed Lineage Leukemia (MLL) protein is an important epigenetic regulator required for the maintenance of gene activation during development. MLL chromosomal translocations produce novel fusion proteins that cause aggressive leukemias in humans. Individual MLL fusion proteins have distinct leukemic phenotypes even when expressed in the same cell type, but how this distinction is delineated on a molecular level is poorly understood. Here, we highlight a unique molecular mechanism whereby the RUNX1 gene is directly activated by MLL-AF4 and the RUNX1 protein interacts with the product of the reciprocal AF4-MLL translocation. These results support a mechanism of transformation whereby two oncogenic fusion proteins cooperate by activating a target gene and then modulating the function of its downstream product. PMID:23352661

  9. Abnormal Ventral and Dorsal Attention Network Activity during Single and Dual Target Detection in Schizophrenia

    PubMed Central

    Jimenez, Amy M.; Lee, Junghee; Wynn, Jonathan K.; Cohen, Mark S.; Engel, Stephen A.; Glahn, David C.; Nuechterlein, Keith H.; Reavis, Eric A.; Green, Michael F.

    2016-01-01

    Early visual perception and attention are impaired in schizophrenia, and these deficits can be observed on target detection tasks. These tasks activate distinct ventral and dorsal brain networks which support stimulus-driven and goal-directed attention, respectively. We used single and dual target rapid serial visual presentation (RSVP) tasks during fMRI with an ROI approach to examine regions within these networks associated with target detection and the attentional blink (AB) in 21 schizophrenia outpatients and 25 healthy controls. In both tasks, letters were targets and numbers were distractors. For the dual target task, the second target (T2) was presented at three different lags after the first target (T1) (lag1 = 100 ms, lag3 = 300 ms, lag7 = 700ms). For both single and dual target tasks, patients identified fewer targets than controls. For the dual target task, both groups showed the expected AB effect with poorer performance at lag 3 than at lags 1 or 7, and there was no group by lag interaction. During the single target task, patients showed abnormally increased deactivation of the temporo-parietal junction (TPJ), a key region of the ventral network. When attention demands were increased during the dual target task, patients showed overactivation of the posterior intraparietal cortex, a key dorsal network region, along with failure to deactivate TPJ. Results suggest inefficient and faulty suppression of salience-oriented processing regions, resulting in increased sensitivity to stimuli in general, and difficulty distinguishing targets from non-targets. PMID:27014135

  10. Antifungal activity of redox-active benzaldehydes that target cellular antioxidation

    PubMed Central

    2011-01-01

    Background Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of cellular redox homeostasis and/or antioxidation systems. The aim of this study was to identify benzaldehydes that disrupt the fungal antioxidation system. These compounds could then function as chemosensitizing agents in concert with conventional drugs or fungicides to improve antifungal efficacy. Methods Benzaldehydes were tested as natural antifungal agents against strains of Aspergillus fumigatus, A. flavus, A. terreus and Penicillium expansum, fungi that are causative agents of human invasive aspergillosis and/or are mycotoxigenic. The yeast Saccharomyces cerevisiae was also used as a model system for identifying gene targets of benzaldehydes. The efficacy of screened compounds as effective chemosensitizers or as antifungal agents in formulations was tested with methods outlined by the Clinical Laboratory Standards Institute (CLSI). Results Several benzaldehydes are identified having potent antifungal activity. Structure-activity analysis reveals that antifungal activity increases by the presence of an ortho-hydroxyl group in the aromatic ring. Use of deletion mutants in the oxidative stress-response pathway of S. cerevisiae (sod1Δ, sod2Δ, glr1Δ) and two mitogen-activated protein kinase (MAPK) mutants of A. fumigatus (sakAΔ, mpkCΔ), indicates antifungal activity of the benzaldehydes is through disruption of cellular antioxidation. Certain benzaldehydes, in combination with phenylpyrroles, overcome tolerance of A. fumigatus MAPK mutants to this agent and/or increase sensitivity of fungal pathogens to mitochondrial respiration inhibitory agents. Synergistic chemosensitization greatly lowers minimum inhibitory (MIC) or fungicidal (MFC) concentrations. Effective

  11. A Downstream voyage with mercury

    USGS Publications Warehouse

    Heinz, Gary

    2016-01-01

    Retrospective essay for the Bulletin of Environmental Contamination and Toxicology.As I look back on my paper, “Effects of Low Dietary Levels of Methyl Mercury on Mallard Reproduction,” published in 1974 in the Bulletin of Environmental Contamination and Toxicology, a thought sticks in my mind. I realize just how much my mercury research was not unlike a leaf in a stream, carried this way and that, sometimes stalled in an eddy, restarted, and carried downstream at a pace and path that was not completely under my control. I was hired in 1969 by the Patuxent Wildlife Research Center to study the effects of environmental pollutants on the behavior of wildlife. A colleague was conducting a study on the reproductive effects of methylmercury on mallards (Anas platyrhynchos), and he offered to give me some of the ducklings. I conducted a pilot study, testing how readily ducklings approached a tape-recorded maternal call. Sample sizes were small, but the results suggested that ducklings from mercury-treated parents behaved differently than controls. That’s how I got into mercury research—pretty much by chance.

  12. A downstream voyage with mercury

    USGS Publications Warehouse

    Heinz, Gary

    2016-01-01

    Retrospective essay for the Bulletin of Environmental Contamination and Toxicology.As I look back on my paper, “Effects of Low Dietary Levels of Methyl Mercury on Mallard Reproduction,” published in 1974 in the Bulletin of Environmental Contamination and Toxicology, a thought sticks in my mind. I realize just how much my mercury research was not unlike a leaf in a stream, carried this way and that, sometimes stalled in an eddy, restarted, and carried downstream at a pace and path that was not completely under my control. I was hired in 1969 by the Patuxent Wildlife Research Center to study the effects of environmental pollutants on the behavior of wildlife. A colleague was conducting a study on the reproductive effects of methylmercury on mallards (Anas platyrhynchos), and he offered to give me some of the ducklings. I conducted a pilot study, testing how readily ducklings approached a tape-recorded maternal call. Sample sizes were small, but the results suggested that ducklings from mercury-treated parents behaved differently than controls. That’s how I got into mercury research—pretty much by chance.

  13. EGF-receptor phosphorylation and downstream signaling are activated by benzo[a]pyrene 3,6-quinone and benzo[a]pyrene 1,6-quinone in human mammary epithelial cells

    SciTech Connect

    Rodriguez-Fragoso, Lourdes; Melendez, Karla; Hudson, Laurie G.; Lauer, Fredine T.; Burchiel, Scott W.

    2009-03-15

    Benzo[a]pyrene (BaP) is activated by xenobiotic-metabolizing enzymes to highly mutagenic and carcinogenic metabolites. Previous studies in this laboratory have shown that benzo[a]pyrene quinones (BPQs), 1,6-BPQ and 3,6-BPQ, are able to induce epidermal growth factor receptor (EGFR) cell signaling through the production of reactive oxygen species. Recently, we have reported that BPQs have the potential to induce the expression of genes involved in numerous pathways associated with cell proliferation and survival in human mammary epithelial cells. In the present study we demonstrated that BPQs not only induced EGFR tyrosine autophosphorylation, but also induced EGFR-dependent tyrosine phosphorylation of phospholipase C-{gamma}1 and several signal transducers and activators of transcription (STATs). The effects of BPQs were evaluated in a model of EGF withdrawal in MCF10-A cells. We found that BPQs (1 {mu}M), induced EGFR tyrosine phosphorylation at positions Y845, Y992, Y1068, and Y1086. PLC-{gamma}1 phosphorylation correlated with the phosphorylation of tyrosine-Y992, a proposed docking site for PLC-{gamma}1 on the EGFR. Additionally, we found that BPQs induced the activation of STAT-1, STAT-3, STAT-5a and STAT-5b. STAT5 was shown to translocate to the nucleus following 3,6-BPQ and 1,6-BPQ exposures. Although the patterns of phosphorylation at EGFR, PLC-{gamma}1 and STATs were quite similar to those induced by EGF, an important difference between BPQ-mediated signaling of the EGFR was observed. Signaling produced by EGF ligand produced a rapid disappearance of EGFR from the cell surface, whereas BPQ signaling maintained EGFR receptors on the cell membrane. Thus, the results of these studies show that 1,6-BPQ and 3,6-BPQ can produce early events as evidenced by EGFR expression, and a prolonged transactivation of EGFR leading to downstream cell signaling pathways.

  14. Nanobody conjugated PLGA nanoparticles for active targeting of African Trypanosomiasis.

    PubMed

    Arias, José L; Unciti-Broceta, Juan D; Maceira, José; Del Castillo, Teresa; Hernández-Quero, José; Magez, Stefan; Soriano, Miguel; García-Salcedo, José A

    2015-01-10

    Targeted delivery of therapeutics is an alternative approach for the selective treatment of infectious diseases. The surface of African trypanosomes, the causative agents of African trypanosomiasis, is covered by a surface coat consisting of a single variant surface glycoprotein, termed VSG. This coat is recycled by endocytosis at a very high speed, making the trypanosome surface an excellent target for the delivery of trypanocidal drugs. Here, we report the design of a drug nanocarrier based on poly ethylen glycol (PEG) covalently attached (PEGylated) to poly(D,L-lactide-co-glycolide acid) (PLGA) to generate PEGylated PLGA nanoparticles. This nanocarrier was coupled to a single domain heavy chain antibody fragment (nanobody) that specifically recognizes the surface of the protozoan pathogen Trypanosoma brucei. Nanoparticles were loaded with pentamidine, the first-line drug for T. b. gambiense acute infection. An in vitro effectiveness assay showed a 7-fold decrease in the half-inhibitory concentration (IC50) of the formulation relative to free drug. Furthermore, in vivo therapy using a murine model of African trypanosomiasis demonstrated that the formulation cured all infected mice at a 10-fold lower dose than the minimal full curative dose of free pentamidine and 60% of mice at a 100-fold lower dose. This nanocarrier has been designed with components approved for use in humans and loaded with a drug that is currently in use to treat the disease. Moreover, this flexible nanobody-based system can be adapted to load any compound, opening a range of new potential therapies with application to other diseases.

  15. RalA, a GTPase targeted by miR-181a, promotes transformation and progression by activating the Ras-related signaling pathway in chronic myelogenous leukemia

    PubMed Central

    Luo, Xiaochuang; Yang, Juhua; Li, Yumin; Li, Tianfu; Wang, Ruirui; Fei, Jia

    2016-01-01

    BCR/ABL is a well-known activator of multiple signaling pathways. RalA, a Ras downstream signaling molecule and a small GTPase, plays an important role in Bcr-Abl-induced leukemogenesis but the exact mechanism remains elusive. Here, we show that RalA GTPase activity is commonly high in chronic myelogenous leukemia (CML) cell lines and patient samples. Overexpression of RalA results in malignant transformation and progression, and induces resistance to imatinib (IM) in BaF3 and K562 cell lines. RalA reduced survival and led to IM resistance in a xenografted mouse model. Ablation of RalA by either siRNA or miR-181a, a RalA targeting microRNA, attenuated the malignant phenotypes in K562 cells. RBC8, a selective Ral inhibitor, enhanced the inhibitory effects of IM in K562, KCL22 and BaF3-P210 cells. Interestingly, the phospho-specific protein microarray assay revealed that multiple phosphorylation signal proteins were decreased by RalA inhibition, including SAPK, JNK, SRC, VEGFR2, P38 MAPK, c-Kit, JunB, and Keratin18. Among them, P38 MAPK and SAPK/JNK are Ras downstream signaling kinases. Taken together, RalA GTPase might be an important oncogene activating the Ras-related signaling pathway in CML. PMID:26967392

  16. Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward.

    PubMed

    Hikosaka, O; Sakamoto, M; Usui, S

    1989-04-01

    1. The present paper reports complex neural activities in the monkey caudate nucleus that precede and anticipate visual stimuli and reward in learned visuomotor paradigms. These activities were revealed typically in the delayed saccade task in which memory and anticipation were required. We classified these activities according to their relationships to the task. 2. Activity related to expectation of a cue (n = 46) preceded the presentation of a spot of light (target cue) that signified the future location of saccade target. When the target cue was delayed, the activity was prolonged accordingly. The same spot of light was preceded by no activity if it acted as a distracting stimulus. 3. The sustained activity (n = 80) was a tonic discharge starting after the target cue as if holding the spatial information. 4. The activity related to expectation of target (n = 109) preceded the appearance of the target whose location was cued previously. It started with or after a saccade to the cued target location and ended with the appearance of the target. The activity was greater when the target was expected to appear in the contralateral visual field. 5. The activity related to expectation of reward (n = 57) preceded a task-specific reward. It started with the appearance of the final target and ended with the reward. In most cases, the activity was nonselective for how the monkey obtained the reward, i.e., by visual fixation only, by a saccade, or by a hand movement. The activity was dependent partly on visual fixation. 6. A few neurons showed tonic activity selectively before lever release and are thus considered to be related to the preparation of hand movements. 7. The activity related to breaking fixation (n = 33) occurred phasically if the monkey broke fixation, aborting the trial. 8. Activity related to reward (n = 104) was a phasic discharge that occurred before or after a reward of water was delivered. The activity was not simply related to a specific movement

  17. In vitro and In vivo Activity of Novel Small-Molecule Inhibitors Targeting the Pleckstrin Homology Domain of Protein Kinase B/AKT

    PubMed Central

    Moses, Sylvestor A.; Ali, M. Ahad; Zuohe, Song; Du-Cuny, Lei; Zhou, Li Li; Lemos, Robert; Ihle, Nathan; Skillman, A. Geoffrey; Zhang, Shuxing; Mash, Eugene A.; Powis, Garth; Meuillet, Emmanuelle J.

    2010-01-01

    The phosphatidylinositol 3-kinase/AKT signaling pathway plays a critical role in activating survival and antiapoptotic pathways within cancer cells. Several studies have shown that this pathway is constitutively activated in many different cancer types. The goal of this study was to discover novel compounds that bind to the pleckstrin homology (PH) domain of AKT, thereby inhibiting AKT activation. Using proprietary docking software, 22 potential PH domain inhibitors were identified. Surface plasmon resonance spectroscopy was used to measure the binding of the compounds to the expressed PH domain of AKT followed by an in vitro activity screen in Panc-1 and MiaPaCa-2 pancreatic cancer cell lines. We identified a novel chemical scaffold in several of the compounds that binds selectively to the PH domain of AKT, inducing a decrease in AKT activation and causing apoptosis at low micromolar concentrations. Structural modifications of the scaffold led to compounds with enhanced inhibitory activity in cells. One compound, 4-dodecyl-N-(1,3,4-thiadiazol-2-yl) benzenesulfonamide, inhibited AKT and its downstream targets in cells as well as in pancreatic cancer cell xenografts in immunocompromised mice; it also exhibited good antitumor activity. In summary, a pharmacophore for PH domain inhibitors targeting AKT function was developed. Computer-aided modeling, synthesis, and testing produced novel AKT PH domain inhibitors that exhibit promising preclinical properties. PMID:19491272

  18. Widespread Inducible Transcription Downstream of Human Genes

    PubMed Central

    Vilborg, Anna; Passarelli, Maria C.; Yario, Therese A.; Tycowski, Kazimierz T.; Steitz, Joan A.

    2015-01-01

    Summary Pervasive transcription of the human genome generates RNAs whose mode of formation and functions are largely uncharacterized. Here, we combine RNA-Seq with detailed mechanistic studies to describe a transcript type derived from protein-coding genes. The resulting RNAs, which we call DoGs for downstream of gene containing transcripts, possess long non-coding regions (often >45 kb) and remain chromatin bound. DoGs are inducible by osmotic stress through an IP3 receptor signaling-dependent pathway, indicating active regulation. DoG levels are increased by decreased termination of the upstream transcript, a previously undescribed mechanism for rapid transcript induction. Relative depletion of polyA signals in DoG regions correlates with increased levels of DoGs after osmotic stress. We detect DoG transcription in several human cell lines and provide evidence for thousands of DoGs genome-wide. PMID:26190259

  19. Targeting CD9 produces stimulus-independent antiangiogenic effects predominantly in activated endothelial cells during angiogenesis: A novel antiangiogenic therapy

    SciTech Connect

    Kamisasanuki, Taro; Tokushige, Saori; Terasaki, Hiroto; Khai, Ngin Cin; Wang, Yuqing; Sakamoto, Taiji; Kosai, Ken-ichiro

    2011-09-16

    Highlights: {yields} CD9 plays stimulus-independent roles in angiogenesis in vitro and in vivo. {yields} Targeting CD9 expression is effective in an angiogenic disease model. {yields} Targeting CD9 expression predominantly affects activated endothelial cells. {yields} CD9 is involved in endothelial cell proliferation, but not survival. {yields} CD9 is part of angiogenic machinery in endothelial cells during angiogenesis. -- Abstract: The precise roles of tetraspanin CD9 are unclear. Here we show that CD9 plays a stimulus-independent role in angiogenesis and that inhibiting CD9 expression or function is a potential antiangiogenic therapy. Knocking down CD9 expression significantly inhibited in vitro endothelial cell migration and invasion induced by vascular endothelial growth factor (VEGF) or hepatocyte growth factor (HGF). Injecting CD9-specific small interfering RNA (siRNA-CD9) markedly inhibited HGF- or VEGF-induced subconjunctival angiogenesis in vivo. Both results revealed potent and stimulus-independent antiangiogenic effects of targeting CD9. Furthermore, intravitreous injections of siRNA-CD9 or anti-CD9 antibodies were therapeutically effective for laser-induced retinal and choroidal neovascularization in mice, a representative ocular angiogenic disease model. In terms of the mechanism, growth factor receptor and downstream signaling activation were not affected, whereas abnormal localization of integrins and membrane type-1 matrix metalloproteinase was observed during angiogenesis, by knocking down CD9 expression. Notably, knocking down CD9 expression did not induce death and mildly inhibited proliferation of quiescent endothelial cells under conditions without an angiogenic stimulus. Thus, CD9 does not directly affect growth factor-induced signal transduction, which is required in angiogenesis and normal vasculature, but is part of the angiogenesis machinery in endothelial cells during angiogenesis. In conclusion, targeting CD9 produced stimulus

  20. The selective activation of p53 target genes regulated by SMYD2 in BIX-01294 induced autophagy-related cell death.

    PubMed

    Fan, Jia-Dong; Lei, Pin-Ji; Zheng, Jun-Yi; Wang, Xiang; Li, Shangze; Liu, Huan; He, Yi-Lei; Wang, Zhao-Ning; Wei, Gang; Zhang, Xiaodong; Li, Lian-Yun; Wu, Min

    2015-01-01

    Transcription regulation emerged to be one of the key mechanisms in regulating autophagy. Inhibitors of H3K9 methylation activates the expression of LC3B, as well as other autophagy-related genes, and promotes autophagy process. However, the detailed mechanisms of autophagy regulated by nuclear factors remain elusive. In this study, we performed a drug screen of SMYD2-/- cells and discovered that SMYD2 deficiency enhanced the cell death induced by BIX01294, an inhibitor of histone H3K9 methylation. BIX-01294 induces accumulation of LC3 II and autophagy-related cell death, but not caspase-dependent apoptosis. We profiled the global gene expression pattern after treatment with BIX-01294, in comparison with rapamycin. BIX-01294 selectively activates the downstream genes of p53 signaling, such as p21 and DOR, but not PUMA, a typical p53 target gene inducing apoptosis. BIX-01294 also induces other autophagy-related genes, such as ATG4A and ATG9A. SMYD2 is a methyltransferase for p53 and regulates its transcription activity. Its deficiency enhances the BIX-01294-induced autophagy-related cell death through transcriptionally promoting the expression of p53 target genes. Taken together, our data suggest BIX-01294 induces autophagy-related cell death and selectively activates p53 target genes, which is repressed by SMYD2 methyltransferase.

  1. A new antibiotic with potent activity targets MscL.

    PubMed

    Iscla, Irene; Wray, Robin; Blount, Paul; Larkins-Ford, Jonah; Conery, Annie L; Ausubel, Frederick M; Ramu, Soumya; Kavanagh, Angela; Huang, Johnny X; Blaskovich, Mark A; Cooper, Matthew A; Obregon-Henao, Andres; Orme, Ian; Tjandra, Edwin S; Stroeher, Uwe H; Brown, Melissa H; Macardle, Cindy; van Holst, Nick; Ling Tong, Chee; Slattery, Ashley D; Gibson, Christopher T; Raston, Colin L; Boulos, Ramiz A

    2015-07-01

    The growing problem of antibiotic-resistant bacteria is a major threat to human health. Paradoxically, new antibiotic discovery is declining, with most of the recently approved antibiotics corresponding to new uses for old antibiotics or structurally similar derivatives of known antibiotics. We used an in silico approach to design a new class of nontoxic antimicrobials for the bacteria-specific mechanosensitive ion channel of large conductance, MscL. One antimicrobial of this class, compound 10, is effective against methicillin-resistant Staphylococcus aureus with no cytotoxicity in human cell lines at the therapeutic concentrations. As predicted from in silico modeling, we show that the mechanism of action of compound 10 is at least partly dependent on interactions with MscL. Moreover we show that compound 10 cured a methicillin-resistant S. aureus infection in the model nematode Caenorhabditis elegans. Our work shows that compound 10, and other drugs that target MscL, are potentially important therapeutics against antibiotic-resistant bacterial infections.

  2. A new antibiotic with potent activity targets MscL

    PubMed Central

    Iscla, Irene; Wray, Robin; Blount, Paul; Larkins-Ford, Jonah; Conery, Annie L; Ausubel, Frederick M; Ramu, Soumya; Kavanagh, Angela; Huang, Johnny X; Blaskovich, Mark A; Cooper, Matthew A; Obregon-Henao, Andres; Orme, Ian; Tjandra, Edwin S; Stroeher, Uwe H; Brown, Melissa H; Macardle, Cindy; van Holst, Nick; Ling Tong, Chee; Slattery, Ashley D; Gibson, Christopher T; Raston, Colin L; Boulos, Ramiz A

    2015-01-01

    The growing problem of antibiotic-resistant bacteria is a major threat to human health. Paradoxically, new antibiotic discovery is declining, with most of the recently approved antibiotics corresponding to new uses for old antibiotics or structurally similar derivatives of known antibiotics. We used an in silico approach to design a new class of nontoxic antimicrobials for the bacteria-specific mechanosensitive ion channel of large conductance, MscL. One antimicrobial of this class, compound 10, is effective against methicillin-resistant Staphylococcus aureus with no cytotoxicity in human cell lines at the therapeutic concentrations. As predicted from in silico modeling, we show that the mechanism of action of compound 10 is at least partly dependent on interactions with MscL. Moreover we show that compound 10 cured a methicillin-resistant S. aureus infection in the model nematode Caenorhabditis elegans. Our work shows that compound 10, and other drugs that target MscL, are potentially important therapeutics against antibiotic-resistant bacterial infections. PMID:25649856

  3. Systematic mining of analog series with related core structures in multi-target activity space.

    PubMed

    Gupta-Ostermann, Disha; Hu, Ye; Bajorath, Jürgen

    2013-08-01

    We have aimed to systematically extract analog series with related core structures from multi-target activity space to explore target promiscuity of closely related analogous. Therefore, a previously introduced SAR matrix structure was adapted and further extended for large-scale data mining. These matrices organize analog series with related yet distinct core structures in a consistent manner. High-confidence compound activity data yielded more than 2,300 non-redundant matrices capturing 5,821 analog series that included 4,288 series with multi-target and 735 series with multi-family activities. Many matrices captured more than three analog series with activity against more than five targets. The matrices revealed a variety of promiscuity patterns. Compound series matrices also contain virtual compounds, which provide suggestions for compound design focusing on desired activity profiles.

  4. Target identification for biologically active small molecules using chemical biology approaches.

    PubMed

    Lee, Heesu; Lee, Jae Wook

    2016-09-01

    The identification and validation of the targets of biologically active molecules is an important step in the field of chemical biology. While recent advances in proteomic and genomic technology have accelerated this identification process, the discovery of small molecule targets remains the most challenging step. A general method for the identification of these small molecule targets has not yet been established. To overcome the difficulty in target identification, new technology derived from the fields of genomics, proteomics, and bioinformatics has been developed. To date, pull-down methods using small molecules immobilized on a solid support followed by mass spectrometry have been the most successful approach. Here, we discuss current procedures for target identification. We also review the most recent target identification approaches and present several examples that illustrate advanced target identification technology.

  5. Targeting of TGF-β-activated protein kinase 1 inhibits chemokine (C-C motif) receptor 7 expression, tumor growth and metastasis in breast cancer

    PubMed Central

    Hung, Wen-Chun; Hou, Ming-Feng

    2015-01-01

    TGF-β-activated protein kinase 1 (TAK1) is a critical mediator in inflammation, immune response and cancer development. Our previous study demonstrated that activation of TAK1 increases the expression of chemokine (C-C motif) receptor 7 (CCR7) and promotes lymphatic invasion ability of breast cancer cells. However, the expression and association of activated TAK1 and CCR7 in breast tumor tissues is unknown and the therapeutic effect by targeting TAK1 is also unclear. We showed that activated TAK1 (as indicated by phospho-TAK1) and its binding protein TAB1 are strongly expressed in breast tumor tissues (77% and 74% respectively). In addition, increase of phospho-TAK1 or TAB1 is strongly associated with over-expression of CCR7. TAK1 inhibitor 5Z-7-Oxozeaenol (5Z-O) inhibited TAK1 activity, suppressed downstream signaling pathways including p38, IκB kinase (IKK) and c-Jun N-terminal kinase (JNK) and reduced CCR7 expression in metastatic MDA-MB-231 cells. In addition, 5Z-O repressed NF-κB- and c-JUN-mediated transcription of CCR7 gene. Knockdown of TAB1 attenuated CCR7 expression and tumor growth in an orthotopic animal study. More importantly, lymphatic invasion and lung metastasis were suppressed. Collectively, our results demonstrate that constitutive activation of TAK1 is frequently found in human breast cancer and this kinase is a potential therapeutic target for this cancer. PMID:25557171

  6. [Nutrition and physical activity: two targets for cancer prevention].

    PubMed

    Thibault, Ronan; Dupertuis, Yves M; Belabed, Linda; Pichard, Claude

    2010-05-26

    The links between nutrition and cancer onset are now well established by epidemiological studies. The scientific evidence is presented in a report of the World Cancer Research Foundation (WCRF). Protective factors towards overall cancer risk are fruit and vegetable consumption and physical activity. Overweight and obesity, intakes of alcoholic beverage, fat, salt, high temperature cooked and processed red meat, increase cancer risk. In addition, beta-carotene systematic supplementation could increase lung cancer risk in smokers. As optimal controlling of these risk factors can decrease cancer mortality by 25%, nutritional counselling must be integrated in the global strategy of primary and secondary prevention of cancers.

  7. Nrf2 activation as target to implement therapeutic treatments

    PubMed Central

    Bocci, Velio; Valacchi, Giuseppe

    2015-01-01

    A chronic increase of oxidative stress is typical of serious pathologies such as myocardial infarction, stroke, chronic limb ischemia, chronic obstructive pulmonary disease (COPD), type II-diabetes, age-related macular degeneration leads to an epic increase of morbidity and mortality in all countries of the world. The initial inflammation followed by an excessive release of reactive oxygen species (ROS) implies a diffused cellular injury that needs to be corrected by an inducible expression of the innate detoxifying and antioxidant system. The transcription factor Nrf2, when properly activated, is able to restore a redox homeostasis and possibly improve human health. PMID:25699252

  8. Target cell-specific modulation of neuronal activity by astrocytes

    NASA Astrophysics Data System (ADS)

    Kozlov, A. S.; Angulo, M. C.; Audinat, E.; Charpak, S.

    2006-06-01

    Interaction between astrocytes and neurons enriches the behavior of brain circuits. By releasing glutamate and ATP, astrocytes can directly excite neurons and modulate synaptic transmission. In the rat olfactory bulb, we demonstrate that the release of GABA by astrocytes causes long-lasting and synchronous inhibition of mitral and granule cells. In addition, astrocytes release glutamate, leading to a selective activation of granule-cell NMDA receptors. Thus, by releasing excitatory and inhibitory neurotransmitters, astrocytes exert a complex modulatory control on the olfactory network. glutamate | GABA | inhibition | olfactory bulb | synchronization

  9. NRF2 Activation as Target to Implement Therapeutic Treatments

    NASA Astrophysics Data System (ADS)

    Bocci, Velio; Valacchi, Giuseppe

    2015-02-01

    A chronic increase of oxidative stress is typical of serious pathologies such as myocardial infarction, stroke, chronic limb ischemia, chronic obstructive pulmonary disease (COPD), type II-diabetes, age-related macular degeneration leads to an epic increase of morbidity and mortality in all countries of the world. The initial inflammation followed by an excessive release of reactive oxygen species (ROS) implies a diffused cellular injury that needs to be corrected by an inducible expression of the innate detoxifying and antioxidant system. The transcription factor Nrf2, when properly activated, is able to restore a redox homeostasis and possibly improve human health.

  10. Mitochondrially targeted p53 has tumor suppressor activities in vivo.

    PubMed

    Talos, Flaminia; Petrenko, Oleksi; Mena, Patricio; Moll, Ute M

    2005-11-01

    Complex proapoptotic functions are essential for the tumor suppressor activity of p53. We recently described a novel transcription-independent mechanism that involves a rapid proapoptotic action of p53 at the mitochondria and executes the shortest known circuitry of p53 death signaling. Here, we examine if this p53-dependent mitochondrial program could be exploited for tumor suppression in vivo. To test this, we engage Emu-Myc transgenic mice, a well-established model of p53-dependent lymphomagenesis. We show that exclusive delivery of p53 to the outer mitochondrial membrane confers a significant growth disadvantage on Emu-Myc-transformed B-cells of p53-deficient or alternate reading frame-deficient genotypes, resulting in efficient induction of apoptosis and impinged proliferation. Conversely, normal cells from thymus, spleen, and bone marrow showed poor infectivity with these viruses. This proof-of-principle experiment shows that exclusive reliance on the direct mitochondrial program exerts a significant tumor suppressor activity in vivo. Our in vivo data on the direct mitochondrial apoptotic p53 program lays the groundwork to further investigate its efficacy and safety and to address its possible therapeutic value in the future.

  11. Tracking moving targets in complex environments by fusing active and passive sensors

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Ben G.; Liu, Li; Wang, Yun; Cheng, Zhanqi

    2007-04-01

    We present a novel algorithm for tracking with ladar sensors to aid in navigation, guidance and control systems, suitable for applications to unmanned air vehicles. The methods we employ are based on Bayesian segmentation, optical flow, active contour and Bayesian particle tracking. The algorithm herein holds several significant advantages over traditional tracking methods. The first step in the process is the optimal segmentation of images to enhance the targets and extract them from background clutter and noise. The Bayesian approach to segmentation allows the use of intensity (passive) and range (active) imagery to find targets. Optical flow generalizes and improves correlation techniques for locating objects within a frame, allowing for aspect angle and range changes. With optical flow, we may infer relative velocities on a pixel-by-pixel basis. Active contours are ideally suited to both target-sparse and target-rich environments. The energy approach to determining contours allows the merging and separating of potential targets in an automatic manner. Bayesian particle tracking techniques are used to track the contours over time. The algorithm is tested successfully on experimental and simulated ladar data (using both intensity and range data) as well as sequences of video imageries. The streamlined processing, from obtaining the image data (of size 805x148 pixels) to detecting the moving target to wrapping an active contour on the target, takes less than one second of clock time and provides very accurate predictions of the target location in future frames.

  12. Decoding Target Distance and Saccade Amplitude from Population Activity in the Macaque Lateral Intraparietal Area (LIP)

    PubMed Central

    Bremmer, Frank; Kaminiarz, Andre; Klingenhoefer, Steffen; Churan, Jan

    2016-01-01

    Primates perform saccadic eye movements in order to bring the image of an interesting target onto the fovea. Compared to stationary targets, saccades toward moving targets are computationally more demanding since the oculomotor system must use speed and direction information about the target as well as knowledge about its own processing latency to program an adequate, predictive saccade vector. In monkeys, different brain regions have been implicated in the control of voluntary saccades, among them the lateral intraparietal area (LIP). Here we asked, if activity in area LIP reflects the distance between fovea and saccade target, or the amplitude of an upcoming saccade, or both. We recorded single unit activity in area LIP of two macaque monkeys. First, we determined for each neuron its preferred saccade direction. Then, monkeys performed visually guided saccades along the preferred direction toward either stationary or moving targets in pseudo-randomized order. LIP population activity allowed to decode both, the distance between fovea and saccade target as well as the size of an upcoming saccade. Previous work has shown comparable results for saccade direction (Graf and Andersen, 2014a,b). Hence, LIP population activity allows to predict any two-dimensional saccade vector. Functional equivalents of macaque area LIP have been identified in humans. Accordingly, our results provide further support for the concept of activity from area LIP as neural basis for the control of an oculomotor brain-machine interface.

  13. Decoding Target Distance and Saccade Amplitude from Population Activity in the Macaque Lateral Intraparietal Area (LIP)

    PubMed Central

    Bremmer, Frank; Kaminiarz, Andre; Klingenhoefer, Steffen; Churan, Jan

    2016-01-01

    Primates perform saccadic eye movements in order to bring the image of an interesting target onto the fovea. Compared to stationary targets, saccades toward moving targets are computationally more demanding since the oculomotor system must use speed and direction information about the target as well as knowledge about its own processing latency to program an adequate, predictive saccade vector. In monkeys, different brain regions have been implicated in the control of voluntary saccades, among them the lateral intraparietal area (LIP). Here we asked, if activity in area LIP reflects the distance between fovea and saccade target, or the amplitude of an upcoming saccade, or both. We recorded single unit activity in area LIP of two macaque monkeys. First, we determined for each neuron its preferred saccade direction. Then, monkeys performed visually guided saccades along the preferred direction toward either stationary or moving targets in pseudo-randomized order. LIP population activity allowed to decode both, the distance between fovea and saccade target as well as the size of an upcoming saccade. Previous work has shown comparable results for saccade direction (Graf and Andersen, 2014a,b). Hence, LIP population activity allows to predict any two-dimensional saccade vector. Functional equivalents of macaque area LIP have been identified in humans. Accordingly, our results provide further support for the concept of activity from area LIP as neural basis for the control of an oculomotor brain-machine interface. PMID:27630547

  14. Decoding Target Distance and Saccade Amplitude from Population Activity in the Macaque Lateral Intraparietal Area (LIP).

    PubMed

    Bremmer, Frank; Kaminiarz, Andre; Klingenhoefer, Steffen; Churan, Jan

    2016-01-01

    Primates perform saccadic eye movements in order to bring the image of an interesting target onto the fovea. Compared to stationary targets, saccades toward moving targets are computationally more demanding since the oculomotor system must use speed and direction information about the target as well as knowledge about its own processing latency to program an adequate, predictive saccade vector. In monkeys, different brain regions have been implicated in the control of voluntary saccades, among them the lateral intraparietal area (LIP). Here we asked, if activity in area LIP reflects the distance between fovea and saccade target, or the amplitude of an upcoming saccade, or both. We recorded single unit activity in area LIP of two macaque monkeys. First, we determined for each neuron its preferred saccade direction. Then, monkeys performed visually guided saccades along the preferred direction toward either stationary or moving targets in pseudo-randomized order. LIP population activity allowed to decode both, the distance between fovea and saccade target as well as the size of an upcoming saccade. Previous work has shown comparable results for saccade direction (Graf and Andersen, 2014a,b). Hence, LIP population activity allows to predict any two-dimensional saccade vector. Functional equivalents of macaque area LIP have been identified in humans. Accordingly, our results provide further support for the concept of activity from area LIP as neural basis for the control of an oculomotor brain-machine interface. PMID:27630547

  15. Antimalarial activity enhancement in hydroxymethylcarbonyl (HMC) isostere-based dipeptidomimetics targeting malarial aspartic protease plasmepsin

    PubMed Central

    Hidaka, Koushi; Kimura, Tooru; Ruben, Adam J.; Uemura, Tsuyoshi; Kamiya, Mami; Kiso, Aiko; Okamoto, Tetsuya; Tsuchiya, Yumi; Hayashi, Yoshio; Freire, Ernesto; Kiso, Yoshiaki

    2015-01-01

    Plasmepsin (Plm) is a potential target for new antimalarial drugs, but most reported Plm inhibitors have relatively low antimalarial activities. We synthesized a series of dipeptide-type HIV protease inhibitors, which contain an allophenylnorstatine-dimethylthioproline scaffold to exhibit potent inhibitory activities against Plm II. Their activities against Plasmodium falciparum in the infected erythrocyte assay were largely different from those against the target enzyme. To improve the antimalarial activity of peptidomimetic Plm inhibitors, we attached substituents on a structure of the highly potent Plm inhibitor KNI-10006. Among the derivatives, we identified alkylamino compounds such as 44 (KNI-10283) and 47 (KNI-10538) with more than 15-fold enhanced antimalarial activity, to the sub-micromolar level, maintaining their potent Plm II inhibitory activity and low cytotoxicity. These results suggest that auxiliary substituents on a specific basic group contribute to deliver the inhibitors to the target Plm. PMID:18952439

  16. Target design considerations for high specific activity [{sup 11}C]O{sub 2}

    SciTech Connect

    Ferrieri, R.A.; Alexoff, D.L.; Schlyer, D.J.; McDonald, K.; Wolf, A.P.

    1993-12-31

    In the routine preparation of {sup 11}C-labeled compounds through N-[{sup 11}C]-methylation using [{sup 11}C]H{sub 3}I, total masses are always higher than synthesis mass contribution, suggesting that the target system contributes carrier carbon to the final product mass. This conclusion prompted this evaluation of target materials and target design for [{sup 11}C]O{sub 2} production. Ultimately, one is faced with the sprospect of compromising between [{sup 11}C]O{sub 2} specific activity and the amount that can be extracted from the target after a reasonable irradiation time.

  17. Elucidation of a downstream boundary of the 3' IgH regulatory region.

    PubMed

    Manis, John P; Michaelson, Jennifer S; Birshtein, Barbara K; Alt, Frederick W

    2003-01-01

    Class switch recombination (CSR) changes the immunoglobulin heavy chain (IgH) constant region gene (C(H)) in B cells from IgM to IgG, IgA, or IgE, without modifying the variable region gene segment. This process requires transcription through switch (S) regions located upstream of the C(H) genes targeted for CSR, a process that relies on the activity of an uncharacterized regulatory region at the 3' end of the C(H) locus (3' IgH RR) that has been implicated via the effects of pgk-neo cassettes inserted into the locus. The 30kb region just downstream of the most 3' C(H) gene (Ca) contains four known enhancer elements including HS3a, HS1,2, HS3b, and HS4. Replacement of either of the proximal two enhancer elements (HS3a or HS1,2) with a pgk-neo gene cassette disrupted germline transcription of and CSR to most C(H) genes. However, replacement of either of the enhancers with a loxP sequence had no effect on CSR indicating that these elements are not critical for CSR. Insertion of a pgk-neo cassette at various sites within the C(H) locus inhibited CSR to upstream, but not downstream C(H) genes, supporting the notion that the pgk-neo cassette insertion into the locus short-circuits the ability of the 3' RR to facilitate CSR of dependent C(H) genes upstream of the insertion. These analyses also indicated that the key elements of the 3' IgH RR were downstream from HS1,2. In this study, we have sought to localize the 3' IgH RR by defining its 3' boundary. For this purpose, a pgk-neo gene cassette was targeted 2kb downstream of the HS4 element in ES cells that had normal ability to undergo CSR. We then employed Rag-2 deficient blastocyst complementation to generate chimeric mice that harbored B cells homozygous for this mutation. Such chimeras exhibited normal reconstitution of the splenic compartment and had normal serum immunoglobulin levels. Upon in vitro activation, transcription from the pgk-neo cassette was induced in B cells, however, CSR to all measured IgH isotypes

  18. MiR-99a Antitumor Activity in Human Breast Cancer Cells through Targeting of mTOR Expression

    PubMed Central

    Hu, Yu; Zhu, Qin; Tang, Lili

    2014-01-01

    MicroRNAs (miRNAs) play an important role in human tumorigenesis as oncogenes or tumor suppressors. miR-99a has been reported as a tumor suppressor gene in various cancers in humans. However, only limited information about the function of miR-99a in human breast cancers is available. Here we investigated the expression of miR-99a in breast cancer tissue specimens and its antitumor activity in breast cancer cells. We initially identified that the expression of miR-99a was significantly reduced in four breast cancer cell lines. More importantly, we found downregulation of miR-99a in breast cancer specimens from ten different patients. We then analyzed the mechanism of miR-99a in inhibiting tumorigenesis. Cell-based assays that showed overexpression of miR-99a not only reduced breast cancer cell viability by inducing accumulation of cells at sub-G1 phase and cell apoptosis, but also inhibited tumorigenicity in vivo. As a critical miR-99a target, we have shown that the function of mammalian target of rapamycin (mTOR) was greatly inhibited by miR-99a-based Luciferase report assay; overexpression of miR-99a reduced the expression of mTOR and its downstream phosphorylated proteins (p-4E-BP1 and p-S6K1). Similar to restoring miR-99a expression, mTOR downregulation suppressed cell viability and increased cell apoptosis, whereas restoration of mTOR expression significantly reversed the inhibitory effects of miR-99a on the mTOR/p-4E-BP1/p-S6K1 signal pathway and the miR-99a antitumor activity. In clinical specimens and cell lines, mTOR was commonly overexpressed and its protein levels were statistically inversely correlated with miR-99a expression. Taken together, these results have demonstrated that miR-99a antitumor activity is achieved by targeting the mTOR/p-4E-BP1/p-S6K1 pathway in human breast cancer cells. This study suggests a potential therapeutic strategy to effectively control breast cancer development. PMID:24637915

  19. Design and Analysis of Hammerhead Ribozyme Activity Against an Artificial Gene Target

    PubMed Central

    Carter, James; Nawtaisong, Pruksa; Balaraman, Velmurugan; Fraser, Malcolm J.

    2014-01-01

    In vitro cleavage assays are routinely conducted to properly assess the catalytic activity of hammerhead ribozymes (HHR) against target RNA molecules like the dengue virus RNA genomes. These experiments are performed for initial assessment of HHR catalysis in a cell-free system and have been simplified by the substitution of agarose gel electrophoresis for SDS-PAGE. Substituting mobility assays enables the analysis of ribozymes in a more rapid fashion without radioisotopes. Here we describe the in vitro transcription of an HHR and corresponding target from T7-promoted plasmids into RNA molecules leading to the analysis of HHR activity against the RNA target by in vitro cleavage assays. PMID:24318886

  20. Targeted Proteomics Approaches To Monitor Microbial Activity In Basalt Aquifer

    NASA Astrophysics Data System (ADS)

    Paszczynski, A. J.; Paidisetti, R.

    2007-12-01

    Microorganisms play a major role in biogeochemical cycles of the Earth. Information regarding microbial community composition can be very useful for environmental monitoring since the short generation times of microorganisms allows them to respond rapidly to changing environmental conditions. Microbial mediated attenuation of toxic chemicals offers great potential for the restoration of contaminated environments in an ecologically acceptable manner. Current knowledge regarding the structure and functional activities of microbial communities is limited, but more information is being acquired every day through many genomic- and proteomic- based methods. As of today, only a small fraction of the Earth's microorganisms has been cultured, and so most of the information regarding the biodegradation and therapeutic potentials of these uncultured microorganisms remains unknown. Sequence analysis of DNA and/or RNA has been used for identifying specific microorganisms, to study the community composition, and to monitor gene expression providing limited information about metabolic state of given microbial system. Proteomic studies can reveal information regarding the real-time metabolic state of the microbial communities thereby aiding in understanding their interaction with the environment. In research described here the involvement of microbial communities in the degradation of anthropogenic contaminants such as trichloroethylene (TCE) was studied using mass spectrometry-based proteomics. The co- metabolic degradation of TCE in the groundwater of the Snake River Plain Aquifer at the Test Area North (TAN) site of Idaho National Laboratory (INL) was monitored by the characterization of peptide sequences of enzymes such as methane monooxygenases (MMOs). MMOs, expressed by methanotrophic bacteria are involved in the oxidation of methane and non-specific co-metabolic oxidation of TCE. We developed a time- course cell lysis method to release proteins from complex microbial

  1. CerS6 Is a Novel Transcriptional Target of p53 Protein Activated by Non-genotoxic Stress.

    PubMed

    Fekry, Baharan; Jeffries, Kristen A; Esmaeilniakooshkghazi, Amin; Ogretmen, Besim; Krupenko, Sergey A; Krupenko, Natalia I

    2016-08-01

    Our previous study suggested that ceramide synthase 6 (CerS6), an enzyme in sphingolipid biosynthesis, is regulated by p53: CerS6 was elevated in several cell lines in response to transient expression of p53 or in response to folate stress, which is known to activate p53. It was not clear, however, whether CerS6 gene is a direct transcriptional target of p53 or whether this was an indirect effect through additional regulatory factors. In the present study, we have shown that the CerS6 promoter is activated by p53 in luciferase assays, whereas transcriptionally inactive R175H p53 mutant failed to induce the luciferase expression from this promoter. In vitro immunoprecipitation assays and gel shift analyses have further demonstrated that purified p53 binds within the CerS6 promoter sequence spanning 91 bp upstream and 60 bp downstream of the transcription start site. The Promo 3.0.2 online tool for the prediction of transcription factor binding sites indicated the presence of numerous putative non-canonical p53 binding motifs in the CerS6 promoter. Luciferase assays and gel shift analysis have identified a single motif upstream of the transcription start as a key p53 response element. Treatment of cells with Nutlin-3 or low concentrations of actinomycin D resulted in a strong elevation of CerS6 mRNA and protein, thus demonstrating that CerS6 is a component of the non-genotoxic p53-dependent cellular stress response. This study has shown that by direct transcriptional activation of CerS6, p53 can regulate specific ceramide biosynthesis, which contributes to the pro-apoptotic cellular response.

  2. Using targeted messaging to increase physical activity in older adults: a review.

    PubMed

    Ostrander, Rachel E; Thompson, Hilaire J; Demiris, George

    2014-09-01

    Physical activity has many benefits for older adults; however, motivating older adults to engage in and maintain optimal levels of physical activity can be challenging for health care providers. A comprehensive literature review was performed to determine whether any evidence-based methods of delivery or particular content for targeted messaging exist that result in actual improvements in physical activity of older adults. Findings of the review demonstrate that messaging directed toward older adults to be physically active resulted in improvements in physical activity up to 1 year. Across studies many different modes of message delivery were shown to be effective. Message content, whether tailored or not, resulted in significant increases in physical activity. There is evidence to support the use of environmentally mediated messaging (i.e., local walking paths) for stronger results. Targeting the client's stage of change, having an activity partner if preferred, and scheduling physical activity also contribute to improved effects.

  3. Black raspberry extracts inhibit benzo(a)pyrene diol-epoxide-induced activator protein 1 activation and VEGF transcription by targeting the phosphotidylinositol 3-kinase/Akt pathway.

    PubMed

    Huang, Chuanshu; Li, Jingxia; Song, Lun; Zhang, Dongyun; Tong, Qiangsong; Ding, Min; Bowman, Linda; Aziz, Robeena; Stoner, Gary D

    2006-01-01

    Previous studies have shown that freeze-dried black raspberry extract fractions inhibit benzo(a)pyrene [B(a)P]-induced transformation of Syrian hamster embryo cells and benzo(a)pyrene diol-epoxide [B(a)PDE]-induced activator protein-1 (AP-1) activity in mouse epidermal Cl 41 cells. The phosphotidylinositol 3-kinase (PI-3K)/Akt pathway is critical for B(a)PDE-induced AP-1 activation in mouse epidermal Cl 41 cells. In the present study, we determined the potential involvement of PI-3K and its downstream kinases on the inhibition of AP-1 activation by black raspberry fractions, RO-FOO3, RO-FOO4, RO-ME, and RO-DM. In addition, we investigated the effects of these fractions on the expression of the AP-1 target genes, vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS). Pretreatment of Cl 41 cells with fractions RO-F003 and RO-ME reduced activation of AP-1 and the expression of VEGF, but not iNOS. In contrast, fractions RO-F004 and RO-DM had no effect on AP-1 activation or the expression of either VEGF or iNOS. Consistent with inhibition of AP-1 activation, the RO-ME fraction markedly inhibited activation of PI-3K, Akt, and p70 S6 kinase (p70(S6k)). In addition, overexpression of the dominant negative PI-3K mutant delta p85 reduced the induction of VEGF by B(a)PDE. It is likely that the inhibitory effects of fractions RO-FOO3 and RO-ME on B(a)PDE-induced AP-1 activation and VEGF expression are mediated by inhibition of the PI-3K/Akt pathway. In view of the important roles of AP-1 and VEGF in tumor development, one mechanism for the chemopreventive activity of black raspberries may be inhibition of the PI-3K/Akt/AP-1/VEGF pathway.

  4. Black raspberry extracts inhibit benzo(a)pyrene diol-epoxide-induced activator protein 1 activation and VEGF transcription by targeting the phosphotidylinositol 3-kinase/Akt pathway.

    PubMed

    Huang, Chuanshu; Li, Jingxia; Song, Lun; Zhang, Dongyun; Tong, Qiangsong; Ding, Min; Bowman, Linda; Aziz, Robeena; Stoner, Gary D

    2006-01-01

    Previous studies have shown that freeze-dried black raspberry extract fractions inhibit benzo(a)pyrene [B(a)P]-induced transformation of Syrian hamster embryo cells and benzo(a)pyrene diol-epoxide [B(a)PDE]-induced activator protein-1 (AP-1) activity in mouse epidermal Cl 41 cells. The phosphotidylinositol 3-kinase (PI-3K)/Akt pathway is critical for B(a)PDE-induced AP-1 activation in mouse epidermal Cl 41 cells. In the present study, we determined the potential involvement of PI-3K and its downstream kinases on the inhibition of AP-1 activation by black raspberry fractions, RO-FOO3, RO-FOO4, RO-ME, and RO-DM. In addition, we investigated the effects of these fractions on the expression of the AP-1 target genes, vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS). Pretreatment of Cl 41 cells with fractions RO-F003 and RO-ME reduced activation of AP-1 and the expression of VEGF, but not iNOS. In contrast, fractions RO-F004 and RO-DM had no effect on AP-1 activation or the expression of either VEGF or iNOS. Consistent with inhibition of AP-1 activation, the RO-ME fraction markedly inhibited activation of PI-3K, Akt, and p70 S6 kinase (p70(S6k)). In addition, overexpression of the dominant negative PI-3K mutant delta p85 reduced the induction of VEGF by B(a)PDE. It is likely that the inhibitory effects of fractions RO-FOO3 and RO-ME on B(a)PDE-induced AP-1 activation and VEGF expression are mediated by inhibition of the PI-3K/Akt pathway. In view of the important roles of AP-1 and VEGF in tumor development, one mechanism for the chemopreventive activity of black raspberries may be inhibition of the PI-3K/Akt/AP-1/VEGF pathway. PMID:16397275

  5. Downstream System for the Second Axis of the DARHT Facility

    SciTech Connect

    Chen, Y-J; Bertolini, L; Caporaso, G J; Chambers, F W; Cook, E G; Falabella, S; Goldin, F J; Guethlein, G; Ho, D D-M; McCarrick, J F; Nelson, S D; Neurath, R; Paul, A C; Pincosy, P A; Poole, B R; Richardson, R A; Sampayan, S; Wang, L-F; Watson, J A; Westenskow, G A; Weir, J T

    2002-07-15

    This paper presents the physics design of the DARHT-II downstream system, which consists of a diagnostic beam stop, a fast, high-precision kicker system and the x-ray converter target assembly. The beamline configuration, the transverse resistive wall instability and the ion hose instability modeling are presented. They also discuss elimination of spot size dilution during kicker switching and implementation of the foil-barrier scheme to minimize the backstreaming ion focusing effects. Finally, they present the target converter's configuration, and the simulated DARHT-II x-ray spot sizes and doses. Some experimental results, which support the physics design, are also presented.

  6. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    PubMed Central

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-01-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound. PMID:27095146

  7. Simulation of a Novel Active Target for Neutron-Unbound State Measurements

    NASA Astrophysics Data System (ADS)

    Frank, Nathan; MoNA Collaboration

    2013-10-01

    Measurement of nuclei at extreme ratios of protons to neutrons is challenging due to the low production rate. New facilities will increase the production of neutron-rich isotopes, but still not reach the neutron dripline for heavier nuclei. We simulated a carbon-based active target system that could be constructed to both increase statistics while preserving the experimental resolution. This simulation is an adaptation of the in-house MoNA Collaboration C + + based simulation tool to extract the decay energy of neutron-unbound states. A number of experiments of this type have been carried out at the National Superconducting Cyclotron Laboratory (NSCL). In most experiments, we produce neutron-unbound nuclei by bombarding a Beryllium target with a radioactive beam. The nucleus of interest immediately decays into a charged particle and one or more neutrons. In this simulation, we have constructed a carbon-based active target that provides a measurement of energy loss, which is used to calculate the nuclear interaction point within the target. This additional information is used to improve the resolution or preserve the resolution of a thinner target while increasing statistics. This presentation will cover some aspects of the simulation process as well as show a resolution improvement of up to about 4 with a ~700 mg/cm2 active target compared to a Be-target. The simulation utilized experimental settings from published work. Work supported by National Science Foundation Grant #0969173.

  8. 78 FR 70537 - Takes of Marine Mammals Incidental to Specified Activities; Target and Missile Launch Activities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    .... SUMMARY: NMFS has received a request from the U.S. Navy (Navy), Naval Air Warfare Center Weapons Division... conducted for testing new types of targets. Missiles vary from tactical and developmental weapons to target missiles used to test defensive strategies and other weapons systems. Up to 200 missiles may be...

  9. Folate-conjugated polymer micelles for active targeting to cancer cells: preparation, in vitro evaluation of targeting ability and cytotoxicity

    NASA Astrophysics Data System (ADS)

    You, Jian; Li, Xin; de Cui, Fu; Du, Yong-Zhong; Yuan, Hong; Hu, Fu qiang

    2008-01-01

    To obtain an active-targeting carrier to cancer cells, folate-conjugated stearic acid grafted chitosan oligosaccharide (Fa-CSOSA) was synthesized by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-mediated coupling reaction. The substitution degree is 22.1%. The critical micelle concentrations (CMCs) of Fa-CSOSA were 0.017 and 0.0074 mg ml-1 in distilled water and PBS (pH 7.4), respectively. The average volume size range of Fa-CSOSA micelles was 60-120 nm. The targeting ability of Fa-CSOSA micelles was investigated against two kinds of cell lines (A549 and Hela), which have different amounts of folate receptors in their surface. The results indicated that Fa-CSOSA micelles presented a targeting ability to the cells (Hela) with a higher expression of folate receptor during a short-time incubation (<6 h). As incubation proceeded, the special spatial structure of the micelles gradually plays a main role in cellular internalization of the micelles. Good internalization of the micelles into both Hela and A549 cells was shown. Then, paclitaxel (PTX) was encapsulated into the micelles, and the content of PTX in the micelles was about 4.8% (w/w). The average volume size range of PTX-loaded micelles was 150-340 nm. Furthermore, the anti-tumor efficacy in vitro was investigated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) method. The IC50 of Taxol (a clinical formulation containing PTX) on A549 and Hela cells was 7.0 and 11.0 µg ml-1, respectively. The cytotoxicity of PTX-loaded micelles was improved sharply (IC50 on A549: 0.32 µg ml-1 IC50 on Hela: 0.268 µg ml-1). This is attributed to the increased intracellular delivery of the drug. The Fa-CSOSA micelles that are presented may be a promising active-targeting carrier candidate via folate mediation.

  10. Vaccinia virus inhibits NF-κB-dependent gene expression downstream of p65 translocation.

    PubMed

    Sumner, Rebecca P; Maluquer de Motes, Carlos; Veyer, David L; Smith, Geoffrey L

    2014-03-01

    The transcription factor nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) plays a critical role in host defense against viral infection by inducing the production of proinflammatory mediators and type I interferon. Consequently, viruses have evolved many mechanisms to block its activation. The poxvirus vaccinia virus (VACV) encodes numerous inhibitors of NF-κB activation that target multiple points in the signaling pathway. A derivative of VACV strain Copenhagen, called vv811, lacking 55 open reading frames in the left and right terminal regions of the genome was reported to still inhibit NF-κB activation downstream of tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β), suggesting the presence of one or more additional inhibitors. In this study, we constructed a recombinant vv811 lacking the recently described NF-κB inhibitor A49 (vv811ΔA49), yielding a virus that lacked all currently described inhibitors downstream of TNF-α and IL-1β. Unlike vv811, vv811ΔA49 no longer inhibited degradation of the phosphorylated inhibitor of κBα and p65 translocated into the nucleus. However, despite this translocation, vv811ΔA49 still inhibited TNF-α- and IL-1β-induced NF-κB-dependent reporter gene expression and the transcription and production of cytokines induced by these agonists. This inhibition did not require late viral gene expression. These findings indicate the presence of another inhibitor of NF-κB that is expressed early during infection and acts by a novel mechanism downstream of p65 translocation into the nucleus.

  11. Pitchfork and Gprasp2 Target Smoothened to the Primary Cilium for Hedgehog Pathway Activation

    PubMed Central

    Jung, Bomi; Padula, Daniela; Burtscher, Ingo; Landerer, Cedric; Lutter, Dominik; Theis, Fabian; Messias, Ana C.; Geerlof, Arie; Sattler, Michael; Kremmer, Elisabeth; Boldt, Karsten; Ueffing, Marius; Lickert, Heiko

    2016-01-01

    The seven-transmembrane receptor Smoothened (Smo) activates all Hedgehog (Hh) signaling by translocation into the primary cilia (PC), but how this is regulated is not well understood. Here we show that Pitchfork (Pifo) and the G protein-coupled receptor associated sorting protein 2 (Gprasp2) are essential components of an Hh induced ciliary targeting complex able to regulate Smo translocation to the PC. Depletion of Pifo or Gprasp2 leads to failure of Smo translocation to the PC and lack of Hh target gene activation. Together, our results identify a novel protein complex that is regulated by Hh signaling and required for Smo ciliary trafficking and Hh pathway activation. PMID:26901434

  12. Pitchfork and Gprasp2 Target Smoothened to the Primary Cilium for Hedgehog Pathway Activation.

    PubMed

    Jung, Bomi; Padula, Daniela; Burtscher, Ingo; Landerer, Cedric; Lutter, Dominik; Theis, Fabian; Messias, Ana C; Geerlof, Arie; Sattler, Michael; Kremmer, Elisabeth; Boldt, Karsten; Ueffing, Marius; Lickert, Heiko

    2016-01-01

    The seven-transmembrane receptor Smoothened (Smo) activates all Hedgehog (Hh) signaling by translocation into the primary cilia (PC), but how this is regulated is not well understood. Here we show that Pitchfork (Pifo) and the G protein-coupled receptor associated sorting protein 2 (Gprasp2) are essential components of an Hh induced ciliary targeting complex able to regulate Smo translocation to the PC. Depletion of Pifo or Gprasp2 leads to failure of Smo translocation to the PC and lack of Hh target gene activation. Together, our results identify a novel protein complex that is regulated by Hh signaling and required for Smo ciliary trafficking and Hh pathway activation. PMID:26901434

  13. EM23, a natural sesquiterpene lactone, targets thioredoxin reductase to activate JNK and cell death pathways in human cervical cancer cells.

    PubMed

    Shao, Fang-Yuan; Wang, Sheng; Li, Hong-Yu; Chen, Wen-Bo; Wang, Guo-Cai; Ma, Dong-Lei; Wong, Nai Sum; Xiao, Hao; Liu, Qiu-Ying; Zhou, Guang-Xiong; Li, Yao-Lan; Li, Man-Mei; Wang, Yi-Fei; Liu, Zhong

    2016-02-01

    Sesquiterpene lactones (SLs) are the active constituents of a variety of medicinal plants and found to have potential anticancer activities. However, the intracellular molecular targets of SLs and the underlying molecular mechanisms have not been well elucidated. In this study, we observed that EM23, a natural SL, exhibited anti-cancer activity in human cervical cancer cell lines by inducing apoptosis as indicated by caspase 3 activation, XIAP downregulation and mitochondrial dysfunction. Mechanistic studies indicated that EM23-induced apoptosis was mediated by reactive oxygen species (ROS) and the knockdown of thioredoxin (Trx) or thioredoxin reductase (TrxR) resulted in a reduction in apoptosis. EM23 attenuated TrxR activity by alkylation of C-terminal redox-active site Sec498 of TrxR and inhibited the expression levels of Trx/TrxR to facilitate ROS accumulation. Furthermore, inhibition of Trx/TrxR system resulted in the dissociation of ASK1 from Trx and the downstream activation of JNK. Pretreatment with ASK1/JNK inhibitors partially rescued cells from EM23-induced apoptosis. Additionally, EM23 inhibited Akt/mTOR pathway and induced autophagy, which was observed to be proapoptotic and mediated by ROS. Together, these results reveal a potential molecular mechanism for the apoptotic induction observed with SL compound EM23, and emphasize its putative role as a therapeutic agent for human cervical cancer. PMID:26758418

  14. Measuring and Reducing Off-Target Activities of Programmable Nucleases Including CRISPR-Cas9.

    PubMed

    Koo, Taeyoung; Lee, Jungjoon; Kim, Jin-Soo

    2015-06-01

    Programmable nucleases, which include zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and RNA-guided engineered nucleases (RGENs) repurposed from the type II clustered, regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system are now widely used for genome editing in higher eukaryotic cells and whole organisms, revolutionising almost every discipline in biological research, medicine, and biotechnology. All of these nucleases, however, induce off-target mutations at sites homologous in sequence with on-target sites, limiting their utility in many applications including gene or cell therapy. In this review, we compare methods for detecting nuclease off-target mutations. We also review methods for profiling genome-wide off-target effects and discuss how to reduce or avoid off-target mutations.

  15. Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits

    PubMed Central

    Bernstein, Jacob G.; Garrity, Paul A.; Boyden, Edward S.

    2011-01-01

    In recent years, interest has grown in the ability to manipulate, in a temporally precise fashion, the electrical activity of specific neurons embedded within densely wired brain circuits, in order to reveal how specific neurons subserve behaviors and neural computations, and to open up new horizons on the clinical treatment of brain disorders. Technologies that enable temporally precise control of electrical activity of specific neurons, and not these neurons ’ neighbors – whose cell bodies or processes might be just tens to hundreds of nanometers away – must involve two components. First, they require as a trigger a transient pulse of energy that supports the temporal precision of the control. Second, they require a molecular sensitizer that can be expressed in specific neurons and which renders those neurons specifically responsive to the triggering energy delivered. Optogenetic tools, such as microbial opsins, can be used to activate or silence neural activity with brief pulses of light. Thermogenetic tools, such as thermosensitive TRP channels, can be used to drive neural activity downstream of increases or decreases in temperature. We here discuss the principles underlying the operation of these two recently developed, but widely used, toolboxes, as well as the directions being taken in the use and improvement of these toolboxes. PMID:22119320

  16. Human Tyr-tRNA synthetase is a potent PARP-1 activating effector target for resveratrol

    PubMed Central

    Sajish, Mathew; Schimmel, Paul

    2014-01-01

    Resveratrol (RSV) is reported to extend life span1,2 and provide cardio-neuro-protective3, anti-diabetic4, and anti-cancer effects3,5 by initiating a stress response2 that induces survival genes. Because human tyrosyl tRNA synthetase (TyrRS) translocates to the nucleus under stress conditions6, we considered the possibility that the tyrosine-like phenolic ring of RSV might fit into the active site pocket to effect a nuclear role. Here we present a 2.1Å co-crystal structure of RSV bound to the active site of TyrRS. RSV nullified the catalytic activity and redirected TyrRS to a nuclear function, stimulating NAD+-dependent auto-poly-ADP-ribosylation of PARP-1. Downstream activation of key stress signaling pathways were causally connected to TyrRS-PARP-1-NAD+ collaboration. This collaboration was also demonstrated in the mouse, and was specifically blocked in vivo by a RSV-displacing tyrosyl adenylate analog. In contrast to functionally diverse tRNA synthetase catalytic nulls created by alternative splicing events that ablate active sites7, here a non-spliced TyrRS catalytic null reveals a new PARP-1- and NAD+-dependent dimension to the physiological mechanism of RSV. PMID:25533949

  17. Activation of mitogen-activated protein kinase by membrane-targeted Raf chimeras is independent of raft localization.

    PubMed

    Chen, X; Resh, M D

    2001-09-14

    Binding of proteins to the plasma membrane can be achieved with various membrane targeting motifs, including combinations of fatty acids, isoprenoids, and basic domains. In this study, we investigate whether attachment of different membrane targeting motifs influences the signaling capacity of membrane-bound signal transduction proteins by directing the proteins to different membrane microdomains. We used c-Raf-1 as a model for a signaling protein that is activated when membrane-bound. Three different membrane targeting motifs from K-Ras, Fyn, and Src proteins were fused to the N or C terminus of Raf-1. The ability of the modified Rafs to initiate MAPK signaling was then investigated. All three modified Raf-1 constructs activated MAPK to nearly equivalent levels. The extent of localization of the Raf-1 constructs to membrane microdomains known as rafts did not correlate with the level of MAPK activation. Moreover, treatment of cells with the raft disrupting drug methyl-beta-cyclodextrin (MbetaCD) caused activation of MAPK to levels equivalent to those achieved with membrane-targeted Raf constructs. The use of pharmacological agents as well as dominant negative mutants revealed that MAPK activation by MbetaCD proceeds via a phosphoinositide 3-kinase-dependent mechanism that is Ras/Raf-independent. We conclude that cholesterol depletion from the plasma membrane by MbetaCD constitutes an alternative pathway for activating MAPK.

  18. Cysteine Proteases: Modes of Activation and Future Prospects as Pharmacological Targets

    PubMed Central

    Verma, Sonia; Dixit, Rajnikant; Pandey, Kailash C.

    2016-01-01

    Proteolytic enzymes are crucial for a variety of biological processes in organisms ranging from lower (virus, bacteria, and parasite) to the higher organisms (mammals). Proteases cleave proteins into smaller fragments by catalyzing peptide bonds hydrolysis. Proteases are classified according to their catalytic site, and distributed into four major classes: cysteine proteases, serine proteases, aspartic proteases, and metalloproteases. This review will cover only cysteine proteases, papain family enzymes which are involved in multiple functions such as extracellular matrix turnover, antigen presentation, processing events, digestion, immune invasion, hemoglobin hydrolysis, parasite invasion, parasite egress, and processing surface proteins. Therefore, they are promising drug targets for various diseases. For preventing unwanted digestion, cysteine proteases are synthesized as zymogens, and contain a prodomain (regulatory) and a mature domain (catalytic). The prodomain acts as an endogenous inhibitor of the mature enzyme. For activation of the mature enzyme, removal of the prodomain is necessary and achieved by different modes. The pro-mature domain interaction can be categorized as protein–protein interactions (PPIs) and may be targeted in a range of diseases. Cysteine protease inhibitors are available that can block the active site but no such inhibitor available yet that can be targeted to block the pro-mature domain interactions and prevent it activation. This review specifically highlights the modes of activation (processing) of papain family enzymes, which involve auto-activation, trans-activation and also clarifies the future aspects of targeting PPIs to prevent the activation of cysteine proteases. PMID:27199750

  19. Cysteine Proteases: Modes of Activation and Future Prospects as Pharmacological Targets.

    PubMed

    Verma, Sonia; Dixit, Rajnikant; Pandey, Kailash C

    2016-01-01

    Proteolytic enzymes are crucial for a variety of biological processes in organisms ranging from lower (virus, bacteria, and parasite) to the higher organisms (mammals). Proteases cleave proteins into smaller fragments by catalyzing peptide bonds hydrolysis. Proteases are classified according to their catalytic site, and distributed into four major classes: cysteine proteases, serine proteases, aspartic proteases, and metalloproteases. This review will cover only cysteine proteases, papain family enzymes which are involved in multiple functions such as extracellular matrix turnover, antigen presentation, processing events, digestion, immune invasion, hemoglobin hydrolysis, parasite invasion, parasite egress, and processing surface proteins. Therefore, they are promising drug targets for various diseases. For preventing unwanted digestion, cysteine proteases are synthesized as zymogens, and contain a prodomain (regulatory) and a mature domain (catalytic). The prodomain acts as an endogenous inhibitor of the mature enzyme. For activation of the mature enzyme, removal of the prodomain is necessary and achieved by different modes. The pro-mature domain interaction can be categorized as protein-protein interactions (PPIs) and may be targeted in a range of diseases. Cysteine protease inhibitors are available that can block the active site but no such inhibitor available yet that can be targeted to block the pro-mature domain interactions and prevent it activation. This review specifically highlights the modes of activation (processing) of papain family enzymes, which involve auto-activation, trans-activation and also clarifies the future aspects of targeting PPIs to prevent the activation of cysteine proteases. PMID:27199750

  20. Targeted HIV-1 Latency Reversal Using CRISPR/Cas9-Derived Transcriptional Activator Systems

    PubMed Central

    Bialek, Julia K.; Dunay, Gábor A.; Voges, Maike; Schäfer, Carola; Spohn, Michael; Stucka, Rolf; Hauber, Joachim; Lange, Ulrike C.

    2016-01-01

    CRISPR/Cas9 technology is currently considered the most advanced tool for targeted genome engineering. Its sequence-dependent specificity has been explored for locus-directed transcriptional modulation. Such modulation, in particular transcriptional activation, has been proposed as key approach to overcome silencing of dormant HIV provirus in latently infected cellular reservoirs. Currently available agents for provirus activation, so-called latency reversing agents (LRAs), act indirectly through cellular pathways to induce viral transcription. However, their clinical performance remains suboptimal, possibly because reservoirs have diverse cellular identities and/or proviral DNA is intractable to the induced pathways. We have explored two CRISPR/Cas9-derived activator systems as targeted approaches to induce dormant HIV-1 proviral DNA. These systems recruit multiple transcriptional activation domains to the HIV 5’ long terminal repeat (LTR), for which we have identified an optimal target region within the LTR U3 sequence. Using this target region, we demonstrate transcriptional activation of proviral genomes via the synergistic activation mediator complex in various in culture model systems for HIV latency. Observed levels of induction are comparable or indeed higher than treatment with established LRAs. Importantly, activation is complete, leading to production of infective viral particles. Our data demonstrate that CRISPR/Cas9-derived technologies can be applied to counteract HIV latency and may therefore represent promising novel approaches in the quest for HIV elimination. PMID:27341108

  1. Target interaction profiling of midostaurin and its metabolites in neoplastic mast cells predicts distinct effects on activation and growth

    PubMed Central

    Peter, Barbara; Winter, Georg E.; Blatt, Katharina; Bennett, Keiryn L.; Stefanzl, Gabriele; Rix, Uwe; Eisenwort, Gregor; Hadzijusufovic, Emir; Gridling, Manuela; Dutreix, Catherine; Hoermann, Gregor; Schwaab, Juliana; Radia, Deepti; Roesel, Johannes; Manley, Paul W.; Reiter, Andreas; Superti-Furga, Giulio; Valent, Peter

    2016-01-01

    Proteomic-based drug testing is an emerging approach to establish the clinical value and anti-neoplastic potential of multi-kinase inhibitors. The multikinase inhibitor midostaurin (PKC412) is a promising new agent used to treat patients with advanced systemic mastocytosis (SM). We examined the target interaction-profiles and the mast cell (MC)-targeting effects of two pharmacologically relevant midostaurin metabolites, CGP52421 and CGP62221. All three compounds, midostaurin and the two metabolites, suppressed IgE-dependent histamine secretion in basophils and MC with reasonable IC50 values. Midostaurin and CGP62221 also produced growth-inhibition and dephosphorylation of KIT in the MC leukemia cell line HMC-1.2, whereas the second metabolite, CGP52421, that accumulates in vivo, showed no substantial effects. Chemical proteomic profiling and drug-competition experiments revealed that midostaurin interacts with KIT and several additional kinase-targets. The key downstream-regulator FES was recognized by midostaurin and CGP62221, but not by CGP52421 in MC lysates, whereas the IgE-receptor-downstream target SYK was recognized by both metabolites. Together, our data show that the clinically relevant midostaurin metabolite CGP52421 inhibits IgE-dependent histamine release, but is a weak inhibitor of MC proliferation which may have clinical implications and may explain why mediator-related symptoms improve in SM patients even when disease progression occurs. PMID:26349526

  2. Targeting the RAS pathway by mitogen-activated protein kinase inhibitors.

    PubMed

    Kiessling, Michael K; Rogler, Gerhard

    2015-01-01

    Targeting of oncogenic driver mutations with small-molecule inhibitors resulted in powerful treatment options for cancer patients in recent years. The RAS (rat sarcoma) pathway is among the most frequently mutated pathways in human cancer. Whereas targeting mutant Kirsten RAS (KRAS) remains difficult, mutant B rapidly accelerated fibrosarcoma (BRAF) kinase is an established drug target in cancer. Now data show that neuroblastoma RAS (NRAS) and even Harvey RAS (HRAS) mutations could be predictive markers for treatment with mitogen-activated protein kinase (MEK) inhibitors. This review discusses recent preclinical and clinical studies of MEK inhibitors in BRAF and RAS mutant cancer. PMID:26691679

  3. Coupling of downstream RNA polymerase-promoter interactions with formation of catalytically competent transcription initiation complex

    PubMed Central

    Mekler, Vladimir; Minakhin, Leonid; Borukhov, Sergei; Mustaev, Arkady; Severinov, Konstantin

    2014-01-01

    Bacterial RNA polymerase (RNAP) makes extensive contacts with duplex DNA downstream of the transcription bubble in initiation and elongation complexes. We investigated the role of downstream interactions in formation of catalytically competent transcription initiation complex by measuring initiation activity of stable RNAP complexes with model promoter DNA fragments whose downstream ends extend from +3 to +21 relative to the transcription start site at +1. We found that DNA downstream of position +6 does not play a significant role in transcription initiation when RNAP-promoter interactions upstream of the transcription start site are strong and promoter melting region is AT-rich. Further shortening of downstream DNA dramatically reduces efficiency of transcription initiation. The boundary of minimal downstream DNA duplex needed for efficient transcription initiation shifted further away from the catalytic center upon increasing the GC content of promoter melting region or in the presence of bacterial stringent response regulators DksA and ppGpp. These results indicate that the strength of RNAP-downstream DNA interactions has to reach a certain threshold to retain the catalytically competent conformation of the initiation complex and that establishment of contacts between RNAP and downstream DNA can be coupled with promoter melting. The data further suggest that RNAP interactions with DNA immediately downstream of the transcription bubble are particularly important for initiation of transcription. We hypothesize that these active center-proximal contacts stabilize the DNA template strand in the active center cleft and/or position the RNAP clamp domain to allow RNA synthesis. PMID:25311862

  4. Extracellularly activated nanocarriers: A new paradigm of tumor targeted drug delivery

    PubMed Central

    Gullotti, Emily; Yeo, Yoon

    2009-01-01

    One of the main goals of nanomedicine is to develop a nanocarrier that can selectively deliver anti-cancer drugs to the targeted tumors. Extensive efforts have resulted in several tumor-targeted nanocarriers, some of which are approved for clinical use. Most nanocarriers achieve tumor-selective accumulation through the enhanced permeability and retention effect. Targeting molecules such as antibodies, peptides, ligands, or nucleic acids attached to the nanocarriers further enhance their recognition and internalization by the target tissues. While both the stealth and targeting features are important for effective and selective drug delivery to the tumors, achieving both features simultaneously is often found to be difficult. Some of the recent targeting strategies have the potential to overcome this challenge. These strategies utilize the unique extracellular environment of tumors to change the long-circulating nanocarriers to release the drug or interact with cells in a tumor-specific manner. This review discusses the new targeting strategies with recent examples, which utilize the environmental stimuli to activate the nanocarriers. Traditional strategies for tumor-targeted nanocarriers are briefly discussed with an emphasis on their achievements and challenges. PMID:19366234

  5. Right temporoparietal junction activation by a salient contextual cue facilitates target discrimination.

    PubMed

    Geng, Joy J; Mangun, George R

    2011-01-01

    The right temporoparietal junction (R TPJ) is involved in stimulus-driven attentional control in response to the appearance of an unexpected target or a distractor that shares features with a task-relevant target. An unresolved question is whether these responses in R TPJ are due simply to the presence of a stimulus that is a potential target, or instead responds to any task-relevant information. Here, we addressed this issue by testing the sensitivity of R TPJ to a perceptually salient, non-target stimulus - a contextual cue. Although known to be a non-target, the contextual cue carried probabilistic information regarding the presence of a target in the opposite visual field. The contextual cue was therefore always of potential behavioral relevance, but only sometimes paired with a target. The appearance of the contextual cue alone increased activation in R TPJ, but more so when it appeared with a target. There was also greater connectivity between R TPJ and a network of attentional control and decision areas when the contextual cue was present. These results demonstrate that R TPJ is involved in the stimulus-driven representation of task-relevant information that can be used to engage an appropriate behavioral response.

  6. Nonimmunoglobulin target loci of activation-induced cytidine deaminase (AID) share unique features with immunoglobulin genes

    PubMed Central

    Kato, Lucia; Begum, Nasim A.; Burroughs, A. Maxwell; Doi, Tomomitsu; Kawai, Jun; Daub, Carsten O.; Kawaguchi, Takahisa; Matsuda, Fumihiko; Hayashizaki, Yoshihide; Honjo, Tasuku

    2012-01-01

    Activation-induced cytidine deaminase (AID) is required for both somatic hypermutation and class-switch recombination in activated B cells. AID is also known to target nonimmunoglobulin genes and introduce mutations or chromosomal translocations, eventually causing tumors. To identify as-yet-unknown AID targets, we screened early AID-induced DNA breaks by using two independent genome-wide approaches. Along with known AID targets, this screen identified a set of unique genes (SNHG3, MALAT1, BCL7A, and CUX1) and confirmed that these loci accumulated mutations as frequently as Ig locus after AID activation. Moreover, these genes share three important characteristics with the Ig gene: translocations in tumors, repetitive sequences, and the epigenetic modification of chromatin by H3K4 trimethylation in the vicinity of cleavage sites. PMID:22308462

  7. Centrosomal targeting of tyrosine kinase activity does not enhance oncogenicity in chronic myeloproliferative disorders.

    PubMed

    Bochtler, T; Kirsch, M; Maier, B; Bachmann, J; Klingmüller, U; Anderhub, S; Ho, A D; Krämer, A

    2012-04-01

    Constitutive tyrosine kinase activation by reciprocal chromosomal translocation is a common pathogenetic mechanism in chronic myeloproliferative disorders. Since centrosomal proteins have been recurrently identified as translocation partners of tyrosine kinases FGFR1, JAK2, PDGFRα and PDGFRβ in these diseases, a role for the centrosome in oncogenic transformation has been hypothesized. In this study, we addressed the functional role of centrosomally targeted tyrosine kinase activity. First, centrosomal localization was not routinely found for all chimeric fusion proteins tested. Second, targeting of tyrosine kinases to the centrosome by creating artificial chimeric fusion kinases with the centrosomal targeting domain of AKAP450 failed to enhance the oncogenic transforming potential in both Ba/F3 and U2OS cells, although phospho-tyrosine-mediated signal transduction pathways were initiated at the centrosome. We conclude that the centrosomal localization of constitutively activated tyrosine kinases does not contribute to disease pathogenesis in chronic myeloproliferative disorders. PMID:22015771

  8. Nonimmunoglobulin target loci of activation-induced cytidine deaminase (AID) share unique features with immunoglobulin genes.

    PubMed

    Kato, Lucia; Begum, Nasim A; Burroughs, A Maxwell; Doi, Tomomitsu; Kawai, Jun; Daub, Carsten O; Kawaguchi, Takahisa; Matsuda, Fumihiko; Hayashizaki, Yoshihide; Honjo, Tasuku

    2012-02-14

    Activation-induced cytidine deaminase (AID) is required for both somatic hypermutation and class-switch recombination in activated B cells. AID is also known to target nonimmunoglobulin genes and introduce mutations or chromosomal translocations, eventually causing tumors. To identify as-yet-unknown AID targets, we screened early AID-induced DNA breaks by using two independent genome-wide approaches. Along with known AID targets, this screen identified a set of unique genes (SNHG3, MALAT1, BCL7A, and CUX1) and confirmed that these loci accumulated mutations as frequently as Ig locus after AID activation. Moreover, these genes share three important characteristics with the Ig gene: translocations in tumors, repetitive sequences, and the epigenetic modification of chromatin by H3K4 trimethylation in the vicinity of cleavage sites.

  9. Activation of the transcription factor FosB/activating protein-1 (AP-1) is a prominent downstream signal of the extracellular nucleotide receptor P2RX7 in monocytic and osteoblastic cells.

    PubMed

    Gavala, Monica L; Hill, Lindsay M; Lenertz, Lisa Y; Karta, Maya R; Bertics, Paul J

    2010-10-29

    Activation of the ionotropic P2RX7 nucleotide receptor by extracellular ATP has been implicated in modulating inflammatory disease progression. Continuous exposure of P2RX7 to ligand can result in apoptosis in many cell types, including monocytic cells, whereas transient activation of P2RX7 is linked to inflammatory mediator production and the promotion of cell growth. Given the rapid hydrolysis of ATP in the circulation and interstitial space, transient activation of P2RX7 appears critically important for its action, yet its effects on gene expression are unclear. The present study demonstrates that short-term stimulation of human and mouse monocytic cells as well as mouse osteoblasts with P2RX7 agonists substantially induces the expression of several activating protein-1 (AP-1) members, particularly FosB. The potent activation of FosB after P2RX7 stimulation is especially noteworthy considering that little is known concerning the role of FosB in immunological regulation. Interestingly, the magnitude of FosB activation induced by P2RX7 stimulation appears greater than that observed with other known inducers of FosB expression. In addition, we have identified a previously unrecognized role for FosB in osteoblasts with respect to nucleotide-induced expression of cyclooxygenase-2 (COX-2), which is the rate-limiting enzyme in prostaglandin biosynthesis from arachidonic acid and is critical for osteoblastic differentiation and immune behavior. The present studies are the first to link P2RX7 action to FosB/AP-1 regulation in multiple cell types, including a role in nucleotide-induced COX-2 expression, and support a role for FosB in the control of immune and osteogenic function by P2RX7. PMID:20813842

  10. Sphingosine 1-Phosphate Activation of EGFR As a Novel Target for Meningitic Escherichia coli Penetration of the Blood-Brain Barrier

    PubMed Central

    Wang, Xiangru; Maruvada, Ravi; Morris, Andrew J.; Liu, Jun O.; Baek, Dong Jae; Kim, Kwang Sik

    2016-01-01

    Central nervous system (CNS) infection continues to be an important cause of mortality and morbidity, necessitating new approaches for investigating its pathogenesis, prevention and therapy. Escherichia coli is the most common Gram-negative bacillary organism causing meningitis, which develops following penetration of the blood–brain barrier (BBB). By chemical library screening, we identified epidermal growth factor receptor (EGFR) as a contributor to E. coli invasion of the BBB in vitro. Here, we obtained the direct evidence that CNS-infecting E. coli exploited sphingosine 1-phosphate (S1P) for EGFR activation in penetration of the BBB in vitro and in vivo. We found that S1P was upstream of EGFR and participated in EGFR activation through S1P receptor as well as through S1P-mediated up-regulation of EGFR-related ligand HB-EGF, and blockade of S1P function through targeting sphingosine kinase and S1P receptor inhibited EGFR activation, and also E. coli invasion of the BBB. We further found that both S1P and EGFR activations occurred in response to the same E. coli proteins (OmpA, FimH, NlpI), and that S1P and EGFR promoted E. coli invasion of the BBB by activating the downstream c-Src. These findings indicate that S1P and EGFR represent the novel host targets for meningitic E. coli penetration of the BBB, and counteracting such targets provide a novel approach for controlling E. coli meningitis in the era of increasing resistance to conventional antibiotics. PMID:27711202

  11. Activity and radiation protection studies for the W-Ta target of CSNS.

    PubMed

    Yu, Q Z; Liang, T J; Yin, W

    2009-09-01

    The Chinese government initiated a conceptual design for the project of China Spallation Neutron Source (CSNS), which consists of an H-linear accelerator, a rapid cycling synchrotron accelerating the beam to 1.6 GeV, a target station converting proton beam into lower energy (<1 eV) neutron beam optimised to instruments for neutron scattering applications. The facility operates at 25-Hz repetition rate with an initial beam power of 100 kW. In the target station, the target-moderator-reflector (TMR) components are exposed to the intensive fluxes of high-energy hadrons and become highly radioactive as a result of long-time irradiation. In this paper, the activity of the TMR components are calculated using the Monte Carlo code system LAHET&MCNP4C&CINDER'90. Comparisons of some results with that simulated by FLUKA code are also performed. Detailed analyses of the radionuclides and their characters in the tantalum clad tungsten target (W-Ta target) are important for the radiation protection of the CSNS target station. The shielding design of the service cell for the decay gamma ray induced from the W-Ta target and its vessel shows that the ambient dose rate decreases exponentially with increasing heavy concrete thickness. And 80 cm thickness of heavy concrete for each side of the service cell can satisfy the safety requirement. PMID:19770213

  12. Modeling downstream fining in sand-bed rivers. II: Application

    USGS Publications Warehouse

    Wright, S.; Parker, G.

    2005-01-01

    In this paper the model presented in the companion paper, Wright and Parker (2005) is applied to a generic river reach typical of a large, sand-bed river flowing into the ocean in order to investigate the mechanisms controlling longitudinal profile development and downstream fining. Three mechanisms which drive downstream fining are studied: a delta prograding into standing water, sea-level rise, and tectonic subsidence. Various rates of sea-level rise (typical of the late Holocene) and tectonic subsidence are modeled in order to quantify their effects on the degree of profile concavity and downstream fining. Also, several other physical mechanisms which may affect fining are studied, including the relative importance of the suspended versus bed load, the effect of the loss of sediment overbank, and the influence of the delta bottom slope. Finally, sensitivity analysis is used to show that the grain-size distribution at the interface between the active layer and substrate has a significant effect on downstream fining. ?? 2005 International Association of Hydraulic Engineering and Research.

  13. Remote Bridge Deflection Measurement Using an Advanced Video Deflectometer and Actively Illuminated LED Targets.

    PubMed

    Tian, Long; Pan, Bing

    2016-01-01

    An advanced video deflectometer using actively illuminated LED targets is proposed for remote, real-time measurement of bridge deflection. The system configuration, fundamental principles, and measuring procedures of the video deflectometer are first described. To address the challenge of remote and accurate deflection measurement of large engineering structures without being affected by ambient light, the novel idea of active imaging, which combines high-brightness monochromatic LED targets with coupled bandpass filter imaging, is introduced. Then, to examine the measurement accuracy of the proposed advanced video deflectometer in outdoor environments, vertical motions of an LED target with precisely-controlled translations were measured and compared with prescribed values. Finally, by tracking six LED targets mounted on the bridge, the developed video deflectometer was applied for field, remote, and multipoint deflection measurement of the Wuhan Yangtze River Bridge, one of the most prestigious and most publicized constructions in China, during its routine safety evaluation tests. Since the proposed video deflectometer using actively illuminated LED targets offers prominent merits of remote, contactless, real-time, and multipoint deflection measurement with strong robustness against ambient light changes, it has great potential in the routine safety evaluation of various bridges and other large-scale engineering structures. PMID:27563901

  14. Active target studies of the αp-process at CRIB

    NASA Astrophysics Data System (ADS)

    Kahl, D.; Hashimoto, T.; Duy, N. N.; Kubono, S.; Yamaguchi, H.; Binh, D. N.; Chen, A. A.; Cherubini, S.; Hayakawa, S.; He, J. J.; Ishiyama, H.; Iwasa, N.; Khiem, L. H.; Kwon, Y. K.; Michimasa, S.; Nakao, T.; Ota, S.; Teranishi, T.; Tokieda, H.; Wakabayashi, Y.; Yamada, T.; Zhang, L. Y.

    2014-05-01

    The αp-process is a sequence of (α, p)(p, γ) reactions important to the nuclear trajectory to higher masses in type I X-ray bursts. Specifically, the αp-process is schematically pure helium-burning, and thus unlike pure hydrogen-burning processes, does not require slow β+ decays. Explosive helium burning is responsible for the observed short rise-times of X-ray bursts but ultimately gives way to the rp-process as the Coulomb barrier increases. Because the stellar reaction rates of these (α, p) reactions are poorly known over the relevant astrophysical energies, we performed systematic studies of the 18Ne(α,p), 22Mg(α,p) and 30S(α,p) reactions at the Center for Nuclear Study (CNS) low-energy radioactive ion beam separator, called CRIB. We produce the radioactive beams in-flight and scan the center-of-mass energy down into the Gamow Window using a thick target in inverse kinematics. The helium target gas also serves as part of the detector system, an active target, which was newly designed for these measurements. The active target, which uses gas electron multiplier (GEM) foils, allows for higher beam injection rates than previous multi-sampling and tracking proportional counters (MSTPC). We present a summary of our recent results from these active target experiments at CRIB.

  15. Remote Bridge Deflection Measurement Using an Advanced Video Deflectometer and Actively Illuminated LED Targets

    PubMed Central

    Tian, Long; Pan, Bing

    2016-01-01

    An advanced video deflectometer using actively illuminated LED targets is proposed for remote, real-time measurement of bridge deflection. The system configuration, fundamental principles, and measuring procedures of the video deflectometer are first described. To address the challenge of remote and accurate deflection measurement of large engineering structures without being affected by ambient light, the novel idea of active imaging, which combines high-brightness monochromatic LED targets with coupled bandpass filter imaging, is introduced. Then, to examine the measurement accuracy of the proposed advanced video deflectometer in outdoor environments, vertical motions of an LED target with precisely-controlled translations were measured and compared with prescribed values. Finally, by tracking six LED targets mounted on the bridge, the developed video deflectometer was applied for field, remote, and multipoint deflection measurement of the Wuhan Yangtze River Bridge, one of the most prestigious and most publicized constructions in China, during its routine safety evaluation tests. Since the proposed video deflectometer using actively illuminated LED targets offers prominent merits of remote, contactless, real-time, and multipoint deflection measurement with strong robustness against ambient light changes, it has great potential in the routine safety evaluation of various bridges and other large-scale engineering structures. PMID:27563901

  16. Active target studies of the αp-process at CRIB

    SciTech Connect

    Kahl, D.; Yamaguchi, H.; Michimasa, S.; Nakao, T.; Ota, S.; Tokieda, H.; Hashimoto, T.; Duy, N. N.; Khiem, L. H.; Kubono, S.; Binh, D. N.; Chen, A. A.; Cherubini, S.; Hayakawa, S.; He, J. J.; Zhang, L. Y.; Ishiyama, H.; Iwasa, N.; Yamada, T.; Kwon, Y. K.; and others

    2014-05-02

    The αp-process is a sequence of (α, p)(p, γ) reactions important to the nuclear trajectory to higher masses in type I X-ray bursts. Specifically, the αp-process is schematically pure helium-burning, and thus unlike pure hydrogen-burning processes, does not require slow β{sup +} decays. Explosive helium burning is responsible for the observed short rise-times of X-ray bursts but ultimately gives way to the rp-process as the Coulomb barrier increases. Because the stellar reaction rates of these (α, p) reactions are poorly known over the relevant astrophysical energies, we performed systematic studies of the {sup 18}Ne(α,p), {sup 22}Mg(α,p) and {sup 30}S(α,p) reactions at the Center for Nuclear Study (CNS) low-energy radioactive ion beam separator, called CRIB. We produce the radioactive beams in-flight and scan the center-of-mass energy down into the Gamow Window using a thick target in inverse kinematics. The helium target gas also serves as part of the detector system, an active target, which was newly designed for these measurements. The active target, which uses gas electron multiplier (GEM) foils, allows for higher beam injection rates than previous multi-sampling and tracking proportional counters (MSTPC). We present a summary of our recent results from these active target experiments at CRIB.

  17. Direct activation of the apoptosis machinery as a mechanism to target cancer cells.

    PubMed

    Nguyen, Jack T; Wells, James A

    2003-06-24

    Apoptosis plays a pivotal role in the cytotoxic activity of most chemotherapeutic drugs, and defects in this pathway provide a basis for drug resistance in many cancers. Thus the ability to restore apoptosis by using small molecules could have important therapeutic implications. Using a cell-free assay to simultaneously target multiple components of the apoptosis pathway, we identified a class of compounds that activate caspases in a cytochrome c-dependent manner and induce apoptosis in whole cells. By reconstituting the apoptosis pathway with purified proteins, we determined that these compounds promote the protein-protein association of Apaf-1 into the functional apoptosome. These compounds exert cytostatic and cytotoxic effects on a variety of cancer cell lines while having little or no activity against the normal cell lines tested. These findings suggest that direct activation of the basic apoptosis machinery may be a viable mechanism to selectively target cancer.

  18. Light-controlled active release of photocaged ciprofloxacin for lipopolysaccharide-targeted drug delivery using dendrimer conjugates.

    PubMed

    Wong, Pamela T; Tang, Shengzhuang; Mukherjee, Jhindan; Tang, Kenny; Gam, Kristina; Isham, Danielle; Murat, Claire; Sun, Rachel; Baker, James R; Choi, Seok Ki

    2016-08-16

    We report an active delivery mechanism targeted specifically to Gram(-) bacteria based on the photochemical release of photocaged ciprofloxacin carried by a cell wall-targeted dendrimer nanoconjugate. PMID:27476878

  19. Radiation inactivation analysis of influenza virus reveals different target sizes for fusion, leakage, and neuraminidase activities

    SciTech Connect

    Gibson, S.; Jung, C.Y.; Takahashi, M.; Lenard, J.

    1986-10-07

    The size of the functional units responsible for several activities carried out by the influenza virus envelope glycoproteins was determined by radiation inactivation analysis. Neuraminidase activity, which resides in the glycoprotein NA, was inactivated exponentially with an increasing radiation dose, yielding a target size of 94 +/- 5 kilodaltons (kDa), in reasonable agreement with that of the disulfide-bonded dimer (120 kDa). All the other activities studied are properties of the HA glycoprotein and were normalized to the known molecular weight of the neuraminidase dimer. Virus-induced fusion activity was measured by two phospholipid dilution assays: relief of energy transfer between N-(7-nitro-2,1,3-benzoxadiazol-4-yl)dipalmitoyl-L-alpha- phosphatidylethanolamine (N-NBD-PE) and N-(lissamine rhodamine B sulfonyl)-dioleoyl-L-alpha-phosphatidylethanolamine (N-Rh-PE) in target liposomes and relief of self-quenching of N-Rh-PE in target liposomes. Radiation inactivation of fusion activity proceeded exponentially with radiation dose, yielding normalized target sizes of 68 +/- 6 kDa by assay i and 70 +/- 4 kDa by assay ii. These values are close to the molecular weight of a single disulfide-bonded (HA1 + HA2) unit (75 kDa), the monomer of the HA trimer. A single monomer is thus inactivated by each radiation event, and each monomer (or some part of it) constitutes a minimal functional unit capable of mediating fusion. Virus-induced leakage of calcein from target liposomes and virus-induced leakage of hemoglobin from erythrocytes (hemolysis) both showed more complex inactivation behavior: a pronounced shoulder was present in both inactivation curves, followed by a steep drop in activity at higher radiation levels.

  20. The research of multi-frame target recognition based on laser active imaging

    NASA Astrophysics Data System (ADS)

    Wang, Can-jin; Sun, Tao; Wang, Tin-feng; Chen, Juan

    2013-09-01

    Laser active imaging is fit to conditions such as no difference in temperature between target and background, pitch-black night, bad visibility. Also it can be used to detect a faint target in long range or small target in deep space, which has advantage of high definition and good contrast. In one word, it is immune to environment. However, due to the affect of long distance, limited laser energy and atmospheric backscatter, it is impossible to illuminate the whole scene at the same time. It means that the target in every single frame is unevenly or partly illuminated, which make the recognition more difficult. At the same time the speckle noise which is common in laser active imaging blurs the images . In this paper we do some research on laser active imaging and propose a new target recognition method based on multi-frame images . Firstly, multi pulses of laser is used to obtain sub-images for different parts of scene. A denoising method combined homomorphic filter with wavelet domain SURE is used to suppress speckle noise. And blind deconvolution is introduced to obtain low-noise and clear sub-images. Then these sub-images are registered and stitched to combine a completely and uniformly illuminated scene image. After that, a new target recognition method based on contour moments is proposed. Firstly, canny operator is used to obtain contours. For each contour, seven invariant Hu moments are calculated to generate the feature vectors. At last the feature vectors are input into double hidden layers BP neural network for classification . Experiments results indicate that the proposed algorithm could achieve a high recognition rate and satisfactory real-time performance for laser active imaging.

  1. A Network-Based Multi-Target Computational Estimation Scheme for Anticoagulant Activities of Compounds

    PubMed Central

    Li, Canghai; Chen, Lirong; Song, Jun; Tang, Yalin; Xu, Xiaojie

    2011-01-01

    Background Traditional virtual screening method pays more attention on predicted binding affinity between drug molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against a complex disease by general network estimation has become feasible with the development of network biology and system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint that partial inhibition of several targets can be more efficient than the complete inhibition of a single target. Methodology We developed a novel approach by integrating the affinity predictions from multi-target docking studies with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes, while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of argatroban intermediates and eight natural products respectively. The better correlation (r = 0.671) between the experimental data and the decrease of the network deficiency suggests that the approach could be a promising computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery. Conclusions This article proposes a network-based multi-target computational estimation method for

  2. Targeting human CD27 with an agonist antibody stimulates T-cell activation and antitumor immunity.

    PubMed

    Thomas, Lawrence J; He, Li-Zhen; Marsh, Henry; Keler, Tibor

    2014-01-01

    CD27 is an important co-stimulatory receptor of T cells that can potentially be exploited for immunotherapy. We developed a human IgG1 antibody that targets human CD27, and demonstrated its immunostimulatory and antineoplastic activity in various preclinical models. Currently, the antibody (1F5, CDX-1127) is being tested in patients affected by advanced malignancies. PMID:24605266

  3. The Role of Specificity, Targeted Learning Activities, and Prior Knowledge for the Effects of Relevance Instructions

    ERIC Educational Resources Information Center

    Roelle, Julian; Lehmkuhl, Nina; Beyer, Martin-Uwe; Berthold, Kirsten

    2015-01-01

    In 2 experiments we examined the role of (a) specificity, (b) the type of targeted learning activities, and (c) learners' prior knowledge for the effects of relevance instructions on learning from instructional explanations. In Experiment 1, we recruited novices regarding the topic of atomic structure (N = 80) and found that "specific"…

  4. Developing, Implementing, and Evaluating a Condom Promotion Program Targeting Sexually Active Adolescents.

    ERIC Educational Resources Information Center

    Alstead, Mark; Campsmith, Michael; Halley, Carolyn Swope; Hartfield, Karen; Goldblum, Gary; Wood, Robert W.

    1999-01-01

    Describes the development, implementation, and evaluation of an HIV prevention program promoting condom use among sexually active adolescents. It mobilized target communities to guide program development and implementation; created a mass media campaign to promote correct condom use; and recruited public agencies and organizations to distribute…

  5. Neuronal targeting, internalization, and biological activity of a recombinant atoxic derivative of botulinum neurotoxin A

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Botulinum neurotoxins (BoNT) have the unique capacity to cross epithelial barriers, target neuromuscular junctions, and translocate active metalloprotease component to the cytosol of motor neurons. We have taken advantage of the molecular carriers responsible for this trafficking to create a family ...

  6. Profiling Hepatic microRNAs in Zebrafish: Fluoxetine Exposure Mimics a Fasting Response That Targets AMP-Activated Protein Kinase (AMPK)

    PubMed Central

    Craig, Paul M.; Trudeau, Vance L.; Moon, Thomas W.

    2014-01-01

    This study examined the similarities in microRNA profiles between fasted and fluoxetine (FLX) exposed zebrafish and downstream target transcripts and biological pathways. Using a custom designed microarray targeting 270 zebrafish miRNAs, we identified 9 differentially expressed miRNAs targeting transcripts in biological pathways associated with anabolic metabolism, such as adipogenesis, cholesterol biosynthesis, triacylglycerol synthesis, and insulin signaling. Exposure of female zebrafish to 540 ng/L FLX, an environmentally relevant concentration and a known metabolic repressor, increased specific miRNAs indicating greater inhibition of these pathways in spite of continued feeding. Further examination revealed two specific miRNAs, dre-let-7d and dre-miR-140-5p, were predicted in silico to bind to a primary regulator of metabolism, adenosine monophosphate-activated protein kinase (AMPK), and more specifically the two isoforms of the catalytic subunit, AMPKα1 and α2, respectively. Real-time analysis of the relative transcript abundance of the α1 and α2 mRNAs indicated a significant inverse relationship between specific miRNA and target transcript. This suggests that AMPK-related pathways may be compromised during FLX exposure as a result of increased miRNA abundance. The mechanism by which FLX regulates miRNA abundance is unknown but may be direct at the liver. The serotonin transporter, slc6a4, is the target of FLX and other selective serotonin reuptake inhibitors (SSRI) and it was found to be expressed in the liver, although treatment did not alter expression of this transporter. Exposure to FLX disrupts key hepatic metabolic pathways, which may be indicative of reduced overall fitness and these effects may be linked to specific miRNA abundance. This has important implications for the heath of fish because concentrations of SSRIs in aquatic ecosystems are continually increasing. PMID:24751937

  7. Prosthetic systems for therapeutic optical activation and silencing of genetically-targeted neurons

    PubMed Central

    Bernstein, Jacob G.; Han, Xue; Henninger, Michael A.; Ko, Emily Y.; Qian, Xiaofeng; Franzesi, Giovanni Talei; McConnell, Jackie P.; Stern, Patrick; Desimone, Robert; Boyden, Edward S.

    2008-01-01

    Many neural disorders are associated with aberrant activity in specific cell types or neural projection pathways embedded within the densely-wired, heterogeneous matter of the brain. An ideal therapy would permit correction of activity just in specific target neurons, while leaving other neurons unaltered. Recently our lab revealed that the naturally-occurring light-activated proteins channelrhodopsin-2 (ChR2) and halorhodopsin (Halo/NpHR) can, when genetically expressed in neurons, enable them to be safely, precisely, and reversibly activated and silenced by pulses of blue and yellow light, respectively. We here describe the ability to make specific neurons in the brain light-sensitive, using a viral approach. We also reveal the design and construction of a scalable, fully-implantable optical prosthetic capable of delivering light of appropriate intensity and wavelength to targeted neurons at arbitrary 3-D locations within the brain, enabling activation and silencing of specific neuron types at multiple locations. Finally, we demonstrate control of neural activity in the cortex of the non-human primate, a key step in the translation of such technology for human clinical use. Systems for optical targeting of specific neural circuit elements may enable a new generation of high-precision therapies for brain disorders. PMID:18458792

  8. Aryl azoles with neuroprotective activity--parallel synthesis and attempts at target identification.

    PubMed

    Cocconcelli, Giuseppe; Diodato, Enrica; Caricasole, Andrea; Gaviraghi, Giovanni; Genesio, Eva; Ghiron, Chiara; Magnoni, Letizia; Pecchioli, Elena; Plazzi, Pier Vincenzo; Terstappen, Georg C

    2008-02-15

    A parallel synthesis of aryl azoles with neuroprotective activity is described. All compounds obtained were evaluated in an in vitro assay using a NMDA toxicity paradigm showing a neuroprotective activity between 15% and 40%. The potential biological target of the active compounds was investigated by extensive literature searches based around similar scaffolds with reported neuroprotective activity. The most interesting molecules active in the NMDA toxicity assay (3a and 2g) showed moderate but significant activity in the inhibition of the Site 2 Sodium Channel binding assay at 10 microM. To confirm our hypothesis compounds 3a, c, f and 2g were tested in the Veratridine assay which is one of the excitotoxicity assays of relevance to NaV channels. The compounds tested showed an activity between 40% and 70%. The identification of neuroprotective small molecules and the identification of NaV channels as the potential site of action were the most important goals of this work.

  9. Preclinical Activity of ARQ 087, a Novel Inhibitor Targeting FGFR Dysregulation

    PubMed Central

    Hall, Terence G.; Yu, Yi; Eathiraj, Sudharshan; Wang, Yunxia; Savage, Ronald E.; Lapierre, Jean-Marc; Schwartz, Brian; Abbadessa, Giovanni

    2016-01-01

    Dysregulation of Fibroblast Growth Factor Receptor (FGFR) signaling through amplifications, mutations, and gene fusions has been implicated in a broad array of cancers (e.g. liver, gastric, ovarian, endometrial, and bladder). ARQ 087 is a novel, ATP competitive, small molecule, multi-kinase inhibitor with potent in vitro and in vivo activity against FGFR addicted cell lines and tumors. Biochemically, ARQ 087 exhibited IC50 values of 1.8 nM for FGFR2, and 4.5 nM for FGFR1 and 3. In cells, inhibition of FGFR2 auto-phosphorylation and other proteins downstream in the FGFR pathway (FRS2α, AKT, ERK) was evident by the response to ARQ 087 treatment. Cell proliferation studies demonstrated ARQ 087 has anti-proliferative activity in cell lines driven by FGFR dysregulation, including amplifications, fusions, and mutations. Cell cycle studies in cell lines with high levels of FGFR2 protein showed a positive relationship between ARQ 087 induced G1 cell cycle arrest and subsequent induction of apoptosis. In addition, ARQ 087 was effective at inhibiting tumor growth in vivo in FGFR2 altered, SNU-16 and NCI-H716, xenograft tumor models with gene amplifications and fusions. ARQ 087 is currently being studied in a phase 1/2 clinical trial that includes a sub cohort for intrahepatic cholangiocarcinoma patients with confirmed FGFR2 gene fusions (NCT01752920). PMID:27627808

  10. Preclinical Activity of ARQ 087, a Novel Inhibitor Targeting FGFR Dysregulation.

    PubMed

    Hall, Terence G; Yu, Yi; Eathiraj, Sudharshan; Wang, Yunxia; Savage, Ronald E; Lapierre, Jean-Marc; Schwartz, Brian; Abbadessa, Giovanni

    2016-01-01

    Dysregulation of Fibroblast Growth Factor Receptor (FGFR) signaling through amplifications, mutations, and gene fusions has been implicated in a broad array of cancers (e.g. liver, gastric, ovarian, endometrial, and bladder). ARQ 087 is a novel, ATP competitive, small molecule, multi-kinase inhibitor with potent in vitro and in vivo activity against FGFR addicted cell lines and tumors. Biochemically, ARQ 087 exhibited IC50 values of 1.8 nM for FGFR2, and 4.5 nM for FGFR1 and 3. In cells, inhibition of FGFR2 auto-phosphorylation and other proteins downstream in the FGFR pathway (FRS2α, AKT, ERK) was evident by the response to ARQ 087 treatment. Cell proliferation studies demonstrated ARQ 087 has anti-proliferative activity in cell lines driven by FGFR dysregulation, including amplifications, fusions, and mutations. Cell cycle studies in cell lines with high levels of FGFR2 protein showed a positive relationship between ARQ 087 induced G1 cell cycle arrest and subsequent induction of apoptosis. In addition, ARQ 087 was effective at inhibiting tumor growth in vivo in FGFR2 altered, SNU-16 and NCI-H716, xenograft tumor models with gene amplifications and fusions. ARQ 087 is currently being studied in a phase 1/2 clinical trial that includes a sub cohort for intrahepatic cholangiocarcinoma patients with confirmed FGFR2 gene fusions (NCT01752920). PMID:27627808

  11. How Mitogen-Activated Protein Kinases Recognize and Phosphorylate Their Targets: A QM/MM Study

    PubMed Central

    Turjanski, Adrian Gustavo; Hummer, Gerhard; Gutkind, J. Silvio

    2009-01-01

    Mitogen-activated protein kinase (MAPK) signaling pathways play an essential role in the transduction of environmental stimuli to the nucleus, thereby regulating a variety of cellular processes, including cell proliferation, differentiation and programmed cell death. The components of the MAPK extracellular activated protein kinase (ERK) cascade represent attractive targets for cancer therapy as their aberrant activation is a frequent event among highly prevalent human cancers. To understand how MAPKs recognize and phosphorylate their targets is key to unravel their function. However, these events are still poorly understood due to the lack of complex structures of MAPKs with their bound targets in the active site. Here, we have modeled the interaction of ERK with a target peptide and analyzed the specificity towards Ser/Thr-Pro motifs. By using a Quantum Mechanics/Molecular Mechanics (QM/MM) approach we propose a mechanism for the phosphoryl transfer catalyzed by ERK that offers new insights into MAPK function. Our results suggest that 1) the proline residue has a role both in specificity and phospho transfer efficiency; 2) the reaction occurs in one step with ERK2 Asp147 acting as the catalytic base; 3) a conserved Lys in the kinase superfamily usually mutated to check kinase activity strongly stabilizes the transition state; and 4) the reaction mechanism is similar with either one or two Mg2+ ions in the active site. Taken together, our results provide a detailed description of the molecular events involved in the phosphorylation reaction catalyzed by MAPK and contributes to the general understanding of kinase activity. PMID:19361221

  12. Complement receptor 2-mediated targeting of complement inhibitors to sites of complement activation.

    PubMed

    Song, Hongbin; He, Chun; Knaak, Christian; Guthridge, Joel M; Holers, V Michael; Tomlinson, Stephen

    2003-06-01

    In a strategy to specifically target complement inhibitors to sites of complement activation and disease, recombinant fusion proteins consisting of a complement inhibitor linked to a C3 binding region of complement receptor (CR) 2 were prepared and characterized. Natural ligands for CR2 are C3 breakdown products deposited at sites of complement activation. Fusion proteins were prepared consisting of a human CR2 fragment linked to either the N terminus or C terminus of soluble forms of the membrane complement inhibitors decay accelerating factor (DAF) or CD59. The targeted complement inhibitors bound to C3-opsonized cells, and all were significantly more effective (up to 20-fold) than corresponding untargeted inhibitors at protecting target cells from complement. CR2 fusion proteins also inhibited CR3-dependent adhesion of U937 cells to C3 opsonized erythrocytes, indicating a second potential anti-inflammatory mechanism of CR2 fusion proteins, since CR3 is involved in endothelial adhesion and diapedesis of leukocytes at inflammatory sites. Finally, the in vivo validity of the targeting strategy was confirmed by the demonstration that CR2-DAF, but not soluble DAF, targets to the kidney in mouse models of lupus nephritis that are associated with renal complement deposition.

  13. Complement receptor 2-mediated targeting of complement inhibitors to sites of complement activation.

    PubMed

    Song, Hongbin; He, Chun; Knaak, Christian; Guthridge, Joel M; Holers, V Michael; Tomlinson, Stephen

    2003-06-01

    In a strategy to specifically target complement inhibitors to sites of complement activation and disease, recombinant fusion proteins consisting of a complement inhibitor linked to a C3 binding region of complement receptor (CR) 2 were prepared and characterized. Natural ligands for CR2 are C3 breakdown products deposited at sites of complement activation. Fusion proteins were prepared consisting of a human CR2 fragment linked to either the N terminus or C terminus of soluble forms of the membrane complement inhibitors decay accelerating factor (DAF) or CD59. The targeted complement inhibitors bound to C3-opsonized cells, and all were significantly more effective (up to 20-fold) than corresponding untargeted inhibitors at protecting target cells from complement. CR2 fusion proteins also inhibited CR3-dependent adhesion of U937 cells to C3 opsonized erythrocytes, indicating a second potential anti-inflammatory mechanism of CR2 fusion proteins, since CR3 is involved in endothelial adhesion and diapedesis of leukocytes at inflammatory sites. Finally, the in vivo validity of the targeting strategy was confirmed by the demonstration that CR2-DAF, but not soluble DAF, targets to the kidney in mouse models of lupus nephritis that are associated with renal complement deposition. PMID:12813023

  14. Diversity of LFPs Activated in Different Target Regions by a Common CA3 Input.

    PubMed

    Martín-Vázquez, Gonzalo; Benito, Nuria; Makarov, Valeri A; Herreras, Oscar; Makarova, Julia

    2016-10-01

    Identifying the pathways contributing to local field potential (LFP) events and oscillations is essential to determine whether synchronous interregional patterns indicate functional connectivity. Here, we studied experimentally and numerically how different target structures receiving input from a common population shape their LFPs. We focused on the bilateral CA3 that sends gamma-paced excitatory packages to the bilateral CA1, the lateral septum, and itself (recurrent input). The CA3-specific contribution was isolated from multisite LFPs in target regions using spatial discrimination techniques. We found strong modulation of LFPs by target-specific features, including the morphology and population arrangement of cells, the timing of CA3 inputs, volume conduction from nearby targets, and co-activated inhibition. Jointly they greatly affect the LFP amplitude, profile, and frequency characteristics. For instance, ipsilateral (Schaffer) LFPs occluded contralateral ones, and septal LFPs arise mostly from remote sources while local contribution from CA3 input was minor. In the CA3 itself, gamma waves have dual origin from local networks: in-phase excitatory and nearly antiphase inhibitory. Also, waves may have different duration and varying phase in different targets. These results indicate that to explore the cellular basis of LFPs and the functional connectivity between structures, besides identifying the origin population/s, target modifiers should be considered.

  15. Cost estimation for the active debris removal of multiple priority targets

    NASA Astrophysics Data System (ADS)

    Braun, Vitali; Wiedemann, Carsten; Schulz, Eugen

    The increasing number of space debris objects, especially in distinct low Earth orbit (LEO) altitudes between 600 and 1000 km, leads to an increase in the potential collision risk between the objects and threatens active satellites in that region. Several recent studies show that active debris removal (ADR) has to be performed in order to prevent a collisional cascading effect, also known as the Kessler syndrome. In order to stabilize the population growth in the critical LEO region, a removal of five prioritized objects per year has been recognized as a significant figure. Various proposals are addressing the technical issues for ADR missions, including the de-orbiting of objects by means of a service satellite using a chemical or an electric propulsion system. The servicer would rendezvous with a preselected target, perform a docking maneuver and then provide a de-orbit burn to transfer the target on a trajectory where it re-enters the Earth’s atmosphere within a given time frame. In this paper the technical aspects are complemented by a cost estimation model, focusing on multi target missions, which are based on a service satellite capable of de-orbiting more than one target within a single mission. The cost model for ADR includes initial development cost, production cost, launch cost and operation cost as well as the modelling of the propulsion system of the servicer. Therefore, different scenarios are defined for chemical and electric propulsion systems as applied to multi target missions, based on a literature review of concepts currently being under discussion. The costs of multi target missions are compared to a scenario where only one target is removed. Also, the results allow to determine an optimum number of objects to be removed per mission and provide numbers which can be used in future studies, e.g. those related to ADR cost and benefit analyses.

  16. Philippines' downstream sector poised for growth

    SciTech Connect

    Not Available

    1992-05-11

    This paper reports that the Philippines' downstream sector is poised for sharp growth. Despite a slip in refined products demand in recent years, Philippines products demand will rebound sharply by 2000, East-West Center (EWC), Honolulu, predicts. Philippines planned refinery expansions are expected to meet that added demand, EWC Director Fereidun Fesharaki says. Like the rest of the Asia-Pacific region, product specifications are changing, but major refiners in the area expect to meet the changes without major case outlays. At the same time, Fesharaki says, push toward deregulation will further bolster the outlook for the Philippines downstream sector.

  17. Mechanistic Target of Rapamycin Complex 1/S6 Kinase 1 Signals Influence T Cell Activation Independently of Ribosomal Protein S6 Phosphorylation

    PubMed Central

    Salmond, Robert J.; Brownlie, Rebecca J.; Meyuhas, Oded

    2015-01-01

    Ag-dependent activation of naive T cells induces dramatic changes in cellular metabolism that are essential for cell growth, division, and differentiation. In recent years, the serine/threonine kinase mechanistic target of rapamycin (mTOR) has emerged as a key integrator of signaling pathways that regulate these metabolic processes. However, the role of specific downstream effectors of mTOR function in T cells is poorly understood. Ribosomal protein S6 (rpS6) is an essential component of the ribosome and is inducibly phosphorylated following mTOR activation in eukaryotic cells. In the current work, we addressed the role of phosphorylation of rpS6 as an effector of mTOR function in T cell development, growth, proliferation, and differentiation using knockin and TCR transgenic mice. Surprisingly, we demonstrate that rpS6 phosphorylation is not required for any of these processes either in vitro or in vivo. Indeed, rpS6 knockin mice are completely sensitive to the inhibitory effects of rapamycin and an S6 kinase 1 (S6K1)–specific inhibitor on T cell activation and proliferation. These results place the mTOR complex 1-S6K1 axis as a crucial determinant of T cell activation independently of its ability to regulate rpS6 phosphorylation. PMID:26453749

  18. Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin.

    PubMed

    Yu, Ker; Toral-Barza, Lourdes; Shi, Celine; Zhang, Wei-Guo; Lucas, Judy; Shor, Boris; Kim, Jamie; Verheijen, Jeroen; Curran, Kevin; Malwitz, David J; Cole, Derek C; Ellingboe, John; Ayral-Kaloustian, Semiramis; Mansour, Tarek S; Gibbons, James J; Abraham, Robert T; Nowak, Pawel; Zask, Arie

    2009-08-01

    The mammalian target of rapamycin (mTOR) is centrally involved in cell growth, metabolism, and angiogenesis. While showing clinical efficacy in a subset of tumors, rapamycin and rapalogs are specific and allosteric inhibitors of mTOR complex 1 (mTORC1), but they do not directly inhibit mTOR complex 2 (mTORC2), an emerging player in cancer. Here, we report chemical structure and biological characterization of three pyrazolopyrimidine ATP-competitive mTOR inhibitors, WAY-600, WYE-687, and WYE-354 (IC(50), 5-9 nmol/L), with significant selectivity over phosphatidylinositol 3-kinase (PI3K) isofoms (>100-fold). Unlike the rapalogs, these inhibitors acutely blocked substrate phosphorylation by mTORC1 and mTORC2 in vitro and in cells in response to growth factor, amino acids, and hyperactive PI3K/AKT. Unlike the inhibitors of PI3K or dual-pan PI3K/mTOR, cellular inhibition of P-S6K1(T389) and P-AKT(S473) by the pyrazolopyrimidines occurred at significantly lower inhibitor concentrations than those of P-AKT(T308) (PI3K-PDK1 readout), showing mTOR selectivity in cellular setting. mTOR kinase inhibitors reduced AKT downstream function and inhibited proliferation of diverse cancer cell lines. These effects correlated with a strong G(1) cell cycle arrest in both the rapamycin-sensitive and rapamycin-resistant cells, selective induction of apoptosis, repression of global protein synthesis, and down-regulation of angiogenic factors. When injected into tumor-bearing mice, WYE-354 inhibited mTORC1 and mTORC2 and displayed robust antitumor activity in PTEN-null tumors. Together, our results highlight mechanistic differentiation between rapalogs and mTOR kinase inhibitors in targeting cancer cell growth and survival and provide support for clinical development of mTOR kinase inhibitors as new cancer therapy.

  19. Redesign of MST enzymes to target lyase activity instead promotes mutase and dehydratase activities

    PubMed Central

    Meneely, Kathleen M.; Luo, Qianyi; Lamb, Audrey L.

    2013-01-01

    The isochorismate and salicylate synthases are members of the MST family of enzymes. The isochorismate synthases establish an equilibrium for the conversion chorismate to isochorismate and the reverse reaction. The salicylate synthases convert chorismate to salicylate with an isochorismate intermediate; therefore, the salicylate synthases perform isochorismate synthase and isochorismate-pyruvate lyase activities sequentially. While the active site residues are highly conserved, there are two sites that show trends for lyase-activity and lyase-deficiency. Using steady state kinetics and HPLC progress curves, we tested the “interchange” hypothesis that interconversion of the amino acids at these sites would promote lyase activity in the isochorismate synthases and remove lyase activity from the salicylate synthases. An alternative, “permute” hypothesis, that chorismate-utilizing enzymes are designed to permute the substrate into a variety of products and tampering with the active site may lead to identification of adventitious activities, is tested by more sensitive NMR time course experiments. The latter hypothesis held true. The variant enzymes predominantly catalyzed chorismate mutase-prephenate dehydratase activities, sequentially generating prephenate and phenylpyruvate, augmenting previously debated (mutase) or undocumented (dehydratase) adventitious activities. PMID:24055536

  20. Redesign of MST enzymes to target lyase activity instead promotes mutase and dehydratase activities.

    PubMed

    Meneely, Kathleen M; Luo, Qianyi; Lamb, Audrey L

    2013-11-01

    The isochorismate and salicylate synthases are members of the MST family of enzymes. The isochorismate synthases establish an equilibrium for the conversion chorismate to isochorismate and the reverse reaction. The salicylate synthases convert chorismate to salicylate with an isochorismate intermediate; therefore, the salicylate synthases perform isochorismate synthase and isochorismate-pyruvate lyase activities sequentially. While the active site residues are highly conserved, there are two sites that show trends for lyase-activity and lyase-deficiency. Using steady state kinetics and HPLC progress curves, we tested the "interchange" hypothesis that interconversion of the amino acids at these sites would promote lyase activity in the isochorismate synthases and remove lyase activity from the salicylate synthases. An alternative, "permute" hypothesis, that chorismate-utilizing enzymes are designed to permute the substrate into a variety of products and tampering with the active site may lead to identification of adventitious activities, is tested by more sensitive NMR time course experiments. The latter hypothesis held true. The variant enzymes predominantly catalyzed chorismate mutase-prephenate dehydratase activities, sequentially generating prephenate and phenylpyruvate, augmenting previously debated (mutase) or undocumented (dehydratase) adventitious activities.

  1. Expression of myocyte enhancer factor-2 and downstream genes in ground squirrel skeletal muscle during hibernation.

    PubMed

    Tessier, Shannon N; Storey, Kenneth B

    2010-11-01

    Myocyte enhancer factor-2 (MEF2) transcription factors regulate the expression of a variety of genes encoding contractile proteins and other proteins associated with muscle performance. We proposed that changes in MEF2 levels and expression of selected downstream targets would aid the skeletal muscle of thirteen-lined ground squirrels (Spermophilus tridecemlineatus) in meeting metabolic challenges associated with winter hibernation; e.g., cycles of torpor-arousal, body temperature that can fall to near 0°C, long periods of inactivity that could lead to atrophy. MEF2A protein levels were significantly elevated when animals were in torpor (maximally 2.8-fold higher than in active squirrels) and the amount of phosphorylated active MEF2A Thr312 increased during entrance into torpor. MEF2C levels also rose significantly during entrance and torpor as did the amount of phosphorylated MEF2C Ser387. Furthermore, both MEF2 members showed elevated amounts in the nuclear fraction during torpor as well as enhanced binding to DNA indicating that MEF2-mediated gene expression was up-regulated in torpid animals. Indeed, the protein products of two MEF2 downstream gene targets increased in muscle during torpor (glucose transporter isoforms 4; GLUT4) or early arousal (myogenic differentiation; MyoD). Significant increases in Glut4 and MyoD mRNA transcript levels correlated with the rise in protein product levels and provided further support for the activation of MEF2-mediated gene expression in the hibernator. Transcript levels of Mef2a and Mef2c also showed time-dependent patterns with levels of both being highest during arousal from torpor. The data suggest a significant role for MEF2-mediated gene transcription in the selective adjustment of muscle protein complement over the course of torpor-arousal cycles.

  2. Ras-dependent and -independent pathways target the mitogen-activated protein kinase network in macrophages.

    PubMed Central

    Büscher, D; Hipskind, R A; Krautwald, S; Reimann, T; Baccarini, M

    1995-01-01

    Mitogen-activated protein kinases (MAPKs) are activated upon a variety of extracellular stimuli in different cells. In macrophages, colony-stimulating factor 1 (CSF-1) stimulates proliferation, while bacterial lipopolysaccharide (LPS) inhibits cell growth and causes differentiation and activation. Both CSF-1 and LPS rapidly activate the MAPK network and induce the phosphorylation of two distinct ternary complex factors (TCFs), TCF/Elk and TCF/SAP. CSF-1, but not LPS, stimulated the formation of p21ras. GTP complexes. Expression of a dominant negative ras mutant reduced, but did not abolish, CSF-1-mediated stimulation of MEK and MAPK. In contrast, activation of the MEK kinase Raf-1 was Ras independent. Treatment with the phosphatidylcholine-specific phospholipase C inhibitor D609 suppressed LPS-mediated, but not CSF-1-mediated, activation of Raf-1, MEK, and MAPK. Similarly, down-regulation or inhibition of protein kinase C blocked MEK and MAPK induction by LPS but not that by CSF-1. Phorbol 12-myristate 13-acetate pretreatment led to the sustained activation of the Raf-1 kinase but not that of MEK and MAPK. Thus, activated Raf-1 alone does not support MEK/MAPK activation in macrophages. Phosphorylation of TCF/Elk but not that of TCF/SAP was blocked by all treatments that interfered with MAPK activation, implying that TCF/SAP was targeted by a MAPK-independent pathway. Therefore, CSF-1 and LPS target the MAPK network by two alternative pathways, both of which induce Raf-1 activation. The mitogenic pathway depends on Ras activity, while the differentiation signal relies on protein kinase C and phosphatidylcholine-specific phospholipase C activation. PMID:7799956

  3. Phishing for suitable targets in the Netherlands: routine activity theory and phishing victimization.

    PubMed

    Leukfeldt, E Rutger

    2014-08-01

    This article investigates phishing victims, especially the increased or decreased risk of victimization, using data from a cybercrime victim survey in the Netherlands (n=10,316). Routine activity theory provides the theoretical perspective. According to routine activity theory, several factors influence the risk of victimization. A multivariate analysis was conducted to assess which factors actually lead to increased risk of victimization. The model included background and financial data of victims, their Internet activities, and the degree to which they were "digitally accessible" to an offender. The analysis showed that personal background and financial characteristics play no role in phishing victimization. Among eight Internet activities, only "targeted browsing" led to increased risk. As for accessibility, using popular operating systems and web browsers does not lead to greater risk, while having up-to-date antivirus software as a technically capable guardian has no effect. The analysis showed no one, clearly defined group has an increased chance of becoming a victim. Target hardening may help, but opportunities for prevention campaigns aimed at a specific target group or dangerous online activities are limited. Therefore, situational crime prevention will have to come from a different angle. Banks could play the role of capable guardian.

  4. Modeling and production of 240Am by deuteron-induced activation of a 240Pu target

    SciTech Connect

    Finn, Erin C.; McNamara, Bruce K.; Greenwood, Lawrence R.; Wittman, Richard S.; Soderquist, Chuck Z.; Woods, Vincent T.; VanDevender, Brent A.; Metz, Lori A.; Friese, Judah I.

    2015-02-01

    A novel reaction pathway for production of 240Am is reported. Models of reaction cross-sections in EMPIRE II suggests that deuteron-induced activation of a 240Pu target produces maximum yields of 240Am from 11.5 MeV incident deuterons. This activation had not been previously reported in the literature. A 240Pu target was activated under the modeled optimum conditions to produce 240Am. The modeled cross-section for the 240Pu(d, 2n)240Am reaction is on the order of 20-30 mbarn, but the experimentally estimated value is 5.3 ± 0.2 mbarn. We discuss reasons for the discrepancy as well as production of other Am isotopes that contaminate the final product.

  5. Targeted activation of CREB in reactive astrocytes is neuroprotective in focal acute cortical injury.

    PubMed

    Pardo, Luis; Schlüter, Agatha; Valor, Luis M; Barco, Angel; Giralt, Mercedes; Golbano, Arantxa; Hidalgo, Juan; Jia, Peilin; Zhao, Zhongming; Jové, Mariona; Portero-Otin, Manuel; Ruiz, Montserrat; Giménez-Llort, Lydia; Masgrau, Roser; Pujol, Aurora; Galea, Elena

    2016-05-01

    The clinical challenge in acute injury as in traumatic brain injury (TBI) is to halt the delayed neuronal loss that occurs hours and days after the insult. Here we report that the activation of CREB-dependent transcription in reactive astrocytes prevents secondary injury in cerebral cortex after experimental TBI. The study was performed in a novel bitransgenic mouse in which a constitutively active CREB, VP16-CREB, was targeted to astrocytes with the Tet-Off system. Using histochemistry, qPCR, and gene profiling we found less neuronal death and damage, reduced macrophage infiltration, preserved mitochondria, and rescued expression of genes related to mitochondrial metabolism in bitransgenic mice as compared to wild type littermates. Finally, with meta-analyses using publicly available databases we identified a core set of VP16-CREB candidate target genes that may account for the neuroprotective effect. Enhancing CREB activity in astrocytes thus emerges as a novel avenue in acute brain post-injury therapeutics.

  6. 40 CFR 745.226 - Certification of individuals and firms engaged in lead-based paint activities: target housing and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Lead-Based Paint Activities § 745.226 Certification of individuals and firms engaged in lead-based paint activities: target housing... engaged in lead-based paint activities: target housing and child-occupied facilities. 745.226 Section...

  7. 40 CFR 745.226 - Certification of individuals and firms engaged in lead-based paint activities: target housing and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Lead-Based Paint Activities § 745.226 Certification of individuals and firms engaged in lead-based paint activities: target housing... engaged in lead-based paint activities: target housing and child-occupied facilities. 745.226 Section...

  8. 40 CFR 745.226 - Certification of individuals and firms engaged in lead-based paint activities: target housing and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Lead-Based Paint Activities § 745.226 Certification of individuals and firms engaged in lead-based paint activities: target housing... engaged in lead-based paint activities: target housing and child-occupied facilities. 745.226 Section...

  9. Utilizing G2/M retention effect to enhance tumor accumulation of active targeting nanoparticles

    PubMed Central

    Hu, Guanlian; Cun, Xingli; Ruan, Shaobo; Shi, Kairong; Wang, Yang; Kuang, Qifang; Hu, Chuan; Xiao, Wei; He, Qin; Gao, Huile

    2016-01-01

    In recent years, active targeting strategies by ligand modification have emerged to enhance tumor accumulation of NP, but their clinical application was strictly restricted due to the complex preparation procedures, poor stability and serious toxicity. An effective and clinical translational strategy is required to satisfy the current problems. Interestingly, the internalization of NP is intimately related with cell cycle and the expression of receptors is not only related with cancer types but also cell cycle progression. So the cellular uptake of ligand modified NP may be related with cell cycle. However, few investigations were reported about the relationship between cell cycle and the internalization of ligand modified NP. Herein, cellular uptake of folic acid (FA) modified NP after utilizing chemotherapeutic to retain the tumor cells in G2/M phase was studied and a novel strategy was designed to enhance the active targeting effect. In our study, docetaxel (DTX) notably synchronized cells in G2/M phase and pretreatment with DTX highly improved in vitro and in vivo tumor cell targeting effect of FA decorated NP (FANP). Since FA was a most common used tumor active targeting ligand, we believe that this strategy possesses broader prospects in clinical application for its simplicity and effectiveness. PMID:27273770

  10. Effects of Epstein's TARGET on adolescents' intentions to be physically active and leisure-time physical activity.

    PubMed

    Cecchini, Jose A; Fernandez-Rio, Javier; Mendez-Gimenez, Antonio

    2014-06-01

    The aim of this study was to examine the effects of Epstein's TARGET strategies on adolescents' intentions to be physically active and leisure-time physical activity (LTPA) levels. A total of 447 secondary education students (193 females and 254 males), range age 12-17 years, were divided in two groups: control (N = 224) and experimental (N = 223). Epstein's TARGET strategies were applied by especially trained teachers only to the experimental group in their physical education (PE) classes during 12 consecutive weeks. Participants' intentions to be physically active and their LTPA levels were assessed prior to the intervention (pre), at the end of it (post-1) and 3 months after the intervention (post-2). Significant increases were observed only in the experimental group in post-1 and post-2 on both variables. PE interventions based on TARGET strategies seem to be effective increasing adolescents' intentions to be physically active, as well as time spent in LTPA. As most adolescents participate in PE, these interventions could lead to substantial public health benefits.

  11. Evaluation of the biological activity of the molluscicidal fraction of Solanum sisymbriifolium against non target organisms.

    PubMed

    Bagalwa, Jean-Jacques M; Voutquenne-Nazabadioko, Laurence; Sayagh, Charlotte; Bashwira, Augustin S

    2010-10-01

    The evaluation of the biocidal activity of the fruit of Solanum sisymbriifolium involving non target organisms such as aquatic insects, fish and snails lead to the isolation of the steroidal alkaloids, solamargine and β-solamarine, from the active fractions. The fractions A3 and C, with biological activity against fish, snail and aquatic insect and larvae, are able to affect the good functioning of ecosystem found on alimentary chain. The fraction B seems to be less toxic to fish and aquatic insect and larvae. The fraction B could thus be used as molluscicide in the future. PMID:20388535

  12. Anti-complementary constituents of Houttuynia cordata and their targets in complement activation cascade.

    PubMed

    Jiang, Yun; Lu, Yan; Zhang, Yun-Yi; Chen, Dao-Feng

    2014-01-01

    Activity-guided fractionation for complement inhibitors led to the isolation of 23 known compounds from Houttuynia cordata Thunb. Seven flavonoids, two alkaloids, one coumarin and two phenols showed anti-complementary activity. Preliminary inhibitory mechanism of four flavonoids, including quercitrin, afzelin, isoquercitrin and quercetin in the complement activation cascade were examined for the first time. The results indicated that the target components of flavonols are different from those of flavonosides, and the glycoside moieties may be necessary to block C3 and C4 components. PMID:24423008

  13. Target cell death triggered by cytotoxic T lymphocytes: a target cell mutant distinguishes passive pore formation and active cell suicide mechanisms.

    PubMed Central

    Ucker, D S; Wilson, J D; Hebshi, L D

    1994-01-01

    The role of the target cell in its own death mediated by cytotoxic T lymphocytes (CTL) has been controversial. The ability of the pore-forming granule components of CTL to induce target cell death directly has been taken to suggest an essentially passive role for the target. This view of CTL-mediated killing ascribes to the target the single role of providing an antigenic stimulus to the CTL; this signal results in the vectoral degranulation and secretion of pore-forming elements onto the target. On the other hand, by a number of criteria, target cell death triggered by CTL appears fundamentally different from death resulting from membrane damage and osmotic lysis. CTL-triggered target cell death involves primary internal lesions of the target cell that reflect a physiological cell death process. Orderly nuclear disintegration, including lamin phosphorylation and solubilization, chromatin condensation, and genome digestion, are among the earliest events, preceding the loss of plasma membrane integrity. We have tested directly the involvement of the target cell in its own death by examining whether we could isolate mutants of target cells that have retained the ability to be recognized by and provide an antigenic stimulus to CTL while having lost the capacity to respond by dying. Here, we describe one such mutant, BW87. We have used this CTL-resistant mutant to analyze the mechanisms of CTL-triggered target cell death under a variety of conditions. The identification of a mutable target cell element essential for the cell death response to CTL provides genetic evidence that target cell death reflects an active cell suicide process similar to other physiological cell deaths. PMID:8264610

  14. Resistance of Cancer Cells to Targeted Therapies Through the Activation of Compensating Signaling Loops.

    PubMed

    von Manstein, Viktoria; Yang, Chul Min; Richter, Diane; Delis, Natalia; Vafaizadeh, Vida; Groner, Bernd

    2013-12-01

    The emergence of low molecular weight kinase inhibitors as "targeted" drugs has led to remarkable advances in the treatment of cancer patients. The clinical benefits of these tumor therapies, however, vary widely in patient populations and with duration of treatment. Intrinsic and acquired resistance against such drugs limits their efficacy. In addition to the well studied mechanisms of resistance based upon drug transport and metabolism, genetic alterations in drug target structures and the activation of compensatory cell signaling have received recent attention. Adaptive responses can be triggered which counteract the initial dependence of tumor cells upon a particular signaling molecule and allow only a transient inhibition of tumor cell growth. These compensating signaling mechanisms are often based upon the relief of repression of regulatory feedback loops. They might involve cell autonomous, intracellular events or they can be mediated via the secretion of growth factor receptor ligands into the tumor microenvironment and signal induction in an auto- or paracrine fashion. The transcription factors Stat3 and Stat5 mediate the biological functions of cytokines, interleukins and growth factors and can be considered as endpoints of multiple signaling pathways. In normal cells this activation is transient and the Stat molecules return to their non-phosphorylated state within a short time period. In tumor cells the balance between activating and de-activating signals is disturbed resulting in the persistent activation of Stat3 or Stat5. The constant activation of Stat3 induces the expression of target genes, which cause the proliferation and survival of cancer cells, as well as their migration and invasive behavior. Activating components of the Jak-Stat pathway have been recognized as potentially valuable drug targets and important principles of compensatory signaling circuit induction during targeted drug treatment have been discovered in the context of kinase

  15. Recent Developments in Active Tumor Targeted Multifunctional Nanoparticles for Combination Chemotherapy in Cancer Treatment and Imaging

    PubMed Central

    Glasgow, Micah D. K.; Chougule, Mahavir B.

    2016-01-01

    Nanotechnology and combination therapy are two major fields that show great promise in the treatment of cancer. The delivery of drugs via nanoparticles helps to improve drug’s therapeutic effectiveness while reducing adverse side effects associated with high dosage by improving their pharmacokinetics. Taking advantage of molecular markers over-expressing on tumor tissues compared to normal cells, an “active” molecular marker targeted approach would be beneficial for cancer therapy. These actively targeted nanoparticles would increase drug concentration at the tumor site, improving efficacy while further reducing chemo-resistance. The multidisciplinary approach may help to improve the overall efficacy in cancer therapy. This review article summarizes recent developments of targeted multifunctional nanoparticles in the delivery of various drugs for a combinational chemotherapy approach to cancer treatment and imaging. PMID:26554150

  16. Programmed activation of cancer cell apoptosis: A tumor-targeted phototherapeutic topoisomerase I inhibitor.

    PubMed

    Shin, Weon Sup; Han, Jiyou; Kumar, Rajesh; Lee, Gyung Gyu; Sessler, Jonathan L; Kim, Jong-Hoon; Kim, Jong Seung

    2016-01-01

    We report here a tumor-targeting masked phototherapeutic agent 1 (PT-1). This system contains SN-38-a prodrug of the topoisomerase I inhibitor irinotecan. Topoisomerase I is a vital enzyme that controls DNA topology during replication, transcription, and recombination. An elevated level of topoisomerase I is found in many carcinomas, making it an attractive target for the development of effective anticancer drugs. In addition, PT-1 contains both a photo-triggered moiety (nitrovanillin) and a cancer targeting unit (biotin). Upon light activation in cancer cells, PT-1 interferes with DNA re-ligation, diminishes the expression of topoisomerase I, and enhances the expression of inter alia mitochondrial apoptotic genes, death receptors, and caspase enzymes, inducing DNA damage and eventually leading to apoptosis. In vitro and in vivo studies showed significant inhibition of cancer growth and the hybrid system PT-1 thus shows promise as a programmed photo-therapeutic ("phototheranostic"). PMID:27374023

  17. Programmed activation of cancer cell apoptosis: A tumor-targeted phototherapeutic topoisomerase I inhibitor

    NASA Astrophysics Data System (ADS)

    Shin, Weon Sup; Han, Jiyou; Kumar, Rajesh; Lee, Gyung Gyu; Sessler, Jonathan L.; Kim, Jong-Hoon; Kim, Jong Seung

    2016-07-01

    We report here a tumor-targeting masked phototherapeutic agent 1 (PT-1). This system contains SN-38—a prodrug of the topoisomerase I inhibitor irinotecan. Topoisomerase I is a vital enzyme that controls DNA topology during replication, transcription, and recombination. An elevated level of topoisomerase I is found in many carcinomas, making it an attractive target for the development of effective anticancer drugs. In addition, PT-1 contains both a photo-triggered moiety (nitrovanillin) and a cancer targeting unit (biotin). Upon light activation in cancer cells, PT-1 interferes with DNA re-ligation, diminishes the expression of topoisomerase I, and enhances the expression of inter alia mitochondrial apoptotic genes, death receptors, and caspase enzymes, inducing DNA damage and eventually leading to apoptosis. In vitro and in vivo studies showed significant inhibition of cancer growth and the hybrid system PT-1 thus shows promise as a programmed photo-therapeutic (“phototheranostic”).

  18. Programmed activation of cancer cell apoptosis: A tumor-targeted phototherapeutic topoisomerase I inhibitor

    PubMed Central

    Shin, Weon Sup; Han, Jiyou; Kumar, Rajesh; Lee, Gyung Gyu; Sessler, Jonathan L.; Kim, Jong-Hoon; Kim, Jong Seung

    2016-01-01

    We report here a tumor-targeting masked phototherapeutic agent 1 (PT-1). This system contains SN-38—a prodrug of the topoisomerase I inhibitor irinotecan. Topoisomerase I is a vital enzyme that controls DNA topology during replication, transcription, and recombination. An elevated level of topoisomerase I is found in many carcinomas, making it an attractive target for the development of effective anticancer drugs. In addition, PT-1 contains both a photo-triggered moiety (nitrovanillin) and a cancer targeting unit (biotin). Upon light activation in cancer cells, PT-1 interferes with DNA re-ligation, diminishes the expression of topoisomerase I, and enhances the expression of inter alia mitochondrial apoptotic genes, death receptors, and caspase enzymes, inducing DNA damage and eventually leading to apoptosis. In vitro and in vivo studies showed significant inhibition of cancer growth and the hybrid system PT-1 thus shows promise as a programmed photo-therapeutic (“phototheranostic”). PMID:27374023

  19. The retinoblastoma-interacting zinc-finger protein RIZ is a downstream effector of estrogen action

    PubMed Central

    Abbondanza, Ciro; Medici, Nicola; Nigro, Vincenzo; Rossi, Valentina; Gallo, Luigi; Piluso, Giulio; Belsito, Angela; Roscigno, Annarita; Bontempo, Paola; Puca, Annibale A.; Molinari, Anna Maria; Moncharmont, Bruno; Puca, Giovanni A.

    2000-01-01

    Co-immunoprecipitation experiments in cell extract from cultured cells or target tissues indicated that estrogen receptor was complexed with the retinoblastoma binding protein RIZ in a ligand-dependent manner. Mapping of interaction sites indicated that in both proteins the same regions and motifs responsible for the interaction of transcriptional co-activator and nuclear receptors were involved. In cultured cells, estradiol induced a redistribution of RIZ protein within the nucleus and in the cytoplasm. A similar effect was produced in vivo, in prepuberal rat endometrium, by administration of a physiological dose of estradiol. Therefore, RIZ protein could be a specific effector of estrogen action downstream of the hormone-receptor interaction, presumably involved in proliferation control. PMID:10706618

  20. Evaluating Transcription Factor Activity Changes by Scoring Unexplained Target Genes in Expression Data

    PubMed Central

    Berchtold, Evi; Csaba, Gergely; Zimmer, Ralf

    2016-01-01

    Several methods predict activity changes of transcription factors (TFs) from a given regulatory network and measured expression data. But available gene regulatory networks are incomplete and contain many condition-dependent regulations that are not relevant for the specific expression measurement. It is not known which combination of active TFs is needed to cause a change in the expression of a target gene. A method to systematically evaluate the inferred activity changes is missing. We present such an evaluation strategy that indicates for how many target genes the observed expression changes can be explained by a given set of active TFs. To overcome the problem that the exact combination of active TFs needed to activate a gene is typically not known, we assume a gene to be explained if there exists any combination for which the predicted active TFs can possibly explain the observed change of the gene. We introduce the i-score (inconsistency score), which quantifies how many genes could not be explained by the set of activity changes of TFs. We observe that, even for these minimal requirements, published methods yield many unexplained target genes, i.e. large i-scores. This holds for all methods and all expression datasets we evaluated. We provide new optimization methods to calculate the best possible (minimal) i-score given the network and measured expression data. The evaluation of this optimized i-score on a large data compendium yields many unexplained target genes for almost every case. This indicates that currently available regulatory networks are still far from being complete. Both the presented Act-SAT and Act-A* methods produce optimal sets of TF activity changes, which can be used to investigate the difficult interplay of expression and network data. A web server and a command line tool to calculate our i-score and to find the active TFs associated with the minimal i-score is available from https://services.bio.ifi.lmu.de/i-score. PMID:27723775

  1. Microparticle Surface Modifications Targeting Dendritic Cells for Non-Activating Applications

    PubMed Central

    Lewis, Jamal S.; Zaveri, Toral D.; Crooks, Charles P.; Keselowsky, Benjamin G.

    2012-01-01

    Microparticulate systems for delivery of therapeutics to DCs for immunotherapy have gained attention recently. However, reports addressing the optimization of DC-targeting microparticle delivery systems are limited, particularly for cases where the goal is to deliver payload to DCs in a non-activating fashion. Here, we investigate targeting DCs using poly (d lactide-co-glycolide) microparticles (MPs) in a non-stimulatory manner and assess efficacy in vitro and in vivo. We modified MPs by surface immobilizing DC receptor targeting molecules – antibodies (anti-CD11c, anti-DEC-205) or peptides (P-D2, RGD), where anti-CD11c antibody, P-D2 and RGD peptides target integrins and anti-DEC-205 antibody targets the c-type lectin receptor DEC-205. Our results demonstrate the modified MPs are neither toxic nor activating, and DC uptake of MPs in vitro is improved by the anti-DEC-205 antibody, the anti-CD11c antibody and the P-D2 peptide modifications. The P-D2 peptide MP modification significantly improved DC antigen presentation in vitro both at immediate and delayed time points. Notably, MP functionalization with P-D2 peptide and anti-CD11c antibody increased the rate and extent of MP translocation in vivo by DCs and MΦs, with the P-D2 peptide modified MPs demonstrating the highest translocation. This work informs the design of non-activating polymeric microparticulate applications such as vaccines for autoimmune diseases. PMID:22796161

  2. Targeting Inhibition of Fibroblast Activation Protein-α and Prolyl Oligopeptidase Activities on Cells Common to Metastatic Tumor Microenvironments1

    PubMed Central

    Christiansen, Victoria J; Jackson, Kenneth W; Lee, Kyung N; Downs, Tamyra D; McKee, Patrick A

    2013-01-01

    Fibroblast activation protein (FAP), a membrane prolyl-specific proteinase with both dipeptidase and endopeptidase activities, is overexpressed by reactive stromal fibroblasts during epithelial-derived cancer growth. FAP digests extracellular matrix as tissue is remodeled during cancer expansion and may also promote an immunotolerant tumor microenvironment. Recent studies suggest that nonspecific FAP inhibitors suppress human cancer xenografts in mouse models. Prolyl oligopeptidase (POP), another prolyl-specific serine proteinase, is also elevated in many cancers and may have a regulatory role in angiogenesis promotion. FAP and POP cell-associated activities may be targets for diagnosis and treatment of various cancers, but their accessibilities to highly effective specific inhibitors have not been shown for cells important to cancer growth. Despite their frequent simultaneous expression in many cancers and their overlapping activities toward commonly used substrates, precise, separate measurement of FAP or POP activity has largely been ignored. To distinguish each of the two activities, we synthesized highly specific substrates and inhibitors for FAP or POP based on amino acid sequences surrounding the scissile bonds of their respective putative substrates. We found varying amounts of FAP and POP protein and activities on activated fibroblasts, mesenchymal cells, normal breast cells, and one breast cancer cell line, with some cells exhibiting more POP than FAP activity. Replicating endothelial cells (ECs) expressed POP but not FAP until tubulogenesis began. Targeting FAP-positive cells, especially mesenchymal stem cells and cancer-associated fibroblasts for inactivation or destruction, and inhibiting POP-producing EC may abrogate stromal invasion and angiogenesis simultaneously and thereby diminish cancer growth. PMID:23555181

  3. Mechanisms of nonhormonal activation of adenylate cyclase based on target analysis

    SciTech Connect

    Verkman, A.S.; Ausiello, D.A.; Jung, C.Y.; Skorecki, K.L.

    1986-08-12

    Radiation inactivation was used to examine the mechanism of activation of adenylate cyclase in the cultured renal epithelial cell line LLC-PK1 with hormonal (vasopressin) and nonhormonal (GTP, forskolin, fluoride, and chloride) activating ligands. Intact cells were frozen, irradiated at -70 degrees C (0-14 Mrad), thawed, and assayed for adenylate cyclase activity in the presence of activating ligands. The ln (adenylate cyclase activity) vs. radiation dose relation was linear (target size 162 kDa) for vasopressin- (2 microM) stimulated activity and concave downward for unstimulated (10 mM Mn/sup 2 +/), NaF- (10 mM) stimulated, and NaCl- (100 mM) stimulated activities. Addition of 2 microM vasopressin did not alter the ln activity vs. dose relation for NaF- (10 mM) stimulated activity. The dose-response relations for adenylate cyclase activation and for transition in the ln activity vs. dose curve shape were measured for vasopressin and NaF. On the basis of our model for adenylate cyclase subunit interactions reported previously (Verkman, A. S., Skorecki, K. L., and Ausiello, D. A. (1986) Am. J. Physiol. 260, C103-C123) and of new mathematical analyses, activation mechanisms for each ligand are proposed. In the unstimulated state, equilibrium between alpha beta and alpha + beta favors alpha beta; dissociated alpha binds to GTP (rate-limiting step), which then combines with the catalytic (C) subunit to form active enzyme. Vasopressin binding to receptor provides a rapid pathway for GTP binding to alpha. GTP and its analogues accelerate the rate of alpha GTP formation. Forskolin inhibits the spontaneous deactivation of activated C. Activation by fluoride may occur without alpha beta dissociation or GTP addition through activation of C by an alpha beta-F complex.

  4. Fusarium oxysporum Ste12 controls invasive growth and virulence downstream of the Fmk1 MAPK cascade.

    PubMed

    Rispail, Nicolas; Di Pietro, Antonio

    2009-07-01

    A conserved mitogen-activated protein kinase (MAPK) cascade homologous to the yeast Fus3/Kss1 mating/filamentation pathway regulates virulence in fungal plant pathogens. In the soilborne fungus Fusarium oxysporum, the MAPK Fmk1 is required for infection and development of vascular wilt disease on tomato plants. Knockout mutants lacking Fmk1 are deficient in multiple virulence-related functions, including root adhesion and penetration, invasive growth, secretion of pectinolytic enzymes, and vegetative hyphal fusion. The transcription factors mediating these different outputs downstream of the MAPK cascade are currently unknown. In this study, we have analyzed the role of ste12 which encodes an orthologue of the yeast homeodomain transcription factor Ste12p. F. oxysporum mutants lacking the ste12 gene were impaired in invasive growth on tomato and apple fruit tissue and in penetration of cellophane membranes. However, ste12 was not required for adhesion to tomato roots, secretion of pectinolytic enzymes, and vegetative hyphal fusion, suggesting that these Fmk1-dependent functions are mediated by other downstream MAPK targets. The Delta ste12 strains displayed dramatically reduced virulence on tomato plants, similar to the Delta fmk1 mutant. These results indicate that invasive growth is the major virulence function controlled by the Fmk1 MAPK cascade and depends critically on the transcription factor Ste12. PMID:19522565

  5. Cerebellar brain inhibition in the target and surround muscles during voluntary tonic activation.

    PubMed

    Panyakaew, Pattamon; Cho, Hyun Joo; Srivanitchapoom, Prachaya; Popa, Traian; Wu, Tianxia; Hallett, Mark

    2016-04-01

    Motor surround inhibition is the neural mechanism that selectively favours the contraction of target muscles and inhibits nearby muscles to prevent unwanted movements. This inhibition was previously reported at the onset of a movement, but not during a tonic contraction. Cerebellar brain inhibition (CBI) is reduced in active muscles during tonic activation; however, it has not been studied in the surround muscles. CBI was evaluated in the first dorsal interosseus (FDI) muscle as the target muscle, and the abductor digiti minimi, flexor carpi radialis and extensor carpi radialis muscles as surround muscles, during rest and tonic activation of the FDI muscle in 21 subjects. Cerebellar stimulation was performed under magnetic resonance imaging-guided neuronavigation targeting lobule VIII of the cerebellar hemisphere. Stimulus intensities for cerebellar stimulation were based on the resting motor cortex threshold (RMT) and adjusted for the depth difference between the cerebellar and motor cortices. We used 90-120% of the adjusted RMT as the conditioning stimulus intensity during rest. The intensity that generated the best CBI at rest in the FDI muscle was selected for use during tonic activation. During selective tonic activation of the FDI muscle, CBI was significantly reduced only for the FDI muscle, and not for the surround muscles. Unconditioned motor evoked potential sizes were increased in all muscles during FDI muscle tonic activation as compared with rest, despite background electromyography activity increasing only for the FDI muscle. Our study suggests that the cerebellum may play an important role in selective tonic finger movement by reducing its inhibition in the motor cortex only for the relevant agonist muscle.

  6. Targeted massively parallel sequencing of angiosarcomas reveals frequent activation of the mitogen activated protein kinase pathway

    PubMed Central

    Murali, Rajmohan; Chandramohan, Raghu; Möller, Inga; Scholz, Simone L.; Berger, Michael; Huberman, Kety; Viale, Agnes; Pirun, Mono; Socci, Nicholas D.; Bouvier, Nancy; Bauer, Sebastian; Artl, Monika; Schilling, Bastian; Schimming, Tobias; Sucker, Antje; Schwindenhammer, Benjamin; Grabellus, Florian; Speicher, Michael R.; Schaller, Jörg; Hillen, Uwe; Schadendorf, Dirk; Mentzel, Thomas; Cheng, Donavan T.; Wiesner, Thomas; Griewank, Klaus G.

    2015-01-01

    Angiosarcomas are rare malignant mesenchymal tumors of endothelial differentiation. The clinical behavior is usually aggressive and the prognosis for patients with advanced disease is poor with no effective therapies. The genetic bases of these tumors have been partially revealed in recent studies reporting genetic alterations such as amplifications of MYC (primarily in radiation-associated angiosarcomas), inactivating mutations in PTPRB and R707Q hotspot mutations of PLCG1. Here, we performed a comprehensive genomic analysis of 34 angiosarcomas using a clinically-approved, hybridization-based targeted next-generation sequencing assay for 341 well-established oncogenes and tumor suppressor genes. Over half of the angiosarcomas (n = 18, 53%) harbored genetic alterations affecting the MAPK pathway, involving mutations in KRAS, HRAS, NRAS, BRAF, MAPK1 and NF1, or amplifications in MAPK1/CRKL, CRAF or BRAF. The most frequently detected genetic aberrations were mutations in TP53 in 12 tumors (35%) and losses of CDKN2A in 9 tumors (26%). MYC amplifications were generally mutually exclusive of TP53 alterations and CDKN2A loss and were identified in 8 tumors (24%), most of which (n = 7, 88%) arose post-irradiation. Previously reported mutations in PTPRB (n = 10, 29%) and one (3%) PLCG1 R707Q mutation were also identified. Our results demonstrate that angiosarcomas are a genetically heterogeneous group of tumors, harboring a wide range of genetic alterations. The high frequency of genetic events affecting the MAPK pathway suggests that targeted therapies inhibiting MAPK signaling may be promising therapeutic avenues in patients with advanced angiosarcomas. PMID:26440310

  7. Validation of a target acquisition model for active imager using perception experiments

    NASA Astrophysics Data System (ADS)

    Lapaz, Frédéric; Canevet, Loïc

    2007-10-01

    Active night vision systems based on laser diodes emitters have now reached a technology level allowing military applications. In order to predict the performance of observers using such systems, we built an analytic model including sensor, atmosphere, visualization and eye effects. The perception task has been modelled using the Targeting Task Performance metric (TTP metric) developed by R. Vollmerhausen from the Night Vision and Electronic Sensors Directorate (NVESD). Sensor and atmosphere models have been validated separately. In order to validate the whole model, two identification tests have been set up. The first set submitted to trained observers was made of hybrid images. The target to background contrast, the blur and the noise were added to armoured vehicles signatures in accordance to sensor and atmosphere models. The second set of images was made with the same targets, sensed by a real active sensor during field trials. Images were recorded, showing different vehicles, at different ranges and orientations, under different illumination and acquisition configurations. Indeed, this set of real images was built with three different types of gating: wide illumination, illumination of the background and illumination of the target. Analysis of the perception experiments results showed a good concordance between the two sets of images. The calculation of an identification criterion, related to this set of vehicles in the near infrared, gave the same results in both cases. The impact of gating on observer's performance was also evaluated.

  8. Target DNA sequence directly regulates the frequency of activation-induced deaminase-dependent mutations.

    PubMed

    Chen, Zhangguo; Viboolsittiseri, Sawanee S; O'Connor, Brian P; Wang, Jing H

    2012-10-15

    Activation-induced deaminase (AID) catalyses class switch recombination (CSR) and somatic hypermutation (SHM) in B lymphocytes to enhance Ab diversity. CSR involves breaking and rejoining highly repetitive switch (S) regions in the IgH (Igh) locus. S regions appear to be preferential targets of AID. To determine whether S region sequence per se, independent of Igh cis regulatory elements, can influence AID targeting efficiency and mutation frequency, we established a knock-in mouse model by inserting a core Sγ1 region into the first intron of proto-oncogene Bcl6, which is a non-Ig target of SHM. We found that the mutation frequency of the inserted Sγ1 region was dramatically higher than that of the adjacent Bcl6 endogenous sequence. Mechanistically, S region-enhanced SHM was associated with increased recruitment of AID and RNA polymerase II, together with Spt5, albeit to a lesser extent. Our studies demonstrate that target DNA sequences influence mutation frequency via regulating AID recruitment. We propose that the nucleotide sequence preference may serve as an additional layer of AID regulation by restricting its mutagenic activity to specific sequences despite the observation that AID has the potential to access the genome widely.

  9. Preferential targeting of p39-activated Cdk5 to Rac1-induced lamellipodia.

    PubMed

    Ito, Yuki; Asada, Akiko; Kobayashi, Hiroyuki; Takano, Tetsuya; Sharma, Govinda; Saito, Taro; Ohta, Yasutaka; Amano, Mutsuki; Kaibuchi, Kozo; Hisanaga, Shin-Ichi

    2014-07-01

    Cdk5 is a member of the cyclin-dependent kinase (Cdk) family that plays a role in various neuronal activities including brain development, synaptic regulation, and neurodegeneration. Cdk5 requires the neuronal specific activators, p35 and p39 for subcellular compartmentalization. However, it is not known how active Cdk5 is recruited to F-actin cytoskeleton, which is a Cdk5 target. Here we found p35 and p39 localized to F-actin rich regions of the plasma membrane and investigated the underlying targeting mechanism in vitro by expressing them with Rho family GTPases in Neuro2A cells. Both p35 and p39 accumulated at the cell peripheral lamellipodia and perinuclear regions, where active Rac1 is localized. Interestingly, p35 and p39 displayed different localization patterns as p35 was found more at the perinuclear region and p39 was found more in peripheral lamellipodia. We then confirmed this distinct localization in primary hippocampal neurons. We also determined that the localization of p39 to lamellipodia requires myristoylation and Lys clusters within the N-terminal p10 region. Additionally, we found that p39-Cdk5, but not p35-Cdk5 suppressed lamellipodia formation by reducing Rac1 activity. These results suggest that p39-Cdk5 has a dominant role in Rac1-dependent lamellipodial activity. PMID:24877974

  10. Diacylglycerol Kinases (DGKs): Novel Targets for Improving T Cell Activity in Cancer

    PubMed Central

    Riese, Matthew J.; Moon, Edmund K.; Johnson, Bryon D.; Albelda, Steven M.

    2016-01-01

    Diacylglycerol kinases (DGKs) are a family of enzymes that catalyze the metabolism of diacylglycerol (DAG). Two isoforms of DGK, DGKα, and DGKζ, specifically regulate the pool of DAG that is generated as a second messenger after stimulation of the T cell receptor (TCR). Deletion of either isoform in mouse models results in T cells bearing a hyperresponsive phenotype and enhanced T cell activity against malignancy. Whereas, DGKζ appears to be the dominant isoform in T cells, rationale exists for targeting both isoforms individually or coordinately. Additional work is needed to rigorously identify the molecular changes that result from deletion of DGKs in order to understand how DAG contributes to T cell activation, the effect of DGK inhibition in human T cells, and to rationally develop combined immunotherapeutic strategies that target DGKs. PMID:27800476

  11. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels.

    PubMed

    Korin, Netanel; Kanapathipillai, Mathumai; Matthews, Benjamin D; Crescente, Marilena; Brill, Alexander; Mammoto, Tadanori; Ghosh, Kaustabh; Jurek, Samuel; Bencherif, Sidi A; Bhatta, Deen; Coskun, Ahmet U; Feldman, Charles L; Wagner, Denisa D; Ingber, Donald E

    2012-08-10

    Obstruction of critical blood vessels due to thrombosis or embolism is a leading cause of death worldwide. Here, we describe a biomimetic strategy that uses high shear stress caused by vascular narrowing as a targeting mechanism--in the same way platelets do--to deliver drugs to obstructed blood vessels. Microscale aggregates of nanoparticles were fabricated to break up into nanoscale components when exposed to abnormally high fluid shear stress. When coated with tissue plasminogen activator and administered intravenously in mice, these shear-activated nanotherapeutics induce rapid clot dissolution in a mesenteric injury model, restore normal flow dynamics, and increase survival in an otherwise fatal mouse pulmonary embolism model. This biophysical strategy for drug targeting, which lowers required doses and minimizes side effects while maximizing drug efficacy, offers a potential new approach for treatment of life-threatening diseases that result from acute vascular occlusion.

  12. A mask for high-intensity heavy-ion beams in the MAYA active target

    NASA Astrophysics Data System (ADS)

    Rodríguez-Tajes, C.; Pancin, J.; Damoy, S.; Roger, T.; Babo, M.; Caamaño, M.; Farget, F.; Grinyer, G. F.; Jacquot, B.; Pérez-Loureiro, D.; Ramos, D.; Suzuki, D.

    2014-12-01

    The use of high-intensity and/or heavy-ion beams in active targets and time-projection chambers is often limited by the strong ionization produced by the beam. Besides the difficulties associated with the saturation of the detector and electronics, beam-related signals may hide the physical events of interest or reduce the detector performance. In addition, space-charge effects may deteriorate the homogeneity of the electric drift field and distort the subsequent reconstruction of particle trajectories. In anticipation of future projects involving such conditions, a dedicated beam mask has been developed and tested in the MAYA active target. Experimental results with a 136Xe beam are presented.

  13. 12C+p resonant elastic scattering in the Maya active target

    NASA Astrophysics Data System (ADS)

    Sambi, S.; Raabe, R.; Borge, M. J. G.; Caamano, M.; Damoy, S.; Fernández-Domínguez, B.; Flavigny, F.; Fynbo, H.; Gibelin, J.; Grinyer, G. F.; Heinz, A.; Jonson, B.; Khodery, M.; Nilsson, T.; Orlandi, R.; Pancin, J.; Perez-Loureiro, D.; Randisi, G.; Ribeiro, G.; Roger, T.; Suzuki, D.; Tengblad, O.; Thies, R.; Datta, U.

    2015-03-01

    In a proof-of-principle measurement, the Maya active target detector was employed for a 12C( p, p) resonant elastic scattering experiment in inverse kinematics. The excitation energy region from 0 to 3MeV above the proton breakup threshold in 13N was investigated in a single measurement. By using the capability of the detector to localize the reaction vertex and record the tracks of the recoiling protons, data covering a large solid angle could be utilized, at the same time keeping an energy resolution comparable with that of direct-kinematics measurements. The excitation spectrum in 13N was fitted using the R-matrix formalism. The level parameters extracted are in good agreement with previous studies. The active target proved its potential for the study of resonant elastic scattering in inverse kinematics with radioactive beams, when detection efficiency is of primary importance.

  14. Enhancement of antibody-dependent mechanisms of tumor cell lysis by a targeted activator of complement.

    PubMed

    Imai, Masaki; Ohta, Rieko; Varela, Juan C; Song, Hongbin; Tomlinson, Stephen

    2007-10-01

    Complement inhibitors expressed on tumor cells provide a hindrance to the therapeutic efficacy of some monoclonal antibodies (mAb). We investigated a novel strategy to overwhelm complement inhibitor activity and amplify complement activation on tumor cells. The C3-binding domain of human complement receptor 2 (CR2; CD21) was linked to the complement-activating Fc region of human IgG1 (CR2-Fc), and the ability of the construct to target and amplify complement deposition on tumor cells was investigated. CR2 binds C3 activation fragments, and CR2-Fc targeted tumor cells by binding to C3 initially deposited by a tumor-specific antibody. Complement deposition on Du145 cells (human prostate cancer cell line) and anti-MUC1 mAb-mediated complement-dependent lysis of Du145 cells were significantly enhanced by CR2-Fc. Anti-MUC1 antibody-dependent cell-mediated cytotoxicity of Du145 by human peripheral blood mononuclear cells was also significantly enhanced by CR2-Fc in both the presence and the absence of complement. Radiolabeled CR2-Fc targeted to s.c. Du145 tumors in nude mice treated with anti-MUC1 mAb, validating the targeting strategy in vivo. A metastatic model was used to investigate the effect of CR2-Fc in a therapeutic paradigm. Administration of CR2-Fc together with mAb therapy significantly improved long-term survival of nude mice challenged with an i.v. injection of EL4 cells. The data show that CR2-Fc enhances the therapeutic efficacy of antibody therapy, and the construct may provide particular benefits under conditions of limiting antibody concentration or low tumor antigen density.

  15. Enhancement of antibody-dependent mechanisms of tumor cell lysis by a targeted activator of complement.

    PubMed

    Imai, Masaki; Ohta, Rieko; Varela, Juan C; Song, Hongbin; Tomlinson, Stephen

    2007-10-01

    Complement inhibitors expressed on tumor cells provide a hindrance to the therapeutic efficacy of some monoclonal antibodies (mAb). We investigated a novel strategy to overwhelm complement inhibitor activity and amplify complement activation on tumor cells. The C3-binding domain of human complement receptor 2 (CR2; CD21) was linked to the complement-activating Fc region of human IgG1 (CR2-Fc), and the ability of the construct to target and amplify complement deposition on tumor cells was investigated. CR2 binds C3 activation fragments, and CR2-Fc targeted tumor cells by binding to C3 initially deposited by a tumor-specific antibody. Complement deposition on Du145 cells (human prostate cancer cell line) and anti-MUC1 mAb-mediated complement-dependent lysis of Du145 cells were significantly enhanced by CR2-Fc. Anti-MUC1 antibody-dependent cell-mediated cytotoxicity of Du145 by human peripheral blood mononuclear cells was also significantly enhanced by CR2-Fc in both the presence and the absence of complement. Radiolabeled CR2-Fc targeted to s.c. Du145 tumors in nude mice treated with anti-MUC1 mAb, validating the targeting strategy in vivo. A metastatic model was used to investigate the effect of CR2-Fc in a therapeutic paradigm. Administration of CR2-Fc together with mAb therapy significantly improved long-term survival of nude mice challenged with an i.v. injection of EL4 cells. The data show that CR2-Fc enhances the therapeutic efficacy of antibody therapy, and the construct may provide particular benefits under conditions of limiting antibody concentration or low tumor antigen density. PMID:17909064

  16. Targeting solid tumours with potassium channel activators. A return to fundamentals?

    PubMed

    Trechot, Philippe

    2014-01-01

    From a pharmacological point of view nicotinamide and minoxidil are potassium channel activators. Nicotinamide is used as a radiosensitizer in ARCON (accelerated radiotherapy combined with carbogen breathing and nicotinamide) therapeutic strategy with promising results but not confirmed so far. Minoxidil has never been considered by radiotherapists. Based from recent pathophysiological considerations we suggest a new perspective for the use of these two "old" molecules in order to target solid tumours. PMID:25371295

  17. Antifungal activity of redox-active benzaldehydes that target cellular antioxidation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many pathogenic fungi are becoming resistant to currently available drugs. Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. The aim of this study was to identify benzaldehydes that...

  18. Cortical fMRI activation produced by attentive tracking of moving targets.

    PubMed

    Culham, J C; Brandt, S A; Cavanagh, P; Kanwisher, N G; Dale, A M; Tootell, R B

    1998-11-01

    Attention can be used to keep track of moving items, particularly when there are multiple targets of interest that cannot all be followed with eye movements. Functional magnetic resonance imaging (fMRI) was used to investigate cortical regions involved in attentive tracking. Cortical flattening techniques facilitated within-subject comparisons of activation produced by attentive tracking, visual motion, discrete attention shifts, and eye movements. In the main task, subjects viewed a display of nine green "bouncing balls" and used attention to mentally track a subset of them while fixating. At the start of each attentive-tracking condition, several target balls (e.g., 3/9) turned red for 2 s and then reverted to green. Subjects then used attention to keep track of the previously indicated targets, which were otherwise indistinguishable from the nontargets. Attentive-tracking conditions alternated with passive viewing of the same display when no targets had been indicated. Subjects were pretested with an eye-movement monitor to ensure they could perform the task accurately while fixating. For seven subjects, functional activation was superimposed on each individual's cortically unfolded surface. Comparisons between attentive tracking and passive viewing revealed bilateral activation in parietal cortex (intraparietal sulcus, postcentral sulcus, superior parietal lobule, and precuneus), frontal cortex (frontal eye fields and precentral sulcus), and the MT complex (including motion-selective areas MT and MST). Attentional enhancement was absent in early visual areas and weak in the MT complex. However, in parietal and frontal areas, the signal change produced by the moving stimuli was more than doubled when items were tracked attentively. Comparisons between attentive tracking and attention shifting revealed essentially identical activation patterns that differed only in the magnitude of activation. This suggests that parietal cortex is involved not only in discrete

  19. Apratoxin A Shows Novel Pancreas-Targeting Activity through the Binding of Sec 61.

    PubMed

    Huang, Kuan-Chun; Chen, Zhihong; Jiang, Yimin; Akare, Sandeep; Kolber-Simonds, Donna; Condon, Krista; Agoulnik, Sergei; Tendyke, Karen; Shen, Yongchun; Wu, Kuo-Ming; Mathieu, Steven; Choi, Hyeong-Wook; Zhu, Xiaojie; Shimizu, Hajime; Kotake, Yoshihiko; Gerwick, William H; Uenaka, Toshimitsu; Woodall-Jappe, Mary; Nomoto, Kenichi

    2016-06-01

    Apratoxin A is a natural product with potent antiproliferative activity against many human cancer cell lines. However, we and other investigators observed that it has a narrow therapeutic window in vivo Previous mechanistic studies have suggested its involvement in the secretory pathway as well as the process of chaperone-mediated autophagy. Still the link between the biologic activities of apratoxin A and its in vivo toxicity has remained largely unknown. A better understanding of this relationship is critically important for any further development of apratoxin A as an anticancer drug. Here, we describe a detailed pathologic analysis that revealed a specific pancreas-targeting activity of apratoxin A, such that severe pancreatic atrophy was observed in apratoxin A-treated animals. Follow-up tissue distribution studies further uncovered a unique drug distribution profile for apratoxin A, showing high drug exposure in pancreas and salivary gland. It has been shown previously that apratoxin A inhibits the protein secretory pathway by preventing cotranslational translocation. However, the molecule targeted by apratoxin A in this pathway has not been well defined. By using a (3)H-labeled apratoxin A probe and specific Sec 61α/β antibodies, we identified that the Sec 61 complex is the molecular target of apratoxin A. We conclude that apratoxin A in vivo toxicity is likely caused by pancreas atrophy due to high apratoxin A exposure. Mol Cancer Ther; 15(6); 1208-16. ©2016 AACR.

  20. Identification of therapeutic targets in ovarian cancer through active tyrosine kinase profiling

    PubMed Central

    Ocaña, Alberto; Pandiella, Atanasio

    2015-01-01

    The activation status of a set of pro-oncogenic tyrosine kinases in ovarian cancer patient samples was analyzed to define potential therapeutic targets. Frequent activation of HER family receptor tyrosine kinases, especially HER2, was observed. Studies in ovarian cancer cell lines confirmed the activation of HER2. Moreover, knockdown of HER2 caused a strong inhibition of their proliferation. Analyses of the action of agents that target HER2 indicated that the antibody drug conjugate trastuzumab-emtansine (T-DM1) caused a substantial antitumoral effect in vivo and in vitro, and potentiated the action of drugs used in the therapy of ovarian cancer. T-DM1 provoked cell cycle arrest in mitosis, and caused the appearance of aberrant mitotic spindles in cells treated with the drug. Biochemical experiments confirmed accumulation of the mitotic markers phospho-Histone H3 and phospho-BUBR1 in cells treated with the drug. Prolonged treatment of ovarian cancer cells with T-DM1 provoked the appearance of multinucleated cells which later led to cell death. Together, these data indicate that HER2 represents an important oncogene in ovarian cancer, and suggest that targeting this tyrosine kinase with T-DM1 may be therapeutically effective, especially in ovarian tumors with high content of HER2. PMID:26336133

  1. Novel small molecules targeting ciliary transport of Smoothened and oncogenic Hedgehog pathway activation

    PubMed Central

    Jung, Bomi; Messias, Ana C.; Schorpp, Kenji; Geerlof, Arie; Schneider, Günter; Saur, Dieter; Hadian, Kamyar; Sattler, Michael; Wanker, Erich E.; Hasenöder, Stefan; Lickert, Heiko

    2016-01-01

    Trafficking of the G protein-coupled receptor (GPCR) Smoothened (Smo) to the primary cilium (PC) is a potential target to inhibit oncogenic Hh pathway activation in a large number of tumors. One drawback is the appearance of Smo mutations that resist drug treatment, which is a common reason for cancer treatment failure. Here, we undertook a high content screen with compounds in preclinical or clinical development and identified ten small molecules that prevent constitutive active mutant SmoM2 transport into PC for subsequent Hh pathway activation. Eight of the ten small molecules act through direct interference with the G protein-coupled receptor associated sorting protein 2 (Gprasp2)-SmoM2 ciliary targeting complex, whereas one antagonist of ionotropic receptors prevents intracellular trafficking of Smo to the PC. Together, these findings identify several compounds with the potential to treat drug-resistant SmoM2-driven cancer forms, but also reveal off-target effects of established drugs in the clinics. PMID:26931153

  2. Use of spatially explicit physicochemical data to measure downstream impacts of headwater stream disturbance

    EPA Science Inventory

    Regulatory agencies need methods to quantify the influence of headwater streams on downstream water quality as a result of litigation surrounding jurisdictional criteria and the influence of mountaintop removal coal mining activities. We collected comprehensive, spatially-referen...

  3. Waveguide invariant active sonar target detection and depth classification in shallow water

    NASA Astrophysics Data System (ADS)

    Goldhahn, Ryan A.

    Reverberation and clutter are two of the principle obstacles to active sonar target detection in shallow water. Diffuse seabed backscatter can obscure low energy target returns, while clutter discretes, specific features of the sea floor, produce temporally compact returns which may be mistaken for targets of interest. Detecting weak targets in the presence of reverberation and discriminating water column targets from bottom clutter are thus critical to good performance in active sonar. Both problems are addressed in this thesis using the time-frequency interference pattern described by a constant known as the waveguide invariant which summarizes in a scalar parameter the dispersive properties of the ocean environment. Conventional active sonar detection involves constant false alarm rate (CFAR) normalization of the reverberation return which does not account for the frequency-selective fading in a wideband pulse caused by multipath propagation. An alternative to conventional reverberation estimation is presented, motivated by striations observed in time-frequency analysis of active sonar data. A mathematical model for these reverberation striations is derived using waveguide invariant theory. This model is then used to motivate waveguide invariant reverberation estimation which involves averaging the time-frequency spectrum along these striations. An evaluation of this reverberation estimate using real Mediterranean data is given and its use in a generalized likelihood ratio test (GLRT) based CFAR detector is demonstrated. CFAR detection using waveguide invariant reverberation estimates is shown to out-perform conventional cell-averaged and frequency-invariant CFAR detection methods in shallow water environments producing strong reverberation returns which exhibit the described striations. Results are presented on simulated and real Mediterranean data from the SCARAB98 experiment. The ability to discriminate between water column targets and clutter discretes is

  4. The value of prevention: managing the risks associated with targeted violence and active shooters.

    PubMed

    Doherty, Matthew

    2016-01-01

    Every time we turn on the news, or open our Internet browsers, a story about an active shooter--at a school, house of worship, public place and even in our workplace--spills onto the page, the author reports. In this article he focuses on how we can prevent these incidents from occurring. What exactly is "targeted violence"--and why is what experts call "behavioral threat assessment" one of the single most effective ways to prevent the next active shooter incident in any organization?

  5. The value of prevention: managing the risks associated with targeted violence and active shooters.

    PubMed

    Doherty, Matthew

    2016-01-01

    Every time we turn on the news, or open our Internet browsers, a story about an active shooter--at a school, house of worship, public place and even in our workplace--spills onto the page, the author reports. In this article he focuses on how we can prevent these incidents from occurring. What exactly is "targeted violence"--and why is what experts call "behavioral threat assessment" one of the single most effective ways to prevent the next active shooter incident in any organization? PMID:26978957

  6. Monitoring Target Engagement of Deubiquitylating Enzymes Using Activity Probes: Past, Present, and Future.

    PubMed

    Harrigan, Jeanine; Jacq, Xavier

    2016-01-01

    Deubiquitylating enzymes or DUBs are a class of enzymes that selectively remove the polypeptide posttranslational modification ubiquitin from a number of substrates. Approximately 100 DUBs exist in human cells and are involved in key regulatory cellular processes, which drive many disease states, making them attractive therapeutic targets. Several aspects of DUB biology have been studied through genetic knock-out or knock-down, genomic, or proteomic studies. However, investigation of enzyme activation and regulation requires additional tools to monitor cellular and physiological dynamics. A comparison between genetic ablation and dominant-negative target validation with pharmacological inhibition often leads to striking discrepancies. Activity probes have been used to profile classes of enzymes, including DUBs, and allow functional and dynamic properties to be assigned to individual proteins. The ability to directly monitor DUB activity within a native biological system is essential for understanding the physiological and pathological role of individual DUBs. We will discuss the evolution of DUB activity probes, from in vitro assay development to their use in monitoring DUB activity in cells and in animal tissues, as well as recent progress and prospects for assessing DUB inhibition in vivo.

  7. Cancer Stem Cells: The Potential Targets of Chinese Medicines and Their Active Compounds

    PubMed Central

    Hong, Ming; Tan, Hor Yue; Li, Sha; Cheung, Fan; Wang, Ning; Nagamatsu, Tadashi; Feng, Yibin

    2016-01-01

    The pivotal role of cancer stem cells (CSCs) in the initiation and progression of malignancies has been rigorously validated, and the specific methods for identifying and isolating the CSCs from the parental cancer population have also been rapidly developed in recent years. This review aims to provide an overview of recent research progress of Chinese medicines (CMs) and their active compounds in inhibiting tumor progression by targeting CSCs. A great deal of CMs and their active compounds, such as Antrodia camphorate, berberine, resveratrol, and curcumin have been shown to regress CSCs, in terms of reversing drug resistance, inducing cell death and inhibiting cell proliferation as well as metastasis. Furthermore, one of the active compounds in coptis, berbamine may inhibit tumor progression by modulating microRNAs to regulate CSCs. The underlying molecular mechanisms and related signaling pathways involved in these processes were also discussed and concluded in this paper. Overall, the use of CMs and their active compounds may be a promising therapeutic strategy to eradicate cancer by targeting CSCs. However, further studies are needed to clarify the potential of clinical application of CMs and their active compounds as complementary and alternative therapy in this field. PMID:27338343

  8. Monitoring Target Engagement of Deubiquitylating Enzymes Using Activity Probes: Past, Present, and Future.

    PubMed

    Harrigan, Jeanine; Jacq, Xavier

    2016-01-01

    Deubiquitylating enzymes or DUBs are a class of enzymes that selectively remove the polypeptide posttranslational modification ubiquitin from a number of substrates. Approximately 100 DUBs exist in human cells and are involved in key regulatory cellular processes, which drive many disease states, making them attractive therapeutic targets. Several aspects of DUB biology have been studied through genetic knock-out or knock-down, genomic, or proteomic studies. However, investigation of enzyme activation and regulation requires additional tools to monitor cellular and physiological dynamics. A comparison between genetic ablation and dominant-negative target validation with pharmacological inhibition often leads to striking discrepancies. Activity probes have been used to profile classes of enzymes, including DUBs, and allow functional and dynamic properties to be assigned to individual proteins. The ability to directly monitor DUB activity within a native biological system is essential for understanding the physiological and pathological role of individual DUBs. We will discuss the evolution of DUB activity probes, from in vitro assay development to their use in monitoring DUB activity in cells and in animal tissues, as well as recent progress and prospects for assessing DUB inhibition in vivo. PMID:27613052

  9. Cancer Stem Cells: The Potential Targets of Chinese Medicines and Their Active Compounds.

    PubMed

    Hong, Ming; Tan, Hor Yue; Li, Sha; Cheung, Fan; Wang, Ning; Nagamatsu, Tadashi; Feng, Yibin

    2016-01-01

    The pivotal role of cancer stem cells (CSCs) in the initiation and progression of malignancies has been rigorously validated, and the specific methods for identifying and isolating the CSCs from the parental cancer population have also been rapidly developed in recent years. This review aims to provide an overview of recent research progress of Chinese medicines (CMs) and their active compounds in inhibiting tumor progression by targeting CSCs. A great deal of CMs and their active compounds, such as Antrodia camphorate, berberine, resveratrol, and curcumin have been shown to regress CSCs, in terms of reversing drug resistance, inducing cell death and inhibiting cell proliferation as well as metastasis. Furthermore, one of the active compounds in coptis, berbamine may inhibit tumor progression by modulating microRNAs to regulate CSCs. The underlying molecular mechanisms and related signaling pathways involved in these processes were also discussed and concluded in this paper. Overall, the use of CMs and their active compounds may be a promising therapeutic strategy to eradicate cancer by targeting CSCs. However, further studies are needed to clarify the potential of clinical application of CMs and their active compounds as complementary and alternative therapy in this field. PMID:27338343

  10. Small Molecule Activators of the Heat Shock Response: Chemical Properties, Molecular Targets, and Therapeutic Promise

    PubMed Central

    West, James D.; Wang, Yanyu; Morano, Kevin A.

    2012-01-01

    All cells have developed various mechanisms to respond and adapt to a variety of environmental challenges, including stresses that damage cellular proteins. One such response, the heat shock response (HSR), leads to the transcriptional activation of a family of molecular chaperone proteins that promote proper folding or clearance of damaged proteins within the cytosol. In addition to its role in protection against acute insults, the HSR also regulates lifespan and protects against protein misfolding that is associated with degenerative diseases of aging. As a result, identifying pharmacological regulators of the HSR has become an active area of research in recent years. Here, we review progress made in identifying small molecule activators of the HSR, what cellular targets these compounds interact with to drive response activation, and how such molecules may ultimately be employed to delay or reverse protein misfolding events that contribute to a number of diseases. PMID:22799889

  11. A critical role of downstream RNA polymerase-promoter interactions in the formation of initiation complex.

    PubMed

    Mekler, Vladimir; Minakhin, Leonid; Severinov, Konstantin

    2011-06-24

    Nucleation of promoter melting in bacteria is coupled with RNA polymerase (RNAP) binding to a conserved -10 promoter element located at the upstream edge of the transcription bubble. The mechanism of downstream propagation of the transcription bubble to include the transcription start site is unclear. Here we introduce new model downstream fork junction promoter fragments that specifically bind RNAP and mimic the downstream segment of promoter complexes. We demonstrate that RNAP binding to downstream fork junctions is coupled with DNA melting around the transcription start point. Consequently, certain downstream fork junction probes can serve as transcription templates. Using a protein beacon fluorescent method, we identify structural determinants of affinity and transcription activity of RNAP-downstream fork junction complexes. Measurements of RNAP interaction with double-stranded promoter fragments reveal that the strength of RNAP interactions with downstream DNA plays a critical role in promoter opening and that the length of the downstream duplex must exceed a critical length for efficient formation of transcription competent open promoter complex.

  12. Alfven waves and associated energetic ions downstream from Uranus

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Belcher, J. W.; Richardson, J. D.; Smith, C. W.

    1991-02-01

    Low-frequency waves have been observed in the solar wind downstream from Uranus. These waves are observed by the Voyager spacecraft for more than 2 weeks after the encounter with Uranus and are present during this period whenever the interplanetary magnetic field is oriented such that field lines intersect the Uranian bow shock. The magnetic field and velocity components transverse to the background field are strongly correlated, consistent with the interpretation that these waves are Alfvenic and/or fast-mode waves. The waves appear to propagate along the magnetic field lines outward from Uranus and are right-hand polarized. Theory suggests that these waves are generated in the upstream region by a resonant instability with a proton beam streaming along the magnetic field lines. The solar wind subsequently carries these waves downstream to the spacecraft location. These waves are associated with the presence of energetic ions observed by the low-energy charged particle instrument. These ions appear two days after the start of the wave activity and occur thereafter whenever the Alfven waves occur, increasing in intensity away from Uranus. The ions are argued to originate in the Uranian magnetosphere, but pitch-angle scattering in the upstream region is required to bring them downstream to the spacecraft location.

  13. The effect of mining and related activities on the sediment-trace element geochemistry of Lake Coeur d'Alene, Idaho, USA. Part III. Downstream effects: The Spokane River Basin

    USGS Publications Warehouse

    Grosbois, C.A.; Horowitz, A.J.; Smith, J.J.; Elrick, K.A.

    2001-01-01

    During 1998/1999, surface and subsurface sediment samples were collected along the entire length of the Spokane River from its outlet at the northern end of Lake Coeur d'Alene (CDA), Idaho, to Lake Roosevelt on the Columbia River, Washington. The study was conducted to determine if the trace element enrichments observed in Lake CDA and on the floodplain and in the CDA River extend through the Spokane River Basin (SRB). As in Lake CDA, surface sediments in the SRB are enriched in Pb, Zn, As, Cd, Sb and Hg relative to local background levels. Pb, Cd and Zn are the most elevated, with maximum enrichment occurring in the upper Spokane River in close proximity to Lake CDA. On average, enrichment decreases downstream, apparently reflecting both increased distance from the inferred source (the CDA River Basin), as well as increased dilution by locally derived but unenriched materials. Only Cd and Zn display marked enrichment throughout the SRB. Pb, Zn and Cd seem to be associated mainly with an operationally defined iron oxide phase, whereas the majority of the As and Sb seem to be matrix-held. Subsurface sediments also are enriched in Pb, Zn, As, Cd, Sb and Hg relative to background levels. Based on 137Cs and excess 210Pb dating, trace element enrichment began in the middle part of the SRB (Long Lake) between 1900 and 1920. This is contemporaneous with similar enrichments observed in Lake CDA, as well as the completion of Long Lake Dam (1913). In the most downstream part of the basin (Spokane River Arm of Lake Roosevelt), enrichment began substantially later, between 1930 and 1940. The temporal difference in enrichment between Long Lake and the River Arm may reflect the latter's greater distance from the presumed source of the enrichment (the CDA River Basin); however, the difference is more likely the result of the completion of Grand Coulee Dam (1934-1941), which formed Lake Roosevelt, backed up the Spokane River, and increased water levels in the River Armby about 30

  14. Further Evolution of Multifunctional Niosomes Based on Pluronic Surfactant: Dual Active Targeting and Drug Combination Properties.

    PubMed

    Tavano, Lorena; Mauro, Loredana; Naimo, Giuseppina Daniela; Bruno, Leonardo; Picci, Nevio; Andò, Sebastiano; Muzzalupo, Rita

    2016-09-01

    The loading of chemotherapics into smart nanocarriers that simultaneously possess more than one useful property for specifically targeting a tumor site improves their therapeutic effectiveness, reducing their side effects. Hence, we proposed a combined approach for the treatment of human breast cancer (BC) consisting of the co-encapsulation of doxorubicin and curcumin or doxorubicin and quercetin into multifunctional niosomes, which results in prolonged blood circulation and an ability to spontaneously accumulate at the tumor site (passive target) and to recognize and bind the tumor cells through dual ligand-receptor interactions (active target). The drug-loaded vesicles showed high stability and good capability of loading doxorubicin and antioxidants alone or in combination. Their diameter was around 400 nm. The drugs released from the vesicles were found to be controlled and sustained for over 24 h, with a strong dependence on the co-presence of the loaded molecules. Transferrin and/or folic acid were conjugated on the external surface of the niosomes as ligands, considerably improving the cellular uptake into MCF-7 and MDA-MB-231 malignant cells when compared with the uptake of nonconjugated samples. In vitro evaluation of anticancer activity demonstrated the strong potential of niosomes loaded with a doxorubicin/curcumin combination as useful devices in breast tumor treatment. These features hold great promise for the development of multifunctional devices that combine several advantages such as biocompatibility, stealth properties, loading capability, and active targeting, moving toward the development of more specific and efficient carriers for personalized tumoral therapy. PMID:27504856

  15. Downstream Sediment Sorting as a Fractionation Process

    NASA Astrophysics Data System (ADS)

    Paola, C.; Fedele, J. J.

    2007-12-01

    Downstream size segregation in net depositional systems can be thought of as a fractination process in which a well mixed, heterogeneous input is unmixed based on its relative mobility. Although we are accustomed to thinking of the segregation process as hydraulically driven and rather complex, we argue that at large time and length scales size segregation can be substantially simplified. The main controls are the downstream distribution of sediment extraction, which is typically controlled externally (e.g. by subsidence) and the size distribution of the sediment supply. Hydraulics plays a secondary role because of the tendency for river channels to self organize to a shape that maintains a limited range of dimensionless shear stress on the channel bed. The end result of this line of reasoning is a simple method for calculating downstream size segregation in depositional systems that is in good agreement with the limited data available. In terms of local dynamics, we introduce evidence that topographic roughness plays an important role. This is not explicitly incorporated in our analysis, and the best ways to characterize roughness for this purpose are yet to be determined. Finally, to estimate the importance of abrasion effects at large scales, we re-introduce a dimensionless parameter to describe the relative importance of abrasion, which sorts material by durability, and selective transport, which sorts by transportability.

  16. Active brain targeting of a fluorescent P-gp substrate using polymeric magnetic nanocarrier system

    NASA Astrophysics Data System (ADS)

    Kirthivasan, B.; Singh, D.; Bommana, M. M.; Raut, S. L.; Squillante, E.; Sadoqi, M.

    2012-06-01

    Magnetic nanoparticles (NP) were developed for the active brain targeting of water-soluble P-glycoprotein (P-gp) substrate rhodamine 123 (Rh123). The NP matrix of poly(lactide-co-glycolide) (PLGA) and methoxy poly(ethyleneglycol)-poly(lactic acid) (M-PEG-PLA) was prepared by single emulsion solvent evaporation of polymers with oleic acid-coated magnetic nanoparticles (OAMNP) and Rh123. All formulations were characterized in terms of morphology, particle size, magnetic content and Rh123 encapsulation efficiency. The maximum encapsulation efficiency of Rh123 was 45 ± 3% and of OAMNP was 42 ± 4%. The brain targeting and biodistribution study was performed on Sprague Dawley rats (3 groups, n = 6). Rh123 (0.4 mg kg-1) was administered in saline form, NP containing Rh123, and NP containing Rh123 in the presence of a magnetic field (0.8 T). The fluorimetric analysis of brain homogenates revealed a significant uptake (p < 0.05) of Rh123 in the magnetically targeted group relative to controls. These results were supported by fluorescence microscopy. This study reveals the ability of magnetically targeted nanoparticles to deliver substances to the brain, the permeation of which would otherwise be inhibited by the P-gp system.

  17. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology.

    PubMed

    Bertrand, Nicolas; Wu, Jun; Xu, Xiaoyang; Kamaly, Nazila; Farokhzad, Omid C

    2014-02-01

    Cancer nanotherapeutics are progressing at a steady rate; research and development in the field has experienced an exponential growth since early 2000's. The path to the commercialization of oncology drugs is long and carries significant risk; however, there is considerable excitement that nanoparticle technologies may contribute to the success of cancer drug development. The pace at which pharmaceutical companies have formed partnerships to use proprietary nanoparticle technologies has considerably accelerated. It is now recognized that by enhancing the efficacy and/or tolerability of new drug candidates, nanotechnology can meaningfully contribute to create differentiated products and improve clinical outcome. This review describes the lessons learned since the commercialization of the first-generation nanomedicines including DOXIL® and Abraxane®. It explores our current understanding of targeted and non-targeted nanoparticles that are under various stages of development, including BIND-014 and MM-398. It highlights the opportunities and challenges faced by nanomedicines in contemporary oncology, where personalized medicine is increasingly the mainstay of cancer therapy. We revisit the fundamental concepts of enhanced permeability and retention effect (EPR) and explore the mechanisms proposed to enhance preferential "retention" in the tumor, whether using active targeting of nanoparticles, binding of drugs to their tumoral targets or the presence of tumor associated macrophages. The overall objective of this review is to enhance our understanding in the design and development of therapeutic nanoparticles for treatment of cancers.

  18. Cancer Nanotechnology: The impact of passive and active targeting in the era of modern cancer biology☆

    PubMed Central

    Bertrand, Nicolas; Wu, Jun; Xu, Xiaoyang; Kamaly, Nazila; Farokhzad, Omid C

    2014-01-01

    Cancer nanotherapeutics are progressing at a steady rate; research and development in the field has experienced an exponential growth since early 2000’s. The path to the commercialization of oncology drugs is long and carries significant risk; however, there is considerable excitement that nanoparticle technologies may contribute to the success of cancer drug development. The pace at which pharmaceutical companies have formed partnerships to use proprietary nanoparticle technologies has considerably accelerated. It is now recognized that by enhancing the efficacy and/or tolerability of new drug candidates, nanotechnology can meaningfully contribute to create differentiated products and improve clinical outcome. This review describes the lessons learned since the commercialization of the first-generation nanomedicines including DOXIL® and Abraxane®. It explores our current understanding of targeted and non-targeted nanoparticles that are under various stages of development, including BIND-014 and MM-398. It highlights the opportunities and challenges faced by nanomedicines in contemporary oncology, where personalized medicine is increasingly the mainstay of cancer therapy. We revisit the fundamental concepts of enhanced permeability and retention effect (EPR) and explore the mechanisms proposed to enhance preferential “retention” in the tumor, whether using active targeting of nanoparticles, binding of drugs to their tumoral targets or the presence of tumor associated macrophages. The overall objective of this review is to enhance our understanding in the design and development of therapeutic nanoparticles for treatment of cancers. PMID:24270007

  19. Biased signalling and proteinase-activated receptors (PARs): targeting inflammatory disease.

    PubMed

    Hollenberg, M D; Mihara, K; Polley, D; Suen, J Y; Han, A; Fairlie, D P; Ramachandran, R

    2014-03-01

    Although it has been known since the 1960s that trypsin and chymotrypsin can mimic hormone action in tissues, it took until the 1990s to discover that serine proteinases can regulate cells by cleaving and activating a unique four-member family of GPCRs known as proteinase-activated receptors (PARs). PAR activation involves the proteolytic exposure of its N-terminal receptor sequence that folds back to function as a 'tethered' receptor-activating ligand (TL). A key N-terminal arginine in each of PARs 1 to 4 has been singled out as a target for cleavage by thrombin (PARs 1, 3 and 4), trypsin (PARs 2 and 4) or other proteases to unmask the TL that activates signalling via Gq , Gi or G12 /13 . Similarly, synthetic receptor-activating peptides, corresponding to the exposed 'TL sequences' (e.g. SFLLRN-, for PAR1 or SLIGRL- for PAR2) can, like proteinase activation, also drive signalling via Gq , Gi and G12 /13 , without requiring receptor cleavage. Recent data show, however, that distinct proteinase-revealed 'non-canonical' PAR tethered-ligand sequences and PAR-activating agonist and antagonist peptide analogues can induce 'biased' PAR signalling, for example, via G12 /13 -MAPKinase instead of Gq -calcium. This overview summarizes implications of this 'biased' signalling by PAR agonists and antagonists for the recognized roles the PARs play in inflammatory settings. PMID:24354792

  20. Down-regulation of microRNA-9 leads to activation of IL-6/Jak/STAT3 pathway through directly targeting IL-6 in HeLa cell.

    PubMed

    Zhang, Jiangbo; Jia, Junqiao; Zhao, Lijun; Li, Xiaojun; Xie, Qing; Chen, Xiangmei; Wang, Jianliu; Lu, Fengmin

    2016-05-01

    MicroRNA-9 (miR-9) presents to exert distinct and even opposite functions in different kinds of tumors through targeting different cellular genes. However, its role in cervical adenocarcinoma remains uncertain. Here, we report that miR-9 is down-regulated in cervical adenocarcinoma due to its frequent promoter-hypermethylation and exerts its tumor suppressor role through inhibiting several novel target genes, including interleukin-6 (IL-6). The promoters of miR-9 precursors (mir-9-1, -2, and -3) were hypermethylated in cervical adenocarcinoma tissues. Demethylation treatment of HeLa dramatically increased the expression of mature miR-9. Both in vitro and in vivo functional experiments confirmed that miR-9 can inhibit the proliferation, migration, and malignant transformation abilities of HeLa cells. Bioinformatics methods and array-based RNA expression profiles were used to screen the downstream target genes of miR-9. Dual-luciferase reporting assay, real-time qPCR, and ELISA or Western blot confirmed four genes (CKAP2, HSPC159, IL-6, and TC10) to be novel direct target genes of miR-9. Pathway annotation analysis of the differently expressed genes (DEGs) induced by ectopic miR-9 expression revealed the enrichment in Jak/STAT3 pathway, which is one of the downstream pathways of IL-6. Ectopic expression of miR-9 in HeLa inhibited Jak/STAT3 signaling activity. Moreover, such effect could be partially reversed by the addition of exogenous IL-6. In conclusion, our results here present a tumor suppressor potential of miR-9 in cervical adenocarcinoma for the first time and suggest that miR-9 could repress tumorigenesis through inhibiting the activity of IL-6/Jak/STAT3 pathway.

  1. The Cyclic Peptide Ecumicin Targeting ClpC1 Is Active against Mycobacterium tuberculosis In Vivo

    PubMed Central

    Gao, Wei; Kim, Jin-Yong; Anderson, Jeffrey R.; Akopian, Tatos; Hong, Seungpyo; Jin, Ying-Yu; Kandror, Olga; Kim, Jong-Woo; Lee, In-Ae; Lee, Sun-Young; McAlpine, James B.; Mulugeta, Surafel; Sunoqrot, Suhair; Wang, Yuehong; Yang, Seung-Hwan; Yoon, Tae-Mi; Goldberg, Alfred L.; Pauli, Guido F.; Cho, Sanghyun

    2014-01-01

    Drug-resistant tuberculosis (TB) has lent urgency to finding new drug leads with novel modes of action. A high-throughput screening campaign of >65,000 actinomycete extracts for inhibition of Mycobacterium tuberculosis viability identified ecumicin, a macrocyclic tridecapeptide that exerts potent, selective bactericidal activity against M. tuberculosis in vitro, including nonreplicating cells. Ecumicin retains activity against isolated multiple-drug-resistant (MDR) and extensively drug-resistant (XDR) strains of M. tuberculosis. The subcutaneous administration to mice of ecumicin in a micellar formulation at 20 mg/kg body weight resulted in plasma and lung exposures exceeding the MIC. Complete inhibition of M. tuberculosis growth in the lungs of mice was achieved following 12 doses at 20 or 32 mg/kg. Genome mining of lab-generated, spontaneous ecumicin-resistant M. tuberculosis strains identified the ClpC1 ATPase complex as the putative target, and this was confirmed by a drug affinity response test. ClpC1 functions in protein breakdown with the ClpP1P2 protease complex. Ecumicin markedly enhanced the ATPase activity of wild-type (WT) ClpC1 but prevented activation of proteolysis by ClpC1. Less stimulation was observed with ClpC1 from ecumicin-resistant mutants. Thus, ClpC1 is a valid drug target against M. tuberculosis, and ecumicin may serve as a lead compound for anti-TB drug development. PMID:25421483

  2. Ligand substitutions between ruthenium–cymene compounds can control protein versus DNA targeting and anticancer activity

    PubMed Central

    Adhireksan, Zenita; Davey, Gabriela E.; Campomanes, Pablo; Groessl, Michael; Clavel, Catherine M.; Yu, Haojie; Nazarov, Alexey A.; Yeo, Charmian Hui Fang; Ang, Wee Han; Dröge, Peter; Rothlisberger, Ursula; Dyson, Paul J.; Davey, Curt A.

    2014-01-01

    Ruthenium compounds have become promising alternatives to platinum drugs by displaying specific activities against different cancers and favourable toxicity and clearance properties. Nonetheless, their molecular targeting and mechanism of action are poorly understood. Here we study two prototypical ruthenium-arene agents—the cytotoxic antiprimary tumour compound [(η6-p-cymene)Ru(ethylene-diamine)Cl]PF6 and the relatively non-cytotoxic antimetastasis compound [(η6-p-cymene)Ru(1,3,5-triaza-7-phosphaadamantane)Cl2]—and discover that the former targets the DNA of chromatin, while the latter preferentially forms adducts on the histone proteins. Using a novel ‘atom-to-cell’ approach, we establish the basis for the surprisingly site-selective adduct formation behaviour and distinct cellular impact of these two chemically similar anticancer agents, which suggests that the cytotoxic effects arise largely from DNA lesions, whereas the protein adducts may be linked to the other therapeutic activities. Our study shows promise for developing new ruthenium drugs, via ligand-based modulation of DNA versus protein binding and thus cytotoxic potential, to target distinguishing epigenetic features of cancer cells. PMID:24637564

  3. Target-Based Identification of Whole-Cell Active Inhibitors of Biotin Biosynthesis in Mycobacterium tuberculosis

    PubMed Central

    Park, Sae Woong; Casalena, Dominick; Wilson, Daniel; Dai, Ran; Nag, Partha; Liu, Feng; Boyce, Jim P.; Bittker, Joshua; Schreiber, Stuart; Finzel, Barry C.; Schnappinger, Dirk; Aldrich, Courtney C.

    2014-01-01

    SUMMARY Biotin biosynthesis is essential for survival and persistence of Mycobacterium tuberculosis (Mtb) in vivo. The aminotransferase BioA, which catalyzes the antepenultimate step in the biotin pathway, has been established as a promising target due to its vulnerability to chemical inhibition. We performed high-throughput screening (HTS) employing a fluorescence displacement assay and identified a diverse set of potent inhibitors including many diversity-oriented synthesis (DOS) scaffolds. To efficiently select only hits targeting biotin biosynthesis, we then deployed a whole-cell counter-screen in either biotin-free and biotin-containing medium against wild-type Mtb and in parallel with isogenic bioA Mtb strains that possess differential levels of BioA expression. This counter-screen proved crucial to filter out compounds whose whole-cell activity was off-target as well as identify hits with weak, but measurable whole-cell activity in BioA-depleted strains. Several of the most promising hits were co-crystallized with BioA to provide a framework for future structure-based drug design efforts. PMID:25556942

  4. A waveguide invariant adaptive matched filter for active sonar target depth classification.

    PubMed

    Goldhahn, Ryan; Hickman, Granger; Krolik, Jeffrey

    2011-04-01

    This paper addresses depth discrimination of a water column target from bottom clutter discretes in wideband active sonar. To facilitate classification, the waveguide invariant property is used to derive multiple snapshots by uniformly sub-sampling the short-time Fourier transform (STFT) coefficients of a single ping of wideband active sonar data. The sub-sampled target snapshots are used to define a waveguide invariant spectral density matrix (WI-SDM), which allows the application of adaptive matched-filtering based approaches for target depth classification. Depth classification is achieved using a waveguide invariant minimum variance filter (WI-MVF) which matches the observed WI-SDM to depth-dependent signal replica vectors generated from a normal mode model. Robustness to environmental mismatch is achieved by adding environmental perturbation constraints (EPC) derived from signal covariance matrices averaged over the uncertain channel parameters. Simulation and real data results from the SCARAB98 and CLUTTER09 experiments in the Mediterranean Sea are presented to illustrate the approach. Receiver operating characteristics (ROC) for robust waveguide invariant depth classification approaches are presented which illustrate performance under uncertain environmental conditions. PMID:21476638

  5. Targeting IL-8 signalling to inhibit breast cancer stem cell activity.

    PubMed

    Singh, Jagdeep K; Simões, Bruno M; Clarke, Robert B; Bundred, Nigel J

    2013-11-01

    Although survival from breast cancer has improved significantly over the past 20 years, disease recurrence remains a significant clinical problem. The concept of stem-like cells in cancer has been gaining currency over the last decade or so, since evidence for stem cell activity in human leukaemia and solid tumours, including breast cancer, was first published. Evidence indicates that this sub-population of cells, known as cancer stem-like cells (CSCs), is responsible for driving tumour formation and disease progression. In breast cancer, there is good evidence that CSCs are intrinsically resistant to conventional chemo-, radio- and endocrine therapies. By evading the effects of these treatments, CSCs are held culpable for disease recurrence. Hence, in order to improve treatment there is a need to develop CSC-targeted therapies. Interleukin-8 (IL-8), an inflammatory cytokine, is upregulated in breast cancer and associated with poor prognostic factors. Accumulating evidence demonstrates that IL-8, through its receptors CXCR1/2, is an important regulator of breast CSC activity. Inhibiting CXCR1/2 signalling has proved efficacious in pre-clinical models of breast cancer providing a good rationale for targeting CXCR1/2 clinically. Here, we discuss the role of IL-8 in breast CSC regulation and development of novel therapies to target CXCR1/2 signalling in breast cancer.

  6. A waveguide invariant adaptive matched filter for active sonar target depth classification.

    PubMed

    Goldhahn, Ryan; Hickman, Granger; Krolik, Jeffrey

    2011-04-01

    This paper addresses depth discrimination of a water column target from bottom clutter discretes in wideband active sonar. To facilitate classification, the waveguide invariant property is used to derive multiple snapshots by uniformly sub-sampling the short-time Fourier transform (STFT) coefficients of a single ping of wideband active sonar data. The sub-sampled target snapshots are used to define a waveguide invariant spectral density matrix (WI-SDM), which allows the application of adaptive matched-filtering based approaches for target depth classification. Depth classification is achieved using a waveguide invariant minimum variance filter (WI-MVF) which matches the observed WI-SDM to depth-dependent signal replica vectors generated from a normal mode model. Robustness to environmental mismatch is achieved by adding environmental perturbation constraints (EPC) derived from signal covariance matrices averaged over the uncertain channel parameters. Simulation and real data results from the SCARAB98 and CLUTTER09 experiments in the Mediterranean Sea are presented to illustrate the approach. Receiver operating characteristics (ROC) for robust waveguide invariant depth classification approaches are presented which illustrate performance under uncertain environmental conditions.

  7. Activation of mammalian target of rapamycin contributes to pain nociception induced in rats by BmK I, a sodium channel-specific modulator.

    PubMed

    Jiang, Feng; Hua, Li-Ming; Jiao, Yun-Lu; Ye, Pin; Fu, Jin; Cheng, Zhi-Jun; Ding, Gang; Ji, Yong-Hua

    2014-02-01

    The mammalian target of rapamycin (mTOR) pathway is essential for maintenance of the sensitivity of certain adult sensory neurons. Here, we investigated whether the mTOR cascade is involved in scorpion envenomation-induced pain hypersensitivity in rats. The results showed that intraplantar injection of a neurotoxin from Buthus martensii Karsch, BmK I (10 μg), induced the activation of mTOR, as well as its downstream molecules p70 ribosomal S6 protein kinase (p70 S6K) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), in lumbar 5-6 dorsal root ganglia neurons on both sides in rats. The activation peaked at 2 h and recovered 1 day after injection. Compared with the control group, the ratios of p-mTOR/p-p70 S6K/p-4EBP1 in three types of neurons changed significantly. The cell typology of p-mTOR/p-p70 S6K/p-4E-BP1 immuno-reactive neurons also changed. Intrathecal administration of deforolimus, a specific inhibitor of mTOR, attenuated BmK I-induced pain responses (spontaneous flinching, paroxysmal pain-like behavior, and mechanical hypersensitivity). Together, these results imply that the mTOR signaling pathway is mobilized by and contributes to experimental scorpion sting-induced pain. PMID:24132796

  8. Novel off-target effect of tamoxifen--inhibition of acid ceramidase activity in cancer cells.

    PubMed

    Morad, Samy A F; Levin, Jonathan C; Tan, Su-Fern; Fox, Todd E; Feith, David J; Cabot, Myles C

    2013-12-01

    Acid ceramidase (AC), EC 3.5.1.23, a lysosomal enzyme, catalyzes the hydrolysis of ceramide to constituent sphingoid base, sphingosine, and fatty acid. Because AC regulates the levels of pro-apoptotic ceramide and mitogenic sphingosine-1-phosphate, it is considered an apt target in cancer therapy. The present study reveals, for the first time, that the prominent antiestrogen, tamoxifen, is a pan-effective AC inhibitor in the low, single digit micromolar range, as demonstrated in a wide spectrum of cancer cell types, prostate, pancreatic, colorectal, and breast. Prostate cancer cells were chosen for the detailed investigations. Treatment of intact PC-3 cells with tamoxifen produced time- and dose-dependent inhibition of AC activity. Tamoxifen did not impact cell viability nor did it inhibit AC activity in cell-free assays. In pursuit of mechanism of action, we demonstrate that tamoxifen induced time-, as early as 5min, and dose-dependent, as low as 5μM, increases in lysosomal membrane permeability (LMP), and time- and dose-dependent downregulation of AC protein expression. Assessing various protease inhibitors revealed that a cathepsin B inhibitor blocked tamoxifen-elicited downregulation of AC protein; however, this action failed to restore AC activity unless assayed in a cell-free system at pH4.5. In addition, pretreatment with tamoxifen inhibited PC-3 cell migration. Toremifene, an antiestrogen structurally similar to tamoxifen, was also a potent inhibitor of AC activity. This study reveals a new, off-target action of tamoxifen that may be of benefit to enhance anticancer therapies that either incorporate ceramide or target ceramide metabolism. PMID:23939396

  9. Enhancing Effects on Vacuole-Targeting Fungicidal Activity of Amphotericin B

    PubMed Central

    Ogita, Akira; Fujita, Ken-Ichi; Tanaka, Toshio

    2012-01-01

    Invasive fungal infections are major threats for immunocompromised patients as well as for those undergoing cancer chemotherapy. Amphotericin B (AmB), a classical antifungal drug with a polyene macrolide structure, is widely used for the control of serious fungal infections. However, the clinical use of this antifungal drug is limited by its side effects and the emergence of drug-resistant strains. AmB lethality has been generally attributed to alterations in plasma membrane ion permeability due to its specific binding to plasma membrane ergosterol. Recent studies with Saccharomyces cerevisiae and Candida albicans reveal the vacuole disruptive action as another cause of AmB lethality on the basis of marked amplification of its activity in combination with allicin, an allyl-sulfur compound from garlic. The enhancing effect of allicin is dependent on the inhibition of ergosterol-trafficking from the plasma membrane to the vacuole membrane, which is considered to be a cellular response to protect against disintegration of the vacuole membrane. The polyol macrolide niphimycin (NM) also possesses vacuole-targeting fungicidal activity, which is greater than that of AmB and nystatin. The alkyl side chain attached to the macrolide ring of NM is considered to possess an allicin-like inhibitory effect on the intracellular trafficking of ergosterol. The vacuole-targeting fungicidal activity was additionally detected with a bactericidal cyclic peptide polymyxin B (PMB), and was markedly enhanced when administered together with allicin, monensin, or salinomycin. The synergistic fungicidal activities of AmB and allicin may have significant implications for the development of vacuole-targeting chemotherapy against fungal infections. PMID:22457662

  10. The search of the target of promotion: Phenylbenzoate esterase activities in hen peripheral nerve

    SciTech Connect

    Moretto, A. . E-mail: angelo.moretto@icps.it; Nicolli, A.; Lotti, M.

    2007-03-15

    Certain esterase inhibitors, such as carbamates, phosphinates and sulfonyl halides, do not cause neuropathy as some organophosphates, but they may exacerbate chemical or traumatic insults to axons. This phenomenon is called promotion of axonopathies. Given the biochemical and toxicological characteristics of these compounds, the hypothesis was made that the target of promotion is a phenyl valerate (PV) esterase similar to neuropathy target esterase (NTE), the target of organophosphate induced delayed polyneuropathy. However, attempts to identify a PV esterase in hen peripheral nerve have been, so far, unsuccessful. We tested several esters, other than PV, as substrates of esterases from crude homogenate of the hen peripheral nerve. The ideal substrate should be poorly hydrolysed by NTE but extensively by enzyme(s) that are insensitive to non-promoters, such as mipafox, and sensitive to promoters, such as phenyl methane sulfonyl fluoride (PMSF). When phenyl benzoate (PB) was used as substrate, about 65% of total activity was resistant to the non-promoter mipafox (up to 0.5 mM, 20 min, pH 8.0), that inhibits NTE and other esterases. More than 90% of this resistant activity was sensitive to the classical promoter PMSF (1 mM, 20 min, pH 8.0) with an IC{sub 50} of about 0.08 mM (20 min, pH 8.0). On the contrary, the non-promoter p-toluene sulfonyl fluoride caused only about 10% inhibition at 0.5 mM. Several esterase inhibitors including, paraoxon, phenyl benzyl carbamate, di-n-butyl dichlorovinyl phosphate and di-isopropyl fluorophosphate, were tested both in vitro and in vivo for inhibition of this PB activity. Mipafox-resistant PMSF-sensitive PB esterase activity(ies) was inhibited by promoters but not by non promoters and neuropathic compounds.

  11. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins.

    PubMed

    Maeder, Morgan L; Angstman, James F; Richardson, Marcy E; Linder, Samantha J; Cascio, Vincent M; Tsai, Shengdar Q; Ho, Quan H; Sander, Jeffry D; Reyon, Deepak; Bernstein, Bradley E; Costello, Joseph F; Wilkinson, Miles F; Joung, J Keith

    2013-12-01

    Genome-wide studies have defined cell type-specific patterns of DNA methylation that are important for regulating gene expression in both normal development and disease. However, determining the functional significance of specific methylation events remains challenging, owing to the lack of methods for removing such modifications in a targeted manner. Here we describe an approach for efficient targeted demethylation of specific CpGs in human cells using fusions of engineered transcription activator-like effector (TALE) repeat arrays and the TET1 hydroxylase catalytic domain. Using these TALE-TET1 fusions, we demonstrate that modification of critical methylated promoter CpG positions can lead to substantial increases in the expression of endogenous human genes. Our results delineate a strategy for understanding the functional significance of specific CpG methylation marks in the context of endogenous gene loci and validate programmable DNA demethylation reagents with potential utility for research and therapeutic applications.

  12. Angular dependence of source-target-detector in active mode standoff infrared detection

    NASA Astrophysics Data System (ADS)

    Pacheco-Londoño, Leonardo C.; Castro-Suarez, John R.; Aparicio-Bolaños, Joaquín. A.; Hernández-Rivera, Samuel P.

    2013-06-01

    Active mode standoff measurement using infrared spectroscopy were carried out in which the angle between target and the source was varied from 0-70° with respect to the surface normal of substrates containing traces of highly energetic materials (explosives). The experiments were made using three infrared sources: a modulated source (Mod-FTIR), an unmodulated source (UnMod-FTIR) and a scanning quantum cascade laser (QCL), part of a dispersive mid infrared (MIR) spectrometer. The targets consisted of PENT 200 μg/cm2 deposited on aluminum plates placed at 1 m from the sources. The evaluation of the three modalities was aimed at verifying the influence of the highly collimated laser beam in the detection in comparison with the other sources. The Mod-FTIR performed better than QCL source in terms of the MIR signal intensity decrease with increasing angle.

  13. Impact of high-risk conjunctions on Active Debris Removal target selection

    NASA Astrophysics Data System (ADS)

    Lidtke, Aleksander A.; Lewis, Hugh G.; Armellin, Roberto

    2015-10-01

    Space debris simulations show that if current space launches continue unchanged, spacecraft operations might become difficult in the congested space environment. It has been suggested that Active Debris Removal (ADR) might be necessary in order to prevent such a situation. Selection of objects to be targeted by ADR is considered important because removal of non-relevant objects will unnecessarily increase the cost of ADR. One of the factors to be used in this ADR target selection is the collision probability accumulated by every object. This paper shows the impact of high-probability conjunctions on the collision probability accumulated by individual objects as well as the probability of any collision occurring in orbit. Such conjunctions cannot be predicted far in advance and, consequently, not all the objects that will be involved in such dangerous conjunctions can be removed through ADR. Therefore, a debris remediation method that would address such events at short notice, and thus help prevent likely collisions, is suggested.

  14. Recent advances of cytotoxic chalconoids targeting tubulin polymerization: Synthesis and biological activity.

    PubMed

    Mirzaei, Hassan; Emami, Saeed

    2016-10-01

    Since microtubules have an important role in mitosis and other vital cellular functions, tubulin-targeting chemotherapy has been received growing attention in anticancer drug design and development. It was found that a number of naturally occurring compounds including distinct chalcones exert their effect by inhibition of tubulin polymerization. After the identification of tubulin polymerization as potential target for chalcone-type compounds, extensive researches have been made to design and synthesis of new anti-tubulin chalconoids. Although diverse chalcones have found to be potent anticancer agents but in the present review, we focused on the recently reported tubulin polymerization inhibitors from chalcone origin and related synthetic compounds, and their detailed synthetic methods and biological activities. PMID:27318983

  15. Protein kinase C and P2Y12 take center stage in thrombin-mediated activation of mammalian target of rapamycin complex 1 in human platelets

    PubMed Central

    Moore, S F; Hunter, R W; Hers, I

    2014-01-01

    Background Rapamycin, an inhibitor of mammalian target of rapamycin complex-1 (mTORC1), reduces platelet spreading, thrombus stability, and clot retraction. Despite an important role of mTORC1 in platelet function, little is known about how it is regulated. The objective of this study was to determine the signaling pathways that regulate mTORC1 in human platelets. Methods Mammalian target of rapamycin complex-1 activation was assessed by measuring the phosphorylation of its downstream substrate ribosomal S6 kinase 1 (p70S6K). Results Thrombin or the protein kinase C (PKC) activator phorbal 12-myristate 13-acetate stimulated activation of mTORC1 in a PKC-dependent, Akt-independent manner that correlated with phosphorylation of tuberin/tuberous sclerosis 2 (TSC2) (Ser939 and Thr1462). In contrast, insulin-like growth factor 1 (IGF-1)–stimulated TSC2 phosphorylation was completely dependent on phosphoinositide 3 kinase (PI3 kinase)/Akt but did not result in any detectable mTORC1 activation. Early (Ser939 and Thr1462) and late (Thr1462) TSC2 phosphorylation in response to thrombin were directly PKC dependent, whereas later TSC2 (Ser939) and p70S6K phosphorylation were largely dependent on paracrine signaling through P2Y12. PKC-mediated adenosine diphosphate (ADP) secretion was essential for thrombin-stimulated mTORC1 activation, as (i) ADP rescued p70S6K phosphorylation in the presence of a PKC inhibitor and (ii) P2Y12 antagonism prevented thrombin-mediated mTORC1 activation. Rescue of mTORC1 activation with exogenous ADP was completely dependent on the Src family kinases but independent of PI3 kinase/Akt. Interestingly, although inhibition of Src blocked the ADP rescue, it had little effect on thrombin-stimulated p70S6K phosphorylation under conditions where PKC was not inhibited. Conclusion These results demonstrate that thrombin activates the mTORC1 pathway in human platelets through PKC-mediated ADP secretion and subsequent activation of P2Y12, in a manner

  16. Physical Activity and Sedentary Behavior in Breast Cancer Survivors: New Insight into Activity Patterns and Potential Intervention Targets

    PubMed Central

    Phillips, Siobhan M.; Dodd, Kevin W.; Steeves, Jeremy; McClain, James; Alfano, Catherine M.; McAuley, Edward

    2016-01-01

    Background Inactivity and sedentary behavior are related to poorer health outcomes in breast cancer survivors. However, few studies examining these behaviors in survivors have used objective measures, considered activities other than moderate-to-vigorous intensity activity (MVPA) and/or sedentary behavior (i.e. low intensity activities) or compared survivors to healthy controls. The purpose of the present study is to compare accelerometer-measured activity of various intensities (total, light, lifestyle, MVPA) and sedentary behavior between breast cancer survivors and non-cancer controls. Methods An imputation-based approach of independent sample t-tests adjusting for multiple comparisons was used to compare estimates of participation in each activity and sedentary behavior between survivors [n=398; M(SD)age=56.95 (9.11)] and block-matched non-cancer controls [n=1120; M(SD)age=54.88 (16.11)]. Potential moderating effects of body mass index (BMI), age, and education were also examined. Results Breast cancer survivors registered less daily total (282.8 v. 346.9) light (199.1 v. 259.3) and lifestyle (62.0 v. 71.7) activity minutes and more MVPA (21.6 v. 15.9) and sedentary behavior (555.7 v. 500.6) minutes than controls (p<0.001 for all). These relationships were largely consistent across BMI, age and education. On average, survivors spent an estimated 66.4% of their waking time sedentary and 31.1% in light/lifestyle activity and 2.6% in MVPA. Conclusions Breast cancer survivors are more sedentary and participate in less low intensity activity than controls. Although survivors registered more MVPA, these levels were insufficient. Future research should explore these differences and potential benefits of targeting low intensity activities and reducing sedentary time in this population. PMID:26026737

  17. Introducing endo-xylanase activity into an exo-acting arabinofuranosidase that targets side chains.

    PubMed

    McKee, Lauren S; Peña, Maria J; Rogowski, Artur; Jackson, Adam; Lewis, Richard J; York, William S; Krogh, Kristian B R M; Viksø-Nielsen, Anders; Skjøt, Michael; Gilbert, Harry J; Marles-Wright, Jon

    2012-04-24

    The degradation of the plant cell wall by glycoside hydrolases is central to environmentally sustainable industries. The major polysaccharides of the plant cell wall are cellulose and xylan, a highly decorated β-1,4-xylopyranose polymer. Glycoside hydrolases displaying multiple catalytic functions may simplify the enzymes required to degrade plant cell walls, increasing the industrial potential of these composite structures. Here we test the hypothesis that glycoside hydrolase family 43 (GH43) provides a suitable scaffold for introducing additional catalytic functions into enzymes that target complex structures in the plant cell wall. We report the crystal structure of Humicola insolens AXHd3 (HiAXHd3), a GH43 arabinofuranosidase that hydrolyses O3-linked arabinose of doubly substituted xylans, a feature of the polysaccharide that is recalcitrant to degradation. HiAXHd3 displays an N-terminal five-bladed β-propeller domain and a C-terminal β-sandwich domain. The interface between the domains comprises a xylan binding cleft that houses the active site pocket. Substrate specificity is conferred by a shallow arabinose binding pocket adjacent to the deep active site pocket, and through the orientation of the xylan backbone. Modification of the rim of the active site introduces endo-xylanase activity, whereas the resultant enzyme variant, Y166A, retains arabinofuranosidase activity. These data show that the active site of HiAXHd3 is tuned to hydrolyse arabinofuranosyl or xylosyl linkages, and it is the topology of the distal regions of the substrate binding surface that confers specificity. This report demonstrates that GH43 provides a platform for generating bespoke multifunctional enzymes that target industrially significant complex substrates, exemplified by the plant cell wall.

  18. Retrotransposon Tf1 is targeted to pol II promoters by transcription activators

    PubMed Central

    Leem, Young-Eun; Ripmaster, Tracy; Kelly, Felice; Ebina, Hirotaka; Heincelman, Marc; Zhang, Ke; Grewal, Shiv I. S.; Hoffman, Charles S.; Levin, Henry L.

    2008-01-01

    SUMMARY The LTR-retrotransposon Tf1 preserves the coding capacity of its host Schizosaccharomyces pombe by integrating upstream of open reading frames (ORFs). To determine which features of the target sites were recognized by the transposon, we introduced plasmids containing candidate insertion sites into S. pombe and mapped the positions of integration. We found that Tf1 was targeted specifically to the promoters of pol II transcribed genes. A detailed analysis of integration in plasmids that contained either ade6 or fbp1 revealed insertions occurred in the promoters at positions where transcription factors bound. Further experiments revealed that the activator Atf1p and its binding site were required for directing integration to the promoter of fbp1. An interaction between Tf1 integrase and Atf1p was observed indicating that integration at fbp1 was mediated by the activator bound to its promoter. Surprisingly we found Tf1 contained sequences that activated transcription and these substituted for elements of the ade6 promoter disrupted by integration. PMID:18406330

  19. Rutin inhibits B[a]PDE-induced cyclooxygenase-2 expression by targeting EGFR kinase activity.

    PubMed

    Choi, Seunghwan; Lim, Tae-Gyu; Hwang, Mun Kyung; Kim, Yoon-A; Kim, Jiyoung; Kang, Nam Joo; Jang, Tae Su; Park, Jun-Seong; Yeom, Myeong Hun; Lee, Ki Won

    2013-11-15

    Rutin is a well-known flavonoid that exists in various natural sources. Accumulative studies have represented the biological effects of rutin, such as anti-oxidative and anti-inflammatory effects. However, the underlying mechanisms of rutin and its direct targets are not understood. We investigated whether rutin reduced B[a]PDE-induced-COX-2 expression. The transactivation of AP-1 and NF-κB were inhibited by rutin. Rutin also attenuated B[a]PDE-induced Raf/MEK/ERK and Akt activation, but had no effect on the phosphorylation of EGFR. An in vitro kinase assay revealed rutin suppressed EGFR kinase activity. We also confirmed direct binding between rutin and EGFR, and found that the binding was regressed by ATP. The EGFR inhibitor also inhibited the B[a]PDE-induced MEK/ERK and Akt signaling pathways and subsequently, suppressed COX-2 expression and promoter activity, in addition to suppressing the transactivation of AP-1 and NF-κB. In EGFR(-/-)mouse embryonic fibroblast cells, B[a]PDE-induced COX-2 expression was also diminished. Collectively, rutin inhibits B[a]PDE-induced COX-2 expression by suppressing the Raf/MEK/ERK and Akt signaling pathways. EGFR appeared to be the direct target of rutin.

  20. Activation of wingless targets requires bipartite recognition of DNA by TCF.

    PubMed

    Chang, Mikyung V; Chang, Jinhee L; Gangopadhyay, Anu; Shearer, Andrew; Cadigan, Ken M

    2008-12-01

    Specific recognition of DNA by transcription factors is essential for precise gene regulation. In Wingless (Wg) signaling in Drosophila, target gene regulation is controlled by T cell factor (TCF), which binds to specific DNA sequences through a high mobility group (HMG) domain. However, there is considerable variability in TCF binding sites, raising the possibility that they are not sufficient for target location. Some isoforms of human TCF contain a domain, termed the C-clamp, that mediates binding to an extended sequence in vitro. However, the significance of this extended sequence for the function of Wnt response elements (WREs) is unclear. In this report, we identify a cis-regulatory element that, to our knowledge, was previously unpublished. The element, named the TCF Helper site (Helper site), is essential for the activation of several WREs. This motif greatly augments the ability of TCF binding sites to respond to Wg signaling. Drosophila TCF contains a C-clamp that enhances in vitro binding to TCF-Helper site pairs and is required for transcriptional activation of WREs containing Helper sites. A genome-wide search for clusters of TCF and Helper sites identified two new WREs. Our data suggest that DNA recognition by fly TCF occurs through a bipartite mechanism, involving both the HMG domain and the C-clamp, which enables TCF to locate and activate WREs in the nucleus. PMID:19062282

  1. Histone H4 Lys 20 monomethylation by histone methylase SET8 mediates Wnt target gene activation.

    PubMed

    Li, Zhenfei; Nie, Fen; Wang, Sheng; Li, Lin

    2011-02-22

    Histone methylation has an important role in transcriptional regulation. However, unlike H3K4 and H3K9 methylation, the role of H4K20 monomethylation (H4K20me-1) in transcriptional regulation remains unclear. Here, we show that Wnt3a specifically stimulates H4K20 monomethylation at the T cell factor (TCF)-binding element through the histone methylase SET8. Additionally, SET8 is crucial for activation of the Wnt reporter gene and target genes in both mammalian cells and zebrafish. Furthermore, SET8 interacts with lymphoid enhancing factor-1 (LEF1)/TCF4 directly, and this interaction is regulated by Wnt3a. Therefore, we conclude that SET8 is a Wnt signaling mediator and is recruited by LEF1/TCF4 to regulate the transcription of Wnt-activated genes, possibly through H4K20 monomethylation at the target gene promoters. Our findings also indicate that H4K20me-1 is a marker for gene transcription activation, at least in canonical Wnt signaling. PMID:21282610

  2. Regulation of activity and apical targeting of the Cl-/HCO3- exchanger in rat hepatocytes.

    PubMed Central

    Benedetti, A; Strazzabosco, M; Ng, O C; Boyer, J L

    1994-01-01

    To test the hypothesis that rat hepatocyte canalicular Cl-/HCO3- exchange activity might be regulated by HCO3- or protein kinase-induced changes in the apical targeting of vesicles, isolated rat hepatocytes were cultured in the presence or absence of HCO3-/CO2.Cl-/HCO3- exchange activity increased in cells cultured in the presence of HCO3-/CO2 or when stimulated by dibutyryl cAMP. Both of these effects were blocked by either colchicine or the protein kinase C agonist phorbol 12,13-dibutyrate. Fluorescence and confocal microscopy, respectively, revealed increased pericanalicular-apical membrane localization of two canalicular markers, peanut agglutinin and a 110-kDa canalicular ecto-ATPase, when hepatocyte couplets were preincubated in HCO3-/CO2-containing medium, an effect that was again blocked by colchicine. Dibutyryl cAMP also stimulated canalicular localization of the 110-kDa protein. These findings suggest that hepatocyte Cl-/HCO3- exchange activity is regulated by HCO3-/CO2 and by protein kinase A and protein kinase C agonists through microtubule-dependent targeting of vesicles containing this exchanger to the canalicular domain. Images Fig. 3 PMID:8290601

  3. Targeting Microglial Activation in Stroke Therapy: Pharmacological Tools and Gender Effects

    PubMed Central

    Chen, Y.; Won, S.J.; Xu, Y.; Swanson, R.A.

    2014-01-01

    Ischemic stroke is caused by critical reductions in blood flow to brain or spinal cord. Microglia are the resident immune cells of the central nervous system, and they respond to stroke by assuming an activated phenotype that releases cytotoxic cytokines, reactive oxygen species, proteases, and other factors. This acute, innate immune response may be teleologically adapted to limit infection, but in stroke this response can exacerbate injury by further damaging or killing nearby neurons and other cell types, and by recruiting infiltration of circulating cytotoxic immune cells. The microglial response requires hours to days to fully develop, and this time interval presents a clinically accessible time window for initiating therapy. Because of redundancy in cytotoxic microglial responses, the most effective therapeutic approach may be to target the global gene expression changes involved in microglial activation. Several classes of drugs can do this, including histone deacetylase inhibitors, minocycline and other PARP inhibitors, corticosteroids, and inhibitors of TNFα and scavenger receptor signaling. Here we review the pre-clinical studies in which these drugs have been used to suppress microglial activation after stroke. We also review recent advances in the understanding of sex differences in the CNS inflammatory response, as these differences are likely to influence the efficacy of drugs targeting post-stroke brain inflammation. PMID:24372213

  4. Targeting complement activation in brain-dead donors improves renal function after transplantation.

    PubMed

    Damman, Jeffrey; Hoeger, Simone; Boneschansker, Leo; Theruvath, Ashok; Waldherr, Ruediger; Leuvenink, Henri G; Ploeg, Rutger J; Yard, Benito A; Seelen, Marc A

    2011-05-01

    Kidneys recovered from brain-dead donors have inferior outcomes after transplantation compared to kidneys from living donors. Since complement activation plays an important role in renal transplant related injury, targeting complement activation in brain-dead donors might improve renal function after transplantation. Brain death (BD) was induced in Fisher rats by inflation of an epidurally placed balloon catheter and ventilated for 6h. BD animals were treated with soluble complement receptor 1 (sCR1) 1h before or 1h after BD. Kidney transplantation was performed and 7 days after transplantation animals were sacrificed. Plasma creatinine and urea were measured at days 0, 1, 3, 5 and 7 after transplantation. Renal function was significantly better at day 1 after transplantation in recipients receiving a sCR1 pre-treated donor kidney compared to recipients of a non-treated donor graft. Also treatment with sCR1, 1h after the diagnosis of BD, resulted in a better renal function after transplantation. Gene expression of IL-6, IL-1beta and TGF-beta were significantly lower in renal allografts recovered from treated donors. This study shows that targeting complement activation, during BD in the donor, leads to an improved renal function after transplantation in the recipient.

  5. Targeted recruitment of adults with type 2 diabetes for a physical activity intervention.

    PubMed

    Johnson, Elizabeth J; Niles, Barbara L; Mori, DeAnna L

    2015-05-01

    Recruiting sufficient numbers of participants for physical activity trials for individuals with diabetes can be difficult because there are often many behavioral demands for participants, and inclusion and exclusion criteria can be extensive. This study examined the recruitment strategies used for a randomized, controlled trial designed to investigate the efficacy of an automated telephone intervention to promote physical activity in adults with type 2 diabetes in an urban Veterans Administration health care system. Traditional recruitment approaches of posting flyers and obtaining referrals from clinicians did not yield sufficient numbers of interested patients. Using the electronic medical record system to identify patients with uncontrolled diabetes allowed staff to send targeted mailings to participants, and 77% of participants were recruited using this method. The targeted mailing approach elicited a positive response rate of 12% (328 of 2,764 potential participants identified) and appeared to produce a more representative and appropriate sample than other recruitment methods used. Lessons learned in this study may be helpful to researchers in future trials who attempt to recruit participants with diabetes for physical activity protocols. PMID:25987808

  6. Molecular photoacoustic imaging of breast cancer using an actively targeted conjugated polymer

    PubMed Central

    Balasundaram, Ghayathri; Ho, Chris Jun Hui; Li, Kai; Driessen, Wouter; Dinish, US; Wong, Chi Lok; Ntziachristos, Vasilis; Liu, Bin; Olivo, Malini

    2015-01-01

    Conjugated polymers (CPs) are upcoming optical contrast agents in view of their unique optical properties and versatile synthetic chemistry. Biofunctionalization of these polymer-based nanoparticles enables molecular imaging of biological processes. In this work, we propose the concept of using a biofunctionalized CP for noninvasive photoacoustic (PA) molecular imaging of breast cancer. In particular, after verifying the PA activity of a CP nanoparticle (CP dots) in phantoms and the targeting efficacy of a folate-functionalized version of the same (folate-CP dots) in vitro, we systemically administered the probe into a folate receptor-positive (FR+ve) MCF-7 breast cancer xenograft model to demonstrate the possible application of folate-CP dots for imaging FR+ve breast cancers in comparison to CP dots with no folate moieties. We observed a strong PA signal at the tumor site of folate-CP dots-administered mice as early as 1 hour after administration as a result of the active targeting of the folate-CP dots to the FR+ve tumor cells but a weak PA signal at the tumor site of CP-dots-administered mice as a result of the passive accumulation of the probe by enhanced permeability and retention effect. We also observed that folate-CP dots produced ~4-fold enhancement in the PA signal in the tumor, when compared to CP dots. These observations demonstrate the great potential of this active-targeting CP to be used as a contrast agent for molecular PA diagnostic imaging in various biomedical applications. PMID:25609951

  7. ROMA: Representation and Quantification of Module Activity from Target Expression Data

    PubMed Central

    Martignetti, Loredana; Calzone, Laurence; Bonnet, Eric; Barillot, Emmanuel; Zinovyev, Andrei

    2016-01-01

    In many analyses of high-throughput data in systems biology, there is a need to quantify the activity of a set of genes in individual samples. A typical example is the case where it is necessary to estimate the activity of a transcription factor (which is often not directly measurable) from the expression of its target genes. We present here ROMA (Representation and quantification Of Module Activities) Java software, designed for fast and robust computation of the activity of gene sets (or modules) with coordinated expression. ROMA activity quantification is based on the simplest uni-factor linear model of gene regulation that approximates the expression data of a gene set by its first principal component. The proposed algorithm implements novel functionalities: it provides several method modifications for principal components computation, including weighted, robust and centered methods; it distinguishes overdispersed modules (based on the variance explained by the first principal component) and coordinated modules (based on the significance of the spectral gap); finally, it computes statistical significance of the estimated module overdispersion or coordination. ROMA can be applied in many contexts, from estimating differential activities of transcriptional factors to finding overdispersed pathways in single-cell transcriptomics data. We describe here the principles of ROMA providing several practical examples of its use. ROMA source code is available at https://github.com/sysbio-curie/Roma. PMID:26925094

  8. Novel epigallocatechin gallate (EGCG) analogs activate AMP-activated protein kinase pathway and target cancer stem cells.

    PubMed

    Chen, Di; Pamu, Sreedhar; Cui, Qiuzhi; Chan, Tak Hang; Dou, Q Ping

    2012-05-01

    AMP-activated protein kinase (AMPK) is a critical monitor of cellular energy status and also controls processes related to tumor development, including cell cycle progression, protein synthesis, cell growth and survival. Therefore AMPK as an anti-cancer target has received intensive attention recently. It has been reported that the anti-diabetic drug metformin and some natural compounds, such as quercetin, genistein, capsaicin and green tea polyphenol epigallocatechin gallate (EGCG), can activate AMPK and inhibit cancer cell growth. Indeed, natural products have been the most productive source of leads for the development of anti-cancer drugs but perceived disadvantages, such as low bioavailability and week potency, have limited their development and use in the clinic. In this study we demonstrated that synthetic EGCG analogs 4 and 6 were more potent AMPK activators than metformin and EGCG. Activation of AMPK by these EGCG analogs resulted in inhibition of cell proliferation, up-regulation of the cyclin-dependent kinase inhibitor p21, down-regulation of mTOR pathway, and suppression of stem cell population in human breast cancer cells. Our findings suggest that novel potent and specific AMPK activators can be discovered from natural and synthetic sources that have potential to be used for anti-cancer therapy in the clinic. PMID:22459208

  9. Downstream processing of biopharmaceutical proteins produced in plants

    PubMed Central

    Buyel, Johannes Felix; Fischer, Rainer

    2014-01-01

    All biological platforms for the manufacture of biopharmaceutical proteins produce an initially turbid extract that must be clarified to avoid fouling sensitive media such as chromatography resins. Clarification is more challenging if the feed stream contains large amounts of dispersed particles, because these rapidly clog the filter media typically used to remove suspended solids. Charged polymers (flocculants) can increase the apparent size of the dispersed particles by aggregation, facilitating the separation of solids and liquids, and thus reducing process costs. However, many different factors can affect the behavior of flocculants, including the pH and conductivity of the medium, the size and charge distribution of the particulates, and the charge density and molecular mass of the polymer. Importantly, these properties can also affect the recovery of the target protein and the overall safety profile of the process. We therefore used a design of experiments approach to establish reliable predictive models that characterize the impact of flocculants during the downstream processing of biopharmaceutical proteins. We highlight strategies for the selection of flocculants during process optimization. These strategies will contribute to the quality by design aspects of process development and facilitate the development of safe and efficient downstream processes for plant-derived pharmaceutical proteins. PMID:24637706

  10. Neural activity in the frontal pursuit area does not underlie pursuit target selection

    PubMed Central

    Mahaffy, Shaun; Krauzlis, Richard J.

    2010-01-01

    The frontal pursuit area (FPA) contains neurons that are directionally selective for pursuit eye movements. We found that FPA neurons discriminate target from distracter too late to account for pursuit directional selection. Rather, the timing of neuronal discrimination is linked to pursuit onset, suggesting a role in motor execution. We also found buildup of activity of FPA neurons prior to pursuit onset that correlated with eye acceleration. These results show that the FPA is unlikely to be involved in selection of initial pursuit direction, but could be involved in motor preparation by increasing pursuit gain prior to pursuit onset. PMID:20970442

  11. Therapeutic Targets for Neurodevelopmental Disorders Emerging from Animal Models with Perinatal Immune Activation

    PubMed Central

    Ibi, Daisuke; Yamada, Kiyofumi

    2015-01-01

    Increasing epidemiological evidence indicates that perinatal infection with various viral pathogens enhances the risk for several psychiatric disorders. The pathophysiological significance of astrocyte interactions with neurons and/or gut microbiomes has been reported in neurodevelopmental disorders triggered by pre- and postnatal immune insults. Recent studies with the maternal immune activation or neonatal polyriboinosinic polyribocytidylic acid models of neurodevelopmental disorders have identified various candidate molecules that could be responsible for brain dysfunction. Here, we review the functions of several candidate molecules in neurodevelopment and brain function and discuss their potential as therapeutic targets for psychiatric disorders. PMID:26633355

  12. History of the bubble chamber and related active- and internal-target nuclear tracking detectors

    NASA Astrophysics Data System (ADS)

    Becchetti, F. D.

    2015-06-01

    Donald Glaser, 1960 Nobel laureate in Physics, recently passed away (2013), as have many of his colleagues who were involved with the early development of bubble chambers at the University of Michigan. In this paper I will review those early years and the subsequent wide-spread application of active-target (AT) bubble chambers that dominated high-energy physics (HEP) research for over thirty years. Some of the related, but more modern nuclear tracking detectors being used in HEP, neutrino astrophysics and dark-matter searches also will be discussed.

  13. Parasite Mitogen-Activated Protein Kinases as Drug Discovery Targets to Treat Human Protozoan Pathogens

    PubMed Central

    Brumlik, Michael J.; Pandeswara, Srilakshmi; Ludwig, Sara M.; Murthy, Kruthi; Curiel, Tyler J.

    2011-01-01

    Protozoan pathogens are a highly diverse group of unicellular organisms, several of which are significant human pathogens. One group of protozoan pathogens includes obligate intracellular parasites such as agents of malaria, leishmaniasis, babesiosis, and toxoplasmosis. The other group includes extracellular pathogens such as agents of giardiasis and amebiasis. An unfortunate unifying theme for most human protozoan pathogens is that highly effective treatments for them are generally lacking. We will review targeting protozoan mitogen-activated protein kinases (MAPKs) as a novel drug discovery approach towards developing better therapies, focusing on Plasmodia, Leishmania, and Toxoplasma, about which the most is known. PMID:21637385

  14. Development of CNS Active Target for Deuteron Induced Reactions with High Intensity Exotic Beam

    NASA Astrophysics Data System (ADS)

    Ota, Shinsuke; Tokieda, H.; Lee, C. S.; Kojima, R.; Watanabe, Y. N.; Corsi, A.; Dozono, M.; Gibelin, J.; Hashimoto, T.; Kawabata, T.; Kawase, S.; Kubono, S.; Kubota, Y.; Maeda, Y.; Matsubara, H.; Matsuda, Y.; Michimasa, S.; Nakao, T.; Nishi, T.; Obertelli, A.; Otsu, H.; Santamaria, C.; Sasano, M.; Takaki, M.; Tanaka, Y.; Leung, T.; Uesaka, T.; Yako, K.; Yamaguchi, H.; Zenihiro, J.; Takada, E.

    An active target system called CAT, has been developed aiming at the measurement of deuteron induced reactions with high intensity beams in inverse kinematics. The CAT consists of a time projection chamber using THGEM and an array of Si detectors or NaI scintilators. The effective gain for the recoil particle is deisgned to be 5 - 10 × 103, while one for the beam is reduced by 102 using mesh grid to match the amplified signal to the dynamic range same as the one for recoil particle. The structure of CAT and the effect of the mesh grid are reported.

  15. Community Health Workers promoting physical activity: Targeting multiple levels of the Social Ecological Model

    PubMed Central

    Haughton, Jessica; Ayala, Guadalupe X.; Burke, Kari Herzog; Elder, John P.; Montañez, Jacqueline; Arredondo, Elva M.

    2015-01-01

    The effectiveness of Community Health Workers (CHWs) as health educators and health promoters among Latino populations is widely recognized. The Affordable Care Act created important opportunities to increase the role of CHWs in preventive health. This article describes the implementation of CHW-led, culturally specific, faith-based program to increase physical activity (PA) among churchgoing Latinas. The current study augments previous research by describing the recruitment, selection, training, and evaluation of CHWs for a PA intervention targeting multiple levels of the Social Ecological Model. PMID:26280587

  16. Rapid, specific, no-wash, far-red fluorogen activation in subcellular compartments by targeted fluorogen activating proteins.

    PubMed

    Telmer, Cheryl A; Verma, Richa; Teng, Haibing; Andreko, Susan; Law, Leann; Bruchez, Marcel P

    2015-05-15

    Live cell imaging requires bright photostable dyes that can target intracellular organelles and proteins with high specificity in a no-wash protocol. Organic dyes possess the desired photochemical properties and can be covalently linked to various protein tags. The currently available fluorogenic dyes are in the green/yellow range where there is high cellular autofluorescence and the near-infrared (NIR) dyes need to be washed out. Protein-mediated activation of far-red fluorogenic dyes has the potential to address these challenges because the cell-permeant dye is small and nonfluorescent until bound to its activating protein, and this binding is rapid. In this study, three single chain variable fragment (scFv)-derived fluorogen activating proteins (FAPs), which activate far-red emitting fluorogens, were evaluated for targeting, brightness, and photostability in the cytosol, nucleus, mitochondria, peroxisomes, and endoplasmic reticulum with a cell-permeant malachite green analog in cultured mammalian cells. Efficient labeling was achieved within 20-30 min for each protein upon the addition of nM concentrations of dye, producing a signal that colocalized significantly with a linked mCerulean3 (mCer3) fluorescent protein and organelle specific dyes but showed divergent photostability and brightness properties dependent on the FAP. These FAPs and the ester of malachite green dye (MGe) can be used as specific, rapid, and wash-free labels for intracellular sites in live cells with far-red excitation and emission properties, useful in a variety of multicolor experiments. PMID:25650487

  17. Control of liver glucokinase activity: A potential new target for incretin hormones?

    PubMed

    Francini, Flavio; Massa, María Laura; Polo, Mónica Patricia; Villagarcía, Hernán; Castro, María Cecilia; Gagliardino, Juan José

    2015-12-01

    We tested the exendin-4 and des-fluoro-sitagliptin effects on fructose-induced increase in liver glucokinase activity in rats with impaired glucose tolerance and the exendin-4 effect on glucokinase activity in HepG2 cells incubated with fructose in the presence/absence of exendin-9-39. After 3 weeks of in vivo fructose administration we measured: (1) serum glucose, insulin and triglyceride levels; (2) liver and HepG2 cells glucokinase activity and (3) liver glucokinase and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase mRNA and protein levels. Fructose fed rats had: hypertriglyceridemia, hyperinsulinemia and high liver glucokinase activity (mainly located in the cytosolic fraction) together with higher glucokinase and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase mRNA and protein concentrations compared to control rats. Co-administration of either exendin-4 or des-fluoro-sitagliptin prevented serum and liver changes except glucokinase protein expression. Exendin-4 also prevented fructose-induced increase in glucokinase activity in cultured HepG2 cells, effect blunted by co-incubation with exendin-9-36. In conclusion exendin-4/des-fluro-sitagliptin prevented fructose-induced effect on glucokinase activity, mainly affecting enzyme activity modulators. Exendin 9-39 blunted in vitro protective exendin-4 effect on glucokinase activity, thus suggesting a direct effect of the later on hepatocytes through GLP-1 receptor. Alterations of glucokinase activity modulators could play a role in the pathogenesis of liver dysfunction, becoming a potential new treatment target for GLP-1 receptor agonists.

  18. Peroxisome Proliferator-Activated Receptor γ Is a Target for Halogenated Analogs of Bisphenol A

    PubMed Central

    Riu, Anne; Grimaldi, Marina; le Maire, Albane; Bey, Gilbert; Phillips, Kevin; Boulahtouf, Abdelhay; Perdu, Elisabeth; Zalko, Daniel; Bourguet, William

    2011-01-01

    Background: The occurrence of halogenated analogs of the xenoestrogen bisphenol A (BPA) has been recently demonstrated both in environmental and human samples. These analogs include brominated [e.g., tetrabromobisphenol A (TBBPA)] and chlorinated [e.g., tetrachlorobisphenol A (TCBPA)] bisphenols, which are both flame retardants. Because of their structural homology with BPA, such chemicals are candidate endocrine disruptors. However, their possible target(s) within the nuclear hormone receptor superfamily has remained unknown. Objectives: We investigated whether BPA and its halogenated analogs could be ligands of estrogen receptors (ERs) and peroxisome proliferator–activated receptors (PPARs) and act as endocrine-disrupting chemicals. Methods: We studied the activity of compounds using reporter cell lines expressing ERs and PPARs. We measured the binding affinities to PPARγ by competitive binding assays with [3H]-rosiglitazone and investigated the impact of TBBPA and TCBPA on adipocyte differentiation using NIH3T3-L1 cells. Finally, we determined the binding mode of halogenated BPAs to PPARγ by X-ray crystallography. Results: We observed that TBBPA and TCBPA are human, zebrafish, and Xenopus PPARγ ligands and determined the mechanism by which these chemicals bind to and activate PPARγ. We also found evidence that activation of ERα, ERβ, and PPARγ depends on the degree of halogenation in BPA analogs. We observed that the bulkier brominated BPA analogs, the greater their capability to activate PPARγ and the weaker their estrogenic potential. Conclusions: Our results strongly suggest that polyhalogenated bisphenols could function as obesogens by acting as agonists to disrupt physiological functions regulated by human or animal PPARγ. PMID:21561829

  19. HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment

    SciTech Connect

    Weigelt, Britta; Lo, Alvin T; Park, Catherine C; Gray, Joe W; Bissell, Mina J

    2009-07-27

    Development of effective and durable breast cancer treatment strategies requires a mechanistic understanding of the influence of the microenvironment on response. Previous work has shown that cellular signaling pathways and cell morphology are dramatically influenced by three-dimensional (3D) cultures as opposed to traditional two-dimensional (2D) monolayers. Here, we compared 2D and 3D culture models to determine the impact of 3D architecture and extracellular matrix (ECM) on HER2 signaling and on the response of HER2-amplified breast cancer cell lines to the HER2-targeting agents Trastuzumab, Pertuzumab and Lapatinib. We show that the response of the HER2-amplified AU565, SKBR3 and HCC1569 cells to these anti-HER2 agents was highly dependent on whether the cells were cultured in 2D monolayer or 3D laminin-rich ECM gels. Inhibition of {beta}1 integrin, a major cell-ECM receptor subunit, significantly increased the sensitivity of the HER2-amplified breast cancer cell lines to the humanized monoclonal antibodies Trastuzumab and Pertuzumab when grown in a 3D environment. Finally, in the absence of inhibitors, 3D cultures had substantial impact on HER2 downstream signaling and induced a switch between PI3K-AKT- and RAS-MAPKpathway activation in all cell lines studied, including cells lacking HER2 amplification and overexpression. Our data provide direct evidence that breast cancer cells are able to rapidly adapt to different environments and signaling cues by activating alternative pathways that regulate proliferation and cell survival, events that may play a significant role in the acquisition of resistance to targeted therapies.

  20. Turbocharger with downstream pressure-gain combustor

    SciTech Connect

    Sherikar, S.V.

    1991-05-14

    This patent describes a turbocharger. It comprises: an internal combustion engine; a compressor located upstream of the internal combustion engine for increasing the inlet pressure of the internal combustion engine; a turbine located down stream of the internal combustion engine and mechanically coupled to the compressor for driving the compressor; and a pressure-gain combustor located downstream of the turbine for decreasing the outlet pressure of the internal combustion engineer and thus increasing the turbine power output and improving the starting characteristics of the turbocharger.

  1. Lysis of typhus-group rickettsia-infected targets by lymphokine activated killers

    SciTech Connect

    Carl, M.; Dasch, G.A.

    1986-03-01

    The authors recently described a subset of OKT8, OKT3-positive lymphocytes from typhus-group rickettsia immune individuals which were capable of lysing autologous PHA-blasts or Epstein-Barr virus transformed B cells (LCL) infected with typhus-group rickettsiae. In order to determine if killing by these effectors was HLA-restricted, they stimulated peripheral blood mononuclear cells (PBMC) from typhus-group rickettsia immune individuals in vitro with typhus-group rickettsia-derived antigen for one week and then measured lysis of autologous LCL or HLA-mismatched LCL in a 4-6 hour Cr/sup 51/-release assay. There was significant lysis of both the autologous and the HLA-mismatched infected targets as compared to the corresponding uninfected targets. Since this suggested that the effectors were lymphokine activated killers (LAK) rather than cytotoxic T lymphocytes, they then tested this hypothesis by stimulating PBMC from both immune and non-immune individuals in vitro for one week with purified interleukin 2 and measuring lysis of infected, autologous LCL. PBMC thus treated, from both immune and non-immune individuals, were capable of significantly lysing autologous, infected LCL as compared to the non-infected control. They therefore conclude that targets infected with typhus-group rickettsiae are susceptible to lysis to LAK.

  2. DNA damage-induced activation of CUL4B targets HUWE1 for proteasomal degradation.

    PubMed

    Yi, Juan; Lu, Guang; Li, Li; Wang, Xiaozhen; Cao, Li; Lin, Ming; Zhang, Sha; Shao, Genze

    2015-05-19

    The E3 ubiquitin ligase HUWE1/Mule/ARF-BP1 plays an important role in integrating/coordinating diverse cellular processes such as DNA damage repair and apoptosis. A previous study has shown that HUWE1 is required for the early step of DNA damage-induced apoptosis, by targeting MCL-1 for proteasomal degradation. However, HUWE1 is subsequently inactivated, promoting cell survival and the subsequent DNA damage repair process. The mechanism underlying its regulation during this process remains largely undefined. Here, we show that the Cullin4B-RING E3 ligase (CRL4B) is required for proteasomal degradation of HUWE1 in response to DNA damage. CUL4B is activated in a NEDD8-dependent manner, and ubiquitinates HUWE1 in vitro and in vivo. The depletion of CUL4B stabilizes HUWE1, which in turn accelerates the degradation of MCL-1, leading to increased induction of apoptosis. Accordingly, cells deficient in CUL4B showed increased sensitivity to DNA damage reagents. More importantly, upon CUL4B depletion, these phenotypes can be rescued through simultaneous depletion of HUWE1, consistent with the role of CUL4B in regulating HUWE1. Collectively, these results identify CRL4B as an essential E3 ligase in targeting the proteasomal degradation of HUWE1 in response to DNA damage, and provide a potential strategy for cancer therapy by targeting HUWE1 and the CUL4B E3 ligase.

  3. Biased signalling and proteinase-activated receptors (PARs): targeting inflammatory disease

    PubMed Central

    Hollenberg, M D; Mihara, K; Polley, D; Suen, J Y; Han, A; Fairlie, D P; Ramachandran, R

    2014-01-01

    Although it has been known since the 1960s that trypsin and chymotrypsin can mimic hormone action in tissues, it took until the 1990s to discover that serine proteinases can regulate cells by cleaving and activating a unique four-member family of GPCRs known as proteinase-activated receptors (PARs). PAR activation involves the proteolytic exposure of its N-terminal receptor sequence that folds back to function as a ‘tethered’ receptor-activating ligand (TL). A key N-terminal arginine in each of PARs 1 to 4 has been singled out as a target for cleavage by thrombin (PARs 1, 3 and 4), trypsin (PARs 2 and 4) or other proteases to unmask the TL that activates signalling via Gq, Gi or G12/13. Similarly, synthetic receptor-activating peptides, corresponding to the exposed ‘TL sequences’ (e.g. SFLLRN—, for PAR1 or SLIGRL— for PAR2) can, like proteinase activation, also drive signalling via Gq, Gi and G12/13, without requiring receptor cleavage. Recent data show, however, that distinct proteinase-revealed ‘non-canonical’ PAR tethered-ligand sequences and PAR-activating agonist and antagonist peptide analogues can induce ‘biased’ PAR signalling, for example, via G12/13-MAPKinase instead of Gq-calcium. This overview summarizes implications of this ‘biased’ signalling by PAR agonists and antagonists for the recognized roles the PARs play in inflammatory settings. Linked ArticlesThis article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-5 PMID:24354792

  4. Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children's Oncology Group TARGET Project | Office of Cancer Genomics

    Cancer.gov

    TARGET researchers sequenced the tyrosine kinome and downstream signaling genes in 45 high-risk pediatric ALL cases with activated kinase signaling, including Ph-like ALL, to establish the incidence of tyrosine kinase mutations in this cohort. The study confirmed previously identified somatic mutations in JAK and FLT3, but did not find novel alterations in any additional tyrosine kinases or downstream genes. The mechanism of kinase signaling activation in this high-risk subgroup of pediatric ALL remains largely unknown.

  5. Photodynamic quenched cathepsin activity based probes for cancer detection and macrophage targeted therapy.

    PubMed

    Ben-Nun, Yael; Merquiol, Emmanuelle; Brandis, Alexander; Turk, Boris; Scherz, Avigdor; Blum, Galia

    2015-01-01

    Elevated cathepsins levels and activities are found in several types of human cancer, making them valuable biomarkers for detection and targeting therapeutics. We designed small molecule quenched activity-based probes (qABPs) that fluoresce upon activity-dependent covalent modification, yielding cell killing by Photodynamic Therapy (PDT). These novel molecules are highly selective theranostic probes that enable both detection and treatment of cancer with minimal side effects. Our qABPs carry a photosensitizer (PS), which is activated by light, resulting in oxidative stress and subsequent cell ablation, and a quencher that when removed by active cathepsins allow the PS to fluoresce and demonstrate PD properties. Our most powerful and stable PS-qABP, YBN14, consists of a selective cathepsin recognition sequence, a QC-1 quencher and a new bacteriochlorin derivative as a PS. YBN14 allowed rapid and selective non-invasive in vivo imaging of subcutaneous tumors and induced specific tumor macrophage apoptosis by light treatment, resulting in a substantial tumor shrinkage in an aggressive breast cancer mouse model. These results demonstrate for the first time that the PS-qABPs technology offers a functional theranostic tool, which can be applied to numerous tumor types and other inflammation-associated diseases.

  6. Ciliary muscle contraction force and trapezius muscle activity during manual tracking of a moving visual target.

    PubMed

    Domkin, Dmitry; Forsman, Mikael; Richter, Hans O

    2016-06-01

    Previous studies have shown an association of visual demands during near work and increased activity of the trapezius muscle. Those studies were conducted under stationary postural conditions with fixed gaze and artificial visual load. The present study investigated the relationship between ciliary muscle contraction force and trapezius muscle activity across individuals during performance of a natural dynamic motor task under free gaze conditions. Participants (N=11) tracked a moving visual target with a digital pen on a computer screen. Tracking performance, eye refraction and trapezius muscle activity were continuously measured. Ciliary muscle contraction force was computed from eye accommodative response. There was a significant Pearson correlation between ciliary muscle contraction force and trapezius muscle activity on the tracking side (0.78, p<0.01) and passive side (0.64, p<0.05). The study supports the hypothesis that high visual demands, leading to an increased ciliary muscle contraction during continuous eye-hand coordination, may increase trapezius muscle tension and thus contribute to the development of musculoskeletal complaints in the neck-shoulder area. Further experimental studies are required to clarify whether the relationship is valid within each individual or may represent a general personal trait, when individuals with higher eye accommodative response tend to have higher trapezius muscle activity. PMID:26746010

  7. NLRP3 Inflammasome Activation in THP-1 Target Cells Triggered by Pathogenic Naegleria fowleri.

    PubMed

    Kim, Jong-Hyun; Sohn, Hae-Jin; Yoo, Jong-Kyun; Kang, Heekyoung; Seong, Gi-Sang; Chwae, Yong-Joon; Kim, Kyongmin; Park, Sun; Shin, Ho-Joon

    2016-09-01

    Naegleria fowleri, known as the brain-eating amoeba, causes acute primary amoebic meningoencephalitis. During swimming and other recreational water activities, N. fowleri trophozoites penetrate the nasal mucosa and invade the olfactory bulbs, resulting in intense inflammatory reactions in the forebrain tissue. To investigate what kinds of inflammasome molecules are expressed in target cells due to N. fowleri infection, human macrophage cells (THP-1 cells) were cocultured with N. fowleri trophozoites in a noncontact system, and consequently, interleukin-1β (IL-1β) production was estimated. Caspase-1 activation and IL-1β production from THP-1 cells by Western blotting and the culture supernatant by enzyme-linked immunosorbent assay analysis were observed at 3 h after cocultivation. In addition, the increased expression of ASC and NLRP3, which make up an inflammasome complex, was also observed at 3 h after cocultivation. To confirm the caspase-1 activation and IL-1β production via the NLRP3 inflammasome in THP-1 cells triggered by N. fowleri trophozoites, THP-1 cells were pretreated with several inhibitors. The inhibition assay showed that CA-074 (a cathepsin B inhibitor), glybenclamide (an NLRP3 molecule inhibitor), and N-benzyloxycarbony-Val-Ala-Asp(O-methyl)-fluoromethylketone (Z-VAD-FMK; a caspase-1 inhibitor) reduced the levels of caspase-1 activation and IL-1β production from THP-1 cells. This study suggests that N. fowleri infection induces the NLRP3 inflammasome, which activates caspase-1 and subsequently produces IL-1β, thus resulting in inflammation. PMID:27297387

  8. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1

    NASA Astrophysics Data System (ADS)

    Yang, Shilong; Yang, Fan; Wei, Ningning; Hong, Jing; Li, Bowen; Luo, Lei; Rong, Mingqiang; Yarov-Yarovoy, Vladimir; Zheng, Jie; Wang, Kewei; Lai, Ren

    2015-09-01

    The capsaicin receptor TRPV1 ion channel is a polymodal nociceptor that responds to heat with exquisite sensitivity through an unknown mechanism. Here we report the identification of a novel toxin, RhTx, from the venom of the Chinese red-headed centipede that potently activates TRPV1 to produce excruciating pain. RhTx is a 27-amino-acid small peptide that forms a compact polarized molecule with very rapid binding kinetics and high affinity for TRPV1. We show that RhTx targets the channel's heat activation machinery to cause powerful heat activation at body temperature. The RhTx-TRPV1 interaction is mediated by the toxin's highly charged C terminus, which associates tightly to the charge-rich outer pore region of the channel where it can directly interact with the pore helix and turret. These findings demonstrate that RhTx binding to the outer pore can induce TRPV1 heat activation, therefore providing crucial new structural information on the heat activation machinery.

  9. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1.

    PubMed

    Yang, Shilong; Yang, Fan; Wei, Ningning; Hong, Jing; Li, Bowen; Luo, Lei; Rong, Mingqiang; Yarov-Yarovoy, Vladimir; Zheng, Jie; Wang, KeWei; Lai, Ren

    2015-09-30

    The capsaicin receptor TRPV1 ion channel is a polymodal nociceptor that responds to heat with exquisite sensitivity through an unknown mechanism. Here we report the identification of a novel toxin, RhTx, from the venom of the Chinese red-headed centipede that potently activates TRPV1 to produce excruciating pain. RhTx is a 27-amino-acid small peptide that forms a compact polarized molecule with very rapid binding kinetics and high affinity for TRPV1. We show that RhTx targets the channel's heat activation machinery to cause powerful heat activation at body temperature. The RhTx-TRPV1 interaction is mediated by the toxin's highly charged C terminus, which associates tightly to the charge-rich outer pore region of the channel where it can directly interact with the pore helix and turret. These findings demonstrate that RhTx binding to the outer pore can induce TRPV1 heat activation, therefore providing crucial new structural information on the heat activation machinery.

  10. QSAR and docking studies on xanthone derivatives for anticancer activity targeting DNA topoisomerase IIα

    PubMed Central

    Alam, Sarfaraz; Khan, Feroz

    2014-01-01

    Due to the high mortality rate in India, the identification of novel molecules is important in the development of novel and potent anticancer drugs. Xanthones are natural constituents of plants in the families Bonnetiaceae and Clusiaceae, and comprise oxygenated heterocycles with a variety of biological activities along with an anticancer effect. To explore the anticancer compounds from xanthone derivatives, a quantitative structure activity relationship (QSAR) model was developed by the multiple linear regression method. The structure–activity relationship represented by the QSAR model yielded a high activity–descriptors relationship accuracy (84%) referred by regression coefficient (r2=0.84) and a high activity prediction accuracy (82%). Five molecular descriptors – dielectric energy, group count (hydroxyl), LogP (the logarithm of the partition coefficient between n-octanol and water), shape index basic (order 3), and the solvent-accessible surface area – were significantly correlated with anticancer activity. Using this QSAR model, a set of virtually designed xanthone derivatives was screened out. A molecular docking study was also carried out to predict the molecular interaction between proposed compounds and deoxyribonucleic acid (DNA) topoisomerase IIα. The pharmacokinetics parameters, such as absorption, distribution, metabolism, excretion, and toxicity, were also calculated, and later an appraisal of synthetic accessibility of organic compounds was carried out. The strategy used in this study may provide understanding in designing novel DNA topoisomerase IIα inhibitors, as well as for other cancer targets. PMID:24516330

  11. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1.

    PubMed

    Yang, Shilong; Yang, Fan; Wei, Ningning; Hong, Jing; Li, Bowen; Luo, Lei; Rong, Mingqiang; Yarov-Yarovoy, Vladimir; Zheng, Jie; Wang, KeWei; Lai, Ren

    2015-01-01

    The capsaicin receptor TRPV1 ion channel is a polymodal nociceptor that responds to heat with exquisite sensitivity through an unknown mechanism. Here we report the identification of a novel toxin, RhTx, from the venom of the Chinese red-headed centipede that potently activates TRPV1 to produce excruciating pain. RhTx is a 27-amino-acid small peptide that forms a compact polarized molecule with very rapid binding kinetics and high affinity for TRPV1. We show that RhTx targets the channel's heat activation machinery to cause powerful heat activation at body temperature. The RhTx-TRPV1 interaction is mediated by the toxin's highly charged C terminus, which associates tightly to the charge-rich outer pore region of the channel where it can directly interact with the pore helix and turret. These findings demonstrate that RhTx binding to the outer pore can induce TRPV1 heat activation, therefore providing crucial new structural information on the heat activation machinery. PMID:26420335

  12. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1

    PubMed Central

    Yang, Shilong; Yang, Fan; Wei, Ningning; Hong, Jing; Li, Bowen; Luo, Lei; Rong, Mingqiang; Yarov-Yarovoy, Vladimir; Zheng, Jie; Wang, KeWei; Lai, Ren

    2015-01-01

    The capsaicin receptor TRPV1 ion channel is a polymodal nociceptor that responds to heat with exquisite sensitivity through an unknown mechanism. Here we report the identification of a novel toxin, RhTx, from the venom of the Chinese red-headed centipede that potently activates TRPV1 to produce excruciating pain. RhTx is a 27-amino-acid small peptide that forms a compact polarized molecule with very rapid binding kinetics and high affinity for TRPV1. We show that RhTx targets the channel's heat activation machinery to cause powerful heat activation at body temperature. The RhTx–TRPV1 interaction is mediated by the toxin's highly charged C terminus, which associates tightly to the charge-rich outer pore region of the channel where it can directly interact with the pore helix and turret. These findings demonstrate that RhTx binding to the outer pore can induce TRPV1 heat activation, therefore providing crucial new structural information on the heat activation machinery. PMID:26420335

  13. Protein Folding Activity of Ribosomal RNA Is a Selective Target of Two Unrelated Antiprion Drugs

    PubMed Central

    Tribouillard-Tanvier, Déborah; Dos Reis, Suzana; Gug, Fabienne; Voisset, Cécile; Béringue, Vincent; Sabate, Raimon; Kikovska, Ema; Talarek, Nicolas; Bach, Stéphane; Huang, Chenhui; Desban, Nathalie; Saupe, Sven J.; Supattapone, Surachai; Thuret, Jean-Yves; Chédin, Stéphane; Vilette, Didier; Galons, Hervé; Sanyal, Suparna; Blondel, Marc

    2008-01-01

    Background 6-Aminophenanthridine (6AP) and Guanabenz (GA, a drug currently in use for the treatment of hypertension) were isolated as antiprion drugs using a yeast-based assay. These structurally unrelated molecules are also active against mammalian prion in several cell-based assays and in vivo in a mouse model for prion-based diseases. Methodology/Principal Findings Here we report the identification of cellular targets of these drugs. Using affinity chromatography matrices for both drugs, we demonstrate an RNA-dependent interaction of 6AP and GA with the ribosome. These specific interactions have no effect on the peptidyl transferase activity of the ribosome or on global translation. In contrast, 6AP and GA specifically inhibit the ribosomal RNA-mediated protein folding activity of the ribosome. Conclusion/Significance 6AP and GA are therefore the first compounds to selectively inhibit the protein folding activity of the ribosome. They thus constitute precious tools to study the yet largely unexplored biological role of this protein folding activity. PMID:18478094

  14. NLRP3 Inflammasome Activation in THP-1 Target Cells Triggered by Pathogenic Naegleria fowleri.

    PubMed

    Kim, Jong-Hyun; Sohn, Hae-Jin; Yoo, Jong-Kyun; Kang, Heekyoung; Seong, Gi-Sang; Chwae, Yong-Joon; Kim, Kyongmin; Park, Sun; Shin, Ho-Joon

    2016-09-01

    Naegleria fowleri, known as the brain-eating amoeba, causes acute primary amoebic meningoencephalitis. During swimming and other recreational water activities, N. fowleri trophozoites penetrate the nasal mucosa and invade the olfactory bulbs, resulting in intense inflammatory reactions in the forebrain tissue. To investigate what kinds of inflammasome molecules are expressed in target cells due to N. fowleri infection, human macrophage cells (THP-1 cells) were cocultured with N. fowleri trophozoites in a noncontact system, and consequently, interleukin-1β (IL-1β) production was estimated. Caspase-1 activation and IL-1β production from THP-1 cells by Western blotting and the culture supernatant by enzyme-linked immunosorbent assay analysis were observed at 3 h after cocultivation. In addition, the increased expression of ASC and NLRP3, which make up an inflammasome complex, was also observed at 3 h after cocultivation. To confirm the caspase-1 activation and IL-1β production via the NLRP3 inflammasome in THP-1 cells triggered by N. fowleri trophozoites, THP-1 cells were pretreated with several inhibitors. The inhibition assay showed that CA-074 (a cathepsin B inhibitor), glybenclamide (an NLRP3 molecule inhibitor), and N-benzyloxycarbony-Val-Ala-Asp(O-methyl)-fluoromethylketone (Z-VAD-FMK; a caspase-1 inhibitor) reduced the levels of caspase-1 activation and IL-1β production from THP-1 cells. This study suggests that N. fowleri infection induces the NLRP3 inflammasome, which activates caspase-1 and subsequently produces IL-1β, thus resulting in inflammation.

  15. Mammalian target of rapamycin activation underlies HSC defects in autoimmune disease and inflammation in mice.

    PubMed

    Chen, Chong; Liu, Yu; Liu, Yang; Zheng, Pan

    2010-11-01

    The mammalian target of rapamycin (mTOR) is a signaling molecule that senses environmental cues, such as nutrient status and oxygen supply, to regulate cell growth, proliferation, and other functions. Unchecked, sustained mTOR activity results in defects in HSC function. Inflammatory conditions, such as autoimmune disease, are often associated with defective hematopoiesis. Here, we investigated whether hyperactivation of mTOR in HSCs contributes to hematopoietic defects in autoimmunity and inflammation. We found that in mice deficient in Foxp3 (scurfy mice), a model of autoimmunity, the development of autoimmune disease correlated with progressive bone marrow loss and impaired regenerative capacity of HSCs in competitive bone marrow transplantation. Similarly, LPS-mediated inflammation in C57BL/6 mice led to massive bone marrow cell death and impaired HSC function. Importantly, treatment with rapamycin in both models corrected bone marrow hypocellularity and partially restored hematopoietic activity. In cultured mouse bone marrow cells, treatment with either of the inflammatory cytokines IL-6 or TNF-α was sufficient to activate mTOR, while preventing mTOR activation in vivo required simultaneous inhibition of CCL2, IL-6, and TNF-α. These data strongly suggest that mTOR activation in HSCs by inflammatory cytokines underlies defective hematopoiesis in autoimmune disease and inflammation.

  16. Photodynamic Quenched Cathepsin Activity Based Probes for Cancer Detection and Macrophage Targeted Therapy

    PubMed Central

    Ben-Nun, Yael; Merquiol, Emmanuelle; Brandis, Alexander; Turk, Boris; Scherz, Avigdor; Blum, Galia

    2015-01-01

    Elevated cathepsins levels and activities are found in several types of human cancer, making them valuable biomarkers for detection and targeting therapeutics. We designed small molecule quenched activity-based probes (qABPs) that fluoresce upon activity-dependent covalent modification, yielding cell killing by Photodynamic Therapy (PDT). These novel molecules are highly selective theranostic probes that enable both detection and treatment of cancer with minimal side effects. Our qABPs carry a photosensitizer (PS), which is activated by light, resulting in oxidative stress and subsequent cell ablation, and a quencher that when removed by active cathepsins allow the PS to fluoresce and demonstrate PD properties. Our most powerful and stable PS-qABP, YBN14, consists of a selective cathepsin recognition sequence, a QC-1 quencher and a new bacteriochlorin derivative as a PS. YBN14 allowed rapid and selective non-invasive in vivo imaging of subcutaneous tumors and induced specific tumor macrophage apoptosis by light treatment, resulting in a substantial tumor shrinkage in an aggressive breast cancer mouse model. These results demonstrate for the first time that the PS-qABPs technology offers a functional theranostic tool, which can be applied to numerous tumor types and other inflammation-associated diseases. PMID:26000057

  17. Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity.

    PubMed

    Takahashi, Daisuke; Shukla, Sanjeev K; Prakash, Om; Zhang, Guolong

    2010-09-01

    Antimicrobial host defense peptides (HDPs) are a critical component of the innate immunity with microbicidal, endotoxin-neutralizing, and immunostimulatory properties. HDPs kill bacteria primarily through non-specific membrane lysis, therefore with a less likelihood of provoking resistance. Extensive structure-activity relationship studies with a number of HDPs have revealed that net charge, amphipathicity, hydrophobicity, and structural propensity are among the most important physicochemical and structural parameters that dictate their ability to interact with and disrupt membranes. A delicate balance among these factors, rather than a mere alteration of a single factor, is critically important for HDPs to ensure the antimicrobial potency and target cell selectivity. With a better understanding of the structural determinants of HDPs for their membrane-lytic activities, it is expected that novel HDP-based antimicrobials with minimum toxicity to eukaryotic cells can be developed for resistant infections, which have become a global public health crisis.

  18. Group II p21-activated kinases as therapeutic targets in gastrointestinal cancer

    PubMed Central

    Shao, Yang-Guang; Ning, Ke; Li, Feng

    2016-01-01

    P21-activated kinases (PAKs) are central players in various oncogenic signaling pathways. The six PAK family members are classified into group I (PAK1-3) and group II (PAK4-6). Focus is currently shifting from group I PAKs to group II PAKs. Group II PAKs play important roles in many fundamental cellular processes, some of which have particular significance in the development and progression of cancer. Because of their important functions, group II PAKs have become popular potential drug target candidates. However, few group II PAKs inhibitors have been reported, and most do not exhibit satisfactory kinase selectivity and “drug-like” properties. Isoform- and kinase-selective PAK inhibitors remain to be developed. This review describes the biological activities of group II PAKs, the importance of group II PAKs in the development and progression of gastrointestinal cancer, and small-molecule inhibitors of group II PAKs for the treatment of cancer. PMID:26811660

  19. MiR-9 promotes microglial activation by targeting MCPIP1

    PubMed Central

    Yao, Honghong; Ma, Rong; Yang, Lu; Hu, Guoku; Chen, Xufeng; Duan, Ming; Kook, Yeonhee; Niu, Fang; Liao, Ke; Fu, Minggui; Hu, Gang; Kolattukudy, Pappachan; Buch, Shilpa

    2014-01-01

    Microglia participate in innate inflammatory responses within the central nervous system. The highly conserved microRNA-9 (miR-9) plays critical roles in neurogenesis as well as axonal extension. Its role in microglial inflammatory responses, however, remains poorly understood. Here we identify a unique role of miR-9 in mediating the microglial inflammatory response via distinct signalling pathways. MiR-9-mediated regulation of cellular activation involved downregulated expression of the target protein, monocyte chemotactic protein-induced protein 1 (MCPIP1) that is crucial for controlling inflammation. Results indicate that miR-9-mediated cellular activation involved signalling via the NF-κB pathway, but not the β-catenin pathway. PMID:25019481

  20. Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers.

    PubMed

    Bultmann, Sebastian; Morbitzer, Robert; Schmidt, Christine S; Thanisch, Katharina; Spada, Fabio; Elsaesser, Janett; Lahaye, Thomas; Leonhardt, Heinrich

    2012-07-01

    Specific control of gene activity is a valuable tool to study and engineer cellular functions. Recent studies uncovered the potential of transcription activator-like effector (TALE) proteins that can be tailored to activate user-defined target genes. It remains however unclear whether and how epigenetic modifications interfere with TALE-mediated transcriptional activation. We studied the activity of five designer TALEs (dTALEs) targeting the oct4 pluripotency gene. In vitro assays showed that the five dTALEs that target distinct sites in the oct4 promoter had the expected DNA specificity and comparable affinities to their corresponding DNA targets. In contrast to their similar in vitro properties, transcriptional activation of oct4 by these distinct dTALEs varied up to 25-fold. While dTALEs efficiently upregulated transcription of the active oct4 promoter in embryonic stem cells (ESCs) they failed to activate the silenced oct4 promoter in ESC-derived neural stem cells (NSCs), indicating that as for endogenous transcription factors also dTALE activity is limited by repressive epigenetic mechanisms. We therefore targeted the activity of epigenetic modulators and found that chemical inhibition of histone deacetylases by valproic acid or DNA methyltransferases by 5-aza-2'-deoxycytidine facilitated dTALE-mediated activation of the epigenetically silenced oct4 promoter in NSCs. Notably, demethylation of the oct4 promoter occurred only if chemical inhibitors and dTALEs were applied together but not upon treatment with inhibitors or dTALEs only. These results show that dTALEs in combination with chemical manipulation of epigenetic modifiers facilitate targeted transcriptional activation of epigenetically silenced target genes.

  1. Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers

    PubMed Central

    Bultmann, Sebastian; Morbitzer, Robert; Schmidt, Christine S.; Thanisch, Katharina; Spada, Fabio; Elsaesser, Janett; Lahaye, Thomas; Leonhardt, Heinrich

    2012-01-01

    Specific control of gene activity is a valuable tool to study and engineer cellular functions. Recent studies uncovered the potential of transcription activator-like effector (TALE) proteins that can be tailored to activate user-defined target genes. It remains however unclear whether and how epigenetic modifications interfere with TALE-mediated transcriptional activation. We studied the activity of five designer TALEs (dTALEs) targeting the oct4 pluripotency gene. In vitro assays showed that the five dTALEs that target distinct sites in the oct4 promoter had the expected DNA specificity and comparable affinities to their corresponding DNA targets. In contrast to their similar in vitro properties, transcriptional activation of oct4 by these distinct dTALEs varied up to 25-fold. While dTALEs efficiently upregulated transcription of the active oct4 promoter in embryonic stem cells (ESCs) they failed to activate the silenced oct4 promoter in ESC-derived neural stem cells (NSCs), indicating that as for endogenous transcription factors also dTALE activity is limited by repressive epigenetic mechanisms. We therefore targeted the activity of epigenetic modulators and found that chemical inhibition of histone deacetylases by valproic acid or DNA methyltransferases by 5-aza-2′-deoxycytidine facilitated dTALE-mediated activation of the epigenetically silenced oct4 promoter in NSCs. Notably, demethylation of the oct4 promoter occurred only if chemical inhibitors and dTALEs were applied together but not upon treatment with inhibitors or dTALEs only. These results show that dTALEs in combination with chemical manipulation of epigenetic modifiers facilitate targeted transcriptional activation of epigenetically silenced target genes. PMID:22387464

  2. Glucocorticoid Receptor Activity Contributes to Resistance to Androgen-Targeted Therapy in Prostate Cancer

    PubMed Central

    Isikbay, Masis; Otto, Kristen; Kregel, Steven; Kach, Jacob; Cai, Yi; Vander Griend, Donald J.; Conzen, Suzanne D.

    2015-01-01

    Despite new treatments for castrate-resistant prostate cancer (CRPC), the prognosis of patients with CRPC remains bleak due to acquired resistance to androgen receptor (AR)-directed therapy. The glucocorticoid receptor (GR) and AR share several transcriptional targets, including the anti-apoptotic genes serum and glucocorticoid-regulated kinase 1 (SGK1) and Map kinase phosphatase 1 (MKP1)/dual specificity phosphatase 1 (DUSP1). Because GR expression increases in a subset of primary prostate cancer (PC) following androgen deprivation therapy, we sought to determine whether GR activation can contribute to resistance to AR-directed therapy. We studied CWR-22Rv1 and LAPC4 AR/GR-expressing PC cell lines following treatment with combinations of the androgen R1881, AR antagonist MDV3100, GR agonist dexamethasone, GR antagonists mifepristone and CORT 122928, or the SGK1 inhibitor GSK650394. Cell lines stably expressing GR (NR3C1)-targeted shRNA or ectopic SGK1-Flag were also studied in vivo. GR activation diminished the effects of the AR antagonist MDV3100 on tumor cell viability. In addition, GR activation increased prostate-specific antigen (PSA) secretion and induced SGKI and MKP1/DUSP gene expression. Glucocorticoid-mediated cell viability was diminished by a GR antagonist or by co-treatment with the SGK1 inhibitor GSK650394. In vivo, GR depletion delayed castrate-resistant tumor formation, while SGK1-Flag-overexpressing PC xenografts displayed accelerated castrate-resistant tumor initiation, supporting a role for SGK1 in GR-mediated CRPC progression. We studied several PC models before and following treatment with androgen blockade and found that increased GR expression and activity contributed to tumor-promoting PC cell viability. Increased GR-regulated SGK1 expression appears, at least in part, to mediate enhanced PC cell survival. Therefore, GR and/or SGK1 inhibition may be useful adjuncts to AR blockade for treating CRPC. PMID:24615402

  3. Activatable iRGD-based peptide monolith: Targeting, internalization, and fluorescence activation for precise tumor imaging.

    PubMed

    Cho, Hong-Jun; Lee, Sung-Jin; Park, Sung-Jun; Paik, Chang H; Lee, Sang-Myung; Kim, Sehoon; Lee, Yoon-Sik

    2016-09-10

    A disulfide-bridged cyclic RGD peptide, named iRGD (internalizing RGD, c(CRGDK/RGPD/EC)), is known to facilitate tumor targeting as well as tissue penetration. After the RGD motif-induced targeting on αv integrins expressed near tumor tissue, iRGD encounters proteolytic cleavage to expose the CendR motif that promotes penetration into cancer cells via the interaction with neuropilin-1. Based on these proteolytic cleavage and internalization mechanism, we designed an iRGD-based monolithic imaging probe that integrates multiple functions (cancer-specific targeting, internalization and fluorescence activation) within a small peptide framework. To provide the capability of activatable fluorescence signaling, we conjugated a fluorescent dye to the N-terminal of iRGD, which was linked to the internalizing sequence (CendR motif), and a quencher to the opposite C-terminal. It turned out that fluorescence activation of the dye/quencher-conjugated monolithic peptide probe requires dual (reductive and proteolytic) cleavages on both disulfide and amide bond of iRGD peptide. Furthermore, the cleavage of the iRGD peptide leading to fluorescence recovery was indeed operative depending on the tumor-related angiogenic receptors (αvβ3 integrin and neuropilin-1) in vitro as well as in vivo. Compared to an 'always fluorescent' iRGD control probe without quencher conjugation, the dye/quencher-conjugated activatable monolithic peptide probe visualized tumor regions more precisely with lower background noise after intravenous injection, owing to the multifunctional responses specific to tumor microenvironment. All these results, along with minimal in vitro and in vivo toxicity profiles, suggest potential of the iRGD-based activatable monolithic peptide probe as a promising imaging agent for precise tumor diagnosis. PMID:27349354

  4. Short-Term Displacement and Reproducibility of the Breast and Nodal Targets Under Active Breathing Control

    SciTech Connect

    Moran, Jean M. . E-mail: jmmoran@med.umich.edu; Balter, James M.; Ben-David, Merav A.; Marsh, Robin B. C; Herk, Marcel van; Pierce, Lori J.

    2007-06-01

    Purpose: The short-term displacement and reproducibility of the breast or chest wall, and the internal mammary (IM), infraclavicular (ICV), and supraclavicular (SCV) nodal regions have been assessed as a function of breath-hold state using an active breathing control (ABC) device for patients receiving loco-regional breast radiation therapy. Methods and Materials: Ten patients underwent computed tomographic scanning using an ABC device at breath-hold states of end-exhale and 20%, 40%, 60%, and 80% of vital capacity (VC). Patients underwent scanning before treatment and at one third and two thirds of the way through treatment. A regional registration was performed for each target using a rigid-body transformation with mutual information as a metric. Results: Between exhale and 40% of VC, the mean displacement was 0.27/0.34, 0.24/0.31, 0.22/0.19, and 0.13/0.19 cm anterior/superior for the breast or chest wall, and IM, ICV, and SCV nodes, respectively. At 80% of VC, the mean displacement from exhale was 0.84/.88, 0.76/.79, 0.70/0.79, and 0.54/0.56 cm anterior/superior for the breast or chest wall, and IM, ICV, and SCV nodes, respectively. The short-term reproducibility (standard deviation) was <0.3 and {<=}0.4 cm for 40% and 80% of VC, respectively. Displacements up to 1.9 cm were observed for individual patients. Conclusions: The short-term reproducibility of target position is {<=}0.4 cm using ABC for all structures for all breath-hold states. This information can be used to guide treatment planning optimization studies that consider the effect of motion on target and normal tissue doses with and without active breathing control.

  5. Bacterial Effector Activates Jasmonate Signaling by Directly Targeting JAZ Transcriptional Repressors

    PubMed Central

    Jiang, Shushu; Yao, Jian; Ma, Ka-Wai; Zhou, Huanbin; Song, Jikui; He, Sheng Yang; Ma, Wenbo

    2013-01-01