Science.gov

Sample records for activate glycogen phosphorylase

  1. Glycogen stability and glycogen phosphorylase activities in isolated skeletal muscles from rat and toad.

    PubMed

    Goodman, C A; Stephenson, G M

    2000-01-01

    There is increasing evidence that endogenous glycogen depletion may affect excitation-contraction (E-C) coupling events in vertebrate skeletal muscle. One approach employed in physiological investigations of E-C coupling involves the use of mechanically skinned, single fibre preparations obtained from tissues stored under paraffin oil, at room temperature (RT: 20-24 degrees C) and 4 degrees C for several hours. In the present study, we examined the effect of these storage conditions on the glycogen content in three muscles frequently used in research on E-C coupling: rat extensor digitorum longus (EDL) and soleus (SOL) and toad iliofibularis (IF). Glycogen content was determined fluorometrically in homogenates prepared from whole muscles, stored under paraffin oil for up to 6 h at RT or 4 degrees C. Control muscles and muscles stored for 0.5 and 6 h were also analysed for total phosphorylase (Phos(total)) and phosphorylase a (Phos a) activities. No significant change was observed in the glycogen content of EDL and SOL muscles stored at RT for 0.5 h. In rat muscles stored at RT for longer than 0.5 h, the glycogen content decreased to 67.6% (EDL) and 78.7% (SOL) of controls after 3 h and 25.3% (EDL) and 37.4% (SOL) after 6 h. Rat muscles stored at 4 degrees C retained 79.0% (EDL) and 92.5% (SOL) of glycogen after 3 h and 75.2% (EDL) and 61.1% (SOL) after 6 h. The glycogen content of IF muscles stored at RT or 4 degrees C for 6 h was not significantly different from controls. Phos(total) was unchanged in all muscles over the 6 h period, at both temperatures. Phos a was also unchanged in the toad IF muscles, but in rat muscles it decreased rapidly, particularly in EDL (4.1-fold after 0.5 h at RT). Taken together these results indicate that storage under paraffin oil for up to 6 h at RT or 4 degrees C is accompanied by minimal glycogen loss in toad IF muscles and by a time- and temperature-dependent glycogen loss in EDL and SOL muscles of the rat.

  2. Effects of commonly used cryoprotectants on glycogen phosphorylase activity and structure.

    PubMed Central

    Tsitsanou, K. E.; Oikonomakos, N. G.; Zographos, S. E.; Skamnaki, V. T.; Gregoriou, M.; Watson, K. A.; Johnson, L. N.; Fleet, G. W.

    1999-01-01

    The effects of a number of cryoprotectants on the kinetic and structural properties of glycogen phosphorylase b have been investigated. Kinetic studies showed that glycerol, one of the most commonly used cryoprotectants in X-ray crystallographic studies, is a competitive inhibitor with respect to substrate glucose-1-P with an apparent Ki value of 3.8% (v/v). Cryogenic experiments, with the enzyme, have shown that glycerol binds at the catalytic site and competes with glucose analogues that bind at the catalytic site, thus preventing the formation of complexes. This necessitated a change in the conditions for cryoprotection in crystallographic binding experiments with glycogen phosphorylase. It was found that 2-methyl-2,4-pentanediol (MPD), polyethylene glycols (PEGs) of various molecular weights, and dimethyl sulfoxide (DMSO) activated glycogen phosphorylase b to different extents, by stabilizing its most active conformation, while sucrose acted as a noncompetitive inhibitor and ethylene glycol as an uncompetitive inhibitor with respect to glucose-1-P. A parallel experimental investigation by X-ray crystallography showed that, at 100 K, both MPD and DMSO do not bind at the catalytic site, do not induce any significant conformational change on the enzyme molecule, and hence, are more suitable cryoprotectants than glycerol for binding studies with glycogen phosphorylase. PMID:10211820

  3. Electrophoretic analysis of liver glycogen phosphorylase activation in the freeze-tolerant wood frog.

    PubMed

    Crerar, M M; David, E S; Storey, K B

    1988-08-19

    As an adaptation for overwinter survival, the wood frog, Rana sylvatica is able to tolerate the freezing of extracellular body fluids. Tolerance is made possible by the production of very high amounts of glucose in liver which is then sent to other organs where it acts as a cryoprotectant. Cryoprotectant synthesis is under the control of glycogen phosphorylase which in turn is activated in response to ice formation. To determine the mechanism of phosphorylase activation, a quantitative analysis of phosphorylase protein concentration and enzymatic activity in liver was carried out following separation of the phosphorylated a and nonphosphorylated b forms of the enzyme on native polyacrylamide gels. The results suggest that in gels, the b form is completely inactive, even in the presence of AMP and sodium sulfate, whereas the a form is active and stimulated 3-fold by these substances. Further, phosphorylase activation appears to arise solely from conversion of the b to a form of the enzyme without an increase in phosphorylase concentration or activation of a second isozyme. The quantitative analysis presented here should prove generally useful as a simple and rapid method for examining the physiological and genetic regulation of phosphorylase in animal cells.

  4. Discovery of novel dual-action antidiabetic agents that inhibit glycogen phosphorylase and activate glucokinase.

    PubMed

    Zhang, Lei; Chen, Xiaojie; Liu, Jun; Zhu, Qingzhang; Leng, Ying; Luo, Xiaomin; Jiang, Hualiang; Liu, Hong

    2012-12-01

    Dual-target-directed agents simultaneously inhibiting glycogen phosphorylase (GP) and activating glucokinase (GK) could decelerate the inflow of glucose from glycogenolysis and accelerate the outflow of glucose in the liver, therefore allow for a better control over hyperglycaemia in a synergetic manner. A series of hybrid compounds were designed by structure-assisted and ligand-based strategies. In vitro bioassays found two novel compounds (1j, 6g) worthy of further optimization on balance of dual action to GP and GK. In addition, for single-target activity, two compounds exhibited more potent GP inhibitory activity and four compounds showed better GK activation than their corresponding references.

  5. Zero-order ultrasensitivity in the regulation of glycogen phosphorylase.

    PubMed Central

    Meinke, M H; Bishop, J S; Edstrom, R D

    1986-01-01

    The activity of glycogen phosphorylase (1,4-alpha-D-glucan:orthophosphate alpha-D-glucosyltransferase, EC 2.4.1.1) is controlled by a cyclic phosphorylation-dephosphorylation process through the action of the interconverting enzymes, phosphorylase b kinase (ATP:phosphorylase-b phosphotransferase, EC 2.7.1.38) and phosphorylase a phosphatase (phosphorylase a phosphohydrolase, EC 3.1.3.17). In muscle tissue, the combined concentration of the activated (phospho-) form, phosphorylase a, and the nonactivated (dephospho-) form, phosphorylase b, is substantially greater than the Km of either of the interconverting enzymes for its phosphorylase substrate. It has been predicted that, under such a set of conditions, a sensitivity amplification will occur for phosphorylase regulation due to the zero-order ultrasensitivity effect [LaPorte, D. C. & Koshland, D. E., Jr. (1983) Nature (London) 305, 286-290]. The sensitivity amplification will enhance the responsiveness of the phosphorylase interconversion cycle to changes in the ratio of activities of the kinase to phosphatase. We have studied the cyclic interconversion process using purified muscle enzymes in steady-state reactions and found that there is an enhancement in the control sensitivity of the process due to the zero-order ultrasensitivity effect. The potential for the in vivo enhancement of sensitivity in glycogen degradation by this effect is discussed. PMID:3458247

  6. Structure-activity relationships of flavonoids as potential inhibitors of glycogen phosphorylase.

    PubMed

    Kato, Atsushi; Nasu, Norio; Takebayashi, Kenji; Adachi, Isao; Minami, Yasuhiro; Sanae, Fujiko; Asano, Naoki; Watson, Alison A; Nash, Robert J

    2008-06-25

    Flavonoids are ubiquitous components in vegetables, fruits, tea, and wine. Therefore, they are often consumed in large quantities in our daily diet. Several flavonoids have been shown to have potential as antidiabetic agents. In the present study, we focused on inhibition of glycogen phosphorylase (GP) by flavonoids. 6-Hydroxyluteolin, hypolaetin, and quercetagetin were identified as good inhibitors of dephosphorylated GP (GPb), with IC 50 values of 11.6, 15.7, and 9.7 microM, respectively. Furthermore, a structure-activity relationship study revealed that the presence of the 3' and 4' OH groups in the B-ring and double bonds between C2 and C3 in flavones and flavonols are important factors for enzyme recognition and binding. Quercetagetin inhibited GPb in a noncompetitive manner, with a K i value of 3.5 microM. Multiple inhibition studies by Dixon plots suggested that quercetagetin binds to the allosteric site. In primary cultured rat hepatocytes, quercetagetin and quercetin suppressed glucagon-stimulated glycogenolysis, with IC 50 values of 66.2 and 68.7 microM, respectively. These results suggested that as a group of novel GP inhibitors, flavonoids have potential to contribute to the protection or improvement of control of diabetes type II.

  7. Mechanism of activation of glycogen phosphorylase by fructose in the liver. Stimulation of phosphorylase kinase related to the consumption of adenosine triphosphate.

    PubMed Central

    Van de Werve, G; Hers, H G

    1979-01-01

    1. A dose-dependent activation of phosphorylase and consumption of ATP was observed in isolated hepatocytes incubated in the presence of fructose; histone kinase and phosphorylase kinase activities were unchanged at doses of this sugar that were fully effective on phosphorylase. The activation of phosphorylase by fructose was also observed in cells incubated in a Ca2+-free medium as well as in the livers of rats in vivo. 2. In a liver high-speed supernatant, fructose, tagatose and sorbose stimulated the activity of phosphorylase kinase; this effect was dependent on the presence of K+ ions, which are required for the activity of fructokinase; it was accompanied by the transformation of ATP into ADP. In the presence of hexokinase, glucose also stimulated phosphorylase kinase, both in an Na+ or a K+ medium. 3. The activities of partially purified muscle or liver phosphorylase kinase were unchanged in the presence of fructose. 4. Some properties of liver phosphorylase kinase are described, including a high molecular weight and an inhibition at ATP/Mg ratios above 0.5, as well as an effect of ATP concentration on the hysteretic behaviour of this enzyme. 5. The effect of fructose on the activation of phosphorylase is discussed in relation to the comsumption of ATP. PMID:435271

  8. Glycogen phosphorylase and its converter enzymes in haemolysates of normal human subjects and of patients with type VI glycogen-storage disease. A study of phosphorylase kinase deficiency.

    PubMed Central

    Lederer, B; Van Hoof, F; Van den Berghe, G; Hers, H

    1975-01-01

    1. The properties of phosphorylase a, phosphorylase b, phosphorylase kinase and phosphorylase phosphatase present in a human haemolysate were investigated. The two forms of phosphorylase have the same affinity for glucose 1-phosphate but greatly differ in Vmax. Phosphorylase b is only partially stimulated by AMP, since, in the presence of the nucleotide, it is about tenfold less active than phosphorylase a. In a fresh human haemolysate phosphorylase is mostly in the b form; it is converted into phosphorylase a by incubation at 20degreesC, and this reaction is stimulated by glycogen and cyclic AMP. Once activated, the enzyme can be inactivated after filtration of the haemolysate on Sephadex G-25. This inactivation is stimulated by caffeine and glucose and inhibited by AMP and fluoride. The phosphorylase kinase present in the haemolysate can also be measured by the rate of activation of added muscle phosphorylase b, on addition of ATP and Mg2+. 2. The activity of phosphorylase kinase was measured in haemolysates obtained from a series of patients who had been classified as suffering from type VI glycogenosis. In nine patients, all boys, an almost complete deficiency of phosphorylase kinase was observed in the haemolysate and, when it could be assayed, in the liver. A residual activity, about 20% of normal, was found in the leucocyte fraction, whereas the enzyme activity was normal in the muscle. These patients suffer from the sex-linked phosphorylase kinase deficiency previously described by others. Two pairs of siblings, each time brother and sister, displayed a partial deficiency of phosphorylase kinase in the haemolysate and leucocytes and an almost complete deficiency in the liver. This is considered as being the autosomal form of phosphorylase kinase deficiency. Other patients were characterized by a low activity of total (a+b) phosphorylase and a normal or high activity of phosphorylase kinase in their haemolysate. PMID:168880

  9. Hexokinase 2, Glycogen Synthase and Phosphorylase Play a Key Role in Muscle Glycogen Supercompensation

    PubMed Central

    Irimia, José M.; Rovira, Jordi; Nielsen, Jakob N.; Guerrero, Mario; Wojtaszewski, Jørgen F. P.; Cussó, Roser

    2012-01-01

    Background Glycogen-depleting exercise can lead to supercompensation of muscle glycogen stores, but the biochemical mechanisms of this phenomenon are still not completely understood. Methods Using chronic low-frequency stimulation (CLFS) as an exercise model, the tibialis anterior muscle of rabbits was stimulated for either 1 or 24 hours, inducing a reduction in glycogen of 90% and 50% respectively. Glycogen recovery was subsequently monitored during 24 hours of rest. Results In muscles stimulated for 1 hour, glycogen recovered basal levels during the rest period. However, in those stimulated for 24 hours, glycogen was supercompensated and its levels remained 50% higher than basal levels after 6 hours of rest, although the newly synthesized glycogen had fewer branches. This increase in glycogen correlated with an increase in hexokinase-2 expression and activity, a reduction in the glycogen phosphorylase activity ratio and an increase in the glycogen synthase activity ratio, due to dephosphorylation of site 3a, even in the presence of elevated glycogen stores. During supercompensation there was also an increase in 5′-AMP-activated protein kinase phosphorylation, correlating with a stable reduction in ATP and total purine nucleotide levels. Conclusions Glycogen supercompensation requires a coordinated chain of events at two levels in the context of decreased cell energy balance: First, an increase in the glucose phosphorylation capacity of the muscle and secondly, control of the enzymes directly involved in the synthesis and degradation of the glycogen molecule. However, supercompensated glycogen has fewer branches. PMID:22860128

  10. The temporal relationship between glycogen phosphorylase and activation of the pyruvate dehydrogenase complex during adrenaline infusion in resting canine skeletal muscle

    PubMed Central

    Roberts, Paul A; Loxham, Susan J G; Poucher, Simon M; Constantin-Teodosiu, Dumitru; Greenhaff, Paul L

    2002-01-01

    The present study examined the effect of adrenaline infusion on the activation status of glycogen phosphorylase and the pyruvate dehydrogenase complex (PDC) and on the accumulation of glucose-6-phosphate (G-6-P) and acetylcarnitine in resting canine skeletal muscle. The study was performed in an effort to gain some insight into the temporal relationship between glycogen phosphorylase and PDC activation in vivo in skeletal muscle, which is currently unresolved. Multiple muscle samples were obtained from canine brachial muscle (n = 10) before and during (1, 3, 7 and 15 min) adrenaline infusion (0.14 μg (kg body mass)−1 min−1, i.v.). Adrenaline infusion increased glycogen phosphorylase ‘a’ by > 2-fold above basal levels after 3 min (pre-infusion = 9.2 ± 1.1 vs. 3 min = 22.3 ± 4.0 mmol glucosyl units (kg dry muscle)−1 min−1, P < 0.05). The concentration of G-6-P increased transiently from its basal concentration at 1 min (pre-infusion = 1.5 ± 0.2 vs. 1 min = 4.4 ± 0.9 mmol kg dry muscle)−1, P < 0.01), declined to its pre-infusion concentration at 3 min (P < 0.05), and then increased again after 7 min of infusion (P < 0.05). The PDC was activated following 7 min of adrenaline infusion (pre-infusion = 0.22 ± 0.04 vs. 7 min = 1.04 ± 0.15 mmol acetyl-CoA (kg wet muscle)−1 min−1, P < 0.01), and this degree of activation was maintained for the duration of infusion. During the first 3 min of infusion, the concentration of acetylcarnitine declined (pre-infusion = 3.8 ± 0.3 vs. 3 min = 1.6 ± 0.2 mmol (kg dry muscle)−1, P < 0.05), before transiently increasing at 7 min above the 3 min concentration (3 min = 1.6 ± 0.2 vs. 7 min = 5.1 ± 1.0 mmol (kg dry muscle)−1, P < 0.01). This is the first study to demonstrate that adrenaline can indirectly activate the PDC in skeletal muscle in vivo at rest. The results demonstrate that adrenaline increased glycogen phosphorylase activation and glycolytic flux within 3 min of infusion, but took several more

  11. Glycolytic potential and activity of adenosine monophosphate kinase (AMPK), glycogen phosphorylase (GP) and glycogen debranching enzyme (GDE) in steer carcasses with normal (<5.8) or high (>5.9) 24h pH determined in M. longissimus dorsi.

    PubMed

    Apaoblaza, A; Galaz, A; Strobel, P; Ramírez-Reveco, A; Jeréz-Timaure, N; Gallo, C

    2015-03-01

    Muscle glycogen concentration (MGC) and lactate (LA), activity of glycogen debranching enzyme (GDE), glycogen phosphorylase (GP) and adenosine monophosphate kinase (AMPK) were determined at 0.5h (T0) and 24h (T24) post-mortem in Longissimus dorsi samples from 38 steers that produced high pH (>5.9) and normal pH (<5.8) carcasses at 24h postmortem. MGC, LA and glycolytic potential were higher (P<0.05) in normal pH carcasses. GDE activity was similar (P>0.05) in both pH categories. GP activity increased between T0 and T24 only in normal pH carcasses. AMPK activity was four times higher in normal pH v/s high pH carcasses, without changing its activity over time. Results reinforce the idea that differences in postmortem glycogenolytic/glycolytic flow in L. dorsi of steers showing normal v/s high muscle pH at 24h, could be explained not only by the higher initial MGC in normal pH carcasses, but also by a high and sustained activity of AMPK and an increased GP activity at 24h postmortem.

  12. Hormone-induced increase in free cytosolic calcium and glycogen phosphorylase activation in rat hepatocytes incubated in normal and low-calcium media.

    PubMed Central

    Binet, A; Berthon, B; Claret, M

    1985-01-01

    The action of alpha 1-adrenergic agonists (noradrenaline in the presence of propranolol), vasopressin and angiotensin on the intracellular free Ca2+ concentration, [Ca2+]i, was determined by using the fluorescent dye quin2 in isolated rat liver cells. In the presence of external Ca2+ (1.8 mM), 1 microM-noradrenaline induced an increase in [Ca2+]i up to about 800 nM without apparent delay, whereas 10 nM-vasopressin and 1 nM-angiotensin increased [Ca2+]i to values higher than 1500 nM with a lag period of about 6s. The successive addition of the hormones and of their specific antagonists indicated that the actions of the three Ca2+-mobilizing hormones occurred without apparent desensitization (over 6 min) and via independent receptors. The relative contributions of internal and external Ca2+ pools to the cell response were determined by studying the hormone-mediated [Ca2+]i increase and glycogen phosphorylase activation in low-Ca2+ media (22 microM). In this medium: (1) [Ca2+]i was lowered and the hormones initiated a transient instead of a sustained increase in [Ca2+]i; subsequent addition (2 min) of a second hormone promoted a lesser increase in [Ca2+]i; in contrast, the subsequent addition (2 min) of Ca2+ (1.8 mM) caused [Ca2+]i to increase to a value close to that initiated by the hormone in control conditions, the amplitude of the latter response being dependent on the concentration of Ca2+ added to the medium; (2) returning to normal Ca2+ (1.8 mM) restored the resting [Ca2+]i and allowed the hormone added 2 min later to promote a large increase in [Ca2+]i whose final amplitude was also dependent on the concentration of Ca2+ added beforehand. Similar results were found when the same protocol was applied to the glycogen phosphorylase activation. It is concluded that Ca2+ influx is required for a maximal and sustained response and to reload the hormone-sensitive stores. PMID:4026798

  13. The experimental type 2 diabetes therapy glycogen phosphorylase inhibition can impair aerobic muscle function during prolonged contraction.

    PubMed

    Baker, David J; Greenhaff, Paul L; MacInnes, Alan; Timmons, James A

    2006-06-01

    Glycogen phosphorylase inhibition represents a promising strategy to suppress inappropriate hepatic glucose output, while muscle glycogen is a major source of fuel during contraction. Glycogen phosphorylase inhibitors (GPi) currently being investigated for the treatment of type 2 diabetes do not demonstrate hepatic versus muscle glycogen phosphorylase isoform selectivity and may therefore impair patient aerobic exercise capabilities. Skeletal muscle energy metabolism and function are not impaired by GPi during high-intensity contraction in rat skeletal muscle; however, it is unknown whether glycogen phosphorylase inhibitors would impair function during prolonged lower-intensity contraction. Utilizing a novel red cell-perfused rodent gastrocnemius-plantaris-soleus system, muscle was pretreated for 60 min with either 3 micromol/l free drug GPi (n=8) or vehicle control (n=7). During 60 min of aerobic contraction, GPi treatment resulted in approximately 35% greater fatigue. Muscle glycogen phosphorylase a form (P<0.01) and maximal activity (P<0.01) were reduced in the GPi group, and postcontraction glycogen (121.8 +/- 16.1 vs. 168.3 +/- 8.5 mmol/kg dry muscle, P<0.05) was greater. Furthermore, lower muscle lactate efflux and glucose uptake (P<0.01), yet higher muscle Vo(2), support the conclusion that carbohydrate utilization was impaired during contraction. Our data provide new confirmation that muscle glycogen plays an essential role during submaximal contraction. Given the critical role of exercise prescription in the treatment of type 2 diabetes, it will be important to monitor endurance capacity during the clinical evaluation of nonselective GPi. Alternatively, greater effort should be devoted toward the discovery of hepatic-selective GPi, hepatic-specific drug delivery strategies, and/or alternative strategies for controlling excess hepatic glucose production in type 2 diabetes.

  14. Partial Purification and Characterization of Glycogen Phosphorylase from Dictyostelium discoideum1

    PubMed Central

    Jones, Theodore H. D.; Wright, Barbara E.

    1970-01-01

    Glycogen phosphorylase was isolated from cells of Dictyostelium discoideum in the culmination stage of development and purified 35-fold. The enzyme had a pH optimum of 6.9 and contained sulfhydryl groups essential for activity. The Km values for phosphate and glycogen were 3 mm and 0.06% (w/v), respectively. No dependence on, or stimulation by, any nucleotide was observed and a wide variety of nucleotides and glycolytic intermediates did not inhibit the enzyme. Nucleotide sugars competitively inhibited the enzyme. Guanosine diphosphoglucose and adenosine diphosphoglucose were the most effective, and uridine diphosphoglucose was the least effective of the nucleotide sugars tested. The specific activity of glycogen phosphorylase increased from about 0.004 unit per mg of protein in aggregating cells to about 0.024 unit per mg in culminating cells, and then decreased during sorocarp formation. This increase in enzyme specific activity during the starvation and aging of the system can account for the increased rate of glycogen degradation during this period of development. Amylase specific activity, measured at pH 4.8 and 6.9, varied between 0.005 and 0.013 unit per mg of protein during all stages of development. PMID:5530813

  15. The cyclin-dependent kinase (CDK) inhibitor flavopiridol inhibits glycogen phosphorylase.

    PubMed

    Kaiser, A; Nishi, K; Gorin, F A; Walsh, D A; Bradbury, E M; Schnier, J B

    2001-02-15

    Flavopiridol has been shown to induce cell cycle arrest and apoptosis in various tumor cells in vitro and in vivo. Using immobilized flavopiridol, we identified glycogen phosphorylases (GP) from liver and brain as flavopiridol binding proteins from HeLa cell extract. Purified rabbit muscle GP also bound to the flavopiridol affinity column. GP is the rate-limiting enzyme in intracellular glycogen breakdown. Flavopiridol significantly inhibited the AMP-activated GP-b form of the purified rabbit muscle isoenzyme (IC50 of 1 microM at 0.8 mM AMP), but was less inhibitory to the active phosphorylated form of GP, GP-a (IC50 of 2.5 microM). The AMP-bound GP-a form was poorly inhibited by flavopiridol (40% at 10 microM). Increasing concentrations of the allosteric effector AMP resulted in a linear decrease in the GP-inhibitory activity of flavopiridol suggesting interference between flavopiridol and AMP. In contrast the GP inhibitor caffeine had no effect on the relative GP inhibition by flavopiridol, suggesting an additive effect of caffeine. Flavopiridol also inhibited the phosphorylase kinase-catalyzed phosphorylation of GP-b by inhibiting the kinase in vitro. Flavopiridol thus is able to interfere with both activating modifications of GP-b, AMP activation and phosphorylation. In A549 NSCLC cells flavopiridol treatment caused glycogen accumulation despite of an increase in GP activity, suggesting direct GP inhibition in vivo rather than inhibition of GP activation by phosphorylase kinase. These results suggest that the cyclin-dependent kinase inhibitor flavopiridol interferes with glycogen degradation, which may be responsible for flavopiridol's cytotoxicity and explain its resistance in some cell lines.

  16. C-Glucopyranosyl-1,2,4-triazoles As New Potent Inhibitors of Glycogen Phosphorylase

    PubMed Central

    2013-01-01

    Glycogen phosphorylase inhibitors are considered as potential antidiabetic agents. 3-(β-d-Glucopyranosyl)-5-substituted-1,2,4-triazoles were prepared by acylation of O-perbenzoylated N1-tosyl-C-β-d-glucopyranosyl formamidrazone and subsequent removal of the protecting groups. The best inhibitor was 3-(β-d-glucopyranosyl)-5-(2-naphthyl)-1,2,4-triazole (Ki = 0.41 μM against rabbit muscle glycogen phosphorylase b). PMID:24900719

  17. Synthesis of (benzimidazol-2-yl)aniline derivatives as glycogen phosphorylase inhibitors.

    PubMed

    Galal, Shadia A; Khattab, Muhammad; Andreadaki, Fotini; Chrysina, Evangelia D; Praly, Jean-Pierre; Ragab, Fatma A F; El Diwani, Hoda I

    2016-11-01

    A series of (benzimidazol-2-yl)-aniline (1) derivatives has been synthesized and evaluated as glycogen phosphorylase (GP) inhibitors. Kinetics studies revealed that compounds displaying a lateral heterocyclic residue with several heteroatoms (series 3 and 5) exhibited modest inhibitory properties with IC50 values in the 400-600μM range. Arylsulfonyl derivatives 7 (Ar: phenyl) and 9 (Ar: o-nitrophenyl) of 1 exhibited the highest activity (series 2) among the studied compounds (IC50 324μM and 357μM, respectively) with stronger effect than the p-tolyl analogue 8.

  18. 1,N6-etheno-AMP and 1,N6-etheno-2'-deoxy-AMP as probes of the activator site of glycogen phosphorylase from rabbit skeletal muscle.

    PubMed Central

    Vandenbunder, B; Morange, M; Buc, H

    1976-01-01

    Both 1,N6-etheno-AMP and 1,N6-etheno-2'-deoxy-AMP bind at the AMP site of phosphorylase b (1,4-alpha-D-glucan:orthophosphate alpha-glucosyltransferase, EC 2.4.1.1). Etheno-AMP induces the same activation as AMP, about 30-fold higher than the activation induced by etheno-dAMP. The fluorescence of etheno-AMP and etheno-dAMP is associated with the base moiety; therefore, when free in solution, the two derivatives have identical fluorescence properties. However, when bound to phosphorylase, the fluorescence of etheno-AMP is quenched more efficiently than the fluorescence of etheno-dAMP. This difference between the fluorescence properties of the bound nucleotides suggests that a modification in the ribose ring affects the position of the adenine in the AMP site of phosphorylase b. The observed quenching may be due to a stacking interaction between an aromatic residue and the base moiety of the bound nucleotide. PMID:1066682

  19. Synthesis, screening and docking of small heterocycles as glycogen phosphorylase inhibitors.

    PubMed

    Schweiker, Stephanie S; Loughlin, Wendy A; Lohning, Anna S; Petersson, Maria J; Jenkins, Ian D

    2014-09-12

    A series of morpholine substituted amino acids (phenylalanine, leucine, lysine and glutamic acid) was synthesized. A fragment-based screening approach was then used to evaluate a series of small heterocycles, including morpholine, oxazoline, dihydro-1,3-oxazine, tetrahydro-1,3-oxazepine, thiazoline, tetrahydro-1,3-pyrimidine, tetrahydro-1,3-diazepine and hexahydro-1H-benzimidazole, as potential inhibitors of Glycogen Phosphorylase a. Thiazoline 7 displayed an improved potency (IC50 of 25 μM) and had good LE and LELP values, as compared to heterocycles 1, 5, 9-13 and 19 (IC50 values of 1.1 mM-23.9 mM). A docking study using the crystal structure of human liver Glycogen Phosphorylase, provided insight into the interactions of heterocycles 5, 7, 9-13 and 19 with Glycogen Phosphorylase.

  20. Molecular Mechanisms of Allosteric Inhibition of Brain Glycogen Phosphorylase by Neurotoxic Dithiocarbamate Chemicals.

    PubMed

    Mathieu, Cécile; Bui, Linh-Chi; Petit, Emile; Haddad, Iman; Agbulut, Onnik; Vinh, Joelle; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2017-02-03

    Dithiocarbamates (DTCs) are important industrial chemicals used extensively as pesticides and in a variety of therapeutic applications. However, they have also been associated with neurotoxic effects and in particular with the development of Parkinson-like neuropathy. Although different pathways and enzymes (such as ubiquitin ligases or the proteasome) have been identified as potential targets of DTCs in the brain, the molecular mechanisms underlying their neurotoxicity remain poorly understood. There is increasing evidence that alteration of glycogen metabolism in the brain contributes to neurodegenerative processes. Interestingly, recent studies with N,N-diethyldithiocarbamate suggest that brain glycogen phosphorylase (bGP) and glycogen metabolism could be altered by DTCs. Here, we provide molecular and mechanistic evidence that bGP is a target of DTCs. To examine this system, we first tested thiram, a DTC pesticide known to display neurotoxic effects, observing that it can react rapidly with bGP and readily inhibits its glycogenolytic activity (kinact = 1.4 × 10(5) m(-1) s(-1)). Using cysteine chemical labeling, mass spectrometry, and site-directed mutagenesis approaches, we show that thiram (and certain of its metabolites) alters the activity of bGP through the formation of an intramolecular disulfide bond (Cys(318)-Cys(326)), known to act as a redox switch that precludes the allosteric activation of bGP by AMP. Given the key role of glycogen metabolism in brain functions and neurodegeneration, impairment of the glycogenolytic activity of bGP by DTCs such as thiram may be a new mechanism by which certain DTCs exert their neurotoxic effects.

  1. Studies on responsiveness of hepatoma cells to catecholamines. IV. Lack of adrenergic activation of phosphorylase in rat ascites hepatoma cells.

    PubMed

    Miyamoto, K; Yanaoka, T; Sanae, F; Wakusawa, S; Koshiura, R

    1986-10-01

    Glycogen phosphorylase a activity in 7 rat ascites hepatoma cell lines treated with adrenergic agents, phenylephrine, epinephrine and isoproterenol, was investigated as compared with that in freshly isolated rat hepatocytes. Basal phosphorylase activities in hepatoma cells except AH7974 cells were lower than that in hepatocytes. Phosphorylase in hepatoma cells was not activated by any of the agents, while the enzyme activity in hepatocytes was clearly increased in a dose- and time-dependent manner. Phosphorylase in hepatocytes was sensitive to glucagon, but it was found to be insensitive to glucagon in all hepatoma cells. The present results suggest that rat ascites hepatoma cells may escape the glycogenolytic regulation by catecholamines and glucagon.

  2. Glycogen phosphorylase a inhibitors with a phenethylphenylphthalimide skeleton derived from thalidomide-related alpha-glucosidase inhibitors and liver X receptor antagonists.

    PubMed

    Motoshima, Kazunori; Ishikawa, Minoru; Sugita, Kazuyuki; Hashimoto, Yuichi

    2009-09-01

    Novel glycogen phosphorylase a (GPa) inhibitors with a phenethylphenylphthalimide skeleton were prepared based on alpha-glucosidase inhibitors and liver X receptor (LXR) antagonists derived from thalidomide. Their structure-activity relationships were analyzed. Some of the compounds thus prepared showed potent inhibitory activity against rabbit muscle GPa with more than 10-fold greater efficacy than a typical GPa inhibitor, 1,4-dideoxy-1,4-imino-D-arabinitol.

  3. Effects of eugenol-reduced clove extract on glycogen phosphorylase b and the development of diabetes in db/db mice.

    PubMed

    Sanae, Fujiko; Kamiyama, Ogusa; Ikeda-Obatake, Kyoko; Higashi, Yasuhiko; Asano, Naoki; Adachi, Isao; Kato, Atsushi

    2014-02-01

    We found that the 50% aqueous EtOH extract of clove (Syzygium aromaticum) had potent dose-dependent inhibitory activity toward glycogen phosphorylase b and glucagon-stimulated glucose production in primary rat hepatocytes. Among the components, eugeniin inhibited glycogen phosphorylase b and glucagon-stimulated glucose production in primary rat hepatocytes, with IC50 values of 0.14 and 4.7 μM, respectively. In sharp contrast, eugenol showed no significant inhibition toward glycogen phosphorylase b, even at a concentration of 400 μM. Eugenol-reduced clove extracts (erCE) were prepared and when fed to a db/db mouse they clearly suppressed the blood glucose and HbA1c levels. Furthermore, plasma triglyceride and non-esterified fatty acid levels in 5% and 10% erCE-fed db/db mice were significantly lowered, compared with control db/db mice without erCE supplementation. These results suggested that dietary supplementation with the erCE could beneficially modify glucose and lipid metabolism and contribute to the prevention of the progress of hyperglycemia and metabolic syndrome.

  4. Kinetic properties of tetrameric glycogen phosphorylase b in solution and in the crystalline state.

    PubMed Central

    Leonidas, D. D.; Oikonomakos, N. G.; Papageorgiou, A. C.; Sotiroudis, T. G.

    1992-01-01

    R-state monoclinic P2(1) crystals of phosphorylase have been shown to be catalytically active in the presence of an oligosaccharide primer and glucose-1-phosphate in 0.9 M ammonium sulfate, 10 mM beta-glycerophosphate, 0.5 mM EDTA, and 1 mM dithiothreitol, the medium in which the crystals are grown or equilibrated for crystallographic studies (Barford, D. & Johnson, L.N., 1989, Nature 360, 609-616; Barford, D., Hu, S.-H., & Johnson, L.N., 1991, J. Mol. Biol. 218, 233-260). Kinetic data suggest that the activity of crystalline tetrameric phosphorylase is similar to that determined in solution for the enzyme tetramer. However, large differences were found in the maximal velocities for both oligosaccharide or glucose-1-phosphate substrates between the soluble dimeric and crystalline tetrameric enzyme. PMID:1304391

  5. Glycogen phosphorylase in Acanthamoeba spp.: determining the role of the enzyme during the encystment process using RNA interference.

    PubMed

    Lorenzo-Morales, Jacob; Kliescikova, Jarmila; Martinez-Carretero, Enrique; De Pablos, Luis Miguel; Profotova, Bronislava; Nohynkova, Eva; Osuna, Antonio; Valladares, Basilio

    2008-03-01

    Acanthamoeba infections are difficult to treat due to often late diagnosis and the lack of effective and specific therapeutic agents. The most important reason for unsuccessful therapy seems to be the existence of a double-wall cyst stage that is highly resistant to the available treatments, causing reinfections. The major components of the Acanthamoeba cyst wall are acid-resistant proteins and cellulose. The latter has been reported to be the major component of the inner cyst wall. It has been demonstrated previously that glycogen is the main source of free glucose for the synthesis of cellulose in Acanthamoeba, partly as glycogen levels fall during the encystment process. In other lower eukaryotes (e.g., Dictyostelium discoideum), glycogen phosphorylase has been reported to be the main tool used for glycogen breakdown in order to maintain the free glucose levels during the encystment process. Therefore, it was hypothesized that the regulation of the key processes involved in the Acanthamoeba encystment may be similar to the previously reported regulation mechanisms in other lower eukaryotes. The catalytic domain of the glycogen phosphorylase was silenced using RNA interference methods, and the effect of this phenomenon was assessed by light and electron microscopy analyses, calcofluor staining, expression zymogram assays, and Northern and Western blot analyses of both small interfering RNA-treated and control cells. The present report establishes the role of glycogen phosphorylase during the encystment process of Acanthamoeba. Moreover, the obtained results demonstrate that the enzyme is required for cyst wall assembly, mainly for the formation of the cell wall inner layer.

  6. Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia

    PubMed Central

    Saez, Isabel; Duran, Jordi; Sinadinos, Christopher; Beltran, Antoni; Yanes, Oscar; Tevy, María F; Martínez-Pons, Carlos; Milán, Marco; Guinovart, Joan J

    2014-01-01

    Glycogen is present in the brain, where it has been found mainly in glial cells but not in neurons. Therefore, all physiologic roles of brain glycogen have been attributed exclusively to astrocytic glycogen. Working with primary cultured neurons, as well as with genetically modified mice and flies, here we report that—against general belief—neurons contain a low but measurable amount of glycogen. Moreover, we also show that these cells express the brain isoform of glycogen phosphorylase, allowing glycogen to be fully metabolized. Most importantly, we show an active neuronal glycogen metabolism that protects cultured neurons from hypoxia-induced death and flies from hypoxia-induced stupor. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism participates in the neuronal tolerance to hypoxic stress. PMID:24569689

  7. Measurement of the turnover of glycogen phosphorylase by GC/MS using stable isotope derivatives of pyridoxine (vitamin B6).

    PubMed Central

    Beynon, R J; Leyland, D M; Evershed, R P; Edwards, R H; Coburn, S P

    1996-01-01

    The majority of vitamin B6 in the body is in skeletal muscle, bound as the cofactor pyridoxal 5'-phosphate to one abundant protein, glycogen phosphorylase. Previous work has established that radiolabelled vitamin B6 can be used as a turnover label for glycogen phosphorylase. In this study, a stable isotope derivative of pyridoxine ¿dideuterated pyridoxine; 3-hydroxy-4-(hydroxymethyl) -5-[hydroxymethyl-2H2]-2-methylpyridine¿ ([2H2]PN) has been used as a metabolic tracer to study the kinetics of labelling of the body pools of vitamin B6 in mice. A non-invasive method was developed in which the isotope abundance of the urinary excretory product of vitamin B6 metabolism, 4-pyridoxic acid, was analysed by GC/MS. The change in isotope abundance of urinary 4-pyridoxic acid following administration of [2H2]PN reflects the kinetics of labelling of the body pools of vitamin B6, and yields, non-invasively, the rate of degradation of glycogen phosphorylase. PMID:8713093

  8. Glucose analog inhibitors of glycogen phosphorylases as potential antidiabetic agents: recent developments.

    PubMed

    Somsák, László; Nagya, Veronika; Hadady, Zsuzsa; Docsa, Tibor; Gergely, Pál

    2003-01-01

    Diabetes is among the largest contributors to global mortality through its long term complications. The worldwide epidemic of type 2 diabetes has been stimulating the quest for new concepts and targets for the treatment of this incurable disease. A new target is glycogen phosphorylase (GP), the main regulatory enzyme in the liver responsible for the control of blood glucose levels. One of several approaches to influence the action of GP is the use of glucose derivatives as active site inhibitors. This field of research commenced 10-15 years ago and, due to joint efforts in computer aided molecular design, organic synthesis, protein crystallography, and biological assays, resulted in glucopyranosylidene-spiro-hydantoin 16 (K(i) = 3-4 micro M) as the most efficient glucose analog inhibitor of GP of that time. The present paper surveys the recent developments of this field achieved mainly in the last five years: the synthesis and evaluation of glucopyranosylidene-spiro-thiohydantoin 18 (K(i) = 5 micro M) which has proven equipotent with 16, and is available in gram amounts; furanosylidene- and xylopyranosylidene-spiro-(thio)hydantoins whose ineffectiveness (K(i) > 10 mM) confirmed the high specificity of the catalytic site of GP towards the D-glucopyranosyl unit; "open" hydantoins like methyl N-(1-carboxamido-D-glucopyranosyl)carbamate 37 (K(i) = 16 micro M) and N-acyl-N'-(beta-D-glucopyranosyl)ureas among them the to date best glucose analog inhibitor N-(2-naphthoyl)-N'-(beta-D-glucopyranosyl)urea (35, K(i) = 0.4 micro M) which can also bind to the so-called new allosteric site of GP; C-(beta-D-glucopyranosyl)heterocycles (tetrazole, 1,3,4-oxadiazoles, benzimidazole (K(i) = 11 micro M), and benzothiazole). Iminosugars like isofagomine (45, IC(50) = 0.7 micro M), noeuromycin (53, IC(50) = 4 micro M), and azafagomine (54, IC(50) = 13.5 micro M) also bind strongly to the active site of GP, however, substitution on the nitrogens makes the binding weaker. The natural

  9. Glucocorticoids and hepatic glycogen metabolism.

    PubMed

    Stalmans, W; Laloux, M

    1979-01-01

    The steady accumulation of glycogen in fetal rat liver during the last fifth of gestation is elicited by a transient rise in the level of circulating corticosterone. One effect of glucocorticoids is to induce glycogen synthase. The actual deposition of glycogen, however, depends on the appearance of a small amount of glycogen synthase in the active, dephosphorylated form. Induction of glycogen synthase phosphatase by glucocorticoids may explain the latter crucial process. Insulin enhances further the rate of glycogen deposition. The effect of insulin requires a previous exposure of the fetal liver to glucocorticoids. It is exerted on the enzyme interconversion system and appears not to involve new protein synthesis. Administration of glucocorticoids to adult fed or fasted animals causes within 3 h an intensive deposition of glycogen in the liver. This phenomenon is ultimately explained by both an activation of glycogen synthase and an inactivation of glycogen phosphorylase. The latter process may be due to an enhanced activity of phosphorylase phosphatase, or possibly of phosphorylase kinase phosphatase. The activation of glycogen synthase is explained by an enhanced activity of glycogen synthase phosphatase. The latter enzyme is normally profoundly inhibited by phosphorylase a; glucocorticoids cause the appearance in the liver of a protein factor that decreases and eventually cancels this inhibitory effect of phosphorylase a. It remains to be established whether or not some part of the glucocorticoid effect on adult liver is mediated by insulin.

  10. Novel Liver-targeted conjugates of Glycogen Phosphorylase Inhibitor PSN-357 for the Treatment of Diabetes: Design, Synthesis, Pharmacokinetic and Pharmacological Evaluations

    PubMed Central

    Zhang, Liying; Song, Chengjun; Miao, Guangxin; Zhao, Lianzhi; Yan, Zhiwei; Li, Jing; Wang, Youde

    2017-01-01

    PSN-357, an effective glycogen phosphorylase (GP) inhibitor for the treatment for type 2 diabetics, is hampered in its clinical use by the poor selectivity between the GP isoforms in liver and in skeletal muscle. In this study, by the introduction of cholic acid, 9 novel potent and liver-targeted conjugates of PSN-357 were obtained. Among these conjugates, conjugate 6 exhibited slight GP inhibitory activity (IC50 = 31.17 μM), good cellular efficacy (IC50 = 13.39 μM) and suitable stability under various conditions. The distribution and pharmacokinetic studies revealed that conjugate 6 could redistribute from plasma to liver resulting in a considerable higher exposure of PSN-357 metabolizing from 6 in liver (AUCliver/AUCplasma ratio was 18.74) vs that of PSN-357 (AUCliver/AUCplasma ratio was 10.06). In the in vivo animal study of hypoglycemia under the same dose of 50 mg/kg, conjugate 6 exhibited a small but significant hypoglycemic effects in longer-acting manners, that the hypoglycemic effects of 6 is somewhat weaker than PSN-357 from administration up to 6 h, and then became higher than PSN-357 for the rest time of the test. Those results indicate that the liver-targeted glycogen phosphorylase inhibitor may hold utility in the treatment of type 2 diabetes. PMID:28225016

  11. [Reconstruction of muscle glycogen phosphorylase b from an apoenzyme and pyridoxal-5'-phosphate and its analogs. Interaction of apophosphorylase and the reconstructed enzyme with specific ligands].

    PubMed

    Chebotareva, N A; Sugrobova, N P; Bulanova, L N; Poznanskaia, A A; Kurganov, B I; Gunar, V I

    1995-12-01

    Sedimentation methods were used to study the effects of modification of the pyridoxal-5'-phosphate (PLP) molecule at the 5th position on the affinity of reconstituted muscle glycogen phosphorylase b for the substrate (glycogen) and the allosteric inhibitor (FMN) as well as on the enzyme capacity to association induced by AMP. Reconstituted phosphorylase b was obtained with PLP analogs containing at the 5th position -CH2-CH2-COOH (analog I), trans-CH=CH-COOH (analog II) or -C identical to COOH (analog III) residues. Reconstitution of phosphorylase b is accompanied by the recovery of the enzyme quaternary structure. Phosphorylase b reconstituted with PLP or analogs I, II and III is not distinguished practically from the native enzyme in its affinity for glycogen. Substitution of the native coenzyme in the phosphorylase molecule with any tested PLP analog leads to lower enzyme affinity for FMN. Microscopic dissociation constants of the FMN-enzyme complexes increase in the following order: enzyme.I < enzyme.II < enzyme.III. Phosphorylase b reconstituted with analogs I, II and III differs substantially from the native enzyme in its capacity to association in the presence of 1 mM AMP: the reconstituted enzyme is represented practically by only the tetrameric form.

  12. Glucose analogue inhibitors of glycogen phosphorylase: from crystallographic analysis to drug prediction using GRID force-field and GOLPE variable selection.

    PubMed

    Watson, K A; Mitchell, E P; Johnson, L N; Cruciani, G; Son, J C; Bichard, C J; Fleet, G W; Oikonomakos, N G; Kontou, M; Zographos, S E

    1995-07-01

    Several inhibitors of the large regulatory enzyme glycogen phosphorylase (GP) have been studied in crystallographic and kinetic experiments. GP catalyses the first step in the phosphorylysis of glycogen to glucose-l-phosphate, which is utilized via glycolysis to provide energy to sustain muscle contraction and in the liver is converted to glucose. alpha-D-Glucose is a weak inhibitor of glycogen phosphorylase form b (GPb, K(i) = 1.7 mM) and acts as a physiological regulator of hepatic glycogen metabolism. Glucose binds to phosphorylase at the catalytic site and results in a conformational change that stabilizes the inactive T state of the enzyme, promoting the action of protein phosphatase 1 and stimulating glycogen synthase. It has been suggested that in the liver, glucose analogues with greater affinity for glycogen phosphorylase may result in a more effective regulatory agent. Several N-acetyl glucopyranosylamine derivatives have been synthesized and tested in a series of crystallographic and kinetic binding studies with GPb. The structural results of the bound enzyme-ligand complexes have been analysed together with the resulting affinities in an effort to understand and exploit the molecular interactions that might give rise to a better inhibitor. Comparison of the N-methylacetyl glucopyranosylamine (N-methylamide, K(i) = 0.032 mM) with the analogous beta-methylamide derivative (C-methylamide, K(i) = 0.16 mM) illustrate the importance of forming good hydrogen bonds and obtaining complementarity of van der Waals interactions. These studies also have shown that the binding modes can be unpredictable but may be rationalized with the benefit of structural data and that a buried and mixed polar/non-polar catalytic site poses problems for the systematic addition of functional groups. Together with previous studies of glucose analogue inhibitors of GPb, this work forms the basis of a training set suitable for three-dimensional quantitative structure-activity

  13. Cooperative behavior in the thiol oxidation of rabbit muscle glycogen phosphorylase in cysteamine/cystamine redox buffers

    SciTech Connect

    Cappel, R.E.; Gilbert, H.F.

    1986-11-25

    Glycogen phosphorylase a and b are irreversibly inactivated by oxidation with the disulfide cystamine. The mechanism is complex and involves oxidation of at least two classes of sulfhydryl groups. The oxidation of one or more of the first class of 4 +/- 1 sulfhydryl groups is reversible, but the equilibrium constant for the oxidation is so unfavorable (1 X 10(-4)) that the micromolar concentrations of cysteamine released stoichiometrically with enzyme oxidation are sufficient to prevent complete oxidation even in the presence of 100 mM cystamine. The rapid phase of inactivation of phosphorylase b, which is first order in cystamine (k = 2.9 +/- 0.3 M-1 min-1), is followed by the oxidation of 5 +/- 1 groups in an irreversible process that is second order in cystamine concentration (k = 3.9 +/- M-2 min-1). Similar behavior is observed for phosphorylase a, although the behavior is complicated by association/dissociation equilibrium. The second-order dependence of the rate of irreversible inactivation on cystamine concentration is interpreted in terms of a cooperative model in which a rapidly reversible thermodynamically unfavorable equilibrium oxidation of one or more sulfhydryl groups must precede the irreversible oxidation of one or more additional sulfhydryl groups. The thiol/disulfide oxidation equilibrium constant for the initial reversible reaction is estimated to be at least 10(4) less favorable than that for the reversible oxidation of phosphofructokinase.

  14. Quantitative description of the absorption spectra of the coenzyme in glycogen phosphorylases based on log-normal distribution curves.

    PubMed Central

    Donoso, J; Muñoz, F; Garcia Blanco, F

    1993-01-01

    The absorption spectra of the coenzyme [pyridoxal 5'-phosphate (PLP)] in glycogen phosphorylase a (GPha), glycogen phosphorylase b (GPhb) and of the latter bound to various effectors and substrates were analysed on the basis of log-normal distribution curves. The results obtained showed that the ionization state of the PLP and GPha environment differs from that of GPhb. This divergence was interpreted in terms of tautomeric equilibria between some forms of the Schiff base of PLP and enzymic Lys-679. The ionic forms are slightly more predominant in GPha than they are in GPhb, so ionic and/or hydrogen-bonding interactions between the aromatic ring of PLP and GPha must be stronger than with GPhb. This confirms the purely structural role of the aromatic ring of the coenzyme. Binding of GPhb to AMP and Mg2+ results in the coenzyme adopting a similar state as in GPha. On the other hand, binding to IMP gives rise to no detectable changes in the tautomeric equilibrium of the coenzyme. PMID:8503849

  15. Anthranilimide-based glycogen phosphorylase inhibitors for the treatment of type 2 diabetes: 1. Identification of 1-amino-1-cycloalkyl carboxylic acid headgroups

    SciTech Connect

    Sparks, Steven M.; Banker, Pierette; Bickett, David M.; Carter, H. Luke; Clancy, Daphne C.; Dickerson, Scott H.; Dwornik, Kate A.; Garrido, Dulce M.; Golden, Pamela L.; Nolte, Robert T.; Peat, Andrew J.; Sheckler, Lauren R.; Tavares, Francis X.; Thomson, Stephen A.; Wang, Liping; Weiel, James E.

    2009-05-15

    Optimization of the amino acid residue within a series of anthranilimide-based glycogen phosphorylase inhibitors is described. These studies culminated in the identification of anthranilimides 16 and 22 which displayed potent in vitro inhibition of GPa in addition to reduced inhibition of CYP2C9 and excellent pharmacokinetic properties.

  16. Anthranilimide-based glycogen phosphorylase inhibitors for the treatment of type 2 diabetes: 1. Identification of 1-amino-1-cycloalkyl carboxylic acid headgroups.

    PubMed

    Sparks, Steven M; Banker, Pierette; Bickett, David M; Carter, H Luke; Clancy, Daphne C; Dickerson, Scott H; Dwornik, Kate A; Garrido, Dulce M; Golden, Pamela L; Nolte, Robert T; Peat, Andrew J; Sheckler, Lauren R; Tavares, Francis X; Thomson, Stephen A; Wang, Liping; Weiel, James E

    2009-02-01

    Optimization of the amino acid residue within a series of anthranilimide-based glycogen phosphorylase inhibitors is described. These studies culminated in the identification of anthranilimides 16 and 22 which displayed potent in vitro inhibition of GPa in addition to reduced inhibition of CYP2C9 and excellent pharmacokinetic properties.

  17. Anthranilimide-based glycogen phosphorylase inhibitors for the treatment of Type 2 diabetes: 2. Optimization of serine and threonine ether amino acid residues.

    PubMed

    Sparks, Steven M; Banker, Pierette; Bickett, David M; Clancy, Daphne C; Dickerson, Scott H; Garrido, Dulce M; Golden, Pamela L; Peat, Andrew J; Sheckler, Lauren R; Tavares, Francis X; Thomson, Stephen A; Weiel, James E

    2009-02-01

    Optimization of the amino acid residue of a series of anthranilimide-based glycogen phosphorylase inhibitors is described leading to the identification of serine and threonine ether analogs. t-Butylthreonine analog 20 displayed potent in vitro inhibition of GPa, low potential for P450 inhibition, and excellent pharmacokinetic properties.

  18. Synthesis of 2-(β-D-glucopyranosylamino)-5-substituted-1,3,4-oxadiazoles for inhibition of glycogen phosphorylase.

    PubMed

    Tóth, Marietta; Szőcs, Béla; Kaszás, Tímea; Docsa, Tibor; Gergely, Pál; Somsák, László

    2013-11-15

    Aromatic aldehyde 4-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)semicarbazones were synthesized by the addition of different hydrazones onto O-peracetylated β-d-glucopyranosyl isocyanate. Oxidative transformations of these precursors gave O-protected 2-(β-d-glucopyranosylamino)-5-substituted-1,3,4-oxadiazoles. Removal of the O-acetyl protecting groups under Zemplén conditions gave test compounds to show low micromolar inhibition against rabbit muscle glycogen phosphorylase b. Best inhibitors of these series were 4-(β-d-glucopyranosyl)semicarbazones of 4-nitrobenzaldehyde (Ki=4.5μM), 2-naphthaldehyde (Ki=5.5μM) and 2-(β-d-glucopyranosylamino)-5-(4-methylphenyl)-1,3,4-oxadiazole (Ki=12μM).

  19. Activation of Phosphorylase Kinase by Physiological Temperature.

    PubMed

    Herrera, Julio E; Thompson, Jackie A; Rimmer, Mary Ashley; Nadeau, Owen W; Carlson, Gerald M

    2015-12-29

    In the six decades since its discovery, phosphorylase kinase (PhK) from rabbit skeletal muscle has usually been studied at 30 °C; in fact, not a single study has examined functions of PhK at a rabbit's body temperature, which is nearly 10 °C greater. Thus, we have examined aspects of the activity, regulation, and structure of PhK at temperatures between 0 and 40 °C. Between 0 and 30 °C, the activity at pH 6.8 of nonphosphorylated PhK predictably increased; however, between 30 and 40 °C, there was a dramatic jump in its activity, resulting in the nonactivated enzyme having a far greater activity at body temperature than was previously realized. This anomalous change in properties between 30 and 40 °C was observed for multiple functions, and both stimulation (by ADP and phosphorylation) and inhibition (by orthophosphate) were considerably less pronounced at 40 °C than at 30 °C. In general, the allosteric control of PhK's activity is definitely more subtle at body temperature. Changes in behavior related to activity at 40 °C and its control can be explained by the near disappearance of hysteresis at physiological temperature. In important ways, the picture of PhK that has emerged from six decades of study at temperatures of ≤30 °C does not coincide with that of the enzyme studied at physiological temperature. The probable underlying mechanism for the dramatic increase in PhK's activity between 30 and 40 °C is an abrupt change in the conformations of the regulatory β and catalytic γ subunits between these two temperatures.

  20. Post-Exercise Muscle Glycogen Repletion in the Extreme: Effect of Food Absence and Active Recovery

    PubMed Central

    Fournier, Paul A.; Fairchild, Timothy J.; Ferreira, Luis D.; Bräu, Lambert

    2004-01-01

    Glycogen plays a major role in supporting the energy demands of skeletal muscles during high intensity exercise. Despite its importance, the amount of glycogen stored in skeletal muscles is so small that a large fraction of it can be depleted in response to a single bout of high intensity exercise. For this reason, it is generally recommended to ingest food after exercise to replenish rapidly muscle glycogen stores, otherwise one’s ability to engage in high intensity activity might be compromised. But what if food is not available? It is now well established that, even in the absence of food intake, skeletal muscles have the capacity to replenish some of their glycogen at the expense of endogenous carbon sources such as lactate. This is facilitated, in part, by the transient dephosphorylation-mediated activation of glycogen synthase and inhibition of glycogen phosphorylase. There is also evidence that muscle glycogen synthesis occurs even under conditions conducive to an increased oxidation of lactate post-exercise, such as during active recovery from high intensity exercise. Indeed, although during active recovery glycogen resynthesis is impaired in skeletal muscle as a whole because of increased lactate oxidation, muscle glycogen stores are replenished in Type IIa and IIb fibers while being broken down in Type I fibers of active muscles. This unique ability of Type II fibers to replenish their glycogen stores during exercise should not come as a surprise given the advantages in maintaining adequate muscle glycogen stores in those fibers that play a major role in fight or flight responses. Key Points Even in the absence of food intake, skeletal muscles have the capacity to replenish some of their glycogen at the expense of endogenous carbon sources such as lactate. During active recovery from exercise, skeletal muscles rich in type II fibers replenish part of their glycogen stores even in the absence of food intake. Post-exercise muscle glycogen synthesis in the

  1. Anthranilimide based glycogen phosphorylase inhibitors for the treatment of type 2 diabetes. Part 3: X-ray crystallographic characterization, core and urea optimization and in vivo efficacy

    SciTech Connect

    Thomson, Stephen A.; Banker, Pierette; Bickett, D. Mark; Boucheron, Joyce A.; Carter, H. Luke; Clancy, Daphne C.; Cooper, Joel P.; Dickerson, Scott H.; Garrido, Dulce M.; Nolte, Robert T.; Peat, Andrew J.; Sheckler, Lauren R.; Sparks, Steven M.; Tavares, Francis X.; Wang, Liping; Wang, Tony Y.; Weiel, James E.

    2009-05-15

    Key binding interactions of the anthranilimide based glycogen phosphorylase a (GPa) inhibitor 2 from X-ray crystallography studies are described. This series of compounds bind to the AMP site of GP. Using the binding information the core and the phenyl urea moieties were optimized. This work culminated in the identification of compounds with single nanomolar potency as well as in vivo efficacy in a diabetic model.

  2. Anthranilimide based glycogen phosphorylase inhibitors for the treatment of type 2 diabetes. Part 3: X-ray crystallographic characterization, core and urea optimization and in vivo efficacy.

    PubMed

    Thomson, Stephen A; Banker, Pierette; Bickett, D Mark; Boucheron, Joyce A; Carter, H Luke; Clancy, Daphne C; Cooper, Joel P; Dickerson, Scott H; Garrido, Dulce M; Nolte, Robert T; Peat, Andrew J; Sheckler, Lauren R; Sparks, Steven M; Tavares, Francis X; Wang, Liping; Wang, Tony Y; Weiel, James E

    2009-02-15

    Key binding interactions of the anthranilimide based glycogen phosphorylase a (GPa) inhibitor 2 from X-ray crystallography studies are described. This series of compounds bind to the AMP site of GP. Using the binding information the core and the phenyl urea moieties were optimized. This work culminated in the identification of compounds with single nanomolar potency as well as in vivo efficacy in a diabetic model.

  3. Spinach Leaf Intra and Extra Chloroplast Phosphorylase Activities during Growth 1

    PubMed Central

    Hammond, John B. W.; Preiss, Jack

    1983-01-01

    The amino terminal sequence of the spinach (Spinacia oleracea L. cv Bloomsdale Long Standing) leaf cytoplasmic phosphorylase was determined and shown to have little similarity to the known sequence of the potato tuber phosphorylase. The antigenic reaction of spinach chloroplast phosphorylase and rabbit muscle phosphorylase a to antiserum prepared against spinach leaf cytoplasmic phosphorylase was tested. Neither phosphorylase gave a positive reaction when tested by immunodiffusion or neutralization of enzyme activity. The two spinach phosphorylases were assayed throughout the growth of the plant. Activity of cytoplasmic phosphorylase increased 4- to 8-fold at 30 to 35 days from sowing. Enzyme protein levels, as measured by antibody neutralization, increased by a similar amount. There was no corresponding increase in chloroplast phosphorylase activity. The chloroplast phosphorylase varied in parallel with the chloroplast enzyme ADPglucose pyrophosphorylase. Starch levels were high during the earlier stages of growth and then fell to a constant low level just before the increase in cytoplasmic phosphorylase. The results are discussed with respect to the relationship and functions of the two phosphorylases. PMID:16663287

  4. Glycogen accumulation and degradation by the trichomonads Trichomonas vaginalis and Trichomonas tenax.

    PubMed

    Nielsen, Tyler J; Pradhan, Prajakta; Brittingham, Andrew; Wilson, Wayne A

    2012-01-01

    Several species of trichomonad have been shown to accumulate significant quantities of glycogen during growth, suggesting an important role for this compound in cell physiology. We provide the first analysis of the changes in glycogen content and glycogen phosphorylase activity that occur during in vitro growth of two trichomonad species: Trichomonas vaginalis and Trichomonas tenax. Both species accumulated glycogen following inoculation into fresh medium and utilized this compound during logarithmic growth. Glycogen phosphorylase activity also varied during growth in a species-specific manner. The expression of phosphorylase genes in T. vaginalis remained constant during growth and thus transcriptional control did not explain the observed fluctuations in phosphorylase activity. After cloning, expression, and purification, two recombinant glycogen phosphorylases from T. vaginalis and one recombinant glycogen phosphorylase from T. tenax had robust activity and, in contrast to many other eukaryotic glycogen phosphorylases, did not appear to be regulated by reversible protein phosphorylation. Furthermore, allosteric regulation, if present, was not mediated by compounds known to impact the activity of better characterized phosphorylases.

  5. Solid state 31P cross-polarization/magic angle sample spinning nuclear magnetic resonance studies of crystalline glycogen phosphorylase b

    PubMed Central

    Taguchi, Jocelyn E.; Heyes, Stephen J.; Barford, David; Johnson, Louise N.; Dobson, Christopher M.

    1993-01-01

    31P cross-polarization/magic angle sample spinning nuclear magnetic resonance spectra have been obtained for pyridoxal 5′-phosphate (PLP) bound to glycogen phosphorylase b (GPb) in two different crystalline forms, monoclinic and tetragonal. Analysis of the intensities of the spinning sidebands in the nuclear magnetic resonance spectra has enabled estimates of the principal values of the 31P chemical shift tensors to be obtained. Differences between the two sets of values suggest differences in the environment of the phosphate moiety of the pyridoxal phosphate in the two crystalline forms. The tensor for the tetragonal crystalline form, T state GPb, is fully consistent with those found for dianionic phosphate groups in model compounds. The spectrum for the monoclinic crystalline form, R state GPb, although closer to that of dianionic than monoanionic model phosphate compounds, deviates significantly from that expected for a simple dianion or monoanion. This is likely to result from specific interactions between the PLP phosphate group and residues in its binding site in the protein. A possible explanation for the spectrum of the monoclinic crystals is that the shift tensor is averaged by a proton exchange process between different ionization states of the PLP associated with the presence of a sulfate ion bound in the vicinity of the PLP. PMID:8457673

  6. N-acetyl-beta-D-glucopyranosylamine: a potent T-state inhibitor of glycogen phosphorylase. A comparison with alpha-D-glucose.

    PubMed Central

    Oikonomakos, N. G.; Kontou, M.; Zographos, S. E.; Watson, K. A.; Johnson, L. N.; Bichard, C. J.; Fleet, G. W.; Acharya, K. R.

    1995-01-01

    Structure-based drug design has led to the discovery of a number of glucose analogue inhibitors of glycogen phosphorylase that have an increased affinity compared to alpha-D-glucose (Ki = 1.7 mM). The best inhibitor in the class of N-acyl derivatives of beta-D-glucopyranosylamine, N-acetyl-beta-D-glucopyranosylamine (1-GlcNAc), has been characterized by kinetic, ultracentrifugation, and crystallographic studies. 1-GlcNAc acts as a competitive inhibitor for both the b (Ki = 32 microM) and the a (Ki = 35 microM) forms of the enzyme with respect to glucose 1-phosphate and in synergism with caffeine, mimicking the binding of glucose. Sedimentation velocity experiments demonstrated that 1-GlcNAc was able to induce dissociation of tetrameric phosphorylase a and stabilization of the dimeric T-state conformation. Co-crystals of the phosphorylase b-1-GlcNAc-IMP complex were grown in space group P4(3)2(1)2, with native-like unit cell dimensions, and the complex structure has been refined to give a crystallographic R factor of 18.1%, for data between 8 and 2.3 A resolution. 1-GlcNAc binds tightly at the catalytic site of T-state phosphorylase b at approximately the same position as that of alpha-D-glucose. The ligand can be accommodated in the catalytic site with very little change in the protein structure and stabilizes the T-state conformation of the 280s loop by making several favorable contacts to Asn 284 of this loop. Structural comparisons show that the T-state phosphorylase b-1-GlcNAc-IMP complex structure is overall similar to the T-state phosphorylase b-alpha-D-glucose complex structure. The structure of the 1-GlcNAc complex provides a rational for the biochemical properties of the inhibitor. PMID:8580837

  7. 3-Glucosylated 5-amino-1,2,4-oxadiazoles: synthesis and evaluation as glycogen phosphorylase inhibitors

    PubMed Central

    Donnier-Maréchal, Marion; Goyard, David; Folliard, Vincent; Docsa, Tibor; Gergely, Pal; Praly, Jean-Pierre

    2015-01-01

    Summary Glycogen phosporylase (GP) is a promising target for the control of glycaemia. The design of inhibitors binding at the catalytic site has been accomplished through various families of glucose-based derivatives such as oxadiazoles. Further elaboration of the oxadiazole aromatic aglycon moiety is now reported with 3-glucosyl-5-amino-1,2,4-oxadiazoles synthesized by condensation of a C-glucosyl amidoxime with N,N’-dialkylcarbodiimides or Vilsmeier salts. The 5-amino group introduced on the oxadiazole scaffold was expected to provide better inhibition of GP through potential additional interactions with the enzyme’s catalytic site; however, no inhibition was observed at 625 µM. PMID:25977724

  8. Interaction of muscle glycogen phosphorylase b reconstituted from apoenzyme and analogs of pyridoxal-5'-phosphate with specific ligands.

    PubMed

    Chebotareva, N A; Sugrobova, N P; Bulanova, L N; Poznanskaya, A A; Kurganov, B I; Gunar, V I

    1996-04-01

    Phosphorylase b from rabbit skeletal muscles was reconstituted with analogs of PLP containing residues -CH(2)-CH(2)-COOH, trans-CH=CH-COOH or -C=-COOH at position 5. Replacing native coenzyme in the phosphorylase molecule with any PLP analog tested leads to the decrease in the enzyme affinity for the allosteric inhibitor, FMN. Phosphorylase b reconstituted with analogs of PLP shows the greater ability for association in tetramers in the presence of 1 mM AMP than native enzyme.

  9. Expression of Glycogen Phosphorylase Isoforms in Cultured Muscle from Patients with McArdle's Disease Carrying the p.R771PfsX33 PYGM Mutation

    PubMed Central

    García-Consuegra, Inés; Rubio, Juan C.; Orozco, Anna; Arenas, Joaquin; Martín, Miguel A.; Lucia, Alejandro; Gómez-Foix, Anna M.; Martí, Ramon; Andreu, Antoni L.

    2010-01-01

    Background Mutations in the PYGM gene encoding skeletal muscle glycogen phosphorylase (GP) cause a metabolic disorder known as McArdle's disease. Previous studies in muscle biopsies and cultured muscle cells from McArdle patients have shown that PYGM mutations abolish GP activity in skeletal muscle, but that the enzyme activity reappears when muscle cells are in culture. The identification of the GP isoenzyme that accounts for this activity remains controversial. Methodology/Principal Findings In this study we present two related patients harbouring a novel PYGM mutation, p.R771PfsX33. In the patients' skeletal muscle biopsies, PYGM mRNA levels were ∼60% lower than those observed in two matched healthy controls; biochemical analysis of a patient muscle biopsy resulted in undetectable GP protein and GP activity. A strong reduction of the PYGM mRNA was observed in cultured muscle cells from patients and controls, as compared to the levels observed in muscle tissue. In cultured cells, PYGM mRNA levels were negligible regardless of the differentiation stage. After a 12 day period of differentiation similar expression of the brain and liver isoforms were observed at the mRNA level in cells from patients and controls. Total GP activity (measured with AMP) was not different either; however, the active GP activity and immunoreactive GP protein levels were lower in patients' cell cultures. GP immunoreactivity was mainly due to brain and liver GP but muscle GP seemed to be responsible for the differences. Conclusions/Significance These results indicate that in both patients' and controls' cell cultures, unlike in skeletal muscle tissue, most of the protein and GP activities result from the expression of brain GP and liver GP genes, although there is still some activity resulting from the expression of the muscle GP gene. More research is necessary to clarify the differential mechanisms of metabolic adaptations that McArdle cultures undergo in vitro. PMID:20957198

  10. The relation of starch phosphorylases to starch metabolism in wheat.

    PubMed

    Schupp, Nicole; Ziegler, Paul

    2004-10-01

    Tissues of wheat (Triticum aestivum L., var. Star) exhibit three starch phosphorylase activity forms resolved by non-denaturing polyacrylamide gel affinity electrophoresis (P1, P2 and P3). Compartmentation analysis of young leaf tissues showed that P3 is plastidic, whereas P1 and P2 are cytosolic. P1 exhibits a strong binding affinity to immobilized glycogen upon electrophoresis, whereas P2 and the chloroplastic P3 do not. Cytosolic leaf phosphorylase was purified to homogeneity by affinity chromatography. The single polypeptide product constituted both the P1 and P2 activity forms. Probes for the detection of phosphorylase transcripts were derived from cDNA sequences of cytosolic and plastidic phosphorylases, and these-together with activity assays and a cytosolic phosphorylase-specific antiserum-were used to monitor phosphorylase expression in leaves and seeds. Mature leaves contained only plastidic phosphorylase, which was also strongly evident in the endosperm of developing seeds at the onset of reserve starch accumulation. Germinating seeds contained only cytosolic phosphorylase, which was restricted to the embryo. Plastidic phosphorylase thus appears to be associated with transitory leaf starch metabolism and with the initiation of seed endosperm reserve starch accumulation, but it plays no role in the degradation of the reserve starch. Cytosolic phosphorylase may be involved in the processing of incoming carbohydrate during rapid tissue growth.

  11. Comparative molecular field analysis using GRID force-field and GOLPE variable selection methods in a study of inhibitors of glycogen phosphorylase b.

    PubMed

    Cruciani, G; Watson, K A

    1994-08-05

    A primary goal in any drug design strategy is to predict the activity of new compounds. Comparative molecular field analysis (CoMFA) has been used in drug design and three-dimensional quantitative structure/activity relationship (3D-QSAR) methods. The CoMFA approach permits analysis of a large number of quantitative descriptors and uses chemometric methods such as partial least squares (PLS) to correlate changes in biological activity with changes in chemical structure. One of the characteristics of the 3D-QSAR method is the large number of variables which are generated in order to describe the nonbonded interaction energies between one or more probes and each drug molecule. Since it is difficult to know a priori which variables affect the biological activity of the compounds, much effort has been devoted to developing methods that optimize the selection of only those variables of importance. This work focuses on some of the aspects involved in the selection of such variables, applied to a series of glucose analogue inhibitors of glycogen phosphorylase b, using the program GRID to describe the molecular structures and using a method of generating optimal partial least squares estimations (program GOLPE) as the chemometric tool. This data set, consisting of over 30 compounds in which the three-dimensional ligand-enzyme bound structures are known, is well suited to study the effect of different data pretreatment procedures on the final model used for the prediction of new drug molecules. By relying on our knowledge of the real physical problem (i.e., using the combined crystallographic and kinetic results), it has been shown that suitable data pretreatment and variable selection have been found that does not result in a significant loss of relevant information. Moreover, by using an appropriate scaling procedure, GOLPE variable selection minimizes the risk of overfitting and overpredicting.

  12. Effect of diabetes on glycogen metabolism in rat retina.

    PubMed

    Sánchez-Chávez, Gustavo; Hernández-Berrones, Jethro; Luna-Ulloa, Luis Bernardo; Coffe, Víctor; Salceda, Rocío

    2008-07-01

    Glucose is the main fuel for energy metabolism in retina. The regulatory mechanisms that maintain glucose homeostasis in retina could include hormonal action. Retinopathy is one of the chemical manifestations of long-standing diabetes mellitus. In order to better understand the effect of hyperglycemia in retina, we studied glycogen content as well as glycogen synthase and phosphorylase activities in both normal and streptozotocin-induced diabetic rat retina and compared them with other tissues. Glycogen levels in normal rat retina are low (46 +/- 4.0 nmol glucosyl residues/mg protein). However, high specific activity of glycogen synthase was found in retina, indicating a substantial capacity for glycogen synthesis. In diabetic rats, glycogen synthase activity increased between 50% and 100% in retina, brain cortex and liver of diabetic rats, but only retina exhibited an increase in glycogen content. Although, total and phosphorylated glycogen synthase levels were similar in normal and diabetic retina, activation of glycogen synthase by glucose-6-P was remarkable increased. Glycogen phosphorylase activity decreased 50% in the liver of diabetic animals; it was not modified in the other tissues examined. We conclude that the increase in glycogen levels in diabetic retina was due to alterations in glycogen synthase regulation.

  13. Sourcing the affinity of flavonoids for the glycogen phosphorylase inhibitor site via crystallography, kinetics and QM/MM-PBSA binding studies: comparison of chrysin and flavopiridol.

    PubMed

    Tsitsanou, Katerina E; Hayes, Joseph M; Keramioti, Maria; Mamais, Michalis; Oikonomakos, Nikos G; Kato, Atsushi; Leonidas, Demetres D; Zographos, Spyros E

    2013-11-01

    Flavonoids have been discovered as novel inhibitors of glycogen phosphorylase (GP), a target to control hyperglycemia in type 2 diabetes. To elucidate the mechanism of inhibition, we have determined the crystal structure of the GPb-chrysin complex at 1.9 Å resolution. Chrysin is accommodated at the inhibitor site intercalating between the aromatic side chains of Phe285 and Tyr613 through π-stacking interactions. Chrysin binds to GPb approximately 15 times weaker (Ki=19.01 μM) than flavopiridol (Ki=1.24 μM), exclusively at the inhibitor site, and both inhibitors display similar behavior with respect to AMP. To identify the source of flavopiridols' stronger affinity, molecular docking with Glide and postdocking binding free energy calculations using QM/MM-PBSA have been performed and compared. Whereas docking failed to correctly rank inhibitor binding conformations, the QM/MM-PBSA method employing M06-2X/6-31+G to model the π-stacking interactions correctly reproduced the experimental results. Flavopiridols' greater binding affinity is sourced to favorable interactions of the cationic 4-hydroxypiperidin-1-yl substituent with GPb, with desolvation effects limited by the substituent conformation adopted in the crystallographic complex. Further successful predictions using QM/MM-PBSA for the flavonoid quercetagetin (which binds at the allosteric site) leads us to propose the methodology as a useful and inexpensive tool to predict flavonoid binding.

  14. Metabolism of the reserve polysaccharide of Streptococcus mitior (mitis): is there a second alpha-1,4-glucan phosphorylase?

    PubMed Central

    Pulkownik, A; Walker, G J

    1976-01-01

    The alpha-1,4-glucan phosphorylase (alpha-1,4-glucan: orthophosphate glucosyltransferase; EC 2.4.1.1) associated with the particulate cell fraction of Streptococcus mitior strain S3 was compared with the soluble maltodextrin phosphorylase that had been previously isolated from the same organism (Walker et al., 1969). The particulate enzyme was more sensitive to the glycogen content of the cell than the soluble euzyme; its activity was highest when the cells were grown under conditions favoring high glycogen storage. Substrate specificities of the two high activity towards endogenous glycogen, whereas low-molecular-weight maltodextrins were the preferred substrates for the soluble phosphorylase. The purification of the particulate phosphorylase included incubation of the particulate fraction in 160 mM sodium phosphate-10 mM sodium citrate-0.1% (wt/vol) Triton X-100 buffer (pH 6.7) and ion-exchange chromatography on diethylamino-ethyl- Sephadex A-50. The purified enzyme was fully soluble. The value for the purification factor was variable and depended on (i) the substrate used and (ii) whether the synthetic or the degradative reaction was being measured. The solubilization resulted in considerable changes in the properties of the phosphorylase: the pH optimum for activity was raised from 6.0 to 7.0-7.5 and the substrate specificity was altered. Consequently, the purified enzyme bore greater similarity to the soluble maltodextrin phosphorylase. The reported results are best explained in terms of a single phosphorylase, the specificity which is determind by its binding state in the cell. The enzyme acts as a glycogen phosphorylase in the particulate state and as a maltodextrin phosphorylase when soluble. The equilibrium between the two forms is related to the glycogen content of the cells. PMID:6434

  15. THE ACTION OF DRUGS ON FUNCTION AND PHOSPHORYLASE ACTIVITY.

    DTIC Science & Technology

    ACETYLCHOLINE, *METABOLISM, AMINES, AUTONOMIC NERVOUS SYSTEM, CARBOHYDRATES, DRUGS, EPINEPHRINE, ERGOT ALKALOIDS, GLUCOSE, GLYCOGEN, HEART, INHIBITION, LIVER, MUSCLES, RATS, RESERPINE, STIMULATION(PHYSIOLOGY)

  16. Glycogen phosphorylase as a target for type 2 diabetes: synthetic, biochemical, structural and computational evaluation of novel N-acyl-N´-(β-D-glucopyranosyl) urea inhibitors.

    PubMed

    Kantsadi, Anastassia L; Parmenopoulou, Vanessa; Bakalov, Dimitar N; Snelgrove, Laura; Stravodimos, George A; Chatzileontiadou, Demetra S M; Manta, Stella; Panagiotopoulou, Angeliki; Hayes, Joseph M; Komiotis, Dimitri; Leonidas, Demetres D

    2015-01-01

    Glycogen phosphorylase (GP), a validated target for the development of anti-hyperglycaemic agents, has been targeted for the design of novel glycopyranosylamine inhibitors. Exploiting the two most potent inhibitors from our previous study of N-acyl-β-D-glucopyranosylamines (Parmenopoulou et al., Bioorg. Med. Chem. 2014, 22, 4810), we have extended the linking group to -NHCONHCO- between the glucose moiety and the aliphatic/aromatic substituent in the GP catalytic site β-cavity. The N-acyl-N´-(β-D-glucopyranosyl) urea inhibitors were synthesized and their efficiency assessed by biochemical methods, revealing inhibition constant values of 4.95 µM and 2.53 µM. Crystal structures of GP in complex with these inhibitors were determined and analyzed, providing data for further structure based design efforts. A novel Linear Response - Molecular Mechanics Coulomb Surface Area (LR-MM-CBSA) method has been developed which relates predicted and experimental binding free energies for a training set of N-acyl-N´-(β-D-glucopyranosyl) urea ligands with a correlation coefficient R(2) of 0.89 and leave-one-out cross-validation (LOO-cv) Q(2) statistic of 0.79. The method has significant applications to direct future lead optimization studies, where ligand entropy loss on binding is revealed as a key factor to be considered. ADMET property predictions revealed that apart from potential permeability issues, the synthesized N-acyl-N´-(β-D-glucopyranosyl) urea inhibitors have drug-like potential without any toxicity warnings.

  17. Frequent p53 mutation in brain (fetal)-type glycogen phosphorylase positive foci adjacent to human ‘de novo’olorectal carcinomas

    PubMed Central

    Shimada, S; Shiomori, K; Tashima, S; Tsuruta, J; Ogawa, M

    2001-01-01

    ‘de novo’ carcinogenesis has been advocated besides ‘adenoma carcinoma sequence’ as another dominant pathway leading to colorectal carcinoma. Our recent study has demonstrated that the distribution of brain (fetal)-type glycogen phosphorylase (BGP) positive foci (BGP foci) has a close relationship with the location of ‘de novo’ carcinoma. The aims of the present study are to investigate genetic alteration in the BGP foci and to characterize them in the ‘de novo’ carcinogenesis. 17 colorectal carcinomas without any adenoma component expressing both immunoreactive p53 and BGP protein were selected from 96 resected specimens from our previous study. Further investigations to examine the proliferating cell nuclear antigen (PCNA)-labelling index, and the p53 and the codon 12 of K-ras mutation using the polymerase chain reaction-single strand conformation polymorphism were performed in the BGP foci, BGP negative mucosa and carcinoma. The BGP foci were observed sporadically in the transitional mucosa adjacent to the carcinoma in all cases. The PCNA labelling index in the BGP foci was significantly higher than that in the BGP negative mucosa (P< 0.001). p53 mutations were observed in 8 carcinomas, but no K-ras mutation was detected. Interestingly, although none of the overexpressions of p53 protein was detected immunohistochemically in the BGP positive foci, the p53 gene frequently (41.2% of the BGP foci tested) mutated in spite of no K-ras mutation. The present study demonstrates potentially premalignant foci in the colorectal transitional mucosa with frequent p53 gene mutation. It is suggested that BGP foci are promising candidates for the further investigation of ‘de novo’ colorectal carcinogenesis. © 2001Cancer Research Campaign http://www.bjcancer.com PMID:11384100

  18. PER2 promotes glucose storage to liver glycogen during feeding and acute fasting by inducing Gys2 PTG and G L expression.

    PubMed

    Zani, Fabio; Breasson, Ludovic; Becattini, Barbara; Vukolic, Ana; Montani, Jean-Pierre; Albrecht, Urs; Provenzani, Alessandro; Ripperger, Juergen A; Solinas, Giovanni

    2013-01-01

    The interplay between hepatic glycogen metabolism and blood glucose levels is a paradigm of the rhythmic nature of metabolic homeostasis. Here we show that mice lacking a functional PER2 protein (Per2 (Brdm1) ) display reduced fasting glycemia, altered rhythms of hepatic glycogen accumulation, and altered rhythms of food intake. Per2 (Brdm1) mice show reduced hepatic glycogen content and altered circadian expression during controlled fasting and refeeding. Livers from Per2 (Brdm1) mice display reduced glycogen synthase protein levels during refeeding, and increased glycogen phosphorylase activity during fasting. The latter is explained by PER2 action on the expression of the adapter proteins PTG and GL, which target the protein phosphatase-1 to glycogen to decrease glycogen phosphorylase activity. Finally, PER2 interacts with genomic regions of Gys2, PTG, and G L . These results indicate an important role for PER2 in the hepatic transcriptional response to feeding and acute fasting that promotes glucose storage to liver glycogen.

  19. Liver glycogen metabolism during short-term insulin-induced hypoglycemia in fed rats.

    PubMed

    Obici, Simoni; Lopes-Bertolini, Gisele; Curi, Rui; Bazotte, Roberto Barbosa

    2008-10-01

    The activities of glycogen phosphorylase and synthase during infusions of glucagon, isoproterenol, or cyanide in isolated liver of fed rats submitted to short-term insulin-induced hypoglycemia (IIH) was investigated. A condition of hyperinsulinemia/hypoglycemia was obtained with an intraperitoneal injection of regular insulin (1.0 U kg(-1)). The control group received ip saline. The experiments were carried out 60 min after insulin (IIH group) or saline (COG group) injection. The rats were anesthetized and after laparotomy, blood was collected from the vena cava for glucose and insulin measurements. The liver was then infused with glucagon (1 nM), isoproterenol (2 microM), or cyanide (0.5 mM) during 20 min and a sample of the organ was collected for determination of the activities of glycogen phosphorylase and synthase 5 min after starting and 10 min after stopping the infusions. The infusions of cyanide, glucagons, and isoproterenol did not change the activities of glycogen synthase and glycogen phosphorylase. However, glycogen catabolism was decreased during the infusions of glucagon and isoproterenol in IIH rats, being more intense with isoproterenol (p < 0.05), than glucagon. It was concluded that short-term IIH promoted changes in the liver responsiveness of glycogen degradation induced by glucagon and isoproterenol without a change in the activities of glycogen phosphorylase and synthase.

  20. Fatal infantile cardiac glycogenosis with phosphorylase kinase deficiency and a mutation in the gamma2-subunit of AMP-activated protein kinase.

    PubMed

    Akman, Hasan O; Sampayo, James N; Ross, Fiona A; Scott, John W; Wilson, Gregory; Benson, Lee; Bruno, Claudio; Shanske, Sara; Hardie, D Grahame; Dimauro, Salvatore

    2007-10-01

    A 10-wk-old infant girl with severe hypertrophy of the septal and atrial walls by cardiac ultrasound, developed progressive ventricular wall thickening and died of aspiration pneumonia at 5 mo of age. Postmortem examination revealed ventricular hypertrophy and massive atrial wall thickening due to glycogen accumulation. A skeletal muscle biopsy showed increased free glycogen and decreased activity of phosphorylase b kinase (PHK). The report of a pathogenic mutation (R531Q) in the gene (PRKAG2) encoding the gamma2 subunit of AMP-activated protein kinase (AMPK) in three infants with congenital hypertrophic cardiomyopathy, glycogen storage, and "pseudo PHK deficiency" prompted us to screen this gene in our patient. We found a novel (R384T) heterozygous mutation in PRKAG2, affecting an arginine residue in the N-terminal AMP-binding domain. Like R531Q, this mutation reduces the binding of AMP and ATP to the isolated nucleotide-binding domains, and prevents activation of the heterotrimer by metabolic stress in intact cells. The mutation was not found in DNA from the patient's father, the only available parent, and is likely to have arisen de novo. Our studies confirm that mutations in PRKAG2 can cause fatal infantile cardiomyopathy, often associated with apparent PHK deficiency.

  1. Effect of 5-Fluorouracil on Thymidine Phosphorylase Activity in Model Experiment.

    PubMed

    Stashkevich, M A; Khomutov, E V; Dumanskii, Yu V; Matvienko, A G; Zinkovich, I I

    2016-03-01

    Variations in thymidine phosphorylase activity in rat liver were studied in 1, 3, 6, 12, and 24 h after intraperitoneal bolus injection of 5-fluorouracil. Enzyme activity was measured by HPLC. A 2-fold decrease in enzyme activity was observed 3 h after 5-fluorouracil administration and persisted for 12 h. This additional effect of the cytostatic should be taken into account in choosing chemotherapy protocol.

  2. High phosphorylase activity is correlated with increased potato minituber formation and starch content during extended clinorotation

    NASA Astrophysics Data System (ADS)

    Nedukha, O. M.; Schnyukova, E. I.; Leach, J. E.

    2003-05-01

    The major purpose of these experiments were to investigate growth of potato storage organs and starch synthesis in minitubers at slow horizontal clinorotation (2 rpm), which partly mimics microgravity, and a secondary goal was to study the activity and localization of phosphorylase (EC 2.4.1.1) in storage parenchyma under these conditions. Miniplants of Solanum tuberosum L. (cv Adreta) were grown in culture for 30 days for both the vertical control and the horizontal clinorotation. During long-term clinorotation, an acceleration of minituber formation, and an increase of amyloplast number and size in storage parenchyma cells, as well as increased starch content, was observed in the minitubers. The differences among cytochemical reaction intensity, activity of phosphorylase, and carbohydrate content in storage parenchyma cells of minitubers grown in a horizontal clinostat were established by electron-cytochemical and biochemical methods. It is shown that high phosphorylase activity is correlated with increased starch content during extended clinorotation. The results demonstrate the increase in carbohydrate metabolism and possible accelerated growth of storage organs under the influence of microgravity, as mimicked by clinorotation; therefore, clinorotation can be used as a basis for future studies on mechanisms of starch synthesis under microgravity.

  3. Glucose-induced glycogenesis in the liver involves the glucose-6-phosphate-dependent dephosphorylation of glycogen synthase.

    PubMed Central

    Cadefau, J; Bollen, M; Stalmans, W

    1997-01-01

    Non-metabolized glucose derivatives may cause inactivation of phosphorylase but, unlike glucose, they are unable to elicit activation of glycogen synthase in isolated hepatocytes. We report here that, after the previous inactivation of phosphorylase by one of these glucose derivatives (2-deoxy-2-fluoro-alpha-glucosyl fluoride), glycogen synthase was progressively activated by addition of increasing concentrations of glucose. Under these conditions, the degree of activation of glycogen synthase was linearly correlated with the intracellular glucose-6-phosphate (Glc-6-P) concentration. Addition of glucosamine, an inhibitor of glucokinase, decreased both parameters in parallel. Further experiments using an inhibitor of either protein kinases (5-iodotubercidin) or protein phosphatases (microcystin) in isolated hepatocytes indicated that Glc-6-P does not affect glycogen-synthase kinase activity but enhances the glycogen-synthase phosphatase reaction. Experiments in vitro showed that the synthase phosphatase activity of glycogen-bound type-1 protein phosphatase was increased by physiological concentrations of Glc-6-P (0.1-0.5 mM), but not by 2.5 mM fructose-6-P, fructose-1-P or glucose-1-P. At physiological ionic strength, the glycogen-associated synthase phosphatase activity was nearly entirely Glc-6-P-dependent, but Glc-6-P did not relieve the strong inhibitory effect of phosphorylase a. The large stimulatory effects of 2.5 mM Glc-6-P, with glycogen synthase b and phosphorylase a as substrates, appeared to be mostly substrate-directed, while the modest effects observed with casein and histone IIA pointed to an additional stimulation of glycogen-bound protein phosphatase-1 by Glc-6-P. We conclude that glucose elicits hepatic synthase phosphatase activity both by removal of the inhibitor, phosphorylase a, and by generation of the stimulator, Glc-6-P. PMID:9148744

  4. Glucose-induced glycogenesis in the liver involves the glucose-6-phosphate-dependent dephosphorylation of glycogen synthase.

    PubMed

    Cadefau, J; Bollen, M; Stalmans, W

    1997-03-15

    Non-metabolized glucose derivatives may cause inactivation of phosphorylase but, unlike glucose, they are unable to elicit activation of glycogen synthase in isolated hepatocytes. We report here that, after the previous inactivation of phosphorylase by one of these glucose derivatives (2-deoxy-2-fluoro-alpha-glucosyl fluoride), glycogen synthase was progressively activated by addition of increasing concentrations of glucose. Under these conditions, the degree of activation of glycogen synthase was linearly correlated with the intracellular glucose-6-phosphate (Glc-6-P) concentration. Addition of glucosamine, an inhibitor of glucokinase, decreased both parameters in parallel. Further experiments using an inhibitor of either protein kinases (5-iodotubercidin) or protein phosphatases (microcystin) in isolated hepatocytes indicated that Glc-6-P does not affect glycogen-synthase kinase activity but enhances the glycogen-synthase phosphatase reaction. Experiments in vitro showed that the synthase phosphatase activity of glycogen-bound type-1 protein phosphatase was increased by physiological concentrations of Glc-6-P (0.1-0.5 mM), but not by 2.5 mM fructose-6-P, fructose-1-P or glucose-1-P. At physiological ionic strength, the glycogen-associated synthase phosphatase activity was nearly entirely Glc-6-P-dependent, but Glc-6-P did not relieve the strong inhibitory effect of phosphorylase a. The large stimulatory effects of 2.5 mM Glc-6-P, with glycogen synthase b and phosphorylase a as substrates, appeared to be mostly substrate-directed, while the modest effects observed with casein and histone IIA pointed to an additional stimulation of glycogen-bound protein phosphatase-1 by Glc-6-P. We conclude that glucose elicits hepatic synthase phosphatase activity both by removal of the inhibitor, phosphorylase a, and by generation of the stimulator, Glc-6-P.

  5. Uterine glycogen metabolism in mink during estrus, embryonic diapause and pregnancy

    PubMed Central

    DEAN, Matthew; HUNT, Jason; MCDOUGALL, Lisa; ROSE, Jack

    2014-01-01

    We have determined uterine glycogen content, metabolizing enzyme expression and activity in the mink, a species that exhibits obligatory embryonic diapause, resulting in delayed implantation. Gross uterine glycogen concentrations were highest in estrus, decreased 50% by diapause and 90% in pregnancy (P ≤ 0.05). Endometrial glycogen deposits, which localized primarily to glandular and luminal epithelia, decreased 99% between estrus and diapause (P ≤ 0.05) and were nearly undetectable in pregnancy. Glycogen synthase and phosphorylase proteins were most abundant in the glandular epithelia. Glycogen phosphorylase activity (total) in uterine homogenates was higher during estrus and diapause, than pregnancy. While glycogen phosphorylase protein was detected during estrus and diapause, glycogen synthase was almost undetectable after estrus, which probably contributed to a higher glycogenolysis / glycogenesis ratio during diapause. Uterine glucose-6-phosphatase 3 gene expression was greater during diapause, when compared to estrus (P ≤ 0.05) and supports the hypothesis that glucose-6-phosphate resulting from phosphorylase activity was dephosphorylated in preparation for export into the uterine lumen. The relatively high amount of hexokinase-1 protein detected in the luminal epithelia during estrus and diapause may have contributed to glucose trapping after endometrial glycogen reserves were depleted. Collectively, our findings suggest to us that endometrial glycogen reserves may be an important source of energy, supporting uterine and conceptus metabolism up to the diapausing blastocyst stage. As a result, the size of uterine glycogen reserves accumulated prior to mating may in part, determine the number of embryos that survive to the blastocyst stage, and ultimately litter size. PMID:25225159

  6. Expression and characterization of glycogen synthase kinase-3 mutants and their effect on glycogen synthase activity in intact cells.

    PubMed Central

    Eldar-Finkelman, H; Argast, G M; Foord, O; Fischer, E H; Krebs, E G

    1996-01-01

    In these studies we expressed and characterized wild-type (WT) GSK-3 (glycogen synthase kinase-3) and its mutants, and examined their physiological effect on glycogen synthase activity. The GSK-3 mutants included mutation at serine-9 either to alanine (S9A) or glutamic acid (S9E) and an inactive mutant, K85,86MA. Expression of WT and the various mutants in a cell-free system indicated that S9A and S9E exhibit increased kinase activity as compared with WT. Subsequently, 293 cells were transiently transfected with WT GSK-3 and mutants. Cells expressing the S9A mutant exhibited higher kinase activity (2.6-fold of control cells) as compared with cells expressing WT and S9E (1.8- and 2.0-fold, respectively, of control cells). Combined, these results suggest serine-9 as a key regulatory site of GSK-3 inactivation, and indicate that glutamic acid cannot mimic the function of the phosphorylated residue. The GSK-3-expressing cell system enabled us to examine whether GSK-3 can induce changes in the endogenous glycogen synthase activity. A decrease in glycogen synthase activity (50%) was observed in cells expressing the S9A mutant. Similarly, glycogen synthase activity was suppressed in cells expressing WT and the S9E mutant (20-30%, respectively). These studies indicate that activation of GSK-3 is sufficient to inhibit glycogen synthase in intact cells, and provide evidence supporting a physiological role for GSK-3 in regulating glycogen synthase and glycogen metabolism. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8816781

  7. Glycogen supercompensation in rat soleus muscle during recovery from nonweight bearing

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Kirby, Christopher R.; Tischler, Marc E.

    1989-01-01

    Events leading to the normalization of the glycogen metabolism in the soleus muscle of rat, altered by 72-h three days of hind-limb suspension, were investigated during the 72-h recovery period when the animals were allowed to bear weight on all four limbs. Relative importance of the factors affecting glycogen metabolism in skeletal muscle during the recovery period was also examined. Glycogen concentration was found to decrease within 15 min and up to 2 h of recovery, while muscle glucose 6-phosphate, and the fractional activities of glycogen phosphorylase and glycogen synthase increased. From 2 to 4 h, when the glycogen synthase activity remained elevated and the phosphorylase activity declined, glycogen concentration increased, until it reached maximum values at about 24 h, after which it started to decrease, reaching control values by 72 h. At 12 and 24 h, the inverse relationship between glycogen concentration and the synthase activity ratio was lost, indicating that the reloading transiently uncoupled glycogen control of this enzyme.

  8. Structural basis for glucose-6-phosphate activation of glycogen synthase

    SciTech Connect

    Baskaran, Sulochanadevi; Roach, Peter J.; DePaoli-Roach, Anna A.; Hurley, Thomas D.

    2010-11-22

    Regulation of the storage of glycogen, one of the major energy reserves, is of utmost metabolic importance. In eukaryotes, this regulation is accomplished through glucose-6-phosphate levels and protein phosphorylation. Glycogen synthase homologs in bacteria and archaea lack regulation, while the eukaryotic enzymes are inhibited by protein kinase mediated phosphorylation and activated by protein phosphatases and glucose-6-phosphate binding. We determined the crystal structures corresponding to the basal activity state and glucose-6-phosphate activated state of yeast glycogen synthase-2. The enzyme is assembled into an unusual tetramer by an insertion unique to the eukaryotic enzymes, and this subunit interface is rearranged by the binding of glucose-6-phosphate, which frees the active site cleft and facilitates catalysis. Using both mutagenesis and intein-mediated phospho-peptide ligation experiments, we demonstrate that the enzyme's response to glucose-6-phosphate is controlled by Arg583 and Arg587, while four additional arginine residues present within the same regulatory helix regulate the response to phosphorylation.

  9. Activation of phosphorylase by anoxia and dinitrophenol in rabbit colon smooth muscle: relation to release of calcium from mitochondria.

    PubMed

    Pettersson, G

    1983-05-01

    The effect of anoxia or 2,4-dinitrophenol (DNP) on the phosphorylase a activity and the calcium content in subcellular fractions from rabbit colon smooth muscle was studied. Anoxia for 15 min. as well as DNP (6.6 X 10(-5) M) for 5 min. increased the phosphorylase a activity. The calcium content in the mitochondrial subfraction, prepared from the anoxic- or DNP-treated intact muscle and determined by atomic absorption spectroscopy, was reduced. The calcium content in the nuclear and the microsomal fractions was not changed in preparations with a normal Ca-content. When the muscle was incubated for 60 min. in a Ca2+-free medium containing 2.0 mM EGTA, the calcium content in the mitochondrial fraction was reduced to 38% of the control. This calcium level was still further reduced and the phosphorylase a activity was increased by DNP in this "Ca-poor" muscle. In these preparations the Ca-content of the microsomal + supernatant fraction increased. Only when the muscle was incubated, initially, in an anoxic medium containing 0.1 mM Ca2+ for 120 min. and, subsequently, in an oxygenated medium containing 0.1 mM Ca2+ for 20 min., DNP failed to activate phosphorylase and to decrease the calcium content in the mitochondrial fraction. These results indicate that mitochondrial Ca2+ release is one of the regulatory factors of the anoxic-induced glycogenolysis.

  10. Stimulating effect of phosphatidic acid on autophosphorylation of phosphorylase kinase.

    PubMed

    Negami, A I; Sasaki, H; Yamamura, H

    1985-09-16

    Autophosphorylation of phosphorylase kinase from rabbit skeletal muscle was stimulated by acidic phospholipids such as phosphatidic acid (PA), phosphatidylinositol, and phosphatidyl-serine. PA stimulated an initial velocity of autophosphorylation 3.8-fold. When fully autophosphorylated, about 11 mol of phosphate per tetramer (alpha beta gamma delta) were incorporated in the presence of PA and about 6.5 mol in the absence of PA. In the presence of PA (100 micrograms/ml), there was a concomitant enhancement of its kinase activity about 25-fold at pH 6.8. PA (100 micrograms/ml) sharply decreased an apparent Ka for Ca2+ on autophosphorylation from 4.0 X 10(-5) M to 1.0 X 10(-6) M. Available evidence indicates that the Ca2+-activated, PA-dependent autophosphorylation of phosphorylase kinase shows an ability to stimulate glycogen breakdown.

  11. Dysfunctional Muscle and Liver Glycogen Metabolism in mdx Dystrophic Mice

    PubMed Central

    Stapleton, David I.; Lau, Xianzhong; Flores, Marcelo; Trieu, Jennifer; Gehrig, Stefan M.; Chee, Annabel; Naim, Timur; Lynch, Gordon S.; Koopman, René

    2014-01-01

    Background Duchenne muscular dystrophy (DMD) is a severe, genetic muscle wasting disorder characterised by progressive muscle weakness. DMD is caused by mutations in the dystrophin (dmd) gene resulting in very low levels or a complete absence of the dystrophin protein, a key structural element of muscle fibres which is responsible for the proper transmission of force. In the absence of dystrophin, muscle fibres become damaged easily during contraction resulting in their degeneration. DMD patients and mdx mice (an animal model of DMD) exhibit altered metabolic disturbances that cannot be attributed to the loss of dystrophin directly. We tested the hypothesis that glycogen metabolism is defective in mdx dystrophic mice. Results Dystrophic mdx mice had increased skeletal muscle glycogen (79%, (P<0.01)). Skeletal muscle glycogen synthesis is initiated by glycogenin, the expression of which was increased by 50% in mdx mice (P<0.0001). Glycogen synthase activity was 12% higher (P<0.05) but glycogen branching enzyme activity was 70% lower (P<0.01) in mdx compared with wild-type mice. The rate-limiting enzyme for glycogen breakdown, glycogen phosphorylase, had 62% lower activity (P<0.01) in mdx mice resulting from a 24% reduction in PKA activity (P<0.01). In mdx mice glycogen debranching enzyme expression was 50% higher (P<0.001) together with starch-binding domain protein 1 (219% higher; P<0.01). In addition, mdx mice were glucose intolerant (P<0.01) and had 30% less liver glycogen (P<0.05) compared with control mice. Subsequent analysis of the enzymes dysregulated in skeletal muscle glycogen metabolism in mdx mice identified reduced glycogenin protein expression (46% less; P<0.05) as a possible cause of this phenotype. Conclusion We identified that mdx mice were glucose intolerant, and had increased skeletal muscle glycogen but reduced amounts of liver glycogen. PMID:24626262

  12. Sodium tungstate activates glycogen synthesis through a non-canonical mechanism involving G-proteins.

    PubMed

    Zafra, Delia; Nocito, Laura; Domínguez, Jorge; Guinovart, Joan J

    2013-01-31

    Tungstate treatment ameliorates experimental diabetes by increasing liver glycogen deposition through an as yet unidentified mechanism. The signalling mechanism of tungstate was studied in CHOIR cells and primary cultured hepatocytes. This compound exerted its pro-glycogenic effects through a new G-protein-dependent and Tyr-Kinase Receptor-independent mechanism. Chemical or genetic disruption of G-protein signalling prevented the activation of the Ras/ERK cascade and the downstream induction of glycogen synthesis caused by tungstate. Thus, these findings unveil a novel non-canonical signalling pathway that leads to the activation of glycogen synthesis and that could be exploited as an approach to treat diabetes.

  13. Elevated thymidine phosphorylase activity in psoriatic lesions accounts for the apparent presence of an epidermal growth inhibitor, but is not in itself growth inhibitory

    SciTech Connect

    Hammerberg, C.; Fisher, G.J.; Voorhees, J.J.; Cooper, K.D. )

    1991-08-01

    An apparent tissue-specific growth inhibitor, or chalone, obtained from psoriatic lesions was tentatively identified in the 100-kDa fraction based upon inhibition of DNA synthesis, as measured by (3H)-thymidine uptake by a squamous cell carcinoma cell line, SCC 38. This fraction, however, failed to inhibit SCC 38 cell growth when assessed directly in a neutral red uptake assay. Characterization of the inhibitor of (3H)-thymidine uptake revealed it to have biochemical properties identical to thymidine phosphorylase: (1) molecular weight close to 100 kDa, (2) isoelectric point of 4.2, and (3) thymidine phosphorylase enzyme activity. Thus, the authors conclude that its ability to inhibit (3H)-thymidine uptake was due to thymidine catabolism rather than inhibition of DNA synthesis or growth inhibition. Examination of thymidine phosphorylase activity in keratome biopsies from psoriatic and normal skin demonstrated a twentyfold increase in activity in psoriatic lesions relative to non-lesional or normal skin. This increase in metabolism of thymidine was due to thymidine phosphorylase rather than uridine phosphorylase activity. The correlation between increased thymidine phosphorylase activity and increased keratinocyte proliferation in vitro (cultured) and in vivo (psoriasis), suggests that this enzyme may play a critical role in providing the thymidine necessary for keratinocyte proliferation.

  14. Diagnostic accuracy of heart fatty acid binding protein (H-FABP) and glycogen phosphorylase isoenzyme BB (GPBB) in diagnosis of acute myocardial infarction in patients with acute coronary syndrome

    PubMed Central

    Cubranic, Zlatko; Madzar, Zeljko; Matijevic, Sanja; Dvornik, Stefica; Fisic, Elizabeta; Tomulic, Vjekoslav; Kunisek, Juraj; Laskarin, Gordana; Kardum, Igor; Zaputovic, Luka

    2012-01-01

    Introduction: This study aimed to assess whether heart fatty acid-binding protein (H-FABP) and glycogen phosphorylase isoenzyme BB (GPBB) could be used for the accurate diagnosis of acute myocardial infarction (AMI) in acute coronary syndrome (ACS) patients. Materials and methods: The study included 108 ACS patients admitted to a coronary unit within 3 h after chest pain onset. AMI was distinguished from unstable angina (UA) using a classical cardiac troponin I (cTnI) assay. H-FABP and GPBB were measured by ELISA on admission (0 h) and at 3, 6, 12, and 24 h after admission; their accuracy to diagnose AMI was assessed using statistical methods. Results: From 92 patients with ACS; 71 had AMI. H-FABP and GPBB had higher peak value after 3 h from admission than cTnI (P = 0.001). Both markers normalized at 24 h. The area under the receiver operating characteristic curves was significantly greater for both markers in AMI patients than in UA patients at all time points tested, including admission (P < 0.001). At admission, the H-FABP (37%) and GPBB (40%) sensitivities were relatively low. They increased at 3 and 6 h after admission for both markers and decreased again after 24 h. It was 40% for H-FABP and approximately 2-times lower for GPBB (P < 0.01). In AMI patients, both biomarkers had similar specificities, positive- and negative-predictive values, positive and negative likelihood ratios, and risk ratios for AIM. Conclusion: H-FABP and GPBB can contribute to early AMI diagnosis and can distinguish AMI from UA. PMID:22838188

  15. Activities of adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) on undernourished and renourished rats' thymus.

    PubMed

    Feliu, M S.; Slobodianik, N H.

    2001-02-01

    We studied the effect of administration of a low quality dietary protein, from weaning onwards, on the thymus of undernourished rats and the posterior effect of refeeding with a high quality dietary protein. Changes in thymus weight and the activity of Adenosine Deaminase (ADA) and Purine Nucleoside Phosphorylase (PNP) on thymus, were determined. Wistar rats were suckled in groups of 14-16 per dam since birth to weaning (23 days) to obtain undernutrition. At weaning, a group of 14-16 rats received pre-cooked maize flour (Protein content: 6.5%) for 18 days. One group was sacrificed (M) and the other rats were refed with the casein diet (Protein content: 20%) during 20 days (R). The age-matched control groups were fed stock diet since 40 (C40) and 60 (C60) days of age, respectively. At the end of the experimental period, body (Bw) and thymus weight were determined. ADA and PNP activities were determined in thymocyte suspensions. Highly significant differences in thymus weight-expressed as mg or mg/Bw(0.75)-and the activity of ADA and PNP were observed in rats fed the experimental diet containing maize flour, when compared to the respective age-matched control. No statistical differences were observed between R and C60.The administration of a high quality dietary protein to undernourished weanling rats is capable to reverse the damage produced by the low quality dietary protein on thymus weight and ADA and PNP thymus activities.

  16. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis.

    PubMed

    Kir, Serkan; Beddow, Sara A; Samuel, Varman T; Miller, Paul; Previs, Stephen F; Suino-Powell, Kelly; Xu, H Eric; Shulman, Gerald I; Kliewer, Steven A; Mangelsdorf, David J

    2011-03-25

    Fibroblast growth factor (FGF) 19 is an enterokine synthesized and released when bile acids are taken up into the ileum. We show that FGF19 stimulates hepatic protein and glycogen synthesis but does not induce lipogenesis. The effects of FGF19 are independent of the activity of either insulin or the protein kinase Akt and, instead, are mediated through a mitogen-activated protein kinase signaling pathway that activates components of the protein translation machinery and stimulates glycogen synthase activity. Mice lacking FGF15 (the mouse FGF19 ortholog) fail to properly maintain blood concentrations of glucose and normal postprandial amounts of liver glycogen. FGF19 treatment restored the loss of glycogen in diabetic animals lacking insulin. Thus, FGF19 activates a physiologically important, insulin-independent endocrine pathway that regulates hepatic protein and glycogen metabolism.

  17. Glycogen synthesis from lactate in a chronically active muscle

    SciTech Connect

    Talmadge, R.J.; Scheide, J.I.; Silverman, H.

    1989-05-01

    In response to neural overactivity (pseudomyotonia), gastrocnemius muscle fibers from C57Bl/6Jdy2J/dy2J mice have different metabolic profiles compared with normal mice. A population of fibers in the fast-twitch superficial region of the dy2J gastrocnemius stores unusually high amounts of glycogen, leading to an increased glycogen storage in the whole muscle. The dy2J muscle also contains twice as much lactate as normal muscle. A (/sup 14/C)lactate intraperitoneal injection leads to preferential /sup 14/C incorporation into glycogen in the dy2J muscle compared with normal muscle. To determine whether skeletal muscles were incorporating lactate into glycogen without body organ (liver, kidney) input, gastrocnemius muscles were bathed in 10 mM (/sup 14/C)lactate with intact neural and arterial supply but with impeded venous return. The contralateral gastrocnemius serves as a control for body organ input. By using this in situ procedure, we demonstrate that under conditions of high lactate both normal and dy2J muscle can directly synthesize glycogen from lactate. In this case, normal whole muscle incorporates (14C) lactate into glycogen at a higher rate than dy2J whole muscle. Autoradiography, however, suggests that the high-glycogen-containing muscle fibers in the dy2J muscle incorporate lactate into glycogen at nearly four times the rate of normal or surrounding muscle fibers.

  18. Hepatic overexpression of a constitutively active form of liver glycogen synthase improves glucose homeostasis.

    PubMed

    Ros, Susana; Zafra, Delia; Valles-Ortega, Jordi; García-Rocha, Mar; Forrow, Stephen; Domínguez, Jorge; Calbó, Joaquim; Guinovart, Joan J

    2010-11-26

    In this study, we tested the efficacy of increasing liver glycogen synthase to improve blood glucose homeostasis. The overexpression of wild-type liver glycogen synthase in rats had no effect on blood glucose homeostasis in either the fed or the fasted state. In contrast, the expression of a constitutively active mutant form of the enzyme caused a significant lowering of blood glucose in the former but not the latter state. Moreover, it markedly enhanced the clearance of blood glucose when fasted rats were challenged with a glucose load. Hepatic glycogen stores in rats overexpressing the activated mutant form of liver glycogen synthase were enhanced in the fed state and in response to an oral glucose load but showed a net decline during fasting. In order to test whether these effects were maintained during long term activation of liver glycogen synthase, we generated liver-specific transgenic mice expressing the constitutively active LGS form. These mice also showed an enhanced capacity to store glycogen in the fed state and an improved glucose tolerance when challenged with a glucose load. Thus, we conclude that the activation of liver glycogen synthase improves glucose tolerance in the fed state without compromising glycogenolysis in the postabsorptive state. On the basis of these findings, we propose that the activation of liver glycogen synthase may provide a potential strategy for improvement of glucose tolerance in the postprandial state.

  19. Chronic ethanol consumption disrupts diurnal rhythms of hepatic glycogen metabolism in mice

    PubMed Central

    Udoh, Uduak S.; Swain, Telisha M.; Filiano, Ashley N.; Gamble, Karen L.; Young, Martin E.

    2015-01-01

    Chronic ethanol consumption has been shown to significantly decrease hepatic glycogen content; however, the mechanisms responsible for this adverse metabolic effect are unknown. In this study, we examined the impact chronic ethanol consumption has on time-of-day-dependent oscillations (rhythms) in glycogen metabolism processes in the liver. For this, male C57BL/6J mice were fed either a control or ethanol-containing liquid diet for 5 wk, and livers were collected every 4 h for 24 h and analyzed for changes in various genes and proteins involved in hepatic glycogen metabolism. Glycogen displayed a robust diurnal rhythm in the livers of mice fed the control diet, with the peak occurring during the active (dark) period of the day. The diurnal glycogen rhythm was significantly altered in livers of ethanol-fed mice, with the glycogen peak shifted into the inactive (light) period and the overall content of glycogen decreased compared with controls. Chronic ethanol consumption further disrupted diurnal rhythms in gene expression (glycogen synthase 1 and 2, glycogenin, glucokinase, protein targeting to glycogen, and pyruvate kinase), total and phosphorylated glycogen synthase protein, and enzyme activities of glycogen synthase and glycogen phosphorylase, the rate-limiting enzymes of glycogen metabolism. In summary, these results show for the first time that chronic ethanol consumption disrupts diurnal rhythms in hepatic glycogen metabolism at the gene and protein level. Chronic ethanol-induced disruption in these daily rhythms likely contributes to glycogen depletion and disruption of hepatic energy homeostasis, a recognized risk factor in the etiology of alcoholic liver disease. PMID:25857999

  20. Physicochemical changes in phosphorylase kinase induced by its cationic activator Mg2+

    PubMed Central

    Liu, Weiya; Nadeau, Owen W; Sage, Jessica; Carlson, Gerald M

    2013-01-01

    For over four decades free Mg2+ ions, that is, those in excess of MgATP, have been reported to affect a wide variety of properties of phosphorylase kinase (PhK), including its affinity for other molecules, proteolysis, chemical crosslinking, phosphorylation, binding to certain monoclonal antibodies, and activity, which is stimulated. Additionally, for over three decades Mg2+ has been known to act synergistically with Ca2+, another divalent activator of PhK, to affect even more properties of the enzyme. During all of this time, however, no study has been performed to determine the overall effects of free Mg2+ ions on the physical properties of PhK, even though the effects of Ca2+ ions on PhK's properties are well documented. In this study, changes in the physicochemical properties of PhK induced by Mg2+ under nonactivating (pH 6.8) and activating (pH 8.2) conditions were investigated by circular dichroism spectroscopy, zeta potential analyses, dynamic light scattering, second derivative UV absorption, negative stain electron microscopy, and differential chemical crosslinking. The effects of the activator Mg2+ on some of the properties of PhK measured by these techniques were found to be quite different at the two pH values, and displayed both differences and similarities with the effects previously reported to be induced by the activator Ca2+ (Liu et al., Protein Sci 2008;17:2111–2119). The similarities may reflect the fact that both cations are activators, and foremost among their similarities is the dramatically less negative zeta potential induced by their binding to PhK. PMID:23359552

  1. 1,4-alpha-Glucan phosphorylase form Klebsiella pneumoniae covalently couple on porous glass.

    PubMed

    Wengenmayer, F; Linder, D; Wallenfels, K

    1977-09-01

    A simplified procedure for the preparation of 1,4-alpha-glucan phosphorylase from Klebsiella pneumoniae is described. An 80-fold purification is achieved in two steps with an overall yield of about 50%. The specific activity of the homogeneous enzyme protein is 17.7 units/mg. Compared with glycogen phosphorylase from rabbit muscle the enzyme from K. pneumoniae shows a markedly higher stability against deforming and chaotropic agents. The 1,4-alpha-glucan phosphorylase was covalently bound to porous glass particles by three different methods. Coupling with glutaraldehyde gave the highest specific activity, i.e., 5.6 units/mg of bound protein or 133 units/g of glass with maltodextrin as substrate. This corresponds to about 30% of the specific activity of the soluble enzyme. With substrates of higher molecular weight, such as glycogen or amylopectin, lower relative activity was observed. The immobilized enzyme preparations showed pH activity profiles which were slightly displaced to higher values and exhibited an increased temperature stability.

  2. The effect of antenatal administration of solcoseryl on hepatic glycogen synthesis in rat fetuses with intrauterine growth retardation.

    PubMed

    Takahashi, H; Cheng, K M; Araki, T

    1993-06-01

    The effect of antenatal solcoseryl administration on hepatic glycogen synthesis and storage was studied in normal developing and intrauterine growth-retarded (IUGR) rat fetuses using biochemical analyses. The maximal effect of solcoseryl occurred 2 hours after administration. The glycogen content of the liver showed a significant increase in normal and IUGR fetuses with antenatal solcoseryl administration compared to their non-solcoseryl counterparts (p < 0.05). The activities of glycogen synthase enzymes, total and active forms, showed significant increases, at p < 0.05 and p < 0.005, respectively, in IUGR fetuses with antenatal solcoseryl administration. Active synthase also increased in normal fetuses with antenatal solcoseryl administration (p < 0.05). There were no significant changes in the activities of glycogen phosphorylase enzyme. These findings suggest that antenatal solcoseryl administration stimulates hepatic glycogen synthesis and storage in IUGR rat fetuses, and thus might favorably influence the development of neonatal hypoglycemia.

  3. The structure of a glycogen phosphorylase glucopyranose spirohydantoin complex at 1.8 A resolution and 100 K: the role of the water structure and its contribution to binding.

    PubMed Central

    Gregoriou, M.; Noble, M. E.; Watson, K. A.; Garman, E. F.; Krulle, T. M.; de la Fuente, C.; Fleet, G. W.; Oikonomakos, N. G.; Johnson, L. N.

    1998-01-01

    A glucopyranose spirohydantoin (a pyranose analogue of the potent herbicide, hydantocidin) has been identified as the highest affinity glucose analogue inhibitor of glycogen phosphorylase b (GPb). In order to elucidate the structural features that contribute to the binding, the structures of GPb in the native T state conformation and in complex with glucopyranose spirohydantoin have been determined at 100 K to 2.0 A and 1.8 A resolution, respectively, and refined to crystallographic R values of 0.197 (R[free] 0.248) and 0.182 (R[free] 0.229), respectively. The low temperature structure of GPb is almost identical to that of the previously determined room temperature structure, apart from a decrease in overall atomic temperature factors ((B) room temperature GPb = 34.9 A2; (B) 100 K GPb = 23.4 A2). The glucopyranose spirohydantoin inhibitor (Ki = 3.0 microM) binds at the catalytic site and induces small changes in two key regions of the protein: the 280s loop (residues 281-286) that results in a decrease in mobility of this region, and the 380s loop (residues 377-385) that undergoes more significant shifts in order to optimize contact to the ligand. The hydantoin group, that is responsible for increasing the affinity of the glucose compound by a factor of 10(3), makes only one hydrogen bond to the protein, from one of its NH groups to the main chain oxygen of His377. The other polar groups of the hydantoin group form hydrogen bonds to five water molecules. These waters are involved in extensive networks of hydrogen bonds and appear to be an integral part of the protein structure. Analysis of the water structure at the catalytic site of the native enzyme, shows that five waters are displaced by ligand binding and that there is a significant decrease in mobility of the remaining waters on formation of the GPb-hydantoin complex. The ability of the inhibitor to exploit existing waters, to displace waters and to recruit new waters appears to be important for the high

  4. Glycogen Repletion in Brown Adipose Tissue upon Refeeding Is Primarily Driven by Phosphorylation-Independent Mechanisms

    PubMed Central

    Carmean, Christopher M.; Huang, Y. Hanna; Brady, Matthew J.

    2016-01-01

    Glycogen storage in brown adipose tissue (BAT) is generally thought to take place through passive, substrate-driven activation of glycogenesis rather than programmatic shifts favoring or opposing the storage and/or retention of glycogen. This perception exists despite a growing body of evidence suggesting that BAT glycogen storage is actively regulated by covalent modification of key glycogen-metabolic enzymes, protein turnover, and endocrine hormone signaling. Members of one such class of covalent-modification regulators, glycogen-binding Phosphoprotein Phosphatase-1 (PP1)-regulatory subunits (PPP1Rs), targeting PP1 to glycogen-metabolic enzymes, were dynamically regulated in response to 24 hr of starvation and/or 24 hr of starvation followed by ad libitum refeeding. Over-expression of the PPP1R Protein Targeting to Glycogen (PTG), under the control of the aP2 promoter in mice, inactivated glycogen phosphorylase (GP) and enhanced basal- and starvation-state glycogen storage. Total interscapular BAT glycogen synthase and the constitutive activity of GS were conditionally affected. During starvation, glucose-6-phosphate (G-6-P) levels and the relative phosphorylation of Akt (p-Ser-473-Akt) were both increased in PTG-overexpressing (Tg) mice, suggesting that elevated glycogen storage during starvation modifies broader cellular metabolic pathways. During refeeding, Tg and WT mice reaccumulated glycogen similarly despite altered GS and GP activities. All observations during refeeding suggest that the phosphorylation states of GS and GP are not physiologically rate-controlling, despite there being a clear balance of endogenous kinase- and phosphatase activities. The studies presented here reveal IBAT glycogen storage to be a tightly-regulated process at all levels, with potential effects on nutrient sensing in vivo. PMID:27213961

  5. Lck/PLCγ control migration and proliferation of interleukin (IL)-2-stimulated T cells via the Rac1 GTPase/glycogen phosphorylase pathway.

    PubMed

    Llavero, Francisco; Artaso, Alain; Lacerda, Hadriano M; Parada, Luis A; Zugaza, José L

    2016-11-01

    Recently, we have reported that the IL-2-stimulated T cells activate PKCθ in order to phosphorylate the serine residues of αPIX-RhoGEF, and to switch on the Rac1/PYGM pathway resulting in T cell migration and proliferation. However, the molecular mechanism connecting the activated IL-2-R with the PKCθ/αPIX/Rac1/PYGM pathway is still unknown. In this study, the use of a combined pharmacological and genetic approach identified Lck, a Src family member, as the tyrosine kinase phosphorylating PLCγ leading to Rac1 and PYGM activation in the IL-2-stimulated Kit 225 T cells via the PKCθ/αPIX pathway. The PLCγ tyrosine phosphorylation was required to activate first PKCθ, and then αPIX and Rac1/PYGM. The results presented here delineate a novel signalling pathway ranking equally in importance to the three major pathways controlled by the IL-2-R, i.e. PI3K, Ras/MAPK and JAK/STAT pathways. The overall evidence strongly indicates that the central biological role of the novel IL-2-R/Lck/PLCγ/PKCθ/αPIX/Rac1/PYGM signalling pathway is directly related to the control of fundamental cellular processes such as T cell migration and proliferation.

  6. Design of an adenosine phosphorylase by active-site modification of murine purine nucleoside phosphorylase. Enzyme kinetics and molecular dynamics simulation of Asn-243 and Lys-244 substitutions of purine nucleoside phosphorylase.

    PubMed

    Maynes, J T; Yam, W; Jenuth, J P; Gang Yuan, R; Litster, S A; Phipps, B M; Snyder, F F

    1999-12-01

    Our objective was to alter the substrate specificity of purine nucleoside phosphorylase such that it would catalyse the phosphorolysis of 6-aminopurine nucleosides. We modified both Asn-243 and Lys-244 in order to promote the acceptance of the C6-amino group of adenosine. The Asn-243-Asp substitution resulted in an 8-fold increase in K(m) for inosine from 58 to 484 microM and a 1000-fold decrease in k(cat)/K(m). The Asn-243-Asp construct catalysed the phosphorolysis of adenosine with a K(m) of 45 microM and a k(cat)/K(m) 8-fold that with inosine. The Lys-244-Gln construct showed only marginal reduction in k(cat)/K(m), 83% of wild type, but had no activity with adenosine. The Asn-243-Asp;Lys-244-Gln construct had a 14-fold increase in K(m) with inosine and 7-fold decrease in k(cat)/K(m) as compared to wild type. This double substitution catalysed the phosphorolysis of adenosine with a K(m) of 42 microM and a k(cat)/K(m) twice that of the single Asn-243-Asp substitution. Molecular dynamics simulation of the engineered proteins with adenine as substrate revealed favourable hydrogen bond distances between N7 of the purine ring and the Asp-243 carboxylate at 2.93 and 2.88 A, for Asn-243-Asp and the Asn-243-Asp;Lys-244-Gln constructs respectively. Simulation also supported a favourable hydrogen bond distance between the purine C6-amino group and Asp-243 at 2.83 and 2.88 A for each construct respectively. The Asn-243-Thr substitution did not yield activity with adenosine and simulation gave unfavourable hydrogen bond distances between Thr-243 and both the C6-amino group and N7 of the purine ring. The substitutions were not in the region of phosphate binding and the apparent S(0.5) for phosphate with wild type and the Asn-243-Asp enzymes were 1.35+/-0.01 and 1.84+/-0.06 mM, respectively. Both proteins exhibited positive co-operativity with phosphate giving Hill coefficients of 7.9 and 3.8 respectively.

  7. Design of an adenosine phosphorylase by active-site modification of murine purine nucleoside phosphorylase. Enzyme kinetics and molecular dynamics simulation of Asn-243 and Lys-244 substitutions of purine nucleoside phosphorylase.

    PubMed Central

    Maynes, J T; Yam, W; Jenuth, J P; Gang Yuan, R; Litster, S A; Phipps, B M; Snyder, F F

    1999-01-01

    Our objective was to alter the substrate specificity of purine nucleoside phosphorylase such that it would catalyse the phosphorolysis of 6-aminopurine nucleosides. We modified both Asn-243 and Lys-244 in order to promote the acceptance of the C6-amino group of adenosine. The Asn-243-Asp substitution resulted in an 8-fold increase in K(m) for inosine from 58 to 484 microM and a 1000-fold decrease in k(cat)/K(m). The Asn-243-Asp construct catalysed the phosphorolysis of adenosine with a K(m) of 45 microM and a k(cat)/K(m) 8-fold that with inosine. The Lys-244-Gln construct showed only marginal reduction in k(cat)/K(m), 83% of wild type, but had no activity with adenosine. The Asn-243-Asp;Lys-244-Gln construct had a 14-fold increase in K(m) with inosine and 7-fold decrease in k(cat)/K(m) as compared to wild type. This double substitution catalysed the phosphorolysis of adenosine with a K(m) of 42 microM and a k(cat)/K(m) twice that of the single Asn-243-Asp substitution. Molecular dynamics simulation of the engineered proteins with adenine as substrate revealed favourable hydrogen bond distances between N7 of the purine ring and the Asp-243 carboxylate at 2.93 and 2.88 A, for Asn-243-Asp and the Asn-243-Asp;Lys-244-Gln constructs respectively. Simulation also supported a favourable hydrogen bond distance between the purine C6-amino group and Asp-243 at 2.83 and 2.88 A for each construct respectively. The Asn-243-Thr substitution did not yield activity with adenosine and simulation gave unfavourable hydrogen bond distances between Thr-243 and both the C6-amino group and N7 of the purine ring. The substitutions were not in the region of phosphate binding and the apparent S(0.5) for phosphate with wild type and the Asn-243-Asp enzymes were 1.35+/-0.01 and 1.84+/-0.06 mM, respectively. Both proteins exhibited positive co-operativity with phosphate giving Hill coefficients of 7.9 and 3.8 respectively. PMID:10567244

  8. Enzymatic regulation of seasonal glycogen cycling in the freeze-tolerant wood frog, Rana sylvatica.

    PubMed

    do Amaral, M Clara F; Lee, Richard E; Costanzo, Jon P

    2016-12-01

    Liver glycogen is an important energy store in vertebrates, and in the freeze-tolerant wood frog, Rana sylvatica, this carbohydrate also serves as a major source of the cryoprotectant glucose. We investigated how variation in the levels of the catalytic subunit of protein kinase A (PKAc), glycogen phosphorylase (GP), and glycogen synthase (GS) relates to seasonal glycogen cycling in a temperate (Ohioan) and subarctic (Alaskan) populations of this species. In spring, Ohioan frogs had reduced potential for glycogen synthesis, as evidenced by low GS activity and high PKAc protein levels. In addition, glycogen levels in spring were the lowest of four seasonal samples, as energy input was likely directed towards metabolism and somatic growth during this period. Near-maximal glycogen levels were reached by mid-summer, and remained unchanged in fall and winter, suggesting that glycogenesis was curtailed during this period. Ohioan frogs had a high potential for glycogenolysis and glycogenesis in winter, as evidenced by large glycogen reserves, high levels of GP and GS proteins, and high GS activity, which likely allows for rapid mobilization of cryoprotectant during freezing and replenishing of glycogen reserves during thawing. Alaskan frogs also achieved a near-maximal liver glycogen concentration by summer and displayed high glycogenic and glycogenolytic potential in winter, but, unlike Ohioan frogs, started replenishing their energy reserves early in spring. We conclude that variation in levels of both glycogenolytic and glycogenic enzymes likely happens in response to seasonal changes in energetic strategies and demands, with winter survival being a key component to understanding the regulation of glycogen cycling in this species.

  9. Pathological glycogenesis through glycogen synthase 1 and suppression of excessive AMP kinase activity in myeloid leukemia cells

    PubMed Central

    Nonami, Atsushi; Weisberg, Ellen L.; Bonal, Dennis; Kirschmeier, Paul T.; Salgia, Sabrina; Podar, Klaus; Galinsky, Ilene; Chowdary, Tirumala K.; Neuberg, Donna; Tonon, Giovanni; Stone, Richard M.; Asara, John; Griffin, James D.; Sattler, Martin

    2015-01-01

    The rapid proliferation of myeloid leukemia cells is highly dependent on increased glucose metabolism. Through an unbiased metabolomics analysis of leukemia cells, we found that the glycogenic precursor UDP-D-glucose is pervasively upregulated, despite low glycogen levels. Targeting the rate-limiting glycogen synthase 1 (GYS1) not only decreased glycolytic flux but also increased activation of the glycogen-responsive AMPK (AMP kinase), leading to significant growth suppression. Further, genetic and pharmacological hyper-activation of AMPK was sufficient to induce the changes observed with GYS1 targeting. Cancer genomics data also indicate that elevated levels of the glycogenic enzymes GYS1/2 or GBE1 (glycogen branching enzyme 1) are associated with poor survival in AML. These results suggest a novel mechanism whereby leukemic cells sustain aberrant proliferation by suppressing excess AMPK activity through elevated glycogenic flux and provide a therapeutic entry point for targeting leukemia cell metabolism. PMID:25703587

  10. Platelet-derived growth factor (PDGF) stimulates glycogen synthase activity in 3T3 cells

    SciTech Connect

    Chan, C.P.; Bowen-Pope, D.F.; Ross, R.; Krebs, E.G.

    1986-05-01

    Hormonal regulation of glycogen synthase, an enzyme that can be phosphorylated on multiple sites, is often associated with changes in its phosphorylation state. Enzyme activation is conventionally monitored by determining the synthase activity ratio ((activity in the absence of glucose 6-P)/(activity in the presence of glucose 6-P)). Insulin causes an activation of glycogen synthase with a concomitant decrease in its phosphate content. In a previous report, the authors showed that epidermal growth factor (EGF) increases the glycogen synthase activity ratio in Swiss 3T3 cells. The time and dose-dependency of this response was similar to that of insulin. Their recent results indicate that PDGF also stimulates glycogen synthase activity. Enzyme activation was maximal after 30 min. of incubation with PDGF; the time course observed was very similar to that with insulin and EGF. At 1 ng/ml (0.03nM), PDGF caused a maximal stimulation of 4-fold in synthase activity ratio. Half-maximal stimulation was observed at 0.2 ng/ml (6 pM). The time course of changes in enzyme activity ratio closely followed that of /sup 125/I-PDGF binding. The authors data suggest that PDGF, as well as EFG and insulin, may be important in regulating glycogen synthesis through phosphorylation/dephosphorylation mechanisms.

  11. Hormonal control of hepatic glycogen metabolism in food-deprived, continuously swimming coho salmon Oncorhynchus kisutch

    USGS Publications Warehouse

    Vijayan, M.M.; Maule, A.G.; Schreck, C.B.; Moon, T.W.

    1993-01-01

    The plasma cortisol concentration and liver cytosolic glucocorticoid receptor activities of continuously swimming, food-deprived coho salmon (Oncorhynchus kisutch) did not differ from those of resting, fed fish. Plasma glucose concentration was significantly higher in the exercising, starved fish, but there were no significant differences in either hepatic glycogen concentration or hepatic activities of glycogen phosphorylase, glycogen synthase, pyruvate kinase, or lactate dehydrogenase between the two groups. Total glucose production by hepatocytes did not differ significantly between the two groups; glycogen breakdown accounted for all the glucose produced in the resting, fed fish whereas it explained only 59% of the glucose production in the exercised animals. Epinephrine and glucagon stimulation of glucose production by hepatocytes was decreased in the exercised fish without significantly affecting hepatocyte glycogen breakdown in either group. Insulin prevented glycogen breakdown and enhanced glycogen deposition in exercised fish. The results indicate that food-deprived, continuously swimming coho salmon conserve glycogen by decreasing the responsiveness of hepatocytes to catabolic hormones and by increasing the responsiveness to insulin (anabolic hormone).

  12. Glycogen content regulates peroxisome proliferator activated receptor-∂ (PPAR-∂) activity in rat skeletal muscle.

    PubMed

    Philp, Andrew; MacKenzie, Matthew G; Belew, Micah Y; Towler, Mhairi C; Corstorphine, Alan; Papalamprou, Angela; Hardie, D Grahame; Baar, Keith

    2013-01-01

    Performing exercise in a glycogen depleted state increases skeletal muscle lipid utilization and the transcription of genes regulating mitochondrial β-oxidation. Potential candidates for glycogen-mediated metabolic adaptation are the peroxisome proliferator activated receptor (PPAR) coactivator-1α (PGC-1α) and the transcription factor/nuclear receptor PPAR-∂. It was therefore the aim of the present study to examine whether acute exercise with or without glycogen manipulation affects PGC-1α and PPAR-∂ function in rodent skeletal muscle. Twenty female Wistar rats were randomly assigned to 5 experimental groups (n = 4): control [CON]; normal glycogen control [NG-C]; normal glycogen exercise [NG-E]; low glycogen control [LG-C]; and low glycogen exercise [LG-E]). Gastrocnemius (GTN) muscles were collected immediately following exercise and analyzed for glycogen content, PPAR-∂ activity via chromatin immunoprecipitation (ChIP) assays, AMPK α1/α2 kinase activity, and the localization of AMPK and PGC-1α. Exercise reduced muscle glycogen by 47 and 75% relative to CON in the NG-E and LG-E groups, respectively. Exercise that started with low glycogen (LG-E) finished with higher AMPK-α2 activity (147%, p<0.05), nuclear AMPK-α2 and PGC-1α, but no difference in AMPK-α1 activity compared to CON. In addition, PPAR-∂ binding to the CPT1 promoter was significantly increased only in the LG-E group. Finally, cell reporter studies in contracting C2C12 myotubes indicated that PPAR-∂ activity following contraction is sensitive to glucose availability, providing mechanistic insight into the association between PPAR-∂ and glycogen content/substrate availability. The present study is the first to examine PPAR-∂ activity in skeletal muscle in response to an acute bout of endurance exercise. Our data would suggest that a factor associated with muscle contraction and/or glycogen depletion activates PPAR-∂ and initiates AMPK translocation in skeletal muscle in

  13. 2-O-α-D-Glucosylglycerol Phosphorylase from Bacillus selenitireducens MLS10 Possessing Hydrolytic Activity on β-D-Glucose 1-Phosphate

    PubMed Central

    Nihira, Takanori; Saito, Yuka; Ohtsubo, Ken’ichi; Nakai, Hiroyuki; Kitaoka, Motomitsu

    2014-01-01

    The glycoside hydrolase family (GH) 65 is a family of inverting phosphorylases that act on α-glucosides. A GH65 protein (Bsel_2816) from Bacillus selenitireducens MLS10 exhibited inorganic phosphate (Pi)-dependent hydrolysis of kojibiose at the rate of 0.43 s−1. No carbohydrate acted as acceptor for the reverse phosphorolysis using β-d-glucose 1-phosphate (βGlc1P) as donor. During the search for a suitable acceptor, we found that Bsel_2816 possessed hydrolytic activity on βGlc1P with a kcat of 2.8 s−1; moreover, such significant hydrolytic activity on sugar 1-phosphate had not been reported for any inverting phosphorylase. The H218O incorporation experiment and the anomeric analysis during the hydrolysis of βGlc1P revealed that the hydrolysis was due to the glucosyl-transferring reaction to a water molecule and not a phosphatase-type reaction. Glycerol was found to be the best acceptor to generate 2-O-α-d-glucosylglycerol (GG) at the rate of 180 s−1. Bsel_2816 phosphorolyzed GG through sequential Bi-Bi mechanism with a kcat of 95 s−1. We propose 2-O-α-d-glucopyranosylglycerol: phosphate β-d-glucosyltransferase as the systematic name and 2-O-α-d-glucosylglycerol phosphorylase as the short name for Bsel_2816. This is the first report describing a phosphorylase that utilizes polyols, and not carbohydrates, as suitable acceptor substrates. PMID:24466148

  14. Structural basis for glycogen recognition by AMP-activated protein kinase.

    PubMed

    Polekhina, Galina; Gupta, Abhilasha; van Denderen, Bryce J W; Feil, Susanne C; Kemp, Bruce E; Stapleton, David; Parker, Michael W

    2005-10-01

    AMP-activated protein kinase (AMPK) coordinates cellular metabolism in response to energy demand as well as to a variety of stimuli. The AMPK beta subunit acts as a scaffold for the alpha catalytic and gamma regulatory subunits and targets the AMPK heterotrimer to glycogen. We have determined the structure of the AMPK beta glycogen binding domain in complex with beta-cyclodextrin. The structure reveals a carbohydrate binding pocket that consolidates all known aspects of carbohydrate binding observed in starch binding domains into one site, with extensive contact between several residues and five glucose units. beta-cyclodextrin is held in a pincer-like grasp with two tryptophan residues cradling two beta-cyclodextrin glucose units and a leucine residue piercing the beta-cyclodextrin ring. Mutation of key beta-cyclodextrin binding residues either partially or completely prevents the glycogen binding domain from binding glycogen. Modeling suggests that this binding pocket enables AMPK to interact with glycogen anywhere across the carbohydrate's helical surface.

  15. Chronic corticosterone exposure reduces hippocampal glycogen level and induces depression-like behavior in mice.

    PubMed

    Zhang, Hui-yu; Zhao, Yu-nan; Wang, Zhong-li; Huang, Yu-fang

    2015-01-01

    Long-term exposure to stress or high glucocorticoid levels leads to depression-like behavior in rodents; however, the cause remains unknown. Increasing evidence shows that astrocytes, the most abundant cells in the central nervous system (CNS), are important to the nervous system. Astrocytes nourish and protect the neurons, and serve as glycogen repositories for the brain. The metabolic process of glycogen, which is closely linked to neuronal activity, can supply sufficient energy substrates for neurons. The research team probed into the effects of chronic corticosterone (CORT) exposure on the glycogen level of astrocytes in the hippocampal tissues of male C57BL/6N mice in this study. The results showed that chronic CORT injection reduced hippocampal neurofilament light protein (NF-L) and synaptophysin (SYP) levels, induced depression-like behavior in male mice, reduced hippocampal glycogen level and glycogen synthase activity, and increased glycogen phosphorylase activity. The results suggested that the reduction of the hippocampal glycogen level may be the mechanism by which chronic CORT treatment damages hippocampal neurons and induces depression-like behavior in male mice.

  16. Chronic corticosterone exposure reduces hippocampal glycogen level and induces depression-like behavior in mice*

    PubMed Central

    Zhang, Hui-yu; Zhao, Yu-nan; Wang, Zhong-li; Huang, Yu-fang

    2015-01-01

    Long-term exposure to stress or high glucocorticoid levels leads to depression-like behavior in rodents; however, the cause remains unknown. Increasing evidence shows that astrocytes, the most abundant cells in the central nervous system (CNS), are important to the nervous system. Astrocytes nourish and protect the neurons, and serve as glycogen repositories for the brain. The metabolic process of glycogen, which is closely linked to neuronal activity, can supply sufficient energy substrates for neurons. The research team probed into the effects of chronic corticosterone (CORT) exposure on the glycogen level of astrocytes in the hippocampal tissues of male C57BL/6N mice in this study. The results showed that chronic CORT injection reduced hippocampal neurofilament light protein (NF-L) and synaptophysin (SYP) levels, induced depression-like behavior in male mice, reduced hippocampal glycogen level and glycogen synthase activity, and increased glycogen phosphorylase activity. The results suggested that the reduction of the hippocampal glycogen level may be the mechanism by which chronic CORT treatment damages hippocampal neurons and induces depression-like behavior in male mice. PMID:25559957

  17. Fructose-induced increase in intracellular free Mg2+ ion concentration in rat hepatocytes: relation with the enzymes of glycogen metabolism.

    PubMed Central

    Gaussin, V; Gailly, P; Gillis, J M; Hue, L

    1997-01-01

    In rat hepatocytes subjected to a fructose load, ATP content decreased from 3.8 to 2.6 micromol/g of cells. Under these conditions, the intracellular free Mg2+ ion concentration,as measured with mag-fura 2, increased from 0.25 to 0.43 micromol/g of cells and 0.35 micromol of Mg2+ ions were released per g of cells in the extracellular medium. Therefore the increase in the intracellular free Mg2+ ion concentration was less than expected from the decrease in ATP, indicating that approx. 80% of the Mg2+ ions released from MgATP2- were buffered inside the cells. When this buffer capacity was challenged with an extra Mg2+ ion load by blocking the fructose-induced Mg2+ efflux, again approx. 80% of the extra Mg2+ ion load was buffered. The remaining 20% appearing as free Mg2+ions in fructose-treated hepatocytes could act as second messenger for enzymes having a Km for Mg2+ in the millimolar range. Fructose activated glycogen synthase and glycogen phosphorylase, although both the time course and the dose-dependence of activation were different. This was reflected in a stimulation of glycogen synthesis with concentrations of fructose below 5 mM. Indeed, activation of glycogen synthase reached a maximum at 30 min of incubation and was observed with small (5 mM or less) concentrations of fructose, whereas the activation of glycogen phosphorylase was almost immediate (within 5 min) and maximal with large doses of fructose. The fructose-induced activation of glycogen phosphorylase, but not that of glycogen synthase, could be related to an increase in free Mg2+ ion concentration. PMID:9307033

  18. Purine nucleoside phosphorylase and xanthine oxidase activities in erythrocytes and plasma from marine, semiaquatic and terrestrial mammals.

    PubMed

    López-Cruz, Roberto I; Pérez-Milicua, Myrna Barjau; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal-Vertiz, Jaime A; de la Rosa, Alejandro; Vázquez-Medina, José P; Zenteno-Savín, Tania

    2014-05-01

    Purine nucleoside phosphorylase (PNP) and xanthine oxidase (XO) are key enzymes involved in the purine salvage pathway. PNP metabolizes purine bases to synthetize purine nucleotides whereas XO catalyzes the oxidation of purines to uric acid. In humans, PNP activity is reported to be high in erythrocytes and XO activity to be low in plasma; however, XO activity increases after ischemic events. XO activity in plasma of northern elephant seals has been reported during prolonged fasting and rest and voluntary associated apneas. The objective of this study was to analyze circulating PNP and XO activities in marine mammals adapted to tolerate repeated cycles of ischemia/reperfusion associated with diving (bottlenose dolphin, northern elephant seal) in comparison with semiaquatic (river otter) and terrestrial mammals (human, pig). PNP activities in plasma and erythrocytes, as well as XO activity in plasma, from all species were quantified by spectrophotometry. No clear relationship in circulating PNP or XO activity could be established between marine, semiaquatic and terrestrial mammals. Erythrocytes from bottlenose dolphins and humans are highly permeable to nucleosides and glucose, intraerythrocyte PNP activity may be related to a release of purine nucleotides from the liver. High-energy costs will probably mean a higher ATP degradation rate in river otters, as compared to northern elephant seals or dolphins. Lower erythrocyte PNP activity and elevated plasma XO activity in northern elephant seal could be associated with fasting and/or sleep- and dive-associated apneas.

  19. The antidiabetic agent sodium tungstate activates glycogen synthesis through an insulin receptor-independent pathway.

    PubMed

    Domínguez, Jorge E; Muñoz, M Carmen; Zafra, Delia; Sanchez-Perez, Isabel; Baqué, Susanna; Caron, Martine; Mercurio, Ciro; Barberà, Albert; Perona, Rosario; Gomis, Ramon; Guinovart, Joan J

    2003-10-31

    Sodium tungstate is a powerful antidiabetic agent when administered orally. In primary cultured hepatocytes, tungstate showed insulin-like actions, which led to an increase in glycogen synthesis and accumulation. However, this compound did not significantly alter the insulin receptor activation state or dephosphorylation rate in cultured cells (CHO-R) or in primary hepatocytes, in either short or long term treatments. In contrast, at low concentrations, tungstate induced a transient strong activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) after 5-10 min of treatment, in a similar way to insulin. Moreover, this compound did not significantly delay or inhibit the dephosphorylation of ERK1/2. ERK1/2 activation triggered a cascade of downstream events, which included the phosphorylation of p90rsk and glycogen synthase-kinase 3beta. Experiments with a specific inhibitor of ERK1/2 activation and kinase assays indicate that these proteins were directly involved in the stimulation of glycogen synthase and glycogen synthesis induced by tungstate without a direct involvement of protein kinase B (PKB/Akt). These results show a direct involvement of ERK1/2 in the mechanism of action of tungstate at the hepatic level.

  20. Last step in the conversion of trehalose to glycogen: a mycobacterial enzyme that transfers maltose from maltose 1-phosphate to glycogen.

    PubMed

    Elbein, Alan D; Pastuszak, Irena; Tackett, Alan J; Wilson, Tyler; Pan, Yuan T

    2010-03-26

    We show that Mycobacterium smegmatis has an enzyme catalyzing transfer of maltose from [(14)C]maltose 1-phosphate to glycogen. This enzyme was purified 90-fold from crude extracts and characterized. Maltose transfer required addition of an acceptor. Liver, oyster, or mycobacterial glycogens were the best acceptors, whereas amylopectin had good activity, but amylose was a poor acceptor. Maltosaccharides inhibited the transfer of maltose from [(14)C]maltose-1-P to glycogen because they were also acceptors of maltose, and they caused production of larger sized radioactive maltosaccharides. When maltotetraose was the acceptor, over 90% of the (14)C-labeled product was maltohexaose, and no radioactivity was in maltopentaose, demonstrating that maltose was transferred intact. Stoichiometry showed that 0.89 micromol of inorganic phosphate was produced for each micromole of maltose transferred to glycogen, and 56% of the added maltose-1-P was transferred to glycogen. This enzyme has been named alpha1,4-glucan:maltose-1-P maltosyltransferase (GMPMT). Transfer of maltose to glycogen was inhibited by micromolar amounts of inorganic phosphate or arsenate but was only slightly inhibited by millimolar concentrations of glucose-1-P, glucose-6-P, or inorganic pyrophosphate. GMPMT was compared with glycogen phosphorylase (GP). GMPMT catalyzed transfer of [(14)C]maltose-1-P, but not [(14)C]glucose-1-P, to glycogen, whereas GP transferred radioactivity from glucose-1-P but not maltose-1-P. GMPMT and GP were both inhibited by 1,4-dideoxy-1,4-imino-d-arabinitol, but only GP was inhibited by isofagomine. Because mycobacteria that contain trehalose synthase accumulate large amounts of glycogen when grown in high concentrations of trehalose, we propose that trehalose synthase, maltokinase, and GMPMT represent a new pathway of glycogen synthesis using trehalose as the source of glucose.

  1. Lithium Induces Glycogen Accumulation in Salivary Glands of the Rat.

    PubMed

    Souza, D N; Mendes, F M; Nogueira, F N; Simões, A; Nicolau, J

    2016-02-01

    Lithium is administered for the treatment of mood and bipolar disorder. The aim of this study was to verify whether treatment with different concentrations of lithium may affect the glycogen metabolism in the salivary glands of the rats when compared with the liver. Mobilization of glycogen in salivary glands is important for the process of secretion. Two sets of experiments were carried out, that is, in the first, the rats received drinking water supplemented with LiCl (38,25 and 12 mM of LiCl for 15 days) and the second experiment was carried out by intraperitoneal injection of LiCl solution (12 mg/kg and 45 mg LiCl/kg body weight) for 3 days. The active form of glycogen phosphorylase was not affected by treatment with LiCl considering the two experiments. The active form of glycogen synthase presented higher activity in the submandibular glands of rats treated with 25 and 38 mM LiCl and in the liver, with 25 mM LiCl. Glycogen level was higher than that of control in the submandibular glands of rats receiving 38 and 12 mM LiCl, in the parotid of rats receiving 25 and 38 mM, and in the liver of rats receiving 12 mM LiCl. The absolute value of glycogen for the submandibular treated with 25 mM LiCl, and the liver treated with 38 mM LiCl, was higher than the control value, although not statistically significant for these tissues. No statistically significant difference was found in the submandibular and parotid salivary glands for protein concentration when comparing experimental and control groups. We concluded that LiCl administered to rats influences the metabolism of glycogen in salivary glands.

  2. Effect of passive and active recovery on the resynthesis of muscle glycogen.

    PubMed

    Choi, D; Cole, K J; Goodpaster, B H; Fink, W J; Costill, D L

    1994-08-01

    The purpose of this investigation was to determine the effect of passive and active recovery on the resynthesis of muscle glycogen after high-intensity cycle ergometer exercise in untrained subjects. In a cross-over design, six college-aged males performed three, 1-min exercise bouts at approximately 130% VO2max with a 4-min rest period between each work bout. The exercise protocol for each trial was identical, while the recovery following exercise was either active (30 min at 40-50% VO2max, 30-min seated rest) or passive (60-min seated rest). Initial muscle glycogen values averaged 144.2 +/- 3.8 mmol.kg-1 w.w. for the active trial and 158.7 +/- 8.0 mmol.kg-1 w.w. for the passive trial. Corresponding immediate postexercise glycogen contents were 97.7 +/- 5.4 and 106.8 +/- 4.7 mmol.kg-1 w.w., respectively. These differences between treatments were not significant. However, mean muscle glycogen after 60 min of passive recovery increased 15.0 +/- 4.9 mmol.kg-1 w.w., whereas it decreased 6.3 +/- 3.7 mmol.kg-1 w.w. following the 60 min active recovery protocol (P < 0.05). Also, the decrease in blood lactate concentration during active recovery was greater than during passive recovery and significantly different at 10 and 30 min of the recovery period (P < 0.05). These data suggest that the use of passive recovery following intense exercise results in a greater amount of muscle glycogen resynthesis than active recovery over the same duration.

  3. FLCN and AMPK Confer Resistance to Hyperosmotic Stress via Remodeling of Glycogen Stores

    PubMed Central

    Possik, Elite; Ajisebutu, Andrew; Manteghi, Sanaz; Gingras, Marie-Claude; Vijayaraghavan, Tarika; Flamand, Mathieu; Coull, Barry; Schmeisser, Kathrin; Duchaine, Thomas; van Steensel, Maurice; Hall, David H.; Pause, Arnim

    2015-01-01

    Mechanisms of adaptation to environmental changes in osmolarity are fundamental for cellular and organismal survival. Here we identify a novel osmotic stress resistance pathway in Caenorhabditis elegans (C. elegans), which is dependent on the metabolic master regulator 5’-AMP-activated protein kinase (AMPK) and its negative regulator Folliculin (FLCN). FLCN-1 is the nematode ortholog of the tumor suppressor FLCN, responsible for the Birt-Hogg-Dubé (BHD) tumor syndrome. We show that flcn-1 mutants exhibit increased resistance to hyperosmotic stress via constitutive AMPK-dependent accumulation of glycogen reserves. Upon hyperosmotic stress exposure, glycogen stores are rapidly degraded, leading to a significant accumulation of the organic osmolyte glycerol through transcriptional upregulation of glycerol-3-phosphate dehydrogenase enzymes (gpdh-1 and gpdh-2). Importantly, the hyperosmotic stress resistance in flcn-1 mutant and wild-type animals is strongly suppressed by loss of AMPK, glycogen synthase, glycogen phosphorylase, or simultaneous loss of gpdh-1 and gpdh-2 enzymes. Our studies show for the first time that animals normally exhibit AMPK-dependent glycogen stores, which can be utilized for rapid adaptation to either energy stress or hyperosmotic stress. Importantly, we show that glycogen accumulates in kidneys from mice lacking FLCN and in renal tumors from a BHD patient. Our findings suggest a dual role for glycogen, acting as a reservoir for energy supply and osmolyte production, and both processes might be supporting tumorigenesis. PMID:26439621

  4. An isozyme of acid alpha-glucosidase with reduced catalytic activity for glycogen.

    PubMed Central

    Beratis, N G; LaBadie, G U; Hirschhorn, K

    1980-01-01

    Both the common and a variant isozyme of acid alpha-glucosidase have been purified from a heterozygous placenta with CM-Sephadex, ammonium sulfate precipitation, dialysis, Amicon filtration, affinity chromatography by Sephadex G-100, and DEAE-cellulose chromatography. Three and two activity peaks, from the common and variant isozymes, respectively, were obtained by DEAE-cellulose chromatography using a linear NaCl gradient. The three peaks of activity of the common isozyme were eluted with 0.08, 0.12, and 0.17 M NaCl, whereas the two peaks of the variant, with 0.01 and 0.06 M NaCl. The pH optimum and thermal denaturation at 57 degrees C were the same in all enzyme peaks of both isozymes. Rabbit antiacid alpha-glucosidase antibodies produced against the common isozyme were found to cross-react with both peaks of the variant isozyme. The two isozymes shared antigenic identity and had similar Km's with maltose as substrate. Normal substrate saturation kinetics were observed with the common isozyme when glycogen was the substrate, but the variant produced an S-shaped saturation curve indicating a phase of negative and positive cooperativity at low and high glycogen concentrations, respectively. The activity of the variant was only 8.6% and 19.2% of the common isozyme when assayed with nonsaturating and saturating concentrations of glycogen, respectively. A similar rate of hydrolysis of isomaltose by both isozymes was found indicating that the reduced catalytic activity of the variant isozyme toward glycogen is not the result of a reduced ability of this enzyme to cleave the alpha-1,6 linkages of glycogen. Images Fig. 2 Fig. 4 Fig. 6 PMID:6770674

  5. Inhibitory properties of 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) derivatives acting on glycogen metabolising enzymes.

    PubMed

    Díaz-Lobo, Mireia; Concia, Alda Lisa; Gómez, Livia; Clapés, Pere; Fita, Ignacio; Guinovart, Joan J; Ferrer, Joan C

    2016-09-26

    Glycogen synthase (GS) and glycogen phosphorylase (GP) are the key enzymes that control, respectively, the synthesis and degradation of glycogen, a multi-branched glucose polymer that serves as a form of energy storage in bacteria, fungi and animals. An abnormal glycogen metabolism is associated with several human diseases. Thus, GS and GP constitute adequate pharmacological targets to modulate cellular glycogen levels by means of their selective inhibition. The compound 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) is a known potent inhibitor of GP. We studied the inhibitory effect of DAB, its enantiomer LAB, and 29 DAB derivatives on the activity of rat muscle glycogen phosphorylase (RMGP) and E. coli glycogen synthase (EcGS). The isoform 4 of sucrose synthase (SuSy4) from Solanum tuberosum L. was also included in the study for comparative purposes. Although these three enzymes possess highly conserved catalytic site architectures, the DAB derivatives analysed showed extremely diverse inhibitory potential. Subtle changes in the positions of crucial residues in their active sites are sufficient to discriminate among the structural differences of the tested inhibitors. For the two Leloir-type enzymes, EcGS and SuSy4, which use sugar nucleotides as donors, the inhibitory potency of the compounds analysed was synergistically enhanced by more than three orders of magnitude in the presence of ADP and UDP, respectively. Our results are consistent with a model in which these compounds bind to the subsite in the active centre of the enzymes that is normally occupied by the glucosyl residue which is transferred between donor and acceptor substrates. The ability to selectively inhibit the catalytic activity of the key enzymes of the glycogen metabolism may represent a new approach for the treatment of disorders of the glycogen metabolism.

  6. Glycogen storage diseases: New perspectives

    PubMed Central

    Özen, Hasan

    2007-01-01

    Glycogen storage diseases (GSD) are inherited metabolic disorders of glycogen metabolism. Different hormones, including insulin, glucagon, and cortisol regulate the relationship of glycolysis, gluconeogenesis and glycogen synthesis. The overall GSD incidence is estimated 1 case per 20000-43000 live births. There are over 12 types and they are classified based on the enzyme deficiency and the affected tissue. Disorders of glycogen degradation may affect primarily the liver, the muscle, or both. Type Ia involves the liver, kidney and intestine (and Ib also leukocytes), and the clinical manifestations are hepatomegaly, failure to thrive, hypoglycemia, hyperlactatemia, hyperuricemia and hyperlipidemia. Type IIIa involves both the liver and muscle, and IIIb solely the liver. The liver symptoms generally improve with age. Type IV usually presents in the first year of life, with hepatomegaly and growth retardation. The disease in general is progressive to cirrhosis. Type VI and IX are a heterogeneous group of diseases caused by a deficiency of the liver phosphorylase and phosphorylase kinase system. There is no hyperuricemia or hyperlactatemia. Type XI is characterized by hepatic glycogenosis and renal Fanconi syndrome. Type II is a prototype of inborn lysosomal storage diseases and involves many organs but primarily the muscle. Types V and VII involve only the muscle. PMID:17552001

  7. Activity and substrate specificity of pyrimidine phosphorylases and their role in fluoropyrimidine sensitivity in colon cancer cell lines.

    PubMed

    Temmink, Olaf H; de Bruin, Michiel; Turksma, Annelies W; Cricca, Silvia; Laan, Adrie C; Peters, Godefridus J

    2007-01-01

    Thymidine phosphorylase (TP) and uridine phosphorylase (UP) are often upregulated in solid tumors and catalyze the phosphorolysis of natural (deoxy)nucleosides and a wide variety of fluorinated pyrimidine nucleosides. Because the relative contribution of each of the two enzymes to these reactions is still largely unknown, we investigated the substrate specificity of TP and UP in colon cancer cells for the (fluoro)pyrimidine nucleosides thymidine (TdR), uridine (Urd), 5'-deoxy-5-fluorouridine (5'DFUR), and 5FU. Specific inhibitors of TP (TPI) and UP (BAU) were used to determine the contribution of each enzyme in relation to their cytotoxic effect. The high TP expressing Colo320TP1 cells were most sensitive to 5'DFUR and 5FU, with IC50 values of 1.4 and 0.2 microM, respectively, while SW948 and SW1398 were insensitive to 5'DFUR (IC50>150 microM for 5'DFUR). TPI and BAU only moderately affected sensitivity of Colo320, SW948, and SW1398, whereas TPI significantly increased IC(50) for 5'DFUR (50-fold) and 5FU (11-fold) in Colo320TP1 and BAU that in C26A (9-fold for 5'DFUR; p<0.01). In the epithelial skin cell line HaCaT both inhibitors were able to decrease sensitivity to 5'DFUR and 5FU separately. HaCaT might be a model for 5'DFUR toxicity. In the colon cancer cells 5'DFUR degradation varied from 0.4 to 50 nmol 5FU/h/10(6)cells, that of TdR from 0.3 to 103 nmol thymine/h/10(6)cells, that of Urd from 0.8 to 79 nmol uracil/h/10(6)cells, while conversion of 5FU to FUrd was from 0.3 to 46 nmol/h/10(6)cells. SW948 and SW1398 were about equally sensitive to 5'DFUR and 5FU, but SW1398 had higher phosphorylase activity (>65-fold) compared to SW948. In SW948 and HaCaT TPI and BAU inhibited TdR and Urd phosphorolysis (>80%), respectively. Both TP and UP contributed to the phosphorolysis of 5'DFUR and 5FU. In the presence of both inhibitors, still phosphorolysis of 5FU (>40%) was detected in the tumor and HaCaT cell lines, and remarkably, that of all four substrates in SW1398

  8. Activation of glycolysis and apoptosis in glycogen storage disease type Ia.

    PubMed

    Sun, Baodong; Li, Songtao; Yang, Liu; Damodaran, Tirupapuliyur; Desai, Dev; Diehl, Anna Mae; Alzate, Oscar; Koeberl, Dwight D

    2009-08-01

    The deficiency of glucose-6-phosphatase (G6Pase) underlies glycogen storage disease type Ia (GSD-Ia, von Gierke disease; MIM 232200), an autosomal recessive disorder of metabolism associated with life-threatening hypoglycemia, growth retardation, renal failure, hepatic adenomas, and hepatocellular carcinoma. Liver involvement includes the massive accumulation of glycogen and lipids due to accumulated glucose-6-phosphate and glycolytic intermediates. Proteomic analysis revealed elevations in glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and other enzymes involved in glycolysis. GAPDH was markedly increased in murine G6Pase-deficient hepatocytes. The moonlighting role of GAPDH includes increasing apoptosis, which was demonstrated by increased TUNEL assay positivity and caspase 3 activation in the murine GSD-Ia liver. These analyses of hepatic involvement in GSD-Ia mice have implicated the induction of apoptosis in the pathobiology of GSD-Ia.

  9. Combination of thymidine phosphorylase gene transfer and deoxyinosine treatment greatly enhances 5-fluorouracil antitumor activity in vitro and in vivo.

    PubMed

    Ciccolini, J; Cuq, P; Evrard, A; Giacometti, S; Pelegrin, A; Aubert, C; Cano, J P; Iliadis, A

    2001-12-01

    We reported previously that 5-fluorouracil (FUra) efficacy could be enhanced by increasing tumoral thymidine phosphorylase (TP) activity. Potentiated TP yield was achieved by either transfecting cells with human TP gene (A. Evrard et al., Br. J. Cancer, 80: 1726-1733, 1999) or associating FUra with 2'-deoxyinosine (d-Ino), a modulator providing the tumors with TP cofactor deoxyribose 1-phosphate (J. Ciccolini et al., Clin. Cancer Res., 6: 1529-1535, 2000). The purpose of the present work was to study the effects of a combined modulation (TP gene transfer + use of d-Ino) on the sensitivity to FUra of the LS174T human colorectal cell line. Results showed a near 4000 times increase of cell sensitivity in vitro after double (genetic + biochemical) modulation. This potentiation of tumor response was accompanied by a total change in the FUra anabolic pathway with a 5000% increase of cytosolic fluorodeoxyuridine monophosphate, a stronger and longer inhibition of thymidylate synthase, and 300% augmentation of DNA damage. Besides, whereas thymidine failed to inhibit FUra cytotoxicity in LS174T wild-type cells, the potentiation of the antitumor activity observed in the modulating regimen was partly reversed by thymidine, indicative of thymidylate synthase as the main drug target. The impact of this double modulation was next investigated in xenograft-bearing nude mice. Results showed that whereas FUra alone was completely ineffective on wild-type tumor growth, the size of TP-transfected tumors in animals treated with the FUra/d-Ino combination was reduced by 80% (P < 0.05). Our results suggest that FUra exhibits stronger antiproliferative activity when activated via TP through the DNA pathway and that high tumoral TP activity therefore leads to enhanced sensitivity to fluoropyrimidines.

  10. 6-Methylpurine derived sugar modified nucleosides: Synthesis and evaluation of their substrate activity with purine nucleoside phosphorylases.

    PubMed

    Hassan, Abdalla E A; Abou-Elkhair, Reham A I; Parker, William B; Allan, Paula W; Secrist, John A

    2016-04-01

    6-Methylpurine (MeP) is cytotoxic adenine analog that does not exhibit selectivity when administered systemically, and could be very useful in a gene therapy approach to cancer treatment involving Escherichia coli PNP. The prototype MeP releasing prodrug, 9-(β-d-ribofuranosyl)-6-methylpurine, MeP-dR has demonstrated good activity against tumors expressing E. coli PNP, but its antitumor activity is limited due to toxicity resulting from the generation of MeP from gut bacteria. Therefore, we have embarked on a medicinal chemistry program to identify non-toxic MeP prodrugs that could be used in conjunction with E. coli PNP. In this work, we report on the synthesis of 9-(6-deoxy-β-d-allofuranosyl)-6-methylpurine (3) and 9-(6-deoxy-5-C-methyl-β-d-ribo-hexofuranosyl)-6-methylpurine (4), and the evaluation of their substrate activity with several phosphorylases. The glycosyl donors; 1,2-di-O-acetyl-3,5-di-O-benzyl-α-d-allofuranose (10) and 1-O-acetyl-3-O-benzyl-2,5-di-O-benzoyl-6-deoxy-5-C-methyl-β-d-ribohexofuran-ose (15) were prepared from 1,2:5,6-di-O-isopropylidine-α-d-glucofuranose in 9 and 11 steps, respectively. Coupling of 10 and 15 with silylated 6-methylpurine under Vorbrüggen glycosylation conditions followed conventional deprotection of the hydroxyl groups furnished 5'-C-methylated-6-methylpurine nucleosides 3 and 4, respectively. Unlike 9-(6-deoxy-α-l-talo-furanosyl)-6-methylpurine, which showed good substrate activity with E. coli PNP mutant (M64V), the β-d-allo-furanosyl derivative 3 and the 5'-di-C-methyl derivative 4 were poor substrates for all tested glycosidic bond cleavage enzymes.

  11. Castanospermine inhibits alpha-glucosidase activities and alters glycogen distribution in animals.

    PubMed

    Saul, R; Ghidoni, J J; Molyneux, R J; Elbein, A D

    1985-01-01

    Castanospermine, an inhibitor of alpha-glucosidase activity, was injected into rats to determine its effects in vivo. Daily injections of alkaloid, at levels of 0.5 mg/g of body weight, or higher, for 3 days decreased hepatic alpha-glucosidase to 40% of control values, whereas alpha-glucosidase in brain was reduced to 25% of control values and that in spleen and kidney was reduced to about 40%. In liver, both the neutral (pH 6.5) and the acidic (pH 4.5) alpha-glucosidase activities were inhibited, but the former was more susceptible. On the other hand, beta-N-acetylhexosaminidase activity was elevated in the livers of treated animals, whereas beta-galactosidase activity was unchanged and alpha-mannosidase activity was somewhat inhibited. Livers of treated animals were examined by light and electron microscopy and compared to control animals to determine whether changes in morphology had occurred. In treated animals fed normal rat chow, the hepatocytes were smaller in size and simplified in structure, whereas the high-glucose diet lessened these alterations. Furthermore, in those animals receiving castanospermine at 1.0 mg or higher per g of body weight for 3 days, there was a marked decrease in the amount of glycogen in the cytoplasm, while a large number of lysosomes were observed that were full of dense, granular material. That this dense material was indeed glycogen was shown by the fact that it disappeared when blocks of fixed tissue were pretreated with alpha-amylase. Glycogen levels in liver, as measured either colorimetrically or enzymatically, were somewhat depressed at the higher levels of castanospermine.

  12. 3'-Azidothymidine in the active site of Escherichia coli thymidine phosphorylase: the peculiarity of the binding on the basis of X-ray study.

    PubMed

    Timofeev, Vladimir; Abramchik, Yulia; Zhukhlistova, Nadezda; Muravieva, Tatiana; Fateev, Ilya; Esipov, Roman; Kuranova, Inna

    2014-04-01

    The structural study of complexes of thymidine phosphorylase (TP) with nucleoside analogues which inhibit its activity is of special interest because many of these compounds are used as chemotherapeutic agents. Determination of kinetic parameters showed that 3'-azido-3'-deoxythymidine (3'-azidothymidine; AZT), which is widely used for the treatment of human immunodeficiency virus, is a reversible noncompetitive inhibitor of Escherichia coli thymidine phosphorylase (TP). The three-dimensional structure of E. coli TP complexed with AZT was solved by the molecular-replacement method and was refined at 1.52 Å resolution. Crystals for X-ray study were grown in microgravity by the counter-diffusion technique from a solution of the protein in phosphate buffer with ammonium sulfate as a precipitant. The AZT molecule was located with full occupancy in the electron-density maps in the nucleoside-binding pocket of TP, whereas the phosphate-binding pocket of the enzyme was occupied by phosphate (or sulfate) ion. The structure of the active-site cavity and conformational changes of the enzyme upon AZT binding are described in detail. It is found that the position of AZT differs remarkably from the positions of the pyrimidine bases and nucleoside analogues in other known complexes of pyrimidine phosphorylases, but coincides well with the position of 2'-fluoro-3'-azido-2',3'-dideoxyuridine (N3FddU) in the recently investigated complex of E. coli TP with this ligand (Timofeev et al., 2013). The peculiarities of the arrangement of N3FddU and 3'-azidothymidine in the nucleoside binding pocket of TP and correlations between the arrangement and inhibitory properties of these compounds are discussed.

  13. Anti-insulin effects of amylin and calcitonin-gene-related peptide on hepatic glycogen metabolism.

    PubMed Central

    Gómez-Foix, A M; Rodriguez-Gil, J E; Guinovart, J J

    1991-01-01

    To evaluate the effects of amylin and calcitonin-gene-related peptide (CGRP) as anti-insulin agents in hepatic tissue, we have studied whether these two agents counteracted the action of insulin on glycogen metabolism in isolated rat hepatocytes. In this system insulin stimulates [14C]glucose incorporation into glycogen and activates glycogen synthase. Incubation of the cells with insulin in the presence of amylin or CGRP markedly blocked the insulin stimulation of these two parameters, whereas amylin or CGRP acting alone did not induce any effect. We also examined the ability of amylin and CGRP to modify the anti-glucagon effects of insulin. In the presence of 100 nM-amylin or -CGRP, 10 nM-insulin was almost unable to counteract the inactivation of glycogen synthase and the activation of phosphorylase induced by glucagon. In contrast, neither amylin nor CGRP modified the effect of glucagon on these two enzymes. Our results indicate that amylin and CGRP are able to impair the action of insulin on hepatic glycogen metabolism. PMID:1905922

  14. Thermus thermophilus Nucleoside Phosphorylases Active in the Synthesis of Nucleoside Analogues

    PubMed Central

    Almendros, Marcos; Sinisterra, Jose-Vicente

    2012-01-01

    Cells extracts from Thermus thermophilus HB27 express phosphorolytic activities on purines and pyrimidine nucleosides. Five putative encoding genes were cloned and expressed in Escherichia coli, and the corresponding recombinant proteins were purified and studied. Two of these showed phosphorolytic activities against purine nucleosides, and third one showed phosphorolytic activity against pyrimidine nucleosides in vitro, and the three were named TtPNPI, TtPNPII, and TtPyNP, respectively. The optimal temperature for the activity of the three enzymes was beyond the water boiling point and could not be measured accurately, whereas all of them exhibited a wide plateau of optimal pHs that ranged from 5.0 to 7.0. Analytical ultracentrifugation experiments revealed that TtPNPI was a homohexamer, TtPNPII was a monomer, and TtPyNP was a homodimer. Kinetic constants were determined for the phosphorolysis of the natural substrates of each enzyme. Reaction tests with nucleoside analogues revealed critical positions in the nucleoside for its recognition. Activities with synthetic nucleobase analogues, such as 5-iodouracil or 2,6-diaminopurine, and arabinosides were detected, supporting that these enzymes could be applied for the synthesis of new nucleoside analogs with pharmacological activities. PMID:22344645

  15. Rapid adaptation of activated sludge bacteria into a glycogen accumulating biofilm enabling anaerobic BOD uptake.

    PubMed

    Hossain, Md Iqbal; Paparini, Andrea; Cord-Ruwisch, Ralf

    2017-03-01

    Glycogen accumulating organisms (GAO) are known to allow anaerobic uptake of biological oxygen demand (BOD) in activated sludge wastewater treatment systems. In this study, we report a rapid transition of suspended activated sludge biomass to a GAO dominated biofilm by selective enrichment using sequences of anaerobic loading followed by aerobic exposure of the biofilm to air. The study showed that within eight weeks, a fully operational, GAO dominated biofilm had developed, enabling complete anaerobic BOD uptake at a rate of 256mg/L/h. The oxygen uptake by the biofilm directly from the atmosphere had been calculated to provide significant energy savings. This study suggests that wastewater treatment plant operators can convert activated sludge systems readily into a "passive aeration" biofilm that avoids costly oxygen transfer to bulk wastewater solution. The described energy efficient BOD removal system provides an opportunity to be coupled with novel nitrogen removal processes such as anammox.

  16. Aerobic exercise plus weight loss improves insulin sensitivity and increases skeletal muscle glycogen synthase activity in older men.

    PubMed

    Ryan, Alice S; Katzel, Leslie I; Prior, Steven J; McLenithan, John C; Goldberg, Andrew P; Ortmeyer, Heidi K

    2014-07-01

    The purpose of this study was to determine the effects of 6-month aerobic exercise training + weight loss (AEX + WL) on basal and insulin activation of glycogen synthase, basal citrate synthase activity, and Akt and AS160 phosphorylation in older, overweight/obese insulin-resistant men (n = 14; 63 ± 2 years; body mass index, 32 ± kg/m(2)). Muscle samples of the vastus lateralis were collected before and during a 3-hour 80 mU/m(2)/min hyperinsulinemic-euglycemic clamp. AEX + WL increased VO2max by 11% (p < .05) and decreased body weight (-9%, p < .001). AEX + WL increased basal citrate synthase activity by 46% (p < .01) and insulin activation of independent (2.9-fold) and fractional (2.3-fold) activities (both p < .001) of glycogen synthase. AEX + WL had no effect on phosphorylation of Akt or AS160. Glucose utilization (M) improved 25% (p < .01), and the change tended to be related to the increase in insulin activation of glycogen synthase fractional activity (r = .50, p = .08) following AEX + WL. In summary, AEX + WL has a robust effect on insulin activation of skeletal muscle glycogen synthase activity that likely contributes to improved glucose utilization in older insulin-resistant men.

  17. Aerobic Exercise Plus Weight Loss Improves Insulin Sensitivity and Increases Skeletal Muscle Glycogen Synthase Activity in Older Men

    PubMed Central

    Katzel, Leslie I.; Prior, Steven J.; McLenithan, John C.; Goldberg, Andrew P.; Ortmeyer, Heidi K.

    2014-01-01

    The purpose of this study was to determine the effects of 6-month aerobic exercise training + weight loss (AEX + WL) on basal and insulin activation of glycogen synthase, basal citrate synthase activity, and Akt and AS160 phosphorylation in older, overweight/obese insulin-resistant men (n = 14; 63 ± 2 years; body mass index, 32 ± kg/m2). Muscle samples of the vastus lateralis were collected before and during a 3-hour 80 mU/m2/min hyperinsulinemic-euglycemic clamp. AEX + WL increased VO2max by 11% (p < .05) and decreased body weight (−9%, p < .001). AEX + WL increased basal citrate synthase activity by 46% (p < .01) and insulin activation of independent (2.9-fold) and fractional (2.3-fold) activities (both p < .001) of glycogen synthase. AEX + WL had no effect on phosphorylation of Akt or AS160. Glucose utilization (M) improved 25% (p < .01), and the change tended to be related to the increase in insulin activation of glycogen synthase fractional activity (r = .50, p = .08) following AEX + WL. In summary, AEX + WL has a robust effect on insulin activation of skeletal muscle glycogen synthase activity that likely contributes to improved glucose utilization in older insulin-resistant men. PMID:24357038

  18. Glycogen synthase kinase 3 alpha phosphorylates and regulates the osteogenic activity of Osterix.

    PubMed

    Li, Hongyan; Jeong, Hyung Min; Choi, You Hee; Lee, Sung Ho; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl

    2013-05-10

    Osteoblast-specific transcription factor Osterix is a zinc-finger transcription factor that required for osteoblast differentiation and new bone formation. The function of Osterix can be modulated by post-translational modification. Glycogen synthase kinase 3 alpha (GSK3α) is a multifunctional serine/threonine protein kinase that plays a role in the Wnt signaling pathways and is implicated in the control of several regulatory proteins and transcription factors. In the present study, we investigated how GSK3α regulates Osterix during osteoblast differentiation. Wide type GSK3α up-regulated the protein level, protein stability and transcriptional activity of Osterix. These results suggest that GSK3α regulates osteogenic activity of Osterix.

  19. The quest for a thermostable sucrose phosphorylase reveals sucrose 6'-phosphate phosphorylase as a novel specificity.

    PubMed

    Verhaeghe, Tom; Aerts, Dirk; Diricks, Margo; Soetaert, Wim; Desmet, Tom

    2014-08-01

    Sucrose phosphorylase is a promising biocatalyst for the glycosylation of a wide range of compounds, but its industrial application has been hampered by the low thermostability of known representatives. Hence, in this study, the putative sucrose phosphorylase from the thermophile Thermoanaerobacterium thermosaccharolyticum was recombinantly expressed and fully characterised. The enzyme showed significant activity on sucrose (optimum at 55 °C), and with a melting temperature of 79 °C and a half-life of 60 h at the industrially relevant temperature of 60 °C, it is far more stable than known sucrose phosphorylases. Substrate screening and detailed kinetic characterisation revealed however a preference for sucrose 6'-phosphate over sucrose. The enzyme can thus be considered as a sucrose 6'-phosphate phosphorylase, a specificity not yet reported to date. Homology modelling and mutagenesis pointed out particular residues (Arg134 and His344) accounting for the difference in specificity. Moreover, phylogenetic and sequence analysis suggest that glycoside hydrolase 13 subfamily 18 might harbour even more specificities. In addition, the second gene residing in the same operon as sucrose 6'-phosphate phosphorylase was identified as well, and found to be a phosphofructokinase. The concerted action of both these enzymes implies a new pathway for the breakdown of sucrose, in which the reaction products end up at different stages of the glycolysis.

  20. Purification and identification of amylases released by the human pathogen Trichomonas vaginalis that are active towards glycogen.

    PubMed

    Smith, Ronald W; Brittingham, Andrew; Wilson, Wayne A

    The parasitic protist Trichomonas vaginalis is the causative agent of the sexually transmitted infection trichomoniasis. In the laboratory, T. vaginalis is typically cultured in a serum-containing medium with maltose or glucose as the carbon source. The nature of the carbohydrates used by the organism in the environment of its host is unclear. However, the vagina contains substantial amounts of glycogen, which is believed to provide a growth substrate for the vaginal microbiota. We have shown previously that T. vaginalis releases glucosidases that are active towards glycogen into its environment. Here we purify and identifying these glucosidases. Using ammonium sulfate precipitation and precipitation with ethanol/glycogen, we purified glucosidase activity from conditioned growth medium, achieving over 300-fold enrichment. Maltose was released when glycogen was incubated with the glucosidase preparation, indicating that a β-amylase was present. However, after prolonged incubation, small quantities of larger products including maltotriose were obtained. Liquid chromatography and tandem mass spectrometry showed that the glucosidase preparation contained three proteins, the major component being a putative β-amylase encoded by the TVAG_080000 open reading frame. Lesser amounts of two putative α-amylases, encoded by the TVAG_178580 and TVAG_205920 open reading frames, were also present. We cloned and expressed the TVAG_080000 open reading frame and found that the recombinant protein was capable of digesting glycogen, releasing exclusively maltose. We conclude that T. vaginalis releases a variety of amylases into its growth environment and is well equipped to utilize the glycogen found in the vagina as a source of essential carbohydrates.

  1. Unfolded protein response activates glycogen synthase kinase-3 via selective lysosomal degradation.

    PubMed

    Nijholt, Diana A T; Nölle, Anna; van Haastert, Elise S; Edelijn, Hessel; Toonen, Ruud F; Hoozemans, Jeroen J M; Scheper, Wiep

    2013-07-01

    The unfolded protein response (UPR) is a stress response that is activated upon disturbed homeostasis in the endoplasmic reticulum. In Alzheimer's disease, as well as in other tauopathies, the UPR is activated in neurons that contain early tau pathology. A recent genome-wide association study identified genetic variation in a UPR transducer as a risk factor for tauopathy, supporting a functional connection between UPR activation and tau pathology. Here we show that UPR activation increases the activity of the major tau kinase glycogen synthase kinase (GSK)-3 in vitro via a selective removal of inactive GSK-3 phosphorylated at Ser(21/9). We demonstrate that this is mediated by the autophagy/lysosomal pathway. In brain tissue from patients with different tauopathies, lysosomal accumulations of pSer(21/9) GSK-3 are found in neurons with markers for UPR activation. Our data indicate that UPR activation increases the activity of GSK-3 by a novel mechanism, the lysosomal degradation of the inactive pSer(21/9) GSK-3. This may provide a functional explanation for the close association between UPR activation and early tau pathology in neurodegenerative diseases.

  2. Inactivation of the phosphoglucomutase gene pgm in Corynebacterium glutamicum affects cell shape and glycogen metabolism

    PubMed Central

    Seibold, Gerd M.; Eikmanns, Bernhard J.

    2013-01-01

    In Corynebacterium glutamicum formation of glc-1-P (α-glucose-1-phosphate) from glc-6-P (glucose-6-phosphate) by α-Pgm (phosphoglucomutase) is supposed to be crucial for synthesis of glycogen and the cell wall precursors trehalose and rhamnose. Furthermore, Pgm is probably necessary for glycogen degradation and maltose utilization as glucan phosphorylases of both pathways form glc-1-P. We here show that C. glutamicum possesses at least two Pgm isoenzymes, the cg2800 (pgm) encoded enzyme contributing most to total Pgm activity. By inactivation of pgm we created C. glutamicum IMpgm showing only about 12% Pgm activity when compared to the parental strain. We characterized both strains during cultivation with either glucose or maltose as substrate and observed that (i) the glc-1-P content in the WT (wild-type) and the mutant remained constant independent of the carbon source used, (ii) the glycogen levels in the pgm mutant were lower during growth on glucose and higher during growth on maltose, and (iii) the morphology of the mutant was altered with maltose as a substrate. We conclude that C. glutamicum employs glycogen as carbon capacitor to perform glc-1-P homeostasis in the exponential growth phase and is therefore able to counteract limited Pgm activity for both anabolic and catabolic metabolic pathways. PMID:23863124

  3. Changes in the activity levels of glutamine synthetase, glutaminase and glycogen synthetase in rats subjected to hypoxic stress

    NASA Astrophysics Data System (ADS)

    Vats, P.; Mukherjee, A. K.; Kumria, M. M. L.; Singh, S. N.; Patil, S. K. B.; Rangnathan, S.; Sridharan, K.

    Exposure to high altitude causes loss of body mass and alterations in metabolic processes, especially carbohydrate and protein metabolism. The present study was conducted to elucidate the role of glutamine synthetase, glutaminase and glycogen synthetase under conditions of chronic intermittent hypoxia. Four groups, each consisting of 12 male albino rats (Wistar strain), were exposed to a simulated altitude of 7620 m in a hypobaric chamber for 6 h per day for 1, 7, 14 and 21 days, respectively. Blood haemoglobin, blood glucose, protein levels in the liver, muscle and plasma, glycogen content, and glutaminase, glutamine synthetase and glycogen synthetase activities in liver and muscle were determined in all groups of exposed and in a group of unexposed animals. Food intake and changes in body mass were also monitored. There was a significant reduction in body mass (28-30%) in hypoxia-exposed groups as compared to controls, with a corresponding decrease in food intake. There was rise in blood haemoglobin and plasma protein in response to acclimatisation. Over a three-fold increase in liver glycogen content was observed following 1 day of hypoxic exposure (4.76+/-0.78 mg.g-1 wet tissue in normal unexposed rats; 15.82+/-2.30 mg.g-1 wet tissue in rats exposed to hypoxia for 1 day). This returned to normal in later stages of exposure. However, there was no change in glycogen synthetase activity except for a decrease in the 21-days hypoxia-exposed group. There was a slight increase in muscle glycogen content in the 1-day exposed group which declined significantly by 56.5, 50.6 and 42% following 7, 14, and 21 days of exposure, respectively. Muscle glycogen synthetase activity was also decreased following 21 days of exposure. There was an increase in glutaminase activity in the liver and muscle in the 7-, 14- and 21-day exposed groups. Glutamine synthetase activity was higher in the liver in 7- and 14-day exposed groups; this returned to normal following 21 days of exposure

  4. Amylin impairment of insulin effects on glycogen synthesis and phosphoenolpyruvate carboxykinase gene expression in rat primary cultured hepatocytes.

    PubMed Central

    Baqué, S; Guinovart, J J; Gómez-Foix, A M

    1994-01-01

    The ability of amylin to impair hepatic insulin action is controversial. We have found that the effect of amylin in primary cultured hepatocytes is strongly dependent on the culture conditions. Only in hepatocytes preincubated in the presence of fetal serum did amylin, at concentrations ranging from 1 to 100 nM, reduce insulin-stimulated glycogen synthesis rate and glycogen accumulation without showing direct effects. Neither basal glycogen synthase nor glycogen phosphorylase activity was modified by amylin treatment. Nevertheless, amylin (100 nM) blocked the activation of glycogen synthase by insulin. Amylin also proved capable of opposing the reduction in the expression of the phosphoenolpyruvate carboxykinase (PEPCK) gene induced by insulin, whereas the basal mRNA level of PEPCK was unaffected by amylin treatment. Thus, these results show that, in cultured rat hepatocytes, amylin is indeed able to interfere with insulin regulation of glycogenesis and PEPCK gene expression, favouring the hypothesis that amylin may modulate liver sensitivity to insulin. Images Figure 3 PMID:7998979

  5. Rapid Detection of Glycogen Synthase Kinase-3 Activity in Mouse Sperm Using Fluorescent Gel Shift Electrophoresis

    PubMed Central

    Choi, Hoseok; Choi, Bomi; Seo, Ju Tae; Lee, Kyung Jin; Gye, Myung Chan; Kim, Young-Pil

    2016-01-01

    Assaying the glycogen synthase kinase-3 (GSK3) activity in sperm is of great importance because it is closely implicated in sperm motility and male infertility. While a number of studies on GSK3 activity have relied on labor-intensive immunoblotting to identify phosphorylated GSK3, here we report the simple and rapid detection of GSK3 activity in mouse sperm using conventional agarose gel electrophoresis and a fluorescent peptide substrate. When a dye-tethered and prephosphorylated (primed) peptide substrate for GSK3 was employed, a distinct mobility shift in the fluorescent bands on the agarose was observed by GSK3-induced phosphorylation of the primed peptides. The GSK3 activity in mouse testes and sperm were quantifiable by gel shift assay with low sample consumption and were significantly correlated with the expression levels of GSK3 and p-GSK3. We suggest that our assay can be used for reliable and rapid detection of GSK3 activity in cells and tissue extracts. PMID:27092510

  6. Rapid Detection of Glycogen Synthase Kinase-3 Activity in Mouse Sperm Using Fluorescent Gel Shift Electrophoresis.

    PubMed

    Choi, Hoseok; Choi, Bomi; Seo, Ju Tae; Lee, Kyung Jin; Gye, Myung Chan; Kim, Young-Pil

    2016-04-16

    Assaying the glycogen synthase kinase-3 (GSK3) activity in sperm is of great importance because it is closely implicated in sperm motility and male infertility. While a number of studies on GSK3 activity have relied on labor-intensive immunoblotting to identify phosphorylated GSK3, here we report the simple and rapid detection of GSK3 activity in mouse sperm using conventional agarose gel electrophoresis and a fluorescent peptide substrate. When a dye-tethered and prephosphorylated (primed) peptide substrate for GSK3 was employed, a distinct mobility shift in the fluorescent bands on the agarose was observed by GSK3-induced phosphorylation of the primed peptides. The GSK3 activity in mouse testes and sperm were quantifiable by gel shift assay with low sample consumption and were significantly correlated with the expression levels of GSK3 and p-GSK3. We suggest that our assay can be used for reliable and rapid detection of GSK3 activity in cells and tissue extracts.

  7. Sex-specific basal and hypoglycemic patterns of in vivo caudal dorsal vagal complex astrocyte glycogen metabolic enzyme protein expression.

    PubMed

    Tamrakar, Pratistha; Shrestha, Prem; Briski, Karen P

    2014-10-24

    Astrocytes contribute to neurometabolic stability through uptake, catabolism, and storage of glucose. These cells maintain the major brain glycogen reservoir, which is a critical fuel supply to neurons during glucose deficiency and increased brain activity. We used a combinatory approach incorporating immunocytochemistry, laser microdissection, and Western blotting to investigate the hypothesis of divergent expression of key enzymes regulating glycogen metabolism and glycolysis during in vivo normo- and/or hypoglycemia in male versus female hindbrain astrocytes. Glycogen synthase (GS) and glycogen phosphorylase (GP) levels were both enhanced in dorsal vagal complex astrocytes from vehicle-injected female versus male controls, with incremental increase in GS exceeding GP. Insulin-induced hypoglycemia (IIH) diminished GS and increased glycogen synthase kinase-3-beta (GSK3β) expression in both sexes, but decreased phosphoprotein phosphatase-1 (PP1) levels only in males. Astrocyte GP content was elevated by IIH in male, but not female rats. Data reveal sex-dependent sensitivity of these enzyme proteins to lactate as caudal hindbrain repletion of this energy substrate fully or incompletely reversed hypoglycemic inhibition of GS and prevented hypoglycemic augmentation of GSK3β and GP in females and males, respectively. Sex dimorphic patterns of glycogen branching and debranching enzyme protein expression were also observed. Levels of the rate-limiting glycolytic enzyme, phosphofructokinase, were unaffected by IIH with or without lactate repletion. Current data demonstrating sex-dependent basal and hypoglycemic patterns of hindbrain astrocyte glycogen metabolic enzyme expression imply that glycogen volume and turnover during glucose sufficiency and shortage may vary accordingly.

  8. Regulation of glycogen synthesis by the laforin-malin complex is modulated by the AMP-activated protein kinase pathway.

    PubMed

    Solaz-Fuster, Maria Carmen; Gimeno-Alcañiz, José Vicente; Ros, Susana; Fernandez-Sanchez, Maria Elena; Garcia-Fojeda, Belen; Criado Garcia, Olga; Vilchez, David; Dominguez, Jorge; Garcia-Rocha, Mar; Sanchez-Piris, Maribel; Aguado, Carmen; Knecht, Erwin; Serratosa, Jose; Guinovart, Joan Josep; Sanz, Pascual; Rodriguez de Córdoba, Santiago

    2008-03-01

    Lafora progressive myoclonus epilepsy (LD) is a fatal autosomal recessive neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies. LD is caused by mutations in two genes, EPM2A and EPM2B, encoding respectively laforin, a dual-specificity protein phosphatase, and malin, an E3 ubiquitin ligase. Previously, we and others have suggested that the interactions between laforin and PTG (a regulatory subunit of type 1 protein phosphatase) and between laforin and malin are critical in the pathogenesis of LD. Here, we show that the laforin-malin complex downregulates PTG-induced glycogen synthesis in FTO2B hepatoma cells through a mechanism involving ubiquitination and degradation of PTG. Furthermore, we demonstrate that the interaction between laforin and malin is a regulated process that is modulated by the AMP-activated protein kinase (AMPK). These findings provide further insights into the critical role of the laforin-malin complex in the control of glycogen metabolism and unravel a novel link between the energy sensor AMPK and glycogen metabolism. These data advance our understanding of the functional role of laforin and malin, which hopefully will facilitate the development of appropriate LD therapies.

  9. Glycogen synthase kinase 3β suppresses polyglutamine aggregation by inhibiting Vaccinia-related kinase 2 activity

    PubMed Central

    Lee, Eunju; Ryu, Hye Guk; Kim, Sangjune; Lee, Dohyun; Jeong, Young-Hun; Kim, Kyong-Tai

    2016-01-01

    Huntington’s disease (HD) is a neurodegenerative disorder caused by an abnormal expansion of polyglutamine repeats in the N-terminal of huntingtin. The amount of aggregate-prone protein is controlled by various mechanisms, including molecular chaperones. Vaccinia-related kinase 2 (VRK2) is known to negatively regulate chaperonin TRiC, and VRK2-facilitated degradation of TRiC increases polyQ protein aggregation, which is involved in HD. We found that VRK2 activity was negatively controlled by glycogen synthase kinase 3β (GSK3β). GSK3β directly bound to VRK2 and inhibited the catalytic activity of VRK2 in a kinase activity-independent manner. Furthermore, GSK3β increased the stability of TRiC and decreased the formation of HttQ103-GFP aggregates by inhibiting VRK2. These results indicate that GSK3β signaling may be a regulatory mechanism of HD progression and suggest targets for further therapeutic trials for HD. PMID:27377031

  10. Rat skeletal muscle glycogen degradation pathways reveal differential association of glycogen-related proteins with glycogen granules.

    PubMed

    Xu, Hongyang; Stapleton, David; Murphy, Robyn M

    2015-06-01

    Glycogenin, glycogen-debranching enzyme (GDE) and glycogen phosphorylase (GP) are important enzymes that contribute to glycogen particle metabolism. In Long-Evans Hooded rat whole muscle homogenates prepared from extensor digitorum longus (EDL, fast-twitch) and soleus (SOL, oxidative, predominantly slow twitch), it was necessary to include α-amylase, which releases glucosyl units from glycogen, to detect glycogenin but not GDE or GP. Up to ∼12 % of intramuscular glycogen pool was broken down using either in vitro electrical stimulation or leaving muscle at room temperature >3 h (delayed, post-mortem). Electrical stimulation did not reveal glycogenin unless α-amylase was added, although in post-mortem muscle ∼50 and ∼30 % of glycogenin in EDL and SOL muscles, respectively, was detected compared to the amount detected with α-amylase treatment. Single muscle fibres were dissected from fresh or post-mortem EDL muscles, mechanically skinned to remove surface membrane and the presence of glycogenin, GDE and GP as freely diffusible proteins (i.e. cytoplasmic localization) compared by Western blotting. Diffusibility of glycogenin (∼20 %) and GP (∼60 %) was not different between muscles, although GDE increased from ∼15 % diffusible in fresh muscle to ∼60 % in post-mortem muscle. Under physiologically relevant circumstances, in rat muscle and within detection limits: (1) The total cellular pool of glycogenin is always associated with glycogen granules, (2) GDE is associated with glycogen granules with over half the total pool associated with the outer tiers of glycogen, (3) GP is only ever weakly associated with glycogen granules and (4) addition of α-amylase is necessary in order to detect glycogenin, but not GDE or GP.

  11. Simultaneous storage and degradation of PHB and glycogen in activated sludge cultures.

    PubMed

    Carta, F; Beun, J J; Van Loosdrecht, M C; Heijnen, J J

    2001-08-01

    Bacteria in activated sludge are subjected to periods of substrate availability and absence of external substrates. The response of bacteria to such dynamic conditions was studied in a 2 L sequencing batch reactor (SBR) by subjecting a mixed microbial population to successive periods of external substrate availability (feast period) and no external substrate availability (famine period). In previous studies, acetate or glucose was used as single substrate leading to the storage of polyhydroxybutyrate or glycogen, respectively. In this study, a mixture of acetate and glucose was used. It appeared that both substrates were consumed simultaneously. The relative contribution of growth and storage processes was in these experiments similar as in the systems fed with a single substrate only. The ratio of substrate uptake over substrate storage was 0.6 Cmol/Cmol for both substrates. The uptake rate of acetate was not influenced by the simultaneous uptake of glucose. The degradation kinetics and rates of the storage compounds were the same as for the systems in which only one compound was stored in the activated sludge. The global performance of the culture grown on mixed substrates could therefore be described as the sum of the conversions observed in cultures fed with the individual substrates.

  12. Disruption of glycogen synthase kinase-3-beta activity leads to abnormalities in physiological measures in mice.

    PubMed

    Ahnaou, A; Drinkenburg, W H I M

    2011-08-01

    Dysregulation of glycogen synthase kinase-3-beta (GSK-3β) signaling pathways is thought to underlie the pathophysiology of mood disorders. In order to demonstrate that the loss of normal GSK-3β activity results in disturbances of physiological measures, we attempted to determine whether sleep-wake architecture, circadian rhythms of core body temperature and activity were altered in transgenic mice overexpressing GSK-3β activity specifically in the brain. Cortical electroencephalographic activity, body temperature (BT) and body locomotor activity (LMA) were continuously monitored using a biopotential telemetry probe. Normal circadian patterns were maintained for different measurements in both genotypes. No differences were found in total time spent asleep and waking over the 24-h recording session. However, transgenic animals overexpressing GSK-3β showed alteration in sleep continuity characterized by an increases in number of non rapid eye movement (NREM) sleep episodes (GSK-3β, 227.2 ± 1.7 vs. WT, 172.6 ± 1.4, p < 0.05) and decreases in mean episode duration (GSK-3β, 3.0 ± 0.1 vs. WT, 4.4 ± 0.2, p < 0.05). Additionally, transgenic animals exhibited marked enhancement of basal LMA and BT levels during the first part of the dark period, under both light-dark and free running dark-dark circadian cycles. Our findings indicate that transgenic mice overexpressing GSK-3β activity exhibit severe fragmentation of sleep-wake cycle during both the light and dark periods, without showing deviancy in total durations of vigilance states. The results strongly suggest that GSK-3β activity is elemental for the maintenance of circadian motor behavior levels required for proper regulation of BT and sleep-wake organization.

  13. Glycogen metabolism protects against metabolic insult to preserve carotid body function during glucose deprivation.

    PubMed

    Holmes, Andrew P; Turner, Philip J; Carter, Paul; Leadbeater, Wendy; Ray, Clare J; Hauton, David; Buckler, Keith J; Kumar, Prem

    2014-10-15

    The view that the carotid body (CB) type I cells are direct physiological sensors of hypoglycaemia is challenged by the finding that the basal sensory neuronal outflow from the whole organ is unchanged in response to low glucose. The reason for this difference in viewpoint and how the whole CB maintains its metabolic integrity when exposed to low glucose is unknown. Here we show that, in the intact superfused rat CB, basal sensory neuronal activity was sustained during glucose deprivation for 29.1 ± 1.2 min, before irreversible failure following a brief period of excitation. Graded increases in the basal discharge induced by reducing the superfusate PO2 led to proportional decreases in the time to the pre-failure excitation during glucose deprivation which was dependent on a complete run-down in glycolysis and a fall in cellular energy status. A similar ability to withstand prolonged glucose deprivation was observed in isolated type I cells. Electron micrographs and immunofluorescence staining of rat CB sections revealed the presence of glycogen granules and the glycogen conversion enzymes glycogen synthase I and glycogen phosphorylase BB, dispersed throughout the type I cell cytoplasm. Furthermore, pharmacological attenuation of glycogenolysis and functional depletion of glycogen both significantly reduced the time to glycolytic run-down by ∼33 and 65%, respectively. These findings suggest that type I cell glycogen metabolism allows for the continuation of glycolysis and the maintenance of CB sensory neuronal output in periods of restricted glucose delivery and this may act as a key protective mechanism for the organ during hypoglycaemia. The ability, or otherwise, to preserve energetic status may thus account for variation in the reported capacity of the CB to sense physiological glucose concentrations and may even underlie its function during pathological states associated with augmented CB discharge.

  14. Efficacy of glycogen synthase kinase-3β targeting against osteosarcoma via activation of β-catenin

    PubMed Central

    Yamamoto, Norio; Nishida, Hideji; Hayashi, Katsuhiro; Kimura, Hiroaki; Takeuchi, Akihiko; Miwa, Shinji; Igarashi, Kentaro; Kato, Takashi; Aoki, Yu; Higuchi, Takashi; Hirose, Mayumi; Hoffman, Robert M; Minamoto, Toshinari; Tsuchiya, Hiroyuki

    2016-01-01

    Development of innovative more effective therapy is required for refractory osteosarcoma patients. We previously established that glycogen synthase kinase-3β (GSK- 3β) is a therapeutic target in various cancer types. In the present study, we explored the therapeutic efficacy of GSK-3β inhibition against osteosarcoma and the underlying molecular mechanisms in an orthotopic mouse model. Expression and phosphorylation of GSK-3β in osteosarcoma and normal osteoblast cell lines was examined, together with efficacy of GSK-3β inhibition on cell survival, proliferation and apoptosis and on the growth of orthotopically-transplanted human osteosarcoma in nude mice. We also investigated changes in expression, phosphorylation and co-transcriptional activity of β-catenin in osteosarcoma cells following GSK-3β inhibition. Expression of the active form of GSK- 3β (tyrosine 216-phosphorylated) was higher in osteosarcoma than osteoblast cells. Inhibition of GSK-3β activity by pharmacological inhibitors or of its expression by RNA interference suppressed proliferation of osteosarcoma cells and induced apoptosis. Treatment with GSK-3β-specific inhibitors attenuated the growth of orthotopic osteosaroma in mice. Inhibition of GSK-3β reduced phosphorylation at GSK- 3β-phospho-acceptor sites in β-catenin and increased β-catenin expression, nuclear localization and co-transcriptional activity. These results suggest the efficacy of GSK-3β inhibitors is associated with activation of β-catenin, a putative tumor suppressor in bone and soft tissue sarcoma and an important component of osteogenesis. Our study thereby demonstrates a critical role for GSK-3β in sustaining survival and proliferation of osteosarcoma cells, and identifies this kinase as a potential therapeutic target against osteosarcoma. PMID:27780915

  15. Decreased glycogen synthase kinase-3 levels and activity contribute to Huntington's disease.

    PubMed

    Fernández-Nogales, Marta; Hernández, Félix; Miguez, Andrés; Alberch, Jordi; Ginés, Silvia; Pérez-Navarro, Esther; Lucas, José J

    2015-09-01

    Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by brain atrophy particularly in striatum leading to personality changes, chorea and dementia. Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase in the crossroad of many signaling pathways that is highly pleiotropic as it phosphorylates more than hundred substrates including structural, metabolic, and signaling proteins. Increased GSK-3 activity is believed to contribute to the pathogenesis of neurodegenerative diseases like Alzheimer's disease and GSK-3 inhibitors have been postulated as therapeutic agents for neurodegeneration. Regarding HD, GSK-3 inhibitors have shown beneficial effects in cell and invertebrate animal models but no evident efficacy in mouse models. Intriguingly, those studies were performed without interrogating GSK-3 level and activity in HD brain. Here we aim to explore the level and also the enzymatic activity of GSK-3 in the striatum and other less affected brain regions of HD patients and of the R6/1 mouse model to then elucidate the possible contribution of its alteration to HD pathogenesis by genetic manipulation in mice. We report a dramatic decrease in GSK-3 levels and activity in striatum and cortex of HD patients with similar results in the mouse model. Correction of the GSK-3 deficit in HD mice, by combining with transgenic mice with conditional GSK-3 expression, resulted in amelioration of their brain atrophy and behavioral motor and learning deficits. Thus, our results demonstrate that decreased brain GSK-3 contributes to HD neurological phenotype and open new therapeutic opportunities based on increasing GSK-3 activity or attenuating the harmful consequences of its decrease.

  16. Substrate specificity of pyrimidine nucleoside phosphorylases of NP-II family probed by X-ray crystallography and molecular modeling

    NASA Astrophysics Data System (ADS)

    Balaev, V. V.; Lashkov, A. A.; Prokofev, I. I.; Gabdulkhakov, A. G.; Seregina, T. A.; Mironov, A. S.; Betzel, C.; Mikhailov, A. M.

    2016-09-01

    Pyrimidine nucleoside phosphorylases, which are widely used in the biotechnological production of nucleosides, have different substrate specificity for pyrimidine nucleosides. An interesting feature of these enzymes is that the three-dimensional structure of thymidine-specific nucleoside phosphorylase is similar to the structure of nonspecific pyrimidine nucleoside phosphorylase. The three-dimensional structures of thymidine phosphorylase from Salmonella typhimurium and nonspecific pyrimidine nucleoside phosphorylase from Bacillus subtilis in complexes with a sulfate anion were determined for the first time by X-ray crystallography. An analysis of the structural differences between these enzymes demonstrated that Lys108, which is involved in the phosphate binding in pyrimidine nucleoside phosphorylase, corresponds to Met111 in thymidine phosphorylases. This difference results in a decrease in the charge on one of the hydroxyl oxygens of the phosphate anion in thymidine phosphorylase and facilitates the catalysis through SN2 nucleophilic substitution. Based on the results of X-ray crystallography, the virtual screening was performed for identifying a potent inhibitor (anticancer agent) of nonspecific pyrimidine nucleoside phosphorylase, which does not bind to thymidine phosphorylase. The molecular dynamics simulation revealed the stable binding of the discovered compound—2-pyrimidin-2-yl-1H-imidazole-4-carboxylic acid—to the active site of pyrimidine nucleoside phosphorylase.

  17. Enhanced glycogen synthase kinase-3β activity mediates podocyte apoptosis under diabetic conditions.

    PubMed

    Paeng, Jisun; Chang, Jae Hyun; Lee, Sun Ha; Nam, Bo Young; Kang, Hye-Young; Kim, Seonghun; Oh, Hyung Jung; Park, Jung Tak; Han, Seung Hyeok; Yoo, Tae-Hyun; Kang, Shin-Wook

    2014-12-01

    Glycogen synthase kinase-3β (GSK-3β) is involved in the pathogenesis of various kidney diseases. This study was undertaken to examine the changes in GSK-3β activity in podocytes under diabetic conditions and to elucidate the functional role of GSK-3β in podocyte apoptosis. In vivo, 32 rats were injected with either diluent (n = 16, C) or with streptozotocin intraperitoneally (n = 16, DM), and 8 rats from each group were treated with 6-bromoindirubin-3'-oxime (BIO) for 3 months. In vitro, immortalized mouse podocytes were exposed to 5.6 mM glucose or 30 mM glucose (HG) with or without 10 μM BIO. Western blot analysis and TUNEL or Hoechst 33342 staining were performed to identify apoptosis. Urinary albumin excretion was significantly higher in DM rats, and this increase was significantly abrogated in DM rats by BIO treatment. The protein expression of Tyr216-phospho-GSK-3β was significantly increased in DM glomeruli and in cultured podocytes exposed to HG. Western blot analysis revealed that the protein expression of Bax and active fragments of caspase-3 were significantly increased, whereas phospho-Akt, β-catenin, and Bcl-2 protein expression were significantly decreased in DM glomeruli and HG-stimulated podocytes. Apoptosis, determined by TUNEL assay and Hoechst 33342 staining, was also significantly increased in podocytes under diabetic conditions. The changes in the expression of apoptosis-related molecules and the increase in the number of apoptotic cells in DM glomeruli as well as in HG-stimulated podocytes were significantly ameliorated by BIO. These findings suggest that enhanced GSK-3β activity within podocytes under diabetic conditions is associated with podocyte loss in diabetic nephropathy.

  18. Role of Maltose Enzymes in Glycogen Synthesis by Escherichia coli▿

    PubMed Central

    Park, Jong-Tae; Shim, Jae-Hoon; Tran, Phuong Lan; Hong, In-Hee; Yong, Hwan-Ung; Oktavina, Ershita Fitria; Nguyen, Hai Dang; Kim, Jung-Wan; Lee, Tae Soo; Park, Sung-Hoon; Boos, Winfried; Park, Kwan-Hwa

    2011-01-01

    Mutants with deletion mutations in the glg and mal gene clusters of Escherichia coli MC4100 were used to gain insight into glycogen and maltodextrin metabolism. Glycogen content, molecular mass, and branch chain distribution were analyzed in the wild type and in ΔmalP (encoding maltodextrin phosphorylase), ΔmalQ (encoding amylomaltase), ΔglgA (encoding glycogen synthase), and ΔglgA ΔmalP derivatives. The wild type showed increasing amounts of glycogen when grown on glucose, maltose, or maltodextrin. When strains were grown on maltose, the glycogen content was 20 times higher in the ΔmalP strain (0.97 mg/mg protein) than in the wild type (0.05 mg/mg protein). When strains were grown on glucose, the ΔmalP strain and the wild type had similar glycogen contents (0.04 mg/mg and 0.03 mg/mg protein, respectively). The ΔmalQ mutant did not grow on maltose but showed wild-type amounts of glycogen when grown on glucose, demonstrating the exclusive function of GlgA for glycogen synthesis in the absence of maltose metabolism. No glycogen was found in the ΔglgA and ΔglgA ΔmalP strains grown on glucose, but substantial amounts (0.18 and 1.0 mg/mg protein, respectively) were found when they were grown on maltodextrin. This demonstrates that the action of MalQ on maltose or maltodextrin can lead to the formation of glycogen and that MalP controls (inhibits) this pathway. In vitro, MalQ in the presence of GlgB (a branching enzyme) was able to form glycogen from maltose or linear maltodextrins. We propose a model of maltodextrin utilization for the formation of glycogen in the absence of glycogen synthase. PMID:21421758

  19. Role of maltose enzymes in glycogen synthesis by Escherichia coli.

    PubMed

    Park, Jong-Tae; Shim, Jae-Hoon; Tran, Phuong Lan; Hong, In-Hee; Yong, Hwan-Ung; Oktavina, Ershita Fitria; Nguyen, Hai Dang; Kim, Jung-Wan; Lee, Tae Soo; Park, Sung-Hoon; Boos, Winfried; Park, Kwan-Hwa

    2011-05-01

    Mutants with deletion mutations in the glg and mal gene clusters of Escherichia coli MC4100 were used to gain insight into glycogen and maltodextrin metabolism. Glycogen content, molecular mass, and branch chain distribution were analyzed in the wild type and in ΔmalP (encoding maltodextrin phosphorylase), ΔmalQ (encoding amylomaltase), ΔglgA (encoding glycogen synthase), and ΔglgA ΔmalP derivatives. The wild type showed increasing amounts of glycogen when grown on glucose, maltose, or maltodextrin. When strains were grown on maltose, the glycogen content was 20 times higher in the ΔmalP strain (0.97 mg/mg protein) than in the wild type (0.05 mg/mg protein). When strains were grown on glucose, the ΔmalP strain and the wild type had similar glycogen contents (0.04 mg/mg and 0.03 mg/mg protein, respectively). The ΔmalQ mutant did not grow on maltose but showed wild-type amounts of glycogen when grown on glucose, demonstrating the exclusive function of GlgA for glycogen synthesis in the absence of maltose metabolism. No glycogen was found in the ΔglgA and ΔglgA ΔmalP strains grown on glucose, but substantial amounts (0.18 and 1.0 mg/mg protein, respectively) were found when they were grown on maltodextrin. This demonstrates that the action of MalQ on maltose or maltodextrin can lead to the formation of glycogen and that MalP controls (inhibits) this pathway. In vitro, MalQ in the presence of GlgB (a branching enzyme) was able to form glycogen from maltose or linear maltodextrins. We propose a model of maltodextrin utilization for the formation of glycogen in the absence of glycogen synthase.

  20. Biomarker for Glycogen Storage Diseases

    ClinicalTrials.gov

    2016-08-25

    Fructose Metabolism, Inborn Errors; Glycogen Storage Disease; Glycogen Storage Disease Type I; Glycogen Storage Disease Type II; Glycogen Storage Disease Type III; Glycogen Storage Disease Type IV; Glycogen Storage Disease Type V; Glycogen Storage Disease Type VI; Glycogen Storage Disease Type VII; Glycogen Storage Disease Type VIII

  1. Phosphorylation of inhibitor-2 and activation of MgATP-dependent protein phosphatase by rat skeletal muscle glycogen synthase kinase

    SciTech Connect

    Hegazy, M.G.; Reimann, E.M.; Thysseril, T.J.; Schlender, K.K.

    1986-05-01

    Rat skeletal muscle contains a glycogen synthase kinase (GSK-M) which is not stimulated by Ca/sup 2 +/ or cAMP. This kinase has an apparent Mr of 62,000 and uses ATP but not GTP as a phosphoryl donor. GSK-M phosphorylated glycogen synthase at sites 2 and 3. It phosphorylated ATP-citrate lyase and activated MgATP-dependent phosphatase in the presence of ATP but not GTP. As expected, the kinase also phosphorylated phosphatase inhibitor 2 (I-2). Phosphatase incorporation reached approximately 0.3 mol/mol of I-2. Phosphopeptide maps were obtained by digesting /sup 32/P-labeled I-2 with trypsin and separating the peptides by reversed phase HPLC. Two partially separated /sup 32/P-labeled peaks were obtained when I-2 was phosphorylated with either GSK-M or glycogen synthase kinase 3 (GSK-3) and these peptides were different from those obtained when I-2 was phosphorylated with the catalytic subunit of cAMP-dependent protein kinase (CSU) or casein kinase II (CK-II). When I-2 was phosphorylated with GSK-M or GSK-3 and cleaved by CNBr, a single radioactive peak was obtained. Phosphoamino acid analysis showed that I-2 was phosphorylated by GSK-M or GSK-3 predominately in Thr whereas CSU and CK-II phosphorylated I-2 exclusively in Ser. These results indicate that GSK-M is similar to GSK-3 and to ATP-citrate lyase kinase. However, it appears to differ in Mr from ATP-citrate lyase kinase and it differs from GSK-3 in that it phosphorylates glycogen synthase at site 2 and it does not use GTP as a phosphoryl donor.

  2. Long-term effects of rapamycin treatment on insulin mediated phosphorylation of Akt/PKB and glycogen synthase activity

    SciTech Connect

    Varma, Shailly; Shrivastav, Anuraag; Changela, Sheena; Khandelwal, Ramji L.

    2008-04-01

    Protein kinase B (Akt/PKB) is a Ser/Thr kinase that is involved in the regulation of cell proliferation/survival through mammalian target of rapamycin (mTOR) and the regulation of glycogen metabolism through glycogen synthase kinase 3{beta} (GSK-3{beta}) and glycogen synthase (GS). Rapamycin is an inhibitor of mTOR. The objective of this study was to investigate the effects of rapamycin pretreatment on the insulin mediated phosphorylation of Akt/PKB phosphorylation and GS activity in parental HepG2 and HepG2 cells with overexpression of constitutively active Akt1/PKB-{alpha} (HepG2-CA-Akt/PKB). Rapamycin pretreatment resulted in a decrease (20-30%) in the insulin mediated phosphorylation of Akt1 (Ser 473) in parental HepG2 cells but showed an upregulation of phosphorylation in HepG2-CA-Akt/PKB cells. Rictor levels were decreased (20-50%) in parental HepG2 cells but were not significantly altered in the HepG2-CA-Akt/PKB cells. Furthermore, rictor knockdown decreased the phosphorylation of Akt (Ser 473) by 40-60% upon rapamycin pretreatment. GS activity followed similar trends as that of phosphorylated Akt and so with rictor levels in these cells pretreated with rapamycin; parental HepG2 cells showed a decrease in GS activity, whereas as HepG2-CA-Akt/PKB cells showed an increase in GS activity. The changes in the levels of phosphorylated Akt/PKB (Ser 473) correlated with GS and protein phoshatase-1 activity.

  3. A functional glycogen biosynthesis pathway in Lactobacillus acidophilus: expression and analysis of the glg operon.

    PubMed

    Goh, Yong Jun; Klaenhammer, Todd R

    2013-09-01

    Glycogen metabolism contributes to energy storage and various physiological functions in some prokaryotes, including colonization persistence. A role for glycogen metabolism is proposed on the survival and fitness of Lactobacillus acidophilus, a probiotic microbe, in the human gastrointestinal environment. L. acidophilus NCFM possesses a glycogen metabolism (glg) operon consisting of glgBCDAP-amy-pgm genes. Expression of the glg operon and glycogen accumulation were carbon source- and growth phase-dependent, and were repressed by glucose. The highest intracellular glycogen content was observed in early log-phase cells grown on trehalose, which was followed by a drastic decrease of glycogen content prior to entering stationary phase. In raffinose-grown cells, however, glycogen accumulation gradually declined following early log phase and was maintained at stable levels throughout stationary phase. Raffinose also induced an overall higher temporal glg expression throughout growth compared with trehalose. Isogenic ΔglgA (glycogen synthase) and ΔglgB (glycogen-branching enzyme) mutants are glycogen-deficient and exhibited growth defects on raffinose. The latter observation suggests a reciprocal relationship between glycogen synthesis and raffinose metabolism. Deletion of glgB or glgP (glycogen phosphorylase) resulted in defective growth and increased bile sensitivity. The data indicate that glycogen metabolism is involved in growth maintenance, bile tolerance and complex carbohydrate utilization in L. acidophilus.

  4. Polymer phosphorylases: clues to the emergence of non-replicative and replicative polymers.

    PubMed

    Freire, Miguel Angel

    2011-12-01

    Polymer formation is arguably one of the essential factors that allowed the emergence, stabilisation and spread of life on Earth. Consequently, studies concerning biopolymers could shed light on the origins of life itself. Of particular interest are RNA and polysaccharide polymers, the archetypes of the contrasting proposed evolutionary scenarios and their respective polymerases. Nucleic acid polymerases were hypothesised, before their discovery, to have a functional similarity with glycogen phosphorylase. Further identification and characterisation of nucleic acid polymerases; particularly of polynucleotide phosphorylase (PNPase), provided experimental evidence for the initial premise. Once discovered, frequent similarities were found between PNPase and glycogen phosphorylase, in terms of catalytic features and biochemical properties. As a result, PNPase was seen as a model of primitive polymerase and used in laboratory precellular systems. Paradoxically, however, these similarities were not sufficient as an argument in favour of an ancestral common polymerisation mechanism prior to polysaccharides and polyribonucleotides. Here we present an overview of the common features shared by polymer phosphorylases, with new proposals for the emergence of polysaccharide and RNA polymers.

  5. 6-Methylpurine derived sugar modified nucleosides: Synthesis and in vivo antitumor activity in D54 tumor expressing M64V-Escherichia coli purine nucleoside phosphorylase.

    PubMed

    Hassan, Abdalla E A; Abou-Elkhair, Reham A I; Parker, William B; Allan, Paula W; Secrist, John A

    2016-01-27

    Impressive antitumor activity has been observed with fludarabine phosphate against tumors that express Escherichia coli purine nucleoside phosphorylase (PNP) due to the liberation of 2-fluoroadenine in the tumor tissue. 6-Methylpurine (MeP) is another cytotoxic adenine analog that does not exhibit selectivity when administered systemically, and could be very useful in a gene therapy approach to cancer treatment involving E. coli PNP. The prototype MeP releasing prodrug 9-(2-deoxy-β-d-ribofuranosyl)-6-methylpurine (1) [MeP-dR] has demonstrated good activity against tumors expressing E. coli PNP, but its antitumor activity is limited due to toxicity resulting from the generation of MeP from gut bacteria. Therefore, we have embarked on a medicinal chemistry program to identify a combination of non-toxic MeP prodrugs and non-human adenosine glycosidic bond cleaving enzymes. The two best MeP-based substrates with M64V-E coli PNP, a mutant which was engineered to tolerate modification at the 5'-position of adenosine and its analogs, were 9-(6-deoxy-α-l-talofuranosyl)-6-methylpurine (3) [methyl(talo)-MeP-R] and 9-(α-l-lyxofuranosyl)6-methylpurine (4) [lyxo-MeP-R]. The detailed synthesis methyl(talo)-MeP-R and lyxo-MeP-R, and the evaluation of their substrate activity with 4 enzymes not normally associated with cancer patients is described. In addition, we have determined the intraperitoneal pharmacokinetic (ip-PK) properties of methyl(talo)-MeP-R and have determined its in vivo bystander activity in mice bearing D54 tumors that express M64V PNP. The observed good in vivo bystander activity of [methyl(talo)-MeP-R/M64V-E coli PNP combination suggests that these agents could be useful for the treatment of cancer.

  6. The Crystal Structure of Streptococcus pyogenes Uridine Phosphorylase Reveals a Distinct Subfamily of Nucleoside Phosphorylases

    SciTech Connect

    Tran, Timothy H.; Christoffersen, S.; Allan, Paula W.; Parker, William B.; Piskur, Jure; Serra, I.; Terreni, M.; Ealick, Steven E.

    2011-09-20

    Uridine phosphorylase (UP), a key enzyme in the pyrimidine salvage pathway, catalyzes the reversible phosphorolysis of uridine or 2'-deoxyuridine to uracil and ribose 1-phosphate or 2'-deoxyribose 1-phosphate. This enzyme belongs to the nucleoside phosphorylase I superfamily whose members show diverse specificity for nucleoside substrates. Phylogenetic analysis shows Streptococcus pyogenes uridine phosphorylase (SpUP) is found in a distinct branch of the pyrimidine subfamily of nucleoside phosphorylases. To further characterize SpUP, we determined the crystal structure in complex with the products, ribose 1-phosphate and uracil, at 1.8 {angstrom} resolution. Like Escherichia coli UP (EcUP), the biological unit of SpUP is a hexamer with an ?/? monomeric fold. A novel feature of the active site is the presence of His169, which structurally aligns with Arg168 of the EcUP structure. A second active site residue, Lys162, is not present in previously determined UP structures and interacts with O2 of uracil. Biochemical studies of wild-type SpUP showed that its substrate specificity is similar to that of EcUP, while EcUP is {approx}7-fold more efficient than SpUP. Biochemical studies of SpUP mutants showed that mutations of His169 reduced activity, while mutation of Lys162 abolished all activity, suggesting that the negative charge in the transition state resides mostly on uracil O2. This is in contrast to EcUP for which transition state stabilization occurs mostly at O4.

  7. Purification and characterization of the maize amyloplast stromal 112-kDa starch phosphorylase.

    PubMed

    Mu, H H; Yu, Y; Wasserman, B P; Carman, G M

    2001-04-01

    A plastidic 112-kDa starch phosphorylase (SP) has been identified in the amyloplast stromal fraction of maize. This starch phosphorylase was purified 310-fold from maize endosperm and characterized with respect to its enzymological and kinetic properties. The purification procedure included ammonium sulfate fractionation, Sephacryl 300 HR chromatography, affinity starch adsorption, Q-Sepharose, and Mono Q chromatography. The procedure resulted in a nearly homogeneous enzyme preparation as determined by native and SDS-polyacrylamide gel electrophoresis. Anti-SP antibodies recognized the purified 112-kDa SP enzyme and N-terminal amino acid sequence analysis confirmed that the purified enzyme is the amyloplast stromal 112-kDa SP. Analysis of the purified enzyme by Superose 6 gel filtration chromatography indicated that the native enzyme consisted of two identical subunits. The pH optimum for the enzyme was 6.0 in the synthetic direction and 5.5 in the phosphorolytic direction. SP activity was inhibited by thioreactive agents, diethyl pyrocarbonate, phenylglyoxal, and ADP-glucose. The activation energies for the synthetic and phosphorolytic reactions were 11.1 and 16.9 kcal/mol, respectively, and the enzyme was thermally labile above 50 degrees C. Results of kinetic experiments indicated that the enzyme catalyzes its reaction via a sequential Bi Bi mechanism. The Km value for amylopectin was eight-fold lower than that of glycogen. A kinetic analysis indicated that the phosphorolytic reaction was favored over the synthetic reaction when malto-oligosaccharides (4 to 7 units) were used as substrates. The specificity constants (Vmax/Km) of the enzyme measured in either the synthetic or the phosphorolytic directions increased with increasing chain length.

  8. On the phosphorylase activity of GH3 enzymes: A β-N-acetylglucosaminidase from Herbaspirillum seropedicae SmR1 and a glucosidase from Saccharopolyspora erythraea.

    PubMed

    Ducatti, Diogo R B; Carroll, Madison A; Jakeman, David L

    2016-11-29

    A phosphorolytic activity has been reported for beta-N-acetylglucosaminidases from glycoside hydrolase family 3 (GH3) giving an interesting explanation for an unusual histidine as catalytic acid/base residue and suggesting that members from this family may be phosphorylases [J. Biol. Chem. 2015, 290, 4887]. Here, we describe the characterization of Hsero1941, a GH3 beta-N-acetylglucosaminidase from the endophytic nitrogen-fixing bacterium Herbaspirillum seropedicae SmR1. The enzyme has significantly higher activity against pNP-beta-D-GlcNAcp (Km = 0.24 mM, kcat = 1.2 s(-1), kcat/Km = 5.0 mM(-1)s(-1)) than pNP-beta-D-Glcp (Km = 33 mM, kcat = 3.3 × 10(-3) s(-1), kcat/Km = 9 × 10(-4) mM(-1)s(-1)). The presence of phosphate failed to significantly modify the kinetic parameters of the reaction. The enzyme showed a broad aglycone site specificity, being able to hydrolyze sugar phosphates beta-D-GlcNAc 1P and beta-D-Glc 1P, albeit at a fraction of the rate of hydrolysis of aryl glycosides. GH3 beta-glucosidase EryBI, that does not have a histidine as the general acid/base residue, also hydrolyzed beta-D-Glc 1P, at comparable rates to Hsero1941. These data indicate that Hsero1941 functions primarily as a hydrolase and that phosphorolytic activity is likely adventitious. The prevalence of histidine as a general acid/base residue is not predictive, nor correlative, with GH3 beta-N-acetylglucosaminidases having phosphorolytic activity.

  9. Mass Spectrometry Reveals Differences in Stability and Subunit Interactions between Activated and Nonactivated Conformers of the (αβγδ)4 Phosphorylase Kinase Complex*

    PubMed Central

    Lane, Laura A.; Nadeau, Owen W.; Carlson, Gerald M.; Robinson, Carol V.

    2012-01-01

    Phosphorylase kinase (PhK), a 1.3 MDa enzyme complex that regulates glycogenolysis, is composed of four copies each of four distinct subunits (α, β, γ, and δ). The catalytic protein kinase subunit within this complex is γ, and its activity is regulated by the three remaining subunits, which are targeted by allosteric activators from neuronal, metabolic, and hormonal signaling pathways. The regulation of activity of the PhK complex from skeletal muscle has been studied extensively; however, considerably less is known about the interactions among its subunits, particularly within the non-activated versus activated forms of the complex. Here, nanoelectrospray mass spectrometry and partial denaturation were used to disrupt PhK, and subunit dissociation patterns of non-activated and phospho-activated (autophosphorylation) conformers were compared. In so doing, we have established a network of subunit contacts that complements and extends prior evidence of subunit interactions obtained from chemical crosslinking, and these subunit interactions have been modeled for both conformers within the context of a known three-dimensional structure of PhK solved by cryoelectron microscopy. Our analyses show that the network of contacts among subunits differs significantly between the nonactivated and phospho-activated conformers of PhK, with the latter revealing new interprotomeric contact patterns for the β subunit, the predominant subunit responsible for PhK's activation by phosphorylation. Partial disruption of the phosphorylated conformer yields several novel subcomplexes containing multiple β subunits, arguing for their self-association within the activated complex. Evidence for the theoretical αβγδ protomeric subcomplex, which has been sought but not previously observed, was also derived from the phospho-activated complex. In addition to changes in subunit interaction patterns upon phospho-activation, mass spectrometry revealed a large change in the overall

  10. Modified 5-fluorouracil: Uridine phosphorylase inhibitor

    NASA Astrophysics Data System (ADS)

    Lashkov, A. A.; Shchekotikhin, A. A.; Shtil, A. A.; Sotnichenko, S. E.; Mikhailov, A. M.

    2016-09-01

    5-Fluorouracil (5-FU) is a medication widely used in chemotherapy to treat various types of cancer. Being a substrate for the reverse reaction catalyzed by uridine phosphorylase (UPase), 5-FU serves as a promising prototype molecule (molecular scaffold) for the design of a selective UPase inhibitor that enhances the antitumor activity of 5-FU and exhibits intrinsic cytostatic effects on cancer cells. The chemical formula of the new compound, which binds to the uracil-binding site and, in the presence of a phosphate anion, to the phosphate-binding site of UPase, is proposed and investigated by molecular simulation methods.

  11. Single fiber analyses of glycogen-related proteins reveal their differential association with glycogen in rat skeletal muscle.

    PubMed

    Murphy, Robyn M; Xu, Hongyang; Latchman, Heidy; Larkins, Noni T; Gooley, Paul R; Stapleton, David I

    2012-12-01

    To understand how glycogen affects skeletal muscle physiology, we examined enzymes essential for muscle glycogen synthesis and degradation using single fibers from quiescent and stimulated rat skeletal muscle. Presenting a shift in paradigm, we show these proteins are differentially associated with glycogen granules. Protein diffusibility and/or abundance of glycogenin, glycogen branching enzyme (GBE), debranching enzyme (GDE), phosphorylase (GP), and synthase (GS) were examined in fibers isolated from rat fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (SOL) muscle. GDE and GP proteins were more abundant (~10- to 100-fold) in fibers from EDL compared with SOL muscle. GS and glycogenin proteins were similar between muscles while GBE had an approximately fourfold greater abundance in SOL muscle. Mechanically skinned fibers exposed to physiological buffer for 10 min showed ~70% total pools of GBE and GP were diffusible (nonbound), whereas GDE and GS were considerably less diffusible. Intense in vitro stimulation, sufficient to elicit a ~50% decrease in intracellular glycogen, increased diffusibility of GDE, GP, and GS (~15-60%) and decreased GBE diffusibility (~20%). Amylase treatment, which breaks α-1,4 linkages of glycogen, indicated differential diffusibilities and hence glycogen associations of GDE and GS. Membrane solubilization (1% Triton-X-100) allowed a small additional amount of GDE and GS to diffuse from fibers, suggesting the majority of nonglycogen-associated GDE/GS is associated with myofibrillar/contractile network of muscle rather than membranes. Given differences in enzymes required for glycogen metabolism, the current findings suggest glycogen particles have fiber-type-dependent structures. The greater catabolic potential of glycogen breakdown in fast-twitch fibers may account for different contraction induced rates of glycogen utilization.

  12. Evidence for the location of the allosteric activation switch in the multisubunit phosphorylase kinase complex from mass spectrometric identification of chemically crosslinked peptides.

    PubMed

    Nadeau, Owen W; Anderson, David W; Yang, Qing; Artigues, Antonio; Paschall, Justin E; Wyckoff, Gerald J; McClintock, Jennifer L; Carlson, Gerald M

    2007-02-02

    Phosphorylase kinase (PhK), an (alphabetagammadelta)(4) complex, regulates glycogenolysis. Its activity, catalyzed by the gamma subunit, is tightly controlled by phosphorylation and activators acting through allosteric sites on its regulatory alpha, beta and delta subunits. Activation by phosphorylation is predominantly mediated by the regulatory beta subunit, which undergoes a conformational change that is structurally linked with the gamma subunit and that is characterized by the ability of a short chemical crosslinker to form beta-beta dimers. To determine potential regions of interaction of the beta and gamma subunits, we have used chemical crosslinking and two-hybrid screening. The beta and gamma subunits were crosslinked to each other in phosphorylated PhK, and crosslinked peptides from digests were identified by Fourier transform mass spectrometry, beginning with a search engine developed "in house" that generates a hypothetical list of crosslinked peptides. A conjugate between beta and gamma that was verified by MS/MS corresponded to crosslinking between K303 in the C-terminal regulatory domain of gamma (gammaCRD) and R18 in the N-terminal regulatory region of beta (beta1-31), which contains the phosphorylatable serines 11 and 26. A synthetic peptide corresponding to residues 1-22 of beta inhibited the crosslinking between beta and gamma, and was itself crosslinked to K303 of gamma. In two-hybrid screening, the beta1-31 region controlled beta subunit self-interactions, in that they were favored by truncation of this region or by mutation of the phosphorylatable serines 11 and 26, thus providing structural evidence for a phosphorylation-dependent subunit communication network in the PhK complex involving at least these two regulatory regions of the beta and gamma subunits. The sum of our results considered together with previous findings implicates the gammaCRD as being an allosteric activation switch in PhK that interacts with all three of the enzyme

  13. [Use of properties and regulation peculiarities of enzymes of glycogenolysis in fish skeletal muscle depending on peculiarities of motor activity of species].

    PubMed

    Serebrenikova, T P; Nesterov, V P

    2008-01-01

    Levels of activity, properties, and peculiarities of activation of glycogen phosphorylase (GP; EC 2.4.1.1) and glycogen phosphorylase kinase (GPK; EC 2.7.1.38) were studied in the white skeletal muscle of fish differing in motor behavior. No differences in the GP and GPK activity levels were revealed in laskir Diplodus annularis (L.), horse mackerel Trachurus mediterraneus ponticus, salmon Salmo trutta morphario, scorpena Scorpaena porcus, Scophtalnus maeoticus, and carp Cyprinus carpio; however, properties of the isolated enzymes and peculiarities of formation of their activated forms during swimming in a hydrodynamic tube are determined by functional peculiarities of the muscle tissue and are associated with the motor activity character of the species. In fish capable for the spurt type of swimming (scorpena, salmon) the more rapid ion regulation plays the predominant role. In other species, the glycogenolysis hormonal regulation leading to a change of the GPK activity index has been found.

  14. Microwave-assisted synthesis of C-8 aryl and heteroaryl inosines and determination of their inhibitory activities against Plasmodium falciparum purine nucleoside phosphorylase.

    PubMed

    Gigante, Alba; Priego, Eva-María; Sánchez-Carrasco, Paula; Ruiz-Pérez, Luis Miguel; Vande Voorde, Johan; Camarasa, María-José; Balzarini, Jan; González-Pacanowska, Dolores; Pérez-Pérez, María-Jesús

    2014-07-23

    8-Arylinosines have been scarcely studied for therapeutic purposes, probably due to difficulties in their synthesis. The recently described direct arylation reaction at position 8 of purine nucleosides has been employed to synthesize a series of 8-aryl and 8-pyridylinosines. These compounds have been studied for hydrolytic stability and subjected to biological evaluation. Three compounds have shown a pronounced specific inhibition of Plasmodium falciparum-encoded purine nucleoside phosphorylase, an important target for antimalarial chemotherapy.

  15. Multiple Glycogen-binding Sites in Eukaryotic Glycogen Synthase Are Required for High Catalytic Efficiency toward Glycogen

    SciTech Connect

    Baskaran, Sulochanadevi; Chikwana, Vimbai M.; Contreras, Christopher J.; Davis, Keri D.; Wilson, Wayne A.; DePaoli-Roach, Anna A.; Roach, Peter J.; Hurley, Thomas D.

    2012-12-10

    Glycogen synthase is a rate-limiting enzyme in the biosynthesis of glycogen and has an essential role in glucose homeostasis. The three-dimensional structures of yeast glycogen synthase (Gsy2p) complexed with maltooctaose identified four conserved maltodextrin-binding sites distributed across the surface of the enzyme. Site-1 is positioned on the N-terminal domain, site-2 and site-3 are present on the C-terminal domain, and site-4 is located in an interdomain cleft adjacent to the active site. Mutation of these surface sites decreased glycogen binding and catalytic efficiency toward glycogen. Mutations within site-1 and site-2 reduced the V{sub max}/S{sub 0.5} for glycogen by 40- and 70-fold, respectively. Combined mutation of site-1 and site-2 decreased the V{sub max}/S{sub 0.5} for glycogen by >3000-fold. Consistent with the in vitro data, glycogen accumulation in glycogen synthase-deficient yeast cells ({Delta}gsy1-gsy2) transformed with the site-1, site-2, combined site-1/site-2, or site-4 mutant form of Gsy2p was decreased by up to 40-fold. In contrast to the glycogen results, the ability to utilize maltooctaose as an in vitro substrate was unaffected in the site-2 mutant, moderately affected in the site-1 mutant, and almost completely abolished in the site-4 mutant. These data show that the ability to utilize maltooctaose as a substrate can be independent of the ability to utilize glycogen. Our data support the hypothesis that site-1 and site-2 provide a 'toehold mechanism,' keeping glycogen synthase tightly associated with the glycogen particle, whereas site-4 is more closely associated with positioning of the nonreducing end during catalysis.

  16. Nicotinamide riboside phosphorylase from beef liver: purification and characterization.

    PubMed

    Imai, T; Anderson, B M

    1987-04-01

    Nicotinamide riboside phosphorylase (NR phosphorylase) from beef liver has been purified to apparent homogeneity at 300-fold purification with a 35% yield. Kinetic constants for the enzyme-catalyzed phosphorolysis were as follows Knicotinamide riboside, 2.5 +/- 0.4 mM; Kinorganic phosphate, 0.50 +/- 0.12 mM; Vmax, 410 +/- 30 X 10(-6) mol min-1 mg protein-1, respectively. The molecular weights of the native enzyme and subunit structure were determined to be 131,000 and 32,000, respectively, suggesting the beef liver NR phosphorylase to be tetrameric in structure and consistent with the presence of identical subunits. The amino acid composition was shown to be very similar to that reported for human erythrocyte purine-nucleoside phosphorylase but differing considerably from that found for rat liver purine-nucleoside phosphorylase. In addition to catalytic activity with nicotinamide riboside, the beef liver enzyme catalyzed a phosphorolytic reaction with inosine and guanosine exhibiting activity ratios, nicotinamide riboside:inosine: guanosine of 1.00:0.35:0.29, respectively. These ratios of activity remained constant throughout purification of the beef liver enzyme and no separation of these activities was detected. Phosphorolysis of nicotinamide riboside was inhibited competitively by inosine (Ki = 75 microM) and guanosine (Ki = 75 microM). Identical rates of thermal denaturation of the beef liver enzyme were observed when determined for the phosphorolysis of either nicotinamide riboside or inosine. These observations coupled with studies of pH and specific buffer effects indicate the phosphorolysis of nicotinamide riboside, inosine, and guanosine to be catalyzed by the same enzyme.

  17. Induction of nucleoside phosphorylase in Enterobacter aerogenes and enzymatic synthesis of adenine arabinoside.

    PubMed

    Wei, Xiao-Kun; Ding, Qing-Bao; Zhang, Lu; Guo, Yong-Li; Ou, Lin; Wang, Chang-Lu

    2008-07-01

    Nucleoside phosphorylases (NPases) were found to be induced in Enterobacter aerogenes DGO-04, and cytidine and cytidine 5'-monophosphate (CMP) were the best inducers. Five mmol/L to fifteen mmol/L cytidine or CMP could distinctly increase the activities of purine nucleoside phosphorylase (PNPase), uridine phosphorylase (UPase) and thymidine phosphorylase (TPase) when they were added into medium from 0 to 8 h. In the process of enzymatic synthesis of adenine arabinoside from adenine and uracil arabinoside with wet cells of Enterobacter aerogenes DGO-04 induced by cytidine or CMP, the reaction time could be shortened from 36 to 6 h. After enzymatic reaction the activity of NPase in the cells induced remained higher than that in the cells uninduced.

  18. Structural basis for the transglycosylase activity of a GH57-type glycogen branching enzyme from Pyrococcus horikoshii.

    PubMed

    Na, Soohui; Park, Minjeong; Jo, Inseong; Cha, Jaeho; Ha, Nam-Chul

    2017-03-18

    Glycogen branching enzyme (GBE) catalyzes the formation of α-1,6-branching points during glycogenesis by cleaving α-1,4 bonds and making new α-1,6 bonds. Most GBEs belong to the glycoside hydrolase 13 family (GH13), but new GBEs in the GH57 family have been isolated from Archaea. Here, we determined the crystal structure of a GH57 GBE from the hyperthermophilic archaeon Pyrococcus horikoshii (PhGBE) at a resolution of 2.3 Å. PhGBE exhibits both α-1,6-branching activity and endo-α-1,4 hydrolytic activity. PhGBE has a central (β/α)7-barrel domain that contains an embedded helix domain and an α-helix-rich C-terminal domain. The active-site cleft is located at the interface of the central and C-terminal domains. Amino acid substitution at Trp22, which is separate from the catalytic nucleophilic residue, abolished both enzymatic activities, indicating that Trp22 might be responsible for substrate recognition. We also observed that shortening of the flexible loop near the catalytic residue changed branched chain lengths of the reaction products with increased hydrolytic activity. Taken together, our findings propose a molecular mechanism for how GH57 GBEs exhibit the two activities and where the substrate binds the enzyme.

  19. Wound healing activity and docking of glycogen-synthase-kinase-3-beta-protein with isolated triterpenoid lupeol in rats.

    PubMed

    Harish, B G; Krishna, V; Santosh Kumar, H S; Khadeer Ahamed, B M; Sharath, R; Kumara Swamy, H M

    2008-09-01

    A triterpene compound lupeol isolated from petroleum ether extract of leaves of Celastrus paniculatus was screened for wound healing activity (8 mg/ml of 0.2% sodium alginate gel) by excision, incision and dead space wound models on Swiss Albino rats (175-225 g). In lupeol treated groups wound healing activity was more significant (17.83+/-0.48) than the standard skin ointment nitrofurazone (18.33+/-0.42). Epithelialization of the incision wound was faster with a high rate of wound contraction (571.50+/-5.07) as compared with the control group. In dead space wound model also the weight of the granulation tissue of the lupeol treated animal was increased indicating increase of collagenation and absence of monocytes. The comparative docking of isolated lupeol molecule and standard drug nitrofurazone to glycogen synthase kinase 3-beta protein by Wnt signaling pathway also supported the wound healing property of lupeol. The activation domain of GSK3-beta consisted of Tyr216, with residues Asn64, Gly65, Ser66, Phe67, Gly68, Val70, Lys85, Leu132, Val135, Asp181 in the active pocket docked with lupeol at the torsional degree of freedom 0.5 units with Lamarckian genetic algorithm showed the inhibition constant of 1.38 x 10(-7). The inhibition constant of nitrofurazone was only 1.35 x 10(-4).

  20. PfIRR Interacts with HrIGF-I and Activates the MAP-kinase and PI3-kinase Signaling Pathways to Regulate Glycogen Metabolism in Pinctada fucata

    PubMed Central

    Shi, Yu; He, Mao-xian

    2016-01-01

    The insulin-induced mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways are major intracellular signaling modules and conserved among eukaryotes that are known to regulate diverse cellular processes. However, they have not been investigated in the mollusk species Pinctada fucata. Here, we demonstrate that insulin-related peptide receptor of P. fucata (pfIRR) interacts with human recombinant insulin-like growth factor I (hrIGF-I), and stimulates the MAPK and PI3K signaling pathways in P. fucata oocytes. We also show that inhibition of pfIRR by the inhibitor PQ401 significantly attenuates the basal and hrIGF-I-induced phosphorylation of MAPK and PI3K/Akt at amino acid residues threonine 308 and serine 473. Furthermore, our experiments show that there is cross-talk between the MAPK and PI3K/Akt pathways, in which MAPK kinase positively regulates the PI3K pathway, and PI3K positively regulates the MAPK cascade. Intramuscular injection of hrIGF-I stimulates the PI3K and MAPK pathways to increase the expression of pfirr, protein phosphatase 1, glucokinase, and the phosphorylation of glycogen synthase, decreases the mRNA expression of glycogen synthase kinase-3 beta, decreases glucose levels in hemocytes, and increases glycogen levels in digestive glands. These results suggest that the MAPK and PI3K pathways in P. fucata transmit the hrIGF-I signal to regulate glycogen metabolism. PMID:26911653

  1. Fructose effect to enhance liver glycogen deposition is due to inhibition of glycogenolysis

    SciTech Connect

    Youn, J.; Kaslow, H.; Bergman, R.

    1987-05-01

    The effect of fructose on glycogen degradation was examined by measuring flux of (/sup 14/C) from prelabeled glycogen in perfused rat livers. During 2 h refeeding of fasted rats hepatic glycogen was labeled by injection of (U /sup 14/C) galactose (0.1 mg and 0.02 ..mu..Ci/g of body weight). Refed livers were perfused for 30 min with glucose only (10 mM) and for 60 min with glucose (10 mM) without (n=5) or with fructose (1, 2, 10 mM; n=5 for each). With fructose, label production immediately declined and remained suppressed through the end of perfusion (P < 0.05). Suppression was dose-dependent: steady state label production was suppressed 45, 64, and 72% by 1, 2, and 10 mM fructose (P < 0.0001), without significant changes in glycogen synthase or phosphorylase. These results suggest the existence of allosteric inhibition of phosphorylase in the presence of fructose. Fructose 1-phosphate (F1P) accumulated in proportion to fructose (0.11 +/- 0.01 without fructose, 0.86 +/- 0.03, 1.81 +/- 0.18, and 8.23 +/- 0.6 ..mu..moles/g of liver with 1, 2, and 10 mM fructose. Maximum inhibition of phosphorylase was 82%; FIP concentration for half inhibition was 0.57 ..mu..moles/g of liver, well within the concentration of F1P attained in refeeding. Fructose enhances net glycogen synthesis in liver by suppressing glycogenolysis and the suppression is presumably caused by allosteric inhibition of phosphorylase by F1P.

  2. Elevated glycogen synthase kinase-3 activity in Fragile X mice: Key metabolic regulator with evidence for treatment potential

    PubMed Central

    Min, Wenzhong William; Yuskaitis, Christopher J.; Yan, Qijiang; Sikorski, Christopher; Chen, Shengqiang; Jope, Richard S.; Bauchwitz, Robert P.

    2009-01-01

    Significant advances have been made in understanding the underlying defects of and developing potential treatments for Fragile X syndrome (FXS), the most common heritable mental retardation. It has been shown that neuronal metabotropic glutamate receptor 5 (mGluR5)-mediated signaling is affected in FX animal models, with consequent alterations in activity-dependent protein translation and synaptic spine functionality. We demonstrate here that a central metabolic regulatory enzyme, glycogen synthase kinase-3 (GSK3) is present in a form indicating elevated activity in several regions of the FX mouse brain. Furthermore, we show that selective GSK3 inhibitors, as well as lithium, are able to revert mutant phenotypes of the FX mouse. Lithium, in particular, remained effective with chronic administration, although its effects were reversible even when given from birth. The combination of an mGluR5 antagonist and GSK3 inhibitors was not additive. Instead, it was discovered that mGluR5 signaling and GSK3 activation in the FX mouse are coordinately elevated, with inhibition of mGluR5 leading to inhibition of GSK3. These findings raise the possibility that GSK3 is a fundamental and central component of FXS pathology, with a substantial treatment potential. PMID:18952114

  3. Phosphorylase kinase isoenzymes in deficient ICR/IAn mice.

    PubMed

    Daegelen-Proux, D; Alexandre, Y; Dreyfus, J C

    1978-10-01

    ICR/IAn mice present a deficiency in phosphorylase kinase activity; the extent of this deficiency is less in some tissues [Lyon, S.B. Biochem. Genet. 4, 169--185 (1970)] than in skeletal muscle, where enzyme activity is 0.3% of normal [Cohen, P.T. W & Cohen, P. FEBS Lett. 29, 113--115 (1973)]. New-born mice of this strain were also reported (Lyon, 1970) to reveal a small amount of skeletal muscle enzyme activity. The properties of these residual phosphorylase kinases were compared to those of control C57 BL mice, with reference to control muscle and liver enzymes which were shown to be of different molecular species [Daegelen-Proux et al. Biochim. Biophys Acta, 452, 398--405 (1976)]. The properties investigated were the immunological reactivity against an antiserum raised against muscle phosphorylase kinase, the thermal stability and the Ca2+ dependency. The results suggest that the muscle enzyme from the new-born ICR/IAn mice and the heart enzyme from adult deficient mice are different to the muscle enzyme from adult normal mice, but they have properties in common with normal adult liver enzyme. These results lead to the conclusion that there exists in the muscle of I strain a "foetal form" of phosphorylase kinase, the activity of which decreases progressively after birth. Out work also confirmed the observations made by Cohen et al. [Eur. J. Biochem. 66, 347--356 (1976)] which showed that there is no evidence for the existence of a cross-reacting material in the muscle of adult deficient mice.

  4. Crystallization of the glycogen-binding domain of the AMP-activated protein kinase β subunit and preliminary X-ray analysis

    PubMed Central

    Polekhina, Galina; Feil, Susanne C.; Gupta, Abhilasha; O’Donnell, Paul; Stapleton, David; Parker, Michael W.

    2005-01-01

    AMP-activated protein kinase (AMPK) is an intracellular energy sensor that regulates metabolism in response to energy demand and supply by adjusting the ATP-generating and ATP-consuming pathways. AMPK potentially plays a critical role in diabetes and obesity as it is known to be activated by metforin and rosiglitazone, drugs used for the treatment of type II diabetes. AMPK is a heterotrimer composed of a catalytic α subunit and two regulatory subunits, β and γ. Mutations in the γ subunit are known to cause glycogen accumulation, leading to cardiac arrhythmias. Recently, a functional glycogen-binding domain (GBD) has been identified in the β subunit. Here, the crystallization of GBD in the presence of β-cyclodextrin is reported together with preliminary X-ray data analysis allowing the determination of the structure by single isomorphous replacement and threefold averaging using in-house X-ray data collected from a selenomethionine-substituted protein. PMID:16508085

  5. The role of glycogen, glucose and lactate in neuronal activity during hypoxia in the hooded seal (Cystophora cristata) brain.

    PubMed

    Czech-Damal, N U; Geiseler, S J; Hoff, M L M; Schliep, R; Ramirez, J-M; Folkow, L P; Burmester, T

    2014-09-05

    The brains of diving mammals are repeatedly exposed to hypoxic conditions during diving. Brain neurons of the hooded seal (Cystophora cristata) have been shown to be more hypoxia tolerant than those of mice, but the underlying mechanisms are not clear. Here we investigated the roles of different metabolic substrates for maintenance of neuronal activity and integrity, by comparing the in vitro spontaneous neuronal activity of brain slices from layer V of the visual cortex of hooded seals with those in mice (Mus musculus). Studies were conducted by manipulating the composition of the artificial cerebrospinal fluid (aCSF), containing either 10 mM glucose, or 20 mM lactate, or no external carbohydrate supply (aglycemia). Normoxic, hypoxic and ischemic conditions were applied. The lack of glucose or the application of lactate in the aCSF containing no glucose had little effect on the neuronal activity of seal neurons in either normoxia or hypoxia, while neurons from mice survived in hypoxia only few minutes regardless of the composition of the aCSF. We propose that seal neurons have higher intrinsic energy stores. Indeed, we found about three times higher glycogen stores in the seal brain (∼4.1 ng per μg total protein in the seal cerebrum) than in the mouse brain. Notably, in aCSF containing no glucose, seal neurons can tolerate 20 mM lactate while in mouse neuronal activity vanished after few minutes even in normoxia. This can be considered as an adaptation to long dives, during which lactate accumulates in the blood.

  6. Hypoxia Promotes Glycogen Accumulation through Hypoxia Inducible Factor (HIF)-Mediated Induction of Glycogen Synthase 1

    PubMed Central

    Pescador, Nuria; Garcia-Rocha, Mar; Ortiz-Barahona, Amaya; Vazquez, Silvia; Ordoñez, Angel; Cuevas, Yolanda; Saez-Morales, David; Garcia-Bermejo, Maria Laura; Landazuri, Manuel O.; Guinovart, Joan; del Peso, Luis

    2010-01-01

    When oxygen becomes limiting, cells reduce mitochondrial respiration and increase ATP production through anaerobic fermentation of glucose. The Hypoxia Inducible Factors (HIFs) play a key role in this metabolic shift by regulating the transcription of key enzymes of glucose metabolism. Here we show that oxygen regulates the expression of the muscle glycogen synthase (GYS1). Hypoxic GYS1 induction requires HIF activity and a Hypoxia Response Element within its promoter. GYS1 gene induction correlated with a significant increase in glycogen synthase activity and glycogen accumulation in cells exposed to hypoxia. Significantly, knockdown of either HIF1α or GYS1 attenuated hypoxia-induced glycogen accumulation, while GYS1 overexpression was sufficient to mimic this effect. Altogether, these results indicate that GYS1 regulation by HIF plays a central role in the hypoxic accumulation of glycogen. Importantly, we found that hypoxia also upregulates the expression of UTP:glucose-1-phosphate urydylyltransferase (UGP2) and 1,4-α glucan branching enzyme (GBE1), two enzymes involved in the biosynthesis of glycogen. Therefore, hypoxia regulates almost all the enzymes involved in glycogen metabolism in a coordinated fashion, leading to its accumulation. Finally, we demonstrated that abrogation of glycogen synthesis, by knock-down of GYS1 expression, impairs hypoxic preconditioning, suggesting a physiological role for the glycogen accumulated during chronic hypoxia. In summary, our results uncover a novel effect of hypoxia on glucose metabolism, further supporting the central importance of metabolic reprogramming in the cellular adaptation to hypoxia. PMID:20300197

  7. Crystallization of the glycogen-binding domain of the AMP-activated protein kinase β subunit and preliminary X-ray analysis

    SciTech Connect

    Polekhina, Galina Feil, Susanne C.; Gupta, Abhilasha; O’Donnell, Paul; Stapleton, David; Parker, Michael W.

    2005-01-01

    The glycogen-binding domain of the AMP-activated kinase β subunit has been crystallized in the presence of β-cyclodextrin. The structure has been determined by single isomorphous replacement and threefold averaging using in-house X-ray data collected from selenomethionine-substituted protein. AMP-activated protein kinase (AMPK) is an intracellular energy sensor that regulates metabolism in response to energy demand and supply by adjusting the ATP-generating and ATP-consuming pathways. AMPK potentially plays a critical role in diabetes and obesity as it is known to be activated by metforin and rosiglitazone, drugs used for the treatment of type II diabetes. AMPK is a heterotrimer composed of a catalytic α subunit and two regulatory subunits, β and γ. Mutations in the γ subunit are known to cause glycogen accumulation, leading to cardiac arrhythmias. Recently, a functional glycogen-binding domain (GBD) has been identified in the β subunit. Here, the crystallization of GBD in the presence of β-cyclodextrin is reported together with preliminary X-ray data analysis allowing the determination of the structure by single isomorphous replacement and threefold averaging using in-house X-ray data collected from a selenomethionine-substituted protein.

  8. Genetics Home Reference: purine nucleoside phosphorylase deficiency

    MedlinePlus

    ... patients with purine nucleoside phosphorylase deficiency. Nucleosides Nucleotides Nucleic Acids. 2004 Oct;23(8-9):1411-5. Erratum in: Nucleosides Nucleotides Nucleic Acids. 2005;24(4):303. Citation on PubMed Nyhan ...

  9. Anti-malarial Activities of Two Soil Actinomycete Isolates from Sabah via Inhibition of Glycogen Synthase Kinase 3β

    PubMed Central

    Dahari, Dhiana Efani; Salleh, Raifana Mohamad; Mahmud, Fauze; Chin, Lee Ping; Embi, Noor; Sidek, Hasidah Mohd

    2016-01-01

    Exploiting natural resources for bioactive compounds is an attractive drug discovery strategy in search for new anti-malarial drugs with novel modes of action. Initial screening efforts in our laboratory revealed two preparations of soil-derived actinomycetes (H11809 and FH025) with potent anti-malarial activities. Both crude extracts showed glycogen synthase kinase 3β (GSK3β)-inhibitory activities in a yeast-based kinase assay. We have previously shown that the GSK3 inhibitor, lithium chloride (LiCl), was able to suppress parasitaemia development in a rodent model of malarial infection. The present study aims to evaluate whether anti-malarial activities of H11809 and FH025 involve the inhibition of GSK3β. The acetone crude extracts of H11809 and FH025 each exerted strong inhibition on the growth of Plasmodium falciparum 3D7 in vitro with 50% inhibitory concentration (IC50) values of 0.57 ± 0.09 and 1.28 ± 0.11 µg/mL, respectively. The tested extracts exhibited Selectivity Index (SI) values exceeding 10 for the 3D7 strain. Both H11809 and FH025 showed dosage-dependent chemo-suppressive activities in vivo and improved animal survivability compared to non-treated infected mice. Western analysis revealed increased phosphorylation of serine (Ser 9) GSK3β (by 6.79 to 6.83-fold) in liver samples from infected mice treated with H11809 or FH025 compared to samples from non-infected or non-treated infected mice. A compound already identified in H11809 (data not shown), dibutyl phthalate (DBP) showed active anti-plasmodial activity against 3D7 (IC50 4.87 ± 1.26 µg/mL which is equivalent to 17.50 µM) and good chemo-suppressive activity in vivo (60.80% chemo-suppression at 300 mg/kg body weight [bw] dosage). DBP administration also resulted in increased phosphorylation of Ser 9 GSK3β compared to controls. Findings from the present study demonstrate that the potent anti-malarial activities of H11809 and FH025 were mediated via inhibition of host GSK3β. In addition

  10. Regulation of phosphorylase kinase by low concentrations of Ca ions upon muscle contraction: the connection between metabolism and muscle contraction and the connection between muscle physiology and Ca-dependent signal transduction

    PubMed Central

    OZAWA, Eijiro

    2011-01-01

    It had long been one of the crucial questions in muscle physiology how glycogenolysis is regulated in connection with muscle contraction, when we found the answer to this question in the last half of the 1960s. By that time, the two principal currents of muscle physiology, namely, the metabolic flow starting from glycogen and the mechanisms of muscle contraction, had already been clarified at the molecular level thanks to our senior researchers. Thus, the final question we had to answer was how to connect these two currents. We found that low concentrations of Ca ions (10−7–10−4 M) released from the sarcoplasmic reticulum for the regulation of muscle contraction simultaneously reversibly activate phosphorylase kinase, the enzyme regulating glycogenolysis. Moreover, we found that adenosine 3′,5′-monophosphate (cyclic AMP), which is already known to activate muscle phosphorylase kinase, is not effective in the absence of such concentrations of Ca ions. Thus, cyclic AMP is not effective by itself alone and only modifies the activation process in the presence of Ca ions (at that time, cyclic AMP-dependent protein kinase had not yet been identified). After a while, it turned out that our works have not only provided the solution to the above problem on muscle physiology, but have also been considered as the first report of Ca-dependent protein phosphorylation, which is one of the central problems in current cell biology. Phosphorylase kinase is the first protein kinase to phosphorylate a protein resulting in the change in the function of the phosphorylated protein, as shown by Krebs and Fischer. Our works further showed that this protein kinase is regulated in a Ca-dependent manner. Accordingly, our works introduced the concept of low concentrations of Ca ions, which were first identified as the regulatory substance of muscle contraction, to the vast field of Ca biology including signal transduction. PMID:21986313

  11. Regulation of phosphorylase kinase by low concentrations of Ca ions upon muscle contraction: the connection between metabolism and muscle contraction and the connection between muscle physiology and Ca-dependent signal transduction.

    PubMed

    Ozawa, Eijiro

    2011-01-01

    It had long been one of the crucial questions in muscle physiology how glycogenolysis is regulated in connection with muscle contraction, when we found the answer to this question in the last half of the 1960s. By that time, the two principal currents of muscle physiology, namely, the metabolic flow starting from glycogen and the mechanisms of muscle contraction, had already been clarified at the molecular level thanks to our senior researchers. Thus, the final question we had to answer was how to connect these two currents. We found that low concentrations of Ca ions (10(-7)-10(-4) M) released from the sarcoplasmic reticulum for the regulation of muscle contraction simultaneously reversibly activate phosphorylase kinase, the enzyme regulating glycogenolysis. Moreover, we found that adenosine 3',5'-monophosphate (cyclic AMP), which is already known to activate muscle phosphorylase kinase, is not effective in the absence of such concentrations of Ca ions. Thus, cyclic AMP is not effective by itself alone and only modifies the activation process in the presence of Ca ions (at that time, cyclic AMP-dependent protein kinase had not yet been identified). After a while, it turned out that our works have not only provided the solution to the above problem on muscle physiology, but have also been considered as the first report of Ca-dependent protein phosphorylation, which is one of the central problems in current cell biology. Phosphorylase kinase is the first protein kinase to phosphorylate a protein resulting in the change in the function of the phosphorylated protein, as shown by Krebs and Fischer. Our works further showed that this protein kinase is regulated in a Ca-dependent manner. Accordingly, our works introduced the concept of low concentrations of Ca ions, which were first identified as the regulatory substance of muscle contraction, to the vast field of Ca biology including signal transduction.

  12. Exercise regulates Akt and glycogen synthase kinase-3 activities in human skeletal muscle.

    PubMed

    Sakamoto, Kei; Arnolds, David E W; Ekberg, Ingvar; Thorell, Anders; Goodyear, Laurie J

    2004-06-25

    Activation of Akt and deactivation of GSK3 are critical signals regulating a number of cellular processes in multiple systems. Whether physical exercise alters Akt and GSK3 activity in human skeletal muscle is controversial. beta-Catenin, a GSK3 substrate and important Wnt signaling protein that alters gene transcription, has not been investigated in human skeletal muscle. In the present study, eight healthy human subjects performed 30min of cycling exercise at 75% of maximum workload (submaximal) followed by 6 bouts of 60s at 125% maximum workload (maximal). Biopsies of vastus lateralis muscle were taken at rest (basal), and within 15s following cessation of the submaximal and maximal exercise bouts. Exercise at both submaximal and maximal intensities significantly increased Akt activity (40% and 110%, respectively). Increases in Akt activity were accompanied by increases in Akt Thr(308) and Ser(473) phosphorylation, decreased GSK3alpha activity ( approximately 30% at both intensities), and increased phosphorylation of GSK3alpha Ser(21). Exercise at both intensities also decreased beta-catenin Ser(33/37)Thr(41) phosphorylation (50-60% at both intensities). These results demonstrate that Akt, GSK3, and beta-catenin signaling are regulated by exercise in human skeletal muscle, and as such identify them as possible molecular mediators of exercise's effect on metabolic and transcriptional processes in skeletal muscle.

  13. Lithium Enhances Axonal Regeneration in Peripheral Nerve by Inhibiting Glycogen Synthase Kinase 3β Activation

    PubMed Central

    Su, Huanxing; Yuan, Qiuju; Qin, Dajiang; Yang, Xiaoying; So, Kwok-Fai; Wu, Wutian

    2014-01-01

    Brachial plexus injury often involves traumatic root avulsion resulting in permanent paralysis of the innervated muscles. The lack of sufficient regeneration from spinal motoneurons to the peripheral nerve (PN) is considered to be one of the major causes of the unsatisfactory outcome of various surgical interventions for repair of the devastating injury. The present study was undertaken to investigate potential inhibitory signals which influence axonal regeneration after root avulsion injury. The results of the study showed that root avulsion triggered GSK-3β activation in the injured motoneurons and remaining axons in the ventral funiculus. Systemic application of a clinical dose of lithium suppressed activated GSK-3β in the lesioned spinal cord to the normal level and induced extensive axonal regeneration into replanted ventral roots. Our study suggests that GSK-3β activity is involved in negative regulation for axonal elongation and regeneration and lithium, the specific GSK-3β inhibitor, enhances motoneuron regeneration from CNS to PNS. PMID:24967390

  14. Dihydromyricetin protects neurons in an MPTP-induced model of Parkinson's disease by suppressing glycogen synthase kinase-3 beta activity

    PubMed Central

    Ren, Zhao-xiang; Zhao, Ya-fei; Cao, Ting; Zhen, Xue-chu

    2016-01-01

    Aim: It is general believed that mitochondrial dysfunction and oxidative stress play critical roles in the pathology of Parkinson's disease (PD). Dihydromyricetin (DHM), a natural flavonoid extracted from Ampelopsis grossedentata, has recently been found to elicit potent anti-oxidative effects. In the present study, we explored the role of DHM in protecting dopaminergic neurons. Methods: Male C57BL/6 mice were intraperitoneally injected with 1-methyl4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 7 d to induce PD. Additionally, mice were treated with either 5 or 10 mg/kg DHM for a total of 13 d (3 d before the start of MPTP, during MPTP administration (7 d) and 3 d after the end of MPTP). For the saline or DHM alone treatment groups, mice were injected with saline or DHM for 13 d. On d 14, behavioral tests (locomotor activity, the rotarod test and the pole test) were administered. After the behavioral tests, the mice were sacrificed, and brain tissue was collected for immunofluorescence staining and Western blotting. In addition, MES23.5 cells were treated with MPP+ and DHM, and evaluated using cell viability assays, reactive oxygen species (ROS) measurements, apoptosis analysis and Western blotting. Results: DHM significantly attenuated MPTP-induced mouse behavioral impairments and dopaminergic neuron loss. In the MES23.5 cells, DHM attenuated MPP+-induced cell injury and ROS production in a dose-dependent manner. In addition, DHM increased glycogen synthase kinase-3 beta phosphorylation in a dose- and time-dependent manner, which may be associated with DHM-induced dopaminergic neuronal protection. Conclusion: The present study demonstrated that DHM is a potent neuroprotective agent for DA neurons by modulating the Akt/GSK-3β pathway, which suggests that DHM may be a promising therapeutic candidate for PD. PMID:27374489

  15. X-ray structures of uridine phosphorylase from Vibrio cholerae in complexes with uridine, thymidine, uracil, thymine, and phosphate anion: Substrate specificity of bacterial uridine phosphorylases

    NASA Astrophysics Data System (ADS)

    Prokofev, I. I.; Lashkov, A. A.; Gabdulkhakov, A. G.; Balaev, V. V.; Seregina, T. A.; Mironov, A. S.; Betzel, C.; Mikhailov, A. M.

    2016-11-01

    In many types of human tumor cells and infectious agents, the demand for pyrimidine nitrogen bases increases during the development of the disease, thus increasing the role of the enzyme uridine phosphorylase in metabolic processes. The rational use of uridine phosphorylase and its ligands in pharmaceutical and biotechnology industries requires knowledge of the structural basis for the substrate specificity of the target enzyme. This paper summarizes the results of the systematic study of the three-dimensional structure of uridine phosphorylase from the pathogenic bacterium Vibrio cholerae in complexes with substrates of enzymatic reactions—uridine, phosphate anion, thymidine, uracil, and thymine. These data, supplemented with the results of molecular modeling, were used to consider in detail the structural basis for the substrate specificity of uridine phosphorylases. It was shown for the first time that the formation of a hydrogen-bond network between the 2'-hydroxy group of uridine and atoms of the active-site residues of uridine phosphorylase leads to conformational changes of the ribose moiety of uridine, resulting in an increase in the reactivity of uridine compared to thymidine. Since the binding of thymidine to residues of uridine phosphorylase causes a smaller local strain of the β-N1-glycosidic bond in this the substrate compared to the uridine molecule, the β-N1-glycosidic bond in thymidine is more stable and less reactive than that in uridine. It was shown for the first time that the phosphate anion, which is the second substrate bound at the active site, interacts simultaneously with the residues of the β5-strand and the β1-strand through hydrogen bonding, thus securing the gate loop in a conformation

  16. Discovery of Isonicotinamides as Highly Selective, Brain Penetrable, and Orally Active Glycogen Synthase Kinase-3 Inhibitors.

    PubMed

    Luo, Guanglin; Chen, Ling; Burton, Catherine R; Xiao, Hong; Sivaprakasam, Prasanna; Krause, Carol M; Cao, Yang; Liu, Nengyin; Lippy, Jonathan; Clarke, Wendy J; Snow, Kimberly; Raybon, Joseph; Arora, Vinod; Pokross, Matt; Kish, Kevin; Lewis, Hal A; Langley, David R; Macor, John E; Dubowchik, Gene M

    2016-02-11

    GSK-3 is a serine/threonine kinase that has numerous substrates. Many of these proteins are involved in the regulation of diverse cellular functions, including metabolism, differentiation, proliferation, and apoptosis. Inhibition of GSK-3 may be useful in treating a number of diseases including Alzheimer's disease (AD), type II diabetes, mood disorders, and some cancers, but the approach poses significant challenges. Here, we present a class of isonicotinamides that are potent, highly kinase-selective GSK-3 inhibitors, the members of which demonstrated oral activity in a triple-transgenic mouse model of AD. The remarkably high kinase selectivity and straightforward synthesis of these compounds bode well for their further exploration as tool compounds and therapeutics.

  17. Glycogen metabolism in the rat retina.

    PubMed

    Coffe, Víctor; Carbajal, Raymundo C; Salceda, Rocío

    2004-02-01

    It has been reported that glycogen levels in retina vary with retinal vascularization. However, the electrical activity of isolated retina depends on glucose supply, suggesting that it does not contain energetic reserves. We determined glycogen levels and pyruvate and lactate production under various conditions in isolated retina. Ex vivo retinas from light- and dark-adapted rats showed values of 44 +/- 0.3 and 19.5 +/- 0.4 nmol glucosyl residues/mg protein, respectively. The glycogen content of retinas from light-adapted animals was reduced by 50% when they were transferred to darkness. Glycogen levels were low in retinas incubated in glucose-free media and increased in the presence of glucose. The highest glycogen values were found in media containing 20 mm of glucose. A rapid increase in lactate production was observed in the presence of glucose. Surprisingly, glycogen levels were the lowest and lactate production was also very low in the presence of 30 mm glucose. Our results suggest that glycogen can be used as an immediate accessible energy reserve in retina. We speculate on the possibility that gluconeogenesis may play a protective role by removal of lactic acid.

  18. Maltose phosphorylase from Lactobacillus brevis: purification, characterization, and application in a biosensor for ortho-phosphate.

    PubMed

    Hüwel, S; Haalck, L; Conrath, N; Spener, F

    1997-11-01

    With the goal to obtain maltose phosphorylase as a tool to determine ortho-phosphate, the enzyme from Lactobacillus brevis was purified to 98% by an expeditious FPLC-aided procedure which included anion exchange chromatography, gel filtration, and hydroxyapatite chromatography. The native maltose phosphorylase had a molecular mass of 196 kDa and consisted of two 88 kDa subunits. In isoelectric focusing two isoforms with pI values of 4.2 and 4.6 were observed. Maximum enzyme activity was obtained at 36 degrees C and pH 6.5 and was independent of pyridoxal 5'-phosphate. The apparent K(m) values with maltose and phosphate as substrates were 0.9 mmol l-1 and 1.8 mmol l-1, respectively. Maltose phosphorylase could be stored in 10 mM phosphate buffer pH 6.5 at 4 degrees C with a loss of activity of only 7% up to 6 months. The stability of the enzyme at high temperatures was enhanced significantly using additives like phosphate, citrate, and imidazole. The purified maltose phosphorylase was used as key enzyme in a phosphate sensor consisting of maltose phosphorylase and glucose oxidase. A detection limit of 0.1 microM phosphate was observed and the sensor response was linear in the range between 0.5 and 10 microM.

  19. AJS1669, a novel small-molecule muscle glycogen synthase activator, improves glucose metabolism and reduces body fat mass in mice.

    PubMed

    Nakano, Kazuhiro; Takeshita, Sen; Kawasaki, Noriko; Miyanaga, Wataru; Okamatsu, Yoriko; Dohi, Mizuki; Nakagawa, Tadakiyo

    2017-04-01

    Impaired glycogen synthesis and turnover are common in insulin resistance and type 2 diabetes. As glycogen synthase (GS) is a key enzyme involved in the synthetic process, it presents a promising therapeutic target for the treatment of type 2 diabetes. In the present study, we identified a novel, potent and orally available GS activator AJS1669 {sodium 2-[[5-[[4-(4,5-difluoro-2-methylsulfanyl-phenyl)phenoxy] methyl]furan-2-carbonyl]-(2-furylmethyl)amino] acetate}. In vitro, we performed a glycogen synthase 1 (GYS1) activation assay for screening GS activators and identified that the activity of AJS1669 was further potentiated in the presence of glucose-6-phosphate (G6P). In vivo, we used ob/ob mice to evaluate the novel anti-diabetic effects of AJS1669 by measuring basal blood glucose levels, glucose tolerance and body fat mass index. Repeated administration of AJS1669 over 4 weeks reduced blood glucose and hemoglobin A1c (HbA1c) levels in ob/ob mice. AJS1669 also improved glucose tolerance in a dose-dependent manner, and decreased body fat mass. The mRNA levels of genes involved in mitochondrial fatty acid oxidation and mitochondrial biogenesis were elevated in skeletal muscle tissue following AJS1669 treatment. Hepatic tissue of treated mice also exhibited elevated expression of genes associated with fatty acid oxidation. In contrast to ob/ob mice, in C57Bl/6 mice AJS1669 administration did not alter body weight or reduce glucose levels. These results demonstrate that pharmacological agents that activate GYS1, the main GS subtype found in skeletal muscle, have potential for use as novel treatments for diabetes that improve glucose metabolism in skeletal muscle.

  20. AJS1669, a novel small-molecule muscle glycogen synthase activator, improves glucose metabolism and reduces body fat mass in mice

    PubMed Central

    Nakano, Kazuhiro; Takeshita, Sen; Kawasaki, Noriko; Miyanaga, Wataru; Okamatsu, Yoriko; Dohi, Mizuki; Nakagawa, Tadakiyo

    2017-01-01

    Impaired glycogen synthesis and turnover are common in insulin resistance and type 2 diabetes. As glycogen synthase (GS) is a key enzyme involved in the synthetic process, it presents a promising therapeutic target for the treatment of type 2 diabetes. In the present study, we identified a novel, potent and orally available GS activator AJS1669 {sodium 2-[[5-[[4-(4,5-difluoro-2-methylsulfanyl-phenyl) phenoxy] methyl]furan-2-carbonyl]-(2-furylmethyl)amino] acetate}. In vitro, we performed a glycogen synthase 1 (GYS1) activation assay for screening GS activators and identified that the activity of AJS1669 was further potentiated in the presence of glucose-6-phosphate (G6P). In vivo, we used ob/ob mice to evaluate the novel anti-diabetic effects of AJS1669 by measuring basal blood glucose levels, glucose tolerance and body fat mass index. Repeated administration of AJS1669 over 4 weeks reduced blood glucose and hemoglobin A1c (HbA1c) levels in ob/ob mice. AJS1669 also improved glucose tolerance in a dose-dependent manner, and decreased body fat mass. The mRNA levels of genes involved in mitochondrial fatty acid oxidation and mitochondrial biogenesis were elevated in skeletal muscle tissue following AJS1669 treatment. Hepatic tissue of treated mice also exhibited elevated expression of genes associated with fatty acid oxidation. In contrast to ob/ob mice, in C57Bl/6 mice AJS1669 administration did not alter body weight or reduce glucose levels. These results demonstrate that pharmacological agents that activate GYS1, the main GS subtype found in skeletal muscle, have potential for use as novel treatments for diabetes that improve glucose metabolism in skeletal muscle. PMID:28290602

  1. Structure of the homodimer of uridine phosphorylase from Salmonella typhimurium in the native state at 1.9 Å resolution

    NASA Astrophysics Data System (ADS)

    Timofeev, V. I.; Pavlyuk, B. F.; Lashkov, A. A.; Seregina, T. A.; Gabdulkhakov, A. G.; Vaĭnshteĭn, B. K.; Mikhaĭlov, A. M.

    2007-11-01

    Uridine phosphorylase ( UPh) belongs to pyrimidine nucleoside phosphorylases. This enzyme catalyzes cleavage of the C-N glycoside bond in uridine to form uracil and ribose-1’-phosphate. Uridine phosphorylase supplies cells with nucleotide precursors by catalyzing the phosphorolysis of purine and pyrimidine nucleosides. This is an alternative to de novo nucleotide synthesis. The three-dimensional structure of native uridine phosphorylase from Salmonella typhimurium ( StUPh) in a new crystal form was solved and refined at 1.90 Å resolution ( R st = 20.37%; R free = 24.69%; the rmsd of bond lengths and bond angles are 0.009 Å and 1.223°, respectively). A homodimer containing two asynchronously functioning active sites was demonstrated to be the minimum structural unit necessary for function of the hexameric StUPh molecule ( L 33 L 2). Each active site is formed by amino acid residues of both subunits.

  2. Expression of muscle-gene-specific isozymes of phosphorylase and creatine kinase in innervated cultured human muscle

    PubMed Central

    1986-01-01

    Isozymes of creatine kinase and glycogen phosphorylase are excellent markers of skeletal muscle maturation. In adult innervated muscle only the muscle-gene-specific isozymes are present, whereas aneurally cultured human muscle has predominantly the fetal pattern of isozymes. We have studied the isozyme pattern of human muscle cultured in monolayer and innervated by rat embryo spinal cord explants for 20-42 d. In this culture system, large groups of innervated muscle fibers close to the ventral part of the spinal cord explant continuously contracted. The contractions were reversibly blocked by 1 mM d- tubocurarine. In those innervated fibers, the total activity and the muscle-gene-specific isozymes of both enzymes increased significantly. The amount of muscle-gene-specific isozymes directly correlated with the duration of innervation. Control noninnervated muscle fibers from the same dishes as the innervated fibers remained biochemically immature. This study demonstrated that de novo innervation of human muscle cultured in monolayer exerts a time-related maturational influence that is not mediated by a diffusable neural factor. PMID:3771644

  3. High liver glycogen in hereditary fructose intolerance.

    PubMed

    Cain, A R; Ryman, B E

    1971-11-01

    A case of hereditary fructose intolerance is reported in a girl aged 2 years at the time of her death. She had apparently progressed normally until the age of 14 months. At 19 months she was admitted to hospital with failure to thrive, hepatomegaly, and superficial infections. Investigations revealed hypoglycaemia, persistent acidosis, aminoaciduria, and a high liver glycogen level which suggested that she had glycogen storage disease. There was also some evidence of malabsorption. At necropsy the liver enzyme estimations showed that fructose 1-phosphate aldolase activity was absent and that fructose 1,6-diphosphate aldolase activity was reduced. Hereditary fructose intolerance and glycogen storage disease have been confused in the past on clinical grounds, but a high liver glycogen level has not previously been reported in hereditary fructose intolerance.

  4. Glycal Formation in Crystals of Uridine Phosphorylase

    SciTech Connect

    Paul, Debamita; O’Leary, Sen E.; Rajashankar, Kanagalaghatta; Bu, Weiming; Toms, Angela; Settembre, Ethan C.; Sanders, Jennie M.; Begley, Tadhg P.; Ealick, Steven E.

    2010-06-22

    Uridine phosphorylase is a key enzyme in the pyrimidine salvage pathway. This enzyme catalyzes the reversible phosphorolysis of uridine to uracil and ribose 1-phosphate (or 2{prime}-deoxyuridine to 2{prime}-deoxyribose 1-phosphate). Here we report the structure of hexameric Escherichia coli uridine phosphorylase treated with 5-fluorouridine and sulfate and dimeric bovine uridine phosphorylase treated with 5-fluoro-2{prime}-deoxyuridine or uridine, plus sulfate. In each case the electron density shows three separate species corresponding to the pyrimidine base, sulfate, and a ribosyl species, which can be modeled as a glycal. In the structures of the glycal complexes, the fluorouracil O2 atom is appropriately positioned to act as the base required for glycal formation via deprotonation at C2{prime}. Crystals of bovine uridine phosphorylase treated with 2{prime}-deoxyuridine and sulfate show intact nucleoside. NMR time course studies demonstrate that uridine phosphorylase can catalyze the hydrolysis of the fluorinated nucleosides in the absence of phosphate or sulfate, without the release of intermediates or enzyme inactivation. These results add a previously unencountered mechanistic motif to the body of information on glycal formation by enzymes catalyzing the cleavage of glycosyl bonds.

  5. Estradiol stimulates glycogen synthesis whereas progesterone promotes glycogen catabolism in the uterus of the American mink (Neovison vison).

    PubMed

    Bowman, Kole; Rose, Jack

    2017-01-01

    Glycogen synthesis by mink uterine glandular and luminal epithelia (GE and LE) is stimulated by estradiol (E2 ) during estrus. Subsequently, the glycogen deposits are mobilized to near completion to meet the energy requirements of pre-embryonic development and implantation by as yet undetermined mechanisms. We hypothesized that progesterone (P4 ) was responsible for catabolism of uterine glycogen reserves as one of its actions to ensure reproductive success. Mink were treated with E2 , P4 or vehicle (controls) for 3 days and uteri collected 24 h (E2 , P4 and vehicle) and 96 h (E2 ) later. To evaluate E2 priming, mink were treated with E2 for 3 days, then P4 for an additional 3 days (E2 →P4 ) and uteri collected 24 h later. Percent glycogen content of uterine epithelia was greater at E2 + 96 h (GE = 5.71 ± 0.55; LE = 11.54 ± 2.32) than E2 +24 h (GE = 3.63 ± 0.71; LE = 2.82 ± 1.03), and both were higher than controls (GE = 0.27 ± 0.15; LE = 0.54 ± 0.30; P < 0.05). Treatment as E2 →P4 reduced glycogen content (GE = 0.61 ± 0.16; LE = 0.51 ± 0.13), to levels not different from controls, while concomitantly increasing catabolic enzyme (glycogen phosphorylase m and glucose-6-phosphatase) gene expression and amount of phospho-glycogen synthase protein (inactive) in uterine homogenates. Interestingly, E2 →P4 increased glycogen synthase 1 messenger RNA (mRNA) and hexokinase 1mRNA and protein. Our findings suggest to us that while E2 promotes glycogen accumulation by the mink uterus during estrus and pregnancy, it is P4 that induces uterine glycogen catabolism, releasing the glucose that is essential to support pre-embryonic survival and implantation.

  6. Relief of Xylose Binding to Cellobiose Phosphorylase by a Single Distal Mutation.

    PubMed

    Chomvong, Kulika; Lin, Eric; Blaisse, Michael; Gillespie, Abigail E; Cate, Jamie H D

    2017-02-17

    Cellobiose phosphorylase (CBP) cleaves cellobiose-abundant in plant biomass-to glucose and glucose 1-phosphate. However, the pentose sugar xylose, also abundant in plant biomass, acts as a mixed-inhibitor and a substrate for the reverse reaction, limiting the industrial potential of CBP. Preventing xylose, which lacks only a single hydroxymethyl group relative to glucose, from binding to the CBP active site poses a spatial challenge for protein engineering, since simple steric occlusion cannot be used to block xylose binding without also preventing glucose binding. Using CRISPR-based chromosomal library selection, we identified a distal mutation in CBP, Y47H, responsible for improved cellobiose consumption in the presence of xylose. In silico analysis suggests this mutation may alter the conformation of the cellobiose phosphorylase dimer complex to reduce xylose binding to the active site. These results may aid in engineering carbohydrate phosphorylases for improved specificity in biofuel production, and also in the production of industrially important oligosaccharides.

  7. Optimization of molecular design in the evolution of metabolism: the glycogen molecule.

    PubMed Central

    Meléndez-Hevia, E; Waddell, T G; Shelton, E D

    1993-01-01

    The animal glycogen molecule has to be designed in accordance with its metabolic function as a very effective fuel store allowing quick release of large amounts of glucose. In addition, the design should account for a high capacity of glucose storage in the least possible space. We have studied the optimization of these variables by means of a mathematical model of the glycogen molecule. Our results demonstrate that the structure is optimized to maximize (a) the total glucose stored in the smallest possible volume, (b) the proportion of it that can be directly released by phosphorylase before any debranching occurs, and (c) the number of non-reducing ends (points of attack for phosphorylase), which maximizes the speed of fuel release. The optimization of these four variables is achieved with appropriate values for two key parameters in glycogen design: the degree of branching and the length of the chains. The optimal values of these two parameters are precisely those found in cellular glycogen. PMID:8240246

  8. The marine natural-derived inhibitors of glycogen synthase kinase-3β phenylmethylene hydantoins: In vitro and in vivo activities and pharmacophore modeling

    PubMed Central

    Khanfar, Mohammad A.; Asal, Bilal Abu; Mudit, Mudit; Kaddoumi, Amal; El Sayed, Khalid A.

    2009-01-01

    The Red Sea sponge Hemimycale arabica afforded the known (Z)-5-(4-hydroxybenzylidene)-hydantoin (1). This natural phenylmethylene hydantoin (PMH) 1 and the synthetic (Z)-5-(4-(ethylthio)benzylidene)-hydantoin (2) showed potent in vitro and in vivo anti-growth and anti-invasive properties against PC-3M prostate cancer cells in MTT, spheroid disaggregation, and in mice models. To explore a possible molecular target of PMHs, the most potent synthetic analogue 2 has been virtually screened against various protein kinases. Molecular modeling study has shown that 2 can be successfully docked within the binding pocket of glycogen synthase kinase-3beta (GSK-3β) similar to the well-known GSK-3β inhibitor I-5. Several PMHs showed potent in vitro GSK-3β inhibitory activity with an IC50 range of 4–20 µM. The most potent analogue 3 showed a significant increase in liver glycogen level at the 5, 15, and 25 mg/kg dose levels, in vivo. Pharmacophore model was built and validated using in-house database of active and inactive GSK-3β inhibitors. The GSK-3β inhibitory activity of PMHs entitles them to be potential leads for the treatment of cancer, Alzheimer’s disease, bipolar disorders, stroke, different tau pathologies, and type-2 diabetes. PMID:19616957

  9. Study of the hydrolysis and ionization constants of Schiff base from pyridoxal 5'-phosphate and n-hexylamine in partially aqueous solvents. An application to phosphorylase b.

    PubMed Central

    Donoso, J; Muñoz, F; García Del Vado, A; Echevarría, G; García Blanco, F

    1986-01-01

    Formation and hydrolysis rate constants as well as equilibrium constants of the Schiff base derived from pyridoxal 5'-phosphate and n-hexylamine were determined between pH 3.5 and 7.5 in ethanol/water mixtures (3:17, v/v, and 49:1, v/v). The results indicate that solvent polarity scarcely alters the values of these constants but that they are dependent on the pH. Spectrophotometric titration of this Schiff base was also carried out. We found that a pKa value of 6.1, attributed in high-polarity media to protonation of the pyridine nitrogen atom, is independent of solvent polarity, whereas the pKa of the monoprotonated form of the imine falls from 12.5 in ethanol/water (3:17) to 11.3 in ethanol/water (49:1). Fitting of the experimental results for the hydrolysis to a theoretical model indicates the existence of a group with a pKa value of 6.1 that is crucial in the variation of kinetic constant of hydrolysis with pH. Studies of the reactivity of the coenzyme (pyridoxal 5'-phosphate) of glycogen phosphorylase b with hydroxylamine show that this reaction only occurs when the pH value of solution is below 6.5 and the hydrolysis of imine bond has started. We propose that the decrease in activity of phosphorylase b when the pH value is less than 6.2 must be caused by the cleavage of enzyme-coenzyme binding and that this may be related with protonation of the pyridine nitrogen atom of pyridoxal 5'-phosphate. PMID:3099764

  10. Shared control of hepatic glycogen synthesis by glycogen synthase and glucokinase.

    PubMed Central

    Gomis, R R; Ferrer, J C; Guinovart, J J

    2000-01-01

    We have used recombinant adenoviruses (AdCMV-RLGS and AdCMV-GK) to overexpress the liver isoforms of glycogen synthase (GS) and glucokinase (GK) in primary cultured rat hepatocytes. Glucose activated overexpressed GS in a dose-dependent manner and caused the accumulation of larger amounts of glycogen in the AdCMV-RLGS-treated hepatocytes. The concentration of intermediate metabolites of the glycogenic pathway, such as glucose 6-phosphate (Glc-6-P) and UDP-glucose, were not significantly altered. GK overexpression also conferred on the hepatocyte an enhanced capacity to synthesize glycogen in response to glucose, as described previously [Seoane, Gómez-Foix, O'Doherty, Gómez-Ara, Newgard and Guinovart (1996) J. Biol. Chem. 271, 23756-23760], although, in this case, they accumulated Glc-6-P. When GS and GK were simultaneously overexpressed, the accumulation of glycogen was enhanced in comparison with cells overexpressing either GS or GK. Our results are consistent with the hypothesis that liver GS catalyses the rate-limiting step of hepatic glycogen synthesis. However, hepatic glycogen deposition from glucose is submitted to a system of shared control in which the 'controller', GS, is, in turn, controlled by GK. This control is indirectly exerted through Glc-6-P, which 'switches on' GS dephosphorylation and activation. PMID:11042138

  11. Nrf2-Mediated Regulation of Skeletal Muscle Glycogen Metabolism

    PubMed Central

    Yagishita, Yoko; Katsuoka, Fumiki; Kitajima, Yasuo; Nunomiya, Aki; Nagatomi, Ryoichi; Pi, Jingbo; Biswal, Shyam S.

    2016-01-01

    Nrf2 (NF-E2-related factor 2) contributes to the maintenance of glucose homeostasis in vivo. Nrf2 suppresses blood glucose levels by protecting pancreatic β cells from oxidative stress and improving peripheral tissue glucose utilization. To elucidate the molecular mechanisms by which Nrf2 contributes to the maintenance of glucose homeostasis, we generated skeletal muscle (SkM)-specific Keap1 knockout (Keap1MuKO) mice that express abundant Nrf2 in their SkM and then examined Nrf2 target gene expression in that tissue. In Keap1MuKO mice, blood glucose levels were significantly downregulated and the levels of the glycogen branching enzyme (Gbe1) and muscle-type PhKα subunit (Phka1) mRNAs, along with those of the glycogen branching enzyme (GBE) and the phosphorylase b kinase α subunit (PhKα) protein, were significantly upregulated in mouse SkM. Consistent with this result, chemical Nrf2 inducers promoted Gbe1 and Phka1 mRNA expression in both mouse SkM and C2C12 myotubes. Chromatin immunoprecipitation analysis demonstrated that Nrf2 binds the Gbe1 and Phka1 upstream promoter regions. In Keap1MuKO mice, muscle glycogen content was strongly reduced and forced GBE expression in C2C12 myotubes promoted glucose uptake. Therefore, our results demonstrate that Nrf2 induction in SkM increases GBE and PhKα expression and reduces muscle glycogen content, resulting in improved glucose tolerance. Our results also indicate that Nrf2 differentially regulates glycogen metabolism in SkM and the liver. PMID:27044864

  12. Kinetic mechanism of rabbit muscle glycogen synthase I.

    PubMed

    Gold, A M

    1980-08-05

    The kinetic mechanism of rabbit muscle glycogen synthase I was investigated by determining isotope-exchange rates at chemical equilibrium between uridine diphosphoglucose (UDPG) and glycogen and between UDPG and uridine 5'-diphosphate (UDP). The rates were followed simultaneously by use of UDPG labeled with 14C in the glucose moiety and with 3H in the uracil group. They were found to be independent of the concentrations of glycogen and the UDPG-UDP pair, averaging 6 X 10(-9) mol min-1 mg-1, with a ratio of UDPG-glycogen exchange to UDPG-UDP exchange of 0.85-0.95. The conclusion is that glycogen synthase has a rapid equilibrium random bi bi mechanism. The previously reported slow activation of glycogen-free synthase in the presence of glycogen was examined kinetically. The activation rate appears to be independent of glycogen concentration over a wide range, while the maximum activation is related to the third or fourth root of the glycogen concentration. This suggest that the slow bimolecular reaction mechanism proposed for human polymorphonuclear leucocyte glycogen synthase I [Sølling, H., & Esmann, V. (1977) Eur. J. Biochem. 81, 129] does not apply to rabbit muscle synthase I. The rate of exchange of glycogen molecules in the complex between glycogen and rabbit muscle synthase I under conditions where the enzyme is catalytically active was estimated by a novel method. The enzyme-glycogen complex was treated with [glucose-14C]UDPG and glycogen of different molecular weight. The distribution of isotope between the two forms of glycogen was determined after their separation by agarose gel chromatography. A rate constant of 0.3 min-1 was estimated for the exchange. It can be calculated, on the basis of the specific activity of the enzyme (20 mumol min-1 mg-1) and its action pattern, that hundreds of individual chains in the glycogen molecule must be available to the enzyme during the average lifetime of the complex. A mechanism is proposed for this process.

  13. Minimal hepatic glucose-6-phosphatase-α activity required to sustain survival and prevent hepatocellular adenoma formation in murine glycogen storage disease type Ia.

    PubMed

    Lee, Young Mok; Kim, Goo-Young; Pan, Chi-Jiunn; Mansfield, Brian C; Chou, Janice Y

    2015-06-01

    Glycogen storage disease type Ia (GSD-Ia), characterized by impaired glucose homeostasis and chronic risk of hepatocellular adenoma (HCA), is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC) activity. In a previous 70-90 week-study, we showed that a recombinant adeno-associated virus (rAAV) vector-mediated gene transfer that restores more than 3% of wild-type hepatic G6Pase-α activity in G6pc (-/-) mice corrects hepatic G6Pase-α deficiency with no evidence of HCA. We now examine the minimal hepatic G6Pase-α activity required to confer therapeutic efficacy. We show that rAAV-treated G6pc (-/-) mice expressing 0.2% of wild-type hepatic G6Pase-α activity suffered from frequent hypoglycemic seizures at age 63-65 weeks but mice expressing 0.5-1.3% of wild-type hepatic G6Pase-α activity (AAV-LL mice) sustain 4-6 h of fast and grow normally to age 75-90 weeks. Despite marked increases in hepatic glycogen accumulation, the AAV-LL mice display no evidence of hepatic abnormalities, hepatic steatosis, or HCA. Interprandial glucose homeostasis is maintained by the G6Pase-α/glucose-6-phosphate transporter (G6PT) complex, and G6PT-mediated microsomal G6P uptake is the rate-limiting step in endogenous glucose production. We show that hepatic G6PT activity is increased in AAV-LL mice. These findings are encouraging for clinical studies of G6Pase-α gene-based therapy for GSD-Ia.

  14. Role of phosphorylase in the mechanism of potato minituber storage cell changes during clinorotation

    NASA Astrophysics Data System (ADS)

    Nedukha, O.; Shnyukova, E.

    The differences between the cytochemical reaction intensity and activity of phosphorylase (EC 2.4.1.1) and carbohydrate content in storage parenchyma cells of Solanum tuberosum L. (cv Adreta) minitubers grown for 30 days in the horizontal clinostate (2 rev/min) and in the control have been studied by electroncytochemical and biochemical methods. It is established an acceleration of minitubers formation and storage parenchyma cell differentiation at clinorotation. Electroncytochemical investigation of phosphorylase activity localization in the storage parenchyma cells of minitubers grown in control and at clinorotation showed the product of the reaction as electron-dense precipitate was marked plastids. Intensity and density of precipitate was increase in stroma of plastids and on starch grain surface during of intensive growth of starch in amyloplast (on 10- and 20-days of the minituber formation) of clinorotated minitubers in comparison with that in the control. The precipitate amount was decreased in the plastids on 30 day of growth in both variants. Using biochemical methods it is found that activity of phosphorylase and content of mono- and disaccharide and also starch content changed in minitubers formed during clinorotation and in the control. Data obtained are discussed regarding the possible mechanism of phosphorylase activity change and the role of mono- and disaccharide in acceleration of storage organ formation during clinorotation.

  15. Precursors to glycogen in ovine fetuses

    SciTech Connect

    Levitsky, L.L.; Paton, J.B.; Fisher, D.E. )

    1988-11-01

    Postprandial hepatic glycogenesis in the adult animal is now felt to proceed largely through gluconeogenic pathways rather than directly from glucose. The ovine fetus, like the mature sheep, lacks specific hepatic glucokinase. Therefore, the authors examined the role of lactate as a fetal glycogenic precursor in seven chronically catheterized 125-day sheep fetuses. Fetuses were infused with L-(U-{sup 14}C)lactate and D-(3-{sup 3}H)glucose, while maternal glucose was maintained at 50 mg/dl. Mean fetal hepatic glycogen specific activity ({mu}Ci/mg {times} 10{sup 3}) was 0.82 {plus minus} 0.08 for {sup 14}C and 2.6 {plus minus} 0.4 for {sup 3}H, whereas fetal renal glycogen specific activity was 0.46 {plus minus} 0.22 for {sup 14}C and 0.78 {plus minus} 0.16 for {sup 3}H. In contrast, ({sup 14}C)glucose specific activity was undetectable in blood and mean ({sup 3}H)glucose specific activity was 8.9 {plus minus} 1.3 {mu}Ci/mg {times} 10{sup 3}. The least detectable specific activity of ({sup 14}C)glucose did not differ significantly from the ({sup 14}C)glycogen enrichment in liver, whereas ({sup 3}H)glucose specific activity was significantly greater than ({sup 3}H)glycogen enrichment. The authors conclude that glycogenesis from glucose is partly through the indirect gluconeogenic route and that lactate may be a glycogenic precursor in the ovine fetus.

  16. 13C and 31P NMR for the diagnosis of muscular phosphorylase-kinase deficiency

    NASA Astrophysics Data System (ADS)

    Jehenson, P.; Duboc, D.; Laforet, P.; Eymard, B.; Lombès, A.; Fardeau, M.; Brunet, P.; Syrota, A.

    1998-02-01

    To further develop and specify the range of medical applications of in vivo NMR spectroscopy for the study of myopathies, it is ncessary to study the largest number of well characterized cases. We here report on the 31P and 13C NMR study of a purely muscular form of phosphorylase-kinase (PK) deficiency. Abnormalities were observed that agree with and increase our pathophysiological knowledge, in particular on the activation of phosphorylase and PK. Also, the abnormalities are different from those found in other clinically similar metabolic myopathies and could be used for the differential diagnosis. Afin de continuer à développer et préciser les applications médicales de la spectroscopie RMN in vivo, il faut étudier le plus grand nombre possible de cas bien caractérisés. Nous avons étudié ici une forme purement musculaire de déficit en phosphorylase-kinase (PK) par RMN du phosphore 31 et du carbone 13. Les altérations observées sont en accord avec et augmentent nos connaissances physiopathologiques, par exemple concernant l'activation de la phosphorylase et PK. Par ailleurs, la combinaison d'altérations observées en 31P et 13C est différente de celle retrouvée dans d'autres myopathies métaboliques cliniquement semblables et pourrait être utilisée pour le diagnostic différentiel.

  17. In vivo regulation of muscle glycogen synthase and the control of glycogen synthesis.

    PubMed Central

    Shulman, R G; Bloch, G; Rothman, D L

    1995-01-01

    The activity of glycogen synthase (GSase; EC 2.4.1.11) is regulated by covalent phosphorylation. Because of this regulation, GSase has generally been considered to control the rate of glycogen synthesis. This hypothesis is examined in light of recent in vivo NMR experiments on rat and human muscle and is found to be quantitatively inconsistent with the data under conditions of glycogen synthesis. Our first experiments showed that muscle glycogen synthesis was slower in non-insulin-dependent diabetics compared to normals and that their defect was in the glucose transporter/hexokinase (GT/HK) part of the pathway. From these and other in vivo NMR results a quantitative model is proposed in which the GT/HK steps control the rate of glycogen synthesis in normal humans and rat muscle. The flux through GSase is regulated to match the proximal steps by "feed forward" to glucose 6-phosphate, which is a positive allosteric effector of all forms of GSase. Recent in vivo NMR experiments specifically designed to test the model are analyzed by metabolic control theory and it is shown quantitatively that the GT/HK step controls the rate of glycogen synthesis. Preliminary evidence favors the transporter step. Several conclusions are significant: (i) glucose transport/hexokinase controls the glycogen synthesis flux; (ii) the role of covalent phosphorylation of GSase is to adapt the activity of the enzyme to the flux and to control the metabolite levels not the flux; (iii) the quantitative data needed for inferring and testing the present model of flux control depended upon advances of in vivo NMR methods that accurately measured the concentration of glucose 6-phosphate and the rate of glycogen synthesis. Images Fig. 1 PMID:7567971

  18. In vitro inhibition of glycogen-degrading enzymes and glycosidases by six-membered sugar mimics and their evaluation in cell cultures.

    PubMed

    Kuriyama, Chinami; Kamiyama, Ogusa; Ikeda, Kyoko; Sanae, Fujiko; Kato, Atsushi; Adachi, Isao; Imahori, Tatsushi; Takahata, Hiroki; Okamoto, Tadashi; Asano, Naoki

    2008-08-01

    We investigated in vitro inhibition of mammalian carbohydrate-degrading enzymes by six-membered sugar mimics and their evaluation in cell cultures. 1-Deoxynojirimycin (DNJ) showed no significant inhibition toward glycogen phosphorylase (GP) but was a potent inhibitor of another glycogen-degrading enzyme, amylo-1,6-glucosidase (1,6-GL), with an IC(50) value of 0.16 microM. In primary rat hepatocytes, the inhibition of glycogen breakdown by DNJ reached plateau at 100 microM with 25% inhibition and then remained unchanged. The potent GP inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol (D-AB1) inhibited hepatic glucose production with an IC(50) value of about 9 microM and the inhibition by D-AB1 was further enhanced in the presence of DNJ. DNJ and alpha-homonojirimycin (HNJ) are very potent inhibitors of rat intestinal maltase, with IC(50) values of 0.13 and 0.08 microM, respectively, and also showed a similar strong inhibition toward maltase in Caco-2 cell model system, with IC(50) value of 0.05 and 0.10 microM, respectively. D-Isofagomine (D-IFG) and L-IFG are competitive and noncompetitive inhibitors of human lysosomal beta-glucosidase (beta-GL), respectively, with K(i) values of 8.4 nM and 6.9 microM. D-IFG increased intracellular beta-GL activity by twofold at 10 microM in Gaucher N370S cell line as an 'active-site-specific' chaperone, and surprisingly a noncompetitive inhibitor L-IFG also increased intracellular beta-GL activity by 1.6-fold at 500 microM.

  19. Isolation, crystallization and preliminary crystallographic analysis of Salmonella typhimurium uridine phosphorylase crystallized with 2,2′-anhydrouridine

    SciTech Connect

    Timofeev, Vladimir I.; Lashkov, Alexander A.; Gabdoulkhakov, Azat G.; Pavlyuk, Bogdan Ph.; Kachalova, Galina S.; Betzel, Christian

    2007-10-01

    S. typhimurium uridine phosphorylase has been isolated and crystallized in the presence of ligand. Uridine phosphorylase (UPh; EC 2.4.2.3) is a member of the pyrimidine nucleoside phosphorylase family of enzymes which catalyzes the phosphorolytic cleavage of the C—N glycoside bond of uridine, with the formation of ribose 1-phosphate and uracil. This enzyme has been shown to be important in the activation and catabolism of fluoropyrimidines. Modulation of its enzymatic activity may affect the therapeutic efficacy of chemotherapeutic agents. The structural investigation of the bacterial uridine phosphorylases, both unliganded and complexed with substrate/product analogues and inhibitors, may help in understanding the catalytic mechanism of the phosphorolytic cleavage of uridine. Salmonella typhimurium uridine phosphorylase has been crystallized with 2,2′-anhydrouridine. X-ray diffraction data were collected to 2.15 Å. Preliminary analysis of the diffraction data indicates that the crystal belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 88.52, b = 123.98, c = 133.52 Å. The solvent content is 45.51%, assuming the presence of one hexamer molecule per asymmetric unit.

  20. Isolation, characterization, and inactivation of the APA1 gene encoding yeast diadenosine 5',5'''-P1,P4-tetraphosphate phosphorylase.

    PubMed Central

    Plateau, P; Fromant, M; Schmitter, J M; Buhler, J M; Blanquet, S

    1989-01-01

    The gene encoding diadenosine 5',5'''-P1,P4-tetraphosphate (Ap4A) phosphorylase from yeast was isolated from a lambda gt11 library. The DNA sequence of the coding region was determined, and more than 90% of the deduced amino acid sequence was confirmed by peptide sequencing. The Ap4A phosphorylase gene (APA1) is unique in the yeast genome. Disruption experiments with this gene, first, supported the conclusion that, in vivo, Ap4A phosphorylase catabolizes the Ap4N nucleotides (where N is A, C, G, or U) and second, revealed the occurrence of a second Ap4A phosphorylase activity in yeast cells. Finally, evidence is provided that the APA1 gene product is responsible for most of the ADP sulfurylase activity in yeast extracts. Images PMID:2556364

  1. Constitutive glycogen synthase kinase-3α/β activity protects against chronic β-adrenergic remodelling of the heart

    PubMed Central

    Webb, Ian G.; Nishino, Yasuhiro; Clark, James E.; Murdoch, Colin; Walker, Simon J.; Makowski, Marcus R.; Botnar, Rene M.; Redwood, Simon R.; Shah, Ajay M.; Marber, Michael S.

    2010-01-01

    Aims Glycogen synthase kinase 3 (GSK-3) signalling is implicated in the growth of the heart during development and in response to stress. However, its precise role remains unclear. We set out to characterize developmental growth and response to chronic isoproterenol (ISO) stress in knockin (KI) mice lacking the critical N-terminal serines, 21 of GSK-3α and 9 of GSK-3β respectively, required for inactivation by upstream kinases. Methods and results Between 5 and 15 weeks, KI mice grew more rapidly, but normalized heart weight and contractile performance were similar to wild-type (WT) mice. Isolated hearts of both genotypes responded comparably to acute ISO infusion with increases in heart rate and contractility. In WT mice, chronic subcutaneous ISO infusion over 14 days resulted in cardiac hypertrophy, interstitial fibrosis, and impaired contractility, accompanied by foetal gene reactivation. These effects were all significantly attenuated in KI mice. Indeed, ISO-treated KI hearts demonstrated reversible physiological remodelling traits with increased stroke volume and a preserved contractile response to acute adrenergic stimulation. Furthermore, simultaneous pharmacological inhibition of GSK-3 in KI mice treated with chronic subcutaneous ISO recapitulated the adverse remodelling phenotype seen in WT hearts. Conclusion Expression of inactivation-resistant GSK-3α/β does not affect eutrophic myocardial growth but protects against pathological hypertrophy induced by chronic adrenergic stimulation, maintaining cardiac function and attenuating interstitial fibrosis. Accordingly, strategies to prevent phosphorylation of Ser-21/9, and consequent inactivation of GSK-3α/β, may enable a sustained cardiac response to chronic β-agonist stimulation while preventing pathological remodelling. PMID:20299330

  2. Glycogen Synthase Kinase 3β Is a Negative Regulator of Growth Factor-induced Activation of the c-Jun N-terminal Kinase*

    PubMed Central

    Liu, Shuying; Yu, Shuangxing; Hasegawa, Yutaka; LaPushin, Ruth; Xu, Hong-Ji; Woodgett, James R.; Mills, Gordon B.; Fang, Xianjun

    2016-01-01

    The c-Jun N-terminal kinase (JNK)/stress activated protein kinase is preferentially activated by stress stimuli. Growth factors, particularly ligands for G protein-coupled receptors, usually induce only modest JNK activation, although they may trigger marked activation of the related extracellular signal-regulated kinase. In the present study, we demonstrated that homozygous disruption of glycogen synthase kinase 3β (GSK-3β) dramatically sensitized mouse embryonic fibroblasts (MEFs) to JNK activation induced by lysophosphatidic acid (LPA) and sphingosine-1-phosphate, two prototype ligands for G protein-coupled receptors. To a lesser degree, a lack of GSK-3β also potentiated JNK activation in response to epidermal growth factor. In contrast, the absence of GSK-3β decreased UV light-induced JNK activation. The increased JNK activation induced by LPA in GSK-3β null MEFs was insufficient to trigger apoptotic cell death or growth inhibition. Instead, the increased JNK activation observed in GSK-3β−/− MEFs was associated with an increased proliferative response to LPA, which was reduced by the inhibition of JNK. Ectopic expression of GSK-3β in GSK-3β-negative MEFs restrained LPA-triggered JNK phosphorylation and induced a concomitant decrease in the mitogenic response to LPA compatible with GSK-3β through the inhibition of JNK activation, thus limiting LPA-induced cell proliferation. Mutation analysis indicated that GSK-3β kinase activity was required for GSK-3β to optimally inhibit LPA-stimulated JNK activation. Thus GSK-3β serves as a physiological switch to specifically repress JNK activation in response to LPA, sphingosine-1-phosphate, or the epidermal growth factor. These results reveal a novel role for GSK-3β in signal transduction and cellular responses to growth factors. PMID:15466414

  3. The activity of carbohydrate-degrading enzymes in the development of brood and newly emerged workers and drones of the Carniolan honeybee, Apis mellifera carnica.

    PubMed

    Żółtowska, Krystyna; Lipiński, Zbigniew; Łopieńska-Biernat, Elżbieta; Farjan, Marek; Dmitryjuk, Małgorzata

    2012-01-01

    The activity of glycogen Phosphorylase and carbohydrate hydrolyzing enzymes α-amylase, glucoamylase, trehalase, and sucrase was studied in the development of the Carniolan honey bee, Apis mellifera carnica Pollman (Hymenoptera: Apidae), from newly hatched larva to freshly emerged imago of worker and drone. Phosphorolytic degradation of glycogen was significantly stronger than hydrolytic degradation in all developmental stages. Developmental profiles of hydrolase activity were similar in both sexes of brood; high activity was found in unsealed larvae, the lowest in prepupae followed by an increase in enzymatic activity. Especially intensive increases in activity occurred in the last stage of pupae and newly emerged imago. Besides α-amylase, the activities of other enzymes were higher in drone than in worker broods. Among drones, activity of glucoamylase was particularly high, ranging from around three times higher in the youngest larvae to 13 times higher in the oldest pupae. This confirms earlier suggestions about higher rates of metabolism in drone broods than in worker broods.

  4. Phosphorylation of glycogen synthase kinase-3 and stimulation of T-cell factor signaling following activation of EP2 and EP4 prostanoid receptors by prostaglandin E2.

    PubMed

    Fujino, Hiromichi; West, Kimberly A; Regan, John W

    2002-01-25

    Recently we have shown that the FP(B) prostanoid receptor, a G-protein-coupled receptor that couples to Galpha(q), activates T-cell factor (Tcf)/lymphoid enhancer factor (Lef)-mediated transcriptional activation (Fujino, H., and Regan, J. W. (2001) J. Biol. Chem. 276, 12489-12492). We now report that the EP(2) and EP(4) prostanoid receptors, which couple to Galpha(s), also activate Tcf/Lef signaling. By using a Tcf/Lef-responsive luciferase reporter gene, transcriptional activity was stimulated approximately 10-fold over basal by 1 h of treatment with prostaglandin E(2) (PGE(2)) in HEK cells that were stably transfected with the human EP(2) and EP(4) receptors. This stimulation of reporter gene activity was accompanied by a PGE(2)-dependent increase in the phosphorylation of both glycogen synthase kinase-3 (GSK-3) and Akt kinase. H-89, an inhibitor of protein kinase A (PKA), completely blocked the agonist-dependent phosphorylation of GSK-3 in both EP(2)- and EP(4)-expressing cells. However, H-89 pretreatment only blocked PGE(2)-stimulated Lef/Tcf reporter gene activity by 20% in EP(4)-expressing cells compared with 65% inhibition in EP(2)-expressing cells. On the other hand wortmannin, an inhibitor of phosphatidylinositol 3-kinase, had the opposite effect and inhibited PGE(2)-stimulated reporter gene activity to a much greater extent in EP(4)-expressing cells as compared with EP(2)-expressing cells. These findings indicate that the activation of Tcf/Lef signaling by EP(2) receptors occurs primarily through a PKA-dependent pathway, whereas EP(4) receptors activate Tcf/Lef signaling mainly through a phosphatidylinositol 3-kinase-dependent pathway. This is the first indication of a fundamental difference in the signaling potential of EP(2) and EP(4) prostanoid receptors.

  5. Exercise training-induced adaptations associated with increases in skeletal muscle glycogen content.

    PubMed

    Manabe, Yasuko; Gollisch, Katja S C; Holton, Laura; Kim, Young-Bum; Brandauer, Josef; Fujii, Nobuharu L; Hirshman, Michael F; Goodyear, Laurie J

    2013-02-01

    Chronic exercise training results in numerous skeletal muscle adaptations, including increases in insulin sensitivity and glycogen content. To understand the mechanism leading to increased muscle glycogen, we studied the effects of exercise training on glycogen regulatory proteins in rat skeletal muscle. Female Sprague Dawley rats performed voluntary wheel running for 1, 4 or 7 weeks. After 7 weeks of training, insulin-stimulated glucose uptake was increased in epitrochlearis muscle. As compared with sedentary control rats, muscle glycogen did not change after 1 week of training, but increased significantly after 4 and 7 weeks. The increases in muscle glycogen were accompanied by elevated glycogen synthase activity and protein expression. To assess the regulation of glycogen synthase, we examined its major activator, protein phosphatase 1 (PP1), and its major deactivator, glycogen synthase kinase (GSK)-3. Consistent with glycogen synthase activity, PP1 activity was unchanged after 1 week of training but significantly increased after 4 and 7 weeks of training. Protein expression of R(GL)(G(M)), another regulatory PP1 subunit, significantly decreased after 4 and 7 weeks of training. Unlike PP1 activity, GSK-3 phosphorylation did not follow the pattern of glycogen synthase activity. The ~ 40% decrease in GSK-3α phosphorylation after 1 week of exercise training persisted until 7 weeks, and may function as a negative feedback mechanism in response to elevated glycogen. Our findings suggest that exercise training-induced increases in muscle glycogen content could be regulated by multiple mechanisms, including enhanced insulin sensitivity, glycogen synthase expression, allosteric activation of glycogen synthase, and PP1 activity.

  6. Nicotinamide riboside and nicotinic acid riboside salvage in fungi and mammals. Quantitative basis for Urh1 and purine nucleoside phosphorylase function in NAD+ metabolism.

    PubMed

    Belenky, Peter; Christensen, Kathryn C; Gazzaniga, Francesca; Pletnev, Alexandre A; Brenner, Charles

    2009-01-02

    NAD+ is a co-enzyme for hydride transfer enzymes and an essential substrate of ADP-ribose transfer enzymes and sirtuins, the type III protein lysine deacetylases related to yeast Sir2. Supplementation of yeast cells with nicotinamide riboside extends replicative lifespan and increases Sir2-dependent gene silencing by virtue of increasing net NAD+ synthesis. Nicotinamide riboside elevates NAD+ levels via the nicotinamide riboside kinase pathway and by a pathway initiated by splitting the nucleoside into a nicotinamide base followed by nicotinamide salvage. Genetic evidence has established that uridine hydrolase, purine nucleoside phosphorylase, and methylthioadenosine phosphorylase are required for Nrk-independent utilization of nicotinamide riboside in yeast. Here we show that mammalian purine nucleoside phosphorylase but not methylthioadenosine phosphorylase is responsible for mammalian nicotinamide riboside kinase-independent nicotinamide riboside utilization. We demonstrate that so-called uridine hydrolase is 100-fold more active as a nicotinamide riboside hydrolase than as a uridine hydrolase and that uridine hydrolase and mammalian purine nucleoside phosphorylase cleave nicotinic acid riboside, whereas the yeast phosphorylase has little activity on nicotinic acid riboside. Finally, we show that yeast nicotinic acid riboside utilization largely depends on uridine hydrolase and nicotinamide riboside kinase and that nicotinic acid riboside bioavailability is increased by ester modification.

  7. Insights into glycogen metabolism in Lactobacillus acidophilus: impact on carbohydrate metabolism, stress tolerance and gut retention.

    PubMed

    Goh, Yong Jun; Klaenhammer, Todd R

    2014-11-20

    In prokaryotic species equipped with glycogen metabolism machinery, the co-regulation of glycogen biosynthesis and degradation has been associated with the synthesis of energy storage compounds and various crucial physiological functions, including global cellular processes such as carbon and nitrogen metabolism, energy sensing and production, stress response and cell-cell communication. In addition, the glycogen metabolic pathway was proposed to serve as a carbon capacitor that regulates downstream carbon fluxes, and in some microorganisms the ability to synthesize intracellular glycogen has been implicated in host persistence. Among lactobacilli, complete glycogen metabolic pathway genes are present only in select species predominantly associated with mammalian hosts or natural environments. This observation highlights the potential involvement of glycogen biosynthesis in probiotic activities and persistence of intestinal lactobacilli in the human gastrointestinal tract. In this review, we summarize recent findings on (i) the presence and potential ecological distribution of glycogen metabolic pathways among lactobacilli, (ii) influence of carbon substrates and growth phases on glycogen metabolic gene expression and glycogen accumulation in L. acidophilus, and (iii) the involvement of glycogen metabolism on growth, sugar utilization and bile tolerance. Our present in vivo studies established the significance of glycogen biosynthesis on the competitive retention of L. acidophilus in the mouse intestinal tract, demonstrating for the first time that the ability to synthesize intracellular glycogen contributes to gut fitness and retention among probiotic microorganisms.

  8. Dorsomedial hindbrain catecholamine regulation of hypothalamic astrocyte glycogen metabolic enzyme protein expression: Impact of estradiol.

    PubMed

    Tamrakar, P; Shrestha, P K; Briski, K P

    2015-04-30

    The brain astrocyte glycogen reservoir is a vital energy reserve and, in the cerebral cortex, subject among other factors to noradrenergic control. The ovarian steroid estradiol potently stimulates nerve cell aerobic respiration, but its role in glial glycogen metabolism during energy homeostasis or mismatched substrate supply/demand is unclear. This study examined the premise that estradiol regulates hypothalamic astrocyte glycogen metabolic enzyme protein expression during normo- and hypoglycemia in vivo through dorsomedial hindbrain catecholamine (CA)-dependent mechanisms. Individual astrocytes identified in situ by glial fibrillary acidic protein immunolabeling were laser-microdissected from the ventromedial hypothalamic (VMH), arcuate hypothalamic (ARH), and paraventricular hypothalamic (PVH) nuclei and the lateral hypothalamic area (LHA) of estradiol (E)- or oil (O)-implanted ovariectomized (OVX) rats after insulin or vehicle injection, and pooled within each site. Stimulation [VMH, LHA] or suppression [PVH, ARH] of basal glycogen synthase (GS) protein expression by E was reversed in the former three sites by caudal fourth ventricular pretreatment with the CA neurotoxin 6-hydroxydopamine (6-OHDA). E diminished glycogen phosphorylase (GP) protein profiles by CA-dependent [VMH, PVH] or -independent mechanisms [LHA]. Insulin-induced hypoglycemia (IIH) increased GS expression in the PVH in OVX+E, but reduced this protein in the PVH, ARH, and LHA in OVX+O. Moreover, IIH augmented GP expression in the VMH, LHA, and ARH in OVX+E and in the ARH in OVX+O, responses that normalized by 6-OHDA. Results demonstrate site-specific effects of E on astrocyte glycogen metabolic enzyme expression in the female rat hypothalamus, and identify locations where dorsomedial hindbrain CA input is required for such action. Evidence that E correspondingly increases and reduces basal GS and GP in the VMH and LHA, but augments the latter protein during IIH suggests that E regulates

  9. Focal adhesion kinase-mediated activation of glycogen synthase kinase 3β regulates IL-33 receptor internalization and IL-33 signaling.

    PubMed

    Zhao, Jing; Wei, Jianxin; Bowser, Rachel K; Traister, Russell S; Fan, Ming-Hui; Zhao, Yutong

    2015-01-15

    IL-33, a relatively new member of the IL-1 cytokine family, plays a crucial role in allergic inflammation and acute lung injury. Long form ST2 (ST2L), the receptor for IL-33, is expressed on immune effector cells and lung epithelia and plays a critical role in triggering inflammation. We have previously shown that ST2L stability is regulated by the ubiquitin-proteasome system; however, its upstream internalization has not been studied. In this study, we demonstrate that glycogen synthase kinase 3β (GSK3β) regulates ST2L internalization and IL-33 signaling. IL-33 treatment induced ST2L internalization, and an effect was attenuated by inhibition or downregulation of GSK3β. GSK3β was found to interact with ST2L on serine residue 446 in response to IL-33 treatment. GSK3β binding site mutant (ST2L(S446A)) and phosphorylation site mutant (ST2L(S442A)) are resistant to IL-33-induced ST2L internalization. We also found that IL-33 activated focal adhesion kinase (FAK). Inhibition of FAK impaired IL-33-induced GSK3β activation and ST2L internalization. Furthermore, inhibition of ST2L internalization enhanced IL-33-induced cytokine release in lung epithelial cells. These results suggest that modulation of the ST2L internalization by FAK/GSK3β might serve as a unique strategy to lessen pulmonary inflammation.

  10. Nimbolide, a neem limonoid inhibits Phosphatidyl Inositol-3 Kinase to activate Glycogen Synthase Kinase-3β in a hamster model of oral oncogenesis

    PubMed Central

    Sophia, Josephraj; Kiran Kishore T., Kranthi; Kowshik, Jaganathan; Mishra, Rajakishore; Nagini, Siddavaram

    2016-01-01

    Glycogen synthase kinase-3β (GSK-3β), a serine/threonine kinase is frequently inactivated by the oncogenic signalling kinases PI3K/Akt and MAPK/ERK in diverse malignancies. The present study was designed to investigate GSK-3β signalling circuits in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model and the therapeutic potential of the neem limonoid nimbolide. Inactivation of GSK-3β by phosphorylation at serine 9 and activation of PI3K/Akt, MAPK/ERK and β-catenin was associated with increased cell proliferation and apoptosis evasion during stepwise evolution of HBP carcinomas. Administration of nimbolide inhibited PI3K/Akt signalling with consequent activation of GSK-3β thereby inducing trafficking of β-catenin away from the nucleus and enhancing the expression of miR-126 and let-7. Molecular docking studies confirmed interaction of nimbolide with PI3K, Akt, ERK and GSK-3β. Furthermore, nimbolide attenuated cell proliferation and induced apoptosis as evidenced by increased p-cyclin D1Thr286 and pro-apoptotic proteins. The present study has unravelled aberrant phosphorylation as a key determinant for oncogenic signalling and acquisition of cancer hallmarks in the HBP model. The study has also provided mechanistic insights into the chemotherapeutic potential of nimbolide that may be a useful addition to the armamentarium of natural compounds targeting PI3K for oral cancer treatment. PMID:26902162

  11. Protective Effects of Kaempferol against Myocardial Ischemia/Reperfusion Injury in Isolated Rat Heart via Antioxidant Activity and Inhibition of Glycogen Synthase Kinase-3β

    PubMed Central

    Zhou, Mingjie; Ren, Huanhuan; Han, Jichun; Wang, Wenjuan; Zheng, Qiusheng; Wang, Dong

    2015-01-01

    Objective. This study aimed to evaluate the protective effect of kaempferol against myocardial ischemia/reperfusion (I/R) injury in rats. Method. Left ventricular developed pressure (LVDP) and its maximum up/down rate (±dp/dtmax) were recorded as myocardial function. Infarct size was detected with 2,3,5-triphenyltetrazolium chloride staining. Cardiomyocyte apoptosis was determined using terminal deoxynucleotidyl nick-end labeling (TUNEL). The levels of creatine kinase (CK), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione/glutathione disulfide (GSH/GSSG) ratio, and tumor necrosis factor-alpha (TNF-α) were determined using enzyme linked immunosorbent assay (ELISA). Moreover, total glycogen synthase kinase-3β (GSK-3β), phospho-GSK-3β (P-GSK-3β), precaspase-3, cleaved caspase-3, and cytoplasm cytochrome C were assayed using Western blot analysis. Results. Pretreatment with kaempferol significantly improved the recovery of LVDP and ±dp/dtmax, as well as increased the levels of SOD and P-GSK-3β and GSH/GSSG ratio. However, the pretreatment reduced myocardial infarct size and TUNEL-positive cell rate, as well as decreased the levels of cleaved caspase-3, cytoplasm cytochrome C, CK, LDH, MDA, and TNF-α. Conclusion. These results suggested that kaempferol provides cardioprotection via antioxidant activity and inhibition of GSK-3β activity in rats with I/R. PMID:26265983

  12. The pharmacological chaperone AT2220 increases the specific activity and lysosomal delivery of mutant acid alpha-glucosidase, and promotes glycogen reduction in a transgenic mouse model of Pompe disease.

    PubMed

    Khanna, Richie; Powe, Allan C; Lun, Yi; Soska, Rebecca; Feng, Jessie; Dhulipala, Rohini; Frascella, Michelle; Garcia, Anadina; Pellegrino, Lee J; Xu, Su; Brignol, Nastry; Toth, Matthew J; Do, Hung V; Lockhart, David J; Wustman, Brandon A; Valenzano, Kenneth J

    2014-01-01

    Pompe disease is an inherited lysosomal storage disorder that results from a deficiency in acid α-glucosidase (GAA) activity due to mutations in the GAA gene. Pompe disease is characterized by accumulation of lysosomal glycogen primarily in heart and skeletal muscles, which leads to progressive muscle weakness. We have shown previously that the small molecule pharmacological chaperone AT2220 (1-deoxynojirimycin hydrochloride, duvoglustat hydrochloride) binds and stabilizes wild-type as well as multiple mutant forms of GAA, and can lead to higher cellular levels of GAA. In this study, we examined the effect of AT2220 on mutant GAA, in vitro and in vivo, with a primary focus on the endoplasmic reticulum (ER)-retained P545L mutant form of human GAA (P545L GAA). AT2220 increased the specific activity of P545L GAA toward both natural (glycogen) and artificial substrates in vitro. Incubation with AT2220 also increased the ER export, lysosomal delivery, proteolytic processing, and stability of P545L GAA. In a new transgenic mouse model of Pompe disease that expresses human P545L on a Gaa knockout background (Tg/KO) and is characterized by reduced GAA activity and elevated glycogen levels in disease-relevant tissues, daily oral administration of AT2220 for 4 weeks resulted in significant and dose-dependent increases in mature lysosomal GAA isoforms and GAA activity in heart and skeletal muscles. Importantly, oral administration of AT2220 also resulted in significant glycogen reduction in disease-relevant tissues. Compared to daily administration, less-frequent AT2220 administration, including repeated cycles of 4 or 5 days with AT2220 followed by 3 or 2 days without drug, respectively, resulted in even greater glycogen reductions. Collectively, these data indicate that AT2220 increases the specific activity, trafficking, and lysosomal stability of P545L GAA, leads to increased levels of mature GAA in lysosomes, and promotes glycogen reduction in situ. As such, AT2220 may

  13. Impairment of Liver Glycogen Storage in the db/db Animal Model of Type 2 Diabetes: A Potential Target for Future Therapeutics?

    PubMed

    Sullivan, Mitchell A; Harcourt, Brooke E; Xu, Ping; Forbes, Josephine M; Gilbert, Robert G

    2015-01-01

    After the discovery of the db gene in 1966, it was determined that a blood-borne satiety factor was produced excessively, but was not responded to, in db/db mice. This model for type 2 diabetes is widely used since it phenocopies human disease and its co-morbidities including obesity, progressive deterioration in glucose tolerance, hypertension and hyperlipidaemia. Db/db mice, unlike their non-diabetic controls, have consistently elevated levels of liver glycogen, most likely due to hyperphagia. In transmission electron micrographs, liver glycogen usually shows a composite cauliflower-like morphology of large "α particles" (with a wide range of sizes) made up of smaller "β particles" bound together. New studies have explored the size distribution of liver glycogen molecules and found that α particles in db/db mice are more chemically fragile than those in healthy mice, and can readily break apart to smaller β particles. There is evidence that smaller glycogen particles have a higher association with glycogen phosphorylase, a key enzyme involved in glycogen degradation, as well as being degraded more rapidly in vitro; therefore the inability to form stable large glycogen α particles is predicted to result in a faster, less controlled degradation into glucose. The implications of this for glycaemic control remain to be fully elucidated. However, "rescuing" the more fragile diabetic glycogen to decrease hepatic glucose output in type 2 diabetes, may provide a potential therapeutic target which is the subject of this review.

  14. Activation of the Wnt pathway through use of AR79, a glycogen synthase kinase 3β inhibitor, promotes prostate cancer growth in soft tissue and bone

    PubMed Central

    Jiang, Yuan; Dai, Jinlu; Zhang, Honglai; Sottnik, Joe L.; Keller, Jill M.; Escott, Katherine J.; Sanganee, Hitesh J.; Yao, Zhi; McCauley, Laurie K.; Keller, Evan T.

    2013-01-01

    Due to its bone anabolic activity, methods to increase Wnt activity, such as inhibitors of dickkopf-1 and sclerostin, are being clinically explored. Glycogen synthase kinase (GSK3β) inhibits Wnt signaling through inducing β-catenin degradation. Therefore, AR79, an inhibitor of GSK3β, is being evaluated as a bone anabolic agent. However, Wnt activation has potential to promote tumor growth. The goal of this study was to determine if AR79 impacted progression of prostate cancer (PCa). PCa tumors were established in subcutaneous and bone sites of mice followed by AR79 administration. Tumor growth, β-catenin activation, proliferation (Ki67 expression) and apoptosis (caspase 3 activity) were measured. Additionally, PCa and osteoblast cell lines were treated with AR79 and β-catenin status, proliferation (with β-catenin knocked down in some cases) and proportion of the ALDH+CD133+ stem-like cells was determined. AR79 promoted PCa growth, decreased phospho-β-catenin expression and increased total and nuclear β-catenin expression in tumors and increased tumor-induced bone remodeling. Additionally, it decreased caspase 3 and increased Ki67 expression. In addition, AR79 increased bone formation in normal mouse tibiae. AR79 inhibited β-catenin phosphorylation, increased nuclear β-catenin accumulation in PCa and osteoblast cell lines and increased proliferation of PCa cells in vitro through β-catenin. Furthermore, AR79 increased the ALDH+CD133+ cancer stem cell-like proportion of the PCa cell lines. We conclude that AR79, while being bone anabolic, promotes PCa cell growth through Wnt pathway activation. PMID:24088787

  15. Glycogen synthase kinase 3{beta} regulation of nuclear factor of activated T-cells isoform c1 in the vascular smooth muscle cell response to injury

    SciTech Connect

    Chow Winsion; Hou Guangpei; Bendeck, Michelle P.

    2008-10-01

    The migration and proliferation of vascular smooth muscle cells (vSMCs) are critical events in neointima formation during atherosclerosis and restenosis. The transcription factor nuclear factor of activated T-cells-isoform c1 (NFATc1) is regulated by atherogenic cytokines, and has been implicated in the migratory and proliferative responses of vSMCs through the regulation of gene expression. In T-cells, calcineurin de-phosphorylates NFATc1, leading to its nuclear import, while glycogen synthase kinase 3 {beta} (GSK3{beta}) phosphorylates NFATc1 and promotes its nuclear export. However, the relationship between NFATc1 and GSK3{beta} has not been studied during SMC migration and proliferation. We investigated this by scrape wounding vSMCs in vitro, and studying wound repair. NFATc1 protein was transiently increased, reaching a peak at 8 h after wounding. Cell fractionation and immunocytochemistry revealed that NFATc1 accumulation in the nucleus was maximal at 4 h after injury, and this was coincident with a significant 9 fold increase in transcriptional activity. Silencing NFATc1 expression with siRNA or inhibition of NFAT with cyclosporin A (CsA) attenuated wound closure by vSMCs. Phospho-GSK3{beta} (inactive) increased to a peak at 30 min after injury, preceding the nuclear accumulation of NFATc1. Overexpression of a constitutively active mutant of GSK3{beta} delayed the nuclear accumulation of NFATc1, caused a 50% decrease in NFAT transcriptional activity, and attenuated vSMC wound repair. We conclude that NFATc1 promotes the vSMC response to injury, and that inhibition of GSK3{beta} is required for the activation of NFAT during wound repair.

  16. Endoplasmic reticulum stress-activated glycogen synthase kinase 3β aggravates liver inflammation and hepatotoxicity in mice with acute liver failure.

    PubMed

    Ren, Feng; Zhou, Li; Zhang, Xiangying; Wen, Tao; Shi, Hongbo; Xie, Bangxiang; Li, Zhuo; Chen, Dexi; Wang, Zheling; Duan, Zhongping

    2015-01-01

    Endoplasmic reticulum stress (ER stress) has been increasingly recognized as an important mechanism in various liver diseases. However, its intrinsic physiological role in acute liver failure (ALF) remains largely undetermined. This study aimed to examine how ER stress orchestrates glycogen synthase kinase 3β (GSK3β) and inflammation to affect ALF. In a murine ALF model induced by D-galactosamine (D-GalN) and lipopolysaccharide (LPS), 4-phenylbutyric acid (4-PBA) is to be administered to relieve ER stress. The lethality rate, liver damage, cytokine expression, and the activity of GSK3β were evaluated. How to regulate LPS-induced inflammation and TNF-α-induced hepatocyte apoptosis by ER stress was investigated in vitro. In vivo, ER stress was triggered in the liver with the progression of mice ALF model. ER stress was essential for the development of ALF because ER stress inhibition by 4-PBA ameliorated the liver damage through decreasing liver inflammation and hepatocyte apoptosis. 4-PBA also decreased GSK3β activity in the livers of ALF mice. In vitro, ER stress induced by tunicamycin synergistically increased LPS-triggered pro-inflammatory cytokine induction and promoted the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathway in bone marrow-derived macrophages; moreover, tunicamycin also cooperated with TNF-α to increase hepatocyte apoptosis. ER stress promoted LPS-triggered inflammation depending on GSK3β activation because inhibition of GSK3β by SB216763, the specific inhibitor of GSK3β, resulted in downregulation of pro-inflammatory genes. ER stress contributes to liver inflammation and hepatotoxicity in ALF, particularly by regulating GSK3β, and is therefore a potential therapeutic target for ALF.

  17. Maintained activity of glycogen synthase kinase-3{beta} despite of its phosphorylation at serine-9 in okadaic acid-induced neurodegenerative model

    SciTech Connect

    Lim, Yong-Whan; Yoon, Seung-Yong; Choi, Jung-Eun; Kim, Sang-Min; Lee, Hui-Sun; Choe, Han; Lee, Seung-Chul; Kim, Dong-Hou

    2010-04-30

    Glycogen synthase kinase-3{beta} (GSK3{beta}) is recognized as one of major kinases to phosphorylate tau in Alzheimer's disease (AD), thus lots of AD drug discoveries target GSK3{beta}. However, the inactive form of GSK3{beta} which is phosphorylated at serine-9 is increased in AD brains. This is also inconsistent with phosphorylation status of other GSK3{beta} substrates, such as {beta}-catenin and collapsin response mediator protein-2 (CRMP2) since their phosphorylation is all increased in AD brains. Thus, we addressed this paradoxical condition of AD in rat neurons treated with okadaic acid (OA) which inhibits protein phosphatase-2A (PP2A) and induces tau hyperphosphorylation and cell death. Interestingly, OA also induces phosphorylation of GSK3{beta} at serine-9 and other substrates including tau, {beta}-catenin and CRMP2 like in AD brains. In this context, we observed that GSK3{beta} inhibitors such as lithium chloride and 6-bromoindirubin-3'-monoxime (6-BIO) reversed those phosphorylation events and protected neurons. These data suggest that GSK3{beta} may still have its kinase activity despite increase of its phosphorylation at serine-9 in AD brains at least in PP2A-compromised conditions and that GSK3{beta} inhibitors could be a valuable drug candidate in AD.

  18. Glycogen synthase kinase 3β dictates podocyte motility and focal adhesion turnover by modulating paxillin activity: implications for the protective effect of low-dose lithium in podocytopathy.

    PubMed

    Xu, Weiwei; Ge, Yan; Liu, Zhihong; Gong, Rujun

    2014-10-01

    Aberrant focal adhesion turnover is centrally involved in podocyte actin cytoskeleton disorganization and foot process effacement. The structural and dynamic integrity of focal adhesions is orchestrated by multiple cell signaling molecules, including glycogen synthase kinase 3β (GSK3β), a multitasking kinase lately identified as a mediator of kidney injury. However, the role of GSK3β in podocytopathy remains obscure. In doxorubicin (Adriamycin)-injured podocytes, lithium, a GSK3β inhibitor and neuroprotective mood stabilizer, obliterated the accelerated focal adhesion turnover, rectified podocyte hypermotility, and restored actin cytoskeleton integrity. Mechanistically, lithium counteracted the doxorubicin-elicited GSK3β overactivity and the hyperphosphorylation and overactivation of paxillin, a focal adhesion-associated adaptor protein. Moreover, forced expression of a dominant negative kinase dead mutant of GSK3β highly mimicked, whereas ectopic expression of a constitutively active GSK3β mutant abolished, the effect of lithium in doxorubicin-injured podocytes, suggesting that the effect of lithium is mediated, at least in part, through inhibition of GSK3β. Furthermore, paxillin interacted with GSK3β and served as its substrate. In mice with doxorubicin nephropathy, a single low dose of lithium ameliorated proteinuria and glomerulosclerosis. Consistently, lithium therapy abrogated GSK3β overactivity, blunted paxillin hyperphosphorylation, and reinstated actin cytoskeleton integrity in glomeruli associated with an early attenuation of podocyte foot process effacement. Thus, GSK3β-modulated focal adhesion dynamics might serve as a novel therapeutic target for podocytopathy.

  19. Allosteric regulation of glycogen synthase in liver. A physiological dilemma.

    PubMed

    Nuttall, F Q; Gannon, M C

    1993-06-25

    Glycogen synthase catalyzes the transfer of the glucosyl moiety from UDP-glucose to the terminal branch of the glycogen molecule and is considered to be the rate-limiting enzyme for glycogen synthesis. However, under ideal assay conditions, i.e. 37 degrees C with saturating concentrations of UDP-glucose and the activator, glucose-6-P, the maximal catalytic activity of glycogen synthase was only 78% of the in vivo glycogen synthetic rate. Using concentrations of UDP-glucose and glucose-6-P likely to be present in vivo, the rate was only approximately 30%. This prompted us to reassess a possible role of allosteric effectors on synthase activity. Glycogen synthase was assayed at 37 degrees C using dilute, pH 7.0, buffered extracts, initial rate conditions, and UDP-glucose and glucose-6-P concentrations, which approximate those calculated to be present in total liver cell water. Several allosteric effectors were tested. Magnesium and AMP had little effect on activity. Pi, ADP, ATP, and UTP inhibited activity. When a combination of effectors were added at concentrations approximating those present in cell water, synthase activity could account for only 2% of the glycogen synthetic rate. Thus, although allosteric effectors are likely to be playing a major role in regulating synthase enzymic activity in liver cells, to date, a metabolite that can stimulate activity and/or overcome nucleotide inhibition has yet to be identified. If such a metabolite cannot be identified, an additional or alternative pathway for glycogen synthesis must be considered.

  20. Glycogen synthase kinase 3 activation is important for anthrax edema toxin-induced dendritic cell maturation and anthrax toxin receptor 2 expression in macrophages.

    PubMed

    Larabee, Jason L; Maldonado-Arocho, Francisco J; Pacheco, Sergio; France, Bryan; DeGiusti, Kevin; Shakir, Salika M; Bradley, Kenneth A; Ballard, Jimmy D

    2011-08-01

    Anthrax edema toxin (ET) is one of two binary toxins produced by Bacillus anthracis that contributes to the virulence of this pathogen. ET is an adenylate cyclase that generates high levels of cyclic AMP (cAMP), causing alterations in multiple host cell signaling pathways. We previously demonstrated that ET increases cell surface expression of the anthrax toxin receptors (ANTXR) in monocyte-derived cells and promotes dendritic cell (DC) migration toward the lymph node-homing chemokine MIP-3β. In this work, we sought to determine if glycogen synthase kinase 3 (GSK-3) is important for ET-induced modulation of macrophage and DC function. We demonstrate that inhibition of GSK-3 dampens ET-induced maturation and migration processes of monocyte-derived dendritic cells (MDDCs). Additional studies reveal that the ET-induced expression of ANTXR in macrophages was decreased when GSK-3 activity was disrupted with chemical inhibitors or with small interfering RNA (siRNA) targeting GSK-3. Further examination of the ET induction of ANTXR revealed that a dominant negative form of CREB could block the ET induction of ANTXR, suggesting that CREB or a related family member was involved in the upregulation of ANTXR. Because CREB and GSK-3 activity appeared to be important for ET-induced ANTXR expression, the impact of GSK-3 on ET-induced CREB activity was examined in RAW 264.7 cells possessing a CRE-luciferase reporter. As with ANTXR expression, the ET induction of the CRE reporter was decreased by reducing GSK-3 activity. These studies not only provide insight into host pathways targeted by ET but also shed light on interactions between GSK-3 and CREB pathways in host immune cells.

  1. PGC-1α Induces Mitochondrial and Myokine Transcriptional Programs and Lipid Droplet and Glycogen Accumulation in Cultured Human Skeletal Muscle Cells

    PubMed Central

    Mormeneo, Emma; Jimenez-Mallebrera, Cecilia; Palomer, Xavier; De Nigris, Valeria; Vázquez-Carrera, Manuel; Orozco, Anna; Nascimento, Andrés; Colomer, Jaume; Lerín, Carles; Gómez-Foix, Anna M.

    2012-01-01

    The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) is a chief activator of mitochondrial and metabolic programs and protects against atrophy in skeletal muscle (skm). Here we tested whether PGC-1α overexpression could restructure the transcriptome and metabolism of primary cultured human skm cells, which display a phenotype that resembles the atrophic phenotype. An oligonucleotide microarray analysis was used to reveal the effects of PGC-1α on the whole transcriptome. Fifty-three different genes showed altered expression in response to PGC-1α: 42 upregulated and 11 downregulated. The main gene ontologies (GO) associated with the upregulated genes were mitochondrial components and processes and this was linked with an increase in COX activity, an indicator of mitochondrial content. Furthermore, PGC-1α enhanced mitochondrial oxidation of palmitate and lactate to CO2, but not glucose oxidation. The other most significantly associated GOs for the upregulated genes were chemotaxis and cytokine activity, and several cytokines, including IL-8/CXCL8, CXCL6, CCL5 and CCL8, were within the most highly induced genes. Indeed, PGC-1α highly increased IL-8 cell protein content. The most upregulated gene was PVALB, which is related to calcium signaling. Potential metabolic regulators of fatty acid and glucose storage were among mainly regulated genes. The mRNA and protein level of FITM1/FIT1, which enhances the formation of lipid droplets, was raised by PGC-1α, while in oleate-incubated cells PGC-1α increased the number of smaller lipid droplets and modestly triglyceride levels, compared to controls. CALM1, the calcium-modulated δ subunit of phosphorylase kinase, was downregulated by PGC-1α, while glycogen phosphorylase was inactivated and glycogen storage was increased by PGC-1α. In conclusion, of the metabolic transcriptome deficiencies of cultured skm cells, PGC-1α rescued the expression of genes encoding

  2. Regulation of glycogen metabolism in yeast and bacteria

    PubMed Central

    Wilson, Wayne A.; Roach, Peter J.; Montero, Manuel; Baroja-Fernández, Edurne; Muñoz, Francisco José; Eydallin, Gustavo; Viale, Alejandro M.; Pozueta-Romero, Javier

    2010-01-01

    Microorganisms have the capacity to utilize a variety of nutrients and adapt to continuously changing environmental conditions. Many microorganisms, including yeast and bacteria, accumulate carbon and energy reserves to cope with starvation conditions temporarily present in the environment. Glycogen biosynthesis is a main strategy for such metabolic storage and a variety of sensing and signaling mechanisms have evolved in evolutionarily distant species to guarantee the production of this homopolysaccharide. At the most fundamental level, the processes of glycogen synthesis and degradation in yeast and bacteria share certain broad similarities. However, the regulation of these processes is sometimes quite distinct, indicating that they have evolved separately to respond optimally to the habitat conditions of each species. This review aims to highlight the mechanisms, both at the transcriptional and post-transcriptional levels, which regulate glycogen metabolism in yeast and bacteria, focusing on selected areas where the greatest increase in knowledge has occurred during the last few years. In the yeast system, we focus particularly on the various signaling pathways that control the activity of the enzymes of glycogen storage. We also discuss our recent understanding of the important role played by the vacuole in glycogen metabolism. In the case of bacterial glycogen, especial emphasis is given to aspects related with genetic regulation of glycogen metabolism and its connection with other biological processes. PMID:20412306

  3. Single tryptophan of disordered loop from Plasmodium falciparum purine nucleoside phosphorylase: involvement in catalysis and microenvironment.

    PubMed

    Suthar, Manish Kumar; Verma, Anita; Doharey, Pawan Kumar; Singh, Shiv Vardan; Saxena, Jitendra Kumar

    2013-06-01

    Among various tropical diseases, malaria is a major life-threatening disease caused by Plasmodium parasite. Plasmodium falciparum is responsible for the deadliest form of malaria, so-called cerebral malaria. Purine nucleoside phosphorylase from P. falciparum is a homohexamer containing single tryptophan residue per subunit that accepts inosine and guanosine but not adenosine for its activity. This enzyme has been exploited as drug target against malaria disease. It is important to draw together significant knowledge about inherent properties of this enzyme which will be helpful in better understanding of this drug target. The enzyme shows disorder to order transition during catalysis. The single tryptophan residue residing in conserved region of transition loop is present in purine nucleoside phosphorylases throughout the Plasmodium genus. This active site loop motif is conserved among nucleoside phosphorylases from apicomplexan parasites. Modification of tryptophan residue by N-bromosuccinamide resulted in complete loss of activity showing its importance in catalysis. Inosine was not able to protect enzyme against N-bromosuccinamide modification. Extrinsic fluorescence studies revealed that tryptophan might not be involved in substrate binding. The tryptophan residue localised in electronegative environment showed collisional and static quenching in the presence of quenchers of different polarities.

  4. Purification, crystallization, and preliminary X-ray diffraction study of purine nucleoside phosphorylase from E. coli

    SciTech Connect

    Abramchik, Yu. A. Timofeev, V. I. Zhukhlistova, N. E.; Muravieva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2015-07-15

    Crystals of E. coli purine nucleoside phosphorylase were grown in microgravity by the capillary counter-diffusion method through a gel layer. The X-ray diffraction data set suitable for the determination of the three-dimensional structure at atomic resolution was collected from one crystal at the Spring-8 synchrotron facility to 0.99 Å resolution. The crystals belong to sp. gr. P2{sub 1} and have the following unit-cell parameters: a = 74.1 Å, b = 110.2 Å, c = 88.2 Å, α = γ = 90°, β = 111.08°. The crystal contains six subunits of the enzyme comprising a hexamer per asymmetric unit. The hexamer is the biological active form of E. coli. purine nucleoside phosphorylase.

  5. Purification, crystallization, and preliminary X-ray diffraction study of purine nucleoside phosphorylase from E. coli

    NASA Astrophysics Data System (ADS)

    Abramchik, Yu. A.; Timofeev, V. I.; Zhukhlistova, N. E.; Muravieva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2015-07-01

    Crystals of E. coli purine nucleoside phosphorylase were grown in microgravity by the capillary counter-diffusion method through a gel layer. The X-ray diffraction data set suitable for the determination of the three-dimensional structure at atomic resolution was collected from one crystal at the Spring-8 synchrotron facility to 0.99 Å resolution. The crystals belong to sp. gr. P21 and have the following unit-cell parameters: a = 74.1 Å, b = 110.2 Å, c = 88.2 Å, α = γ = 90°, β = 111.08°. The crystal contains six subunits of the enzyme comprising a hexamer per asymmetric unit. The hexamer is the biological active form of E. coli. purine nucleoside phosphorylase.

  6. Ameliorating effect of betanin, a natural chromoalkaloid by modulating hepatic carbohydrate metabolic enzyme activities and glycogen content in streptozotocin - nicotinamide induced experimental rats.

    PubMed

    Dhananjayan, Indumathi; Kathiroli, Sujithra; Subramani, Srinivasan; Veerasamy, Vinothkumar

    2017-04-01

    Betanin, a chromoalkaloid of beetroot, has shown significant biological effects of antioxidants, anti-inflammatory and anticarcinogenic activities. So, we attempted to determine whether betanin (a natural pigment) would be protective against hyperglycemia in streptozotocin (STZ) - nicotinamide (NA) induced diabetic rats. Rats were injected with STZ (40mg/kgb.w.) 15 mins after the administration of NA (110mg/kgb.w.) by intraperitonially (i.p.) 30days for the induction of experimental diabetes mellitus. After 72h diabetic rats were treated with betanin orally at a doses of 10, 20 and 40mg/kg b.w., respectively in a dose dependent manner and glibenclamide (600μg/kgb.w.). The promising character of betanin against diabetic rats was evaluated by performing the various biochemical parameters and histomorphological changes in liver and pancreas. Among the three doses, 20mg/kgb.w. of betanin was able to positively regulate plasma glucose, insulin, glycosylated hemoglobin (HbA1c) and hemoglobin (Hb) levels by significantly increasing the activity of glycolytic enzyme (glucokinase and pyruvate kinase), glucose-6-phosphate dehydrogenase and significantly decreasing the activity of gluconeogenic enzymes (glucose-6-phosphatase and fructose-1,6-bisphosphatase) thereby increasing the glycogen content in the liver. We put forward that betanin could significantly restore the levels of carbohydrate metabolic key enzymes to near normal in diabetic rat. Immunohistochemical observation of pancreas revealed that betanin treated diabetic rats showed increased insulin immunoreactive β-cells, which confirmed the biochemical findings. Taken together, present study suggests that betanin modulates the carbohydrate metabolism and has beneficial effects in glucose homeostasis.

  7. Constitutive activation of glycogen synthase kinase-3β correlates with better prognosis and cyclin-dependent kinase inhibitors in human gastric cancer

    PubMed Central

    2010-01-01

    Background Aberrant regulation of glycogen synthase kinase-3β (GSK-3β) has been implicated in several human cancers; however, it has not been reported in the gastric cancer tissues to date. The present study was performed to determine the expression status of active form of GSK-3β phosphorylated at Tyr216 (pGSK-3β) and its relationship with other tumor-associated proteins in human gastric cancers. Methods Immunohistochemistry was performed on tissue array slides containing 281 human gastric carcinoma specimens. In addition, gastric cancer cells were cultured and treated with a GSK-3β inhibitor lithium chloride (LiCl) for immunoblot analysis. Results We found that pGSK-3β was expressed in 129 (46%) of 281 cases examined, and was higher in the early-stages of pathologic tumor-node-metastasis (P < 0.001). The expression of pGSK-3β inversely correlated with lymphatic invasion (P < 0.001) and lymph node metastasis (P < 0.001) and correlated with a longer patient survival (P < 0.001). In addition, pGSK-3β expression positively correlated with that of p16, p21, p27, p53, APC, PTEN, MGMT, SMAD4, or KAI1 (P < 0.05), but not with that of cyclin D1. This was confirmed by immunoblot analysis using SNU-668 gastric cancer cells treated with LiCl. Conclusions GSK-3β activation was frequently observed in early-stage gastric carcinoma and was significantly correlated with better prognosis. Thus, these findings suggest that GSK-3β activation is a useful prognostic marker for the early-stage gastric cancer. PMID:20704706

  8. Crystal Structure of Full-length Mycobacterium tuberculosis H37Rv Glycogen Branching Enzyme; Insights of N-Terminal [beta]-Sandwich in Sustrate Specifity and Enzymatic Activity

    SciTech Connect

    Pal, Kuntal; Kumar, Shiva; Sharma, Shikha; Garg, Saurabh Kumar; Alam, Mohammad Suhail; Xu, H. Eric; Agrawal, Pushpa; Swaminathan, Kunchithapadam

    2010-07-13

    The open reading frame Rv1326c of Mycobacterium tuberculosis (Mtb) H37Rv encodes for an {alpha}-1,4-glucan branching enzyme (MtbGlgB, EC 2.4.1.18, Uniprot entry Q10625). This enzyme belongs to glycoside hydrolase (GH) family 13 and catalyzes the branching of a linear glucose chain during glycogenesis by cleaving a 1 {yields} 4 bond and making a new 1 {yields} 6 bond. Here, we show the crystal structure of full-length MtbGlgB (MtbGlgBWT) at 2.33-{angstrom} resolution. MtbGlgBWT contains four domains: N1 {beta}-sandwich, N2 {beta}-sandwich, a central ({beta}/{alpha}){sub 8} domain that houses the catalytic site, and a C-terminal {beta}-sandwich. We have assayed the amylase activity with amylose and starch as substrates and the glycogen branching activity using amylose as a substrate for MtbGlgBWT and the N1 domain-deleted (the first 108 residues deleted) Mtb{Delta}108GlgB protein. The N1 {beta}-sandwich, which is formed by the first 105 amino acids and superimposes well with the N2 {beta}-sandwich, is shown to have an influence in substrate binding in the amylase assay. Also, we have checked and shown that several GH13 family inhibitors are ineffective against MtbGlgBWT and Mtb{Delta}108GlgB. We propose a two-step reaction mechanism, for the amylase activity (1 {yields} 4 bond breakage) and isomerization (1 {yields} 6 bond formation), which occurs in the same catalytic pocket. The structural and functional properties of MtbGlgB and Mtb{Delta}108GlgB are compared with those of the N-terminal 112-amino acid-deleted Escherichia coli GlgB (EC{Delta}112GlgB).

  9. Glucose uptake and glycogen synthesis in muscles from immobilized limbs

    NASA Technical Reports Server (NTRS)

    Nicholson, W. F.; Watson, P. A.; Booth, F. W.

    1984-01-01

    Defects in glucose metabolism in muscles of immobilized limbs of mice were related to alterations in insulin binding, insulin responsiveness, glucose supply, and insulin activation of glycogen synthase. These were tested by in vitro methodology. A significant lessening in the insulin-induced maximal response of 2-deoxyglucose uptake into the mouse soleus muscle occurred between the 3rd and 8th h of limb immobilization, suggesting a decreased insulin responsiveness. Lack of change in the specific binding of insulin to muscles of 24-h immobilized limbs indicates that a change in insulin receptor number did not play a role in the failure of insulin to stimulate glucose metabolism. Its inability to stimulate glycogen synthesis in muscle from immobilized limbs is due, in part, to a lack of glucose supply to glycogen synthesis and also to the ineffectiveness of insulin to increase the percentage of glycogen synthase in its active form in muscles from 24-h immobilized limbs.

  10. Immobilized phosphorylase for synthesis of polysaccharides from glucose

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1972-01-01

    Continuous processes for enzymatic production of carbohydrates from glucose are discussed. Key reactant in process is identified as phosphorylase which catalyzes reversible formation or degradation of polysaccharide. Chemical compounds and reactions to synthesize polysaccharides are analyzed.

  11. Physiological and drug-induced changes in the glycogen content of mouse brain

    PubMed Central

    Hutchins, D. A.; Rogers, K. J.

    1970-01-01

    1. The effect of the method of killing on the concentration of glycogen in mouse brain was determined. The cerebral glycogen content of mice killed by immersion in liquid nitrogen did not differe significantly from that of animals decapitated and the heads immediately frozen. A delay before freezing led to the rapid loss of brain glycogen, with a 17% fall at 10 s and an 82% loss after 5 min. 2. Hyperglycaemia, induced by the administration of D-glucose, resulted in an 8·3% loss of brain glycogen after 120 min. Insulin hypoglycaemia produced a 10·7% fall in glycogen at 60 min followed by an 11·2% increase at 120 min. 3. Exposure to either high (32° C) or low (10° C) ambient temperatures caused a depletion of brain glycogen. 4. A circadian rhythm of brain glycogen concentration was found, with a nadir which was coincident with the peak of locomotor activity and body temperature. 5. Drugs from several pharmacological classes were studied for their in vivo effect on the concentration of glycogen in mouse brain. 6. Brain glycogen was increased by all the depressant drugs tested, and by some drugs which had little effect on behaviour (diphenhydramine, phenytoin and propranolol), or which caused excitation (caffeine and nialamide). 7. Glycogen was depleted only by amphetamine-like compounds or by bemegride-induced convulsions. 8. The results are discussed with particular reference to the possible relation between catecholamines and glycogen metabolism in the brain. PMID:5420149

  12. alpha-1,4-D-glucan phosphorylase of gram-positive Corynebacterium callunae: isolation, biochemical properties and molecular shape of the enzyme from solution X-ray scattering.

    PubMed Central

    Weinhäusel, A; Griessler, R; Krebs, A; Zipper, P; Haltrich, D; Kulbe, K D; Nidetzky, B

    1997-01-01

    The alpha-1,4-D-glucan phosphorylase from gram-positive Corynebacterium callunae has been isolated and characterized. The enzyme is inducible approx. 2-fold by maltose, but remarkably not repressed by D-glucose. The phosphorylase is a homodimer with a stoichiometric content of the cofactor pyridoxal 5'-phosphate per 88-kDa protein subunit. The specificity constants (kcat/Km, glucan) in the directions of glucan synthesis and degradation are used for the classification of the enzyme as the first bacterial starch phosphorylase. A preference for large over small substrates is determined by variations in the apparent binding constants rather than catalytic-centre activities. The contribution of substrate chain length to binding energy is explained assuming two glucan binding sites in C. callunae phosphorylase: an oligosaccharide binding site composed of five subsites and a high-affinity polysaccharide site separated from the active site. A structural model of the molecular shape of the phosphorylase was obtained from small-angle solution X-ray scattering measurements. A flat, slightly elongated, ellipsoidal model with the three axes related to each other as 1:(0.87-0.95):0.43 showed scattering equivalence with the enzyme molecule. The model of C. callunae phosphorylase differs from the structurally well-characterized rabbit-muscle phosphorylase in size and axial dimensions. PMID:9307027

  13. Isolation, crystallization and preliminary crystallographic analysis of Salmonella typhimurium uridine phosphorylase crystallized with 2,2′-anhydrouridine

    PubMed Central

    Timofeev, Vladimir I.; Lashkov, Alexander A.; Gabdoulkhakov, Azat G.; Pavlyuk, Bogdan Ph.; Kachalova, Galina S.; Betzel, Christian; Morgunova, Ekaterina Yu.; Zhukhlistova, Nadezhda E.; Mikhailov, Al’bert M.

    2007-01-01

    Uridine phosphorylase (UPh; EC 2.4.2.3) is a member of the pyrimidine nucleoside phosphorylase family of enzymes which catalyzes the phosphorolytic cleavage of the C—N glycoside bond of uridine, with the formation of ribose 1-­phosphate and uracil. This enzyme has been shown to be important in the activation and catabolism of fluoropyrimidines. Modulation of its enzymatic activity may affect the therapeutic efficacy of chemotherapeutic agents. The structural investigation of the bacterial uridine phosphorylases, both unliganded and complexed with substrate/product analogues and inhibitors, may help in understanding the catalytic mechanism of the phosphorolytic cleavage of uridine. Salmonella typhimurium uridine phosphorylase has been crystallized with 2,2′-anhydrouridine. X-ray diffraction data were collected to 2.15 Å. Preliminary analysis of the diffraction data indicates that the crystal belongs to space group P212121, with unit-cell parameters a = 88.52, b = 123.98, c = 133.52 Å. The solvent content is 45.51%, assuming the presence of one hexamer molecule per asymmetric unit. PMID:17909287

  14. Structure determination of glycogen synthase kinase-3 from Leishmania major and comparative inhibitor structure-activity relationships with Trypanosoma brucei GSK-3

    SciTech Connect

    Ojo, Kayode K; Arakaki, Tracy L; Napuli, Alberto J; Inampudi, Krishna K; Keyloun, Katelyn R; Zhang, Li; Hol, Wim G.J.; Verlind, Christophe L.M.J.; Merritt, Ethan A; Van Voorhis, Wesley C

    2012-04-24

    Glycogen synthase kinase-3 (GSK-3) is a drug target under intense investigation in pharmaceutical companies and constitutes an attractive piggyback target for eukaryotic pathogens. Two different GSKs are found in trypanosomatids, one about 150 residues shorter than the other. GSK-3 short (GeneDB: Tb927.10.13780) has previously been validated genetically as a drug target in Trypanosoma brucei by RNAi induced growth retardation; and chemically by correlation between enzyme and in vitro growth inhibition. Here, we report investigation of the equivalent GSK-3 short enzymes of L. major (LmjF18.0270) and L. infantum (LinJ18_V3.0270, identical in amino acid sequences to LdonGSK-3 short) and a crystal structure of LmajGSK-3 short at 2 Å resolution. The inhibitor structure-activity relationships (SARs) of L. major and L. infantum are virtually identical, suggesting that inhibitors could be useful for both cutaneous and visceral leishmaniasis. Leishmania spp. GSK-3 short has different inhibitor SARs than TbruGSK-3 short, which can be explained mostly by two variant residues in the ATP-binding pocket. Indeed, mutating these residues in the ATP-binding site of LmajGSK-3 short to the TbruGSK-3 short equivalents results in a mutant LmajGSK-3 short enzyme with SAR more similar to that of TbruGSK-3 short. The differences between human GSK-3β (HsGSK-3β) and LmajGSK-3 short SAR suggest that compounds which selectively inhibit LmajGSK-3 short may be found.

  15. Activation of the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress in high-osmolarity glycogen pathway mutants

    NASA Technical Reports Server (NTRS)

    Davenport, K. D.; Williams, K. E.; Ullmann, B. D.; Gustin, M. C.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    Mitogen-activated protein kinase (MAPK) cascades are frequently used signal transduction mechanisms in eukaryotes. Of the five MAPK cascades in Saccharomyces cerevisiae, the high-osmolarity glycerol response (HOG) pathway functions to sense and respond to hypertonic stress. We utilized a partial loss-of-function mutant in the HOG pathway, pbs2-3, in a high-copy suppressor screen to identify proteins that modulate growth on high-osmolarity media. Three high-copy suppressors of pbs2-3 osmosensitivity were identified: MSG5, CAK1, and TRX1. Msg5p is a dual-specificity phosphatase that was previously demonstrated to dephosphorylate MAPKs in yeast. Deletions of the putative MAPK targets of Msg5p revealed that kss1delta could suppress the osmosensitivity of pbs2-3. Kss1p is phosphorylated in response to hyperosmotic shock in a pbs2-3 strain, but not in a wild-type strain nor in a pbs2-3 strain overexpressing MSG5. Both TEC1 and FRE::lacZ expressions are activated in strains lacking a functional HOG pathway during osmotic stress in a filamentation/invasion-pathway-dependent manner. Additionally, the cellular projections formed by a pbs2-3 mutant on high osmolarity are absent in strains lacking KSS1 or STE7. These data suggest that the loss of filamentation/invasion pathway repression contributes to the HOG mutant phenotype.

  16. Glycogen Synthase Kinase-3 is involved in glycogen metabolism control and embryogenesis of Rhodnius prolixus.

    PubMed

    Mury, Flávia B; Lugon, Magda D; DA Fonseca, Rodrigo Nunes; Silva, Jose R; Berni, Mateus; Araujo, Helena M; Fontenele, Marcio Ribeiro; Abreu, Leonardo Araujo DE; Dansa, Marílvia; Braz, Glória; Masuda, Hatisaburo; Logullo, Carlos

    2016-10-01

    Rhodnius prolixus is a blood-feeding insect that transmits Trypanosoma cruzi and Trypanosoma rangeli to vertebrate hosts. Rhodnius prolixus is also a classical model in insect physiology, and the recent availability of R. prolixus genome has opened new avenues on triatomine research. Glycogen synthase kinase 3 (GSK-3) is classically described as a key enzyme involved in glycogen metabolism, also acting as a downstream component of the Wnt pathway during embryogenesis. GSK-3 has been shown to be highly conserved among several organisms, mainly in the catalytic domain region. Meanwhile, the role of GSK-3 during R. prolixus embryogenesis or glycogen metabolism has not been investigated. Here we show that chemical inhibition of GSK-3 by alsterpaullone, an ATP-competitive inhibitor of GSK3, does not affect adult survival rate, though it alters oviposition and egg hatching. Specific GSK-3 gene silencing by dsRNA injection in adult females showed a similar phenotype. Furthermore, bright field and 4'-6-diamidino-2-phenylindole (DAPI) staining analysis revealed that ovaries and eggs from dsGSK-3 injected females exhibited specific morphological defects. We also demonstrate that glycogen content was inversely related to activity and transcription levels of GSK-3 during embryogenesis. Lastly, after GSK-3 knockdown, we observed changes in the expression of the Wingless (Wnt) downstream target β-catenin as well as in members of other pathways such as the receptor Notch. Taken together, our results show that GSK-3 regulation is essential for R. prolixus oogenesis and embryogenesis.

  17. Characterization of plastidial starch phosphorylase in Triticum aestivum L. endosperm.

    PubMed

    Tickle, Paul; Burrell, Michael M; Coates, Stephen A; Emes, Michael J; Tetlow, Ian J; Bowsher, Caroline G

    2009-09-15

    Starch phosphorylase (Pho) catalyses the reversible transfer of glucosyl units from glucose1-phosphate to the non-reducing end of an alpha-1,4-linked glucan chain. Two major isoforms of Pho exist in the plastid (Pho1) and cytosol (Pho2). In this paper it is proposed that Pho1 may play an important role in recycling glucosyl units from malto-oligosaccharides back into starch synthesis in the developing wheat endosperm. Pho activity was observed in highly purified amyloplast extracts prepared from developing wheat endosperms, representing the first direct evidence of plastidial Pho activity in this tissue. A full-length cDNA clone encoding a plastidial Pho isoform, designated TaPho1, was also isolated from a wheat endosperm cDNA library. The TaPho1 protein and Pho1 enzyme activity levels were shown to increase throughout the period of starch synthesis. These observations add to the growing body of evidence which indicates that this enzyme class has a role in starch synthesis in wheat endosperm and indeed all starch storing tissues.

  18. Crystal Structure of Schistosoma mansoni Adenosine Phosphorylase/5’-Methylthioadenosine Phosphorylase and Its Importance on Adenosine Salvage Pathway

    PubMed Central

    Torini, Juliana Roberta; Brandão-Neto, José; DeMarco, Ricardo; Pereira, Humberto D'Muniz

    2016-01-01

    Schistosoma mansoni do not have de novo purine pathways and rely on purine salvage for their purine supply. It has been demonstrated that, unlike humans, the S. mansoni is able to produce adenine directly from adenosine, although the enzyme responsible for this activity was unknown. In the present work we show that S. mansoni 5´-deoxy-5´-methylthioadenosine phosphorylase (MTAP, E.C. 2.4.2.28) is capable of use adenosine as a substrate to the production of adenine. Through kinetics assays, we show that the Schistosoma mansoni MTAP (SmMTAP), unlike the mammalian MTAP, uses adenosine substrate with the same efficiency as MTA phosphorolysis, which suggests that this enzyme is part of the purine pathway salvage in S. mansoni and could be a promising target for anti-schistosoma therapies. Here, we present 13 SmMTAP structures from the wild type (WT), including three single and one double mutant, and generate a solid structural framework for structure description. These crystal structures of SmMTAP reveal that the active site contains three substitutions within and near the active site when compared to it mammalian counterpart, thus opening up the possibility of developing specific inhibitors to the parasite MTAP. The structural and kinetic data for 5 substrates reveal the structural basis for this interaction, providing substract for inteligent design of new compounds for block this enzyme activity. PMID:27935959

  19. Insulin stimulation of glycogen synthase in cultured human diploid fibroblasts.

    PubMed

    Hidaka, H; Howard, B V; Kosmakos, F C; Fields, R M; Craig, J W; Bennett, P H; Larner, J

    1980-10-01

    The effect of insulin on glycogen synthase activity in human diploid fibroblasts has been studied. As little as 2 X 10(-10) M insulin increased the glycogen synthase / activity without changing the total activity. Stimulation occurred within 5 min and became maximal in 30 min. A half-maximal increase of / activity was achieved at 3 X 10(-9) M insulin. Glucose starvation increased the magnitude of response of glycogen synthase to insulin but did not change the insulin concentration necessary to give a half-maximal stimulation. Glucose increased the basal level of / activity in human diploid fibroblasts; the effect of insulin was additive. During in vitro senescence the total glycogen synthase activity declined, but the concentration of insulin that produced a half-maximal stimulation remained unchanged. These data indicate that regulation of glycogen synthase activity in human diploid fibroblasts is responsive to physiologic insulin levels and that the system provides a useful model for the in vitro study of insulin sensitivity.

  20. Crystal structure of glycogen debranching enzyme and insights into its catalysis and disease-causing mutations

    PubMed Central

    Zhai, Liting; Feng, Lingling; Xia, Lin; Yin, Huiyong; Xiang, Song

    2016-01-01

    Glycogen is a branched glucose polymer and serves as an important energy store. Its debranching is a critical step in its mobilization. In animals and fungi, the 170 kDa glycogen debranching enzyme (GDE) catalyses this reaction. GDE deficiencies in humans are associated with severe diseases collectively termed glycogen storage disease type III (GSDIII). We report crystal structures of GDE and its complex with oligosaccharides, and structure-guided mutagenesis and biochemical studies to assess the structural observations. These studies reveal that distinct domains in GDE catalyse sequential reactions in glycogen debranching, the mechanism of their catalysis and highly specific substrate recognition. The unique tertiary structure of GDE provides additional contacts to glycogen besides its active sites, and our biochemical experiments indicate that they mediate its recruitment to glycogen and regulate its activity. Combining the understanding of the GDE catalysis and functional characterizations of its disease-causing mutations provides molecular insights into GSDIII. PMID:27088557

  1. Technical and experimental features of Magnetic Resonance Spectroscopy of brain glycogen metabolism.

    PubMed

    Soares, Ana Francisca; Gruetter, Rolf; Lei, Hongxia

    2016-12-26

    In the brain, glycogen is a source of glucose not only in emergency situations but also during normal brain activity. Altered brain glycogen metabolism is associated with energetic dysregulation in pathological conditions, such as diabetes or epilepsy. Both in humans and animals, brain glycogen levels have been assessed non-invasively by Carbon-13 Magnetic Resonance Spectroscopy ((13)C-MRS) in vivo. With this approach, glycogen synthesis and degradation may be followed in real time, thereby providing valuable insights into brain glycogen dynamics. However, compared to the liver and muscle, where glycogen is abundant, the sensitivity for detection of brain glycogen by (13)C-MRS is inherently low. In this review we focus on strategies used to optimize the sensitivity for (13)C-MRS detection of glycogen. Namely, we explore several technical perspectives, such as magnetic field strength, field homogeneity, coil design, decoupling, and localization methods. Furthermore, we also address basic principles underlying the use of (13)C-labeled precursors to enhance the detectable glycogen signal, emphasizing specific experimental aspects relevant for obtaining kinetic information on brain glycogen.

  2. Thymidine phosphorylase, 2-deoxy-D-ribose and angiogenesis.

    PubMed Central

    Brown, N S; Bicknell, R

    1998-01-01

    Angiogenesis is the term used to describe the formation of new blood vessels from the existing vasculature. In order to attract new vessels, a tissue must release an endothelial-cell chemoattractant. 2-Deoxy-D-ribose is produced in vivo by the catalytic action of thymidine phosphorylase (TP) on thymidine and has recently been identified as an endothelial-cell chemoattractant and angiogenesis-inducing factor. TP, previously known only for its role in nucleotide salvage, is now known to be angiogenic. TP expression is elevated in many solid tumours and in chronically inflamed tissues, both known areas of active angiogenesis. There is evidence that TP is also involved in physiological angiogenesis such as endometrial angiogenesis during the menstrual cycle. The majority of known endothelial-cell chemoattractants are polypeptides that bind to endothelial-cell-surface receptors. In contrast, 2-deoxy-D-ribose appears to lack a cell-surface receptor. Glucose is another sugar that acts as an endothelial-cell chemoattractant. The migratory activity of glucose is blocked by ouabain. It is possible that 2-deoxy-D-ribose and glucose stimulate endothelial-cell migration via a similar mechanistic pathway. PMID:9693094

  3. Digestion of glycogen by a glucosidase released by Trichomonas vaginalis.

    PubMed

    Huffman, Ryan D; Nawrocki, Lauren D; Wilson, Wayne A; Brittingham, Andrew

    2015-12-01

    Trichomonas vaginalis is a protozoan parasite that is the causative agent of trichomoniasis, a widespread sexually transmitted disease. In vitro culture of T. vaginalis typically employs a medium supplemented with either maltose or glucose and carbohydrates are considered essential for growth. Although the nature of the carbohydrates utilized by T. vaginalis in vivo is undefined, the vaginal epithelium is rich in glycogen, which appears to provide a source of carbon for the vaginal microbiota. Here, we show that T. vaginalis grows equally well in growth media supplemented with simple sugars or with glycogen. Analysis of conditioned growth medium by thin layer chromatography indicates that growth on glycogen is accompanied by glycogen breakdown to a mixture of products including maltose, glucose, and oligosaccharides. Enzymatic assays with conditioned growth medium show that glycogen breakdown is accomplished via the release of a glucosidase activity having the properties of an α-amylase into the growth medium. Furthermore, we find that released glucosidase activity increases upon removal of carbohydrate from the growth medium, indicating regulation of synthesis and/or secretion in response to environmental cues. Lastly, we show that addition of T. vaginalis glucosidase activity to a growth medium containing glycogen generates sufficient simple sugar to support the growth of lactobacilli which, themselves, are unable to degrade glycogen. Thus, not only does the glucosidase activity likely play an important role in allowing T. vaginalis to secure simple sugars for its own use, it has the potential to impact the growth of other members of the vaginal microbiome.

  4. Dicarboxylic aciduria during ketotic phases in various types of glycogen storage disease.

    PubMed

    Pettersen, J E; Winsnes, A

    1981-01-01

    Urine samples were collected before and after a starvation period of 14-16 h from patients with glycogen storage disease, one with type III (amylo-1,6-glucosidase deficiency), four with type VIII (phosphorylase-b-kinase deficiency), and one with an unclassified type. The excretion of adipic, suberic, and 3-hydroxybutyric acid was measured by combined gas chromatography-mass spectrometry. The tendency towards ketosis seemed to decline with age in the patients with type VIII. In the non-ketotic patients no excess amounts of dicarboxylic acids were excreted. Therefore, glycogen storage disease per se seems to have no direct relationship to the excretion of adipic or suberic acid. A positive correlation was, however, found between the urinary excretion of on one side 3-hydroxybutyric and on the other adipic (correlation coefficient (Kendall's tau) +0.64, P less than 0.002 (one-sided test)) or suberic (+0.61, P less than 0.003) acid. The two dicarboxylic acids are most probably formed from long-chain monocarboxylic acids by omega- and beta-oxidation. It is speculated that succinyl-CoA formed by this pathway may counteract the tendency to ketosis in patients with glycogen storage disease.

  5. Pho85p, a cyclin-dependent protein kinase, and the Snf1p protein kinase act antagonistically to control glycogen accumulation in Saccharomyces cerevisiae.

    PubMed Central

    Huang, D; Farkas, I; Roach, P J

    1996-01-01

    In Saccharomyces cerevisiae, nutrient levels control multiple cellular processes. Cells lacking the SNF1 gene cannot express glucose-repressible genes and do not accumulate the storage polysaccharide glycogen. The impaired glycogen synthesis is due to maintenance of glycogen synthase in a hyperphosphorylated, inactive state. In a screen for second site suppressors of the glycogen storage defect of snf1 cells, we identified a mutant gene that restored glycogen accumulation and which was allelic with PHO85, which encodes a member of the cyclin-dependent kinase family. In cells with disrupted PHO85 genes, we observed hyperaccumulation of glycogen, activation of glycogen synthase, and impaired glycogen synthase kinase activity. In snf1 cells, glycogen synthase kinase activity was elevated. Partial purification of glycogen synthase kinase activity from yeast extracts resulted in the separation of two fractions by phenyl-Sepharose chromatography, both of which phosphorylated and inactivated glycogen synthase. The activity of one of these, GPK2, was inhibited by olomoucine, which potently inhibits cyclin-dependent protein kinases, and contained an approximately 36-kDa species that reacted with antibodies to Pho85p. Analysis of Ser-to-Ala mutations at the three potential Gsy2p phosphorylation sites in pho85 cells implicated Ser-654 and/or Thr-667 in PHO85 control of glycogen synthase. We propose that Pho85p is a physiological glycogen synthase kinase, possibly acting downstream of Snf1p. PMID:8754836

  6. Surface Induced Dissociation Yields Quaternary Substructure of Refractory Noncovalent Phosphorylase B and Glutamate Dehydrogenase Complexes

    NASA Astrophysics Data System (ADS)

    Ma, Xin; Zhou, Mowei; Wysocki, Vicki H.

    2014-03-01

    Ion mobility (IM) and tandem mass spectrometry (MS/MS) coupled with native MS are useful for studying noncovalent protein complexes. Collision induced dissociation (CID) is the most common MS/MS dissociation method. However, some protein complexes, including glycogen phosphorylase B kinase (PHB) and L-glutamate dehydrogenase (GDH) examined in this study, are resistant to dissociation by CID at the maximum collision energy available in the instrument. Surface induced dissociation (SID) was applied to dissociate the two refractory protein complexes. Different charge state precursor ions of the two complexes were examined by CID and SID. The PHB dimer was successfully dissociated to monomers and the GDH hexamer formed trimeric subcomplexes that are informative of its quaternary structure. The unfolding of the precursor and the percentages of the distinct products suggest that the dissociation pathways vary for different charge states. The precursors at lower charge states (+21 for PHB dimer and +27 for GDH hexamer) produce a higher percentage of folded fragments and dissociate more symmetrically than the precusors at higher charge states (+29 for PHB dimer and +39 for GDH hexamer). The precursors at lower charge state may be more native-like than the higher charge state because a higher percentage of folded fragments and a lower percentage of highly charged unfolded fragments are detected. The combination of SID and charge reduction is shown to be a powerful tool for quaternary structure analysis of refractory noncovalent protein complexes, as illustrated by the data for PHB dimer and GDH hexamer.

  7. Synthesis, thymidine phosphorylase inhibition and molecular modeling studies of 1,3,4-oxadiazole-2-thione derivatives.

    PubMed

    Shahzad, Sohail Anjum; Yar, Muhammad; Bajda, Marek; Shahzadi, Lubna; Khan, Zulfiqar Ali; Naqvi, Syed Ali Raza; Mutahir, Sadaf; Mahmood, Nasir; Khan, Khalid Mohammed

    2015-06-01

    Thymidine phosphorylase (TP) inhibitors have attracted great attention due to their ability to suppress the tumors formation. In our ongoing research, a series of 1,3,4-oxadiazole-2-thione (1-12) has been synthesized under simple reaction conditions in good to excellent yields (86-98%) and their TP inhibition potential has also been evaluated. The majority of synthesized compounds showed moderate thymidine phosphorylase inhibitory activity with IC50 values ranging from 38.24±1.28 to 258.43±0.43μM, and 7-deazaxanthine (7DX) was used as a reference compound (IC50 38.68±4.42). The TP activity was very much dependent on the C-5 substituents; among this series the compound 6 bearing 4-hydroxyphenyl group was found to be the most active with IC50 38.24±1.28μM. Molecular docking studies revealed their binding mode.

  8. A purine nucleoside phosphorylase in Solanum tuberosum L. (potato) with specificity for cytokinins contributes to the duration of tuber endodormancy.

    PubMed

    Bromley, Jennifer R; Warnes, Barbara J; Newell, Christine A; Thomson, Jamie C P; James, Celia M; Turnbull, Colin G N; Hanke, David E

    2014-03-01

    StCKP1 (Solanum tuberosum cytokinin riboside phosphorylase) catalyses the interconversion of the N9-riboside form of the plant hormone CK (cytokinin), a subset of purines, with its most active free base form. StCKP1 prefers CK to unsubstituted aminopurines. The protein was discovered as a CK-binding activity in extracts of tuberizing potato stolon tips, from which it was isolated by affinity chromatography. The N-terminal amino acid sequence matched the translation product of a set of ESTs, enabling a complete mRNA sequence to be obtained by RACE-PCR. The predicted polypeptide includes a cleavable signal peptide and motifs for purine nucleoside phosphorylase activity. The expressed protein was assayed for purine nucleoside phosphorylase activity against CKs and adenine/adenosine. Isopentenyladenine, trans-zeatin, dihydrozeatin and adenine were converted into ribosides in the presence of ribose 1-phosphate. In the opposite direction, isopentenyladenosine, trans-zeatin riboside, dihydrozeatin riboside and adenosine were converted into their free bases in the presence of Pi. StCKP1 had no detectable ribohydrolase activity. Evidence is presented that StCKP1 is active in tubers as a negative regulator of CKs, prolonging endodormancy by a chill-reversible mechanism.

  9. Characterization of the Butyrivibrio fibrisolvens glgB gene, which encodes a glycogen-branching enzyme with starch-clearing activity.

    PubMed Central

    Rumbak, E; Rawlings, D E; Lindsey, G G; Woods, D R

    1991-01-01

    A Butyrivibrio fibrisolvens H17c glgB gene, was isolated by direct selection for colonies that produced clearing on starch azure plates. The gene was expressed in Escherichia coli from its own promoter. The glgB gene consisted of an open reading frame of 1,920 bp encoding a protein of 639 amino acids (calculated Mr, 73,875) with 46 to 50% sequence homology with other branching enzymes. A limited region of 12 amino acids showed sequence similarity to amylases and glucanotransferases. The B. fibrisolvens branching enzyme was not able to hydrolyze starch but stimulated phosphorylase alpha-mediated incorporation of glucose into alpha-1,4-glucan polymer 13.4-fold. The branching enzyme was purified to homogeneity by a simple two-step procedure; N-terminal sequence and amino acid composition determinations confirmed the deduced translational start and amino acid sequence of the open reading frame. The enzymatic properties of the purified enzyme were investigated. The enzyme transferred chains of 5 to 10 (optimum, 7) glucose units, using amylose and amylopetin as substrates, to produce a highly branched polymer. Images FIG. 1 FIG. 4 FIG. 7 PMID:1938880

  10. Assignment of the gene encoding glycogen synthase (GYS) to human chromosome 19, band q13,3

    SciTech Connect

    Lehto, M. Helsinki Univ. ); Stoffel, M.; Espinosa, R. III; Beau, M.M. le; Bell, G.I. ); Groop, L. )

    1993-02-01

    The enzyme glycogen synthase (UDP glocose:glycogen 4-[alpha]-D-glucosyltransferase, EC 2.4.1.11) catalyzes the formation of glycogen from uridine diphosphate glucose (UPDG). Impaired activation of muscle glycogen synthase by insulin has been noted in patients with genetic risk of developing non-insulin-dependent diabets mellitus (NIDDM) and this may represent an early defect in the pathogenesis of this disorder. As such, glycogen synthase represents a candidate gene for contributing to genetic susceptibility. As a first step in studying the role of glycogen synthase in the genetics of NIDDM, we have isolated a cosmid encoding the human glycogen synthase gene (gene symbol GYS) and determined its chromosomal localization by fluorescence in situ hybridization. 4 refs., 1 fig.

  11. Structural basis of the substrate specificity of Bacillus cereus adenosine phosphorylase

    SciTech Connect

    Dessanti, Paola; Zhang, Yang; Allegrini, Simone; Tozzi, Maria Grazia; Sgarrella, Francesco; Ealick, Steven E.

    2012-03-01

    Adenosine phosphorylase from B. cereus shows a strong preference for adenosine over other 6-oxopurine nucleosides. Mutation of Asp204 to asparagine reduces the efficiency of adenosine cleavage but does not affect inosine cleavage, effectively reversing the substrate specificity. The structures of D204N complexes explain these observations. Purine nucleoside phosphorylases catalyze the phosphorolytic cleavage of the glycosidic bond of purine (2′-deoxy)nucleosides, generating the corresponding free base and (2′-deoxy)ribose 1-phosphate. Two classes of PNPs have been identified: homotrimers specific for 6-oxopurines and homohexamers that accept both 6-oxopurines and 6-aminopurines. Bacillus cereus adenosine phosphorylase (AdoP) is a hexameric PNP; however, it is highly specific for 6-aminopurines. To investigate the structural basis for the unique substrate specificity of AdoP, the active-site mutant D204N was prepared and kinetically characterized and the structures of the wild-type protein and the D204N mutant complexed with adenosine and sulfate or with inosine and sulfate were determined at high resolution (1.2–1.4 Å). AdoP interacts directly with the preferred substrate through a hydrogen-bond donation from the catalytically important residue Asp204 to N7 of the purine base. Comparison with Escherichia coli PNP revealed a more optimal orientation of Asp204 towards N7 of adenosine and a more closed active site. When inosine is bound, two water molecules are interposed between Asp204 and the N7 and O6 atoms of the nucleoside, thus allowing the enzyme to find alternative but less efficient ways to stabilize the transition state. The mutation of Asp204 to asparagine led to a significant decrease in catalytic efficiency for adenosine without affecting the efficiency of inosine cleavage.

  12. Mechanisms limiting glycogen storage in muscle during prolonged insulin stimulation

    SciTech Connect

    Richter, E.A.; Hansen, S.A.; Hansen, B.F. )

    1988-11-01

    The extent to which muscle glycogen concentrations can be increased during exposure to maximal insulin concentrations and abundant glucose was investigated in the isolated perfused rat hindquarter preparation. Perfusion for 7 h in the presence of 20,000 {mu}U/ml insulin and 11-13 mM glucose increased muscle glycogen concentrations to maximal values 2, 3, and 3.5 times above normal fed levels in fast-twitch white, slow-twitch red, and fast-twitch red fibers, respectively. Glucose uptake decreased from 34.9 {mu}mol{center dot}g{sup {minus}1}{center dot}h{sup {minus}1} at 0 h to 7.5 after 7 h of perfusion. During the perfusion muscle glycogen synthase activity decreased and free intracellular glucose and glucose 6-phosphate increased indicating that glucose disposal was impaired. However, glucose transport as measured by the uptake of 3-O-({sup 14}C)methyl-D-glucose was also markedly decreased after 5 and 7 h of perfusion compared with initial values. Total muscle water concentration decreased during glycogen loading of the muscles. Mechanisms limiting glycogen storage under maximal insulin stimulation include impaired insulin-stimulated membrane transport of glucose as well as impaired intracellular glucose disposal.

  13. Cloning of the maltose phosphorylase gene from Bacillus sp. strain RK-1 and efficient production of the cloned gene and the trehalose phosphorylase gene from Bacillus stearothermophilus SK-1 in Bacillus subtilis.

    PubMed

    Inoue, Yasushi; Yasutake, Nozomu; Oshima, Yoshie; Yamamoto, Yoshie; Tomita, Tetsuji; Miyoshi, Shinsuke; Yatake, Tsuneya

    2002-12-01

    The maltose phosphorylase (MPase) gene of Bacillus sp. strain RK-1 was cloned by PCR with oligonucleotide primers designed on the basis of a partial N-terminal amino acid sequence of the purified enzyme. The MPase gene consisted of 2,655 bp encoding a theoretical protein with a Mr of 88,460, and had no secretion signal sequence, although most of the MPase activity was detected in the culture supernatant of RK-1. This cloned MPase gene and the trehalose phosphorylase (TPase) gene from Bacillus stearothermophilus SK-1 were efficiently expressed intracellularly under the control of the Bacillus amyloliquefaciens alpha-amylase promoter in Bacillus subtilis. The production yields were estimated to be more than 2 g of enzyme per liter of medium, about 250 times the production of the original strains, in a simple shake flask. About 60% of maltose was converted into trehalose by the simultaneous action of both enzymes produced in B. subtilis.

  14. Structural basis of AMPK regulation by adenine nucleotides and glycogen

    SciTech Connect

    Li, Xiaodan; Wang, Lili; Zhou, X. Edward; Ke, Jiyuan; de Waal, Parker W.; Gu, Xin; Tan, M. H. Eileen; Wang, Dongye; Wu, Donghai; Xu, H. Eric; Melcher, Karsten

    2014-11-21

    AMP-activated protein kinase (AMPK) is a central cellular energy sensor and regulator of energy homeostasis, and a promising drug target for the treatment of diabetes, obesity, and cancer. Here we present low-resolution crystal structures of the human α1β2γ1 holo-AMPK complex bound to its allosteric modulators AMP and the glycogen-mimic cyclodextrin, both in the phosphorylated (4.05 Å) and non-phosphorylated (4.60 Å) state. In addition, we have solved a 2.95 Å structure of the human kinase domain (KD) bound to the adjacent autoinhibitory domain (AID) and have performed extensive biochemical and mutational studies. Altogether, these studies illustrate an underlying mechanism of allosteric AMPK modulation by AMP and glycogen, whose binding changes the equilibria between alternate AID (AMP) and carbohydrate-binding module (glycogen) interactions.

  15. Structural basis of AMPK regulation by adenine nucleotides and glycogen

    DOE PAGES

    Li, Xiaodan; Wang, Lili; Zhou, X. Edward; ...

    2014-11-21

    AMP-activated protein kinase (AMPK) is a central cellular energy sensor and regulator of energy homeostasis, and a promising drug target for the treatment of diabetes, obesity, and cancer. Here we present low-resolution crystal structures of the human α1β2γ1 holo-AMPK complex bound to its allosteric modulators AMP and the glycogen-mimic cyclodextrin, both in the phosphorylated (4.05 Å) and non-phosphorylated (4.60 Å) state. In addition, we have solved a 2.95 Å structure of the human kinase domain (KD) bound to the adjacent autoinhibitory domain (AID) and have performed extensive biochemical and mutational studies. Altogether, these studies illustrate an underlying mechanism of allostericmore » AMPK modulation by AMP and glycogen, whose binding changes the equilibria between alternate AID (AMP) and carbohydrate-binding module (glycogen) interactions.« less

  16. Emerging Roles for Glycogen in the CNS

    PubMed Central

    Waitt, Alice E.; Reed, Liam; Ransom, Bruce R.; Brown, Angus M.

    2017-01-01

    The ability of glycogen, the depot into which excess glucose is stored in mammals, to act as a source of rapidly available energy substrate, has been exploited by several organs for both general and local advantage. The liver, expressing the highest concentration of glycogen maintains systemic normoglycemia ensuring the brain receives a supply of glucose in excess of demand. However the brain also contains glycogen, although its role is more specialized. Brain glycogen is located exclusively in astrocytes in the adult, with the exception of pathological conditions, thus in order to benefit neurons, and energy conduit (lactate) is trafficked inter-cellularly. Such a complex scheme requires cell type specific expression of a variety of metabolic enzymes and transporters. Glycogen supports neural elements during withdrawal of glucose, but once the limited buffer of glycogen is exhausted neural function fails and irreversible injury ensues. Under physiological conditions glycogen acts to provide supplemental substrates when ambient glucose is unable to support function during increased energy demand. Glycogen also supports learning and memory where it provides lactate to neurons during the conditioning phase of in vitro long-term potentiation (LTP), an experimental correlate of learning. Inhibiting the breakdown of glycogen or intercellular transport of lactate in in vivo rat models inhibits the retention of memory. Our current understanding of the importance of brain glycogen is expanding to encompass roles that are fundamental to higher brain function. PMID:28360839

  17. REVISITING GLYCOGEN CONTENT IN THE HUMAN BRAIN

    PubMed Central

    Öz, Gülin; DiNuzzo, Mauro; Kumar, Anjali; Moheet, Amir; Seaquist, Elizabeth R.

    2015-01-01

    Glycogen provides an important glucose reservoir in the brain since the concentration of glucosyl units stored in glycogen is several fold higher than free glucose available in brain tissue. We have previously reported 3–4 µmol/g brain glycogen content using in vivo 13C magnetic resonance spectroscopy (MRS) in conjunction with [1-13C]glucose administration in healthy humans, while higher levels were reported in the rodent brain. Due to the slow turnover of bulk brain glycogen in humans, complete turnover of the glycogen pool, estimated to take 3–5 days, was not observed in these prior studies. In an attempt to reach complete turnover and thereby steady state 13C labeling in glycogen, here we administered [1-13C]glucose to healthy volunteers for 80 hours. To eliminate any net glycogen synthesis during this period and thereby achieve an accurate estimate of glycogen concentration, volunteers were maintained at euglycemic blood glucose levels during [1-13C]glucose administration and 13C-glycogen levels in the occipital lobe were measured by 13C MRS approximately every 12 hours. Finally, we fitted the data with a biophysical model that was recently developed to take into account the tiered structure of the glycogen molecule and additionally incorporated blood glucose levels and isotopic enrichments as input function in the model. We obtained excellent fits of the model to the 13C-glycogen data, and glycogen content in the healthy human brain tissue was found to be 7.8 ± 0.3 µmol/g, a value substantially higher than previous estimates of glycogen content in the human brain. PMID:26202425

  18. Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability.

    PubMed

    Dowdle, John; Ishikawa, Takahiro; Gatzek, Stephan; Rolinski, Susanne; Smirnoff, Nicholas

    2007-11-01

    Plants synthesize ascorbate from guanosine diphosphate (GDP)-mannose via L-galactose/L-gulose, although uronic acids have also been proposed as precursors. Genes encoding all the enzymes of the GDP-mannose pathway have previously been identified, with the exception of the step that converts GDP-L-galactose to L-galactose 1-P. We show that a GDP-L-galactose phosphorylase, encoded by the Arabidopsis thaliana VTC2 gene, catalyses this step in the ascorbate biosynthetic pathway. Furthermore, a homologue of VTC2, At5g55120, encodes a second GDP-L-galactose phosphorylase with similar properties to VTC2. Two At5g55120 T-DNA insertion mutants (vtc5-1 and vtc5-2) have 80% of the wild-type ascorbate level. Double mutants were produced by crossing the loss-of-function vtc2-1 mutant with each of the two vtc5 alleles. These show growth arrest immediately upon germination and the cotyledons subsequently bleach. Normal growth was restored by supplementation with ascorbate or L-galactose, indicating that both enzymes are necessary for ascorbate generation. vtc2-1 leaves contain more mannose 6-P than wild-type. We conclude that the GDP-mannose pathway is the only significant source of ascorbate in A. thaliana seedlings, and that ascorbate is essential for seedling growth. A. thaliana leaves accumulate more ascorbate after acclimatization to high light intensity. VTC2 expression and GDP-L-galactose phosphorylase activity rapidly increase on transfer to high light, but the activity of other enzymes in the GDP-mannose pathway is little affected. VTC2 and At5g55120 (VTC5) expression also peak in at the beginning of the light cycle and are controlled by the circadian clock. The GDP-L-galactose phosphorylase step may therefore play an important role in controlling ascorbate biosynthesis.

  19. Regulation of glycogen content in rat pineal gland by norepinephrine.

    PubMed

    Eugenín, E A; Sáez, C G; Garcés, G; Sáez, J C

    1997-06-20

    In the rat pineal gland the glycogen stores were cytochemically localized in astrocytes and pinealocytes. Moreover, it was found that norepinephrine (NE) induced a time- and concentration-dependent reduction in pineal glycogen content and yielded lactic acid. The NE effect was prevented by blocking alpha1- but not alpha2 or beta-adrenoceptors. Activation of alpha2-adrenoceptors induced a small decrease in glycogen levels that could have pre- and postsynaptic components. Activation of beta-adrenoceptors with 10(-12)-10(-3) M isoproterenol (ISO) induced a bell shape concentration-response curve, presumably due to desensitization, since the response induced by 10(-4) M ISO was greater with shorter period of stimulation. On the other hand, activation of alpha1-adrenoceptors with 10(-12)-10(-3) M phenylephrine (PHN) induced a hyperbolic concentration-response curve with a maximum at concentrations above 10(-8) M. Moreover, treatment with ISO drastically reduced the response induced by PHN concentrations lower but not higher than 10(-6) M, favoring a concentration-dependent response between 10(-6) and 10(-4) M PHN, similar to that induced by equimolar NE concentrations. Thus, the NE-induced reduction in glycogen content of the rat pineal gland is mainly mediated by alpha1-adrenoceptors and modulated by intracellular mechanisms activated by beta-adrenoceptors.

  20. Structural basis for the mechanism of inhibition of uridine phosphorylase from Salmonella typhimurium

    SciTech Connect

    Lashkov, A. A.; Zhukhlistova, N. E.; Sotnichenko, S. E.; Gabdulkhakov, A. G.; Mikhailov, A. M.

    2010-01-15

    The three-dimensional structures of three complexes of Salmonella typhimurium uridine phosphorylase with the inhibitor 2,2'-anhydrouridine, the substrate PO{sub 4}, and with both the inhibitor 2,2'-anhydrouridine and the substrate PO{sub 4} (a binary complex) were studied in detail by X-ray diffraction. The structures of the complexes were refined at 2.38, 1.5, and 1.75 A resolution, respectively. Changes in the three-dimensional structure of the subunits in different crystal structures are considered depending on the presence or absence of the inhibitor molecule and (or) the phosphate ion in the active site of the enzyme. The presence of the phosphate ion in the phosphate-binding site was found to substantially change the orientations of the side chains of the amino-acid residues Arg30, Arg91, and Arg48 coordinated to this ion. A comparison showed that the highly flexible loop L9 is unstable. The atomic coordinates of the refined structures of the complexes and the corresponding structure factors were deposited in the Protein Data Bank (their PDB ID codes are 3DD0 and 3C74). The experimental data on the spatial reorganization of the active site caused by changes in its functional state from the unligated to the completely inhibited state suggest the structural basis for the mechanism of inhibition of Salmonella typhimurium uridine phosphorylase.

  1. Structural basis of the substrate specificity of Bacillus cereus adenosine phosphorylase

    SciTech Connect

    Dessanti, Paola; Zhang, Yang; Allegrini, Simone; Tozzi, Maria Grazia; Sgarrella, Francesco; Ealick, Steven E.

    2012-10-08

    Purine nucleoside phosphorylases catalyze the phosphorolytic cleavage of the glycosidic bond of purine (2{prime}-deoxy)nucleosides, generating the corresponding free base and (2{prime}-deoxy)ribose 1-phosphate. Two classes of PNPs have been identified: homotrimers specific for 6-oxopurines and homohexamers that accept both 6-oxopurines and 6-aminopurines. Bacillus cereus adenosine phosphorylase (AdoP) is a hexameric PNP; however, it is highly specific for 6-aminopurines. To investigate the structural basis for the unique substrate specificity of AdoP, the active-site mutant D204N was prepared and kinetically characterized and the structures of the wild-type protein and the D204N mutant complexed with adenosine and sulfate or with inosine and sulfate were determined at high resolution (1.2-1.4 {angstrom}). AdoP interacts directly with the preferred substrate through a hydrogen-bond donation from the catalytically important residue Asp204 to N7 of the purine base. Comparison with Escherichia coli PNP revealed a more optimal orientation of Asp204 towards N7 of adenosine and a more closed active site. When inosine is bound, two water molecules are interposed between Asp204 and the N7 and O6 atoms of the nucleoside, thus allowing the enzyme to find alternative but less efficient ways to stabilize the transition state. The mutation of Asp204 to asparagine led to a significant decrease in catalytic efficiency for adenosine without affecting the efficiency of inosine cleavage.

  2. Structural basis for the mechanism of inhibition of uridine phosphorylase from Salmonella typhimurium

    NASA Astrophysics Data System (ADS)

    Lashkov, A. A.; Zhukhlistova, N. E.; Sotnichenko, S. E.; Gabdulkhakov, A. G.; Mikhailov, A. M.

    2010-01-01

    The three-dimensional structures of three complexes of Salmonella typhimurium uridine phosphorylase with the inhibitor 2,2'-anhydrouridine, the substrate PO4, and with both the inhibitor 2,2'-anhydrouridine and the substrate PO4 (a binary complex) were studied in detail by X-ray diffraction. The structures of the complexes were refined at 2.38, 1.5, and 1.75 Å resolution, respectively. Changes in the three-dimensional structure of the subunits in different crystal structures are considered depending on the presence or absence of the inhibitor molecule and (or) the phosphate ion in the active site of the enzyme. The presence of the phosphate ion in the phosphate-binding site was found to substantially change the orientations of the side chains of the amino-acid residues Arg30, Arg91, and Arg48 coordinated to this ion. A comparison showed that the highly flexible loop L9 is unstable. The atomic coordinates of the refined structures of the complexes and the corresponding structure factors were deposited in the Protein Data Bank (their PDB ID codes are 3DD0 and 3C74). The experimental data on the spatial reorganization of the active site caused by changes in its functional state from the unligated to the completely inhibited state suggest the structural basis for the mechanism of inhibition of Salmonella typhimurium uridine phosphorylase.

  3. Transglucosylation potential of six sucrose phosphorylases toward different classes of acceptors.

    PubMed

    Aerts, Dirk; Verhaeghe, Tom F; Roman, Bart I; Stevens, Christian V; Desmet, Tom; Soetaert, Wim

    2011-09-27

    In this study, the transglucosylation potential of six sucrose phosphorylase (SP) enzymes has been compared using eighty putative acceptors from different structural classes. To increase the solubility of hydrophobic acceptors, the addition of various co-solvents was first evaluated. All enzymes were found to retain at least 50% of their activity in 25% dimethylsulfoxide, with the enzymes from Bifidobacterium adolescentis and Streptococcus mutans being the most stable. Screening of the enzymes' specificity then revealed that the vast majority of acceptors are transglucosylated very slowly by SP, at a rate that is comparable to the contaminating hydrolytic reaction. The enzyme from S. mutans displayed the narrowest acceptor specificity and the one from Leuconostoc mesenteroides NRRL B1355 the broadest. However, high activity could only be detected on l-sorbose and l-arabinose, besides the native acceptors d-fructose and phosphate. Improving the affinity for alternative acceptors by means of enzyme engineering will, therefore, be a major challenge for the commercial exploitation of the transglucosylation potential of sucrose phosphorylase.

  4. Effect of local cold application on glycogen recovery.

    PubMed

    Tucker, T J; Slivka, D R; Cuddy, J S; Hailes, W S; Ruby, B C

    2012-04-01

    The purpose of this study was to investigate the effect of local cold application on muscle glycogen re-synthesis after exercise. Recreationally active male subjects (n=11) completed a 90-minute glycogen depleting ride, followed by 4 h of recovery. During recovery, ice was applied intermittently to one leg (IL) while the subjects other leg (CL) acted as a control. Intramuscular and rectal temperature was recorded continuously. A carbohydrate (1.8 g∙kg-1 bodyweight) beverage was supplied at 0 and 2 h post exercise. Muscle biopsies were taken immediately after exercise from the vastus lateralis and at 4 h post exercise for the analysis of muscle glycogen and muscle lactate. Leg circumference was measured 30, 60, 120, 180, and 240 minutes into recovery. The IL was colder than the CL from 15 minutes after initial ice application until the end recovery (P<0.05). Immediate post-exercise glycogen was similar between legs (55.3±7.4 vs. 56.1±7 mmol∙kg-1 wet weight for the iced vs. control, respectively). However, muscle glycogen was lower in the IL compared to the CL at 4 h post exercise (72±8.4 vs. 95±8.4 mmol∙kg-1 wet weight, respectively; P<0.05). Muscle lactate was lower in the IL after 4 h of recovery compared to the CL (1.6±.2 vs. 2.6±.2 mmol∙L-1, respectively; P<0.05). There was no difference in circumference between IL and CL. These data demonstrate a reduction in muscle glycogen re-synthesis with local cold application.

  5. Brain Glycogen Decreases During Intense Exercise Without Hypoglycemia: The Possible Involvement of Serotonin.

    PubMed

    Matsui, Takashi; Soya, Shingo; Kawanaka, Kentaro; Soya, Hideaki

    2015-07-01

    Brain glycogen stored in astrocytes, a source of lactate as a neuronal energy source, decreases during prolonged exercise with hypoglycemia. However, brain glycogen dynamics during exercise without hypoglycemia remain unknown. Since intense exercise increases brain noradrenaline and serotonin as known inducers for brain glycogenolysis, we hypothesized that brain glycogen decreases with intense exercise not accompanied by hypoglycemia. To test this hypothesis, we employed a well-established acute intense exercise model of swimming in rats. Rats swam for fourteen 20 s bouts with a weight equal to 8 % of their body mass and were sacrificed using high-power (10 kW) microwave irradiation to inactivate brain enzymes for accurate detection of brain glycogen and monoamines. Intense exercise did not alter blood glucose, but did increase blood lactate levels. Immediately after exercise, brain glycogen decreased and brain lactate increased in the hippocampus, cerebellum, cortex, and brainstem. Simultaneously, serotonin turnover in the hippocampus and brainstem mutually increased and were associated with decreased brain glycogen. Intense swimming exercise that does not induce hypoglycemia decreases brain glycogen associated with increased brain lactate, implying an importance of glycogen in brain energetics during intense exercise even without hypoglycemia. Activated serotonergic regulation is a possible underlying mechanism for intense exercise-induced glycogenolysis at least in the hippocampus and brainstem.

  6. Purification and characterization of purine nucleoside phosphorylase from Proteus vulgaris.

    PubMed Central

    Surette, M; Gill, T; MacLean, S

    1990-01-01

    Purine nucleoside phosphorylase was isolated and purified from cell extracts of Proteus vulgaris recovered from spoiling cod fish (Gadus morhua). The molecular weight and isoelectric point of the enzyme were 120,000 +/- 2,000 and pH 6.8. The Michaelis constant for inosine as substrate was 3.9 x 10(-5). Guanosine also served as a substrate (Km = 2.9 x 10(-5). However, the enzyme was incapable of phosphorylizing adenosine. Adenosine proved to be useful as a competitive inhibitor and was used as a ligand for affinity chromatography of purine nucleoside phosphorylase following initial purification steps of gel filtration and ion-exchange chromatography. PMID:2111121

  7. Hindbrain A2 noradrenergic neuron adenosine 5'-monophosphate-activated protein kinase activation, upstream kinase/phosphorylase protein expression, and receptivity to hormone and fuel reporters of short-term food deprivation are regulated by estradiol.

    PubMed

    Briski, Karen P; Alenazi, Fahaad S H; Shakya, Manita; Sylvester, Paul W

    2016-09-12

    Estradiol (E) mitigates acute and postacute adverse effects of 12 hr-food deprivation (FD) on energy balance. Hindbrain 5'-monophosphate-activated protein kinase (AMPK) regulates hyperphagic and hypothalamic metabolic neuropeptide and norepinephrine responses to FD in an E-dependent manner. Energy-state information from AMPK-expressing hindbrain A2 noradrenergic neurons shapes neural responses to metabolic imbalance. Here we investigate the hypothesis that FD causes divergent changes in A2 AMPK activity in E- vs. oil (O)-implanted ovariectomized female rats, alongside dissimilar adjustments in circulating metabolic fuel (glucose, free fatty acids [FFA]) and energy deficit-sensitive hormone (corticosterone, glucagon, leptin) levels. FD decreased blood glucose in oil (O)- but not E-implanted ovariectomized female rats and elevated and reduced glucagon levels in O and E, respectively. FD decreased circulating leptin in O and E, but increased corticosterone and FFA concentrations in E only. Western blot analysis of laser-microdissected A2 neurons showed that glucocorticoid receptor type II and very-long-chain acyl-CoA synthetase 3 protein profiles were amplified in FD/E vs. FD/O. A2 total AMPK protein was elevated without change in activity in FD/O, whereas FD/E exhibited increased AMPK activation along with decreased upstream phosphatase expression. The catecholamine biosynthetic enzyme dopamine-β-hydroxylase (DβH) was increased in FD/O but not FD/E A2 cells. The data show discordance between A2 AMPK activation and glycemic responses to FD; sensor activity was refractory to glucose decrements in FD/O but augmented in FD/E despite stabilized glucose and elevated FFA levels. E-dependent amplification of AMPK activity may reflect adaptive conversion to fatty acid oxidation and/or glucocorticoid stimulation. FD augmentation of A2 DβH protein profiles in FD/O but not FD/E animals suggests that FD may correspondingly regulate NE synthesis vs. metabolism/release in the

  8. Peptide microarray analysis of substrate specificity of the transmembrane Ser/Thr kinase KPI-2 reveals reactivity with cystic fibrosis transmembrane conductance regulator and phosphorylase.

    PubMed

    Wang, Hong; Brautigan, David L

    2006-11-01

    Human lemur (Lmr) kinases are predicted to be Tyr kinases based on sequences and are related to neurotrophin receptor Trk kinases. This study used homogeneous recombinant KPI-2 (Lmr2, LMTK2, Cprk, brain-enriched protein kinase) kinase domain and a library of 1,154 peptides on a microarray to analyze substrate specificity. We found that KPI-2 is strictly a Ser/Thr kinase that reacts with Ser either preceded by or followed by Pro residues but unlike other Pro-directed kinases does not strictly require an adjacent Pro residue. The most reactive peptide in the library corresponds to Ser-737 of cystic fibrosis transmembrane conductance regulator, and the recombinant R domain of cystic fibrosis transmembrane conductance regulator was a preferred substrate. Furthermore the KPI-2 kinase phosphorylated peptides corresponding to the single site in phosphorylase and purified phosphorylase b, making this only the second known phosphorylase b kinase. Phosphorylase was used as a specific substrate to show that KPI-2 is inhibited in living cells by addition of nerve growth factor or serum. The results demonstrate the utility of the peptide library to probe specificity and discover kinase substrates and offer a specific assay that reveals hormonal regulation of the activity of this unusual transmembrane kinase.

  9. Metabolic crosstalk: molecular links between glycogen and lipid metabolism in obesity.

    PubMed

    Lu, Binbin; Bridges, Dave; Yang, Yemen; Fisher, Kaleigh; Cheng, Alan; Chang, Louise; Meng, Zhuo-Xian; Lin, Jiandie D; Downes, Michael; Yu, Ruth T; Liddle, Christopher; Evans, Ronald M; Saltiel, Alan R

    2014-09-01

    Glycogen and lipids are major storage forms of energy that are tightly regulated by hormones and metabolic signals. We demonstrate that feeding mice a high-fat diet (HFD) increases hepatic glycogen due to increased expression of the glycogenic scaffolding protein PTG/R5. PTG promoter activity was increased and glycogen levels were augmented in mice and cells after activation of the mechanistic target of rapamycin complex 1 (mTORC1) and its downstream target SREBP1. Deletion of the PTG gene in mice prevented HFD-induced hepatic glycogen accumulation. Of note, PTG deletion also blocked hepatic steatosis in HFD-fed mice and reduced the expression of numerous lipogenic genes. Additionally, PTG deletion reduced fasting glucose and insulin levels in obese mice while improving insulin sensitivity, a result of reduced hepatic glucose output. This metabolic crosstalk was due to decreased mTORC1 and SREBP activity in PTG knockout mice or knockdown cells, suggesting a positive feedback loop in which once accumulated, glycogen stimulates the mTORC1/SREBP1 pathway to shift energy storage to lipogenesis. Together, these data reveal a previously unappreciated broad role for glycogen in the control of energy homeostasis.

  10. Mutations in the liver glycogen synthase gene in children with hypoglycemia due to glycogen storage disease type 0.

    PubMed Central

    Orho, M; Bosshard, N U; Buist, N R; Gitzelmann, R; Aynsley-Green, A; Blümel, P; Gannon, M C; Nuttall, F Q; Groop, L C

    1998-01-01

    Glycogen storage disease type 0 (GSD-0) is a rare form of fasting hypoglycemia presenting in infancy or early childhood and accompanied by high blood ketones and low alanine and lactate concentrations. Although feeding relieves symptoms, it often results in postprandial hyperglycemia and hyperlactatemia. The glycogen synthase (GS) activity has been low or immeasurable in liver biopsies, whereas the liver glycogen content has been only moderately decreased. To investigate whether mutations in the liver GS gene (GYS2) on chromosome 12p12.2 were involved in GSD-0, we determined the exon-intron structure of the GYS2 gene and examined nine affected children from five families for linkage of GSD-0 to the GYS2 gene. Mutation screening of the 16 GYS2 exons was done by single-strand conformational polymorphism (SSCP) and direct sequencing. Liver GS deficiency was diagnosed from liver biopsies (GS activity and glycogen content). GS activity in the liver of the affected children was extremely low or nil, resulting in subnormal glycogen content. After suggestive linkage to the GYS2 gene had been established (LOD score = 2.9; P < 0.01), mutation screening revealed several different mutations in these families, including a premature stop codon in exon 5 (Arg246X), a 5'-donor splice site mutation in intron 6 (G+1T--> CT), and missense mutations Asn39Ser, Ala339Pro, His446Asp, Pro479Gln, Ser483Pro, and Met491Arg. Seven of the affected children carried mutations on both alleles. The mutations could not be found in 200 healthy persons. Expression of the mutated enzymes in COS7 cells indicated severely impaired GS activity. In conclusion, the results demonstrate that GSD-0 is caused by different mutations in the GYS2 gene. PMID:9691087

  11. Glycogen synthase kinase-3: cryoprotection and glycogen metabolism in the freeze-tolerant wood frog.

    PubMed

    Dieni, Christopher A; Bouffard, Melanie C; Storey, Kenneth B

    2012-02-01

    The terrestrial anuran Rana sylvatica tolerates extended periods of whole-body freezing during the winter. Freezing survival is facilitated by extensive glycogen hydrolysis and distribution of high concentrations of the cryoprotectant glucose into blood and all tissues. As glycogenesis is both an energy-expensive process and counter-productive to maintaining sustained high cryoprotectant levels, we proposed that glycogen synthase kinase-3 (GSK-3) would be activated when wood frogs froze and would phosphorylate its downstream substrates to inactivate glycogen synthesis. Western blot analysis determined that the amount of phosphorylated (inactive) GSK-3 decreased in all five tissues tested in 24 h frozen frogs compared with unfrozen controls. Total GSK-3 protein levels did not change, with the exception of heart GSK-3, indicating that post-translational modification was the primary regulatory mechanism for this kinase. Kinetic properties of skeletal muscle GSK-3 from control and frozen frogs displayed differential responses to a temperature change (22 versus 4°C) and high glucose. For example, when assayed at 4°C, the K(m) for the GSK-3 substrate peptide was ∼44% lower for frozen frogs than the corresponding value in control frogs, indicating greater GSK-3 affinity for its substrates in the frozen state. This indicates that at temperatures similar to the environment encountered by frogs, GSK-3 in frozen frogs will phosphorylate its downstream targets more readily than in unfrozen controls. GSK-3 from skeletal muscle of control frogs was also allosterically regulated. AMP and phosphoenolpyruvate activated GSK-3 whereas inhibitors included glucose, glucose 6-phosphate, pyruvate, ATP, glutamate, glutamine, glycerol, NH(4)Cl, NaCl and KCl. The combination of phosphorylation and allosteric control argues for a regulatory role of GSK-3 in inactivating glycogenesis to preserve high glucose cryoprotectant levels throughout each freezing bout.

  12. [Experimental models of diabetes mellitus of the 1st and 2nd types in rats: regulation of activity of glycogen synthase by peptides of the insulin superfamily and by epidermal growth factor in skeletal muscles].

    PubMed

    Kuznetsova, L A; Chistiakova, O V

    2012-01-01

    The regulatory effect of peptides of the insulin hyperfamily--insulin, insulin-like growth factor (IGF-1), and relaxin, as well as of epidermal growth factor (EGF) on activity of glycogen synthase (GS) in rat skeletal muscles was studied in norm and in experimental diabetes mellitus of the 1st and 2nd types (DM1, DM2). In norm, peptides in vitro stimulated maximally the GS activity at a concentration of 10-8 M. The row of efficiency of the peptide action was as follows: insulin > IGF-1 > relaxin. In DM1 the basal GS activity did not change, while effect of insulin in vitro was decreased more sharply as compared with action of IGF-1 and relaxin at the 30th day of development of diabetes, i. e., the efficiency row was as follows: IGF-1 = relaxin > insulin. Administration of insulin in vivo did not restore sensitivity of the enzyme to the action of hormone in DM1. In DM2, the GS activity (both the total and active form) decreased. while the stimulatory effect ofpeptides and EGF on the enzyme was absent. Insulin introduced in vitro did not lead to restoration of the enzyme reaction. The conclusion has been made that the insulin resistance affects the basal GS activity in rat skeletal muscles as well as the regulation of the enzyme by peptides of the insulin nature and by EGF, which is more obvious in DM2, than in DM1.

  13. Natural Progression of Canine Glycogen Storage Disease Type IIIa

    PubMed Central

    Brooks, Elizabeth D; Yi, Haiqing; Austin, Stephanie L; Thurberg, Beth L; Young, Sarah P; Fyfe, John C; Kishnani, Priya S; Sun, Baodong

    2016-01-01

    Glycogen storage disease type IIIa (GSD IIIa) is caused by a deficiency of glycogen debranching enzyme activity. Hepatomegaly, muscle degeneration, and hypoglycemia occur in human patients at an early age. Long-term complications include liver cirrhosis, hepatic adenomas, and generalized myopathy. A naturally occurring canine model of GSD IIIa that mimics the human disease has been described, with progressive liver disease and skeletal muscle damage likely due to excess glycogen deposition. In the current study, long-term follow-up of previously described GSD IIIa dogs until 32 mo of age (n = 4) and of family-owned GSD IIIa dogs until 11 to 12 y of age (n = 2) revealed that elevated concentrations of liver and muscle enzyme (AST, ALT, ALP, and creatine phosphokinase) decreased over time, consistent with hepatic cirrhosis and muscle fibrosis. Glycogen deposition in many skeletal muscles; the tongue, diaphragm, and heart; and the phrenic and sciatic nerves occurred also. Furthermore, the urinary biomarker Glc4, which has been described in many types of GSD, was first elevated and then decreased later in life. This urinary biomarker demonstrated a similar trend as AST and ALT in GSD IIIa dogs, indicating that Glc4 might be a less invasive biomarker of hepatocellular disease. Finally, the current study further demonstrates that the canine GSD IIIa model adheres to the clinical course in human patients with this disorder and is an appropriate model for developing novel therapies. PMID:26884409

  14. The Clinical Course of Glycogen Disease

    PubMed Central

    van Creveld, Simon

    1963-01-01

    The various types of glycogen disease, of which the author gave the first clinical description in 1928, that can at present be distinguished, are described in terms of the differing clinical and biochemical findings and the enzyme deficiencies more or less characteristic for each type. The clinical course of the author's first two patients with glycogen disease, at present 42 and 38 years old, is given in detail; they have type III of the disease. Some cases of glycogen disease cannot be fitted into the clinical classification of the different types, and for some no definite enzymatic defect to account for the glycogen accumulation has been found. The therapy of glycogen disease is discussed briefly. ImagesFig. 1aFig. 1bFig. 2Fig. 8 PMID:14023832

  15. Activation of Casein Kinase II and Inhibition of Phosphatase and Tensin Homologue Deleted on Chromosome 10 Phosphatase by Nerve Growth Factor/p75NTR Inhibit Glycogen Synthase Kinase-3β and Stimulate Axonal Growth

    PubMed Central

    Arevalo, María-Angeles

    2006-01-01

    Axonal elongation and guidance are controlled by extracellular factors such as the neurotrophins. Indeed, nerve growth factor (NGF) seems to promote axon growth through binding to its p75NTR receptor and inactivating RhoA. Furthermore, the local inhibition of glycogen synthase kinase (GSK)-3β by NGF also favors microtubule polymerization and axon extension. Inactivation of GSK-3β may be due to the NGF/TrkA-mediated activation of phosphatidylinositol-3 kinase (PI-3 kinase), which increases the levels of phosphatydilinositol 3-phosphate [PI(3)P]. However, we show here that NGF may inactivate GSK-3β through an alternative mechanism. In cultured hippocampal neurons, the capacity of NGF to promote axon elongation is mostly mediated by p75NTR, and the activation of this pathway leads to the inactivation of GSK-3β. However, the signaling pathway triggered by NGF/p75NTR acts through casein kinase II (CK2). NGF/p75NTR-activated CK2 phosphorylates the phosphatase and tensin homologue deleted on chromosome 10 (PTEN), thus rendering this phosphatase inactive. Like activation of the PI-3 kinase, PTEN inactivation allows PI(3)P levels to increase, thus favoring GSK-3β inactivation and axon outgrowth. This newly disclosed mechanism may help to extend the repertoire of pharmacological agents that activate CK2 or that inhibit PTEN to stimulate axon regeneration after trauma or disease. PMID:16723502

  16. Brain glycogen supercompensation following exhaustive exercise.

    PubMed

    Matsui, Takashi; Ishikawa, Taro; Ito, Hitoshi; Okamoto, Masahiro; Inoue, Koshiro; Lee, Min-Chul; Fujikawa, Takahiko; Ichitani, Yukio; Kawanaka, Kentaro; Soya, Hideaki

    2012-02-01

    Brain glycogen localized in astrocytes, a critical energy source for neurons, decreases during prolonged exhaustive exercise with hypoglycaemia. However, it is uncertain whether exhaustive exercise induces glycogen supercompensation in the brain as in skeletal muscle. To explore this question, we exercised adult male rats to exhaustion at moderate intensity (20 m min(-1)) by treadmill, and quantified glycogen levels in several brain loci and skeletal muscles using a high-power (10 kW) microwave irradiation method as a gold standard. Skeletal muscle glycogen was depleted by 82-90% with exhaustive exercise, and supercompensated by 43-46% at 24 h after exercise. Brain glycogen levels decreased by 50-64% with exhaustive exercise, and supercompensated by 29-63% (whole brain 46%, cortex 60%, hippocampus 33%, hypothalamus 29%, cerebellum 63% and brainstem 49%) at 6 h after exercise. The brain glycogen supercompensation rates after exercise positively correlated with their decrease rates during exercise. We also observed that cortical and hippocampal glycogen supercompensation were sustained until 24 h after exercise (long-lasting supercompensation), and their basal glycogen levels increased with 4 weeks of exercise training (60 min day(-1) at 20 m min(-1)). These results support the hypothesis that, like the effect in skeletal muscles, glycogen supercompensation also occurs in the brain following exhaustive exercise, and the extent of supercompensation is dependent on that of glycogen decrease during exercise across brain regions. However, supercompensation in the brain preceded that of skeletal muscles. Further, the long-lasting supercompensation of the cortex and hippocampus is probably a prerequisite for their training adaptation (increased basal levels), probably to meet the increased energy demands of the brain in exercising animals.

  17. Cloning and expression of the sucrose phosphorylase gene from Leuconostoc mesenteroides in Escherichia coli.

    PubMed

    Lee, Jin-Ha; Moon, Young-Hwan; Kim, Nahyun; Kim, Young-Min; Kang, Hee-Kyoung; Jung, Ji-Yeon; Abada, Emad; Kang, Seong-Soo; Kim, Doman

    2008-04-01

    The gene encoding sucrose phosphorylase (742sp) in Leuconostoc mesenteroides NRRL B-742 was cloned and expressed in Escherichia coli. The nucleotide sequence of the transformed 742sp comprised an ORF of 1,458 bp giving a protein with calculated molecular mass of 55.3 kDa. 742SPase contains a C-terminal amino acid sequence that is significantly different from those of other Leu. mesenteroides SPases. The purified 742SPase had a specific activity of 1.8 U/mg with a K (m) of 3 mM with sucrose as a substrate; optimum activity was at 37 degrees C and pH 6.7. The purified 742SPase transferred the glucosyl moiety of sucrose to cytosine monophosphate (CMP).

  18. Studies on glycogen autophagy: effects of phorbol myristate acetate, ionophore A23187, or phentolamine.

    PubMed

    Kalamidas, S A; Kotoulas, O B; Hann, A C

    2002-06-15

    The effects of agents that could manipulate the lysosomal calcium such as phorbol myristate acetate, ionophore A23187, and phentolamine on the lysosomal glycogen degradation were studied by electron microscopy, morphometric analysis, and biochemical assays in newborn rat hepatocytes. Phorbol myristate acetate, which promotes the input of calcium to lysosomes, increased the total volume of autophagic vacuoles and the activity of lysosomal glycogen-hydrolyzing acid alpha 1,4 glucosidase and decreased the fractional volume of undigested glycogen inside the autophagic vacuoles and also decreased the activity of acid mannose 6-phosphatase. Ionophore A23187, which releases lysosomal calcium, produced opposite results in these enzyme activities. Phentolamine, an alpha-adrenergic blocking agent which interferes with the generation of phosphoinositides and may activate the lysosomal calcium uptake pump, increased the total volume of autophagic vacuoles and the activity of lysosomal glycogen-hydrolyzing acid glucosidase and decreased the fractional volume of undigested glycogen inside the autophagic vacuoles. The results of this study constitute evidence that changes in lysosomal calcium may influence certain aspects of autophagy, including the degradation of glycogen inside the autophagic vacuoles. They also support our previous postulate [Kalamidas and Kotoulas (2000a,b) Histol Histopathol 15:29-35, 1011-1018] that stimulation of autophagic mechanisms in newborn rat hepatocytes may be associated with acid mannose 6-phosphatase activity-deficient lysosomes.

  19. Dysfunctional glycogen storage in a mouse model of alpha1-antitrypsin deficiency.

    PubMed

    Hubner, Ralf H; Leopold, Philip L; Kiuru, Maija; De, Bishnu P; Krause, Anja; Crystal, Ronald G

    2009-02-01

    Autophagy is an intracellular pathway that contributes to the degradation and recycling of unfolded proteins. Based on the knowledge that autophagy affects glycogen metabolism and that alpha(1)-antitrypsin (AAT) deficiency is associated with an autophagic response in the liver, we hypothesized that the conformational abnormalities of the Z-AAT protein interfere with hepatocyte glycogen storage and/or metabolism. Compared with wild-type mice (WT), the Z-AAT mice had lower liver glycogen stores (P < 0.001) and abnormal activities of glycogen-related enzymes, including acid alpha-glucosidase (P < 0.05) and the total glycogen synthase (P < 0.05). As metabolic consequences, PiZ mice demonstrated lower blood glucose levels (P < 0.05), lower body weights (P < 0.001), and lower fat pad weights (P < 0.001) compared with WT. After the stress of fasting or partial hepatectomy, PiZ mice had further reduced liver glycogen and lower blood glucose levels (both P < 0.05 compared WT). Finally, PiZ mice exhibited decreased survival after partial hepatectomy (P < 0.01 compared with WT), but this was normalized with postoperative dextrose supplementation. In conclusion, these observations are consistent with the general concept that abnormal protein conformation and degradation affects other cellular functions, suggesting that diseases in the liver might benefit from metabolic compensation if glycogen metabolism is affected.

  20. Glycogen in honeybee queens, workers and drones (Apis mellifera carnica Pollm.).

    PubMed

    Crailsheim, K; Panzenböck, U

    1997-02-21

    Honey bees (Apis mellifera carnica Pollm.) have low glycogen reserves in summer. Upon emergence drones have significantly larger amounts per unit weight when emerging, than workers; perhaps as adaption to the risk of not being fed as intensely as young workers. Maximum content was 0.23mg for workers (28d), and 0.59mg for drones (after emergence). Workers have relatively constant glycogen contents during their life, and very young drones have more glycogen than older ones. Young queens are similar to workers. In workers and queens in summer the greatest amounts of glycogen are found in the thorax. When the bees start flying (6th-8th day of life), drones have the highest amounts in the head (probably to supply their eyes), and upon maturity, drones have the least glycogen in the abdomen.Workers in winter show different glycogen values depending on whether they are active bees from the core area (0.23mg) or inactive ones from the outer surface of the winter cluster (0.37mg). They use glycogen from the thorax and the abdomen for their ongoing energy need.

  1. Skeletal muscle glycogen synthase subcellular localization: effects of insulin and PPAR-alpha agonist (K-111) administration in rhesus monkeys.

    PubMed

    Ortmeyer, Heidi K; Adall, Yohannes; Marciani, Karina R; Katsiaras, Andreas; Ryan, Alice S; Bodkin, Noni L; Hansen, Barbara C

    2005-06-01

    Insulin covalently and allosterically regulates glycogen synthase (GS) and may also cause the translocation of GS from glycogen-poor to glycogen-rich locations. We examined the possible role of subcellular localization of GS and glycogen in insulin activation of GS in skeletal muscle of six obese monkeys and determined whether 1) insulin stimulation during a hyperinsulinemic euglycemic clamp and/or peroxisome proliferator-activated receptor (PPAR)-alpha agonist treatment (K-111, 3 mg.kg(-1).day(-1); Kowa) induced translocation of GS and 2) translocation of GS was associated with insulin activation of GS. GS and glycogen were present in all fractions obtained by differential centrifugation, except for the cytosolic fraction, under both basal and insulin-stimulated conditions. We found no evidence for translocation of GS by insulin. GS total (GST) activity was strongly associated with glycogen content (r = 0.70, P < 0.001). Six weeks of treatment with K-111 increased GST activity in all fractions, except the cytosolic fraction, and mean GST activity, GS independent activity, and glycogen content were significantly higher in the insulin-stimulated samples compared with basal samples, effects not seen with vehicle. The increase in GST activity was strongly related to the increase in glycogen content during the hyperinsulinemic euglycemic clamp after K-111 administration (r = 0.74, P < 0.001). Neither GS protein expression nor GS gene expression was affected by insulin or by K-111 treatment. We conclude that 1) in vivo insulin does not cause translocation of GS from a glycogen-poor to a glycogen-rich location in primate skeletal muscle and 2) the mechanism of action of K-111 to improve insulin sensitivity includes an increase in GST activity without an increase in GS gene or protein expression.

  2. Epidermal growth factor counteracts the glycogenic effect of insulin in parenchymal hepatocyte cultures.

    PubMed Central

    Chowdhury, M H; Agius, L

    1987-01-01

    Rat parenchymal hepatocytes in monolayer culture were used to study the metabolic effects of epidermal growth factor (EGF) and insulin on ketogenesis, gluconeogenesis and glycogen metabolism. EGF, unlike insulin, did not inhibit ketogenesis from palmitate or gluconeogenesis from pyruvate in hepatocyte cultures. It also had no effect on these pathways in the presence of insulin. In contrast, EGF potently counteracted the stimulation of [14C]pyruvate incorporation into glycogen by insulin, and also glycogen deposition from both gluconeogenic precursors and glucose. The EGF concentration causing half-maximal effect was about 0.1 nM. The anti-glycogenic effect of EGF was observed after both long-term (24 h) and short-term (1 h) exposure to EGF, and was more marked in the presence of insulin than in its absence. EGF did not displace bound insulin, suggesting that it neither competes for the insulin receptor nor affects the affinity of the receptor for insulin. EGF did not alter cellular cyclic AMP; and inhibition of cyclic AMP phosphodiesterase activity did not prevent the anti-glycogenic effect of EGF. In liver-derived dividing epithelial cells, Hep-G2 cells and fibroblasts, which have no capacity for gluconeogenesis, EGF did not counteract the stimulatory effect of insulin on [14C]glucose incorporation into glycogen, and in the epithelial cells EGF increased [14C]glucose incorporation into glycogen. The counter-effect of EGF on the glycogenic action of insulin in parenchymal hepatocytes may be due to a direct effect on glycogen metabolism or to an interaction with the post-receptor events in insulin action. PMID:2827626

  3. Glycogen storage disease type Ia: linkage of glucose, glycogen, lactic acid, triglyceride, and uric acid metabolism.

    PubMed

    Sever, Sakine; Weinstein, David A; Wolfsdorf, Joseph I; Gedik, Reyhan; Schaefer, Ernst J

    2012-01-01

    A female presented in infancy with hypotonia, undetectable serum glucose, lactic acidosis, and triglycerides >5000 mg/dL. The diagnosis of type 1A glycogen storage disease was made via the result of a liver biopsy, which showed increased glycogen and absent glucose-6-phosphatase enzyme activity. The patient was treated with dextrose administered orally, which was replaced by frequent feedings of cornstarch, which resulted in an improvement of her metabolic parameters. At age 18 years of age, she had marked hypertriglyceridemia (3860 mg/dL) and eruptive xanthomas and was treated with fenofibrate, atorvastatin, and fish oil. At age 29 years she was noted to have multiple liver adenomas, severe anemia, and hyperuricemia. Aggressive cornstarch therapy was commenced with a goal of maintaining her blood glucose levels >75 mg/dL and lactate levels <2 mmol/L. After 15 months on this regimen, her lipids levels (measured in mg/dL) off all medications were as follows: total cholesterol 222, triglycerides 179, high-density lipoprotein cholesterol 32, and calculated low-density lipoprotein cholesterol 154. Her weight was stable with a body mass index of 24.8 kg/m(2). Her liver adenomas had decreased in size, and her anemia and hyperuricemia had improved. She was homozygous for the R83C missense mutation in G6PC. Our data indicate that optimized metabolic control to maintain blood glucose levels >75 mg/dL is critical in the management of this disease.

  4. Structural characterization of purine nucleoside phosphorylase from human pathogen Helicobacter pylori.

    PubMed

    Štefanić, Zoran; Mikleušević, Goran; Luić, Marija; Bzowska, Agnieszka; Ašler, Ivana Leščić

    2017-03-20

    Microaerophilic bacterium Helicobacer pylori is a well known human pathogen involved in the development of many diseases. Due to the evergrowing infection rate and increase of H. pylori antibiotic resistence, it is of utmost importance to find a new way to attack and eradicate H. pylori. The purine metabolism in H. pylori is solely dependant on the salvage pathway and one of the key enzymes in this pathway is purine nucleoside phosphorylase (PNP). In this timely context, we report here the basic biochemical and structural characterization of recombinant PNP from the H. pylori clinical isolate expressed in Escherichia coli. Structure of H. pylori PNP is typical for high molecular mass PNPs. However, its activity towards adenosine is very low, thus resembling more that of low molecular mass PNPs. Understanding the molecular mechanism of this key enzyme may lead to the development of new drug strategies and help in the eradication of H. pylori.

  5. Computer-generated Model of Purine Nucleoside Phosphorylase (PNP)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Purine Nucleoside Phosphorylase (PNP) is an important target enzyme for the design of anti-cancer and immunosuppressive drugs. Bacterial PNP, which is slightly different from the human enzyme, is used to synthesize chemotherapuautic agents. Knowledge of the three-dimensional structure of the bacterial PNP molecule is useful in efforts to engineer different types of PNP enzymes, that can be used to produce new chemotherapeutic agents. This picture shows a computer model of bacterial PNP, which looks a lot like a display of colorful ribbons. Principal Investigator was Charles Bugg.

  6. The inhibition of glycogen synthase kinase-3 by insulin or insulin-like growth factor 1 in the rat skeletal muscle cell line L6 is blocked by wortmannin, but not by rapamycin: evidence that wortmannin blocks activation of the mitogen-activated protein kinase pathway in L6 cells between Ras and Raf.

    PubMed Central

    Cross, D A; Alessi, D R; Vandenheede, J R; McDowell, H E; Hundal, H S; Cohen, P

    1994-01-01

    Glycogen synthase kinase-3 (GSK3) is inactivated in vitro by p70 S6 kinase or MAP kinase-activated protein kinase-1 beta (MAPKAP kinase-1 beta; also known as Rsk-2). Here we show that GSK3 isoforms are inhibited by 40% within minutes after stimulation of the rat skeletal-muscle cell line L6 with insulin-like growth factor-1 (IGF-1) or insulin. GSK3 was similarly inhibited in rabbit skeletal muscle after an intravenous injection of insulin. Inhibition resulted from increased phosphorylation of GSK3, probably at a serine/threonine residue(s), because it was reversed by incubation with protein phosphatase-2A. Rapamycin blocked the activation of p70 S6 kinase by IGF-1 in L6 cells, but had no effect on the inhibition of GSK3 or the activation of MAPKAP kinase-1 beta. In contrast, wortmannin, a potent inhibitor of PtdIns 3-kinase, prevented the inactivation of GSK3 and the activation of MAPKAP kinase-1 beta and p70 S6 kinase by IGF-1 or insulin. Wortmannin also blocked the activation of p74raf-1. MAP kinase kinase and p42 MAP kinase, but not the formation of GTP-Ras by IGF-1. The results suggest that the stimulation of glycogen synthase by insulin/IGF-1 in skeletal muscle involves the MAP-KAP kinase-1-catalysed inhibition of GSK3, as well as the previously described activation of the glycogen-associated form of protein phosphatase-1. Images Figure 1 PMID:7945242

  7. Effect of pH on Cleavage of Glycogen by Vaginal Enzymes

    PubMed Central

    Spear, Greg T.; McKenna, Mary; Landay, Alan L.; Makinde, Hadijat; Hamaker, Bruce; French, Audrey L.; Lee, Byung-Hoo

    2015-01-01

    Glycogen expressed by the lower genital tract epithelium is believed to support Lactobacillus growth in vivo, although most genital isolates of Lactobacillus are not able to use glycogen as an energy source in vitro. We recently reported that α-amylase is present in the genital fluid of women and that it breaks down glycogen into small carbohydrates that support growth of lactobacilli. Since the pH of the lower genital tract can be very low, we determined how low pH affects glycogen processing by α-amylase. α-amylase in saliva degraded glycogen similarly at pH 6 and 7, but activity was reduced by 52% at pH 4. The glycogen degrading activity in nine genital samples from seven women showed a similar profile with an average reduction of more than 50% at pH 4. However, two samples collected from one woman at different times had a strikingly different pH profile with increased glycogen degradation at pH 4, 5 and 6 compared to pH 7. This second pH profile did not correlate with levels of human α-acid glucosidase or human intestinal maltase glucoamylase. High-performance anion-exchange chromatography showed that mostly maltose was produced from glycogen by samples with the second pH profile in contrast to genital α-amylase that yielded maltose, maltotriose and maltotetraose. These studies show that at low pH, α-amylase activity is reduced to low but detectable levels, which we speculate helps maintain Lactobacillus growth at a limited but sustained rate. Additionally, some women have a genital enzyme distinct from α-amylase with higher activity at low pH. Further studies are needed to determine the identity and distribution of this second enzyme, and whether its presence influences the makeup of genital microbiota. PMID:26171967

  8. Synthesis and biological evaluation of novel oxadiazole derivatives: a new class of thymidine phosphorylase inhibitors as potential anti-tumor agents.

    PubMed

    Shahzad, Sohail Anjum; Yar, Muhammad; Bajda, Marek; Jadoon, Bushra; Khan, Zulfiqar Ali; Naqvi, Syed Ali Raza; Shaikh, Ahson Jabbar; Hayat, Khizar; Mahmmod, Adeem; Mahmood, Nasir; Filipek, Sławomir

    2014-02-01

    Based on the fact that the thymidine phosphorylase inhibitors are considered potential anti-tumor agents, a range of novel oxadiazole derivatives 3a-3u was designed and synthesized by a simple and facile synthetic route. The biological assay revealed that majority of compounds displayed modest inhibitory activity against thymidine phosphorylase at low micromolar concentrations (IC50 173.23±3.04 to 14.40±2.45μM). In the current study the most active compounds were 3h and 3q with IC50 values 14.40±2.45 and 17.60±1.07μM, respectively. Molecular docking studies were performed on the most active compounds (3h, 3k, 3o-3q) to show their binding mode.

  9. Structural basis for non-competitive product inhibition in human thymidine phosphorylase: implications for drug design.

    PubMed

    El Omari, Kamel; Bronckaers, Annelies; Liekens, Sandra; Pérez-Pérez, Maria-Jésus; Balzarini, Jan; Stammers, David K

    2006-10-15

    HTP (human thymidine phosphorylase), also known as PD-ECGF (platelet-derived endothelial cell growth factor) or gliostatin, has an important role in nucleoside metabolism. HTP is implicated in angiogenesis and apoptosis and therefore is a prime target for drug design, including antitumour therapies. An HTP structure in a closed conformation complexed with an inhibitor has previously been solved. Earlier kinetic studies revealed an ordered release of thymine followed by ribose phosphate and product inhibition by both ligands. We have determined the structure of HTP from crystals grown in the presence of thymidine, which, surprisingly, resulted in bound thymine with HTP in a closed dead-end complex. Thus thymine appears to be able to reassociate with HTP after its initial ordered release before ribose phosphate and induces the closed conformation, hence explaining the mechanism of non-competitive product inhibition. In the active site in one of the four HTP molecules within the crystal asymmetric unit, additional electron density is present. This density has not been previously seen in any pyrimidine nucleoside phosphorylase and it defines a subsite that may be exploitable in drug design. Finally, because our crystals did not require proteolysed HTP to grow, the structure reveals a loop (residues 406-415), disordered in the previous HTP structure. This loop extends across the active-site cleft and appears to stabilize the dimer interface and the closed conformation by hydrogen-bonding. The present study will assist in the design of HTP inhibitors that could lead to drugs for anti-angiogenesis as well as for the potentiation of other nucleoside drugs.

  10. Glycogen synthase (GYS1) mutation causes a novel skeletal muscle glycogenosis.

    PubMed

    McCue, Molly E; Valberg, Stephanie J; Miller, Michael B; Wade, Claire; DiMauro, Salvatore; Akman, Hasan O; Mickelson, James R

    2008-05-01

    Polysaccharide storage myopathy (PSSM) is a novel glycogenosis in horses characterized by abnormal glycogen accumulation in skeletal muscle and muscle damage with exertion. It is unlike glycogen storage diseases resulting from known defects in glycogenolysis, glycolysis, and glycogen synthesis that have been described in humans and domestic animals. A genome-wide association identified GYS1, encoding skeletal muscle glycogen synthase (GS), as a candidate gene for PSSM. DNA sequence analysis revealed a mutation resulting in an arginine-to-histidine substitution in a highly conserved region of GS. Functional analysis demonstrated an elevated GS activity in PSSM horses, and haplotype analysis and allele age estimation demonstrated that this mutation is identical by descent among horse breeds. This is the first report of a gain-of-function mutation in GYS1 resulting in a glycogenosis.

  11. Enzymatic synthesis and phosphorolysis of 4(2)-thioxo- and 6(5)-azapyrimidine nucleosides by E. coli nucleoside phosphorylases

    PubMed Central

    Stepchenko, Vladimir A; Miroshnikov, Anatoly I; Seela, Frank

    2016-01-01

    The trans-2-deoxyribosylation of 4-thiouracil (4SUra) and 2-thiouracil (2SUra), as well as 6-azauracil, 6-azathymine and 6-aza-2-thiothymine was studied using dG and E. coli purine nucleoside phosphorylase (PNP) for the in situ generation of 2-deoxy-α-D-ribofuranose-1-phosphate (dRib-1P) followed by its coupling with the bases catalyzed by either E. coli thymidine (TP) or uridine (UP) phosphorylases. 4SUra revealed satisfactory substrate activity for UP and, unexpectedly, complete inertness for TP; no formation of 2’-deoxy-2-thiouridine (2SUd) was observed under analogous reaction conditions in the presence of UP and TP. On the contrary, 2SU, 2SUd, 4STd and 2STd are good substrates for both UP and TP; moreover, 2SU, 4STd and 2’-deoxy-5-azacytidine (Decitabine) are substrates for PNP and the phosphorolysis of the latter is reversible. Condensation of 2SUra and 5-azacytosine with dRib-1P (Ba salt) catalyzed by the accordant UP and PNP in Tris∙HCl buffer gave 2SUd and 2’-deoxy-5-azacytidine in 27% and 15% yields, respectively. 6-Azauracil and 6-azathymine showed good substrate properties for both TP and UP, whereas only TP recognizes 2-thio-6-azathymine as a substrate. 5-Phenyl and 5-tert-butyl derivatives of 6-azauracil and its 2-thioxo derivative were tested as substrates for UP and TP, and only 5-phenyl- and 5-tert-butyl-6-azauracils displayed very low substrate activity. The role of structural peculiarities and electronic properties in the substrate recognition by E. coli nucleoside phosphorylases is discussed. PMID:28144328

  12. Enzymatic synthesis and phosphorolysis of 4(2)-thioxo- and 6(5)-azapyrimidine nucleosides by E. coli nucleoside phosphorylases.

    PubMed

    Stepchenko, Vladimir A; Miroshnikov, Anatoly I; Seela, Frank; Mikhailopulo, Igor A

    2016-01-01

    The trans-2-deoxyribosylation of 4-thiouracil ((4S)Ura) and 2-thiouracil ((2S)Ura), as well as 6-azauracil, 6-azathymine and 6-aza-2-thiothymine was studied using dG and E. coli purine nucleoside phosphorylase (PNP) for the in situ generation of 2-deoxy-α-D-ribofuranose-1-phosphate (dRib-1P) followed by its coupling with the bases catalyzed by either E. coli thymidine (TP) or uridine (UP) phosphorylases. (4S)Ura revealed satisfactory substrate activity for UP and, unexpectedly, complete inertness for TP; no formation of 2'-deoxy-2-thiouridine ((2S)Ud) was observed under analogous reaction conditions in the presence of UP and TP. On the contrary, (2S)U, (2S)Ud, (4S)Td and (2S)Td are good substrates for both UP and TP; moreover, (2S)U, (4S)Td and 2'-deoxy-5-azacytidine (Decitabine) are substrates for PNP and the phosphorolysis of the latter is reversible. Condensation of (2S)Ura and 5-azacytosine with dRib-1P (Ba salt) catalyzed by the accordant UP and PNP in Tris∙HCl buffer gave (2S)Ud and 2'-deoxy-5-azacytidine in 27% and 15% yields, respectively. 6-Azauracil and 6-azathymine showed good substrate properties for both TP and UP, whereas only TP recognizes 2-thio-6-azathymine as a substrate. 5-Phenyl and 5-tert-butyl derivatives of 6-azauracil and its 2-thioxo derivative were tested as substrates for UP and TP, and only 5-phenyl- and 5-tert-butyl-6-azauracils displayed very low substrate activity. The role of structural peculiarities and electronic properties in the substrate recognition by E. coli nucleoside phosphorylases is discussed.

  13. ¹³C MRS reveals a small diurnal variation in the glycogen content of human thigh muscle.

    PubMed

    Takahashi, Hideyuki; Kamei, Akiko; Osawa, Takuya; Kawahara, Takashi; Takizawa, Osamu; Maruyama, Katsuya

    2015-06-01

    There is marked diurnal variation in the glycogen content of skeletal muscles of animals, but few studies have addressed such variations in human muscles. (13)C MRS can be used to noninvasively measure the glycogen content of human skeletal muscle, but no study has explored the diurnal variations in this parameter. This study aimed to investigate whether a diurnal variation in glycogen content occurs in human muscles and, if so, to what extent it can be identified using (13)C MRS. Six male volunteers were instructed to maintain their normal diet and not to perform strenuous exercise for at least 3 days before and during the experiment. Muscle glycogen and blood glucose concentrations were measured six times in 24 h under normal conditions in these subjects. The glycogen content in the thigh muscle was determined noninvasively by natural abundance (13)C MRS using a clinical MR system at 3 T. Nutritional analysis revealed that the subjects' mean carbohydrate intake was 463 ± 137 g, being approximately 6.8 ± 2.4 g/kg body weight. The average sleeping time was 5.9 ± 1.0 h. The glycogen content in the thigh muscle at the starting point was 64.8 ± 20.6 mM. Although absolute and relative individual variations in muscle glycogen content were 7.0 ± 2.1 mM and 11.3 ± 4.6%, respectively, no significant difference in glycogen content was observed among the different time points. This study demonstrates that normal food intake (not fat and/or carbohydrate rich), sleep and other daily activities have a negligible influence on thigh muscle glycogen content, and that the diurnal variation of the glycogen content in human muscles is markedly smaller than that in animal muscles. Moreover, the present results also support the reproducibility and availability of (13)C MRS for the evaluation of the glycogen content in human muscles.

  14. Oligosaccharide Binding in Escherichia coli Glycogen Synthase

    SciTech Connect

    Sheng, Fang; Yep, Alejandra; Feng, Lei; Preiss, Jack; Geiger, James H.

    2010-11-17

    Glycogen/starch synthase elongates glucan chains and is the key enzyme in the synthesis of glycogen in bacteria and starch in plants. Cocrystallization of Escherichia coli wild-type glycogen synthase (GS) with substrate ADPGlc and the glucan acceptor mimic HEPPSO produced a closed form of GS and suggests that domain-domain closure accompanies glycogen synthesis. Cocrystallization of the inactive GS mutant E377A with substrate ADPGlc and oligosaccharide results in the first oligosaccharide-bound glycogen synthase structure. Four bound oligosaccharides are observed, one in the interdomain cleft (G6a) and three on the N-terminal domain surface (G6b, G6c, and G6d). Extending from the center of the enzyme to the interdomain cleft opening, G6a mostly interacts with the highly conserved N-terminal domain residues lining the cleft of GS. The surface-bound oligosaccharides G6c and G6d have less interaction with enzyme and exhibit a more curled, helixlike structural arrangement. The observation that oligosaccharides bind only to the N-terminal domain of GS suggests that glycogen in vivo probably binds to only one side of the enzyme to ensure unencumbered interdomain movement, which is required for efficient, continuous glucan-chain synthesis.

  15. Role of Glycoside Phosphorylases in Mannose Foraging by Human Gut Bacteria*

    PubMed Central

    Ladevèze, Simon; Tarquis, Laurence; Cecchini, Davide A.; Bercovici, Juliette; André, Isabelle; Topham, Christopher M.; Morel, Sandrine; Laville, Elisabeth; Monsan, Pierre; Lombard, Vincent; Henrissat, Bernard; Potocki-Véronèse, Gabrielle

    2013-01-01

    To metabolize both dietary fiber constituent carbohydrates and host glycans lining the intestinal epithelium, gut bacteria produce a wide range of carbohydrate-active enzymes, of which glycoside hydrolases are the main components. In this study, we describe the ability of phosphorylases to participate in the breakdown of human N-glycans, from an analysis of the substrate specificity of UhgbMP, a mannoside phosphorylase of the GH130 protein family discovered by functional metagenomics. UhgbMP is found to phosphorolyze β-d-Manp-1,4-β-d-GlcpNAc-1,4-d-GlcpNAc and is also a highly efficient enzyme to catalyze the synthesis of this precious N-glycan core oligosaccharide by reverse phosphorolysis. Analysis of sequence conservation within family GH130, mapped on a three-dimensional model of UhgbMP and supported by site-directed mutagenesis results, revealed two GH130 subfamilies and allowed the identification of key residues responsible for catalysis and substrate specificity. The analysis of the genomic context of 65 known GH130 sequences belonging to human gut bacteria indicates that the enzymes of the GH130_1 subfamily would be involved in mannan catabolism, whereas the enzymes belonging to the GH130_2 subfamily would rather work in synergy with glycoside hydrolases of the GH92 and GH18 families in the breakdown of N-glycans. The use of GH130 inhibitors as therapeutic agents or functional foods could thus be considered as an innovative strategy to inhibit N-glycan degradation, with the ultimate goal of protecting, or restoring, the epithelial barrier. PMID:24043624

  16. Direct vs. indirect pathway of hepatic glycogen synthesis as a function of glucose infusion rate

    SciTech Connect

    Bagby, G.J.; Lang, C.H.; Johnson, J.L.; Blakesly, H.L.; Spitzer, J.J.

    1986-03-05

    This study was initiated to determine the influence of the rate of exogenous glucose administration on liver glycogen synthesis by the direct (glucose uptake and incorporation into glycogen) vs the indirect pathway (glucose degradation to 3-carbon intermediates, e.g., lactate, prior to incorporation into glycogen). Catheterized rats were fasted 2 days prior to receiving a 3 hr infusion of glucose at rates of 0 to 230 ..mu..mol/min/kg containing tracer (6-/sup 3/H)- and (U-/sup 14/C)-glucose. Plasma glucose (r = 0.80), insulin (r = 0.90) and lactate (r = 0.84) were correlated with glucose infusion rate. The rate of liver glycogen deposition (0.46 +/- 0.03 ..mu..mol/min/g) did not differ between a glucose infusion rate of 20 and 230 ..mu..mol/min/kg. At the lowest and highest glucose infusion rates hepatic glycogenesis accounted for 87 +/- 6 and 9 +/- 1% of the total glucose load, respectively. The percent contribution of the direct pathways to glycogen deposition ((/sup 3/H) specific activity in hepatic glycogen/(/sup 3/H) specific activity in plasma glucose) increased from 16 +/- 3 to 83 +/- 5% from lowest to highest glucose infusion rates (prevailing plasma glucose concentrations: 9 +/- 1 and 21 +/- 2 mM, respectively). The results indicate that the relative contribution of the direct and indirect pathways of glucogen synthesis are dependent upon the glucose load or plasma glucose concentration.

  17. Characterization of the highly branched glycogen from the thermoacidophilic red microalga Galdieria sulphuraria and comparison with other glycogens.

    PubMed

    Martinez-Garcia, Marta; Stuart, Marc C A; van der Maarel, Marc J E C

    2016-08-01

    The thermoacidophilic red microalga Galdieria sulphuraria synthesizes glycogen when growing under heterotrophic conditions. Structural characterization revealed that G. sulphuraria glycogen is the most highly branched glycogen described to date, with 18% of α-(1→6) linkages. Moreover, it differs from other glycogens because it is composed of short chains only and has a substantially smaller molecular weight and particle size. The physiological role of this highly branched glycogen in G. sulphuraria is discussed.

  18. [The regulation of glucose-6-phosphate dehydrogenase and glycogen synthase activities by insulin superfamily peptides in myometrium of pregnant women and its impairments under different types of diabetes mellitus].

    PubMed

    Kuznetsova, L A; Chistiakova, O V

    2009-01-01

    The regulatory effects of insulin, insulin-like growth factor 1 (IGF-1), and relaxin on glucose-6-phosphate dehydrogenase (G6PDH) and glycogen synthase (GS) activities have been studied in myometrium of pregnant women of control group and with diabetes mellitus of different etiology. In patients with type 1 diabetes G6PDH activity did not differ from the control group, but the enzyme activity was sharply decreased in pregnant women with type 2 diabetes and gestational diabetes. In the control group maximal stimulation of G6PDH activity was observed at 10(-9) M of peptides and their stimulating effect decreased in the following order: insulin > relaxin > IGF-1. In pregnant women with types 1 diabetes insulin effect on the enzyme activity was lower than in the control, and the effects of IGF-1 and relaxin were absent. In the group of pregnant women with type 2 diabetes and gestational diabetes the effects of insulin and IGF-1 were decreased, but the effect of relaxin was somewhat higher thus giving the following order in their efficiency relaxin > IGF-1 = insulin. At 10(-9) M peptides exhibited similar stimulating effects on the active form of GS-I, but had no influence on the total enzyme activity in the control group of pregnant women. In patients with type 1 diabetes GS activity remained unchanged (versus control), and peptides did not stimulate the enzyme activity. In patients with type 2 diabetes a significant decrease in GS activity was accompanied by the decrease in the effect of peptides, giving the following order of their efficiency: insulin = IGF-1 > relaxin. In myometrium of pregnant women with gestational (treated and untreated) diabetes GS activity decreased, the effect of insulin was weaker, whereas the effects of relaxin and IGF-1 increased thus giving the following order of their efficiency: relaxin > IGF-1 > insulin. Insulin therapy of type 1 diabetes incompletely restored sensitivity of the enzymes to the peptide actions. At the same time, in women

  19. GLC3 and GHA1 of Saccharomyces cerevisiae are allelic and encode the glycogen branching enzyme.

    PubMed Central

    Rowen, D W; Meinke, M; LaPorte, D C

    1992-01-01

    In the yeast Saccharomyces cerevisiae, glycogen serves as a major storage carbohydrate. In a previous study, mutants with altered glycogen metabolism were isolated on the basis of the altered iodine-staining properties of colonies. We found that when glycogen produced by strains carrying the glc-1p (previously called gha1-1) mutation is stained with iodine, the absorption spectrum resembles that of starch rather than that of glycogen, suggesting that this mutation might reduce the level of branching in the glycogen particles. Indeed, glycogen branching activity was undetectable in extracts from a glc3-1p strain but was elevated in strains which expressed GLC3 from a high-copy-number plasmid. These observations suggest that GLC3 encodes the glycogen branching enzyme. In contrast to glc3-1p, the glc3-4 mutation greatly reduces the ability of yeast to accumulate glycogen. These mutations appear to be allelic despite the striking difference in the phenotypes which they produce. The GLC3 clone complemented both glc3-1p and glc3-4. Deletions and transposon insertions in this clone had parallel effects on its ability to complement glc3-1p and glc3-4. Finally, a fragment of the cloned gene was able to direct the repair of both glc3-1p and glc3-4. Disruption of GLC3 yielded the glycogen-deficient phenotype, indicating that glycogen deficiency is the null phenotype. The glc3-1p allele appears to encode a partially functional product, since it is dominant over glc3-4 but recessive to GLC3. These observations suggest that the ability to introduce branches into glycogen greatly increases the ability of the cell to accumulate that polysaccharide. Northern (RNA) blot analysis identified a single mRNA of 2,300 nucleotides that increased in abundance ca. 20-fold as the culture approached stationary phase. It thus appears that the expression of GLC3 is regulated, probably at the level of transcription. Images PMID:1729600

  20. A glycogene mutation map for discovery of diseases of glycosylation

    PubMed Central

    Hansen, Lars; Lind-Thomsen, Allan; Joshi, Hiren J; Pedersen, Nis Borbye; Have, Christian Theil; Kong, Yun; Wang, Shengjun; Sparso, Thomas; Grarup, Niels; Vester-Christensen, Malene Bech; Schjoldager, Katrine; Freeze, Hudson H; Hansen, Torben; Pedersen, Oluf; Henrissat, Bernard; Mandel, Ulla; Clausen, Henrik; Wandall, Hans H; Bennett, Eric P

    2015-01-01

    Glycosylation of proteins and lipids involves over 200 known glycosyltransferases (GTs), and deleterious defects in many of the genes encoding these enzymes cause disorders collectively classified as congenital disorders of glycosylation (CDGs). Most known CDGs are caused by defects in glycogenes that affect glycosylation globally. Many GTs are members of homologous isoenzyme families and deficiencies in individual isoenzymes may not affect glycosylation globally. In line with this, there appears to be an underrepresentation of disease-causing glycogenes among these larger isoenzyme homologous families. However, genome-wide association studies have identified such isoenzyme genes as candidates for different diseases, but validation is not straightforward without biomarkers. Large-scale whole-exome sequencing (WES) provides access to mutations in, for example, GT genes in populations, which can be used to predict and/or analyze functional deleterious mutations. Here, we constructed a draft of a functional mutational map of glycogenes, GlyMAP, from WES of a rather homogenous population of 2000 Danes. We cataloged all missense mutations and used prediction algorithms, manual inspection and in case of carbohydrate-active enzymes family GT27 experimental analysis of mutations to map deleterious mutations. GlyMAP (http://glymap.glycomics.ku.dk) provides a first global view of the genetic stability of the glycogenome and should serve as a tool for discovery of novel CDGs. PMID:25267602

  1. Stimulation of lymphocyte proliferation by oyster glycogen sulfated at C-6 position.

    PubMed

    Yang, Jingfeng; Zhu, Beiwei; Zheng, Jie; Sun, Liming; Zhou, Dayong; Dong, Xiuping; Yu, Chenxu

    2013-04-15

    In this study, glycogen was extracted from oyster Ostrea talienwhanensis Crosse and used as a model to investigate the structure-activity correlation of polysaccharides. Purified oyster glycogen was characterized by methylation analysis, nuclear magnetic resonance (NMR) spectroscopy and infrared spectroscopy (IR). The oyster glycogen was subsequently sulfated by chlorosulfonic acid-pyridine method, and a C-6 substituted species (SOG) was identified to be the primary sulfated oyster glycogen species by (13)C NMR spectroscopy. The molecular weight and sulfate content of the SOG was determined to be 3.2×10(4) g/mol and 33.6%, respectively. Another sulfated oyster glycogen species (SOG1) with C-2 and C-3 substitution was also identified at a lesser amount in the final product. SOG exhibited a much stronger stimulation effect to splenic lymphocyte proliferation than SOG1 in vitro, indicating that the position of sulfate substitution is a major determining factor on the efficacy of sulfated glycogens to stimulate lymphocyte proliferation.

  2. Investigation of potential glycogen synthase kinase 3 inhibitors using pharmacophore mapping and virtual screening.

    PubMed

    Dessalew, Nigus; Bharatam, Prasad V

    2006-09-01

    Glycogen synthase kinase-3 is a serine/threonine kinase that has attracted significant drug discovery attention in recent years. To investigate the identification of new potential glycogen synthase kinase-3 inhibitors, a pharmacophore mapping study was carried out using a set of 21 structurally diverse glycogen synthase kinase-3 inhibitors. A hypothesis containing four features: two hydrophobic, one hydrogen bond donor and another hydrogen bond acceptor was found to be the best from the 10 common feature hypotheses produced by HipHop module of Catalyst. The best hypothesis has a high cost of 156.592 and higher best fit values were obtained for the 21 inhibitors using this best hypothesis than the other HipHop hypotheses. The best hypothesis was then used to screen electronically the NCI2000 database. The hits obtained were docked into glycogen synthase kinase-3beta active site. A total of five novel potential leads were proposed after: (i) visual examination of how well they dock into the glycogen synthase kinase-3beta-binding site, (ii) comparative analysis of their FlexX, G-Score, PMF-Score, ChemScore and D-Scores values, (iii) comparison of their best fit value with the known inhibitors and (iv) examination of the how the hits retain interactions with the important amino acid residues of glycogen synthase kinase-3beta-binding site.

  3. The Saccharomyces cerevisiae fermentation stress response protein Igd1p/Yfr017p regulates glycogen levels by inhibiting the glycogen debranching enzyme.

    PubMed

    Walkey, Christopher J; Luo, Zongli; Borchers, Christoph H; Measday, Vivien; van Vuuren, Hennie J J

    2011-09-01

    Wine fermentation imposes a number of stresses on Saccharomyces cerevisiae, and wine yeasts respond to this harsh environment by altering their transcriptional profile (Marks et al., 2008). We have labeled this change in gene expression patterns the fermentation stress response (FSR). An important component of the FSR is the increased expression of 62 genes for which no function has been identified for their protein products. We hypothesize that a function for these proteins may only be revealed late in grape must fermentation, when the yeast cells are facing conditions much more extreme than those normally encountered in laboratory media. We used affinity copurification to identify interaction partners for the FSR protein Yfr017p, and found that it interacts specifically with the glycogen debranching enzyme (Gdb1p). The expression of both of these proteins is strongly induced during wine fermentation. Therefore, we investigated the role of Yfr017p in glycogen metabolism by constructing wine yeast strains that lack this protein. These YFR017C null cells displayed a significant reduction in their ability to accumulate glycogen during aerobic growth and fermentation. Moreover, Yfr017p inhibits Gdb1p activity in vitro. These results suggest that Yfr017p functions as an inhibitor of Gdb1p, enhancing the ability of yeast cells to store glucose as glycogen. Therefore, we propose IGD1 (for inhibitor of glycogen debranching) as a gene name for the YFR017C ORF.

  4. Purine nucleoside phosphorylase from Pseudoalteromonas sp. Bsi590: molecular cloning, gene expression and characterization of the recombinant protein.

    PubMed

    Li, Xiaohui; Jiang, Xinyin; Li, Huirong; Ren, Daming

    2008-05-01

    The gene encoding purine nucleoside phosphorylase (PNP) from the cold-adapted marine bacterium Pseudoalteromonas sp. Bsi590 was identified, cloned and expressed in Escherichia coli. The gene encodes a polypeptide of 233 amino acids with a calculated molecular weight of 25,018 Da. Pseudoalteromonas sp. Bsi590 PNP (PiPNP) shares 60% amino sequence identity and conservation of amino acid residues involved in catalysis with mesophilic Escherichia coli deoD-encoded purine nucleoside phosphorylase (EcPNP). N-terminal his-tagged PiPNP and EcPNP were purified to apparent homogeneity using Ni2+-chelating column. Compared with EcPNP, PiPNP possessed a lower temperature optimum and thermal stability. As for PNP enzymes in general, PiPNP and EcPNP displayed complicated kinetic properties; PiPNP possessed higher Km and catalytic efficiency (kcat/Km) compared to EcPNP at 37 degrees C. Substrate specificity results showed PiPNP catalyzed the phosphorolytic cleavage of 6-oxopurine and 6-aminopurine nucleosides (or 2-deoxynucleosides), and to a lesser extent purine arabinosides. PiPNP showed a better activity with inosine while no activity toward pyrimidine nucleosides. The protein conformation was analyzed by temperature perturbation difference spectrum. Results showed that PiPNP had lower conformation transition point temperature than EcPNP; phosphate buffer and KCl had significant influence on PiPNP protein conformation stability and thermostability.

  5. Impaired glucose tolerance and predisposition to the fasted state in liver glycogen synthase knock-out mice.

    PubMed

    Irimia, Jose M; Meyer, Catalina M; Peper, Caron L; Zhai, Lanmin; Bock, Cheryl B; Previs, Stephen F; McGuinness, Owen P; DePaoli-Roach, Anna; Roach, Peter J

    2010-04-23

    Conversion to glycogen is a major fate of ingested glucose in the body. A rate-limiting enzyme in the synthesis of glycogen is glycogen synthase encoded by two genes, GYS1, expressed in muscle and other tissues, and GYS2, primarily expressed in liver (liver glycogen synthase). Defects in GYS2 cause the inherited monogenic disease glycogen storage disease 0. We have generated mice with a liver-specific disruption of the Gys2 gene (liver glycogen synthase knock-out (LGSKO) mice), using Lox-P/Cre technology. Conditional mice carrying floxed Gys2 were crossed with mice expressing Cre recombinase under the albumin promoter. The resulting LGSKO mice are viable, develop liver glycogen synthase deficiency, and have a 95% reduction in fed liver glycogen content. They have mild hypoglycemia but dispose glucose less well in a glucose tolerance test. Fed, LGSKO mice also have a reduced capacity for exhaustive exercise compared with mice carrying floxed alleles, but the difference disappears after an overnight fast. Upon fasting, LGSKO mice reach within 4 h decreased blood glucose levels attained by control floxed mice only after 24 h of food deprivation. The LGSKO mice maintain this low blood glucose for at least 24 h. Basal gluconeogenesis is increased in LGSKO mice, and insulin suppression of endogenous glucose production is impaired as assessed by euglycemic-hyperinsulinemic clamp. This observation correlates with an increase in the liver gluconeogenic enzyme phosphoenolpyruvate carboxykinase expression and activity. This mouse model mimics the pathophysiology of glycogen storage disease 0 patients and highlights the importance of liver glycogen stores in whole body glucose homeostasis.

  6. The identification of starch phosphorylase in the developing mungbean (Vigna radiata L.).

    PubMed

    Ko, Yuan-Tih; Chang, Jin-Yi; Lee, Ya-Ting; Wu, Yi-Hui

    2005-07-13

    Starch phosphorylase (SP) in immature mungbean (Vigna radiata L. cv KPS1) seed soluble extract was detected by in situ activity staining and identified by MALDI-TOF mass analysis. After in situ SP assay on native-PAGE, a major starch-enzyme complex was located on the gel zymogram in a dose-dependent manner. This complex depicted two major SP-activity related proteins, 105 kDa and 55 kDa, by SDS-PAGE. The mass and predicted sequence of the tryptic fragments of the isolated 105 kDa protein, analyzed by MALDI-TOF spectroscopy and bioinformatic analysis, confirmed it to be mungbean SP as a result of high similarity to the L-SP of known plant. Polyclonal antibodies raised from the 55 kDa recognized both the 105 kDa and the 55 kDa proteins on the Western blot and neutralized partial SP activity, indicating that the two proteins were immunologically related. The 55 kDa protein possess high similarity to the N-terminal half of the 105 kDa SP was further confirmed. The SP activity and the activity stained protein density in mungbean soluble extract decreased as the seed size increased during early seed growth. These data indicate that mungbean 105 kDa SP and SP activity-related 55 kDa were identified in the developing mungbean.

  7. Characterization of a canine model of glycogen storage disease type IIIa.

    PubMed

    Yi, Haiqing; Thurberg, Beth L; Curtis, Sarah; Austin, Stephanie; Fyfe, John; Koeberl, Dwight D; Kishnani, Priya S; Sun, Baodong

    2012-11-01

    Glycogen storage disease type IIIa (GSD IIIa) is an autosomal recessive disease caused by deficiency of glycogen debranching enzyme (GDE) in liver and muscle. The disorder is clinically heterogeneous and progressive, and there is no effective treatment. Previously, a naturally occurring dog model for this condition was identified in curly-coated retrievers (CCR). The affected dogs carry a frame-shift mutation in the GDE gene and have no detectable GDE activity in liver and muscle. We characterized in detail the disease expression and progression in eight dogs from age 2 to 16 months. Monthly blood biochemistry revealed elevated and gradually increasing serum alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) activities; serum creatine phosphokinase (CPK) activity exceeded normal range after 12 months. Analysis of tissue biopsy specimens at 4, 12 and 16 months revealed abnormally high glycogen contents in liver and muscle of all dogs. Fasting liver glycogen content increased from 4 months to 12 months, but dropped at 16 months possibly caused by extended fibrosis; muscle glycogen content continually increased with age. Light microscopy revealed significant glycogen accumulation in hepatocytes at all ages. Liver histology showed progressive, age-related fibrosis. In muscle, scattered cytoplasmic glycogen deposits were present in most cells at 4 months, but large, lake-like accumulation developed by 12 and 16 months. Disruption of the contractile apparatus and fraying of myofibrils was observed in muscle at 12 and 16 months by electron microscopy. In conclusion, the CCR dogs are an accurate model of GSD IIIa that will improve our understanding of the disease progression and allow opportunities to investigate treatment interventions.

  8. Characterization of a canine model of glycogen storage disease type IIIa

    PubMed Central

    Yi, Haiqing; Thurberg, Beth L.; Curtis, Sarah; Austin, Stephanie; Fyfe, John; Koeberl, Dwight D.; Kishnani, Priya S.; Sun, Baodong

    2012-01-01

    SUMMARY Glycogen storage disease type IIIa (GSD IIIa) is an autosomal recessive disease caused by deficiency of glycogen debranching enzyme (GDE) in liver and muscle. The disorder is clinically heterogeneous and progressive, and there is no effective treatment. Previously, a naturally occurring dog model for this condition was identified in curly-coated retrievers (CCR). The affected dogs carry a frame-shift mutation in the GDE gene and have no detectable GDE activity in liver and muscle. We characterized in detail the disease expression and progression in eight dogs from age 2 to 16 months. Monthly blood biochemistry revealed elevated and gradually increasing serum alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) activities; serum creatine phosphokinase (CPK) activity exceeded normal range after 12 months. Analysis of tissue biopsy specimens at 4, 12 and 16 months revealed abnormally high glycogen contents in liver and muscle of all dogs. Fasting liver glycogen content increased from 4 months to 12 months, but dropped at 16 months possibly caused by extended fibrosis; muscle glycogen content continually increased with age. Light microscopy revealed significant glycogen accumulation in hepatocytes at all ages. Liver histology showed progressive, age-related fibrosis. In muscle, scattered cytoplasmic glycogen deposits were present in most cells at 4 months, but large, lake-like accumulation developed by 12 and 16 months. Disruption of the contractile apparatus and fraying of myofibrils was observed in muscle at 12 and 16 months by electron microscopy. In conclusion, the CCR dogs are an accurate model of GSD IIIa that will improve our understanding of the disease progression and allow opportunities to investigate treatment interventions. PMID:22736456

  9. Anaerobic glyoxylate cycle activity during simultaneous utilization of glycogen and acetate in uncultured Accumulibacter enriched in enhanced biological phosphorus removal communities.

    PubMed

    Burow, Luke C; Mabbett, Amanda N; Blackall, Linda L

    2008-10-01

    Enhanced biological phosphorus removal (EBPR) communities protect waterways from nutrient pollution and enrich microorganisms capable of assimilating acetate as polyhydroxyalkanoate (PHA) under anaerobic conditions. Accumulibacter, an important uncultured polyphosphate-accumulating organism (PAO) enriched in EBPR, was investigated to determine the central metabolic pathways responsible for producing PHA. Acetate uptake and assimilation to PHA in Accumulibacter was confirmed using fluorescence in situ hybridization (FISH)-microautoradiography and post-FISH chemical staining. Assays performed with enrichments of Accumulibacter using an inhibitor of glyceraldehyde-3-phosphate dehydrogenase inferred anaerobic glycolysis activity. Significant decrease in anaerobic acetate uptake and PHA production rates were observed using inhibitors targeting enzymes within the glyoxylate cycle. Bioinformatic analysis confirmed the presence of genes unique to the glyoxylate cycle (isocitrate lyase and malate synthase) and gene expression analysis of isocitrate lyase demonstrated that the glyoxylate cycle is likely involved in PHA production. Reduced anaerobic acetate uptake and PHA production was observed after inhibition of succinate dehydrogenase and upregulation of a succinate dehydrogenase gene suggested anaerobic activity. Cytochrome b/b(6) activity inferred that succinate dehydrogenase activity in the absence of external electron acceptors may be facilitated by a novel cytochrome b/b(6) fusion protein complex that pushes electrons uphill to more electronegative electron carriers. Identification of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase genes in Accumulibacter demonstrated the potential for interconversion of C(3) intermediates of glycolysis and C(4) intermediates of the glyoxylate cycle. Our findings along with previous hypotheses from analysis of microbiome data and metabolic models for PAOs were used to develop a model for anaerobic carbon

  10. Three-dimensional structures of unligated uridine phosphorylase from Yersinia pseudotuberculosis at 1.4 Å resolution and its complex with an antibacterial drug

    NASA Astrophysics Data System (ADS)

    Balaev, V. V.; Lashkov, A. A.; Gabdulkhakov, A. G.; Dontsova, M. V.; Mironov, A. S.; Betzel, C.; Mikhailov, A. M.

    2015-07-01

    Uridine phosphorylases play an essential role in the cellular metabolism of some antibacterial agents. Acute infectious diseases (bubonic plague, yersiniosis, pseudotuberculosis, etc., caused by bacteria of the genus Yersinia) are treated using both sulfanilamide medicines and antibiotics, including trimethoprim. The action of an antibiotic on a bacterial cell is determined primarily by the character of its interactions with cellular components, including those which are not targets (for example, with pyrimidine phosphorylases). This type of interaction should be taken into account in designing drugs. The three-dimensional structure of uridine phosphorylase from the bacterium Yersinia pseudotuberculosis ( YptUPh) with the free active site was determined for the first time by X-ray crystallography and refined at 1.40 Å resolution (DPI = 0.062 Å; ID PDB: 4OF4). The structure of the complex of YptUPh with the bacteriostatic drug trimethoprim was studied by molecular docking and molecular dynamics methods. The trimethoprim molecule was shown to be buffered by the enzyme YptUPh, resulting in a decrease in the efficiency of the treatment of infectious diseases caused by bacteria of the genus Yersinia with trimethoprim.

  11. Glycogen content and excitation-contraction coupling in mechanically skinned muscle fibres of the cane toad.

    PubMed

    Stephenson, D G; Nguyen, L T; Stephenson, G M

    1999-08-15

    1. Mechanically skinned skeletal muscle fibres from the twitch region of the iliofibularis muscle of cane toads were used to investigate the relationship between fibre glycogen content and fibre capacity to respond to transverse tubular (T-) system depolarization. 2. A large proportion of total fibre glycogen remained in mechanically skinned muscle fibres exposed to aqueous solutions. This glycogen pool (about 80% of total fibre glycogen) was very stable when the preparation was incubated in a rigor solution (pH 7.0) but decreased gradually at a rate of 0.59+/-0.20% min-1 in a relaxing solution (200 nM [Ca2+]). The rate was considerably higher (2.66+/-0.38% min(-1)) when the preparations were exposed to 30 microM [Ca2+]. An even greater rate of glycogen loss was found after T-system depolarization-induced contractions. The Ca2+-dependent loss of fibre glycogen was caused by endogenous glycogenolytic processes. 3. Silver stained SDS gels of components eluted into relaxing solution from single skinned fibres revealed a rapid (2 min) loss of parvalbumin and at least 10 other proteins varying in molecular mass between 10 and 80 kDa but there was essentially no loss of myosin heavy and light chains and actin. Subsequent elution for a further 30 min in either relaxing or maximally Ca2+-activating solution did not result in additional, appreciable detectable loss of fibre protein. 4. Depletion of fibre glycogen was associated with loss of fibre ability to respond to T-system depolarization even though the bathing solutions contained high levels of ATP (8 mM) and creatine phosphate (10 mM). 5. The capacity of mechanically skinned fibres to respond to T-system depolarization was highly positively correlated (P<0.0001) with initial fibre glycogen concentration. 6. In conclusion, the results show that (i) the capacity of skeletal muscle to respond to T-system depolarization is related directly or indirectly to the non-washable glycogen pool in fibres, (ii) this relationship

  12. The Activity of Carbohydrate-Degrading Enzymes in the Development of Brood and Newly Emerged workers and Drones of the Carniolan Honeybee, Apis mellifera carnica

    PubMed Central

    Żółtowska, Krystyna; Lipiński, Zbigniew; Łopieńska-Biernat, Elżbieta; Farjan, Marek; Dmitryjuk, Małgorzata

    2012-01-01

    The activity of glycogen Phosphorylase and carbohydrate hydrolyzing enzymes α-amylase, glucoamylase, trehalase, and sucrase was studied in the development of the Carniolan honey bee, Apis mellifera carnica Pollman (Hymenoptera: Apidae), from newly hatched larva to freshly emerged imago of worker and drone. Phosphorolytic degradation of glycogen was significantly stronger than hydrolytic degradation in all developmental stages. Developmental profiles of hydrolase activity were similar in both sexes of brood; high activity was found in unsealed larvae, the lowest in prepupae followed by an increase in enzymatic activity. Especially intensive increases in activity occurred in the last stage of pupae and newly emerged imago. Besides α-amylase, the activities of other enzymes were higher in drone than in worker broods. Among drones, activity of glucoamylase was particularly high, ranging from around three times higher in the youngest larvae to 13 times higher in the oldest pupae. This confirms earlier suggestions about higher rates of metabolism in drone broods than in worker broods. PMID:22943407

  13. Genetics Home Reference: glycogen storage disease type VI

    MedlinePlus

    ... a result, liver cells cannot use glycogen for energy. Since glycogen cannot be broken down, it accumulates within liver cells, causing these cells to become enlarged and dysfunctional. Learn more about the gene associated with glycogen storage disease type VI PYGL Related Information What is ...

  14. [Glycogen metabolism in the cranial cervical ganglion of the cat sympathetic trunk during decentralization and reparative regeneration].

    PubMed

    Greten, A G; Sokolova, G A

    1982-07-01

    The character of glycogen metabolism disorders has been studied in the cranial cervical ganglion of the cat sympathetic trunk after the latter has been cut 1.5 cm caudally the ganglion. As the innervational connections are establishing, the glycogen metabolism is normalizing, but even after 2 months the initial level is not restored. Glycogen is proved to be one of the most sensitive tests to the lesion. In various time after cutting, the glycogen metabolism has certain specific peculiarities both in the neural cell bodies, and in the synapses. The wavy character of the glycogen-synthesizing process in the neural elements is demonstrated, with anaerobic glycolysis taking a large part in it. Certain connections with the higher centers are necessary not only for glycogen metabolism as energy resources, but to ensure a regular synthesis, particularly that of enzymes, in the neurons and synapses. The peculiarities of glycogen-synthesizing properties in the synaptic formations, after the connection with the center is broken, are closely connected with the notion on autonomity in the synaptic structures activity.

  15. Variation in glycogen concentrations within mantle and foot tissue in Amblema plicata plicata: Implications for tissue biopsy sampling

    USGS Publications Warehouse

    Naimo, T.J.; Monroe, E.M.

    1999-01-01

    With the development of techniques to non-lethally biopsy tissue from unionids, a new method is available to measure changes in biochemical, contaminant, and genetic constituents in this imperiled faunal group. However, before its widespread application, information on the variability of biochemical components within and among tissues needs to be evaluated. We measured glycogen concentrations in foot and mantle tissue in Amblema plicata plicata (Say, 1817) to determine if glycogen was evenly distributed within and between tissues and to determine which tissue might be more responsive to the stress associated with relocating mussels. Glycogen was measured in two groups of mussels: those sampled from their native environment (undisturbed mussels) and quickly frozen for analysis and those relocated into an artificial pond (relocated mussels) for 24 months before analysis. In both undisturbed and relocated mussels, glycogen concentrations were evenly distributed within foot, but not within mantle tissue. In mantle tissue, concentrations of glycogen varied about 2-fold among sections. In addition, glycogen varied significantly between tissues in undisturbed mussels, but not in relocated mussels. Twenty-four months after relocation, glycogen concentrations had declined by 80% in mantle tissue and by 56% in foot tissue relative to the undisturbed mussels. These data indicate that representative biopsy samples can be obtained from foot tissue, but not mantle tissue. We hypothesize that mantle tissue could be more responsive to the stress of relocation due to its high metabolic activity associated with shell formation.

  16. Cyclin Partners Determine Pho85 Protein Kinase Substrate Specificity In Vitro and In Vivo: Control of Glycogen Biosynthesis by Pcl8 and Pcl10

    PubMed Central

    Huang, Dongqing; Moffat, Jason; Wilson, Wayne A.; Moore, Lynda; Cheng, Christine; Roach, Peter J.; Andrews, Brenda

    1998-01-01

    In Saccharomyces cerevisiae, PHO85 encodes a cyclin-dependent protein kinase (Cdk) with multiple roles in cell cycle and metabolic controls. In association with the cyclin Pho80, Pho85 controls acid phosphatase gene expression through phosphorylation of the transcription factor Pho4. Pho85 has also been implicated as a kinase that phosphorylates and negatively regulates glycogen synthase (Gsy2), and deletion of PHO85 causes glycogen overaccumulation. We report that the Pcl8/Pcl10 subgroup of cyclins directs Pho85 to phosphorylate glycogen synthase both in vivo and in vitro. Disruption of PCL8 and PCL10 caused hyperaccumulation of glycogen, activation of glycogen synthase, and a reduction in glycogen synthase kinase activity in vivo. However, unlike pho85 mutants, pcl8 pcl10 cells had normal morphologies, grew on glycerol, and showed proper regulation of acid phosphatase gene expression. In vitro, Pho80-Pho85 complexes effectively phosphorylated Pho4 but had much lower activity toward Gsy2. In contrast, Pcl10-Pho85 complexes phosphorylated Gsy2 at Ser-654 and Thr-667, two physiologically relevant sites, but only poorly phosphorylated Pho4. Thus, both the in vitro and in vivo substrate specificity of Pho85 is determined by the cyclin partner. Mutation of PHO85 suppressed the glycogen storage deficiency of snf1 or glc7-1 mutants in which glycogen synthase is locked in an inactive state. Deletion of PCL8 and PCL10 corrected the deficit in glycogen synthase activity in both the snf1 and glc7-1 mutants, but glycogen synthesis was restored only in the glc7-1 mutant strain. This genetic result suggests an additional role for Pho85 in the negative regulation of glycogen accumulation that is independent of Pcl8 and Pcl10. PMID:9584169

  17. The 3T3-L1 adipocyte glycogen proteome

    PubMed Central

    2013-01-01

    Background Glycogen is a branched polysaccharide of glucose residues, consisting of α-1-4 glycosidic linkages with α-1-6 branches that together form multi-layered particles ranging in size from 30 nm to 300 nm. Glycogen spatial conformation and intracellular organization are highly regulated processes. Glycogen particles interact with their metabolizing enzymes and are associated with a variety of proteins that intervene in its biology, controlling its structure, particle size and sub-cellular distribution. The function of glycogen in adipose tissue is not well understood but appears to have a pivotal role as a regulatory mechanism informing the cells on substrate availability for triacylglycerol synthesis. To provide new molecular insights into the role of adipocyte glycogen we analyzed the glycogen-associated proteome from differentiated 3T3-L1-adipocytes. Results Glycogen particles from 3T3-L1-adipocytes were purified using a series of centrifugation steps followed by specific elution of glycogen bound proteins using α-1,4 glucose oligosaccharides, or maltodextrins, and tandem mass spectrometry. We identified regulatory proteins, 14-3-3 proteins, RACK1 and protein phosphatase 1 glycogen targeting subunit 3D. Evidence was also obtained for a regulated subcellular distribution of the glycogen particle: metabolic and mitochondrial proteins were abundant. Unlike the recently analyzed hepatic glycogen proteome, no endoplasmic proteins were detected, along with the recently described starch-binding domain protein 1. Other regulatory proteins which have previously been described as glycogen-associated proteins were not detected, including laforin, the AMPK beta-subunit and protein targeting to glycogen (PTG). Conclusions These data provide new molecular insights into the regulation of glycogen-bound proteins that are associated with the maintenance, organization and localization of the adipocyte glycogen particle. PMID:23521774

  18. In silico analysis of the three-dimensional structures of the homodimer of uridine phosphorylase from Yersinia Pseudotuberculosis in the ligand-free state and in a complex with 5-fluorouracil

    NASA Astrophysics Data System (ADS)

    Lashkov, A. A.; Sotnichenko, S. E.; Mikhailov, A. M.

    2013-03-01

    Pseudotuberculosis is an acute infectious disease characterized by a lesion of the gastrointestinal tract. A positive therapeutic effect can be achieved by selectively suppressing the activity of uridine phosphorylase from the causative agent of the disease Yersinia pseudotuberculosis. The synergistic effect of a combination of the chemotherapeutic agent 5-fluorouracil and antimicrobial drugs, which block the synthesis of pyrimidine bases, on the cells of pathogenic protozoa and bacteria is described in the literature. The three-dimensional structures of uridine phosphorylase from Yersinia pseudotuberculosis ( YptUPh) both in the ligand-free state and in complexes with pharmacological agents are unknown, which hinders the search for and design of selective inhibitors of YptUPh. The three-dimensional structure of the ligand-free homodimer of YptUPh was determined by homology-based molecular modeling. The three-dimensional structure of the subunit of the YptUPh molecule belongs to α/β proteins, and its topology is a three-layer α/β/α sandwich. The subunit monomer of the YptUPh molecule consists of 38% helices and 24% β strands. A model of the homodimer structure of YptUPh in a complex with 5-FU was obtained by the molecular docking. The position of 5-FU in the active site of the molecule is very consistent with the known data on the X-ray diffraction structures of other bacterial uridine phosphorylases (the complex of uridine phosphorylase from Salmonella typhimurium ( StUPh) with 5-FU, ID PDB: 4E1V and the complex of uridine phosphorylase from Escherichia coli ( EcUPh) with 5-FU and ribose 1-phosphate, ID PDB: 1RXC).

  19. In silico analysis of the three-dimensional structures of the homodimer of uridine phosphorylase from Yersinia Pseudotuberculosis in the ligand-free state and in a complex with 5-fluorouracil

    SciTech Connect

    Lashkov, A. A. Sotnichenko, S. E.; Mikhailov, A. M.

    2013-03-15

    Pseudotuberculosis is an acute infectious disease characterized by a lesion of the gastrointestinal tract. A positive therapeutic effect can be achieved by selectively suppressing the activity of uridine phosphorylase from the causative agent of the disease Yersinia pseudotuberculosis. The synergistic effect of a combination of the chemotherapeutic agent 5-fluorouracil and antimicrobial drugs, which block the synthesis of pyrimidine bases, on the cells of pathogenic protozoa and bacteria is described in the literature. The three-dimensional structures of uridine phosphorylase from Yersinia pseudotuberculosis (YptUPh) both in the ligand-free state and in complexes with pharmacological agents are unknown, which hinders the search for and design of selective inhibitors of YptUPh. The three-dimensional structure of the ligand-free homodimer of YptUPh was determined by homology-based molecular modeling. The three-dimensional structure of the subunit of the YptUPh molecule belongs to {alpha}/{beta} proteins, and its topology is a three-layer {alpha}/{beta}/{alpha} sandwich. The subunit monomer of the YptUPh molecule consists of 38% helices and 24% {beta} strands. A model of the homodimer structure of YptUPh in a complex with 5-FU was obtained by the molecular docking. The position of 5-FU in the active site of the molecule is very consistent with the known data on the X-ray diffraction structures of other bacterial uridine phosphorylases (the complex of uridine phosphorylase from Salmonella typhimurium (StUPh) with 5-FU, ID PDB: 4E1V and the complex of uridine phosphorylase from Escherichia coli (EcUPh) with 5-FU and ribose 1-phosphate, ID PDB: 1RXC).

  20. Transition state analysis of the arsenolytic depyrimidination of thymidine by human thymidine phosphorylase.

    PubMed

    Schwartz, Phillip A; Vetticatt, Mathew J; Schramm, Vern L

    2011-03-01

    Human thymidine phosphorylase (hTP) is responsible for thymidine (dT) homeostasis, promotes angiogenesis, and is involved in metabolic inactivation of antiproliferative agents that inhibit thymidylate synthase. Understanding its transition state structure is on the path to design transition state analogues. Arsenolysis of dT by hTP permits kinetic isotope effect (KIE) analysis of the reaction by forming thymine and the chemically unstable 2-deoxyribose 1-arsenate. The transition state for the arsenolytic reaction was characterized using multiple KIEs and computational analysis. Transition state analysis revealed a concerted bimolecular (A(N)D(N)) mechanism. A transition state constrained to match the intrinsic KIE values was found using density functional theory (B3LYP/6-31G*). An active site histidine is implicated as the catalytic base responsible for activation of the arsenate nucleophile and stabilization of the thymine leaving group during the isotopically sensitive step. At the transition state, the deoxyribose ring exhibits significant oxocarbenium ion character with bond breaking (r(C-N) = 2.45 Å) nearly complete and minimal bond making to the attacking nucleophile (r(C-O) = 2.95 Å). The transition state model predicts a deoxyribose conformation with a 2'-endo ring geometry. Transition state structure for the slow hydrolytic reaction of hTP involves a stepwise mechanism [Schwartz, P. A., Vetticatt, M. J., and Schramm, V. L. (2010) J. Am. Chem. Soc. 132, 13425-13433], in contrast to the concerted mechanism described here for arsenolysis.

  1. Glycogen and its metabolism: some new developments and old themes

    PubMed Central

    Roach, Peter J.; Depaoli-Roach, Anna A.; Hurley, Thomas D.; Tagliabracci, Vincent S.

    2016-01-01

    Glycogen is a branched polymer of glucose that acts as a store of energy in times of nutritional sufficiency for utilization in times of need. Its metabolism has been the subject of extensive investigation and much is known about its regulation by hormones such as insulin, glucagon and adrenaline (epinephrine). There has been debate over the relative importance of allosteric compared with covalent control of the key biosynthetic enzyme, glycogen synthase, as well as the relative importance of glucose entry into cells compared with glycogen synthase regulation in determining glycogen accumulation. Significant new developments in eukaryotic glycogen metabolism over the last decade or so include: (i) three-dimensional structures of the biosynthetic enzymes glycogenin and glycogen synthase, with associated implications for mechanism and control; (ii) analyses of several genetically engineered mice with altered glycogen metabolism that shed light on the mechanism of control; (iii) greater appreciation of the spatial aspects of glycogen metabolism, including more focus on the lysosomal degradation of glycogen; and (iv) glycogen phosphorylation and advances in the study of Lafora disease, which is emerging as a glycogen storage disease. PMID:22248338

  2. Glycogen synthase (GYS1) mutation causes a novel skeletal muscle glycogenosis

    PubMed Central

    McCue, Molly E; Valberg, Stephanie J; Miller, Michael B; Wade, Claire; DiMauro, Salvatore; Akman, Hasan O; Mickelson, James R

    2008-01-01

    Summary We describe a gain of function mutation in the skeletal muscle glycogen synthase gene that is responsible for a novel myopathy, and is highly prevalent in multiple breeds of horses because it arose before the founding of many modern breeds. Polysaccharide Storage Myopathy (PSSM) is a novel glycogenosis in horses characterized by abnormal glycogen accumulation in skeletal muscle and muscle damage with exertion. It is unlike glycogen storage diseases resulting from known defects in glycogenolysis, glycolysis and glycogen synthesis that have been described in humans and domestic animals. A genome wide association identified GYS1, encoding skeletal muscle glycogen synthase (GS), as a candidate gene for PSSM. DNA sequence analysis revealed a mutation resulting in an arginine to histidine substitution in a highly conserved region of GS. Functional analysis demonstrated an elevated GS activity in PSSM horses and haplotype analysis and allele age estimation demonstrated that this mutation is identical by descent among horse breeds. This is the first report of a gain of function mutation in GYS1 resulting in a glycogenosis. PMID:18358695

  3. Glycal Formation in Crystals of Uridine Phosphorylase †‖‡

    PubMed Central

    Paul, Debamita; O'Leary, Seán E.; Rajashankar, Kanagalaghatta; Bu, Weiming; Toms, Angela; Settembre, Ethan C.; Sanders, Jennie M.; Begley, Tadhg P.; Ealick, Steven E.

    2010-01-01

    Uridine phosphorylase is a key enzyme in the pyrimidine salvage pathway. This enzyme catalyzes the reversible phosphorolysis of uridine to uracil and ribose 1-phosphate (or 2′-deoxyuridine to 2′-deoxyribose 1-phosphate). Here we report the structure of hexameric Escherichia coli uridine phosphorylase treated with 5-fluorouridine and sulfate and dimeric bovine uridine phosphorylase treated with 5-fluoro-2′-deoxyuridine or uridine, plus sulfate. In each case the electron density shows three separate species corresponding to the pyrimidine base, sulfate and a ribosyl species, which can be modeled as a glycal. In the structures of the glycal complexes, the fluorouracil O2 atom is appropriately positioned to act as the base required for glycal formation via deprotonation at C2′. Crystals of bovine uridine phosphorylase treated with 2′-deoxyuridine and sulfate show intact nucleoside. NMR time course studies demonstrate that uridine phosphorylase can catalyze the hydrolysis of the fluorinated nucleosides in the absence of phosphate or sulfate, without the release of intermediates or enzyme inactivation. These results add a previously-unencountered motif to the body of information on glycal formation by enzymes catalyzing the cleavage of glycosyl bonds. PMID:20364833

  4. Localization of thymidine phosphorylase in advanced gastric and colorectal cancer.

    PubMed

    Kobayashi, Michiya; Okamoto, Ken; Akimori, Toyokazu; Tochika, Naoshige; Yoshimoto, Tadashi; Okabayashi, Takehiro; Sugimoto, Takeki; Araki, Keijiro

    2004-01-01

    Thymidine phosphorylase (TP) is known to be more concentrated in human cancer tissues than in adjacent normal tissue based on findings using enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry. However, the ultrastructural localization of TP in cancer tissues has not previously been demonstrated. We investigated the localization of TP in gastric cancer and colorectal cancer tissue by ELISA, immunohistochemistry, and immunoelectron microscopy. Between April 1997 and May 2000, we obtained surgically resected specimens from 42, 46, and 36 cases of advanced gastric, colon, and rectal cancer, respectively. ELISA demonstrated that the TP level was higher in cancer tissues than in adjacent normal tissue. Immunohistochemically, cancer cells were positive for the enzyme in some cases. However, in a number of cases immunopositive inflammatory cells were also present in cancerous tissues. At the electron microscope level, TP was diffusely distributed in the cytoplasm of cancer cells and in the mitochondria of the neutrophil in gastric cancer tissue. In rectal cancer tissues, cytoplasmic granules in macrophages in cancer tissues were immunoreactive for the TP. These findings suggest that TP is produced by macrophages and exists in neutrophils and cancer cells.

  5. Inhibition and Structure of Toxoplasma gondii Purine Nucleoside Phosphorylase

    PubMed Central

    Donaldson, Teraya M.; Cassera, María B.; Ho, Meng-Chiao; Zhan, Chenyang; Merino, Emilio F.; Evans, Gary B.; Tyler, Peter C.; Almo, Steven C.; Schramm, Vern L.

    2014-01-01

    The intracellular pathogen Toxoplasma gondii is a purine auxotroph that relies on purine salvage for proliferation. We have optimized T. gondii purine nucleoside phosphorylase (TgPNP) stability and crystallized TgPNP with phosphate and immucillin-H, a transition-state analogue that has high affinity for the enzyme. Immucillin-H bound to TgPNP with a dissociation constant of 370 pM, the highest affinity of 11 immucillins selected to probe the catalytic site. The specificity for transition-state analogues indicated an early dissociative transition state for TgPNP. Compared to Plasmodium falciparum PNP, large substituents surrounding the 5′-hydroxyl group of inhibitors demonstrate reduced capacity for TgPNP inhibition. Catalytic discrimination against large 5′ groups is consistent with the inability of TgPNP to catalyze the phosphorolysis of 5′-methylthioinosine to hypoxanthine. In contrast to mammalian PNP, the 2′-hydroxyl group is crucial for inhibitor binding in the catalytic site of TgPNP. This first crystal structure of TgPNP describes the basis for discrimination against 5′-methylthioinosine and similarly 5′-hydroxy-substituted immucillins; structural differences reflect the unique adaptations of purine salvage pathways of Apicomplexa. PMID:24585883

  6. The essential role of methylthioadenosine phosphorylase in prostate cancer

    PubMed Central

    Foster, Barbara A.; Karasik, Ellen; Gillard, Bryan; Morrison, Carl; Mohler, James; Phillips, James G.; Smiraglia, Dominic J.

    2016-01-01

    Prostatic epithelial cells secrete high levels of acetylated polyamines into the prostatic lumen. This distinctive characteristic places added strain on the connected pathways, which are forced to increase metabolite production to maintain pools. The methionine salvage pathway recycles the one-carbon unit lost to polyamine biosynthesis back to the methionine cycle, allowing for replenishment of SAM pools providing a mechanism to help mitigate metabolic stress associated with high flux through these pathways. The rate-limiting enzyme involved in this process is methylthioadenosine phosphorylase (MTAP), which, although commonly deleted in many cancers, is protected in prostate cancer. We report near universal retention of MTAP expression in a panel of human prostate cancer cell lines as well as patient samples. Upon metabolic perturbation, prostate cancer cell lines upregulate MTAP and this correlates with recovery of SAM levels. Furthermore, in a mouse model of prostate cancer we find that both normal prostate and diseased prostate maintain higher SAM levels than other tissues, even under increased metabolic stress. Finally, we show that knockdown of MTAP, both genetically and pharmacologically, blocks androgen sensitive prostate cancer growth in vivo. Our findings strongly suggest that the methionine salvage pathway is a major player in homeostatic regulation of metabolite pools in prostate cancer due to their high level of flux through the polyamine biosynthetic pathway. Therefore, this pathway, and specifically the MTAP enzyme, is an attractive therapeutic target for prostate cancer. PMID:26910893

  7. Thermodynamics of the Purine Nucleoside Phosphorylase Reaction Revealed by Computer Simulations.

    PubMed

    Isaksen, Geir Villy; Åqvist, Johan; Brandsdal, Bjørn Olav

    2017-01-10

    Enzymes are able to catalyze chemical reactions by reducing the activation free energy, yielding significant increases in the reaction rates. This can thermodynamically be accomplished by either reducing the activation enthalpy or increasing the activation entropy. The effect of remote mutations on the thermodynamic activation parameters of human purine nucleoside phosphorylase is examined using extensive molecular dynamics and free energy simulations. More than 2700 independent reaction free energy profiles for six different temperatures have been calculated to obtain high-precision computational Arrhenius plots. On the basis of these, the activation enthalpies and entropies were computed from linear regression of the plots with ΔG(⧧) as a function of 1/T, and the obtained thermodynamic activation parameters are in very good agreement with those from experiments. The Arrhenius plots immediately show that the 6-oxopurines (INO and GUO) have identical slopes, whereas the 6-aminopurine (ADO) has a significantly different slope, indicating that the substrate specificity is related to the difference in thermodynamic activation parameters. Furthermore, the calculations show that the human PNP specificity for 6-oxopurines over 6-aminopurines originates from significant differences in electrostatic preorganization. The effect of the remote double mutation, K22E and H104R (E:R), has also been examined, as it alters human PNP toward the bovine PNP. These residues are situated on the protein surface, 28-35 Å from the active site, and the mutation alters the enthalpy-entropy balance with little effect on the catalytic rates. It is thus quite remarkable that the empirical valence bond method can reproduce the enthalpies and entropies induced by these long-range mutations.

  8. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle.

    PubMed

    Milan, D; Jeon, J T; Looft, C; Amarger, V; Robic, A; Thelander, M; Rogel-Gaillard, C; Paul, S; Iannuccelli, N; Rask, L; Ronne, H; Lundström, K; Reinsch, N; Gellin, J; Kalm, E; Roy, P L; Chardon, P; Andersson, L

    2000-05-19

    A high proportion of purebred Hampshire pigs carries the dominant RN- mutation, which causes high glycogen content in skeletal muscle. The mutation has beneficial effects on meat content but detrimental effects on processing yield. Here, it is shown that the mutation is a nonconservative substitution (R200Q) in the PRKAG3 gene, which encodes a muscle-specific isoform of the regulatory gamma subunit of adenosine monophosphate-activated protein kinase (AMPK). Loss-of-function mutations in the homologous gene in yeast (SNF4) cause defects in glucose metabolism, including glycogen storage. Further analysis of the PRKAG3 signaling pathway may provide insights into muscle physiology as well as the pathogenesis of noninsulin-dependent diabetes mellitus in humans, a metabolic disorder associated with impaired glycogen synthesis.

  9. Early alterations in soleus GLUT-4, glucose transport, and glycogen in voluntary running rats

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Halseth, Amy E.

    1994-01-01

    Voluntary wheel running (WR) by juvenile female rats was used as a noninterventional model of soleus muscle functional overload to study the regulation of insulin-stimulated glucose transport activity by the glucose transporter (GLUT-4 isoform) protein level and glycogen concentration. Soleus total protein content was significantly greater (+18%;P greater than 0.05) than in age-matched controls after 1 wk of WR, and this hypertrophic response continued in weeks 2-4 (+24-32%). GLUT-4 protein was 39% greater than in controls in 1-wk WR soleus, and this adaptation was accompanied by a similar increase in in vitro insulin-stimulated glucose transport activity(+29%). After 2 and 4 wk of WR, however, insulin-stimulated glucose transport activity had returned to control levels, despite a continued elevation (+25-28%) of GLUT-4 protein. At these two time points, glycogen concentration was significantly enhanced in WR soleus (+21-42%), which coincided with significant reductions in glycogen synthase activity ratios (-23 to-41%). These results indicate that, in this model of soleus muscle functional overload, the GLUT-4 protein level may initially regulate insulin-stimulated glucose transport activity in the absence of changes in other modifying factors. However,this regulation of glucose transport activity by GLUT-4 protein may be subsequently overridden by elevated glycogen concentration.

  10. Recent discovery of non-nucleobase thymidine phosphorylase inhibitors targeting cancer.

    PubMed

    Bera, Hriday; Chigurupati, Sridevi

    2016-11-29

    Thymidine phosphorylase (TP, EC 2.4.2.4), an enzyme involved in pyrimidine salvage pathway, is identical to platelet-derived endothelial cell growth factor (PD-ECGF) and gliostatin. It is extremely upregulated in a variety of solid tumours. The TP amplification is associated with concomitant overexpression of many angiogenic factors such as matrix metalloproteases (MMPs), interleukins (ILs), vascular endothelial growth factor (VEGF) etc., resulting in promotion of angiogenesis and cancer metastasis. In addition, overshooting TP level protects tumour cells from apoptosis and helps cell survival. Thus, TP is identified as a prime target for developing novel anticancer therapies. Pioneering research activities investigated a large number of TP inhibitors, most of which are pyrimidine or purine analogues. Recently, an array of structurally diverse non-nucleobase derivatives was designed, synthesized and established as promising TP inhibitors. This review, following an outline on the TP structure and functions, gives an overview of the recent advancement of various non-nucleobase TP inhibitors as novel anti-cancer agents.

  11. Antisense-mediated depletion of tomato GDP-L-galactose phosphorylase increases susceptibility to chilling stress.

    PubMed

    Wang, Li-Yan; Li, Dong; Deng, Yong-Sheng; Lv, Wei; Meng, Qing-Wei

    2013-02-15

    The GDP-L-galactose phosphorylase (GGP), which converts GDP-l-galactose to l-Gal-1-phosphate, is generally considered to be a key enzyme of the major ascorbate biosynthesis pathways in higher plants, but experimental evidence for its role in tomato is lacking. In the present study, the GGP gene was isolated from tomato (Solanum lycopersicum) and transient expression of SlGGP-GFP (green fluorescent protein) fusion protein in onion cells revealed the cytoplasmic and nucleus localization of the protein. Antisense transgenic tomato lines with only 50-75% ascorbate level of the wild type (WT) were obtained. Chilling treatment induced lower increase in AsA levels and redox ratio of ascorbate in antisense transgenic plants compared with WT plants. Under chilling stress, transgenic plants accumulated more malendialdehyde (MDA) and more O(2)(·-), leaked more electrolytes and showed lower maximal photochemical efficiency of PSII (Fv/Fm), net photosynthetic rate (Pn), and oxidizable P700 compared with WT plants. Furthermore, the antisense transgenic plants exhibited significantly higher H(2)O(2) level and lower ascorbate peroxidase (APX) activity. Our results suggested that GGP plays an important role in protecting plants against chilling stress by maintaining ascorbate pool and ascorbate redox state.

  12. Physico-chemical and transglucosylation properties of recombinant sucrose phosphorylase from Bifidobacterium adolescentis DSM20083.

    PubMed

    van den Broek, L A M; van Boxtel, E L; Kievit, R P; Verhoef, R; Beldman, G; Voragen, A G J

    2004-08-01

    Clones of a genomic library of Bifidobacterium adolescentis were grown in minimal medium with sucrose as sole carbon source. An enzymatic fructose dehydrogenase assay was used to identify sucrose-degrading enzymes. Plasmids were isolated from the positive colonies and sequence analysis revealed that two types of insert were present, which only differed with respect to their orientation in the plasmid. An open reading frame of 1,515 nucleotides with high homology for sucrose phosphorylases was detected on these inserts. The gene was designated SucP and encoded a protein of 56,189 Da. SucP was heterologously expressed in Escherichia coli, purified, and characterized. The molecular mass of SucP was 58 kDa, as estimated by SDS-PAGE, while 129 kDa was found with gel permeation, suggesting that the native enzyme was a dimer. The enzyme showed high activity towards sucrose and a lower extent towards alpha-glucose-1-phosphate. The transglucosylation properties were investigated using a broad range of monomeric sugars as acceptor substrate for the recombinant enzyme, while alpha-glucose-1-phosphate served as donor. D- and L-arabinose, D- and L-arabitol, and xylitol showed the highest production of transglucosylation products. The investigated disaccharides and trisaccharides were not suitable as acceptors. The structure of the transglucosylation product obtained with D-arabinose as acceptor was elucidated by NMR. The structure of the synthesized non-reducing dimer was alpha-Glcp(1-->1)beta-Araf.

  13. A conserved loop in polynucleotide phosphorylase (PNPase) essential for both RNA and ADP/phosphate binding.

    PubMed

    Carzaniga, Thomas; Mazzantini, Elisa; Nardini, Marco; Regonesi, Maria Elena; Greco, Claudio; Briani, Federica; De Gioia, Luca; Dehò, Gianni; Tortora, Paolo

    2014-02-01

    Polynucleotide phosphorylase (PNPase) reversibly catalyzes RNA phosphorolysis and polymerization of nucleoside diphosphates. Its homotrimeric structure forms a central channel where RNA is accommodated. Each protomer core is formed by two paralogous RNase PH domains: PNPase1, whose function is largely unknown, hosts a conserved FFRR loop interacting with RNA, whereas PNPase2 bears the putative catalytic site, ∼20 Å away from the FFRR loop. To date, little is known regarding PNPase catalytic mechanism. We analyzed the kinetic properties of two Escherichia coli PNPase mutants in the FFRR loop (R79A and R80A), which exhibited a dramatic increase in Km for ADP/Pi binding, but not for poly(A), suggesting that the two residues may be essential for binding ADP and Pi. However, both mutants were severely impaired in shifting RNA electrophoretic mobility, implying that the two arginines contribute also to RNA binding. Additional interactions between RNA and other PNPase domains (such as KH and S1) may preserve the enzymatic activity in R79A and R80A mutants. Inspection of enzyme structure showed that PNPase has evolved a long-range acting hydrogen bonding network that connects the FFRR loop with the catalytic site via the F380 residue. This hypothesis was supported by mutation analysis. Phylogenetic analysis of PNPase domains and RNase PH suggests that such network is a unique feature of PNPase1 domain, which coevolved with the paralogous PNPase2 domain.

  14. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides

    PubMed Central

    Devendran, Saravanan; Abdel-Hamid, Ahmed M.; Evans, Anton F.; Iakiviak, Michael; Kwon, In Hyuk; Mackie, Roderick I.; Cann, Isaac

    2016-01-01

    Digestion of plant cell wall polysaccharides is important in energy capture in the gastrointestinal tract of many herbivorous and omnivorous mammals, including humans and ruminants. The members of the genus Ruminococcus are found in both the ruminant and human gastrointestinal tract, where they show versatility in degrading both hemicellulose and cellulose. The available genome sequence of Ruminococcus albus 8, a common inhabitant of the cow rumen, alludes to a bacterium well-endowed with genes that target degradation of various plant cell wall components. The mechanisms by which R. albus 8 employs to degrade these recalcitrant materials are, however, not clearly understood. In this report, we demonstrate that R. albus 8 elaborates multiple cellobiohydrolases with multi-modular architectures that overall enhance the catalytic activity and versatility of the enzymes. Furthermore, our analyses show that two cellobiose phosphorylases encoded by R. albus 8 can function synergistically with a cognate cellobiohydrolase and endoglucanase to completely release, from a cellulosic substrate, glucose which can then be fermented by the bacterium for production of energy and cellular building blocks. We further use transcriptomic analysis to confirm the over-expression of the biochemically characterized enzymes during growth of the bacterium on cellulosic substrates compared to cellobiose. PMID:27748409

  15. Multiple disulfide bridges modulate conformational stability and flexibility in hyperthermophilic archaeal purine nucleoside phosphorylase.

    PubMed

    Bagarolo, Maria Libera; Porcelli, Marina; Martino, Elisa; Feller, Georges; Cacciapuoti, Giovanna

    2015-10-01

    5'-Deoxy-5'-methylthioadenosine phosphorylase from Sulfolobus solfataricus is a hexameric hyperthermophilic protein containing in each subunit two pairs of disulfide bridges, a CXC motif, and one free cysteine. The contribution of each disulfide bridge to the protein conformational stability and flexibility has been assessed by comparing the thermal unfolding and the limited proteolysis of the wild-type enzyme and its variants obtained by site-directed mutagenesis of the seven cysteine residues. All variants catalyzed efficiently MTA cleavage with specific activity similar to the wild-type enzyme. The elimination of all cysteine residues caused a substantial decrease of ΔHcal (850 kcal/mol) and Tmax (39°C) with respect to the wild-type indicating that all cysteine pairs and especially the CXC motif significantly contribute to the enzyme thermal stability. Disulfide bond Cys200-Cys262 and the CXC motif weakly affected protein flexibility while the elimination of the disulfide bond Cys138-Cys205 lead to an increased protease susceptibility. Experimental evidence from limited proteolysis, differential scanning calorimetry, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing and nonreducing conditions also allowed to propose a stabilizing role for the free Cys164.

  16. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides

    NASA Astrophysics Data System (ADS)

    Devendran, Saravanan; Abdel-Hamid, Ahmed M.; Evans, Anton F.; Iakiviak, Michael; Kwon, In Hyuk; Mackie, Roderick I.; Cann, Isaac

    2016-10-01

    Digestion of plant cell wall polysaccharides is important in energy capture in the gastrointestinal tract of many herbivorous and omnivorous mammals, including humans and ruminants. The members of the genus Ruminococcus are found in both the ruminant and human gastrointestinal tract, where they show versatility in degrading both hemicellulose and cellulose. The available genome sequence of Ruminococcus albus 8, a common inhabitant of the cow rumen, alludes to a bacterium well-endowed with genes that target degradation of various plant cell wall components. The mechanisms by which R. albus 8 employs to degrade these recalcitrant materials are, however, not clearly understood. In this report, we demonstrate that R. albus 8 elaborates multiple cellobiohydrolases with multi-modular architectures that overall enhance the catalytic activity and versatility of the enzymes. Furthermore, our analyses show that two cellobiose phosphorylases encoded by R. albus 8 can function synergistically with a cognate cellobiohydrolase and endoglucanase to completely release, from a cellulosic substrate, glucose which can then be fermented by the bacterium for production of energy and cellular building blocks. We further use transcriptomic analysis to confirm the over-expression of the biochemically characterized enzymes during growth of the bacterium on cellulosic substrates compared to cellobiose.

  17. Mitochondrial Neurogastrointestinal Encephalomyopathy Caused by Thymidine Phosphorylase Enzyme Deficiency: From Pathogenesis to Emerging Therapeutic Options

    PubMed Central

    Yadak, Rana; Sillevis Smitt, Peter; van Gisbergen, Marike W.; van Til, Niek P.; de Coo, Irenaeus F. M.

    2017-01-01

    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a progressive metabolic disorder caused by thymidine phosphorylase (TP) enzyme deficiency. The lack of TP results in systemic accumulation of deoxyribonucleosides thymidine (dThd) and deoxyuridine (dUrd). In these patients, clinical features include mental regression, ophthalmoplegia, and fatal gastrointestinal complications. The accumulation of nucleosides also causes imbalances in mitochondrial DNA (mtDNA) deoxyribonucleoside triphosphates (dNTPs), which may play a direct or indirect role in the mtDNA depletion/deletion abnormalities, although the exact underlying mechanism remains unknown. The available therapeutic approaches include dialysis and enzyme replacement therapy, both can only transiently reverse the biochemical imbalance. Allogeneic hematopoietic stem cell transplantation is shown to be able to restore normal enzyme activity and improve clinical manifestations in MNGIE patients. However, transplant related complications and disease progression result in a high mortality rate. New therapeutic approaches, such as adeno-associated viral vector and hematopoietic stem cell gene therapy have been tested in Tymp-/-Upp1-/- mice, a murine model for MNGIE. This review provides background information on disease manifestations of MNGIE with a focus on current management and treatment options. It also outlines the pre-clinical approaches toward future treatment of the disease. PMID:28261062

  18. The ribonuclease polynucleotide phosphorylase can interact with small regulatory RNAs in both protective and degradative modes

    PubMed Central

    Bandyra, Katarzyna J.; Sinha, Dhriti; Syrjanen, Johanna; Luisi, Ben F.; De Lay, Nicholas R.

    2016-01-01

    In all bacterial species examined thus far, small regulatory RNAs (sRNAs) contribute to intricate patterns of dynamic genetic regulation. Many of the actions of these nucleic acids are mediated by well-characterized chaperones such as the Hfq protein, but genetic screens have also recently identified the 3′-to-5′ exoribonuclease polynucleotide phosphorylase (PNPase) as an unexpected stabilizer and facilitator of sRNAs in vivo. To understand how a ribonuclease might mediate these effects, we tested the interactions of PNPase with sRNAs and found that the enzyme can readily degrade these nucleic acids in vitro but, nonetheless, copurifies from cell extracts with the same sRNAs without discernible degradation or modification to their 3′ ends, suggesting that the associated RNA is protected against the destructive activity of the ribonuclease. In vitro, PNPase, Hfq, and sRNA can form a ternary complex in which the ribonuclease plays a nondestructive, structural role. Such ternary complexes might be formed transiently in vivo, but could help to stabilize particular sRNAs and remodel their population on Hfq. Taken together, our results indicate that PNPase can be programmed to act on RNA in either destructive or stabilizing modes in vivo and may form complex, protective ribonucleoprotein assemblies that shape the landscape of sRNAs available for action. PMID:26759452

  19. Thymidine phosphorylase exerts complex effects on bone resorption and formation in myeloma

    PubMed Central

    Liu, Huan; Liu, Zhiqiang; Du, Juan; He, Jin; Lin, Pei; Amini, Behrang; Starbuck, Michael W.; Novane, Nora; Shah, Jatin J.; Davis, Richard E.; Hou, Jian; Gagel, Robert F.; Yang, Jing

    2016-01-01

    Myelomatous bone disease is characterized by the development of lytic bone lesions and a concomitant reduction in bone formation, leading to chronic bone pain and fractures. To understand the underlying mechanism, we investigated the contribution of myeloma-expressed thymidine phosphorylase (TP) to bone lesions. In osteoblast progenitors, TP upregulated the methylation of RUNX2 and osterix, leading to decreased bone formation. In osteoclast progenitors, TP upregulated the methylation of IRF8, thereby enhanced expression of NFATc1, leading to increased bone resorption. TP reversibly catalyzes thymidine into thymine and 2DDR. Myeloma-secreted 2DDR bound to integrin αVβ3/α5β1 in the progenitors, activated PI3K/Akt signaling, and increased DNMT3A expression, resulting in hypermethylation of RUNX2, osterix, and IRF8. This study elucidates an important mechanism for myeloma-induced bone lesions, suggesting that targeting TP may be a viable approach to healing resorbed bone in patients. As TP overexpression is common in bone-metastatic tumors, our findings could have additional mechanistic implications. PMID:27559096

  20. Isolation of a glycogen synthase I kinase that is independent of adenosine 3':5'-monophosphate.

    PubMed Central

    Schlender, K K; Reimann, E M

    1975-01-01

    Three protein kinases (ATP:protein phosphotransferase, EC 2.7.1.37) were detected when the soluble fraction of rabbit kidney medulla was chromatographed on DEAE-cellulose with a linear NaC1 gradient. The first two kinases eluted (Peak 1 and Peak II) were cyclic-AMP-dependent, wheras Peak III was cyclic-AMP-independent. A procedure was developed to separate the catalytic subunit of Peak II cyclic-AMP-dependent protein kinase (representing the bulk of the histone kinase activity) from Peak III protein kinase. In contrast to the catalytic subunit, Peak III protein kinase phosphorylated casein more rapidly than histone. Peak III was insensitive to the heat-stable protein inhibitor of cyclic-AMP-dependent protein kinases and appeared to have a higher requirement for ATP than did the catalytic subunit. Peak III catalyzed the conversion of glycogen synthase (UDPglucose:glycogen alpha-4-glucosyltransferase, EC 2.4.1.11) from the I (glucose-6-phosphate-independent) to the D (glucose-6-phosphate-dependent) form. This conversion was dependent on Mg-2+ and ATP and was unaffected by cyclic AMP, cyclic GMP, or the protein inhibitor. Glycogen synthase I in the soluble fraction of kidney medulla could be converted to the D form by endogenous glycogen synthase I kinase if Mg-2+ and ATP were added. Most of this glycogen synthase I kinase activity was unaffected by cyclic AMP or by the protein inhibitor, suggesting that Peak III may be of major importance in the regulation of glycogen synthase in vivo. PMID:166380

  1. Structure of purine nucleoside phosphorylase (DeoD) from Bacillus anthracis

    SciTech Connect

    Grenha, Rosa; Levdikov, Vladimir M.; Fogg, Mark J.; Blagova, Elena V.; Brannigan, James A. Wilkinson, Anthony J.; Wilson, Keith S.

    2005-05-01

    The crystal structure of purine nucleoside phosphorylase (DeoD) from B. anthracis was solved by X-ray crystallography using molecular replacement and refined at a resolution of 2.24 Å. Protein structures from the causative agent of anthrax (Bacillus anthracis) are being determined as part of a structural genomics programme. Amongst initial candidates for crystallographic analysis are enzymes involved in nucleotide biosynthesis, since these are recognized as potential targets in antibacterial therapy. Purine nucleoside phosphorylase is a key enzyme in the purine-salvage pathway. The crystal structure of purine nucleoside phosphorylase (DeoD) from B. anthracis has been solved by molecular replacement at 2.24 Å resolution and refined to an R factor of 18.4%. This is the first report of a DeoD structure from a Gram-positive bacterium.

  2. The laforin-malin complex negatively regulates glycogen synthesis by modulating cellular glucose uptake via glucose transporters.

    PubMed

    Singh, Pankaj Kumar; Singh, Sweta; Ganesh, Subramaniam

    2012-02-01

    Lafora disease (LD), an inherited and fatal neurodegenerative disorder, is characterized by increased cellular glycogen content and the formation of abnormally branched glycogen inclusions, called Lafora bodies, in the affected tissues, including neurons. Therefore, laforin phosphatase and malin ubiquitin E3 ligase, the two proteins that are defective in LD, are thought to regulate glycogen synthesis through an unknown mechanism, the defects in which are likely to underlie some of the symptoms of LD. We show here that laforin's subcellular localization is dependent on the cellular glycogen content and that the stability of laforin is determined by the cellular ATP level, the activity of 5'-AMP-activated protein kinase, and the affinity of malin toward laforin. By using cell and animal models, we further show that the laforin-malin complex regulates cellular glucose uptake by modulating the subcellular localization of glucose transporters; loss of malin or laforin resulted in an increased abundance of glucose transporters in the plasma membrane and therefore excessive glucose uptake. Loss of laforin or malin, however, did not affect glycogen catabolism. Thus, the excessive cellular glucose level appears to be the primary trigger for the abnormally higher levels of cellular glycogen seen in LD.

  3. Effect of eccentric exercise with reduced muscle glycogen on plasma interleukin-6 and neuromuscular responses of musculus quadriceps femoris.

    PubMed

    Gavin, James P; Myers, Stephen D; Willems, Mark E T

    2016-07-01

    Eccentric exercise can result in muscle damage and interleukin-6 (IL-6) secretion. Glycogen availability is a potent stimulator of IL-6 secretion. We examined effects of eccentric exercise in a low-glycogen state on neuromuscular function and plasma IL-6 secretion. Twelve active men (23 ± 4 yr, 179 ± 5 cm, 77 ± 10 kg, means ± SD) completed two downhill treadmill runs (gradient, -12%, 5 × 8 min; speed, 12.1 ± 1.1 km/h) with normal (NG) and reduced muscle glycogen (RG) in randomized order and at least 6 wk apart. Muscle glycogen was reduced using an established cycling protocol until exhaustion and dietary manipulation the evening before the morning run. Physiological responses were measured up to 48 h after the downhill runs. During recovery, force deficits of musculus quadriceps femoris by maximal isometric contractions were similar. Changes in low-frequency fatigue were larger with RG. Voluntary activation and plasma IL-6 levels were similar in recovery between conditions. It is concluded that unaccustomed, damaging eccentric exercise with low muscle glycogen of the m. quadriceps femoris 1) exacerbated low-frequency fatigue but 2) had no additional effect on IL-6 secretion. Neuromuscular impairment after eccentric exercise with low muscle glycogen appears to have a greater peripheral component in early recovery.

  4. In situ enzymatic removal of orthophosphate by the nucleoside phosphorylase catalyzed phosphorolysis of nicotinamide riboside.

    PubMed

    Shriver, J W; Sykes, B D

    1982-09-01

    An enzymatic orthophosphate removal system is described which can be effectively used to continuously remove orthophosphate from biochemical samples. The phosphorolysis of nicotinamide riboside is catalyzed by calf spleen nucleoside phosphorylase to give ribose-1-PO4 and nicotinamide along with a proton. At pH 8 the production of ribose-1-PO4 from orthophosphate is essentially quantitative. This reaction can be monitored optically or by 31P nuclear magnetic resonance (NMR). Equations are given for determining the time required to remove a given amount of phosphate from a typical NMR sample with a known amount of nucleoside phosphorylase. The effects of a competing orthophosphate-producing reaction are considered.

  5. B cell hyperactivity and abnormalities in T cell markers and immunoregulatory function in a patient with nucleoside phosphorylase deficiency.

    PubMed Central

    Zabay, J M; De La Concha, E G; Ludeña, C; Lozano, C; Pascual-Salcedo, D; Bootello, A; Gonzalezporqué, P

    1982-01-01

    We describe a 2 year old girl with nucleoside phosphorylase (PNP) deficiency, who had low blood T cell numbers and T lymphocyte blastogenic response to mitogens, hypergammaglobulinaemia, high titres of antibodies to many common antigens, various autoantibodies, a monoclonal IgM-kappa protein, an increased frequency of mature Ig containing blood B cells and a high production of Ig in vitro in unstimulated cultures. E rosetting cells showed faint or no immunofluorescence staining with monoclonal antibodies directed against T cell membrane antigens. In vitro Ig production in response to pokeweed mitogen was defective, and no T cell helper or suppressor activity was observed. It is suggested that the immunoregulatory deficiency might have caused the B cell hyperactivity. PMID:6819909

  6. Expression and characterization of thermostable glycogen branching enzyme from Geobacillus mahadia Geo-05

    PubMed Central

    Mohtar, Nur Syazwani; Raja Abd Rahman, Raja Noor Zaliha; Leow, Thean Chor; Salleh, Abu Bakar; Mat Isa, Mohd Noor

    2016-01-01

    The glycogen branching enzyme (EC 2.4.1.18), which catalyses the formation of α-1,6-glycosidic branch points in glycogen structure, is often used to enhance the nutritional value and quality of food and beverages. In order to be applicable in industries, enzymes that are stable and active at high temperature are much desired. Using genome mining, the nucleotide sequence of the branching enzyme gene (glgB) was extracted from the Geobacillus mahadia Geo-05 genome sequence provided by the Malaysia Genome Institute. The size of the gene is 2013 bp, and the theoretical molecular weight of the protein is 78.43 kDa. The gene sequence was then used to predict the thermostability, function and the three dimensional structure of the enzyme. The gene was cloned and overexpressed in E. coli to verify the predicted result experimentally. The purified enzyme was used to study the effect of temperature and pH on enzyme activity and stability, and the inhibitory effect by metal ion on enzyme activity. This thermostable glycogen branching enzyme was found to be most active at 55 °C, and the half-life at 60 °C and 70 °C was 24 h and 5 h, respectively. From this research, a thermostable glycogen branching enzyme was successfully isolated from Geobacillus mahadia Geo-05 by genome mining together with molecular biology technique. PMID:27957389

  7. Autogenous Regulation of Escherichia coli Polynucleotide Phosphorylase Expression Revisited▿ †

    PubMed Central

    Carzaniga, Thomas; Briani, Federica; Zangrossi, Sandro; Merlino, Giuseppe; Marchi, Paolo; Dehò, Gianni

    2009-01-01

    The Escherichia coli polynucleotide phosphorylase (PNPase; encoded by pnp), a phosphorolytic exoribonuclease, posttranscriptionally regulates its own expression at the level of mRNA stability and translation. Its primary transcript is very efficiently processed by RNase III, an endonuclease that makes a staggered double-strand cleavage about in the middle of a long stem-loop in the 5′-untranslated region. The processed pnp mRNA is then rapidly degraded in a PNPase-dependent manner. Two non-mutually exclusive models have been proposed to explain PNPase autogenous regulation. The earlier one suggested that PNPase impedes translation of the RNase III-processed pnp mRNA, thus exposing the transcript to degradative pathways. More recently, this has been replaced by the current model, which maintains that PNPase would simply degrade the promoter proximal small RNA generated by the RNase III endonucleolytic cleavage, thus destroying the double-stranded structure at the 5′ end that otherwise stabilizes the pnp mRNA. In our opinion, however, the first model was not completely ruled out. Moreover, the RNA decay pathway acting upon the pnp mRNA after disruption of the 5′ double-stranded structure remained to be determined. Here we provide additional support to the current model and show that the RNase III-processed pnp mRNA devoid of the double-stranded structure at its 5′ end is not translatable and is degraded by RNase E in a PNPase-independent manner. Thus, the role of PNPase in autoregulation is simply to remove, in concert with RNase III, the 5′ fragment of the cleaved structure that both allows translation and prevents the RNase E-mediated PNPase-independent degradation of the pnp transcript. PMID:19136586

  8. Postexercise Glycogen Recovery and Exercise Performance is Not Significantly Different Between Fast Food and Sport Supplements.

    PubMed

    Cramer, Michael J; Dumke, Charles L; Hailes, Walter S; Cuddy, John S; Ruby, Brent C

    2015-10-01

    A variety of dietary choices are marketed to enhance glycogen recovery after physical activity. Past research informs recommendations regarding the timing, dose, and nutrient compositions to facilitate glycogen recovery. This study examined the effects of isoenergetic sport supplements (SS) vs. fast food (FF) on glycogen recovery and exercise performance. Eleven males completed two experimental trials in a randomized, counterbalanced order. Each trial included a 90-min glycogen depletion ride followed by a 4-hr recovery period. Absolute amounts of macronutrients (1.54 ± 0.27 g·kg-1 carbohydrate, 0.24 ± 0.04 g·kg fat-1, and 0.18 ±0.03g·kg protein-1) as either SS or FF were provided at 0 and 2 hr. Muscle biopsies were collected from the vastus lateralis at 0 and 4 hr post exercise. Blood samples were analyzed at 0, 30, 60, 120, 150, 180, and 240 min post exercise for insulin and glucose, with blood lipids analyzed at 0 and 240 min. A 20k time-trial (TT) was completed following the final muscle biopsy. There were no differences in the blood glucose and insulin responses. Similarly, rates of glycogen recovery were not different across the diets (6.9 ± 1.7 and 7.9 ± 2.4 mmol·kg wet weight- 1·hr-1 for SS and FF, respectively). There was also no difference across the diets for TT performance (34.1 ± 1.8 and 34.3 ± 1.7 min for SS and FF, respectively. These data indicate that short-term food options to initiate glycogen resynthesis can include dietary options not typically marketed as sports nutrition products such as fast food menu items.

  9. Hyperactivity: glycogen synthase kinase-3 as a therapeutic target.

    PubMed

    Mines, Marjelo A

    2013-05-15

    The diagnosis of hyperactivity-associated disorders has increased within the past few years. The prevalence of hyperactivity-associated disorders is indicative of the need to more fully understand the underlying causes and to develop improved therapeutic interventions. There is increasing evidence that glycogen synthase kinase-3 (GSK3) mediates locomotor hyperactivity in a number of animal models, and therefore may be a potential target for therapeutic intervention in hyperactivity-associated behaviors. In this review, we discuss 1) the effect of manipulations of GSK3 in the absence of drugs and disorders on locomotor activity, 2) the role of GSK3 in drug-induced hyperactivity in rodents, and 3) regulation of locomotor activity by GSK3 in transgenic mouse models related to specific disorders. These studies link GSK3 regulation and activity to hyperactivity-associated behaviors and disease pathologies.

  10. Insights into Phosphate Cooperativity and Influence of Substrate Modifications on Binding and Catalysis of Hexameric Purine Nucleoside Phosphorylases

    PubMed Central

    de Giuseppe, Priscila O.; Martins, Nadia H.; Meza, Andreia N.; dos Santos, Camila R.; Pereira, Humberto D’Muniz; Murakami, Mario T.

    2012-01-01

    The hexameric purine nucleoside phosphorylase from Bacillus subtilis (BsPNP233) displays great potential to produce nucleoside analogues in industry and can be exploited in the development of new anti-tumor gene therapies. In order to provide structural basis for enzyme and substrates rational optimization, aiming at those applications, the present work shows a thorough and detailed structural description of the binding mode of substrates and nucleoside analogues to the active site of the hexameric BsPNP233. Here we report the crystal structure of BsPNP233 in the apo form and in complex with 11 ligands, including clinically relevant compounds. The crystal structure of six ligands (adenine, 2′deoxyguanosine, aciclovir, ganciclovir, 8-bromoguanosine, 6-chloroguanosine) in complex with a hexameric PNP are presented for the first time. Our data showed that free bases adopt alternative conformations in the BsPNP233 active site and indicated that binding of the co-substrate (2′deoxy)ribose 1-phosphate might contribute for stabilizing the bases in a favorable orientation for catalysis. The BsPNP233-adenosine complex revealed that a hydrogen bond between the 5′ hydroxyl group of adenosine and Arg43* side chain contributes for the ribosyl radical to adopt an unusual C3’-endo conformation. The structures with 6-chloroguanosine and 8-bromoguanosine pointed out that the Cl6 and Br8 substrate modifications seem to be detrimental for catalysis and can be explored in the design of inhibitors for hexameric PNPs from pathogens. Our data also corroborated the competitive inhibition mechanism of hexameric PNPs by tubercidin and suggested that the acyclic nucleoside ganciclovir is a better inhibitor for hexameric PNPs than aciclovir. Furthermore, comparative structural analyses indicated that the replacement of Ser90 by a threonine in the B. cereus hexameric adenosine phosphorylase (Thr91) is responsible for the lack of negative cooperativity of phosphate binding in this

  11. Possible role of thymidine phosphorylase in gynecological tumors as an individualized treatment strategy

    PubMed Central

    Shida, Masako; Yasuda, Masanori; Fujita, Mariko; Miyazawa, Masaki; Kajiwara, Hiroshi; Hirasawa, Takeshi; Ikeda, Masae; Matsui, Naruaki; Muramatsu, Toshinari; Mikami, Mikio

    2016-01-01

    Thymidine phosphorylase (TP) is structurally similar to platelet-derived endothelial cell growth factor, and it activates 5-fluorouracil (5-FU) prodrugs and also promotes angiogenesis. In the present study, the possibility of using TP expression as a biomarker for 5-FU prodrugs, and the significance of TP as an angiogenic factor, were investigated in patients with gynecological tumors. The subjects enrolled in the study were 188 patients with gynecological tumors who provided informed consent and underwent tumor resection at the Department of Obstetrics and Gynecology of Tokai University Hospital between February 2002 and January 2010. Measurement of the enzymatic activity of TP and dihydropyrimidine dehydrogenase (DPD) was performed by enzyme-linked immunosorbent assay. In addition, immunohistochemistry (IHC) analysis of microvessels by monochrome imaging, western blotting and reverse transcription-polymerase chain reaction were performed. The mean TP activity and the TP/DPD ratio were increased in squamous cell carcinoma of the cervix (306.9 and 2.2 U/mg protein, respectively) and adenosquamous carcinoma (317.6 and 1.4 U/mg protein, respectively) compared with benign tumors and other malignancies, including endometrial (uterine) carcinoma, ovarian serous adenocarcinoma and ovarian mucinous adenocarcinoma. However, these parameters were also elevated in other histological types of cancer such as clear cell adenocarcinoma of the ovary (115.2 and 2.1 U/mg protein, respectively), in which the microvessel area was the largest of all the histological types analyzed. Since high TP expression and a high TP/DPD ratio were identified in other tumors besides cervical cancer, it is possible that patients for whom 5-FU prodrugs are indicated could be selected appropriately if their TP activity is determined and their TP expression is analyzed by IHC prior to initiation of the treatment. PMID:27899985

  12. Investigation and management of the hepatic glycogen storage diseases.

    PubMed

    Bhattacharya, Kaustuv

    2015-07-01

    The glycogen storage diseases (GSD) comprise a group of disorders that involve the disruption of metabolism of glycogen. Glycogen is stored in various organs including skeletal muscle, the kidneys and liver. The liver stores glycogen to supply the rest of the body with glucose when required. Therefore, disruption of this process can lead to hypoglycaemia. If glycogen is not broken down effectively, this can lead to hepatomegaly. Glycogen synthase deficiency leads to impaired glycogen synthesis and consequently the liver is small. Glycogen brancher deficiency can lead to abnormal glycogen being stored in the liver leading to a quite different disorder of progressive liver dysfunction. Understanding the physiology of GSD I, III, VI and IX guides dietary treatments and the provision of appropriate amounts and types of carbohydrates. There has been recent re-emergence in the literature of the use of ketones in therapy, either in the form of the salt D,L-3-hydroxybutyrate or medium chain triglyceride (MCT). High protein diets have also been advocated. Alternative waxy maize based starches seem to show promising early data of efficacy. There are many complications of each of these disorders and they need to be prospectively surveyed and managed. Liver and kidney transplantation is still indicated in severe refractory disease.

  13. Investigation and management of the hepatic glycogen storage diseases

    PubMed Central

    2015-01-01

    The glycogen storage diseases (GSD) comprise a group of disorders that involve the disruption of metabolism of glycogen. Glycogen is stored in various organs including skeletal muscle, the kidneys and liver. The liver stores glycogen to supply the rest of the body with glucose when required. Therefore, disruption of this process can lead to hypoglycaemia. If glycogen is not broken down effectively, this can lead to hepatomegaly. Glycogen synthase deficiency leads to impaired glycogen synthesis and consequently the liver is small. Glycogen brancher deficiency can lead to abnormal glycogen being stored in the liver leading to a quite different disorder of progressive liver dysfunction. Understanding the physiology of GSD I, III, VI and IX guides dietary treatments and the provision of appropriate amounts and types of carbohydrates. There has been recent re-emergence in the literature of the use of ketones in therapy, either in the form of the salt D,L-3-hydroxybutyrate or medium chain triglyceride (MCT). High protein diets have also been advocated. Alternative waxy maize based starches seem to show promising early data of efficacy. There are many complications of each of these disorders and they need to be prospectively surveyed and managed. Liver and kidney transplantation is still indicated in severe refractory disease. PMID:26835382

  14. Crystal Structure and Substrate Recognition of Cellobionic Acid Phosphorylase, Which Plays a Key Role in Oxidative Cellulose Degradation by Microbes.

    PubMed

    Nam, Young-Woo; Nihira, Takanori; Arakawa, Takatoshi; Saito, Yuka; Kitaoka, Motomitsu; Nakai, Hiroyuki; Fushinobu, Shinya

    2015-07-24

    The microbial oxidative cellulose degradation system is attracting significant research attention after the recent discovery of lytic polysaccharide mono-oxygenases. A primary product of the oxidative and hydrolytic cellulose degradation system is cellobionic acid (CbA), the aldonic acid form of cellobiose. We previously demonstrated that the intracellular enzyme belonging to glycoside hydrolase family 94 from cellulolytic fungus and bacterium is cellobionic acid phosphorylase (CBAP), which catalyzes reversible phosphorolysis of CbA into glucose 1-phosphate and gluconic acid (GlcA). In this report, we describe the biochemical characterization and the three-dimensional structure of CBAP from the marine cellulolytic bacterium Saccharophagus degradans. Structures of ligand-free and complex forms with CbA, GlcA, and a synthetic disaccharide product from glucuronic acid were determined at resolutions of up to 1.6 Å. The active site is located near the dimer interface. At subsite +1, the carboxylate group of GlcA and CbA is recognized by Arg-609 and Lys-613. Additionally, one residue from the neighboring protomer (Gln-190) is involved in the carboxylate recognition of GlcA. A mutational analysis indicated that these residues are critical for the binding and catalysis of the aldonic and uronic acid acceptors GlcA and glucuronic acid. Structural and sequence comparisons with other glycoside hydrolase family 94 phosphorylases revealed that CBAPs have a unique subsite +1 with a distinct amino acid residue conservation pattern at this site. This study provides molecular insight into the energetically efficient metabolic pathway of oxidized sugars that links the oxidative cellulolytic pathway to the glycolytic and pentose phosphate pathways in cellulolytic microbes.

  15. Crystal Structure and Substrate Recognition of Cellobionic Acid Phosphorylase, Which Plays a Key Role in Oxidative Cellulose Degradation by Microbes*

    PubMed Central

    Nam, Young-Woo; Nihira, Takanori; Arakawa, Takatoshi; Saito, Yuka; Kitaoka, Motomitsu; Nakai, Hiroyuki; Fushinobu, Shinya

    2015-01-01

    The microbial oxidative cellulose degradation system is attracting significant research attention after the recent discovery of lytic polysaccharide mono-oxygenases. A primary product of the oxidative and hydrolytic cellulose degradation system is cellobionic acid (CbA), the aldonic acid form of cellobiose. We previously demonstrated that the intracellular enzyme belonging to glycoside hydrolase family 94 from cellulolytic fungus and bacterium is cellobionic acid phosphorylase (CBAP), which catalyzes reversible phosphorolysis of CbA into glucose 1-phosphate and gluconic acid (GlcA). In this report, we describe the biochemical characterization and the three-dimensional structure of CBAP from the marine cellulolytic bacterium Saccharophagus degradans. Structures of ligand-free and complex forms with CbA, GlcA, and a synthetic disaccharide product from glucuronic acid were determined at resolutions of up to 1.6 Å. The active site is located near the dimer interface. At subsite +1, the carboxylate group of GlcA and CbA is recognized by Arg-609 and Lys-613. Additionally, one residue from the neighboring protomer (Gln-190) is involved in the carboxylate recognition of GlcA. A mutational analysis indicated that these residues are critical for the binding and catalysis of the aldonic and uronic acid acceptors GlcA and glucuronic acid. Structural and sequence comparisons with other glycoside hydrolase family 94 phosphorylases revealed that CBAPs have a unique subsite +1 with a distinct amino acid residue conservation pattern at this site. This study provides molecular insight into the energetically efficient metabolic pathway of oxidized sugars that links the oxidative cellulolytic pathway to the glycolytic and pentose phosphate pathways in cellulolytic microbes. PMID:26041776

  16. Double knockout mutants of Arabidopsis grown under normal conditions reveal that the plastidial phosphorylase isozyme participates in transitory starch metabolism.

    PubMed

    Malinova, Irina; Mahlow, Sebastian; Alseekh, Saleh; Orawetz, Tom; Fernie, Alisdair R; Baumann, Otto; Steup, Martin; Fettke, Joerg

    2014-02-01

    In leaves of two starch-related single-knockout lines lacking either the cytosolic transglucosidase (also designated as disproportionating enzyme 2, DPE2) or the maltose transporter (MEX1), the activity of the plastidial phosphorylase isozyme (PHS1) is increased. In both mutants, metabolism of starch-derived maltose is impaired but inhibition is effective at different subcellular sites. Two constitutive double knockout mutants were generated (designated as dpe2-1×phs1a and mex1×phs1b) both lacking functional PHS1. They reveal that in normally grown plants, the plastidial phosphorylase isozyme participates in transitory starch degradation and that the central carbon metabolism is closely integrated into the entire cell biology. All plants were grown either under continuous illumination or in a light-dark regime. Both double mutants were compromised in growth and, compared with the single knockout plants, possess less average leaf starch when grown in a light-dark regime. Starch and chlorophyll contents decline with leaf age. As revealed by transmission electron microscopy, mesophyll cells degrade chloroplasts, but degradation is not observed in plants grown under continuous illumination. The two double mutants possess similar but not identical phenotypes. When grown in a light-dark regime, mesophyll chloroplasts of dpe2-1×phs1a contain a single starch granule but under continuous illumination more granules per chloroplast are formed. The other double mutant synthesizes more granules under either growth condition. In continuous light, growth of both double mutants is similar to that of the parental single knockout lines. Metabolite profiles and oligoglucan patterns differ largely in the two double mutants.

  17. Systemic Correction of Murine Glycogen Storage Disease Type IV by an AAV-Mediated Gene Therapy.

    PubMed

    Yi, Haiqing; Zhang, Quan; Brooks, Elizabeth D; Yang, Chunyu; Thurberg, Beth L; Kishnani, Priya S; Sun, Baodong

    2016-11-10

    Deficiency of glycogen branching enzyme (GBE) causes glycogen storage disease type IV (GSD IV), which is characterized by the accumulation of a less branched, poorly soluble form of glycogen called polyglucosan (PG) in multiple tissues. This study evaluates the efficacy of gene therapy with an adeno-associated viral (AAV) vector in a mouse model of adult form of GSD IV (Gbe1(ys/ys)). An AAV serotype 9 (AAV9) vector containing a human GBE expression cassette (AAV-GBE) was intravenously injected into 14-day-old Gbe1(ys/ys) mice at a dose of 5 × 10(11) vector genomes per mouse. Mice were euthanized at 3 and 9 months of age. In the AAV-treated mice at 3 months of age, GBE enzyme activity was highly elevated in heart, which is consistent with the high copy number of the viral vector genome detected. GBE activity also increased significantly in skeletal muscles and the brain, but not in the liver. The glycogen content was reduced to wild-type levels in muscles and significantly reduced in the liver and brain. At 9 months of age, though GBE activity was only significantly elevated in the heart, glycogen levels were significantly reduced in the liver, brain, and skeletal muscles of the AAV-treated mice. In addition, the AAV treatment resulted in an overall decrease in plasma activities of alanine transaminase, aspartate transaminase, and creatine kinase, and a significant increase in fasting plasma glucose concentration at 9 months of age. This suggests an alleviation of damage and improvement of function in the liver and muscles by the AAV treatment. This study demonstrated a long-term benefit of a systemic injection of an AAV-GBE vector in Gbe1(ys/ys) mice.

  18. Initiation of glycogen biosynthesis in rat heart. Studies with a purified preparation

    SciTech Connect

    Blumenfeld, M.L.; Krisman, C.R.

    1985-09-25

    Two fractions of glycogen synthase were isolated from rat cardiac muscle on the basis of a different affinity for DEAE-cellulose and omega-aminobutyl-agarose. One of these fractions was able to transfer glucosyl residues from UDP-glucose not only to glycogen (GS-1 activity) but also to an endogenous acceptor. The latter reaction (GS-2 activity) occurred in the absence of added glycogen, and its reaction product was insoluble in trichloroacetic acid. This compound was degraded by amylolytic enzymes, thus showing that the product synthesized on the endogenous acceptor was an alpha 1,4-glucan. After incubation with alpha-amylase-free proteolytic enzyme, the compound was rendered trichloroacetic acid-soluble. Polyacrylamide gel electrophoresis, under both native and denaturing conditions, showed that GS-2 reaction products moved electrophoretically associated to protein. The results give further evidence for the association between an alpha 1,4-glucan and protein, which the authors postulate is related to the initiation of glycogen biosynthesis.

  19. The Drosophila NR4A Nuclear Receptor DHR38 Regulates Carbohydrate Metabolism and Glycogen Storage

    PubMed Central

    Ruaud, Anne-Françoise; Lam, Geanette; Thummel, Carl S.

    2011-01-01

    Animals balance nutrient storage and mobilization to maintain metabolic homeostasis, a process that is disrupted in metabolic diseases like obesity and diabetes. Here, we show that DHR38, the single fly ortholog of the mammalian nuclear receptor 4A family of nuclear receptors, regulates glycogen storage during the larval stages of Drosophila melanogaster. DHR38 is expressed and active in the gut and body wall of larvae, and its expression levels change in response to nutritional status. DHR38 null mutants have normal levels of glucose, trehalose (the major circulating form of sugar), and triacylglycerol but display reduced levels of glycogen in the body wall muscles, which constitute the primary storage site for carbohydrates. Microarray analysis reveals that many metabolic genes are mis-regulated in DHR38 mutants. These include phosphoglucomutase, which is required for glycogen synthesis, and the two genes that encode the digestive enzyme amylase, accounting for the reduced amylase enzyme activity seen in DHR38 mutant larvae. These studies demonstrate that a critical role of nuclear receptor 4A receptors in carbohydrate metabolism has been conserved through evolution and that nutritional regulation of DHR38 expression maintains the proper uptake and storage of glycogen during the growing larval stage of development. PMID:21084378

  20. Biotin deficiency in a glycogen storage disease type 1b girl fed only with glycogen storage disease-related formula.

    PubMed

    Ihara, Kenji; Abe, Kiyomi; Hayakawa, Kou; Makimura, Mika; Kojima-Ishii, Kanako; Hara, Toshiro

    2011-01-01

    Glycogen storage disease type I is an autosomal recessive disorder caused by the defect in the glucose-6-phosphate enzyme system. Frequent intake of glucose-containing glycogen storage disease formula, uncooked cornstarch, or both, are usually needed to maintain normal blood glucose level. We report a glycogen storage disease type 1b girl with biotin deficiency caused by an exclusive glucose-containing glycogen storage disease formula for years, presenting with the appearance of severe skin lesions, and diagnosed by urinary organic acid analysis by gas chromato-spectrometry, and blood acylcarnitine analysis by tandem mass-spectrometry.

  1. Relationship between single nucleotide polymorphism of glycogen synthase gene of Pacific oyster Crassostrea gigas and its glycogen content

    NASA Astrophysics Data System (ADS)

    Liu, Siwei; Li, Qi; Yu, Hong; Kong, Lingfeng

    2017-02-01

    Glycogen is important not only for the energy supplementary of oysters, but also for human consumption. High glycogen content can improve the stress survival of oyster. A key enzyme in glycogenesis is glycogen synthase that is encoded by glycogen synthase gene GYS. In this study, the relationship between single nucleotide polymorphisms (SNPs) in coding regions of Crassostrea gigas GYS (Cg-GYS) and individual glycogen content was investigated with 321 individuals from five full-sib families. Single-strand conformation polymorphism (SSCP) procedure was combined with sequencing to confirm individual SNP genotypes of Cg-GYS. Least-square analysis of variance was performed to assess the relationship of variation in glycogen content of C. gigas with single SNP genotype and SNP haplotype. As a consequence, six SNPs were found in coding regions to be significantly associated with glycogen content ( P < 0.01), from which we constructed four main haplotypes due to linkage disequilibrium. Furthermore, the most effective haplotype H2 (GAGGAT) had extremely significant relationship with high glycogen content ( P < 0.0001). These findings revealed the potential influence of Cg-GYS polymorphism on the glycogen content and provided molecular biological information for the selective breeding of good quality traits of C. gigas.

  2. Anopheles gambiae Purine Nucleoside Phosphorylase: Catalysis, Structure, and Inhibition

    SciTech Connect

    Taylor,E.; Rinaldo-Matthis, A.; Li, L.; Ghanem, M.; Hazleton, K.; Cassera, M.; Almo, S.; Schramm, V.

    2007-01-01

    The purine salvage pathway of Anopheles gambiae, a mosquito that transmits malaria, has been identified in genome searches on the basis of sequence homology with characterized enzymes. Purine nucleoside phosphorylase (PNP) is a target for the development of therapeutic agents in humans and purine auxotrophs, including malarial parasites. The PNP from Anopheles gambiae (AgPNP) was expressed in Escherichia coli and compared to the PNPs from Homo sapiens (HsPNP) and Plasmodium falciparum (PfPNP). AgPNP has kcat values of 54 and 41 s-1 for 2'-deoxyinosine and inosine, its preferred substrates, and 1.0 s-1 for guanosine. However, the chemical step is fast for AgPNP at 226 s-1 for guanosine in pre-steady-state studies. 5'-Deaza-1'-aza-2'-deoxy-1'-(9-methylene)-Immucillin-H (DADMe-ImmH) is a transition-state mimic for a 2'-deoxyinosine ribocation with a fully dissociated N-ribosidic bond and is a slow-onset, tight-binding inhibitor with a dissociation constant of 3.5 pM. This is the tightest-binding inhibitor known for any PNP, with a remarkable Km/Ki* of 5.4 x 107, and is consistent with enzymatic transition state predictions of enhanced transition-state analogue binding in enzymes with enhanced catalytic efficiency. Deoxyguanosine is a weaker substrate than deoxyinosine, and DADMe-Immucillin-G is less tightly bound than DADMe-ImmH, with a dissociation constant of 23 pM for AgPNP as compared to 7 pM for HsPNP. The crystal structure of AgPNP was determined in complex with DADMe-ImmH and phosphate to a resolution of 2.2 Angstroms to reveal the differences in substrate and inhibitor specificity. The distance from the N1' cation to the phosphate O4 anion is shorter in the AgPNP{center_dot}DADMe-ImmH{center_dot}PO4 complex than in HsPNP{center_dot}DADMe-ImmH{center_dot}SO4, offering one explanation for the stronger inhibitory effect of DADMe-ImmH for AgPNP.

  3. Ethanol, glycogen and glucosylglycerol represent competing carbon pools in ethanol-producing cells of Synechocystis sp. PCC 6803 under high-salt conditions.

    PubMed

    Pade, Nadin; Mikkat, Stefan; Hagemann, Martin

    2017-03-01

    Cyanobacteria are photoautotrophic micro-organisms, which are increasingly being used as microbial cell factories to produce, for example, ethanol directly from solar energy and CO2. Here, we analysed the effects of different salt concentrations on an ethanol-producing strain of Synechocystis sp. PCC 6803 that overexpresses the pyruvate decarboxylase (pdc) from Zymomonas mobilis and the native alcohol dehydrogenase (adhA). Moderate salinities of 2 % NaCl had no negative impact on ethanol production, whereas the addition of 4 % NaCl resulted in significantly decreased ethanol yields compared to low-salt conditions. Proteomic analysis identified a defined set of proteins with increased abundances in ethanol-producing cells. Among them, we found strong up-regulation of α-1,4 glucan phosphorylase (GlgP, Slr1367) in the producer strain, which consistently resulted in a massive depletion of glycogen pools in these cells regardless of the salinity. The salt-induced accumulation of the compatible solute glucosylglycerol was not affected by the ethanol production. Glycogen and probably compatible solutes could present competing pools with respect to organic carbon, explaining the decreased ethanol production at the highest salinity.

  4. Glycogen Synthase Kinase-3 (GSK-3)-Targeted Therapy and Imaging

    PubMed Central

    Pandey, Mukesh K.; DeGrado, Timothy R.

    2016-01-01

    Glycogen synthase kinase-3 (GSK-3) is associated with various key biological processes, including glucose regulation, apoptosis, protein synthesis, cell signaling, cellular transport, gene transcription, proliferation, and intracellular communication. Accordingly, GSK-3 has been implicated in a wide variety of diseases and specifically targeted for both therapeutic and imaging applications by a large number of academic laboratories and pharmaceutical companies. Here, we review the structure, function, expression levels, and ligand-binding properties of GSK-3 and its connection to various diseases. A selected list of highly potent GSK-3 inhibitors, with IC50 <20 nM for adenosine triphosphate (ATP)-competitive inhibitors and IC50 <5 μM for non-ATP-competitive inhibitors, were analyzed for structure activity relationships. Furthermore, ubiquitous expression of GSK-3 and its possible impact on therapy and imaging are also highlighted. Finally, a rational perspective and possible route to selective and effective GSK-3 inhibitors is discussed. PMID:26941849

  5. Nicotinamide riboside, an unusual, non-typical, substrate of purified purine-nucleoside phosphorylases.

    PubMed

    Wielgus-Kutrowska, B; Kulikowska, E; Wierzchowski, J; Bzowska, A; Shugar, D

    1997-01-15

    Nicotinamide 1-beta-D-riboside (Nir), the cationic, reducible moiety of the coenzyme NAD+, has been confirmed as an unusual substrate for purified purine-nucleoside phosphorylase (PNP) from a mammalian source (calf spleen). It is also a substrate of the enzyme from Escherichia coli. The Km values at pH 7, 1.48 mM and 0.62 mM, respectively, were 1-2 orders of magnitude higher than for the natural substrate inosine, but the Vmax values were comparable, 96% and 35% that for Ino. The pseudo first-order rate constants, Vmax/Km, were 1.1% and 2.5% for the calf spleen and E. coli enzymes. The aglycon, nicotinamide, was neither a substrate nor an inhibitor of PNP. Nir was a weak inhibitor of inosine phosphorolysis catalyzed by both enzymes, with Ki values close to the Km for its phosphorolysis, consistent with simple competitive inhibition; this was further confirmed by Dixon plots. Phosphorolysis of the fluorescent positively charged substrate 7-methylguanosine was also inhibited in a competitive manner by both Ino and Nir. Phosphorolysis of Nir by both enzymes was inhibited competitively by several specific inhibitors of calf spleen and E. coli PNP, with Ki values similar to those for inhibition of other natural substrates. The pH dependence of the kinetic constants for the phosphorolysis of Nir and of a variety of other substrates, was extensively investigated, particularly in the alkaline pH range, where Nir exhibited abnormally high substrate activity relative to the reduced reaction rates of both enzymes towards other anionic or neutral substrates. The overall results are discussed in relation to present concepts regarding binding and phosphorolysis of substrates by PNP based on crystallographic data of enzyme-inhibitor complexes, and current studies on enzymatic and nonenzymatic mechanisms of the cleavage of the Nir glycosidic bond.

  6. Heat Capacity Changes for Transition-State Analogue Binding and Catalysis with Human 5'-Methylthioadenosine Phosphorylase.

    PubMed

    Firestone, Ross S; Cameron, Scott A; Karp, Jerome M; Arcus, Vickery L; Schramm, Vern L

    2017-02-17

    Human 5'-methylthioadenosine phosphorylase (MTAP) catalyzes the phosphorolysis of 5'-methylthioadenosine (MTA). Its action regulates cellular MTA and links polyamine synthesis to S-adenosylmethionine (AdoMet) salvage. Transition state analogues with picomolar dissociation constants bind to MTAP in an entropically driven process at physiological temperatures, suggesting increased hydrophobic character or dynamic structure for the complexes. Inhibitor binding exhibits a negative heat capacity change (-ΔCp), and thus the changes in enthalpy and entropy upon binding are strongly temperature-dependent. The ΔCp of inhibitor binding by isothermal titration calorimetry does not follow conventional trends and is contrary to that expected from the hydrophobic effect. Thus, ligands of increasing hydrophobicity bind with increasing values of ΔCp. Crystal structures of MTAP complexed to transition-state analogues MT-DADMe-ImmA, BT-DADMe-ImmA, PrT-ImmA, and a substrate analogue, MT-tubercidin, reveal similar active site contacts and overall protein structural parameters, despite large differences in ΔCp for binding. In addition, ΔCp values are not correlated with Kd values. Temperature dependence of presteady state kinetics revealed the chemical step for the MTAP reaction to have a negative heat capacity for transition state formation (-ΔCp(‡)). A comparison of the ΔCp(‡) for MTAP presteady state chemistry and ΔCp for inhibitor binding revealed those transition-state analogues most structurally and thermodynamically similar to the transition state. Molecular dynamics simulations of MTAP apoenzyme and complexes with MT-DADMe-ImmA and MT-tubercidin show small, but increased dynamic motion in the inhibited complexes. Variable temperature CD spectroscopy studies for MTAP-inhibitor complexes indicate remarkable protein thermal stability (to Tm = 99 °C) in complexes with transition-state analogues.

  7. Four Generations of Transition State Analogues for Human Purine Nucleoside Phosphorylase

    SciTech Connect

    Ho, M.; Shi, W; Rinaldo-Mathis, A; Tyler, P; Evans, G; Almo, S; Schramm, V

    2010-01-01

    Inhibition of human purine nucleoside phosphorylase (PNP) stops growth of activated T-cells and the formation of 6-oxypurine bases, making it a target for leukemia, autoimmune disorders, and gout. Four generations of ribocation transition-state mimics bound to PNP are structurally characterized. Immucillin-H (K*{sub i} = 58 pM, first-generation) contains an iminoribitol cation with four asymmetric carbons. DADMe-Immucillin-H (K*{sub i} = 9 pM, second-generation), uses a methylene-bridged dihydroxypyrrolidine cation with two asymmetric centers. DATMe-Immucillin-H (K*{sub i} = 9 pM, third-generation) contains an open-chain amino alcohol cation with two asymmetric carbons. SerMe-ImmH (K*{sub i} = 5 pM, fourth-generation) uses achiral dihydroxyaminoalcohol seramide as the ribocation mimic. Crystal structures of PNPs establish features of tight binding to be; (1) ion-pair formation between bound phosphate (or its mimic) and inhibitor cation, (2) leaving-group interactions to N1, O6, and N7 of 9-deazahypoxanthine, (3) interaction between phosphate and inhibitor hydroxyl groups, and (4) His257 interacting with the 5{prime}-hydroxyl group. The first generation analogue is an imperfect fit to the catalytic site with a long ion pair distance between the iminoribitol and bound phosphate and weaker interactions to the leaving group. Increasing the ribocation to leaving-group distance in the second- to fourth-generation analogues provides powerful binding interactions and a facile synthetic route to powerful inhibitors. Despite chemical diversity in the four generations of transition-state analogues, the catalytic site geometry is almost the same for all analogues. Multiple solutions in transition-state analogue design are available to convert the energy of catalytic rate enhancement to binding energy in human PNP.

  8. Structural basis of glycogen branching enzyme deficiency and pharmacologic rescue by rational peptide design

    PubMed Central

    Froese, D. Sean; Michaeli, Amit; McCorvie, Thomas J.; Krojer, Tobias; Sasi, Meitav; Melaev, Esther; Goldblum, Amiram; Zatsepin, Maria; Lossos, Alexander; Álvarez, Rafael; Escribá, Pablo V.; Minassian, Berge A.; von Delft, Frank; Kakhlon, Or; Yue, Wyatt W.

    2015-01-01

    Glycogen branching enzyme 1 (GBE1) plays an essential role in glycogen biosynthesis by generating α-1,6-glucosidic branches from α-1,4-linked glucose chains, to increase solubility of the glycogen polymer. Mutations in the GBE1 gene lead to the heterogeneous early-onset glycogen storage disorder type IV (GSDIV) or the late-onset adult polyglucosan body disease (APBD). To better understand this essential enzyme, we crystallized human GBE1 in the apo form, and in complex with a tetra- or hepta-saccharide. The GBE1 structure reveals a conserved amylase core that houses the active centre for the branching reaction and harbours almost all GSDIV and APBD mutations. A non-catalytic binding cleft, proximal to the site of the common APBD mutation p.Y329S, was found to bind the tetra- and hepta-saccharides and may represent a higher-affinity site employed to anchor the complex glycogen substrate for the branching reaction. Expression of recombinant GBE1-p.Y329S resulted in drastically reduced protein yield and solubility compared with wild type, suggesting this disease allele causes protein misfolding and may be amenable to small molecule stabilization. To explore this, we generated a structural model of GBE1-p.Y329S and designed peptides ab initio to stabilize the mutation. As proof-of-principle, we evaluated treatment of one tetra-peptide, Leu-Thr-Lys-Glu, in APBD patient cells. We demonstrate intracellular transport of this peptide, its binding and stabilization of GBE1-p.Y329S, and 2-fold increased mutant enzymatic activity compared with untreated patient cells. Together, our data provide the rationale and starting point for the screening of small molecule chaperones, which could become novel therapies for this disease. PMID:26199317

  9. Purine nucleoside phosphorylase and the enzymatic antioxidant defense system in breast milk from women with different levels of arsenic exposure.

    PubMed

    Gaxiola-Robles, Ramón; Labrada-Martagón, Vanessa; Bitzer-Quintero, Oscar Kurt; Zenteno-Savín, Tania; Méndez-Rodríguez, Lía Celina

    2015-05-01

    Purine nucleoside phosphorylase (PNP) is an ubiquitous enzyme which plays an important role in arsenic (As) detoxification. As is a toxic metalloid present in air, soil and water; is abundant in the environment and is readily transferred along the trophic chain, being found even in human breast milk. Milk is the main nutrient source for the growth and development of neonates. Information on breast milk synthesis and its potential defense mechanism against As toxicity is scarce. In this study, PNP and antioxidant enzymes activities, as well as glutathione (GSH) and total arsenic (TAs) concentrations, were quantified in breast milk samples. PNP, superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR) activities and GSH concentration were determined spectrophotometrically; TAs concentration ([TAs]) was measured by atomic absorption spectrometry. Data suggest an increase in PNP activity (median = 0.034 U mg protein-1) in the presence of TAs (median = 1.16 g L(-1)). To explain the possible association of PNP activity in breast milk with the activity of the antioxidant enzymes as well as with GSH and TAs concentrations, generalized linear models were built. In the adjusted model, GPx and GR activities showed a statistically significant (p<0.01) association with PNP activity. These results may suggest that PNP activity increases in the presence of TAs as part of the detoxification mechanism in breast milk.

  10. Role of the direct and indirect pathways for glycogen synthesis in rat liver in the postprandial state

    SciTech Connect

    Huang, M.T.; Veech, R.L.

    1988-03-01

    The pathway for hepatic glycogen synthesis in the postprandial state was studied in meal-fed rats chronically cannulated in the portal vein. Plasma glucose concentration in the portal vein was found to be 4.50 +/- 1.01 mM (mean +/- SE; n = 3) before a meal and 11.54 +/- 0.70 mM (mean +/- SE; n = 4) after a meal in rats meal-fed a diet consisting of 100% commercial rat chow for 7 d. The hepatic-portal difference of plasma glucose concentration showed that liver released glucose in the fasted state and either extracted or released glucose after feeding depending on plasma glucose concentration in the portal vein. The concentration of portal vein glucose at which liver changes from glucose releasing to glucose uptake was 8 mM, the Km of glucokinase. The rate of glycogen synthesis in liver during meal-feeding was found to be approximately 1 mumol glucosyl U/g wet wt/min in rats meal-fed a 50% glucose supplemented chow diet. The relative importance of the direct vs. indirect pathway for the replenishment of hepatic glycogen was determined by the incorporation of (3-/sup 3/H,U-/sup 14/C)glucose into liver glycogen. Labeled glucose was injected into the portal vein at the end of meal-feeding. The ratio of /sup 3/H//sup 14/C in the glucosyl units of glycogen was found to be 83-92% of the ratio in liver free glucose six minutes after the injection, indicating that the majority of exogenous glucose incorporated into glycogen did not go through glycolysis. The percent contribution of the direct versus indirect pathway was quantitated from the difference in the relative specific activity (RSA) of (/sup 3/H) and (/sup 14/C)-glycogen in rats infused with (3-/sup 3/H,U-/sup 14/C)glucose. No significant difference was found between the RSA of (/sup 3/H)glycogen and (/sup 14/C)glycogen, indicating further that the pathway for glycogen synthesis in liver from exogenous glucose is from the direct pathway.

  11. Chemical modification of a functional arginine residue in diadenosine 5',5'''-P1,P4-tetraphosphate (Ap4A) phosphorylase I from Saccharomyces cerevisiae.

    PubMed Central

    Robinson, A K; Barnes, L D

    1991-01-01

    Phenylglyoxal, a reagent with high specificity for arginine residues, inactivated Ap4A phosphorylase I from Saccharomyces cerevisiae in a pseudo-first-order manner. The second-order rate constant was 11.5 +/- 2.5 M-1 min-1. The loss of activity was a linear function of the incorporation of [7-14C]phenylglyoxal. The incorporation of 1.9 +/- 0.4 mol of phenylglyoxal/mol of enzyme accounted for complete loss of activity. The specificity of inactivation by phenylglyoxal was tested in the presence of ApnA (n = 2-6), ADP, ATP and Pi. The substrates, Ap4A, Ap5A and Pi protected the enzyme against inactivation, but Ap2A, Ap3A and Ap6A did not. Ap4A, Ap5A and Pi reduced the rate of inactivation by about 70%, 60% and 37% respectively. The Ap4A phosphorolysis products, ADP and ATP, also partially protected the enzyme against inactivation by phenylglyoxal. Thus Ap4A phosphorylase I probably contains an arginine residue in the binding site for Ap4A. Images Fig. 4. PMID:1656937

  12. Carnosine, taurine and enzyme activities of human skeletal muscle fibres from elderly subjects with osteoarthritis and young moderately active subjects.

    PubMed

    Tallon, Mark J; Harris, Roger C; Maffulli, Nicola; Tarnopolsky, Mark A

    2007-04-01

    Ageing is associated with a reduction in muscle carnosine (beta-alanyl-L-histidine), but there are no data on the changes specifically in type I and type II muscle fibres. Given the higher carnosine content of type II fibers, changes observed in whole muscle may be secondary to a shift in fibre composition. Carnosine, beta-alanine, histidine, taurine, and citrate synthase (CS) and glycogen phosphorylase (Phos), were measured in pools of single muscle fibres from freeze-dried muscle biopsies of vastus lateralis of nine elderly sedentary subjects (65-80 years) with osteoarthritis of the knee and undergoing total knee replacement, and nine young moderately active healthy subjects (20-35 years). Fibres were characterised as type I or II by myosin ATPase activity. Carnosine was 53.2% lower in type II fibres of older subjects resulting in an estimated 7% (and most probably still higher) decline in intracellular physico-chemical buffering capacity. Younger subjects showed higher CS activities in type I and higher Phos activities in type II fibres. These differences were less apparent in elderly subjects. Possible causes for the change in the carnosine content are reduced physical activity, reduced meat intake, or the result of progressive denervation.

  13. Effects of commercially available pneumatic compression on muscle glycogen recovery after exercise.

    PubMed

    Keck, Nathan A; Cuddy, John S; Hailes, Walter S; Dumke, Charles L; Ruby, Brent C

    2015-02-01

    The purpose of this study was to investigate the effects of pneumatic compression pants on postexercise glycogen resynthesis. Active male subjects (n = 10) completed 2 trials consisting of a 90-minute glycogen depleting ride, followed by 4 hours of recovery with either a pneumatic compression device (PCD) or passive recovery (PR) in a random counterbalanced order. A carbohydrate beverage (1.8 g·kg bodyweight) was provided at 0 and 2 hours after exercise. Muscle biopsies (vastus lateralis) were obtained immediately and 4 hours after exercise for glycogen analyses. Blood samples were collected throughout recovery to measure glucose and insulin. Eight fingerstick blood samples for lactate were collected in the last 20 minutes of the exercise period and during the initial portion of the recovery period. Heart rate was monitored throughout the trial. During the PCD trial, subjects recovered using a commercially available recovery device (NormaTec PCD) operational at 0-60 and 120-180 minutes into recovery period. The same PCD was worn during the PR trial but was not turned on to create pulsatile pressures. There was no difference in muscle glycogen resynthesis during the recovery period (6.9 ± 0.8 and 6.9 ± 0.5 mmol·kg wet wt·h for the PR and PCD trials, respectively). Blood glucose, insulin, and lactate concentrations changed with respect to time but were not different between trials (p > 0.05). The use of PCD did not alter the rate of muscle glycogen resynthesis, blood lactate, or blood glucose and insulin concentrations associated with a postexercise oral glucose load.

  14. Melatonin ameliorates high fat diet-induced diabetes and stimulates glycogen synthesis via a PKCzeta-Akt-GSK3beta pathway in hepatic cells.

    PubMed

    Shieh, Jiunn-Min; Wu, Hung-Tsung; Cheng, Kai-Chun; Cheng, Juei-Tang

    2009-11-01

    Low levels of melatonin in circulation had been reported to be related to the development of diabetes. Melatonin administration in animals increases hepatic glycogen content to lower blood glucose. However, the signaling pathway for these effects is still unclear. The present study shows that intraperitoneal injection of 10 mg/kg melatonin ameliorated glucose utilization and insulin sensitivity in high fat diet-induced diabetic mice with an increase in hepatic glycogen and improvement in liver steatosis. We used HepG2 cells to investigate the signaling pathways for the melatonin-stimulated hepatic glycogen increment. Treatment of HepG2 cells with 1 nm melatonin markedly increased glycogen synthesis which was blocked by the melatonin receptor antagonist luzindole. In addition, melatonin increased the phosphorylation of subcellular signals at the level of protein kinase C zeta (PKCzeta), Akt, and glycogen synthase kinase 3beta (GSK3beta) while the increase in glycogen synthesis induced by melatonin was inhibited by PKCzeta pseudo-peptide. However, 3',5'-cyclic adenosine monophosphate-activated protein kinase (AMPK) was not influenced by melatonin treatment. Taken together, melatonin improves glucose intolerance and insulin resistance in high fat diet-induced diabetic mice and stimulates glycogen synthesis via a PKCzeta-Akt-GSK3beta pathway in HepG2 cells.

  15. Conformational plasticity of glycogenin and its maltosaccharide substrate during glycogen biogenesis.

    PubMed

    Chaikuad, Apirat; Froese, D Sean; Berridge, Georgina; von Delft, Frank; Oppermann, Udo; Yue, Wyatt W

    2011-12-27

    Glycogenin initiates the synthesis of a maltosaccharide chain covalently attached to itself on Tyr195 via a stepwise glucosylation reaction, priming glycogen synthesis. We have captured crystallographic snapshots of human glycogenin during its reaction cycle, revealing a dynamic conformational switch between ground and active states mediated by the sugar donor UDP-glucose. This switch includes the ordering of a polypeptide stretch containing Tyr195, and major movement of an approximately 30-residue "lid" segment covering the active site. The rearranged lid guides the nascent maltosaccharide chain into the active site in either an intra- or intersubunit mode dependent upon chain length and steric factors and positions the donor and acceptor sugar groups for catalysis. The Thr83Met mutation, which causes glycogen storage disease XV, is conformationally locked in the ground state and catalytically inactive. Our data highlight the conformational plasticity of glycogenin and coexistence of two modes of glucosylation as integral to its catalytic mechanism.

  16. Improving size-exclusion chromatography separation for glycogen.

    PubMed

    Sullivan, Mitchell A; Powell, Prudence O; Witt, Torsten; Vilaplana, Francisco; Roura, Eugeni; Gilbert, Robert G

    2014-03-07

    Glycogen is a hyperbranched glucose polymer comprised of glycogen β particles, which can also form much larger composite α particles. The recent discovery using size-exclusion chromatography (SEC) that fewer, smaller, α particles are found in diabetic-mouse liver compared to healthy mice highlights the need to achieve greater accuracy in the size separation methods used to analyze α and β particles. While past studies have used dimethyl sulfoxide as the SEC eluent to analyze the molecular size and structure of native glycogen, an aqueous eluent has not been rigorously tested and compared with dimethyl sulfoxide. The conditions for SEC of pig-liver glycogen, phytoglycogen and oyster glycogen were optimized by comparing two different eluents, aqueous 50 mM NH₄NO₃/0.02% NaN₃ and dimethyl sulfoxide/0.5% LiBr, run through different column materials and pore sizes at various flow rates. The aqueous system gave distinct size separation of α- and β-particle peaks, allowing for a more detailed and quantitative analysis and comparison between liver glycogen samples. This greater resolution has also revealed key differences between the structure of liver glycogen and phytoglycogen.

  17. Changes in brain glycogen after sleep deprivation vary with genotype.

    PubMed

    Franken, Paul; Gip, Phung; Hagiwara, Grace; Ruby, Norman F; Heller, H Craig

    2003-08-01

    Sleep has been functionally implicated in brain energy homeostasis in that it could serve to replenish brain energy stores that become depleted while awake. Sleep deprivation (SD) should therefore lower brain glycogen content. We tested this hypothesis by sleep depriving mice of three inbred strains, i.e., AKR/J (AK), DBA/2J (D2), and C57BL/6J (B6), that differ greatly in their sleep regulation. After a 6-h SD, these mice and their controls were killed by microwave irradiation, and glycogen and glucose were quantified in the cerebral cortex, brain stem, and cerebellum. After SD, both measures significantly increased by approximately 40% in the cortex of B6 mice, while glycogen significantly decreased by 20-38% in brain stem and cerebellum of AK and D2 mice. In contrast, after SD, glucose content increased in all three structures in AK mice and did not change in D2 mice. The increase in glycogen after SD in B6 mice persisted under conditions of food deprivation that, by itself, lowered cortical glycogen. Furthermore, the strains that differ most in their compensatory response to sleep loss, i.e., AK and D2, did not differ in their glycogen response. Thus glycogen content per se is an unlikely end point of sleep's functional role in brain energy homeostasis.

  18. Impact of Oxidative Stress on Ascorbate Biosynthesis in Chlamydomonas via Regulation of the VTC2 Gene Encoding a GDP-l-galactose Phosphorylase*

    PubMed Central

    Urzica, Eugen I.; Adler, Lital N.; Page, M. Dudley; Linster, Carole L.; Arbing, Mark A.; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S.; Clarke, Steven G.

    2012-01-01

    The l-galactose (Smirnoff-Wheeler) pathway represents the major route to l-ascorbic acid (vitamin C) biosynthesis in higher plants. Arabidopsis thaliana VTC2 and its paralogue VTC5 function as GDP-l-galactose phosphorylases converting GDP-l-galactose to l-galactose-1-P, thus catalyzing the first committed step in the biosynthesis of l-ascorbate. Here we report that the l-galactose pathway of ascorbate biosynthesis described in higher plants is conserved in green algae. The Chlamydomonas reinhardtii genome encodes all the enzymes required for vitamin C biosynthesis via the l-galactose pathway. We have characterized recombinant C. reinhardtii VTC2 as an active GDP-l-galactose phosphorylase. C. reinhardtii cells exposed to oxidative stress show increased VTC2 mRNA and l-ascorbate levels. Genes encoding enzymatic components of the ascorbate-glutathione system (e.g. ascorbate peroxidase, manganese superoxide dismutase, and dehydroascorbate reductase) are also up-regulated in response to increased oxidative stress. These results indicate that C. reinhardtii VTC2, like its plant homologs, is a highly regulated enzyme in ascorbate biosynthesis in green algae and that, together with the ascorbate recycling system, the l-galactose pathway represents the major route for providing protective levels of ascorbate in oxidatively stressed algal cells. PMID:22393048

  19. Construction of a 2.8-megabase yeast artificial chromosome contig and cloning of the human methylthioadenosine phosphorylase gene from the tumor suppressor region on 9p21

    SciTech Connect

    Olopade, O.I.; Pomykala, H.M.; Hagos, F.

    1995-07-03

    Many human malignant cells lack methylthioadenosine phosphorylase (MTAP) enzyme activity. The gene (MTAP) encoding this enzyme was previously mapped to the short arm of chromosome 9, band p21-22, a region that is frequently deleted in multiple tumor types. To clone candidate tumor suppressor genes from the deleted region on 9p21-22, we have constructed a long-range physical map of 2.8 megabases for 9p21 by using overlapping yeast artificial chromosome and cosmid clones. This map includes the type I IFN gene cluster, the recently identified candidate tumor suppressor genes CDKN2 (p16{sup INK4A}) and CDKN2B (p15{sup INK4B}), and several CpG islands. In addition, we have identified other transcription units within the yeast artificial chromosome contig. Sequence analysis of a 2.5-kb cDNA clone isolated from a CpG island that maps between the IFN genes and CDKN2 reveals a predicted open reading frame of 283 amino acids followed by 1302 nucleotides of 3{prime} untranslated sequence. This gene is evolutionarily conserved and shows significant amino acid homologies to mouse and human purine nucleoside phosphorylases and to a hypothetical 25.8-kDa protein in the pet gene (coding for cytochrome bc{sub 1} complex) region of Rhodospirillum rubrum. The location, expression pattern, and nucleotide sequences of this gene suggest that it codes for the MTAP enzyme. 35 refs., 4 figs., 1 tab.

  20. Nuclear assembly with lambda DNA in fractionated Xenopus egg extracts: an unexpected role for glycogen in formation of a higher order chromatin intermediate

    PubMed Central

    1994-01-01

    Crude extracts of Xenopus eggs are capable of nuclear assembly around chromatin templates or even around protein-free, naked DNA templates. Here the requirements for nuclear assembly around a naked DNA template were investigated. Extracts were separated by ultracentrifugation into cytosol, membrane, and gelatinous pellet fractions. It was found that, in addition to the cytosolic and membrane fractions, a component of the gelatinous pellet fraction was required for the assembly of functional nuclei around a naked DNA template. In the absence of this component, membrane-bound but functionally inert spheres of lambda DNA were formed. Purification of the active pellet factor unexpectedly demonstrated the component to be glycogen. The assembly of functionally active nuclei, as assayed by DNA replication and nuclear transport, required that glycogen be pre-incubated with the lambda DNA and cytosol during the period of chromatin and higher order intermediate formation, before the addition of membranes. Hydrolysis of glycogen with alpha- amylase in the extract blocked nuclear formation. Upon analysis, chromatin formed in the presence of cytosol and glycogen alone appeared highly condensed, reminiscent of the nuclear assembly intermediate described by Newport in crude extracts (Newport, J. 1987. Cell. 48:205- 217). In contrast, chromatin formed from phage lambda DNA in cytosol lacking glycogen formed "fluffy chromatin-like" structures. Using sucrose gradient centrifugation, the highly condensed intermediates formed in the presence of glycogen could be isolated and were now able to serve as nuclear assembly templates in extracts lacking glycogen, arguing that the requirement for glycogen is temporally restricted to the time of intermediate formation and function. Glycogen does not act simply by inducing condensation of the chromatin, since similarly isolated mitotically condensed chromatin intermediates do not form functional nuclei. However, both mitotic and fluffy

  1. Three-dimensional structure of E. Coli purine nucleoside phosphorylase at 0.99 Å resolution

    NASA Astrophysics Data System (ADS)

    Timofeev, V. I.; Abramchik, Yu. A.; Zhukhlistova, N. E.; Muravieva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2016-03-01

    Purine nucleoside phosphorylases (PNPs) catalyze the reversible phosphorolysis of nucleosides and are key enzymes involved in nucleotide metabolism. They are essential for normal cell function and can catalyze the transglycosylation. Crystals of E. coli PNP were grown in microgravity by the capillary counterdiffusion method through a gel layer. The three-dimensional structure of the enzyme was determined by the molecular-replacement method at 0.99 Å resolution. The structural features are considered, and the structure of E. coli PNP is compared with the structures of the free enzyme and its complexes with purine base derivatives established earlier. A comparison of the environment of the purine base in the complex of PNP with formycin A and of the pyrimidine base in the complex of uridine phosphorylase with thymidine revealed the main structural features of the base-binding sites. Coordinates of the atomic model determined with high accuracy were deposited in the Protein Data Bank (PDB_ID: 4RJ2).

  2. Glycogen and glucose metabolism are essential for early embryonic development of the red flour beetle Tribolium castaneum.

    PubMed

    Fraga, Amanda; Ribeiro, Lupis; Lobato, Mariana; Santos, Vitória; Silva, José Roberto; Gomes, Helga; da Cunha Moraes, Jorge Luiz; de Souza Menezes, Jackson; de Oliveira, Carlos Jorge Logullo; Campos, Eldo; da Fonseca, Rodrigo Nunes

    2013-01-01

    Control of energy metabolism is an essential process for life. In insects, egg formation (oogenesis) and embryogenesis is dependent on stored molecules deposited by the mother or transcribed later by the zygote. In oviparous insects the egg becomes an isolated system after egg laying with all energy conversion taking place during embryogenesis. Previous studies in a few vector species showed a strong correlation of key morphogenetic events and changes in glucose metabolism. Here, we investigate glycogen and glucose metabolism in the red flour beetle Tribolium castaneum, an insect amenable to functional genomic studies. To examine the role of the key enzymes on glycogen and glucose regulation we cloned and analyzed the function of glycogen synthase kinase 3 (GSK-3) and hexokinase (HexA) genes during T. castaneum embryogenesis. Expression analysis via in situ hybridization shows that both genes are expressed only in the embryonic tissue, suggesting that embryonic and extra-embryonic cells display different metabolic activities. dsRNA adult female injection (parental RNAi) of both genes lead a reduction in egg laying and to embryonic lethality. Morphological analysis via DAPI stainings indicates that early development is impaired in Tc-GSK-3 and Tc-HexA1 RNAi embryos. Importantly, glycogen levels are upregulated after Tc-GSK-3 RNAi and glucose levels are upregulated after Tc-HexA1 RNAi, indicating that both genes control metabolism during embryogenesis and oogenesis, respectively. Altogether our results show that T. castaneum embryogenesis depends on the proper control of glucose and glycogen.

  3. Glycogen and Glucose Metabolism Are Essential for Early Embryonic Development of the Red Flour Beetle Tribolium castaneum

    PubMed Central

    Fraga, Amanda; Ribeiro, Lupis; Lobato, Mariana; Santos, Vitória; Silva, José Roberto; Gomes, Helga; da Cunha Moraes, Jorge Luiz; de Souza Menezes, Jackson

    2013-01-01

    Control of energy metabolism is an essential process for life. In insects, egg formation (oogenesis) and embryogenesis is dependent on stored molecules deposited by the mother or transcribed later by the zygote. In oviparous insects the egg becomes an isolated system after egg laying with all energy conversion taking place during embryogenesis. Previous studies in a few vector species showed a strong correlation of key morphogenetic events and changes in glucose metabolism. Here, we investigate glycogen and glucose metabolism in the red flour beetle Tribolium castaneum, an insect amenable to functional genomic studies. To examine the role of the key enzymes on glycogen and glucose regulation we cloned and analyzed the function of glycogen synthase kinase 3 (GSK-3) and hexokinase (HexA) genes during T. castaneum embryogenesis. Expression analysis via in situ hybridization shows that both genes are expressed only in the embryonic tissue, suggesting that embryonic and extra-embryonic cells display different metabolic activities. dsRNA adult female injection (parental RNAi) of both genes lead a reduction in egg laying and to embryonic lethality. Morphological analysis via DAPI stainings indicates that early development is impaired in Tc-GSK-3 and Tc-HexA1 RNAi embryos. Importantly, glycogen levels are upregulated after Tc-GSK-3 RNAi and glucose levels are upregulated after Tc-HexA1 RNAi, indicating that both genes control metabolism during embryogenesis and oogenesis, respectively. Altogether our results show that T. castaneum embryogenesis depends on the proper control of glucose and glycogen. PMID:23750237

  4. The Modulation of the Symbiont/Host Interaction between Wolbachia pipientis and Aedes fluviatilis Embryos by Glycogen Metabolism

    PubMed Central

    da Rocha Fernandes, Mariana; Martins, Renato; Pessoa Costa, Evenilton; Casagrande Pacidônio, Etiene; Araujo de Abreu, Leonardo; da Silva Vaz, Itabajara; Moreira, Luciano A.; da Fonseca, Rodrigo Nunes; Logullo, Carlos

    2014-01-01

    Wolbachia pipientis, a maternally transmitted bacterium that colonizes arthropods, may affect the general aspects of insect physiology, particularly reproduction. Wolbachia is a natural endosymbiont of Aedes fluviatilis, whose effects in embryogenesis and reproduction have not been addressed so far. In this context, we investigated the correlation between glucose metabolism and morphological alterations during A. fluviatilis embryo development in Wolbachia-positive (W+) and Wolbachia-negative (W−) mosquito strains. While both strains do not display significant morphological and larval hatching differences, larger differences were observed in hexokinase activity and glycogen contents during early and mid-stages of embryogenesis, respectively. To investigate if glycogen would be required for parasite-host interaction, we reduced Glycogen Synthase Kinase-3 (GSK-3) levels in adult females and their eggs by RNAi. GSK-3 knock-down leads to embryonic lethality, lower levels of glycogen and total protein and Wolbachia reduction. Therefore, our results suggest that the relationship between A. fluviatilis and Wolbachia may be modulated by glycogen metabolism. PMID:24926801

  5. The modulation of the symbiont/host interaction between Wolbachia pipientis and Aedes fluviatilis embryos by glycogen metabolism.

    PubMed

    da Rocha Fernandes, Mariana; Martins, Renato; Pessoa Costa, Evenilton; Pacidônio, Etiene Casagrande; Araujo de Abreu, Leonardo; da Silva Vaz, Itabajara; Moreira, Luciano A; da Fonseca, Rodrigo Nunes; Logullo, Carlos

    2014-01-01

    Wolbachia pipientis, a maternally transmitted bacterium that colonizes arthropods, may affect the general aspects of insect physiology, particularly reproduction. Wolbachia is a natural endosymbiont of Aedes fluviatilis, whose effects in embryogenesis and reproduction have not been addressed so far. In this context, we investigated the correlation between glucose metabolism and morphological alterations during A. fluviatilis embryo development in Wolbachia-positive (W+) and Wolbachia-negative (W-) mosquito strains. While both strains do not display significant morphological and larval hatching differences, larger differences were observed in hexokinase activity and glycogen contents during early and mid-stages of embryogenesis, respectively. To investigate if glycogen would be required for parasite-host interaction, we reduced Glycogen Synthase Kinase-3 (GSK-3) levels in adult females and their eggs by RNAi. GSK-3 knock-down leads to embryonic lethality, lower levels of glycogen and total protein and Wolbachia reduction. Therefore, our results suggest that the relationship between A. fluviatilis and Wolbachia may be modulated by glycogen metabolism.

  6. Engineering the specificity of trehalose phosphorylase as a general strategy for the production of glycosyl phosphates.

    PubMed

    Chen, Chao; Van der Borght, Jef; De Vreese, Rob; D'hooghe, Matthias; Soetaert, Wim; Desmet, Tom

    2014-07-25

    A two-step process is reported for the anomeric phosphorylation of galactose, using trehalose phosphorylase as biocatalyst. The monosaccharide enters this process as acceptor but can subsequently be released from the donor side, thanks to the non-reducing nature of the disaccharide intermediate. A key development was the creation of an optimized enzyme variant that displays a strict specificity (99%) for β-galactose 1-phosphate as product.

  7. L-Enantiomers of Transition State Analogue Inhibitors Bound to Human Purine Nucleoside Phosphorylase

    SciTech Connect

    Rinaldo-Matthis,A.; Murkin, A.; Ramagopal, U.; Clinch, K.; Mee, S.; Evans, G.; Tyler, P.; Furneaux, R.; Almo, S.; Schramm, v.

    2008-01-01

    Human purine nucleoside phosphorylase (PNP) was crystallized with transition-state analogue inhibitors Immucillin-H and DADMe-Immucillin-H synthesized with ribosyl mimics of l-stereochemistry. The inhibitors demonstrate that major driving forces for tight binding of these analogues are the leaving group interaction and the cationic mimicry of the transition state, even though large geometric changes occur with d-Immucillins and l-Immucillins bound to human PNP.

  8. Long-Term Administration of Dehydroepiandrosterone Accelerates Glucose Catabolism via Activation of PI3K/Akt-PFK-2 Signaling Pathway in Rats Fed a High-Fat Diet

    PubMed Central

    Kang, Jian; Ge, Chongyang; Yu, Lei; Li, Longlong; Ma, Haitian

    2016-01-01

    Dehydroepiandrosterone (DHEA) has a fat-reducing effect, while little information is available on whether DHEA regulates glucose metabolism, which would in turn affect fat deposition. To investigate the effects of DHEA on glucose metabolism, rats were administered a high-fat diet containing either 0 (HCG), 25 (HLG), 50 (HMG), or 100 (HHG) mg·kg-1 DHEA per day via gavage for 8 weeks. Results showed that long-term administration of DHEA inhibited body weight gain in rats on a high-fat diet. No statistical differences in serum glucose levels were observed, whereas hepatic glycogen content in HMG and HHG groups and muscle glycogen content in HLG and HMG groups were higher than those in HCG group. Glucokinase, malate dehydrogenase and phosphofructokinase-2 activities in HMG and HHG groups, pyruvate kinase and succinate dehydrogenase activities in HMG group, and pyruvate dehydrogenase activity in all DHEA treatment groups were increased compared with those in HCG group. Phosphoenolpyruvate carboxykinase and glycogen phosphorylase mRNA levels were decreased in HMG and HHG groups, whereas glycogen synthase-2 mRNA level was increased in HMG group compared with those in HCG. The abundance of Glut2 mRNA in HMG and HHG groups and Glut4 mRNA in HMG group was higher than that in HCG group. DHEA treatment increased serum leptin content in HMG and HHG groups compared with that in HCG group. Serum insulin content and insulin receptor mRNA level in HMG group and insulin receptor substrate-2 mRNA level in HMG and HHG group were increased compared with those in HCG group. Furthermore, Pi3k mRNA level in HMG and Akt mRNA level in HMG and HHG groups were significantly increased than those in HCG group. These data showed that DHEA treatment could enhance glycogen storage and accelerate glucose catabolism in rats fed a high-fat diet, and this effect may be associated with the activation of PI3K/Akt-PFK-2 signaling pathway. PMID:27410429

  9. Architecture of Amylose Supramolecules in Form of Inclusion Complexes by Phosphorylase-Catalyzed Enzymatic Polymerization

    PubMed Central

    Kadokawa, Jun-ichi

    2013-01-01

    This paper reviews the architecture of amylose supramolecules in form of inclusion complexes with synthetic polymers by phosphorylase-catalyzed enzymatic polymerization. Amylose is known to be synthesized by enzymatic polymerization using α-d-glucose 1-phosphate as a monomer, by phosphorylase catalysis. When the phosphorylase-catalyzed enzymatic polymerization was conducted in the presence of various hydrophobic polymers, such as polyethers, polyesters, poly(ester-ether), and polycarbonates as a guest polymer, such inclusion supramolecules were formed by the hydrophobic interaction in the progress of polymerization. Because the representation of propagation in the polymerization is similar to the way that a vine of a plant grows, twining around a rod, this polymerization method for the formation of amylose-polymer inclusion complexes was proposed to be named “vine-twining polymerization”. To yield an inclusion complex from a strongly hydrophobic polyester, the parallel enzymatic polymerization system was extensively developed. The author found that amylose selectively included one side of the guest polymer from a mixture of two resemblant guest polymers, as well as a specific range in molecular weights of the guest polymers poly(tetrahydrofuran) (PTHF) in the vine-twining polymerization. Selective inclusion behavior of amylose toward stereoisomers of chiral polyesters, poly(lactide)s, also appeared in the vine-twining polymerization. PMID:24970172

  10. 1, 4-alpha-Glucan phosphorylase from Klebsiella pneumoniae purification, subunit structure and amino acid composition.

    PubMed

    Linder, D; Kurz, G; Bender, H; Wallenfels, K

    1976-11-01

    1. A 1,4-alpha-glucan phosphorylase from Klebsiella pneumoniae has been purified about 80-fold with an over-all yield greater than 35%. The purified enzyme has been shown to be homogeneous by gel electrophoresis at different pH-values, by isoelectric focusing, by dodecylsulfate electrophoresis and by ultracentrifugation. 2. The molecular weight of the native enzyme has been determined to be 180 000 by ultra-centrifugation studies, in good agreement with the value of 189 000 estimated by gel permeation chromatography. 3. The enzyme dissociates in the presence of 0.1% dodecylsulfate or 5 M guanidine hydrochloride into polypeptide chains. The molecular weight of these polypeptide chains has been found to be 88 000 by dodecylsulfate polyacrylamide gel electrophoresis and 99 000 by sedimentation equilibrium studies, indicating that the native enzyme is composed of two polypeptide chains. 4. The enzyme contains pyridoxalphosphate with a stoichiometry of two moles per 180 000 g protein, confirming that the 1,4-alpha-glucan phosphorylase from Klebsiella pneumoniae is a dimeric enzyme. 5. The amino acid composition of the enzyme has been determined, and its correspondence to that of 1,4-alpha-glucan phosphorylases from other sources is discussed. 6. The pI of the enzyme has been shown to be 5.3 and its pH-optimum to be about pH 5.9. The enzyme is stable in the range from pH 5.9 to 10.5.

  11. Genetics Home Reference: glycogen storage disease type IX

    MedlinePlus

    ... Additional Information & Resources MedlinePlus (3 links) Health Topic: Carbohydrate Metabolism Disorders Health Topic: Liver Diseases Health Topic: ... kinase deficiency Merck Manual Consumer Version: Disorders of Carbohydrate Metabolism My46 Trait Profile Orphanet: Glycogen storage disease ...

  12. Comparative Genomic and Phylogenetic Analyses of Gammaproteobacterial glg Genes Traced the Origin of the Escherichia coli Glycogen glgBXCAP Operon to the Last Common Ancestor of the Sister Orders Enterobacteriales and Pasteurellales

    PubMed Central

    Almagro, Goizeder; Viale, Alejandro M.; Montero, Manuel; Rahimpour, Mehdi; Muñoz, Francisco José; Baroja-Fernández, Edurne; Bahaji, Abdellatif; Zúñiga, Manuel; González-Candelas, Fernando; Pozueta-Romero, Javier

    2015-01-01

    Production of branched α-glucan, glycogen-like polymers is widely spread in the Bacteria domain. The glycogen pathway of synthesis and degradation has been fairly well characterized in the model enterobacterial species Escherichia coli (order Enterobacteriales, class Gammaproteobacteria), in which the cognate genes (branching enzyme glgB, debranching enzyme glgX, ADP-glucose pyrophosphorylase glgC, glycogen synthase glgA, and glycogen phosphorylase glgP) are clustered in a glgBXCAP operon arrangement. However, the evolutionary origin of this particular arrangement and of its constituent genes is unknown. Here, by using 265 complete gammaproteobacterial genomes we have carried out a comparative analysis of the presence, copy number and arrangement of glg genes in all lineages of the Gammaproteobacteria. These analyses revealed large variations in glg gene presence, copy number and arrangements among different gammaproteobacterial lineages. However, the glgBXCAP arrangement was remarkably conserved in all glg-possessing species of the orders Enterobacteriales and Pasteurellales (the E/P group). Subsequent phylogenetic analyses of glg genes present in the Gammaproteobacteria and in other main bacterial groups indicated that glg genes have undergone a complex evolutionary history in which horizontal gene transfer may have played an important role. These analyses also revealed that the E/P glgBXCAP genes (a) share a common evolutionary origin, (b) were vertically transmitted within the E/P group, and (c) are closely related to glg genes of some phylogenetically distant betaproteobacterial species. The overall data allowed tracing the origin of the E. coli glgBXCAP operon to the last common ancestor of the E/P group, and also to uncover a likely glgBXCAP transfer event from the E/P group to particular lineages of the Betaproteobacteria. PMID:25607991

  13. MiR-19a regulates PTEN expression to mediate glycogen synthesis in hepatocytes

    PubMed Central

    Dou, Lin; Meng, Xiangyu; Sui, Xiaofang; Wang, Shuyue; Shen, Tao; Huang, Xiuqing; Guo, Jun; Fang, Weiwei; Man, Yong; Xi, Jianzhong; Li, Jian

    2015-01-01

    MiR-19a, a member of mir-17-92 microRNA clusters, has been demonstrated to promote cell proliferation and angiogenesis via regulating the PI3K/AKT pathway, the major insulin signaling pathway. However, whether miR-19a plays an important role in glycogen synthesis in hepatocytes remains unknown. Here, we define the impact of miR-19a on glycogen synthesis and IL-6-induced reduced glycogenesis in hepatocytes and its underlying mechanisms. Our studies indicate that miR-19a was down-regulated in the livers of db/db mice and mice injected with IL-6, as well as mouse NCTC 1469 hepatocytes and HEP 1–6 hepatocytes treated by IL-6. We found that over-expression of miR-19a in NCTC 1469 cells and HEP 1–6 cells led to increased activation of the AKT/GSK pathway and synthesis of glycogen, whereas down-regulation of miR-19a impaired AKT/GSK phosphorylation and glycogenesis. Over-expression of miR-19a ameliorated IL-6-induced reduced glycogen synthesis in hepatocytes. Moreover, we identified PTEN as the target of miR-19a by a luciferase assay. Down-regulation of PTEN rescued the effects of miR-19a suppression on the activation of the AKT/GSK pathway and improved glycogenesis in NTC 1469 cells. These findings show for the first time that miR-19a might activate the AKT/GSK pathway and glycogenesis via down-regulation of PTEN expression. PMID:26111969

  14. Structure and solution properties of enzymatically synthesized glycogen.

    PubMed

    Kajiura, Hideki; Takata, Hiroki; Kuriki, Takashi; Kitamura, Shinichi

    2010-04-19

    Recently, a new enzymatic process for glycogen production was developed. In this process, short-chain amylose is used as a substrate for branching enzymes (BE, EC 2.4.1.18). The molecular weight of the enzymatically synthesized glycogen (ESG) depends on the size and concentration of the substrate. Structural and physicochemical properties of ESG were compared to those of natural source glycogen (NSG). The average chain length, interior chain length, and exterior chain length of ESG were 8.2-11.6, 2.0-3.3, and 4.2-7.6, respectively. These values were within the range of variation of NSG. The appearances of both ESG and NSG in solution were opalescent (milky white and slightly bluish). Furthermore, transmission electron microscopy and atomic force microscopy showed that ESG molecules formed spherical particles, and that there were no differences between ESG and NSG. Viscometric analyses also showed the spherical nature of both glycogens. When ESG and NSG were treated with pullulanase, a glucan-hydrolyzing enzyme known to degrade glycogen only on its surface portion, both glycogens were similarly degraded. These analyses revealed that ESG shares similar molecular shapes and surface properties with NSG.

  15. Glycogen storage in fetuses of trained pregnant rats.

    PubMed

    Houghton, P E; Mottola, M F; Mezzapelli, J; Vandermolen, R; Christopher, P D

    1997-08-01

    The purpose was to determine if running 30 m/min on a 10 degrees incline, 60 min/day for 5 days/ week altered fetal glycogen storage in prepregnancy trained rats. Animals that exercised for 3 weeks prior to pregnancy either continued the same exercise program until Day 19 of gestation (pregnant running group [PR]), or ceased exercising at conception (pregnant controls [PC]). A separate set of animals did not exercise either before or during pregnancy (pregnant nonrunning control group [PNRC]). On Day 20 of gestation, fetal organs and placenta were weighted and analyzed for glycogen concentration. Glycogen concentrations were not different in either fetal liver, heart, or placenta of PR rats compared to PNRC animals. However, fetal liver glycogen concentration was significantly lower in the fetal heart and liver of PC animals compared to glycogen measured in both PNRC and PR animals (p < .05). These results suggest that exercise of this intensity does not compromise fetal glycogen storage in trained pregnant rats. However, chronic prepregnancy exercise and then abrupt cessation of exercise at conception may compromise fetal growth and development.

  16. Hyperglycaemia induces metabolic dysfunction and glycogen accumulation in pancreatic β-cells

    PubMed Central

    Brereton, Melissa F.; Rohm, Maria; Shimomura, Kenju; Holland, Christian; Tornovsky-Babeay, Sharona; Dadon, Daniela; Iberl, Michaela; Chibalina, Margarita V.; Lee, Sheena; Glaser, Benjamin; Dor, Yuval; Rorsman, Patrik; Clark, Anne; Ashcroft, Frances M.

    2016-01-01

    Insulin secretion from pancreatic β-cells is impaired in all forms of diabetes. The resultant hyperglycaemia has deleterious effects on many tissues, including β-cells. Here we show that chronic hyperglycaemia impairs glucose metabolism and alters expression of metabolic genes in pancreatic islets. In a mouse model of human neonatal diabetes, hyperglycaemia results in marked glycogen accumulation, and increased apoptosis in β-cells. Sulphonylurea therapy rapidly normalizes blood glucose levels, dissipates glycogen stores, increases autophagy and restores β-cell metabolism. Insulin therapy has the same effect but with slower kinetics. Similar changes are observed in mice expressing an activating glucokinase mutation, in in vitro models of hyperglycaemia, and in islets from type-2 diabetic patients. Altered β-cell metabolism may underlie both the progressive impairment of insulin secretion and reduced β-cell mass in diabetes. PMID:27882918

  17. Differences in glycogen, lipids, and enzymes in livers from rats flown on Cosmos 2044

    NASA Technical Reports Server (NTRS)

    Merrill, Alfred H., Jr.; Wang, Elaine; Laroque, Regina; Mullins, Richard E.; Morgan, Edward T.; Hargrove, James L.; Bonkovsky, Herbert L.; Popova, Irina A.

    1992-01-01

    Livers from rats flown aboard Cosmos 2044 were analyzed for protein, carbohydrate (glycogen), and lipids as well as the activities of a number of key enzymes involved in metabolism of these compounds and xenobiotics. The major differences between the flight group and the synchronous control were elevations in microsomal protein, liver glycogen content, tyrosine aminotransferase, and tryptophan oxygenase and reductions in sphingolipids and the rate-limiting enzyme of heme biosynthesis delta-aminolevulinic acid synthase. These results provide further evidence that spaceflight has pronounced and diverse effects on liver function; however, some of the results with samples from Cosmos 2044 differed notably from those from previous spaceflights. This may be due to conditions of spaceflight and/or the postflight recovery period for Cosmos 2044.

  18. Increasing free-energy (ATP) conservation in maltose-grown Saccharomyces cerevisiae by expression of a heterologous maltose phosphorylase.

    PubMed

    de Kok, Stefan; Yilmaz, Duygu; Suir, Erwin; Pronk, Jack T; Daran, Jean-Marc; van Maris, Antonius J A

    2011-09-01

    Increasing free-energy conservation from the conversion of substrate into product is crucial for further development of many biotechnological processes. In theory, replacing the hydrolysis of disaccharides by a phosphorolytic cleavage reaction provides an opportunity to increase the ATP yield on the disaccharide. To test this concept, we first deleted the native maltose metabolism genes in Saccharomyces cerevisiae. The knockout strain showed no maltose-transport activity and a very low residual maltase activity (0.03 μmol mg protein(-1)min(-1)). Expression of a maltose phosphorylase gene from Lactobacillus sanfranciscensis and the MAL11 maltose-transporter gene resulted in relatively slow growth (μ(aerobic) 0.09 ± 0.03 h(-1)). Co-expression of Lactococcus lactis β-phosphoglucomutase accelerated maltose utilization via this route (μ(aerobic) 0.21 ± 0.01 h(-1), μ(anaerobic) 0.10 ± 0.00 h(-1)). Replacing maltose hydrolysis with phosphorolysis increased the anaerobic biomass yield on maltose in anaerobic maltose-limited chemostat cultures by 26%, thus demonstrating the potential of phosphorolysis to improve the free-energy conservation of disaccharide metabolism in industrial microorganisms.

  19. Modulation of glycogen and breast meat processing ability by nutrition in chickens: effect of crude protein level in 2 chicken genotypes.

    PubMed

    Jlali, M; Gigaud, V; Métayer-Coustard, S; Sellier, N; Tesseraud, S; Le Bihan-Duval, E; Berri, C

    2012-02-01

    The aim of the study was to evaluate the impact of 2 isoenergetic growing diets with different CP (17 vs. 23%) on the performance and breast meat quality of 2 lines of chicken divergently selected for abdominal fatness [i.e., fat and lean (LL) lines]. Growth performance, breast and abdominal fat yields, breast meat quality parameters (pH, color, drip loss), and muscle glycogen storage at death were measured. Increased dietary CP resulted in increased BW, increased breast meat yield, and reduced abdominal fatness at slaughter regardless of genotype (P < 0.001). By contrast, dietary CP affected glycogen storage and the related meat quality parameters only in the LL chickens. Giving LL chickens the low-CP diet led to reduced concentration of muscle glycogen (P < 0.01), and as a result, breast meat with a higher (P < 0.001) ultimate pH, decreased (P < 0.001) lightness, and reduced (P < 0.001) drip loss during storage. The decreased muscle glycogen content observed in LL receiving the low-CP diet compared with the high-CP diet occurred concomitantly with greater phosphorylation amount for the α-catalytic subunit of adenosine monophosphate-activated protein kinase and glycogen synthase. This was consistent with the reduced muscle glycogen content observed in LL fed the low-CP diet because adenosine monophosphate-activated protein kinase inhibits glycogen synthesis through its action on glycogen synthase. Our results demonstrated that nutrition is an effective means of modulating breast meat properties in the chicken. The results also highlighted the need to take into account interaction with the genetic background of the animal to select nutritional strategies to improve meat quality traits in poultry.

  20. Inhibition of Glycogen Synthase Kinase-3ß Enhances Cognitive Recovery after Stroke: The Role of TAK1

    ERIC Educational Resources Information Center

    Venna, Venugopal Reddy; Benashski, Sharon E.; Chauhan, Anjali; McCullough, Louise D.

    2015-01-01

    Memory deficits are common among stroke survivors. Identifying neuroprotective agents that can prevent memory impairment or improve memory recovery is a vital area of research. Glycogen synthase kinase-3ß (GSK-3ß) is involved in several essential intracellular signaling pathways. Unlike many other kinases, GSK-3ß is active only when…

  1. The role of glycogen synthase kinase-3beta in schizophrenia.

    PubMed

    Koros, Eliza; Dorner-Ciossek, Cornelia

    2007-09-01

    Glycogen synthase kinase (GSK)-3beta is recognized as a ubiquitous multifunctional enzyme involved in the modulation of many aspects of neuronal function. Inhibitory control of GSK-3beta has been identified to be crucial for the phosphoinositide 3'-kinase (PI3K)-protein kinase B (Akt)-mediated cell survival. Several lines of evidence converge in implicating abnormal GSK-3beta activity in the pathogenesis of schizophrenia. Preclinical evidence showing that both typical and atypical antipsychotics can indirectly inhibit the activity of GSK-3beta, has pointed to GSK-3beta as a possible therapeutic target for schizophrenia. It is well known that GSK-3beta can be indirectly inhibited via regulation of several intracellular signaling cascades, including the canonical Wnt, Reelin and tyrosine kinase receptor (Trk)-PI3K-Akt. Recently, direct inhibition of GSK-3beta has emerged as a possible option in the pharmacotherapy of several neuropsychiatric disorders. There is, however, a number of issues that need to be considered regarding therapeutic utility of GSK-3beta inhibitors. This article reviews the evidence supporting the possible role of aberrant GSK-3beta in the pathogenesis of schizophrenia and thus suggesting GSK-3beta to be a potential therapeutic target for this disorder.

  2. Mice heterozygous for germ-line mutations in methylthioadenosine phosphorylase (MTAP) die prematurely of T-cell lymphoma.

    PubMed

    Kadariya, Yuwaraj; Yin, Bu; Tang, Baiqing; Shinton, Susan A; Quinlivan, Eoin P; Hua, Xiang; Klein-Szanto, Andres; Al-Saleem, Tahseen I; Bassing, Craig H; Hardy, Richard R; Kruger, Warren D

    2009-07-15

    Large homozygous deletions of 9p21 that inactivate CDKN2A, ARF, and MTAP are common in a wide variety of human cancers. The role for CDKN2A and ARF in tumorigenesis is well established, but whether MTAP loss directly affects tumorigenesis is unclear. MTAP encodes the enzyme methylthioadenosine phosphorylase, a key enzyme in the methionine salvage pathway. To determine if loss of MTAP plays a functional role in tumorigenesis, we have created an MTAP-knockout mouse. Mice homozygous for a MTAP null allele (Mtap(lacZ)) have an embryonic lethal phenotype dying around day 8 postconception. Mtap/Mtap(lacZ) heterozygotes are born at Mendelian frequencies and appear indistinguishable from wild-type mice during the first year of life, but they tend to die prematurely with a median survival of 585 days. Autopsies on these animals reveal that they have greatly enlarged spleens, altered thymic histology, and lymphocytic infiltration of their livers, consistent with lymphoma. Immunohistochemical staining and fluorescence-activated cell sorting analysis indicate that these lymphomas are primarily T-cell in origin. Lymphoma-infiltrated tissues tend to have reduced levels of Mtap mRNA and MTAP protein in addition to unaltered levels of methyldeoxycytidine. These studies show that Mtap is a tumor suppressor gene independent of CDKN2A and ARF.

  3. Crystallization and preliminary X-ray diffraction analysis of Salmonella typhimurium uridine phosphorylase complexed with 5-fluorouracil

    PubMed Central

    Lashkov, A. A.; Gabdoulkhakov, A. G.; Shtil, A. A.; Mikhailov, A. M.

    2009-01-01

    Uridine phosphorylase (UPh; EC 2.4.2.3) catalyzes the phosphorolytic cleavage of the N-glycosidic bond of uridine to form ribose 1-phosphate and uracil. This enzyme also activates pyrimidine-containing drugs, including 5-fluorouracil (5-FU). In order to better understand the mechanism of the enzyme–drug interaction, the complex of Salmonella typhimurium UPh with 5-FU was cocrystallized using the hanging-drop vapour-diffusion method at 294 K. X-ray diffraction data were collected to 2.2 Å resolution. Analysis of these data revealed that the crystal belonged to space group C2, with unit-cell parameters a = 158.26, b = 93.04, c = 149.87 Å, α = γ = 90, β = 90.65°. The solvent content was 45.85% assuming the presence of six hexameric molecules of the complex in the unit cell. PMID:19478441

  4. Humanized ADEPT Comprised of an Engineered Human Purine Nucleoside Phosphorylase and a Tumor Targeting Peptide for Treatment of Cancer

    PubMed Central

    Afshar, Sepideh; Asai, Tsuneaki; Morrison, Sherie L.

    2009-01-01

    Immunogenicity caused by the use of non-human enzymes in Antibody Directed Enzyme Prodrug Therapy (ADEPT) has limited its clinical application. To overcome this problem, we have developed a mutant human purine nucleoside phosphorylase (PNP), which unlike the wild-type enzyme, accepts (deoxy)adenosine-based prodrugs as substrates. Amongst the different mutants of human PNP tested, a double mutant with amino acid substitutions E201Q:N243D (hDM) is most efficient in cleaving (deoxy)adenosine-based prodrugs. While hDM is capable of utilizing multiple prodrugs as substrates, it is most effective at cleaving 2-fluoro-2′-deoxyadenosine to a cytotoxic drug. To target hDM to the tumor site, the enzyme was fused to an Anti-HER2/neu Peptide mimetic (AHNP). Treatment of HER2/neu expressing tumor cells with hDM-AHNP results in cellular localization of enzyme activity. As a consequence, harmless prodrug is converted to a cytotoxic drug in the vicinity of the tumor cells, resulting in tumor cell apoptosis. Unlike the non-human enzymes, the hDM should have minimal immunogenicity when used in ADEPT thus providing a novel promising therapeutic agent for the treatment of tumors. PMID:19139128

  5. Glycogen synthesis from lactate in skeletal muscle of the lizard Dipsosaurus dorsalis.

    PubMed

    Gleeson, T T

    1985-01-01

    The capacity of skeletal muscle to synthesize glycogen from lactate was tested in the iliofibularis muscle of the desert iguana, Dipsosaurus dorsalis. Like other reptiles, Dipsosaurus accumulates significant lactic acid concentrations following vigorous exercise. After 5 min of progressively faster treadmill running at 35 degrees C (final speed = 2.2 km/h), blood lactate concentration increased over 14 mM, which decreased 11 mM after 2 h of recovery. Blood glucose concentration remained unchanged throughout at 8.6 +/- 0.46 mM. The role that muscle gluconeogenesis might play in the removal of post-exercise lactate was evaluated. Animals were run to exhaustion at 1.5 km/h on a treadmill thermostatted at 35 degrees C. Animals (n = 43) ran 6.9 +/- 0.75 min prior to exhaustion. Animals were sacrificed and iliofibularis muscles of both hindlimbs removed and stimulated at 2 Hz for 5 min, reducing twitch tension to 6% of prestimulus tension. Fatigued muscles were then split into red and white fiber bundles and incubated 2 h or 5 h at 35 degrees C in Ringer solution or in Ringer plus 20 mM lactate. In muscles tested in August, red fiber bundles incubated in lactate demonstrated a rate of glycogen synthesis of approximately 1 mg/(g muscle . h). In muscles tested in December, red fiber bundles synthesized glycogen at a reduced rate that was not statistically different than in fiber bundles incubated in Ringer solution without lactate. Glycogen synthesis from lactate was not evident in white fiber bundles in either August or December. The period of peak gluconeogenic capacity coincides with the field active season of Dipsosaurus.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Late form of Pompe disease with glycogen storage in peripheral nerves axons.

    PubMed

    Fidziańska, Anna; Ługowska, Agnieszka; Tylki-Szymańska, Anna

    2011-02-15

    Pompe disease is caused by the deficiency of acid α-glucosidase (GAA), which degrades glycogen into glucose. Its manifestation is characterized by a broad and continuous spectrum of clinical severity ranging from severe infantile to relatively benign adult form. We describe a 12-year-old girl diagnosed at a presymptomatic stage of late form Pompe disease due to fortuitous detection of an elevated level of serum creatine kinase (CK) at the age of 4. Biopsies were taken from the quadriceps muscle and studied with histological and histochemical techniques, as well as in electron microscope. Sporadic muscle cells showed the accumulation of lysosomal glycogen, suggesting Pompe disease. Interestingly, we found lysosomal bound glycogen, located in the axons of intramuscular nerves. The diagnosis was confirmed by deficient GAA activity in leukocytes. Mutation analysis revealed changes IVS1-13T>G and p.C103G in the GAA gene. The patient was able to obtain enzyme replacement therapy in the early asymptomatic stage of the disease.

  7. Hepatic mitochondrial dysfunction is a feature of Glycogen Storage Disease Type Ia (GSDIa).

    PubMed

    Farah, Benjamin L; Sinha, Rohit A; Wu, Yajun; Singh, Brijesh K; Lim, Andrea; Hirayama, Masahiro; Landau, Dustin J; Bay, Boon Huat; Koeberl, Dwight D; Yen, Paul M

    2017-03-20

    Glycogen storage disease type Ia (GSDIa, von Gierke disease) is the most common glycogen storage disorder. It is caused by the deficiency of glucose-6-phosphatase, an enzyme which catalyses the final step of gluconeogenesis and glycogenolysis. Clinically, GSDIa is characterized by fasting hypoglycaemia and hepatic glycogen and triglyceride overaccumulation. The latter leads to steatohepatitis, cirrhosis, and the formation of hepatic adenomas and carcinomas. Currently, little is known about the function of various organelles and their impact on metabolism in GSDIa. Accordingly, we investigated mitochondrial function in cell culture and mouse models of GSDIa. We found impairments in oxidative phosphorylation and changes in TCA cycle metabolites, as well as decreased mitochondrial membrane potential and deranged mitochondrial ultra-structure in these model systems. Mitochondrial content also was decreased, likely secondary to decreased mitochondrial biogenesis. These deleterious effects culminated in the activation of the mitochondrial apoptosis pathway. Taken together, our results demonstrate a role for mitochondrial dysfunction in the pathogenesis of GSDIa, and identify a new potential target for the treatment of this disease. They also provide new insight into the role of carbohydrate overload on mitochondrial function in other hepatic diseases, such as non-alcoholic fatty liver disease.

  8. Hepatic mitochondrial dysfunction is a feature of Glycogen Storage Disease Type Ia (GSDIa)

    PubMed Central

    Farah, Benjamin L.; Sinha, Rohit A.; Wu, Yajun; Singh, Brijesh K.; Lim, Andrea; Hirayama, Masahiro; Landau, Dustin J.; Bay, Boon Huat; Koeberl, Dwight D.; Yen, Paul M.

    2017-01-01

    Glycogen storage disease type Ia (GSDIa, von Gierke disease) is the most common glycogen storage disorder. It is caused by the deficiency of glucose-6-phosphatase, an enzyme which catalyses the final step of gluconeogenesis and glycogenolysis. Clinically, GSDIa is characterized by fasting hypoglycaemia and hepatic glycogen and triglyceride overaccumulation. The latter leads to steatohepatitis, cirrhosis, and the formation of hepatic adenomas and carcinomas. Currently, little is known about the function of various organelles and their impact on metabolism in GSDIa. Accordingly, we investigated mitochondrial function in cell culture and mouse models of GSDIa. We found impairments in oxidative phosphorylation and changes in TCA cycle metabolites, as well as decreased mitochondrial membrane potential and deranged mitochondrial ultra-structure in these model systems. Mitochondrial content also was decreased, likely secondary to decreased mitochondrial biogenesis. These deleterious effects culminated in the activation of the mitochondrial apoptosis pathway. Taken together, our results demonstrate a role for mitochondrial dysfunction in the pathogenesis of GSDIa, and identify a new potential target for the treatment of this disease. They also provide new insight into the role of carbohydrate overload on mitochondrial function in other hepatic diseases, such as non-alcoholic fatty liver disease. PMID:28317891

  9. Neuromuscular responses to mild-muscle damaging eccentric exercise in a low glycogen state.

    PubMed

    Gavin, James P; Myers, Stephen D; Willems, Mark E T

    2015-02-01

    The aim of this study was to examine the effect of low muscle glycogen on the neuromuscular responses to maximal eccentric contractions. Fourteen healthy men (22 ± 3 years) performed single-leg cycling (20 min at ~75% maximal oxygen uptake (V̇O2 max); eight 90 s sprints at a 1:1 work-to-rest ratio (5% decrements from 90% to 55% V̇O2 max until exhaustion) the evening before 100 eccentric (1.57 rads(-1)) with reduced (RED) and normal glycogen (NORM). Neuromuscular responses were measured during and up to 48 h after with maximal voluntary and involuntary (twitch, 20 Hz and 50 Hz) isometric contractions. During eccentric contractions, peak torque decreased (RED: -16.1 ± 2.5%; NORM: -6.2 ± 5.1%) and EMG frequency increased according to muscle length. EMG activity decreased for RED only. After eccentric contractions, maximal isometric force was reduced up to 24h for NORM (-13.5 ± 5.8%) and 48 h for RED (-7.4 ± 10.9%). Twelve hours after eccentric contractions, twitch force and the 20:50 Hz ratio were decreased for RED but not for NORM. Immediate involuntary with prolonged voluntary force loss suggests that reduced glycogen is associated with increased susceptibility to mild muscle-damaging eccentric exercise with contributions of peripheral and central mechanisms to be different during recovery.

  10. The Multiple Functions of Common Microbial Carbon Polymers, Glycogen and PHB, during Stress Responses in the Non-Diazotrophic Cyanobacterium Synechocystis sp. PCC 6803

    PubMed Central

    Damrow, Ramon; Maldener, Iris; Zilliges, Yvonne

    2016-01-01

    Classical microbial carbon polymers such as glycogen and polyhydroxybutyrate (PHB) have a crucial impact as both a sink and a reserve under macronutrient stress conditions. Most microbial species exclusively synthesize and degrade either glycogen or PHB. A few bacteria such as the phototrophic model organism Synechocystis sp. PCC 6803 surprisingly produce both physico-chemically different polymers under conditions of high C to N ratios. For the first time, the function and interrelation of both carbon polymers in non-diazotrophic cyanobacteria are analyzed in a comparative physiological study of single- and double-knockout mutants (ΔglgC; ΔphaC; ΔglgC/ΔphaC), respectively. Most of the observed phenotypes are explicitly related to the knockout of glycogen synthesis, highlighting the metabolic, energetic, and structural impact of this process whenever cells switch from an active, photosynthetic ‘protein status’ to a dormant ‘glycogen status’. The carbon flux regulation into glycogen granules is apparently crucial for both phycobilisome degradation and thylakoid layer disassembly in the presence of light. In contrast, PHB synthesis is definitely not involved in this primary acclimation response. Moreover, the very weak interrelations between the two carbon-polymer syntheses indicate that the regulation and role of PHB synthesis in Synechocystis sp. PCC 6803 is different from glycogen synthesis. PMID:27446007

  11. The Multiple Functions of Common Microbial Carbon Polymers, Glycogen and PHB, during Stress Responses in the Non-Diazotrophic Cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Damrow, Ramon; Maldener, Iris; Zilliges, Yvonne

    2016-01-01

    Classical microbial carbon polymers such as glycogen and polyhydroxybutyrate (PHB) have a crucial impact as both a sink and a reserve under macronutrient stress conditions. Most microbial species exclusively synthesize and degrade either glycogen or PHB. A few bacteria such as the phototrophic model organism Synechocystis sp. PCC 6803 surprisingly produce both physico-chemically different polymers under conditions of high C to N ratios. For the first time, the function and interrelation of both carbon polymers in non-diazotrophic cyanobacteria are analyzed in a comparative physiological study of single- and double-knockout mutants (ΔglgC; ΔphaC; ΔglgC/ΔphaC), respectively. Most of the observed phenotypes are explicitly related to the knockout of glycogen synthesis, highlighting the metabolic, energetic, and structural impact of this process whenever cells switch from an active, photosynthetic 'protein status' to a dormant 'glycogen status'. The carbon flux regulation into glycogen granules is apparently crucial for both phycobilisome degradation and thylakoid layer disassembly in the presence of light. In contrast, PHB synthesis is definitely not involved in this primary acclimation response. Moreover, the very weak interrelations between the two carbon-polymer syntheses indicate that the regulation and role of PHB synthesis in Synechocystis sp. PCC 6803 is different from glycogen synthesis.

  12. Adrenaline increases skeletal muscle glycogenolysis, pyruvate dehydrogenase activation and carbohydrate oxidation during moderate exercise in humans

    PubMed Central

    Watt, Matthew J; Howlett, Kirsten F; Febbraio, Mark A; Spriet, Lawrence L; Hargreaves, Mark

    2001-01-01

    To evaluate the role of adrenaline in regulating carbohydrate metabolism during moderate exercise, 10 moderately trained men completed two 20 min exercise bouts at 58 ± 2 % peak pulmonary oxygen uptake (V̇O2,peak). On one occasion saline was infused (CON), and on the other adrenaline was infused intravenously for 5 min prior to and throughout exercise (ADR). Glucose kinetics were measured by a primed, continuous infusion of 6,6-[2H]glucose and muscle samples were obtained prior to and at 1 and 20 min of exercise. The infusion of adrenaline elevated (P < 0.01) plasma adrenaline concentrations at rest (pre-infusion, 0.28 ± 0.09; post-infusion, 1.70 ± 0.45 nmol l−1; means ±s.e.m.) and this effect was maintained throughout exercise. Total carbohydrate oxidation increased by 18 % and this effect was due to greater skeletal muscle glycogenolysis (P < 0.05) and pyruvate dehydrogenase (PDH) activation (P < 0.05, treatment effect). Glucose rate of appearance was not different between trials, but the infusion of adrenaline decreased (P < 0.05, treatment effect) skeletal muscle glucose uptake in ADR. During exercise muscle glucose 6-phosphate (G-6-P) (P = 0.055, treatment effect) and lactate (P < 0.05) were elevated in ADR compared with CON and no changes were observed for pyruvate, creatine, phosphocreatine, ATP and the calculated free concentrations of ADP and AMP. The data demonstrate that elevated plasma adrenaline levels during moderate exercise in untrained men increase skeletal muscle glycogen breakdown and PDH activation, which results in greater carbohydrate oxidation. The greater muscle glycogenolysis appears to be due to increased glycogen phosphorylase transformation whilst the increased PDH activity cannot be readily explained. Finally, the decreased glucose uptake observed during exercise in ADR is likely to be due to the increased intracellular G-6-P and a subsequent decrease in glucose phosphorylation. PMID:11433007

  13. Molecular and metabolomic effects of voluntary running wheel activity on skeletal muscle in late middle-aged rats.

    PubMed

    Garvey, Sean M; Russ, David W; Skelding, Mary B; Dugle, Janis E; Edens, Neile K

    2015-02-01

    We examined the molecular and metabolomic effects of voluntary running wheel activity in late middle-aged male Sprague Dawley rats (16-17 months). Rats were assigned either continuous voluntary running wheel access for 8 weeks (RW+) or cage-matched without running wheel access (RW-). The 9 RW+ rats averaged 83 m/day (range: 8-163 m), yet exhibited both 84% reduced individual body weight gain (4.3 g vs. 26.3 g, P = 0.02) and 6.5% reduced individual average daily food intake (20.6 g vs. 22.0 g, P = 0.09) over the 8 weeks. Hindlimb muscles were harvested following an overnight fast. Muscle weights and myofiber cross-sectional area showed no difference between groups. Western blots of gastrocnemius muscle lysates with a panel of antibodies suggest that running wheel activity improved oxidative metabolism (53% increase in PGC1α, P = 0.03), increased autophagy (36% increase in LC3B-II/-I ratio, P = 0.03), and modulated growth signaling (26% increase in myostatin, P = 0.04). RW+ muscle also showed 43% increased glycogen phosphorylase expression (P = 0.04) and 45% increased glycogen content (P = 0.04). Metabolomic profiling of plantaris and soleus muscles indicated that even low-volume voluntary running wheel activity is associated with decreases in many long-chain fatty acids (e.g., palmitoleate, myristoleate, and eicosatrienoate) relative to RW- rats. Relative increases in acylcarnitines and acyl glycerophospholipids were also observed in RW+ plantaris. These data establish that even modest amounts of physical activity during late middle-age promote extensive metabolic remodeling of skeletal muscle.

  14. Molecular and metabolomic effects of voluntary running wheel activity on skeletal muscle in late middle-aged rats

    PubMed Central

    Garvey, Sean M; Russ, David W; Skelding, Mary B; Dugle, Janis E; Edens, Neile K

    2015-01-01

    We examined the molecular and metabolomic effects of voluntary running wheel activity in late middle-aged male Sprague Dawley rats (16–17 months). Rats were assigned either continuous voluntary running wheel access for 8 weeks (RW+) or cage-matched without running wheel access (RW−). The 9 RW+ rats averaged 83 m/day (range: 8–163 m), yet exhibited both 84% reduced individual body weight gain (4.3 g vs. 26.3 g, P = 0.02) and 6.5% reduced individual average daily food intake (20.6 g vs. 22.0 g, P = 0.09) over the 8 weeks. Hindlimb muscles were harvested following an overnight fast. Muscle weights and myofiber cross-sectional area showed no difference between groups. Western blots of gastrocnemius muscle lysates with a panel of antibodies suggest that running wheel activity improved oxidative metabolism (53% increase in PGC1α, P = 0.03), increased autophagy (36% increase in LC3B-II/-I ratio, P = 0.03), and modulated growth signaling (26% increase in myostatin, P = 0.04). RW+ muscle also showed 43% increased glycogen phosphorylase expression (P = 0.04) and 45% increased glycogen content (P = 0.04). Metabolomic profiling of plantaris and soleus muscles indicated that even low-volume voluntary running wheel activity is associated with decreases in many long-chain fatty acids (e.g., palmitoleate, myristoleate, and eicosatrienoate) relative to RW− rats. Relative increases in acylcarnitines and acyl glycerophospholipids were also observed in RW+ plantaris. These data establish that even modest amounts of physical activity during late middle-age promote extensive metabolic remodeling of skeletal muscle. PMID:25716928

  15. Synthesis of Thymoquinone derivatives and its activity analysis: In-silico approach

    NASA Astrophysics Data System (ADS)

    Ulfa, Siti Mariyah; Sholikhah, Shoimatus; Utomo, Edi Priyo

    2017-03-01

    Thymoquinone derivatives which synthesized in this research is bromoalkylquinones with alkyl chain consist of seven carbons (C7) and ten carbons (C10). The synthesis was carried out by oxidation of 2,3-dimethylhydroquinone followed by alkylation using reflux for 1.5 hours. The alkylation products were successfully characterized as 5-(7-bromoheptyl)-2,3-dimethyl-1,4-benzoquinone (C7) and 5-(10-bromodecyl)-2,3-dimethyl-1,4-benzoquinone (C10) in 31.93 and 16.89%, respectively. These compounds were fully characterized using FT-IR, 1H-NMR and 13C-NMR. Thus, the activity of C7 and C10 was analyzed by in silico approach with molecular docking using macromolecule model extracted from Protein Data Bank (PDB). Macromolecules used in this research is mitochondrial translocator protein (TSPO) as an antioxidant receptor, glycogen phosphorylase (GPA) as antidiabetic receptor and phosphatase tensin homolog (PTEN) as an anticancer agent. The result showed that C7 and C10 has a very good activity as antioxidant and antidiabetic agents with IC50 2.03 and 1.02 ppm (TSPO) and 16.98 and 14.88 ppm (GPA) compared with Thymoquinone. While the activity of C7 and C10 against PTEN gave the IC50 23.13 and 18.31 ppm showed a good candidate for an anticancer agent.

  16. Compositions and methods involving methyladenosine phosphorylase in the diagnosis and treatment of proliferative disorders

    DOEpatents

    Olopade, Olufunmilayo I.

    2007-03-20

    Disclosed are novel nucleic acid and peptide compositions comprising methylthioadenosine phosphorylase (MTAP) and methods of use for MTAP amino acid sequences and DNA segments comprising MTAP in the diagnosis of human cancers and development of MTAP-specific antibodies. Also disclosed are methods for the diagnosis and treatment of tumors and other proliferative cell disorders, and identification of tumor suppressor genes and gene products from the human 9p21-p22 chromosome region. Such methods are useful in the diagnosis of multiple tumor types such as bladder cancer, lung cancer, breast cancer, pancreatic cancer, brain tumors, lymphomas, gliomas, melanomas, and leukemias.

  17. Methylthioadenosine phosphorylase compositions and methods of use in the diagnosis and treatment of proliferative disorders

    DOEpatents

    Olopade, Olufunmilayo I.

    2005-03-22

    Disclosed are novel nucleic acid and peptide compositions comprising methythlioadenosine phosphorylase (MTAP) and methods of use for MTAP amino acid sequences and DNA segments comprising MTAP in the diagnosis of human cancers and development of MTAP-specific antibodies. Also disclosed are methods for the diagnosis and treatment of tumors and other proliferative cell disorders, and idenification tumor suppressor genes and gene products from the human 9p21-p22 chromosome region. Such methods are useful in the diagnosis of multiple tumor types such as bladder cancer, lung cancer, breast cancer, pancreatic cancer, brain tumors, lymphomas, gliomas, melanomas, and leukemias.

  18. Mitochondrial neurogastrointestinal encephalomyopathy: novel pathogenic mutations in thymidine phosphorylase gene in two Italian brothers.

    PubMed

    Libernini, Laura; Lupis, Chiara; Mastrangelo, Mario; Carrozzo, Rosalba; Santorelli, Filippo Maria; Inghilleri, Maurizio; Leuzzi, Vincenzo

    2012-08-01

    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE, MIM 603041) is an autosomal recessive multisystem disorder occurring due to mutations in a nuclear gene coding for the enzyme thymidine phosphorylase (TYMP). Clinical features of MNGIE include gastrointestinal dysmotility, cachexia, ptosis or ophthalmoparesis, peripheral neuropathy, diffuse leukoencephalopathy, and signs of mitochondrial dysfunction in tissues. We report the clinical and molecular findings in two brothers in whom novel TYMP gene mutations (c.215-13_215delinsGCGTGA; c.1159 + 2T > A) were associated with different clinical presentations and outcomes.

  19. Leaf Extract from Lithocarpus polystachyus Rehd. Promote Glycogen Synthesis in T2DM Mice

    PubMed Central

    Chen, Yingying; Vanegas, Diana; McLamore, Eric Scott; Shen, Yingbai

    2016-01-01

    The purpose of this study was to investigate the effects of leaf extract from Lithocarpus polystachyus Rehd. on type II diabetes mellitus (T2DM) and the active ingredients of this effect. In addition, this study determined, for the first time, the underlying molecular and pharmacological mechanisms of the extracts on hyperglycemia using long-term double high diet-fed and streptozotocin (STZ) induced type II diabetic mice. In the present study, leaf extract, phloridzin and trilobatin were assessed in vivo (gavage) and in vitro (non-invasive micro-test technique, NMT) in experimental T2DM mice. The biochemical parameters were measured including blood glucose and blood lipid level, liver biochemical indexes, and hepatic glycogen. The relative expression of glycometabolism-related genes was detected. The effect of leaf extracts on physiological glucose flux in liver tissue from control and T2DM mice was also investigated. Body weight of experimental T2DM mice increased significantly after the first week, but stabilized over the subsequent three weeks; body weight of all other groups did not change during the four weeks’ study. After four weeks, all treatment groups decreased blood glucose, and treatment with leaf extract had numerous positive effects: a) promoted in glucose uptake in liver, b) increased synthesis of liver glycogen, c) reduced oxidative stress, d) up-regulation of glucokinase (GK), glucose transporter 2 (GLUT2), insulin receptor (IR) and insulin receptor substrate (IRS) expression in liver, e) down-regulation of glucose-6-phosphatase (G-6-P) expression, and f) ameliorated blood lipid levels. Both treatment with trilobatin or phloridzin accelerated liver glycogen synthesis, decreased oxidative stress and increased expression of GK. IRS and phosphoenolpyruvate carboxykinase (PEPCK) were both up-regulated after treatment with trilobatin. Expression of GLUT2, PEPCK and G-6-P were also increased in liver tissue after treatment with phloridzin. Our data

  20. Transcriptional regulation of pig GYS1 gene by glycogen synthase kinase 3β (GSK3β).

    PubMed

    Wang, Yilin; Wang, Yan; Zhong, Tao; Guo, Jiazhong; Li, Li; Zhang, Hongping; Wang, Linjie

    2017-01-01

    Glycogen synthase kinase 3β (GSK3β) is a ubiquitous serine/threonine kinase and has important roles in glycogen metabolism biosynthesis. Studies have revealed that GSK3β can directly regulate the glycogen synthase activity, yet little is known about the regulation of GSK3β on GYS1 gene transcription. Here, we show that overexpression of GSK3β decreased the mRNA expression level of GYS1. Then we cloned approximately 1.5 kb of pig GYS1 gene promoter region, generated sequential deletion constructs, and evaluated their activity. A gradual increase of the promoter activity was seen with increasing length of the promoter sequence, reaching its highest activity to the sequence corresponding to nt -350 to +224, and then decreased. However, the activities of constructed promoter fragments show different responses to GSK3β co-transfection. By analyzing a series of GYS1 promoter reporter constructs, we have defined two crucial regions (-1488 to -539, -350 to -147) that are responsible for GSK3β-induced transcriptional repression. Furthermore, the ChIP results revealed that only the first and second NF-κB sites of GYS1 promoter could bind to p65, and overexpression of GSK3β induced a significant decrease in p65 binding to the second NF-κB binding site, suggesting that GSK3β may regulate expression of GYS1 gene through binding to the second rather than the first NF-κB site. These data suggest that the NF-κB plays important roles in the transcriptional activity of pig GYS1 gene regulated by GSK3β.

  1. Neural correlates of adaptive working memory training in a glycogen storage disease type-IV patient.

    PubMed

    Lee, Kristin; Ernst, Thomas; Løhaugen, Gro; Zhang, Xin; Chang, Linda

    2017-03-01

    Glycogen storage disease type-IV has varied clinical presentations and subtypes. We evaluated a 38-year-old man with memory complaints, common symptoms in adult polyglucosan body disease subtype, and investigated cognitive and functional MRI changes associated with two 25-sessions of adaptive working memory training. He showed improved trained and nontrained working memory up to 6-months after the training sessions. On functional MRI, he showed increased cortical activation 1-3 months after training, but both increased and decreased activation 6-months later. Working memory training appears to be beneficial to patients with adult polyglucosan body disease, although continued training may be required to maintain improvements.

  2. Applications of mutant yeast strains with low glycogen storage capability

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Schubert, W. W.; Stokes, B. O.

    1981-01-01

    Several strains of Hansenula polymorpha were selected for possible low glycogen storage characteristics based on a selective I2 staining procedure. The levels of storage carbohydrates in the mutant strains were found to be 44-70% of the levels in the parent strain for cultures harvested in stationary phase. Similar differences generally were not found for cells harvested in exponential phase. Yeast strains deficient in glycogen storage capability are valuable in increasing the relative protein value of microbial biomass and also may provide significant cost savings in substrate utilization in fermentative processes.

  3. Attenuation of Helicteres isora L. bark extracts on streptozotocin-induced alterations in glycogen and carbohydrate metabolism in albino rats.

    PubMed

    Kumar, G; Sharmila Banu, G; Murugesan, A G

    2009-11-01

    The present study was undertaken to assess the effect of Helicteres isora L. on four important enzymes of carbohydrate metabolism (glucokinase [GK], hexokinase [HK] phosphofructokinase [PFK] and fructose-1, 6-bisphosphatase [FBP]) along with glycogen content of insulin-dependent (skeletal muscle and liver) and insulin-independent tissues (kidneys and brain) in streptozotocin (STZ; 60 mg/kg)-induced model of diabetes for 30 days. Administration of bark extracts (100, 200 mg/kg) for 30 days led to decrease in plasma glucose levels by approximately 9.60% and 22.04% and 19.18% and 33.93% on 15th and 30th day, respectively, of the experiment. Liver and two-kidney weight expressed as percentage of body weight significantly increased in diabetics (P < 0.05) versus normal controls. Renal glycogen content increased by 10 folds while hepatic and skeletal muscle glycogen content decreased by 75% and 68% in diabetic controls versus controls. H. isora did not affect glycogen content in any tissue. The decreased activities of PFK, GK, FBP and HK in diabetic controls were 40%, 50%, 50% and 60% and bark extract of H. isora partially corrected this alteration. The efficacy of the bark extract was comparable with Tolbutamide, a well-known hypoglycemic drug.

  4. Palmitate acutely raises glycogen synthesis in rat soleus muscle by a mechanism that requires its metabolization (Randle cycle).

    PubMed

    Massao Hirabara, Sandro; de Oliveira Carvalho, Carla Roberta; Mendonça, José Roberto; Piltcher Haber, Esther; Fernandes, Luiz Claudio; Curi, Rui

    2003-04-24

    The acute effect of palmitate on glucose metabolism in rat skeletal muscle was examined. Soleus muscles from Wistar male rats were incubated in Krebs-Ringer bicarbonate buffer, for 1 h, in the absence or presence of 10 mU/ml insulin and 0, 50 or 100 microM palmitate. Palmitate increased the insulin-stimulated [(14)C]glycogen synthesis, decreased lactate production, and did not alter D-[U-(14)C]glucose decarboxylation and 2-deoxy-D-[2,6-(3)H]glucose uptake. This fatty acid decreased the conversion of pyruvate to lactate and [1-(14)C]pyruvate decarboxylation and increased (14)CO(2) produced from [2-(14)C]pyruvate. Palmitate reduced insulin-stimulated phosphorylation of insulin receptor substrate-1/2, Akt, and p44/42 mitogen-activated protein kinases. Bromopalmitate, a non-metabolizable analogue of palmitate, reduced [(14)C]glycogen synthesis. A strong correlation was found between [U-(14)C]palmitate decarboxylation and [(14)C]glycogen synthesis (r=0.99). Also, palmitate increased intracellular content of glucose 6-phosphate in the presence of insulin. These results led us to postulate that palmitate acutely potentiates insulin-stimulated glycogen synthesis by a mechanism that requires its metabolization (Randle cycle). The inhibitory effect of palmitate on insulin-stimulated protein phosphorylation might play an important role for the development of insulin resistance in conditions of chronic exposure to high levels of fatty acids.

  5. Structural Mechanism of Laforin Function in Glycogen Dephosphorylation and Lafora Disease

    PubMed Central

    Raththagala, Madushi; Brewer, M. Kathryn; Parker, Matthew W.; Sherwood, Amanda R.; Wong, Brian K.; Hsu, Simon; Bridges, Travis M.; Paasch, Bradley C.; Hellman, Lance M.; Husodo, Satrio; Meekins, David A.; Taylor, Adam O.; Turner, Benjamin D.; Auger, Kyle D.; Dukhande, Vikas V.; Chakravarthy, Srinivas; Sanz, Pascual; Woods, Virgil V.; Li, Sheng; Vander Kooi, Craig W.; Gentry, Matthew S.

    2015-01-01

    SUMMARY Glycogen is the major mammalian glucose storage cache and is critical for energy homeostasis. Glycogen synthesis in neurons must be tightly controlled, due to neuronal sensitivity to perturbations in glycogen metabolism. Lafora disease (LD) is a fatal, congenital, neurodegenerative epilepsy. Mutations in the gene encoding the glycogen phosphatase laforin result in hyperphosphorylated glycogen that forms water-insoluble inclusions called Lafora bodies (LBs). LBs induce neuronal apoptosis and are the causative agent of LD. The mechanism of glycogen dephosphorylation by laforin and dysfunction in LD is unknown. We report the crystal structure of laforin bound to phosphoglucan product, revealing its unique integrated tertiary and quaternary structure. Structure-guided mutagenesis combined with biophysical and biochemical analyses reveal the basis for normal function of laforin in glycogen metabolism. Analyses of LD patient mutations define the mechanism by which subsets of mutations disrupt laforin function. These data provide fundamental insights connecting glycogen metabolism to neurodegenerative disease. PMID:25544560

  6. A study of antioxidant activity, enzymatic inhibition and in vitro toxicity of selected traditional sudanese plants with anti-diabetic potential

    PubMed Central

    2014-01-01

    Background Diabetes mellitus is a chronic metabolic disease with life-threatening complications. Despite the enormous progress in conventional medicine and pharmaceutical industry, herbal-based medicines are still a common practice for the treatment of diabetes. This study evaluated ethanolic and aqueous extracts of selected Sudanese plants that are traditionally used to treat diabetes. Methods Extraction was carried out according to method described by Sukhdev et. al. and the extracts were tested for their glycogen phosphorylase inhibition, Brine shrimp lethality and antioxidant activity using (DPPH) radical scavenging activity and iron chelating activity. Extracts prepared from the leaves of Ambrosia maritima, fruits of Foeniculum vulgare and Ammi visnaga, exudates of Acacia Senegal, and seeds of Sesamum indicum and Nigella sativa. Results Nigella sativa ethanolic extract showed no toxicity on Brine shrimp Lethality Test, while its aqueous extract was toxic. All other extracts were highly toxic and ethanolic extracts of Foeniculum vulgare exhibited the highest toxicity. All plant extracts with exception of Acacia senegal revealed significant antioxidant activity in DPPH free radical scavenging assay. Conclusions These results highly agree with the ethnobotanical uses of these plants as antidiabetic. This study endorses further studies on plants investigated, to determine their potential for type 2 diabetes management. Moreover isolation and identification of active compounds are highly recommended. PMID:24885334

  7. Amoebicidal activity of caffeine and maslinic acid by the induction of Programmed Cell Death in Acanthamoeba.

    PubMed

    Martín-Navarro, Carmen M; López-Arencibia, Atteneri; Sifaoui, Ines; Reyes-Battle, María; Fouque, Emilie; Osuna, Antonio; Valladares, Basilio; Piñero, José E; Héchard, Yann; Maciver, Sutherland K; Lorenzo-Morales, Jacob

    2017-03-20

    Free living amoebae of the genus Acanthamoeba are the causal agents of a sight threatening ulceration of the cornea called Acanthamoeba keratitis, and the rare but usually fatal granulomatous amoebic encephalitis. Although there are many therapeutic options for the treatment of Acanthamoeba infections, they are generally lengthy and/or have limited efficacy. For the best clinical outcome, the treatments should target both the trophozoite and the cyst stages as the later are known to confer resistance to treatment. In this study we document the activity of caffeine and maslinic acid against both the trophozoite and the cyst stages of three clinical strains of Acanthamoeba These drugs were chosen because they are reported to inhibit glycogen phosphorylase which is required for encystation. Maslinic acid is also reported to be an inhibitor of extracellular proteases which may be relevant since the protease activity of Acanthamoeba is correlated with their pathogenicity. We also provide evidence or the first time that both drugs exert their anti-amoebal effects through programmed cell death.

  8. Adipose tissue glycogen accumulation is associated with obesity-linked inflammation in humans

    PubMed Central

    Ceperuelo-Mallafré, Victòria; Ejarque, Miriam; Serena, Carolina; Duran, Xavier; Montori-Grau, Marta; Rodríguez, Miguel Angel; Yanes, Oscar; Núñez-Roa, Catalina; Roche, Kelly; Puthanveetil, Prasanth; Garrido-Sánchez, Lourdes; Saez, Enrique; Tinahones, Francisco J.; Garcia-Roves, Pablo M.; Gómez-Foix, Anna Ma; Saltiel, Alan R.; Vendrell, Joan; Fernández-Veledo, Sonia

    2015-01-01

    Objective Glycogen metabolism has emerged as a mediator in the control of energy homeostasis and studies in murine models reveal that adipose tissue might contain glycogen stores. Here we investigated the physio(patho)logical role of glycogen in human adipose tissue in the context of obesity and insulin resistance. Methods We studied glucose metabolic flux of hypoxic human adipoctyes by nuclear magnetic resonance and mass spectrometry-based metabolic approaches. Glycogen synthesis and glycogen content in response to hypoxia was analyzed in human adipocytes and macrophages. To explore the metabolic effects of enforced glycogen deposition in adipocytes and macrophages, we overexpressed PTG, the only glycogen-associated regulatory subunit (PP1-GTS) reported in murine adipocytes. Adipose tissue gene expression analysis was performed on wild type and homozygous PTG KO male mice. Finally, glycogen metabolism gene expression and glycogen accumulation was analyzed in adipose tissue, mature adipocytes and resident macrophages from lean and obese subjects with different degrees of insulin resistance in 2 independent cohorts. Results We show that hypoxia modulates glucose metabolic flux in human adipocytes and macrophages and promotes glycogenesis. Enforced glycogen deposition by overexpression of PTG re-orients adipocyte secretion to a pro-inflammatory response linked to insulin resistance and monocyte/lymphocyte migration. Furthermore, glycogen accumulation is associated with inhibition of mTORC1 signaling and increased basal autophagy flux, correlating with greater leptin release in glycogen-loaded adipocytes. PTG-KO mice have reduced expression of key inflammatory genes in adipose tissue and PTG overexpression in M0 macrophages induces a pro-inflammatory and glycolytic M1 phenotype. Increased glycogen synthase expression correlates with glycogen deposition in subcutaneous adipose tissue of obese patients. Glycogen content in subcutaneous mature adipocytes is associated

  9. Mechanistic insight into the substrate specificity of 1,2-β-oligoglucan phosphorylase from Lachnoclostridium phytofermentans

    PubMed Central

    Nakajima, Masahiro; Tanaka, Nobukiyo; Furukawa, Nayuta; Nihira, Takanori; Kodutsumi, Yuki; Takahashi, Yuta; Sugimoto, Naohisa; Miyanaga, Akimasa; Fushinobu, Shinya; Taguchi, Hayao; Nakai, Hiroyuki

    2017-01-01

    Glycoside phosphorylases catalyze the phosphorolysis of oligosaccharides into sugar phosphates. Recently, we found a novel phosphorylase acting on β-1,2-glucooligosaccharides with degrees of polymerization of 3 or more (1,2-β-oligoglucan phosphorylase, SOGP) in glycoside hydrolase family (GH) 94. Here, we characterized SOGP from Lachnoclostridium phytofermentans (LpSOGP) and determined its crystal structure. LpSOGP is a monomeric enzyme that contains a unique β-sandwich domain (Ndom1) at its N-terminus. Unlike the dimeric GH94 enzymes possessing catalytic pockets at their dimer interface, LpSOGP has a catalytic pocket between Ndom1 and the catalytic domain. In the complex structure of LpSOGP with sophorose, sophorose binds at subsites +1 to +2. Notably, the Glc moiety at subsite +1 is flipped compared with the corresponding ligands in other GH94 enzymes. This inversion suggests the great distortion of the glycosidic bond between subsites −1 and +1, which is likely unfavorable for substrate binding. Compensation for this disadvantage at subsite +2 can be accounted for by the small distortion of the glycosidic bond in the sophorose molecule. Therefore, the binding mode at subsites +1 and +2 defines the substrate specificity of LpSOGP, which provides mechanistic insights into the substrate specificity of a phosphorylase acting on β-1,2-glucooligosaccharides. PMID:28198470

  10. Distortional binding of transition state analogs to human purine nucleoside phosphorylase probed by magic angle spinning solid-state NMR

    PubMed Central

    Vetticatt, Mathew J.; Itin, Boris; Evans, Gary B.; Schramm, Vern L.

    2013-01-01

    Transition state analogs mimic the geometry and electronics of the transition state of enzymatic reactions. These molecules bind to the active site of the enzyme much tighter than substrate and are powerful noncovalent inhibitors. Immucillin-H (ImmH) and 4′-deaza-1′-aza-2′-deoxy-9-methylene Immucillin-H (DADMe-ImmH) are picomolar inhibitors of human purine nucleoside phosphorylase (hPNP). Although both molecules are electronically similar to the oxocarbenium-like dissociative hPNP transition state, DADMe-ImmH is more potent than ImmH. DADMe-ImmH captures more of the transition state binding energy by virtue of being a closer geometric match to the hPNP transition state than ImmH. A consequence of these similarities is that the active site of hPNP exerts greater distortional forces on ImmH than on DADMe-ImmH to “achieve” the hPNP transition state geometry. By using magic angle spinning solid-state NMR to investigate stable isotope-labeled ImmH and DADMe-ImmH, we have explored the difference in distortional binding of these two inhibitors to hPNP. High-precision determinations of internuclear distances from NMR recoupling techniques, rotational echo double resonance, and rotational resonance, have provided unprecedented atomistic insight into the geometric changes that occur upon binding of transition state analogs. We conclude that hPNP stabilizes conformations of these chemically distinct analogs having distances between the cation and leaving groups resembling those of the known transition state. PMID:24043827

  11. Interaction of Bacillus subtilis Polynucleotide Phosphorylase and RNase Y: STRUCTURAL MAPPING AND EFFECT ON mRNA TURNOVER.

    PubMed

    Salvo, Elizabeth; Alabi, Shanique; Liu, Bo; Schlessinger, Avner; Bechhofer, David H

    2016-03-25

    Polynucleotide phosphorylase (PNPase), a 3'-to-5' phosphorolytic exoribonuclease, is thought to be the primary enzyme responsible for turnover ofBacillus subtilismRNA. The role of PNPase inB. subtilismRNA decay has been analyzed previously by comparison of mRNA profiles in a wild-type strainversusa strain that is deleted forpnpA, the gene encoding PNPase. Recent studies have provided evidence for a degradosome-like complex inB. subtilisthat is built around the major decay-initiating endonuclease, RNase Y, and there is ample evidence for a strong interaction between PNPase and RNase Y. The role of the PNPase-RNase Y interaction in the exonucleolytic function of PNPase needs to be clarified. We sought to construct aB. subtilisstrain containing a catalytically active PNPase that could not interact with RNase Y. Mapping studies of the PNPase-RNase Y interaction were guided by a homology model ofB. subtilisPNPase based on the known structure of theEscherichia coliPNPase in complex with an RNase E peptide. Mutations inB. subtilisresidues predicted to be involved in RNase Y binding showed a loss of PNPase-RNase Y interaction. Two mRNAs whose decay is dependent on RNase Y and PNPase were examined in strains containing full-length PNPase that was either catalytically active but unable to interact with RNase Y, or catalytically inactive but able to interact with RNase Y. At least for these two mRNAs, disruption of the PNPase-RNase Y interaction did not appear to affect mRNA turnover.

  12. Extracellular cystatin SN and cathepsin B prevent cellular senescence by inhibiting abnormal glycogen accumulation.

    PubMed

    Oh, Sang-Seok; Park, Soojong; Lee, Ki-Won; Madhi, Hamadi; Park, Sae Gwang; Lee, Hee Gu; Cho, Yong-Yeon; Yoo, Jiyun; Dong Kim, Kwang

    2017-04-06

    Cystatin SN (CST1), a known inhibitor of cathepsin B (CatB), has important roles in tumor development. Paradoxically, CatB is a member of the cysteine cathepsin family that acts in cellular processes, such as tumor development and invasion. However, the relationship between CST1 and CatB, and their roles in tumor development are poorly understood. In this study, we observed that the knockdown of CST1 induced the activity of senescence-associated β-galactosidase, a marker of cellular senescence, and expression of senescence-associated secretory phenotype genes, including interleukin-6 and chemokine (C-C motif) ligand 20, in MDA-MB-231 and SW480 cancer cells. Furthermore, CST1 knockdown decreased extracellular CatB activity, and direct CatB inhibition, using specific inhibitors or shCatB, induced cellular senescence. Reconstitution of CST1 restored CatB activity and inhibited cellular senescence in CST1 knockdown cells. CST1 knockdown or CatB inhibition increased glycogen synthase (GS) kinase 3β phosphorylation at serine 9, resulting in the activation of GS and the induction of glycogen accumulation associated with cellular senescence. Importantly, CST1 knockdown suppressed cancer cell proliferation, soft agar colony growth and tumor growth in a xenograft model. These results indicate that CST1-mediated extracellular CatB activity enhances tumor development by preventing cellular senescence. Our findings suggest that antagonists of CST1 or inhibitors of CatB are potential anticancer agents.

  13. Impaired clearance of accumulated lysosomal glycogen in advanced Pompe disease despite high-level vector-mediated transgene expression

    PubMed Central

    Sun, Baodong; Zhang, Haoyue; Bird, Andrew; Li, Songtao; Young, Sarah P.; Koeberl, Dwight D.

    2013-01-01

    Background Infantile-onset glycogen storage disease type II (GSD-II; Pompe disease; MIM 232300) causes death early in childhood from cardiorespiratory failure in absence of effective treatment, whereas late-onset Pompe disease causes a progressive skeletal myopathy. The limitations of enzyme replacement therapy could potentially be addressed with adeno-associated virus (AAV) vector-mediated gene therapy. Methods AAV vectors containing tissue-specific regulatory cassettes, either liver-specific or muscle-specific, were administered to 12 and 17 month old Pompe disease mice to evaluate the efficacy of gene therapy in advanced Pompe disease. Biochemical correction was evaluated through GAA activity and glycogen content analyses of the heart and skeletal muscle. Western blotting, urinary biomarker, and Rotarod performance were evaluated following vector administration. Results The AAV vector containing the liver-specific regulatory cassette secreted high-level hGAA into the blood and corrected glycogen storage in the heart and diaphragm. The biochemical correction of the heart and diaphragm was associated with efficacy, as reflected by increased Rotarod performance; however, the clearance of glycogen from skeletal muscles was relatively impaired, in comparison with younger Pompe disease mice. An alternative vector containing a muscle-specific regulatory cassette transduced skeletal muscle with high efficiency, but also failed to achieve complete clearance of accumulated glycogen. Decreased transduction of the heart and liver in older mice, especially in females, was implicated as a cause for reduced efficacy in advanced Pompe disease. Conclusion The impaired efficacy of AAV vector-mediated gene therapy in old Pompe disease mice emphasized the need for early treatment to achieve full efficacy. PMID:19621331

  14. Gene Therapy for Type I Glycogen Storage Diseases

    PubMed Central

    Chou, Janice Y.; Mansfield, Brian C.

    2008-01-01

    The type I glycogen storage diseases (GSD-I) are a group of related diseases caused by a deficiency in the glucose-6-phosphatase-α (G6Pase-α) system, a key enzyme complex that is essential for the maintenance of blood glucose homeostasis between meals. The complex consists of a glucose-6-phosphate transporter (G6PT) that translocates glucose-6-phosphate from the cytoplasm into the lumen of the endoplasmic reticulum, and a G6Pase-α catalytic unit that hydrolyses the glucose-6-phosphate into glucose and phosphate. A deficiency in G6Pase-α causes GSD type Ia (GSD-Ia) and a deficiency in G6PT causes GSD type Ib (GSD-Ib). Both GSD-Ia and GSD-Ib patients manifest a disturbed glucose homeostasis, while GSD-Ib patients also suffer symptoms of neutropenia and myeloid dysfunctions. G6Pase-α and G6PT are both hydrophobic endoplasmic reticulum-associated transmembrane proteins that can not expressed in soluble active forms. Therefore protein replacement therapy of GSD-I is not an option. Animal models of GSD-Ia and GSD-Ib that mimic the human disorders are available. Both adenovirus- and adeno-associated virus (AAV)-mediated gene therapies have been evaluated for GSD-Ia in these model systems. While adenoviral therapy produces only short term corrections and only impacts liver expression of the gene, AAV-mediated therapy delivers the transgene to both the liver and kidney, achieving longer term correction of the GSD-Ia disorder, although there are substantial differences in efficacy depending on the AAV serotype used. Gene therapy for GSD-Ib in the animal model is still in its infancy, although an adenoviral construct has improved the metabolic profile and myeloid function. Taken together further refinements in gene therapy may hold long term benefits for the treatment of type I GSD disorders. PMID:17430128

  15. Novel Swelling-Resistant Sodium Alginate Membrane Branching Modified by Glycogen for Highly Aqueous Ethanol Solution Pervaporation.

    PubMed

    Ji, Chen-Hao; Xue, Shuang-Mei; Xu, Zhen-Liang

    2016-10-12

    A novel carbohydrate chain cross-linking method of sodium alginate (SA) is proposed in which glycogen with the branched-chain structure is utilized to cross-link with SA matrix by the bridging of glutaraldehyde (GA). The active layer of SA composite ceramic membrane modified by glycogen and GA for pervaporation (PV) demonstrates great advantages. The branched structure increases the chain density of the active layer, which compresses the free volume between the carbohydrate chains of SA. Large amounts of hydroxyl groups are consumed during the reaction with GA, which reduces the hydrogen bond formation between water molecules and the polysaccharide matrix. The two factors benefit the active layer with great improvement in swelling resistance, promoting the potential of the active layer for the dehydration of an ethanol-water solution containing high water content. Meanwhile, the m