Science.gov

Sample records for activate endothelial cells

  1. Endothelial juxtaposition of distinct adult stem cells activates angiogenesis signaling molecules in endothelial cells.

    PubMed

    Mohammadi, Elham; Nassiri, Seyed Mahdi; Rahbarghazi, Reza; Siavashi, Vahid; Araghi, Atefeh

    2015-12-01

    Efficacy of therapeutic angiogenesis needs a comprehensive understanding of endothelial cell (EC) function and biological factors and cells that interplay with ECs. Stem cells are considered the key components of pro- and anti-angiogenic milieu in a wide variety of physiopathological states, and interactions of EC-stem cells have been the subject of controversy in recent years. In this study, the potential effects of three tissue-specific adult stem cells, namely rat marrow-derived mesenchymal stem cells (rBMSCs), rat adipose-derived stem cells (rADSCs) and rat muscle-derived satellite cells (rSCs), on the endothelial activation of key angiogenic signaling molecules, including VEGF, Ang-2, VEGFR-2, Tie-2, and Tie2-pho, were investigated. Human umbilical vein endothelial cells (HUVECs) and rat lung microvascular endothelial cells (RLMECs) were cocultured with the stem cells or incubated with the stem cell-derived conditioned media on Matrigel. Following HUVEC-stem cell coculture, CD31-positive ECs were flow sorted and subjected to western blotting to analyze potential changes in the expression of the pro-angiogenic signaling molecules. Elongation and co-alignment of the stem cells were seen along the EC tubes in the EC-stem cell cocultures on Matrigel, with cell-to-cell dye communication in the EC-rBMSC cocultures. Moreover, rBMSCs and rADSCs significantly improved endothelial tubulogenesis in both juxtacrine and paracrine manners. These two latter stem cells dynamically up-regulated VEGF, Ang-2, VREGR-2, and Tie-2 but down-regulated Tie2-pho and the Tie2-pho/Tie-2 ratio in HUVECs. Induction of pro-angiogenic signaling in ECs by marrow- and adipose-derived MSCs further indicates the significance of stem cell milieu in angiogenesis dynamics. PMID:26068799

  2. Modulation of endothelial cell phenotype by physical activity: impact on obesity-related endothelial dysfunction.

    PubMed

    Bender, Shawn B; Laughlin, M Harold

    2015-07-01

    Increased levels of physical activity are associated with reduced cardiovascular disease (CVD) risk and mortality in obesity and diabetes. Available evidence suggests that local factors, including local hemodynamics, account for a significant portion of this CVD protection, and numerous studies have interrogated the therapeutic benefit of physical activity/exercise training in CVD. Less well established is whether basal differences in endothelial cell phenotype between/among vasculatures related to muscle recruitment patterns during activity may account for reports of nonuniform development of endothelial dysfunction in obesity. This is the focus of this review. We highlight recent work exploring the vulnerability of two distinct vasculatures with established differences in endothelial cell phenotype. Specifically, based largely on dramatic differences in underlying hemodynamics, arteries perfusing soleus muscle (slow-twitch muscle fibers) and those perfusing gastrocnemius muscle (fast-twitch muscle fibers) in the rat exhibit an exercise training-like versus an untrained endothelial cell phenotype, respectively. In the context of obesity, therefore, arteries to soleus muscle exhibit protection from endothelial dysfunction compared with vulnerable arteries to gastrocnemius muscle. This disparate vulnerability is consistent with numerous animal and human studies, demonstrating increased skeletal muscle blood flow heterogeneity in obesity coincident with reduced muscle function and exercise intolerance. Mechanistically, we highlight emerging areas of inquiry exploring novel aspects of hemodynamic-sensitive signaling in endothelial cells and the time course of physical activity-associated endothelial adaptations. Lastly, further exploration needs to consider the impact of endothelial heterogeneity on the development of endothelial dysfunction because endothelial dysfunction independently predicts CVD events.

  3. Endothelial cell phagocytosis of senescent neutrophils decreases procoagulant activity.

    PubMed

    Gao, Chunyan; Xie, Rui; Li, Wen; Zhou, Jin; Liu, Shuchuan; Cao, Fenglin; Liu, Yue; Ma, Ruishuang; Si, Yu; Liu, Yan; Bi, Yayan; Gilbert, Gary E; Shi, Jialan

    2013-06-01

    Abundant senescent neutrophils traverse the vascular compartment and may contribute to pathologic conditions. For example, they become procoagulant when undergoing apoptosis and may contribute to thrombosis or inflammation. Our previous studies demonstrated a dominant clearance pathway in which the neutrophils can be phagocytosed by liver macrophages. The aim of this study was to explore an alternate pathway of neutrophil clearance by endothelial cells. Phagocytosis of the neutrophils by endothelial cells was performed using various experimental approaches includingflow cytometry, confocal microscopy and electron microscopy assays in vitro and in vivo. Procoagulant activity of cultured neutrophils was evaluated by coagulation time, factor Xase and prothrombinase assays. Lactadherin functioned as a novel probe for the detection of phosphatidylserine on apoptotic cells, an opsonin (bridge) between apoptotic cell and phagocyte for promoting phagocytosis, and an efficient anticoagulant for inhibition of factor Xase and thrombin formation. When cultured, purified human neutrophils spontaneously entered apoptosis and developed procoagulant activity that was directly related to the degree of phosphatidylserine exposure. Co-culture of aged neutrophils and endothelial cells resulted in phagocytosis of the neutrophils and prolonged coagulation time. Lactadherin diminished the procoagulant activity and increased the rate of neutrophil clearance. In vivo, neutrophils were sequestered by endothelial cells after blockade of Kupffer cells, a process that was dependent upon both phosphatidylserine exposure and P-selectin expression. Thus, the ability of endothelial cells to clear senescent neutrophils may limit the procoagulant and/or inflammatory impact of these cells.

  4. New thiazolidinediones affect endothelial cell activation and angiogenesis.

    PubMed

    Rudnicki, Martina; Tripodi, Gustavo L; Ferrer, Renila; Boscá, Lisardo; Pitta, Marina G R; Pitta, Ivan R; Abdalla, Dulcineia S P

    2016-07-01

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor-γ (PPARγ) agonists used in treating type 2 diabetes that may exhibit beneficial pleiotropic effects on endothelial cells. In this study, we characterized the effects of three new TZDs [GQ-32 (3-biphenyl-4-ylmethyl-5-(4-nitro-benzylidene)-thiazolidine-2,4-dione), GQ-169 (5-(4-chloro-benzylidene)-3-(2,6-dichloro-benzyl)-thiazolidine-2,4-dione), and LYSO-7 (5-(5-bromo-1H-indol-3-ylmethylene)-3-(4-chlorobenzyl)-thiazolidine-2,4-dione)] on endothelial cells. The effects of the new TZDs were evaluated on the production of nitric oxide (NO) and reactive oxygen species (ROS), cell migration, tube formation and the gene expression of adhesion molecules and angiogenic mediators in human umbilical vein endothelial cells (HUVECs). PPARγ activation by new TZDs was addressed with a reporter gene assay. The three new TZDs activated PPARγ and suppressed the tumor necrosis factor α-induced expression of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1. GQ-169 and LYSO-7 also inhibited the glucose-induced ROS production. Although NO production assessed with 4-amino-5-methylamino-2',7'-difluorofluorescein-FM probe indicated that all tested TZDs enhanced intracellular levels of NO, only LYSO-7 treatment significantly increased the release of NO from HUVEC measured by chemiluminescence analysis of culture media. Additionally, GQ-32 and GQ-169 induced endothelial cell migration and tube formation by the up-regulation of angiogenic molecules expression, such as vascular endothelial growth factor A and interleukin 8. GQ-169 also increased the mRNA levels of basic fibroblast growth factor, and GQ-32 enhanced transforming growth factor-β expression. Together, the results of this study reveal that these new TZDs act as partial agonists of PPARγ and modulate endothelial cell activation and endothelial dysfunction besides to stimulate migration and tube formation. PMID:27108791

  5. Endothelial activation by platelets from sickle cell anemia patients.

    PubMed

    Proença-Ferreira, Renata; Brugnerotto, Ana Flávia; Garrido, Vanessa Tonin; Dominical, Venina Marcela; Vital, Daiana Morelli; Ribeiro, Marilene de Fátima Reis; dos Santos, Melissa Ercolin; Traina, Fabíola; Olalla-Saad, Sara T; Costa, Fernando Ferreira; Conran, Nicola

    2014-01-01

    Sickle cell anemia (SCA) is associated with a hypercoagulable state. Increased platelet activation is reported in SCA and SCA platelets may present augmented adhesion to the vascular endothelium, potentially contributing to the vaso-occlusive process. We sought to observe the effects of platelets (PLTs) from healthy control (CON) individuals and SCA individuals on endothelial activation, in vitro. Human umbilical vein endothelial cells (HUVEC) were cultured, in the presence, or not, of washed PLTs from CON or steady-state SCA individuals. Supernatants were reserved for cytokine quantification, and endothelial adhesion molecules (EAM) were analyzed by flow cytometry; gene expressions of ICAM1 and genes of the NF-κB pathway were analyzed by qPCR. SCA PLTs were found to be more inflammatory, displaying increased adhesive properties, an increased production of IL-1β and a tendency towards elevated expressions of P-selectin and activated αIIbβ3. Following culture in the presence of SCA PLTs, HUVEC presented significant augmentations in the expressions of the EAM, ICAM-1 and E-selectin, as well as increased IL-8 production and increased ICAM1 and NFKB1 (encodes p50 subunit of NF-κB) gene expressions. Interestingly, transwell inserts abolished the effects of SCA PLTs on EAM expression. Furthermore, an inhibitor of the NF-κB pathway, BAY 11-7082, also prevented the induction of EAM expression on the HUVEC surface by SCA PLTs. In conclusion, we find further evidence to indicate that platelets circulate in an activated state in sickle cell disease and are capable of stimulating endothelial cell activation. This effect appears to be mediated by direct contact, or even adhesion, between the platelets and endothelial cells and via NFκB-dependent signaling. As such, activated platelets in SCD may contribute to endothelial activation and, therefore, to the vaso-occlusive process. Results provide further evidence to support the use of anti-platelet approaches in association

  6. Activation of Endothelial Nitric Oxide (eNOS) Occurs through Different Membrane Domains in Endothelial Cells.

    PubMed

    Tran, Jason; Magenau, Astrid; Rodriguez, Macarena; Rentero, Carles; Royo, Teresa; Enrich, Carlos; Thomas, Shane R; Grewal, Thomas; Gaus, Katharina

    2016-01-01

    Endothelial cells respond to a large range of stimuli including circulating lipoproteins, growth factors and changes in haemodynamic mechanical forces to regulate the activity of endothelial nitric oxide synthase (eNOS) and maintain blood pressure. While many signalling pathways have been mapped, the identities of membrane domains through which these signals are transmitted are less well characterized. Here, we manipulated bovine aortic endothelial cells (BAEC) with cholesterol and the oxysterol 7-ketocholesterol (7KC). Using a range of microscopy techniques including confocal, 2-photon, super-resolution and electron microscopy, we found that sterol enrichment had differential effects on eNOS and caveolin-1 (Cav1) colocalisation, membrane order of the plasma membrane, caveolae numbers and Cav1 clustering. We found a correlation between cholesterol-induced condensation of the plasma membrane and enhanced high density lipoprotein (HDL)-induced eNOS activity and phosphorylation suggesting that cholesterol domains, but not individual caveolae, mediate HDL stimulation of eNOS. Vascular endothelial growth factor (VEGF)-induced and shear stress-induced eNOS activity was relatively independent of membrane order and may be predominantly controlled by the number of caveolae on the cell surface. Taken together, our data suggest that signals that activate and phosphorylate eNOS are transmitted through distinct membrane domains in endothelial cells.

  7. Activation of Endothelial Nitric Oxide (eNOS) Occurs through Different Membrane Domains in Endothelial Cells.

    PubMed

    Tran, Jason; Magenau, Astrid; Rodriguez, Macarena; Rentero, Carles; Royo, Teresa; Enrich, Carlos; Thomas, Shane R; Grewal, Thomas; Gaus, Katharina

    2016-01-01

    Endothelial cells respond to a large range of stimuli including circulating lipoproteins, growth factors and changes in haemodynamic mechanical forces to regulate the activity of endothelial nitric oxide synthase (eNOS) and maintain blood pressure. While many signalling pathways have been mapped, the identities of membrane domains through which these signals are transmitted are less well characterized. Here, we manipulated bovine aortic endothelial cells (BAEC) with cholesterol and the oxysterol 7-ketocholesterol (7KC). Using a range of microscopy techniques including confocal, 2-photon, super-resolution and electron microscopy, we found that sterol enrichment had differential effects on eNOS and caveolin-1 (Cav1) colocalisation, membrane order of the plasma membrane, caveolae numbers and Cav1 clustering. We found a correlation between cholesterol-induced condensation of the plasma membrane and enhanced high density lipoprotein (HDL)-induced eNOS activity and phosphorylation suggesting that cholesterol domains, but not individual caveolae, mediate HDL stimulation of eNOS. Vascular endothelial growth factor (VEGF)-induced and shear stress-induced eNOS activity was relatively independent of membrane order and may be predominantly controlled by the number of caveolae on the cell surface. Taken together, our data suggest that signals that activate and phosphorylate eNOS are transmitted through distinct membrane domains in endothelial cells. PMID:26977592

  8. Melatonin modulates aromatase activity and expression in endothelial cells.

    PubMed

    Alvarez-García, Virginia; González, Alicia; Martínez-Campa, Carlos; Alonso-González, Carolina; Cos, Samuel

    2013-05-01

    Melatonin is known to suppress the development of endocrine-responsive breast cancers by interacting with the estrogen signaling pathways. Paracrine interactions between malignant epithelial cells and proximal stromal cells are responsible for local estrogen biosynthesis. In human breast cancer cells and peritumoral adipose tissue, melatonin downregulates aromatase, which transforms androgens into estrogens. The presence of aromatase on endothelial cells indicates that endothelial cells may contribute to tumor growth by producing estrogens. Since human umbilical vein endothelial cells (HUVECs) express both aromatase and melatonin receptors, the aim of the present study was to evaluate the ability of melatonin to regulate the activity and expression of aromatase on endothelial cells, thus, modulating local estrogen biosynthesis. In the present study, we demonstrated that melatonin inhibits the growth of HUVECs and reduces the local biosynthesis of estrogens through the downregulation of aromatase. These results are supported by three lines of evidence. Firstly, 1 mM of melatonin counteracted the testosterone-induced cell proliferation of HUVECs, which is dependent on the local biosynthesis of estrogens from testosterone by the aromatase activity of the cells. Secondly, we found that 1 mM of melatonin reduced the aromatase activity of HUVECs. Finally, by real‑time RT-PCR, we demonstrated that melatonin significantly downregulated the expression of aromatase as well as its endothelial-specific aromatase promoter region I.7. We conclude that melatonin inhibits aromatase activity and expression in HUVECs by regulating gene expression of specific aromatase promoter regions, thereby reducing the local production of estrogens. PMID:23450505

  9. Angiotensin I converting enzyme activity in rabbit corneal endothelial cells.

    PubMed

    Neels, H M; Vanden Berghe, D A; Neetens, A J; Delgadillo, R A; Scharpe, S L

    1983-01-01

    Angiotensin I converting enzyme (ACE) was studied in Vero cells, rabbit corneal fibroblasts, and rabbit corneal endothelial cells. The enzyme activity was determined by means of an assay employing hippuryl-glycyl-glycine as a substrate. The hippuric acid end product was separated from the substrate by reversed phase liquid chromatography and measured spectrophotometrically at 228 nm. The enzyme was further characterized by a captopril inhibition study. Significant ACE activity was found in rabbit corneal endothelial cells but not in other types of cells tested. This is the first report of the presence of this enzyme in a specific ocular cell type and suggests that angiotensin II may play a role in normal ocular physiology.

  10. Endothelial Cells Promote Pigmentation through Endothelin Receptor B Activation.

    PubMed

    Regazzetti, Claire; De Donatis, Gian Marco; Ghorbel, Houda Hammami; Cardot-Leccia, Nathalie; Ambrosetti, Damien; Bahadoran, Philippe; Chignon-Sicard, Bérengère; Lacour, Jean-Philippe; Ballotti, Robert; Mahns, Andre; Passeron, Thierry

    2015-12-01

    Findings of increased vascularization in melasma lesions and hyperpigmentation in acquired bilateral telangiectatic macules suggested a link between pigmentation and vascularization. Using high-magnification digital epiluminescence dermatoscopy, laser confocal microscopy, and histological examination, we showed that benign vascular lesions of the skin have restricted but significant hyperpigmentation compared with the surrounding skin. We then studied the role of microvascular endothelial cells in regulating skin pigmentation using an in vitro co-culture model using endothelial cells and melanocytes. These experiments showed that endothelin 1 released by microvascular endothelial cells induces increased melanogenesis signaling, characterized by microphthalmia-associated transcription factor phosphorylation, and increased tyrosinase and dopachrome tautomerase levels. Immunostaining for endothelin 1 in vascular lesions confirmed the increased expression on the basal layer of the epidermis above small vessels compared with perilesional skin. Endothelin acts through the activation of endothelin receptor B and the mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK)1/2, and p38, to induce melanogenesis. Finally, culturing of reconstructed skin with microvascular endothelial cells led to increased skin pigmentation that could be prevented by inhibiting EDNRB. Taken together these results demonstrated the role of underlying microvascularization in skin pigmentation, a finding that could open new fields of research for regulating physiological pigmentation and for treating pigmentation disorders such as melasma.

  11. Binding of tissue plasminogen activator to cultured human endothelial cells.

    PubMed Central

    Hajjar, K A; Hamel, N M; Harpel, P C; Nachman, R L

    1987-01-01

    Tissue plasminogen activator (t-PA) and urokinase (u-PA), the major activators of plasminogen, are synthesized and released from endothelial cells. We previously demonstrated specific and functional binding of plasminogen to cultured human umbilical vein endothelial cells (HUVEC). In the present study we found that t-PA could bind to HUVEC. Binding of t-PA to HUVEC was specific, saturable, plasminogen-independent, and did not require lysine binding sites. The t-PA bound in a rapid and reversible manner, involving binding sites of both high (Kd, 28.7 +/- 10.8 pM; Bmax, 3,700 +/- 300) and low (Kd, 18.1 +/- 3.8 nM; Bmax 815,000 +/- 146,000) affinity. t-PA binding was 70% inhibited by a 100-fold molar excess of u-PA. When t-PA was bound to HUVEC, its apparent catalytic efficiency increased by three- or fourfold as measured by plasminogen activation. HUVEC-bound t-PA was active site-protected from its rapidly acting inhibitor: plasminogen activator inhibitor. These results demonstrate that t-PA specifically binds to HUVEC and that such binding preserves catalytic efficiency with respect to plasminogen activation. Therefore, endothelial cells can modulate hemostatic and thrombotic events at the cell surface by providing specific binding sites for activation of plasminogen. PMID:3119664

  12. Activated Factor X Induces Endothelial Cell Senescence Through IGFBP-5

    PubMed Central

    Sanada, Fumihiro; Taniyama, Yoshiaki; Muratsu, Jun; Otsu, Rei; Iwabayashi, Masaaki; Carracedo, Miguel; Rakugi, Hiromi; Morishita, Ryuichi

    2016-01-01

    Uncontrolled coagulation contributes to the pathophysiology of several chronic inflammatory diseases. In these conditions, senescent cells are often observed and is involved in the generation of inflammation. The coincidence of hyper-coagulation, cell senescence, and inflammation suggests the existence of a common underlying mechanism. Recent evidence indicates that activated coagulation factor X (FXa) plays a role in the processes beyond blood coagulation. This non-hematologic function entails the mediation of inflammation and tissue remodeling. We therefore tested the hypothesis that FXa induces cell senescence resulting in tissue inflammation and impaired tissue regeneration. Human umbilical vein endothelial cells were stimulated with FXa for 14 days. The proliferation of cells treated with FXa was significantly smaller, and the fraction of senescence-associated β-galactosidase-positive cells was increased as compared to the control group. RT-qPCR array revealed that FXa increased the expression of IGFBP-5, EGR-1, p53, and p16INK4a. Inhibition of FXa by a direct FXa inhibitor, rivaroxaban, or IGFBP-5 by siRNA decreased FXa-induced cell senescence, restoring cell proliferation. Moreover, in an ischemic hind limb mouse model, FXa inhibited neovascularization by endothelial progenitor cell. However, rivaroxaban significantly restored FXa-induced impaired angiogenesis. In summary, FXa induced endothelial cell senescence through IGFBP-5, resulting in impaired angiogenesis. PMID:27752126

  13. XIAP reverses various functional activities of FRNK in endothelial cells

    SciTech Connect

    Ahn, Sunyoung; Kim, Hyun Jeong; Chi, Sung-Gil; Park, Heonyong

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer FRNK domain is recruited into focal adhesion (FA), controlling endothelial cell adhesion. Black-Right-Pointing-Pointer XIAP binds the FRNK domain of FAK. Black-Right-Pointing-Pointer XIAP inhibits recruitment of FRNK into Fas and FRNK-promoted cell adhesion. Black-Right-Pointing-Pointer XIAP plays a key role in vascular functions of FRNK or FRNK domain-mediated vascular functions of FAK. -- Abstract: In endothelial cells, focal adhesion kinase (FAK) regulates cell proliferation, migration, adhesion, and shear-stimulated activation of MAPK. We recently found that FAK is recruited into focal adhesion (FA) sites through interactions with XIAP (X-chromosome linked inhibitor of apoptosis protein) and activated by Src kinase in response to shear stress. In this study, we examined which domain(s) of FAK is(are) important for various vascular functions such as FA recruiting, XIAP-binding and shear stress-stimulated ERK activation. Through a series of experiments, we determined that the FRNK domain is recruited into FA sites and promotes endothelial cell adhesion. Interestingly, XIAP knockdown was shown to reduce FA recruitment of FRNK and the cell adhesive effect of FRNK. In addition, we found that XIAP interacts with FRNK, suggesting cross-talk between XIAP and FRNK. We also demonstrated that FRNK inhibits endothelial cell migration and shear-stimulated ERK activation. These inhibitory effects of FRNK were reversed by XIAP knockdown. Taken together, we can conclude that XIAP plays a key role in vascular functions of FRNK or FRNK domain-mediated vascular functions of FAK.

  14. Endothelial activation by platelets from sickle cell anemia patients.

    PubMed

    Proença-Ferreira, Renata; Brugnerotto, Ana Flávia; Garrido, Vanessa Tonin; Dominical, Venina Marcela; Vital, Daiana Morelli; Ribeiro, Marilene de Fátima Reis; dos Santos, Melissa Ercolin; Traina, Fabíola; Olalla-Saad, Sara T; Costa, Fernando Ferreira; Conran, Nicola

    2014-01-01

    Sickle cell anemia (SCA) is associated with a hypercoagulable state. Increased platelet activation is reported in SCA and SCA platelets may present augmented adhesion to the vascular endothelium, potentially contributing to the vaso-occlusive process. We sought to observe the effects of platelets (PLTs) from healthy control (CON) individuals and SCA individuals on endothelial activation, in vitro. Human umbilical vein endothelial cells (HUVEC) were cultured, in the presence, or not, of washed PLTs from CON or steady-state SCA individuals. Supernatants were reserved for cytokine quantification, and endothelial adhesion molecules (EAM) were analyzed by flow cytometry; gene expressions of ICAM1 and genes of the NF-κB pathway were analyzed by qPCR. SCA PLTs were found to be more inflammatory, displaying increased adhesive properties, an increased production of IL-1β and a tendency towards elevated expressions of P-selectin and activated αIIbβ3. Following culture in the presence of SCA PLTs, HUVEC presented significant augmentations in the expressions of the EAM, ICAM-1 and E-selectin, as well as increased IL-8 production and increased ICAM1 and NFKB1 (encodes p50 subunit of NF-κB) gene expressions. Interestingly, transwell inserts abolished the effects of SCA PLTs on EAM expression. Furthermore, an inhibitor of the NF-κB pathway, BAY 11-7082, also prevented the induction of EAM expression on the HUVEC surface by SCA PLTs. In conclusion, we find further evidence to indicate that platelets circulate in an activated state in sickle cell disease and are capable of stimulating endothelial cell activation. This effect appears to be mediated by direct contact, or even adhesion, between the platelets and endothelial cells and via NFκB-dependent signaling. As such, activated platelets in SCD may contribute to endothelial activation and, therefore, to the vaso-occlusive process. Results provide further evidence to support the use of anti-platelet approaches in association

  15. Endothelial Activation by Platelets from Sickle Cell Anemia Patients

    PubMed Central

    Proença-Ferreira, Renata; Brugnerotto, Ana Flávia; Garrido, Vanessa Tonin; Dominical, Venina Marcela; Vital, Daiana Morelli; Ribeiro, Marilene de Fátima Reis; dos Santos, Melissa Ercolin; Traina, Fabíola; Olalla-Saad, Sara T.; Costa, Fernando Ferreira; Conran, Nicola

    2014-01-01

    Sickle cell anemia (SCA) is associated with a hypercoagulable state. Increased platelet activation is reported in SCA and SCA platelets may present augmented adhesion to the vascular endothelium, potentially contributing to the vaso-occlusive process. We sought to observe the effects of platelets (PLTs) from healthy control (CON) individuals and SCA individuals on endothelial activation, in vitro. Human umbilical vein endothelial cells (HUVEC) were cultured, in the presence, or not, of washed PLTs from CON or steady-state SCA individuals. Supernatants were reserved for cytokine quantification, and endothelial adhesion molecules (EAM) were analyzed by flow cytometry; gene expressions of ICAM1 and genes of the NF-κB pathway were analyzed by qPCR. SCA PLTs were found to be more inflammatory, displaying increased adhesive properties, an increased production of IL-1β and a tendency towards elevated expressions of P-selectin and activated αIIbβ3. Following culture in the presence of SCA PLTs, HUVEC presented significant augmentations in the expressions of the EAM, ICAM-1 and E-selectin, as well as increased IL-8 production and increased ICAM1 and NFKB1 (encodes p50 subunit of NF-κB) gene expressions. Interestingly, transwell inserts abolished the effects of SCA PLTs on EAM expression. Furthermore, an inhibitor of the NF-κB pathway, BAY 11-7082, also prevented the induction of EAM expression on the HUVEC surface by SCA PLTs. In conclusion, we find further evidence to indicate that platelets circulate in an activated state in sickle cell disease and are capable of stimulating endothelial cell activation. This effect appears to be mediated by direct contact, or even adhesion, between the platelets and endothelial cells and via NFκB-dependent signaling. As such, activated platelets in SCD may contribute to endothelial activation and, therefore, to the vaso-occlusive process. Results provide further evidence to support the use of anti-platelet approaches in association

  16. Decrease of fibrinolytic activity in human endothelial cells by arsenite.

    PubMed

    Jiang, Shinn-Jong; Lin, Tsun-Mei; Wu, Hua-Lin; Han, Huai-Song; Shi, Guey-Yueh

    2002-01-01

    Blackfoot disease (BFD) is an endemic peripheral vascular occlusive disease that occurred in the southwest coast of Taiwan. It is believed that arsenic in the drinking water from artesian wells plays an important role in the development of the disease. We have previously shown that BFD patients had significant lower tissue-type plasminogen activator (t-PA) antigen level and higher plasminogen activator inhibitor, Type 1 (PAI-1) antigen level than normal controls. The purpose of this study was to investigate the effects of arsenite on the fibrinolytic and anticoagulant activities of cultured macrovascular and microvascular endothelial cells. Incubation of human microvascular endothelial cells (HMEC-1), but not human umbilical vein endothelial cells (HUVECs), with arsenite caused a decrease of t-PA mRNA level, a rise of both PAI-1 mRNA level and PAI activity. Arsenite could also inhibit the thrombomodulin (TM) mRNA expression and reduce the TM antigen level in HMEC-1. In conclusion, arsenite had a greater effect on HMEC-1 as compared to HUVECs in lowering the fibrinolytic activity and may be responsible for the reduced capacity of fibrinolysis associated with BFD.

  17. Vanadium pentoxide induces activation and death of endothelial cells.

    PubMed

    Montiel-Dávalos, Angélica; Gonzalez-Villava, Adriana; Rodriguez-Lara, Vianey; Montaño, Luis Felipe; Fortoul, Teresa I; López-Marure, Rebeca

    2012-01-01

    Vanadium is a transition metal released into the atmosphere, as air-suspended particles, as a result of the combustion of fossil fuels and some metallurgic industry activities. Air-suspended particle pollution causes inflammation-related processes such as thrombosis and other cardiovascular events. Our aim was to evaluate the effect of vanadium pentoxide (V2O5) on endothelial cells since they are key participants in the pathogenesis of several cardiovascular and inflammatory diseases. Cell adhesion, the expression of adhesion molecules and oxidative stress, as well as proliferation, morphology and cell death of human umbilical vein endothelial cells (HUVECs) exposed to V2O5, were evaluated. Vanadium pentoxide at a 3.12 µg cm(-2) concentration induced an enhanced adhesion of the U937 macrophage cell line to HUVECs, owing to an increased expression of late adhesion molecules. HUVECs exposed to V2O5 showed an increase in ROS and nitric oxide production, and a diminished proliferation. These changes in vanadium-treated HUVECs were accompanied by severe morphological changes and apoptotic cell death. Vanadium pentoxide induced serious endothelial cell damage, probably related to the increased cardiovascular morbidity and mortality observed in individuals living in highly air-polluted areas. PMID:21721017

  18. Homocysteine injures vascular endothelial cells by inhibiting mitochondrial activity

    PubMed Central

    Yang, Fengyong; Qi, Xiujing; Gao, Zheng; Yang, Xingju; Zheng, Xingfeng; Duan, Chonghao; Zheng, Jian

    2016-01-01

    The aim of the present study was to investigate the role of homocysteine (Hcy) in the pathogenesis of pulmonary embolism (PE) and the associated molecular mechanisms in human umbilical vein endothelial cells (HUVECs). Hcy contents were detected with high-performance liquid chromatography. Apoptosis was detected by flow cytometry using Annexin-V staining. Cytochrome c oxidase (COX) activity was assessed with an enzyme activity assay, and the expression levels of COX 17 were determined by western blot analysis. Intracellular reactive oxygen species levels were measured using a microplate reader with a fluorescence probe. The results demonstrated that, compared with the control group, the serum Hcy levels were significantly elevated in the PE group, suggesting that Hcy may be an indicator for PE. Following treatment with Hcy, the apoptosis rate was markedly elevated in HUVECs. Moreover, Hcy decreased COX activity and downregulated the expression of COX 17 in HUVECs. Furthermore, Hcy increased the ROS levels in these endothelial cells. However, all the above-mentioned physiopathological changes induced by Hcy in HUVECs could be restored by folic acid. In conclusion, the results of the present study demonstrated that Hcy inhibited COX activity, downregulated COX 17 expression, increased intracellular ROS levels and enhanced apoptosis in endothelial cells.

  19. Augmentation of platelet and endothelial cell eNOS activity decreases sepsis-related neutrophil-endothelial cell interactions.

    PubMed

    Khan, Raymond; Kirschenbaum, Linda A; LaRow, Catherine; Berna, Gioiamaria; Griffin, Kelly; Astiz, Mark E

    2010-03-01

    NO is an important mediator of microvascular patency and blood flow. The purpose of this study was to examine the role of enhanced eNOS activity in attenuating sepsis-induced neutrophil-endothelial cell interactions. Microslides coated with human umbilical vein endothelial cells were stimulated with plasma from patients with septic shock. Neutrophil and platelets from control subjects were also stimulated with plasma from patients in septic shock and perfused over stimulated endothelial cells. l-Arginine (LA) with and without NG-monomethyl l-arginine (LNMMA), a nonselective NOS inhibitor, and N-(3-(aminomethyl) benzyl acetamide) ethanimidamide dihydrochloride (1400W), a highly selective iNOS inhibitor, were added to the septic plasma. The number of neutrophils adherent to endothelial cells, neutrophil rolling velocity, and the number of neutrophil aggregates were determined. Cell activation and the formation of platelet-neutrophil aggregates were assessed by flow cytometry. Separate experiments were done with isolated platelets using platelet aggregometry. l-Arginine significantly decreased sepsis-related neutrophil adhesion and aggregation and increased rolling velocity. The addition of LNMMA to LA and cell suspensions reversed the effects of LA on these parameters, whereas the addition of 1400W had no effect on LA-related changes. Platelet-neutrophil aggregation, platelet aggregation, platelet activation, and neutrophil activation induced by septic plasma were also significantly decreased by LA. Again, the addition of LNMMA reversed the effects of LA on these parameters, whereas 1400W had no effect on LA-related changes. These data suggest that enhancement of platelet and endothelial cell eNOS activity decreases sepsis-induced neutrophil-endothelial cell interactions and may play a role in maintaining microvascular patency in septic shock.

  20. Biomarkers of endothelial cell activation in early sepsis

    PubMed Central

    Skibsted, Simon; Jones, Alan E; Puskarich, Michael A.; Arnold, Ryan; Sherwin, Robert; Trzeciak, Stephen; Schuetz, Philipp; Aird, William C.; Shapiro, Nathan I

    2013-01-01

    PURPOSE To investigate the association of endothelial-related markers with organ dysfunction and in-hospital mortality to validate our earlier findings in a multicenter study. We hypothesize that: 1) endothelial biomarkers will be associated with organ dysfunction and mortality in sepsis; and, that sFlt-1, holds promise as novel prognostic markers in sepsis. METHODS A prospective, multicenter, observational study of a convenience sample of Emergency Department (ED) patients with a suspected infection presenting to one of four urban, academic medical center EDs between January 2009 and January 2010. We collected plasma while the patients were in the ED, and subsequently assayed endothelial-related biomarkers, namely sFlt-1, sE-Selectin, sICAM-1, sVCAM-1, and PAI-1. Outcomes were organ dysfunction and in-hospital mortality. RESULTS We enrolled at a total of 166 patients: 63 with sepsis (38%), 61 with severe sepsis (37%) and 42 with septic shock (25%). All endothelial biomarkers were significantly associated with sepsis severity, P < 0.002. We found a significant inter-correlation between all biomarkers, strongest between sFlt1 and PAI-1 (r=0.61, P < 0.001) and PAI-1 and sE-selectin and sICAM-1 (r=0.49, P < 0.001). Among the endothelial biomarkers, sFlt-1 had the strongest association with SOFA score (r=0.58, P < 0.001). sFlt-1 and PAI-1 had the highest area under the operating receiver characteristic curve for mortality of 0.87. CONCLUSIONS This multi-center validation study confirms that markers of endothelial activation are associated with sepsis severity, organ dysfunction and mortality in sepsis. This supports the hypothesis that the endothelium plays a central role in the pathophysiology of sepsis and may serve as a more accurate prediction tool and a target for therapies aimed at ameliorating endothelial cell dysfunction. Additionally, sFLT-1 holds promise as a novel sepsis severity biomarker. PMID:23524845

  1. Dengue Virus Infection of Mast Cells Triggers Endothelial Cell Activation

    PubMed Central

    Brown, Michael G.; Hermann, Laura L.; Issekutz, Andrew C.; Marshall, Jean S.; Rowter, Derek; Al-Afif, Ayham; Anderson, Robert

    2011-01-01

    Vascular perturbation is a hallmark of severe forms of dengue disease. We show here that antibody-enhanced dengue virus infection of primary human cord blood-derived mast cells (CBMCs) and the human mast cell-like line HMC-1 results in the release of factor(s) which activate human endothelial cells, as evidenced by increased expression of the adhesion molecules ICAM-1 and VCAM-1. Endothelial cell activation was prevented by pretreatment of mast cell-derived supernatants with a tumor necrosis factor (TNF)-specific blocking antibody, thus identifying TNF as the endothelial cell-activating factor. Our findings suggest that mast cells may represent an important source of TNF, promoting vascular endothelial perturbation following antibody-enhanced dengue virus infection. PMID:21068256

  2. Activated Brain Endothelial Cells Cross-Present Malaria Antigen

    PubMed Central

    Howland, Shanshan W.; Poh, Chek Meng; Rénia, Laurent

    2015-01-01

    In the murine model of cerebral malaria caused by P. berghei ANKA (PbA), parasite-specific CD8+ T cells directly induce pathology and have long been hypothesized to kill brain endothelial cells that have internalized PbA antigen. We previously reported that brain microvessel fragments from infected mice cross-present PbA epitopes, using reporter cells transduced with epitope-specific T cell receptors. Here, we confirm that endothelial cells are the population responsible for cross-presentation in vivo, not pericytes or microglia. PbA antigen cross-presentation by primary brain endothelial cells in vitro confers susceptibility to killing by CD8+ T cells from infected mice. IFNγ stimulation is required for brain endothelial cross-presentation in vivo and in vitro, which occurs by a proteasome- and TAP-dependent mechanism. Parasite strains that do not induce cerebral malaria were phagocytosed and cross-presented less efficiently than PbA in vitro. The main source of antigen appears to be free merozoites, which were avidly phagocytosed. A human brain endothelial cell line also phagocytosed P. falciparum merozoites. Besides being the first demonstration of cross-presentation by brain endothelial cells, our results suggest that interfering with merozoite phagocytosis or antigen processing may be effective strategies for cerebral malaria intervention. PMID:26046849

  3. Signal transduction pathways in mast cell granule-mediated endothelial cell activation.

    PubMed Central

    Chi, Luqi; Stehno-Bittel, Lisa; Smirnova, Irina; Stechschulte, Daniel J; Dileepan, Kottarappat N

    2003-01-01

    BACKGROUND: We have previously shown that incubation of human endothelial cells with mast cell granules results in potentiation of lipopolysaccharide-induced production of interleukin-6 and interleukin-8. AIMS: The objective of the present study was to identify candidate molecules and signal transduction pathways involved in the synergy between mast cell granules and lipopolysaccharide on endothelial cell activation. METHODS: Human umbilical vein endothelial cells were incubated with rat mast cell granules in the presence and absence of lipopolysaccharide, and IL-6 production was quantified. The status of c-Jun amino-terminal kinase and extracellular signal-regulated kinase 1/2 activation, nuclear factor-kappaB translocation and intracellular calcium levels were determined to identify the mechanism of synergy between mast cell granules and lipopolysaccaride. RESULTS: Mast cell granules induced low levels of interleukin-6 production by endothelial cells, and this effect was markedly enhanced by lipopolysaccharide. The results revealed that both serine proteases and histamine present in mast cell granules were involved in this activation process. Mast cell granules increased intracellular calcium, and activated c-Jun amino-terminal kinase and extracellular signal-regulated kinase 1/2. The combination of lipopolysaccharide and mast cell granules prolonged c-Jun amino-terminal kinase activity beyond the duration of induction by either stimulant alone and was entirely due to active proteases. However, both proteases and histamine contributed to calcium mobilization and extracellular signal-regulated kinase 1/2 activation. The nuclear translocation of nuclear factor-kappaB proteins was of greater magnitude in endothelial cells treated with the combination of mast cell granules and lipopolysaccharide. CONCLUSIONS:Mast cell granule serine proteases and histamine can amplify lipopolysaccharide-induced endothelial cell activation, which involves calcium mobilization, mitogen-activated

  4. Interleukin 3 stimulates proliferation and triggers endothelial-leukocyte adhesion molecule 1 gene activation of human endothelial cells.

    PubMed

    Brizzi, M F; Garbarino, G; Rossi, P R; Pagliardi, G L; Arduino, C; Avanzi, G C; Pegoraro, L

    1993-06-01

    Proliferation and functional activation of endothelial cells within a tissue site of inflammation are regulated by humoral factors released by cells, such as T lymphocytes and monocytes, infiltrating the perivascular space. In the present study we investigated the effects of interleukin 3 (IL-3), an activated T lymphocyte-derived cytokine, on cultured human umbilical vein endothelial cells (HUVEC). Proliferative activity, evaluated both by estimation of the fraction of cells in the S phase and by direct cell count demonstrated that IL-3, at the dose of 25 ng/ml, enhances more than threefold both DNA synthesis and cell proliferation above baseline control conditions. Binding studies with radioiodinated ligand demonstrated that HUVEC constitutively express a smaller number of IL-3 binding sites (approximately 99 binding sites per cell, with an apparent Kd of 149 pM). Accordingly, molecular analysis showed the presence of transcripts for both alpha and beta subunits of the IL-3 receptor. Functional activation of endothelial cells was evaluated by the expression of the endothelial-leukocyte adhesion molecule 1 (ELAM-1) transcript and by leukocyte adhesion. The ELAM-1 gene transcript was clearly detectable 4 h after IL-3 addition and started to decrease after 12 h. Moreover, IL-3-induced ELAM-1 transcription was followed by enhanced adhesion of neutrophils and CD4+ T cells to HUVEC. The findings that IL-3 can stimulate both proliferation and functional activation of endothelial cells suggest that this cytokine can be involved in sustaining the process of chronic inflammation.

  5. Endothelial cells promote neural stem cell proliferation and differentiation associated with VEGF activated Notch and Pten signaling.

    PubMed

    Sun, Jinqiao; Zhou, Wenhao; Ma, Duan; Yang, Yi

    2010-09-01

    To investigate whether and how endothelial cells affect neurogenesis, we established a system to co-culture endothelial cells and brain slices of neonatal rat and observed how subventricular zone cells differentiate in the presence of endothelial cells. In the presence of endothelial cells, neural stem cells increased in number, as did differentiated neurons and glia. The augmentation of neurogenesis was reversed by diminishing vascular endothelial growth factor (VEGF) expression in endothelial cells with RNA interference (RNAi). Microarray analysis indicated that expression levels of 112 genes were significantly altered by co-culture and that expression of 81 of the 112 genes recovered to normal levels following RNAi of VEGF in endothelial cells. Pathway mapping showed an enrichment of genes in the Notch and Pten pathways. These data indicate that endothelial cells promote neural stem cell proliferation and differentiation associated with VEGF, possibly by activating the Notch and Pten pathways.

  6. Matrix fibronectin disruption and altered endothelial cell adhesion induced by activated leukocytes

    SciTech Connect

    Vincent, P.; Richards, P.; Saba, T.; DelVecchio, P.

    1986-03-01

    Sequestration of activated leukocytes (PMN) within the lung may contribute to pulmonary vascular injury following trauma, sepsis, or intravascular coagulation. Monolayers of cultured rat endothelial cells were utilized to evaluate the effect of activated PMNs on endothelial cell attachment and the extracellular fibronectin matrix over a 4 hr incubation interval. Rat endothelial cells were identified by immunofluorescent staining of Factor VIII R:Ag. Endothelial cells were labeled with /sup 51/Cr in order to establish a cell injury assay in which the release of pelletable (cell associated) or non-pelletable activity was measured in the media. PMN activation was verified by chemiluminescence activity. Following phorbol myristate acetate (PMA) the leukocytes aggregated, chemiluminesced, and caused detachment of /sup 51/Cr endothelial cells. Endothelial detachment increased as a function of time with a plateau by 3 hrs. Immunofluorescent analysis of extracellular fibronectin in endothelial cell cultures revealed disruption of the fibrillar matrix fibronectin in association with endothelial cell disadhesion. Matrix fibronectin disruption was not seen with PMNs or PMA alone. Thus, disruption of the fibronectin matrix by released proteases may contribute to endothelial cell detachment.

  7. Cerivastatin activates endothelial calcium-activated potassium channels and thereby modulates endothelial nitric oxide production and cell proliferation.

    PubMed

    Kuhlmann, Christoph Rüdiger Wolfram; Gast, Christine; Li, Fang; Schäfer, Matthias; Tillmanns, Harald; Waldecker, Bernd; Wiecha, Johannes

    2004-04-01

    Statins are known to counteract the process of arteriosclerosis by exerting direct pleiotropic effects on vascular endothelium. The aim of this study was to investigate a possible effect of cerivastatin on endothelial Ca(2+)-activated K+ channels (BK(Ca)) and to assess their contribution to cerivastatin-mediated changes of endothelial nitric oxide (NO) production and proliferation. Membrane potential was measured using bis-1,3-dibutylbarbituric acid-trimethine oxonol-fluorescence imaging. Patch-clamp recordings of BK(Ca) were performed on cultured human umbilical vein endothelial cells. NO production was measured using 4,5-diaminofluorescein-fluorescence imaging and a [(3)H]cGMP RIA. Proliferation was analyzed by means of cell counts and [(3)H]thymidine incorporation (TI). Cerivastatin (0.001 to 0.05 micromol/L) caused a significant membrane hyperpolarization (n = 30; P < 0.05). This effect was abolished using the BK(Ca) inhibitor iberiotoxin (IBX; 100 nmol/L). The addition of mevalonate (500 micromol/L) blocked the BK(Ca) activation induced by cerivastatin (n = 19; P < 0.05). Endothelial cGMP level was increased by acetylcholine (ACh; 1 micromol/L). The combination of ACh and cerivastatin additionally increased cGMP levels, with a maximum at 0.03 micromol/L cerivastatin (84%; n = 10, P < 0.01). ACh-induced increase of cGMP-level was significantly reduced by IBX (n = 10, P < 0.01) as it was with all combined administrations of ACh and cerivastatin. 4,5-Diaminofluorescein-fluorescence measurements revealed a significant increase of NO levels by cerivastatin, which was abolished by IBX (n = 30; P < 0.05). Cell counts and TI demonstrated significant inhibition of human umbilical vein endothelial cell proliferation with a maximum at 0.03 micro mol/L (cell count, -32.2%; TI, -70%; n = 12; P < 0.01). These data show that cerivastatin activates endothelial BK(Ca), which plays an important role in the signaling of cerivastatin-mediated endothelial NO production and

  8. The Secretome of Endothelial Progenitor Cells Promotes Brain Endothelial Cell Activity through PI3-Kinase and MAP-Kinase

    PubMed Central

    Di Santo, Stefano; Seiler, Stefanie; Fuchs, Anna-Lena; Staudigl, Jennifer; Widmer, Hans Rudolf

    2014-01-01

    Background Angiogenesis and vascular remodelling are crucial events in tissue repair mechanisms promoted by cell transplantation. Current evidence underscores the importance of the soluble factors secreted by stem cells in tissue regeneration. In the present study we investigated the effects of paracrine factors derived from cultured endothelial progenitor cells (EPC) on rat brain endothelial cell properties and addressed the signaling pathways involved. Methods Endothelial cells derived from rat brain (rBCEC4) were incubated with EPC-derived conditioned medium (EPC-CM). The angiogenic response of rBCEC4 to EPC-CM was assessed as effect on cell number, migration and tubular network formation. In addition, we have compared the outcome of the in vitro experiments with the effects on capillary sprouting from rat aortic rings. The specific PI3K/AKT inhibitor LY294002 and the MEK/ERK inhibitor PD98059 were used to study the involvement of these two signaling pathways in the transduction of the angiogenic effects of EPC-CM. Results Viable cell number, migration and tubule network formation were significantly augmented upon incubation with EPC-CM. Similar findings were observed for aortic ring outgrowth with significantly longer sprouts. The EPC-CM-induced activities were significantly reduced by the blockage of the PI3K/AKT and MEK/ERK signaling pathways. Similarly to the outcome of the rBCEC4 experiments, inhibition of the PI3K/AKT and MEK/ERK pathways significantly interfered with capillary sprouting induced by EPC-CM. Conclusion The present study demonstrates that EPC-derived paracrine factors substantially promote the angiogenic response of brain microvascular endothelial cells. In addition, our findings identified the PI3K/AKT and MEK/ERK pathways to play a central role in mediating these effects. PMID:24755675

  9. Hypergravity and hypobaric hypoxic conditions promote endothelial cell and platelet activation.

    PubMed

    Rubenstein, David A; Yin, Wei

    2014-09-01

    Cardiovascular disease risk is heightened during exposure to altered gravity and/or altered barometric conditions. Previous work has suggested that this heightened cardiovascular risk is due to enhancements of endothelial cell inflammatory and/or thrombogenic responses. In recent work, the role of platelets on instigating or inhibiting endothelial cell responses associated with cardiovascular disease has been found to be dependent on both biochemical and biophysical factors. In this work, we aimed to determine how two biophysical forces, gravity and atmospheric pressure, alter endothelial cell and platelet functions and their interactions to instigate or inhibit cardiovascular disease responses. To address this aim, endothelial cells and platelets were subjected to a force 8 times greater than the normal gravitational force, for up to 30 minutes. In separate experiments, endothelial cells and platelets were subjected to 50% of normal atmospheric pressure. Endothelial cell and platelet responses, associated with cardiovascular diseases, were measured as a time course during exposure. In general, the exposure of endothelial cells to either hypergravity or hypobaric conditions enhanced cardiovascular disease responses. However, the presence of platelets generally inhibited endothelial cell responses. Platelet activation was, however, somewhat enhanced under both hypergravity and hypobaric conditions. Our data suggest that altered biophysical forces can modulate endothelial cell and platelet responses that are salient for cardiovascular disease progression. However, the interaction of these two cells tends to restrain the progression of the pro-cardiovascular disease responses. PMID:25211651

  10. Yap/Taz transcriptional activity in endothelial cells promotes intramembranous ossification via the BMP pathway

    PubMed Central

    Uemura, Mami; Nagasawa, Ayumi; Terai, Kenta

    2016-01-01

    Osteogenesis is categorized into two groups based on developmental histology, intramembranous and endochondral ossification. The role of blood vessels during endochondral ossification is well known, while their role in intramembranous ossification, especially the intertissue pathway, is poorly understood. Here, we demonstrate endothelial Yap/Taz is a novel regulator of intramembranous ossification in zebrafish. Appropriate blood flow is required for Yap/Taz transcriptional activation in endothelial cells and intramembranous ossification. Additionally, Yap/Taz transcriptional activity in endothelial cells specifically promotes intramembranous ossification. BMP expression by Yap/Taz transactivation in endothelial cells is also identified as a bridging factor between blood vessels and intramembranous ossification. Furthermore, the expression of Runx2 in pre-osteoblast cells is a downstream target of Yap/Taz transcriptional activity in endothelial cells. Our results provide novel insight into the relationship between blood flow and ossification by demonstrating intertissue regulation. PMID:27273480

  11. Endothelial nitric oxide synthase negatively regulates hydrogen peroxide-stimulated AMP-activated protein kinase in endothelial cells.

    PubMed

    Jin, Benjamin Y; Sartoretto, Juliano L; Gladyshev, Vadim N; Michel, Thomas

    2009-10-13

    Hydrogen peroxide and other reactive oxygen species are intimately involved in endothelial cell signaling. In many cell types, the AMP-activated protein kinase (AMPK) has been implicated in the control of metabolic responses, but the role of endothelial cell redox signaling in the modulation of AMPK remains to be completely defined. We used RNA interference and pharmacological methods to establish that H(2)O(2) is a critical activator of AMPK in cultured bovine aortic endothelial cells (BAECs). H(2)O(2) treatment of BAECs rapidly and significantly increases the phosphorylation of AMPK. The EC(50) for H(2)O(2)-promoted phosphorylation of AMPK is 65 + or - 15 microM, within the physiological range of cellular H(2)O(2) concentrations. The Ca(2+)/calmodulin-dependent protein kinase kinase-beta (CaMKKbeta) inhibitor STO-609 abolishes H(2)O(2)-dependent AMPK activation, whereas eNOS inhibitors enhance AMPK activation. Similarly, siRNA-mediated knockdown of CaMKKbeta abrogates AMPK activation, whereas siRNA-mediated knockdown of eNOS leads to a striking increase in AMPK phosphorylation. Cellular imaging studies using the H(2)O(2) biosensor HyPer show that siRNA-mediated eNOS knockdown leads to a marked increase in intracellular H(2)O(2) generation, which is blocked by PEG-catalase. eNOS(-/-) mice show a marked increase in AMPK phosphorylation in liver and lung compared to wild-type mice. Lung endothelial cells from eNOS(-/-) mice also show a significant increase in AMPK phosphorylation. Taken together, these results establish that CaMKKbeta is critically involved in mediating the phosphorylation of AMPK promoted by H(2)O(2) in endothelial cells, and document that eNOS is an important negative regulator of AMPK phosphorylation and intracellular H(2)O(2) generation in endothelial cells. PMID:19805165

  12. Featured Article: Differential regulation of endothelial nitric oxide synthase phosphorylation by protease-activated receptors in adult human endothelial cells

    PubMed Central

    Tillery, Lakeisha C; Epperson, Tenille A; Eguchi, Satoru

    2016-01-01

    Protease-activated receptors have been shown to regulate endothelial nitric oxide synthase through the phosphorylation of specific sites on the enzyme. It has been established that PAR-2 activation phosphorylates eNOS-Ser-1177 and leads to the production of the potent vasodilator nitric oxide, while PAR-1 activation phosphorylates eNOS-Thr-495 and decreases nitric oxide production in human umbilical vein endothelial cells. In this study, we hypothesize a differential coupling of protease-activated receptors to the signaling pathways that regulates endothelial nitric oxide synthase and nitric oxide production in primary adult human coronary artery endothelial cells. Using Western Blot analysis, we showed that thrombin and the PAR-1 activating peptide, TFLLR, lead to the phosphorylation of eNOS-Ser-1177 in human coronary artery endothelial cells, which was blocked by SCH-79797 (SCH), a PAR-1 inhibitor. Using the nitrate/nitrite assay, we also demonstrated that the thrombin- and TFLLR-induced production of nitric oxide was inhibited by SCH and L-NAME, a NOS inhibitor. In addition, we observed that TFLLR, unlike thrombin, significantly phosphorylated eNOS-Thr-495, which may explain the observed delay in nitric oxide production in comparison to that of thrombin. Activation of PAR-2 by SLIGRL, a PAR-2 specific ligand, leads to dual phosphorylation of both catalytic sites but primarily regulated eNOS-Thr-495 phosphorylation with no change in nitric oxide production in human coronary artery endothelial cells. PAR-3, known as the non-signaling receptor, was activated by TFRGAP, a PAR-3 mimicking peptide, and significantly induced the phosphorylation of eNOS-Thr-495 with minimal phosphorylation of eNOS-Ser-1177 with no change in nitric oxide production. In addition, we confirmed that PAR-mediated eNOS-Ser-1177 phosphorylation was Ca2+-dependent using the Ca2+ chelator, BAPTA, while eNOS-Thr-495 phosphorylation was mediated via Rho kinase using the ROCK inhibitor, Y-27632

  13. Featured Article: Differential regulation of endothelial nitric oxide synthase phosphorylation by protease-activated receptors in adult human endothelial cells.

    PubMed

    Tillery, Lakeisha C; Epperson, Tenille A; Eguchi, Satoru; Motley, Evangeline D

    2016-03-01

    Protease-activated receptors have been shown to regulate endothelial nitric oxide synthase through the phosphorylation of specific sites on the enzyme. It has been established that PAR-2 activation phosphorylates eNOS-Ser-1177 and leads to the production of the potent vasodilator nitric oxide, while PAR-1 activation phosphorylates eNOS-Thr-495 and decreases nitric oxide production in human umbilical vein endothelial cells. In this study, we hypothesize a differential coupling of protease-activated receptors to the signaling pathways that regulates endothelial nitric oxide synthase and nitric oxide production in primary adult human coronary artery endothelial cells. Using Western Blot analysis, we showed that thrombin and the PAR-1 activating peptide, TFLLR, lead to the phosphorylation of eNOS-Ser-1177 in human coronary artery endothelial cells, which was blocked by SCH-79797 (SCH), a PAR-1 inhibitor. Using the nitrate/nitrite assay, we also demonstrated that the thrombin- and TFLLR-induced production of nitric oxide was inhibited by SCH and L-NAME, a NOS inhibitor. In addition, we observed that TFLLR, unlike thrombin, significantly phosphorylated eNOS-Thr-495, which may explain the observed delay in nitric oxide production in comparison to that of thrombin. Activation of PAR-2 by SLIGRL, a PAR-2 specific ligand, leads to dual phosphorylation of both catalytic sites but primarily regulated eNOS-Thr-495 phosphorylation with no change in nitric oxide production in human coronary artery endothelial cells. PAR-3, known as the non-signaling receptor, was activated by TFRGAP, a PAR-3 mimicking peptide, and significantly induced the phosphorylation of eNOS-Thr-495 with minimal phosphorylation of eNOS-Ser-1177 with no change in nitric oxide production. In addition, we confirmed that PAR-mediated eNOS-Ser-1177 phosphorylation was Ca(2+)-dependent using the Ca(2+) chelator, BAPTA, while eNOS-Thr-495 phosphorylation was mediated via Rho kinase using the ROCK inhibitor, Y-27632

  14. Activation of the canonical Wnt/{beta}-catenin pathway enhances monocyte adhesion to endothelial cells

    SciTech Connect

    Lee, Dong Kun . E-mail: leedk@memorialhealthsource.com; Nathan Grantham, R.; Trachte, Aaron L.; Mannion, John D.; Wilson, Colleen L.

    2006-08-18

    Monocyte adhesion to vascular endothelium has been reported to be one of the early processes in the development of atherosclerosis. In an attempt to develop strategies to prevent or delay atherosclerosis progression, we analyzed effects of the Wnt/{beta}-catenin signaling pathway on monocyte adhesion to various human endothelial cells. Adhesion of fluorescein-labeled monocytes to various human endothelial cells was analyzed under a fluorescent microscope. Unlike sodium chloride, lithium chloride enhanced monocyte adhesion to endothelial cells in a dose-dependent manner. We further demonstrated that inhibitors for glycogen synthase kinase (GSK)-3{beta} or proteosome enhanced monocyte-endothelial cell adhesion. Results of semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) indicated that activation of Wnt/{beta}-catenin pathway did not change expression levels of mRNA for adhesion molecules. In conclusion, the canonical Wnt/{beta}-catenin pathway enhanced monocyte-endothelial cell adhesion without changing expression levels of adhesion molecules.

  15. Conditioned Media from Microvascular Endothelial Cells Cultured in Simulated Microgravity Inhibit Osteoblast Activity

    PubMed Central

    Cazzaniga, Alessandra; Castiglioni, Sara; Maier, Jeanette A. M.

    2014-01-01

    Background and Aims. Gravity contributes to the maintenance of bone integrity. Accordingly, weightlessness conditions during space flight accelerate bone loss and experimental models in real and simulated microgravity show decreased osteoblastic and increased osteoclastic activities. It is well known that the endothelium and bone cells cross-talk and this intercellular communication is vital to regulate bone homeostasis. Because microgravity promotes microvascular endothelial dysfunction, we anticipated that the molecular cross-talk between endothelial cells exposed to simulated microgravity and osteoblasts might be altered. Results. We cultured human microvascular endothelial cells in simulated microgravity using the rotating wall vessel device developed by NASA. Endothelial cells in microgravity show growth inhibition and release higher amounts of matrix metalloproteases type 2 and interleukin-6 than controls. Conditioned media collected from microvascular endothelial cells in simulated microgravity were used to culture human osteoblasts and were shown to retard osteoblast proliferation and inhibit their activity. Discussion. Microvascular endothelial cells in microgravity are growth retarded and release high amounts of matrix metalloproteases type 2 and interleukin-6, which might play a role in retarding the growth of osteoblasts and impairing their osteogenic activity. Conclusions. We demonstrate that since simulated microgravity modulates microvascular endothelial cell function, it indirectly impairs osteoblastic function. PMID:25210716

  16. Enhancement of endothelial cell migration by constitutively active LPA{sub 1}-expressing tumor cells

    SciTech Connect

    Kitayoshi, Misaho; Kato, Kohei; Tanabe, Eriko; Yoshikawa, Kyohei; Fukui, Rie; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer Mutated LPA{sub 1} stimulates cell migration of endothelial cells. Black-Right-Pointing-Pointer VEGF expressions are increased by mutated LPA{sub 1}. Black-Right-Pointing-Pointer LPA signaling via mutated LPA{sub 1} is involved in angiogenesis. Black-Right-Pointing-Pointer Mutated LPA{sub 1} promotes cancer cell progression. -- Abstract: Lysophosphatidic acid (LPA) receptors belong to G protein-coupled transmembrane receptors (LPA receptors; LPA{sub 1} to LPA{sub 6}). They indicate a variety of cellular response by the interaction with LPA, including cell proliferation, migration and differentiation. Recently, we have reported that constitutive active mutated LPA{sub 1} induced the strong biological effects of rat neuroblastoma B103 cells. In the present study, we examined the effects of mutated LPA{sub 1} on the interaction between B103 cells and endothelial F-2 cells. Each LPA receptor expressing B103 cells were maintained in serum-free DMEM and cell motility assay was performed with a Cell Culture Insert. When F-2 cells were cultured with conditioned medium from Lpar1 and Lpar3-expressing cells, the cell motility of F-2 cells was significantly higher than control cells. Interestingly, the motile activity of F-2 cells was strongly induced by mutated LPA{sub 1} than other cells, correlating with the expression levels of vascular endothelial growth factor (Vegf)-A and Vegf-C. Pretreatment of LPA signaling inhibitors inhibited F-2 cell motility stimulated by mutated LPA{sub 1}. These results suggest that activation of LPA signaling via mutated LPA{sub 1} may play an important role in the promotion of angiogenesis in rat neuroblastoma cells.

  17. Delta- and gamma-tocotrienol isomers are potent in inhibiting inflammation and endothelial activation in stimulated human endothelial cells

    PubMed Central

    Muid, Suhaila; Froemming, Gabriele R. Anisah; Rahman, Thuhairah; Ali, A. Manaf; Nawawi, Hapizah M.

    2016-01-01

    Background Tocotrienols (TCTs) are more potent antioxidants than α-tocopherol (TOC). However, the effectiveness and mechanism of the action of TCT isomers as anti-atherosclerotic agents in stimulated human endothelial cells under inflammatory conditions are not well established. Aims 1) To compare the effects of different TCT isomers on inflammation, endothelial activation, and endothelial nitric oxide synthase (eNOS). 2) To identify the two most potent TCT isomers in stimulated human endothelial cells. 3) To investigate the effects of TCT isomers on NFκB activation, and protein and gene expression levels in stimulated human endothelial cells. Methods Human umbilical vein endothelial cells were incubated with various concentrations of TCT isomers or α-TOC (0.3–10 µM), together with lipopolysaccharides for 16 h. Supernatant cells were collected and measured for protein and gene expression of cytokines (interleukin-6, or IL-6; tumor necrosis factor-alpha, or TNF-α), adhesion molecules (intercellular cell adhesion molecule-1, or ICAM-1; vascular cell adhesion molecule-1, or VCAM-1; and e-selectin), eNOS, and NFκB. Results δ-TCT is the most potent TCT isomer in the inhibition of IL-6, ICAM-1, VCAM-1, and NFκB, and it is the second potent in inhibiting e-selectin and eNOS. γ-TCT isomer is the most potent isomer in inhibiting e-selectin and eNOS, and it is the second most potent in inhibiting is IL-6, VCAM-1, and NFκB. For ICAM-1 protein expression, the most potent is δ-TCT followed by α-TCT. α- and β-TCT inhibit IL-6 at the highest concentration (10 µM) but enhance IL-6 at lower concentrations. γ-TCT markedly increases eNOS expression by 8–11-fold at higher concentrations (5–10 µM) but exhibits neutral effects at lower concentrations. Conclusion δ- and γ-TCT are the two most potent TCT isomers in terms of the inhibition of inflammation and endothelial activation whilst enhancing eNOS, possibly mediated via the NFκB pathway. Hence, there is a

  18. Proteinase-activated receptor-1 mediates allogeneic CD8(+) T cell-induced apoptosis of vascular endothelial cells.

    PubMed

    Quan, Li; Jian, Zhang; Ping, Zou; Weiming, Li

    2009-12-01

    Vascular endothelial-cells injury plays a pivotal role in the pathogenesis of graft-versus-host disease (GVHD) and transplant-associated endothelial injury syndrome. Vascular endothelial cells are an exposed target tissue for immune-mediated injury during GVHD. Early endothelial injury syndromes share common features with acute GVHD. Chronic GVHD leads to a rarefaction of microvessels caused by the infiltration of alloreactive cytotoxic T lymphocytes. In this context, allogeneic reactive cytotoxic T cell may contribute to apoptosis of vascular endothelial cells. The involvement of proteinase-activated receptor (PAR-1) in regulation of apoptosis has been recently recognized in many cell types. We hypothesized that apoptosis of vascular endothelial cells induced by allogeneic cytotoxic T cell are mediated via the PAR-1. Allogeneic CD8(+) T cell, PAR-1 agonist peptide (SFLLRN) induced apoptosis of human umbilical vein endothelial cells (HUVECs) and human dermal microvascular endothelial cells (HDMECs) as assessed by AnnexinV-FITC labeling. To ascertain the mechanism of endothelial apoptosis, we determined that allogeneic CD8(+) T cell, SFLLRN enhanced cleavage of caspase-3 and led to p38MAPK activation as assessed by Western blot. The effects of allogeneic CD8(+) T cell and SFLLRN on apoptosis of vascular endothelial cells were largely prevented by a cleavage-blocking anti-human PAR-1-antibody (ATAP2) and a specific inhibitor of p38MAPK. In concert, these observations provide strong evidence that allogeneic CD8(+) T cell induces apoptosis of human vascular endothelial cells through PAR-1-dependent modulation of intrinsic apoptotic pathway via alterations of p38MAPK and caspase-3. PMID:19082770

  19. Activation of the AMP-Activated Protein Kinase (AMPK) by Nitrated Lipids in Endothelial Cells

    PubMed Central

    Wu, Yong; Dong, Yunzhou; Song, Ping; Zou, Ming-Hui

    2012-01-01

    The AMP-activated protein kinase (AMPK) is an important regulator of endothelial metabolic and functional homeostasis. Here, we examined the regulation of AMPK by nitrated oleic acid (OA-NO2) and investigated the implications in endothelial function. Treatment of bovine aortic endothelial cells (BAECs) with OA-NO2 induced a significant increase in both AMPK-Thr172 phosphorylation and AMPK activity as well as upregulation of heme oxygenase (HO)-1 and hypoxia-inducible factor (HIF)-1α. Pharmacologic inhibition or genetic ablation of HO-1 or HIF-1α abolished OA-NO2-induced AMPK phosphorylation. OA-NO2 induced a dramatic increase in extracellular signal-regulated kinase (ERK)1/2 phosphorylation that was abrogated by the HO-1 inhibitor, zinc deuteroporphyrin IX 2,4-bis-ethylene glycol (ZnBG). Inhibition of ERK1/2 using UO126 or PD98059 reduced but did not abolish OA-NO2-induced HIF-1α upregulation, suggesting that OA-NO2/HO-1-initiated HIF-1α induction is partially dependent on ERK1/2 activity. In addition, OA-NO2 enhanced endothelial intracellular Ca2+, an effect that was inhibited by the HIF-1α inhibitor, YC-1, and by HIF-1α siRNA. These results implicate the involvement of HIF-1α. Experiments using the Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) inhibitor STO-609, the selective CaMKII inhibitor KN-93, and an isoform-specific siRNA demonstrated that OA-NO2-induced AMPK phosphorylation was dependent on CaMKKβ. Together, these results demonstrate that OA-NO2 activates AMPK in endothelial cells via an HO-1–dependent mechanism that increases HIF-1α protein expression and Ca2+/CaMKKβ activation. PMID:22363546

  20. Endothelial cell apoptosis induced by bacteria-activated platelets requires caspase-8 and -9 and generation of reactive oxygen species.

    PubMed

    Kuckleburg, Christopher J; Tiwari, Raksha; Czuprynski, Charles J

    2008-02-01

    A common feature of severe sepsis is vascular inflammation and damage to the endothelium. Because platelets can be directly activated by bacteria and endotoxin, these cells may play an important role in determining the outcome of sepsis. For example, inhibiting platelet interactions with the endothelium has been shown to attenuate endothelial cell damage and improve survival during sepsis. Although not entirely understood, the interactions between bacteria-activated platelets and the endothelium may play a key role in the vascular pathology of bacterial sepsis. Haemophilus somnus is a bacterial pathogen that causes diffuse vascular inflammation and endothelial damage. In some cases H. somnus infection results in an acute and fatal form of vasculitis in the cerebral microvasculature known as thrombotic meningoencephalitis (TME). In this study, we have characterized the mechanisms involved in endothelial cell apoptosis induced by activated platelets. We observed that direct contact between H. somnus-activated platelets and endothelial cells induced significant levels of apoptosis; however, Fas receptor activation on bovine endothelial cells was not able to induce apoptosis unless protein synthesis was disrupted. Endothelial cell apoptosis by H. somnus-activated platelets required activation of both caspase-8 and caspase-9, as inhibitors of either caspase inhibited apoptosis. Furthermore, activated platelets induced endothelial cell production of reactive oxygen species (ROS) and disrupting ROS activity in endothelial cells significantly inhibited apoptosis. These findings suggest that bacterial activation of platelets may contribute to endothelial cell dysfunction observed during sepsis, specifically by inducing endothelial cell apoptosis.

  1. Activation of small ruminant aortic endothelial cells after in vitro infection by caprine arthritis encephalitis virus.

    PubMed

    Jan, C L; Greenland, T; Gounel, F; Balleydier, S; Mornex, J F

    2000-12-01

    Small ruminants infected by the lentiviruses caprine arthritis-encephalitis virus (CAEV), originally isolated from a goat, or maedi-visna virus, originally from sheep, typically develop an organising lymphoid infiltration of affected tissues. This could reflect modulation of the migration pattern of lymphocytes in infected animals. Possible active contribution by vascular endothelial cells was investigated using an in vitro model. Low-passage cultured ovine aortic endothelium proved susceptible to productive infection by CAEV without significant cytotoxicity. Infected endothelial cells maintained expression of endothelial markers, increased MHC class I antigen expression and initiated expression of the adhesion molecule VCAM -1 and, at a late stage, MHC class II antigens. Infected endothelial cells showed a two-fold increase in binding capacity for sheep peripheral blood leucocytes over uninfected controls. Such events could contribute to the tissue distribution of lymphoid cells and local immune responses in lentiviral infections of small ruminants. PMID:11124093

  2. Characterization of tissue plasminogen activator binding proteins isolated from endothelial cells and other cell types

    SciTech Connect

    Beebe, D.P.; Wood, L.L.; Moos, M. )

    1990-07-15

    Human tissue plasminogen activator (t-PA) was shown to bind specifically to human osteosarcoma cells (HOS), and human epidermoid carcinoma cells (A-431 cells). Crosslinking studies with DTSSP demonstrated high molecular weight complexes (130,000) between {sup 125}I-t-PA and cell membrane protein on human umbilical vein endothelial cells (HUVEC), HOS, and A-431 cells. A 48-65,000 molecular weight complex was demonstrated after crosslinking t-PA peptide (res. 7-20) to cells. Ligand blotting of cell lysates which had been passed over a t-PA affinity column revealed binding of t-PA to 54,000 and 95,000 molecular weight proteins. Several t-PA binding proteins were identified in immunopurified cell lysates, including tubulin beta chain, plasminogen activator inhibitor type 1 and single chain urokinase.

  3. Basal and inducible anti-inflammatory epoxygenase activity in endothelial cells

    SciTech Connect

    Askari, Ara A.; Thomson, Scott; Edin, Matthew L.; Lih, Fred B.; Zeldin, Darryl C.; Bishop-Bailey, David

    2014-04-04

    Highlights: • We examined epoxygenase product formation and regulation in endothelial cells. • The epoxygenase CYP2J2 is an LPS (TLR-4) inducible enzyme in endothelial cells. • The endothelial cell line EA.Hy926 synthesises epoxygenase products. • Inhibition of endothelial epoxygenases increases TNFα secretion. • Soluble epoxide hydrolase inhibitors reduce inflammation-induced TNFα and NFκB. - Abstract: The roles of CYP lipid-metabolizing pathways in endothelial cells are poorly understood. Human endothelial cells expressed CYP2J2 and soluble epoxide hydrolase (sEH) mRNA and protein. The TLR-4 agonist LPS (1 μg/ml; 24 h) induced CYP2J2 but not sEH mRNA and protein. LC–MS/MS analysis of the stable commonly used human endothelial cell line EA.Hy926 showed active epoxygenase and epoxide hydrolase activity: with arachidonic acid (stable epoxide products 5,6-DHET, and 14,15-DHET), linoleic acid (9,10-EPOME and 12,13-EPOME and their stable epoxide hydrolase products 9,10-DHOME and 12,13-DHOME), docosahexaenoic acid (stable epoxide hydrolase product 19,20-DiHDPA) and eicosapentaenoic acid (stable epoxide hydrolase product 17,18-DHET) being formed. Inhibition of epoxygenases using either SKF525A or MS-PPOH induced TNFα release, but did not affect LPS, IL-1β, or phorbol-12-myristate-13-acetate (PMA)-induced TNFα release. In contrast, inhibition of soluble epoxide hydrolase by AUDA or TPPU inhibited basal, LPS, IL-1β and PMA induced TNFα release, and LPS-induced NFκB p65 nuclear translocation. In conclusion, human endothelial cells contain a TLR-4 regulated epoxygenase CYP2J2 and metabolize linoleic acid > eicosapentaenoic acid > arachidonic acid > docosahexaenoic acid to products with anti-inflammatory activity.

  4. Activation of factor IX bound to cultured bovine aortic endothelial cells.

    PubMed Central

    Stern, D M; Drillings, M; Kisiel, W; Nawroth, P; Nossel, H L; LaGamma, K S

    1984-01-01

    Previous studies have shown that factor IX and its activated form, factor IXa, bind to cultured vascular endothelial cells and that cell-bound factor IXa retains its procoagulant activity. The present studies provide evidence that factor IX bound to cultured bovine aortic endothelial cells can be activated. Factor IX activation was assessed by finding cleavage of the factor IX molecule on NaDodSO4/polyacrylamide gel electrophoresis and by the generation of procoagulant activity as assessed by thrombin-treated factor VIII-dependent generation of factor Xa activity. Cell-bound factor IX (0.8 micrograms per 4 X 10(8) cells per ml) could be activated by factor XIa (5 micrograms/ml) or by factor VIIa (0.1 micrograms/ml) without exogenous tissue factor when endothelial cells were treated with phorbol ester and acquired tissue factor-like procoagulant activity. Regardless of how factor IX was activated, the cell-bound factor IXa required thrombin-treated factor VIII and calcium, but not exogenous phospholipid, to activate factor X. In further experiments, factor X bound to endothelial cells specifically and reversibly with a dependence on calcium and with a lower affinity (half-maximal at 480 nM) than factor IX. At saturation, 9.1 X 10(6) factor X molecules were bound per cell. After activation of factor X by factor IXa, approximately 50% of the factor Xa formed could be eluted from the cells by 10 mM EDTA, suggesting that the factor Xa was cell associated. These observations indicate that endothelial cells can bind and promote the activation of factors IX and X in the absence of platelets or exogenous phospholipid. PMID:6608105

  5. Ozone inhibits endothelial cell cyclooxygenase activity through formation of hydrogen peroxide

    SciTech Connect

    Madden, M.C.; Eling, T.E.; Friedman, M.

    1987-09-01

    We have previously demonstrated that a 2H exposure of cultured pulmonary endothelial cells to ozone (0.0-1.0 ppm) in-vitro resulted in a concentration-dependent reduction of endothelial prostacyclin production (90% decrease at the 1.0 ppm level). Ozone-exposed endothelial cells, incubated with 20 uM arachidonate, also demonstrated a significant inhibition of prostacyclin synthesis. To further examine the mechanisms of the inhibition of prostacyclin synthesis, bovine pulmonary endothelial cells were exposed to 1.0 ppm ozone for 2H. A significant decrease in prostacyclin synthesis was found within 5 min of exposure (77 +/- 36% of air-exposed control values, p less than 0.05). Endothelial prostacyclin synthesis returned to baseline levels by 12H after ozone exposure, a time point which was similar to the recovery time of unexposed endothelium treated with 0.5 uM acetylsalicylic acid. Incubation of endothelial cells, previously exposed to 1.0 ppm ozone for 2 hours, with 4 uM PGH2 resulted in restoration of essentially normal prostacyclin synthesis. When endothelial cells were co-incubated with catalase (5 U/ml) during ozone exposure, no inhibition of prostacyclin synthesis was observed. Co-incubation with either heat-inactivated catalase or superoxide dismutase (10 U/ml) did not affect the ozone-induced inhibition of prostacyclin synthesis. These data suggest that H/sub 2/O/sub 2/ is a major toxic species produced in endothelial cells during ozone exposure and responsible for the inhibition of endothelial cyclooxygenase activity.

  6. Systemic endothelial activation occurs in both mild and severe malaria. Correlating dermal microvascular endothelial cell phenotype and soluble cell adhesion molecules with disease severity.

    PubMed

    Turner, G D; Ly, V C; Nguyen, T H; Tran, T H; Nguyen, H P; Bethell, D; Wyllie, S; Louwrier, K; Fox, S B; Gatter, K C; Day, N P; Tran, T H; White, N J; Berendt, A R

    1998-06-01

    Fatal Plasmodium falciparum malaria is accompanied by systemic endothelial activation. To study endothelial activation directly during malaria and sepsis in vivo, the expression of cell adhesion molecules on dermal microvascular endothelium was examined in skin biopsies and correlated with plasma levels of soluble (circulating) ICAM-1, E-selectin, and VCAM-1 and the cytokine tumor necrosis factor (TNF)-alpha. Skin biopsies were obtained from 61 cases of severe malaria, 42 cases of uncomplicated malaria, 10 cases of severe systemic sepsis, and 17 uninfected controls. Systemic endothelial activation, represented by the up-regulation of inducible cell adhesion molecules (CAMs) on endothelium and increased levels of soluble CAMs (sCAMs), were seen in both severe and uncomplicated malaria and sepsis when compared with uninfected controls. Plasma levels of sICAM-1, sVCAM-1, and sE-selectin correlated positively with the severity of malaria whereas TNF-alpha was raised nonspecifically in malaria and sepsis. Immunohistochemical evidence of endothelial activation in skin biopsies did not correlate with sCAM levels or disease severity. This indicates a background of systemic endothelial activation, which occurs in both mild and severe malaria and sepsis. The levels of sCAMs in malaria are thus not an accurate reflection of endothelial cell expression of CAMs in a particular vascular bed, and other factors must influence their levels during disease.

  7. Systemic endothelial activation occurs in both mild and severe malaria. Correlating dermal microvascular endothelial cell phenotype and soluble cell adhesion molecules with disease severity.

    PubMed Central

    Turner, G. D.; Ly, V. C.; Nguyen, T. H.; Tran, T. H.; Nguyen, H. P.; Bethell, D.; Wyllie, S.; Louwrier, K.; Fox, S. B.; Gatter, K. C.; Day, N. P.; Tran, T. H.; White, N. J.; Berendt, A. R.

    1998-01-01

    Fatal Plasmodium falciparum malaria is accompanied by systemic endothelial activation. To study endothelial activation directly during malaria and sepsis in vivo, the expression of cell adhesion molecules on dermal microvascular endothelium was examined in skin biopsies and correlated with plasma levels of soluble (circulating) ICAM-1, E-selectin, and VCAM-1 and the cytokine tumor necrosis factor (TNF)-alpha. Skin biopsies were obtained from 61 cases of severe malaria, 42 cases of uncomplicated malaria, 10 cases of severe systemic sepsis, and 17 uninfected controls. Systemic endothelial activation, represented by the up-regulation of inducible cell adhesion molecules (CAMs) on endothelium and increased levels of soluble CAMs (sCAMs), were seen in both severe and uncomplicated malaria and sepsis when compared with uninfected controls. Plasma levels of sICAM-1, sVCAM-1, and sE-selectin correlated positively with the severity of malaria whereas TNF-alpha was raised nonspecifically in malaria and sepsis. Immunohistochemical evidence of endothelial activation in skin biopsies did not correlate with sCAM levels or disease severity. This indicates a background of systemic endothelial activation, which occurs in both mild and severe malaria and sepsis. The levels of sCAMs in malaria are thus not an accurate reflection of endothelial cell expression of CAMs in a particular vascular bed, and other factors must influence their levels during disease. Images Figure 1 PMID:9626052

  8. Reciprocal interactions between mitral valve endothelial and interstitial cells reduce endothelial-to-mesenchymal transition and myofibroblastic activation

    PubMed Central

    Shapero, Kayle; Wylie-Sears, Jill; Levine, Robert A.; Mayer, John E.; Bischoff, Joyce

    2015-01-01

    Thickening of mitral leaflets, endothelial-to-mesenchymal transition (EndMT), and activated myofibroblast-like interstitial cells have been observed in ischemic mitral valve regurgitation. We set out to determine if interactions between mitral valve endothelial cells (VEC) and interstitial cells (VIC) might affect these alterations. We used in vitro co-culture in Transwell™ inserts to test the hypothesis that VIC secrete factors that inhibit EndMT and conversely, that VEC secrete factors that mitigate the activation of VIC to a myofibroblast-like, activated phenotype. Primary cultures and clonal populations of ovine mitral VIC and VEC were used. Western blot, quantitative reverse transcriptase PCR (qPCR) and functional assays were used to assess changes in cell phenotype and behavior. VIC or conditioned media from VIC inhibited transforming growth factorβ (TGFβ)-induced EndMT in VEC, as indicated by reduced expression of EndMT markers α-smooth muscle actin (α-SMA), Slug, Snai1 and MMP-2 and maintained ability of VEC to mediate leukocyte adhesion, an important endothelial function. VEC or conditioned media from VEC reversed the spontaneous cell culture-induced change in VIC to an activated phenotype, as indicated by reduced expression of α-SMA and type I collagen, increased expression chondromodulin-1 (Chm1), and reduced contractile activity. These results demonstrate that mitral VEC and VIC secrete soluble factors that can reduce VIC activation and inhibit TGFβ-driven EndMT, respectively. These findings suggest that the endothelium of the mitral valve is critical for the maintenance of a quiescent VIC phenotype and that, in turn, VIC prevent EndMT. We speculate that disturbance of the ongoing reciprocal interactions between VEC and VICs in vivo may contribute to the thickened and fibrotic leaflets observed in ischemic mitral regurgitation, and in other types of valve disease. PMID:25633835

  9. Markers of endothelial cell activation and immune activation are increased in patients with severe leptospirosis and associated with disease severity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives: Previous studies concluded that haemorrhage is one of the most accurate prognostic factors of mortality in leptospirosis. Therefore, endothelial cell activation was investigated in relation to disease severity in severe leptospirosis. Methods: Prospective cohort study of severe leptospi...

  10. Genistein activates endothelial nitric oxide synthase in broiler pulmonary arterial endothelial cells by an Akt-dependent mechanism

    PubMed Central

    Yang, Ying; Nie, Wei; Yuan, Jianmin; Zhang, Bingkun; Wang, Zhong

    2010-01-01

    Deregulation of endothelial nitric oxide synthase (eNOS) plays an important role in the development of multiple cardiovascular diseases. Our recent study demonstrated that genistein supplementation attenuates pulmonary arterial hypertension in broilers by restoration of endothelial function. In this study, we investigated the molecular mechanism by using broiler pulmonary arterial endothelial cells (PAECs). Our results showed that genistein stimulated a rapid phosphorylation of eNOS at Ser1179 which was associated with activation of eNOS/NO axis. Further study indicated that the activation of eNOS was not mediated through estrogen receptors or tyrosine kinase inhibition, but via a phosphatidylinositol 3-kinase (PI3K)/Akt-dependent signaling pathway, as the eNOS activity and related NO release were largely abolished by pharmacological inhibitors of PI3K or Akt. Thus, our findings revealed a critical function of Akt in mediating genistein-stimulated eNOS activity in PAECs, partially accounting for the beneficial effects of genistein on the development of cardiovascular diseases observed in animal models. PMID:20926919

  11. Endothelial cell activation and proliferation modulate NKG2D activity by regulating MICA expression and shedding.

    PubMed

    Chauveau, Annabelle; Tonnerre, Pierre; Pabois, Angélique; Gavlovsky, Pierre-Jean; Chatelais, Mathais; Coupel, Stéphanie; Charreau, Béatrice

    2014-01-01

    MICA are major histocompatibility complex class I-related molecules, expressed by endothelial cells (ECs), that may be targets for alloantibodies and NKG2D-expressing natural killer (NK) and T effector cells in organ allografts. This study shows that basal levels of MICA expressed on vascular ECs is sufficient to functionally modulate the expression and activity of the immunoreceptor NKG2D in allogeneic NK cells. We found that MICA expression is differentially regulated at the EC surface in response to cytokines. TNFα upregulates MICA while IFNγ significantly decreases MICA at the EC surface. Both cytokines induce the release of soluble MICA by ECs. Modulation of NKG2D correlates with the MICA level on the EC surface. Glycosylation and metalloproteinase activities account for major post-transcriptional mechanisms controlling MICA level and the function in ECs. Our results indicate that, in addition to the NFκB pathway, the mitogen-activated protein kinase pathways JNK, ERK1/2 and p38 are key signaling pathways in the control of MICA by the cytokines. Finally, we show that EC proliferation mediated by FGF-2 or wound healing increases the MICA level. Together, our data suggest that inflammation and proliferation regulate endothelial MICA expression and shedding, enabling ECs to modulate NKG2D activity on effector NK and T cells, and provide further evidence of a role for ECs in immunoregulation.

  12. Tat-APE1/ref-1 protein inhibits TNF-alpha-induced endothelial cell activation.

    PubMed

    Song, Yun Jeong; Lee, Ji Young; Joo, Hee Kyoung; Kim, Hyo Shin; Lee, Sang Ki; Lee, Kwon Ho; Cho, Chung-Hyun; Park, Jin Bong; Jeon, Byeong Hwa

    2008-03-28

    Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/ref-1) is a multifunctional protein involved both in DNA base excision repair and redox regulation. In this study we evaluated the protective role of Tat-mediated APE1/ref-1 transduction on the tumor necrosis factor (TNF)-alpha-activated endothelial activation in cultured human umbilical vein endothelial cells. To construct Tat-APE1/ref-1 fusion protein, human full length of APE1/ref-1 was fused with Tat-protein transduction domain. Purified Tat-APE1/ref-1 fusion protein efficiently transduced cultured endothelial cells in a dose-dependent manner and reached maximum expression at 1h after incubation. Transduced Tat-APE1/ref-1 showed inhibitory activity on the TNF-alpha-induced monocyte adhesion and vascular cell adhesion molecule-1 expression in cultured endothelial cells. These results suggest Tat-APE1/ref-1 might be useful to reduce vascular endothelial activation or vascular inflammatory disorders.

  13. Pterostilbene, an Active Constituent of Blueberries, Stimulates Nitric Oxide Production via Activation of Endothelial Nitric Oxide Synthase in Human Umbilical Vein Endothelial Cells.

    PubMed

    Park, Seong Hoon; Jeong, Sun-Oh; Chung, Hun-Teag; Pae, Hyun-Ock

    2015-09-01

    Endothelial dysfunction, a key process in development of cardiovascular diseases, is largely due to reduced nitric oxide (NO) derived from endothelial NO synthase (eNOS). Resveratrol has been reported to stimulate NO production via estrogen receptor α (ERα) activation in endothelial cells. Here, we investigated whether two natural methylated analogs of resveratrol, pterostilbene (Pts) and trans-3,5,4'-trimethoxystilbene (TMS), similarly to resveratrol, could influence endothelial NO release in human umbilical vein endothelial cells (HUVECs). In HUVECs exposed to Pts or TMS, NO production and phosphorylation of eNOS, protein kinase B (Akt), and ERα were measured by using a fluorimetric NO assay kit and Western blot analysis, respectively. Dimethylated Pts, but not trimethylated TMS, stimulated dose-dependent NO production via eNOS phosphorylation. Pts also stimulated dose-dependent phosphorylation of Akt, but not of ERα. NO production and eNOS phosphorylation in response to Pts were significantly abolished by the phosphoinositide 3-kinase (PI3K)/Akt inhibitor LY294002, but not by the ERα antagonist ICI182780. Our results suggest that Pts, but not TMS, is capable of inducing eNOS phosphorylation and the subsequent NO release, presumably, by activating PI3K/Akt pathway. The potential efficacy of Pts, an active constituent of blueberries, may aid in the prevention of cardiovascular diseases characterized by endothelial dysfunction.

  14. Activated T Cell Trans-Endothelial Migration Relies on Myosin-IIA Contractility for Squeezing the Cell Nucleus through Endothelial Cell Barriers

    PubMed Central

    Jacobelli, Jordan; Estin Matthews, Miriam; Chen, Stephanie; Krummel, Matthew F.

    2013-01-01

    Following activation, T cells are released from lymph nodes to traffic via the blood to effector sites. The re-entry of these activated T cells into tissues represents a critical step for them to carry out local effector functions. Here we have assessed defects in effector T cells that are acutely depleted in Myosin-IIA (MyoIIA) and show a T cell intrinsic requirement for this motor to facilitate the diapedesis step of extravasation. We show that MyoIIA accumulates at the rear of T cells undergoing trans-endothelial migration. T cells can extend protrusions and project a substantial portion of their cytoplasm through the endothelial wall in the absence of MyoIIA. However, this motor protein plays a crucial role in allowing T cells to complete the movement of their relatively rigid nucleus through the endothelial junctions. In vivo, this defect manifests as poor entry into lymph nodes, tumors and into the spinal cord, during tissue-specific autoimmunity, but not the spleen. This suggests that therapeutic targeting of this molecule may allow for differential attenuation of tissue-specific inflammatory responses. PMID:24069389

  15. Fluid Flow Stimulates Tissue Plasminogen Activator Secretion by Cultured Human Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Diamond, S. L.; Eskin, S. G.; McIntire, L. V.

    1989-03-01

    Wall shear stress generated by blood flow may regulate the expression of fibrinolytic proteins by endothelial cells. Tissue plasminogen activator (tPA) and plasminogen activator inhibitor, type 1 (PAI-1) secretion by cultured human endothelial cells were not affected by exposure to venous shear stress (4 dynes/cm2). However, at arterial shear stresses of 15 and 25 dynes/cm2, the tPA secretion rate was 2.1 and 3.0 times greater, respectively, than the basal tPA secretion rate. PAI-1 secretion was unaffected by shear stress over the entire physiological range.

  16. A Maillard reaction product enhances eNOS activity in human endothelial cells.

    PubMed

    Schmitt, Christoph A; Heiss, Elke H; Schachner, Daniel; Aristei, Yasmin; Severin, Theodor; Dirsch, Verena M

    2010-07-01

    Nitric oxide (NO) produced by the endothelial nitric oxide synthase (eNOS) is an important signaling molecule in the cardiovascular system. Although dietary factors can modulate eNOS activity, putative effects of processed food are barely investigated. We aimed to examine whether the model Maillard reaction product 3-hydroxy-2-methyl-1-propyl-4(1H)-pyridone (HMPP), formed from maltol or starch and propylamine, affects the eNOS system. Incubation of EA.hy926 endothelial cells with 30-300 microM HMPP for 18 h enhanced endothelial NO release measured with the fluorescent probe diaminofluorescein-2 and eNOS activity determined by the [14C]L-arginine-[14C]L-citrulline conversion assay. HMPP increased NO production also in two different types of primary human endothelial cells. Protein levels of eNOS and inducible NO synthase remained unaltered by HMPP. HMPP inhibited eNOS activity within the first 2-4 h, whereas it potently increased eNOS activity after 12-24 h. Levels of eNOS phosphorylation, expression of heat-shock protein 90, caveolin-1 and various antioxidant enzymes were not affected. Intracellular reactive oxygen species remained unchanged by HMPP. This is the first study to demonstrate positive effects of a Maillard reaction product on eNOS activity and endothelial NO production, which is considered favourable for cardiovascular protection. PMID:20112298

  17. Role of PECAM-1 in the shear-stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells.

    PubMed

    Fleming, Ingrid; Fisslthaler, Beate; Dixit, Madhulika; Busse, Rudi

    2005-09-15

    The application of fluid shear stress to endothelial cells elicits the formation of nitric oxide (NO) and phosphorylation of the endothelial NO synthase (eNOS). Shear stress also elicits the enhanced tyrosine phosphorylation of endothelial proteins, especially of those situated in the vicinity of cell-cell contacts. Since a major constituent of these endothelial cell-cell contacts is the platelet endothelial cell adhesion molecule-1 (PECAM-1) we assessed the role of PECAM-1 in the activation of eNOS. In human endothelial cells, shear stress induced the tyrosine phosphorylation of PECAM-1 and enhanced the association of PECAM-1 with eNOS. Endothelial cell stimulation with shear stress elicited the phosphorylation of Akt and eNOS as well as of the AMP-activated protein kinase (AMPK). While the shear-stress-induced tyrosine phosphorylation of PECAM-1 as well as the serine phosphorylation of Akt and eNOS were abolished by the pre-treatment of cells with the tyrosine kinase inhibitor PP1 the phosphorylation of AMPK was unaffected. Down-regulation of PECAM-1 using a siRNA approach attenuated the shear-stress-induced phosphorylation of Akt and eNOS, as well as the shear-stress-induced accumulation of cyclic GMP levels while the shear-stress-induced phosphorylation of AMPK remained intact. A comparable attenuation of Akt and eNOS (but not AMPK) phosphorylation and NO production was also observed in endothelial cells generated from PECAM-1-deficient mice. These data indicate that the shear-stress-induced activation of Akt and eNOS in endothelial cells is modulated by the tyrosine phosphorylation of PECAM-1 whereas the shear-stress-induced phosphorylation of AMPK is controlled by an alternative signaling pathway. PMID:16118242

  18. Spatiotemporal analysis of RhoA/B/C activation in primary human endothelial cells

    PubMed Central

    Reinhard, Nathalie R.; van Helden, Suzanne F.; Anthony, Eloise C.; Yin, Taofei; Wu, Yi I.; Goedhart, Joachim; Gadella, Theodorus W. J.; Hordijk, Peter L.

    2016-01-01

    Endothelial cells line the vasculature and are important for the regulation of blood pressure, vascular permeability, clotting and transendothelial migration of leukocytes and tumor cells. A group of proteins that that control the endothelial barrier function are the RhoGTPases. This study focuses on three homologous (>88%) RhoGTPases: RhoA, RhoB, RhoC of which RhoB and RhoC have been poorly characterized. Using a RhoGTPase mRNA expression analysis we identified RhoC as the highest expressed in primary human endothelial cells. Based on an existing RhoA FRET sensor we developed new RhoB/C FRET sensors to characterize their spatiotemporal activation properties. We found all these RhoGTPase sensors to respond to physiologically relevant agonists (e.g. Thrombin), reaching transient, localized FRET ratio changes up to 200%. These RhoA/B/C FRET sensors show localized GEF and GAP activity and reveal spatial activation differences between RhoA/C and RhoB. Finally, we used these sensors to monitor GEF-specific differential activation of RhoA/B/C. In summary, this study adds high-contrast RhoB/C FRET sensors to the currently available FRET sensor toolkit and uncover new insights in endothelial and RhoGTPase cell biology. This allows us to study activation and signaling by these closely related RhoGTPases with high spatiotemporal resolution in primary human cells. PMID:27147504

  19. Spatiotemporal analysis of RhoA/B/C activation in primary human endothelial cells.

    PubMed

    Reinhard, Nathalie R; van Helden, Suzanne F; Anthony, Eloise C; Yin, Taofei; Wu, Yi I; Goedhart, Joachim; Gadella, Theodorus W J; Hordijk, Peter L

    2016-01-01

    Endothelial cells line the vasculature and are important for the regulation of blood pressure, vascular permeability, clotting and transendothelial migration of leukocytes and tumor cells. A group of proteins that that control the endothelial barrier function are the RhoGTPases. This study focuses on three homologous (>88%) RhoGTPases: RhoA, RhoB, RhoC of which RhoB and RhoC have been poorly characterized. Using a RhoGTPase mRNA expression analysis we identified RhoC as the highest expressed in primary human endothelial cells. Based on an existing RhoA FRET sensor we developed new RhoB/C FRET sensors to characterize their spatiotemporal activation properties. We found all these RhoGTPase sensors to respond to physiologically relevant agonists (e.g. Thrombin), reaching transient, localized FRET ratio changes up to 200%. These RhoA/B/C FRET sensors show localized GEF and GAP activity and reveal spatial activation differences between RhoA/C and RhoB. Finally, we used these sensors to monitor GEF-specific differential activation of RhoA/B/C. In summary, this study adds high-contrast RhoB/C FRET sensors to the currently available FRET sensor toolkit and uncover new insights in endothelial and RhoGTPase cell biology. This allows us to study activation and signaling by these closely related RhoGTPases with high spatiotemporal resolution in primary human cells. PMID:27147504

  20. Inhibition of endothelial cell chemotaxis toward FGF-2 by gefitinib associates with downregulation of Fes activity.

    PubMed

    Kanda, Shigeru; Naba, Alexandra; Miyata, Yasuyoshi

    2009-12-01

    Gefitinib inhibits epidermal growth factor-independent angiogenesis, but the molecular mechanism underlying this inhibition has yet to be defined. Here we show that gefitinib dose-dependently inhibited chemotaxis of endothelial cells toward fibroblast growth factor-2 (FGF-2), but not toward vascular endothelial growth factor-A (VEGF-A). Gefitinib inhibited lamellipodium formation by endothelial cells induced by FGF-2, but not by VEGF-A. Gefitinib at 10 microM did not inhibit autophosphorylation of FGF receptor 1 or VEGF receptor 2. A non-receptor protein tyrosine kinase, Fes, has two coiled-coil domains (CCDs) in its N-terminal region. Fes is activated by trans-autophosphorylation through CCD functions. An inactivating mutation in the second CCD abolished FGF-2 activation of Fes, indicating involvement of this CCD in FGF-2-induced Fes activation. Gefitinib-treatment decreased both CCD-independent and FGF-2- or VEGF-A-promoted Fes activity with a maximal decrease at 1 microM. The same results were observed in cells stably expressing kinase-inactive Fes; a dominant negative effect was observed in cells treated with FGF-2, but not with VEGF-A. Taken together, these results indicate that FGF-2 activates Fes via the second CCD, leading to lamellipodium formation and chemotaxis by endothelial cells, and gefitinib may act through Fes as an inhibitor of FGF-2-driven angiogenesis.

  1. Malignant T cells express lymphotoxin α and drive endothelial activation in cutaneous T cell lymphoma

    PubMed Central

    Lauenborg, Britt; Christensen, Louise; Ralfkiaer, Ulrik; Kopp, Katharina L.; Jønson, Lars; Dabelsteen, Sally; Bonefeld, Charlotte M.; Geisler, Carsten; Gjerdrum, Lise Mette R.; Zhang, Qian; Wasik, Mariusz A.; Ralfkiaer, Elisabeth; Ødum, Niels; Woetmann, Anders

    2015-01-01

    Lymphotoxin α (LTα) plays a key role in the formation of lymphatic vasculature and secondary lymphoid structures. Cutaneous T cell lymphoma (CTCL) is the most common primary lymphoma of the skin and in advanced stages, malignant T cells spreads through the lymphatic to regional lymph nodes to internal organs and blood. Yet, little is known about the mechanism of the CTCL dissemination. Here, we show that CTCL cells express LTα in situ and that LTα expression is driven by aberrantly activated JAK3/STAT5 pathway. Importantly, via TNF receptor 2, LTα functions as an autocrine factor by stimulating expression of IL-6 in the malignant cells. LTα and IL-6, together with VEGF promote angiogenesis by inducing endothelial cell sprouting and tube formation. Thus, we propose that LTα plays a role in malignant angiogenesis and disease progression in CTCL and may serve as a therapeutic target in this disease. PMID:25915535

  2. Activation of endothelial cells after exposure to ambient ultrafine particles: The role of NADPH oxidase

    SciTech Connect

    Mo Yiqun; Wan Rong; Chien Sufan; Tollerud, David J.; Zhang Qunwei

    2009-04-15

    Several studies have shown that ultrafine particles (UFPs) may pass from the lungs to the circulation because of their very small diameter, and induce lung oxidative stress with a resultant increase in lung epithelial permeability. The direct effects of UFPs on vascular endothelium remain unknown. We hypothesized that exposure to UFPs leads to endothelial cell O{sub 2}{sup {center_dot}}{sup -} generation via NADPH oxidase and results in activation of endothelial cells. Our results showed that UFPs, at a non-toxic dose, induced reactive oxygen species (ROS) generation in mouse pulmonary microvascular endothelial cells (MPMVEC) that was inhibited by pre-treatment with the ROS scavengers or inhibitors, but not with the mitochondrial inhibitor, rotenone. UFP-induced ROS generation in MPMVEC was abolished by p67{sup phox} siRNA transfection and UFPs did not cause ROS generation in MPMVEC isolated from gp91{sup phox} knock-out mice. UFP-induced ROS generation in endothelial cells was also determined in vivo by using a perfused lung model with imaging. Moreover, Western blot and immunofluorescence staining results showed that MPMVEC treated with UFPs resulted in the translocation of cytosolic proteins of NADPH oxidase, p47{sup phox}, p67{sup phox} and rac 1, to the plasma membrane. These results demonstrate that NADPH oxidase in the pulmonary endothelium is involved in ROS generation following exposure to UFPs. To investigate the activation of endothelial cells by UFP-induced oxidative stress, we determined the activation of the mitogen-activated protein kinases (MAPKs) in MPMVEC. Our results showed that exposure of MPMVEC to UFPs caused increased phosphorylation of p38 and ERK1/2 MAPKs that was blocked by pre-treatment with DPI or p67{sup phox} siRNA. Exposure of MPMVEC obtained from gp91{sup phox} knock-out mice to UFPs did not cause increased phosphorylation of p38 and ERK1/2 MAPKs. These findings confirm that UFPs can cause endothelial cells to generate ROS directly

  3. [Endothelial cell adhesion molecules].

    PubMed

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  4. Androgen Modulates Functions of Endothelial Progenitor Cells through Activated Egr1 Signaling.

    PubMed

    Ye, Yizhou; Li, Xizhe; Zhang, You; Shen, Zhenya; Yang, Junjie

    2016-01-01

    Researches show that androgens have important effects on migration of endothelial cells and endothelial protection in coronary heart disease. Endothelial progenitor cells (EPCs) as a progenitor cell type that can differentiate into endothelial cells, have a critical role in angiogenesis and endothelial protection. The relationship between androgen and the functions of EPCs has animated much interest and controversy. In this study, we investigated the angiogenic and migratory functions of EPCs after treatment by dihydrotestosterone (DHT) and the molecular mechanisms as well. We found that DHT treatment enhanced the incorporation of EPCs into tubular structures formed by HUVECs and the migratory activity of EPCs in the transwell assay dose dependently. Moreover, microarray analysis was performed to explore how DHT changes the gene expression profiles of EPCs. We found 346 differentially expressed genes in androgen-treated EPCs. Angiogenesis-related genes like Egr-1, Vcan, Efnb2, and Cdk2ap1 were identified to be regulated upon DHT treatment. Furthermore, the enhanced angiogenic and migratory abilities of EPCs after DHT treatment were inhibited by Egr1-siRNA transfection. In conclusion, our findings suggest that DHT markedly enhances the vessel forming ability and migration capacity of EPCs. Egr1 signaling may be a possible pathway in this process. PMID:26697079

  5. TGF-{beta}2 inhibits AKT activation and FGF-2-induced corneal endothelial cell proliferation

    SciTech Connect

    Lu Jiawei; Lu Zhenyu; Reinach, Peter

    2006-11-01

    The corneal endothelial cells form a boundary layer between anterior chamber and cornea. This single cell layer is important to maintain cornea transparency by eliciting net fluid transport into the anterior chamber. Injuries of the corneal endothelial layer in humans lead to corneal swelling and translucence. This hindrance is thought to be due to limited proliferative capacity of the endothelial layer. Fibroblast growth factor 2 (FGF-2) and transforming growth factor-beta 2 (TGF-{beta}2) are both found in aqueous humor, and these two cytokines promote and inhibit cell growth, respectively. The intracellular signaling mechanisms by which TGF-{beta}2 suppresses the mitogenic response to FGF-2, however, remain unclear. We have addressed this question by investigating potential crosstalk between FGF-2-induced and TGF-{beta}2-regulated intracellular signaling events in cultured bovine corneal endothelial (BCE) cells. We found that TGF-{beta}2 and FGF-2 oppositely affect BCE cell proliferation and TGF-{beta}2 can override the stimulating effects of FGF-2 by increasing COX-2 expression in these cells. Consistent with these findings, overexpression of COX-2 significantly reduced FGF-2-induced cell proliferation whereas a COX-2 specific inhibitor NS398 reversed the effect of TGF-{beta}2 on FGF-2-induced cell proliferation. The COX-2 product prostaglandin E2 (PGE-2) blocks FGF-2-induced cell proliferation. Whereas FGF-2 stimulates cell proliferation by activating the AKT pathway, TGF-{beta}2 and PGE-2 both inhibit this pathway. In accordance with the effect of PGE-2, cAMP also inhibits FGF-2-induced AKT activation. These findings suggest that the mitogenic response to FGF-2 in vivo in the corneal endothelial layer may be inhibited by TGF-{beta}2-induced suppression of the PI3-kinase/AKT signaling pathway.

  6. In vivo characterization of endothelial cell activation in a transgenic mouse model of Alzheimer's disease.

    PubMed

    Schultheiss, Caroline; Blechert, Birgit; Gaertner, Florian C; Drecoll, Enken; Mueller, Jan; Weber, Georg F; Drzezga, Alexander; Essler, Markus

    2006-01-01

    Alzheimer's disease (AD) is the most common cause of dementia worldwide. AD is characterized by an excessive cerebral amyloid deposition leading to degeneration of neurons and eventually to dementia. It has been shown by epidemiological studies that cardiovascular drugs with an anti-angiogenic effect can influence the outcome of AD patients. Therefore, it has been speculated that in AD angiogenesis in the brain vasculature may play an important role. Here we report that in the brain of APP23 mice--a transgenic model of AD--after deposition of amyloid in blood vessels endothelial cell activation occurs in an age-dependent manner. Amyloid deposition is followed by the expression of beta3-integrin, a specific marker molecule of activated endothelium. The beta3-integrin expression is restricted to amyloid-positive vessels. Moreover, homogenates of the brains of APP23 mice induced the formation of new vessels in an in vivo angiogenesis assay. Vessel formation could be blocked by the VEGF antagonist SU 4312 as well as by statins, suggesting that these drugs may interfere with endothelial cell activation in AD. In conclusion our results indicate that amyloid deposition in the vasculature leads to endothelial cell apoptosis and endothelial cell activation, which can be modulated by anti-angiogenic drugs.

  7. Cathepsin S Cleavage of Protease-Activated Receptor-2 on Endothelial Cells Promotes Microvascular Diabetes Complications.

    PubMed

    Kumar Vr, Santhosh; Darisipudi, Murthy N; Steiger, Stefanie; Devarapu, Satish Kumar; Tato, Maia; Kukarni, Onkar P; Mulay, Shrikant R; Thomasova, Dana; Popper, Bastian; Demleitner, Jana; Zuchtriegel, Gabriele; Reichel, Christoph; Cohen, Clemens D; Lindenmeyer, Maja T; Liapis, Helen; Moll, Solange; Reid, Emma; Stitt, Alan W; Schott, Brigitte; Gruner, Sabine; Haap, Wolfgang; Ebeling, Martin; Hartmann, Guido; Anders, Hans-Joachim

    2016-06-01

    Endothelial dysfunction is a central pathomechanism in diabetes-associated complications. We hypothesized a pathogenic role in this dysfunction of cathepsin S (Cat-S), a cysteine protease that degrades elastic fibers and activates the protease-activated receptor-2 (PAR2) on endothelial cells. We found that injection of mice with recombinant Cat-S induced albuminuria and glomerular endothelial cell injury in a PAR2-dependent manner. In vivo microscopy confirmed a role for intrinsic Cat-S/PAR2 in ischemia-induced microvascular permeability. In vitro transcriptome analysis and experiments using siRNA or specific Cat-S and PAR2 antagonists revealed that Cat-S specifically impaired the integrity and barrier function of glomerular endothelial cells selectively through PAR2. In human and mouse type 2 diabetic nephropathy, only CD68(+) intrarenal monocytes expressed Cat-S mRNA, whereas Cat-S protein was present along endothelial cells and inside proximal tubular epithelial cells also. In contrast, the cysteine protease inhibitor cystatin C was expressed only in tubules. Delayed treatment of type 2 diabetic db/db mice with Cat-S or PAR2 inhibitors attenuated albuminuria and glomerulosclerosis (indicators of diabetic nephropathy) and attenuated albumin leakage into the retina and other structural markers of diabetic retinopathy. These data identify Cat-S as a monocyte/macrophage-derived circulating PAR2 agonist and mediator of endothelial dysfunction-related microvascular diabetes complications. Thus, Cat-S or PAR2 inhibition might be a novel strategy to prevent microvascular disease in diabetes and other diseases.

  8. Characterization of atrial natriuretic peptide degradation by cell-surface peptidase activity on endothelial cells

    NASA Technical Reports Server (NTRS)

    Frost, S. J.; Whitson, P. A.

    1993-01-01

    Atrial natriuretic peptide (ANP) is a fluid-regulating peptide hormone that promotes vasorelaxation, natriuresis, and diuresis. The mechanisms for the release of ANP and for its clearance from the circulation play important roles in modulating its biological effects. Recently, we have reported that the cell surface of an endothelial cell line, CPA47, could degrade 125I-ANP in the presence of EDTA. In this study, we have characterized this degradation of 125I-ANP. The kinetics of ANP degradation by the surface of CPA47 cells were first order, with a Km of 320 +/- 60 nM and Vmax of 35 +/- 14 pmol of ANP degraded/10 min/10(5) cells at pH 7.4. ANP is degraded by the surface of CPA47 cells over a broad pH range from 7.0-8.5. Potato carboxypeptidase inhibitor and bestatin inhibited 125I-ANP degradation, suggesting that this degradative activity on the surface of CPA47 cells has exopeptidase characteristics. The selectivity of CPA47 cell-surface degradation of ANP was demonstrated when 125I-ANP degradation was inhibited in the presence of neuropeptide Y and angiotensin I and II but not bradykinin, bombesin, endothelin-1, or substance P. The C-terminal amino acids phe26 and tyr28 were deduced to be important for ANP interaction with the cell-surface peptidase(s) based on comparison of the IC50 of various ANP analogues and other natriuretic peptides for the inhibition of ANP degradation. These data suggest that a newly characterized divalent cation-independent exopeptidase(s) that selectively recognizes ANP and some other vasoactive peptides exists on the surface of endothelial cells.

  9. Recombinant Treponema pallidum Protein Tp0965 Activates Endothelial Cells and Increases the Permeability of Endothelial Cell Monolayer

    PubMed Central

    Zhang, Rui-Li; Zhang, Jing-Ping; Wang, Qian-Qiu

    2014-01-01

    The recombinant Treponema pallidum protein Tp0965 (rTp0965), one of the many proteins derived from the genome of T. pallidum subsp. pallidum, shows strong immunogenicity and immunoreactivity. In this study, we investigated the effects of rTp0965 on the endothelial barrier. Treatment of human umbilical vein endothelial cells (HUVECs) with rTp0965 resulted in increased levels of ICAM-1, E-selectin, and MCP-1 mRNA and protein expression. These increases contributed to the adhesion and chemataxis of monocytes (THP-1 cells) to HUVECs preincubated with rTp0965. In addition, rTp0965 induced reorganization of F-actin and decreased expression of claudin-1 in HUVECs. Interestingly, inhibition of the RhoA/ROCK signal pathway protected against rTp0965-induced higher endothelial permeability as well as transendothelial migration of monocytes. These data indicate that Tp0965 protein may play an important role in the immunopathogenesis of syphilis. PMID:25514584

  10. Maggot debridement therapy promotes diabetic foot wound healing by up-regulating endothelial cell activity.

    PubMed

    Sun, Xinjuan; Chen, Jin'an; Zhang, Jie; Wang, Wei; Sun, Jinshan; Wang, Aiping

    2016-03-01

    To determine the role of maggot debridement therapy (MDT) on diabetic foot wound healing, we compared growth related factors in wounds before and after treatment. Furthermore, we utilized human umbilical vein endothelial cells (HUVECs) to explore responses to maggot excretions/secretions on markers of angiogenesis and proliferation. The results showed that there was neo-granulation and angiogenesis in diabetic foot wounds after MDT. Moreover, significant elevation in CD34 and CD68 levels was also observed in treated wounds. In vitro, ES increased HUVEC proliferation, improved tube formation, and increased expression of vascular endothelial growth factor receptor 2 in a dose dependent manner. These results demonstrate that MDT and maggot ES can promote diabetic foot wound healing by up-regulating endothelial cell activity.

  11. Shear stress reduces protease activated receptor-1 expression in human endothelial cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Shear stress has been shown to regulate several genes involved in the thrombotic and proliferative functions of endothelial cells. Thrombin receptor (protease-activated receptor-1: PAR-1) increases at sites of vascular injury, which suggests an important role for PAR-1 in vascular diseases. However, the effect of shear stress on PAR-1 expression has not been previously studied. This work investigates effects of shear stress on PAR-1 gene expression in both human umbilical vein endothelial cells (HUVECs) and microvascular endothelial cells (HMECs). Cells were exposed to different shear stresses using a parallel plate flow system. Northern blot and flow cytometry analysis showed that shear stress down-regulated PAR-1 messenger RNA (mRNA) and protein levels in both HUVECs and HMECs but with different thresholds. Furthermore, shear-reduced PAR-1 mRNA was due to a decrease of transcription rate, not increased mRNA degradation. Postshear stress release of endothelin-1 in response to thrombin was reduced in HUVECs and HMECs. Moreover, inhibitors of potential signaling pathways applied during shear stress indicated mediation of the shear-decreased PAR-1 expression by protein kinases. In conclusion, shear stress exposure reduces PAR-1 gene expression in HMECs and HUVECs through a mechanism dependent in part on protein kinases, leading to altered endothelial cell functional responses to thrombin.

  12. In vitro and in vivo activation of endothelial cells by colony-stimulating factors.

    PubMed Central

    Bussolino, F; Ziche, M; Wang, J M; Alessi, D; Morbidelli, L; Cremona, O; Bosia, A; Marchisio, P C; Mantovani, A

    1991-01-01

    This study was designed to identify the set of functions activated in cultured endothelial cells by the hematopoietic growth factors, granulocyte colony-stimulating factor (G-CSF) and granulocyte macrophage-colony-stimulating factor (GM-CSF), and to compare them with those elicited by prototypic cytokines active on these cells. Moreover, indications as to the in vivo relevance of in vitro effects were obtained. G-CSF and GM-CSF induced endothelial cells to proliferate and migrate. In contrast, unlike appropriate reference cytokines (IL-1 and tumor necrosis factor, IFN-gamma), G-CSF and GM-CSF did not modulate endothelial cell functions related to hemostasis-thrombosis (production of procoagulant activity and of platelet activating factor), inflammation (expression of leukocyte adhesion molecule-1 and production of platelet activating factor), and accessory function (expression of class II antigens of MHC). Other colony-stimulating factors (IL-3 and macrophage-colony-stimulating factor) were inactive on all functions tested. In comparison to basic fibroblast growth factor (bFGF), G-CSF and GM-CSF induced lower maximal proliferation of endothelial cells, whereas migration was of the same order of magnitude. G-CSF and GM-CSF stimulated repair of mechanically wounded endothelial monolayers. Exposure to both cytokines induced shape changes and cytoskeletal reorganization consistent with a migratory phenotype. To explore the in vivo relevance of the in vitro effects of these cytokines on endothelium, we studied the angiogenic activity of human G-CSF in the rabbit cornea. G-CSF, but not the heat-inactivated molecule, had definite angiogenic activity, without any sign of inflammatory reactions. G-CSF was less active than bFGF. However, the combination of a nonangiogenic dose of bFGF with G-CSF resulted in an angiogenic response higher than that elicited by either individual cytokines. Thus, G-CSF and GM-CSF induce endothelial cells to express an activation

  13. Caveolin-1 mediates endotoxin inhibition of endothelin-1-induced endothelial nitric oxide synthase activity in liver sinusoidal endothelial cells.

    PubMed

    Kwok, Willson; Lee, Sang Ho; Culberson, Cathy; Korneszczuk, Katarzyna; Clemens, Mark G

    2009-11-01

    Endothelin-1 (ET-1) plays a key role in the regulation of endothelial nitric oxide synthase (eNOS) activation in liver sinusoidal endothelial cells (LSECs). In the presence of endotoxin, an increase in caveolin-1 (Cav-1) expression impairs ET-1/eNOS signaling; however, the molecular mechanism is unknown. The objective of this study was to investigate the molecular mechanism of Cav-1 in the regulation of LPS suppression of ET-1-mediated eNOS activation in LSECs by examining the effect of caveolae disruption using methyl-beta-cyclodextrin (CD) and filipin. Treatment with 5 mM CD for 30 min increased eNOS activity (+255%, P < 0.05). A dose (0.25 microg/ml) of filipin for 30 min produced a similar effect (+111%, P < 0.05). CD induced the perinuclear localization of Cav-1 and eNOS and stimulated NO production in the same region. Readdition of 0.5 mM cholesterol to saturate CD reversed these effects. Both the combined treatment with CD and ET-1 (CD + ET-1) and with filipin and ET-1 stimulated eNOS activity; however, pretreatment with endotoxin (LPS) abrogated these effects. Following LPS pretreatment, CD + ET-1 failed to stimulate eNOS activity (+51%, P > 0.05), which contributed to the reduced levels of eNOS-Ser1177 phosphorylation and eNOS-Thr495 dephosphorylation, the LPS/CD-induced overexpression and translocation of Cav-1 in the perinuclear region, and the increased perinuclear colocalization of eNOS with Cav-1. These results supported the hypothesis that Cav-1 mediates the action of endotoxin in suppressing ET-1-mediated eNOS activation and demonstrated that the manipulation of caveolae produces significant effects on ET-1-mediated eNOS activity in LSECs.

  14. Borane-protected phosphines are redox-active radioprotective agents for endothelial cells.

    PubMed

    Crowe, Megan E; Lieven, Christopher J; Thompson, Alex F; Sheibani, Nader; Levin, Leonard A

    2015-12-01

    Exposure to radiation can damage endothelial cells in the irradiated area via the production of reactive oxygen species. We synthesized phosphine-borane complexes that reduce disulfide bonds and had previously been shown to interfere with redox-mediated signaling of cell death. We hypothesized that this class of drugs could interfere with the downstream effects of oxidative stress after irradiation and rescue endothelial cells from radiation damage. Cultured bovine aortic endothelial cells were plated for clonogenic assay prior to exposure to varying doses of irradiation from a (137)Cs irradiator and treated with various concentrations of bis(3-propionic acid methyl ester)phenylphosphine borane complex (PB1) at different time points. The clone-forming ability of the irradiated cells was assessed seven days after irradiation. We compared the radioprotective effects of PB1 with the aminothiol radioprotectant WR1065 and known superoxide scavengers. PB1 significantly protected bovine aortic endothelial cells from radiation damage, particularly when treated both before and after radiation. The radioprotection with 1 µM PB1 corresponded to a dose-reduction factor of 1.24. Radioprotection by PB1 was comparable to the aminothiol WR1065, but was significantly less toxic and required much lower concentrations of drug (1 µM vs. 4 mM, respectively). Superoxide scavengers were not radioprotective in this paradigm, indicating the mechanisms for both loss of clonogenicity and PB1 radioprotection are independent of superoxide signaling. These data demonstrate that PB1 is an effective redox-active radioprotectant for endothelial cells in vitro, and is radioprotective at a concentration approximately 4 orders of magnitude lower than the aminothiol WR1065 with less toxicity. PMID:26188467

  15. Borane-protected phosphines are redox-active radioprotective agents for endothelial cells

    PubMed Central

    Crowe, Megan E.; Lieven, Christopher J.; Thompson, Alex F.; Sheibani, Nader; Levin, Leonard A.

    2015-01-01

    Exposure to radiation can damage endothelial cells in the irradiated area via the production of reactive oxygen species. We synthesized phosphine–borane complexes that reduce disulfide bonds and had previously been shown to interfere with redox-mediated signaling of cell death. We hypothesized that this class of drugs could interfere with the downstream effects of oxidative stress after irradiation and rescue endothelial cells from radiation damage. Cultured bovine aortic endothelial cells were plated for clonogenic assay prior to exposure to varying doses of irradiation from a 137Cs irradiator and treated with various concentrations of bis(3-propionic acid methyl ester)phenylphosphine borane complex (PB1) at different time points. The clone-forming ability of the irradiated cells was assessed seven days after irradiation. We compared the radioprotective effects of PB1 with the aminothiol radioprotectant WR1065 and known superoxide scavengers. PB1 significantly protected bovine aortic endothelial cells from radiation damage, particularly when treated both before and after radiation. The radioprotection with 1 µM PB1 corresponded to a dose-reduction factor of 1.24. Radioprotection by PB1 was comparable to the aminothiol WR1065, but was significantly less toxic and required much lower concentrations of drug (1 µM vs. 4 mM, respectively). Superoxide scavengers were not radioprotective in this paradigm, indicating the mechanisms for both loss of clonogenicity and PB1 radioprotection are independent of superoxide signaling. These data demonstrate that PB1 is an effective redox-active radioprotectant for endothelial cells in vitro, and is radioprotective at a concentration approximately 4 orders of magnitude lower than the aminothiol WR1065 with less toxicity. PMID:26188467

  16. Formyl Peptide Receptor Activation Elicits Endothelial Cell Contraction and Vascular Leakage.

    PubMed

    Wenceslau, Camilla F; McCarthy, Cameron G; Webb, R Clinton

    2016-01-01

    The major pathophysiological characteristic of systemic inflammatory response syndrome (SIRS) and sepsis is the loss of control of vascular tone and endothelial barrier dysfunction. These changes are attributed to pro-inflammatory mediators. It has been proposed that in patients and rats without infection, cell components from damaged tissue are the primary instigators of vascular damage. Mitochondria share several characteristics with bacteria, and when fragments of mitochondria are released into the circulation after injury, they are recognized by the innate immune system. N-Formyl peptides are common molecular signatures of bacteria and mitochondria and are known to play a role in the initiation of inflammation by activating the formyl peptide receptor (FPR). We have demonstrated that infusion of mitochondrial N-formyl peptides (F-MIT) leads to sepsis-like symptoms, including vascular leakage. We have also observed that F-MIT, via FPR activation, elicits changes in cytoskeleton-regulating proteins in endothelial cells. Therefore, we hypothesize that these FPR-mediated changes in cytoskeleton can cause endothelial cell contraction and, consequently vascular leakage. Here, we propose that endothelial FPR is a key contributor to impaired barrier function in SIRS and sepsis patients following trauma. PMID:27532003

  17. Smooth muscle–endothelial cell communication activates Reelin signaling and regulates lymphatic vessel formation

    PubMed Central

    Lutter, Sophie; Xie, Sherry; Tatin, Florence

    2012-01-01

    Active lymph transport relies on smooth muscle cell (SMC) contractions around collecting lymphatic vessels, yet regulation of lymphatic vessel wall assembly and lymphatic pumping are poorly understood. Here, we identify Reelin, an extracellular matrix glycoprotein previously implicated in central nervous system development, as an important regulator of lymphatic vascular development. Reelin-deficient mice showed abnormal collecting lymphatic vessels, characterized by a reduced number of SMCs, abnormal expression of lymphatic capillary marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), and impaired function. Furthermore, we show that SMC recruitment to lymphatic vessels stimulated release and proteolytic processing of endothelium-derived Reelin. Lymphatic endothelial cells in turn responded to Reelin by up-regulating monocyte chemotactic protein 1 (MCP1) expression, which suggests an autocrine mechanism for Reelin-mediated control of endothelial factor expression upstream of SMC recruitment. These results uncover a mechanism by which Reelin signaling is activated by communication between the two cell types of the collecting lymphatic vessels—smooth muscle and endothelial cells—and highlight a hitherto unrecognized and important function for SMCs in lymphatic vessel morphogenesis and function. PMID:22665518

  18. Formyl Peptide Receptor Activation Elicits Endothelial Cell Contraction and Vascular Leakage

    PubMed Central

    Wenceslau, Camilla F.; McCarthy, Cameron G.; Webb, R. Clinton

    2016-01-01

    The major pathophysiological characteristic of systemic inflammatory response syndrome (SIRS) and sepsis is the loss of control of vascular tone and endothelial barrier dysfunction. These changes are attributed to pro-inflammatory mediators. It has been proposed that in patients and rats without infection, cell components from damaged tissue are the primary instigators of vascular damage. Mitochondria share several characteristics with bacteria, and when fragments of mitochondria are released into the circulation after injury, they are recognized by the innate immune system. N-Formyl peptides are common molecular signatures of bacteria and mitochondria and are known to play a role in the initiation of inflammation by activating the formyl peptide receptor (FPR). We have demonstrated that infusion of mitochondrial N-formyl peptides (F-MIT) leads to sepsis-like symptoms, including vascular leakage. We have also observed that F-MIT, via FPR activation, elicits changes in cytoskeleton-regulating proteins in endothelial cells. Therefore, we hypothesize that these FPR-mediated changes in cytoskeleton can cause endothelial cell contraction and, consequently vascular leakage. Here, we propose that endothelial FPR is a key contributor to impaired barrier function in SIRS and sepsis patients following trauma. PMID:27532003

  19. Ajoene inhibits the activation of human endothelial cells induced by porcine cells: implications for xenotransplantation.

    PubMed

    Benatuil, Lorenzo; Apitz-Castro, Rafael; Romano, Egidio

    2003-07-01

    Ajoene, is an organosulfur compound derived from garlic that strongly inhibit platelet aggregation, proliferation of human lymphocytes induced by phytohemagglutinin, and in general, blocks membrane-mediated signaling of cell activation. As a thrombotic microangiopathy frequently complicates procedures designed to induce pig-to-baboon chimerism by infusion of large amounts of pig progenitor cells in baboons, it was thought that ajoene might be useful to prevent such complication. For such purpose, we studied the effects of ajoene on the activation of human umbilical vein endothelial cells (HUVEC) induced by pig peripheral blood mononuclear cells (p-PBMC). Co-cultures of p-PBMC with HUVEC results in activation of the HUVEC as shown by over-expression of E-selectin and vascular cells adhesion molecule-1 (VCAM-1). Ajoene (25 microm) strongly inhibits HUVEC activation induced by tumor necrosis factor-alpha (TNF-alpha) or p-PBMC as shown by a down regulation of VCAM-1 and of E-selectin expression. After 5 or 8 h of pre-treatment with Ajoene, HUVEC incubated with TNF and p-PBMC showed an E-selectin or VCAM-1 expression, respectively, at levels similar to the positive control indicating that the inhibitory effect is transient. Ajoene at concentration of 25 microm or lower did not affect HUVEC viability. Based on the finding that Ajoene has a strong, although transient, inhibitory effect on the activation of the endothelium induced by pig cells and its known anti-platelet activity, it is suggested that this garlic compound could be useful to prevent the development of microangiopathy and thrombotic disorders seen in primates infused with pig cells.

  20. Abrupt reflow enhances cytokine-induced proinflammatory activation of endothelial cells during simulated shock and resuscitation.

    PubMed

    Li, Ranran; Zijlstra, Jan G; Kamps, Jan A A M; van Meurs, Matijs; Molema, Grietje

    2014-10-01

    Circulatory shock and resuscitation are associated with systemic hemodynamic changes, which may contribute to the development of MODS (multiple organ dysfunction syndrome). In this study, we used an in vitro flow system to simulate the consecutive changes in blood flow as occurring during hemorrhagic shock and resuscitation in vivo. We examined the kinetic responses of different endothelial genes in human umbilical vein endothelial cells preconditioned to 20 dyne/cm unidirectional laminar shear stress for 48 h to flow cessation and abrupt reflow, respectively, as well as the effect of flow cessation and reflow on tumor necrosis factor-α (TNF-α)-induced endothelial proinflammatory activation. Endothelial CD31 and VE-cadherin were not affected by the changes in flow in the absence or presence of TNF-α. The messenger RNA levels of proinflammatory molecules E-selectin, VCAM-1 (vascular cell adhesion molecule 1), and IL-8 (interleukin 8) were significantly induced by flow cessation respectively acute reflow, whereas ICAM-1 (intercellular adhesion molecule 1) was downregulated on flow cessation and induced by subsequent acute reflow. Flow cessation also affected the Ang/Tie2 (Angiopoietin/Tie2 receptor tyrosine kinase) system by downregulating Tie2 and inducing its endothelial ligand Ang2, an effect that was further extended on acute reflow. Furthermore, the induction of proinflammatory adhesion molecules by TNF-α under flow cessation was significantly enhanced on subsequent acute reflow. This study demonstrated that flow alterations per se during shock and resuscitation contribute to endothelial activation and that these alterations interact with proinflammatory factors coexisting in vivo such as TNF-α. The abrupt reflow-related enhancement of cytokine-induced endothelial proinflammatory activation supports the concept that sudden regain of flow during resuscitation has an aggravating effect on endothelial activation, which may play a significant role in vascular

  1. Inflammasome activation of IL-18 results in endothelial progenitor cell dysfunction in systemic lupus erythematosus.

    PubMed

    Kahlenberg, J Michelle; Thacker, Seth G; Berthier, Celine C; Cohen, Clemens D; Kretzler, Matthias; Kaplan, Mariana J

    2011-12-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease with heterogeneous manifestations including severe organ damage and vascular dysfunction leading to premature atherosclerosis. IFN-α has been proposed to have an important role in the development of lupus and lupus-related cardiovascular disease, partly by repression of IL-1 pathways leading to impairments in vascular repair induced by endothelial progenitor cells (EPCs) and circulating angiogenic cells (CACs). Counterintuitively, SLE patients also display transcriptional upregulation of the IL-1β/IL-18 processing machinery, the inflammasome. To understand this dichotomy and its impact on SLE-related cardiovascular disease, we examined cultures of human and murine control or lupus EPC/CACs to determine the role of the inflammasome in endothelial differentiation. We show that caspase-1 inhibition improves dysfunctional SLE EPC/CAC differentiation into mature endothelial cells and blocks IFN-α-mediated repression of this differentiation, implicating inflammasome activation as a crucial downstream pathway leading to aberrant vasculogenesis. Furthermore, serum IL-18 levels are elevated in SLE and correlate with EPC/CAC dysfunction. Exogenous IL-18 inhibits endothelial differentiation in control EPC/CACs and neutralization of IL-18 in SLE EPC/CAC cultures restores their capacity to differentiate into mature endothelial cells, supporting a deleterious effect of IL-18 on vascular repair in vivo. Upregulation of the inflammasome machinery was operational in vivo, as evidenced by gene array analysis of lupus nephritis biopsies. Thus, the effects of IFN-α are complex and contribute to an elevated risk of cardiovascular disease by suppression of IL-1β pathways and by upregulation of the inflammasome machinery and potentiation of IL-18 activation.

  2. Directed Endothelial Progenitor Differentiation from Human Pluripotent Stem Cells Via Wnt Activation Under Defined Conditions.

    PubMed

    Bao, Xiaoping; Lian, Xiaojun; Palecek, Sean P

    2016-01-01

    Efficient derivation of endothelial cells and their progenitors from human pluripotent stem cells (hPSCs) can facilitate studies of human vascular development, disease modeling, drug discovery, and cell-based therapy. Here we provide a detailed protocol for directing hPSCs to functional endothelial cells and their progenitors in a completely defined, growth factor- and serum-free system by temporal modulation of Wnt/β-catenin signaling via small molecules. We demonstrate a 10-day, two-stage process that recapitulates endothelial cell development, in which hPSCs first differentiate to endothelial progenitors that then generate functional endothelial cells and smooth muscle cells. Methods to characterize endothelial cell identity and function are also described. PMID:27590162

  3. Dihydroartemisinin induces endothelial cell anoikis through the activation of the JNK signaling pathway

    PubMed Central

    Zhang, Jiao; Guo, Ling; Zhou, Xia; Dong, Fengyun; Li, Liqun; Cheng, Zuowang; Xu, Yinghua; Liang, Jiyong; Xie, Qi; Liu, Ju

    2016-01-01

    Angiogenesis is required for the growth and metastasis of solid tumors. The anti-malarial agent dihydroartemisinin (DHA) demonstrates potent anti-angiogenic activity, but the underlying molecular mechanisms are not yet fully understood. During the process of angiogenesis, endothelial cells migrating from existing capillaries may undergo programmed cell death after detaching from the extracellular matrix, a process that is defined as anchorage-dependent apoptosis or anoikis. In the present study, DHA-induced cell death was compared in human umbilical vein endothelial cells (HUVECs) cultured in suspension and attached to culture plates. In suspended HUVECs, the cell viability was decreased and apoptosis was increased with the treatment of 50 µM DHA for 5 h, while the same treatment did not affect the attached HUVECs. In addition, 50 µM DHA increased the phosphorylation of c-Jun N-terminal kinase (JNK) in suspended HUVECs, but not in attached HUVECs, for up to 5 h of treatment. The JNK inhibitor, SP600125, reversed DHA-induced cell death in suspended HUVECs, suggesting that the JNK pathway may mediate DHA-induced endothelial cell anoikis. The data from the present study indicates a novel mechanism for understanding the anti-angiogenic effects of DHA, which may be used as a component for chemotherapy. PMID:27602117

  4. Calcium regulation of tissue plasminogen activator and plasminogen activator inhibitor-1 release from cultured human vascular endothelial cells.

    PubMed

    Yamamoto, C; Kaji, T; Sakamoto, M; Kozuka, H; Koizumi, F

    1994-04-15

    Tissue plasminogen activator (t-PA) produced by vascular endothelial cells converts plasminogen to plasmin which degrades fibrin. Since t-PA activity is greatly potentiated in the presence of fibrin (1,2), the activator is implicated in intravascular fibrinolysis. On the other hand, endothelial cells also produce plasminogen activator inhibitor-1 (PAI-1) (3). The inhibitor associated with vascular endothelium rapidly inhibits t-PA, while that released into the liquid phase has a little anti-activator activity (4). However, clinical studies have shown that elevation of plasma PAI-1 level is a risk factor of thrombosis (5,6). It is thus suggested that the balance between t-PA and PAI-1 is important for the regulation of fibrinolysis. The release of t-PA and PAI-1 from vascular endothelial cells is regulated by physiological factors including thrombin (3,7), histamine (8), vasoconstrictor peptide endothelins (9,10) and cytokines (11). In addition, the regulation of the t-PA release and that of the PAI-1 release are not necessarily coupled. It has been shown that activated protein kinase C and cyclic AMP are involved in the stimulation and suppression, respectively, of the endothelial t-PA and PAI-1 production (12,13). However, the role of intracellular calcium in the regulation of endothelial t-PA and PAI-1 release has remained to be elucidated. In the present study, we investigated the effect of calcium ionophore A23187 on the release of t-PA antigen (t-PA:Ag) and PAI-1 antigen (PAI-1:Ag) from cultured vascular endothelial cells derived from human umbilical vein.

  5. Collagen-binding VEGF mimetic peptide: Structure, matrix interaction, and endothelial cell activation

    NASA Astrophysics Data System (ADS)

    Chan, Tania R.

    Long term survival of artificial tissue constructs depends greatly on proper vascularization. In nature, differentiation of endothelial cells and formation of vasculature are directed by dynamic spatio-temporal cues in the extracellular matrix that are difficult to reproduce in vitro. In this dissertation, we present a novel bifunctional peptide that mimics matrix-bound vascular endothelial growth factor (VEGF), which can be used to encode spatially controlled angiogenic signals in collagen-based scaffolds. The peptide, QKCMP, contains a collagen mimetic domain (CMP) that binds to type I collagen by a unique triple helix hybridization mechanism and a VEGF mimetic domain (QK) with pro-angiogenic activity. We demonstrate QKCMP's ability to hybridize with native and heat denatured collagens through a series of binding studies on collagen and gelatin substrates. Circular dichroism experiments show that the peptide retains the triple helical structure vital for collagen binding, and surface plasmon resonance study confirms the molecular interaction between the peptide and collagen strands. Cell culture studies demonstrate QKCMP's ability to induce endothelial cell morphogenesis and network formation as a matrix-bound factor in 2D and 3D collagen scaffolds. We also show that the peptide can be used to spatially modify collagen-based substrates to promote localized endothelial cell activation and network formation. To probe the biological events that govern these angiogenic cellular responses, we investigated the cell signaling pathways activated by collagen-bound QKCMP and determined short and long-term endothelial cell response profiles for p38, ERK1/2, and Akt signal transduction cascades. Finally, we present our efforts to translate the peptide's in vitro bioactivity to an in vivo burn injury animal model. When implanted at the wound site, QKCMP functionalized biodegradable hydrogels induce enhanced neovascularization in the granulation tissue. The results show QKCMP

  6. Eugenol dilates mesenteric arteries and reduces systemic BP by activating endothelial cell TRPV4 channels

    PubMed Central

    Peixoto-Neves, Dieniffer; Wang, Qian; Leal-Cardoso, Jose H; Rossoni, Luciana V; Jaggar, Jonathan H

    2015-01-01

    Background and Purpose Eugenol, a vanilloid molecule found in some dietary plants, relaxes vasculature in part via an endothelium-dependent process; however, the mechanisms involved are unclear. Here, we investigated the endothelial cell-mediated mechanism by which eugenol modulates rat mesenteric artery contractility and systemic BP. Experimental Approach The isometric tension of rat mesenteric arteries (size 200–300 μm) was measured using wire myography; non-selective cation currents (ICat) were recorded in endothelial cells using patch clamp electrophysiology. Mean arterial pressure (MAP) and heart rate (HR) were determined in anaesthetized rats. Key Results Eugenol relaxed endothelium-intact arteries in a concentration-dependent manner and this effect was attenuated by endothelium denudation. L-NAME, a NOS inhibitor, a combination of TRAM-34 and apamin, selective blockers of intermediate and small conductance Ca2+-activated K+ channels, respectively, and HC-067047, a TRPV4 channel inhibitor, but not indomethacin, a COX inhibitor, reduced eugenol-induced relaxation in endothelium-intact arteries. Eugenol activated HC-067047-sensitive ICat in mesenteric artery endothelial cells. Short interfering RNA (siRNA)-mediated TRPV4 knockdown abolished eugenol-induced ICat activation. An i.v. injection of eugenol caused an immediate, transient reduction in both MAP and HR, which was followed by prolonged, sustained hypotension in anaesthetized rats. This sustained hypotension was blocked by HC-067047. Conclusions and Implications Eugenol activates TRPV4 channels in mesenteric artery endothelial cells, leading to vasorelaxation, and reduces systemic BP in vivo. Eugenol may be therapeutically useful as an antihypertensive agent and is a viable molecular candidate from which to develop second-generation TRPV4 channel activators that reduce BP. PMID:25832173

  7. Acidosis Activation of the Proton-Sensing GPR4 Receptor Stimulates Vascular Endothelial Cell Inflammatory Responses Revealed by Transcriptome Analysis

    PubMed Central

    Dong, Lixue; Li, Zhigang; Leffler, Nancy R.; Asch, Adam S.; Chi, Jen-Tsan; Yang, Li V.

    2013-01-01

    Acidic tissue microenvironment commonly exists in inflammatory diseases, tumors, ischemic organs, sickle cell disease, and many other pathological conditions due to hypoxia, glycolytic cell metabolism and deficient blood perfusion. However, the molecular mechanisms by which cells sense and respond to the acidic microenvironment are not well understood. GPR4 is a proton-sensing receptor expressed in endothelial cells and other cell types. The receptor is fully activated by acidic extracellular pH but exhibits lesser activity at the physiological pH 7.4 and minimal activity at more alkaline pH. To delineate the function and signaling pathways of GPR4 activation by acidosis in endothelial cells, we compared the global gene expression of the acidosis response in primary human umbilical vein endothelial cells (HUVEC) with varying level of GPR4. The results demonstrated that acidosis activation of GPR4 in HUVEC substantially increased the expression of a number of inflammatory genes such as chemokines, cytokines, adhesion molecules, NF-κB pathway genes, and prostaglandin-endoperoxidase synthase 2 (PTGS2 or COX-2) and stress response genes such as ATF3 and DDIT3 (CHOP). Similar GPR4-mediated acidosis induction of the inflammatory genes was also noted in other types of endothelial cells including human lung microvascular endothelial cells and pulmonary artery endothelial cells. Further analyses indicated that the NF-κB pathway was important for the acidosis/GPR4-induced inflammatory gene expression. Moreover, acidosis activation of GPR4 increased the adhesion of HUVEC to U937 monocytic cells under a flow condition. Importantly, treatment with a recently identified GPR4 antagonist significantly reduced the acidosis/GPR4-mediated endothelial cell inflammatory response. Taken together, these results show that activation of GPR4 by acidosis stimulates the expression of a wide range of inflammatory genes in endothelial cells. Such inflammatory response can be suppressed by

  8. Activation of glutathione peroxidase via Nrf1 mediates genistein's protection against oxidative endothelial cell injury

    SciTech Connect

    Hernandez-Montes, Eva; Pollard, Susan E.; Vauzour, David; Jofre-Montseny, Laia; Rota, Cristina; Rimbach, Gerald; Weinberg, Peter D.; Spencer, Jeremy P.E. . E-mail: j.p.e.spencer@reading.ac.uk

    2006-08-04

    Cellular actions of isoflavones may mediate the beneficial health effects associated with high soy consumption. We have investigated protection by genistein and daidzein against oxidative stress-induced endothelial injury. Genistein but not daidzein protected endothelial cells from damage induced by oxidative stress. This protection was accompanied by decreases in intracellular glutathione levels that could be explained by the generation of glutathionyl conjugates of the oxidised genistein metabolite, 5,7,3',4'-tetrahydroxyisoflavone. Both isoflavones evoked increased protein expression of {gamma}-glutamylcysteine synthetase-heavy subunit ({gamma}-GCS-HS) and increased cytosolic accumulation and nuclear translocation of Nrf2. However, only genistein led to increases in the cytosolic accumulation and nuclear translocation of Nrf1 and the increased expression of and activity of glutathione peroxidase. These results suggest that genistein-induced protective effects depend primarily on the activation of glutathione peroxidase mediated by Nrf1 activation, and not on Nrf2 activation or increases in glutathione synthesis.

  9. Secretion of SerpinB2 from endothelial cells activated with inflammatory stimuli.

    PubMed

    Boncela, Joanna; Przygodzka, Patrycja; Wyroba, Elzbieta; Papiewska-Pajak, Izabela; Cierniewski, Czeslaw S

    2013-05-01

    Due to the lack of an N-terminal signal peptide, SerpinB2 (plasminogen activator inhibitor type 2) accumulates in cells and only a small percentage of it is secreted. The extracellular concentration of SerpinB2 significantly increases during inflammation. In the present study we investigated the mechanism with which SerpinB2 can be secreted from endothelial cells activated with LPS. We evaluated the intracellular distribution of SerpinB2 by double immunogold labeling followed by a high resolution electron microscopy analysis. We found that SerpinB2 gathers in the vesicular structures and in the endothelial cell periphery. These vesicles stained positive for the trans-Golgi network marker TGN46, which is consistent with their formation by the endoplasmatic reticulum (ER) and Golgi-dependent pathways. SerpinB2 was delivered to the plasma membrane, apparently together with TGN46 in the same vesicles, which after fusion with the membranes released cargo. Secretion of SerpinB2 was partially inhibited by brefeldin A. The secreted SerpinB2 was predominantly in its nonglycosylated 43kDa form as evaluated by Western immunoblotting. Our data suggest that increased expression of SerpinB2 by an inflammatory stimulus is sufficient to generate structures that resemble secretory vesicles. These vesicles may represent the mechanism by which high local concentrations of SerpinB2 are released at inflammation sites from endothelial cells.

  10. Polyinosinic:polycytidylic acid is a potent activator of endothelial cells.

    PubMed Central

    Doukas, J.; Cutler, A. H.; Mordes, J. P.

    1994-01-01

    Polyinosinic:polycytidylic acid (poly I:C) is a synthetic double-stranded polyribonucleotide that elicits immune responses analogous to those observed during viral infection. It is also known to modulate the expression of certain autoimmune disorders including diabetes mellitus in the BB rat and NOD mouse. The mechanism underlying these immunomodulatory effects is not known, but it could involve activation of vascular endothelium. We now report that parenteral poly I:C induces rat pancreatic endothelium to hyperexpress intercellular adhesion molecule 1 (CD54). This is accompanied by a perivascular recruitment of mononuclear cells to the exocrine pancreas. Corollary in vitro studies demonstrated that poly I:C is a potent activator of both rat and human endothelial cells in culture. It upregulates endothelial expression of several leukocyte adhesion molecules, stimulates the release of interleukin-6 and interleukin-8, and antagonizes interferon-gamma induction of major histocompatibility complex class II expression. We conclude that poly I:C activates endothelial cells to express surface molecules and cytokines in a pattern classically associated with leukocyte recruitment. These effects may in part contribute to the immunomodulatory effects of poly I:C in animal models of autoimmunity. Images Figure 1 Figure 2 PMID:7518192

  11. Successful silencing of plasminogen activator inhibitor-1 in human vascular endothelial cells using small interfering RNA.

    PubMed

    Hecke, Anneke; Brooks, Hilary; Meryet-Figuière, Matthieu; Minne, Stephanie; Konstantinides, Stavros; Hasenfuss, Gerd; Lebleu, Bernard; Schäfer, Katrin

    2006-05-01

    Clinical as well as experimental evidence suggests that vascular overexpression of plasminogen activator inhibitor (PAI)-1, the primary physiological inhibitor of both urokinase and tissue-type plasminogen activator, may be involved in the pathophysiology of atherosclerosis and cardiovascular disease. We investigated the feasibility, efficacy and functional effects of PAI-1 gene silencing in human vascular endothelial cells using small interfering RNA. Double-stranded 21 bp-RNA molecules targeted at sequences within the human PAI-1 gene were constructed. Successful siRNA transfection of HUVEC was confirmed using fluorescence microscopy and flow cytometry. One of five candidate siRNA sequences reduced PAI-1 mRNA and protein in a concentration- and time-dependent manner. Suppression of PAI-1 mRNA was detected up to 72 hours after transfection. Moreover, siRNA treatment reduced the activity of PAI-1 released from HUVEC, and prevented the oxLDL- or LPS-induced upregulation of PAI-1 secretion. Importantly, siRNA treatment did not affect the expression of other endothelial-cell markers. Moreover, downregulation of PAI-1 significantly enhanced the ability of endothelial cells to adhere to vitronectin, and this effect could be reversed upon addition of recombinant PAI-1. SiRNA-mediated reduction of PAI-1 expression may be a promising strategy for dissecting the effects of PAI-1 on vascular homeostasis.

  12. Evolving functions of endothelial cells in inflammation.

    PubMed

    Pober, Jordan S; Sessa, William C

    2007-10-01

    Inflammation is usually analysed from the perspective of tissue-infiltrating leukocytes. Microvascular endothelial cells at a site of inflammation are both active participants in and regulators of inflammatory processes. The properties of endothelial cells change during the transition from acute to chronic inflammation and during the transition from innate to adaptive immunity. Mediators that act on endothelial cells also act on leukocytes and vice versa. Consequently, many anti-inflammatory therapies influence the behaviour of endothelial cells and vascular therapeutics influence inflammation. This Review describes the functions performed by endothelial cells at each stage of the inflammatory process, emphasizing the principal mediators and signalling pathways involved and the therapeutic implications. PMID:17893694

  13. In Vivo FRET Imaging of Tumor Endothelial Cells Highlights a Role of Low PKA Activity in Vascular Hyperpermeability.

    PubMed

    Yamauchi, Fumio; Kamioka, Yuji; Yano, Tetsuya; Matsuda, Michiyuki

    2016-09-15

    Vascular hyperpermeability is a pathological hallmark of cancer. Previous in vitro studies have elucidated roles of various signaling molecules in vascular hyperpermeability; however, the activities of such signaling molecules have not been examined in live tumor tissues for technical reasons. Here, by in vivo two-photon excitation microscopy with transgenic mice expressing biosensors based on Förster resonance energy transfer, we examined the activity of protein kinase A (PKA), which maintains endothelial barrier function. The level of PKA activity was significantly lower in the intratumoral endothelial cells than the subcutaneous endothelial cells. PKA activation with a cAMP analogue alleviated the tumor vascular hyperpermeability, suggesting that the low PKA activity in the endothelial cells may be responsible for the tumor-tissue hyperpermeability. Because the vascular endothelial growth factor (VEGF) receptor is a canonical inducer of vascular hyperpermeability and a molecular target of anticancer drugs, we examined the causality between VEGF receptor activity and the PKA activity. Motesanib, a kinase inhibitor for VEGF receptor, activated tumor endothelial PKA and reduced the vascular permeability in the tumor. Conversely, subcutaneous injection of VEGF decreased endothelial PKA activity and induced hyperpermeability of subcutaneous blood vessels. Notably, in cultured human umbilical vascular endothelial cells, VEGF activated PKA rather than decreasing its activity, highlighting the remarkable difference between its actions in vitro and in vivo These data suggested that the VEGF receptor signaling pathway increases vascular permeability, at least in part, by reducing endothelial PKA activity in the live tumor tissue. Cancer Res; 76(18); 5266-76. ©2016 AACR.

  14. In Vivo FRET Imaging of Tumor Endothelial Cells Highlights a Role of Low PKA Activity in Vascular Hyperpermeability.

    PubMed

    Yamauchi, Fumio; Kamioka, Yuji; Yano, Tetsuya; Matsuda, Michiyuki

    2016-09-15

    Vascular hyperpermeability is a pathological hallmark of cancer. Previous in vitro studies have elucidated roles of various signaling molecules in vascular hyperpermeability; however, the activities of such signaling molecules have not been examined in live tumor tissues for technical reasons. Here, by in vivo two-photon excitation microscopy with transgenic mice expressing biosensors based on Förster resonance energy transfer, we examined the activity of protein kinase A (PKA), which maintains endothelial barrier function. The level of PKA activity was significantly lower in the intratumoral endothelial cells than the subcutaneous endothelial cells. PKA activation with a cAMP analogue alleviated the tumor vascular hyperpermeability, suggesting that the low PKA activity in the endothelial cells may be responsible for the tumor-tissue hyperpermeability. Because the vascular endothelial growth factor (VEGF) receptor is a canonical inducer of vascular hyperpermeability and a molecular target of anticancer drugs, we examined the causality between VEGF receptor activity and the PKA activity. Motesanib, a kinase inhibitor for VEGF receptor, activated tumor endothelial PKA and reduced the vascular permeability in the tumor. Conversely, subcutaneous injection of VEGF decreased endothelial PKA activity and induced hyperpermeability of subcutaneous blood vessels. Notably, in cultured human umbilical vascular endothelial cells, VEGF activated PKA rather than decreasing its activity, highlighting the remarkable difference between its actions in vitro and in vivo These data suggested that the VEGF receptor signaling pathway increases vascular permeability, at least in part, by reducing endothelial PKA activity in the live tumor tissue. Cancer Res; 76(18); 5266-76. ©2016 AACR. PMID:27488524

  15. The glucagon-like peptide 1 receptor agonist enhances intrinsic peroxisome proliferator-activated receptor γ activity in endothelial cells

    SciTech Connect

    Onuma, Hirohisa; Inukai, Kouichi Kitahara, Atsuko; Moriya, Rie; Nishida, Susumu; Tanaka, Toshiaki; Katsuta, Hidenori; Takahashi, Kazuto; Sumitani, Yoshikazu; Hosaka, Toshio; Ishida, Hitoshi

    2014-08-22

    Highlights: • PPARγ activation was involved in the GLP-1-mediated anti-inflammatory action. • Exendin-4 enhanced endogenous PPARγ transcriptional activity in HUVECs. • H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement. • The anti-inflammatory effects of GLP-1 may be explained by PPARγ activation. - Abstract: Recent studies have suggested glucagon-like peptide-1 (GLP-1) signaling to exert anti-inflammatory effects on endothelial cells, although the precise underlying mechanism remains to be elucidated. In the present study, we investigated whether PPARγ activation is involved in the GLP-1-mediated anti-inflammatory action on endothelial cells. When we treated HUVEC cells with 0.2 ng/ml exendin-4, a GLP-1 receptor agonist, endogenous PPARγ transcriptional activity was significantly elevated, by approximately 20%, as compared with control cells. The maximum PPARγ activity enhancing effect of exendin-4 was observed 12 h after the initiation of incubation with exendin-4. As H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement, the signaling downstream from GLP-1 cross-talk must have been involved in PPARγ activation. In conclusion, our results suggest that GLP-1 has the potential to induce PPARγ activity, partially explaining the anti-inflammatory effects of GLP-1 on endothelial cells. Cross-talk between GLP-1 signaling and PPARγ activation would have major impacts on treatments for patients at high risk for cardiovascular disease.

  16. Thrombin stimulates albumin transcytosis in lung microvascular endothelial cells via activation of acid sphingomyelinase.

    PubMed

    Kuebler, Wolfgang M; Wittenberg, Claudia; Lee, Warren L; Reppien, Eike; Goldenberg, Neil M; Lindner, Karsten; Gao, Yizhuo; Winoto-Morbach, Supandi; Drab, Marek; Mühlfeld, Christian; Dombrowsky, Heike; Ochs, Matthias; Schütze, Stefan; Uhlig, Stefan

    2016-04-15

    Transcellular albumin transport occurs via caveolae that are abundant in lung microvascular endothelial cells. Stimulation of albumin transcytosis by proinflammatory mediators may contribute to alveolar protein leak in lung injury, yet the regulation of albumin transport and its underlying molecular mechanisms are so far incompletely understood. Here we tested the hypothesis that thrombin may stimulate transcellular albumin transport across lung microvascular endothelial cells in an acid-sphingomyelinase dependent manner. Thrombin increased the transport of fluorescently labeled albumin across confluent human lung microvascular endothelial cell (HMVEC-L) monolayers to an extent that markedly exceeds the rate of passive diffusion. Thrombin activated acid sphingomyelinase (ASM) and increased ceramide production in HMVEC-L, but not in bovine pulmonary artery cells, which showed little albumin transport in response to thrombin. Thrombin increased total caveolin-1 (cav-1) content in both whole cell lysates and lipid rafts from HMVEC-L, and this effect was blocked by inhibition of ASM or de novo protein biosynthesis. Thrombin-induced uptake of albumin into lung microvascular endothelial cells was confirmed in isolated-perfused lungs by real-time fluorescence imaging and electron microscopy of gold-labeled albumin. Inhibition of ASM attenuated thrombin-induced albumin transport both in confluent HMVEC-L and in intact lungs, whereas HMVEC-L treatment with exogenous ASM increased albumin transport and enriched lipid rafts in cav-1. Our findings indicate that thrombin stimulates transcellular albumin transport in an acid sphingomyelinase-dependent manner by inducing de novo synthesis of cav-1 and its recruitment to membrane lipid rafts. PMID:26851257

  17. Puromycin insensitive leucyl-specific aminopeptidase (PILSAP) affects RhoA activation in endothelial cells.

    PubMed

    Suzuki, Takahiro; Abe, Mayumi; Miyashita, Hiroki; Kobayashi, Toshimitsu; Sato, Yasufumi

    2007-06-01

    Puromycin insensitive leucyl-specific aminopeptidase (PILSAP) expressed in endothelial cells (ECs) plays an important role in angiogenesis due to its involvement in migration, proliferation and network formation. Here we examined the biological function of PILSAP with respect to EC morphogenesis and the related intracellular signaling for this process. When mouse endothelial MSS31 cells were cultured, a dominant negative PILSAP mutant converted cell shape to disk-like morphology, blocked stress fiber formation, and augmented membrane ruffling in random directions. These phenotypic changes led us to test whether PILSAP affected activities of Rho family small G-proteins. Abrogation of PILSAP enzymatic activity or its expression attenuated RhoA but not Rac1 activation during cell adhesion. This attenuation of RhoA activation was also evident when G-protein coupled receptors such as proteinase-activated receptor or lysophosphatidic acid receptor were activated in ECs. These results indicate that PILSAP affects RhoA activation and that influences the proper function of ECs.

  18. Regulation of NOD-like receptors and inflammasome activation in cerebral endothelial cells.

    PubMed

    Nagyőszi, Péter; Nyúl-Tóth, Ádám; Fazakas, Csilla; Wilhelm, Imola; Kozma, Mihály; Molnár, Judit; Haskó, János; Krizbai, István A

    2015-11-01

    Cerebral endothelial cells (CECs) forming the blood-brain barrier are at the interface of the immune and the central nervous systems and thus may play an important role in the functional integration of the two systems. Here, we investigated how CECs recognize and respond to pathogen- and damage-associated molecular patterns to regulate the functions of the neurovascular unit. First we detected the expression of several NOD-like receptors (NLRs) - including NOD1, NOD2, NLRC4, NLRC5, NLRP1, NLRP3, NLRP5, NLRP9, NLRP10, NLRP12, NLRA, and NLRX - in human brain endothelial cells. Inflammatory cytokines, such as interferon-γ, tumor necrosis factor-α, and IL-1β had stimulatory effects on the transcription of many of these receptors. Expression of key inflammasome components (NOD2, NLRP3, and caspase 1) along with caspase-cleaved interleukins IL-1β and IL-33 could be induced by priming with lipopolysaccharide and activation with muramyl dipeptide. In addition, combined treatment with lipopolysaccharide and muramyl dipeptide resulted in IL-1β secretion in a caspase- and ERK1/2 kinase-dependent manner. Our findings demonstrate that NLRs and inflammasomes can be activated in cerebral endothelial cells, which may confer a yet unexplored role to the blood-brain barrier in neuroimmune and neuroinflammatory processes.

  19. MMP-3 secreted from endothelial cells of blood vessels after spinal cord injury activates microglia, leading to oligodendrocyte cell death.

    PubMed

    Lee, Jee Y; Choi, Hae Y; Yune, Tae Y

    2015-10-01

    The activation of microglia after spinal cord injury (SCI) contributes to secondary damage by producing pro-inflammatory cytokines and mediators, leading to cell death of oligodendrocytes and neurons. Here, we show that matrix metalloprotease-3 (MMP-3) produced and secreted in the endothelial cells of blood vessels after SCI mediates microglial activation. MMP-3 was produced and secreted in bEnd.3 cells, a mouse brain-derived endothelial cell line, by oxygen-glucose deprivation/reoxygenation (OGD/RO). OGD/RO-induced MMP-3 expression and activity was also significantly inhibited by ghrelin, which was dependent on the ghrelin receptor GHS-R1a. Furthermore, the secreted MMP-3 from OGD/RO-induced bEnd.3 cells activated BV-2 cells, a murine microglial cell line. We also found that microglial activation after SCI was attenuated in MMP-3 knockout (KO) mice compared with wild type (WT) mice. Both p38 mitogen-activated protein kinase (MAPK) activation and pro-nerve growth factor (proNGF) production were more inhibited in MMP-3 KO than WT mice at 5d after injury. When WT mice were treated with Mmp-3 siRNA after injury, MMP-3 activity, microglial activation, p38MAPK activation and proNGF expression were significantly inhibited. Ghrelin treatment also significantly inhibited MMP-3 expression and activation after SCI, which was dependent on GHS-R1a. Finally, RhoA activation and oligodendrocyte cell death after injury were attenuated by Mmp-3 siRNA or ghrelin treatment compared with vehicle control. Thus, our study indicates that MMP-3 produced in blood vessel endothelial cells after SCI serves as an endogenous molecule for microglial activation followed by p38MAPK activation and proNGF production, and further indicates that the protective effect of ghrelin on oligodendrocytes cell death may be at least partly mediated by the inhibition of MMP-3-induced microglial activation after SCI.

  20. Annexin A8 controls leukocyte recruitment to activated endothelial cells via cell surface delivery of CD63

    NASA Astrophysics Data System (ADS)

    Poeter, Michaela; Brandherm, Ines; Rossaint, Jan; Rosso, Gonzalo; Shahin, Victor; Skryabin, Boris V.; Zarbock, Alexander; Gerke, Volker; Rescher, Ursula

    2014-04-01

    To enable leukocyte adhesion to activated endothelium, the leukocyte receptor P-selectin is released from Weibel-Palade bodies (WPB) to the endothelial cell surface where it is stabilized by CD63. Here we report that loss of annexin A8 (anxA8) in human umbilical vein endothelial cells (HUVEC) strongly decreases cell surface presentation of CD63 and P-selectin, with a concomitant reduction in leukocyte rolling and adhesion. We confirm the compromised leukocyte adhesiveness in inflammatory-activated endothelial venules of anxA8-deficient mice. We find that WPB of anxA8-deficient HUVEC contain less CD63, and that this is caused by improper transport of CD63 from late multivesicular endosomes to WPB, with CD63 being retained in intraluminal vesicles. Consequently, reduced CD63 cell surface levels are seen following WPB exocytosis, resulting in enhanced P-selectin re-internalization. Our data support a model in which anxA8 affects leukocyte recruitment to activated endothelial cells by supplying WPB with sufficient amounts of the P-selectin regulator CD63.

  1. Annexin A8 controls leukocyte recruitment to activated endothelial cells via cell surface delivery of CD63.

    PubMed

    Poeter, Michaela; Brandherm, Ines; Rossaint, Jan; Rosso, Gonzalo; Shahin, Victor; Skryabin, Boris V; Zarbock, Alexander; Gerke, Volker; Rescher, Ursula

    2014-01-01

    To enable leukocyte adhesion to activated endothelium, the leukocyte receptor P-selectin is released from Weibel-Palade bodies (WPB) to the endothelial cell surface where it is stabilized by CD63. Here we report that loss of annexin A8 (anxA8) in human umbilical vein endothelial cells (HUVEC) strongly decreases cell surface presentation of CD63 and P-selectin, with a concomitant reduction in leukocyte rolling and adhesion. We confirm the compromised leukocyte adhesiveness in inflammatory-activated endothelial venules of anxA8-deficient mice. We find that WPB of anxA8-deficient HUVEC contain less CD63, and that this is caused by improper transport of CD63 from late multivesicular endosomes to WPB, with CD63 being retained in intraluminal vesicles. Consequently, reduced CD63 cell surface levels are seen following WPB exocytosis, resulting in enhanced P-selectin re-internalization. Our data support a model in which anxA8 affects leukocyte recruitment to activated endothelial cells by supplying WPB with sufficient amounts of the P-selectin regulator CD63. PMID:24769558

  2. TNFα-Damaged-HUVECs Microparticles Modify Endothelial Progenitor Cell Functional Activity

    PubMed Central

    Luna, Carlos; Carmona, Andrés; Alique, Matilde; Carracedo, Julia; Ramirez, Rafael

    2015-01-01

    Endothelial progenitor cells (EPCs) have an important role in the maintenance of vascular integrity and homeostasis. While there are many studies that explain EPCs mechanisms action, there are few studies that demonstrate how they interact with other emerging physiological elements such as Endothelial Microparticles (EMPs). EMPs are membranous structures with a size between 100 and 1000 nm that act as molecular information transporter in biological systems and are known as an important elements in develop different pathologies; moreover a lot of works explains that are novel biomarkers. To elucidate these interactions, we proposed an in vitro model of endothelial damage mediated by TNFalpha, in which damaged EMPs and EPCs are in contact to assess EPCs functional effects. We have observed that damaged EMPs can modulate several EPCs classic factors as colony forming units (CFUs), contribution to repair a physically damaged endothelium (wound healing), binding to mature endothelium, and co-adjuvants to the formation of new vessels in vitro (angiogenesis). All of these in a dose-dependent manner. Damaged EMPs at a concentration of 103 MPs/ml have an activating effect of these capabilities, while at concentrations of 105 MPs/ml these effects are attenuated or reduced. This in vitro model helps explain that in diseases where there is an imbalance between these two elements (EPCs and damaged EMPs), the key cellular elements in the regeneration and maintenance of vascular homeostasis (EPCs) are not fully functional, and could explain, at least in part, endothelial dysfunction associated in various pathologies. PMID:26733886

  3. Endothelial RIG-I activation impairs endothelial function

    SciTech Connect

    Asdonk, Tobias; Nickenig, Georg; Zimmer, Sebastian

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer RIG-I activation impairs endothelial function in vivo. Black-Right-Pointing-Pointer RIG-I activation alters HCAEC biology in vitro. Black-Right-Pointing-Pointer EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 {mu}g of the RIG-ligand 3pRNA (RNA with triphosphate at the 5 Prime end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  4. Anti-TNF-α therapy reduces endothelial cell activation in non-diabetic ankylosing spondylitis patients.

    PubMed

    Genre, Fernanda; López-Mejías, Raquel; Miranda-Filloy, José A; Ubilla, Begoña; Mijares, Verónica; Carnero-López, Beatriz; Gómez-Acebo, Inés; Dierssen-Sotos, Trinidad; Remuzgo-Martínez, Sara; Blanco, Ricardo; Pina, Trinitario; González-Juanatey, Carlos; Llorca, Javier; González-Gay, Miguel A

    2015-12-01

    Endothelial dysfunction can be detected by the presence of elevated levels of biomarkers of endothelial cell activation. In this study, we aimed to establish whether correlations of these biomarkers with characteristics of patients with ankylosing spondylitis (AS) exist. We also studied the effect of anti-TNF-α therapy on these biomarkers. Serum sE-selectin, MCP-1 and sVCAM-1 levels were measured by ELISA in 30 non-diabetic AS patients undergoing anti-TNF-α therapy, immediately before and after an infusion of infliximab. Correlations of these biomarkers with clinical features, systemic inflammation, metabolic syndrome and other serum and plasma biomarkers of cardiovascular risk were studied. Potential changes in the concentration of these biomarkers following an infliximab infusion were also assessed. sE-selectin showed a positive correlation with CRP (p = 0.02) and with other endothelial cell activation biomarkers such as sVCAM-1 (p = 0.019) and apelin (p = 0.008). sVCAM-1 negatively correlated with BMI (p = 0.018), diastolic blood pressure (p = 0.008) and serum glucose (p = 0.04). sVCAM-1 also showed a positive correlation with VAS spinal pain (p = 0.014) and apelin (p < 0.001). MCP-1 had a negative correlation with LDL cholesterol (p = 0.026) and ESR (p = 0.017). Patients with hip involvement and synovitis and/or enthesitis in other peripheral joints showed higher levels of MCP-1 (p = 0.004 and 0.02, respectively). A single infliximab infusion led to a significant reduction in sE-selectin (p = 0.0015) and sVCAM-1 (p = 0.04). Endothelial dysfunction correlates with inflammation and metabolic syndrome features in patients with AS. A beneficial effect of the anti-TNF-α blockade on endothelial dysfunction, manifested by a reduction in levels of biomarkers of endothelial cell activation, was observed.

  5. Mechanical perturbations trigger endothelial nitric oxide synthase activity in human red blood cells

    PubMed Central

    Nagarajan, Shunmugan; Raj, Rajendran Kadarkarai; Saravanakumar, Venkatesan; Balaguru, Uma Maheswari; Behera, Jyotirmaya; Rajendran, Vinoth Kumar; Shathya, Yogarajan; Ali, B. Mohammed Jaffar; Sumantran, Venil; Chatterjee, Suvro

    2016-01-01

    Nitric oxide (NO), a vascular signaling molecule, is primarily produced by endothelial NO synthase. Recently, a functional endothelial NO synthase (eNOS) was described in red blood cells (RBC). The RBC-eNOS contributes to the intravascular NO pool and regulates physiological functions. However the regulatory mechanisms and clinical implications of RBC-eNOS are unknown. The present study investigated regulation and functions of RBC-eNOS under mechanical stimulation. This study shows that mechanical stimuli perturb RBC membrane, which triggers a signaling cascade to activate the eNOS. Extracellular NO level, estimated by the 4-Amino-5-Methylamino-2′, 7′-Difluorofluorescein Diacetate probe, was significantly increased under mechanical stimuli. Immunostaining and western blot studies confirmed that the mechanical stimuli phosphorylate the serine 1177 moiety of RBC-eNOS, and activates the enzyme. The NO produced by activation of RBC-eNOS in vortexed RBCs promoted important endothelial functions such as migration and vascular sprouting. We also show that mechanical perturbation facilitates nitrosylation of RBC proteins via eNOS activation. The results of the study confirm that mechanical perturbations sensitize RBC-eNOS to produce NO, which ultimately defines physiological boundaries of RBC structure and functions. Therefore, we propose that mild physical perturbations before, after, or during storage can improve viability of RBCs in blood banks. PMID:27345770

  6. Activity of Tissue Factor in Microparticles Produced in vitro by Endothelial Cells, Monocytes, Granulocytes, and Platelets.

    PubMed

    Khaspekova, S G; Antonova, O A; Shustova, O N; Yakushkin, V V; Golubeva, N V; Titaeva, E V; Dobrovolsky, A B; Mazurov, A V

    2016-02-01

    Activity of tissue factor (TF) in membrane microparticles (MPs) produced in vitro by endothelial cells (ECs), monocytes, THP-1 monocytic cells, granulocytes, and platelets was investigated. ECs were isolated from human umbilical vein, and monocytes, granulocytes, and platelets - from the blood of healthy donors. ECs, monocytes, and THP-1 cells were activated by bacterial lipopolysaccharide, granulocytes - by lipopolysaccharide or phorbol myristate acetate, and platelets - by SFLLRN, thrombin receptor-activating peptide. MPs were sedimented from the culture medium or supernatant of activated cells at 20,000g for 30 min. Coagulation activity of MPs was analyzed in a modified recalcification assay by assessing their effects on coagulation of donor plasma depleted of endogenous MPs (by centrifuging at 20,000g for 90 min). MPs from all cell types accelerated plasma coagulation. Antibodies blocking TF activity prolonged coagulation lag-phase in the presence of MPs from ECs, monocytes, and THP-1 cells (by 2.7-, 2.0-, and 1.8-fold, respectively), but did not influence coagulation in the presence of MPs from granulocytes and platelets. In accordance with these data, TF activity measured by its ability to activate factor X was found in MPs from ECs, monocytes, and THP-1 cells, but not in MPs from granulocytes and platelets. The data obtained indicate that active TF is present in MPs produced in vitro by ECs, monocytes, and THP-1 cells, but not in MPs derived from granulocytes and platelets. PMID:27260391

  7. Date syrup-derived polyphenols attenuate angiogenic responses and exhibits anti-inflammatory activity mediated by vascular endothelial growth factor and cyclooxygenase-2 expression in endothelial cells.

    PubMed

    Taleb, Hajer; Morris, R Keith; Withycombe, Cathryn E; Maddocks, Sarah E; Kanekanian, Ara D

    2016-07-01

    Bioactive components such as polyphenols, present in many plants, are purported to have anti-inflammatory and antiangiogenic properties. Date syrup, produced from date fruit of the date palm tree, has traditionally been used to treat a wide range of diseases with etiologies involving angiogenesis and inflammation. It was hypothesized that polyphenols in date syrup reduce angiogenic responses such as cell migration, tube formation, and matrix metalloproteinase activity in an inflammatory model by exhibiting anti-inflammatory activity mediated by vascular endothelial growth factor (VEGF) and the prostaglandin enzyme cyclooxygenase-2 (COX-2) in endothelial cells. Date syrup polyphenols at 60 and 600μg/mL reduced inflammation and suppressed several stages of angiogenesis, including endothelial cell migration, invasion, matrix metalloproteinase activity, and tube formation, without evidence of cytotoxicity. VEGF and COX-2 expression induced by tumor necrosis factor-alpha at both gene expression and protein level was significantly reduced by date syrup polyphenols in comparison to untreated cells. In conclusion, polyphenols in date syrup attenuated angiogenic responses and exhibited anti-inflammatory activity mediated by VEGF and COX-2 expression in endothelial cells. PMID:27333954

  8. (−)-Epicatechin activation of endothelial cell eNOS, NO and related signaling pathways

    PubMed Central

    Ramirez-Sanchez, Israel; Maya, Lisandro; Ceballos, Guillermo; Villarreal, Francisco

    2010-01-01

    Recent reports indicate that (−)-epicatechin can exert cardioprotective actions, which may involve eNOS-mediated nitric oxide production in endothelial cells. However, the mechanism by which (−)-epicatechin activates eNOS remains unclear. In this study, we proposed to identify the intracellular pathways involved in (−)-epicatechin-induced effects on eNOS, utilizing human coronary artery endothelial cells in culture. Treatment of cells with (−)-epicatechin leads to time- and dose-dependent effects, which peaked at 10 min at 1 μmol/L. (−)-Epicatechin treatment activates eNOS via serine-633 and serine-1177 phosphorylation and threonine-495 dephosphorylation. Using specific inhibitors, we have established the participation of the PI3K pathway in eNOS activation. (−)-Epicatechin induces eNOS uncoupling from caveolin-1 and its association with calmodulin-1, suggesting the involvement of intracellular calcium. These results allowed us to propose that (−) epicatechin effects may be dependent on actions exerted at the cell membrane level. To test this hypothesis, cells were treated with the phospholipase C inhibitor U73122, which blocked (−)-epicatechin-induced eNOS activation. We also demonstrated inositol phosphate accumulation in (−)-epicatechin-treated cells. The inhibitory effects of the pre-incubation of cells with the CaMKII inhibitor KN-93 indicate that (−)-epicatechin-induced eNOS activation is at least partially mediated via the Ca2+/CaMKII pathway. The (−)-epicatechin stereoisomer catechin was only able to partially stimulate nitric oxide production in cells. Altogether, these results strongly suggest the presence of a cell surface acceptor-effector for the cacao flavanol (−)-epicatechin, which may mediate its cardiovascular effects. PMID:20404222

  9. Endothelial Barrier Protection by Local Anesthetics: Ropivacaine and Lidocaine Block Tumor Necrosis Factor-α–induced Endothelial Cell Src Activation

    PubMed Central

    Piegeler, Tobias; Votta-Velis, E. Gina; Bakhshi, Farnaz R.; Mao, Mao; Carnegie, Graeme; Bonini, Marcelo G.; Schwartz, David E.; Borgeat, Alain; Beck-Schimmer, Beatrice; Minshall, Richard D.

    2014-01-01

    Background Pulmonary endothelial barrier dysfunction mediated in part by Src-kinase activation plays a crucial role in acute inflammatory disease. Proinflammatory cytokines, such as tumor necrosis factor-α (TNFα), activate Src via phosphatidylinositide 3-kinase/Akt-dependent nitric oxide generation, a process initiated by recruitment of phosphatidylinositide 3-kinase regulatory subunit p85 to TNF-receptor-1. Because amide-linked local anesthetics have well-established anti-inflammatory effects, the authors hypothesized that ropivacaine and lidocaine attenuate inflammatory Src signaling by disrupting the phosphatidylinositide 3-kinase–Akt–nitric oxide pathway, thus blocking Src-dependent neutrophil adhesion and endothelial hyperpermeability. Methods Human lung microvascular endothelial cells, incubated with TNFα in the absence or presence of clinically relevant concentrations of ropivacaine and lidocaine, were analyzed by Western blot, probing for phosphorylated/activated Src, endothelial nitric oxide synthase, Akt, intercellular adhesion molecule-1, and caveolin-1. The effect of ropivacaine on TNFα-induced nitric oxide generation, co-immunoprecipitation of TNF-receptor-1 with p85, neutrophil adhesion, and endothelial barrier disruption were assessed. Results Ropivacaine and lidocaine attenuated TNFα-induced Src activation (half-maximal inhibitory concentration [IC50] = 8.611 × 10−10 M for ropivacaine; IC50 = 5.864 × 10−10 M for lidocaine) and endothelial nitric oxide synthase phosphorylation (IC50 = 7.572 × 10−10 M for ropivacaine; IC50 = 6.377 × 10−10 M for lidocaine). Akt activation (n = 7; P = 0.006) and stimulus-dependent binding of TNF-receptor-1 and p85 (n = 6; P = 0.043) were blocked by 1 nM of ropivacaine. TNFα-induced neutrophil adhesion and disruption of endothelial monolayers via Src-dependent intercellular adhesion molecule-1- and caveolin-1-phosphorylation, respectively, were also attenuated. Conclusions Ropivacaine and lidocaine

  10. Air pollution upregulates endothelial cell procoagulant activity via ultrafine particle-induced oxidant signaling and tissue factor expression.

    PubMed

    Snow, S J; Cheng, W; Wolberg, A S; Carraway, M S

    2014-07-01

    Air pollution exposure is associated with cardiovascular events triggered by clot formation. Endothelial activation and initiation of coagulation are pathophysiological mechanisms that could link inhaled air pollutants to vascular events. Here we investigated the underlying mechanisms of increased endothelial cell procoagulant activity following exposure to soluble components of ultrafine particles (soluble UF). Human coronary artery endothelial cells (HCAEC) were exposed to soluble UF and assessed for their ability to trigger procoagulant activity in platelet-free plasma. Exposed HCAEC triggered earlier thrombin generation and faster fibrin clot formation, which was abolished by an anti-tissue factor (TF) antibody, indicating TF-dependent effects. Soluble UF exposure increased TF mRNA expression without compensatory increases in key anticoagulant proteins. To identify early events that regulate TF expression, we measured endothelial H2O2 production following soluble UF exposure and identified the enzymatic source. Soluble UF exposure increased endothelial H2O2 production, and antioxidants attenuated UF-induced upregulation of TF, linking the procoagulant responses to reactive oxygen species (ROS) formation. Chemical inhibitors and RNA silencing showed that NOX-4, an important endothelial source of H2O2, was involved in UF-induced upregulation of TF mRNA. These data indicate that soluble UF exposure induces endothelial cell procoagulant activity, which involves de novo TF synthesis, ROS production, and the NOX-4 enzyme. These findings provide mechanistic insight into the adverse cardiovascular effects associated with air pollution exposure.

  11. Air pollution upregulates endothelial cell procoagulant activity via ultrafine particle-induced oxidant signaling and tissue factor expression.

    PubMed

    Snow, S J; Cheng, W; Wolberg, A S; Carraway, M S

    2014-07-01

    Air pollution exposure is associated with cardiovascular events triggered by clot formation. Endothelial activation and initiation of coagulation are pathophysiological mechanisms that could link inhaled air pollutants to vascular events. Here we investigated the underlying mechanisms of increased endothelial cell procoagulant activity following exposure to soluble components of ultrafine particles (soluble UF). Human coronary artery endothelial cells (HCAEC) were exposed to soluble UF and assessed for their ability to trigger procoagulant activity in platelet-free plasma. Exposed HCAEC triggered earlier thrombin generation and faster fibrin clot formation, which was abolished by an anti-tissue factor (TF) antibody, indicating TF-dependent effects. Soluble UF exposure increased TF mRNA expression without compensatory increases in key anticoagulant proteins. To identify early events that regulate TF expression, we measured endothelial H2O2 production following soluble UF exposure and identified the enzymatic source. Soluble UF exposure increased endothelial H2O2 production, and antioxidants attenuated UF-induced upregulation of TF, linking the procoagulant responses to reactive oxygen species (ROS) formation. Chemical inhibitors and RNA silencing showed that NOX-4, an important endothelial source of H2O2, was involved in UF-induced upregulation of TF mRNA. These data indicate that soluble UF exposure induces endothelial cell procoagulant activity, which involves de novo TF synthesis, ROS production, and the NOX-4 enzyme. These findings provide mechanistic insight into the adverse cardiovascular effects associated with air pollution exposure. PMID:24752501

  12. Antibodies to endothelial cells in Behçet's disease: cell-binding heterogeneity and association with clinical activity.

    PubMed Central

    Cervera, R; Navarro, M; López-Soto, A; Cid, M C; Font, J; Esparza, J; Reverter, J C; Monteagudo, J; Ingelmo, M; Urbano-Márquez, A

    1994-01-01

    OBJECTIVES--To investigate the prevalence and characteristics of antibodies to endothelial cells (aEC) from large vessel and from microvasculature in a group of patients with Behçet's disease (BD) to determine the relationship of these antibodies with clinical and laboratory features of the disease. METHODS--Thirty patients with BD were prospectively and consecutively studied. The aEC were determined by enzyme-linked immunosorbent assay (ELISA) using endothelial cells derived from human umbilical vein (large vessel) as well as from retroperitoneal adipose tissue (microvasculature). RESULTS--Fifteen patients (50%) had aEC, either directed to large vessel [8(26%) patients] or microvascular [13(43%) patients] endothelial cells. The percentage of active patients was significantly higher in the aEC-positive group [12(80%) patients] compared with the aEC-negative group [5(33%) patients] (p < 0.05). CONCLUSIONS--Patients with BD have a high prevalence of aEC when microvascular endothelial cells are used in the assay. These antibodies seem to be a marker of disease activity in this condition, previously considered as negative for autoantibodies. PMID:8203957

  13. Toll-Like Receptor 4 Mediates Endothelial Cell Activation Through NF-κB but Is Not Associated with Endothelial Dysfunction in Patients with Rheumatoid Arthritis

    PubMed Central

    Menghini, Rossella; Campia, Umberto; Tesauro, Manfredi; Marino, Arianna; Rovella, Valentina; Rodia, Giuseppe; Schinzari, Francesca; Tolusso, Barbara; di Daniele, Nicola; Federici, Massimo; Zoli, Angelo; Ferraccioli, Gianfranco; Cardillo, Carmine

    2014-01-01

    Objective To investigate the effects of TLR4 antagonism on human endothelial cells activation and cytokine expression, and whether the Asp299Gly TLR4 polymorphism is associated with better endothelial function in patients with rheumatoid arthritis (RA). Methods Human aortic endothelial cells (HAECs) were treated with lipopolysaccharide (LPS), OxPAPC, and free fatty acids (FFA) at baseline and after incubation with the TLR4 antagonist eritoran (E5564). Cytokine expression was assessed by quantitative real-time PCR. In vivo endothelial function was assessed as brachial artery flow-mediated dilation (FMD) in RA patients with the wild type gene (aa) and with the Asp299Gly TLR4 polymorphic variant (ag). Results In HAEC, TLR4 antagonism with eritoran inhibited LPS-induced mRNA expression of IL-6, IL-8, TNFα, CCL-2, VCAM and ICAM (P<0.05 for all) and inhibited Ox-PAPC-induced mRNA expression of IL-8 (P<0.05) and IL-6, albeit not to a statistically significant level (p = 0.07). In contrast, eritoran did not affect FFA-induced mRNA expression of IL-6 (P>0.05). In 30 patients with RA (15 with the ag allele) undergoing measurement of FMD, no differences in FMD and plasma levels of IL-6, IL-8, VCAM, and ICAM were found between the aa and the ag phenotype (P>0.05 for all). Conclusions TLR4 signaling in endothelial cells may be triggered by LPS and oxidized phospholipids, leading to endothelial activation and inflammation, which are inhibited by eritoran. Our in vivo investigation, however, does not support an association between the Asp299Gly TLR4 polymorphism and improved endothelium-dependent vasodilator function in patients with RA. Further study is needed to better understand the potential role of TLR4 on endothelial dysfunction in this and other patient populations. PMID:24918924

  14. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity.

    PubMed

    Demaria, Olivier; De Gassart, Aude; Coso, Sanja; Gestermann, Nicolas; Di Domizio, Jeremy; Flatz, Lukas; Gaide, Olivier; Michielin, Olivier; Hwu, Patrick; Petrova, Tatiana V; Martinon, Fabio; Modlin, Robert L; Speiser, Daniel E; Gilliet, Michel

    2015-12-15

    Spontaneous CD8 T-cell responses occur in growing tumors but are usually poorly effective. Understanding the molecular and cellular mechanisms that drive these responses is of major interest as they could be exploited to generate a more efficacious antitumor immunity. As such, stimulator of IFN genes (STING), an adaptor molecule involved in cytosolic DNA sensing, is required for the induction of antitumor CD8 T responses in mouse models of cancer. Here, we find that enforced activation of STING by intratumoral injection of cyclic dinucleotide GMP-AMP (cGAMP), potently enhanced antitumor CD8 T responses leading to growth control of injected and contralateral tumors in mouse models of melanoma and colon cancer. The ability of cGAMP to trigger antitumor immunity was further enhanced by the blockade of both PD1 and CTLA4. The STING-dependent antitumor immunity, either induced spontaneously in growing tumors or induced by intratumoral cGAMP injection was dependent on type I IFNs produced in the tumor microenvironment. In response to cGAMP injection, both in the mouse melanoma model and an ex vivo model of cultured human melanoma explants, the principal source of type I IFN was not dendritic cells, but instead endothelial cells. Similarly, endothelial cells but not dendritic cells were found to be the principal source of spontaneously induced type I IFNs in growing tumors. These data identify an unexpected role of the tumor vasculature in the initiation of CD8 T-cell antitumor immunity and demonstrate that tumor endothelial cells can be targeted for immunotherapy of melanoma.

  15. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity

    PubMed Central

    Demaria, Olivier; De Gassart, Aude; Coso, Sanja; Gestermann, Nicolas; Di Domizio, Jeremy; Flatz, Lukas; Gaide, Olivier; Michielin, Olivier; Hwu, Patrick; Petrova, Tatiana V.; Martinon, Fabio; Modlin, Robert L.; Speiser, Daniel E.; Gilliet, Michel

    2015-01-01

    Spontaneous CD8 T-cell responses occur in growing tumors but are usually poorly effective. Understanding the molecular and cellular mechanisms that drive these responses is of major interest as they could be exploited to generate a more efficacious antitumor immunity. As such, stimulator of IFN genes (STING), an adaptor molecule involved in cytosolic DNA sensing, is required for the induction of antitumor CD8 T responses in mouse models of cancer. Here, we find that enforced activation of STING by intratumoral injection of cyclic dinucleotide GMP-AMP (cGAMP), potently enhanced antitumor CD8 T responses leading to growth control of injected and contralateral tumors in mouse models of melanoma and colon cancer. The ability of cGAMP to trigger antitumor immunity was further enhanced by the blockade of both PD1 and CTLA4. The STING-dependent antitumor immunity, either induced spontaneously in growing tumors or induced by intratumoral cGAMP injection was dependent on type I IFNs produced in the tumor microenvironment. In response to cGAMP injection, both in the mouse melanoma model and an ex vivo model of cultured human melanoma explants, the principal source of type I IFN was not dendritic cells, but instead endothelial cells. Similarly, endothelial cells but not dendritic cells were found to be the principal source of spontaneously induced type I IFNs in growing tumors. These data identify an unexpected role of the tumor vasculature in the initiation of CD8 T-cell antitumor immunity and demonstrate that tumor endothelial cells can be targeted for immunotherapy of melanoma. PMID:26607445

  16. The role of valvular endothelial cell paracrine signaling and matrix elasticity on valvular interstitial cell activation.

    PubMed

    Gould, Sarah T; Matherly, Emily E; Smith, Jennifer N; Heistad, Donald D; Anseth, Kristi S

    2014-04-01

    The effects of valvular endothelial cell (VlvEC) paracrine signaling on VIC phenotype and nodule formation were tested using a co-culture platform with physiologically relevant matrix elasticities and diffusion distance. 100 μm thin poly(ethylene glycol) (PEG) hydrogels of 3-27 kPa Young's moduli were fabricated in transwell inserts. VICs were cultured on the gels, as VIC phenotype is known to change significantly within this range, while VlvECs lined the underside of the membrane. Co-culture with VlvECs significantly reduced VIC activation to the myofibroblast phenotype on all gels with the largest percent decrease on the 3 kPa gels (~70%), while stiffer gels resulted in approximately 20-30% decrease. Additionally, VlvECs significantly reduced αSMA protein expression (~2 fold lower) on both 3 and 27 kPa gels, as well as the number (~2 fold lower) of nodules formed on the 27 kPa gels. Effects of VlvECs were prevented when nitric oxide (NO) release was inhibited with l-NAME, suggesting that VlvEC produced NO inhibits VIC activation. Withdrawal of l-NAME after 3, 5, and 7 days with restoration of VlvEC NO production for 2 additional days led to a partial reversal of VIC activation (~25% decrease). A potential mechanism by which VlvEC produced NO reduced VIC activation was studied by inhibiting initial and mid-stage cGMP pathway molecules. Inhibition of soluble guanylyl cyclase (sGC) with ODQ or protein kinase G (PKG) with RBrcGMP or stimulation of Rho kinase (ROCK) with LPA, abolished VlvEC effects on VIC activation. This work contributes substantially to the understanding of the valve endothelium's role in preventing VIC functions associated with aortic valve stenosis initiation and progression.

  17. Accumulation of tissue factor in endothelial cells induces cell apoptosis, mediated through p38 and p53 activation.

    PubMed

    ElKeeb, A M; Collier, M E W; Maraveyas, A; Ettelaie, C

    2015-08-01

    We previously reported that high levels of tissue factor (TF) can induce cellular apoptosis in endothelial cells. In this study, TF-mediated mechanisms of induction of apoptosis were explored. Endothelial cells were transfected to express wild-type TF. Additionally, cells were transfected to express Asp253-substituted, or Ala253-substitued TF to enhance or prevent TF release, respectively. Alternatively, cells were pre-incubated with TF-rich and TF-poor microvesicles. Cell proliferation, apoptosis and the expression of cyclin D1, p53, bax and p21 were measured following activation of cells with PAR2-agonist peptide. Greatest levels of cell proliferation and cyclin D1 expression were observed in cells expressing wild-type or Asp253-substituted TF. In contrast, increased cellular apoptosis was observed in cells expressing Ala253-substituted TF, or cells pre-incubated with TF-rich microvesicles. The level of p53 protein, p53-phosphorylation at ser33, p53 nuclear localisation and transcriptional activity, but not p53 mRNA, were increased in cells expressing wild-type and Ala253-substituted TF, or in cells pre-incubated with TF-rich microvesicles. However, the expression of bax and p21 mRNA, and Bax protein were only increased in cells pre-incubated with TF-rich microvesicle and in cells expressing Ala253-substituted TF. Inhibition of the transcriptional activity of p53 using pifithrin-α suppressed the expression of Bax. Finally, siRNA-mediated suppression of p38α, or inhibition using SB202190 significantly reduced the p53 protein levels, p53 nuclear localisation and transcriptional activity, suppressed Bax expression and prevented cellular apoptosis. In conclusion, accumulation of TF within endothelial cells, or sequestered from the surrounding can induce cellular apoptosis through mechanisms mediated by p38, and involves the stabilisation of p53. PMID:25903973

  18. Inhibition of volume-activated chloride currents in endothelial cells by chromones.

    PubMed Central

    Heinke, S.; Szücs, G.; Norris, A.; Droogmans, G.; Nilius, B.

    1995-01-01

    1. We have studied the effects of the reported chloride channel blocker, sodium cromoglycate, on volume-activated Cl- currents in endothelial cells from bovine pulmonary artery by means of the whole-cell patch clamp technique. Cl- currents were activated by challenging the cells with a hypotonic extracellular solution of 60% of the normal osmolarity. 2. Half maximal activation of the current at +95 mV occurred after exposure of the cells for 148 +/- 10 s (n = 6) to hypotonic solution (HTS). At the same membrane potential but in the presence of 100 microM sodium cromoglycate (disodium-1,3-bis (2'-carboxylate-chromone-5'-yloxy)-2-hydroxy-propane) activation was delayed (253 +/- 25 s, n = 6) and the maximal current amplitude was reduced to 63 +/- 7% of the control (n = 13). 3. In comparison, an equimolar concentration of NPPB (5-nitro-2(3-phenyl) propylamino-benzoic acid), another Cl- channel blocker, completely blocked the volume-activated current in less than 20 s. 4. Sodium cromoglycate, applied at the time when the HTS-induced current was completely activated, dose-dependently inhibited this current with a concentration for half maximal inhibition of 310 +/- 70 microM. Data for nedocromil sodium were not significantly different from those for sodium cromoglycate. 5. Sodium cromoglycate, loaded into the endothelial cells via the patch pipette in ruptured patches, resulted in a decline of the HTS activated current with a time course that was compatible with diffusion of the compound from the pipette into the cell.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8564197

  19. Hyperthermia stimulates plasminogen activator inhibitor type 1 expression in human umbilical vein endothelial cells in vitro.

    PubMed Central

    Wojta, J.; Holzer, M.; Hufnagl, P.; Christ, G.; Hoover, R. L.; Binder, B. R.

    1991-01-01

    The effect of exposure to hyperthermia on the fibrinolytic potential of human umbilical vein endothelial cells (HUVEC) in culture was studied. HUVEC responded to exposure to 42 degrees C with a time-dependent increase in plasminogen activator inhibitor type 1 (PAI-1) activity and antigen accompanied by a four- to fivefold increase in PAI-1 specific m-RNA and a decrease in tissue-type plasminogen activator (t-PA) antigen. The effect of 8 hours exposure to hyperthermia on PAI-1 activity and antigen could not be reversed by reexposure of the cells to 37 degrees C for 24 hours as evidenced by continuously increased amounts of PAI-1 released into the conditioned media. t-PA release, however, decreased during the 24-hour period at 37 degrees C after exposure to hyperthermia. No difference in PAI-1 antigen present in the extracellular matrix of heat treated HUVEC as compared to HUVEC kept at 37 degrees C could be found. Our data supports the idea that hyperthermia is one stress factor that influences the fibrinolytic potential of endothelial cells. Images Figure 6 PMID:1928306

  20. PTP1B inhibitor promotes endothelial cell motility by activating the DOCK180/Rac1 pathway

    PubMed Central

    Wang, Yuan; Yan, Feng; Ye, Qing; Wu, Xiao; Jiang, Fan

    2016-01-01

    Promoting endothelial cell (EC) migration is important not only for therapeutic angiogenesis, but also for accelerating re-endothelialization after vessel injury. Several recent studies have shown that inhibition of protein tyrosine phosphatase 1B (PTP1B) may promote EC migration and angiogenesis by enhancing the vascular endothelial growth factor receptor-2 (VEGFR2) signalling. In the present study, we demonstrated that PTP1B inhibitor could promote EC adhesion, spreading and migration, which were abolished by the inhibitor of Rac1 but not RhoA GTPase. PTP1B inhibitor significantly increased phosphorylation of p130Cas, and the interactions among p130Cas, Crk and DOCK180; whereas the phosphorylation levels of focal adhesion kinase, Src, paxillin, or Vav2 were unchanged. Gene silencing of DOCK180, but not Vav2, abrogated the effects of PTP1B inhibitor on EC motility. The effects of PTP1B inhibitor on EC motility and p130Cas/DOCK180 activation persisted in the presence of the VEGFR2 antagonist. In conclusion, we suggest that stimulation of the DOCK180 pathway represents an alternative mechanism of PTP1B inhibitor-stimulated EC motility, which does not require concomitant VEGFR2 activation as a prerequisite. Therefore, PTP1B inhibitor may be a useful therapeutic strategy for promoting EC migration in cardiovascular patients in which the VEGF/VEGFR functions are compromised. PMID:27052191

  1. Endotoxin induction of an inhibitor of plasminogen activator in bovine pulmonary artery endothelial cells

    SciTech Connect

    Not Available

    1986-01-05

    The effects of bacterial lipopolysaccharide (endotoxin) on the fibrinolytic activity of bovine pulmonary artery endothelial cells were examined. Endotoxin suppressed the net fibrinolytic activity of cell extracts and conditioned media in a dose-dependent manner. The effects of endotoxin required at least 6 h for expression. Cell extracts and conditioned media contained a 44-kDa urokinase-like plasminogen activator. Media also contained multiple plasminogen activators with molecular masses of 65-75 and 80-100 kDa. Plasminogen activators in extracts and media were unchanged by treatment of cells with endotoxin. Diisopropyl fluorophosphate (DFP)-abolished fibrinolytic activity of extracts and conditioned media. DFP-treated samples from endotoxin-treated but not untreated cells inhibited urokinase and tissue plasminogen activator, but not plasmin. Inhibitory activity was lost by incubation at pH 3 or heating to 56/sup 0/C for 10 min. These treatments did not affect inhibitory activity of fetal bovine serum. Incubation of /sup 125/I-urokinase with DFP-treated medium from endotoxin-treated cells produced an inactive complex with an apparent molecular mass of 80-85 kDa.

  2. Restoring Akt1 activity in outgrowth endothelial cells from South Asian men rescues vascular reparative potential.

    PubMed

    Cubbon, Richard M; Yuldasheva, Nadira Y; Viswambharan, Hema; Mercer, Ben N; Baliga, Vivek; Stephen, Sam L; Askham, Jonathan; Sukumar, Piruthivi; Skromna, Anna; Mughal, Romana S; Walker, Andrew M N; Bruns, Alexander; Bailey, Marc A; Galloway, Stacey; Imrie, Helen; Gage, Matthew C; Rakobowchuk, Mark; Li, Jing; Porter, Karen E; Ponnambalam, Sreenivasan; Wheatcroft, Stephen B; Beech, David J; Kearney, Mark T

    2014-10-01

    Recent data suggest reduced indices of vascular repair in South Asian men, a group at increased risk of cardiovascular events. Outgrowth endothelial cells (OEC) represent an attractive tool to study vascular repair in humans and may offer potential in cell-based repair therapies. We aimed to define and manipulate potential mechanisms of impaired vascular repair in South Asian (SA) men. In vitro and in vivo assays of vascular repair and angiogenesis were performed using OEC derived from SA men and matched European controls, prior defining potentially causal molecular mechanisms. SA OEC exhibited impaired colony formation, migration, and in vitro angiogenesis, associated with decreased expression of the proangiogenic molecules Akt1 and endothelial nitric oxide synthase (eNOS). Transfusion of European OEC into immunodeficient mice after wire-induced femoral artery injury augmented re-endothelialization, in contrast with SA OEC and vehicle; SA OEC also failed to promote angiogenesis after induction of hind limb ischemia. Expression of constitutively active Akt1 (E17KAkt), but not green fluorescent protein control, in SA OEC increased in vitro angiogenesis, which was abrogated by a NOS antagonist. Moreover, E17KAkt expressing SA OEC promoted re-endothelialization of wire-injured femoral arteries, and perfusion recovery of ischemic limbs, to a magnitude comparable with nonmanipulated European OEC. Silencing Akt1 in European OEC recapitulated the functional deficits noted in SA OEC. Reduced signaling via the Akt/eNOS axis is causally linked with impaired OEC-mediated vascular repair in South Asian men. These data prove the principle of rescuing marked reparative dysfunction in OEC derived from these men.

  3. Activation of Hypoxia Response in Endothelial Cells Contributes to Ischemic Cardioprotection

    PubMed Central

    Kerkelä, Risto; Karsikas, Sara; Szabo, Zoltan; Serpi, Raisa; Magga, Johanna; Gao, Erhe; Alitalo, Kari; Anisimov, Andrey; Sormunen, Raija; Pietilä, Ilkka; Vainio, Laura; Koch, Walter J.; Kivirikko, Kari I.; Myllyharju, Johanna

    2013-01-01

    Small-molecule inhibition of hypoxia-inducible factor prolyl 4-hydroxylases (HIF-P4Hs) is being explored for the treatment of anemia. Previous studies have suggested that HIF-P4H-2 inhibition may also protect the heart from an ischemic insult. Hif-p4h-2gt/gt mice, which have 76 to 93% knockdown of Hif-p4h-2 mRNA in endothelial cells, fibroblasts, and cardiomyocytes and normoxic stabilization of Hif-α, were subjected to ligation of the left anterior descending coronary artery (LAD). Hif-p4h-2 deficiency resulted in increased survival, better-preserved left ventricle (LV) systolic function, and a smaller infarct size. Surprisingly, a significantly larger area of the LV remained perfused during LAD ligation in Hif-p4h-2gt/gt hearts than in wild-type hearts. However, no difference was observed in collateral vessels, while the size of capillaries, but not their number, was significantly greater in Hif-p4h-2gt/gt hearts than in wild-type hearts. Hif-p4h-2gt/gt mice showed increased cardiac expression of endothelial Hif target genes for Tie-2, apelin, APJ, and endothelial nitric oxide (NO) synthase (eNOS) and increased serum NO concentrations. Remarkably, blockage of Tie-2 signaling was sufficient to normalize cardiac apelin and APJ expression and resulted in reversal of the enlarged-capillary phenotype and ischemic cardioprotection in Hif-p4h-2gt/gt hearts. Activation of the hypoxia response by HIF-P4H-2 inhibition in endothelial cells appears to be a major determinant of ischemic cardioprotection and justifies the exploration of systemic small-molecule HIF-P4H-2 inhibitors for ischemic heart disease. PMID:23775121

  4. The Prodomain-bound Form of Bone Morphogenetic Protein 10 Is Biologically Active on Endothelial Cells*

    PubMed Central

    Jiang, He; Salmon, Richard M.; Upton, Paul D.; Wei, Zhenquan; Lawera, Aleksandra; Davenport, Anthony P.; Morrell, Nicholas W.; Li, Wei

    2016-01-01

    BMP10 is highly expressed in the developing heart and plays essential roles in cardiogenesis. BMP10 deletion in mice results in embryonic lethality because of impaired cardiac development. In adults, BMP10 expression is restricted to the right atrium, though ventricular hypertrophy is accompanied by increased BMP10 expression in a rat hypertension model. However, reports of BMP10 activity in the circulation are inconclusive. In particular, it is not known whether in vivo secreted BMP10 is active or whether additional factors are required to achieve its bioactivity. It has been shown that high-affinity binding of the BMP10 prodomain to the mature ligand inhibits BMP10 signaling activity in C2C12 cells, and it was proposed that prodomain-bound BMP10 (pBMP10) complex is latent. In this study, we demonstrated that the BMP10 prodomain did not inhibit BMP10 signaling activity in multiple endothelial cells, and that recombinant human pBMP10 complex, expressed in mammalian cells and purified under native conditions, was fully active. In addition, both BMP10 in human plasma and BMP10 secreted from the mouse right atrium were fully active. Finally, we confirmed that active BMP10 secreted from mouse right atrium was in the prodomain-bound form. Our data suggest that circulating BMP10 in adults is fully active and that the reported vascular quiescence function of BMP10 in vivo is due to the direct activity of pBMP10 and does not require an additional activation step. Moreover, being an active ligand, recombinant pBMP10 may have therapeutic potential as an endothelial-selective BMP ligand, in conditions characterized by loss of BMP9/10 signaling. PMID:26631724

  5. Endothelial cell permeability during hantavirus infection involves factor XII-dependent increased activation of the kallikrein-kinin system.

    PubMed

    Taylor, Shannon L; Wahl-Jensen, Victoria; Copeland, Anna Maria; Jahrling, Peter B; Schmaljohn, Connie S

    2013-01-01

    Hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) are diseases caused by hantavirus infections and are characterized by vascular leakage due to alterations of the endothelial barrier. Hantavirus-infected endothelial cells (EC) display no overt cytopathology; consequently, pathogenesis models have focused either on the influx of immune cells and release of cytokines or on increased degradation of the adherens junction protein, vascular endothelial (VE)-cadherin, due to hantavirus-mediated hypersensitization of EC to vascular endothelial growth factor (VEGF). To examine endothelial leakage in a relevant in vitro system, we co-cultured endothelial and vascular smooth muscle cells (vSMC) to generate capillary blood vessel-like structures. In contrast to results obtained in monolayers of cultured EC, we found that despite viral replication in both cell types as well as the presence of VEGF, infected in vitro vessels neither lost integrity nor displayed evidence of VE-cadherin degradation. Here, we present evidence for a novel mechanism of hantavirus-induced vascular leakage involving activation of the plasma kallikrein-kinin system (KKS). We show that incubation of factor XII (FXII), prekallikrein (PK), and high molecular weight kininogen (HK) plasma proteins with hantavirus-infected EC results in increased cleavage of HK, higher enzymatic activities of FXIIa/kallikrein (KAL) and increased liberation of bradykinin (BK). Measuring cell permeability in real-time using electric cell-substrate impedance sensing (ECIS), we identified dramatic increases in endothelial cell permeability after KKS activation and liberation of BK. Furthermore, the alterations in permeability could be prevented using inhibitors that directly block BK binding, the activity of FXIIa, or the activity of KAL. Lastly, FXII binding and autoactivation is increased on the surface of hantavirus-infected EC. These data are the first to demonstrate KKS activation during

  6. Autocrine activities of basic fibroblast growth factor: regulation of endothelial cell movement, plasminogen activator synthesis, and DNA synthesis

    PubMed Central

    1988-01-01

    We have found that the spontaneous migration of bovine aortic endothelial cells from the edge of a denuded area in a confluent monolayer is dependent upon the release of endogenous basic fibroblast growth factor (bFGF). Cell movement is blocked by purified polyclonal rabbit IgG to bFGF as well as affinity purified anti-bFGF IgG and anti- bFGF F(ab')2 fragments. The inhibitory effect of the immunoglobulins is dependent upon antibody concentration, is reversible, is overcome by the addition of recombinant bFGF, and is removed by affinity chromatography of the antiserum through a column of bFGF-Sepharose. Cell movement is also reversibly inhibited by the addition of protamine sulfate and suramin; two agents reported to block bFGF binding to its receptor. The addition of recombinant bFGF to wounded monolayers accelerates the movement of cells into the denuded area. Transforming growth factor beta which has been shown to antagonize several other effects of bFGF also inhibits cell movement. The anti-bFGF IgG prevents the movement of bovine capillary endothelial cells, BHK-21, NIH 3T3, and human skin fibroblasts into a denuded area. Antibodies to bFGF, as well as suramin and protamine sulfate also suppress the basal levels of plasminogen activator and DNA synthesis in bovine aortic endothelial cells. PMID:3417781

  7. Platelet-leukocyte interaction in adhesion to endothelial cells induced by platelet-activating factor in vitro.

    PubMed Central

    Hirafuji, M.; Shinoda, H.

    1991-01-01

    1. Platelet-activating factor (PAF, 10 nM) did not induce platelet adhesion to endothelial cells cultured in monolayer but it induced their adhesion to protein-coated plastic. However, PAF induced a marked platelet adhesion to endothelial cells when polymorphonuclear leukocytes (PMNs) were present. Lyso-PAF had no effect. 2. Phase-contrast microscopic examination showed that single platelets rather than their aggregates adhered to the endothelial cell surface around aggregating and adhering PMNs. 3. Significant platelet adhesion was induced by PAF at concentrations higher that 0.01 nM with the maximal response at 10 nM. Platelet adhesion occurred within minutes after PAF addition, reaching a maximum approximately after 30 min. Platelet adhesion also occurred significantly at a PMN:platelet ratio of 1:800, and linearly up to 1:50. 4. The PAF-induced platelet adhesion was suppressed by three structurally unrelated PAF antagonists, WEB 2086, ONO 6240 and BN 52021, in a concentration-dependent manner. 5. PAF also increased PMN adhesion to endothelial cell monolayers, which was further augmented by the presence of platelets. 6. The present study demonstrates that PAF induces platelet adhesion to endothelial cells in vitro when PMNs are present and that there is a close interaction between platelets and PMNs in their adhesion to endothelial cells. The present study further suggests that PMNs could play a central role in platelet adhesion to vascular endothlium in certain pathological conditions. Images Figure 2 PMID:1884095

  8. Association of plasminogen activator inhibitor type 2 (PAI-2) with proteasome within endothelial cells activated with inflammatory stimuli.

    PubMed

    Boncela, Joanna; Przygodzka, Patrycja; Papiewska-Pajak, Izabela; Wyroba, Elzbieta; Cierniewski, Czeslaw S

    2011-12-16

    Quiescent endothelial cells contain low concentrations of plasminogen activator inhibitor type 2 (PAI-2). However, its synthesis can be rapidly stimulated by a variety of inflammatory mediators. In this study, we provide evidence that PAI-2 interacts with proteasome and affects its activity in endothelial cells. To ensure that the PAI-2·proteasome complex is formed in vivo, both proteins were coimmunoprecipitated from endothelial cells and identified with specific antibodies. The specificity of this interaction was evidenced after (a) transfection of HeLa cells with pCMV-PAI-2 and coimmunoprecipitation of both proteins with anti-PAI-2 antibodies and (b) silencing of the PAI-2 gene using specific small interfering RNA (siRNA). Subsequently, cellular distribution of the PAI-2·proteasome complexes was established by immunogold staining and electron microscopy analyses. As judged by confocal microscopy, both proteins appeared in a diffuse cytosolic pattern, but they also could be found in a dense perinuclear and nuclear location. PAI-2 was not polyubiquitinated, suggesting that it bound to proteasome not as the substrate but rather as its inhibitor. Consistently, increased PAI-2 expression (a) abrogated degradation of degron analyzed after cotransfection of HeLa cells with pCMV-PAI-2 and pd2EGFP-N1, (b) prevented degradation of p53, as evidenced both by confocal microscopy and Western immunoblotting, and (c) inhibited proteasome cleavage of specific fluorogenic substrate. This suggests that PAI-2, in endothelial cells induced with inflammatory stimuli, can inhibit proteasome and thus tilt the balance favoring proapoptotic signaling.

  9. Association of Plasminogen Activator Inhibitor Type 2 (PAI-2) with Proteasome within Endothelial Cells Activated with Inflammatory Stimuli*

    PubMed Central

    Boncela, Joanna; Przygodzka, Patrycja; Papiewska-Pajak, Izabela; Wyroba, Elzbieta; Cierniewski, Czeslaw S.

    2011-01-01

    Quiescent endothelial cells contain low concentrations of plasminogen activator inhibitor type 2 (PAI-2). However, its synthesis can be rapidly stimulated by a variety of inflammatory mediators. In this study, we provide evidence that PAI-2 interacts with proteasome and affects its activity in endothelial cells. To ensure that the PAI-2·proteasome complex is formed in vivo, both proteins were coimmunoprecipitated from endothelial cells and identified with specific antibodies. The specificity of this interaction was evidenced after (a) transfection of HeLa cells with pCMV-PAI-2 and coimmunoprecipitation of both proteins with anti-PAI-2 antibodies and (b) silencing of the PAI-2 gene using specific small interfering RNA (siRNA). Subsequently, cellular distribution of the PAI-2·proteasome complexes was established by immunogold staining and electron microscopy analyses. As judged by confocal microscopy, both proteins appeared in a diffuse cytosolic pattern, but they also could be found in a dense perinuclear and nuclear location. PAI-2 was not polyubiquitinated, suggesting that it bound to proteasome not as the substrate but rather as its inhibitor. Consistently, increased PAI-2 expression (a) abrogated degradation of degron analyzed after cotransfection of HeLa cells with pCMV-PAI-2 and pd2EGFP-N1, (b) prevented degradation of p53, as evidenced both by confocal microscopy and Western immunoblotting, and (c) inhibited proteasome cleavage of specific fluorogenic substrate. This suggests that PAI-2, in endothelial cells induced with inflammatory stimuli, can inhibit proteasome and thus tilt the balance favoring proapoptotic signaling. PMID:21976669

  10. (−)-Epicatechin induces calcium and translocation independent eNOS activation in arterial endothelial cells

    PubMed Central

    Ramirez-Sanchez, Israel; Maya, Lisandro; Ceballos, Guillermo

    2011-01-01

    The consumption of cacao-derived (i.e., cocoa) products provides beneficial cardiovascular effects in healthy subjects as well as individuals with endothelial dysfunction such as smokers, diabetics, and postmenopausal women. The vascular actions of cocoa are related to enhanced nitric oxide (NO) production. These actions can be reproduced by the administration of the cacao flavanol (−)-epicatechin (EPI). To further understand the mechanisms behind the vascular action of EPI, we investigated the effects of Ca2+ depletion on endothelial nitric oxide (NO) synthase (eNOS) activation/phosphorylation and translocation. Human coronary artery endothelial cells were treated with EPI or with bradykinin (BK), a well-known Ca2+-dependent eNOS activator. Results demonstrate that both EPI and BK induce increases in intracellular calcium and NO levels. However, under Ca2+-free conditions, EPI (but not BK) is still capable of inducing NO production through eNOS phosphorylation at serine 615, 633, and 1177. Interestingly, EPI-induced translocation of eNOS from the plasmalemma was abolished upon Ca2+ depletion. Thus, under Ca2+-free conditions, EPI can stimulate NO synthesis independent of calmodulin binding to eNOS and of its translocation into the cytoplasm. We also examined the effect of EPI on the NO/cGMP/vasodilator-stimulated phosphoprotein (VASP) pathway activation in isolated Ca2+-deprived canine mesenteric arteries. Results demonstrate that under these conditions, EPI induces the activation of this vasorelaxation-related pathway and that this effect is inhibited by pretreatment with nitro-l-arginine methyl ester, suggesting a functional relevance for this phenomenon. PMID:21209365

  11. Heme Oxygenase-1 Inhibits HLA Class I Antibody-Dependent Endothelial Cell Activation

    PubMed Central

    Vijayan, Vijith; Hiller, Oliver; Figueiredo, Constanca; Aljabri, Abid; Blasczyk, Rainer; Theilmeier, Gregor; Becker, Jan Ulrich; Larmann, Jan; Immenschuh, Stephan

    2015-01-01

    Antibody-mediated rejection (AMR) is a key limiting factor for long-term graft survival in solid organ transplantation. Human leukocyte antigen (HLA) class I (HLA I) antibodies (Abs) play a major role in the pathogenesis of AMR via their interactions with HLA molecules on vascular endothelial cells (ECs). The antioxidant enzyme heme oxygenase (HO)-1 has anti-inflammatory functions in the endothelium. As complement-independent effects of HLA I Abs can activate ECs, it was the goal of the current study to investigate the role of HO-1 on activation of human ECs by HLA I Abs. In cell cultures of various primary human macro- and microvascular ECs treatment with monoclonal pan- and allele-specific HLA I Abs up-regulated the expression of inducible proinflammatory adhesion molecules and chemokines (vascular cell adhesion molecule-1 [VCAM-1], intercellular cell adhesion molecule-1 [ICAM-1], interleukin-8 [IL-8] and monocyte chemotactic protein 1 [MCP-1]). Pharmacological induction of HO-1 with cobalt-protoporphyrin IX reduced, whereas inhibition of HO-1 with either zinc-protoporphyrin IX or siRNA-mediated knockdown increased HLA I Ab-dependent up-regulation of VCAM-1. Treatment with two carbon monoxide (CO)-releasing molecules, which liberate the gaseous HO product CO, blocked HLA I Ab-dependent EC activation. Finally, in an in vitro adhesion assay exposure of ECs to HLA I Abs led to increased monocyte binding, which was counteracted by up-regulation of HO-1. In conclusion, HLA I Ab-dependent EC activation is modulated by endothelial HO-1 and targeted induction of this enzyme may be a novel therapeutic approach for the treatment of AMR in solid organ transplantation. PMID:26690352

  12. Phthalimide neovascular factor 1 (PNF1) modulates MT1-MMP activity in human microvascular endothelial cells.

    PubMed

    Wieghaus, Kristen A; Gianchandani, Erwin P; Neal, Rebekah A; Paige, Mikell A; Brown, Milton L; Papin, Jason A; Botchwey, Edward A

    2009-07-01

    We are creating synthetic pharmaceuticals with angiogenic activity and potential to promote vascular invasion. We previously demonstrated that one of these molecules, phthalimide neovascular factor 1 (PNF1), significantly expands microvascular networks in vivo following sustained release from poly(lactic-co-glycolic acid) (PLAGA) films. In addition, to probe PNF1 mode of action, we recently applied a novel pathway-based compendium analysis to a multi-timepoint, controlled microarray data set of PNF1-treated (vs. control) human microvascular endothelial cells (HMVECs), and we identified induction of tumor necrosis factor-alpha (TNF-alpha) and, subsequently, transforming growth factor-beta (TGF-beta) signaling networks by PNF1. Here we validate this microarray data set with quantitative real-time polymerase chain reaction (RT-PCR) analysis. Subsequently, we probe this data set and identify three specific TGF-beta-induced genes with regulation by PNF1 conserved over multiple timepoints-amyloid beta (A4) precursor protein (APP), early growth response 1 (EGR-1), and matrix metalloproteinase 14 (MMP14 or MT1-MMP)-that are also implicated in angiogenesis. We further focus on MMP14 given its unique role in angiogenesis, and we validate MT1-MMP modulation by PNF1 with an in vitro fluorescence assay that demonstrates the direct effects that PNF1 exerts on functional metalloproteinase activity. We also utilize endothelial cord formation in collagen gels to show that PNF1-induced stimulation of endothelial cord network formation in vitro is in some way MT1-MMP-dependent. Ultimately, this new network analysis of our transcriptional footprint characterizing PNF1 activity 1-48 h post-supplementation in HMVECs coupled with corresponding validating experiments suggests a key set of a few specific targets that are involved in PNF1 mode of action and important for successful promotion of the neovascularization that we have observed by the drug in vivo. PMID:19326468

  13. Cyclic stretch induces cyclooxygenase-2 gene expression in vascular endothelial cells via activation of nuclear factor kappa-{beta}

    SciTech Connect

    Zhao, Haige; Hiroi, Toyoko; Hansen, Baranda S.; Rade, Jeffrey J.

    2009-11-27

    Vascular endothelial cells respond to biomechanical forces, such as cyclic stretch and shear stress, by altering gene expression. Since endothelial-derived prostanoids, such as prostacyclin and thromboxane A{sub 2}, are key mediators of endothelial function, we investigated the effects of cyclic stretch on the expression of genes in human umbilical vein endothelial cells controlling prostanoid synthesis: cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), prostacyclin synthase (PGIS) and thromboxane A{sub 2} synthase (TXAS). COX-2 and TXAS mRNAs were upregulated by cyclic stretch for 24 h. In contrast, PGIS mRNA was decreased and stretch had no effect on COX-1 mRNA expression. We further show that stretch-induced upregulation of COX-2 is mediated by activation of the NF-{kappa}{beta} signaling pathway.

  14. Calcium-activated chloride channels in bovine pulmonary artery endothelial cells.

    PubMed Central

    Nilius, B; Prenen, J; Szücs, G; Wei, L; Tanzi, F; Voets, T; Droogmans, G

    1997-01-01

    1. We characterized Ca(2+)-activated Cl- currents in calf pulmonary artery endothelial (CPAE) cells by using a combined patch clamp and fura-2 microfluorescence technique to simultaneously measure ionic currents and the intracellular Ca2+ concentration, [Ca2+]i. 2. Various procedures that increased [Ca2+]i, such as stimulation with ATP or ionomycin, or loading the cells with Ca2+ via the patch pipette, activated a strongly outwardly rectifying current with a reversal potential close to the Cl- equilibrium potential. Changing the extracellular Cl- concentration shifted this reversal potential as predicted for a Cl- current. Buffering Ca2+ rises with BAPTA prevented ATP from activating the current. 3. Ca(2+)-activated Cl- currents could be distinguished from volume-activated Cl- currents, which were sometimes coactivated in the same cell. The latter showed much less outward rectification, their activation was voltage independent, and they could be inhibited by exposing the cells to hypertonic solutions. 4. The permeability ratio for the Ca(2+)-activated conductance of the anions iodide:chloride: gluconate was 1.71 +/- 0.06:1:0.39 +/- 0.03 (n = 12). 5. This Ca(2+)-activated Cl- current, ICl, Ca, inactivated rapidly at negative potentials and activated slowly at positive potentials. Outward tail currents were slowly decaying, while inward tail currents decayed much faster. 6. 4,4'-Diisothiocyanatostilbene-2,2'-disulphonic-acid (DIDS) and niflumic acid inhibited Icl,Ca in a voltage-dependent manner, i.e. they exerted a more potent block at positive potentials. The block by N-phenylanthracilic acid (NPA), 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB) and tamoxifen was voltage independent. Niflumic acid and tamoxifen were the most potent blockers. 7. The single-channel conductance was 7.9 +/- 0.7 pS (n = 15) at 300 mM extracellular Cl-. The channel open probability was high at positive potentials, but very small at negative potentials. 8. It is concluded that [Ca2+]i

  15. Endotoxin induces fibrosis in vascular endothelial cells through a mechanism dependent on transient receptor protein melastatin 7 activity.

    PubMed

    Echeverría, Cesar; Montorfano, Ignacio; Hermosilla, Tamara; Armisén, Ricardo; Velásquez, Luis A; Cabello-Verrugio, Claudio; Varela, Diego; Simon, Felipe

    2014-01-01

    The pathogenesis of systemic inflammatory diseases, including endotoxemia-derived sepsis syndrome, is characterized by endothelial dysfunction. It has been demonstrated that the endotoxin lipopolysaccharide (LPS) induces the conversion of endothelial cells (ECs) into activated fibroblasts through endothelial-to-mesenchymal transition mechanism. Fibrogenesis is highly dependent on intracellular Ca2+ concentration increases through the participation of calcium channels. However, the specific molecular identity of the calcium channel that mediates the Ca2+ influx during endotoxin-induced endothelial fibrosis is still unknown. Transient receptor potential melastatin 7 (TRPM7) is a calcium channel that is expressed in many cell types, including ECs. TRPM7 is involved in a number of crucial processes such as the conversion of fibroblasts into activated fibroblasts, or myofibroblasts, being responsible for the development of several characteristics of them. However, the role of the TRPM7 ion channel in endotoxin-induced endothelial fibrosis is unknown. Thus, our aim was to study whether the TRPM7 calcium channel participates in endotoxin-induced endothelial fibrosis. Using primary cultures of ECs, we demonstrated that TRPM7 is a crucial protein involved in endotoxin-induced endothelial fibrosis. Suppression of TRPM7 expression protected ECs from the fibrogenic process stimulated by endotoxin. Downregulation of TRPM7 prevented the endotoxin-induced endothelial markers decrease and fibrotic genes increase in ECs. In addition, TRPM7 downregulation abolished the endotoxin-induced increase in ECM proteins in ECs. Furthermore, we showed that intracellular Ca2+ levels were greatly increased upon LPS challenge in a mechanism dependent on TRPM7 expression. These results demonstrate that TRPM7 is a key protein involved in the mechanism underlying endotoxin-induced endothelial fibrosis.

  16. Endotoxin Induces Fibrosis in Vascular Endothelial Cells through a Mechanism Dependent on Transient Receptor Protein Melastatin 7 Activity

    PubMed Central

    Echeverría, Cesar; Montorfano, Ignacio; Hermosilla, Tamara; Armisén, Ricardo; Velásquez, Luis A.; Cabello-Verrugio, Claudio; Varela, Diego; Simon, Felipe

    2014-01-01

    The pathogenesis of systemic inflammatory diseases, including endotoxemia-derived sepsis syndrome, is characterized by endothelial dysfunction. It has been demonstrated that the endotoxin lipopolysaccharide (LPS) induces the conversion of endothelial cells (ECs) into activated fibroblasts through endothelial­to­mesenchymal transition mechanism. Fibrogenesis is highly dependent on intracellular Ca2+ concentration increases through the participation of calcium channels. However, the specific molecular identity of the calcium channel that mediates the Ca2+ influx during endotoxin-induced endothelial fibrosis is still unknown. Transient receptor potential melastatin 7 (TRPM7) is a calcium channel that is expressed in many cell types, including ECs. TRPM7 is involved in a number of crucial processes such as the conversion of fibroblasts into activated fibroblasts, or myofibroblasts, being responsible for the development of several characteristics of them. However, the role of the TRPM7 ion channel in endotoxin-induced endothelial fibrosis is unknown. Thus, our aim was to study whether the TRPM7 calcium channel participates in endotoxin-induced endothelial fibrosis. Using primary cultures of ECs, we demonstrated that TRPM7 is a crucial protein involved in endotoxin-induced endothelial fibrosis. Suppression of TRPM7 expression protected ECs from the fibrogenic process stimulated by endotoxin. Downregulation of TRPM7 prevented the endotoxin-induced endothelial markers decrease and fibrotic genes increase in ECs. In addition, TRPM7 downregulation abolished the endotoxin-induced increase in ECM proteins in ECs. Furthermore, we showed that intracellular Ca2+ levels were greatly increased upon LPS challenge in a mechanism dependent on TRPM7 expression. These results demonstrate that TRPM7 is a key protein involved in the mechanism underlying endotoxin-induced endothelial fibrosis. PMID:24710004

  17. Endotoxin induces fibrosis in vascular endothelial cells through a mechanism dependent on transient receptor protein melastatin 7 activity.

    PubMed

    Echeverría, Cesar; Montorfano, Ignacio; Hermosilla, Tamara; Armisén, Ricardo; Velásquez, Luis A; Cabello-Verrugio, Claudio; Varela, Diego; Simon, Felipe

    2014-01-01

    The pathogenesis of systemic inflammatory diseases, including endotoxemia-derived sepsis syndrome, is characterized by endothelial dysfunction. It has been demonstrated that the endotoxin lipopolysaccharide (LPS) induces the conversion of endothelial cells (ECs) into activated fibroblasts through endothelial-to-mesenchymal transition mechanism. Fibrogenesis is highly dependent on intracellular Ca2+ concentration increases through the participation of calcium channels. However, the specific molecular identity of the calcium channel that mediates the Ca2+ influx during endotoxin-induced endothelial fibrosis is still unknown. Transient receptor potential melastatin 7 (TRPM7) is a calcium channel that is expressed in many cell types, including ECs. TRPM7 is involved in a number of crucial processes such as the conversion of fibroblasts into activated fibroblasts, or myofibroblasts, being responsible for the development of several characteristics of them. However, the role of the TRPM7 ion channel in endotoxin-induced endothelial fibrosis is unknown. Thus, our aim was to study whether the TRPM7 calcium channel participates in endotoxin-induced endothelial fibrosis. Using primary cultures of ECs, we demonstrated that TRPM7 is a crucial protein involved in endotoxin-induced endothelial fibrosis. Suppression of TRPM7 expression protected ECs from the fibrogenic process stimulated by endotoxin. Downregulation of TRPM7 prevented the endotoxin-induced endothelial markers decrease and fibrotic genes increase in ECs. In addition, TRPM7 downregulation abolished the endotoxin-induced increase in ECM proteins in ECs. Furthermore, we showed that intracellular Ca2+ levels were greatly increased upon LPS challenge in a mechanism dependent on TRPM7 expression. These results demonstrate that TRPM7 is a key protein involved in the mechanism underlying endotoxin-induced endothelial fibrosis. PMID:24710004

  18. Cell adhesion molecules as a marker reflecting the reduction of endothelial activation induced by glucocorticoids.

    PubMed

    Leone, Marc; Boutière-Albanèse, Brigitte; Valette, Sarah; Camoin-Jau, Laurence; Barrau, Karine; Albanèse, Jacques; Martin, Claude; Dignat-George, Françoise

    2004-04-01

    In vitro, steroids down-regulate the expression of cell adhesion molecules (CAMs) in endothelial cells stimulated by lipopolysaccharide. Low-dose hydrocortisone is a new treatment of patients with septic shock, a state that is characterized by an endothelial injury. The aim of the present study was to investigate whether the plasma levels of soluble CAMs, reflecting in vivo endothelial activation, could be modulated in patients with septic shock treated by hydrocortisone. This was a prospective and observational study conducted in the intensive care unit at a university hospital. The subjects included 40 patients with septic shock (American College of Chest Physicians Consensus Conference/Society of Critical Care Medicine definition); 45 healthy blood donors served as controls. The patients receiving the standard care ("reference group") during the first 6 months were compared with the patients receiving the hydrocortisone therapy ("hydrocortisone group") for the next 6 months. Measurements of sCAMs were performed on days 1 and 3 of the disease. On day 1, sE-selectin, sP-selectin, sVCAM-1, and sICAM-1 were significantly elevated in patients with septic shock compared with healthy donors. sE-selectin levels significantly decreased between days 1 and 3 in the "hydrocortisone group," whereas there was no significant change in the "reference group". Surprisingly, sICAM-1 levels significantly increased between days 1 and 3 only in patients treated by hydrocortisone. No significant changes were observed for sP-selectin and sVCAM-1 levels in the two groups. In patients with septic shock, glucocorticoids differently affected the pattern of evolution of sCAMs, with sE-selectin being decreased and sICAM-1 being increased. Expression of sP-selectin and sVCAM-1 was not affected.

  19. Soluble tissue factor has unique angiogenic activities that selectively promote migration and differentiation but not proliferation of endothelial cells

    SciTech Connect

    He Yingbo; Chang Guodong; Zhan Shunli; Song Xiaomin; Wang Xiaofeng; Luo Yongzhang

    2008-06-06

    The level of circulating tissue factor (TF) is up-regulated in human angiogenesis-related malignancies. However, whether circulating TF has angiogenic activities has not been determined. Soluble TF (sTF) is the main domain of circulating TF. Here, using cell migration, wound healing, and tubule formation assays, human recombinant sTF was found to significantly promote the migration and differentiation of endothelial cells. The stress fiber formation and rearrangement induced by sTF observed through immunofluorescence microscope may be responsible for the stimulatory migration effect of sTF. Nevertheless, sTF had no effects on endothelial cell proliferation. Interestingly, sTF can be internalized by endothelial cells, which implies a novel mechanism for sTF in angiogenesis. These results suggest that sTF has unique angiogenic activities and may serve as a potential therapeutic target to treat diseases associated with angiogenesis such as cancer and rheumatoid arthritis.

  20. Molecular mechanisms that control endothelial cell contacts.

    PubMed

    Vestweber, D

    2000-02-01

    Endothelial cell contacts control the permeability of the blood vessel wall. This allows the endothelium to form a barrier for solutes, macromolecules, and leukocytes between the vessel lumen and the interstitial space. Loss of this barrier function in pathophysiological situations can lead to extracellular oedema. The ability of leukocytes to enter tissue at sites of inflammation is dependent on molecular mechanisms that allow leukocytes to adhere to the endothelium and to migrate through the endothelial cell layer and the underlying basal lamina. It is a commonly accepted working hypothesis that inter-endothelial cell contacts are actively opened and closed during this process. Angiogenesis is another important process that requires well-controlled regulation of inter-endothelial cell contacts. The formation of new blood vessels by sprouting from pre-existing vessels depends on the loosening of established endothelial cell contacts and the migration of endothelial cells that form the outgrowing sprouts. This review focuses on the molecular composition of endothelial cell surface proteins and proteins of the cytoskeletal undercoat of the plasma membrane at sites of inter-endothelial cell contacts and discusses the current knowledge about the potential role of such molecules in the regulation of endothelial cell contacts. PMID:10685062

  1. Polyphenolic composition of grape stem extracts affects antioxidant activity in endothelial and muscle cells

    PubMed Central

    GOUTZOURELAS, NIKOLAOS; STAGOS, DIMITRIOS; SPANIDIS, YPATIOS; LIOSI, MARIA; APOSTOLOU, ANNA; PRIFTIS, ALEXANDROS; HAROUTOUNIAN, SERKO; SPANDIDOS, DEMETRIOS A.; TSATSAKIS, ARISTIDIS M.; KOURETAS, DEMETRIOS

    2015-01-01

    The aim of the present study was the assessment of the antioxidant effects of polyphenolic extracts derived from the stems of three Greek grape varieties (Moshomayro, Mavrotragano and Mandilaria) in endothelial (EA.hy926) and muscle (C2C12) cells. We also investigated the effects of the polyphenolic composition on the antioxidant effects of the grape stem extracts. For this purpose, the endothelial and muscle cells were treated with low non-cytotoxic concentrations of the extracts for 24 h in order to assess the effects of the extracts on cellular redox status using oxidative stress biomarkers. The oxidative stress markers were thiobarbituric acid reactive substances (TBARS), protein carbonyl (CARB) levels, reactive oxygen species (ROS) levels and glutathione (GSH) levels. The results revealed that treatment of the EA.hy926 cells with Mandilaria extract significantly decreased the TBARS levels by 14.8% and the CARB levels by 25.9 %, while it increased the GSH levels by 15.8% compared to the controls. Moreover, treatment of the EA.hy926 cells with Mavrotragano extract significantly increased the GSH levels by 20.2%, while it significantly decreased the TBARS and CARB levels by 12.5% and 16.6%, respectively. Treatment of the C2C12 cells with Mandilaria extract significantly decreased the TBARS levels by 47.3 %, the CARB levels by 39.0 % and the ROS levels by 21.8%, while it increased the GSH levels by 22.6% compared to the controls. Moreover, treatment of the C2C12 cells with Mavrotragano significantly decreased the TBARS, CARB and ROS levels by 36.2%, 35.9% and 16.5%, respectively. In conclusion, to the best of our knowledgel, our results demonstrate for the first time that treatment with grape stem extracts at low concentrations improves the redox status of endothelial and muscle cells. Thus, grape stem extracts may be used for developing antioxidant food supplements or biofunctional foods. However, it was also found that the polyphenolic composition of grape stem

  2. Polyphenolic composition of grape stem extracts affects antioxidant activity in endothelial and muscle cells.

    PubMed

    Goutzourelas, Nikolaos; Stagos, Dimitrios; Spanidis, Ypatios; Liosi, Maria; Apostolou, Anna; Priftis, Alexandros; Haroutounian, Serko; Spandidos, Demetrios A; Tsatsakis, Aristidis M; Kouretas, Demetrios

    2015-10-01

    The aim of the present study was the assessment of the antioxidant effects of polyphenolic extracts derived from the stems of three Greek grape varieties (Moshomayro, Mavrotragano and Mandilaria) in endothelial (EA.hy926) and muscle (C2C12) cells. We also investigated the effects of the polyphenolic composition on the antioxidant effects of the grape stem extracts. For this purpose, the endothelial and muscle cells were treated with low non-cytotoxic concentrations of the extracts for 24 h in order to assess the effects of the extracts on cellular redox status using oxidative stress biomarkers. The oxidative stress markers were thiobarbituric acid reactive substances (TBARS), protein carbonyl (CARB) levels, reactive oxygen species (ROS) levels and glutathione (GSH) levels. The results revealed that treatment of the EA.hy926 cells with Mandilaria extract significantly decreased the TBARS levels by 14.8% and the CARB levels by 25.9 %, while it increased the GSH levels by 15.8% compared to the controls. Moreover, treatment of the EA.hy926 cells with Mavrotragano extract significantly increased the GSH levels by 20.2%, while it significantly decreased the TBARS and CARB levels by 12.5% and 16.6%, respectively. Treatment of the C2C12 cells with Mandilaria extract significantly decreased the TBARS levels by 47.3 %, the CARB levels by 39.0 % and the ROS levels by 21.8%, while it increased the GSH levels by 22.6% compared to the controls. Moreover, treatment of the C2C12 cells with Mavrotragano significantly decreased the TBARS, CARB and ROS levels by 36.2%, 35.9% and 16.5%, respectively. In conclusion, to the best of our knowledgel, our results demonstrate for the first time that treatment with grape stem extracts at low concentrations improves the redox status of endothelial and muscle cells. Thus, grape stem extracts may be used for developing antioxidant food supplements or biofunctional foods. However, it was also found that the polyphenolic composition of grape stem

  3. Polyphenolic composition of grape stem extracts affects antioxidant activity in endothelial and muscle cells.

    PubMed

    Goutzourelas, Nikolaos; Stagos, Dimitrios; Spanidis, Ypatios; Liosi, Maria; Apostolou, Anna; Priftis, Alexandros; Haroutounian, Serko; Spandidos, Demetrios A; Tsatsakis, Aristidis M; Kouretas, Demetrios

    2015-10-01

    The aim of the present study was the assessment of the antioxidant effects of polyphenolic extracts derived from the stems of three Greek grape varieties (Moshomayro, Mavrotragano and Mandilaria) in endothelial (EA.hy926) and muscle (C2C12) cells. We also investigated the effects of the polyphenolic composition on the antioxidant effects of the grape stem extracts. For this purpose, the endothelial and muscle cells were treated with low non-cytotoxic concentrations of the extracts for 24 h in order to assess the effects of the extracts on cellular redox status using oxidative stress biomarkers. The oxidative stress markers were thiobarbituric acid reactive substances (TBARS), protein carbonyl (CARB) levels, reactive oxygen species (ROS) levels and glutathione (GSH) levels. The results revealed that treatment of the EA.hy926 cells with Mandilaria extract significantly decreased the TBARS levels by 14.8% and the CARB levels by 25.9 %, while it increased the GSH levels by 15.8% compared to the controls. Moreover, treatment of the EA.hy926 cells with Mavrotragano extract significantly increased the GSH levels by 20.2%, while it significantly decreased the TBARS and CARB levels by 12.5% and 16.6%, respectively. Treatment of the C2C12 cells with Mandilaria extract significantly decreased the TBARS levels by 47.3 %, the CARB levels by 39.0 % and the ROS levels by 21.8%, while it increased the GSH levels by 22.6% compared to the controls. Moreover, treatment of the C2C12 cells with Mavrotragano significantly decreased the TBARS, CARB and ROS levels by 36.2%, 35.9% and 16.5%, respectively. In conclusion, to the best of our knowledgel, our results demonstrate for the first time that treatment with grape stem extracts at low concentrations improves the redox status of endothelial and muscle cells. Thus, grape stem extracts may be used for developing antioxidant food supplements or biofunctional foods. However, it was also found that the polyphenolic composition of grape stem

  4. NRP1 Regulates CDC42 Activation to Promote Filopodia Formation in Endothelial Tip Cells.

    PubMed

    Fantin, Alessandro; Lampropoulou, Anastasia; Gestri, Gaia; Raimondi, Claudio; Senatore, Valentina; Zachary, Ian; Ruhrberg, Christiana

    2015-06-16

    Sprouting blood vessels are led by filopodia-studded endothelial tip cells that respond to angiogenic signals. Mosaic lineage tracing previously revealed that NRP1 is essential for tip cell function, although its mechanistic role in tip cells remains poorly defined. Here, we show that NRP1 is dispensable for genetic tip cell identity. Instead, we find that NRP1 is essential to form the filopodial bursts that distinguish tip cells morphologically from neighboring stalk cells, because it enables the extracellular matrix (ECM)-induced activation of CDC42, a key regulator of filopodia formation. Accordingly, NRP1 knockdown and pharmacological CDC42 inhibition similarly impaired filopodia formation in vitro and in developing zebrafish in vivo. During mouse retinal angiogenesis, CDC42 inhibition impaired tip cell and vascular network formation, causing defects that resembled those due to loss of ECM-induced, but not VEGF-induced, NRP1 signaling. We conclude that NRP1 enables ECM-induced filopodia formation for tip cell function during sprouting angiogenesis. PMID:26051942

  5. Interleukin 1 stimulates platelet-activating factor production in cultured human endothelial cells.

    PubMed Central

    Bussolino, F; Breviario, F; Tetta, C; Aglietta, M; Mantovani, A; Dejana, E

    1986-01-01

    Monocyte-derived interleukin 1 (IL-1) was found to be a potent inducer of platelet-activating factor (PAF) in cultured human vascular endothelial cells (HEC). The product was identified as PAF by its behavior in chromatographic systems, its recovery of biological activity, and its physico-chemical properties and susceptibility to lipases. The response of HEC to IL-1 was concentration-dependent, took more than 2 h to become apparent, and decreased after 18 h of incubation. Most of the PAF produced was cell-associated and only a small amount (about 25% of the total) was released in the culture medium. To study the mechanism of IL-1-induced HEC-PAF production we tested the activity of 1-O-alkyl-sn-glycero-3-phosphocholine:acetyl/coenzyme A acetyltransferase in HEC. Acetyltransferase activity measured in IL-1-stimulated HEC lysates showed a three to five times greater maximum velocity, but the same Michaelis constant, as untreated cells. The regulation of PAF generation in HEC by IL-1 may be an important aspect of the two-way interaction between immunocompetent cells and vascular tissue. PMID:2872233

  6. Nuclear localization of catalytically active MMP-2 in endothelial cells and neurons

    PubMed Central

    Sinha, Satyesh K; Asotra, Kamlesh; Uzui, Hiroyasu; Nagwani, Santosh; Mishra, Vivek; Rajavashisth, Tripathi B

    2014-01-01

    From microscopic organelles and sub-cellular domains to the level of whole tissues, organs, and body parts, living organisms must continuously maintain and renovate structural components. Matrix metalloproteinases (MMPs) comprise a family of over two dozen Zn-dependent endopeptidases thought to be primary effectors of extracellular tissue renewal and remodeling processes. Endogenous inhibitors, particularly the tissue inhibitors of MMPs (TIMPs), counteract MMP-2 proteolytic activity, but also participate in conversion of several pro-MMPs to proteolytically active forms. Numerous pathologies are characterized by imbalances in activities of MMPs relative to TIMPs. MMPs are synthesized and stored in cytoplasmic domains prior to secretion or expression in cell surface-associated form. Several proteases have been identified in cell nuclei, but their functions, regulation, and substrates remain largely unknown. Here we showed that the catalytically active gelatinase MMP-2 is expressed in nuclei of endothelial cells and neurons, but not in glial or Schwannoma cell lines, in a pattern resembling nuclear speckles, and colocalizes with TIMP-1. PMID:24489995

  7. Oxidized glutathione mediates cation channel activation in calf vascular endothelial cells during oxidant stress.

    PubMed

    Koliwad, S K; Elliott, S J; Kunze, D L

    1996-08-15

    1. The oxidant, tert-butylhydroperoxide (tBuOOH) depolarizes calf pulmonary artery endothelial cells by activating a non-selective cation channel. To identify the molecular mediator of channel activation during oxidant stress, the patch-clamp technique was used to compare tBuOOH-induced changes in membrane potential and channel activity with those induced by oxidized glutathione (GSSG), a cytosolic product of oxidant metabolism. 2. When recording pipettes contained GSSG (2 mM), whole-cell zero-current potential measured immediately following pipette break-in was not different from control values (-57 mV). However, within 20 min of break-in, zero-current potential was depolarized to -7 mV. The time course of depolarization was dependent on the concentration of GSSG and was accelerated by inhibition of GSSG metabolism. 3. In excised membrane patches, channels were activated by internal GSSG, but not by internal tBuOOH, reduced glutathione (GSH), or external GSSG. Channels were equal in size (28 pS) and in ionic selectivity to those activated by incubation of intact cells with tBuOOH. As little as 20 microM GSSG was sufficient to maximally activate channels. However, the time course of channel activation was concentration dependent between 20 microM and 2 mM GSSG. 4. Channel activation by GSSG was reversed by GSH and by increasing the [GSH]:[GSSG] ratio. Likewise, channel activation by pre-incubation of intact cells with tBuOOH was reversed by GSH applied after patch excision. 5. These results strongly suggest that GSSG is an endogenous intracellular mediator of channel activation and depolarization during oxidant stress. PMID:8866350

  8. Regulation of plasminogen activator inhibitor-1 expression in endothelial cells with exposure to metal nanoparticles.

    PubMed

    Yu, Min; Mo, Yiqun; Wan, Rong; Chien, Sufan; Zhang, Xing; Zhang, Qunwei

    2010-05-19

    Recent studies demonstrated that exposure to nanoparticles could enhance the adhesion of endothelial cells and modify the membrane structure of vascular endothelium. The endothelium plays an important role in the regulation of fibrinolysis, and imbalance of the fibrinolysis system potential contributes to the development of thrombosis. Plasminogen activator inhibitor-1 (PAI-1) is the most potent endogenous inhibitor of fibrinolysis and is involved in the pathogenesis of several cardiovascular diseases. The aim of this study was to investigate the alteration of PAI-1 expression in mouse pulmonary microvascular endothelial cells (MPMVEC) exposed to the metal nanoparticles that are known to be reactive, and the potential underlying mechanisms. We compared the alteration of PAI-1 expression in MPMVEC exposed to non-toxic doses of nano-size copper (II) oxide (Nano-CuO) and nano-size titanium dioxide (Nano-TiO(2)). Our results showed that Nano-CuO caused a dose- and time-dependent increase in PAI-1 expression. Moreover, exposure of MPMVEC to Nano-CuO caused reactive oxygen species (ROS) generation that was abolished by pre-treatment of cells with ROS scavengers or inhibitors, DPI, NAC and catalase. Exposure of MPMVEC to Nano-CuO also caused a dose- and time-dependent increase in p38 phosphorylation by Western blot. These effects were significantly attenuated when MPMVEC were pre-treated with DPI, NAC and catalase. To further investigate the role of p38 phosphorylation in Nano-CuO-induced PAI-1 overexpression, the p38 inhibitor, SB203580, was used to pre-treat cells prior to Nano-CuO exposure. We found that Nano-CuO-induced overexpression of PAI-1 was attenuated by p38 inhibitor pre-treatment. However, Nano-TiO(2) did not show the same results. Our results suggest that Nano-CuO caused up-regulation of PAI-1 in endothelial cells is mediated by p38 phosphorylation due to oxidative stress. These findings have important implications for understanding the potential health

  9. Extracellular signal-regulated kinases 1 and 2 activation in endothelial cells exposed to cyclic strain

    NASA Technical Reports Server (NTRS)

    Ikeda, M.; Takei, T.; Mills, I.; Kito, H.; Sumpio, B. E.

    1999-01-01

    The aim of this study was to determine whether extracellular signal-regulated kinases 1/2 (ERK1/ERK2) are activated and might play a role in enhanced proliferation and morphological change induced by strain. Bovine aortic endothelial cells (BAEC) were subjected to an average of 6 or 10% strain at a rate of 60 cycles/min for up to 4 h. Cyclic strain caused strain- and time-dependent phosphorylation and activation of ERK1/ERK2. Peak phosphorylation and activation of ERK1/ERK2 induced by 10% strain were at 10 min. A specific ERK1/ERK2 kinase inhibitor, PD-98059, inhibited phosphorylation and activation of ERK1/ERK2 but did not inhibit the increased cell proliferation and cell alignment induced by strain. Treatment of BAEC with 2,5-di-tert-butyl-1, 4-benzohydroquinone, to deplete inositol trisphosphate-sensitive calcium storage, and gadolinium chloride, a Ca2+ channel blocker, did not inhibit the activation of ERK1/ERK2. Strain-induced ERK1/ERK2 activation was partly inhibited by the protein kinase C inhibitor calphostin C and completely inhibited by the tyrosine kinase inhibitor genistein. These data suggest that 1) ERK1/ERK2 are not critically involved in the strain-induced cell proliferation and orientation, 2) strain-dependent activation of ERK1/ERK2 is independent of intracellular and extracellular calcium mobilization, and 3) protein kinase C activation and tyrosine kinase regulate strain-induced activation of ERK1/ERK2.

  10. Monocyte exosomes induce adhesion molecules and cytokines via activation of NF-κB in endothelial cells.

    PubMed

    Tang, Norina; Sun, Bing; Gupta, Archana; Rempel, Hans; Pulliam, Lynn

    2016-09-01

    HIV-infected individuals have activated monocytes with an IFNα phenotype and elevated levels of circulating LPS. These individuals also have a risk of premature cardiovascular disease. The effect of activated monocyte exosomes (Exos) on endothelial cells is unknown. To determine whether Exos from immune-activated monocytes could alter endothelial cell expression and contribute to monocyte/macrophage transmigration and adhesion, we isolated Exos from monocytes stimulated with IFNα, LPS, or both (I/L). We show that monocyte Exos contain different inflammatory microRNA cargo depending on stimulation. When LPS Exos or I/L Exos were added to HUVECs, we found a significant increase in adhesion molecule ICAM-1, chemokine ligand (CCL)-2, and cytokine IL-6 mRNAs and proteins compared with cells treated with IFNα Exos or Exos derived from unstimulated monocytes. Inhibition of transcription factor NF-κB, a common inflammatory cytokine pathway, prevented induction of CCL2, IL6, and ICAM1 Inhibition of TLR4 resulted in differential blockage of the targets. Our results demonstrate for the first time that primary human monocyte Exos enter endothelial cells and cause dysfunction via the TLR4 and NF-κB pathways, which may contribute to heart disease in HIV infection and other diseases involving chronic immune activation.-Tang, N., Sun, B., Gupta, A., Rempel, H., Pulliam, L. Monocyte exosomes induce adhesion molecules and cytokines via activation of NF-κB in endothelial cells. PMID:27226520

  11. Weibel-Palade body size modulates the adhesive activity of its von Willebrand Factor cargo in cultured endothelial cells.

    PubMed

    Ferraro, Francesco; Mafalda Lopes da, Silva; Grimes, William; Lee, Hwee Kuan; Ketteler, Robin; Kriston-Vizi, Janos; Cutler, Daniel F

    2016-01-01

    Changes in the size of cellular organelles are often linked to modifications in their function. Endothelial cells store von Willebrand Factor (vWF), a glycoprotein essential to haemostasis in Weibel-Palade bodies (WPBs), cigar-shaped secretory granules that are generated in a wide range of sizes. We recently showed that forcing changes in the size of WPBs modifies the activity of this cargo. We now find that endothelial cells treated with statins produce shorter WPBs and that the vWF they release at exocytosis displays a reduced capability to recruit platelets to the endothelial cell surface. Investigating other functional consequences of size changes of WPBs, we also report that the endothelial surface-associated vWF formed at exocytosis recruits soluble plasma vWF and that this process is reduced by treatments that shorten WPBs, statins included. These results indicate that the post-exocytic adhesive activity of vWF towards platelets and plasma vWF at the endothelial surface reflects the size of their storage organelle. Our findings therefore show that changes in WPB size, by influencing the adhesive activity of its vWF cargo, may represent a novel mode of regulation of platelet aggregation at the vascular wall. PMID:27576551

  12. Weibel-Palade body size modulates the adhesive activity of its von Willebrand Factor cargo in cultured endothelial cells

    PubMed Central

    Ferraro, Francesco; Mafalda Lopes da, Silva; Grimes, William; Lee, Hwee Kuan; Ketteler, Robin; Kriston-Vizi, Janos; Cutler, Daniel F.

    2016-01-01

    Changes in the size of cellular organelles are often linked to modifications in their function. Endothelial cells store von Willebrand Factor (vWF), a glycoprotein essential to haemostasis in Weibel-Palade bodies (WPBs), cigar-shaped secretory granules that are generated in a wide range of sizes. We recently showed that forcing changes in the size of WPBs modifies the activity of this cargo. We now find that endothelial cells treated with statins produce shorter WPBs and that the vWF they release at exocytosis displays a reduced capability to recruit platelets to the endothelial cell surface. Investigating other functional consequences of size changes of WPBs, we also report that the endothelial surface-associated vWF formed at exocytosis recruits soluble plasma vWF and that this process is reduced by treatments that shorten WPBs, statins included. These results indicate that the post-exocytic adhesive activity of vWF towards platelets and plasma vWF at the endothelial surface reflects the size of their storage organelle. Our findings therefore show that changes in WPB size, by influencing the adhesive activity of its vWF cargo, may represent a novel mode of regulation of platelet aggregation at the vascular wall. PMID:27576551

  13. In vitro culture of coxsackievirus group B, type 3 immune spleen cells on infected endothelial cells and biological activity of the cultured cells in vivo.

    PubMed Central

    Huber, S A; Job, L P; Woodruff, J F

    1984-01-01

    Spleen cells from male BALB/c mice infected 7 days earlier by an intraperitoneal injection of 3 X 10(4) PFU of a myocarditic strain of coxsackievirus B-3 lysed virus-infected endothelial cells in a 51Cr release assay. Cytotoxic activity in the in vivo sensitized spleen cell population could be further increased by culturing the immune spleen cells from infected mice on virus-infected or uninfected endothelial cells for 6 to 7 days in vitro. Cytotoxicity of in vitro cultured spleen cells to infected targets was mediated by T lymphocytes since reactivity was abolished by treatment of the spleen cells with anti-thy 1.2 serum and complement. Reciprocal assays with BALB/c and C57BL cells indicated that maximum cytotoxicity occurred when spleen cells were sensitized on syngeneic endothelial cells. Other experiments showed that spleen cells sensitized to coxsackievirus B-3 or encephalomyocarditis virus were selectively cytolytic to targets infected with the homologous virus. Adoptive transfer of T cells cultured in vitro on infected endothelial cells retained their ability to induce myocarditis in T-lymphocyte-deficient mice. Images PMID:6319285

  14. Troglitazone inhibits endothelial cell proliferation through suppression of casein kinase 2 activity

    SciTech Connect

    Lee, Kuy-Sook; Park, Jin-Hee; Lee, Seahyoung; Lim, Hyun-Joung; Jang, Yangsoo; Park, Hyun-Young . E-mail: hypark65@nih.go.kr

    2006-07-21

    Troglitazone, an agonist of peroxisome proliferator activated receptor{gamma} (PPAR{gamma}), has been reported to inhibit endothelial cell proliferation by suppressing Akt activation. Recently, it has been also proposed that phosphatase and tensin homolog deleted from chromosome 10 (PTEN) plays an important role in such effect of troglitazone. However, the mechanism of how troglitazone regulates PTEN remains to be elucidated. We therefore investigated the effects of troglitazone on casein kinase 2 (CK2), which is known to negatively regulate PTEN activity. Troglitazone significantly inhibited serum-induced proliferation of HUVEC in a concentration dependent manner. Serum-induced Akt and its downstream signaling pathway activation was attenuated by troglitazone (10 {mu}M) pretreatment. The phosphorylation of PTEN, which was directly related to Akt activation, was decreased with troglitazone pretreatment and was inversely proportional to CK2 activity. DRB, a CK2 inhibitor, also showed effects similar to that of troglitazone on Akt and its downstream signaling molecules. In conclusion, our results suggest that troglitazone inhibits proliferation of HUVECs through suppression of CK2 activity rendering PTEN to remain activated, and this effect of troglitazone in HUVECs seems to be PPAR{gamma} independent.

  15. Impact of simulated microgravity on the secretory and adhesive activity of cultured human vascular endothelial cells.

    NASA Astrophysics Data System (ADS)

    Rudimov, Evgeny; Buravkova, Ludmila; Pogodina, Margarita; Andrianova, Irina

    The layer of vascular endothelial cells (ECs) is a dynamic,disseminated organ that perform the function of an interface between the blood and vascular wall. The endothelial monolayer is able to quickly respond to changes in the microenvironment due to its synthesis of vasoactive substances, chemokines, adhesion molecules expression, etc. ECs are highly sensitive to gravitational changes and capable of short-term and long-term responses (Sangha et al., 2001; Buravkova et al., 2005; Infanger et al., 2006, 2007. However, the question remains how to reflect the impact of microgravity on endothelium under the inflammatory process. Therefore, the aim of this study was to investigate secretory and adhesive activity of human umbilical vein endothelial cells (HUVECs) during simulated microgravity and TNF-a activation. HUVECs were isolated according to Gimbrone et al. (1978) in modification A. Antonov (1981) and used for experiments at 2-4 passages. HUVECs were activated by low level of TNF-a (2 ng/ml). Microgravity was generated by Random Positioning Machine (RPM, Dutch Space, Leiden) placed into the thermostat at 37°C. After 24 hours of clinorotation we measured adhesion molecules expression on the cell surface (ICAM-1, VCAM-1, PECAM-1, E-selectin, CD144, endoglin (CD105)) and cell viability using a flow cytometry. To evaluate the level of target gene expression was used the real time RT-PCR. IL-6 and IL-8 concentration was measured in the conditioned medium of HUVECs by using the ELISA test. We found that simulated microgravity within 24 hours caused a decrease of ICAM-1, CD144, and E-selectin expression, at the same time not affect the cell viability, endoglin and PECAM-1 expression on the surface HUVEC. Furthermore, there were no changes of the level of IL-6 and IL-8 gene expression and their products in the culture medium. TNF-activated HUVECs showed an increase in gene expression of interleukins and molecules involved in the adhesion process, which also was confirmed

  16. Differential Activation of Acid Sphingomyelinase and Ceramide Release Determines Invasiveness of Neisseria meningitidis into Brain Endothelial Cells

    PubMed Central

    Simonis, Alexander; Hebling, Sabrina; Gulbins, Erich; Schneider-Schaulies, Sibylle; Schubert-Unkmeir, Alexandra

    2014-01-01

    The interaction with brain endothelial cells is central to the pathogenicity of Neisseria meningitidis infections. Here, we show that N. meningitidis causes transient activation of acid sphingomyelinase (ASM) followed by ceramide release in brain endothelial cells. In response to N. meningitidis infection, ASM and ceramide are displayed at the outer leaflet of the cell membrane and condense into large membrane platforms which also concentrate the ErbB2 receptor. The outer membrane protein Opc and phosphatidylcholine-specific phospholipase C that is activated upon binding of the pathogen to heparan sulfate proteoglycans, are required for N. meningitidis-mediated ASM activation. Pharmacologic or genetic ablation of ASM abrogated meningococcal internalization without affecting bacterial adherence. In accordance, the restricted invasiveness of a defined set of pathogenic isolates of the ST-11/ST-8 clonal complex into brain endothelial cells directly correlated with their restricted ability to induce ASM and ceramide release. In conclusion, ASM activation and ceramide release are essential for internalization of Opc-expressing meningococci into brain endothelial cells, and this segregates with invasiveness of N. meningitidis strains. PMID:24945304

  17. Culture of human endothelial cells.

    PubMed

    Gallicchio, M A

    2001-01-01

    Endothelial cells line the luminal surface of all blood vessels in the body. The endothelial surface in adult humans is composed of approximately l-6×l0(13) cells and covers an area of 1-7 m(2). Endothelium serves many functions, including fluid and solute exchange through cell contraction, provision of an antithrombogenic surface through tissue plasminogen activator (tPA) and prostacyclin release, synthesis of angiogenic factors such as adenosine, allowance of leukocyte trafficking through adhesion molecule synthesis, presentation of antigens to the immune system, maintenance of vascular tone through nitric oxide and endothelin synthesis, and metabolism of circulating molecules through the release of enzymes such as lipoprotein lipase. PMID:21340938

  18. Induction of oxidative stress, lysosome activation and autophagy by nanoparticles in human brain-derived endothelial cells.

    PubMed

    Halamoda Kenzaoui, Blanka; Chapuis Bernasconi, Catherine; Guney-Ayra, Seher; Juillerat-Jeanneret, Lucienne

    2012-02-01

    Different types of NPs (nanoparticles) are currently under development for diagnostic and therapeutic applications in the biomedical field, yet our knowledge about their possible effects and fate in living cells is still limited. In the present study, we examined the cellular response of human brain-derived endothelial cells to NPs of different size and structure: uncoated and oleic acid-coated iron oxide NPs (8-9 nm core), fluorescent 25 and 50 nm silica NPs, TiO2 NPs (21 nm mean core diameter) and PLGA [poly(lactic-co-glycolic acid)]-PEO [poly(ethylene oxide)] polymeric NPs (150 nm). We evaluated their uptake by the cells, and their localization, generation of oxidative stress and DNA-damaging effects in exposed cells. We show that NPs are internalized by human brain-derived endothelial cells; however, the extent of their intracellular uptake is dependent on the characteristics of the NPs. After their uptake by human brain-derived endothelial cells NPs are transported into the lysosomes of these cells, where they enhance the activation of lysosomal proteases. In brain-derived endothelial cells, NPs induce the production of an oxidative stress after exposure to iron oxide and TiO2 NPs, which is correlated with an increase in DNA strand breaks and defensive mechanisms that ultimately induce an autophagy process in the cells. PMID:22026563

  19. Platelet activating factors alters calcium homeostasis in cultured vascular endothelial cells

    SciTech Connect

    Brock, T.A.; Gimbrone, M.A. Jr.

    1986-06-01

    Platelet activating factor (1-O-alkyl-2-acetyl-sn-glycerol-3-phosphorylcholine; PAF), a potent in vivo mediator of allergic and inflammatory reactions, induced a rapid (onset less than 30 s), concentration-dependent (threshold approximately 10(-11) M, half-maximal approximately 10(-10) M, maximal approximately 10(-8)-10(-7) M) efflux of /sup 45/Ca/sup 2 +/ from preloaded cultured bovine aortic endothelial cells (BAEC). In contrast, deacetylated and other PAF analogues were essentially ineffective. PAF (10(-7) M) was also shown to increase cytosolic free calcium (49 +/- 5%) in suspensions of quin 2 (calcium-sensitive fluorescent dye)-loaded BAEC. PAF-stimulated /sup 45/Ca/sup 2 +/ efflux was not blocked by aspirin treatment (100 or 500 microM, 30 min). In the absence of external calcium, PAF was still highly effective in stimulating unidirectional /sup 45/Ca/sup 2 +/ efflux, thus suggesting that PAF mobilized a sequestered pool of intracellular calcium. CV-3988, a PAF antagonist, inhibited PAF-stimulated /sup 45/Ca/sup 2 +/ efflux in a dose-dependent manner. Pretreatment of BAEC with PAF (10(-8) M, 15 min), but not with other PAF analogues, resulted in a decrease in subsequent PAF-stimulated /sup 45/Ca/sup 2 +/ efflux, thus suggesting an agonist-specific desensitization. PAF also stimulated a 30% net decrease in the equilibrium /sup 45/Ca/sup 2 +/ content of BAEC within 1 min, which gradually recovered to prestimulus levels in 10-15 min. PAF-stimulated /sup 45/Ca/sup 2 +/ efflux was also observed in endothelial cells cultured from human umbilical vein and baboon cephalic vein but not from cultured human dermal fibroblasts or bovine aortic smooth muscle. These studies provide direct evidence for agonist- and cell-specific effects of PAF on vascular endothelium.

  20. A vascular injury model using focal heat-induced activation of endothelial cells

    PubMed Central

    Sylman, J.L.; Artzer, D.T.; Rana, K.; Neeves, K.B.

    2015-01-01

    Endothelial cells (EC) both inhibit and promote platelet function depending on their activation state. Quiescent EC inhibit platelet activation by constitutive secretion of platelet inhibitors. Activated EC promote platelet adhesion by secretion of von Willebrand factor (vWF). EC also secrete an extracellular matrix that support platelet adhesion when exposed following vascular injury. Previous studies of EC-platelet interactions under flow activate entire monolayers of cells by chemical activation. In this study, EC cultured in microfluidic channels were focally activated by heat from an underlying microelectrode. Based on finite element modeling, microelectrodes induced peak temperature increases of 10–40 °C above 37 °C after applying 5–9 V for 30 s resulting in three zones: (1) A quiescent zone corresponded to peak temperatures of less than 15 °C characterized by no EC activation or platelet accumulation. (2) An activation zone corresponding to an increase of 16–22 °C yielded EC that were viable, secreted elevated levels of vWF, and were P-selectin positive. Platelets accumulated in the retracted spaces between EC in the activation zone at a wall shear rate of 150 s−1. Experiments with blocking antibodies show that platelets adhere via GPIbα-vWF and α6β1-laminin interactions. (3) A kill zone corresponded to peak temperatures of greater than 23 °C where EC were not viable and did not support platelet adhesion. These data define heating conditions for the activation of EC, causing the secretion of vWF and the exposure of a subendothelial matrix that support platelet adhesion and aggregation. This model provides for spatially defined zones of EC activation that could be a useful tool for measuring the relative roles of anti- and prothrombotic roles of EC at the site of vascular injury. PMID:26087748

  1. Liver Sinusoidal Endothelial Cells.

    PubMed

    Sørensen, Karen Kristine; Simon-Santamaria, Jaione; McCuskey, Robert S; Smedsrød, Bård

    2015-10-01

    The liver sinusoidal endothelial cell (LSEC) forms the fenestrated wall of the hepatic sinusoid and functions as a control post regulating and surveying the trafficking of molecules and cells between the liver parenchyma and the blood. The cell acts as a scavenger cell responsible for removal of potential dangerous macromolecules from blood, and is increasingly acknowledged as an important player in liver immunity. This review provides an update of the major functions of the LSEC, including its role in plasma ultrafiltration and regulation of the hepatic microcirculation, scavenger functions, immune functions, and role in liver aging, as well as issues that are either undercommunicated or confusingly dealt with in the literature. These include metabolic functions, including energy metabolic interplay between the LSEC and the hepatocyte, and adequate ways of identifying and distinguishing the cells.

  2. NRF2 activation is involved in ozonated human serum upregulation of HO-1 in endothelial cells

    SciTech Connect

    Pecorelli, Alessandra; Bocci, Velio; Acquaviva, Alessandra; Belmonte, Giuseppe; Gardi, Concetta; Virgili, Fabio; Ciccoli, Lucia; Valacchi, Giuseppe

    2013-02-15

    During the last decade, it has been shown that the activation of NRF2 and the binding to electrophile-responsive element (EpREs), stimulates the expression of a great number of genes responsible for the synthesis of phase I and phase II proteins, including antioxidants enzymes and heme oxygenase-1 (HO-1). This critical cell response occurs in cardiovascular, degenerative and chronic infective diseases aggravated by a chronic oxidative stress. In our previous reports we have shown that ozonated plasma is able to up-regulate HO-1 expression in endothelial cells. In the present work we investigated a candidate mechanism involved in this process. After treatment with increasing doses of ozonated serum (20, 40 and 80 μg/mL O{sub 3} per mL of serum), a clear dose dependent activation of NRF2 and the subsequent induction of HO-1 and NAD(P)H quinone oxidoreductase 1(NQO1) was observed. This effect was also present when cells were treated with serum and hydrogen peroxide (H{sub 2}O{sub 2}) or serum and 4-hydroxynonenal (4HNE). Moreover, the treatment with ozonated serum was associated with a dose-dependent activation of extracellular-signal-regulated kinases (ERK1/2) and p38 MAP kinases (p38), not directly involved in NRF2 activation. These data, provide a new insight on the mechanism responsible for the induction of HO-1 expression by ozonated serum in the endothelium, and have a practical importance as an expedient approach to the treatment of patients with both effective orthodox drugs and ozonated autohemotherapy, targeted to the restoration of redox homeostasis. - Highlights: ► Endothelial HO1 is upregulated by ozonated plasma ► This activation is induced by NRF2 and it is ERK independent. ► 4HNE and H{sub 2}O{sub 2} are the main molecules involved in this process. ► Ozonated plasma induced a hormetic effect ► Combination of orthodox medicine and ozonated plasma can be a useful treatment.

  3. Pregnancy enhances sustained Ca2+ bursts and endothelial nitric oxide synthase activation in ovine uterine artery endothelial cells through increased connexin 43 function.

    PubMed

    Yi, Fu-Xian; Boeldt, Derek S; Gifford, Shannon M; Sullivan, Jeremy A; Grummer, Mary A; Magness, Ronald R; Bird, Ian M

    2010-01-01

    Endothelium-mediated vasodilation is specifically enhanced in uterine circulation during pregnancy, and production of nitric oxide (NO) is increased in response to a wide array of agonists. Uterine artery endothelial cells from nonpregnant (NP-UAECs) or pregnant (P-UAECs) ewes maintained in culture still show a pregnancy-enhanced difference in ATP-stimulated endothelial NO synthase (eNOS; official symbol NOS3) activation, even though NOS3 protein, purinergic receptors, and associated cell signaling proteins are expressed at equal levels. We have also shown that the pregnancy-enhanced endothelial cell NO response to ATP requires an enhanced and sustained capacitative entry phase that is likely mediated via canonical transient receptor potential protein/inositol 1,4,5-trisphosphate receptor type 2 interaction. In this study, we now show by simultaneous video imaging of individual Fura-2-loaded cells that the pregnancy-enhanced capacitative entry phase is not continuous and equal in all cells, but is in fact mediated as a series of periodic [Ca(2+)](i) bursts within individual cells. Not only does pregnancy increase the number of bursts over a longer time period in individual cells, but also a greater proportion of cells exhibit this burst activity, and at high cell density this occurs in a synchronous manner. The mediator of cell synchronization is connexin 43 (Cx43) gap junctions because 1) Cx43 is readily detectable by Western blot analysis in UAECs, whereas Cx40 and Cx37 are weakly detected or absent, and 2) pregnancy-specific enhancement of [Ca(2+)](i) bursts by ATP is blocked by inhibitory loop peptides selective to Cx43 ((43,37)GAP27) but not by a scrambled control peptide or (40)GAP27 or (40,37)GAP26 peptides, which are specific to Cx40 or Cx37. The relationship between Ca(2+) bursts and NOS3 activation is further established by the finding that (43,37)GAP27 inhibits ATP-stimulated NOS3 activation but has no effect on cell mitogenesis. We conclude that it is

  4. Delivery of Molecules into Human Corneal Endothelial Cells by Carbon Nanoparticles Activated by Femtosecond Laser

    PubMed Central

    Jumelle, Clotilde; Mauclair, Cyril; Houzet, Julien; Bernard, Aurélien; He, Zhiguo; Forest, Fabien; Peoc’h, Michel; Acquart, Sophie; Gain, Philippe; Thuret, Gilles

    2015-01-01

    Corneal endothelial cells (CECs) form a monolayer at the innermost face of the cornea and are the engine of corneal transparency. Nevertheless, they are a vulnerable population incapable of regeneration in humans, and their diseases are responsible for one third of corneal grafts performed worldwide. Donor corneas are stored in eye banks for security and quality controls, then delivered to surgeons. This period could allow specific interventions to modify the characteristics of CECs in order to increase their proliferative capacity, increase their resistance to apoptosis, or release immunosuppressive molecules. Delivery of molecules specifically into CECs during storage would therefore open up new therapeutic perspectives. For clinical applications, physical methods have a more favorable individual and general benefit/risk ratio than most biological vectors, but are often less efficient. The delivery of molecules into cells by carbon nanoparticles activated by femtosecond laser pulses is a promising recent technique developed on non-adherent cells. The nanoparticles are partly consummated by the reaction releasing CO and H2 gas bubbles responsible for the shockwave at the origin of cell transient permeation. Our aim was to develop an experimental setting to deliver a small molecule (calcein) into the monolayer of adherent CECs. We confirmed that increased laser fluence and time exposure increased uptake efficiency while keeping cell mortality below 5%. We optimized the area covered by the laser beam by using a motorized stage allowing homogeneous scanning of the cell culture surface using a spiral path. Calcein uptake reached median efficiency of 54.5% (range 50.3–57.3) of CECs with low mortality (0.5%, range (0.55–1.0)). After sorting by flow cytometry, CECs having uptaken calcein remained viable and presented normal morphological characteristics. Delivery of molecules into CECs by carbon nanoparticles activated by femtosecond laser could prove useful for

  5. Delivery of Molecules into Human Corneal Endothelial Cells by Carbon Nanoparticles Activated by Femtosecond Laser.

    PubMed

    Jumelle, Clotilde; Mauclair, Cyril; Houzet, Julien; Bernard, Aurélien; He, Zhiguo; Forest, Fabien; Peoc'h, Michel; Acquart, Sophie; Gain, Philippe; Thuret, Gilles

    2015-01-01

    Corneal endothelial cells (CECs) form a monolayer at the innermost face of the cornea and are the engine of corneal transparency. Nevertheless, they are a vulnerable population incapable of regeneration in humans, and their diseases are responsible for one third of corneal grafts performed worldwide. Donor corneas are stored in eye banks for security and quality controls, then delivered to surgeons. This period could allow specific interventions to modify the characteristics of CECs in order to increase their proliferative capacity, increase their resistance to apoptosis, or release immunosuppressive molecules. Delivery of molecules specifically into CECs during storage would therefore open up new therapeutic perspectives. For clinical applications, physical methods have a more favorable individual and general benefit/risk ratio than most biological vectors, but are often less efficient. The delivery of molecules into cells by carbon nanoparticles activated by femtosecond laser pulses is a promising recent technique developed on non-adherent cells. The nanoparticles are partly consummated by the reaction releasing CO and H2 gas bubbles responsible for the shockwave at the origin of cell transient permeation. Our aim was to develop an experimental setting to deliver a small molecule (calcein) into the monolayer of adherent CECs. We confirmed that increased laser fluence and time exposure increased uptake efficiency while keeping cell mortality below 5%. We optimized the area covered by the laser beam by using a motorized stage allowing homogeneous scanning of the cell culture surface using a spiral path. Calcein uptake reached median efficiency of 54.5% (range 50.3-57.3) of CECs with low mortality (0.5%, range (0.55-1.0)). After sorting by flow cytometry, CECs having uptaken calcein remained viable and presented normal morphological characteristics. Delivery of molecules into CECs by carbon nanoparticles activated by femtosecond laser could prove useful for future

  6. Delivery of Molecules into Human Corneal Endothelial Cells by Carbon Nanoparticles Activated by Femtosecond Laser.

    PubMed

    Jumelle, Clotilde; Mauclair, Cyril; Houzet, Julien; Bernard, Aurélien; He, Zhiguo; Forest, Fabien; Peoc'h, Michel; Acquart, Sophie; Gain, Philippe; Thuret, Gilles

    2015-01-01

    Corneal endothelial cells (CECs) form a monolayer at the innermost face of the cornea and are the engine of corneal transparency. Nevertheless, they are a vulnerable population incapable of regeneration in humans, and their diseases are responsible for one third of corneal grafts performed worldwide. Donor corneas are stored in eye banks for security and quality controls, then delivered to surgeons. This period could allow specific interventions to modify the characteristics of CECs in order to increase their proliferative capacity, increase their resistance to apoptosis, or release immunosuppressive molecules. Delivery of molecules specifically into CECs during storage would therefore open up new therapeutic perspectives. For clinical applications, physical methods have a more favorable individual and general benefit/risk ratio than most biological vectors, but are often less efficient. The delivery of molecules into cells by carbon nanoparticles activated by femtosecond laser pulses is a promising recent technique developed on non-adherent cells. The nanoparticles are partly consummated by the reaction releasing CO and H2 gas bubbles responsible for the shockwave at the origin of cell transient permeation. Our aim was to develop an experimental setting to deliver a small molecule (calcein) into the monolayer of adherent CECs. We confirmed that increased laser fluence and time exposure increased uptake efficiency while keeping cell mortality below 5%. We optimized the area covered by the laser beam by using a motorized stage allowing homogeneous scanning of the cell culture surface using a spiral path. Calcein uptake reached median efficiency of 54.5% (range 50.3-57.3) of CECs with low mortality (0.5%, range (0.55-1.0)). After sorting by flow cytometry, CECs having uptaken calcein remained viable and presented normal morphological characteristics. Delivery of molecules into CECs by carbon nanoparticles activated by femtosecond laser could prove useful for future

  7. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    SciTech Connect

    Zhang, Haimou; Qin, Gangjian; Liang, Gang; Li, Jinan; Chiu, Isaac; Barrington, Robert A.; Liu, Dongxu . E-mail: dxliu001@yahoo.com

    2007-07-13

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-{kappa}B activation and nuclear translocation in an I{kappa}B{alpha}-dependent manner. The inhibitory effects were associated with reduction of inhibitor I{kappa}B kinase activity and stabilization of the NF-{kappa}B inhibitor I{kappa}B. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations.

  8. Curcumin Attenuates Hydrogen Peroxide-Induced Premature Senescence via the Activation of SIRT1 in Human Umbilical Vein Endothelial Cells.

    PubMed

    Sun, Yueliu; Hu, Xiaorong; Hu, Gangying; Xu, Changwu; Jiang, Hong

    2015-01-01

    Endothelial senescence has been proposed to be involved in endothelial dysfunction and atherogenesis. Curcumin, a natural phenol, possesses antioxidant and anti-inflammatory properties. However, the effect of curcumin on endothelial senescence is unclear. This study explores the effect of curcumin on hydrogen peroxide (H2O2)-induced endothelial premature senescence and the mechanisms involved. Human umbilical vein endothelial cells (HUVECs) were cultured, and premature senescence was induced with 100 µM H2O2. Results showed that pretreatment with curcumin significantly attenuated the H2O2-induced HUVECs' premature senescence, which was evidenced by a decreased percentage of senescence-associated β-galactosidase positive cells, improved cell division and decreased expression of senescence-associated protein p21 (all p<0.05). Pretreatment with curcumin decreased oxidative stress and apoptosis in H2O2-treated HUVECs. Treatment of HUVECs with H2O2 also down-regulated the phosphorylation of endothelial nitric oxide synthase (eNOS), decreased the level of nitric oxide in the culture medium, and inhibited the protein expression and enzymatic activity of silent information regulator 1 (SIRT1), while pretreatment with curcumin partly reversed these effects (all p<0.05). Treatment with curcumin alone enhanced the enzymatic activity of SIRT1, but didn't affect cellular senescence, cell growth or apoptosis compared to the Control. The inhibition of SIRT1 using SIRT1 short interfering RNA (siRNA) could decrease the expression and phosphorylation of eNOS and abrogate the protective effect of curcumin on H2O2-induced premature senescence. These findings suggest that curcumin could attenuate oxidative stress-induced HUVECs' premature senescence via the activation of SIRT1.

  9. Endothelial monocyte activating polypeptide-II modulates endothelial cell responses by degrading hypoxia-inducible factor-1alpha through interaction with PSMA7, a component of the proteasome

    SciTech Connect

    Tandle, Anita T.; Calvani, Maura; Uranchimeg, Badarch; Zahavi, David; Melillo, Giovanni; Libutti, Steven K.

    2009-07-01

    The majority of human tumors are angiogenesis dependent. Understanding the specific mechanisms that contribute to angiogenesis may offer the best approach to develop therapies to inhibit angiogenesis in cancer. Endothelial monocyte activating polypeptide-II (EMAP-II) is an anti-angiogenic cytokine with potent effects on endothelial cells (ECs). It inhibits EC proliferation and cord formation, and it suppresses primary and metastatic tumor growth in-vivo. However, very little is known about the molecular mechanisms behind the anti-angiogenic activity of EMAP-II. In the present study, we explored the molecular mechanism behind the anti-angiogenic activity exerted by this protein on ECs. Our results demonstrate that EMAP-II binds to the cell surface {alpha}5{beta}1 integrin receptor. The cell surface binding of EMAP-II results in its internalization into the cytoplasmic compartment where it interacts with its cytoplasmic partner PSMA7, a component of the proteasome degradation pathway. This interaction increases hypoxia-inducible factor 1-alpha (HIF-1{alpha}) degradation under hypoxic conditions. The degradation results in the inhibition of HIF-1{alpha} mediated transcriptional activity as well as HIF-1{alpha} mediated angiogenic sprouting of ECs. HIF-1{alpha} plays a critical role in angiogenesis by activating a variety of angiogenic growth factors. Our results suggest that one of the major anti-angiogenic functions of EMAP-II is exerted through its inhibition of the HIF-1{alpha} activities.

  10. Targeting CD9 produces stimulus-independent antiangiogenic effects predominantly in activated endothelial cells during angiogenesis: A novel antiangiogenic therapy

    SciTech Connect

    Kamisasanuki, Taro; Tokushige, Saori; Terasaki, Hiroto; Khai, Ngin Cin; Wang, Yuqing; Sakamoto, Taiji; Kosai, Ken-ichiro

    2011-09-16

    Highlights: {yields} CD9 plays stimulus-independent roles in angiogenesis in vitro and in vivo. {yields} Targeting CD9 expression is effective in an angiogenic disease model. {yields} Targeting CD9 expression predominantly affects activated endothelial cells. {yields} CD9 is involved in endothelial cell proliferation, but not survival. {yields} CD9 is part of angiogenic machinery in endothelial cells during angiogenesis. -- Abstract: The precise roles of tetraspanin CD9 are unclear. Here we show that CD9 plays a stimulus-independent role in angiogenesis and that inhibiting CD9 expression or function is a potential antiangiogenic therapy. Knocking down CD9 expression significantly inhibited in vitro endothelial cell migration and invasion induced by vascular endothelial growth factor (VEGF) or hepatocyte growth factor (HGF). Injecting CD9-specific small interfering RNA (siRNA-CD9) markedly inhibited HGF- or VEGF-induced subconjunctival angiogenesis in vivo. Both results revealed potent and stimulus-independent antiangiogenic effects of targeting CD9. Furthermore, intravitreous injections of siRNA-CD9 or anti-CD9 antibodies were therapeutically effective for laser-induced retinal and choroidal neovascularization in mice, a representative ocular angiogenic disease model. In terms of the mechanism, growth factor receptor and downstream signaling activation were not affected, whereas abnormal localization of integrins and membrane type-1 matrix metalloproteinase was observed during angiogenesis, by knocking down CD9 expression. Notably, knocking down CD9 expression did not induce death and mildly inhibited proliferation of quiescent endothelial cells under conditions without an angiogenic stimulus. Thus, CD9 does not directly affect growth factor-induced signal transduction, which is required in angiogenesis and normal vasculature, but is part of the angiogenesis machinery in endothelial cells during angiogenesis. In conclusion, targeting CD9 produced stimulus

  11. A proton-activated, outwardly rectifying chloride channel in human umbilical vein endothelial cells

    SciTech Connect

    Ma Zhiyong; Zhang Wei; Chen Liang; Wang Rong; Kan Xiaohong; Sun Guizhen; Liu Chunxi; Li Li Zhang Yun

    2008-07-04

    Extracellular acidic pH-activated chloride channel I{sub Cl,acid}, has been characterized in HEK 293 cells and mammalian cardiac myocytes. This study was designed to characterize I{sub Cl,acid} in human umbilical vein endothelial cells(HUVECs). The activation and deactivation of the current rapidly and repeatedly follows the change of the extracellular solution at pH 4.3, with the threshold pH 5.3. In addition, at very positive potentials, the current displays a time-dependent facilitation. pH-response relationship for I{sub Cl,acid} revealed that EC{sub 50} is pH 4.764 with a threshold pH value of pH 5.3 and nH of 14.545. The current can be blocked by the Cl{sup -} channel inhibitor DIDS (100 {mu}M). In summary, for the first time we report the presence of proton-activated, outwardly rectifying chloride channel in HUVECs. Because an acidic environment can develop in local myocardium under pathological conditions such as myocardial ischemia, I{sub Cl,acid} would play a role in regulation of EC function under these pathological conditions.

  12. Inhibition of NF-kappa B by pyrrolidine dithiocarbamate blocks endothelial cell activation.

    PubMed

    Ferran, C; Millan, M T; Csizmadia, V; Cooper, J T; Brostjan, C; Bach, F H; Winkler, H

    1995-09-01

    Endothelial cell activation is achieved by the rapid, protein synthesis-independent induction of a characteristic set of genes. Because of the abundance of binding sites for the transcription factor NF-kappa B in the regulatory region of the aforementioned genes, we hypothesized that this factor might play a key role. Reactive oxygen intermediates act as second messengers in the activation of NF-kappa B. We have used the antioxidant pyrrolidine dithiocarbamate to analyze the effect of NF-kappa B inhibition on TNF alpha-induced EC activation in vitro. We show that pyrrolidine dithiocarbamate strongly reduces the TNF alpha-mediated induction of E-selectin, VCAM-1, ICAM-1, PAI-1, tissue factor, IL-8 and I kappa B-alpha. We present evidence identifying NF-kappa B as a central of EC activation. Therefore, this factor may represent a prime target for therapeutic intervention in pathologic conditions associated with EC activation such as allo- and xenograft rejection, atherosclerosis, ischemic reperfusion injury and vasculitis.

  13. Large-conductance Ca²⁺-activated potassium channel in mitochondria of endothelial EA.hy926 cells.

    PubMed

    Bednarczyk, Piotr; Koziel, Agnieszka; Jarmuszkiewicz, Wieslawa; Szewczyk, Adam

    2013-06-01

    In the present study, we describe the existence of a large-conductance Ca²⁺-activated potassium (BKCa) channel in the mitochondria of the human endothelial cell line EA.hy926. A single-channel current was recorded from endothelial mitoplasts (i.e., inner mitochondrial membrane) using the patch-clamp technique in the mitoplast-attached mode. A potassium-selective current was recorded with a mean conductance equal to 270 ± 10 pS in a symmetrical 150/150 mM KCl isotonic solution. The channel activity, which was determined as the open probability, increased with the addition of calcium ions and the potassium channel opener NS1619. Conversely, the activity of the channel was irreversibly blocked by paxilline and iberiotoxin, BKCa channel inhibitors. The open-state probability was found to be voltage dependent. The substances known to modulate BKCa channel activity influenced the bioenergetics of mitochondria isolated from human endothelial EA.hy926 cells. In isolated mitochondria, 100 μM Ca²⁺, 10 μM NS1619, and 0.5 μM NS11021 depolarized the mitochondrial membrane potential and stimulated nonphosphorylating respiration. These effects were blocked by iberiotoxin and paxilline in a potassium-dependent manner. Under phosphorylating conditions, NS1619-induced, iberiotoxin-sensitive uncoupling diverted energy from ATP synthesis during the phosphorylating respiration of the endothelial mitochondria. Immunological analysis with antibodies raised against proteins of the plasma membrane BKCa channel identified a pore-forming α-subunit and an auxiliary β₂-subunit of the channel in the endothelial mitochondrial inner membrane. In conclusion, we show for the first time that the inner mitochondrial membrane in human endothelial EA.hy926 cells contains a large-conductance calcium-dependent potassium channel with properties similar to those of the surface membrane BKCa channel.

  14. Pore size assessment during corneal endothelial cells permeabilization by femtosecond laser activated carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Jumelle, C.; Mauclair, C.; Houzet, J.; Bernard, A.; He, Z.; Piselli, S.; Perrache, C.; Egaud, G.; Baubeau, E.; Gain, P.; Thuret, G.

    2015-07-01

    Corneal therapeutic molecules delivery represents a promising solution to maintain human corneal endothelial cells (HCECs) viability, but the difficulty is transport across cell membrane. A new delivery method published recently consists in ephemerally permeabilizing cell membranes using a photo-acoustic reaction produced by carbon nanoparticles (CNPs) and femtosecond laser (FsL). The aim of this work is to investigate the size of pores formed at cell membrane by this technique. To induce cell permeabilization, HCECs were put in contact with CNPs and irradiated with a 500 μm diameter Ti:Sa FsL focalized spot. Four sizes of marker molecules were delivered into HCECs to investigate pore sizes: calcein (1.2 nm), FITC-Dextran 4kDa (2.8 nm) and FITC-Dextran 70kDa (12 nm) and FITC-Dextran 2MDa (50 nm). Delivery of each molecule was assessed by flow cytometry, a technique able to measure their presence into cells. We showed that the delivery rate was dependent of their size. Calcein was delivered in 56.1±8.2% of HCECs, FITC-Dextran 4kDa in 42.2±3.5%, FITC-Dextran 70 kDa in 21.5±2.7% and finally FITC-Dextran 2MDa in 12.9±2.0%. It means that a large number of pores in the size ranging from 1.2 to 2.8 nm were formed. However, 12 nm and larger pores were almost half more infrequent. Pore sizes formed at cell membrane by the technique of cell permeabilization by FsL activated CNPs was investigated. The results indicated that the pore sizes are large enough for the efficient delivery of small, medium and big therapeutics molecules on HCECs by this technique.

  15. Histochemical assessment of nitric oxide synthase activity in aortic endothelial cells of streptozotocin-induced diabetic rats.

    PubMed

    Shafiei, M; Nobakht, M; Fattahi, M; Kohneh-Shahri, L; Mahmoudian, M

    2003-12-01

    Impaired endothelium-dependent relaxation of blood vessels is a common feature in diabetes, but the exact underlying mechanisms have not yet been clarified. In present study, endothelium-dependent vasorelaxation of aortic rings were evaluated in vitro in streptozotocin (STZ)-induced diabetic and age-matched control rats. Moreover, nitric oxide synthase (NOS) activity of aortic endothelial cells was assessed in both diabetic and healthy rats using histochemical staining for nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase activity. The results showed a significant decrease of endothelium-dependent relaxation in response to acetylcholine (ACh) in diabetic rings, compared with controls, that was accompanied by a remarkable attenuation of NOS activity in diabetic sections of rat aorta stained for NADPH-diaphorase. Furthermore, a membrane disruption of some endothelial cells was also observed in all diabetic sections. It can be concluded that a decrease in NOS activity together with a disruption of endothelial cell membrane play a major role in endothelial dysfunction observed in diabetes.

  16. Itraconazole Side Chain Analogues: Structure–Activity Relationship Studies for Inhibition of Endothelial Cell Proliferation, Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) Glycosylation, and Hedgehog Signaling

    PubMed Central

    Shi, Wei; Nacev, Benjamin A.; Aftab, Blake T.; Head, Sarah; Rudin, Charles M.; Liu, Jun O.

    2012-01-01

    Itraconazole is an antifungal drug that was recently found to possess potent antiangiogenic activity and anti-hedgehog (Hh) pathway activity. To search for analogues of itraconazole with greater potency and to understand the structure–activity relationship in both antiangiogenic and Hh targeting activity, 25 itraconazole side chain analogues were synthesized and assayed for inhibition of endothelial cell proliferation and Gli1 transcription in a medulloblastoma (MB) culture. Through this analysis, we have identified analogues with increased potency for inhibiting endothelial cell proliferation and the Hh pathway, as well as VEGFR2 glycosylation that was recently found to be inhibited by itraconazole. An SAR analysis of these activities revealed that potent activity of the analogues against VEGFR2 glycosylation was generally driven by side chains of at least four carbons in composition with branching at the α or β position. SAR trends for targeting the Hh pathway were divergent from those related to HUVEC proliferation or VEGFR2 glycosylation. These results also suggest that modification of the sec-butyl side chain can lead to enhancement of the biological activity of itraconazole. PMID:21936514

  17. An Active Learning Approach for Rapid Characterization of Endothelial Cells in Human Tumors

    PubMed Central

    Padmanabhan, Raghav K.; Somasundar, Vinay H.; Griffith, Sandra D.; Zhu, Jianliang; Samoyedny, Drew; Tan, Kay See; Hu, Jiahao; Liao, Xuejun; Carin, Lawrence; Yoon, Sam S.; Flaherty, Keith T.; DiPaola, Robert S.; Heitjan, Daniel F.; Lal, Priti; Feldman, Michael D.; Roysam, Badrinath; Lee, William M. F.

    2014-01-01

    Currently, no available pathological or molecular measures of tumor angiogenesis predict response to antiangiogenic therapies used in clinical practice. Recognizing that tumor endothelial cells (EC) and EC activation and survival signaling are the direct targets of these therapies, we sought to develop an automated platform for quantifying activity of critical signaling pathways and other biological events in EC of patient tumors by histopathology. Computer image analysis of EC in highly heterogeneous human tumors by a statistical classifier trained using examples selected by human experts performed poorly due to subjectivity and selection bias. We hypothesized that the analysis can be optimized by a more active process to aid experts in identifying informative training examples. To test this hypothesis, we incorporated a novel active learning (AL) algorithm into FARSIGHT image analysis software that aids the expert by seeking out informative examples for the operator to label. The resulting FARSIGHT-AL system identified EC with specificity and sensitivity consistently greater than 0.9 and outperformed traditional supervised classification algorithms. The system modeled individual operator preferences and generated reproducible results. Using the results of EC classification, we also quantified proliferation (Ki67) and activity in important signal transduction pathways (MAP kinase, STAT3) in immunostained human clear cell renal cell carcinoma and other tumors. FARSIGHT-AL enables characterization of EC in conventionally preserved human tumors in a more automated process suitable for testing and validating in clinical trials. The results of our study support a unique opportunity for quantifying angiogenesis in a manner that can now be tested for its ability to identify novel predictive and response biomarkers. PMID:24603893

  18. Release of basic fibroblast growth factor-heparan sulfate complexes from endothelial cells by plasminogen activator-mediated proteolytic activity

    PubMed Central

    1990-01-01

    Cultured bovine capillary endothelial (BCE) cells synthesize heparan sulfate proteoglycans (HSPG), which are both secreted into the culture medium and deposited in the cell layer. The nonsoluble HSPGs can be isolated as two predominant species: a larger 800-kD HSPG, which is recovered from preparations of extracellular matrix, and a 250-kD HSPG, which is solubilized by nonionic detergent extraction of the cells. Both HSPG species bind bFGF. 125I-bFGF bound to BCE cell cultures is readily released by either heparinase or plasmin. When released by plasmin, the growth factor is recovered from the incubation medium as a complex with the partly degraded high molecular mass HSPG. Endogenous bFGF activity is released by a proteolytic treatment of cultured BCE cells. The bFGF-binding HSPGs are also released when cultures are incubated with the inactive proenzyme plasminogen. Under such experimental conditions, the release of the extracellular proteoglycans can be enhanced by treating the cells either with bFGF, which increases the plasminogen activating activity expressed by the cells, or decreased by treating the cells with transforming growth factor beta, which decreases the plasminogen activating activity of the cells. Specific immune antibodies raised against bovine urokinase also block the release of HSPG from BCE cell cultures. We propose that this plasminogen activator-mediated proteolysis provides a mechanism for the release of biologically active bFGF-HSPG complexes from the extracellular matrix and that bFGF release can be regulated by the balance between factors affecting the pericellular proteolytic activity. PMID:2137829

  19. Early Activation of Primary Brain Microvascular Endothelial Cells by Nipah Virus Glycoprotein-Containing Particles.

    PubMed

    Freitag, Tanja C; Maisner, Andrea

    2016-03-01

    Nipah virus (NiV) is a highly pathogenic paramyxovirus that causes pronounced infection of brain endothelia and central nervous system (CNS) inflammation. Using primary porcine brain microvascular endothelial cells, we showed that upregulation of E-selectin precedes cytokine induction and is induced not only by infectious NiV but also by NiV-glycoprotein-containing virus-like particles. This demonstrates that very early events in NiV brain endothelial infection do not depend on NiV replication but can be triggered by the NiV glycoproteins alone. PMID:26676791

  20. Ferroportin and exocytoplasmic ferroxidase activity are required for brain microvascular endothelial cell iron efflux.

    PubMed

    McCarthy, Ryan C; Kosman, Daniel J

    2013-06-14

    The mechanism(s) of iron flux across the brain microvasculature endothelial cells (BMVEC) of the blood-brain barrier remains unknown. Although both hephaestin (Hp) and the ferrous iron permease ferroportin (Fpn) have been identified in BMVEC, their roles in iron efflux have not been examined. Using a human BMVEC line (hBMVEC), we have demonstrated that these proteins are required for iron efflux from these cells. Expression of both Hp and Fpn protein was confirmed in hBMVEC by immunoblot and indirect immunofluorescence; we show that hBMVEC express soluble ceruloplasmin (Cp) transcript as well. Depletion of endogenous Hp and Cp via copper chelation leads to the reduction of hBMVEC Fpn protein levels as well as a complete inhibition of (59)Fe efflux. Both hBMVEC Fpn protein and (59)Fe efflux activity are restored upon incubation with 6.6 nm soluble plasma Cp. These results are independent of the source of cell iron, whether delivered as transferrin- or non-transferrin-bound (59)Fe. Our results demonstrate that iron efflux from hBMVEC Fpn requires the action of an exocytoplasmic ferroxidase, which can be either endogenous Hp or extracellular Cp.

  1. Inhibitory effect of a new butadiene derivative on the production of plasminogen activator inhibitor-1 in cultured bovine endothelial cells.

    PubMed

    Ohtani, A; Takagi, T; Hirano, A; Murakami, J; Sasaki, Y

    1996-12-01

    Tissue-type plasminogen activator (t-PA) and its physiological inhibitor, plasminogen activator inhibitor-1 (PAI-1), are known to be synthesized by vascular endothelial cells and to play important roles in regulating the fibrinolytic activity of plasma. We found that a new butadiene derivative, (3E, 4E)-3-benzylidene-4-(3,4,5-trimethoxybenzylidene)pyrrolidine -2,5-dione (T-686), inhibits PAI-1 production without affecting plasminogen activator (PA) synthesis in cultured bovine endothelial cells. T-686 (1-10 microM) dose-dependently decreased the accumulation of PAI-1 in conditioned medium from the treated cells and elevated PA activity in the conditioned medium. Analysis of the conditioned medium by the zymography technique indicated that T-686 decreased the activities of PAI-1 with an M(r) of 55,000 and t-PA/PAI-1 complex with an M(r) of 99,000. Furthermore, T-686 attenuated the augmentation of PAI-1 antigen induced by lipopolysaccharide in the conditioned medium. The decrease of PAI-1 antigen was in parallel with the reduction of the PAI-1 mRNA level (Northern blots). These results suggest that T-686 can promote net fibrinolytic activity through suppression of PAI-1 production without affecting PA elaboration in endothelial cells.

  2. Multi-ligand poly(L-lactic-co-glycolic acid) nanoparticles inhibit activation of endothelial cells.

    PubMed

    Xu, Hao; Kona, Soujanya; Su, Lee-Chun; Tsai, Yi-Ting; Dong, Jing-Fei; Brilakis, Emmanouil S; Tang, Liping; Banerjee, Subhash; Nguyen, Kytai T

    2013-08-01

    Endothelial cell (EC) activation and inflammation is a key step in the initiation and progression of many cardiovascular diseases. Targeted delivery of therapeutic reagents to inflamed EC using nanoparticles is challenging as nanoparticles do not arrest on EC efficiently under high shear stress. In this study, we developed a novel polymeric platelet-mimicking nanoparticle for strong particle adhesion onto ECs and enhanced particle internalization by ECs. This nanoparticle was encapsulated with dexamethasone as the anti-inflammatory drug, and conjugated with polyethylene glycol, glycoprotein 1b, and trans-activating transcriptional peptide. The multi-ligand nanoparticle showed significantly greater adhesion on P-selectin, von Willebrand Factor, than the unmodified particles, and activated EC in vitro under both static and flow conditions. Treatment of injured rat carotid arteries with these multi-ligand nanoparticles suppressed neointimal stenosis more than unconjugated nanoparticles did. These results indicate that this novel multi-ligand nanoparticle is efficient to target inflamed EC and inhibit inflammation and subsequent stenosis.

  3. The Andes Virus Nucleocapsid Protein Directs Basal Endothelial Cell Permeability by Activating RhoA

    PubMed Central

    Gorbunova, Elena E.; Simons, Matthew J.; Gavrilovskaya, Irina N.

    2016-01-01

    ABSTRACT Andes virus (ANDV) predominantly infects microvascular endothelial cells (MECs) and nonlytically causes an acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). In HPS patients, virtually every pulmonary MEC is infected, MECs are enlarged, and infection results in vascular leakage and highly lethal pulmonary edema. We observed that MECs infected with the ANDV hantavirus or expressing the ANDV nucleocapsid (N) protein showed increased size and permeability by activating the Rheb and RhoA GTPases. Expression of ANDV N in MECs increased cell size by preventing tuberous sclerosis complex (TSC) repression of Rheb-mTOR-pS6K. N selectively bound the TSC2 N terminus (1 to 1403) within a complex containing TSC2/TSC1/TBC1D7, and endogenous TSC2 reciprocally coprecipitated N protein from ANDV-infected MECs. TSCs normally restrict RhoA-induced MEC permeability, and we found that ANDV infection or N protein expression constitutively activated RhoA. This suggests that the ANDV N protein alone is sufficient to activate signaling pathways that control MEC size and permeability. Further, RhoA small interfering RNA, dominant-negative RhoA(N19), and the RhoA/Rho kinase inhibitors fasudil and Y27632 dramatically reduced the permeability of ANDV-infected MECs by 80 to 90%. Fasudil also reduced the bradykinin-directed permeability of ANDV and Hantaan virus-infected MECs to control levels. These findings demonstrate that ANDV activation of RhoA causes MEC permeability and reveal a potential edemagenic mechanism for ANDV to constitutively inhibit the basal barrier integrity of infected MECs. The central importance of RhoA activation in MEC permeability further suggests therapeutically targeting RhoA, TSCs, and Rac1 as potential means of resolving capillary leakage during hantavirus infections. PMID:27795403

  4. Omega-3 fatty acid oxidation products prevent vascular endothelial cell activation by coplanar polychlorinated biphenyls

    SciTech Connect

    Majkova, Zuzana; Layne, Joseph; Sunkara, Manjula; Morris, Andrew J.; Toborek, Michal; Hennig, Bernhard

    2011-02-15

    Coplanar polychlorinated biphenyls (PCBs) may facilitate development of atherosclerosis by stimulating pro-inflammatory pathways in the vascular endothelium. Nutrition, including fish oil-derived long-chain omega-3 fatty acids, such as docosahexaenoic acid (DHA, 22:6{omega}-3), can reduce inflammation and thus the risk of atherosclerosis. We tested the hypothesis that cyclopentenone metabolites produced by oxidation of DHA can protect against PCB-induced endothelial cell dysfunction. Oxidized DHA (oxDHA) was prepared by incubation of the fatty acid with the free radical generator 2,2-azo-bis(2-amidinopropane) dihydrochloride (AAPH). Cellular pretreatment with oxDHA prevented production of superoxide induced by PCB77, and subsequent activation of nuclear factor-{kappa}B (NF-{kappa}B). A{sub 4}/J{sub 4}-neuroprostanes (NPs) were identified and quantitated using HPLC ESI tandem mass spectrometry. Levels of these NPs were markedly increased after DHA oxidation with AAPH. The protective actions of oxDHA were reversed by treatment with sodium borohydride (NaBH{sub 4}), which concurrently abrogated A{sub 4}/J{sub 4}-NP formation. Up-regulation of monocyte chemoattractant protein-1 (MCP-1) by PCB77 was markedly reduced by oxDHA, but not by un-oxidized DHA. These protective effects were proportional to the abundance of A{sub 4}/J{sub 4} NPs in the oxidized DHA sample. Treatment of cells with oxidized eicosapentaenoic acid (EPA, 20:5{omega}-3) also reduced MCP-1 expression, but less than oxDHA. Treatment with DHA-derived cyclopentenones also increased DNA binding of NF-E2-related factor-2 (Nrf2) and downstream expression of NAD(P)H:quinone oxidoreductase (NQO1), similarly to the Nrf-2 activator sulforaphane. Furthermore, sulforaphane prevented PCB77-induced MCP-1 expression, suggesting that activation of Nrf-2 mediates the observed protection against PCB77 toxicity. Our data implicate A{sub 4}/J{sub 4}-NPs as mediators of omega-3 fatty acid-mediated protection against the

  5. Effects of the contraceptive skin patch and subdermal contraceptive implant on markers of endothelial cell activation and inflammation.

    PubMed

    Hernandez-Juarez, Jesus; Sanchez-Serrano, Juan Carlos; Moreno-Hernandez, Manuel; Alvarado-Moreno, Jose Antonio; Hernandez-Lopez, Jose Rubicel; Isordia-Salas, Irma; Majluf-Cruz, Abraham

    2015-07-01

    Changes in blood coagulation factors may partially explain the association between hormonal contraceptives and thrombosis. Therefore, the likely effects of the contraceptive skin patch and subdermal contraceptive implant on levels of inflammatory markers and endothelial activation were analyzed. This was an observational, prospective, longitudinal, nonrandomized study composed of 80 women between 18 and 35 years of age who made the decision to use the contraceptive skin patch or subdermal contraceptive implant. vascular cell adhesion molecule-1 (VCAM-1), endothelial cell leukocyte adhesion molecule-1 (ELAM-1), von Willebrand factor (VWF), and plasminogen activator inhibitor type 1(PAI-1) as well as high-sensitivity C-reactive protein (hsCRP) were assayed before and after 4 months of use of the contraceptive method. VCAM-1, VWF, and PAI-1 remained unchanged in the contraceptive skin patch group; however, a significant increase in hsCRP (0.29-0.50 mg/dL; P =.012) and a significant decrease in ELAM-1 (44-25 ng/mL; P =.022) were observed. A significant diminution in VCAM-1 (463-362 ng/mL; P =.022) was also found in the subdermal contraceptive implant group. Our results strongly suggest that these contraceptive methods do not induce endothelial activation after 4 months of use. Increase in hsCRP levels was unrelated to changes in markers of endothelial activation.

  6. beta-Naphthoflavone protects from peritonitis by reducing TNF-alpha-induced endothelial cell activation.

    PubMed

    Hsu, Sheng-Yao; Liou, Je-Wen; Cheng, Tsung-Lin; Peng, Shih-Yi; Lin, Chi-Chen; Chu, Yuan-Yuan; Luo, Wei-Cheng; Huang, Zheng-Kai; Jiang, Shinn-Jong

    2015-12-01

    β-Naphthoflavone (β-NF), a ligand of the aryl hydrocarbon receptor, has been shown to possess anti-oxidative properties. We investigated the anti-oxidative and anti-inflammatory potential of β-NF in human microvascular endothelial cells treated with tumor necrosis factor-alpha (TNF-α). Pretreatment with β-NF significantly inhibited TNF-α-induced intracellular reactive oxygen species, translocation of p67(phox), and TNF-α-induced monocyte binding and transmigration. In addition, β-NF significantly inhibited TNF-α-induced ICAM-1 and VCAM-1 expression. The mRNA expression levels of the inflammatory cytokines TNF-α and IL-6 were reduced by β-NF, as was the infiltration of white blood cells, in a peritonitis model. The inhibition of adhesion molecules was associated with suppressed nuclear translocation of NF-κB p65 and Akt, and suppressed phosphorylation of ERK1/2 and p38. The translocation of Egr-1, a downstream transcription factor involved in the MEK-ERK signaling pathway, was suppressed by β-NF treatment. Our findings show that β-NF inhibits TNF-α-induced NF-kB and ERK1/2 activation and ROS generation, thereby suppressing the expression of adhesion molecules. This results in reduced adhesion and transmigration of leukocytes in vitro and prevents the infiltration of leukocytes in a peritonitis model. Our findings also suggest that β-NF might prevent TNF-α-induced inflammation.

  7. Protein phosphatase 2A activity is required for functional adherent junctions in endothelial cells.

    PubMed

    Kása, Anita; Czikora, István; Verin, Alexander D; Gergely, Pál; Csortos, Csilla

    2013-09-01

    Reversible Ser/Thr phosphorylation of cytoskeletal and adherent junction (AJ) proteins has a critical role in the regulation of endothelial cell (EC) barrier function. We have demonstrated earlier that protein phosphatase 2A (PP2A) activity is important in EC barrier integrity. In the present work, macro- and microvascular EC were examined and we provided further evidence on the significance of PP2A in the maintenance of EC cytoskeleton and barrier function with special focus on the Bα (regulatory) subunit of PP2A. Immunofluorescent staining revealed that the inhibition of PP2A results in changes in the organization of EC cytoskeleton as microtubule dissolution and actin re-arrangement were detected. Depletion of Bα regulatory subunit of PP2A had similar effect on the cytoskeleton structure of the cells. Furthermore, transendothelial electric resistance measurements demonstrated significantly slower barrier recovery of Bα depleted EC after thrombin treatment. AJ proteins, VE-cadherin and β-catenin, were detected along with Bα in pull-down assay. Also, the inhibition of PP2A (by okadaic acid or fostriecin) or depletion of Bα caused β-catenin translocation from the membrane to the cytoplasm in parallel with its phosphorylation on Ser552. In conclusion, our data suggest that the A/Bα/C holoenzyme form of PP2A is essential in EC barrier integrity both in micro- and macrovascular EC. PMID:23721711

  8. Activation of eNOS in endothelial cells exposed to ionizing radiation involves components of the DNA damage response pathway

    SciTech Connect

    Nagane, Masaki; Yasui, Hironobu; Sakai, Yuri; Yamamori, Tohru; Niwa, Koichi; Hattori, Yuichi; Kondo, Takashi; Inanami, Osamu

    2015-01-02

    Highlights: • eNOS activity is increased in BAECs exposed to X-rays. • ATM is involved in this increased eNOS activity. • HSP90 modulates the radiation-induced activation of ATM and eNOS. - Abstract: In this study, the involvement of ataxia telangiectasia mutated (ATM) kinase and heat shock protein 90 (HSP90) in endothelial nitric oxide synthase (eNOS) activation was investigated in X-irradiated bovine aortic endothelial cells. The activity of nitric oxide synthase (NOS) and the phosphorylation of serine 1179 of eNOS (eNOS-Ser1179) were significantly increased in irradiated cells. The radiation-induced increases in NOS activity and eNOS-Ser1179 phosphorylation levels were significantly reduced by treatment with either an ATM inhibitor (Ku-60019) or an HSP90 inhibitor (geldanamycin). Geldanamycin was furthermore found to suppress the radiation-induced phosphorylation of ATM-Ser1181. Our results indicate that the radiation-induced eNOS activation in bovine aortic endothelial cells is regulated by ATM and HSP90.

  9. AMP-Activated Protein Kinase Attenuates High Salt-Induced Activation of Epithelial Sodium Channels (ENaC) in Human Umbilical Vein Endothelial Cells

    PubMed Central

    Li, Xin-Yuan; Hu, Qing-Qing; Ma, He-Ping

    2016-01-01

    Recent studies suggest that the epithelial sodium channel (ENaC) is expressed in the endothelial cells. To test whether high salt affects the NO production via regulation of endothelial ENaC, human umbilical vein endothelial cells (HUVECs) were incubated in solutions containing either normal or high sodium (additional 20 mM NaCl). Our data showed that high sodium treatment significantly increased α-, β-, and γ-ENaC expression levels in HUVECs. Using the cell-attached patch-clamp technique, we demonstrated that high sodium treatment significantly increased ENaC open probability (PO). Moreover, nitric oxide synthase (eNOS) phosphorylation (Ser 1177) levels and NO production were significantly decreased by high sodium in HUVECs; the effects of high sodium on eNOS phosphorylation and NO production were inhibited by a specific ENaC blocker, amiloride. Our results showed that high sodium decreased AMP-activated kinase (AMPK) phosphorylation in endothelial cells. On the other hand, metformin, an AMPK activator, prevented high sodium-induced upregulation of ENaC expression and PO. Moreover, metformin prevented high salt-induced decrease in NO production and eNOS phosphorylation. These results suggest that high sodium stimulates ENaC activation by negatively modulating AMPK activity, thereby leading to reduction in eNOS activity and NO production in endothelial cells.

  10. AMP-Activated Protein Kinase Attenuates High Salt-Induced Activation of Epithelial Sodium Channels (ENaC) in Human Umbilical Vein Endothelial Cells.

    PubMed

    Zheng, Wei-Wan; Li, Xin-Yuan; Liu, Hui-Bin; Wang, Zi-Rui; Hu, Qing-Qing; Li, Yu-Xia; Song, Bin-Lin; Lou, Jie; Wang, Qiu-Shi; Ma, He-Ping; Zhang, Zhi-Ren

    2016-01-01

    Recent studies suggest that the epithelial sodium channel (ENaC) is expressed in the endothelial cells. To test whether high salt affects the NO production via regulation of endothelial ENaC, human umbilical vein endothelial cells (HUVECs) were incubated in solutions containing either normal or high sodium (additional 20 mM NaCl). Our data showed that high sodium treatment significantly increased α-, β-, and γ-ENaC expression levels in HUVECs. Using the cell-attached patch-clamp technique, we demonstrated that high sodium treatment significantly increased ENaC open probability (P O ). Moreover, nitric oxide synthase (eNOS) phosphorylation (Ser 1177) levels and NO production were significantly decreased by high sodium in HUVECs; the effects of high sodium on eNOS phosphorylation and NO production were inhibited by a specific ENaC blocker, amiloride. Our results showed that high sodium decreased AMP-activated kinase (AMPK) phosphorylation in endothelial cells. On the other hand, metformin, an AMPK activator, prevented high sodium-induced upregulation of ENaC expression and P O . Moreover, metformin prevented high salt-induced decrease in NO production and eNOS phosphorylation. These results suggest that high sodium stimulates ENaC activation by negatively modulating AMPK activity, thereby leading to reduction in eNOS activity and NO production in endothelial cells. PMID:27635187

  11. AMP-Activated Protein Kinase Attenuates High Salt-Induced Activation of Epithelial Sodium Channels (ENaC) in Human Umbilical Vein Endothelial Cells

    PubMed Central

    Li, Xin-Yuan; Hu, Qing-Qing; Ma, He-Ping

    2016-01-01

    Recent studies suggest that the epithelial sodium channel (ENaC) is expressed in the endothelial cells. To test whether high salt affects the NO production via regulation of endothelial ENaC, human umbilical vein endothelial cells (HUVECs) were incubated in solutions containing either normal or high sodium (additional 20 mM NaCl). Our data showed that high sodium treatment significantly increased α-, β-, and γ-ENaC expression levels in HUVECs. Using the cell-attached patch-clamp technique, we demonstrated that high sodium treatment significantly increased ENaC open probability (PO). Moreover, nitric oxide synthase (eNOS) phosphorylation (Ser 1177) levels and NO production were significantly decreased by high sodium in HUVECs; the effects of high sodium on eNOS phosphorylation and NO production were inhibited by a specific ENaC blocker, amiloride. Our results showed that high sodium decreased AMP-activated kinase (AMPK) phosphorylation in endothelial cells. On the other hand, metformin, an AMPK activator, prevented high sodium-induced upregulation of ENaC expression and PO. Moreover, metformin prevented high salt-induced decrease in NO production and eNOS phosphorylation. These results suggest that high sodium stimulates ENaC activation by negatively modulating AMPK activity, thereby leading to reduction in eNOS activity and NO production in endothelial cells. PMID:27635187

  12. Endothelial cell activation by hemodynamic shear stress derived from arteriovenous fistula for hemodialysis access.

    PubMed

    Franzoni, Marco; Cattaneo, Irene; Longaretti, Lorena; Figliuzzi, Marina; Ene-Iordache, Bogdan; Remuzzi, Andrea

    2016-01-01

    Intimal hyperplasia (IH) is the first cause of failure of an arteriovenous fistula (AVF). The aim of the present study was to investigate the effects on endothelial cells (ECs) of shear stress waveforms derived from AVF areas prone to develop IH. We used a cone-and-plate device to obtain real-time control of shear stress acting on EC cultures. We exposed human umbilical vein ECs for 48 h to different shear stimulations calculated in a side-to-end AVF model. Pulsatile unidirectional flow, representative of low-risk stenosis areas, induced alignment of ECs and actin fiber orientation with flow. Shear stress patterns of reciprocating flow, derived from high-risk stenosis areas, did not affect EC shape or cytoskeleton organization, which remained similar to static cultures. We also evaluated flow-induced EC expression of genes known to be involved in cytoskeletal remodeling and expression of cell adhesion molecules. Unidirectional flow induced a significant increase in Kruppel-like factor 2 mRNA expression, whereas it significantly reduced phospholipase D1, α4-integrin, and Ras p21 protein activator 1 mRNA expression. Reciprocating flow did not increase Kruppel-like factor 2 mRNA expression compared with static controls but significantly increased mRNA expression of phospholipase D1, α4-integrin, and Ras p21 protein activator 1. Reciprocating flow selectively increased monocyte chemoattractant protein-1 and IL-8 production. Furthermore, culture medium conditioned by ECs exposed to reciprocating flows selectively increased smooth muscle cell proliferation compared with unidirectional flow. Our results indicate that protective vascular effects induced in ECs by unidirectional pulsatile flow are not induced by reciprocating shear forces, suggesting a mechanism by which oscillating flow conditions may induce the development of IH in AVF and vascular access dysfunction. PMID:26497959

  13. Endothelial-monocyte activating polypeptide II alters fibronectin based endothelial cell adhesion and matrix assembly via alpha5 beta1 integrin

    SciTech Connect

    Schwarz, Margaret A. . E-mail: m.schwarz@umdnj.edu; Zheng, Hiahua; Liu, Jie; Corbett, Siobhan; Schwarz, Roderich E.

    2005-12-10

    Mature Endothelial-Monocyte Activating Polypeptide (mEMAP) II functions as a potent antiangiogenic peptide. Although the anti-tumor effect of mEMAP II has been described, little is known regarding its mechanism of action. Observations that mEMAP II induced apoptosis only in a subset of migrating and proliferating endothelial cells (EC) suggests a targeted effect on cells engaged in angiogenic activities which are known to rely upon cell adhesion and migration. Indeed, we demonstrate that mEMAP II inhibited fibronectin (FN) dependent microvascular EC (MEC) adhesion and spreading and we show that this depends upon the alpha5 beta1 integrin. Immunofluorescence analysis demonstrated that mEMAP II-dependent blockade of FN-alpha5 beta1 interactions was associated with disassembly of both actin stress fiber networks and FN matrix. These findings suggest that mEMAP II blocks MEC adhesion and spreading on fibronectin, via a direct interaction with the integrin alpha5 beta1, thus implicating that alpha5 integrin may be a mediator of mEMAP II's antiangiogenic function.

  14. Cells on the run: shear-regulated integrin activation in leukocyte rolling and arrest on endothelial cells.

    PubMed

    Alon, Ronen; Ley, Klaus

    2008-10-01

    The arrest of rolling leukocytes on various target vascular beds is mediated by specialized leukocyte integrins and their endothelial immunoglobulin superfamily (IgSF) ligands. These integrins are kept in largely inactive states and undergo in situ activation upon leukocyte-endothelial contact by both biochemical and mechanical signals from flow-derived shear forces. In vivo and in vitro studies suggest that leukocyte integrin activation involves conformational alterations through inside-out signaling followed by ligand-induced rearrangements accelerated by external forces. This activation process takes place within fractions of seconds by in situ signals transduced to the rolling leukocyte as it encounters specialized endothelial-displayed chemoattractants, collectively termed arrest chemokines. In neutrophils, selectin rolling engagements trigger intermediate affinity integrins to support reversible adhesions before chemokine-triggered arrest. Different leukocyte subsets appear to use different modalities of integrin activation during rolling and arrest at distinct endothelial sites.

  15. T11TS inhibits Angiopoietin-1/Tie-2 signaling, EGFR activation and Raf/MEK/ERK pathway in brain endothelial cells restraining angiogenesis in glioma model.

    PubMed

    Bhattacharya, Debanjan; Chaudhuri, Suhnrita; Singh, Manoj Kumar; Chaudhuri, Swapna

    2015-06-01

    Malignant gliomas represent one of the most aggressive and hypervascular primary brain tumors. Angiopoietin-1, the peptide growth factor activates endothelial Tie-2 receptor promoting vessel maturation and vascular stabilization steps of angiogenesis in glioma. Epidermal growth factor receptor (EGFR) and Tie-2 receptor on endothelial cells once activated transmits signals through downstream Raf/MEK/ERK pathway promoting endothelial cell proliferation and migration which are essential for angiogenesis induction. The in vivo effect of sheep erythrocyte membrane glycopeptide T11-target structure (T11TS) on angiopoietin-1/Tie-2 axis, EGFR signaling and Raf/MEK/ERK pathway in glioma associated endothelial cells has not been investigated previously. The present study performed with rodent glioma model aims to investigate the effect of T11TS treatment on angiopoietin-1/Tie-2 signaling, EGFR activity and Raf/MEK/ERK pathway in glioma associated endothelial cells within glioma milieu. T11TS administration in rodent glioma model inhibited angiopoietin-1 expression and attenuated Tie-2 expression and activation in glioma associated brain endothelial cells. T11TS treatment also downregulated total and phosphorylated EGFR expression in glioma associated endothelial cells. Additionally T11TS treatment inhibited Raf-1 expression, MEK-1 and ERK-1/2 expression and phosphorylation in glioma associated brain endothelial cells. Thus T11TS therapy remarkably inhibits endothelial angiopoietin-1/Tie-2 signaling associated with vessel maturation and simultaneously antagonizes endothelial cell proliferation signaling by blocking EGFR activation and components of Raf/MEK/ERK pathway. Collectively, the findings demonstrate a multi-targeted anti-angiogenic activity of T11TS which augments the potential for clinical translation of T11TS as an effective angiogenesis inhibitor for glioma treatment.

  16. Mitochondria, endothelial cell function, and vascular diseases

    PubMed Central

    Tang, Xiaoqiang; Luo, Yu-Xuan; Chen, Hou-Zao; Liu, De-Pei

    2014-01-01

    Mitochondria are perhaps the most sophisticated and dynamic responsive sensing systems in eukaryotic cells. The role of mitochondria goes beyond their capacity to create molecular fuel and includes the generation of reactive oxygen species, the regulation of calcium, and the activation of cell death. In endothelial cells, mitochondria have a profound impact on cellular function under both healthy and diseased conditions. In this review, we summarize the basic functions of mitochondria in endothelial cells and discuss the roles of mitochondria in endothelial dysfunction and vascular diseases, including atherosclerosis, diabetic vascular dysfunction, pulmonary artery hypertension, and hypertension. Finally, the potential therapeutic strategies to improve mitochondrial function in endothelial cells and vascular diseases are also discussed, with a focus on mitochondrial-targeted antioxidants and calorie restriction. PMID:24834056

  17. Anti-TNF-α Activity of Portulaca oleracea in Vascular Endothelial Cells

    PubMed Central

    Lee, An Sook; Kim, Jin Sook; Lee, Yun Jung; Kang, Dae Gill; Lee, Ho Sub

    2012-01-01

    Vascular inflammation plays a key role in the pathogenesis and progression of atherosclerosis, a main complication of diabetes. The present study investigated whether an aqueous extract of Portulaca oleracea (AP) prevents the TNF-α-induced vascular inflammatory process in the human umbilical vein endothelial cell (HUVEC). The stimulation of TNF-α induced overexpression of adhesion molecules affects vascular cell adhesion molecule (VCAM)-1, intercellular adhesion molecule (ICAM)-1 and E-selectin for example. However, AP significantly suppressed TNF-α-induced over-expression of these adhesion molecules in a dose-dependent manner. In addition, pretreatment with AP dose-dependently reduced an increase of the adhesion of HL-60 cells to TNF-α-induced HUVEC. Furthermore, we observed that stimulation of TNF-α significantly increased intracellular reactive oxygen species (ROS) production. However, pretreatment with AP markedly blocked TNF-α-induced ROS production in a dose-dependent manner. The western blot and immunofluorescence analysis showed that AP inhibited the translocation of p65 NF-κB to the nucleus. In addition, AP suppressed the TNF-α-induced degradation of IκB-α and attenuated the TNF-α-induced NF-κB binding. AP also effectively reduced TNF-α-induced mRNA expressions of monocyte chemoattractant protein (MCP)-1 and interleukin (IL)-8 in a dose-dependent manner. Taken together, AP prevents the vascular inflammatory process through the inhibition of intracellular ROS production and NF-κB activation as well as the reduction of adhesion molecule expression in TNF-α-induced HUVEC. These results suggested that AP might have a potential therapeutic effect by inhibiting the vascular inflammation process in vascular diseases such as atherosclerosis. PMID:22754320

  18. Calcium-activated potassium channels in cultured human endothelial cells are not directly modulated by nitric oxide.

    PubMed

    Haburcák, M; Wei, L; Viana, F; Prenen, J; Droogmans, G; Nilius, B

    1997-04-01

    Nitric oxide has been proposed to directly activated large conductance Ca(2+)-dependent K+ channels (BKCa) [Bolotina V.M., Najibi S., Palacino J.J., Pagano P.J., Cohen R.A. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 1994; 368: 850-853]. The nitric oxide (NO) donor S-nitrosocysteine (SNOC) was used to evaluate a possible direct modulation of BKCa by NO in EAhy926 (EA cells), a cultured human umbilical vein derived endothelial cell line, using the whole-cell, cell-attached and inside-out configuration of the patch-clamp technique, together with simultaneous amperometric measurement of NO and the concentration of free intracellular calcium [Ca2+]i. BKCa channels with a large conductance of approximately 190 pS, voltage-dependent activation and a reversal potential close to -80 mV have been identified in EA cells. Exposure of EA cells in the experimental chamber to 1 mM SNOC delivered approximately 5 microM NO, as recorded by an amperometric probe in situ. SNOC produced a modest increases in [Ca2+]i that was insufficient to activate BKCa channels. NO alone neither activated BKCa channels directly nor modulated preactivated BKCa channels in EA cells. These results do not support a direct modulatory effect of NO on large conductance BKCa channels in cultured endothelial cells. PMID:9160165

  19. Homocysteine-induced apoptosis in endothelial cells coincides with nuclear NOX2 and peri-nuclear NOX4 activity.

    PubMed

    Sipkens, Jessica A; Hahn, Nynke; van den Brand, Carlien S; Meischl, Christof; Cillessen, Saskia A G M; Smith, Desirée E C; Juffermans, Lynda J M; Musters, René J P; Roos, Dirk; Jakobs, Cornelis; Blom, Henk J; Smulders, Yvo M; Krijnen, Paul A J; Stehouwer, Coen D A; Rauwerda, Jan A; van Hinsbergh, Victor W M; Niessen, Hans W M

    2013-11-01

    Apoptosis of endothelial cells related to homocysteine (Hcy) has been reported in several studies. In this study, we evaluated whether reactive oxygen species (ROS)-producing signaling pathways contribute to Hcy-induced apoptosis induction, with specific emphasis on NADPH oxidases. Human umbilical vein endothelial cells were incubated with 0.01-2.5 mM Hcy. We determined the effect of Hcy on caspase-3 activity, annexin V positivity, intracellular NOX1, NOX2, NOX4, and p47(phox) expression and localization, nuclear nitrotyrosine accumulation, and mitochondrial membrane potential (ΔΨ m). Hcy induced caspase-3 activity and apoptosis; this effect was concentration dependent and maximal after 6-h exposure to 2.5 mM Hcy. It was accompanied by a significant increase in ΔΨ m. Cysteine was inactive on these parameters excluding a reactive thiol group effect. Hcy induced an increase in cellular NOX2, p47(phox), and NOX4, but not that of NOX1. 3D digital imaging microscopy followed by image deconvolution analysis showed nuclear accumulation of NOX2 and p47(phox) in endothelial cells exposed to Hcy, but not in control cells, which coincided with accumulation of nuclear nitrotyrosine residues. Furthermore, Hcy enhanced peri-nuclear localization of NOX4 coinciding with accumulation of peri-nuclear nitrotyrosine residues, a reflection of local ROS production. p47(phox) was also increased in the peri-nuclear region. The Hcy-induced increase in caspase-3 activity was prevented by DPI and apocynin, suggesting involvement of NOX activity. The data presented in this article reveal accumulation of nuclear NOX2 and peri-nuclear NOX4 accumulation as potential source of ROS production in Hcy-induced apoptosis in endothelial cells.

  20. Estetrol Modulates Endothelial Nitric Oxide Synthesis in Human Endothelial Cells

    PubMed Central

    Montt-Guevara, Maria Magdalena; Giretti, Maria Silvia; Russo, Eleonora; Giannini, Andrea; Mannella, Paolo; Genazzani, Andrea Riccardo; Genazzani, Alessandro David; Simoncini, Tommaso

    2015-01-01

    Estetrol (E4) is a natural human estrogen that is present at high concentrations during pregnancy. E4 has been reported to act as an endogenous estrogen receptor modulator, exerting estrogenic actions on the endometrium or the central nervous system but presenting antagonistic effects on the breast. Due to these characteristics, E4 is currently being developed for a number of clinical applications, including contraception and menopausal hormone therapy. Endothelial nitric oxide (NO) is a key player for vascular function and disease during pregnancy and throughout aging in women. Endothelial NO is an established target of estrogens that enhance its formation in human endothelial cells. We here addressed the effects of E4 on the activity and expression of the endothelial nitric oxide synthase (eNOS) in cultured human umbilical vein endothelial cells (HUVEC). E4 stimulated the activation of eNOS and NO secretion in HUVEC. E4 was significantly less effective compared to E2, and a peculiar concentration-dependent effect was found, with higher amounts of E4 being less effective than lower concentrations. When E2 was combined with E4, an interesting pattern was noted. E4 antagonized NO synthesis induced by pregnancy-like E2 concentrations. However, E4 did not impede the modest induction of NO synthesis associated with postmenopausal-like E2 levels. These results support the hypothesis that E4 may be a regulator of NO synthesis in endothelial cells and raise questions on its peculiar signaling in this context. Our results may be useful to interpret the role of E4 during human pregnancy and possibly to help develop this interesting steroid for clinical use. PMID:26257704

  1. Estetrol Modulates Endothelial Nitric Oxide Synthesis in Human Endothelial Cells.

    PubMed

    Montt-Guevara, Maria Magdalena; Giretti, Maria Silvia; Russo, Eleonora; Giannini, Andrea; Mannella, Paolo; Genazzani, Andrea Riccardo; Genazzani, Alessandro David; Simoncini, Tommaso

    2015-01-01

    Estetrol (E4) is a natural human estrogen that is present at high concentrations during pregnancy. E4 has been reported to act as an endogenous estrogen receptor modulator, exerting estrogenic actions on the endometrium or the central nervous system but presenting antagonistic effects on the breast. Due to these characteristics, E4 is currently being developed for a number of clinical applications, including contraception and menopausal hormone therapy. Endothelial nitric oxide (NO) is a key player for vascular function and disease during pregnancy and throughout aging in women. Endothelial NO is an established target of estrogens that enhance its formation in human endothelial cells. We here addressed the effects of E4 on the activity and expression of the endothelial nitric oxide synthase (eNOS) in cultured human umbilical vein endothelial cells (HUVEC). E4 stimulated the activation of eNOS and NO secretion in HUVEC. E4 was significantly less effective compared to E2, and a peculiar concentration-dependent effect was found, with higher amounts of E4 being less effective than lower concentrations. When E2 was combined with E4, an interesting pattern was noted. E4 antagonized NO synthesis induced by pregnancy-like E2 concentrations. However, E4 did not impede the modest induction of NO synthesis associated with postmenopausal-like E2 levels. These results support the hypothesis that E4 may be a regulator of NO synthesis in endothelial cells and raise questions on its peculiar signaling in this context. Our results may be useful to interpret the role of E4 during human pregnancy and possibly to help develop this interesting steroid for clinical use. PMID:26257704

  2. Schwann cells promote endothelial cell migration

    PubMed Central

    Ramos, Tiago; Ahmed, Maqsood; Wieringa, Paul; Moroni, Lorenzo

    2015-01-01

    Directed cell migration is a crucial orchestrated process in embryonic development, wound healing, and immune response. The underlying substrate can provide physical and/or chemical cues that promote directed cell migration. Here, using electrospinning we developed substrates of aligned poly(lactic-co-glycolic acid) nanofibres to study the influence of glial cells on endothelial cells (ECs) in a 3-dimensional (3D) co-culture model. ECs build blood vessels and regulate their plasticity in coordination with neurons. Likewise, neurons construct nerves and regulate their circuits in coordination with ECs. In our model, the neuro-vascular cross-talk was assessed using a direct co-culture model of human umbilical vein endothelial cells (HUVECs) and rat Schwann cells (rSCs). The effect of rSCs on ECs behavior was demonstrated by earlier and higher velocity values and genetic expression profiles different of those of HUVECs when seeded alone. We observed 2 different gene expression trends in the co-culture models: (i) a later gene expression of angiogenic factors, such as interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF), and (ii) an higher gene expression of genes involved in actin filaments rearrangement, such as focal adhesion kinase (FAK), Mitogen-activated protein kinase-activated protein kinase 13 (MAPKAPK13), Vinculin (VCL), and Profilin (PROF). These results suggested that the higher ECs migration is mainly due to proteins involved in the actin filaments rearrangement and in the directed cell migration rather than the effect of angiogenic factors. This co-culture model provides an approach to enlighten the neurovascular interactions, with particular focus on endothelial cell migration. PMID:26491999

  3. Thy-1 Regulates VEGF-Mediated Choroidal Endothelial Cell Activation and Migration: Implications in Neovascular Age-Related Macular Degeneration

    PubMed Central

    Wang, Haibo; Han, Xiaokun; Kunz, Eric; Hartnett, M. Elizabeth

    2016-01-01

    Purpose This study addresses the hypothesis that age-related stresses upregulate Thy-1 in choroidal endothelial cells (CECs) and contribute to CEC activation and migration, processes important in choroidal neovascularization (CNV). Methods Measurements were made of Thy-1 protein (Western blot) in CECs and Thy-1 mRNA (real time quantitative PCR) in CECs treated with VEGF, CCL11, or PBS or in RPE/choroids from young or old donors or lasered or nonlasered mice. Immunolabeled Thy-1 in ocular sections was compared from young versus old human donor eyes or those with or without neovascular AMD or from lasered versus nonlasered mice. Choroidal endothelial cells transfected with Thy-1 or control siRNA or pretreated with Thy-1 blocking peptide or control were stimulated with VEGF or 7-ketocholesterol (7-KC). Choroidal endothelial cell migration, proliferation, cytoskeletal stress fibers, Rac1 activation, and phosphorylated VEGF receptor 2 (VEGFR2), integrin β3, and Src were measured. Statistics were performed using ANOVA. Results Thy-1 was expressed in retinal ganglion cells and in vascular endothelial-cadherin–labeled choroid and localized to human or mouse laser-induced CNV lesions. Thy-1 protein and mRNA were significantly increased in CECs treated with VEGF or CCL11 and in RPE/choroids from aged versus young donor eyes or from lasered mice versus nonlasered controls. Knockdown or inhibition of Thy-1 in CECs significantly reduced VEGF-induced CEC migration and proliferation, stress fiber formation and VEGFR2, Src, integrin β3 and Rac1 activation, and 7-KC–induced Rac1 and Src activation. Conclusions Thy-1 in CECs regulates VEGF-induced CEC activation and migration and links extracellular 7-KC to intracellular signaling. Future studies elucidating Thy-1 mechanisms in neovascular AMD are warranted. PMID:27768790

  4. Experimental study on apoptosis of TNFR1 receptor pro-endothelial progenitor cells activated by high glucose induced oxidative stress

    PubMed Central

    Liu, Yong; Xei, Fei; Xu, Xiong-Fei; Zeng, Hong; He, Hu-Qiang; Zhang, Lei; Zheng, Ying-Qiang; He, Yan-Zheng

    2015-01-01

    Objective: To investigate whether high glucose in vitro activating TNFR1 and further promote rat marrow endothelial progenitor cells (EPCs) apoptosis. Methods: Rat morrow endothelial progenitor cells were cultured and identified by Confocal Microscopy; then were treated with high glucose (5.5, 15, 30, 60 mmol/L), mannitol (15, 30, 60, 90 mmol/L), high glucose + Tempol and high glucose+ MAB430. Apoptosis rate of the above cells were detected by flow cytometry. ROS and MDA level and anti-O2- were detected by colorimetric technique; the expression level of TNFR1 induced signal pathway related proteins were detected by Western blotting. Results: High glucose can induce endothelial progenitor cells apoptosis, which is mostly in the later stage (72 h-96 h) instead of the earlier stage (24 h-48 h); high glucose can also induce oxidative stress reaction and the produces ROS and MDA increase significantly in the later stage (after 72 h), but anti-O2- decrease significantly. TNF apoptosis signal pathway related protein expression level not increase in the earlier stage (before 24 h) but increase significantly in the later stage (after 72 h). Tempol and MAB430 down-regulate TNF apoptosis signal pathway related protein expression and reduce EPCs apoptosis. Conclusion: High glucose activates the TNFR1 of TPCs through oxidative stress reaction and further induces cell apoptosis. PMID:26884909

  5. Donepezil attenuates high glucose-accelerated senescence in human umbilical vein endothelial cells through SIRT1 activation.

    PubMed

    Zhang, Tao; Tian, Feng; Wang, Jing; Zhou, Shanshan; Dong, Xueqing; Guo, Kai; Jing, Jing; Zhou, Ying; Chen, Yundai

    2015-09-01

    Cellular senescence of endothelial cells is a damage and stress response which induces pro-inflammatory, pro-atherosclerotic, and pro-thrombotic phenotypes. Donepezil is a drug used for the treatment of mild to moderate dementia of the Alzheimer's disease (AD). The aim of the present study was to investigate the attenuation of endothelial cell senescence by donepezil and to explore the mechanisms underlying the anti-aging effects of donepezil. Our results indicated that high glucose (HG) markedly decreased cell viability of human umbilical vein endothelial cells (HUVECs), and this phenomenon was reversed by treatment with donepezil. Importantly, our results displayed that the frequency of senescent (SA-ß-gal-positive) cells and the expression level of senescence genes (PAI-1 and p21) were significantly higher in the HG group compared with the normal glucose (NG) group, and these changes were blocked by treatment with donepezil. Also, our results showed that donepezil inhibits the generation of reactive oxygen species (ROS), which promotes cellular senescence. Pretreatment with nicotinamide (NAM), a sirtuin 1 (SIRT1) inhibitor, inhibited the reduction in senescence associated with donepezil. Indeed, our results indicated that donepezil increased the SIRT1 enzyme activity. Therefore, these results show that donepezil delays cellular senescence that is promoted under HG condition via activation of SIRT1.

  6. Reduced Ang2 expression in aging endothelial cells.

    PubMed

    Hohensinner, P J; Ebenbauer, B; Kaun, C; Maurer, G; Huber, K; Wojta, J

    2016-06-01

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. PMID:27137842

  7. Infection of vascular endothelial cells with herpes simplex virus enhances tissue factor activity and reduces thrombomodulin expression.

    PubMed Central

    Key, N S; Vercellotti, G M; Winkelmann, J C; Moldow, C F; Goodman, J L; Esmon, N L; Esmon, C T; Jacob, H S

    1990-01-01

    Latent infection of vascular cells with herpes-viruses may play a pathogenic role in the development of human atherosclerosis. In a previous study, we found that cultured human umbilical vein endothelial cells (HUVECs) infected with herpes simplex virus 1 (HSV-1) became procoagulant, exemplified both by their enhanced assembly of the prothrombinase complex and by their inability to reduce adhesion of platelets. We now report two further procoagulant consequences of endothelial HSV infection: loss of surface thrombomodulin (TM) activity and induction of synthesis of tissue factor. Within 4 hr of infection of HUVECs, TM activity measured by thrombin-dependent protein C activation declined 21 +/- 3% (P less than 0.05) and by 18 hr, 48 +/- 5% (P less than 0.001). Similar significant TM decrements accompanied infection of bovine aortic endothelial cells. Identical TM loss was induced with HSV-2 infection but not with adenovirus infection. Decreased surface expression of TM antigen (measured by the specific binding of a polyclonal antibody to bovine TM) closely paralleled the loss of TM activity. As examined by Northern blotting, these losses apparently reflected rapid onset (within 4 hr of HSV infection) loss of mRNA for TM. In contrast, HSV infection induced a viral-dose-dependent increase in synthesis of tissue factor protein, adding to the procoagulant state. The results indicate that loss of endothelial protein-synthetic capacity is not a universal effect of HSV infection. We suggest that the procoagulant state induced by reduction in TM activity and amplified tissue factor activity accompanying HSV infection of endothelium could contribute to deposition of thrombi on atherosclerotic plaques and to the "coagulant-necrosis" state that characterizes HSV-infected mucocutaneous lesions. Images PMID:2169619

  8. Caveolin-1 mediates tissue plasminogen activator-induced MMP-9 up-regulation in cultured brain microvascular endothelial cells.

    PubMed

    Jin, Xinchun; Sun, Yanyun; Xu, Ji; Liu, Wenlan

    2015-03-01

    Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase-9 (MMP-9) activity in the ischemic brain, which exacerbates blood-brain barrier injury and increases the risk of symptomatic cerebral hemorrhage. The mechanism through which tPA enhances MMP-9 activity is not well understood. Here we report an important role of caveolin-1 in mediating tPA-induced MMP-9 synthesis. Brain microvascular endothelial cell line bEnd3 cells were incubated with 5 or 20 μg/ml tPA for 24 hrs before analyzing MMP-9 levels in the conditioned media and cellular extracts by gelatin zymography. tPA at a dose of 20 μg/mL tPA, but not 5 μg/mL, significantly increased MMP-9 level in cultured media while decreasing it in cellular extracts. Concurrently, tPA treatment induced a 2.3-fold increase of caveolin-1 protein levels in endothelial cells. Interestingly, knockdown of Cav-1 with siRNA inhibited tPA-induced MMP-9 mRNA up-regulation and MMP-9 increase in the conditioned media, but did not affect MMP-9 decrease in cellular extracts. These results suggest that caveolin-1 critically contributes to tPA-mediated MMP-9 up-regulation, but may not facilitate MMP-9 secretion in endothelial cells. Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase-9 (MMP-9) activity in the ischemic brain, which exacerbates ischemic blood brain barrier (BBB) injury and increases the risk of symptomatic cerebral hemorrhage. Our results suggest a novel mechanism underlying this tPA-MMP 9 axis. In response to tPA treatment, caveolin-1 protein levels increased in endothelial cells, which mediate MMP-9 mRNA up-regulation and its secretion into extracellular space. Caveolin-1 may, however, not facilitate MMP-9 secretion in endothelial cells. Our data suggest caveolin-1 as a novel therapeutic target for protecting the BBB against ischemic damage. The schematic outlines tPA-induced MMP-9 upreguation.

  9. Caveolin-1 mediates tissue plasminogen activator-induced MMP-9 up-regulation in cultured brain microvascular endothelial cells.

    PubMed

    Jin, Xinchun; Sun, Yanyun; Xu, Ji; Liu, Wenlan

    2015-03-01

    Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase-9 (MMP-9) activity in the ischemic brain, which exacerbates blood-brain barrier injury and increases the risk of symptomatic cerebral hemorrhage. The mechanism through which tPA enhances MMP-9 activity is not well understood. Here we report an important role of caveolin-1 in mediating tPA-induced MMP-9 synthesis. Brain microvascular endothelial cell line bEnd3 cells were incubated with 5 or 20 μg/ml tPA for 24 hrs before analyzing MMP-9 levels in the conditioned media and cellular extracts by gelatin zymography. tPA at a dose of 20 μg/mL tPA, but not 5 μg/mL, significantly increased MMP-9 level in cultured media while decreasing it in cellular extracts. Concurrently, tPA treatment induced a 2.3-fold increase of caveolin-1 protein levels in endothelial cells. Interestingly, knockdown of Cav-1 with siRNA inhibited tPA-induced MMP-9 mRNA up-regulation and MMP-9 increase in the conditioned media, but did not affect MMP-9 decrease in cellular extracts. These results suggest that caveolin-1 critically contributes to tPA-mediated MMP-9 up-regulation, but may not facilitate MMP-9 secretion in endothelial cells. Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase-9 (MMP-9) activity in the ischemic brain, which exacerbates ischemic blood brain barrier (BBB) injury and increases the risk of symptomatic cerebral hemorrhage. Our results suggest a novel mechanism underlying this tPA-MMP 9 axis. In response to tPA treatment, caveolin-1 protein levels increased in endothelial cells, which mediate MMP-9 mRNA up-regulation and its secretion into extracellular space. Caveolin-1 may, however, not facilitate MMP-9 secretion in endothelial cells. Our data suggest caveolin-1 as a novel therapeutic target for protecting the BBB against ischemic damage. The schematic outlines tPA-induced MMP-9 upreguation. PMID:25683686

  10. Thiram activates NF-kappaB and enhances ICAM-1 expression in human microvascular endothelial HMEC-1 cells.

    PubMed

    Kurpios-Piec, Dagmara; Grosicka-Maciąg, Emilia; Woźniak, Katarzyna; Kowalewski, Cezary; Kiernozek, Ewelina; Szumiło, Maria; Rahden-Staroń, Iwonna

    2015-02-01

    Thiram (TMTD) is a fungicidal and bactericidal agent used as antiseptic, seed disinfectant and animal repellent. In the light of known properties, thiram is considered to be used as an inhibitor of angiogenesis and/or inflammation. Since angiogenesis requires the growth of vascular endothelial cells we have used microvascular endothelial cell line HMEC-1 to elucidate the effect of thiram on normal and stimulated cells. We cultured HMEC-1 cells in the presence of thiram at low concentration (0.5 µg/mL or 2 µg/mL) (0.2 µM or 0.8 µM) or TNF-α (10 ng/mL) alone, and thiram together with TNF-α. TNF-α was used as a cytokine that triggers changes characteristic for inflammatory state of the cell. We carried out an in vitro study aimed at assessing generation of reactive oxygen species (ROS), activation of NF-κB, and expression of cell adhesion molecules ICAM-1, VCAM-1, PECAM-1. It was found that TMTD produced ROS and activated NF-κB. Activation of NF-κB was concurrent with an increase in ICAM-1 expression on the surface of HMEC-1 cells. ICAM-1 reflects intensity of inflammation in endothelial cell milieu. The expression of VCAM-1 and PECAM-1 on these cells was not changed by thiram. It was also found that stimulation of the HMEC-1 cells with the pro-inflammatory cytokine TNF-α caused activation of ICAM-1 and VCAM-1 expression with concomitant decrease of PECAM-1 cell surface expression above the control levels. Treatment with thiram and TNF-α changed cellular response compared with effects observed after treatment with TNF-α alone, i.e. further increase of ICAM-1 expression and impairment of the TNF-α effect on PECAM-1 and VCAM-1 expression. This study demonstrated that thiram acts as a pro-oxidant, and elicits in endothelial cell environment effects characteristic for inflammation. However, when it is present concurrently with pro-inflammatory cytokine TNF-α interferes with its action.

  11. Thiram activates NF-kappaB and enhances ICAM-1 expression in human microvascular endothelial HMEC-1 cells.

    PubMed

    Kurpios-Piec, Dagmara; Grosicka-Maciąg, Emilia; Woźniak, Katarzyna; Kowalewski, Cezary; Kiernozek, Ewelina; Szumiło, Maria; Rahden-Staroń, Iwonna

    2015-02-01

    Thiram (TMTD) is a fungicidal and bactericidal agent used as antiseptic, seed disinfectant and animal repellent. In the light of known properties, thiram is considered to be used as an inhibitor of angiogenesis and/or inflammation. Since angiogenesis requires the growth of vascular endothelial cells we have used microvascular endothelial cell line HMEC-1 to elucidate the effect of thiram on normal and stimulated cells. We cultured HMEC-1 cells in the presence of thiram at low concentration (0.5 µg/mL or 2 µg/mL) (0.2 µM or 0.8 µM) or TNF-α (10 ng/mL) alone, and thiram together with TNF-α. TNF-α was used as a cytokine that triggers changes characteristic for inflammatory state of the cell. We carried out an in vitro study aimed at assessing generation of reactive oxygen species (ROS), activation of NF-κB, and expression of cell adhesion molecules ICAM-1, VCAM-1, PECAM-1. It was found that TMTD produced ROS and activated NF-κB. Activation of NF-κB was concurrent with an increase in ICAM-1 expression on the surface of HMEC-1 cells. ICAM-1 reflects intensity of inflammation in endothelial cell milieu. The expression of VCAM-1 and PECAM-1 on these cells was not changed by thiram. It was also found that stimulation of the HMEC-1 cells with the pro-inflammatory cytokine TNF-α caused activation of ICAM-1 and VCAM-1 expression with concomitant decrease of PECAM-1 cell surface expression above the control levels. Treatment with thiram and TNF-α changed cellular response compared with effects observed after treatment with TNF-α alone, i.e. further increase of ICAM-1 expression and impairment of the TNF-α effect on PECAM-1 and VCAM-1 expression. This study demonstrated that thiram acts as a pro-oxidant, and elicits in endothelial cell environment effects characteristic for inflammation. However, when it is present concurrently with pro-inflammatory cytokine TNF-α interferes with its action. PMID:25752435

  12. The vitronectin receptor (alpha v beta 3) is implicated, in cooperation with P-selectin and platelet-activating factor, in the adhesion of monocytes to activated endothelial cells.

    PubMed Central

    Murphy, J F; Bordet, J C; Wyler, B; Rissoan, M C; Chomarat, P; Defrance, T; Miossec, P; McGregor, J L

    1994-01-01

    In this study we have investigated the presence on endothelial cells of potential glycoprotein receptors, other than P-selectin, which are involved in the adhesion of monocytes at the early stages of activation. We report that the majority of cells binding to thrombin-activated endothelial cells from a peripheral blood mononuclear cell (PBMC) preparation are monocytes. The adhesion of PBMC to thrombin-activated, but not resting, endothelial cells was inhibited (66%) by a monoclonal antibody (mAb) directed against alpha v beta 3. Elutriated monocytes or a monocytic cell line (U937) were also inhibited by this antibody, its F(ab)'2 fragments and three other anti-(alpha v beta 3) mAbs. alpha v beta 3 isolated from endothelial-cell lysates significantly inhibited the adhesion of monocytes and U937 cells to endothelial cells. A peptide motif (RGDF) known to interact with alpha v beta 3 inhibited U937 cell adhesion to activated endothelial cells by 53%. Finally, an anti-(P-selectin) mAb (LYP20) or a platelet-activating factor (PAF)-receptor antagonist (WEB 2086) inhibited monocyte adhesion to activated endothelial cells. This study shows for the first time that alpha v beta 3 is implicated, in addition to P-selectin and PAF, in the adhesion of monocytes to activated endothelial cells. PMID:7528011

  13. Diabetes-induced activation of system y+ and nitric oxide synthase in human endothelial cells: association with membrane hyperpolarization.

    PubMed Central

    Sobrevia, L; Cesare, P; Yudilevich, D L; Mann, G E

    1995-01-01

    1. The activity of the human endothelial cell L-arginine transporter (system y+) has been correlated with cGMP production (index of nitric oxide) and prostacyclin (PGI2) release in umbilical vein endothelial cells cultured from normal or gestational diabetic pregnancies. 2. In non-diabetic and diabetic cells, transport of L-arginine was Na+ and pH independent, inhibited by other cationic L-arginine analogues and unaffected by neutral amino acids. 3. Diabetes was associated with an increased Vmax for saturable L-arginine transport (4.6 +/- 0.13 vs. 9.9 +/- 0.5 pmol (microgram protein)-1 min-1, P < 0.01), but had no effect on initial rates of transport for L-serine, L-citrulline, L-leucine or 2-deoxyglucose. 4. In non-diabetic and diabetic cells, elevated K+ resulted in a concentration-dependent inhibition in the initial rates of transport for L-arginine and the membrane potential-sensitive probe tetra[3H]phenylphosphonium (TPP+). 5. When resting membrane potential was measured using the whole-cell patch voltage clamp technique, diabetic cells were hyperpolarized (-78 +/- 0.3 mV) compared with non-diabetic cells (-70 +/- 0.04 mV, P < 0.04). Accumulation of [3H]TPP+ was also increased in diabetic compared with non-diabetic cells. 6. Basal intracellular cGMP levels were elevated 2.5-fold in diabetic cells, and L-NAME (100 microM), an inhibitor of nitric oxide synthase, abolished basal cGMP accumulation in non-diabetic and diabetic cells. 7. Histamine (10 microM) had no effect on L-arginine transport but evoked significant increases in cGMP in non-diabetic and diabetic cells, which were completely inhibited by L-NAME but unaffected by superoxide dismutase. 8. Basal and histamine-stimulated PGI2 release was decreased markedly in diabetic cells. 9. Our findings demonstrate that gestational diabetes is associated with phenotypic changes in fetal endothelial cells, which result in a membrane hyperpolarization, activation of the human endothelial cell L-arginine transporter

  14. Grape pomace extract exerts antioxidant effects through an increase in GCS levels and GST activity in muscle and endothelial cells

    PubMed Central

    GOUTZOURELAS, NIKOLAOS; STAGOS, DIMITRIOS; HOUSMEKERIDOU, ANASTASIA; KARAPOULIOU, CHRISTINA; KERASIOTI, EFTHALIA; ALIGIANNIS, NEKTARIOS; SKALTSOUNIS, ALEXIOS L; SPANDIDOS, DEMETRIOS A; TSATSAKIS, ARISTIDIS M; KOURETAS, DEMETRIOS

    2015-01-01

    In a previous study, we demonstrated that a grape pomace extract (GPE) exerted antioxidant activity in endothelial (EA.hy926) and muscle (C2C12) cells through an increase in glutathione (GSH) levels. In the present study, in order to elucidate the mechanisms responsible for the antioxidant activity of GPE, its effects on the expression of critical antioxidant enzymes, such as catalase (CAT), superoxide dismutase (SOD)1, heme oxygenase 1 (HO-1) and gamma-glutamylcysteine synthetase (GCS) were assessed in EA.hy926 and C2C12 cells. Moreover, the effects of GPE on CAT, SOD and glutathione S-transferase (GST) enzymatic activity were evaluated. For this purpose, the C2C12 and EA.hy926 cells were treated with GPE at low and non-cytotoxic concentrations (2.5 and 10 µg/ml for the C2C12 cells; 0.068 and 0.250 µg/ml for the EA.hy926 cells) for 3, 6, 12, 18 and 24 h. Following incubation, enzymatic expression and activity were assessed. The results revealed that treatment with GPE significantly increased GCS levels and GST activity in both the C2C12 and EA.hy926 cells. However, GPE significantly decreased CAT levels and activity, but only in the muscle cells, while it had no effect on CAT levels and activity in the endothelial cells. Moreover, treatment with GPE had no effect on HO-1 and SOD expression and activity in both cell lines. Therefore, the present results provide further evidence of the crucial role of GSH systems in the antioxidant effects exerted by GPE. Thus, GPE may prove to be effective for use as a food supplement for the treatment of oxidative stress-induced pathological conditions of the cardiovascular and skeletal muscle systems, particularly those associated with low GSH levels. PMID:26082074

  15. Hydrogen peroxide signaling mediator in the activation of p38 MAPK in vascular endothelial cells.

    PubMed

    Bretón-Romero, Rosa; Lamas, Santiago

    2013-01-01

    Substantial evidence suggests that a transient increase of hydrogen peroxide (H2O2) behaves as an intracellular messenger able to trigger the activation of different signaling pathways. These include phosphatases, protein kinases, and transcription factors among others; however, most of the studies have been performed using supraphysiological levels of H2O2. Reactive oxygen species (ROS) generation occurs under physiological conditions and different extracellular stimuli including cytokines, growth factors, and shear stress are able to produce both low levels of superoxide anion and H2O2. Here, we explore the redox-dependent activation of key signaling pathways induced by shear stress. We demonstrate that laminar shear stress (LSS) rapidly promotes a transient generation of H2O2 that is necessary for the activation of the stress-activated protein kinase p38 MAPK. We describe p38 MAPK as an early redox sensor in LSS. Our studies show that it is essential for the activation of endothelial nitric oxide synthase, the subsequent nitric oxide generation, and the protection of endothelial function.

  16. Blockade of Ca2+-activated K+ channels inhibits proliferation of human endothelial cells induced by basic fibroblast growth factor.

    PubMed

    Wiecha, J; Münz, B; Wu, Y; Noll, T; Tillmanns, H; Waldecker, B

    1998-01-01

    Basic fibroblast growth factor (bFGF) exerts angiogenic and mitogenic properties in human tissue. Since changes in ion currents modulate essential Ca2+-dependent intracellular pathways in endothelial cells, we have investigated a possible contribution of Ca2+-activated K+ channels (BKCa) on bFGF-induced endothelial cell proliferation. The patch-clamp technique was used to identify BKCa and to study their modulation by bFGF in cultured endothelial cells of human umbilical cord veins (HUVEC). Cell counts of HUVEC were carried out on different days to analyze bFGF-induced cell proliferation and its influence by the specific BKCa blocker iberiotoxin (IBX). Using single-channel recordings, we found characteristic BKCa with a single-channel slope conductance of 170.3 +/- 2.1 pS (n = 7), half-maximal activation at internal pCa = 5.7 (n = 5; test potential: 80 mV), and dose-dependent block by IBX (25-100 nmol/l). In cell-attached patches bFGF (50 ng/ml) caused a significant increase in the open-state probability (NPo) after 6 min at test potentials of 80 and 100 mV (n = 28; p < 0.001), respectively, which lasted up to 30 min. After preincubation with pertussis toxin (100 ng/ml; 4 h) bFGF superfusion did not cause a significant increase in BKCa activity until 25 min had passed (n = 20; p < 0.01). Addition of 100 nmol/l IBX to the pipette solution caused a total block of BKCa within 2 min in cell-attached patches, whereas bFGF (50 ng/ml) was not able to activate BKCa. When incubated with IBX (25-100 nmol/l) every 2 days, bFGF-induced proliferation of HUVEC was significantly decreased by 50 (-41%) and 100 nmol/l (-50%) IBX (n = 5; p < 0.001) after 7 days. We conclude that activation of BKCa by bFGF may play an important role in bFGF-induced proliferation of human endothelial cells and thus might be important in the process of angiogenesis and vascular remodelling.

  17. High expression levels of egfl7 correlate with low endothelial cell activation in peritumoral vessels of human breast cancer

    PubMed Central

    Pannier, Diane; Philippin-Lauridant, Géraldine; Baranzelli, Marie-Christine; Bertin, Delphine; Bogart, Emilie; Delprat, Victor; Villain, Gaëlle; Mattot, Virginie; Bonneterre, Jacques; Soncin, Fabrice

    2016-01-01

    Tumor blood vessels participate in the immune response against cancer cells and we previously used pre-clinical models to demonstrate that egfl7 (VE-statin) promotes tumor cell evasion from the immune system by repressing endothelial cell activation, preventing immune cells from entering the tumor mass. In the present study, the expression levels of egfl7 and that of ICAM-1 as a marker of endothelium activation, were evaluated in peritumoral vessels of human breast cancer samples. Breast cancer samples (174 invasive and 30 in situ) from 204 patients treated in 2005 were immunostained for CD31, ICAM-1 and stained for egfl7 using in situ hybridization. The expression levels of ICAM-1 and egfl7 were assessed in peritumoral areas using semi-quantitative scales. There was a strong and significant inverse correlation between the expression of ICAM-1 and that of egfl7 in CD31+ blood vessels. When the ICAM-1 score increased, the egfl7 score reduced significantly (P=0.004), and vice-versa (Cuzick's test for trend across ordered groups). In order to determine which gene influenced the other gene between egfl7 and ICAM-1, the expression levels of either gene were modulated in endothelial cells. Egfl7 regulated ICAM-1 expression while ICAM-1 had no effects on egfl7 expression in the same conditions. Altogether, these results provide further results that egfl7 serves a regulatory role in endothelial cell activation in relation to immune infiltration and that it is a potential therapeutic target to consider for improving anticancer immunotherapies. PMID:27446447

  18. Nicotine stimulates urokinase-type plasminogen activator receptor expression and cell invasiveness through mitogen-activated protein kinase and reactive oxygen species signaling in ECV304 endothelial cells

    SciTech Connect

    Khoi, Pham Ngoc; Park, Jung Sun; Kim, Nam Ho; Jung, Young Do

    2012-03-01

    Urokinase-type plasminogen activator receptor (uPAR) expression is elevated during inflammation, tissue remodeling and in many human cancers. This study investigated the effect of nicotine, a major alkaloid in tobacco, on uPAR expression and cell invasiveness in ECV304 endothelial cells. Nicotine stimulated uPAR expression in a dose-dependent manner and activated extracellular signal-regulated kinases-1/2 (Erk-1/2), c-Jun amino-terminal kinase (JNK) and p38 mitogen activated protein kinase (MAPK). Specific inhibitors of MEK-1 (PD98059) and JNK (SP600125) inhibited the nicotine-induced uPAR expression, while the p38 MAPK inhibitor SB203580 did not. Expression vectors encoding dominant negative MEK-1 (pMCL-K97M) and JNK (TAM67) also prevented nicotine-induced uPAR promoter activity. The intracellular hydrogen peroxide (H{sub 2}O{sub 2}) content was increased by nicotine treatment. The antioxidant N-acetylcysteine prevented nicotine-activated production of reactive oxygen species (ROS) and uPAR expression. Furthermore, exogenous H{sub 2}O{sub 2} increased uPAR mRNA expression. Deleted and site-directed mutagenesis demonstrated the involvement of the binding sites of transcription factor nuclear factor-kappaB (NF-κB) and activator protein (AP)-1 in the nicotine-induced uPAR expression. Studies with expression vectors encoding mutated NF-κB signaling molecules and AP-1 decoy confirmed that NF-κB and AP-1 were essential for the nicotine-stimulated uPAR expression. MAPK (Erk-1/2 and JNK) and ROS functioned as upstream signaling molecules in the activation of AP-1 and NF-κB, respectively. In addition, ECV304 endothelial cells treated with nicotine displayed markedly enhanced invasiveness, which was partially abrogated by uPAR neutralizing antibodies. The data indicate that nicotine induces uPAR expression via the MAPK/AP-1 and ROS/NF-κB signaling pathways and, in turn, stimulates invasiveness in human ECV304 endothelial cells. -- Highlights: ► Endothelial cells

  19. Artesunate reduces chicken chorioallantoic membrane neovascularisation and exhibits antiangiogenic and apoptotic activity on human microvascular dermal endothelial cell.

    PubMed

    Huan-huan, Chen; Li-Li, You; Shang-Bin, Li

    2004-08-10

    Artesunate (ART), a semi-synthetic derivative of artemisinin extracted from the Chinese herb Artemisia annua, is a safe and effective antimalarial drug. ART has now been analyzed for its anti-angiogenic activity in vivo and in vitro. The anti-angiogenic effect in vivo was evaluated on chicken chorioallantoic membrane (CAM) neovascularisation model. ART started to significantly inhibit CAM angiogenesis at a low concentration of 10 nm/100 microl/egg, and completely inhibited the angiogenesis at 80 nm/100 microl/egg. The inhibitory effect of in vitro angiogenesis was tested on the models of proliferation and differentiation of human microvascular dermal endothelial cell line, an important representive of endothelial cells, as well as immunocytochemistry assay for two major VEGF receptors (Flt-1 and KDR/flk-1) expressions. The results showed that ART could remarkably inhibit proliferation and differentiation of endothelial cells in a dose-dependent form in a range of 12.5-100 microM. ART also could reduce Flt-1 and KDR/flk-1 expressions in a range of 0.1-0.5 microM. Furthermore, we examined the apoptosis of human microvascular dermal endothelial cell line induced by ART. The apoptosis was detected by morphological assay of ethidium bromide (EB)/acridine orange (AO) dual staining as well as DNA fragmentation assay of TUNEL labeling and quantified by flowcytometric PI assay. Our results suggest that the antiangiogenic effect induced by ART might occur by the induction of cellular apoptosis. These findings and the known low toxicity indicated ART might be a promising candidate for angiogenesis inhibitors. PMID:15219940

  20. Phospholipase Cε Modulates Rap1 Activity and the Endothelial Barrier

    PubMed Central

    DiStefano, Peter V.; Smrcka, Alan V.; Glading, Angela J.

    2016-01-01

    The phosphoinositide-specific phospholipase C, PLCε, is a unique signaling protein with known roles in regulating cardiac myocyte growth, astrocyte inflammatory signaling, and tumor formation. PLCε is also expressed in endothelial cells, however its role in endothelial regulation is not fully established. We show that endothelial cells of multiple origins, including human pulmonary artery (HPAEC), human umbilical vein (HUVEC), and immortalized brain microvascular (hCMEC/D3) endothelial cells, express PLCε. Knockdown of PLCε in arterial endothelial monolayers decreased the effectiveness of the endothelial barrier. Concomitantly, RhoA activity and stress fiber formation were increased. PLCε-deficient arterial endothelial cells also exhibited decreased Rap1-GTP levels, which could be restored by activation of the Rap1 GEF, Epac, to rescue the increase in monolayer leak. Reintroduction of PLCε rescued monolayer leak with both the CDC25 GEF domain and the lipase domain of PLCε required to fully activate Rap1 and to rescue endothelial barrier function. Finally, we demonstrate that the barrier promoting effects PLCε are dependent on Rap1 signaling through the Rap1 effector, KRIT1, which we have previously shown is vital for maintaining endothelial barrier stability. Thus we have described a novel role for PLCε PIP2 hydrolytic and Rap GEF activities in arterial endothelial cells, where PLCε-dependent activation of Rap1/KRIT1 signaling promotes endothelial barrier stability. PMID:27612188

  1. Phospholipase Cε Modulates Rap1 Activity and the Endothelial Barrier.

    PubMed

    DiStefano, Peter V; Smrcka, Alan V; Glading, Angela J

    2016-01-01

    The phosphoinositide-specific phospholipase C, PLCε, is a unique signaling protein with known roles in regulating cardiac myocyte growth, astrocyte inflammatory signaling, and tumor formation. PLCε is also expressed in endothelial cells, however its role in endothelial regulation is not fully established. We show that endothelial cells of multiple origins, including human pulmonary artery (HPAEC), human umbilical vein (HUVEC), and immortalized brain microvascular (hCMEC/D3) endothelial cells, express PLCε. Knockdown of PLCε in arterial endothelial monolayers decreased the effectiveness of the endothelial barrier. Concomitantly, RhoA activity and stress fiber formation were increased. PLCε-deficient arterial endothelial cells also exhibited decreased Rap1-GTP levels, which could be restored by activation of the Rap1 GEF, Epac, to rescue the increase in monolayer leak. Reintroduction of PLCε rescued monolayer leak with both the CDC25 GEF domain and the lipase domain of PLCε required to fully activate Rap1 and to rescue endothelial barrier function. Finally, we demonstrate that the barrier promoting effects PLCε are dependent on Rap1 signaling through the Rap1 effector, KRIT1, which we have previously shown is vital for maintaining endothelial barrier stability. Thus we have described a novel role for PLCε PIP2 hydrolytic and Rap GEF activities in arterial endothelial cells, where PLCε-dependent activation of Rap1/KRIT1 signaling promotes endothelial barrier stability. PMID:27612188

  2. Endothelial cells modulate renin secretion from isolated mouse juxtaglomerular cells.

    PubMed Central

    Kurtz, A; Kaissling, B; Busse, R; Baier, W

    1991-01-01

    Utilizing cocultures of mouse renal juxtaglomerular cells with bovine microvascular endothelial cells, we have examined whether endothelial cells exert direct influence on renin secretion from renal juxtaglomerular cells. In the presence of endothelial cells both spontaneous and forskolin (10 microM) or isoproterenol (10 microM) stimulated renin release were markedly attenuated. The stimulatory effect of the calmodulin antagonist calmidazolium (10 microM) on renin secretion was not altered by endothelial cells, whereas the stimulatory effect of ethylisopropylamiloride (50 microM) an inhibitor of sodium-proton exchange was enhanced in the presence of endothelial cells. Indomethacin (10 microM) and NG-monomethyl-l-arginine (NMMA) (1 mM) used to inhibit cyclooxygenase activity and production of endothelium-derived relaxing factor (EDRF) decreased spontaneous renin release in the presence of endothelial cells only, but had no effect on forskolin stimulated renin secretion. Endothelin (1 microM) inhibited cAMP stimulated renin release both in the absence and in the presence of endothelial cells. ATP (10 microM) which acts on both endothelial and juxtaglomerular cells via purinergic P2 receptors inhibited cAMP stimulated renin release only in the absence but not in the presence of endothelial cells. This modulatory effect of endothelial cells was no altered by indomethacin nor by NMMA. Taken together, our findings provide first evidence for a local control function of the endothelium on cAMP stimulated renin secretion from renal juxtaglomerular cells, which could in part be mediated by endothelin. Images PMID:1717509

  3. Endothelial-regenerating cells: an expanding universe.

    PubMed

    Steinmetz, Martin; Nickenig, Georg; Werner, Nikos

    2010-03-01

    Atherosclerosis is the most common cause for cardiovascular diseases and is based on endothelial dysfunction. A growing body of evidence suggests the contribution of bone marrow-derived endothelial progenitor cells, monocytic cells, and mature endothelial cells to vessel formation and endothelial rejuvenation. To this day, various subsets of these endothelial-regenerating cells have been identified according to cellular origin, phenotype, and properties in vivo and in vitro. However, the definition and biology, especially of endothelial progenitor cells, is complex and under heavy debate. In this review, we focus on current definitions of endothelial progenitor cells, highlight the clinical relevance of endothelial-regenerating cells, and provide new insights into cell-cell interactions involved in endothelial cell rejuvenation.

  4. Monocrotaline pyrrole-induced changes in angiotensin-converting enzyme activity of cultured pulmonary artery endothelial cells.

    PubMed Central

    Hoorn, C. M.; Roth, R. A.

    1993-01-01

    1. Changes in the structural and functional integrity of endothelium have been recognized as relatively early features of delayed and progressive pulmonary vascular injury caused by the pyrrolizidine alkaloid, monocrotaline (MCT). Although a number of investigators have evaluated angiotensin-converting enzyme (ACE) activity in the lungs of rats treated with MCT, the exact nature of changes in activity of this enzyme and the role they may play in MCT pneumotoxicity remain controversial. 2. We examined the direct effects of monocrotaline pyrrole (MCTP), a toxic metabolite of MCT, on cultured endothelial cell ACE activity. Post-confluent monolayers of porcine or bovine pulmonary artery endothelial cells (PECs or BECs, respectively) were treated with a single administration of MCTP at time 0; then they were examined for their ability to degrade the synthetic peptide, [3H]-benzoyl-Phe-Ala-Pro. 3. In PECs, which are relatively insensitive to the direct cytolytic effects of MCTP, monolayer ACE activity was unchanged initially but gradually decreased within 4 days after treatment with a high concentration of MCTP (150 microM). This decrease was transient, and PEC monolayer ACE activity returned to the control value by 10 days post treatment. 4. BEC monolayer ACE activity was also unchanged initially but rapidly declined within 4 days after MCTP treatment and remained depressed throughout the post treatment period. BECs were quite sensitive to the cytolytic effects of MCTP and the decline in ACE activity occurred coincident with the decrease in monolayer cellularity and appearance of marked cytotoxicity. 5. We conclude that high concentrations of MCTP decrease endothelial ACE activity.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8242234

  5. Unique secretory dynamics of tissue plasminogen activator and its modulation by plasminogen activator inhibitor-1 in vascular endothelial cells.

    PubMed

    Suzuki, Yuko; Mogami, Hideo; Ihara, Hayato; Urano, Tetsumei

    2009-01-01

    We analyzed the secretory dynamics of tissue plasminogen activator (tPA) in EA.hy926 cells, an established vascular endothelial cell (VEC) line producing GFP-tagged tPA, using total internal reflection-fluorescence (TIR-F) microscopy. tPA-GFP was detected in small granules in EA.hy926 cells, the distribution of which was indistinguishable from intrinsically expressed tPA. Its secretory dynamics were unique, with prolonged (> 5 minutes) retention of the tPA-GFP on the cell surface, appearing as fluorescent spots in two-thirds of the exocytosis events. The rapid disappearance (mostly by 250 ms) of a domain-deletion mutant of tPA-GFP possessing only the signal peptide and catalytic domain indicates that the amino-terminal heavy chain of tPA-GFP is essential for binding to the membrane surface. The addition of PAI-1 dose-dependently facilitated the dissociation of membrane-retained tPA and increased the amounts of tPA-PAI-1 high-molecular-weight complexes in the medium. Accordingly, suppression of PAI-1 synthesis in EA.hy926 cells by siRNA prolonged the dissociation of tPA-GFP, whereas a catalytically inactive mutant of tPA-GFP not forming complexes with PAI-1 remained on the membrane even after PAI-1 treatment. Our results provide new insights into the relationship between exocytosed, membrane-retained tPA and PAI-1, which would modulate cell surface-associated fibrinolytic potential.

  6. Activation of integrin α5 mediated by flow requires its translocation to membrane lipid rafts in vascular endothelial cells.

    PubMed

    Sun, Xiaoli; Fu, Yi; Gu, Mingxia; Zhang, Lu; Li, Dan; Li, Hongliang; Chien, Shu; Shyy, John Y-J; Zhu, Yi

    2016-01-19

    Local flow patterns determine the uneven distribution of atherosclerotic lesions. Membrane lipid rafts and integrins are crucial for shear stress-regulated endothelial function. In this study, we investigate the role of lipid rafts and integrin α5 in regulating the inflammatory response in endothelial cells (ECs) under atheroprone versus atheroprotective flow. Lipid raft proteins were isolated from ECs exposed to oscillatory shear stress (OS) or pulsatile shear stress, and then analyzed by quantitative proteomics. Among 396 proteins redistributed in lipid rafts, integrin α5 was the most significantly elevated in lipid rafts under OS. In addition, OS increased the level of activated integrin α5 in lipid rafts through the regulation of membrane cholesterol and fluidity. Disruption of F-actin-based cytoskeleton and knockdown of caveolin-1 prevented the OS-induced integrin α5 translocation and activation. In vivo, integrin α5 activation and EC dysfunction were observed in the atheroprone areas of low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice, and knockdown of integrin α5 markedly attenuated EC dysfunction in partially ligated carotid arteries. Consistent with these findings, mice with haploinsufficency of integrin α5 exhibited a reduction of atherosclerotic lesions in the regions under atheroprone flow. The present study has revealed an integrin- and membrane lipid raft-dependent mechanotransduction mechanism by which atheroprone flow causes endothelial dysfunction.

  7. Endothelial Cell Response to Fusobacterium nucleatum.

    PubMed

    Mendes, Reila Tainá; Nguyen, Daniel; Stephens, Danielle; Pamuk, Ferda; Fernandes, Daniel; Van Dyke, Thomas E; Kantarci, Alpdogan

    2016-07-01

    Vascular response is an essential aspect of an effective immune response to periodontal disease pathogens, as new blood vessel formation contributes to wound healing and inflammation. Gaining a greater understanding of the factors that affect vascular response may then contribute to future breakthroughs in dental medicine. In this study, we have characterized the endothelial cell response to the common bacterium Fusobacterium nucleatum, an important bridging species that facilitates the activity of late colonizers of the dental biofilm. Endothelial cells were infected with Fusobacterium nucleatum (strain 25586) for periods of 4, 12, 24, or 48 h. Cell proliferation and tube formation were analyzed, and expression of adhesion molecules (CD31 and CD34) and vascular endothelial growth factor (VEGF) receptors 1 and 2 was measured by fluorescence-activated cell sorter (FACS) analysis. Data indicate that F. nucleatum impaired endothelial cell proliferation and tube formation. The findings suggest that the modified endothelial cell response acts as a mechanism promoting the pathogenic progression of periodontal diseases and may potentially suggest the involvement of periodontopathogens in systemic diseases associated with periodontal inflammation.

  8. Lupus anticoagulant and history of thrombosis are not associated with persistent endothelial cell activation in systemic lupus erythematosus

    PubMed Central

    Frijns, C J M; Derksen, R H W M; De Groot, PH G; Algra, A; Fijnheer, R

    2001-01-01

    Antiphospholipid antibodies (aPL), especially lupus anticoagulant (LAC), characterize systemic lupus erythematosus (SLE) patients at increased risk for arterial and venous thromboembolic complications. It has been reported that purified human anti-phospholipid antibodies cause endothelial cell activation in in vitro experiments. In order to investigate whether increased endothelial cell activation is associated with thromboembolic events in SLE patients with LAC, we measured plasma levels of thrombomodulin (TM), von Willebrand factor (vWf), sP-selectin, vascular cell adhesion molecule-1 (sVCAM-1) and ED1-fibronectin in a study of 76 patients with SLE. Patients were subdivided on the basis of: no history of thrombosis and LAC-negative (n = 22) or LAC-positive (n = 17); positive history of thrombosis and LAC-negative (n = 16) or LAC-positive (n = 21). The median SLE disease activity index (SLEDAI) was 4. Although concentrations of sTM, vWf, sP-selectin and sVCAM-1 were significantly elevated in SLE compared with values in healthy controls, they did not differ between the four groups, between patients with or without history of thrombosis, and between patients with or without LAC. Presence of anticardiolipin antibodies could not explain these negative findings. Adjustment of the concentrations for significantly associated variables, such as age, hypertension, smoking, immunosuppressive treatment and concentrations of creatinine, cholesterol and homocysteine, did not change the main results of the study. Only sTM was significantly lower in patients with both LAC and thrombosis than in patients without both these features after adjustment for serum creatinine concentrations. In conclusion, we did not find an association between endothelial cell activation and presence of LAC or history of thrombosis in SLE. PMID:11472438

  9. Clostridium sordellii Lethal-Toxin Autoprocessing and Membrane Localization Activities Drive GTPase Glucosylation Profiles in Endothelial Cells

    PubMed Central

    Craven, Ryan

    2015-01-01

    ABSTRACT Clostridium sordellii infections cause gangrene and edema in humans and gastrointestinal infections in livestock. One of the principle virulence factors is TcsL, a large protein toxin which glucosylates host GTPases to cause cytopathic and cytotoxic effects. TcsL has two enzymatic domains, an N-terminal glucosyltransferase domain (GTD) and an autoprocessing domain responsible for release of the GTD within the cell. The GTD can then use its N-terminal membrane localization domain (MLD) for orientation on membranes and modification of GTPases. This study describes the use of conditionally immortalized murine pulmonary microvascular endothelial cells as a model for the study of TcsL functional activities. Point mutations that disrupt the glucosyltransferase, autoprocessing, or membrane localization activities were introduced into a recombinant version of TcsL, and the activities of these mutants were compared to those of wild-type toxin. We observed that all mutants are defective or impaired in cytotoxicity but differ in their modification of Rac1 and Ras. The data suggest a model where differences in GTPase localization dictate cellular responses to intoxication and highlight the importance of autoprocessing in the function of TcsL. IMPORTANCE Clostridium sordellii is a bacterium that can infect humans and cause serious disease and death. The principle virulence factor associated with clinical symptoms is a large protein toxin known as lethal toxin. The mechanism of lethal-toxin intoxication is assumed to be similar to that of the homologous toxins from C. difficile, but very few studies have been done in the context of endothelial cells, a relevant target in C. sordellii infections. This study was designed to test the role of the lethal-toxin enzymatic activities and membrane localization in endothelial cell toxicity and host substrate modification. PMID:27303685

  10. Glassy Dynamics, Cell Mechanics and Endothelial Permeability

    PubMed Central

    Hardin, Corey; Rajendran, Kavitha; Manomohan, Greeshma; Tambe, Dhananjay T.; Butler, James P.; Fredberg, Jeffrey J.; Martinelli, Roberta; Carman, Christopher V.; Krishnan, Ramaswamy

    2013-01-01

    A key feature of all inflammatory processes is disruption of the vascular endothelial barrier. Such disruption is initiated in part through active contraction of the cytoskeleton of the endothelial cell (EC). Because contractile forces are propagated from cell to cell across a great many cell-cell junctions, this contractile process is strongly cooperative and highly nonlocal. We show here that the characteristic length scale of propagation is modulated by agonists and antagonists that impact permeability of the endothelial barrier. In the presence of agonists including thrombin, histamine, and H202, force correlation length increases, whereas in the presence of antagonists including sphingosine-1-phosphate, hepatocyte growth factor, and the rho kinase inhibitor, Y27632, force correlation length decreases. Intercellular force chains and force clusters are also evident, both of which are reminiscent of soft glassy materials approaching a glass transition. PMID:23638866

  11. Phagocytosis of platelets enhances endothelial cell survival under serum deprivation.

    PubMed

    Jiang, Ping; Ren, Ya-Li; Lan, Yong; Li, Jia-Liang; Luo, Jun; Li, Jian; Cai, Jian-Ping

    2015-07-01

    Platelets are key players in fundamental processes of vascular biology, such as angiogenesis, tissue regeneration, and tumor metastasis. However, the underlying mechanisms remain unclear. In this study, some tumor vascular endothelial cells were positively stained by antiplatelet antibodies. Further investigation revealed that platelets were taken up by endothelial cells in vitro and in vivo. Human umbilical vascular endothelial cells were rendered apoptotic under conditions of serum deprivation. However, endothelial apoptosis was suppressed and cell viability was enhanced when platelets were added to the cultures. Endothelial survival was paralleled by an upregulation of phosphorylated Akt and p70 S6K. In conclusion, this study demonstrated that platelets can be phagocytosed by endothelial cells, and the phagocytosed platelets could suppress endothelial apoptosis and promote cell viability level. The mechanism underlying this process involves the activation of Akt signaling.

  12. Phagocytosis of platelets enhances endothelial cell survival under serum deprivation

    PubMed Central

    Ren, Ya-Li; Lan, Yong; Li, Jia-Liang; Luo, Jun; Li, Jian; Cai, Jian-Ping

    2015-01-01

    Platelets are key players in fundamental processes of vascular biology, such as angiogenesis, tissue regeneration, and tumor metastasis. However, the underlying mechanisms remain unclear. In this study, some tumor vascular endothelial cells were positively stained by antiplatelet antibodies. Further investigation revealed that platelets were taken up by endothelial cells in vitro and in vivo. Human umbilical vascular endothelial cells were rendered apoptotic under conditions of serum deprivation. However, endothelial apoptosis was suppressed and cell viability was enhanced when platelets were added to the cultures. Endothelial survival was paralleled by an upregulation of phosphorylated Akt and p70 S6K. In conclusion, this study demonstrated that platelets can be phagocytosed by endothelial cells, and the phagocytosed platelets could suppress endothelial apoptosis and promote cell viability level. The mechanism underlying this process involves the activation of Akt signaling. PMID:25577801

  13. Regulation of store-operated Ca{sup 2+} entry activity by cell cycle dependent up-regulation of Orai2 in brain capillary endothelial cells

    SciTech Connect

    Kito, Hiroaki; Yamamura, Hisao; Suzuki, Yoshiaki; Yamamura, Hideto; Ohya, Susumu; Asai, Kiyofumi; Imaizumi, Yuji

    2015-04-10

    Store-operated Ca{sup 2+} entry (SOCE) via Orai1 and STIM1 complex is supposed to have obligatory roles in the regulation of cellular functions of vascular endothelial cells, while little is known about the contribution of Orai2. Quantitative PCR and Western blot analyses indicated the expression of Orai2 and STIM2, in addition to Orai1 and STIM1 in bovine brain capillary endothelial cell line, t-BBEC117. During the exponential growth of t-BBEC117, the knockdown of Orai1 and STIM1 significantly reduced the SOCE activity, whereas Orai2 and STIM2 siRNAs had no effect. To examine whether endogenous SOCE activity contributes to the regulation of cell cycle progression, t-BBEC117 were synchronized using double thymidine blockage. At the G2/M phase, Ca{sup 2+} influx via SOCE was decreased and Orai2 expression was increased compared to the G0/G1 phase. When Orai2 was knocked down at the G2/M phase, the decrease in SOCE was removed, and cell proliferation was partly attenuated. Taken together, Orai1 significantly contributes to cell proliferation via the functional expression, which is presumably independent of the cell cycle phases. In construct, Orai2 is specifically up-regulated during the G2/M phase, negatively modulates the SOCE activity, and may contribute to the regulation of cell cycle progression in brain capillary endothelial cells. - Highlights: • Orai1 is essential for SOCE activity in brain capillary endothelial cells (BCECs). • Cell cycle independent expression of Orai1 regulated SOCE and cell proliferation. • Orai2 was up-regulated only at G2/M phase and this consequently reduced SOCE. • Orai2 as well as Orai1 is a key player controlling SOCE and proliferation in BCECs.

  14. Resveratrol attenuates lipopolysaccharide-induced dysfunction of blood-brain barrier in endothelial cells via AMPK activation

    PubMed Central

    2016-01-01

    Resveratrol, a phytoalexin, is reported to activate AMP-activated protein kinase (AMPK) in vascular cells. The blood-brain barrier (BBB), formed by specialized brain endothelial cells that are interconnected by tight junctions, strictly regulates paracellular permeability to maintain an optimal extracellular environment for brain homeostasis. The aim of this study was to elucidate the effects of resveratrol and the role of AMPK in BBB dysfunction induced by lipopolysaccharide (LPS). Exposure of human brain microvascular endothelial cells (HBMECs) to LPS (1 µg/ml) for 4 to 24 hours week dramatically increased the permeability of the BBB in parallel with lowered expression levels of occluding and claudin-5, which are essential to maintain tight junctions in HBMECs. In addition, LPS significantly increased the reactive oxygen species (ROS) productions. All effects induced by LPS in HBVMCs were reversed by adenoviral overexpression of superoxide dismutase, inhibition of NAD(P) H oxidase by apocynin or gain-function of AMPK by adenoviral overexpression of constitutively active mutant (AMPK-CA) or by resveratrol. Finally, upregulation of AMPK by either AMPK-CA or resveratrol abolished the levels of LPS-enhanced NAD(P)H oxidase subunits protein expressions. We conclude that AMPK activation by resveratrol improves the integrity of the BBB disrupted by LPS through suppressing the induction of NAD(P)H oxidase-derived ROS in HBMECs. PMID:27382348

  15. Thionin Thi2.1 from Arabidopsis thaliana expressed in endothelial cells shows antibacterial, antifungal and cytotoxic activity.

    PubMed

    Loeza-Angeles, Heber; Sagrero-Cisneros, Eduardo; Lara-Zárate, Leticia; Villagómez-Gómez, Erik; López-Meza, Joel E; Ochoa-Zarzosa, Alejandra

    2008-10-01

    Thionins are plant antimicrobial peptides with antibacterial and antifungal activities. Thionin Thi2.1 cDNA from Arabidopsis thaliana was expressed in BVE-E6E7 bovine endothelial cell line and its activity was evaluated against Escherichia coli, Staphylococcus aureus, Candida albicans and different mammal cell lines. Total protein (2.5 microg) from conditioned medium (CM) of clone EC-Thi2.1 inhibited the growth of E. coli, S. aureus (>90%) and C. albicans strains (>80%) in relation to the CM from control cells. Also, CM of EC-Thi2.1 inhibited the viability of several transformed and normal mammal cell lines (38-95%). These results suggest that thionin Thi2.1 is an antimicrobial peptide that could be use in the treatment of mammalian infectious diseases. PMID:18563581

  16. GSK3β inhibition activates the CDX/HOX pathway and promotes hemogenic endothelial progenitor differentiation from human pluripotent stem cells.

    PubMed

    Kitajima, Kenji; Nakajima, Marino; Kanokoda, Mai; Kyba, Michael; Dandapat, Abhijit; Tolar, Jakub; Saito, Megumu K; Toyoda, Masashi; Umezawa, Akihiro; Hara, Takahiko

    2016-01-01

    WNT/β-CATENIN signaling promotes the hematopoietic/endothelial differentiation of human embryonic stem cells and human induced pluripotent stem cells (hiPSCs). The transient addition of a GSK3β inhibitor (GSKi) has been found to facilitate in vitro endothelial cell differentiation from hESCs/hiPSCs. Because hematopoietic and endothelial cells are derived from common progenitors (hemogenic endothelial progenitors [HEPs]), we examined the effect of transient GSKi treatment on hematopoietic cell differentiation from hiPSCs. We found that transient GSKi treatment at the start of hiPSC differentiation induction altered the gene expression profile of the cells. Multiple CDX/HOX genes, which are expressed in the posterior mesoderm of developing embryos, were significantly upregulated by GSKi treatment. Further, inclusion of the GSKi in a serum- and stroma-free culture with chemically defined medium efficiently induced HEPs, and the HEPs gave rise to various lineages of hematopoietic and endothelial cells. Therefore, transient WNT/β-CATENIN signaling triggers activation of the CDX/HOX pathway, which in turn confers hemogenic posterior mesoderm identity to differentiating hiPSCs. These data enhance our understanding of human embryonic hematopoietic/endothelial cell development and provide a novel in vitro system for inducing the differentiation of hematopoietic cells from hiPSCs. PMID:26477526

  17. Priming Endothelial Cells With a Melanoma-Derived Extracellular Matrix Triggers the Activation of αvβ3/VEGFR2 Axis.

    PubMed

    Helal-Neto, Edward; Brandão-Costa, Renata M; Saldanha-Gama, Roberta; Ribeiro-Pereira, Cristiane; Midlej, Victor; Benchimol, Marlene; Morandi, Verônica; Barja-Fidalgo, Christina

    2016-11-01

    The unique composition of tumor-produced extracellular matrix (ECM) can be a determining factor in changing the profile of endothelial cells in the tumor microenvironment. As the main receptor for ECM proteins, integrins can activate a series of signaling pathways related to cell adhesion, migration, and differentiation of endothelial cells that interact with ECM proteins. We studied the direct impact of the decellularized ECM produced by a highly metastatic human melanoma cell line (MV3) on the activation of endothelial cells and identified the intracellular signaling pathways associated with cell differentiation. Our data show that compared to the ECM derived from a human melanocyte cell line (NGM-ECM), ECM produced by a melanoma cell line (MV3-ECM) is considerably different in ultrastructural organization and composition and possesses a higher content of tenascin-C and laminin and a lower expression of fibronectin. When cultured directly on MV3-ECM, endothelial cells change morphology and show increased adhesion, migration, proliferation, and tubulogenesis. Interaction of endothelial cells with MV3-ECM induces the activation of integrin signaling, increasing FAK phosphorylation and its association with Src, which activates VEGFR2, potentiating the receptor response to VEGF. The blockage of αvβ3 integrin inhibited the FAK-Src association and VEGFR activation, thus reducing tubulogenesis. Together, our data suggest that the interaction of endothelial cells with the melanoma-ECM triggers integrin-dependent signaling, leading to Src pathway activation that may potentiate VEGFR2 activation and up-regulate angiogenesis. J. Cell. Physiol. 231: 2464-2473, 2016. © 2016 Wiley Periodicals, Inc.

  18. Priming Endothelial Cells With a Melanoma-Derived Extracellular Matrix Triggers the Activation of αvβ3/VEGFR2 Axis.

    PubMed

    Helal-Neto, Edward; Brandão-Costa, Renata M; Saldanha-Gama, Roberta; Ribeiro-Pereira, Cristiane; Midlej, Victor; Benchimol, Marlene; Morandi, Verônica; Barja-Fidalgo, Christina

    2016-11-01

    The unique composition of tumor-produced extracellular matrix (ECM) can be a determining factor in changing the profile of endothelial cells in the tumor microenvironment. As the main receptor for ECM proteins, integrins can activate a series of signaling pathways related to cell adhesion, migration, and differentiation of endothelial cells that interact with ECM proteins. We studied the direct impact of the decellularized ECM produced by a highly metastatic human melanoma cell line (MV3) on the activation of endothelial cells and identified the intracellular signaling pathways associated with cell differentiation. Our data show that compared to the ECM derived from a human melanocyte cell line (NGM-ECM), ECM produced by a melanoma cell line (MV3-ECM) is considerably different in ultrastructural organization and composition and possesses a higher content of tenascin-C and laminin and a lower expression of fibronectin. When cultured directly on MV3-ECM, endothelial cells change morphology and show increased adhesion, migration, proliferation, and tubulogenesis. Interaction of endothelial cells with MV3-ECM induces the activation of integrin signaling, increasing FAK phosphorylation and its association with Src, which activates VEGFR2, potentiating the receptor response to VEGF. The blockage of αvβ3 integrin inhibited the FAK-Src association and VEGFR activation, thus reducing tubulogenesis. Together, our data suggest that the interaction of endothelial cells with the melanoma-ECM triggers integrin-dependent signaling, leading to Src pathway activation that may potentiate VEGFR2 activation and up-regulate angiogenesis. J. Cell. Physiol. 231: 2464-2473, 2016. © 2016 Wiley Periodicals, Inc. PMID:27420801

  19. Role of erythropoietin in the angiogenic activity of bone marrow endothelial cells of MGUS and multiple myeloma patients.

    PubMed

    Lamanuzzi, Aurelia; Saltarella, Ilaria; Ferrucci, Arianna; Ria, Roberto; Ruggieri, Simona; Racanelli, Vito; Rao, Luigia; Annese, Tiziana; Nico, Beatrice; Vacca, Angelo; Ribatti, Domenico

    2016-03-22

    Increasing evidences suggest several biological roles for erythropoietin and its receptor (Epo and EpoR), unrelated to erythropoiesis, including angiogenesis. Here, we detected the expression of EpoR in bone marrow-derived endothelial cells from monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM) patients (MGECs and MMECs, respectively) and assessed whether Epo plays a role in MGECs- and MMECs-mediated angiogenesis. We show that EpoR is expressed by both MGECs and MMECs even though at a higher level in the first ones. Both EC types respond to rHuEpo in terms of cell proliferation, whereas other responses, including activation of JAK2/STAT5 and PI3K/Akt pathways, cell migration and capillarogenesis are enhanced by Epo in MGECs, but not in MMECs. In addition, the conditioned media of both Epo-treated cells induce a strong angiogenic response in vivo in the chorioallantoic membrane assay, comparable to that of vascular endothelial growth factor (VEGF). Overall, these data highlight the effect of Epo on MGECs- and MMECs-mediated angiogenesis: MGECs are more responsive to Epo treatment than MMECs, probably because over-angiogenic phenotype of MMECs is already activated by their autocrine/paracrine loops occurring in the "angiogenic switch" from MGUS. PMID:26919105

  20. Role of erythropoietin in the angiogenic activity of bone marrow endothelial cells of MGUS and multiple myeloma patients

    PubMed Central

    Ferrucci, Arianna; Ria, Roberto; Ruggieri, Simona; Racanelli, Vito; Rao, Luigia; Annese, Tiziana; Nico, Beatrice; Vacca, Angelo; Ribatti, Domenico

    2016-01-01

    Increasing evidences suggest several biological roles for erythropoietin and its receptor (Epo and EpoR), unrelated to erythropoiesis, including angiogenesis. Here, we detected the expression of EpoR in bone marrow-derived endothelial cells from monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM) patients (MGECs and MMECs, respectively) and assessed whether Epo plays a role in MGECs- and MMECs-mediated angiogenesis. We show that EpoR is expressed by both MGECs and MMECs even though at a higher level in the first ones. Both EC types respond to rHuEpo in terms of cell proliferation, whereas other responses, including activation of JAK2/STAT5 and PI3K/Akt pathways, cell migration and capillarogenesis are enhanced by Epo in MGECs, but not in MMECs. In addition, the conditioned media of both Epo-treated cells induce a strong angiogenic response in vivo in the chorioallantoic membrane assay, comparable to that of vascular endothelial growth factor (VEGF). Overall, these data highlight the effect of Epo on MGECs- and MMECs-mediated angiogenesis: MGECs are more responsive to Epo treatment than MMECs, probably because over-angiogenic phenotype of MMECs is already activated by their autocrine/paracrine loops occurring in the “angiogenic switch” from MGUS. PMID:26919105

  1. Indolyl-quinuclidinols inhibit ENOX activity and endothelial cell morphogenesis while enhancing radiation-mediated control of tumor vasculature.

    PubMed

    Geng, Ling; Rachakonda, Girish; Morré, D James; Morré, Dorothy M; Crooks, Peter A; Sonar, Vijayakumar N; Roti, Joseph L Roti; Rogers, Buck E; Greco, Suellen; Ye, Fei; Salleng, Kenneth J; Sasi, Soumya; Freeman, Michael L; Sekhar, Konjeti R

    2009-09-01

    There is a need for novel strategies that target tumor vasculature, specifically those that synergize with cytotoxic therapy, in order to overcome resistance that can develop with current therapeutics. A chemistry-driven drug discovery screen was employed to identify novel compounds that inhibit endothelial cell tubule formation. Cell-based phenotypic screening revealed that noncytotoxic concentrations of (Z)-(+/-)-2-(1-benzenesulfonylindol-3-ylmethylene)-1-azabicyclo[2. 2.2]octan-3-ol (analog I) and (Z)-(+/-)-2-(1-benzylindol-3-ylmethylene)-1-azabicyclo[2.2.2]octan-3-ol (analog II) inhibited endothelial cell migration and the ability to form capillary-like structures in Matrigel by > or =70%. The ability to undergo neoangiogenesis, as measured in a window-chamber model, was also inhibited by 70%. Screening of biochemical pathways revealed that analog II inhibited the enzyme ENOX1 (EC(50) = 10 microM). Retroviral-mediated shRNA suppression of endothelial ENOX1 expression inhibited cell migration and tubule formation, recapitulating the effects observed with the small-molecule analogs. Genetic or chemical suppression of ENOX1 significantly increased radiation-mediated Caspase3-activated apoptosis, coincident with suppression of p70S6K1 phosphorylation. Administration of analog II prior to fractionated X-irradiation significantly diminished the number and density of tumor microvessels, as well as delayed syngeneic and xenograft tumor growth compared to results obtained with radiation alone. Analysis of necropsies suggests that the analog was well tolerated. These results suggest that targeting ENOX1 activity represents a novel therapeutic strategy for enhancing the radiation response of tumors.

  2. Transport of lipoprotein lipase across endothelial cells

    SciTech Connect

    Saxena, U.; Klein, M.G.; Goldberg, I.J. )

    1991-03-15

    Lipoprotein lipase (LPL), synthesized in muscle and fat, hydrolyzes plasma triglycerides primarily while bound to luminal endothelial cell surfaces. To obtain information about the movement of LPL from the basal to the luminal endothelial cell surface, the authors studied the transport of purified bovine milk LPL across bovine aortic endothelial cell monolayers. {sup 125}I-labeled LPL ({sup 125}I-LPL) added to the basal surface of the monolayers was detected on the apical side of the cells in two compartments: (1) in the medium of the upper chamber, and (2) bound to the apical cell surface. The amount of {sup 125}I-LPL on the cell surface, but not in the medium, reached saturation with time and LPL dose. Catalytically active LPL was transported to the apical surface but very little LPL activity appeared in the medium. Heparinase treatment of the basal cell surface and addition of dextran sulfate to the lower chamber decreased the amount of {sup 125}I-LPL appearing on the apical surface. Similarly, the presence of increasing molar ratios of oleic acid/bovine serum albumin at the basal surface decreased the transport of active LPL across the monolayer. Thus, a saturable transport system, which requires haparan sulfate proteoglycans and is inhibited by high concentrations of free fatty acids on the basal side of the cells, appears to exist for passage of enzymatically active LPL across endothelial cells. They postulate that regulation of LPL transport to the endothelial luminal surface modulates the physiologically active pool of LPL in vivo.

  3. CD39/NTPDase-1 expression and activity in human umbilical vein endothelial cells are differentially regulated by leaf extracts from Rubus caesius and Rubus idaeus.

    PubMed

    Dudzinska, Dominika; Luzak, Boguslawa; Boncler, Magdalena; Rywaniak, Joanna; Sosnowska, Dorota; Podsedek, Anna; Watala, Cezary

    2014-09-01

    Many experimental studies have demonstrated the favorable biological activities of plants belonging to the genus Rubus, but little is known of the role of Rubus leaf extracts in the modulation of the surface membrane expression and activity of endothelial apyrase. The aim of this study was to assess the influence of 1-15 μg/ml Rubus extracts on CD39 expression and enzymatic activity, and on the activation (ICAM-1 expression) and viability of human umbilical vein endothelial cells (HUVEC). The polyphenolic contents and antioxidative capacities of extracts from dewberry (R. caesius L.) and raspberry (R. idaeus L.) leaves were also investigated. The techniques applied were flow cytometry (endothelial surface membrane expression of ICAM-1 and CD39), malachite green assay (CD39 activity), HPLC-DAD (quantitative analysis of polyphenolic extract), ABTS, DPPH and FRAP spectrometric assays (antioxidant capacity), and the MTT test (cell viability). Significantly increased CD39 expressions and significantly decreased ATPDase activities were found in the cells treated with 15 μg/ml of either extract compared to the results for the controls. Neither of the extracts affected cell proliferation, but both significantly augmented endothelial cell ICAM-1 expression. The overall antioxidant capacities of the examined extracts remained relatively high and corresponded well to the determined total polyphenol contents. Overall, the results indicate that under in vitro conditions dewberry and raspberry leaf extracts have unfavorable impact on endothelial cells.

  4. Effect of maternal anti-HPA-1a antibodies and polyclonal IVIG on the activation status of vascular endothelial cells

    PubMed Central

    RADDER, C M; BEEKHUIZEN, H; KANHAI, H H H; BRAND, A

    2004-01-01

    Maternal anti-HPA-1a antibodies can cause severe fetal and neonatal alloimmune thrombocytopenia (FNAIT), complicated by intracranial haemorrhage (ICH). Antenatal treatment with maternal intravenous immunoglobulin (IVIG) seems to protect against ICH even when thrombocytopenia persists. The aim of this study was to investigate if anti-HPA-1a antibodies and IVIG potentially affect vascular endothelial cells (ECs) in order to identify susceptibility for ICH. Human umbilical cord endothelial cells (HUVEC) were incubated with anti-HPA-1a antibodies with or without polyclonal IVIG and evaluated for EC activation. Maternal sera with anti-HPA-1a antibodies affected neither the EC expression of intracellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1) and tissue factor (TF) nor the release of van Willebrand factor (vWF) or interleukin (IL)-8 nor the integrity of ECs. Maternal sera obtained after IVIG treatment and polyclonal IVIG decrease constitutive and cytokine-induced ICAM-1 and VCAM-1 expression on ECs. The results show that maternal anti-HPA-1a antibodies cause no activation or damage of ECs in this model. The clinical relevance of the de-activating properties of IVIG on EC activation with respect to ICH deserves further investigation. PMID:15196265

  5. In Vitro Endothelialization Test of Biomaterials Using Immortalized Endothelial Cells

    PubMed Central

    Kono, Ken; Hiruma, Hitomi; Kobayashi, Shingo; Sato, Yoji; Tanaka, Masaru; Sawada, Rumi; Niimi, Shingo

    2016-01-01

    Functionalizing biomaterials with peptides or polymers that enhance recruitment of endothelial cells (ECs) can reduce blood coagulation and thrombosis. To assess endothelialization of materials in vitro, primary ECs are generally used, although the characteristics of these cells vary among the donors and change with time in culture. Recently, primary cell lines immortalized by transduction of simian vacuolating virus 40 large T antigen or human telomerase reverse transcriptase have been developed. To determine whether immortalized ECs can substitute for primary ECs in material testing, we investigated endothelialization on biocompatible polymers using three lots of primary human umbilical vein endothelial cells (HUVEC) and immortalized microvascular ECs, TIME-GFP. Attachment to and growth on polymer surfaces were comparable between cell types, but results were more consistent with TIME-GFP. Our findings indicate that TIME-GFP is more suitable for in vitro endothelialization testing of biomaterials. PMID:27348615

  6. Retinal Endothelial Cell Apoptosis Stimulates Recruitment of Endothelial Progenitor Cells

    PubMed Central

    Bhatwadekar, Ashay D.; Glenn, Josephine V.; Curtis, Tim M.; Grant, Maria B.; Stitt, Alan W.; Gardiner, Tom A.

    2013-01-01

    Purpose Bone marrow–derived endothelial progenitor cells (EPCs) contribute to vascular repair although it is uncertain how local endothelial cell apoptosis influences their reparative function. This study was conducted to determine how the presence of apoptotic bodies at sites of endothelial damage may influence participation of EPCs in retinal microvascular repair. Methods Microlesions of apoptotic cell death were created in monolayers of retinal microvascular endothelial cells (RMECs) by using the photodynamic drug verteporfin. The adhesion of early-EPCs to these lesions was studied before detachment of the apoptotic cells or after their removal from the wound site. Apoptotic bodies were fed to normal RMECs and mRNA levels for adhesion molecules were analyzed. Results Endothelial lesions where apoptotic bodies were left attached at the wound site showed a fivefold enhancement in EPC recruitment (P < 0.05) compared with lesions where the apoptotic cells had been removed. In intact RMEC monolayers exposed to apoptotic bodies, expression of ICAM, VCAM, and E-selectin was upregulated by 5- to 15-fold (P < 0.05– 0.001). EPCs showed a characteristic chemotactic response (P < 0.05) to conditioned medium obtained from apoptotic bodies, whereas analysis of the medium showed significantly increased levels of VEGF, IL-8, IL-6, and TNF-α when compared to control medium; SDF-1 remained unchanged. Conclusions The data indicate that apoptotic bodies derived from retinal capillary endothelium mediate release of proangiogenic cytokines and chemokines and induce adhesion molecule expression in a manner that facilitates EPC recruitment. PMID:19474402

  7. Autocrine EGF receptor activation mediates endothelial cell migration and vascular morphogenesis induced by VEGF under interstitial flow

    SciTech Connect

    Semino, Carlos E. . E-mail: semino@mit.edu; Kamm, Roger D.; Lauffenburger, Douglas A.

    2006-02-01

    We show here that autocrine ligand activation of epidermal growth factor (EGF) receptor in combination with interstitial flow is critically involved in the morphogenetic response of endothelial cells to VEGF stimulation. Human umbilical vein endothelial cell (HUVEC) monolayers cultured on a collagen gel and exposed to low interstitial flow in the absence of EGF and VEGF remained viable and mitotic but exhibited little evidence of vascular morphogenesis. Addition of VEGF produced a flow-dependent morphogenetic response within 48 to 72 h, characterized by branched capillary-like structures. The response was substantially abolished by inhibitors related to the autocrine EGF receptor pathway including Galardin, AG1478, PD98059, and an EGF receptor-blocking antibody, indicating that regulation of the morphogenetic process operates via autocrine EGF receptor activation. Moreover, we observed that in our system the EGF receptor was always activated independently of the interstitial flow, and, in addition, the EGF receptor inhibitors used above reduced the phosphorylation state of the receptor, correlating with inhibition of capillary morphogenesis. Finally, 5'bromo-2'-deoxyuridine (BrdU) labeling identified dividing cells at the monolayer but not in the extending capillary-like structures. EGF pathway inhibitors Galardin and AG1478 did not reduce BrdU incorporation in the monolayer, indicating that the EGF-receptor-mediated morphogenetic behavior is mainly due to cell migration rather than proliferation. Based on these results, we propose a two-step model for in vitro capillary morphogenesis in response to VEGF stimulation with interstitial fluid flow: monolayer maintenance by mitotic activity independent of EGF receptors and a migratory response mediated by autocrine EGF receptor activation wherein cells establish capillary-like structures.

  8. Platelet endothelial cell adhesion molecule-1 and mechanotransduction in vascular endothelial cells.

    PubMed

    Fujiwara, K

    2006-04-01

    Endothelial cells are known to respond to mechanical forces such as fluid shear stress and cyclic stretch, but elucidating the mechanism for mechanosensing has been difficult. Experimental data indicate that there are probably several sensing mechanisms. We have recently proposed a novel mechanoresponse mechanism that involves platelet endothelial cell adhesion molecule-1 (PECAM-1). When endothelial cells are stimulated by fluid shear stress, PECAM-1 is tyrosine phosphorylated and activates the extracellular signal-regulated kinase 1 and 2 (ERK1/2) signalling cascade. The same signalling events occurred when we applied pulling force directly on PECAM-1 on the endothelial cell surface using magnetic beads coated with antibodies against the external domain of PECAM-1. These results appear to indicate that PECAM-1 is a mechanotransduction molecule. To our knowledge, this is the first mammalian molecule that is shown to respond to mechanical force directly exerted to it. PMID:16594905

  9. Microcystins Induces Vascular Inflammation in Human Umbilical Vein Endothelial Cells via Activation of NF-κB

    PubMed Central

    Shi, Jun; Zhou, Jie; Zhang, Min

    2015-01-01

    Microcystins (MCs) produced by toxic cyanobacteria cause serious water pollution and public health hazard to humans and animals. However, direct molecular mechanisms of MC-LR in vascular endothelial cells (ECs) have not been understood yet. In this study, we investigated whether MC-LR induces vascular inflammatory process in cultured human umbilical vein endothelial cells (HUVECs). Our data demonstrated that MC-LR decreased HUVECs proliferation and tube formation and enhanced apoptosis. MC-LR also induced intracellular reactive oxygen species formation (ROS) in HUVECs. The MC-LR directly stimulated phosphorylation of NF-κB. Furthermore, MC-LR also increased cell adhesion molecules (ICAM-1 and VCAM-1) expression in HUVECs. Taken together, the present data suggested that MC-LR induced vascular inflammatory process, which may be closely related to the oxidative stress, NF-κB activation, and cell adhesion molecules expression in HUVECs. Our findings may highlight that MC-LR causes potential damage to blood vessels. PMID:26063980

  10. Selected activities of Citrus maxima Merr. fruits on human endothelial cells: enhancing cell migration and delaying cellular aging.

    PubMed

    Buachan, Paiwan; Chularojmontri, Linda; Wattanapitayakul, Suvara K

    2014-04-21

    Endothelial injury and damage as well as accumulated reactive oxygen species (ROS) in aging play a significant role in the development of cardiovascular disease (CVD). Recent studies show an association of high citrus fruit intake with a lower risk of CVD and stroke but the mechanisms involved are not fully understood. This study investigated the effects of pummelo (Citrus maxima Merr. var. Tubtim Siam, CM) fruit extract on human umbilical vein endothelial cell (HUVECs) migration and aging. The freeze-dried powder of fruit extract was characterized for antioxidant capacity (FRAP assay) and certain natural antioxidants, including ascorbic acid, gallic acid, hesperidin, and naringin (HPLC). Short-term (48 h) co-cultivation of HUVECs with CM enhanced cell migration as evaluated by a scratch wound assay and Boyden chamber assay. A long-term treatment with CM for 35 days significantly increased HUVEC proliferation capability as indicated by population doubling level (PDL). CM also delayed the onset of aging phenotype shown by senescence-associated β-galactosidase (SA-β-gal) staining. Furthermore, CM was able to attenuate increased ROS levels in aged cells when determined by 2',7'-dichlorodihydrofluorescein diacetate (DCDHF) while eNOS mRNA expression was increased but the eNOS protein level was not changed. Thus, further in vivo and clinical studies are warranted to support the use of pummelo as a functional fruit for endothelial health and CVD risk reduction.

  11. Endothelial nitric oxide synthase regulates N-Ras activation on the Golgi complex of antigen-stimulated T cells

    PubMed Central

    Ibiza, Sales; Pérez-Rodríguez, Andrea; Ortega, Ángel; Martínez-Ruiz, Antonio; Barreiro, Olga; García-Domínguez, Carlota A.; Víctor, Víctor M.; Esplugues, Juan V.; Rojas, José M.; Sánchez-Madrid, Francisco; Serrador, Juan M.

    2008-01-01

    Ras/ERK signaling plays an important role in T cell activation and development. We recently reported that endothelial nitric oxide synthase (eNOS)-derived NO regulates T cell receptor (TCR)-dependent ERK activation by a cGMP-independent mechanism. Here, we explore the mechanisms through which eNOS exerts this regulation. We have found that eNOS-derived NO positively regulates Ras/ERK activation in T cells stimulated with antigen on antigen-presenting cells (APCs). Intracellular activation of N-, H-, and K-Ras was monitored with fluorescent probes in T cells stably transfected with eNOS-GFP or its G2A point mutant, which is defective in activity and cellular localization. Using this system, we demonstrate that eNOS selectively activates N-Ras but not K-Ras on the Golgi complex of T cells engaged with APC, even though Ras isoforms are activated in response to NO from donors. We further show that activation of N-Ras involves eNOS-dependent S-nitrosylation on Cys118, suggesting that upon TCR engagement, eNOS-derived NO directly activates N-Ras on the Golgi. Moreover, wild-type but not C118S N-Ras increased TCR-dependent apoptosis, suggesting that S-nitrosylation of Cys118 contributes to activation-induced T cell death. Our data define a signaling mechanism for the regulation of the Ras/ERK pathway based on the eNOS-dependent differential activation of N-Ras and K-Ras at specific cell compartments. PMID:18641128

  12. Down-regulation of histamine-induced endothelial cell activation as potential anti-atherosclerotic activity of peptides from Spirulina maxima.

    PubMed

    Vo, Thanh-Sang; Kim, Se-Kwon

    2013-10-01

    Histamine, a potent inflammatory mediator, has been known to cause the pathogenesis of atherosclerosis. In this sense, two bioactive peptides P1 (LDAVNR; 686Da) and P2 (MMLDF; 655Da) purified from gastric enzymatic hydrolysate of Spirulina maxima were examined for their protective effects against early atherosclerotic responses induced by histamine in EA.hy926 endothelial cells. Interestingly, both P1 and P2 exhibited inhibitory activities on the production and expression of IL-6 and MCP-1. Furthermore, P1 and P2 inhibited the production of adhesion molecules including P-selectin and E-selectin, and thus reducing in vitro cell adhesion of monocyte onto endothelial cells. In addition, the production of intracellular reactive oxygen species was observed to reduce in the presence of P1 or P2. Notably, the inhibitory activities of P1 and P2 were found due to down-regulating Egr-1 expression via histamine receptor and PKCδ-dependent MAPKs activation pathway. These results suggest that peptides P1 and P2 from S. maxima are effective to suppress histamine-induced endothelial cell activation that may contribute to the prevention of early atherosclerosis. PMID:23856417

  13. ENDOTHELIAL CELLS IN ALLOGRAFT REJECTION

    PubMed Central

    Al-Lamki, Rafia S.; Bradley, John R.; Pober, Jordan S.

    2008-01-01

    In organ transplantation, blood borne cells and macromolecules (e.g. antibodies) of the host immune system are brought into direct contact with the endothelial cell (EC) lining of graft vessels. In this location, graft ECs play several roles in allograft rejection, including the initiation of rejection responses by presentation of alloantigen to circulating T cells; the development of inflammation and thrombosis; and as targets of injury and agents of repair. PMID:19034000

  14. Endothelial cell activation, oxidative stress and inflammation induced by a panel of metal-based nanomaterials.

    PubMed

    Danielsen, Pernille Høgh; Cao, Yi; Roursgaard, Martin; Møller, Peter; Loft, Steffen

    2015-01-01

    The importance of composition, size, crystal structure, charge and coating of metal-based nanomaterials (NMs) were evaluated in human umbilical vein endothelial cells (HUVECs) and/or THP-1 monocytic cells. Biomarkers of oxidative stress and inflammation were assessed because they are important in the development of cardiovascular diseases. The NMs used were five TiO(2) NMs with different charge, size and crystal structure, coated and uncoated ZnO NMs and Ag which were tested in a wide concentration range. There were major differences between the types of NMs; exposure to ZnO and Ag resulted in cytotoxicity and increased gene expression levels of HMOX1 and IL8. The intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1(VCAM-1) expression were highest in TiO(2) NM-exposed cells. There was increased adhesion of THP-1 monocytic cells onto HUVECs with Ag exposure. None of the NMs increased the intracellular ROS production. There were no major effects of the coating of ZnO NMs. The TiO(2) NMs data on ICAM-1 and VCAM-1 expression suggested that the anatase form was more potent than the rutile form. In addition, the larger TiO(2) NM was more potent than the smaller for gene expression and ICAM-1 and VCAM-1 expression. The toxicological profile of cardiovascular disease-relevant biomarkers depended on composition, size and crystal structure of TiO(2) NMs, whereas the charge on TiO(2) NMs and the coating of ZnO NMs were not associated with differences in toxicological profile.

  15. Circulating endothelial cells: a new biomarker of endothelial dysfunction in hematological diseases.

    PubMed

    Gendron, Nicolas; Smadja, David M

    2016-08-01

    The endothelium and its integrity are in the center of numerous cardiovascular, pulmonary and tumoral diseases. Several studies identified different circulating cellular sub-populations, which allow a noninvasive exploration of endothelial dysfunction. Furthermore, angiogenesis plays a major role in the biology of benign and malignant hematologic diseases. Among these biomarkers, circulating endothelial cells could be considered as a marker of endothelial injury and/or endothelial activation as well as vascular remodeling, whereas circulating endothelial progenitor cells would be only involved in the vascular regeneration. In the future, the quantification of circulating endothelial cells in many diseases could be a noninvasive biomarker used in diagnosis, prognostic and therapeutic follow-up of lung vasculopathy and/or residual disease of hematological malignancies.

  16. KRIT1 Protein Depletion Modifies Endothelial Cell Behavior via Increased Vascular Endothelial Growth Factor (VEGF) Signaling*

    PubMed Central

    DiStefano, Peter V.; Kuebel, Julia M.; Sarelius, Ingrid H.; Glading, Angela J.

    2014-01-01

    Disruption of endothelial cell-cell contact is a key event in many cardiovascular diseases and a characteristic of pathologically activated vascular endothelium. The CCM (cerebral cavernous malformation) family of proteins (KRIT1 (Krev-interaction trapped 1), PDCD10, and CCM2) are critical regulators of endothelial cell-cell contact and vascular homeostasis. Here we show novel regulation of vascular endothelial growth factor (VEGF) signaling in KRIT1-depleted endothelial cells. Loss of KRIT1 and PDCD10, but not CCM2, increases nuclear β-catenin signaling and up-regulates VEGF-A protein expression. In KRIT1-depleted cells, increased VEGF-A levels led to increased VEGF receptor 2 (VEGFR2) activation and subsequent alteration of cytoskeletal organization, migration, and barrier function and to in vivo endothelial permeability in KRIT1-deficient animals. VEGFR2 activation also increases β-catenin phosphorylation but is only partially responsible for KRIT1 depletion-dependent disruption of cell-cell contacts. Thus, VEGF signaling contributes to modifying endothelial function in KRIT1-deficient cells and microvessel permeability in Krit1+/− mice; however, VEGF signaling is likely not the only contributor to disrupted endothelial cell-cell contacts in the absence of KRIT1. PMID:25320085

  17. The Activation of Nrf2 and Its Downstream Regulated Genes Mediates the Antioxidative Activities of Xueshuan Xinmaining Tablet in Human Umbilical Vein Endothelial Cells

    PubMed Central

    Xiong, Lingxin; Xie, Jingshu; Song, Chenxue; Liu, Jinping; Zheng, Jingtong; Liu, Chuangui; Zhang, Xiaotian; Li, Pingya; Wang, Fang

    2015-01-01

    Epidemiological studies have verified the critical role that antioxidative stress plays in protecting vascular endothelial cells. The aims of the present study were to investigate the antioxidative activities and differential regulation of nuclear erythroid-related factor 2- (Nrf2-) mediated gene expression by Xueshuan Xinmaining Tablet (XXT), a traditional Chinese medicine with the effect of treating cardiovascular diseases. The antioxidative activities of XXT were investigated using quantitative real-time PCR (qPCR), a PCR array, and western blotting. Our results indicated that XXT exhibited potent antioxidative activities by suppressing the levels of hydrogen peroxide- (H2O2-) induced reactive oxygen species (ROS) in human umbilical vein endothelial cells (HUVECs). We were also conscious of strong Nrf2-mediated antioxidant induction. XXT enhanced the expressions of Keap1, Nrf2, and Nrf2-mediated genes, such as glutamate-cysteine ligase modifier subunit (GCLM), NAD(P)H: quinine oxidoreductase 1 (NQO1), heme oxygenase 1 (HMOX1), and glutathione peroxidase (GPX) in HUVECs. In summary, XXT strongly activated Nrf2 and its downstream regulated genes, which may contribute to the antioxidative and vascular endothelial cell protective activities of XXT. PMID:26681964

  18. Endothelial cell heterogeneity: antioxidant profiles determine vulnerability to oxidant injury.

    PubMed

    Vercellotti, G M; Dobson, M; Schorer, A E; Moldow, C F

    1988-02-01

    Human umbilical vein endothelial cells were more sensitive to hydrogen peroxide lysis than cow pulmonary artery endothelial cells. Conversely, activated neutrophils which utilize hydrogen peroxide-mediated cell cytotoxicity cell mechanisms were more toxic to the cow pulmonary artery cells. This discordance was not related to neutrophil adhesion to either cell type or cell passage number. The antioxidant profiles of the endothelial cells revealed that cow pulmonary artery cells were rich in catalase to consume bolus hydrogen peroxide presented to them, while human umbilical vein endothelial cells utilize glutathione peroxidase-linked mechanisms to detoxify a slower more sustained release of hydrogen peroxide generated by neutrophils. Endothelial cells from different species and sites may utilize diversified antioxidant protective mechanisms. PMID:3340627

  19. Microarray profiling of L1-overexpressing endothelial cells reveals STAT3 activation via IL-6/IL-6Rα axis.

    PubMed

    Magrini, Elena; Cavallaro, Ugo; Bianchi, Fabrizio

    2015-06-01

    We recently identified a novel role for the L1 transmembrane glycoprotein (also known as L1CAM or CD171) in the regulation of tumor angiogenesis and vessels stabilization. L1 overexpression in cultured endothelial cells of the lung (luECs) exerted a pleiotropic effect in that it regulated proliferation, migration, tubulogenesis, vascular permeability, and endothelial-to-mesenchymal transition (EndMT). In addition, we provided strong evidence that antibody-mediated targeting of L1 may be an effective strategy for vessel normalization with the potential to increase efficacy of chemotherapeutic agents. High-throughput microarray expression profile revealed that L1 modulates the expression of hundreds of genes mainly involved in cell cycle regulation, DNA replication, cellular assembly, migration, development and organization. By using a 'pathway-oriented' analysis strategy we were able to identify a network of 105 genes modulated by L1 through the predicted activation of five transcription factors: STAT1, STAT2, STAT3, IRF7, and ATF4. Indeed, L1 overexpression resulted in the strong induction of STAT3 phosphorylation which was abolished by antibody-mediated neutralization of IL-6Rα. These results indicated that L1 promoted STAT3 activation via the IL-6/IL-6Rα axis. PMID:26484199

  20. A recurrent activating PLCG1 mutation in cardiac angiosarcomas increases apoptosis resistance and invasiveness of endothelial cells.

    PubMed

    Kunze, Kristin; Spieker, Tilmann; Gamerdinger, Ulrike; Nau, Kerstin; Berger, Johannes; Dreyer, Thomas; Sindermann, Jürgen R; Hoffmeier, Andreas; Gattenlöhner, Stefan; Bräuninger, Andreas

    2014-11-01

    Primary cardiac angiosarcomas are rare tumors with unfavorable prognosis. Pathogenic driver mutations are largely unknown. We therefore analyzed a collection of cases for genomic aberrations using SNP arrays and targeted next-generation sequencing (tNGS) of oncogenes and tumor-suppressor genes. Recurrent gains of chromosome 1q and a small region of chromosome 4 encompassing KDR and KIT were identified by SNP array analysis. Repeatedly mutated genes identified by tNGS were KDR with different nonsynonymous mutations, MLL2 with different nonsense mutations, and PLCG1 with a recurrent nonsynonymous mutation (R707Q) in the highly conserved autoinhibitory SH2 domain in three of 10 cases. PLCγ1 is usually activated by Y783 phosphorylation and activates protein kinase C and Ca(2+)-dependent second messengers, with effects on cellular proliferation, migration, and invasiveness. Ectopic expression of the PLCγ1-R707Q mutant in endothelial cells revealed reduced PLCγ1-Y783 phosphorylation with concomitant increased c-RAF/MEK/ERK1/2 phosphorylation, increased IP3 amounts, and increased Ca(2+)-dependent calcineurin activation compared with ectopic expressed PLCγ1-wild-type. Furthermore, cofilin, whose activation is associated with actin skeleton reorganization, showed decreased phosphorylation, and thus activation after expression of PLCγ1-R707Q compared with PLCγ1-wild-type. At the cellular level, expression of PLCγ1-R707Q in endothelial cells had no influence on proliferation rate, but increased apoptosis resistance and migration and invasiveness in in vitro assays. Together, these findings indicate that the PLCγ1-R707Q mutation causes constitutive activation of PLCγ1 and may represent an alternative way of activation of KDR/PLCγ1 signaling besides KDR activation in angiosarcomas, with implications for VEGF/KDR targeted therapies. PMID:25252913

  1. Vasculotide reduces endothelial permeability and tumor cell extravasation in the absence of binding to or agonistic activation of Tie2

    PubMed Central

    Wu, Florence TH; Lee, Christina R; Bogdanovic, Elena; Prodeus, Aaron; Gariépy, Jean; Kerbel, Robert S

    2015-01-01

    Angiopoietin-1 (Ang1) activation of Tie2 receptors on endothelial cells (ECs) reduces adhesion by tumor cells (TCs) and limits junctional permeability to TC diapedesis. We hypothesized that systemic therapy with Vasculotide (VT)—a purported Ang1 mimetic, Tie2 agonist—can reduce the extravasation of potentially metastatic circulating TCs by similarly stabilizing the host vasculature. In vitro, VT and Ang1 treatments impeded endothelial hypermeability and the transendothelial migration of MDA-MB-231•LM2-4 (breast), HT29 (colon), or SN12 (renal) cancer cells to varying degrees. In mice, VT treatment inhibited the transit of TCs through the pulmonary endothelium, but not the hepatic or lymphatic endothelium. In the in vivo LM2-4 model, VT monotherapy had no effect on primary tumors, but significantly delayed distant metastatic dissemination to the lungs. In the post-surgical adjuvant treatment setting, VT therapeutically complemented sunitinib therapy, an anti-angiogenic tyrosine kinase inhibitor which limited the local growth of residual disease. Unexpectedly, detailed investigations into the putative mechanism of action of VT revealed no evidence of Tie2 agonism or Tie2 binding; alternative mechanisms have yet to be determined. PMID:25851538

  2. Hypoxia activates 15-PGDH and its metabolite 15-KETE to promote pulmonary artery endothelial cells proliferation via ERK1/2 signalling

    PubMed Central

    Ma, Cui; Liu, Yun; Wang, Yanyan; Zhang, Chen; Yao, Hongmin; Ma, Jun; Zhang, Lei; Zhang, Dandan; Shen, Tingting; Zhu, Daling

    2014-01-01

    BACKGROUND AND PURPOSE Dysfunction and injury of endothelial cells in the pulmonary artery play critical roles in the hypertension induced by chronic hypoxia. One consequence of hypoxia is increased activity of 15-hydroxyprostaglandin dehydrogenase (PGDH). Here, we have explored, in detail, the effects of hypoxia on the proliferation of pulmonary artery endothelial cells. EXPERIMENTAL APPROACH We used bromodeoxyuridine incorporation, cell-cycle analysis, immunohistochemistry and Western blot analysis to study the effects of hypoxia, induced 15-PGDH) activity and its product, 15-keto-6Z, 8Z, 11Z, 13E-eicosatetraenoic acid (15-KETE), on endothelial cell proliferation. Scratch-wound and tube formation assays were also used to study migration of endothelial cells. KEY RESULTS 15-KETE increased DNA synthesis and enhanced the transition from the G0/G1 phase to the S phase in hypoxia. Inhibition of 15-PGDH or siRNA for 15-PGDH reversed these effects. 15-KETE also activated the ERK1/2 signalling pathway. 15-KETE-induced cell migration and tube formation were reversed by blocking ERK1/2, but not the p38 MAPK pathway. CONCLUSIONS AND IMPLICATIONS Hypoxia-induced endothelial proliferation and migration, an important underlying mechanism contributing to hypoxic pulmonary vascular remodelling, appears to be mediated by 15-PGDH and 15-KETE, via the ERK1/2 signalling pathway. PMID:24467360

  3. Advanced glycation endproducts induce apoptosis of endothelial progenitor cells by activating receptor RAGE and NADPH oxidase/JNK signaling axis

    PubMed Central

    Chen, Jianfei; Jing, Jun; Yu, Shiyong; Song, Minbao; Tan, Hu; Cui, Bin; Huang, Lan

    2016-01-01

    Elevated levels of advanced glycation endproducts (AGEs) is an important risk factor for atherosclerosis. Dysfunction of endothelial progenitor cells (EPCs), which is essential for re-endothelialization and neovascularization, is a hallmark of atherosclerosis. However, it remains unclear whether and how AGEs acts on EPCs to promote pathogenesis of atherosclerosis. In this study, EPCs were exposed to different concentrations of AGEs. The expression of NADPH and Rac1 was measured to investigate the involvement of NADPH oxidase pathway. ROS was examined to indicate the level of oxidative stress in EPCs. Total JNK and p-JNK were determined by Western blotting. Cell apoptosis was evaluated by both TUNEL staining and flow cytometry. Cell proliferation was measured by 3H thymidine uptake. The results showed that treatment of EPCs with AGEs increased the levels of ROS in EPCs. Mechanistically, AGEs increased the activity of NADPH oxidase and the expression of Rac1, a major component of NADPH. Importantly, treatment of EPCs with AGEs activated the JNK signaling pathway, which was closely associated with cell apoptosis and inhibition of proliferation. Our results suggest that the RAGE activation by AGEs in EPCs upregulates intracellular ROS levels, which contributes to increased activity of NADPH oxidase and expression of Rac1, thus promoting cellular apoptosis and inhibiting proliferation. Mechanistically, AGEs binding to the receptor RAGE in EPCs is associated with hyperactivity of JNK signaling pathway, which is downstream of ROS. Our findings suggest that dysregulation of the AGEs/RAGE axis in EPCs may promote atherosclerosis and identify the NADPH/ROS/JNK signaling axis as a potential target for therapeutic intervention. PMID:27347324

  4. Real-time monitoring of cell mechanical changes induced by endothelial cell activation and their subsequent binding with leukemic cell lines.

    PubMed

    Tan, Liang; Lin, Peiling; Pezeshkian, Bahareh; Rehman, Abdul; Madlambayan, Gerard; Zeng, Xiangqun

    2014-06-15

    Endothelial cell (EC) activation and their subsequent binding with different cells have various mechanical consequences that, if monitored real time, can serve as a functional biomarker of many pathophysiological response mechanisms. This work presents an innovative and facile strategy to conduct such monitoring using quartz crystal microbalance (QCM), thereby relating the shifts in its frequency and motional resistance to morphological changes upon cell-cell and cell-substrate interactions. By activating ECs with TNF-α and then characterizing their binding with HL-60 and KG-1 leukemia cells, we are able to induce the mechanical changes in ECs especially in the region of cell-substrate contact which resulted in dynamically coupled mass and viscoelastic changes representing the extent of both activation and binding. The activated ECs suffered a decrease of cellular contact area, leading to positive frequency shift and decreased motional resistance. The binding of leukemia cells onto pre-activated ECs exerted a mechanical force to regain the cell surface contact which resulted in the obvious QCM responses opposite to that of activation, and proportional to the number of cells added, in spite of the fact that these added cells are extremely outside the extinction boundary of the shear wave generated by QCM. Different cell lines demonstrate different attachment behavior, which was detected by the QCM. Despite these variations are quite subtle, yet the sensitivity of the technique for dynamic changes at the interface makes them detectable. Moreover, the reproducibility of the generated data determined at each step by deviation measurements (<10%) in response plot was very high despite the high possible heterogeneity in cell populations. The results are explained on the basis of simple theoretical and physical models, although, the development of a more quantitative and precise model is underway in our laboratory.

  5. Real-Time Monitoring of Cell Mechanical Changes Induced by Endothelial Cell Activation and their Subsequent Binding with Leukemic Cell Lines

    PubMed Central

    Tan, Liang; Lin, Peiling; Pezeshkian, Bahareh; Rehman, Abdul; Madlambayan, Gerard; Zeng, Xiangqun

    2014-01-01

    Endothelial cell (EC) activation and their subsequent binding with different cells have various mechanical consequences that, if monitored real time, can serve as a functional biomarker of many pathophysiological response mechanisms. This work presents an innovative and facile strategy to conduct such monitoring using quartz crystal microbalance (QCM), thereby relating the shifts in its frequency and motional resistance to morphological changes upon cell-cell and cell-substrate interactions. By activating ECs with TNF-α and then characterizing their binding with HL-60 and KG-1 leukemia cells, we are able to induce the mechanical changes in ECs especially in the region of cell-substrate contact which resulted in dynamically coupled mass and viscoelastic changes representing the extent of both activation and binding. The activated ECs suffered a decrease of cellular contact area, leading to positive frequency shift and decreased motional resistance. The binding of leukemia cells onto pre-activated ECs exerted a mechanical force to regain the cell surface contact which resulted in the obvious QCM responses opposite to that of activation, and proportional to the number of cells added, in spite of the fact that these added cells are extremely outside the extinction depth of the shear wave generated by QCM. Different cell lines demonstrate different attachment behavior, which was detected by the QCM. Despite these variations are quite subtle, yet the sensitivity of the technique for dynamic changes at the interface makes them detectable. Moreover, the reproducibility of the generated data determined at each step by deviation measurements (<10%) in response plot was very high despite the high possible heterogeneity in cell populations. The results are explained on the basis of simple theoretical and physical models, although, the development of a more quantitative and precise model is underway in our laboratory. PMID:24487102

  6. Interleukin 2 secretion by lectin-activated human blood lymphocytes is markedly augmented by vascular endothelial cells

    SciTech Connect

    Guinan, E.C.; Pober, J.S.

    1986-03-01

    Since the initial interaction (and possible activation) of a blood borne T lymphocyte involves contact with the endothelial lining of the vasculature at the site of an immune response, the authors have examined the effect of cultured human endothelial cells (HEC) upon polyclonal T cell activation. Addition of 10/sup 4/ HEC to 10/sup 4/-10/sup 5/ peripheral blood lymphocytes (PBL) stimulated with phytohemagglutinin (PHA, 0.3-10 ..mu..g/ml) leads to marked augmentation of interleukin 2 (IL-2) production. The relative increase in IL-2 (mean of 3 expts. +/- SEM) is present at 24 h (5.8 fold +/- 1.5) and become more marked at 48 h (12.6 fold +/- 3.5) and 72 h (18.5 fold +/- 3.7). This relative enhancement is greater for HEC added to 10/sup 4/ than 10/sup 5/ PBL and is also greater when 10/sup 4/ rather than 2 x 10/sup 3/ HEC are added to a given number of PBL. This increased IL-2 concentration has two biological consequences. First, at suboptimal PHA doses or at low PBL number, PBL proliferation as measured by /sup 3/H-thymidine incorporation is increased up to two fold. Second, the phenotype of the proliferating cells appears altered, including a decrease in mean density of IL-2 receptor. The authors hypothesize that such modulation of the concentration of locally produced IL-2 may play a key role in the nature of an immune response, influencing both its magnitude and the functional profile of the activated and amplified effector cells.

  7. Interleukin 8 is differently expressed and modulated by PAR-1 activation in early and late endothelial progenitor cells.

    PubMed

    Smadja, David M; Bièche, Ivan; Susen, Sophie; Mauge, Laetitia; Laurendeau, Ingrid; d'Audigier, Clément; Grelac, Françoise; Emmerich, Joseph; Aiach, Martine; Gaussem, Pascale

    2009-08-01

    The proinflammatory chemokine interleukin 8 exerts potent angiogenic effects on endothelial cells by interacting with its receptors CXCR1 and CXCR2. As thrombin is also a potent inflammatory factor, and as endothelial progenitor cells (EPC) express functional PAR-1 thrombin receptor, we examined whether PAR-1 stimulation interferes with the IL-8 pathway in EPC. EPC were obtained from adult blood (AB) and cord blood (CB). The effect of PAR-1 stimulation by the peptide SFLLRN on IL-8, CXCR1 and CXCR2 expression was examined by RTQ-PCR and at the protein level in AB and CB late EPC and in AB early EPC. Specific siRNA was used to knock down PAR-1 expression. The IL-8 gene was expressed strongly in AB early EPC and moderately in late EPC. In contrast, CXCR1 and CXCR2 gene expression was restricted to AB early EPC. The IL-8 level in AB early EPC conditioned medium was high in basal conditions and did not change after PAR-1 activation. By contrast, IL-8 secretion by late EPC was low in basal conditions and strongly up-regulated upon PAR-1 activation. PAR-1 activation induced a number of genes involved in activating protein-1 (AP-1) and nuclear factor (NF)-kappaB pathways. Conditioned medium of PAR-1-activated late EPC enhanced the migratory potential of early EPC, and this effect was abrogated by blocking IL-8. Target-specific siRNA-induced PAR-1 knockdown, and fully inhibited PAR-1-induced IL-8 synthesis. In conclusion, PAR-1 activation induces IL-8 synthesis by late EPC. This could potentially enhance cooperation between late and early EPC during neovascularization, through a paracrine effect. PMID:18657231

  8. Air Pollution Upregulates Endothelial Cell Procoagulant Activity Via Ultrafine Particle-Induced Oxidant Signaling and Tissue Factor Expression

    EPA Science Inventory

    Air pollution exposure is associated with cardiovascular events triggered by clot formation. Endothelial activation and initiation of coagulation are pathophysiological mechanisms that could link inhaled air pollutants to vascular events. Here we investigated the underlying mecha...

  9. Down-regulation of tumor endothelial marker 8 suppresses cell proliferation mediated by ERK1/2 activity

    PubMed Central

    Cao, Chuangjie; Wang, Zhuo; Huang, Leilei; Bai, Lihong; Wang, Yuefeng; Liang, Yingjie; Dou, Chengyun; Wang, Liantang

    2016-01-01

    Tumor endothelial marker 8 (TEM8) was recently suggested as a putative anti-tumor target in several types of human cancer based on its selective overexpression in tumor versus normal endothelial cells. The objective of this study was to detect the potential functions of TEM8 in osteosarcoma. Overall, TEM8 was mainly located in cytoplasm and was up-regulated in osteosarcoma compared to benign bone lesions and adjacent non tumor tissue (ANT). High TEM8 expression group had a significant lower overall survival rate than that in the low TEM8 expression group. TEM8 knock-down by siRNA or shRNA results in significant reduction of osteosarcoma cell growth and proliferation both in vitro and in vivo. Ablation of TEM8 led to increasing of p21 and p27 and suppression of cyclin D1 mediated by Erk1/2 activity. These findings suggest that down-regulation of TEM8 play an important role in the inhibition of tumorigenesis and development of osteosarcoma. PMID:26996335

  10. A selective estrogen receptor modulator inhibits TNF-alpha-induced apoptosis by activating ERK1/2 signaling pathway in vascular endothelial cells.

    PubMed

    Yu, Jing; Eto, Masato; Akishita, Masahiro; Okabe, Tetsuro; Ouchi, Yasuyoshi

    2009-07-01

    Tumor necrosis factor (TNF-alpha) is a pleiotropic cytokine exerting both inflammatory and cell death activity and is thought to play a role in the pathogenesis of atherosclerosis. The present study was designed to examine whether the raloxifene analogue, LY117018 could inhibit TNF-alpha-induced apoptosis in vascular endothelial cells and to clarify the involved mechanisms. Apoptosis of endothelial cells was determined by DNA fragmentation assay and the activation of caspase-3. LY117018 significantly inhibited TNF-alpha-induced caspase-3 activation and cell DNA fragmentation levels in bovine carotid artery endothelial cells. The inhibitory effect of LY117018 was abolished by an estrogen receptor antagonist ICI 182,780. p38 MAPK, JNK, ERK1/2 and Akt have been shown to act as apoptotic or anti-apoptotic signals. TNF-alpha stimulated the phosphorylation levels of p38 MAPK, JNK, ERK1/2 and Akt in vascular endothelial cells. TNF-alpha-induced apoptosis was significantly decreased by SB203580, a p38 MAPK inhibitor or SP600125, a JNK inhibitor, but was enhanced by an ERK1/2 pathway inhibitor, PD98059 or a PI3-kinase/Akt pathway inhibitor, wortmannin. The anti-apoptotic effect of LY117018 was abrogated only by PD98059 but was not affected by the inhibitors for p38 MAPK, JNK, or Akt. LY117018 stimulated the further increase in phosphorylation of ERK1/2 in TNF-alpha treated endothelial cells but it did not affect phosphorylation levels of p38 MAPK, JNK or Akt. These results suggest that LY 110718 prevents caspase-3 dependent apoptosis induced by TNF-alpha in vascular endothelial cells through activation of the estrogen receptors and the ERK1/2 signaling pathway. PMID:19275968

  11. RelB activation in anti-inflammatory decidual endothelial cells: a master plan to avoid pregnancy failure?

    PubMed

    Masat, Elisa; Gasparini, Chiara; Agostinis, Chiara; Bossi, Fleur; Radillo, Oriano; De Seta, Francesco; Tamassia, Nicola; Cassatella, Marco A; Bulla, Roberta

    2015-01-01

    It is known that excessive inflammation at fetal-maternal interface is a key contributor in a compromised pregnancy. Female genital tract is constantly in contact with microorganisms and several strategies must be adopted to avoid pregnancy failure. Decidual endothelial cells (DECs) lining decidual microvascular vessels are the first cells that interact with pro-inflammatory stimuli released into the environment by microorganisms derived from gestational tissues or systemic circulation. Here, we show that DECs are hypo-responsive to LPS stimulation in terms of IL-6, CXCL8 and CCL2 production. Our results demonstrate that DECs express low levels of TLR4 and are characterized by a strong constitutive activation of the non-canonical NF-κB pathway and a low responsiveness of the canonical pathway to LPS. In conclusion, DECs show a unique hypo-responsive phenotype to the pro-inflammatory stimulus LPS in order to control the inflammatory response at feto-maternal interface. PMID:26463648

  12. Involvement of platelet cyclic GMP but not cyclic AMP suppression in leukocyte-dependent platelet adhesion to endothelial cells induced by platelet-activating factor in vitro.

    PubMed Central

    Hirafuji, M.; Nezu, A.; Shinoda, H.; Minami, M.

    1996-01-01

    1. Incubation of endothelial cells with platelets in the absence or the presence of PAF (10 nM) markedly increased platelet cyclic AMP levels, which were significantly decreased by indomethacin (3 microM). Co-incubation of endothelial cells and platelets with polymorphonuclear leukocytes (PMNs) did not change the platelet cyclic AMP levels. 2. Incubation of endothelial cells with platelets in the absence of PAF increased platelet cyclic GMP levels, which were increased 3.5 fold by PAF. These cyclic GMP levels were significantly decreased by NG-nitro-L-arginine (100 microM), and completely by methylene blue (10 microM). When endothelial cells and platelets were co-incubated with PMNs, the cyclic GMP level in the cell mixture was 42.5 and 65.3% lower than that in endothelial cells and platelets without and with PAF stimulation, respectively. 3. PAF induced platelet adhesion to endothelial cells only when PMNs were present. Methylene blue dose-dependently potentiated the PMN-dependent platelet adhesion induced by PAF, although it had no effect in the absence of PMNs. 4. Sodium nitroprusside and 8-bromo cyclic GMP but not dibutyryl cyclic AMP significantly, although partially, inhibited the platelet adhesion. Inhibition of cyclic GMP-specific phosphodiesterase by zaprinast slightly inhibited the PMN-induced platelet adhesion and potentiated the inhibitory effect of 8-bromo cyclic GMP, while these drugs markedly inhibited the adhesion of platelet aggregates induced by PMN sonicates. 5. These results suggest that the impairment by activated PMNs of EDRF-induced platelet cyclic GMP formation is involved in part in the mechanism of PMN-dependent platelet adhesion to endothelial cells induced by PAF in vitro. The precise mechanism still remains to be clarified. PMID:8789382

  13. Oxidized High-Density Lipoprotein Impairs Endothelial Progenitor Cells' Function by Activation of CD36-MAPK-TSP-1 Pathways

    PubMed Central

    Wu, Jianxiang; He, Zhiqing; Gao, Xiang; Wu, Feng; Ding, Ru; Ren, Yusheng; Jiang, Qijun; Fan, Min

    2015-01-01

    Abstract Aims: High-density lipoprotein (HDL) levels inversely correlate with cardiovascular events due to the protective effects on vascular wall and stem cells, which are susceptible to oxidative modifications and then lead to potential pro-atherosclerotic effects. We proposed that oxidized HDL (ox-HDL) might lead to endothelial progenitor cells (EPCs) dysfunction and investigated underlying mechanisms. Results: ox-HDL was shown to increase apoptosis and intracellular reactive oxygen species levels, but to reduce migration, angiogenesis, and cholesterol efflux of EPCs in a dose-dependent manner. p38 mitogen-activated protein kinase (MAPK) and NF-κB were activated after ox-HDL stimulation, which also upregulated thrombospondin-1 (TSP-1) expression without affecting vascular endothelial growth factor. Effects caused by ox-HDL could be significantly attenuated by pretreatment with short hairpin RNA-mediated CD36 knockdown or probucol. Data of in vivo experiments and the inverse correlation of ox-HDL and circulating EPC numbers among patients with coronary artery diseases (CAD) or CAD and type 2 diabetes also supported it. Meanwhile, HDL separated from such patients could significantly increase cultured EPC's caspase 3 activity, further supporting our proposal. Innovation: This is the most complete study to date of how ox-HDL would impair EPCs function, which was involved with activation of CD36-p38 MAPK-TSP-1 pathways and proved by not only the inverse relationship between ox-HDL and circulating EPCs in clinic but also pro-apoptotic effects of HDL separated from patients' serum. Conclusion: Activation of CD36-p38 MAPK-TSP-1 pathways contributes to the pathological effects of ox-HDL on EPCs' dysfunction, which might be one of the potential etiological factors responsible for the disturbed neovascularization in chronic ischemic disease. Antioxid. Redox Signal. 22, 308–324. PMID:25313537

  14. The volatile oil of Nardostachyos Radix et Rhizoma induces endothelial nitric oxide synthase activity in HUVEC cells.

    PubMed

    Maiwulanjiang, Maitinuer; Bi, Cathy W C; Lee, Pinky S C; Xin, Guizhong; Miernisha, Abudureyimu; Lau, Kei M; Xiong, Aizhen; Li, Ning; Dong, Tina T X; Aisa, Haji A; Tsim, Karl W K

    2015-01-01

    Nardostahyos Radix et Rhizoma (NRR; the root and rhizome of Nardostachys jatamansi DC.) is a widely used medicinal herb. Historically, NRR is being used for the treatment of cardiovascular and neurological diseases. To search for active ingredients of NRR, we investigated the vascular benefit of NRR volatile oil in (i) the vasodilation in rat aorta ring, and (ii) the release of nitric oxide (NO) and the phosphorylation of endothelial NO synthase (eNOS) in cultured human umbilical vein endothelial cells (HUVECs). By measuring the fluorescence signal in cultures, application of NRR volatile oil resulted in a rapid activation of NO release as well as the phosphorylation of eNOS: both inductions were markedly reduced by L-NAME. In parallel, the phosphorylation level of Akt kinase was markedly increased by the oil treatment, which was partially attenuated by PI3K/Akt inhibitor LY294002. This inhibitor also blocked the NRR-induced NO production and eNOS phosphorylation. In HUVECs, application of NRR volatile oil elevated the intracellular Ca(2+) level, and BAPTA-AM, a Ca(2+) chelator, reduced the Ca(2+) surge: the blockage were also applied to NRR-induced eNOS phosphorylation and NO production. These findings suggested the volatile oil of NRR was the major ingredient in triggering the vascular dilatation, and which was mediated via the NO production. PMID:25643147

  15. The Volatile Oil of Nardostachyos Radix et Rhizoma Induces Endothelial Nitric Oxide Synthase Activity in HUVEC Cells

    PubMed Central

    Maiwulanjiang, Maitinuer; Bi, Cathy W. C.; Lee, Pinky S. C.; Xin, Guizhong; Miernisha, Abudureyimu; Lau, Kei M.; Xiong, Aizhen; Li, Ning; Dong, Tina T. X.; Aisa, Haji A.; Tsim, Karl W. K.

    2015-01-01

    Nardostahyos Radix et Rhizoma (NRR; the root and rhizome of Nardostachys jatamansi DC.) is a widely used medicinal herb. Historically, NRR is being used for the treatment of cardiovascular and neurological diseases. To search for active ingredients of NRR, we investigated the vascular benefit of NRR volatile oil in (i) the vasodilation in rat aorta ring, and (ii) the release of nitric oxide (NO) and the phosphorylation of endothelial NO synthase (eNOS) in cultured human umbilical vein endothelial cells (HUVECs). By measuring the fluorescence signal in cultures, application of NRR volatile oil resulted in a rapid activation of NO release as well as the phosphorylation of eNOS: both inductions were markedly reduced by L-NAME. In parallel, the phosphorylation level of Akt kinase was markedly increased by the oil treatment, which was partially attenuated by PI3K/Akt inhibitor LY294002. This inhibitor also blocked the NRR-induced NO production and eNOS phosphorylation. In HUVECs, application of NRR volatile oil elevated the intracellular Ca2+ level, and BAPTA-AM, a Ca2+ chelator, reduced the Ca2+ surge: the blockage were also applied to NRR-induced eNOS phosphorylation and NO production. These findings suggested the volatile oil of NRR was the major ingredient in triggering the vascular dilatation, and which was mediated via the NO production. PMID:25643147

  16. Activation of adult rat CNS endothelial cells by opioid-induced toll-like receptor 4 (TLR4) signaling induces proinflammatory, biochemical, morphological, and behavioral sequelae

    PubMed Central

    Grace, Peter M.; Ramos, Khara M.; Rodgers, Krista M.; Wang, Xiaohui; Hutchinson, Mark R.; Lewis, Makenzie T.; Morgan, Kelly N.; Kroll, Juliet L.; Taylor, Frederick R.; Strand, Keith A.; Zhang, Yingning; Berkelhammer, Debra; Huey, Madeline G.; Greene, Lisa I.; Cochran, Thomas A.; Yin, Hang; Barth, Daniel S.; Johnson, Kirk W.; Rice, Kenner; Maier, Steven F.; Watkins, Linda R.

    2014-01-01

    CNS immune signaling contributes to deleterious opioid effects including hyperalgesia, tolerance, reward, and dependence/withdrawal. Such effects are mediated by opioid signaling at TLR4, presumptively of glial origin. Whether CNS endothelial cells express TLR4 is controversial. If so, they would be well positioned for activation by blood-borne opioids, contributing to opioid-induced pro-inflammatory responses. These studies examined adult primary rat CNS endothelial cell responses to (-)-morphine or its mu-opioid receptor (MOR) inactive metabolite morphine-3-glucuronide (M3G), both known TLR4 agonists. We demonstrate that adult rat CNS endothelial cells express functional TLR4. M3G activated NFκB, increased tumor necrosis factor-α (TNFα) and cyclooxygenase-2 (COX2) mRNAs, and released prostaglandin E2 from these cells. (-)-Morphine-induced upregulation of TNFα mRNA and prostaglandin E2 release were unmasked by pre-treatment with nalmefene, a MOR antagonist without TLR4 activity (unlike CTAP, shown to have both MOR- and TLR4-activity), suggestive of an interplay between MOR and TLR4 co-activation by (-)-morphine. In support, MOR-dependent Protein Kinase A (PKA) opposed TLR4 signaling, as PKA inhibition (H-89) also unmasked (-)-morphine-induced TNFα and COX2 mRNA upregulation. Intrathecal injection of CNS endothelial cells, stimulated in vitro with M3G, produced TLR4-dependent tactile allodynia. Further, cortical suffusion with M3G in vivo induced TLR4-dependent vasodilation. Finally, endothelial cell TLR4 activation by lipopolysaccharide and/or M3G was blocked by the glial inhibitors AV1013 and propentofylline, demonstrating endothelial cells as a new target of such drugs. These data indicate that (-)-morphine and M3G can activate CNS endothelial cells via TLR4, inducing proinflammatory, biochemical, morphological, and behavioral sequalae. CNS endothelial cells may have previously unanticipated roles in opioid-induced effects, in phenomena blocked by

  17. Synthesis of 13-β-elemene ester derivatives and evaluation of their antioxidant activity in human umbilical vein endothelial cells.

    PubMed

    Chen, Ji-Chao; Duan, Wen-Li; Bai, Ren-Ren; Yao, He-Quan; Wu, Xiao-Ming; Shang, Jing; Xu, Jin-Yi

    2015-08-01

    In the present study, a series of 13-β-elemene ester derivatives were designed and prepared, and their antioxidant activity was investigated in the H2O2-treated human umbilical vein endothelial cells (HUVECs). Among the test compounds, the dimer compounds 5v and 5w exhibited the most potent antioxidant activity with significant ROS suppression being observed. Both compounds markedly inhibited the H2O2-induced changes in various biochemical substances, such as superoxide dismutase (SOD), malonyldialdehyde (MDA), nitric oxide (NO), and lactic dehydrogenase (LDH), which were superior to that of the positive control vitamin E. Further more, they did not produce any obvious cytotoxicity, but increased the viability of HUVECs injured by H2O2 in a dose-dependent manner. Additionally, compound 5w, designed as a prodrug-like compound, showed improved stability relative to compound 4 in vitro.

  18. Induction of oxidative stress and inhibition of plasminogen activator inhibitor-1 production in endothelial cells following exposure to organic extracts of diesel exhaust particles and urban fine particles.

    PubMed

    Furuyama, Akiko; Hirano, Seishiro; Koike, Eiko; Kobayashi, Takahiro

    2006-03-01

    Endothelial cells play important roles in anticoagulant and fibrinolytic systems. Recent studies suggest that increases in ambient particulate matter (PM) levels have been associated with an increase in mortality rate from cardiovascular diseases. We examined the production of heme oxygenase-1 (HO-1) and factors related to the fibrinolytic function by rat heart microvessel endothelial cells exposed to organic extracts of diesel exhaust particles (OE-DEP) and urban fine particles (OE-UFP) to investigate the direct effects of these soluble organic fractions in these PM on the fibrinolytic function of endothelial cells. The cell monolayer exposed to 10 microg/ml OE-DEP produced a larger amount of HO-1 than cells exposed to 10 microg/ml OE-UFP. OE-DEP and OE-UFP exposure reduced plasminogen activator inhibitor-1 (PAI-1) production by the cells but did not affect the production of thrombomodulin, tissue-type plasminogen activator, or urokinase-type plasminogen activator. Increased PAI-1 synthesis in response to treatment with 1.0 ng/ml tumor necrosis factor-alpha or 0.5 ng/ml transforming growth factor-beta1 was reduced by OE-DEP exposure. Suppression of PAI-1 production by OE-DEP exposure was mediated through oxidative stress and was independent of HO-1 activity. These results suggest that exposure to the soluble organic fraction of PM and DEP induced oxidative stress and reduced the PAI-1 production of endothelial cells.

  19. miR-143 Activation Regulates Smooth Muscle and Endothelial Cell Crosstalk in Pulmonary Arterial Hypertension

    PubMed Central

    Stevens, Hannah; Lu, Ruifang; Caudrillier, Axelle; McBride, Martin; McClure, John D; Grant, Jenny; Thomas, Matthew; Frid, Maria; Stenmark, Kurt; White, Kevin; Seto, Anita G.; Morrell, Nicholas W.; Bradshaw, Angela C; MacLean, Margaret R.; Baker, Andrew H.

    2015-01-01

    Rationale The pathogenesis of PAH remains unclear. The four microRNAs representing the miR-143 and miR-145 stem loops are genomically clustered. Objective To elucidate the transcriptional regulation of the miR-143/145 cluster, and the role of miR-143 in PAH. Methods and Results We identified the promoter region that regulates miR-143/145 miRNA expression in pulmonary artery smooth muscle cells (PASMCs). We mapped PAH-related signalling pathways, including estrogens receptor (ER), liver X factor/retinoic X receptor (LXR/RXR), TGF-β (Smads), and hypoxia (HRE) that regulated levels of all pri-miR stem loop transcription and resulting miRNA expression. We observed that miR-143-3p is selectively upregulated compared to miR-143-5p during PASMC migration. Modulation of miR-143 in PASMCs significantly altered cell migration and apoptosis. In addition, we found high abundance of miR-143-3p in PASMCs-derived exosomes. Using assays with pulmonary arterial endothelial cells (PAECs) we demonstrated a paracrine pro-migratory and pro-angiogenic effect of miR-143-3p enriched exosomes from PASMC. Quantitative PCR and in situ hybridisation showed elevated expression of miR-143 in calf models of PAH as well as in samples from PAH patients. Moreover, in contrast to our previous findings that had not supported a therapeutic role in vivo, we now demonstrate a protective role for miR-143 in experimental PH in vivo in miR-143−/− and antimiR143-3p-treated mice exposed to chronic hypoxia in both preventative and reversal settings. Conclusions miR-143-3p modulated both cellular and exosome-mediated responses in pulmonary vascular cells, while inhibition of miR-143-3p blocked experimental PH. Taken together these findings confirm an important role for the miR-143/145 cluster in PAH pathobiology. PMID:26311719

  20. TNF Regulates Essential Alternative Complement Pathway Components and Impairs Activation of Protein C in Human Glomerular Endothelial Cells.

    PubMed

    Sartain, Sarah E; Turner, Nancy A; Moake, Joel L

    2016-01-15

    Atypical hemolytic uremic syndrome (aHUS) is a thrombotic microangiopathy with severe renal injury secondary to an overactive alternative complement pathway (AP). aHUS episodes are often initiated or recur during inflammation. We investigated gene expression of the surface complement regulatory proteins (CD55, CD59, CD46, and CD141 [thrombomodulin]) and AP components in human glomerular microvascular endothelial cells (GMVECs) and in HUVECs, a frequently used investigational model of endothelial cells. Surface complement regulatory proteins were also quantified by flow cytometry. All experiments were done with and without exposure to IL-1β or TNF. Without cytokine stimulation, we found that GMVECs had greater AP activation than did HUVECs. With TNF stimulation, THBD gene expression and corresponding CD141 surface presence in HUVECs and GMVECs were reduced, and gene expression of complement components C3 (C3) and factor B (CFB) was increased. Consequently, AP activation, measured by Ba production, was increased, and conversion of protein C (PC) to activated PC by CD141-bound thrombin was decreased, in GMVECs and HUVECs exposed to TNF. IL-1β had similar, albeit lesser, effects on HUVEC gene expression, and it only slightly affected GMVEC gene expression. To our knowledge, this is the first detailed study of the expression/display of AP components and surface regulatory proteins in GMVECs with and without cytokine stimulation. In aHUS patients with an underlying overactive AP, additional stimulation of the AP and inhibition of activated PC-mediated anticoagulation in GMVECs by the inflammatory cytokine TNF are likely to provoke episodes of renal failure. PMID:26673143

  1. ADP Signaling in Vascular Endothelial Cells

    PubMed Central

    Hess, Connie Ng; Kou, Ruqin; Johnson, Rosalyn P.; Li, Gordon K.; Michel, Thomas

    2009-01-01

    ADP responses underlie therapeutic approaches to many cardiovascular diseases, and ADP receptor antagonists are in widespread clinical use. The role of ADP in platelet biology has been extensively studied, yet ADP signaling pathways in endothelial cells remain incompletely understood. We found that ADP promoted phosphorylation of the endothelial isoform of nitric-oxide synthase (eNOS) at Ser1179 and Ser635 and dephosphorylation at Ser116 in cultured endothelial cells. Although eNOS activity was stimulated by both ADP and ATP, only ADP signaling was significantly inhibited by the P2Y1 receptor antagonist MRS 2179 or by knockdown of P2Y1 using small interfering RNA (siRNA). ADP activated the small GTPase Rac1 and promoted endothelial cell migration. siRNA-mediated knockdown of Rac1 blocked ADP-dependent eNOS Ser1179 and Ser635 phosphorylation, as well as eNOS activation. We analyzed pathways known to regulate eNOS, including phosphoinositide 3-kinase/Akt, ERK1/2, Src, and calcium/calmodulin-dependent kinase kinase-β (CaMKKβ) using the inhibitors wortmannin, PD98059, PP2, and STO-609, respectively. None of these inhibitors altered ADP-modulated eNOS phosphorylation. In contrast, siRNA-mediated knockdown of AMP-activated protein kinase (AMPK) inhibited ADP-dependent eNOS Ser635 phosphorylation and eNOS activity but did not affect eNOS Ser1179 phosphorylation. Importantly, the AMPK enzyme inhibitor compound C had no effect on ADP-stimulated eNOS activity, despite completely blocking AMPK activity. CaMKKβ knockdown suppressed ADP-stimulated eNOS activity, yet inhibition of CaMKKβ kinase activity using STO-609 failed to affect eNOS activation by ADP. These data suggest that the expression, but not the kinase activity, of AMPK and CaMKKβ is necessary for ADP signaling to eNOS. PMID:19783664

  2. Blockade of Apoptosis Signal-Regulating Kinase 1 Attenuates Matrix Metalloproteinase 9 Activity in Brain Endothelial Cells and the Subsequent Apoptosis in Neurons after Ischemic Injury

    PubMed Central

    Cheon, So Y.; Cho, Kyoung J.; Kim, So Y.; Kam, Eun H.; Lee, Jong E.; Koo, Bon-Nyeo

    2016-01-01

    Conditions of increased oxidative stress including cerebral ischemia can lead to blood–brain barrier dysfunction via matrix metalloproteinase (MMP). It is known that MMP-9 in particular is released from brain endothelial cells is involved in the neuronal cell death that occurs after cerebral ischemia. In the intracellular signaling network, apoptosis signal-regulating kinase 1 (ASK1) is the main activator of the oxidative stress that is part of the pathogenesis of cerebral ischemia. ASK1 also promotes apoptotic cell death and brain infarction after ischemia and is associated with vascular permeability and the formation of brain edema. However, the relationship between ASK1 and MMP-9 after cerebral ischemia remains unknown. Therefore, the aim of the present study was to determine whether blocking ASK1 would affect MMP-9 activity in the ischemic brain and cultured brain endothelial cells. Our results showed that ASK1 inhibition efficiently reduced MMP-9 activity in vivo and in vitro. In endothelial cell cultures, ASK1 inhibition upregulated phosphatidylinositol 3-kinase/Akt/nuclear factor erythroid 2 [NF-E2]-related factor 2/heme oxygenase-1 signals and downregulated cyclooxygenase-2 signals after hypoxia/reperfusion. Additionally, in neuronal cell cultures, cell death occurred when neurons were incubated with endothelial cell-conditioned medium (EC-CM) obtained from the hypoxia/reperfusion group. However, after incubation with EC-CM and following treatment with the ASK1 inhibitor NQDI-1, neuronal cell death was efficiently decreased. We conclude that suppressing ASK1 decreases MMP-9 activity in brain endothelial cells, and leads to decreased neuronal cell death after ischemic injury.

  3. Blockade of Apoptosis Signal-Regulating Kinase 1 Attenuates Matrix Metalloproteinase 9 Activity in Brain Endothelial Cells and the Subsequent Apoptosis in Neurons after Ischemic Injury.

    PubMed

    Cheon, So Y; Cho, Kyoung J; Kim, So Y; Kam, Eun H; Lee, Jong E; Koo, Bon-Nyeo

    2016-01-01

    Conditions of increased oxidative stress including cerebral ischemia can lead to blood-brain barrier dysfunction via matrix metalloproteinase (MMP). It is known that MMP-9 in particular is released from brain endothelial cells is involved in the neuronal cell death that occurs after cerebral ischemia. In the intracellular signaling network, apoptosis signal-regulating kinase 1 (ASK1) is the main activator of the oxidative stress that is part of the pathogenesis of cerebral ischemia. ASK1 also promotes apoptotic cell death and brain infarction after ischemia and is associated with vascular permeability and the formation of brain edema. However, the relationship between ASK1 and MMP-9 after cerebral ischemia remains unknown. Therefore, the aim of the present study was to determine whether blocking ASK1 would affect MMP-9 activity in the ischemic brain and cultured brain endothelial cells. Our results showed that ASK1 inhibition efficiently reduced MMP-9 activity in vivo and in vitro. In endothelial cell cultures, ASK1 inhibition upregulated phosphatidylinositol 3-kinase/Akt/nuclear factor erythroid 2 [NF-E2]-related factor 2/heme oxygenase-1 signals and downregulated cyclooxygenase-2 signals after hypoxia/reperfusion. Additionally, in neuronal cell cultures, cell death occurred when neurons were incubated with endothelial cell-conditioned medium (EC-CM) obtained from the hypoxia/reperfusion group. However, after incubation with EC-CM and following treatment with the ASK1 inhibitor NQDI-1, neuronal cell death was efficiently decreased. We conclude that suppressing ASK1 decreases MMP-9 activity in brain endothelial cells, and leads to decreased neuronal cell death after ischemic injury. PMID:27642277

  4. Blockade of Apoptosis Signal-Regulating Kinase 1 Attenuates Matrix Metalloproteinase 9 Activity in Brain Endothelial Cells and the Subsequent Apoptosis in Neurons after Ischemic Injury

    PubMed Central

    Cheon, So Y.; Cho, Kyoung J.; Kim, So Y.; Kam, Eun H.; Lee, Jong E.; Koo, Bon-Nyeo

    2016-01-01

    Conditions of increased oxidative stress including cerebral ischemia can lead to blood–brain barrier dysfunction via matrix metalloproteinase (MMP). It is known that MMP-9 in particular is released from brain endothelial cells is involved in the neuronal cell death that occurs after cerebral ischemia. In the intracellular signaling network, apoptosis signal-regulating kinase 1 (ASK1) is the main activator of the oxidative stress that is part of the pathogenesis of cerebral ischemia. ASK1 also promotes apoptotic cell death and brain infarction after ischemia and is associated with vascular permeability and the formation of brain edema. However, the relationship between ASK1 and MMP-9 after cerebral ischemia remains unknown. Therefore, the aim of the present study was to determine whether blocking ASK1 would affect MMP-9 activity in the ischemic brain and cultured brain endothelial cells. Our results showed that ASK1 inhibition efficiently reduced MMP-9 activity in vivo and in vitro. In endothelial cell cultures, ASK1 inhibition upregulated phosphatidylinositol 3-kinase/Akt/nuclear factor erythroid 2 [NF-E2]-related factor 2/heme oxygenase-1 signals and downregulated cyclooxygenase-2 signals after hypoxia/reperfusion. Additionally, in neuronal cell cultures, cell death occurred when neurons were incubated with endothelial cell-conditioned medium (EC-CM) obtained from the hypoxia/reperfusion group. However, after incubation with EC-CM and following treatment with the ASK1 inhibitor NQDI-1, neuronal cell death was efficiently decreased. We conclude that suppressing ASK1 decreases MMP-9 activity in brain endothelial cells, and leads to decreased neuronal cell death after ischemic injury. PMID:27642277

  5. Extract from Ribes nigrum leaves in vitro activates nitric oxide synthase (eNOS) and increases CD39 expression in human endothelial cells.

    PubMed

    Luzak, Boguslawa; Boncler, Magdalena; Rywaniak, Joanna; Dudzinska, Dominika; Rozalski, Marek; Krajewska, Urszula; Balcerczak, Ewa; Podsedek, Anna; Redzynia, Malgorzata; Watala, Cezary

    2014-12-01

    The aim of the present study was to evaluate whether blackcurrant leaf extract (BLE) modulates endothelium antithrombotic function, namely increases the expression/activity of ADPase (CD39) and augments the production of nitric oxide in human umbilical vein endothelial cells (HUVEC). It was found that BLE with proanthocyanidins (60 % of the total polyphenol content) increased the CD39-positive endothelial cell fraction (up to 10 % for 2.5 μg/ml, and up to 33 % for 15 μg/ml, p < 0.05 or less) in a concentration-dependent manner, and enhanced endothelial nitric oxide synthase (eNOS) activation (T495 phosphorylation decreased by 31 ± 6 % for 2.5 μg/ml and 48 ± 6 % for 15 μg/ml; S1177 phosphorylation increased by 13 ± 3 % for 2.5 μg/ml and 18 ± 7 % for 15 μg/ml, compared to untreated cells, p < 0.05 or less). Additionally, incubation for 24 or 48 h with BLE at a lower range of polyphenol concentrations, significantly increased cell viability with a maximal effect at 2.5 μg/ml (viability increased by 24.8 ± 1.0 % for 24 h and by 32.5 ± 2.7 % for 48-h time incubation, p < 0.0001). The increased CD39 expression and the increased eNOS activation in HUVEC can be regarded as the beneficial markers of the improvement of antiplatelet action of endothelial cells. Unexpectedly, these assumptions were not confirmed in the experimental model of platelet-endothelial cell interactions. These observations lead to the conclusion that BLE may improve endothelial cell viability at low physiological concentrations without affecting the antiplatelet action of endothelium. PMID:25407137

  6. Polygonum viviparum L. induces vasorelaxation in the rat thoracic aorta via activation of nitric oxide synthase in endothelial cells

    PubMed Central

    2014-01-01

    Background In the past several decades, Polygonum viviparum L. (PV) was reported to have antibacterial, antiulcer, antioxidant, antitumor, anti-inflammatory, and antiarthritic properties. The anti-inflammatory pathway was recently elucidated through cytosolic nuclear factor E2-related factor 2 (Nrf2) activation and heme oxygenase (HO)-1 protein expression. PV is a perennial herb and widely distributed in high-elevation mountain regions, such as the Tibetan Plateau. In Tibetan traditional medicine, PV is usually used to boost the blood circulation to dissipate blood stasis. Therefore, this study focused on how PV improves the vascular circulation and acts on vascular tissues. Methods In this study, we isolated aortas from Sprague-Dawley rats (male, weight about 250 ~ 350 g), and detected the effects of PV on phenylephrine (PE)-induced contraction and cyclic guanosine 3′,5′-monophosphate (cGMP) formation using aortic rings. In addition, human umbilical vein endothelial cells (HUVECs) were used to exam nitric oxygen (NO) synthase (NOS) activity by directly measuring NO production in the culture medium. Endothelial (e) NOS phosphorylation, and cytosolic Nrf2 and HO-1 expressions were measured using a Western blot analysis. Results PV dose-dependently relaxed PE-induced contractions in endothelial-intact but not -denuded aorta. The concentration to produce 50% relaxation was 22.04 ± 1.77 μg/ml. PV-induced vasorelaxation was markedly blocked by pretreatment with NG-nitro-L-arginine methyl ester (L-NAME), an NOS inhibitor, methylene blue (MB), a guanylyl cyclase inhibitor, and hemoglobin, an NO scavenger. PV increased cGMP formation; however, this effect was also suppressed by co-pretreatment with l-NAME, MB, hemoglobin, and Ca2+-free medium. In HUVECs, PV increased NO formation, which was greatly attenuated by NOS inhibitors (L-NAME and L-NMMA) and by removing extracellular Ca2+ and chelating intracellular Ca2+ with BAPTA-AM. In addition, PV promoted e

  7. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity

    SciTech Connect

    Weber, Martina; Baker, Meredith B.; Moore, Jeffrey P.; Searles, Charles D.

    2010-03-19

    Mechanical forces associated with blood flow play an important role in regulating vascular signaling and gene expression in endothelial cells (ECs). MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth, proliferation, and apoptosis. miRNAs are known to have an important role in modulating EC biology, but their expression and functions in cells subjected to shear stress conditions are unknown. We sought to determine the miRNA expression profile in human ECs subjected to unidirectional shear stress and define the role of miR-21 in shear stress-induced changes in EC function. TLDA array and qRT-PCR analysis performed on HUVECs exposed to prolonged unidirectional shear stress (USS, 24 h, 15 dynes/cm{sup 2}) identified 13 miRNAs whose expression was significantly upregulated (p < 0.05). The miRNA with the greatest change was miR-21; it was increased 5.2-fold (p = 0.002) in USS-treated versus control cells. Western analysis demonstrated that PTEN, a known target of miR-21, was downregulated in HUVECs exposed to USS or transfected with pre-miR-21. Importantly, HUVECs overexpressing miR-21 had decreased apoptosis and increased eNOS phosphorylation and nitric oxide (NO{sup {center_dot}}) production. These data demonstrate that shear stress forces regulate the expression of miRNAs in ECs, and that miR-21 influences endothelial biology by decreasing apoptosis and activating the NO{sup {center_dot}} pathway. These studies advance our understanding of the mechanisms by which shear stress forces modulate vascular homeostasis.

  8. Vasorelaxing action of rutaecarpine: effects of rutaecarpine on calcium channel activities in vascular endothelial and smooth muscle cells.

    PubMed

    Wang, G J; Wu, X C; Chen, C F; Lin, L C; Huang, Y T; Shan, J; Pang, P K

    1999-06-01

    Rutaecarpine (Rut) has been shown to induce hypotension and vasorelaxation. In vitro studies indicated that the vasorelaxant effect of Rut was largely endothelium-dependent. We previously reported that Rut increased intracellular Ca2+ concentrations ([Ca2+]i) in cultured rat endothelial cells (ECs) and decreased [Ca2+]i in cultured rat vascular smooth muscle (VSMCs) cells. The present results showed that the hypotensive effect of Rut (10-100 microgram/kg i.v.) was significantly blocked by the nitric oxide synthase inhibitor Nomega-nitro-L-arginine. In aortic rings, Rut (0. 1-3.0 microM)-induced vasorelaxation was inhibited by Nomega-nitro-L-arginine and hydroquinone but not by antagonists of the various K+ channels, 4-aminopyridine, apamin, charybdotoxin, or glibenclamide. Rut (0.1 and 1.0 microM) inhibited the norepinephrine-induced contraction generated by Ca2+ influx and at 1.0 microM increased cyclic GMP (cGMP) production in endothelium-intact rings and to a lesser extent in endothelium-denuded rings. In whole-cell patch-clamp recording, nonvoltage-dependent Ca2+ channels were recorded in ECs and Rut (0.1, 1.0 microM) elicited an opening of such channels. However, in VSMCs, Rut (10.0 microM) inhibited significantly the L-type voltage-dependent Ca2+ channels. In ECs cells, Rut (1.0, 10.0 microM) increased nitric oxide release in a Ca2+-dependent manner. Taken together, the results suggested that Rut lowered blood pressure by mainly activating the endothelial Ca2+-nitric oxide-cGMP pathway to reduce smooth muscle tone. Although the contribution seemed to be minor in nature, inhibition of contractile response in VSMCs, as evidenced by inhibition of Ca2+ currents, was also involved. Potassium channels, on the other hand, had no apparent roles. PMID:10336511

  9. VEGF activates protein kinase C-dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells.

    PubMed

    Takahashi, T; Ueno, H; Shibuya, M

    1999-04-01

    KDR/FIk-1 tyrosine kinase, one of the two VEGF receptors induces mitogenesis and differentiation of vascular endothelial cells. We have previously reported that a major target molecule of KDR/Flk-1 kinase is PLC-gamma, and that VEGF induces activation of MAP kinase, mainly mediated by protein kinase C (PKC) in the NIH3T3 cells overexpressing KDR/FIk-1 (Takahashi and Shibuya, 1997). However, the signal transduction initiated from VEGF in endothelial cells remains to be elucidated. In primary sinusoidal endothelial cells which showed strictly VEGF-dependent growth, we found that VEGF stimulated the activation of Raf-1-MEK-MAP kinase cascade. To our surprise, an important regulator, Ras was not efficiently activated to a significant level in response to VEGF. Consistent with this, dominant-negative Ras did not block the VEGF-induced phosphorylation of MAP kinase. On the other hand, PKC-specific inhibitors severely reduced VEGF-dependent phosphorylation of MEK, activation of MAP kinase and subsequent DNA synthesis. A potent PI3 kinase inhibitor, Wortmannin, could not inhibit either of them. These results suggest that in primary endothelial cells, VEGF-induced activation of Raf-MEK-MAP kinase and DNA synthesis are mainly mediated by PKC-dependent pathway, much more than by Ras-dependent or PI3 kinase-dependent pathway.

  10. Regulation of protein kinase B/Akt activity and Ser473 phosphorylation by protein kinase Calpha in endothelial cells.

    PubMed

    Partovian, Chohreh; Simons, Michael

    2004-08-01

    Protein kinase Balpha (PKBalpha/Akt-1) is a key mediator of multiple signaling pathways involved in angiogenesis, cell proliferation and apoptosis among others. The unphosphorylated form of Akt-1 is virtually inactive and its full activation requires two phosphatidylinositol-3,4,5-triphosphate-dependent phosphorylation events, Thr308 by 3-phosphoinositide-dependent kinase-1 (PDK1) and Ser473 by an undefined kinase that has been termed PDK2. Recent studies have suggested that the Ser473 kinase is a plasma membrane raft-associated kinase. In this study we show that protein kinase Calpha (PKCalpha) translocates to the membrane rafts in response to insulin growth factor-1 (IGF-1) stimulation. Overexpression of PKCalpha increases Ser473 phosphorylation and Akt-1 activity, while inhibition of its activity or expression decreases IGF-1-dependent activation of Akt-1. Furthermore, in vitro, in the presence of phospholipids and calcium, PKCalpha directly phosphorylates Akt-1 at the Ser473 site. We conclude, therefore, that PKCalpha regulates Akt-1 activity via Ser473 phosphorylation and may function as PDK2 in endothelial cells. PMID:15157674

  11. Brain endothelial miR-146a negatively modulates T-cell adhesion through repressing multiple targets to inhibit NF-κB activation

    PubMed Central

    Wu, Dongsheng; Cerutti, Camilla; Lopez-Ramirez, Miguel A; Pryce, Gareth; King-Robson, Josh; Simpson, Julie E; van der Pol, Susanne MA; Hirst, Mark C; de Vries, Helga E; Sharrack, Basil; Baker, David; Male, David K; Michael, Gregory J; Romero, Ignacio A

    2015-01-01

    Pro-inflammatory cytokine-induced activation of nuclear factor, NF-κB has an important role in leukocyte adhesion to, and subsequent migration across, brain endothelial cells (BECs), which is crucial for the development of neuroinflammatory disorders such as multiple sclerosis (MS). In contrast, microRNA-146a (miR-146a) has emerged as an anti-inflammatory molecule by inhibiting NF-κB activity in various cell types, but its effect in BECs during neuroinflammation remains to be evaluated. Here, we show that miR-146a was upregulated in microvessels of MS-active lesions and the spinal cord of mice with experimental autoimmune encephalomyelitis. In vitro, TNFα and IFNγ treatment of human cerebral microvascular endothelial cells (hCMEC/D3) led to upregulation of miR-146a. Brain endothelial overexpression of miR-146a diminished, whereas knockdown of miR-146a augmented cytokine-stimulated adhesion of T cells to hCMEC/D3 cells, nuclear translocation of NF-κB, and expression of adhesion molecules in hCMEC/D3 cells. Furthermore, brain endothelial miR-146a modulates NF-κB activity upon cytokine activation through targeting two novel signaling transducers, RhoA and nuclear factor of activated T cells 5, as well as molecules previously identified, IL-1 receptor-associated kinase 1, and TNF receptor-associated factor 6. We propose brain endothelial miR-146a as an endogenous NF-κB inhibitor in BECs associated with decreased leukocyte adhesion during neuroinflammation. PMID:25515214

  12. Entamoeba lysyl-tRNA Synthetase Contains a Cytokine-Like Domain with Chemokine Activity towards Human Endothelial Cells

    PubMed Central

    Han, Jung Min; Kim, Sunghoon; Celada, Antonio; Ribas de Pouplana, Lluís

    2011-01-01

    Immunological pressure encountered by protozoan parasites drives the selection of strategies to modulate or avoid the immune responses of their hosts. Here we show that the parasite Entamoeba histolytica has evolved a chemokine that mimics the sequence, structure, and function of the human cytokine HsEMAPII (Homo sapiens endothelial monocyte activating polypeptide II). This Entamoeba EMAPII-like polypeptide (EELP) is translated as a domain attached to two different aminoacyl-tRNA synthetases (aaRS) that are overexpressed when parasites are exposed to inflammatory signals. EELP is dispensable for the tRNA aminoacylation activity of the enzymes that harbor it, and it is cleaved from them by Entamoeba proteases to generate a standalone cytokine. Isolated EELP acts as a chemoattractant for human cells, but its cell specificity is different from that of HsEMAPII. We show that cell specificity differences between HsEMAPII and EELP can be swapped by site directed mutagenesis of only two residues in the cytokines' signal sequence. Thus, Entamoeba has evolved a functional mimic of an aaRS-associated human cytokine with modified cell specificity. PMID:22140588

  13. Hypoxia/ischemia promotes CXCL10 expression in cardiac microvascular endothelial cells by NFkB activation.

    PubMed

    Xia, Jing-Bo; Liu, Guang-Hui; Chen, Zhuo-Ying; Mao, Cheng-Zhou; Zhou, Deng-Cheng; Wu, Hai-Yan; Park, Kyu-Sang; Zhao, Hui; Kim, Soo-Ki; Cai, Dong-Qing; Qi, Xu-Feng

    2016-05-01

    CXCL10, the chemokine with potent chemotactic activity on immune cells and other non-immune cells expressing its receptor CXCR3, has been demonstrated to involve in myocardial infarction, which was resulted from hypoxia/ischemia. The cardiac microvascular endothelial cells (CMECs) are the first cell type which is implicated by hypoxia/ischemia. However, the potential molecular mechanism by which hypoxia/ischemia regulates the expression of CXCL10 in CMECs remains unclear. In the present study, the expression of CXCL10 was firstly examined by real-time PCR and ELISA analysis. Several potential binding sites (BS) for transcription factors including NF-kappaB (NFkB), HIF1 alpha (HIF1α) and FoxO3a were identified in the promoter region of CXCL10 gene from -2000 bp to -1 bp using bioinformatics software. Luciferase reporter gene vectors for CXCL10 promoter and for activation of above transcription factors were constructed. The activation of NFkB, hypoxia-inducible transcription factor-1 alpha (HIF-1α) and FoxO3a was also analyzed by Western blotting. It was shown that the production of CXCL10 in CMECs was significantly increased by hypoxia/ischemia treatment, in parallel with the activation of CXCL10 promoter examined by reporter gene vector system. Furthermore, transcription factors including NFkB, HIF1α and FoxO3a were activated by hypoxia/ischemia in CMECs. However, over-expression of NFkB, but not that of HIF1α or FoxO3a, significantly promoted the activation of CXCL10 promoter reporter gene. These findings indicated that CXCL10 production in CMECs was significantly increased by hypoxia/ischemia, at least in part, through activation of NFkB pathway and subsequently binding to CXCL10 promoter, finally promoted the transcription of CXCL10 gene.

  14. Gender differences in circulating endothelial progenitor cell colony-forming capacity and migratory activity in middle-aged adults.

    PubMed

    Hoetzer, Greta L; MacEneaney, Owen J; Irmiger, Heather M; Keith, Rebecca; Van Guilder, Gary P; Stauffer, Brian L; DeSouza, Christopher A

    2007-01-01

    Middle-aged women have a lower prevalence and incidence of cardiovascular events compared with men. The mechanisms responsible for this gender-specific difference are unclear. Numeric and functional impairments of bone marrow-derived circulating endothelial progenitor cells (EPCs) are associated with increased cardiovascular and cerebrovascular morbidity and mortality. It is currently unknown whether there are gender-related differences in EPC number and function in middle-aged adults. We tested the hypothesis that EPCs isolated from middle-aged women demonstrate greater colony-forming capacity and migratory activity compared with men of similar age. Peripheral blood samples were collected from 50 sedentary adults, 25 men (59 +/- 1 years of age) and 25 women (58 +/- 1 years of age). Mononuclear cells were isolated and preplated for 2 days, and nonadherent cells were further cultured for 7 days to determine EPC colony-forming units. Migratory activity of EPCs was determined using a modified Boyden chamber. The number of EPC colony-forming units was significantly higher (approximately 150%) in samples collected from women (16 +/- 3) compared with that collected from men (7 +/- 1). In addition, EPC migration (relative fluorescent units) was approximately 40% greater in women (729 +/- 74) than in men (530 +/- 67). In conclusion, these results demonstrate that EPC colony-forming capacity and migratory activity are higher in middle-aged women than in men.

  15. Inhibition of coagulation, fibrinolysis, and endothelial cell activation by a p38 mitogen-activated protein kinase inhibitor during human endotoxemia.

    PubMed

    Branger, Judith; van den Blink, Bernt; Weijer, Sebastiaan; Gupta, Abhya; van Deventer, Sander J H; Hack, C Erik; Peppelenbosch, Maikel P; van der Poll, Tom

    2003-06-01

    P38 mitogen-activated protein kinase (MAPK) is an important component of intracellular signaling cascades that initiate various inflammatory cellular responses. To determine the role of p38 MAPK in the procoagulant response to lipopolysaccharide (LPS), 24 healthy subjects were exposed to an intravenous dose of LPS (4 ng/kg), preceded 3 hours earlier by orally administered 600 or 50 mg BIRB 796 BS (a specific p38 MAPK inhibitor), or placebo. The 600-mg dose of BIRB 796 BS strongly inhibited LPS-induced coagulation activation, as measured by plasma concentrations of the prothrombin fragment F1 + 2. BIRB 796 BS also dose dependently attenuated the activation and subsequent inhibition of the fibrinolytic system (plasma tissue-type plasminogen activator, plasmin-alpha2-antiplasmin complexes, and plasminogen activator inhibitor type 1) and endothelial cell activation (plasma soluble E-selectin and von Willebrand factor). Activation of p38 MAPK plays an important role in the procoagulant and endothelial cell response after in vivo exposure to LPS.

  16. Interleukin-1α Activity in Necrotic Endothelial Cells Is Controlled by Caspase-1 Cleavage of Interleukin-1 Receptor-2

    PubMed Central

    Burzynski, Laura C.; Humphry, Melanie; Bennett, Martin R.; Clarke, Murray C. H.

    2015-01-01

    Inflammation is a key instigator of the immune responses that drive atherosclerosis and allograft rejection. IL-1α, a powerful cytokine that activates both innate and adaptive immunity, induces vessel inflammation after release from necrotic vascular smooth muscle cells (VSMCs). Similarly, IL-1α released from endothelial cells (ECs) damaged during transplant drives allograft rejection. However, IL-1α requires cleavage for full cytokine activity, and what controls cleavage in necrotic ECs is currently unknown. We find that ECs have very low levels of IL-1α activity upon necrosis. However, TNFα or IL-1 induces significant levels of active IL-1α in EC necrotic lysates without alteration in protein levels. Increased activity requires cleavage of IL-1α by calpain to the more active mature form. Immunofluorescence and proximity ligation assays show that IL-1α associates with interleukin-1 receptor-2, and this association is decreased by TNFα or IL-1 and requires caspase activity. Thus, TNFα or IL-1 treatment of ECs leads to caspase proteolytic activity that cleaves interleukin-1 receptor-2, allowing IL-1α dissociation and subsequent processing by calpain. Importantly, ECs could be primed by IL-1α from adjacent damaged VSMCs, and necrotic ECs could activate neighboring normal ECs and VSMCs, causing them to release inflammatory cytokines and up-regulate adhesion molecules, thus amplifying inflammation. These data unravel the molecular mechanisms and interplay between damaged ECs and VSMCs that lead to activation of IL-1α and, thus, initiation of adaptive responses that cause graft rejection. PMID:26324711

  17. Matrix rigidity regulates spatiotemporal dynamics of Cdc42 activity and vacuole formation kinetics of endothelial colony forming cells.

    PubMed

    Kim, Seung Joon; Wan, Qiaoqiao; Cho, Eunhye; Han, Bumsoo; Yoder, Mervin C; Voytik-Harbin, Sherry L; Na, Sungsoo

    2014-01-24

    Recent evidence has shown that endothelial colony forming cells (ECFCs) may serve as a cell therapy for improving blood vessel formation in subjects with vascular injury, largely due to their robust vasculogenic potential. The Rho family GTPase Cdc42 is known to play a primary role in this vasculogenesis process, but little is known about how extracellular matrix (ECM) rigidity affects Cdc42 activity during the process. In this study, we addressed two questions: Does matrix rigidity affect Cdc42 activity in ECFC undergoing early vacuole formation? How is the spatiotemporal activation of Cdc42 related to ECFC vacuole formation? A fluorescence resonance energy transfer (FRET)-based Cdc42 biosensor was used to examine the effects of the rigidity of three-dimensional (3D) collagen matrices on spatiotemporal activity of Cdc42 in ECFCs. Collagen matrix stiffness was modulated by varying the collagen concentration and therefore fibril density. The results showed that soft (150 Pa) matrices induced an increased level of Cdc42 activity compared to stiff (1 kPa) matrices. Time-course imaging and colocalization analysis of Cdc42 activity and vacuole formation revealed that Cdc42 activity was colocalized to the periphery of cytoplasmic vacuoles. Moreover, soft matrices generated faster and larger vacuoles than stiff matrices. The matrix-driven vacuole formation was enhanced by a constitutively active Cdc42 mutant, but significantly inhibited by a dominant-negative Cdc42 mutant. Collectively, the results suggest that matrix rigidity is a strong regulator of Cdc42 activity and vacuole formation kinetics, and that enhanced activity of Cdc42 is an important step in early vacuole formation in ECFCs.

  18. Anti-inflammatory functions of purpurogallin in LPS-activated human endothelial cells.

    PubMed

    Kim, Tae Hoon; Ku, Sae-Kwang; Lee, In-Chul; Bae, Jong-Sup

    2012-03-01

    Enzymatic oxidation of commercially available pyrogallol was efficiently transformed to an oxidative product, purpurogallin. Purpurogallin plays an important role in inhibiting glutathione S-transferase, xanthine oxidase, catechol O-methyltransferase activities and is effective in the cell protection of several cell types. However, the anti-inflammatory functions of purpurogallin are not well studied. Here, we determined the effects of purpurogallin on lipopolysaccharide (LPS)-mediated proinflammatory responses. The results showed that purpurogallin inhibited LPS-mediated barrier hyper-permeability, monocyte adhesion and migration and such inhibitory effects were significantly correlated with the inhibitory functions of purpurogallin on LPS-mediated cell adhesion molecules (vascular cell adhesion molecules, intracellular cell adhesion molecule, E-selectin). Furthermore, LPS-mediated nuclear factor-κB (NF-κB) and tumor necrosis factor-α (TNF-α) releases from HUVECs were inhibited by purpurogallin. Given these results, purpurogallin showed its anti-inflammatory activities and could be a candidate as a therapeutic agent for various systemic inflammatory diseases. [BMB reports 2012; 45(3): 200-205].

  19. DIFFERENTIAL TRANSCRIPTION FACTOR ACTIVATION AD GENE EXPRESSION PROFILES IN HUMAN VASCULAR ENDOTHELIAL CELLS ON EXPOSURE TO RESIDUAL OIL FLY ASH (ROFA) AND VANADIUM

    EPA Science Inventory


    Differential transcription factor activation and gene expression profiles in human vascular endothelial cells on exposure to residual oil fly ash (ROFA) and vanadium.
    Srikanth S. Nadadur and Daniel L. Costa, US EPA, ORD, NHEERL (ETD, Pulmonary Toxicology Branch), Research ...

  20. Endothelial cell micropatterning: Methods, effects, and applications

    PubMed Central

    Anderson, Deirdre E.J.; Hinds, Monica T.

    2012-01-01

    The effects of flow on endothelial cells have been widely examined for the ability of fluid shear stress to alter cell morphology and function; however, the effects of endothelial cell morphology without flow have only recently been observed. An increase in lithographic techniques in cell culture spurred a corresponding increase in research aiming to confine cell morphology. These studies lead to a better understanding of how morphology and cytoskeletal configuration affect the structure and function of the cells. This review examines endothelial cell micropatterning research by exploring both the many alternative methods used to alter endothelial cell morphology and the resulting changes in cellular shape and phenotype. Micropatterning induced changes in endothelial cell proliferation, apoptosis, cytoskeletal organization, mechanical properties, and cell functionality. Finally, the ways these cellular manipulation techniques have been applied to biomedical engineering research, including angiogenesis, cell migration, and tissue engineering, is discussed. PMID:21761242

  1. Force-specific activation of Smad1/5 regulates vascular endothelial cell cycle progression in response to disturbed flow.

    PubMed

    Zhou, Jing; Lee, Pei-Ling; Tsai, Chien-Sung; Lee, Chih-I; Yang, Tung-Lin; Chuang, Han-Sheng; Lin, Wei-Wen; Lin, Ting-Er; Lim, Seh Hong; Wei, Shu-Yi; Chen, Yuh-Lien; Chien, Shu; Chiu, Jeng-Jiann

    2012-05-15

    Vascular endothelial cells (ECs) are constantly exposed to blood flow-induced shear stress, but the mechanism of force-specific activation of their signaling to modulate cellular function remains unclear. We have demonstrated that bone morphogenetic protein receptor (BMPR)-specific Smad1/5 can be force-specifically activated by oscillatory shear stress (OSS) in ECs to cause cell cycle progression. Smad1/5 is highly activated in ECs of atherosclerotic lesions in diseased human coronary arteries from patients with end-stage heart failure undergoing heart transplantation and from apolipoprotein E-deficient mice. Application of OSS (0.5 ± 4 dyn/cm(2)) causes the sustained activation of Smad1/5 in ECs through activations of mammalian target of rapamycin and p70S6 kinase, leading to up-regulation of cyclin A and down-regulations of p21(CIP1) and p27(KIP1) and, hence, EC cycle progression. En face examination of rat aortas reveals high levels of phospho-Smad1/5 in ECs of the inner, but not the outer, curvature of aortic arch, nor the straight segment of thoracic aorta [corrected]. Immunohistochemical and en face examinations of the experimentally stenosed abdominal aorta in rats show high levels of phospho-Smad1/5 in ECs at poststenotic sites, where OSS occurs. These OSS activations of EC Smad1/5 in vitro and in vivo are not inhibited by the BMP-specific antagonist Noggin and, hence, are independent of BMP ligand. Transfecting ECs with Smad1/5-specific small interfering RNAs inhibits the OSS-induced EC cycle progression. Our findings demonstrate the force-specificity of the activation of Smad1/5 and its contribution to cell cycle progression in ECs induced by disturbed flow. PMID:22550179

  2. Isolation of Murine Embryonic Hemogenic Endothelial Cells

    PubMed Central

    Marcelo, Kathrina L.; Hirschi, Karen K.

    2016-01-01

    The specification of hemogenic endothelial cells from embryonic vascular endothelium occurs during brief developmental periods within distinct tissues, and is necessary for the emergence of definitive HSPC from the murine extra embryonic yolk sac, placenta, umbilical vessels, and the embryonic aorta-gonad-mesonephros (AGM) region. The transient nature and small size of this cell population renders its reproducible isolation for careful quantification and experimental applications technically difficult. We have established a fluorescence-activated cell sorting (FACS)-based protocol for simultaneous isolation of hemogenic endothelial cells and HSPC during their peak generation times in the yolk sac and AGM. We demonstrate methods for dissection of yolk sac and AGM tissues from mouse embryos, and we present optimized tissue digestion and antibody conjugation conditions for maximal cell survival prior to identification and retrieval via FACS. Representative FACS analysis plots are shown that identify the hemogenic endothelial cell and HSPC phenotypes, and describe a methylcellulose-based assay for evaluating their blood forming potential on a clonal level. PMID:27341393

  3. Progenitor endothelial cell involvement in Alzheimer's disease

    SciTech Connect

    Budinger, Thomas F.

    2003-05-01

    There is compelling evidence that endothelial cells of the brain and periphery are dysfunctional in Alzheimer's Disease. There is evidence for a fundamental defect in, or abnormal aging of, endothelial progenitor cells in atherosclerosis. The possibility that endothelial cell defects are a primary cause for Alzheimer's Disease or other dementias can be researched by molecular and cell biology studies as well as cell trafficking studies using recently demonstrated molecular imaging methods. The evidence for abnormal endothelial function and the methods to explore this hypothesis are presented.

  4. Endothelial Cell-Surface Gp60 Activates Vesicle Formation and Trafficking via Gi-Coupled Src Kinase Signaling Pathway

    PubMed Central

    Minshall, Richard D.; Tiruppathi, Chinnaswamy; Vogel, Stephen M.; Niles, Walter D.; Gilchrist, Annette; Hamm, Heidi E.; Malik, Asrar B.

    2000-01-01

    We tested the hypothesis that the albumin-docking protein gp60, which is localized in caveolae, couples to the heterotrimeric GTP binding protein Gi, and thereby activates plasmalemmal vesicle formation and the directed migration of vesicles in endothelial cells (ECs). We used the water-soluble styryl pyridinium dye N-(3-triethylaminopropyl)-4-(p-dibutylaminostyryl) pyridinium dibromide (FM 1-43) to quantify vesicle trafficking by confocal and digital fluorescence microscopy. FM 1-43 and fluorescently labeled anti-gp60 antibody (Ab) were colocalized in endocytic vesicles within 5 min of gp60 activation. Vesicles migrated to the basolateral surface where they released FM 1-43, the fluid phase styryl probe. FM 1-43 fluorescence disappeared from the basolateral EC surface without the loss of anti-gp60 Ab fluorescence. Activation of cell-surface gp60 by cross-linking (using anti-gp60 Ab and secondary Ab) in EC grown on microporous filters increased transendothelial 125I-albumin permeability without altering liquid permeability (hydraulic conductivity), thus, indicating the dissociation of hydraulic conductivity from the albumin permeability pathway. The findings that the sterol-binding agent, filipin, prevented gp60-activated vesicle formation and that caveolin-1 and gp60 were colocalized in vesicles suggest the caveolar origin of endocytic vesicles. Pertussis toxin pretreatment and expression of the dominant negative construct encoding an 11–amino acid Gαi carboxyl-terminal peptide inhibited endothelial 125I-albumin endocytosis and vesicle formation induced by gp60 activation. Expression of dominant negative Src (dn-Src) and overexpression of wild-type caveolin-1 also prevented gp60-activated endocytosis. Caveolin-1 overexpression resulted in the sequestration of Gαi with the caveolin-1, whereas dn-Src inhibited Gαi binding to caveolin-1. Thus, vesicle formation induced by gp60 and migration of vesicles to the basolateral membrane requires the interaction of gp60

  5. siRNA Delivery Impedes the Temporal Expression of Cytokine-Activated VCAM1 on Endothelial Cells.

    PubMed

    Ho, Theodore T; You, Jin-Oh; Auguste, Debra T

    2016-04-01

    Leukocyte recruitment plays a key role in chronic inflammatory diseases such as cardiovascular disease, rheumatoid arthritis, and cancer. Leukocyte rolling and arrest are mediated in part by the temporally-regulated surface expression of vascular cell adhesion molecule-1 (VCAM1) on endothelial cells (ECs). In this paper, we engineered a pH-responsive vehicle comprised of 30 mol% dimethylaminoethyl methacrylate (30D) and 70 mol% hydroxyethyl methacrylate (70H) to encapsulate, protect, and deliver VCAM1 small interfering RNA (siRNA). The ability of siRNA to reduce VCAM1 gene expression is in direct opposition to its activation by cytokines. At 12 h post-activation, VCAM1 gene knockdown was 90.1 ± 7.5% when delivered via 30D/70H nanoparticles, which was on par with a leading commercial transfection agent. This translated into a 68.8 ± 6.7% reduction in the surface density of VCAM1 on cytokine-activated ECs. The pH-responsive delivery of VCAM1 siRNA efficiently reduced temporal surface protein expression, which may be used to avert leukocyte recruitment.

  6. Endothelial cells enhance migration of meniscus cells

    PubMed Central

    Yuan, Xiaoning; Eng, George M.; Arkonac, Derya E.; Chao, Pen-hsiu Grace; Vunjak-Novakovic, Gordana

    2014-01-01

    Objective To study the interactions between vascular endothelial cells and meniscal fibrochondrocytes from the inner avascular and outer vascular regions of the meniscus, and identify angiogenic factors that enhance cell migration and integrative repair. Methods Bovine meniscal fibrochondrocytes (bMFCs) from the inner and outer regions of meniscus were cultured for seven days with and without human umbilical vein endothelial cells (HUVECs) in a micropatterned three-dimensional hydrogel system for cell migration. Angiogenic factors secreted by HUVECs were probed for their role in paracrine mechanisms governing bMFC migration, and applied to a full-thickness defect model of meniscal repair in explants from the inner and outer regions over four weeks. Results Endothelial cells enhanced migration of inner and outer bMFCs in the micropatterned system via endothelin-1 (ET-1) signaling. Supplementation of ET-1 significantly enhanced integration strength of full-thickness defects in inner and outer explants, and cell migration at the macro-scale, compared to controls without ET-1 treatment. Conclusion We report for the first time that bMFCs from both the avascular and vascular regions respond to the presence of endothelial cells with increased migration. Paracrine signaling by endothelial cells regulates the bMFCs differentially by region, but we identify ET-1 as an angiogenic factor that stimulates migration of inner and outer cells at the micro-scale, and integrative repair of inner and outer explants at the macro-scale. These findings reveal the regional interactions between vasculature and MFCs, and suggest ET-1 as a potential new treatment modality for avascular meniscal injuries, in order to prevent the development of osteoarthritis. PMID:25307081

  7. Activation of endothelial β-catenin signaling induces heart failure.

    PubMed

    Nakagawa, Akito; Naito, Atsuhiko T; Sumida, Tomokazu; Nomura, Seitaro; Shibamoto, Masato; Higo, Tomoaki; Okada, Katsuki; Sakai, Taku; Hashimoto, Akihito; Kuramoto, Yuki; Oka, Toru; Lee, Jong-Kook; Harada, Mutsuo; Ueda, Kazutaka; Shiojima, Ichiro; Limbourg, Florian P; Adams, Ralf H; Noda, Tetsuo; Sakata, Yasushi; Akazawa, Hiroshi; Komuro, Issei

    2016-01-01

    Activation of β-catenin-dependent canonical Wnt signaling in endothelial cells plays a key role in angiogenesis during development and ischemic diseases, however, other roles of Wnt/β-catenin signaling in endothelial cells remain poorly understood. Here, we report that sustained activation of β-catenin signaling in endothelial cells causes cardiac dysfunction through suppressing neuregulin-ErbB pathway in the heart. Conditional gain-of-function mutation of β-catenin, which activates Wnt/β-catenin signaling in Bmx-positive arterial endothelial cells (Bmx/CA mice) led to progressive cardiac dysfunction and 100% mortality at 40 weeks after tamoxifen treatment. Electron microscopic analysis revealed dilatation of T-tubules and degeneration of mitochondria in cardiomyocytes of Bmx/CA mice, which are similar to the changes observed in mice with decreased neuregulin-ErbB signaling. Endothelial expression of Nrg1 and cardiac ErbB signaling were suppressed in Bmx/CA mice. The cardiac dysfunction of Bmx/CA mice was ameliorated by administration of recombinant neuregulin protein. These results collectively suggest that sustained activation of Wnt/β-catenin signaling in endothelial cells might be a cause of heart failure through suppressing neuregulin-ErbB signaling, and that the Wnt/β-catenin/NRG axis in cardiac endothelial cells might become a therapeutic target for heart failure. PMID:27146149

  8. Activation of endothelial β-catenin signaling induces heart failure

    PubMed Central

    Nakagawa, Akito; Naito, Atsuhiko T.; Sumida, Tomokazu; Nomura, Seitaro; Shibamoto, Masato; Higo, Tomoaki; Okada, Katsuki; Sakai, Taku; Hashimoto, Akihito; Kuramoto, Yuki; Oka, Toru; Lee, Jong-Kook; Harada, Mutsuo; Ueda, Kazutaka; Shiojima, Ichiro; Limbourg, Florian P.; Adams, Ralf H.; Noda, Tetsuo; Sakata, Yasushi; Akazawa, Hiroshi; Komuro, Issei

    2016-01-01

    Activation of β-catenin-dependent canonical Wnt signaling in endothelial cells plays a key role in angiogenesis during development and ischemic diseases, however, other roles of Wnt/β-catenin signaling in endothelial cells remain poorly understood. Here, we report that sustained activation of β-catenin signaling in endothelial cells causes cardiac dysfunction through suppressing neuregulin-ErbB pathway in the heart. Conditional gain-of-function mutation of β-catenin, which activates Wnt/β-catenin signaling in Bmx-positive arterial endothelial cells (Bmx/CA mice) led to progressive cardiac dysfunction and 100% mortality at 40 weeks after tamoxifen treatment. Electron microscopic analysis revealed dilatation of T-tubules and degeneration of mitochondria in cardiomyocytes of Bmx/CA mice, which are similar to the changes observed in mice with decreased neuregulin-ErbB signaling. Endothelial expression of Nrg1 and cardiac ErbB signaling were suppressed in Bmx/CA mice. The cardiac dysfunction of Bmx/CA mice was ameliorated by administration of recombinant neuregulin protein. These results collectively suggest that sustained activation of Wnt/β-catenin signaling in endothelial cells might be a cause of heart failure through suppressing neuregulin-ErbB signaling, and that the Wnt/β-catenin/NRG axis in cardiac endothelial cells might become a therapeutic target for heart failure. PMID:27146149

  9. Replication of human endothelial cells in culture.

    PubMed

    Lewis, L J; Hoak, J C; Maca, R D; Fry, G L

    1973-08-01

    Investigative studies dealing with the properties and functions of endothelial cells have been hampered because there has been little or no success in the isolation, growth, and passage of individual cells in large numbers. We have developed a system whereby pure cultures of endothelial cells derived from umbilical veins can be subcultured for at least five serial passages. Many facets of endothelial function and interaction can be evaluated with the use of this new adaptive system of isolation and culture. PMID:4718112

  10. Cell-Based Screening Identifies the Active Ingredients from Traditional Chinese Medicine Formula Shixiao San as the Inhibitors of Atherosclerotic Endothelial Dysfunction

    PubMed Central

    Wang, Xiaofan; Zhang, Ruowen; Gu, Liqiang; Zhang, Yuanyuan; Zhao, Xu; Bi, Kaishun; Chen, Xiaohui

    2015-01-01

    In this study, we performed a phenotypic screening in human endothelial cells exposed to oxidized low density lipoprotein (an in vitro model of atherosclerotic endothelial dysfunction) to identify the effective compounds in Shixiao San. After investigating the suitability and reliability of the cell-based screening method using atorvastatin as the positive control drug, this method was applied in screening Shixiao San and its extracts. The treatment of n-butanol fraction on endothelial cells exhibited stronger healing effects against oxidized low density lipoprotein-induced insult when compared with other fractions. Cell viability, the level of nitric oxide, endothelial nitric oxide synthase and endothelin-1 were measured, respectively. The assays revealed n-butanol fraction significantly elevated the survival ratio of impaired cells in culture. In parallel, n-butanol fraction exhibited the highest inhibition of inflammation. The generation of prostaglandin-2 and adhesion molecule (soluble intercellular adhesion molecule-1) was obviously declined. Furthermore, n-butanol fraction suppressed the production of reactive oxygen species and malondialdehyde, and restored the activity of superoxide dismutase. Compounds identification of the n-butanol fraction was carried out by ultra high liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry. The active ingredients including quercetin-3-O-(2G-α-l-rhamnosyl)-rutinoside, quercetin-3-O-neohesperidoside, isorhamnetin-3-O-neohesperidoside and isorhamnetin-3-O-rutinoside revealed the ability of anti-atherosclerosis after exposing on endothelial cells. The current work illustrated the pharmacology effect of Shixiao San and clearly indicated the major active components in Shixiao San. More importantly, the proposed cell-based screening method might be particularly suitable for fast evaluating the anti-atherosclerosis efficacy of Traditional Chinese Medicines and screening out the interesting

  11. Cell-based screening identifies the active ingredients from Traditional Chinese Medicine formula Shixiao San as the inhibitors of atherosclerotic endothelial dysfunction.

    PubMed

    Wang, Xiaofan; Zhang, Ruowen; Gu, Liqiang; Zhang, Yuanyuan; Zhao, Xu; Bi, Kaishun; Chen, Xiaohui

    2015-01-01

    In this study, we performed a phenotypic screening in human endothelial cells exposed to oxidized low density lipoprotein (an in vitro model of atherosclerotic endothelial dysfunction) to identify the effective compounds in Shixiao San. After investigating the suitability and reliability of the cell-based screening method using atorvastatin as the positive control drug, this method was applied in screening Shixiao San and its extracts. The treatment of n-butanol fraction on endothelial cells exhibited stronger healing effects against oxidized low density lipoprotein-induced insult when compared with other fractions. Cell viability, the level of nitric oxide, endothelial nitric oxide synthase and endothelin-1 were measured, respectively. The assays revealed n-butanol fraction significantly elevated the survival ratio of impaired cells in culture. In parallel, n-butanol fraction exhibited the highest inhibition of inflammation. The generation of prostaglandin-2 and adhesion molecule (soluble intercellular adhesion molecule-1) was obviously declined. Furthermore, n-butanol fraction suppressed the production of reactive oxygen species and malondialdehyde, and restored the activity of superoxide dismutase. Compounds identification of the n-butanol fraction was carried out by ultra high liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry. The active ingredients including quercetin-3-O-(2G-α-l-rhamnosyl)-rutinoside, quercetin-3-O-neohesperidoside, isorhamnetin-3-O-neohesperidoside and isorhamnetin-3-O-rutinoside revealed the ability of anti-atherosclerosis after exposing on endothelial cells. The current work illustrated the pharmacology effect of Shixiao San and clearly indicated the major active components in Shixiao San. More importantly, the proposed cell-based screening method might be particularly suitable for fast evaluating the anti-atherosclerosis efficacy of Traditional Chinese Medicines and screening out the interesting

  12. Low concentration of 4-hydroxy hexenal increases heme oxygenase-1 expression through activation of Nrf2 and antioxidative activity in vascular endothelial cells

    SciTech Connect

    Ishikado, Atsushi; Nishio, Yoshihiko; Morino, Katsutaro; Ugi, Satoshi; Kondo, Hajime; Makino, Taketoshi; Kashiwagi, Atsunori; Maegawa, Hiroshi

    2010-11-05

    Research highlights: {yields} Low doses of 4-HHE and 4-HNE induce HO-1 expression in vascular endothelial cells. {yields} 4-HHE and 4-HNE increase the intranuclear expression and DNA binding of Nrf2. {yields} 4-HHE and 4-HNE-induced HO-1 expression depends on the activation of Nrf2. {yields} Pretreatment with 4-HHE and 4-HNE prevents oxidative stress-induced cytotoxicity. -- Abstract: Large-scale clinical studies have shown that n-3 polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic and docosahexaenoic acids reduce cardiovascular events without improving classical risk factors for atherosclerosis. Recent studies have proposed that direct actions of n-3 PUFAs themselves, or of their enzymatic metabolites, have antioxidative and anti-inflammatory effects on vascular cells. Although a recent study showed that plasma 4-hydroxy hexenal (4-HHE), a peroxidation product of n-3 PUFA, increased after supplementation of docosahexaenoic acid, the antiatherogenic effects of 4-HHE in vascular cells remain unclear. In the present study, we tested the hypothesis that 4-HHE induces the antioxidative enzyme heme oxygenase-1 (HO-1) through activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulatory transcriptional factor, and prevents oxidative stress-induced cytotoxicity in vascular endothelial cells. This mechanism could partly explain the cardioprotective effects of n-3 PUFAs. Human umbilical vein endothelial cells were stimulated with 1-10 {mu}M 4-HHE or 4-hydroxy nonenal (4-HNE), a peroxidation product of n-6 PUFAs. Both 4-HHE and 4-HNE dose-dependently increased HO-1 mRNA and protein expression, and intranuclear expression and DNA binding of Nrf2 at 5 {mu}M. Small interfering RNA for Nrf2 significantly reduced 4-HHE- or 4-HNE-induced HO-1 mRNA and protein expression. Furthermore, pretreatment with 4-HHE or 4-HNE prevented tert-butyl hydroperoxide-induced cytotoxicity. In conclusion, 4-HHE, a peroxidation product of n-3 PUFAs, stimulated

  13. Activation of group IVC phospholipase A(2) by polycyclic aromatic hydrocarbons induces apoptosis of human coronary artery endothelial cells.

    PubMed

    Tithof, Patricia K; Richards, Sean M; Elgayyar, Mona A; Menn, Fu-Minn; Vulava, Vijay M; McKay, Larry; Sanseverino, John; Sayler, Gary; Tucker, Dawn E; Leslie, Christina C; Lu, Kim P; Ramos, Kenneth S

    2011-06-01

    Exposure to environmental pollutants, such as polycyclic aromatic hydrocarbons (PAHs) found in coal tar mixtures and tobacco sources, is considered a significant risk factor for the development of heart disease in humans. The goal of this study was to determine the influence of PAHs present at a Superfund site on human coronary artery endothelial cell (HCAEC) phospholipase A(2) (PLA(2)) activity and apoptosis. Extremely high levels of 12 out of 15 EPA high-priority PAHs were present in both the streambed and floodplain sediments at a site where an urban creek and its adjacent floodplain were extensively contaminated by PAHs and other coal tar compounds. Nine of the 12 compounds and a coal tar mixture (SRM 1597A) activated group IVC PLA(2) in HCAECs, and activation of this enzyme was associated with histone fragmentation and poly (ADP) ribose polymerase (PARP) cleavage. Genetic silencing of group IVC PLA(2) inhibited both (3)H-fatty acid release and histone fragmentation by PAHs and SRM 1597A, indicating that individual PAHs and a coal tar mixture induce apoptosis of HCAECs via a mechanism that involves group IVC PLA(2). Western blot analysis of aortas isolated from feral mice (Peromyscus leucopus) inhabiting the Superfund site showed increased PARP and caspase-3 cleavage when compared to reference mice. These data suggest that PAHs induce apoptosis of HCAECs via activation of group IVC PLA(2). PMID:21132278

  14. Asiaticoside Inhibits TNF-α-Induced Endothelial Hyperpermeability of Human Aortic Endothelial Cells.

    PubMed

    Fong, Lai Yen; Ng, Chin Theng; Zakaria, Zainul Amiruddin; Baharuldin, Mohamad Taufik Hidayat; Arifah, Abdul Kadir; Hakim, Muhammad Nazrul; Zuraini, Ahmad

    2015-10-01

    The increase in endothelial permeability often promotes edema formation in various pathological conditions. Tumor necrosis factor-alpha (TNF-α), a pro-atherogenic cytokine, impairs endothelial barrier function and causes endothelial dysfunction in early stage of atherosclerosis. Asiaticoside, one of the triterpenoids derived from Centella asiatica, is known to possess antiinflammatory activity. In order to examine the role of asiaticoside in preserving the endothelial barrier, we assessed its effects on endothelial hyperpermeability and disruption of actin filaments evoked by TNF-α in human aortic endothelial cells (HAEC). TNF-α caused an increase in endothelial permeability to fluorescein isothiocyanate (FITC)-dextran. Asiaticoside pretreatment significantly suppressed TNF-α-induced increased permeability. Asiaticoside also prevented TNF-α-induced actin redistribution by suppressing stress fiber formation. However, the increased F to G actin ratio stimulated by TNF-α was not changed by asiaticoside. Cytochalasin D, an actin depolymerizing agent, was used to correlate the anti-hyperpermeability effect of asiaticoside with actin cytoskeleton. Surprisingly, asiaticoside failed to prevent cytochalasin D-induced increased permeability. These results suggest that asiaticoside protects against the disruption of endothelial barrier and actin rearrangement triggered by TNF-α without a significant change in total actin pool. However, asiaticoside seems to work by other mechanisms to maintain the integrity of endothelial barrier rather than stabilizing the F-actin organization.

  15. Cerebral Microvascular Endothelial Cell Apoptosis after Ischemia: Role of Enolase-Phosphatase 1 Activation and Aci-Reductone Dioxygenase 1 Translocation

    PubMed Central

    Zhang, Yuan; Wang, Ting; Yang, Ke; Xu, Ji; Ren, Lijie; Li, Weiping; Liu, Wenlan

    2016-01-01

    Enolase-phosphatase 1 (ENOPH1), a newly discovered enzyme of the methionine salvage pathway, is emerging as an important molecule regulating stress responses. In this study, we investigated the role of ENOPH1 in blood brain barrier (BBB) injury under ischemic conditions. Focal cerebral ischemia induced ENOPH1 mRNA and protein expression in ischemic hemispheric microvessels in rats. Exposure of cultured brain microvascular endothelial cells (bEND3 cells) to oxygen-glucose deprivation (OGD) also induced ENOPH1 upregulation, which was accompanied by increased cell death and apoptosis reflected by increased 3-(4, 5-Dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide formation, lactate dehydrogenase release and TUNEL staining. Knockdown of ENOPH1 expression with siRNA or overexpressing ENOPH1 with CRISPR-activated plasmids attenuated or potentiated OGD-induced endothelial cell death, respectively. Moreover, ENOPH1 knockdown or overexpression resulted in a significant reduction or augmentation of reactive oxygen species (ROS) generation, apoptosis-associated proteins (caspase-3, PARP, Bcl-2 and Bax) and Endoplasmic reticulum (ER) stress proteins (Ire-1, Calnexin, GRP78 and PERK) in OGD-treated endothelial cells. OGD upregulated the expression of ENOPH1’s downstream protein aci-reductone dioxygenase 1 (ADI1) and enhanced its interaction with ENOPH1. Interestingly, knockdown of ENOPH1 had no effect on OGD-induced ADI1 upregulation, while it potentiated OGD-induced ADI1 translocation from the nucleus to the cytoplasm. Lastly, knockdown of ENOPH1 significantly reduced OGD-induced endothelial monolayer permeability increase. In conclusion, our data demonstrate that ENOPH1 activation may contribute to OGD-induced endothelial cell death and BBB disruption through promoting ROS generation and the activation of apoptosis associated proteins, thus representing a new therapeutic target for ischemic stroke.

  16. Cerebral Microvascular Endothelial Cell Apoptosis after Ischemia: Role of Enolase-Phosphatase 1 Activation and Aci-Reductone Dioxygenase 1 Translocation.

    PubMed

    Zhang, Yuan; Wang, Ting; Yang, Ke; Xu, Ji; Ren, Lijie; Li, Weiping; Liu, Wenlan

    2016-01-01

    Enolase-phosphatase 1 (ENOPH1), a newly discovered enzyme of the methionine salvage pathway, is emerging as an important molecule regulating stress responses. In this study, we investigated the role of ENOPH1 in blood brain barrier (BBB) injury under ischemic conditions. Focal cerebral ischemia induced ENOPH1 mRNA and protein expression in ischemic hemispheric microvessels in rats. Exposure of cultured brain microvascular endothelial cells (bEND3 cells) to oxygen-glucose deprivation (OGD) also induced ENOPH1 upregulation, which was accompanied by increased cell death and apoptosis reflected by increased 3-(4, 5-Dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide formation, lactate dehydrogenase release and TUNEL staining. Knockdown of ENOPH1 expression with siRNA or overexpressing ENOPH1 with CRISPR-activated plasmids attenuated or potentiated OGD-induced endothelial cell death, respectively. Moreover, ENOPH1 knockdown or overexpression resulted in a significant reduction or augmentation of reactive oxygen species (ROS) generation, apoptosis-associated proteins (caspase-3, PARP, Bcl-2 and Bax) and Endoplasmic reticulum (ER) stress proteins (Ire-1, Calnexin, GRP78 and PERK) in OGD-treated endothelial cells. OGD upregulated the expression of ENOPH1's downstream protein aci-reductone dioxygenase 1 (ADI1) and enhanced its interaction with ENOPH1. Interestingly, knockdown of ENOPH1 had no effect on OGD-induced ADI1 upregulation, while it potentiated OGD-induced ADI1 translocation from the nucleus to the cytoplasm. Lastly, knockdown of ENOPH1 significantly reduced OGD-induced endothelial monolayer permeability increase. In conclusion, our data demonstrate that ENOPH1 activation may contribute to OGD-induced endothelial cell death and BBB disruption through promoting ROS generation and the activation of apoptosis associated proteins, thus representing a new therapeutic target for ischemic stroke.

  17. Cerebral Microvascular Endothelial Cell Apoptosis after Ischemia: Role of Enolase-Phosphatase 1 Activation and Aci-Reductone Dioxygenase 1 Translocation

    PubMed Central

    Zhang, Yuan; Wang, Ting; Yang, Ke; Xu, Ji; Ren, Lijie; Li, Weiping; Liu, Wenlan

    2016-01-01

    Enolase-phosphatase 1 (ENOPH1), a newly discovered enzyme of the methionine salvage pathway, is emerging as an important molecule regulating stress responses. In this study, we investigated the role of ENOPH1 in blood brain barrier (BBB) injury under ischemic conditions. Focal cerebral ischemia induced ENOPH1 mRNA and protein expression in ischemic hemispheric microvessels in rats. Exposure of cultured brain microvascular endothelial cells (bEND3 cells) to oxygen-glucose deprivation (OGD) also induced ENOPH1 upregulation, which was accompanied by increased cell death and apoptosis reflected by increased 3-(4, 5-Dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide formation, lactate dehydrogenase release and TUNEL staining. Knockdown of ENOPH1 expression with siRNA or overexpressing ENOPH1 with CRISPR-activated plasmids attenuated or potentiated OGD-induced endothelial cell death, respectively. Moreover, ENOPH1 knockdown or overexpression resulted in a significant reduction or augmentation of reactive oxygen species (ROS) generation, apoptosis-associated proteins (caspase-3, PARP, Bcl-2 and Bax) and Endoplasmic reticulum (ER) stress proteins (Ire-1, Calnexin, GRP78 and PERK) in OGD-treated endothelial cells. OGD upregulated the expression of ENOPH1’s downstream protein aci-reductone dioxygenase 1 (ADI1) and enhanced its interaction with ENOPH1. Interestingly, knockdown of ENOPH1 had no effect on OGD-induced ADI1 upregulation, while it potentiated OGD-induced ADI1 translocation from the nucleus to the cytoplasm. Lastly, knockdown of ENOPH1 significantly reduced OGD-induced endothelial monolayer permeability increase. In conclusion, our data demonstrate that ENOPH1 activation may contribute to OGD-induced endothelial cell death and BBB disruption through promoting ROS generation and the activation of apoptosis associated proteins, thus representing a new therapeutic target for ischemic stroke. PMID:27630541

  18. Lysophosphatidylcholine-induced modulation of Ca(2+)-activated K(+)channels contributes to ROS-dependent proliferation of cultured human endothelial cells.

    PubMed

    Wolfram Kuhlmann, Christoph Rüdiger; Wiebke Lüdders, Dörte; Schaefer, Christian Alexander; Kerstin Most, Astrid; Backenköhler, Ulrich; Neumann, Thomas; Tillmanns, Harald; Erdogan, Ali

    2004-05-01

    Proliferation of endothelial cells plays a crucial role in the process of atherosclerotic plaque destabilization. The major component of oxidized low-density lipoprotein lysophosphatidylcholine (LPC) has been shown to promote endothelial proliferation by increasing the production of reactive oxygen species (ROS). Since K(+) channels are known to control the cell cycle, we investigated the role of Ca(2+)-activated K(+) channels (BK(Ca)) in the regulation of LPC-induced endothelial proliferation and ROS generation. A significant increase of cell growth induced by LPC (20 micromol/l; cell counts (CCs): +87%, thymidin incorporation: +89%; n = 12, P < 0.01) was observed, which was inhibited by the BK(Ca) inhibitor iberiotoxin (IBX; 100 nmol/l), by the NAD(P)H-oxidase inhibitor diphenyleneiodonium (5 micromol/l) and by transfection with antisense (AS) oligonucleotides against NAD(P)H oxidase, whereas N(G)-monomethyl-l-arginine (l-NMMA) further increased LPC-induced cell growth. Using the patch-clamp technique a significant increase of BK(Ca) open-state probability (control: 0.004 +/- 0.002; LPC: 0.104 +/- 0.035; n = 21, P < 0.05) by LPC was observed. Using dichlorofluorescein fluorescence microscopy a significant increase of ROS induced by LPC was reported, that was blocked by IBX and Ca(2+) antagonists. Intracellular Ca(2+) measurements revealed a capacitative Ca(2+) influx caused by LPC. Bioactivity of nitric oxide (NO) was measured using a [(3)H]-cGMP radioimmunoassay. LPC significantly decreased acetylcholine-induced NO synthesis. LPC significantly increased cGMP levels in endothelial cells transfected with AS, which was blocked by IBX. In conclusion, our results demonstrate that LPC activates BK(Ca) thereby increasing ROS production which induces endothelial proliferation. In addition LPC-induced BK(Ca)-activation contributes to increased cGMP levels, if ROS production is prevented by AS.

  19. Cerebral Microvascular Endothelial Cell Apoptosis after Ischemia: Role of Enolase-Phosphatase 1 Activation and Aci-Reductone Dioxygenase 1 Translocation.

    PubMed

    Zhang, Yuan; Wang, Ting; Yang, Ke; Xu, Ji; Ren, Lijie; Li, Weiping; Liu, Wenlan

    2016-01-01

    Enolase-phosphatase 1 (ENOPH1), a newly discovered enzyme of the methionine salvage pathway, is emerging as an important molecule regulating stress responses. In this study, we investigated the role of ENOPH1 in blood brain barrier (BBB) injury under ischemic conditions. Focal cerebral ischemia induced ENOPH1 mRNA and protein expression in ischemic hemispheric microvessels in rats. Exposure of cultured brain microvascular endothelial cells (bEND3 cells) to oxygen-glucose deprivation (OGD) also induced ENOPH1 upregulation, which was accompanied by increased cell death and apoptosis reflected by increased 3-(4, 5-Dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide formation, lactate dehydrogenase release and TUNEL staining. Knockdown of ENOPH1 expression with siRNA or overexpressing ENOPH1 with CRISPR-activated plasmids attenuated or potentiated OGD-induced endothelial cell death, respectively. Moreover, ENOPH1 knockdown or overexpression resulted in a significant reduction or augmentation of reactive oxygen species (ROS) generation, apoptosis-associated proteins (caspase-3, PARP, Bcl-2 and Bax) and Endoplasmic reticulum (ER) stress proteins (Ire-1, Calnexin, GRP78 and PERK) in OGD-treated endothelial cells. OGD upregulated the expression of ENOPH1's downstream protein aci-reductone dioxygenase 1 (ADI1) and enhanced its interaction with ENOPH1. Interestingly, knockdown of ENOPH1 had no effect on OGD-induced ADI1 upregulation, while it potentiated OGD-induced ADI1 translocation from the nucleus to the cytoplasm. Lastly, knockdown of ENOPH1 significantly reduced OGD-induced endothelial monolayer permeability increase. In conclusion, our data demonstrate that ENOPH1 activation may contribute to OGD-induced endothelial cell death and BBB disruption through promoting ROS generation and the activation of apoptosis associated proteins, thus representing a new therapeutic target for ischemic stroke. PMID:27630541

  20. RTEF-1 protects against oxidative damage induced by H2O2 in human umbilical vein endothelial cells through Klotho activation

    PubMed Central

    Sun, Shan; Cheng, Bei; Sun, Pan-Ge; Wu, Xiao-Hua; Wu, Qin-Qin

    2015-01-01

    Oxidative stress is a main risk factor of vascular aging, which may lead to age-associated diseases. Related transcriptional enhancer factor-1 (RTEF-1) has been suggested to regulate many genes expression which are involved in the endothelial angiogenesis and vasodilation. However, whether RTEF-1 has a direct role in anti-oxidation and what specific genes are involved in RTEF-1-driven anti-oxidation have not been elucidated. In this study, we found that overexpressing RTEF-1 in H2O2-treated human umbilical vein endothelial cells decreased senescence-associated-β-galactosidase (SA-β-gal)-positive cells and G0/G1 cells population. The expressions of p53 and p21 were decreased in H2O2-treated RTEF-1 o/e human umbilical vein endothelial cells. However, specific small interfering RNA of RTEF-1 totally reversed the anti-oxidation effect of RTEF-1 and inhibited RTEF-1-induced decreased p53 and p21 expressions. It demonstrated that RTEF-1 could protect cells from H2O2-induced oxidative damage. In addition, we demonstrated that RTEF-1 could up-regulate Klotho gene expression and activate its promoter. Furthermore, Klotho small interfering RNA significantly blocked RTEF-1-driven endothelial cell protection from H2O2-induced oxidative damage and increased p53 and p21 expressions. These results reveal that RTEF-1 is a potential anti-oxidation gene and can prevent H2O2-induced endothelial cell oxidative damage by activating Klotho. PMID:26041389

  1. Identification of a novel MTOR activator and discovery of a competing endogenous RNA regulating autophagy in vascular endothelial cells

    PubMed Central

    Ge, Di; Han, Lei; Huang, ShuYa; Peng, Nan; Wang, PengChong; Jiang, Zheng; Zhao, Jing; Su, Le; Zhang, ShangLi; Zhang, Yun; Kung, HsiangFu; Zhao, BaoXiang; Miao, JunYing

    2014-01-01

    MTOR, a central regulator of autophagy, is involved in cancer and cardiovascular and neurological diseases. Modulating the MTOR signaling balance could be of great significance for numerous diseases. No chemical activators of MTOR have been found, and the urgent challenge is to find novel MTOR downstream components. In previous studies, we found a chemical small molecule, 3-benzyl-5-((2-nitrophenoxy) methyl)–dihydrofuran-2(3H)-one (3BDO), that inhibited autophagy in human umbilical vein endothelial cells (HUVECs) and neuronal cells. Here, we found that 3BDO activated MTOR by targeting FKBP1A (FK506-binding protein 1A, 12 kDa). We next used 3BDO to detect novel factors downstream of the MTOR signaling pathway. Activation of MTOR by 3BDO increased the phosphorylation of TIA1 (TIA1 cytotoxic granule-associated RNA binding protein/T-cell-restricted intracellular antigen-1). Finally, we used gene microarray, RNA interference, RNA-ChIP assay, bioinformatics, luciferase reporter assay, and other assays and found that 3BDO greatly decreased the level of a long noncoding RNA (lncRNA) derived from the 3′ untranslated region (3′UTR) of TGFB2, known as FLJ11812. TIA1 was responsible for processing FLJ11812. Further experiments results showed that FLJ11812 could bind with MIR4459 targeting ATG13 (autophagy-related 13), and ATG13 protein level was decreased along with 3BDO-decreased FLJ11812 level. Here, we provide a new activator of MTOR, and our findings highlight the role of the lncRNA in autophagy. PMID:24879147

  2. Identification of a novel MTOR activator and discovery of a competing endogenous RNA regulating autophagy in vascular endothelial cells.

    PubMed

    Ge, Di; Han, Lei; Huang, ShuYa; Peng, Nan; Wang, PengChong; Jiang, Zheng; Zhao, Jing; Su, Le; Zhang, ShangLi; Zhang, Yun; Kung, HsiangFu; Zhao, BaoXiang; Miao, JunYing

    2014-06-01

    MTOR, a central regulator of autophagy, is involved in cancer and cardiovascular and neurological diseases. Modulating the MTOR signaling balance could be of great significance for numerous diseases. No chemical activators of MTOR have been found, and the urgent challenge is to find novel MTOR downstream components. In previous studies, we found a chemical small molecule, 3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran-2(3H)-one (3BDO), that inhibited autophagy in human umbilical vein endothelial cells (HUVECs) and neuronal cells. Here, we found that 3BDO activated MTOR by targeting FKBP1A (FK506-binding protein 1A, 12 kDa). We next used 3BDO to detect novel factors downstream of the MTOR signaling pathway. Activation of MTOR by 3BDO increased the phosphorylation of TIA1 (TIA1 cytotoxic granule-associated RNA binding protein/T-cell-restricted intracellular antigen-1). Finally, we used gene microarray, RNA interference, RNA-ChIP assay, bioinformatics, luciferase reporter assay, and other assays and found that 3BDO greatly decreased the level of a long noncoding RNA (lncRNA) derived from the 3' untranslated region (3'UTR) of TGFB2, known as FLJ11812. TIA1 was responsible for processing FLJ11812. Further experiments results showed that FLJ11812 could bind with MIR4459 targeting ATG13 (autophagy-related 13), and ATG13 protein level was decreased along with 3BDO-decreased FLJ11812 level. Here, we provide a new activator of MTOR, and our findings highlight the role of the lncRNA in autophagy.

  3. Coenzyme Q10 Attenuates High Glucose-Induced Endothelial Progenitor Cell Dysfunction through AMP-Activated Protein Kinase Pathways.

    PubMed

    Tsai, Hsiao-Ya; Lin, Chih-Pei; Huang, Po-Hsun; Li, Szu-Yuan; Chen, Jia-Shiong; Lin, Feng-Yen; Chen, Jaw-Wen; Lin, Shing-Jong

    2016-01-01

    Coenzyme Q10 (CoQ10), an antiapoptosis enzyme, is stored in the mitochondria of cells. We investigated whether CoQ10 can attenuate high glucose-induced endothelial progenitor cell (EPC) apoptosis and clarified its mechanism. EPCs were incubated with normal glucose (5 mM) or high glucose (25 mM) environment for 3 days, followed by treatment with CoQ10 (10 μM) for 24 hr. Cell proliferation, nitric oxide (NO) production, and JC-1 assay were examined. The specific signal pathways of AMP-activated protein kinase (AMPK), eNOS/Akt, and heme oxygenase-1 (HO-1) were also assessed. High glucose reduced EPC functional activities, including proliferation and migration. Additionally, Akt/eNOS activity and NO production were downregulated in high glucose-stimulated EPCs. Administration of CoQ10 ameliorated high glucose-induced EPC apoptosis, including downregulation of caspase 3, upregulation of Bcl-2, and increase in mitochondrial membrane potential. Furthermore, treatment with CoQ10 reduced reactive oxygen species, enhanced eNOS/Akt activity, and increased HO-1 expression in high glucose-treated EPCs. These effects were negated by administration of AMPK inhibitor. Transplantation of CoQ10-treated EPCs under high glucose conditions into ischemic hindlimbs improved blood flow recovery. CoQ10 reduced high glucose-induced EPC apoptosis and dysfunction through upregulation of eNOS, HO-1 through the AMPK pathway. Our findings provide a potential treatment strategy targeting dysfunctional EPC in diabetic patients.

  4. Exosomes from hypoxic endothelial cells have increased collagen crosslinking activity through up-regulation of lysyl oxidase-like 2.

    PubMed

    de Jong, Olivier G; van Balkom, Bas W M; Gremmels, Hendrik; Verhaar, Marianne C

    2016-02-01

    Exosomes are important mediators of intercellular communication. Additionally, they contain a variety of components capable of interacting with the extracellular matrix (ECM), including integrins, matrix metalloproteinases and members of the immunoglobin superfamily. Despite these observations, research on exosome-ECM interactions is limited. Here, we investigate whether the exosome-associated lysyl oxidase family member lysyl oxidase-like 2 (LOXL2) is involved in ECM remodelling. We found that LOXL2 is present on the exterior of endothelial cell (EC)-derived exosomes, placing it in direct vicinity of the ECM. It is up-regulated twofold in EC-derived exosomes cultured under hypoxic conditions. Intact exosomes from hypoxic EC and LOXL2 overexpressing EC show increased activity in a fluorometric lysyl oxidase enzymatic activity assay as well as in a collagen gel contraction assay. Concordantly, knockdown of LOXL2 in exosome-producing EC in both normal and hypoxic conditions reduces activity of exosomes in both assays. Our findings show for the first time that ECM crosslinking by EC-derived exosomes is mediated by LOXL2 under the regulation of hypoxia, and implicate a role for exosomes in hypoxia-regulated focal ECM remodelling, a key process in both fibrosis and wound healing.

  5. Electrical method for detection of endothelial cell shape change in real time: assessment of endothelial barrier function.

    PubMed Central

    Tiruppathi, C; Malik, A B; Del Vecchio, P J; Keese, C R; Giaever, I

    1992-01-01

    We have developed an electrical method to study endothelial cell shape changes in real time in order to examine the mechanisms of alterations in the endothelial barrier function. Endothelial shape changes were quantified by using a monolayer of endothelial cells grown on a small (10(-3) cm2) evaporated gold electrode and measuring the changes in electrical impedance. Bovine pulmonary microvessel endothelial cells and bovine pulmonary artery endothelial cells were used to study the effects of alpha-thrombin on cell-shape dynamics by the impedance measurement. alpha-Thrombin produced a dose-dependent decrease in impedance that occurred within 0.5 min in both cell types, indicative of retraction of endothelial cells and widening of interendothelial junctions because of "rounding up" of the cells. The alpha-thrombin-induced decrease in impedance persisted for approximately 2 hr, after which the value recovered to basal levels. Pretreatment of endothelial cells with the protein kinase C inhibitor, calphostin C, or with 8-bromoadenosine 3',5'-cyclic monophosphate prevented the decreased impedance, suggesting that the endothelial cell change is modulated by activation of second-messenger pathways. The alpha-thrombin-induced decrease in impedance was in agreement with the previously observed increases in transendothelial albumin permeability and evidence of formation of intercellular gaps after alpha-thrombin challenge. The impedance measurement may be a valuable in vitro method for the assessment of mechanisms of decreased endothelial barrier function occurring with inflammatory mediators. Since the rapidly occurring changes in endothelial cell shape in response to mediators such as thrombin are mediated activation of second-messenger pathways, the ability to monitor endothelial cell dynamics in real time may provide insights into the signal-transduction events mediating the increased endothelial permeability. PMID:1518814

  6. Effect of ascorbate on plasminogen activator inhibitor-1 expression and release from platelets and endothelial cells in an in-vitro model of sepsis.

    PubMed

    Swarbreck, Scott B; Secor, Dan; Ellis, Christopher G; Sharpe, Michael D; Wilson, John X; Tyml, Karel

    2015-06-01

    The microcirculation during sepsis fails due to capillary plugging involving microthrombosis. We demonstrated that intravenous injection of ascorbate reduces this plugging, but the mechanism of this beneficial effect remains unclear. We hypothesize that ascorbate inhibits the release of the antifibrinolytic plasminogen activator inhibitor-1 (PAI-1) from endothelial cells and platelets during sepsis. Microvascular endothelial cells and platelets were isolated from mice. Cells were cultured and stimulated with lipopolysaccharide (LPS), tumor necrosis factor alpha (TNFα), or thrombin (agents of sepsis), with/without ascorbate for 1-24 h. PAI-1 mRNA was determined by quantitative PCR. PAI-1 protein release into the culture medium was measured by ELISA. In platelets, PAI-1 release was measured after LPS, TNFα, or thrombin stimulation, with/without ascorbate. In endothelial cells, LPS and TNFα increased PAI-1 mRNA after 6-24 h, but no increase in PAI-1 release was observed; ascorbate did not affect these responses. In platelets, thrombin, but not LPS or TNFα, increased PAI-1 release; ascorbate inhibited this increase at low extracellular pH. In unstimulated endothelial cells and platelets, PAI-1 is released into the extracellular space. Thrombin increases this release from platelets; ascorbate inhibits it pH-dependently. The data suggest that ascorbate promotes fibrinolysis in the microvasculature under acidotic conditions in sepsis. PMID:25730478

  7. Effect of ascorbate on plasminogen activator inhibitor-1 expression and release from platelets and endothelial cells in an in-vitro model of sepsis.

    PubMed

    Swarbreck, Scott B; Secor, Dan; Ellis, Christopher G; Sharpe, Michael D; Wilson, John X; Tyml, Karel

    2015-06-01

    The microcirculation during sepsis fails due to capillary plugging involving microthrombosis. We demonstrated that intravenous injection of ascorbate reduces this plugging, but the mechanism of this beneficial effect remains unclear. We hypothesize that ascorbate inhibits the release of the antifibrinolytic plasminogen activator inhibitor-1 (PAI-1) from endothelial cells and platelets during sepsis. Microvascular endothelial cells and platelets were isolated from mice. Cells were cultured and stimulated with lipopolysaccharide (LPS), tumor necrosis factor alpha (TNFα), or thrombin (agents of sepsis), with/without ascorbate for 1-24 h. PAI-1 mRNA was determined by quantitative PCR. PAI-1 protein release into the culture medium was measured by ELISA. In platelets, PAI-1 release was measured after LPS, TNFα, or thrombin stimulation, with/without ascorbate. In endothelial cells, LPS and TNFα increased PAI-1 mRNA after 6-24 h, but no increase in PAI-1 release was observed; ascorbate did not affect these responses. In platelets, thrombin, but not LPS or TNFα, increased PAI-1 release; ascorbate inhibited this increase at low extracellular pH. In unstimulated endothelial cells and platelets, PAI-1 is released into the extracellular space. Thrombin increases this release from platelets; ascorbate inhibits it pH-dependently. The data suggest that ascorbate promotes fibrinolysis in the microvasculature under acidotic conditions in sepsis.

  8. Atrial natriuretic peptide inhibits the expression of tissue factor and plasminogen activator inhibitor 1 induced by angiotensin II in cultured rat aortic endothelial cells.

    PubMed

    Yoshizumi, M; Tsuji, H; Nishimura, H; Kasahara, T; Sugano, T; Masuda, H; Nakagawa, K; Nakahara, Y; Kitamura, H; Yamada, K; Yoneda, M; Sawada, S; Nakagawa, M

    1998-03-01

    The pharmacological characteristics of atrial natriuretic peptide (ANP), such as natriuresis, vasodilation, or suppression of smooth muscle cell proliferation, are well investigated. However, this is the first study to report its role on blood coagulation and fibrinolysis mediated by vascular endothelial cells. In this study, the effects of ANP on the enhanced expression of tissue factor (TF) and plasminogen activator inhibitor 1 (PAI-1) by angiotensin II (Ang II) in cultured rat aortic endothelial cells (RAECs) were examined. The expressions of TF and PAI-1 mRNA were detected by northern blotting methods. The activities of TF on the surface of RAECs and PAI-1 in the culture media were measured by chromogenic assay. ANP suppressed mRNA expressions of TF and PAI-1 induced by Ang II in a concentration-dependent manner. This suppression was accompanied by the decreased activities of TF and PAI-1.

  9. Thioredoxin-interacting protein is required for endothelial NLRP3 inflammasome activation and cell death in a rat model of high-fat diet

    PubMed Central

    Mohamed, Islam N.; Hafez, Sherif S.; Fairaq, Arwa; Ergul, Adviye; Imig, John D.; El-Remessy, Azza B.

    2013-01-01

    Aims/hypothesis Obesity and hypertension, known pro-inflammatory states, are identified determinants for increased retinal microvascular abnormalities. However, the molecular link between inflammation and microvascular degeneration remains elusive. Thioredoxin-interacting protein (TXNIP) is recognised as an activator of the NOD-like receptor pyrin domain containing-3 (NLRP3) inflammasome. This study aims to examine TXNIP expression and elucidate its role in endothelial inflammasome activation and retinal lesions. Methods Spontaneously hypertensive (SHR) and control Wistar (W) rats were compared with groups fed a high-fat diet (HFD) (W+F and SHR+F) for 8–10 weeks. Results Compared with W controls, HFD alone or in combination with hypertension significantly induced formation of acellular capillaries, a hallmark of retinal ischaemic lesions. These effects were accompanied by significant increases in lipid peroxidation, nitrotyrosine and expression of TXNIP, nuclear factor κB, TNF-α and IL-1β. HFD significantly increased interaction of TXNIP–NLRP3 and expression of cleaved caspase-1 and cleaved IL-1β. Immunolocalisation studies identified TXNIP expression within astrocytes and Müller cells surrounding retinal endothelial cells. To model HFD in vitro, human retinal endothelial (HRE) cells were stimulated with 400 μmol/l palmitate coupled to BSA (Pal-BSA). Pal-BSA triggered expression of TXNIP and its interaction with NLRP3, resulting in activation of caspase-1 and IL-1β in HRE cells. Silencing Txnip expression in HRE cells abolished Pal-BSA-mediated cleaved IL-1β release into medium and cell death, evident by decreases in cleaved caspase-3 expression and the proportion of live to dead cells. Conclusions/interpretation These findings provide the first evidence for enhanced TXNIP expression in hypertension and HFD-induced retinal oxidative/inflammatory response and suggest that TXNIP is required for HFD-mediated activation of the NLRP3 inflammasome and the

  10. Activated Stat5 trafficking Via Endothelial Cell-derived Extracellular Vesicles Controls IL-3 Pro-angiogenic Paracrine Action.

    PubMed

    Lombardo, Giusy; Dentelli, Patrizia; Togliatto, Gabriele; Rosso, Arturo; Gili, Maddalena; Gallo, Sara; Deregibus, Maria Chiara; Camussi, Giovanni; Brizzi, Maria Felice

    2016-05-09

    Soluble factors and cell-derived extracellular vesicles (EVs) control vascular cell fate during inflammation. The present study investigates the impact of Interleukin 3 (IL-3) on EV release by endothelial cells (ECs), the mechanisms involved in EV release and paracrine actions. We found that IL-3 increases EV release, which is prevented by IL-3Ralpha blockade. EVs released upon IL-3 stimulation were able to induce pro-angiogenic signals as shown by chromatin immunoprecipitation (ChIP) assay performed on the promoter region of cyclin D1 and tridimensional tube-like structure formation. We herein demonstrate that these effects rely on the transfer of miR-126-3p, pre-miR-126 and, more importantly, of activated signal transduction and activator of transcription 5 (pSTAT5) from IL-3-EV cargo into recipient ECs. We show, using the dominant negative form (ΔN)STAT5 and an activated STAT5 (1*6STAT5) constructs, that STAT5 drives IL-3-mediated EV release, miR-126-3p and pSTAT5 content. Finally, using EVs recovered from ΔNSTAT5 expressing ECs, we provide evidence that miR-126-3p and pSTAT5 trafficking is relevant for IL-3-mediated paracrine pro-angiogenic signals. These results indicate that IL-3 regulates EC-EV release, cargo and IL-3 angiogenic paracrine action via STAT5. Moreover, these results provide evidence that EC-derived IL-3-EVs can serve as pro-angiogenic clinical delivery wound healing devices.

  11. Activated Stat5 trafficking Via Endothelial Cell-derived Extracellular Vesicles Controls IL-3 Pro-angiogenic Paracrine Action

    PubMed Central

    Lombardo, Giusy; Dentelli, Patrizia; Togliatto, Gabriele; Rosso, Arturo; Gili, Maddalena; Gallo, Sara; Deregibus, Maria Chiara; Camussi, Giovanni; Brizzi, Maria Felice

    2016-01-01

    Soluble factors and cell-derived extracellular vesicles (EVs) control vascular cell fate during inflammation. The present study investigates the impact of Interleukin 3 (IL-3) on EV release by endothelial cells (ECs), the mechanisms involved in EV release and paracrine actions. We found that IL-3 increases EV release, which is prevented by IL-3Ralpha blockade. EVs released upon IL-3 stimulation were able to induce pro-angiogenic signals as shown by chromatin immunoprecipitation (ChIP) assay performed on the promoter region of cyclin D1 and tridimensional tube-like structure formation. We herein demonstrate that these effects rely on the transfer of miR-126-3p, pre-miR-126 and, more importantly, of activated signal transduction and activator of transcription 5 (pSTAT5) from IL-3-EV cargo into recipient ECs. We show, using the dominant negative form (ΔN)STAT5 and an activated STAT5 (1*6STAT5) constructs, that STAT5 drives IL-3-mediated EV release, miR-126-3p and pSTAT5 content. Finally, using EVs recovered from ΔNSTAT5 expressing ECs, we provide evidence that miR-126-3p and pSTAT5 trafficking is relevant for IL-3-mediated paracrine pro-angiogenic signals. These results indicate that IL-3 regulates EC-EV release, cargo and IL-3 angiogenic paracrine action via STAT5. Moreover, these results provide evidence that EC-derived IL-3-EVs can serve as pro-angiogenic clinical delivery wound healing devices. PMID:27157262

  12. Phenotypic Expression of ADAMTS13 in Glomerular Endothelial Cells

    PubMed Central

    Tati, Ramesh; Kristoffersson, Ann-Charlotte; Ståhl, Anne-lie; Mörgelin, Matthias; Motto, David; Satchell, Simon; Mathieson, Peter; Manea-Hedström, Minola; Karpman, Diana

    2011-01-01

    Background ADAMTS13 is the physiological von Willebrand factor (VWF)-cleaving protease. The aim of this study was to examine ADAMTS13 expression in kidneys from ADAMTS13 wild-type (Adamts13+/+) and deficient (Adamts13−/−) mice and to investigate the expression pattern and bioactivity in human glomerular endothelial cells. Methodology/Principal Findings Immunohistochemistry was performed on kidney sections from ADAMTS13 wild-type and ADAMTS13-deficient mice. Phenotypic differences were examined by ultramorphology. ADAMTS13 expression in human glomerular endothelial cells and dermal microvascular endothelial cells was investigated by real-time PCR, flow cytometry, immunofluorescence and immunoblotting. VWF cleavage was demonstrated by multimer structure analysis and immunoblotting. ADAMTS13 was demonstrated in glomerular endothelial cells in Adamts13+/+ mice but no staining was visible in tissue from Adamts13−/− mice. Thickening of glomerular capillaries with platelet deposition on the vessel wall was detected in Adamts13−/− mice. ADAMTS13 mRNA and protein were detected in both human endothelial cells and the protease was secreted. ADAMTS13 activity was demonstrated in glomerular endothelial cells as cleavage of VWF. Conclusions/Significance Glomerular endothelial cells express and secrete ADAMTS13. The proteolytic activity could have a protective effect preventing deposition of platelets along capillary lumina under the conditions of high shear stress present in glomerular capillaries. PMID:21720563

  13. Production of soluble Neprilysin by endothelial cells.

    PubMed

    Kuruppu, Sanjaya; Rajapakse, Niwanthi W; Minond, Dmitriy; Smith, A Ian

    2014-04-01

    A non-membrane bound form of Neprilysin (NEP) with catalytic activity has the potential to cleave substrates throughout the circulation, thus leading to systemic effects of NEP. We used the endothelial cell line Ea.hy926 to identify the possible role of exosomes and A Disintegrin and Metalloprotease 17 (ADAM-17) in the production of non-membrane bound NEP. Using a bradykinin based quenched fluorescent substrate (40 μM) assay, we determined the activity of recombinant human NEP (rhNEP; 12 ng), and NEP in the media of endothelial cells (10% v/v; after 24 h incubation with cells) to be 9.35±0.70 and 6.54±0.41 μmols of substrate cleaved over 3h, respectively. The presence of NEP in the media was also confirmed by Western blotting. At present there are no commercially available inhibitors specific for ADAM-17. We therefore synthesised two inhibitors TPI2155-14 and TPI2155-17, specific for ADAM-17 with IC50 values of 5.36 and 4.32 μM, respectively. Treatment of cells with TPI2155-14 (15 μM) and TPI2155-17 (4.3 μM) resulted in a significant decrease in NEP activity in media (62.37±1.43 and 38.30±4.70, respectively as a % of control; P<0.0001), implicating a possible role for ADAM-17 in NEP release. However, centrifuging media (100,000g for 1 h at 4 °C) removed all NEP activity from the supernatant indicating the likely role of exosomes in the release of NEP. Our data therefore indicated for the first time that NEP is released from endothelial cells via exosomes, and that this process is dependent on ADAM-17.

  14. The Association of Vitamin D Status with Dyslipidaemia and Biomarkers of Endothelial Cell Activation in Older Australians

    PubMed Central

    Alyami, Ali M.; Lam, Virginie; Soares, Mario J.; Zhao, Yun; Sherriff, Jillian L.; Mamo, John C.; James, Anthony P.; Coombes, Fiona

    2016-01-01

    Background/Aims: Vitamin D has been investigated for many non-skeletal effects. The objective of this study was to determine whether circulating lipids, systemic inflammation, and biomarkers of endothelial cell activation varied with the vitamin D status of older Australians. Methods: One hundred and one participants were proportionately and randomly sampled across tertiles of 25 hydroxy vitamin D (25(OH)D) from a larger cohort of free living older adults (T1 median = 97; T2 median = 74.5; T3 median = 56.8 nmol/L). Overnight fasting blood samples were assayed for 25(OH)D, parathyroid hormone (PTH), insulin, triacylglycerol (TAG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C) and high density lipoprotein cholesterol (HDL-C). Markers of systemic inflammation (high sensitivity C-reactive protein (hsCRP), tumour necrosis factor-α (TNF-α)) and endothelial activation (hepatocyte growth factor (HGF), P-selectin and soluble vascular cell adhesion molecule (sVCAM), soluble intracellular adhesion molecule (sICAM)) were determined. A general linear model multivariate analysis with a backward elimination procedure was performed. Results: Eighty-three participants (48 women, 35 men), aged 65 ± 7.7 years, BMI 28 ± 4.5 kg/m2, with complete data were analyzed. The final parsimonious model controlled for age, gender, BMI, and McAuley’s index, but excluded season, medications, and PTH. There were significant differences across 25(OH)D tertiles in TC (T1 < T3, p = 0.003; T2 < T3, p = 0.001), LDL-C (T1 < T3, p = 0.005; T2 < T3, p = 0.001), TAG (T2 < T3, p = 0.026), HGF (T1 > T3, p = 0.009) and sVCAM (T1 > T3, P = 0.04). Conclusions: Higher vitamin D status may protect the endothelium through reduced dyslipidaemia and increased HGF. PMID:27483306

  15. Induction of the Gene Encoding Macrophage Chemoattractant Protein 1 by Orientia tsutsugamushi in Human Endothelial Cells Involves Activation of Transcription Factor Activator Protein 1

    PubMed Central

    Cho, Nam-Hyuk; Seong, Seung-Yong; Huh, Myung-Sook; Kim, Na-Hyun; Choi, Myung-sik; Kim, Ik-sang

    2002-01-01

    Human macrophage chemoattractant protein 1 (MCP-1) is a potent mediator of macrophage migration and therefore plays an essential role in early events of inflammation. In endothelial cells, at least three independent pathways regulate MCP-1 expression by NF-κB and AP-1. Orientia tsutsugamushi causes vasculitis in humans by replicating inside macrophages and endothelial cells. In the present study, we investigated the cis-acting and trans-acting elements involved in O. tsutsugamushi-induced MCP-1 gene expression in human umbilical vein endothelial cells (HUVEC). Although NF-κB activation was observed in HUVEC infected with O. tsutsugamushi, inhibition of NF-κB activation did not affect the MCP-1 expression. However, treatment of HUVEC with extracellular signal-regulated kinase (ERK) kinase inhibitor or p38 mitogen-activated protein kinase (MAPK) inhibitor suppressed expression of MCP-1 mRNA concomitant with downregulation of activator protein 1 (AP-1) activation. Deletion of triphorbol acetate response elements (TRE) at position −69 to −63 of MCP-1 gene abolished inducible promoter activity. Deletion of TRE at position −69 to −63−96 to −90 or deletion of NF-κB-binding site at position −69 to −63−88 to −79 did not affect the inducibility of promoter. Site-directed mutagenesis of the NF-κB binding sites at positions −2640 to −2632, −2612 to −2603 in the enhancer region, or the AP-1 biding site at position −2276 to −2270 decreased the inducible activity of the promoter. Taken together, AP-1 activation by both the ERK pathway and the p38 MAPK pathway as well as their binding to TRE at position −69 to −63 in proximal promoter and TRE at position −2276 to −2270 in enhancer region is altogether essential in induction of MCP-1 mRNA in HUVEC infected with O. tsutsugamushi. Although NF-κB activation is not essential per se, the κB site in the enhancer region is important in MCP-1 induction of HUVEC. This discrepancy in the

  16. Inhibition of endothelial cell activation by bHLH protein E2-2 and its impairment of angiogenesis.

    PubMed

    Tanaka, Aya; Itoh, Fumiko; Nishiyama, Koichi; Takezawa, Toshiaki; Kurihara, Hiroki; Itoh, Susumu; Kato, Mitsuyasu

    2010-05-20

    E2-2 belongs to the basic helix-loop-helix (bHLH) family of transcription factors. E2-2 associates with inhibitor of DNA binding (Id) 1, which is involved in angiogenesis. In this paper, we demonstrate that E2-2 interacts with Id1 and provide evidence that this interaction potentiates angiogenesis. Mutational analysis revealed that the HLH domain of E2-2 is required for the interaction with Id1 and vice versa. In addition, Id1 interfered with E2-2-mediated effects on luciferase reporter activities. Interestingly, injection of E2-2-expressing adenoviruses into Matrigel plugs implanted under the skin blocked in vivo angiogenesis. In contrast, the injection of Id1-expressing adenoviruses rescued E2-2-mediated inhibition of in vivo angiogenic reaction. Consistent with the results of the Matrigel plug assay, E2-2 could inhibit endothelial cell (EC) migration, network formation, and proliferation. On the other hand, knockdown of E2-2 in ECs increased EC migration. The blockade of EC migration by E2-2 was relieved by exogenous expression of Id1. We also demonstrated that E2-2 can perturb VEGFR2 expression via inhibition of VEGFR2 promoter activity. This study suggests that E2-2 can maintain EC quiescence and that Id1 can counter this effect. PMID:20231428

  17. Activation of the adenylyl cyclase/cyclic AMP/protein kinase A pathway in endothelial cells exposed to cyclic strain

    NASA Technical Reports Server (NTRS)

    Cohen, C. R.; Mills, I.; Du, W.; Kamal, K.; Sumpio, B. E.

    1997-01-01

    The aim of this study was to assess the involvement of the adenylyl cyclase/cyclic AMP/protein kinase A pathway (AC) in endothelial cells (EC) exposed to different levels of mechanical strain. Bovine aortic EC were seeded to confluence on flexible membrane-bottom wells. The membranes were deformed with either 150 mm Hg (average 10% strain) or 37.5 mm Hg (average 6% strain) vacuum at 60 cycles per minute (0.5 s strain; 0.5 s relaxation) for 0-60 min. The results demonstrate that at 10% average strain (but not 6% average strain) there was a 1.5- to 2.2-fold increase in AC, cAMP, and PKA activity by 15 min when compared to unstretched controls. Further studies revealed an increase in cAMP response element binding protein in EC subjected to the 10% average strain (but not 6% average strain). These data support the hypothesis that cyclic strain activates the AC/cAMP/PKA signal transduction pathway in EC which may occur by exceeding a strain threshold and suggest that cyclic strain may stimulate the expression of genes containing cAMP-responsive promoter elements.

  18. Irisin Induces Angiogenesis in Human Umbilical Vein Endothelial Cells In Vitro and in Zebrafish Embryos In Vivo via Activation of the ERK Signaling Pathway

    PubMed Central

    Wu, Fei; Song, Haibo; Zhang, Yuan; Zhang, Yuzhu; Mu, Qian; Jiang, Miao; Wang, Fang; Zhang, Wen; Li, Liang; Li, Huanjie; Wang, Yunshan; Zhang, Mingxiang; Li, Shiwu; Yang, Lijun; Meng, Yan; Tang, Dongqi

    2015-01-01

    As a link between exercise and metabolism, irisin is assumed to be involved in increased total body energy expenditure, reduced body weight, and increased insulin sensitivity. Although our recent evidence supported the contribution of irisin to vascular endothelial cell (ECs) proliferation and apoptosis, further research of irisin involvement in the angiogenesis of ECs was not conclusive. In the current study, it was found that irisin promoted Human Umbilical Vein Endothelial Cell (HUVEC) angiogenesis via increasing migration and tube formation, and attenuated chemically-induced intersegmental vessel (ISV) angiogenic impairment in transgenic TG (fli1: GFP) zebrafish. It was further demonstrated that expression of matrix metalloproteinase (MMP) 2 and 9 were also up-regulated in endothelial cells. We also found that irisin activated extracellular signal–related kinase (ERK) signaling pathways. Inhibition of ERK signaling by using U0126 decreased the pro-migration and pro-angiogenic effect of irisin on HUVEC. Also, U0126 inhibited the elevated expression of MMP-2 and MMP-9 when they were treated with irisin. In summary, these findings provided direct evidence that irisin may play a pivotal role in maintaining endothelium homeostasis by promoting endothelial cell angiogenesis via the ERK signaling pathway. PMID:26241478

  19. Dermal stem cells can differentiate down an endothelial lineage.

    PubMed

    Bell, Emma; Richardson, Gavin D; Jahoda, Colin A; Gledhill, Karl; Phillips, Helen M; Henderson, Deborah; Owens, W Andrew; Hole, Nicholas

    2012-11-01

    In this study, we have demonstrated that cells of neural crest origin located in the dermal papilla (DP) exhibit endothelial marker expression and a functional activity. When grown in endothelial growth media, DP primary cultures upregulate expression of vascular endothelial growth factor receptor 1 (FLT1) mRNA and downregulate expression of the dermal stem cell marker α-smooth muscle actin. DP cells have demonstrated functional characteristics of endothelial cells, including the ability to form capillary-like structures on Matrigel, increase uptake of low-density lipoprotein and upregulate ICAM1 (CD54) in response to tumour necrosis factor alpha (TNF-α) stimulation. We confirmed that these observations were not due to contaminating endothelial cells, by using DP clones. We have also used the WNT1cre/ROSA26R and WNT1cre/YFP lineage-tracing mouse models to identify a population of neural crest-derived cells in DP cultures that express the endothelial marker PECAM (CD31); these cells also form capillary-like structures on Matrigel. Importantly, cells of neural crest origin that express markers of endothelial and mesenchymal lineages exist within the dermal sheath of the vibrissae follicle.

  20. VEGF increases the fibrinolytic activity of endothelial cells within fibrin matrices: involvement of VEGFR-2, tissue type plasminogen activator and matrix metalloproteinases.

    PubMed

    Ratel, David; Mihoubi, Samira; Beaulieu, Edith; Durocher, Yves; Rivard, Georges-Etienne; Gingras, Denis; Béliveau, Richard

    2007-01-01

    Proteolysis of fibrin matrices by endothelial cells plays essential roles in the migratory and morphogenic differentiation processes underlying angiogenesis. Using an in vitro fibrinolysis model consisting of human umbilical vein endothelial cells (HUVECs) embedded in a three dimensional fibrin matrix, we show that VEGF, an angiogenic cytokine that plays a crucial role in the onset of angiogenesis, is a potent activator of HUVEC-mediated fibrinolysis. This VEGF-dependent fibrin degradation was completely abrogated by inhibitors of either the plasminogen activator/plasmin or matrix metalloproteinases (MMP) proteolytic systems, suggesting the involvement of both classes of proteases in fibrin degradation. Accordingly, VEGF-induced fibrinolysis correlated with an increase in the expression of tPA and of some MMPs, such as MT2-MMP and was completely blocked by a neutralizing antibody against tPA. Overall, these results indicate that efficient proteolysis of three dimensional fibrin matrices during VEGF-mediated angiogenesis involves a complex interplay between the MMP and plasmin-mediated proteolytic systems. PMID:17512973

  1. Four molecular pathways of T cell adhesion to endothelial cells: roles of LFA-1, VCAM-1, and ELAM-1 and changes in pathway hierarchy under different activation conditions

    PubMed Central

    1991-01-01

    T cell adhesion to endothelium is critical to lymphocyte recirculation and influx into sites of inflammation. We have systematically analyzed the role of four receptor/ligand interactions that mediate adhesion of peripheral human CD4+ T cells to cultured human umbilical vein endothelial cells (HUVEC): T cell LFA-1 binding to ICAM-1 and an alternative ligand ("ICAM-X"), T cell VLA-4 binding to VCAM-1, and T cell binding to ELAM-1. Contributions of these four pathways depend on the activation state of both the T cell and HUVEC, and the differentiation state of the T cell. ELAM-1 plays a significant role in mediating adhesion of resting CD4+ T cells to activated HUVEC. LFA-1 adhesion dominates with PMA-activated T cells but the strength and predominant LFA-1 ligand is determined by the activation state of the HUVEC; while ICAM-1 is the dominant ligand on IL-1-induced HUVEC, "ICAM- X" dominates binding to uninduced HUVEC. Adhesion via VLA-4 depends on induction of its ligand VCAM-1 on activated HUVEC; PMA activation of T cells augments VLA-4-mediated adhesion, both in the model of T/HUVEC binding and in a simplified model of T cell adhesion to VCAM-1- transfected L cells. Unlike LFA-1 and VLA-4, ELAM-1-mediated adhesion is not increased by T cell activation. Differential expression of adhesion molecules on CD4+ T cell subsets understood to be naive and memory cells also regulates T/HUVEC adhesion. Naive T cell adhesion to HUVEC is mediated predominantly by LFA-1 with little or no involvement of the VLA-4 and ELAM-1 pathways. In contrast, memory T cells bind better to HUVEC and utilize all four pathways. These studies demonstrate that there are at least four molecular pathways mediating T/HUVEC adhesion and that the dominance/hierarchy of these pathways varies dramatically with the activation state of the interacting cells and the differentiation state of the T cell. PMID:1710227

  2. Production of soluble Neprilysin by endothelial cells

    SciTech Connect

    Kuruppu, Sanjaya; Rajapakse, Niwanthi W.; Minond, Dmitriy; Smith, A. Ian

    2014-04-04

    Highlights: • A soluble full-length form of Neprilysin exists in media of endothelial cells. • Exosomal release is the key mechanism for the production of soluble Neprilysin. • Inhibition of ADAM-17 by specific inhibitors reduce Neprilysin release. • Exosome mediated release of Neprilysin is dependent on ADAM-17 activity. - Abstract: A non-membrane bound form of Neprilysin (NEP) with catalytic activity has the potential to cleave substrates throughout the circulation, thus leading to systemic effects of NEP. We used the endothelial cell line Ea.hy926 to identify the possible role of exosomes and A Disintegrin and Metalloprotease 17 (ADAM-17) in the production of non-membrane bound NEP. Using a bradykinin based quenched fluorescent substrate (40 μM) assay, we determined the activity of recombinant human NEP (rhNEP; 12 ng), and NEP in the media of endothelial cells (10% v/v; after 24 h incubation with cells) to be 9.35 ± 0.70 and 6.54 ± 0.41 μmols of substrate cleaved over 3 h, respectively. The presence of NEP in the media was also confirmed by Western blotting. At present there are no commercially available inhibitors specific for ADAM-17. We therefore synthesised two inhibitors TPI2155-14 and TPI2155-17, specific for ADAM-17 with IC{sub 50} values of 5.36 and 4.32 μM, respectively. Treatment of cells with TPI2155-14 (15 μM) and TPI2155-17 (4.3 μM) resulted in a significant decrease in NEP activity in media (62.37 ± 1.43 and 38.30 ± 4.70, respectively as a % of control; P < 0.0001), implicating a possible role for ADAM-17 in NEP release. However, centrifuging media (100,000g for 1 h at 4 °C) removed all NEP activity from the supernatant indicating the likely role of exosomes in the release of NEP. Our data therefore indicated for the first time that NEP is released from endothelial cells via exosomes, and that this process is dependent on ADAM-17.

  3. Protein kinase D activity controls endothelial nitric oxide synthesis.

    PubMed

    Aicart-Ramos, Clara; Sánchez-Ruiloba, Lucía; Gómez-Parrizas, Mónica; Zaragoza, Carlos; Iglesias, Teresa; Rodríguez-Crespo, Ignacio

    2014-08-01

    Vascular endothelial growth factor (VEGF) regulates key functions of the endothelium, such as angiogenesis or vessel repair in processes involving endothelial nitric oxide synthase (eNOS) activation. One of the effector kinases that become activated in endothelial cells upon VEGF treatment is protein kinase D (PKD). Here, we show that PKD phosphorylates eNOS, leading to its activation and a concomitant increase in NO synthesis. Using mass spectrometry, we show that the purified active kinase specifically phosphorylates recombinant eNOS on Ser1179. Treatment of endothelial cells with VEGF or phorbol 12,13-dibutyrate (PDBu) activates PKD and increases eNOS Ser1179 phosphorylation. In addition, pharmacological inhibition of PKD and gene silencing of both PKD1 and PKD2 abrogate VEGF signaling, resulting in a clear diminished migration of endothelial cells in a wound healing assay. Finally, inhibition of PKD in mice results in an almost complete disappearance of the VEGF-induced vasodilatation, as monitored through determination of the diameter of the carotid artery. Hence, our data indicate that PKD is a new regulatory kinase of eNOS in endothelial cells whose activity orchestrates mammalian vascular tone. PMID:24928905

  4. Thrombospondin-1 signaling through CD47 inhibits cell cycle progression and induces senescence in endothelial cells

    PubMed Central

    Gao, Qi; Chen, Kexin; Gao, Lu; Zheng, Yang; Yang, Yong-Guang

    2016-01-01

    CD47 signaling in endothelial cells has been shown to suppress angiogenesis, but little is known about the link between CD47 and endothelial senescence. Herein, we demonstrate that the thrombospondin-1 (TSP1)-CD47 signaling pathway is a major mechanism for driving endothelial cell senescence. CD47 deficiency in endothelial cells significantly improved their angiogenic function and attenuated their replicative senescence. Lack of CD47 also suppresses activation of cell cycle inhibitors and upregulates the expression of cell cycle promoters, leading to increased cell cycle progression. Furthermore, TSP1 significantly accelerates replicative senescence and associated cell cycle arrest in a CD47-dependent manner. These findings demonstrate that TSP1-CD47 signaling is an important mechanism driving endothelial cell senescence. Thus, TSP1 and CD47 provide attractive molecular targets for treatment of aging-associated cardiovascular dysfunction and diseases involving endothelial dysregulation. PMID:27607583

  5. Adherence of Candida to cultured vascular endothelial cells: mechanisms of attachment and endothelial cell penetration.

    PubMed

    Rotrosen, D; Edwards, J E; Gibson, T R; Moore, J C; Cohen, A H; Green, I

    1985-12-01

    To elucidate the pathogenesis of hematogenous Candida infections, we developed an in vitro model of Candida adherence to and penetration of human endothelial cells. We enhanced or inhibited adherence in order to probe mechanisms of attachment. Adherence of Candida albicans showed a linear relation to Candida inoculum (range, 10(2)-10(5) cfu, r = .99, P less than .01) and exceeded that of less virulent Candida species and that of Saccharomyces cerevisiae (P less than .01). Candida immune serum blocked attachment (greater than 95% inhibition; P less than .001), however, this activity was abolished by immunoprecipitation of immune serum with C. albicans mannan (P less than .001) and was unaffected by immunoprecipitation with S. cerevisiae mannan or by adsorption with particulate chitin. Adherence was diminished by exposing C. albicans to heat (greater than 99% inhibition; P less than .01), UV light (98% inhibition; P less than .01), or sodium periodate (greater than 72% inhibition; P less than .01). An extract from heat-exposed C. albicans blocked adherence (greater than 51% inhibition; P less than .001). Transmission electron microscopy demonstrated that viable or killed Candida organisms were attached to endothelial cells, were enveloped by membrane processes from the endothelial cell surface, and were incorporated into the endothelial cells within phagosomes. Cytochalasin B blocked incorporation without blocking surface attachment. PMID:3905987

  6. Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.

    PubMed

    Gratzinger, Dita; Canosa, Sandra; Engelhardt, Britta; Madri, Joseph A

    2003-08-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1), an immunoglobulin family vascular adhesion molecule, is involved in endothelial cell migration and angiogenesis (1, 2). We found that endothelial cells lacking PECAM-1 exhibit increased single cell motility and extension formation but poor wound healing migration, reminiscent of cells in which Rho activity has been suppressed by overexpressing a GTPase-activating protein (3). The ability of PECAM-1 to restore wound healing migration to PECAM-1-deficient cells was independent of its extracellular domain or signaling via its immunoreceptor tyrosine-based inhibitory motif. PECAM-1-deficient endothelial cells had a selective defect in RhoGTP loading, and inhibition of Rho activity mimicked the PECAM-1-deficient phenotype of increased chemokinetic single cell motility at the expense of coordinated wound healing migration. The wound healing advantage of PECAM-1-positive endothelial cells was not only Rho mediated but pertussis toxin inhibitable, characteristic of migration mediated by heterotrimeric G-protein-linked seven-transmembrane receptor signaling such as signaling in response to the serum sphingolipid sphingosine-1-phosphate (S1P) (4, 5). Indeed, we found that the wound healing defect of PECAM-1 null endothelial cells is minimized in sphingolipid-depleted media; moreover, PECAM-1 null endothelial cells fail to increase their migration in response to S1P. We have also found that PECAM-1 localizes to rafts and that in its absence heterotrimeric G-protein components are differentially recruited to rafts, providing a potential mechanism for PECAM-1-mediated coordination of S1P signaling. PECAM-1 may thus support the effective S1P/RhoGTP signaling required for wound healing endothelial migration by allowing for the spatially directed, coordinated activation of Galpha signaling pathways. PMID:12890700

  7. A repressor sequence in the juxtamembrane domain of Flt-1 (VEGFR-1) constitutively inhibits vascular endothelial growth factor-dependent phosphatidylinositol 3′-kinase activation and endothelial cell migration

    PubMed Central

    Gille, Hendrik; Kowalski, Joe; Yu, Lanlan; Chen, Helen; Pisabarro, M.Teresa; Davis-Smyth, Terri; Ferrara, Napoleone

    2000-01-01

    Vascular endothelial growth factor (VEGF) has two highly homologous tyrosine kinase receptors: Flt-1 (VEGFR-1) and KDR (VEGFR-2). KDR is strongly phosphorylated on tyrosines and can transmit mitogenic and motogenic signals following VEGF binding, while Flt-1 is markedly less effective in mediating such functions. To dissect the regions that account for the differences between the two receptors, we generated a series of chimeric Flt-1–KDR molecules. We found that the juxtamembrane region of Flt-1 prevents key signaling functions. When the juxtamembrane region of Flt-1 is replaced by that of KDR, Flt-1 becomes competent to mediate endothelial cell migration and phosphatidylinositol 3′-kinase activation in response to VEGF. Further mutational analysis shows that a short divergent sequence is responsible for such repressor function. However, mutant Flt-1 receptors lacking this sequence do not transmit effective proliferative signals, suggesting that this receptor function is regulated separately. These results define a novel functional domain that serves to repress Flt-1 activity in endothelial cells. PMID:10921887

  8. Endothelial cells in health and disease.

    PubMed

    Eckers, Anna; Haendeler, Judith

    2015-05-10

    According to the World Health Organization, from 2014, cardiovascular diseases (CVD) are the number one cause of death worldwide. One of the key players in maintaining proper cardiovascular function is the endothelium, the inner layer of all blood vessels. This monolayer of cells on one hand serves as a barrier between blood and the surrounding tissue and on the other hand regulates many aspects of vessel function. Therefore, it is not surprising that interventions reducing the risk for CVD improve endothelial function. There is a clear correlation between endothelial dysfunction, in which the endothelial homeostasis is disturbed, and the development and progression of many CVD. Thus, the development of diagnostic tools for early detection of disturbances in endothelial homeostasis or interventions aimed at improving endothelial function after insults require a comprehensive knowledge not only of the cellular reactions to the positive or negative stimuli but also of the molecular mechanisms relaying these responses. Thus, this Forum on "endothelial cells in health and disease" focuses on key molecules and processes intimately involved in endothelial cell function and covers areas from endothelial nitric oxide synthase-dependent processes, over the group of Phox-Bem1 domain proteins, cytochrome P450 epoxygenase-derived metabolites, and pre-mRNA splicing to microRNAs. Finally, one has to conclude that keeping endothelial homeostasis is the central key for a healthy long life of the human individual.

  9. Circulating Fibroblast Growth Factor-2, HIV-Tat, and Vascular Endothelial Cell Growth Factor-A in HIV-Infected Children with Renal Disease Activate Rho-A and Src in Cultured Renal Endothelial Cells

    PubMed Central

    Das, Jharna R; Gutkind, J. Silvio; Ray, Patricio E

    2016-01-01

    Renal endothelial cells (REc) are the first target of HIV-1 in the kidney. The integrity of REc is maintained at least partially by heparin binding growth factors that bind to heparan sulfate proteoglycans located on their cell surface. However, previous studies showed that the accumulation of two heparin-binding growth factors, Vascular Endothelial Cell Growth Factor-A (VEGF-A) and Fibroblast Growth Factor-2 (FGF-2), in combination with the viral protein Tat, can precipitate the progression of HIV-renal diseases. Nonetheless, very little is known about how these factors affect the behavior of REc in HIV+ children. We carried out this study to determine how VEGF-A, FGF-2, and HIV-Tat, modulate the cytoskeletal structure and permeability of cultured REc, identify key signaling pathways involved in this process, and develop a functional REc assay to detect HIV+ children affected by these changes. We found that VEGF-A and FGF-2, acting in synergy with HIV-Tat and heparin, affected the cytoskeletal structure and permeability of REc through changes in Rho-A, Src, and Rac-1 activity. Furthermore, urine samples from HIV+ children with renal diseases, showed high levels of VEGF-A and FGF-2, and induced similar changes in cultured REc and podocytes. These findings suggest that FGF-2, VEGF-A, and HIV-Tat, may affect the glomerular filtration barrier in HIV+ children through the induction of synergistic changes in Rho-A and Src activity. Further studies are needed to define the clinical value of the REc assay described in this study to identify HIV+ children exposed to circulating factors that may induce glomerular injury through similar mechanisms. PMID:27097314

  10. Circulating Fibroblast Growth Factor-2, HIV-Tat, and Vascular Endothelial Cell Growth Factor-A in HIV-Infected Children with Renal Disease Activate Rho-A and Src in Cultured Renal Endothelial Cells.

    PubMed

    Das, Jharna R; Gutkind, J Silvio; Ray, Patricio E

    2016-01-01

    Renal endothelial cells (REc) are the first target of HIV-1 in the kidney. The integrity of REc is maintained at least partially by heparin binding growth factors that bind to heparan sulfate proteoglycans located on their cell surface. However, previous studies showed that the accumulation of two heparin-binding growth factors, Vascular Endothelial Cell Growth Factor-A (VEGF-A) and Fibroblast Growth Factor-2 (FGF-2), in combination with the viral protein Tat, can precipitate the progression of HIV-renal diseases. Nonetheless, very little is known about how these factors affect the behavior of REc in HIV+ children. We carried out this study to determine how VEGF-A, FGF-2, and HIV-Tat, modulate the cytoskeletal structure and permeability of cultured REc, identify key signaling pathways involved in this process, and develop a functional REc assay to detect HIV+ children affected by these changes. We found that VEGF-A and FGF-2, acting in synergy with HIV-Tat and heparin, affected the cytoskeletal structure and permeability of REc through changes in Rho-A, Src, and Rac-1 activity. Furthermore, urine samples from HIV+ children with renal diseases, showed high levels of VEGF-A and FGF-2, and induced similar changes in cultured REc and podocytes. These findings suggest that FGF-2, VEGF-A, and HIV-Tat, may affect the glomerular filtration barrier in HIV+ children through the induction of synergistic changes in Rho-A and Src activity. Further studies are needed to define the clinical value of the REc assay described in this study to identify HIV+ children exposed to circulating factors that may induce glomerular injury through similar mechanisms.

  11. Circulating Fibroblast Growth Factor-2, HIV-Tat, and Vascular Endothelial Cell Growth Factor-A in HIV-Infected Children with Renal Disease Activate Rho-A and Src in Cultured Renal Endothelial Cells.

    PubMed

    Das, Jharna R; Gutkind, J Silvio; Ray, Patricio E

    2016-01-01

    Renal endothelial cells (REc) are the first target of HIV-1 in the kidney. The integrity of REc is maintained at least partially by heparin binding growth factors that bind to heparan sulfate proteoglycans located on their cell surface. However, previous studies showed that the accumulation of two heparin-binding growth factors, Vascular Endothelial Cell Growth Factor-A (VEGF-A) and Fibroblast Growth Factor-2 (FGF-2), in combination with the viral protein Tat, can precipitate the progression of HIV-renal diseases. Nonetheless, very little is known about how these factors affect the behavior of REc in HIV+ children. We carried out this study to determine how VEGF-A, FGF-2, and HIV-Tat, modulate the cytoskeletal structure and permeability of cultured REc, identify key signaling pathways involved in this process, and develop a functional REc assay to detect HIV+ children affected by these changes. We found that VEGF-A and FGF-2, acting in synergy with HIV-Tat and heparin, affected the cytoskeletal structure and permeability of REc through changes in Rho-A, Src, and Rac-1 activity. Furthermore, urine samples from HIV+ children with renal diseases, showed high levels of VEGF-A and FGF-2, and induced similar changes in cultured REc and podocytes. These findings suggest that FGF-2, VEGF-A, and HIV-Tat, may affect the glomerular filtration barrier in HIV+ children through the induction of synergistic changes in Rho-A and Src activity. Further studies are needed to define the clinical value of the REc assay described in this study to identify HIV+ children exposed to circulating factors that may induce glomerular injury through similar mechanisms. PMID:27097314

  12. Activation of sonic hedgehog signaling attenuates oxidized low-density lipoprotein-stimulated brain microvascular endothelial cells dysfunction in vitro.

    PubMed

    Jiang, Xiu-Long; Chen, Ting; Zhang, Xu

    2015-01-01

    The study was performed to investigate the role of sonic hedgehog (SHH) in the oxidized low-density lipoprotein (oxLDL)-induced blood-brain barrier (BBB) disruption. The primary mouse brain microvascular endothelial cells (MBMECs) were exposed to oxLDL. The results indicated that treatment of MBMECs with oxLDL decreased the cell viability, and oxidative stress was involved in oxLDL-induce MBMECs dysfunction with increasing intracellular ROS and MDA formation as well as decreasing NO release and eNOS mRNA expression. In addition, SHH signaling components, such as SHH, Smo and Gli1, mRNA and protein levels were significantly decreased after incubation with increasing concentrations of oxLDL. Treatment with oxLDL alone or SHH loss-of-function significantly increased the permeability of MBMECs, and overexpression of SHH attenuated oxLDL-induced elevation of permeability in MBMECs. Furthermore, SHH gain-of-function could reverse oxLDL-induced apoptosis through inhibition caspase3 and caspase8 levels in MBMECs. Taken together, these results demonstrated that the suppression of SHH in MBMECs might contribute to the oxLDL-induced disruption of endothelial barrier. However, the overexpression of SHH could reverse oxLDL-induced endothelial cells dysfunction in vitro.

  13. Activation of sonic hedgehog signaling attenuates oxidized low-density lipoprotein-stimulated brain microvascular endothelial cells dysfunction in vitro.

    PubMed

    Jiang, Xiu-Long; Chen, Ting; Zhang, Xu

    2015-01-01

    The study was performed to investigate the role of sonic hedgehog (SHH) in the oxidized low-density lipoprotein (oxLDL)-induced blood-brain barrier (BBB) disruption. The primary mouse brain microvascular endothelial cells (MBMECs) were exposed to oxLDL. The results indicated that treatment of MBMECs with oxLDL decreased the cell viability, and oxidative stress was involved in oxLDL-induce MBMECs dysfunction with increasing intracellular ROS and MDA formation as well as decreasing NO release and eNOS mRNA expression. In addition, SHH signaling components, such as SHH, Smo and Gli1, mRNA and protein levels were significantly decreased after incubation with increasing concentrations of oxLDL. Treatment with oxLDL alone or SHH loss-of-function significantly increased the permeability of MBMECs, and overexpression of SHH attenuated oxLDL-induced elevation of permeability in MBMECs. Furthermore, SHH gain-of-function could reverse oxLDL-induced apoptosis through inhibition caspase3 and caspase8 levels in MBMECs. Taken together, these results demonstrated that the suppression of SHH in MBMECs might contribute to the oxLDL-induced disruption of endothelial barrier. However, the overexpression of SHH could reverse oxLDL-induced endothelial cells dysfunction in vitro. PMID:26722472

  14. Regulation of endothelial cell cycle by laminar versus oscillatory flow: distinct modes of interactions of AMP-activated protein kinase and Akt pathways.

    PubMed

    Guo, Deliang; Chien, Shu; Shyy, John Y-J

    2007-03-01

    Steady laminar flow in the straight parts of the arterial tree is atheroprotective, whereas disturbed flow with oscillation in branch points and the aortic root are athero-prone, in part, because of the distinct roles of the flow patterns in regulating the cell cycle of vascular endothelial cells (ECs). To elucidate the molecular basis underlying the endothelial cell cycle regulated by distinct flow patterns, we conducted flow-channel experiments to investigate the effects of laminar versus oscillatory flows on activation of AMP-activated protein kinase (AMPK) and Akt in ECs. Laminar flow caused a transient activation of both AMPK and Akt, but oscillatory flow activated only Akt, with AMPK being maintained at its basal level. Constitutively active and dominant-negative mutants of AMPK and Akt were used to elucidate further the positive effect of Akt and negative role of AMPK in mediating mTOR (mammalian target of rapamycin) and its target p70S6 kinase (S6K) in response to laminar and oscillatory flows. Measurements of phosphorylation of mTOR Ser2448 and S6K Thr389 showed that AMPK, by counteracting Akt under laminar flow, resulted in a transient activation of S6K. Under oscillatory flow, because of the lack of AMPK activation to effect negative regulation, S6K was activated in a sustained manner. As a functional consequence, AMPK activation attenuated cell cycle progression in response to both laminar and oscillatory flows. In contrast, AMPK inhibition promoted EC cycle progression by decreasing the cell population in the G(0)/G(1) phase and increasing it in the S+G(2)/M phase. In vivo, phosphorylation of the promitotic S6K in mouse thoracic aorta was much less than that in mouse aortic root. In contrast, AMPK phosphorylation was higher in the thoracic aorta. These results provide a molecular mechanism by which laminar versus oscillatory flow regulates the endothelial cell cycle.

  15. Scleroderma fibroblasts show increased responsiveness to endothelial cell-derived IL-1 and bFGF.

    PubMed

    Denton, C P; Xu, S; Black, C M; Pearson, J D

    1997-03-01

    Fibroblasts cultured from lesional skin in scleroderma (systemic sclerosis) demonstrate an activated phenotype that may be important in pathogenesis. Endothelial cell-derived cytokines can modulate fibroblast properties, and endothelial cell changes occur early in scleroderma. Thus, endothelial cell and fibroblast dysfunction may be linked through the paracrine activity of soluble endothelial cell products. We have explored endothelial cell-fibroblast interactions in vitro by investigating the modulation of scleroderma and control fibroblast properties by endothelial cell-conditioned medium (EC-CM). EC-CM caused a concentration-dependent stimulation of fibroblast DNA and protein synthesis and upregulation of cell surface ICAM-1 expression. Scleroderma fibroblasts showed consistently greater responses than control cells. Medium conditioned by mechanically wounded endothelial cells had a greater effect than that from resting endothelial cells. Pre-incubation of EC-CM with anti-bFGF significantly reduced the promotion of fibroblast thymidine incorporation but did not affect endothelial cell-induced leucine incorporation. Conversely, anti-IL-1 antibodies abrogated EC-CM-induced leucine incorporation and ICAM-1 expression but did not diminish thymidine incorporation. Recombinant bFGF or IL-1 modulated fibroblast properties similarly. These data demonstrate that endothelial cell-derived IL-1 and bFGF modulate fibroblast properties independently and that lesional scleroderma strains are more responsive than control fibroblasts to endothelial cell-induced modulation, which supports the hypothesis that altered endothelial cell-fibroblast communication may be involved in the pathogenesis of scleroderma.

  16. Apoptosis of Endothelial Cells by 13-HPODE Contributes to Impairment of Endothelial Barrier Integrity

    PubMed Central

    Ryman, Valerie E.; Packiriswamy, Nandakumar

    2016-01-01

    Inflammation is an essential host response during bacterial infections such as bovine mastitis. Endothelial cells are critical for an appropriate inflammatory response and loss of vascular barrier integrity is implicated in the pathogenesis of Streptococcus uberis-induced mastitis. Previous studies suggested that accumulation of linoleic acid (LA) oxygenation products derived from 15-lipoxygenase-1 (15-LOX-1) metabolism could regulate vascular functions. The initial LA derivative from the 15-LOX-1 pathway, 13-hydroperoxyoctadecadienoic acid (HPODE), can induce endothelial death, whereas the reduced hydroxyl product, 13-hydroxyoctadecadienoic acid (HODE), is abundantly produced during vascular activation. However, the relative contribution of specific LA-derived metabolites on impairment of mammary endothelial integrity is unknown. Our hypothesis was that S. uberis-induced LA-derived 15-LOX-1 oxygenation products impair mammary endothelial barrier integrity by apoptosis. Exposure of bovine mammary endothelial cells (BMEC) to S. uberis did not increase 15-LOX-1 LA metabolism. However, S. uberis challenge of bovine monocytes demonstrated that monocytes may be a significant source of both 13-HPODE and 13-HODE during mastitis. Exposure of BMEC to 13-HPODE, but not 13-HODE, significantly reduced endothelial barrier integrity and increased apoptosis. Changing oxidant status by coexposure to an antioxidant during 13-HPODE treatment prevented adverse effects of 13-HPODE, including amelioration of apoptosis. A better understanding of how the oxidant status of the vascular microenvironment impacts endothelial barrier properties could lead to more efficacious treatments for S. uberis mastitis.

  17. Defective retinal vascular endothelial cell development as a consequence of impaired integrin αVβ8-mediated activation of transforming growth factor-β.

    PubMed

    Arnold, Thomas D; Ferrero, Gina M; Qiu, Haiyan; Phan, Isabella T; Akhurst, Rosemary J; Huang, Eric J; Reichardt, Louis F

    2012-01-25

    Deletions of the genes encoding the integrin αVβ8 (Itgav, Itgb8) have been shown to result in abnormal vascular development in the CNS, including prenatal and perinatal hemorrhage. Other work has indicated that a major function of this integrin in vivo is to promote TGFβ activation. In this paper, we show that Itgb8 mRNA is strongly expressed in murine Müller glia and retinal ganglion cells, but not astrocytes. We further show that Itgb8 deletion in the entire retina severely perturbs development of the murine retinal vasculature, elevating vascular branch point density and vascular coverage in the superficial vascular plexus, while severely impairing formation of the deep vascular plexus. The stability of the mutant vasculature is also impaired as assessed by the presence of hemorrhage and vascular basal lamina sleeves lacking endothelial cells. Specific deletion of Itgb8 in Müller glia and neurons, but not deletion in astrocytes, recapitulates the phenotype observed following Itgb8 in the entire retina. Consistent with αVβ8's role in TGFβ1 activation, we show that retinal deletion of Tgfb1 results in very similar retinal vascular abnormalities. The vascular deficits appear to reflect impaired TGFβ signaling in vascular endothelial cells because retinal deletion of Itgb8 reduces phospho-SMAD3 in endothelial cells and endothelial cell-specific deletion of the TGFβRII gene recapitulates the major deficits observed in the Itgb8 and TGFβ1 mutants. Of special interest, the retinal vascular phenotypes observed in each mutant are remarkably similar to those of others following inhibition of neuropilin-1, a receptor previously implicated in TGFβ activation and signaling.

  18. Endothelial Cells Stimulate Self-Renewal and Expand Neurogenesis of Neural Stem Cells

    NASA Astrophysics Data System (ADS)

    Shen, Qin; Goderie, Susan K.; Jin, Li; Karanth, Nithin; Sun, Yu; Abramova, Natalia; Vincent, Peter; Pumiglia, Kevin; Temple, Sally

    2004-05-01

    Neural stem cells are reported to lie in a vascular niche, but there is no direct evidence for a functional relationship between the stem cells and blood vessel component cells. We show that endothelial cells but not vascular smooth muscle cells release soluble factors that stimulate the self-renewal of neural stem cells, inhibit their differentiation, and enhance their neuron production. Both embryonic and adult neural stem cells respond, allowing extensive production of both projection neuron and interneuron types in vitro. Endothelial coculture stimulates neuroepithelial cell contact, activating Notch and Hes1 to promote self-renewal. These findings identify endothelial cells as a critical component of the neural stem cell niche.

  19. Redox-active antioxidant modulation of lipid signaling in vascular endothelial cells: vitamin C induces activation of phospholipase D through phospholipase A2, lipoxygenase, and cyclooxygenase

    PubMed Central

    Steinhour, Emily; Sherwani, Shariq I.; Mazerik, Jessica N.; Ciapala, Valorie; Butler, Elizabeth O’Connor; Cruff, Jason P.; Magalang, Ulysses; Parthasarathy, Sampath; Sen, Chandan K.; Marsh, Clay B.; Kuppusamy, Periannan

    2015-01-01

    We have earlier reported that the redox-active antioxidant, vitamin C (ascorbic acid), activates the lipid signaling enzyme, phospholipase D (PLD), at pharmacological doses (mM) in the bovine lung microvascular endothelial cells (BLMVECs). However, the activation of phospholipase A2 (PLA2), another signaling phospholipase, and the modulation of PLD activation by PLA2 in the ECs treated with vitamin C at pharmacological doses have not been reported to date. Therefore, this study aimed at the regulation of PLD activation by PLA2 in the cultured BLMVECs exposed to vitamin C at pharmacological concentrations. The results revealed that vitamin C (3–10 mM) significantly activated PLA2 starting at 30 min; however, the activation of PLD resulted only at 120 min of treatment of cells under identical conditions. Further studies were conducted utilizing specific pharmacological agents to understand the mechanism(s) of activation of PLA2 and PLD in BLMVECs treated with vitamin C (5 mM) for 120 min. Antioxidants, calcium chelators, iron chelators, and PLA2 inhibitors offered attenuation of the vitamin C-induced activation of both PLA2 and PLD in the cells. Vitamin C was also observed to significantly induce the formation and release of the cyclooxygenase (COX)- and lipoxygenase (LOX)-catalyzed arachidonic acid (AA) metabolites and to activate the AA LOX in BLMVECs. The inhibitors of PLA2, COX, and LOX were observed to effectively and significantly attenuate the vitamin C-induced PLD activation in BLMVECs. For the first time, the results of the present study revealed that the vitamin C-induced activation of PLD in vascular ECs was regulated by the upstream activation of PLA2, COX, and LOX through the formation of AA metabolites involving oxidative stress, calcium, and iron. PMID:18496733

  20. Coupling factor 6 downregulates platelet endothelial cell adhesion molecule-1 via c-Src activation and acts as a proatherogenic molecule.

    PubMed

    Kumagai, Akiko; Osanai, Tomohiro; Katoh, Chisato; Tanaka, Makoto; Tomita, Hirofumi; Morimoto, Takeshi; Murakami, Reiichi; Magota, Koji; Okumura, Ken

    2008-09-01

    Coupling factor 6 (CF6), a component of ATP synthase, suppresses the generation of prostacyclin and nitric oxide (NO). Platelet endothelial cell adhesion molecule-1 (PECAM-1) is involved in shear-induced NO production. To investigate the linkage between the actions of CF6 and PECAM-1, we examined the effects of CF6 on PECAM-1 expression and shear-mediated NO release, comparatively with those of angiotensin II (AngII). Treatment of human umbilical vein endothelial cells (HUVEC) and aortic endothelial cells (HAEC) with CF6 at 10(-7)M or AngII at 10(-7)M for 24h suppressed PECAM-1 gene and protein expression. CF6 or AngII activated c-Src at 15 min in HUVEC, and blockade of c-Src with PP1, its specific inhibitor, restored them. Efrapeptin, an inhibitor of ATPase, attenuated CF6-induced suppression of PECAM-1 gene expression by blockade of acidification, whereas superoxide dismutase or apocinin, an inhibitor of NADPH oxidase, blocked AngII-induced suppression of PECAM-1. Exposure of the cells to shear stress at 25 dynes/cm(2) for 30 min enhanced phosphorylation of eNOS at Ser(1177) and NO release. Pretreatment with CF6 or AngII for 24h attenuated them in HUVEC and HAEC. These suggest that CF6 downregulates PECAM-1 expression via c-Src activation and attenuates shear-induced NO release presumably by suppressing eNOS phosphorylation. PMID:18243211

  1. Immunological functions of liver sinusoidal endothelial cells

    PubMed Central

    Knolle, Percy A; Wohlleber, Dirk

    2016-01-01

    Liver sinusoidal endothelial cells (LSECs) line the liver sinusoids and separate passenger leukocytes in the sinusoidal lumen from hepatocytes. LSECs further act as a platform for adhesion of various liver-resident immune cell populations such as Kupffer cells, innate lymphoid cells or liver dendritic cells. In addition to having an extraordinary scavenger function, LSECs possess potent immune functions, serving as sentinel cells to detect microbial infection through pattern recognition receptor activation and as antigen (cross)-presenting cells. LSECs cross-prime naive CD8 T cells, causing their rapid differentiation into memory T cells that relocate to secondary lymphoid tissues and provide protection when they re-encounter the antigen during microbial infection. Cross-presentation of viral antigens by LSECs derived from infected hepatocytes triggers local activation of effector CD8 T cells and thereby assures hepatic immune surveillance. The immune function of LSECs complements conventional immune-activating mechanisms to accommodate optimal immune surveillance against infectious microorganisms while preserving the integrity of the liver as a metabolic organ. PMID:27041636

  2. Circulating and tissue resident endothelial progenitor cells.

    PubMed

    Basile, David P; Yoder, Mervin C

    2014-01-01

    Progenitor cells for the endothelial lineage have been widely investigated for more than a decade, but continue to be controversial since no unique identifying marker has yet been identified. This review will begin with a discussion of the basic tenets originally proposed for proof that a cell displays properties of an endothelial progenitor cell. We then provide an overview of the methods for putative endothelial progenitor cell derivation, expansion, and enumeration. This discussion includes consideration of cells that are present in the circulation as well as cells resident in the vascular endothelial intima. Finally, we provide some suggested changes in nomenclature that would greatly clarify and demystify the cellular elements involved in vascular repair.

  3. The Level of IgA Antibodies to Endothelial Cells Correlates with Histological Evidence of Disease Activity in Patients with Lupus Nephritis

    PubMed Central

    Kondo, Ayako; Mizuno, Tomohiro; Kato, Akihiro; Hirano, Daisuke; Yamamoto, Naoki; Hayashi, Hiroki; Koide, Shigehisa; Takahashi, Hiroshi; Hasegawa, Midori; Hiki, Yoshiyuki; Yoshida, Shunji; Miura, Keiji; Yuzawa, Yukio

    2016-01-01

    Anti-endothelial cell antibodies (AECA) are frequently detected in patients with systemic lupus erythematosus (SLE), but their pathological role remains unclear. We recently developed a solubilized cell surface protein capture enzyme-linked immunosorbent assay (CSP-ELISA) to detect antibodies against membrane proteins involved in autoimmune reactions. In this study, sera from 51 patients with biopsy-proven lupus nephritis (LN), 25 with SLE without renal involvement (non-LN SLE), 42 disease control (DC) subjects, and 80 healthy control (HC) subjects were tested for IgG- and IgA-AECA for human umbilical vein endothelial cells (HUVEC) and human glomerular EC (HGEC) by using CSP-ELISA. IgG- and IgA-AECA titers were significantly higher in LN and non-LN SLE patients than in the DC or HC (P < 0.001) groups. IgG- and IgA-AECA titers for HUVEC corresponded well with those for HGEC. The IgA-AECA level correlated with the SLE disease activity index and with histological evidence of active lesions (cellular proliferations, hyaline thrombi and wire loops, leukocytic infiltration, and fibrinoid necrosis) in LN patients (P < 0.001). The sensitivity of IgA-AECA as a diagnostic test for histological evidence of active lesions in LN patients was 0.92, with a specificity of 0.70. The significant correlation of IgA-AECA with glomerular hypercellularity indicates that IgA-AECA are associated with endothelial damage in LN. PMID:27788140

  4. Mast cell heparin stimulates migration of capillary endothelial cells in vitro

    PubMed Central

    1980-01-01

    Migration of capillary endothelial cells is an important component of angiogenesis in vivo. Increased numbers of mast cells have been associated with several types of angiogenesis. We have used a quantitative assay in vitro to demonstrate that mast cells release a factor that significantly increases bovine capillary endothelial cell migration. The factor is present in medium conditioned by mast cells as well as lysates of mast cells. The stimulatory effect of mast cells on migration is specific for capillary endothelial cells. Furthermore, mast cells have no mitogenic activity for capillary endothelial cells. Of all the secretory products of mast cells tested, only heparin stimulated capillary endothelial cell migration in vitro. Heparin preparations from a variety of sources stimulated capillary endothelial cell migration to the same degree but did not stimulate migration of several other cell types. The migration activity of heparin and mast cell conditioned medium was blocked by specific antagonists of heparin (protamine and heparinase), but not by chondroitinase ABC. The migration activity of mast cell conditioned medium was resistant to heat (100 degrees C) and incubation with proteolytic enzymes. These results suggest that the role of mast cells in angiogenesis may be to enhance migration of the endothelial cells of growing capillaries. PMID:7420025

  5. Cilostazol promotes mitochondrial biogenesis in human umbilical vein endothelial cells through activating the expression of PGC-1α

    SciTech Connect

    Zuo, Luning; Li, Qiang; Sun, Bei; Xu, Zhiying; Ge, Zhiming

    2013-03-29

    Highlights: ► First time to show that cilostazol promotes the expressions of PGC-1α. ► First time to show that cilostazol stimulates mitochondrial biogenesis in HUVECs. ► PKA/CREB pathway mediates the effect of cilostazol on PGC-1α expression. ► Suggesting the roles of cilostazol in mitochondrial dysfunction related disease. -- Abstract: Mitochondrial dysfunction is frequently observed in vascular diseases. Cilostazol is a drug approved by the US Food and Drug Administration for the treatment of intermittent claudication. Cilostazol increases intracellular cyclic adenosine monophosphate (cAMP) levels through inhibition of type III phosphodiesterase. The effects of cilostazol in mitochondrial biogenesis in human umbilical vein endothelial cells (HUVECs) were investigated in this study. Cilostazol treated HUVECs displayed increased levels of ATP, mitochondrial DNA/nuclear DNA ratio, expressions of cytochrome B, and mitochondrial mass, suggesting an enhanced mitochondrial biogenesis induced by cilostazol. The promoted mitochondrial biogenesis could be abolished by Protein kinase A (PKA) specific inhibitor H-89, implying that PKA pathway played a critical role in increased mitochondrial biogenesis after cilostazol treatment. Indeed, expression levels of peroxisome proliferator activator receptor gamma-coactivator 1α (PGC-1α), NRF 1 and mitochondrial transcription factor A (TFAM) were significantly increased in HUVECs after incubation with cilostazol at both mRNA levels and protein levels. Importantly, knockdown of PGC-1α could abolish cilostazol-induced mitochondrial biogenesis. Enhanced expression of p-CREB and PGC-1α induced by cilostazol could be inhibited by H-89. Moreover, the increased expression of PGC-1α induced by cilostazol could be inhibited by downregulation of CREB using CREB siRNA at both mRNA and protein levels. All the results indicated that cilostazol promoted mitochondrial biogenesis through activating the expression of PGC-1α in

  6. A novel pro-inflammatory mechanism of action of resistin in human endothelial cells: up-regulation of SOCS3 expression through STAT3 activation.

    PubMed

    Pirvulescu, Monica; Manduteanu, Ileana; Gan, Ana Maria; Stan, Daniela; Simion, Viorel; Butoi, Elena; Calin, Manuela; Simionescu, Maya

    2012-06-01

    Resistin is a significant local and systemic regulatory cytokine involved in inflammation. Suppressors of cytokine signaling (SOCS) proteins are intracellular regulators of receptor signal transduction induced by several cytokines in a cytokine and cell specific manner. Resistin up-regulates SOCS3 expression in mice adipocytes but it is not known whether this is a common occurrence in other cells. We questioned whether resistin-induces SOCS3 in human endothelial cells and if signal transducer and activator of transcription (STAT) proteins are involved in the process. The Real-Time PCR and Western blot analysis showed that in resistin-activated HEC the gene and protein expression of SOCS3 were significantly increased. Furthermore, resistin induced activation of STAT3 as characterized by increased tyrosine phosphorylation. Resistin-induced SOCS3 expression was blocked by specific inhibitors of STAT3 signaling and by the transfection of siRNA specific for STAT3. Silencing of SOCS3 gene expression by transfection with SOCS3 siRNA reduced the expression of resistin induced-P-selectin and fractalkine in HEC. Together, our results demonstrate that in HEC (1) resistin up-regulates SOCS3 expression and activates STAT3 transcription factor; (2) the increase in SOCS3 mRNA and protein expression as well as STAT3 activation have a long-lasting effect (up to 18h); (3) inhibition of SOCS3 function prevents resistin-induced expression of cell adhesion molecules P-selectin and fractalkine and thus activation of endothelial cells. The data uncover a new resistin-mediated mechanism in human endothelial cells and designate SOCS3 as a novel therapeutic target to modulate resistin-dependent inflammation in vessel wall diseases.

  7. Diesel exhaust particles and endothelial cells dysfunction: An update.

    PubMed

    Lawal, A O; Davids, L M; Marnewick, J L

    2016-04-01

    Epidemiological studies have shown a consistent positive correlation between exposure to particulate matter (PM) and increased mortality largely due to increased rates of cardiovascular morbidity and mortality. Diesel exhaust particles (DEPs) are major constituents of atmospheric PM and have been shown to cause disruption of the endothelial cell monolayer integrity, thereby affecting organ functions. Endothelial cells are very active metabolic components of biological tissue that performs a number of important physiological functions. Therefore, anything that compromises the integrity and functions of the endothelium will lead to organ dysfunction and disease. This review focuses on scientific evidence that link DEP exposure to endothelial cell dysfunction in various pathophysiological conditions affecting the cardiovascular system. The various mechanisms involved in the DEP-induced endothelial cell dysfunction are also addressed together with the preventive and therapeutic approaches to overcoming these challenges.

  8. Fibronectin coating of oxygenator membranes enhances endothelial cell attachment

    PubMed Central

    2013-01-01

    Background Extracorporeal membrane oxygenation (ECMO) can replace the lungs’ gas exchange capacity in refractory lung failure. However, its limited hemocompatibility, the activation of the coagulation and complement system as well as plasma leakage and protein deposition hamper mid- to long-term use and have constrained the development of an implantable lung assist device. In a tissue engineering approach, lining the blood contact surfaces of the ECMO device with endothelial cells might overcome these limitations. As a first step towards this aim, we hypothesized that coating the oxygenator’s gas exchange membrane with proteins might positively influence the attachment and proliferation of arterial endothelial cells. Methods Sheets of polypropylene (PP), polyoxymethylpentene (TPX) and polydimethylsiloxane (PDMS), typical material used for oxygenator gas exchange membranes, were coated with collagen, fibrinogen, gelatin or fibronectin. Tissue culture treated well plates served as controls. Endothelial cell attachment and proliferation were analyzed for a period of 4 days by microscopic examination and computer assisted cell counting. Results Endothelial cell seeding efficiency is within range of tissue culture treated controls for fibronectin treated surfaces only. Uncoated membranes as well as all other coatings lead to lower cell attachment. A confluent endothelial cell layer develops on fibronectin coated PDMS and the control surface only. Conclusions Fibronectin increases endothelial cells’ seeding efficiency on different oxygenator membrane material. PDMS coated with fibronectin shows sustained cell attachment for a period of four days in static culture conditions. PMID:23356939

  9. Potential proinflammatory effects of hydroxyapatite nanoparticles on endothelial cells in a monocyte-endothelial cell coculture model.

    PubMed

    Liu, Xin; Sun, Jiao

    2014-01-01

    Currently, synthetic hydroxyapatite nanoparticles (HANPs) are used in nanomedicine fields. The delivery of nanomedicine to the bloodstream exposes the cardiovascular system to a potential threat. However, the possible adverse cardiovascular effects of HANPs remain unclear. Current observations using coculture models of endothelial cells and monocytes with HANPs to mimic the complex physiological functionality of the vascular system demonstrate that monocytes could play an important role in the mechanisms of endothelium dysfunction induced by the exposure to HANPs. Our transmission electron microscopy analysis revealed that both monocytes and endothelial cells could take up HANPs. Moreover, our findings demonstrated that at a subcytotoxic dose, HANPs alone did not cause direct endothelial cell injury, but they did induce an indirect activation of endothelial cells, resulting in increased interleukin-6 production and elevated adhesion molecule expression after coculture with monocytes. The potential proinflammatory effect of HANPs is largely mediated by the release of soluble factors from the activated monocytes, leading to an inflammatory response of the endothelium, which is possibly dependent on p38/c-Jun N-terminal kinase, and nuclear factor-kappa B signaling activation. The use of in vitro monocyte-endothelial cell coculture models for the biocompatibility assessment of HANPs could reveal their potential proinflammatory effects on endothelial cells, suggesting that exposure to HANPs possibly increases the risk of cardiovascular disease.

  10. The Physiochemistry of Capped Nanosilver Predicts Its Biological Activity in Rat Brain Endothelial Cells (REBEC4)

    EPA Science Inventory

    The “capping” or coating of nanosilver (nanoAg) extends its potency by limiting its oxidation and aggregation and stabilizing its size and shape. The ability of such coated nanoAg to alter the permeability and activate oxidative stress pathways in rat brain endothelia...

  11. Epithelial to mesenchymal transition in arsenic-transformed cells promotes angiogenesis through activating β-catenin–vascular endothelial growth factor pathway

    SciTech Connect

    Wang, Zhishan; Humphries, Brock; Xiao, Hua; Jiang, Yiguo; Yang, Chengfeng

    2013-08-15

    Arsenic exposure represents a major health concern increasing cancer risks, yet the mechanism of arsenic carcinogenesis has not been elucidated. We and others recently reported that cell malignant transformation by arsenic is accompanied by epithelial to mesenchymal transition (EMT). However, the role of EMT in arsenic carcinogenesis is not well understood. Although previous studies showed that short term exposure of endothelial cells to arsenic stimulated angiogenesis, it remains to be determined whether cells that were malignantly transformed by long term arsenic exposure have a pro-angiogenic effect. The objective of this study was to investigate the effect of arsenic-transformed human bronchial epithelial cells that underwent EMT on angiogenesis and the underlying mechanism. It was found that the conditioned medium from arsenic-transformed cells strongly stimulated tube formation by human umbilical vein endothelial cells (HUVECs). Moreover, enhanced angiogenesis was detected in mouse xenograft tumor tissues resulting from inoculation of arsenic-transformed cells. Mechanistic studies revealed that β-catenin was activated in arsenic-transformed cells up-regulating its target gene expression including angiogenic-stimulating vascular endothelial growth factor (VEGF). Stably expressing microRNA-200b in arsenic-transformed cells that reversed EMT inhibited β-catenin activation, decreased VEGF expression and reduced tube formation by HUVECs. SiRNA knockdown β-catenin decreased VEGF expression. Adding a VEGF neutralizing antibody into the conditioned medium from arsenic-transformed cells impaired tube formation by HUVECs. Reverse transcriptase-PCR analysis revealed that the mRNA levels of canonical Wnt ligands were not increased in arsenic-transformed cells. These findings suggest that EMT in arsenic-transformed cells promotes angiogenesis through activating β-catenin–VEGF pathway. - Highlights: • Arsenic-transformed cells that underwent EMT displayed a pro

  12. Activation of c-Jun N-terminal kinase and apoptosis in endothelial cells mediated by endogenous generation of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Ramachandran, Anup; Moellering, Douglas; Go, Young-Mi; Shiva, Sruti; Levonen, Anna-Liisa; Jo, Hanjoong; Patel, Rakesh P.; Parthasarathy, Sampath; Darley-Usmar, Victor M.

    2002-01-01

    Reactive oxygen species have been implicated in the activation of signal transduction pathways. However, extracellular addition of oxidants such as hydrogen peroxide (H2O2) often requires concentrations that cannot be readily achieved under physiological conditions to activate biological responses such as apoptosis. Explanations for this discrepancy have included increased metabolism of H2O2 in the extracellular environment and compartmentalization within the cell. We have addressed this issue experimentally by examining the induction of apoptosis of endothelial cells induced by exogenous addition of H2O2 and by a redox cycling agent, 2,3-dimethoxy-1,4-naphthoquinone, that generates H2O2 in cells. Here we show that low nanomolar steady-state concentrations (0.1-0.5 nmol x min(-1) x 10(6) cells) of H2O2 generated intracellularly activate c-Jun N terminal kinase and initiate apoptosis in endothelial cells. A comparison with bolus hydrogen peroxide suggests that the low rate of intracellular formation of this reactive oxygen species results in a similar profile of activation for both c-Jun N terminal kinase and the initiation of apoptosis. However, a detailed analysis reveals important differences in both the duration and profile for activation of these signaling pathways.

  13. Gold nanoparticles induce heme oxygenase-1 expression through Nrf2 activation and Bach1 export in human vascular endothelial cells

    PubMed Central

    Lai, Tsung-Hsuan; Shieh, Jiunn-Min; Tsou, Chih-Jen; Wu, Wen-Bin

    2015-01-01

    It has been reported that increased levels and activity of the heme oxygenase-1 (HO-1) protein ameliorate tissue injuries. In the present study, we investigated the effects and mechanisms of action of gold nanoparticles (AuNPs) on HO-1 protein expression in human vascular endothelial cells (ECs). The AuNPs induced HO-1 protein and mRNA expression in a concentration- and time-dependent manner. The induction was reduced by the thiol-containing antioxidants, including N-acetylcysteine and glutathione, but not by the non-thiol-containing antioxidants and inhibitors that block the enzymes for intracellular reactive oxygen species generation. The AuNPs enhanced Nrf2 protein levels but did not affect Nrf2 mRNA expression. In response to the AuNP treatment, the cytosolic Nrf2 translocated to the nucleus, and, concomitantly, Bach1 exited the nucleus and its tyrosine phosphorylation increased. The chromatin immunoprecipitation assay revealed that the translocated Nrf2 bound to the antioxidant-response element located in the E2 enhancer region of the HO-1 gene promoter and acted as a transcription factor. Although N-acetylcysteine inhibited the AuNP-induced Nrf2 nuclear translocation, the AuNPs did not promote intracellular reactive oxygen species production or endoplasmic reticulum stress in the ECs. Knockdown of Nrf2 expression by RNA interference significantly inhibited AuNP-induced HO-1 expression at the protein and mRNA levels. In summary, AuNPs enhance the levels and nuclear translocation of the Nrf2 protein and Bach1 export/tyrosine phosphorylation, leading to Nrf2 binding to the HO-1 E2 enhancer promoter region to drive HO-1 expression in ECs. This study, together with our parallel findings, demonstrates that AuNPs can act as an HO-1 inducer, which may partially contribute to their anti-inflammatory bioactivity in human vascular ECs. PMID:26445536

  14. Radiation Effects on the Cytoskeleton of Endothelial Cells and Endothelial Monolayer Permeability

    SciTech Connect

    Gabrys, Dorota; Greco, Olga; Patel, Gaurang; Prise, Kevin M.; Tozer, Gillian M.; Kanthou, Chryso

    2007-12-01

    Purpose: To investigate the effects of radiation on the endothelial cytoskeleton and endothelial monolayer permeability and to evaluate associated signaling pathways, which could reveal potential mechanisms of known vascular effects of radiation. Methods and Materials: Cultured endothelial cells were X-ray irradiated, and actin filaments, microtubules, intermediate filaments, and vascular endothelial (VE)-cadherin junctions were examined by immunofluorescence. Permeability was determined by the passage of fluorescent dextran through cell monolayers. Signal transduction pathways were analyzed using RhoA, Rho kinase, and stress-activated protein kinase-p38 (SAPK2/p38) inhibitors by guanosine triphosphate-RhoA activation assay and transfection with RhoAT19N. The levels of junction protein expression and phosphorylation of myosin light chain and SAPK2/p38 were assessed by Western blotting. The radiation effects on cell death were verified by clonogenic assays. Results: Radiation induced rapid and persistent actin stress fiber formation and redistribution of VE-cadherin junctions in microvascular, but not umbilical vein endothelial cells, and microtubules and intermediate filaments remained unaffected. Radiation also caused a rapid and persistent increase in microvascular permeability. RhoA-guanosine triphosphatase and Rho kinase were activated by radiation and caused phosphorylation of downstream myosin light chain and the observed cytoskeletal and permeability changes. SAPK2/p38 was activated by radiation but did not influence either the cytoskeleton or permeability. Conclusion: This study is the first to show rapid activation of the RhoA/Rho kinase by radiation in endothelial cells and has demonstrated a link between this pathway and cytoskeletal remodeling and permeability. The results also suggest that the RhoA pathway might be a useful target for modulating the permeability and other effects of radiation for therapeutic gain.

  15. Vascular endothelial growth factor regulates myeloid cell leukemia-1 expression through neuropilin-1-dependent activation of c-MET signaling in human prostate cancer cells

    PubMed Central

    2010-01-01

    Background Myeloid cell leukemia-1 (Mcl-1) is a member of the Bcl-2 family, which inhibits cell apoptosis by sequestering pro-apoptotic proteins Bim and Bid. Mcl-1 overexpression has been associated with progression in leukemia and some solid tumors including prostate cancer (PCa). However, the regulatory mechanism for Mcl-1 expression in PCa cells remains elusive. Results Immunohistochemical analyses revealed that Mcl-1 expression was elevated in PCa specimens with high Gleason grades and further significantly increased in bone metastasis, suggesting a pivotal role of Mcl-1 in PCa metastasis. We further found that vascular endothelial growth factor (VEGF) is a novel regulator of Mcl-1 expression in PCa cells. Inhibition of endogenous Mcl-1 induced apoptosis, indicating that Mcl-1 is an important survival factor in PCa cells. Neuropilin-1 (NRP1), the "co-receptor" for VEGF165 isoform, was found to be highly expressed in PCa cells, and indispensible in the regulation of Mcl-1. Intriguingly, VEGF165 promoted physical interaction between NRP1 and hepatocyte growth factor (HGF) receptor c-MET, and facilitated c-MET phosphorylation via a NRP1-dependent mechanism. VEGF165 induction of Mcl-1 may involve rapid activation of Src kinases and signal transducers and activators of transcription 3 (Stat3). Importantly, NRP1 overexpression and c-MET activation were positively associated with progression and bone metastasis in human PCa specimens and xenograft tissues. Conclusions This study demonstrated that Mcl-1 overexpression is associated with PCa bone metastasis. Activation of VEGF165-NRP1-c-MET signaling could confer PCa cells survival advantages by up-regulating Mcl-1, contributing to PCa progression. PMID:20085644

  16. Endothelial progenitor cells in cardiovascular diseases.

    PubMed

    Lee, Poay Sian Sabrina; Poh, Kian Keong

    2014-07-26

    Endothelial dysfunction has been associated with the development of atherosclerosis and cardiovascular diseases. Adult endothelial progenitor cells (EPCs) are derived from hematopoietic stem cells and are capable of forming new blood vessels through a process of vasculogenesis. There are studies which report correlations between circulating EPCs and cardiovascular risk factors. There are also studies on how pharmacotherapies may influence levels of circulating EPCs. In this review, we discuss the potential role of endothelial progenitor cells as both diagnostic and prognostic biomarkers. In addition, we look at the interaction between cardiovascular pharmacotherapies and endothelial progenitor cells. We also discuss how EPCs can be used directly and indirectly as a therapeutic agent. Finally, we evaluate the challenges facing EPC research and how these may be overcome.

  17. Synthesis of 1-acyl-2-(3H)acetyl-SN-glycero-3-phosphocholine, a structural analog of platelet activating factor, by vascular endothelial cells

    SciTech Connect

    Mueller, H.W.; Nollert, M.U.; Eskin, S.G. )

    1991-05-15

    Human umbilical vein endothelial cells (HUVECS) were challenged with thrombin in the presence of (3H)acetate to stimulate the production of radiolabeled platelet activating factor (PAF, 1-O-alkyl-2-(3H)acetyl-sn-glycero-3-phosphocholine, 1-O-alkyl-2-(3H)acetyl-GPC). The 3H-product was isolated by thin-layer chromatography, and 1-radyl-2(3H),3- diacetylglycerols were prepared by phospholipase C digestion and subsequent acetylation at the sn-3 position. When the 1-radyl-2(3H),3-diacetylglycerols were analyzed by zonal thin-layer chromatography, 96-97% of the radiolabeled derivative migrated with 1-acyl-2,3-diacetylglycerol standard. Only minor amounts (3-4%) of 1-alkyl-2(3H),3-diacetylglycerol were observed, demonstrating that the predominant acetylated product synthesized by thrombin-stimulated HUVECS was 1-acyl-2-(3H)acetyl-GPC. This relative abundance of 1-acyl-2-(3H)-acetyl-GPC was not significantly affected by thrombin dose, incubation time, or cell passage, and was also observed in HUVECS challenged with ionophore A23187. In addition, the acetylated product from ionophore A23187- or bradykinin-stimulated bovine aortic endothelial cells contained 90% 1-acyl-2-(3H)acetyl-GPC, suggesting that the synthesis of the 1-acyl PAF analog is not unique to HUVECS. These findings demonstrate that PAF is a minor synthetic component of HUVECS and bovine aortic endothelial cells. In light of the integral role which the vascular endothelial cell plays in the regulation of thrombosis, these findings also suggest that the production of 1-acyl-2-acetyl-GPC may be biologically important.

  18. Clinicopathological study of lymphocyte attachment to endothelial cells (endothelialitis) in various liver diseases.

    PubMed

    Nonomura, A; Mizukami, Y; Matsubara, F; Kobayashi, K

    1991-04-01

    An attachment of lymphocytes to the vascular wall, a feature called "endothelialitis" (ETL) or "endotheliitis", was investigated in various liver biopsies, including acute hepatitis (AH), hepatic infectious mononucleosis (IM), drug-induced hepatitis, alcoholic hepatitis and fibrosis, chronic persistent hepatitis (CPH), chronic active hepatitis (CAH), liver cirrhosis (LC), primary biliary cirrhosis (PBC), nonspecific reactive hepatitis (NSRH), and cases with a variety of diseases having almost normal liver histology as control material. Although ETL has been considered to be nearly pathognomic of graft-versus-host disease (GVHD) and acute transplant rejection, ETL was found in both portal and central veins with a variable incidence, not only in all categories of liver diseases, but also in the control group. The incidence of central vein ETL was significantly higher in AH, CAH, PBC, IM, alcoholic fibrosis, and NSRH than that of the control group, and that of portal vein ETL was significantly higher in AH, CPH, CAH, LC, PBC, IM, and alcoholic fibrosis. Even under the light microscope, lymphocytes attached to the endothelial cells had irregular cytoplasmic processes making contact with endothelial cells. Also lymphocytes located beneath the endothelial lining were frequently found. When ETL-positive and -negative cases in the same category were compared, the levels of serum glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) were usually higher in the ETL-positive group, and statistically significant differences were observed in CPH, CAH, LC, PBC and NSRH. In chronic hepatitis, the occurrence of portal vein ETL paralleled the histologic activity of portal inflammation, whereas central vein endothelialitis was associated with active parenchymal inflammation such as sinusoidal lymphocyte infiltration and spotty hepatocyte necrosis, indicating that ETL may be a phenomenon more frequently associated with active hepatic inflammation

  19. Evaluation of Endothelial Cell Adhesion Molecules and Anti-C1q Antibody in Discriminating between Active and Non-Active Systemic Lupus Erythematosus

    PubMed Central

    Mahayidin, Hasni; Yahya, Nurul Khaiza; Wan Ghazali, Wan Syamimee; Mohd Ismail, Asmahan; Wan Ab Hamid, Wan Zuraida

    2016-01-01

    Background Detecting the active state of systemic lupus erythematosus (SLE) is important but challenging. This study aimed to determine the diagnostic accuracy of serum endothelial cell adhesion molecules (ICAM-1 and VCAM-1) and anti-C1q antibody in discriminating between active and non-active SLE. Methods Using SELENA-SLE disease activity index (SLEDAI), 95 SLE patients (45 active and 50 non-active) were assessed. A score above five was considered indicative of active SLE. The blood samples were tested for serum ICAM-1, VCAM-1 and anti-C1q antibody using enzyme-linked immunosorbent assay (ELISA). Results The levels of serum VCAM-1 and anti-C1q antibody were significantly higher in active SLE patients. Both VCAM-1 and anti-C1q were able to discriminate between active and non-active SLE (p-value < 0.001 and 0.005, respectively). From the receiver operating characteristic curves (ROCs) constructed, the optimal cut-off values for VCAM-1 and anti-C1q antibody in discriminating between active and non-active SLE were 30.5 ng/mL (69.0% sensitivity, 60.0% specificity, PPV 58.5%, NPV 66.7%) and 7.86 U/mL (75.6% sensitivity, 80% specificity, PPV 77.3%, NPV 78.4%), respectively. However, serum ICAM-1 level was unable to discriminate between the two groups (p-value = 0.193). Conclusion Anti-C1q antibody demonstrated the best diagnostic accuracy in discriminating between active and non-active SLE patients. PMID:27418866

  20. Cellular and molecular biology of aging endothelial cells.

    PubMed

    Donato, Anthony J; Morgan, R Garrett; Walker, Ashley E; Lesniewski, Lisa A

    2015-12-01

    Cardiovascular disease (CVD) is the leading cause of death in the United States and aging is a major risk factor for CVD development. One of the major age-related arterial phenotypes thought to be responsible for the development of CVD in older adults is endothelial dysfunction. Endothelial function is modulated by traditional CVD risk factors in young adults, but advancing age is independently associated with the development of vascular endothelial dysfunction. This endothelial dysfunction results from a reduction in nitric oxide bioavailability downstream of endothelial oxidative stress and inflammation that can be further modulated by traditional CVD risk factors in older adults. Greater endothelial oxidative stress with aging is a result of augmented production from the intracellular enzymes NADPH oxidase and uncoupled eNOS, as well as from mitochondrial respiration in the absence of appropriate increases in antioxidant defenses as regulated by relevant transcription factors, such as FOXO. Interestingly, it appears that NFkB, a critical inflammatory transcription factor, is sensitive to this age-related endothelial redox change and its activation induces transcription of pro-inflammatory cytokines that can further suppress endothelial function, thus creating a vicious feed-forward cycle. This review will discuss the two macro-mechanistic processes, oxidative stress and inflammation, that contribute to endothelial dysfunction with advancing age as well as the cellular and molecular events that lead to the vicious cycle of inflammation and oxidative stress in the aged endothelium. Other potential mediators of this pro-inflammatory endothelial phenotype are increases in immune or senescent cells in the vasculature. Of note, genomic instability, telomere dysfunction or DNA damage has been shown to trigger cell senescence via the p53/p21 pathway and result in increased inflammatory signaling in arteries from older adults. This review will discuss the current state

  1. Fibroblast nemosis induces angiogenic responses of endothelial cells

    SciTech Connect

    Enzerink, Anna; Rantanen, Ville; Vaheri, Antti

    2010-03-10

    Increasing evidence points to a central link between inflammation and activation of the stroma, especially of fibroblasts therein. However, the mechanisms leading to such activation mostly remain undescribed. We have previously characterized a novel type of fibroblast activation (nemosis) where clustered fibroblasts upregulated the production of cyclooxygenase-2, secretion of prostaglandins, proteinases, chemotactic cytokines, and hepatocyte growth factor (HGF), and displayed activated nuclear factor-{kappa}B. Now we show that nemosis drives angiogenic responses of endothelial cells. In addition to HGF, nemotic fibroblasts secreted vascular endothelial growth factor (VEGF), and conditioned medium from spheroids promoted sprouting and networking of human umbilical venous endothelial cells (HUVEC). The response was partly inhibited by function-blocking antibodies against HGF and VEGF. Conditioned nemotic fibroblast medium promoted closure of HUVEC and human dermal microvascular endothelial cell monolayer wounds, by increasing the motility of the endothelial cells. Wound closure in HUVEC cells was partly inhibited by the antibodies against HGF. The stromal microenvironment regulates wound healing responses and often promotes tumorigenesis. Nemosis offers clues to the activation process of stromal fibroblasts and provides a model to study the part they play in angiogenesis-related conditions, as well as possibilities for therapeutical approaches desiring angiogenesis in tissue.

  2. Angiotensin-converting enzyme 2 activation improves endothelial function.

    PubMed

    Fraga-Silva, Rodrigo A; Costa-Fraga, Fabiana P; Murça, Tatiane M; Moraes, Patrícia L; Martins Lima, Augusto; Lautner, Roberto Q; Castro, Carlos H; Soares, Célia Maria A; Borges, Clayton L; Nadu, Ana Paula; Oliveira, Marilene L; Shenoy, Vinayak; Katovich, Michael J; Santos, Robson A S; Raizada, Mohan K; Ferreira, Anderson J

    2013-06-01

    Diminished release and function of endothelium-derived nitric oxide coupled with increases in reactive oxygen species production is critical in endothelial dysfunction. Recent evidences have shown that activation of the protective axis of the renin-angiotensin system composed by angiotensin-converting enzyme 2, angiotensin-(1-7), and Mas receptor promotes many beneficial vascular effects. This has led us to postulate that activation of intrinsic angiotensin-converting enzyme 2 would improve endothelial function by decreasing the reactive oxygen species production. In the present study, we tested 1-[[2-(dimetilamino)etil]amino]-4-(hidroximetil)-7-[[(4-metilfenil)sulfonil]oxi]-9H-xantona-9 (XNT), a small molecule angiotensin-converting enzyme 2 activator, on endothelial function to validate this hypothesis. In vivo treatment with XNT (1 mg/kg per day for 4 weeks) improved the endothelial function of spontaneously hypertensive rats and of streptozotocin-induced diabetic rats when evaluated through the vasorelaxant responses to acetylcholine/sodium nitroprusside. Acute in vitro incubation with XNT caused endothelial-dependent vasorelaxation in aortic rings of rats. This vasorelaxation effect was attenuated by the Mas antagonist D-pro7-Ang-(1-7), and it was reduced in Mas knockout mice. These effects were associated with reduction in reactive oxygen species production. In addition, Ang II-induced reactive oxygen species production in human aortic endothelial cells was attenuated by preincubation with XNT. These results showed that chronic XNT administration improves the endothelial function of hypertensive and diabetic rat vessels by attenuation of the oxidative stress. Moreover, XNT elicits an endothelial-dependent vasorelaxation response, which was mediated by Mas. Thus, this study indicated that angiotensin-converting enzyme 2 activation promotes beneficial effects on the endothelial function and it is a potential target for treating cardiovascular disease.

  3. Endothelial Cells Enhance Tumor Cell Invasion through a Crosstalk Mediated by CXC Chemokine Signaling1

    PubMed Central

    Warner, Kristy A; Miyazawa, Marta; Cordeiro, Mabel M R; Love, William J; Pinsky, Matthew S; Neiva, Kathleen G; Spalding, Aaron C; Nör, Jacques E

    2008-01-01

    Field cancerization involves the lateral spread of premalignant or malignant disease and contributes to the recurrence of head and neck tumors. The overall hypothesis underlying this work is that endothelial cells actively participate in tumor cell invasion by secreting chemokines and creating a chemotactic gradient for tumor cells. Here we demonstrate that conditioned medium from head and neck tumor cells enhance Bcl-2 expression in neovascular endothelial cells. Oral squamous cell carcinoma-3 (OSCC3) and Kaposi's sarcoma (SLK) show enhanced invasiveness when cocultured with pools of human dermal microvascular endothelial cells stably expressing Bcl-2 (HDMEC-Bcl-2), compared to cocultures with empty vector controls (HDMEC-LXSN). Xenografted OSCC3 tumors vascularized with HDMEC-Bcl-2 presented higher local invasion than OSCC3 tumors vascularized with control HDMEC-LXSN. CXCL1 and CXCL8 were upregulated in primary endothelial cells exposed to vascular endothelial growth factor (VEGF), as well as in HDMEC-Bcl-2. Notably, blockade of CXCR2 signaling, but not CXCR1, inhibited OSCC3 and SLK invasion toward endothelial cells. These data demonstrate that CXC chemokines secreted by endothelial cells induce tumor cell invasion and suggest that the process of lateral spread of tumor cells observed in field cancerization is guided by chemotactic signals that originated from endothelial cells. PMID:18283335

  4. Walnut extract (Juglans regia L.) and its component ellagic acid exhibit anti-inflammatory activity in human aorta endothelial cells and osteoblastic activity in the cell line KS483.

    PubMed

    Papoutsi, Z; Kassi, E; Chinou, I; Halabalaki, M; Skaltsounis, L A; Moutsatsou, P

    2008-04-01

    Epidemiological studies suggest that the incidence of CVD and postmenopausal osteoporosis is low in the Mediterranean area, where herbs and nuts, among others, play an important role in nutrition. In the present study, we sought a role of walnuts (Juglans regia L.) in endothelial and bone-cell function. As the endothelial cell expression of adhesion molecules has been recognised as an early step in inflammation and atherogenesis, we examined the effect of walnut methanolic extract and ellagic acid, one of its major polyphenolic components (as shown by HPLC analysis), on the expression of vascular cell adhesion molecule (VCAM)-1 and intracellular adhesion molecule (ICAM)-1 in human aortic endothelial cells. After incubating the cells with TNF-alpha (1 ng/ml) in the absence and in the presence of walnut extract (10-200 microg/ml) or ellagic acid (10- 7-10- 5 m), the VCAM-1 and ICAM-1 expression was quantified by cell-ELISA. We further evaluated the effect of walnut extract (10-50 microg/ml), in comparison with ellagic acid (10- 9-10- 6m), on nodule formation in the osteoblastic cell line KS483. Walnut extract and ellagic acid decreased significantly the TNF-alpha-induced endothelial expression of both VCAM-1 and ICAM-1 (P < 0.01; P < 0.001). Both walnut extract (at 10-25 microg/ml) and ellagic acid (at 10- 9-10- 8 m) induced nodule formation in KS483 osteoblasts. The present results suggest that the walnut extract has a high anti-atherogenic potential and a remarkable osteoblastic activity, an effect mediated, at least in part, by its major component ellagic acid. Such findings implicate the beneficial effect of a walnut-enriched diet on cardioprotection and bone loss.

  5. Carbamoylating Activity Associated with the Activation of the Antitumor Agent Laromustine Inhibits Angiogenesis by Inducing ASK1-Dependent Endothelial Cell Death

    PubMed Central

    Praggastis, Alexandra; Li, Yonghao; Zhou, Huanjiao Jenny; He, Yun; Ghazvinian, Roxanne; Cincotta, Dylan J.; Rice, Kevin P.; Min, Wang

    2014-01-01

    The anticancer agent 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[(methylamino)carbonyl]hydrazine (laromustine), upon decomposition in situ, yields methyl isocyanate and the chloroethylating species 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE). 90CE has been shown to kill tumor cells via a proposed mechanism that involves interstrand DNA cross-linking. However, the role of methyl isocyanate in the antineoplastic function of laromustine has not been delineated. Herein, we show that 1,2-bis(methylsulfonyl)-1-[(methylamino)carbonyl]hydrazine (101MDCE), an analog of laromustine that generates only methyl isocyanate, activates ASK1-JNK/p38 signaling in endothelial cells (EC). We have previously shown that ASK1 forms a complex with reduced thioredoxin (Trx1) in resting EC, and that the Cys residues in ASK1 and Trx1 are critical for their interaction. 101MDCE dissociated ASK1 from Trx1, but not from the phosphoserine-binding inhibitor 14-3-3, in whole cells and in cell lysates, consistent with the known ability of methyl isocyanate to carbamoylate free thiol groups of proteins. 101MDCE had no effect on the kinase activity of purified ASK1, JNK, or the catalytic activity of Trx1. However, 101MDCE, but not 90CE, significantly decreased the activity of Trx reductase-1 (TrxR1). We conclude that methyl isocyanate induces dissociation of ASK1 from Trx1 either directly by carbamoylating the critical Cys groups in the ASK1-Trx1 complex or indirectly by inhibiting TrxR1. Furthermore, 101MDCE (but not 90CE) induced EC death through a non-apoptotic (necroptotic) pathway leading to inhibition of angiogenesis in vitro. Our study has identified methyl isocyanates may contribute to the anticancer activity in part by interfering with tumor angiogenesis. PMID:25068797

  6. Isolation and culture of pulmonary endothelial cells.

    PubMed

    Ryan, U S

    1984-06-01

    Methods for isolation, identification and culture of pulmonary endothelial cells are now routine. In the past, methods of isolation have used proteolytic enzymes to detach cells; thereafter, traditional methods for cell passaging have used trypsin/EDTA mixtures. Cells isolated and passaged using proteolytic enzymes have been useful in establishing the field and in verifying certain endothelial properties. However, there is a growing awareness of the role of endothelial cells in processing vasoactive substances, in responding to hormones and other agonists and in cell-cell interactions with other cell types of the vascular wall, with blood cells and with cellular products. Consequently, a new requirement has arisen for cells in vitro that maintain the differentiated properties of their counterparts in vivo. The deleterious effects of trypsin and other proteolytic enzymes commonly used in cell culture on surface structures of endothelial cells such as enzymes, receptors and junctional proteins, as well as on extracellular layers such as the glycocalyx or "endothelial fuzz," have led to the development of methods that avoid use of proteolytic enzymes at both the isolation step and during subsequent subculture. This chapter describes traditional methods for isolating pulmonary endothelial cells but emphasizes newer approaches using mechanical harvest and scale-up using microcarriers. The new methods allow maintenance of long-term, large-scale cultures of cells that retain the full complement of surface properties and that maintain the cobblestone monolayer morphology and differentiated functional properties. Methods for identification of isolated cells are therefore also considered as methods for validation of cultures during their in vitro lifespan. PMID:6090112

  7. Extracellular histones induce tissue factor expression in vascular endothelial cells via TLR and activation of NF-κB and AP-1.

    PubMed

    Yang, Xinyu; Li, Lin; Liu, Jin; Lv, Ben; Chen, Fangping

    2016-01-01

    Extracellular histones have been recognized recently as proinflammatory mediators; they are released from dying cells in response to inflammatory challenge, contributing to endothelial cell dysfunction, thrombin formation, organ failure, and death during sepsis. Clinical studies suggest that the plasma concentration of the histone-DNA complex is correlated with the severity of DIC and is a poor independent prognostic marker in sepsis. In addition, platelet activation stimulates thrombus formation. Whether histones contribute to procoagulant activity in other ways remains elusive. In this study, we confirmed that histones induce tissue factor (TF) expression in a concentration- and time-dependent manner in vascular endothelial cells (ECs) and macrophages. However, histones did not affect TF pathway inhibitor expression. Moreover, blocking the cell surface receptors TLR4 and TLR2 with specific neutralizing antibodies significantly reduced histone-induced TF expression. Furthermore, histones enhanced the nuclear translocation of NF-κB (c-Rel/p65) and AP-1 expression in a time-dependent manner in ECs. Mutating NF-κB and AP-1 significantly reduced histone-induced TF expression. Altogether, our experiments suggest that histone induces TF expression in ECs via cell surface receptors TLR4 and TLR2, simultaneously depending on the activation of the transcription factors NF-κB and AP-1.

  8. Ulinastatin attenuates pulmonary endothelial glycocalyx damage and inhibits endothelial heparanase activity in LPS-induced ARDS.

    PubMed

    Wang, Lipeng; Huang, Xiao; Kong, Guiqing; Xu, Haixiao; Li, Jiankui; Hao, Dong; Wang, Tao; Han, Shasha; Han, Chunlei; Sun, Yeying; Liu, Xiangyong; Wang, Xiaozhi

    2016-09-16

    Acute respiratory distress syndrome (ARDS) is a syndrome of acute respiratory failure characterized by major pathologic mechanisms of increased microvascular permeability and inflammation. The glycocalyx lines on the endothelial surface, which determines the vascular permeability, and heparanase play pivotal roles in the degradation of heparan sulfate (HS). HS is the major component of the glycocalyx. The aim of this study is to examine the effects of Ulinastatin (UTI) on vascular permeability and pulmonary endothelial glycocalyx dysfunction induced by lipopolysaccharide (LPS). In our study, C57BL/6 mice and human umbilical vein endothelial cells were stimulated with LPS to induce injury models. After 6 h of LPS stimulation, pulmonary pathological changes, pulmonary edema, and vascular permeability were notably attenuated by UTI. UTI inhibited LPS-induced endothelial glycocalyx destruction and significantly decreased the production of HS as determined by ELISA and immunofluorescence. UTI also reduced the active form of heparanase (50 kDa) expression and heparanase activity. Moreover, lysosome pH was investigated because heparanase (65 kDa) can be reduced easily in its active form at 50 kDa in a low pH environment within lysosome. Results showed that UTI could inhibit LPS-induced pH elevation in lysosome. In conclusion, UTI protects pulmonary endothelial glycocalyx integrity and inhibits heparanase activity during LPS-induced ARDS.

  9. Inhibition of cyclooxygenase (COX)-2 affects endothelial progenitor cell proliferation

    SciTech Connect

    Colleselli, Daniela; Bijuklic, Klaudija; Mosheimer, Birgit A.; Kaehler, Christian M. . E-mail: C.M.Kaehler@uibk.ac.at

    2006-09-10

    Growing evidence indicates that inducible cyclooxygenase-2 (COX-2) is involved in the pathogenesis of inflammatory disorders and various types of cancer. Endothelial progenitor cells recruited from the bone marrow have been shown to be involved in the formation of new vessels in malignancies and discussed for being a key point in tumour progression and metastasis. However, until now, nothing is known about an interaction between COX and endothelial progenitor cells (EPC). Expression of COX-1 and COX-2 was detected by semiquantitative RT-PCR and Western blot. Proliferation kinetics, cell cycle distribution and rate of apoptosis were analysed by MTT test and FACS analysis. Further analyses revealed an implication of Akt phosphorylation and caspase-3 activation. Both COX-1 and COX-2 expression can be found in bone-marrow-derived endothelial progenitor cells in vitro. COX-2 inhibition leads to a significant reduction in proliferation of endothelial progenitor cells by an increase in apoptosis and cell cycle arrest. COX-2 inhibition leads further to an increased cleavage of caspase-3 protein and inversely to inhibition of Akt activation. Highly proliferating endothelial progenitor cells can be targeted by selective COX-2 inhibition in vitro. These results indicate that upcoming therapy strategies in cancer patients targeting COX-2 may be effective in inhibiting tumour vasculogenesis as well as angiogenic processes.

  10. An autoantibody directed against human thrombin anion-binding exosite in a patient with arterial thrombosis: effects on platelets, endothelial cells, and protein C activation.

    PubMed

    Arnaud, E; Lafay, M; Gaussem, P; Picard, V; Jandrot-Perrus, M; Aiach, M; Rendu, F

    1994-09-15

    An autoantibody, developed by a patient with severe and recurrent arterial thrombosis, was characterized to be directed against the anion-binding exosite of thrombin, and inhibited all thrombin interactions requiring this secondary binding site without interfering with the catalytic site. The effect of the antibody was studied on thrombin interactions with platelets and endothelial cells from human umbilical veins (HUVEC). The autoantibody specifically and concentration-dependently inhibited alpha-thrombin-induced platelet activation and prostacyclin (PGI2) synthesis from HUVEC. It had no effect when gamma-thrombin or the thrombin receptor activation peptide SFLLR were the inducers. The effect of the antibody on protein C activation has been studied. The antibody blocked the thrombin-thrombomodulin activation of protein C. The inhibition of the activation was maximal with a low concentration of thrombomodulin. The fact that the autoantibody inhibited concentration-dependent alpha-thrombin-induced platelet and endothelial cell functions emphasizes the crucial role of the anion-binding exosite of thrombin to activate its receptor. In regard to the pathology, the antibody inhibited two vascular processes implicated in thrombin-antithrombotic functions, PGI2 secretion, and protein C activation, which could be implicated in this arterial thrombotic disease.

  11. Brassinosteroids inhibit in vitro angiogenesis in human endothelial cells.

    PubMed

    Rárová, Lucie; Zahler, Stefan; Liebl, Johanna; Kryštof, Vladimír; Sedlák, David; Bartůněk, Petr; Kohout, Ladislav; Strnad, Miroslav

    2012-11-01

    Antiangiogenic activity of the brassinosteroid plant hormones (BRs) and their derivative cholestanon was investigated in human umbilical vein endothelial cells (HUVEC) and in human microvascular endothelial cells (HMEC-1). 24-Epibrassinolide and 28-homocastasterone from group of 21 tested natural BRs inhibited migration of HUVEC cells. Seven tested BRs decreased the number of tubes significantly. Synthetic analogue cholestanon inhibited angiogenesis in vitro more effectively than natural BRs. Because of the similarity of BRs to human steroids, we have also studied interactions of BRs with human steroid receptors. Synthetic BRs cholestanon showed agonistic effects on estrogen-receptor-α, estrogen-receptor-β and androgen receptor. Of the natural BRs, 24-epibrassinolide was found to be a weak antagonist of estrogen-receptor-α (ERα). Our results provide the first evidence that large group of BRs can inhibit in vitro angiogenesis of primary endothelial cells. BRs constitute a novel group of human steroid receptor activators or inhibitors with capacity to inhibit angiogenesis.

  12. Pyripyropenes, fungal sesquiterpenes conjugated with alpha-pyrone and pyridine moieties, exhibits anti-angiogenic activity against human umbilical vein endothelial cells.

    PubMed

    Hayashi, Asami; Arai, Masayoshi; Fujita, Mayumi; Kobayashi, Motomasa

    2009-07-01

    In the course of our search for anti-angiogenic substances, pyripyropenes A (1), B (2), and D (3) were re-discovered as selective anti-proliferative substances against human umbilical vein endothelial cells (HUVECs) from a marine-derived fungus of Aspergillus sp. Pyripyropenes showed potent anti-proliferative activity against HUVECs with IC(50) values of the range of 0.1-1.8 muM, which were cytostatic at 0.05 to 20 muM. The selective index was more than 55-fold in comparison with those of several tumor cell lines. Compound 1 inhibited vascular endothelial growth factor (VEGF)-induced migration and tubular formation of HUVECs, while 1 showed no effect on the VEGF-induced phosphorylations of extracellular signal-regulated kinase (ERK)1/2, p38, and Akt. Pyripyropenes were originally isolated as an inhibitor of acyl-CoA: cholesterol acyltransferase (ACAT-2). While, the expression level of ACATs between HUVECs and other tumor cell lines did not correspond to the selective index of the anti-proliferative activity of compound 1. Moreover, ACATs inhibitor, 2,2-dimethyl-N-(2,4,6-trimethoxyphenyl)dodecanamide (CI-976), showed growth inhibitory activity with only poor selectivity (2.4-fold) between HUVECs and human epidermoid carcinoma KB3-1 cells. PMID:19571395

  13. Activation of nuclear factor erythroid 2-related factor 2 coordinates dimethylarginine dimethylaminohydrolase/PPAR-γ/endothelial nitric oxide synthase pathways that enhance nitric oxide generation in human glomerular endothelial cells.

    PubMed

    Luo, Zaiming; Aslam, Shakil; Welch, William J; Wilcox, Christopher S

    2015-04-01

    Dimethylarginine dimethylaminohydrolase (DDAH) degrades asymmetric dimethylarginine, which inhibits nitric oxide (NO) synthase (NOS). Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcriptional factor that binds to antioxidant response elements and transcribes many antioxidant genes. Because the promoters of the human DDAH-1 and DDAH-2, endothelial NOS (eNOS) and PPAR-γ genes contain 2 to 3 putative antioxidant response elements, we hypothesized that they were regulated by Nrf2/antioxidant response element. Incubation of human renal glomerular endothelial cells with the Nrf2 activator tert-butylhydroquinone (20 μmol·L(-1)) significantly (P<0.05) increased NO and activities of NOS and DDAH and decreased asymmetric dimethylarginine. It upregulated genes for hemoxygenase-1, eNOS, DDAH-1, DDAH-2, and PPAR-γ and partitioned Nrf2 into the nucleus. Knockdown of Nrf2 abolished these effects. Nrf2 bound to one antioxidant response element on DDAH-1 and DDAH-2 and PPAR-γ promoters but not to the eNOS promoter. An increased eNOS and phosphorylated eNOS (P-eNOSser-1177) expression with tert-butylhydroquinone was prevented by knockdown of PPAR-γ. Expression of Nrf2 was reduced by knockdown of PPAR-γ, whereas PPAR-γ was reduced by knockdown of Nrf2, thereby demonstrating 2-way positive interactions. Thus, Nrf2 transcribes HO-1 and other genes to reduce reactive oxygen species, and DDAH-1 and DDAH-2 to reduce asymmetric dimethylarginine and PPAR-γ to increase eNOS and its phosphorylation and activity thereby coordinating 3 pathways that enhance endothelial NO generation. PMID:25691623

  14. Mesenchymal Stem Cells Ameliorate Atherosclerotic Lesions via Restoring Endothelial Function

    PubMed Central

    Lin, Yu-Ling; Yet, Shaw-Fang; Hsu, Yuan-Tong

    2015-01-01

    Transplantation of mesenchymal stem cells (MSCs) is beneficial in myocardial infarction and hind limb ischemia, but its ability to ameliorate atherosclerosis remains unknown. Here, the effects of MSCs on inhibiting endothelial dysfunction and atherosclerosis were investigated in human/mouse endothelial cells treated with oxidized low-density lipoprotein (oxLDL) and in apolipoprotein E-deficient (apoE−/−) mice fed a high-fat diet. Treatment with oxLDL inactivated the Akt/endothelial nitric-oxide synthase (eNOS) pathway, induced eNOS degradation, and inhibited nitric oxide (NO) production in endothelial cells. Coculture with human MSCs reversed the effects of oxLDL on endothelial cells and restored Akt/eNOS activity, eNOS level, and NO production. Reduction of endothelium-dependent relaxation and subsequent plaque formation were developed in apoE−/− mice fed a high-fat diet. Systemic infusion with mouse MSCs ameliorated endothelial dysfunction and plaque formation in high-fat diet-fed apoE−/− mice. Interestingly, treatment with interleukin-8 (IL8)/macrophage inflammatory protein-2 (MIP-2) alone induced the similar effects of human/mouse MSCs on oxLDL-treated human/mouse endothelial cells. Neutralization antibodies (Abs) against IL8/MIP-2 also blocked the effects of human/mouse MSCs on oxLDL-treated human/mouse endothelial cells. Consistently, MIP-2 injection alone induced the similar effect of MSCs on the endothelial function in high-fat diet-fed apoE−/− mice. The improvement in endothelial dysfunction by mouse MSCs was also blocked when pretreating MSCs with anti-MIP-2 Abs. In conclusion, MSC transplantation improved endothelial function and plaque formation in high-fat diet-fed apoE−/− mice. Activation of the Akt/eNOS pathway in endothelium by IL8/MIP-2 is involved in the protective effect of MSCs. The study helps support the use and clarify the mechanism of MSCs for ameliorating atherosclerosis. PMID:25504897

  15. 5-Hydroxytryptamine receptor agonists for the abortive treatment of vascular headaches block mast cell, endothelial and platelet activation within the rat dura mater after trigeminal stimulation.

    PubMed

    Buzzi, M G; Dimitriadou, V; Theoharides, T C; Moskowitz, M A

    1992-06-26

    Antidromic stimulation of small caliber trigeminal axons causes neurogenic inflammation in the dura mater and tongue as evidenced by marked increases in mast cell activation, protein extravasation, as well as in the numbers of endothelial cytoplasmic vesicles, endothelial microvilli and platelet aggregates within ipsilateral post-capillary venules. In this report, we examined the effects of pretreatment with serotonin1 receptor agonists, dihydroergotamine (50 micrograms/kg, i.v.) and sumatriptan (100 micrograms/kg, i.v.) on the light and electron microscopic changes which develop after trigeminal ganglion stimulation. Both dihydroergotamine and sumatriptan are useful in the acute treatment of vascular headaches and bind with high affinity to 5-HT1D receptors. Both drugs decreased significantly the number of dural vessels showing endothelial or platelet changes and the numbers of activated mast cells, but did not affect the neurogenic response in the tongue. The drugs also blocked the accumulation of horseradish peroxidase reaction product within the endothelium and perivascular space on the stimulated side. The receptor is not present on trigeminovascular fibers innervating extracranial cephalic tissues. Drug mechanism probably involves inhibition of a proximal step in the pathophysiological cascade (e.g., via activation of a prejunctional receptor) because (a) receptors for sumatriptan have not been identified on mast cells whereas the inflammatory response was attenuated in mast cells as well as within platelets and the endothelium and (b) previous work indicates that sumatriptan and dihydroergotamine block neurotransmitter release. Hence, constriction of vascular smooth muscle mediated by postjunctional 5-hydroxytryptamine receptors is unlikely to explain the anti-inflammatory actions of dihydroergotamine or sumatriptan reported here.

  16. Infection of human monocyte-derived dendritic cells by ANDES Hantavirus enhances pro-inflammatory state, the secretion of active