Science.gov

Sample records for activate inkt cells

  1. Chronic alcohol consumption enhances iNKT cell maturation and activation.

    PubMed

    Zhang, Hui; Zhang, Faya; Zhu, Zhaohui; Luong, Dung; Meadows, Gary G

    2015-01-15

    Alcohol consumption exhibits diverse effects on different types of immune cells. NKT cells are a unique T cell population and play important immunoregulatory roles in different types of immune responses. The effects of chronic alcohol consumption on NKT cells remain to be elucidated. Using a mouse model of chronic alcohol consumption, we found that alcohol increases the percentage of NKT cells, especially iNKT cells in the thymus and liver, but not in the spleen or blood. Alcohol consumption decreases the percentage of NK1.1(-) iNKT cells in the total iNKT cell population in all of the tissues and organs examined. In the thymus, alcohol consumption increases the number of NK1.1(+)CD44(hi) mature iNKT cells but does not alter the number of NK1.1(-) immature iNKT cells. A BrdU incorporation assay shows that alcohol consumption increases the proliferation of thymic NK1.1(-) iNKT cells, especially the NK1.1(-)CD44(lo) Stage I iNKT cells. The percentage of NKG2A(+) iNKT cells increases in all of the tissues and organs examined; whereas CXCR3(+) iNKT cells only increases in the thymus of alcohol-consuming mice. Chronic alcohol consumption increases the percentage of IFN-γ-producing iNKT cells and increases the blood concentration of IFN-γ and IL-12 after in vivo α-galactosylceramide (αGalCer) stimulation. Consistent with the increased cytokine production, the in vivo activation of iNKT cells also enhances the activation of dendritic cells (DC) and NK, B, and T cells in the alcohol-consuming mice. Taken together the data indicate that chronic alcohol consumption enhances iNKT cell maturation and activation, which favors the Th1 immune response. PMID:25499027

  2. Chronic alcohol consumption enhances iNKT cell maturation and activation

    SciTech Connect

    Zhang, Hui Zhang, Faya; Zhu, Zhaohui; Luong, Dung; Meadows, Gary G.

    2015-01-15

    Alcohol consumption exhibits diverse effects on different types of immune cells. NKT cells are a unique T cell population and play important immunoregulatory roles in different types of immune responses. The effects of chronic alcohol consumption on NKT cells remain to be elucidated. Using a mouse model of chronic alcohol consumption, we found that alcohol increases the percentage of NKT cells, especially iNKT cells in the thymus and liver, but not in the spleen or blood. Alcohol consumption decreases the percentage of NK1.1{sup −} iNKT cells in the total iNKT cell population in all of the tissues and organs examined. In the thymus, alcohol consumption increases the number of NK1.1{sup +}CD44{sup hi} mature iNKT cells but does not alter the number of NK1.1{sup −} immature iNKT cells. A BrdU incorporation assay shows that alcohol consumption increases the proliferation of thymic NK1.1{sup −} iNKT cells, especially the NK1.1{sup −}CD44{sup lo} Stage I iNKT cells. The percentage of NKG2A{sup +} iNKT cells increases in all of the tissues and organs examined; whereas CXCR3{sup +} iNKT cells only increases in the thymus of alcohol-consuming mice. Chronic alcohol consumption increases the percentage of IFN-γ-producing iNKT cells and increases the blood concentration of IFN-γ and IL-12 after in vivo α-galactosylceramide (αGalCer) stimulation. Consistent with the increased cytokine production, the in vivo activation of iNKT cells also enhances the activation of dendritic cells (DC) and NK, B, and T cells in the alcohol-consuming mice. Taken together the data indicate that chronic alcohol consumption enhances iNKT cell maturation and activation, which favors the Th1 immune response. - Highlights: • Chronic alcohol consumption increases iNKT cells in the thymus and liver • Chronic alcohol consumption enhances thymic Stage I iNKT cell proliferation • Chronic alcohol consumption enhances iNKT cell maturation in thymus and periphery • Chronic alcohol

  3. NF-κB Is Activated in CD4+ iNKT Cells by Sickle Cell Disease and Mediates Rapid Induction of Adenosine A2A Receptors

    PubMed Central

    Yu, Jennifer C.; Ken, Ruey; Neuberg, Donna; Nathan, David G.; Linden, Joel

    2013-01-01

    Reperfusion injury following tissue ischemia occurs as a consequence of vaso-occlusion that is initiated by activation of invariant natural killer T (iNKT) cells. Sickle cell disease (SDC) results in widely disseminated microvascular ischemia and reperfusion injury as a result of vaso-occlusion by rigid and adhesive sickle red blood cells. In mice, iNKT cell activation requires NF-κB signaling and can be inhibited by the activation of anti-inflammatory adenosine A2A receptors (A2ARs). Human iNKT cells are divided into subsets of CD4+ and CD4- cells. In this study we found that human CD4+ iNKT cells, but not CD4- cells undergo rapid NF-κB activation (phosphorylation of NF-κB on p65) and induction of A2ARs (detected with a monoclonal antibody 7F6-G5-A2) during SCD painful vaso-occlusive crises. These findings indicate that SCD primarily activates the CD4+ subset of iNKT cells. Activation of NF-κB and induction of A2ARs is concordant, i.e. only CD4+ iNKT cells with activated NF-κB expressed high levels of A2ARs. iNKT cells that are not activated during pVOC express low levels of A2AR immunoreactivity. These finding suggest that A2AR transcription may be induced in CD4+ iNKT cells as a result of NF-κB activation in SCD. In order to test this hypothesis further we examined cultured human iNKT cells. In cultured cells, blockade of NF-κB with Bay 11–7082 or IKK inhibitor VII prevented rapid induction of A2AR mRNA and protein upon iNKT activation. In conclusion, NF-κB-mediated induction of A2ARs in iNKT cells may serve as a counter-regulatory mechanism to limit the extent and duration of inflammatory immune responses. As activated iNKT cells express high levels of A2ARs following their activation, they may become highly sensitive to inhibition by A2AR agonists. PMID:24124453

  4. The actin cytoskeleton modulates the activation of iNKT cells by segregating CD1d nanoclusters on antigen-presenting cells

    PubMed Central

    Torreno-Pina, Juan A.; Manzo, Carlo; Salio, Mariolina; Aichinger, Michael C.; Oddone, Anna; Lakadamyali, Melike; Shepherd, Dawn; Besra, Gurdyal S.; Cerundolo, Vincenzo

    2016-01-01

    Invariant natural killer T (iNKT) cells recognize endogenous and exogenous lipid antigens presented in the context of CD1d molecules. The ability of iNKT cells to recognize endogenous antigens represents a distinct immune recognition strategy, which underscores the constitutive memory phenotype of iNKT cells and their activation during inflammatory conditions. However, the mechanisms regulating such “tonic” activation of iNKT cells remain unclear. Here, we show that the spatiotemporal distribution of CD1d molecules on the surface of antigen-presenting cells (APCs) modulates activation of iNKT cells. By using superresolution microscopy, we show that CD1d molecules form nanoclusters at the cell surface of APCs, and their size and density are constrained by the actin cytoskeleton. Dual-color single-particle tracking revealed that diffusing CD1d nanoclusters are actively arrested by the actin cytoskeleton, preventing their further coalescence. Formation of larger nanoclusters occurs in the absence of interactions between CD1d cytosolic tail and the actin cytoskeleton and correlates with enhanced iNKT cell activation. Importantly and consistently with iNKT cell activation during inflammatory conditions, exposure of APCs to the Toll-like receptor 7/8 agonist R848 increases nanocluster density and iNKT cell activation. Overall, these results define a previously unidentified mechanism that modulates iNKT cell autoreactivity based on the tight control by the APC cytoskeleton of the sizes and densities of endogenous antigen-loaded CD1d nanoclusters. PMID:26798067

  5. The actin cytoskeleton modulates the activation of iNKT cells by segregating CD1d nanoclusters on antigen-presenting cells.

    PubMed

    Torreno-Pina, Juan A; Manzo, Carlo; Salio, Mariolina; Aichinger, Michael C; Oddone, Anna; Lakadamyali, Melike; Shepherd, Dawn; Besra, Gurdyal S; Cerundolo, Vincenzo; Garcia-Parajo, Maria F

    2016-02-01

    Invariant natural killer T (iNKT) cells recognize endogenous and exogenous lipid antigens presented in the context of CD1d molecules. The ability of iNKT cells to recognize endogenous antigens represents a distinct immune recognition strategy, which underscores the constitutive memory phenotype of iNKT cells and their activation during inflammatory conditions. However, the mechanisms regulating such "tonic" activation of iNKT cells remain unclear. Here, we show that the spatiotemporal distribution of CD1d molecules on the surface of antigen-presenting cells (APCs) modulates activation of iNKT cells. By using superresolution microscopy, we show that CD1d molecules form nanoclusters at the cell surface of APCs, and their size and density are constrained by the actin cytoskeleton. Dual-color single-particle tracking revealed that diffusing CD1d nanoclusters are actively arrested by the actin cytoskeleton, preventing their further coalescence. Formation of larger nanoclusters occurs in the absence of interactions between CD1d cytosolic tail and the actin cytoskeleton and correlates with enhanced iNKT cell activation. Importantly and consistently with iNKT cell activation during inflammatory conditions, exposure of APCs to the Toll-like receptor 7/8 agonist R848 increases nanocluster density and iNKT cell activation. Overall, these results define a previously unidentified mechanism that modulates iNKT cell autoreactivity based on the tight control by the APC cytoskeleton of the sizes and densities of endogenous antigen-loaded CD1d nanoclusters. PMID:26798067

  6. Generation of Human iNKT Cell Lines

    PubMed Central

    Li, Xiangming; Tsuji, Moriya; Schneck, Jonathan; Webb, Tonya J.

    2016-01-01

    Natural killer T (NKT) cells comprise an important immunoregulatory T cell subset and express cell surface proteins characteristic of both natural killer cells and T cells. Invariant NKT (iNKT) cells are activated by lipid antigen presented in the context of CD1d molecules, in contrast to classic T cell subsets, which recognize peptide antigens presented by MHC molecules. Following activation, iNKT cells rapidly secrete large amounts of cytokines and can lyse tumor cells and virally infected cells; however, iNKT cells are reduced in patients with autoimmune disease and cancer. The potential to characterize and investigate the prospective use of iNKT cells for therapeutic purposes has significantly increased with the ability to stimulate and expand human iNKT cells. In this protocol, we describe a method to generate and propagate primary human iNKT cells. Specifically, primary iNKT cells were isolated from human peripheral blood mononuclear cells (PBMC), and then expanded periodically with irradiated α-GalCer loaded autologous immature dendritic cells (DC) in the presence of human IL-2.

  7. Sickle cell vaso-occlusion causes activation of iNKT cells that is decreased by the adenosine A2A receptor agonist regadenoson

    PubMed Central

    Lin, Gene; Okam, Maureen M.; Majerus, Elaine; Keefer, Jeffrey; Onyekwere, Onyinye; Ross, Ainsley; Campigotto, Federico; Neuberg, Donna; Linden, Joel; Nathan, David G.

    2013-01-01

    Adenosine A2A receptor (A2AR) agonists reduce invariant natural killer T (iNKT) cell activation and decrease inflammation in sickle cell disease (SCD) mice. We conducted a phase 1 trial of the A2AR agonist regadenoson in adults with SCD. The target dose was 1.44 μg/kg/h. iNKT cell activation was evaluated using antibodies targeting the p65 subunit of nuclear factor-κB (phospho-NF-κB p65), interferon-γ (IFN-γ), and A2AR. Regadenoson was administered to 27 adults with SCD. We examined 21 patients at steady state and 6 during painful vaso-occlusive crises (pVOC). iNKT cell activation was also measured in 14 African-American controls. During pVOC, the fraction of iNKT cells demonstrating increased phospho-NF-κB p65 and A2AR expression was significantly higher compared with controls (P < .01) and steady-state patients (P < .05). IFN-γ expression was also significantly higher compared with controls (P = .02). After a 24-hour infusion of regadenoson during pVOC, phospho-NF-κB p65 activation in iNKT cells decreased compared to baseline by a median of 48% (P = .03) to levels similar to controls and steady-state SCD. No toxicities were identified. Infusional regadenoson administered to adults with SCD at 1.44 μg/kg/h during pVOC decreases activation of iNKT cells without toxicity. This trial was registered at www.clinicaltrials.gov as #NCT01085201. PMID:23377438

  8. Transcription factor Bcl11b sustains iNKT1 and iNKT2 cell programs, restricts iNKT17 cell program, and governs iNKT cell survival.

    PubMed

    Uddin, Mohammad Nizam; Sultana, Dil Afroz; Lorentsen, Kyle J; Cho, Jonathan J; Kirst, Mariana E; Brantly, Mark L; Califano, Danielle; Sant'Angelo, Derek B; Avram, Dorina

    2016-07-01

    Invariant natural killer T (iNKT) cells are innate-like T cells that recognize glycolipid antigens and play critical roles in regulation of immune responses. Based on expression of the transcription factors (TFs) Tbet, Plzf, and Rorγt, iNKT cells have been classified in effector subsets that emerge in the thymus, namely, iNKT1, iNKT2, and iNKT17. Deficiency in the TF Bcl11b in double-positive (DP) thymocytes has been shown to cause absence of iNKT cells in the thymus and periphery due to defective self glycolipid processing and presentation by DP thymocytes and undefined intrinsic alterations in iNKT precursors. We used a model of cre-mediated postselection deletion of Bcl11b in iNKT cells to determine its intrinsic role in these cells. We found that Bcl11b is expressed equivalently in all three effector iNKT subsets, and its removal caused a reduction in the numbers of iNKT1 and iNKT2 cells, but not in the numbers of iNKT17 cells. Additionally, we show that Bcl11b sustains subset-specific cytokine production by iNKT1 and iNKT2 cells and restricts expression of iNKT17 genes in iNKT1 and iNKT2 subsets, overall restraining the iNKT17 program in iNKT cells. The total numbers of iNKT cells were reduced in the absence of Bcl11b both in the thymus and periphery, associated with the decrease in iNKT1 and iNKT2 cell numbers and decrease in survival, related to changes in survival/apoptosis genes. Thus, these results extend our understanding of the role of Bcl11b in iNKT cells beyond their selection and demonstrate that Bcl11b is a key regulator of iNKT effector subsets, their function, identity, and survival. PMID:27330109

  9. iNKT cell cytotoxic responses control T-lymphoma growth in vitro and in vivo

    PubMed Central

    Bassiri, Hamid; Das, Rupali; Guan, Peng; Barrett, David M.; Brennan, Patrick J.; Banerjee, Pinaki P.; Wiener, Susan J.; Orange, Jordan S.; Brenner, Michael B.; Grupp, Stephan A.; Nichols, Kim E.

    2013-01-01

    Invariant natural killer T (iNKT) cells comprise a lineage of CD1d-restricted glycolipid-reactive T lymphocytes with important roles in host immunity to cancer. iNKT cells indirectly participate in antitumor responses by inducing dendritic cell maturation and producing cytokines that promote tumor clearance by CD8+ T and NK cells. Although iNKT cells thereby act as potent cellular adjuvants, it is less clear whether they directly control the growth of tumors. To gain insights into the direct contribution of iNKT cells to tumor immune surveillance, we developed in vitro and in vivo systems to selectively examine the antitumor activity of iNKT cells in the absence of other cytolytic effectors. Using the EL4 T-lymphoma cell line as a model, we find that iNKT cells exert robust and specific lysis of tumor cells in vitro in a manner that is differentially-induced by iNKT cell agonists of varying TCR affinities, such as OCH, α-galactosyl ceramide and PBS44. In vitro blockade of CD1d-mediated lipid antigen presentation, disruption of T cell receptor (TCR) signaling, or loss of perforin expression significantly reduce iNKT cell killing. Consistent with these findings, iNKT cell reconstitution of T, B, and NK cell-deficient mice slows EL4 growth in vivo via TCR-CD1d and perforin-dependent mechanisms. Together, these observations establish that iNKT cells are sufficient to control the growth of T-lymphoma in vitro and in vivo. They also suggest that the induction of iNKT cell cytotoxic responses in situ might serve as a more effective strategy to prevent and/or treat CD1d+ cancers, such as T-lymphoma. PMID:24563871

  10. Innate recognition of cell wall β-glucans drives invariant Natural Killer T (iNKT) cell responses against fungi

    PubMed Central

    Cohen, Nadia R.; Tatituri, Raju V.V.; Rivera, Amariliz; Watts, Gerald F.M.; Kim, Edy Y.; Chiba, Asako; Fuchs, Beth B.; Mylonakis, Eleftherios; Besra, Gurdyal S.; Levitz, Stuart M.; Brigl, Manfred; Brenner, Michael B.

    2016-01-01

    SUMMARY iNKT cells are innate T lymphocytes recognizing endogenous and foreign lipid antigens presented in the MHC-like molecule CD1d. The semi-invariant iNKT cell TCR can detect certain bacterial and parasitic lipids, and drive iNKT cell responses. How iNKT cells respond to fungi, however, is unknown. We found that CD1d-deficient mice, which lack iNKT cells, poorly control infection with the fungal pathogen Aspergillus fumigatus. Furthermore, A. fumigatus rapidly activates iNKT cells in vivo and in vitro in the presence of APCs. Surprisingly, despite a requirement for CD1d recognition, the anti-fungal iNKT cell response does not require fungal lipids. Instead, Dectin-1 and MyD88-mediated responses to β-1,3 glucans, major fungal cell-wall polysaccharides, trigger IL-12 production by APCs that drives self-reactive iNKT cells to secrete IFN-γ. Innate recognition of β-1,3 glucans also drives iNKT cell responses against Candida, Histoplasma and Alternaria, suggesting that this mechanism may broadly define the basis for anti-fungal iNKT cell responses. PMID:22100160

  11. Novel immunostimulators with a thiazolidin-4-one ring promote the immunostimulatory effect of human iNKT cells on the stimulation of Th2-like immune responsiveness via GATA3 activation in vitro.

    PubMed

    Meng, Ming; Li, Chunxiao; Yang, Fei; Chen, Hua; Li, Xiaoliu; Yang, Yongbin; Chen, Dongzhi

    2016-10-01

    Invariant natural killer T cells (iNKTs) are important innate immune cells which get involved in various immune responses in both mice and humans. These immune reactions range from self-tolerance to development of autoimmunity and responses to pathogens and tumor development. In this study, we aimed to explore the effects of the novel immunostimulators (CH1b and CH2b) containing thiazolidin-4-one on the functions of human invariant natural killer T cells (iNKTs). First of all, iNKTs in peripheral blood mononuclear cells were expanded with α-Galactosylceramide (α-Galcer) in vitro. Then, the highly purified iNKTs were isolated from PBMCs using magnetic cells sorting (MACS). Next, we investigated the impacts of CH1b and CH2b on proliferation, cytokines production, cytotoxicity, and the associated signaling pathways in iNKT cells. Finally, we found that CH2b could significantly promote the activated iNKTs proliferation, increase the production of Th2 cytokines, and induce Th0 differentiation into Th2 subset via GATA 3 signaling pathway. Besides, CH2b could markedly enhance the cytotoxic ability of the activated iNKTs. Therefore, we concluded that CH2b, a promising candidate immunostimulator, might be used for the treatment of infections, tumors, autoimmune and allergic diseases, and for the correction of Th1/Th2 balance disorders in future. PMID:27543853

  12. Thymic and peripheral microenvironments differentially mediate development and maturation of iNKT cells by IL-15 transpresentation.

    PubMed

    Castillo, Eliseo F; Acero, Luis F; Stonier, Spencer W; Zhou, Dapeng; Schluns, Kimberly S

    2010-10-01

    Invariant NKT (iNKT) cells are an innate type of T cells, which respond rapidly on activation. iNKT cells acquire these innate-like abilities during development; however, the signals driving development and functional maturation remain only partially understood. Because interleukin-15 (IL-15) is crucial for iNKT development and is delivered by transpresentation, we set out to identify the cell types providing IL-15 to developing iNKT cells and determine their role at the various states of development and maturation. We report here that transpresentation of IL-15 by parenchymal cells was crucial for generating normal number of iNKTs in the thymus, whereas both hematopoietic and parenchymal cells regulated iNKT cell numbers in the periphery, particularly in the liver. Specifically, dendritic cells contributed to peripheral iNKT cell numbers by up-regulating Bcl-2 expression and promoting extrathymic iNKT cell ex-pansion and their homeostatic proliferation. Whether IL-15 affects functional maturation of iNKT cells was also examined. In IL-15Rα(-/-) mice, CD44(High)NK1.1(+) iNKT cells displayed decreased T-bet expression and in response to α-galactosylceramide, had deficient interferon-γ expression. Such defects could be reversed by exogenous IL-15 signals. Overall, these studies identify stage-specific functions of IL-15, which are determined by the tissue microenvironment and elucidate the importance of IL-15 in functional maturation. PMID:20581314

  13. Thymic and peripheral microenvironments differentially mediate development and maturation of iNKT cells by IL-15 transpresentation

    PubMed Central

    Castillo, Eliseo F.; Acero, Luis F.; Stonier, Spencer W.; Zhou, Dapeng

    2010-01-01

    Invariant NKT (iNKT) cells are an innate type of T cells, which respond rapidly on activation. iNKT cells acquire these innate-like abilities during development; however, the signals driving development and functional maturation remain only partially understood. Because interleukin-15 (IL-15) is crucial for iNKT development and is delivered by transpresentation, we set out to identify the cell types providing IL-15 to developing iNKT cells and determine their role at the various states of development and maturation. We report here that transpresentation of IL-15 by parenchymal cells was crucial for generating normal number of iNKTs in the thymus, whereas both hematopoietic and parenchymal cells regulated iNKT cell numbers in the periphery, particularly in the liver. Specifically, dendritic cells contributed to peripheral iNKT cell numbers by up-regulating Bcl-2 expression and promoting extrathymic iNKT cell ex-pansion and their homeostatic proliferation. Whether IL-15 affects functional maturation of iNKT cells was also examined. In IL-15Rα−/− mice, CD44HighNK1.1+ iNKT cells displayed decreased T-bet expression and in response to α-galactosylceramide, had deficient interferon-γ expression. Such defects could be reversed by exogenous IL-15 signals. Overall, these studies identify stage-specific functions of IL-15, which are determined by the tissue microenvironment and elucidate the importance of IL-15 in functional maturation. PMID:20581314

  14. miR-150 regulates the development of NK and iNKT cells

    PubMed Central

    Bezman, Natalie A.; Chakraborty, Tirtha; Bender, Timothy

    2011-01-01

    Natural killer (NK) and invariant NK T (iNKT) cells are critical in host defense against pathogens and for the initiation of adaptive immune responses. miRNAs play important roles in NK and iNKT cell development, maturation, and function, but the roles of specific miRNAs are unclear. We show that modulation of miR-150 expression levels has a differential effect on NK and iNKT cell development. Mice with a targeted deletion of miR-150 have an impaired, cell lineage–intrinsic defect in their ability to generate mature NK cells. Conversely, a gain-of-function miR-150 transgene promotes the development of NK cells, which display a more mature phenotype and are more responsive to activation. In contrast, overexpression of miR-150 results in a substantial reduction of iNKT cells in the thymus and in the peripheral lymphoid organs. The transcription factor c-Myb has been shown to be a direct target of miR-150. Our finding of increased NK cell and decreased iNKT cell frequencies in Myb heterozygous bone marrow chimeras suggests that miR-150 differentially controls the development of NK and iNKT cell lineages by targeting c-Myb. PMID:22124110

  15. iNKT cells require TSC1 for terminal maturation and effector lineage fate decisions

    PubMed Central

    Wu, Jinhong; Yang, Jialong; Yang, Kai; Wang, Hongxia; Gorentla, Balachandra; Shin, Jinwook; Qiu, Yurong; Que, Loretta G.; Foster, W. Michael; Xia, Zhenwei; Chi, Hongbo; Zhong, Xiao-Ping

    2014-01-01

    Terminal maturation of invariant NKT (iNKT) cells from stage 2 (CD44+NK1.1–) to stage 3 (CD44+NK1.1+) is accompanied by a functional acquisition of a predominant IFN-γ–producing (iNKT-1) phenotype; however, some cells develop into IL-17–producing iNKT (iNKT-17) cells. iNKT-17 cells are rare and restricted to a CD44+NK1.1– lineage. It is unclear how iNKT terminal maturation is regulated and what factors mediate the predominance of iNKT-1 compared with iNKT-17. The tumor suppressor tuberous sclerosis 1 (TSC1) is an important negative regulator of mTOR signaling, which regulates T cell differentiation, function, and trafficking. Here, we determined that mice lacking TSC1 exhibit a developmental block of iNKT differentiation at stage 2 and skew from a predominantly iNKT-1 population toward a predominantly iNKT-17 population, leading to enhanced airway hypersensitivity. Evaluation of purified iNKT cells revealed that TSC1 promotes T-bet, which regulates iNKT maturation, but downregulates ICOS expression in iNKT cells by inhibiting mTOR complex 1 (mTORC1). Furthermore, mice lacking T-bet exhibited both a terminal maturation defect of iNKT cells and a predominance of iNKT-17 cells, and increased ICOS expression was required for the predominance of iNKT-17 cells in the population of TSC1-deficient iNKT cells. Our data indicate that TSC1-dependent control of mTORC1 is crucial for terminal iNKT maturation and effector lineage decisions, resulting in the predominance of iNKT-1 cells. PMID:24614103

  16. Mouse Invariant Monoclonal Antibody NKT14: A Novel Tool to Manipulate iNKT Cell Function In Vivo

    PubMed Central

    Scheuplein, Felix; Lamont, Deanna J.; Poynter, Matthew E.; Boyson, Jonathan E.; Serreze, David; Lundblad, Lennart K. A.; Mashal, Robert; Schaub, Robert

    2015-01-01

    Invariant Natural Killer T (iNKT) cells are a T cell subset expressing an invariant T Cell Receptor (TCR) that recognizes glycolipid antigens rather than peptides. The cells have both innate-like rapid cytokine release, and adaptive-like thymic positive selection. iNKT cell activation has been implicated in the pathogenesis of allergic asthma and inflammatory diseases, while reduced iNKT cell activation promotes infectious disease, cancer and certain autoimmune diseases such as Type 1 diabetes (T1D). Therapeutic means to reduce or deplete iNKT cells could treat inflammatory diseases, while approaches to promote their activation may have potential in certain infectious diseases, cancer or autoimmunity. Thus, we developed invariant TCR-specific monoclonal antibodies to better understand the role of iNKT cells in disease. We report here the first monoclonal antibodies specific for the mouse invariant TCR that by modifying the Fc construct can specifically deplete or activate iNKT cells in vivo in otherwise fully immuno-competent animals. We have used both the depleting and activating version of the antibody in the NOD model of T1D. As demonstrated previously using genetically iNKT cell deficient NOD mice, and in studies of glycolipid antigen activated iNKT cells in standard NOD mice, we found that antibody mediated depletion or activation of iNKT cells respectively accelerated and retarded T1D onset. In BALB/c mice, ovalbumin (OVA) mediated airway hyper-reactivity (AHR) was abrogated with iNKT cell depletion prior to OVA sensitization, confirming studies in knockout mice. Depletion of iNKT cells after sensitization had no effect on AHR in the conducting airways but did reduce AHR in the lung periphery. This result raises caution in the interpretation of studies that use animals that are genetically iNKT cell deficient from birth. These activating and depleting antibodies provide a novel tool to assess the therapeutic potential of iNKT cell manipulation. PMID:26474487

  17. Impaired monocytic IL-10 production in sarcoidosis and potential link to abnormalities in iNKT cells

    PubMed Central

    Crawshaw, Anjali; Kendrick, Yvonne R; McMichael, Andrew J; Ho, Ling-Pei

    2016-01-01

    Sarcoidosis is a multi-system granulomatous disorder characterised by marked TH1-biased T cell expansion. The cause of T cell over-activity is unknown. We hypothesized that a cellular source for IL-10 might be defective, resulting in loss of regulation of T cell activity. Focusing on IL-10-producing monocytes, we first showed that monocytes isolated from blood of corticosteroid-naïve sarcoidosis patients (n=51) produced less IL-10 compared to controls, and were less able to suppress T cell proliferation. In addition, monocytic IL-10 production correlated negatively with disease activity. We then questioned if defects in iNKT cells (known to be reduced in sarcoidosis), might be responsible for this reduced IL-10 production since iNKT cells can interact with monocytes. We found that monocytic IL-10 production were higher where there were greater numbers of circulating iNKT cells. In vitro, iNKT cells enhanced monocytic IL-10 production. Defective IL-10 production and T cell suppression by sarcoidosis monocytes can be restored by co-culture with iNKT cells, in a CD1d-requiring and contact-dependent process. We suggest that reduced iNKT cell numbers in sarcoidosis may lead to impaired monocytic IL-10 production and unchecked T cell expansion in sarcoidosis. The findings provide fresh insight into sarcoidosis disease mechanism, and interaction between iNKT cells and monocytes. PMID:24723379

  18. Generation of Mouse iNKT Cell Lines

    PubMed Central

    Li, Xiangming; Tsuji, Moriya; Schneck, Jonathan; Webb, Tonya J.

    2016-01-01

    Natural killer T (NKT) cells bridge the innate and adaptive arms of the immune system, and manipulating their effector functions can have therapeutic significances in the treatment of autoimmunity, transplant biology, infectious disease and cancer. This important lymphocyte subset regulates the immune system through their potent cytokine production following the recognition of lipid antigen present in the context of the MHC class I-like CD1d molecule, in addition their ability to directly mediate cytotoxicity. Here, we describe a method of expanding mouse invariant NKT (iNKT) cell lines from mononuclear cells isolated from the thymus, spleen, or liver using bone marrow derived dendritic cells. These iNKT cell lines can be used study their co-signaling requirements, cytokine profiles and cytotoxic functions which will greatly enhance our knowledge of iNKT cell biology.

  19. iNKT and MAIT Cell Alterations in Diabetes

    PubMed Central

    Magalhaes, Isabelle; Kiaf, Badr; Lehuen, Agnès

    2015-01-01

    Type 1 diabetes (T1D) and type 2 diabetes (T2D) are multifactorial diseases with different etiologies in which chronic inflammation takes place. Defects in invariant natural killer T (iNKT) cell populations have been reported in both T1D and T2D patients, mouse models and our recent study revealed mucosal-associated invariant T (MAIT) cell defects in T2D and obese patients. Regarding iNKT cells many studies in non-obese diabetic mice demonstrated their protective role against T1D whereas their potential role in human T1D is still under debate. Studies in mouse models and patients suggest that iNKT cells present in adipose tissue (AT) could exert a regulatory role against obesity and associated metabolic disorders, such as T2D. Scarce data are yet available on MAIT cells; however, we recently described MAIT cell abnormalities in the blood and ATs from obese and T2D patients. These data show that a link between MAIT cells and metabolic disorders pave the way for further investigations on MAIT cells in T1D and T2D in humans and mouse models. Furthermore, we hypothesize that the gut microbiota alterations associated with T1D and T2D could modulate iNKT and MAIT cell frequency and functions. The potential role of iNKT and MAIT cells in the regulation of metabolic pathways and their cross-talk with microbiota represent exciting new lines of research. PMID:26191063

  20. From the Deep Sea to Everywhere: Environmental Antigens for iNKT Cells.

    PubMed

    Wingender, Gerhard

    2016-08-01

    Invariant natural killer T (iNKT) cells are a unique subset of innate T cells that share features with innate NK cells and adaptive memory T cells. The first iNKT cell antigen described was found 1993 in a marine sponge and it took over 10 years for other, bacterial antigens to be described. Given the paucity of known bacterial iNKT cell antigens, it appeared as if iNKT cells play a very specialist role in the protection against few, rare and unusual pathogenic bacteria. However, in the last few years several publications painted a very different picture, suggesting that antigens for iNKT cells are found almost ubiquitous in the environment. These environmental iNKT cell antigens can shape the distribution, phenotype and function of iNKT cells. Here, these recent findings will be reviewed and their implications for the field will be outlined. PMID:26703211

  1. Cognate interaction with iNKT cells expands IL-10-producing B regulatory cells.

    PubMed

    Vomhof-DeKrey, Emilie E; Yates, Jennifer; Hägglöf, Thomas; Lanthier, Paula; Amiel, Eyal; Veerapen, Natacha; Besra, Gurdyal S; Karlsson, Mikael C I; Leadbetter, Elizabeth A

    2015-10-01

    Successful induction of B-cell activation and memory depends on help from CD4+ T cells. Invariant natural killer T (iNKT) cells (glycolipid-specific, CD1d-restricted innate lymphocytes) provide both cognate (direct) and noncognate (indirect) helper signals to enhance B-cell responses. Both forms of iNKT-cell help induce primary humoral immune responses, but only noncognate iNKT-cell help drives humoral memory and plasma cells. Here, we show that iNKT cognate help for B cells is fundamentally different from the help provided by conventional CD4+ T cells. Cognate iNKT-cell help drives an early, unsustained germinal center B-cell expansion, less reduction of T follicular regulatory cells, an expansion of marginal zone B cells, and early increases in regulatory IL-10-producing B-cell numbers compared with noncognate activation. These results are consistent with a mechanism whereby iNKT cells preferentially provide an innate form of help that does not generate humoral memory and has important implications for the application of glycolipid molecules as vaccine adjuvants. PMID:26392556

  2. Cognate interaction with iNKT cells expands IL-10–producing B regulatory cells

    PubMed Central

    Vomhof-DeKrey, Emilie E.; Yates, Jennifer; Hägglöf, Thomas; Lanthier, Paula; Amiel, Eyal; Veerapen, Natacha; Besra, Gurdyal S.; Karlsson, Mikael C. I.; Leadbetter, Elizabeth A.

    2015-01-01

    Successful induction of B-cell activation and memory depends on help from CD4+ T cells. Invariant natural killer T (iNKT) cells (glycolipid-specific, CD1d-restricted innate lymphocytes) provide both cognate (direct) and noncognate (indirect) helper signals to enhance B-cell responses. Both forms of iNKT-cell help induce primary humoral immune responses, but only noncognate iNKT-cell help drives humoral memory and plasma cells. Here, we show that iNKT cognate help for B cells is fundamentally different from the help provided by conventional CD4+ T cells. Cognate iNKT-cell help drives an early, unsustained germinal center B-cell expansion, less reduction of T follicular regulatory cells, an expansion of marginal zone B cells, and early increases in regulatory IL-10–producing B-cell numbers compared with noncognate activation. These results are consistent with a mechanism whereby iNKT cells preferentially provide an innate form of help that does not generate humoral memory and has important implications for the application of glycolipid molecules as vaccine adjuvants. PMID:26392556

  3. A humanized monoclonal antibody specific for invariant Natural Killer T (iNKT) cells for in vivo depletion.

    PubMed

    Scheuplein, Felix; Thariath, Abraham; Macdonald, Susan; Truneh, Alemseged; Mashal, Robert; Schaub, Robert

    2013-01-01

    Invariant Natural Killer T (iNKT) cells are a subset of T cells recognizing glycolipid antigens presented by CD1d. Human iNKT cells express a conserved T cell receptor (TCR)-α chain (Vα24-Jα18) paired with a specific beta chain, Vβ11. The cells are both innate-like, with rapid cytokine release, and adaptive-like, including thymic positive selection. Over activation of iNKT cells can mediate tissue injury and inflammation in multiple organ systems and play a role in mediating the pathology associated with clinically important inflammatory diseases. At the same time, iNKT cell activation can play a role in protecting against infectious disease and cancer or modulate certain autoimmune diseases through its impact on both the innate and adaptive immune system. This suggests that approaches to cause iNKT cell reduction and/or depletion could treat inflammatory diseases while approaches to promote activation may have therapeutic potential in certain infections, cancer or autoimmune disease. This report summarizes the characterization of a humanized monoclonal depleting antibody (NKTT120) in the cynomolgus macaque. NKTT120 is being developed to treat iNKT mediated inflammation that is associated with chronic inflammatory conditions like sickle cell disease and asthma. NKTT120 binds to human iTCRs and to FCγRI and FCγRIII and has been shown to kill target cells in an ADCC assay at low concentrations consistent with the FCγR binding. iNKT cells were depleted within 24 hours in cynomolgus macaques, but T cell, B cell, and NK cell frequencies were unchanged. iNKT cell recovery was dose and time dependent. T cell dependent antigen responses were not impaired by NKTT120 mediated iNKT depletion as measured by response to KLH challenge. NKTT120 administration did not induce an inflammatory cytokine release at doses up to 10 mg/kg. These data support the use of NKTT120 as an intervention in inflammatory diseases where iNKT reduction or depletion could be beneficial. PMID

  4. Regulated Expression of miR-155 is Required for iNKT Cell Development

    PubMed Central

    Burocchi, Alessia; Pittoni, Paola; Tili, Esmerina; Rigoni, Alice; Costinean, Stefan; Croce, Carlo Maria; Colombo, Mario Paolo

    2015-01-01

    Invariant natural killer T cells (iNKT cells) are CD1d-restricted, lipid antigen-reactive T lymphocytes with immunoregulatory functions. iNKT cell development in the thymus proceeds through subsequent stages, defined by the expression of CD44 and NK1.1, and is dictated by a unique gene expression program, including microRNAs. Here, we investigated whether miR-155, a microRNA involved in differentiation of most hematopoietic cells, played any role in iNKT cell development. To this end, we assessed the expression of miR-155 along iNKT cell maturation in the thymus, and studied the effects of miR-155 on iNKT cell development using Lck-miR-155 transgenic mice, which over express miR-155 in T cell lineage under the lymphocyte-specific protein tyrosine kinase (Lck) promoter. We show that miR-155 is expressed by newly selected immature wild-type iNKT cells and turned off along iNKT cells differentiation. In transgenic mice, miR-155 over-expression resulted in a substantial block of iNKT cell maturation at Stage 2, in the thymus toward an overall reduction of peripheral iNKT cells, unlike mainstream T cells. Furthermore, the effects of miR-155 over-expression on iNKT cell differentiation were cell autonomous. Finally, we identified Ets1 and ITK transcripts as relevant targets of miR-155 in iNKT cell differentiation. Altogether, these results demonstrate that a tight control of miR-155 expression is required for the development of iNKT cells. PMID:25870598

  5. Non‐glycosidic compounds can stimulate both human and mouse iNKT cells

    PubMed Central

    Jukes, John‐Paul; Gileadi, Uzi; Ghadbane, Hemza; Yu, Ting‐Fong; Shepherd, Dawn; Cox, Liam R.; Besra, Gurdyal S.

    2016-01-01

    Invariant natural killer T (iNKT) cells recognize CD1d/glycolipid complexes and upon activation with synthetic agonists display immunostimulatory properties. We have previously described that the non‐glycosidic CD1d‐binding lipid, threitolceramide (ThrCer) activates murine and human iNKT cells. Here, we show that incorporating the headgroup of ThrCer into a conformationally more restricted 6‐ or 7‐membered ring results in significantly more potent non‐glycosidic analogs. In particular, ThrCer 6 was found to promote strong anti‐tumor responses and to induce a more prolonged stimulation of iNKT cells than does the canonical α‐galactosylceramide (α‐GalCer), achieving an enhanced T‐cell response at lower concentrations compared with α‐GalCer both in vitro, using human iNKT‐cell lines and in vivo, using C57BL/6 mice. Collectively, these studies describe novel non‐glycosidic ThrCer‐based analogs that have improved potency in iNKT‐cell activation compared with that of α‐GalCer, and are clinically relevant iNKT‐cell agonists. PMID:26873393

  6. Diacylglycerol kinase zeta positively controls the development of iNKT-17 cells.

    PubMed

    Wu, Jinhong; Shen, Shudan; Yang, Jialong; Xia, Zhenwei; Zhong, Xiao-Ping

    2013-01-01

    Invariant natural killer T (iNKT) cells play important roles in bridging innate and adaptive immunity via rapidly producing a variety of cytokines. A small subset of iNKT cells produces IL-17 and is generated in the thymus during iNKT-cell ontogeny. The mechanisms that control the development of these IL-17-producing iNKT-17 cells (iNKT-17) are still not well defined. Diacylglycerol kinase ζ (DGKζ) belongs to a family of enzymes that catalyze the phosphorylation and conversion of diacylglycerol to phosphatidic acid, two important second messengers involved in signaling from numerous receptors. We report here that DGKζ plays an important role in iNKT-17 development. A deficiency of DGKζ in mice causes a significant reduction of iNKT-17 cells, which is correlated with decreased RORγt and IL-23 receptor expression. Interestingly, iNKT-17 defects caused by DGKζ deficiency can be corrected in chimeric mice reconstituted with mixed wild-type and DGKζ-deficient bone marrow cells. Taken together, our data identify DGKζ as an important regulator of iNKT-17 development through iNKT-cell extrinsic mechanisms. PMID:24073253

  7. The Transcriptional Repressor Gfi1 Plays a Critical Role in the Development of NKT1- and NKT2-Type iNKT Cells

    PubMed Central

    Yasuoka, Toshiaki; Kuwahara, Makoto; Yamada, Takeshi; Maruyama, Saho; Suzuki, Junpei; Taniguchi, Masaru; Yasukawa, Masaki; Yamashita, Masakatsu

    2016-01-01

    Gfi1 plays an important role in the development and maintenance of many hematopoietic linage cells. However, the impact of Gfi1-deficiency on the iNKT cell differentiation remains unclear. We herein demonstrate a critical role of Gfi1 in regulating the development of iNKT cell subsets. In the thymus of T cell-specific Gfi1-deficient mice, iNKT cells normally developed up to stage 2, while the number of stage 3 NK1.1pos iNKT cells was significantly reduced. Furthermore, CD4pos iNKT cells were selectively reduced in the peripheral organs of T cell-specific Gfi1-deficient mice. The α-GalCer-dependent production of IFN-γand Th2 cytokines, but not IL-17A, was severely reduced in T cell-specific Gfi1-deficient mice. In addition, a reduction of the α-GalCer-induced anti-tumor activity was observed in Gfi1-deficient mice. These findings demonstrate the important role of Gfi1 in regulating the development and function of NKT1- and NKT2-type iNKT cell subsets. PMID:27284976

  8. Adenosine A2A receptors induced on iNKT and NK cells reduce pulmonary inflammation and injury in mice with sickle cell disease

    PubMed Central

    Wallace, Kori L.

    2010-01-01

    We showed previously that pulmonary function and arterial oxygen saturation in NY1DD mice with sickle cell disease (SCD) are improved by depletion of invariant natural killer T (iNKT) cells or blockade of their activation. Here we demonstrate that SCD causes a 9- and 6-fold induction of adenosine A2A receptor (A2AR) mRNA in mouse pulmonary iNKT and natural killer (NK) cells, respectively. Treating SCD mice with the A2AR agonist ATL146e produced a dose-dependent reversal of pulmonary dysfunction with maximal efficacy at 10 ng/kg/minute that peaked within 3 days and persisted throughout 7 days of continuous infusion. Crossing NY1DD mice with Rag1−/− mice reduced pulmonary injury that was restored by adoptive transfer of 106 purified iNKT cells. Reconstituted injury was reversed by ATL146e unless the adoptively transferred iNKT cells were pretreated with the A2AR alkylating antagonist, FSPTP (5-amino-7-[2-(4-fluorosulfonyl)phenylethyl]-2-(2-furyl)-pryazolo[4,3-ϵ]-1,2,4-triazolo[1,5-c]pyrimidine), which completely prevented pro-tection. In NY1DD mice exposed to hypoxia-reoxygenation, treatment with ATL146e at the start of reoxygenation prevented further lung injury. Together, these data indicate that activation of induced A2ARs on iNKT and NK cells in SCD mice is sufficient to improve baseline pulmonary function and prevent hypoxia-reoxygenation–induced exacerbation of pulmonary injury. A2A agonists have promise for treating diseases associated with iNKT or NK cell activation. PMID:20798237

  9. Abnormalities in iNKT cells are associated with impaired ability of monocytes to produce IL-10 and suppress T-cell proliferation in sarcoidosis.

    PubMed

    Crawshaw, Anjali; Kendrick, Yvonne R; McMichael, Andrew J; Ho, Ling-Pei

    2014-07-01

    Sarcoidosis is a multisystem granulomatous disorder characterized by marked T-cell expansion of T helper 1 (Th1) cells. The cause of T-cell overactivity is unknown. We hypothesized that interleukin-10 (IL-10) production by a yet undefined cell type might be defective, resulting in loss of regulation of T-cell activity. Focusing on IL-10-producing monocytes, we first showed that monocytes isolated from the peripheral blood of corticosteroid-naïve sarcoidosis patients (n = 51) produced less IL-10 compared to controls, and were less able to suppress T-cell proliferation. In addition, monocytic IL-10 production correlated negatively with disease activity score. As invariant natural killer T (iNKT) cells are known to both interact with monocytes and be reduced in sarcoidosis patients, we then asked whether iNKT-specific defects might be responsible for this reduced IL-10 production. We found that greater numbers of circulating iNKT cells was associated with higher IL-10 production. Moreover, iNKT cells enhanced monocytic IL-10 production in vitro. Defective IL-10 production and T-cell suppression by sarcoidosis monocytes could be restored following their coculture with iNKT cells, in a CD1d- and cell contact-dependent process. We suggest that reduced iNKT-cell numbers in sarcoidosis may lead to impaired monocytic IL-10 production and unchecked T-cell expansion in sarcoidosis. These findings provide fresh insight into the mechanism of sarcoidosis disease, and interaction between iNKT cells and monocytes. PMID:24723379

  10. Extrinsic allospecific signals of hematopoietic origin dictate iNKT cell lineage-fate decisions during development

    PubMed Central

    Strong, Beverly S. I.; Newkold, Tess J.; Lee, Amanda E.; Turner, Lucas E.; Alhajjat, Amir M.; Heusel, Jonathan W.; Shaaban, Aimen F.

    2016-01-01

    Invariant NKT (iNKT) cells are critical to the maintenance of tolerance toward alloantigens encountered during postnatal life pointing to the existence of a process for self-education. However, the impact of developmentally encountered alloantigens in shaping the phenotype and function of iNKT cells has not been described. To better understand this process, the current report examined naïve iNKT cells as they matured in an allogeneic environment. Following the prenatal transfer of fetal hematopoietic cells between age-matched allogeneic murine fetuses, cell-extrinsic signals appeared to dictate allospecific patterns of Ly49 receptor expression and lineage diversity in developing iNKT cells. Regulation for this process arose from cells of hematopoietic origin requiring only rare exposure to facilitate broad changes in developing iNKT cells. These findings highlight surprisingly asymmetric allospecific alterations in iNKT cells as they develop and mature in an allogeneic environment and establish a new paradigm for study of the self-education of iNKT cells. PMID:27354027

  11. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse

    PubMed Central

    Moran, Amy E.; Holzapfel, Keli L.; Xing, Yan; Cunningham, Nicole R.; Maltzman, Jonathan S.; Punt, Jennifer

    2011-01-01

    The ability of antigen receptors to engage self-ligands with varying affinity is crucial for lymphocyte development. To further explore this concept, we generated transgenic mice expressing GFP from the immediate early gene Nr4a1 (Nur77) locus. GFP was up-regulated in lymphocytes by antigen receptor stimulation but not by inflammatory stimuli. In T cells, GFP was induced during positive selection, required major histocompatibility complex for maintenance, and directly correlated with the strength of T cell receptor (TCR) stimulus. Thus, our results define a novel tool for studying antigen receptor activation in vivo. Using this model, we show that regulatory T cells (Treg cells) and invariant NKT cells (iNKT cells) perceived stronger TCR signals than conventional T cells during development. However, although Treg cells continued to perceive strong TCR signals in the periphery, iNKT cells did not. Finally, we show that Treg cell progenitors compete for recognition of rare stimulatory TCR self-ligands. PMID:21606508

  12. iNKT Cells Are Responsible for the Apoptotic Reduction of Basophils That Mediate Th2 Immune Responses Elicited by Papain in Mice Following γPGA Stimulation

    PubMed Central

    Park, Se-Ho; Hong, Seokmann

    2016-01-01

    Recent studies have demonstrated that Bacillus subtilis-derived poly-gamma glutamic acid (γPGA) treatment suppresses the development of allergic diseases such as atopic dermatitis (AD). Although basophils, an innate immune cell, are known to play critical roles in allergic immune responses and repeated long-term administration of γPGA results in decreased splenic basophils in an AD murine model, the underlying mechanisms by which γPGA regulates basophil frequency remain unclear. To investigate how γPGA modulates basophils, we employed basophil-mediated Th2 induction in vivo model elicited by the allergen papain protease. Repeated injection of γPGA reduced the abundance of basophils and their production of IL4 in mice, consistent with our previous study using NC/Nga AD model mice. The depletion of basophils by a single injection of γPGA was dependent on the TLR4/DC/IL12 axis. CD1d-dependent Vα14 TCR invariant natural killer T (iNKT) cells are known to regulate a variety of immune responses, such as allergy. Because iNKT cell activation is highly sensitive to IL12 produced by DCs, we evaluated whether the effect of γPGA on basophils is mediated by iNKT cell activation. We found that in vivo γPGA treatment did not induce the reduction of basophils in iNKT cell-deficient CD1d KO mice, suggesting the critical role of iNKT cells in γPGA-mediated basophil depletion at the early time points. Furthermore, increased apoptotic basophil reduction triggered by iNKT cells upon γPGA stimulation was mainly attributed to Th1 cytokines such as IFNγ and TNFα, consequently resulting in inhibition of papain-induced Th2 differentiation via diminishing basophil-derived IL4. Taken together, our results clearly demonstrate that γPGA-induced iNKT cell polarization toward the Th1 phenotype induces apoptotic basophil depletion, leading to the suppression of Th2 immune responses. Thus, elucidation of the crosstalk between innate immune cells will contribute to the design and

  13. iNKT Cells Are Responsible for the Apoptotic Reduction of Basophils That Mediate Th2 Immune Responses Elicited by Papain in Mice Following γPGA Stimulation.

    PubMed

    Park, Hyun Jung; Lee, Sung Won; Park, Se-Ho; Hong, Seokmann

    2016-01-01

    Recent studies have demonstrated that Bacillus subtilis-derived poly-gamma glutamic acid (γPGA) treatment suppresses the development of allergic diseases such as atopic dermatitis (AD). Although basophils, an innate immune cell, are known to play critical roles in allergic immune responses and repeated long-term administration of γPGA results in decreased splenic basophils in an AD murine model, the underlying mechanisms by which γPGA regulates basophil frequency remain unclear. To investigate how γPGA modulates basophils, we employed basophil-mediated Th2 induction in vivo model elicited by the allergen papain protease. Repeated injection of γPGA reduced the abundance of basophils and their production of IL4 in mice, consistent with our previous study using NC/Nga AD model mice. The depletion of basophils by a single injection of γPGA was dependent on the TLR4/DC/IL12 axis. CD1d-dependent Vα14 TCR invariant natural killer T (iNKT) cells are known to regulate a variety of immune responses, such as allergy. Because iNKT cell activation is highly sensitive to IL12 produced by DCs, we evaluated whether the effect of γPGA on basophils is mediated by iNKT cell activation. We found that in vivo γPGA treatment did not induce the reduction of basophils in iNKT cell-deficient CD1d KO mice, suggesting the critical role of iNKT cells in γPGA-mediated basophil depletion at the early time points. Furthermore, increased apoptotic basophil reduction triggered by iNKT cells upon γPGA stimulation was mainly attributed to Th1 cytokines such as IFNγ and TNFα, consequently resulting in inhibition of papain-induced Th2 differentiation via diminishing basophil-derived IL4. Taken together, our results clearly demonstrate that γPGA-induced iNKT cell polarization toward the Th1 phenotype induces apoptotic basophil depletion, leading to the suppression of Th2 immune responses. Thus, elucidation of the crosstalk between innate immune cells will contribute to the design and

  14. Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of T(reg) cells and macrophages in adipose tissue.

    PubMed

    Lynch, Lydia; Michelet, Xavier; Zhang, Sai; Brennan, Patrick J; Moseman, Ashley; Lester, Chantel; Besra, Gurdyal; Vomhof-Dekrey, Emilie E; Tighe, Mike; Koay, Hui-Fern; Godfrey, Dale I; Leadbetter, Elizabeth A; Sant'Angelo, Derek B; von Andrian, Ulrich; Brenner, Michael B

    2015-01-01

    Invariant natural killer T cells (iNKT cells) are lipid-sensing innate T cells that are restricted by the antigen-presenting molecule CD1d and express the transcription factor PLZF. iNKT cells accumulate in adipose tissue, where they are anti-inflammatory, but the factors that contribute to their anti-inflammatory nature, as well as their targets in adipose tissue, are unknown. Here we found that iNKT cells in adipose tissue had a unique transcriptional program and produced interleukin 2 (IL-2) and IL-10. Unlike other iNKT cells, they lacked PLZF but expressed the transcription factor E4BP4, which controlled their IL-10 production. The adipose iNKT cells were a tissue-resident population that induced an anti-inflammatory phenotype in macrophages and, through the production of IL-2, controlled the number, proliferation and suppressor function of regulatory T cells (Treg cells) in adipose tissue. Thus, iNKT cells in adipose tissue are unique regulators of immunological homeostasis in this tissue. PMID:25436972

  15. Circulating Myeloid Dendritic Cells of Advanced Cancer Patients Result in Reduced Activation and a Biased Cytokine Profile in Invariant NKT Cells1

    PubMed Central

    van der Vliet, Hans J. J.; Wang, Ruojie; Yue, Simon C.; Koon, Henry B.; Balk, Steven P.; Exley, Mark A.

    2010-01-01

    CD1d-restricted invariant NKT (iNKT) cells play important regulatory roles in various immune responses, including antitumor immune responses. Previous studies have demonstrated quantitative and qualitative defects in iNKT cells of cancer patients, and these defects are clinically relevant as they are associated with poor prognosis. In this study we demonstrate that defects in the iNKT cell population can, at least in part, be attributed to defective interactions between iNKT cells and CD1d-expressing circulating myeloid dendritic cells (mDC), as mDC of patients with advanced melanoma and renal cell cancer reduced the activation and Th1 cytokine production of healthy donor-derived iNKT cells. Interestingly, this reduced activation of iNKT cells was restricted to patients with low circulating iNKT cell numbers and could be reversed by IL-12 and in part by the neutralization of TGF-β, but it was further reduced by the neutralization of IL-10 in vitro. Additional experiments revealed discordant roles for TGF-β and IL-10 on human iNKT cells, because TGF-β suppressed iNKT cell activation and proliferation and IFN-γ production while IL-10 was identified as a cytokine involved in stimulating the activation and expansion of iNKT cells that could subsequently suppress NK cell and T cell responses. PMID:18490728

  16. Preventing and curing citrulline-induced autoimmune arthritis in a humanized mouse model using a Th2-polarizing iNKT cell agonist.

    PubMed

    Walker, Kyle M; Rytelewski, Mateusz; Mazzuca, Delfina M; Meilleur, Shannon A; Mannik, Lisa A; Yue, David; Brintnell, William C; Welch, Ian; Cairns, Ewa; Haeryfar, S M Mansour

    2012-07-01

    Invariant natural killer T (iNKT) cells are innate lymphocytes with unique reactivity to glycolipid antigens bound to non-polymorphic CD1d molecules. They are capable of rapidly releasing pro- and/or anti-inflammatory cytokines and constitute attractive targets for immunotherapy of a wide range of diseases including autoimmune disorders. In this study, we have explored the beneficial effects of OCH, a Th2-polarizing glycolipid agonist of iNKT cells, in a humanized mouse model of rheumatoid arthritis (RA) in which citrullinated human proteins are targeted by autoaggressive immune responses in mice expressing an RA susceptibility human leukocyte antigen (HLA) DR4 molecule. We found for the first time that treatment with OCH both prevents and cures citrulline-induced autoimmune arthritis as evidenced by resolved ankle swelling and reversed histopathological changes associated with arthritis. Also importantly, OCH treatment blocked the arthritogenic capacity of citrullinated antigen-experienced splenocytes without compromising their global responsiveness or altering the proportion of splenic naturally occurring CD4(+)CD25(+)FoxP3(+) regulatory T cells. Interestingly, administering the Th1-promoting iNKT cell glycolipid ligand α-C-galactosylceramide into HLA-DR4 transgenic mice increased the incidence of arthritis in these animals and exacerbated their clinical symptoms, strongly suggesting a role for Th1 responses in the pathogenesis of citrulline-induced arthritis. Therefore, our findings indicate a role for Th1-mediated immunopathology in citrulline-induced arthritis and provide the first evidence that iNKT cell manipulation by Th2-skewing glycolipids may be of therapeutic value in this clinically relevant model, a finding that is potentially translatable to human RA. PMID:21912419

  17. Relationships between Th1 or Th2 iNKT Cell Activity and Structures of CD1d-Antigen Complexes: Meta-analysis of CD1d-Glycolipids Dynamics Simulations

    PubMed Central

    Laurent, Xavier; Renault, Nicolas; Farce, Amaury; Chavatte, Philippe; Hénon, Eric

    2014-01-01

    A number of potentially bioactive molecules can be found in nature. In particular, marine organisms are a valuable source of bioactive compounds. The activity of an α-galactosylceramide was first discovered in 1993 via screening of a Japanese marine sponge (Agelas mauritanius). Very rapidly, a synthetic glycololipid analogue of this natural molecule was discovered, called KRN7000. Associated with the CD1d protein, this α-galactosylceramide 1 (KRN7000) interacts with the T-cell antigen receptor to form a ternary complex that yields T helper (Th) 1 and Th2 responses with opposing effects. In our work, we carried out molecular dynamics simulations (11.5 µs in total) involving eight different ligands (conducted in triplicate) in an effort to find out correlation at the molecular level, if any, between chemical modulation of 1 and the orientation of the known biological response, Th1 or Th2. Comparative investigations of human versus mouse and Th1 versus Th2 data have been carried out. A large set of analysis tools was employed including free energy landscapes. One major result is the identification of a specific conformational state of the sugar polar head, which could be correlated, in the present study, to the biological Th2 biased response. These theoretical tools provide a structural basis for predicting the very different dynamical behaviors of α-glycosphingolipids in CD1d and might aid in the future design of new analogues of 1. PMID:25376021

  18. The Role of Hepatic Invariant (I)NKT Cells in Systemic/Local Inflammation and Mortality During Polymicrobial Septic Shock1

    PubMed Central

    Hu, Caroline K.; Venet, Fabienne; Heffernan, David S.; Wang, Yvonne L.; Horner, Brian; Huang, Xin; Chung, Chun-Shiang; Gregory, Stephen H.; Ayala, Alfred

    2009-01-01

    Natural killer T (NKT)4 cells have been described as “innate regulatory cells” because of their rapid response to conserved glycolipids presented on CD1d via their invariant TCR. However, little is known about the contribution of the hepatic NKT cell to the development of a local and/or systemic immune response to acute septic challenge (cecal ligation & puncture; CLP). We found not only that mice deficient in invariant [i] NKT cells (Jα18 -/-) had a marked attenuation in CLP induced mortality, but also exhibited an oblation of the systemic inflammatory response (with little effect on splenic/ peritoneal immune responsiveness). Flow cytometric data indicated that following CLP, there was a marked decline in the % of CD3+αGalCer-CD1d-tetramer+ cells in the mouse C57BL/6J and Balb/c liver non-parenchymal cell population. This was associated with the marked activation of these cells (increased expression of CD69 and CD25) as well as a rise in the frequency of NKT cells positive for both Th1 and Th2 intracellular cytokines. In this respect, when mice were pre-treated in vivo with anti-CD1d blocking antibody we observed not only that this inhibited the systemic rise of IL-6 and IL-10 levels in septic mice and improved overall septic survival, but that the CLP induced changes in liver macrophage IL-6 and IL-10 expressions were inversely effected by this treatment. Together, these findings suggest that the activation of hepatic iNKT cells plays a critical role in regulating the innate immune/ systemic inflammatory response and survival in a model of acute septic shock. PMID:19201902

  19. Maternal low protein diet leads to dysregulation of placental iNKT cells and M1/M2 macrophage ratio, body weight loss in male, neonate Sprague-Dawley rats and increased UCP-1 mediated thermogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Placental immune cells provide cytokines and growth factors that are necessary for placenta development and function. Invariant natural killer T (iNKT) cells are innate cells specific for glycolipid antigens presented by the CD1d molecule and secrete Th1 cytokines in the placenta, suggesting an imm...

  20. Activation of murine invariant NKT cells promotes susceptibility to candidiasis by IL-10 induced modulation of phagocyte antifungal activity.

    PubMed

    Haraguchi, Norihiro; Kikuchi, Norihiro; Morishima, Yuko; Matsuyama, Masashi; Sakurai, Hirofumi; Shibuya, Akira; Shibuya, Kazuko; Taniguchi, Masaru; Ishii, Yukio

    2016-07-01

    Invariant NKT (iNKT) cells play an important role in a variety of antimicrobial immune responses due to their ability to produce high levels of immune-modulating cytokines. Here, we investigated the role of iNKT cells in host defense against candidiasis using Jα18-deficient mice (Jα18(-/-) ), which lack iNKT cells. Jα18(-/-) mice were more resistant to the development of lethal candidiasis than wild-type (WT) mice. In contrast, treatment of WT mice with the iNKT cell activating ligand α-galactosylceramide markedly enhanced their mortality after infection with Candida albicans. Serum IL-10 levels were significantly elevated in WT mice in response to infection with C. albicans. Futhermore, IL-10 production increased after in vitro coculture of peritoneal macrophages with iNKT cells and C. albicans. The numbers of peritoneal macrophages, the production of IL-1β and IL-18, and caspase-1 activity were also significantly elevated in Jα18(-/-) mice after infection with C. albicans. The adoptive transfer of iNKT cells or exogenous administration of IL-10 into Jα18(-/-) reversed susceptibility to candidiasis to the level of WT mice. These results suggest that activation of iNKT cells increases the initial severity of C. albicans infection, most likely mediated by IL-10 induced modulation of macrophage antifungal activity. PMID:27151377

  1. Expansion of highly activated invariant natural killer T cells with altered phenotype in acute dengue infection.

    PubMed

    Kamaladasa, A; Wickramasinghe, N; Adikari, T N; Gomes, L; Shyamali, N L A; Salio, M; Cerundolo, V; Ogg, G S; Malavige, G Neelika

    2016-08-01

    Invariant natural killer T (iNKT) cells are capable of rapid activation and production of cytokines upon recognition of antigenic lipids presented by CD1d molecules. They have been shown to play a significant role in many viral infections and were observed to be highly activated in patients with acute dengue infection. In order to characterize further their role in dengue infection, we investigated the proportion of iNKT cells and their phenotype in adult patients with acute dengue infection. The functionality of iNKT cells in patients was investigated by both interferon (IFN)-γ and interleukin (IL)-4 ex-vivo enzyme-linked immunospot (ELISPOT) assays following stimulation with alpha-galactosyl-ceramide (αGalCer). We found that circulating iNKT cell proportions were significantly higher (P = 0·03) in patients with acute dengue when compared to healthy individuals and were predominantly of the CD4(+) subset. iNKT cells of patients with acute dengue had reduced proportions expressing CD8α and CD161 when compared to healthy individuals. The iNKT cells of patients were highly activated and iNKT activation correlated significantly with dengue virus-specific immunoglobulin (Ig)G antibody levels. iNKT cells expressing Bcl-6 (P = 0·0003) and both Bcl-6 and inducible T cell co-stimulator (ICOS) (P = 0·006) were increased significantly in patients when compared to healthy individuals. Therefore, our data suggest that in acute dengue infection there is an expansion of highly activated CD4(+) iNKT cells, with reduced expression of CD161 markers. PMID:26874822

  2. Invariant NKT Cell Development Requires a Full Complement of Functional CD3 ζ Immunoreceptor Tyrosine-Based Activation Motifs

    PubMed Central

    Becker, Amy M.; Blevins, Jon S.; Tomson, Farol L.; Eitson, Jennifer L.; Medeiros, Jennifer J.; Yarovinsky, Felix; Norgard, Michael V.; van Oers, Nicolai S. C.

    2010-01-01

    Invariant NKT (iNKT) cells regulate early immune responses to infections, in part because of their rapid release of IFN-γ and IL-4. iNKT cells are proposed to reduce the severity of Lyme disease following Borrelia burgdorferi infection. Unlike conventional T cells, iNKT cells express an invariant αβ TCR that recognizes lipids bound to the MHC class I-like molecule, CD1d. Furthermore, these cells are positively selected following TCR interactions with glycolipid/CD1d complexes expressed on CD4+CD8+ thymocytes. Whereas conventional T cell development can proceed with as few as 4/10 CD3 immunoreceptor tyrosine-based activation motifs (ITAMs), little is known about the ITAM requirements for iNKT cell selection and expansion. We analyzed iNKT cell development in CD3 ζ transgenic lines with various tyrosine-to-phenylalanine substitutions (YF) that eliminated the functions of the first (YF1,2), third (YF5,6), or all three (YF1–6) CD3 ζ ITAMs. iNKT cell numbers were significantly reduced in the thymus, spleen, and liver of all YF mice compared with wild type mice. The reduced numbers of iNKT cells resulted from significant reductions in the expression of the early growth response 2 and promyelocytic leukemia zinc finger transcription factors. In the mice with few to no iNKT cells, there was no difference in the severity of Lyme arthritis compared with wild type controls, following infections with the spirochete B. burgdorferi. These findings indicate that a full complement of functional CD3 ζ ITAMs is required for effective iNKT cell development. The Journal of Immunology, 2010, 184: 6822–6832. PMID:20483726

  3. The Response of CD1d-Restricted Invariant NKT Cells to Microbial Pathogens and Their Products

    PubMed Central

    Van Kaer, Luc; Parekh, Vrajesh V.; Wu, Lan

    2015-01-01

    Invariant natural killer T (iNKT) cells become activated during a wide variety of infections. This includes organisms lacking cognate CD1d-binding glycolipid antigens recognized by the semi-invariant T cell receptor of iNKT cells. Additional studies have shown that iNKT cells also become activated in vivo in response to microbial products such as bacterial lipopolysaccharide, a potent inducer of cytokine production in antigen-presenting cells (APCs). Other studies have shown that iNKT cells are highly responsive to stimulation by cytokines such as interleukin-12. These findings have led to the concept that microbial pathogens can activate iNKT cells either directly via glycolipids or indirectly by inducing cytokine production in APCs. iNKT cells activated in this manner produce multiple cytokines that can influence the outcome of infection, usually in favor of the host, although potent iNKT cell activation may contribute to an uncontrolled cytokine storm and sepsis. One aspect of the response of iNKT cells to microbial pathogens is that it is short-lived and followed by an extended time period of unresponsiveness to reactivation. This refractory period may represent a means to avoid chronic activation and cytokine production by iNKT cells, thus protecting the host against some of the negative effects of iNKT cell activation, but potentially putting the host at risk for secondary infections. These effects of microbial pathogens and their products on iNKT cells are not only important for understanding the role of these cells in immune responses against infections but also for the development of iNKT cell-based therapies. PMID:26029211

  4. Invariant NKT cells provide innate and adaptive help for B cells.

    PubMed

    Vomhof-DeKrey, Emilie E; Yates, Jennifer; Leadbetter, Elizabeth A

    2014-06-01

    B cells rely on CD4(+) T cells helper signals to optimize their responses to T-dependent antigens. Recently another subset of T cells has been identified which provides help for B cells, invariant natural killer T (iNKT) cells. iNKT cells are unique because they provide both innate and adaptive forms of help to B cells, with divergent outcomes. iNKT cells are widely distributed throughout the spleen at rest, consolidate in the marginal zone of the spleen early after activation, and are later found in germinal centers. Understanding the activation requirements for iNKT cells has led to the development of glycolipid containing nanoparticles which efficiently activate iNKT cells, enhance their cooperation with B cells, and which hold promise for vaccine development. PMID:24514004

  5. CXCL16-positive dendritic cells enhance invariant natural killer T cell-dependent IFNγ production and tumor control

    PubMed Central

    Veinotte, Linnea; Gebremeskel, Simon; Johnston, Brent

    2016-01-01

    ABSTRACT Crosstalk interactions between dendritic cells (DCs) and invariant natural killer T (iNKT) cells are important in regulating antitumor responses elicited by glycolipid antigens. iNKT cells constitutively express the chemokine receptor CXCR6, while cytokine-activated DCs upregulate the transmembrane chemokine ligand, CXCL16. This study examined the co-stimulatory role of CXCR6/CXCL16 interactions in glycolipid-dependent iNKT cell activation and tumor control. Spleen and liver DCs in wild-type mice, but not iNKT cell deficient (Jα18−/−) mice, transiently upregulated surface CXCL16 following in vivo administration of the glycolipid antigen α-galactosylceramide. Recombinant CXCL16 did not directly induce iNKT cell activation in vitro but enhanced interferon (IFN)-γ production when mouse or human iNKT cells were stimulated with plate-bound anti-CD3. Compared with glycolipid-loaded CXCL16neg DCs, CXCL16hi DCs induced higher levels of IFNγ production in iNKT cell cultures and following adoptive transfer in vivo. The number of IFNγ+ iNKT cells and expansion of T-bet+ iNKT cells were reduced in vivo when CXCL16−/− DCs were used to activate iNKT cells. Enhanced IFNγ production in vivo was not dependent on CXCR6 expression on natural killer (NK) cells. Adoptive transfer of glycolipid-loaded CXCL16hi DCs provided superior protection against tumor metastasis compared to CXCL16neg DC transfers. Similarly, wild-type DCs provided superior protection against metastasis compared with CXCL16−/− DCs. These experiments implicate an important role for CXCR6/CXCL16 interactions in regulating iNKT cell IFNγ production and tumor control. The selective use of CXCL16hi DCs in adoptive transfer immunotherapies may prove useful for enhancing T helper (Th) type 1 responses and clinical outcomes in cancer patients. PMID:27471636

  6. Invariant natural killer T cells: bridging innate and adaptive immunity

    PubMed Central

    Parekh, Vrajesh V.; Wu, Lan

    2013-01-01

    Cells of the innate immune system interact with pathogens via conserved pattern-recognition receptors, whereas cells of the adaptive immune system recognize pathogens through diverse, antigen-specific receptors that are generated by somatic DNA rearrangement. Invariant natural killer T (iNKT) cells are a subset of lymphocytes that bridge the innate and adaptive immune systems. Although iNKT cells express T cell receptors that are generated by somatic DNA rearrangement, these receptors are semi-invariant and interact with a limited set of lipid and glycolipid antigens, thus resembling the pattern-recognition receptors of the innate immune system. Functionally, iNKT cells most closely resemble cells of the innate immune system, as they rapidly elicit their effector functions following activation, and fail to develop immunological memory. iNKT cells can become activated in response to a variety of stimuli and participate in the regulation of various immune responses. Activated iNKT cells produce several cytokines with the capacity to jump-start and modulate an adaptive immune response. A variety of glycolipid antigens that can differentially elicit distinct effector functions in iNKT cells have been identified. These reagents have been employed to test the hypothesis that iNKT cells can be harnessed for therapeutic purposes in human diseases. Here, we review the innate-like properties and functions of iNKT cells and discuss their interactions with other cell types of the immune system. PMID:20734065

  7. Selective Conditions Are Required for the Induction of Invariant NKT Cell Hyporesponsiveness by Antigenic Stimulation.

    PubMed

    Wingender, Gerhard; Birkholz, Alysia M; Sag, Duygu; Farber, Elisa; Chitale, Sampada; Howell, Amy R; Kronenberg, Mitchell

    2015-10-15

    Activation of invariant (i)NKT cells with the model Ag α-galactosylceramide induces rapid production of multiple cytokines, impacting a wide variety of different immune reactions. In contrast, following secondary activation with α-galactosylceramide, the behavior of iNKT cells is altered for months, with the production of most cytokines being strongly reduced. The requirements for the induction of this hyporesponsive state, however, remain poorly defined. In this study, we show that Th1-biasing iNKT cell Ags could induce iNKT cell hyporesponsiveness, as long as a minimum antigenic affinity was reached. In contrast, the Th2-biasing Ag OCH did not induce a hyporesponsive state, nor did cytokine-driven iNKT cell activation by LPS or infections. Furthermore, although dendritic cells and B cells have been reported to be essential for iNKT cell stimulation, neither dendritic cells nor B cells were required to induce iNKT cell hyporesponsiveness. Therefore, our data indicate that whereas some bone marrow-derived cells could induce iNKT cell hyporesponsiveness, selective conditions, dependent on the structure and potency of the Ag, were required to induce hyporesponsiveness. PMID:26355152

  8. Synthetic glycolipid activators of natural killer T cells as immunotherapeutic agents

    PubMed Central

    Carreño, Leandro J; Saavedra-Ávila, Noemí A; Porcelli, Steven A

    2016-01-01

    Certain types of glycolipids have been found to have remarkable immunomodulatory properties as a result of their ability to activate specific T lymphocyte populations with an extremely wide range of immune effector properties. The most extensively studied glycolipid reactive T cells are known as invariant natural killer T (iNKT) cells. The antigen receptors of these cells specifically recognize certain glycolipids, most notably glycosphingolipids with α-anomeric monosaccharides, presented by the major histocompatibility complex class I-like molecule CD1d. Once activated, iNKT cells can secrete a very diverse array of pro- and anti-inflammatory cytokines to modulate innate and adaptive immune responses. Thus, glycolipid-mediated activation of iNKT cells has been explored for immunotherapy in a variety of disease states, including cancer and a range of infections. In this review, we discuss the design of synthetic glycolipid activators for iNKT cells, their impact on adaptive immune responses and their use to modulate iNKT cell responses to improve immunity against infections and cancer. Current challenges in translating results from preclinical animal studies to humans are also discussed. PMID:27195112

  9. Cross-Activating Invariant NKT Cells and Kupffer Cells Suppress Cholestatic Liver Injury in a Mouse Model of Biliary Obstruction

    PubMed Central

    Duwaerts, Caroline C.; Sun, Eric P.; Cheng, Chao-Wen; van Rooijen, Nico; Gregory, Stephen H.

    2013-01-01

    Both Kupffer cells and invariant natural killer T (iNKT) cells suppress neutrophil-dependent liver injury in a mouse model of biliary obstruction. We hypothesize that these roles are interdependent and require iNKT cell-Kupffer cell cross-activation. Female, wild-type and iNKT cell-deficient C57Bl/6 mice were injected with magnetic beads 3 days prior to bile duct ligation (BDL) in order to facilitate subsequent Kupffer cell isolation. On day three post-BDL, the animals were euthanized and the livers dissected. Necrosis was scored; Kupffer cells were isolated and cell surface marker expression (flow cytometry), mRNA expression (qtPCR), nitric oxide (NO.) production (Griess reaction), and protein secretion (cytometric bead-array or ELISAs) were determined. To address the potential role of NO. in suppressing neutrophil accumulation, a group of WT mice received 1400W, a specific inducible nitric oxide synthase (iNOS) inhibitor, prior to BDL. To clarify the mechanisms underlying Kupffer cell-iNKT cell cross-activation, WT animals were administered anti-IFN-γ or anti-lymphocyte function-associated antigen (LFA)-1 antibody prior to BDL. Compared to their WT counterparts, Kupffer cells obtained from BDL iNKT cell-deficient mice expressed lower iNOS mRNA levels, produced less NO., and secreted more neutrophil chemoattractants. Both iNOS inhibition and IFN-γ neutralization increased neutrophil accumulation in the livers of BDL WT mice. Anti-LFA-1 pre-treatment reduced iNKT cell accumulation in these same animals. These data indicate that the LFA-1-dependent cross-activation of iNKT cells and Kupffer cells inhibits neutrophil accumulation and cholestatic liver injury. PMID:24260285

  10. Cross-activating invariant NKT cells and kupffer cells suppress cholestatic liver injury in a mouse model of biliary obstruction.

    PubMed

    Duwaerts, Caroline C; Sun, Eric P; Cheng, Chao-Wen; van Rooijen, Nico; Gregory, Stephen H

    2013-01-01

    Both Kupffer cells and invariant natural killer T (iNKT) cells suppress neutrophil-dependent liver injury in a mouse model of biliary obstruction. We hypothesize that these roles are interdependent and require iNKT cell-Kupffer cell cross-activation. Female, wild-type and iNKT cell-deficient C57Bl/6 mice were injected with magnetic beads 3 days prior to bile duct ligation (BDL) in order to facilitate subsequent Kupffer cell isolation. On day three post-BDL, the animals were euthanized and the livers dissected. Necrosis was scored; Kupffer cells were isolated and cell surface marker expression (flow cytometry), mRNA expression (qtPCR), nitric oxide (NO (.) ) production (Griess reaction), and protein secretion (cytometric bead-array or ELISAs) were determined. To address the potential role of NO (.) in suppressing neutrophil accumulation, a group of WT mice received 1400W, a specific inducible nitric oxide synthase (iNOS) inhibitor, prior to BDL. To clarify the mechanisms underlying Kupffer cell-iNKT cell cross-activation, WT animals were administered anti-IFN-γ or anti-lymphocyte function-associated antigen (LFA)-1 antibody prior to BDL. Compared to their WT counterparts, Kupffer cells obtained from BDL iNKT cell-deficient mice expressed lower iNOS mRNA levels, produced less NO (.) , and secreted more neutrophil chemoattractants. Both iNOS inhibition and IFN-γ neutralization increased neutrophil accumulation in the livers of BDL WT mice. Anti-LFA-1 pre-treatment reduced iNKT cell accumulation in these same animals. These data indicate that the LFA-1-dependent cross-activation of iNKT cells and Kupffer cells inhibits neutrophil accumulation and cholestatic liver injury. PMID:24260285

  11. Neutrophilic granulocytes modulate invariant NKT cell function in mice and humans.

    PubMed

    Wingender, Gerhard; Hiss, Marcus; Engel, Isaac; Peukert, Konrad; Ley, Klaus; Haller, Hermann; Kronenberg, Mitchell; von Vietinghoff, Sibylle

    2012-04-01

    Invariant NKT (iNKT) cells are a conserved αβTCR(+) T cell population that can swiftly produce large amounts of cytokines, thereby activating other leukocytes, including neutrophilic granulocytes (neutrophils). In this study, we investigated the reverse relationship, showing that high neutrophil concentrations suppress the iNKT cell response in mice and humans. Peripheral Vα14 iNKT cells from spontaneously neutrophilic mice produced reduced cytokines in response to the model iNKT cell Ag α-galactosyl ceramide and expressed lower amounts of the T-box transcription factor 21 and GATA3 transcription factor than did wild-type controls. This influence was extrinsic, as iNKT cell transcription factor expression in mixed chimeric mice depended on neutrophil count, not iNKT cell genotype. Transcription factor expression was also decreased in primary iNKT cells from the neutrophil-rich bone marrow compared with spleen in wild-type mice. In vitro, the function of both mouse and human iNKT cells was inhibited by coincubation with neutrophils. This required cell-cell contact with live neutrophils. Neutrophilic inflammation in experimental peritonitis in mice decreased iNKT cell T-box transcription factor 21 and GATA3 expression and α-galactosyl ceramide-induced cytokine production in vivo. This was reverted by blockade of neutrophil mobilization. Similarly, iNKT cells from the human peritoneal cavity expressed lower transcription factor levels during neutrophilic peritonitis. Our data reveal a novel regulatory axis whereby neutrophils reduce iNKT cell responses, which may be important in shaping the extent of inflammation. PMID:22387552

  12. Local Production of Interferon Gamma by Invariant Natural Killer T cells Modulates Acute Lyme Carditis

    PubMed Central

    Olson, Chris M.; Bates, Tonya C.; Izadi, Hooman; Radolf, Justin D.; Huber, Sally A.; Boyson, Jonathan E.; Anguita, Juan

    2009-01-01

    The Lyme disease spirochete, Borrelia burgdorferi, is the only known human pathogen that directly activates invariant natural killer T (iNKT) cells. The number and activation kinetics of iNKT cells vary greatly among different strains of mice. We now report the role of the iNKT cell response in the pathogenesis of Lyme disease using C57Bl/6 mice, a strain with optimal iNKT cell activation that is resistant to the development of spirochetal-induced inflammation. During experimental infection of B6 mice with B. burgdorferi, iNKT cells localize to the inflamed heart where they are activated by CD1d-expressing macrophages. Activation of iNKT cells in vivo results in the production of IFNγ, which we demonstrate ameliorates the severity of murine Lyme carditis by at least two mechanisms. First, IFNγ enhances the recognition of B. burgdorferi by macrophages, leading to increased phagocytosis of the spirochete. Secondly, IFNγ activation of macrophages increases the surface expression of CD1d, thereby facilitating further iNKT activation. Collectively, our data demonstrate that in the resistant background, B6, iNKT cells modulate the severity of murine Lyme carditis through the action of IFNγ, which appears to self-renew through a positive feedback loop during infection. PMID:19265151

  13. NKAP Regulates Invariant NKT Cell Proliferation and Differentiation into ROR-γt-Expressing NKT17 Cells.

    PubMed

    Thapa, Puspa; Chen, Meibo W; McWilliams, Douglas C; Belmonte, Paul; Constans, Megan; Sant'Angelo, Derek B; Shapiro, Virginia Smith

    2016-06-15

    Invariant NKT (iNKT) cells are a unique lineage with characteristics of both adaptive and innate lymphocytes, and they recognize glycolipids presented by an MHC class I-like CD1d molecule. During thymic development, iNKT cells also differentiate into NKT1, NKT2, and NKT17 functional subsets that preferentially produce cytokines IFN-γ, IL-4, and IL-17, respectively, upon activation. Newly selected iNKT cells undergo a burst of proliferation, which is defective in mice with a specific deletion of NKAP in the iNKT cell lineage, leading to severe reductions in thymic and peripheral iNKT cell numbers. The decreased cell number is not due to defective homeostasis or increased apoptosis, and it is not rescued by Bcl-xL overexpression. NKAP is also required for differentiation into NKT17 cells, but NKT1 and NKT2 cell development and function are unaffected. This failure in NKT17 development is rescued by transgenic expression of promyelocytic leukemia zinc finger; however, the promyelocytic leukemia zinc finger transgene does not restore iNKT cell numbers or the block in positive selection into the iNKT cell lineage in CD4-cre NKAP conditional knockout mice. Therefore, NKAP regulates multiple steps in iNKT cell development and differentiation. PMID:27183586

  14. An Optimized Method for Isolating and Expanding Invariant Natural Killer T Cells from Mouse Spleen.

    PubMed

    Govindarajan, Srinath; Elewaut, Dirk; Drennan, Michael

    2015-01-01

    The ability to rapidly secrete cytokines upon stimulation is a functional characteristic of the invariant natural killer T (iNKT) cell lineage. iNKT cells are therefore characterized as an innate T cell population capable of activating and steering adaptive immune responses. The development of improved techniques for the culture and expansion of murine iNKT cells facilitates the study of iNKT cell biology in in vitro and in vivo model systems. Here we describe an optimized procedure for the isolation and expansion of murine splenic iNKT cells. Spleens from C57Bl/6 mice are removed, dissected and strained and the resulting cellular suspension is layered over density gradient media. Following centrifugation, splenic mononuclear cells (MNCs) are collected and CD5-positive (CD5(+)) lymphocytes are enriched for using magnetic beads. iNKT cells within the CD5(+) fraction are subsequently stained with αGalCer-loaded CD1d tetramer and purified by fluorescence activated cell sorting (FACS). FACS sorted iNKT cells are then initially cultured in vitro using a combination of recombinant murine cytokines and plate-bound T cell receptor (TCR) stimuli before being expanded in the presence of murine recombinant IL-7. Using this technique, approximately 10(8) iNKT cells can be generated within 18-20 days of culture, after which they can be used for functional assays in vitro, or for in vivo transfer experiments in mice. PMID:26555769

  15. A Detrimental Role for Invariant Natural Killer T Cells in the Pathogenesis of Experimental Dengue Virus Infection

    PubMed Central

    Renneson, Joelle; Guabiraba, Rodrigo; Maillet, Isabelle; Marques, Rafael E.; Ivanov, Stoyan; Fontaine, Josette; Paget, Christophe; Quesniaux, Valérie; Faveeuw, Christelle; Ryffel, Bernhard; Teixeira, Mauro M.; Trottein, François

    2011-01-01

    Dengue virus (DENV), a member of the mosquito-borne flaviviruses, is a serious public health problem in many tropical countries. We assessed the in vivo physiologic contribution of invariant natural killer T (iNKT) cells, a population of nonconventional lipid-reactive αβ T lymphocytes, to the host response during experimental DENV infection. We used a mouse-adapted DENV serotype 2 strain that causes a disease that resembles severe dengue in humans. On DENV challenge, splenic and hepatic iNKT cells became activated insofar as CD69 and Fas ligand up-regulation and interferon-γ production. C57BL/6 mice deficient in iNKT cells (Jα18−/−) were more resistant to lethal infection than were wild-type animals, and the phenotype was reversed by adoptive transfer of iNKT cells to Jα18−/− animals. The absence of iNKT cells in Jα18−/− mice was associated with decreased systemic and local inflammatory responses, less liver injury, diminished vascular leak syndrome, and reduced activation of natural killer cells and neutrophils. iNKT cell functions were not necessary for control of primary DENV infection, after either natural endogenous activation or exogenous activation with the canonical iNKT cell agonist α-galactosylceramide. Together, these data reveal a novel and critical role for iNKT cells in the pathogenesis of severe experimental dengue disease. PMID:21843496

  16. Elevated levels of invariant natural killer T-cell and natural killer cell activation correlate with disease progression in HIV-1 and HIV-2 infections

    PubMed Central

    Bächle, Susanna M.; Malone, David F.G.; Buggert, Marcus; Karlsson, Annika C.; Isberg, Per-Erik; Biague, Antonio J.; Norrgren, Hans; Medstrand, Patrik; Moll, Markus; Sandberg, Johan K.; Jansson, Marianne

    2016-01-01

    Objective: In this study, we aimed to investigate the frequency and activation of invariant natural killer T (iNKT) cells and natural killer (NK) cells among HIV-1, HIV-2, or dually HIV-1/HIV-2 (HIV-D)-infected individuals, in relation to markers of disease progression. Design: Whole blood samples were collected from treatment-naive HIV-1 (n = 23), HIV-2 (n = 34), and HIV-D (n = 11) infected individuals, as well as HIV-seronegative controls (n = 25), belonging to an occupational cohort in Guinea-Bissau. Methods: Frequencies and activation levels of iNKT and NK cell subsets were analysed using multicolour flow cytometry, and results were related to HIV-status, CD4+ T-cell levels, viral load, and T-cell activation. Results: HIV-1, HIV-D, and viremic HIV-2 individuals had lower numbers of CD4+ iNKT cells in circulation compared with seronegative controls. Numbers of CD56bright NK cells were also reduced in HIV-infected individuals as compared with control study participants. Notably, iNKT cell and NK cell activation levels, assessed by CD38 expression, were increased in HIV-1 and HIV-2 single, as well as dual, infections. HIV-2 viremia was associated with elevated activation levels in CD4+ iNKT cells, CD56bright, and CD56dim NK cells, as compared with aviremic HIV-2 infection. Additionally, disease markers such as CD4+ T-cell percentages, viral load, and CD4+ T-cell activation were associated with CD38 expression levels of both iNKT and NK cells, which activation levels also correlated with each other. Conclusion: Our data indicate that elevated levels of iNKT-cell and NK-cell activation are associated with viremia and disease progression markers in both HIV-1 and HIV-2 infections. PMID:27163705

  17. Effects of Invariant NKT Cells on Parasite Infections and Hygiene Hypothesis.

    PubMed

    Yang, Jun-Qi; Zhou, Yonghua; Singh, Ram Raj

    2016-01-01

    Invariant natural killer T (iNKT) cells are unique subset of innate-like T cells recognizing glycolipids. iNKT cells can rapidly produce copious amounts of cytokines upon antigen stimulation and exert potent immunomodulatory activities for a wide variety of immune responses and diseases. We have revealed the regulatory effect of iNKT cells on autoimmunity with a serial of publications. On the other hand, the role of iNKT cells in parasitic infections, especially in recently attractive topic "hygiene hypothesis," has not been clearly defined yet. Bacterial and parasitic cell wall is a cellular structure highly enriched in a variety of glycolipids and lipoproteins, some of which may serve as natural ligands of iNKT cells. In this review, we mainly summarized the recent findings on the roles and underlying mechanisms of iNKT cells in parasite infections and their cross-talk with Th1, Th2, Th17, Treg, and innate lymphoid cells. In most cases, iNKT cells exert regulatory or direct cytotoxic roles to protect hosts against parasite infections. We put particular emphasis as well on the identification of the natural ligands from parasites and the involvement of iNKT cells in the hygiene hypothesis. PMID:27563682

  18. Effects of Invariant NKT Cells on Parasite Infections and Hygiene Hypothesis

    PubMed Central

    Zhou, Yonghua

    2016-01-01

    Invariant natural killer T (iNKT) cells are unique subset of innate-like T cells recognizing glycolipids. iNKT cells can rapidly produce copious amounts of cytokines upon antigen stimulation and exert potent immunomodulatory activities for a wide variety of immune responses and diseases. We have revealed the regulatory effect of iNKT cells on autoimmunity with a serial of publications. On the other hand, the role of iNKT cells in parasitic infections, especially in recently attractive topic “hygiene hypothesis,” has not been clearly defined yet. Bacterial and parasitic cell wall is a cellular structure highly enriched in a variety of glycolipids and lipoproteins, some of which may serve as natural ligands of iNKT cells. In this review, we mainly summarized the recent findings on the roles and underlying mechanisms of iNKT cells in parasite infections and their cross-talk with Th1, Th2, Th17, Treg, and innate lymphoid cells. In most cases, iNKT cells exert regulatory or direct cytotoxic roles to protect hosts against parasite infections. We put particular emphasis as well on the identification of the natural ligands from parasites and the involvement of iNKT cells in the hygiene hypothesis. PMID:27563682

  19. Human Dendritic Cells Derived From Embryonic Stem Cells Stably Modified With CD1d Efficiently Stimulate Antitumor Invariant Natural Killer T Cell Response

    PubMed Central

    2014-01-01

    Invariant natural killer T (iNKT) cells are a unique lymphocyte subpopulation that mediates antitumor activities upon activation. A current strategy to harness iNKT cells for cancer treatment is endogenous iNKT cell activation using patient-derived dendritic cells (DCs). However, the limited number and functional defects of patient DCs are still the major challenges for this therapeutic approach. In this study, we investigated whether human embryonic stem cells (hESCs) with an ectopically expressed CD1d gene could be exploited to address this issue. Using a lentivector carrying an optimized expression cassette, we generated stably modified hESC lines that consistently overexpressed CD1d. These modified hESC lines were able to differentiate into DCs as efficiently as the parental line. Most importantly, more than 50% of such derived DCs were CD1d+. These CD1d-overexpressing DCs were more efficient in inducing iNKT cell response than those without modification, and their ability was comparable to that of DCs generated from monocytes of healthy donors. The iNKT cells expanded by the CD1d-overexpressing DCs were functional, as demonstrated by their ability to lyse iNKT cell-sensitive glioma cells. Therefore, hESCs stably modified with the CD1d gene may serve as a convenient, unlimited, and competent DC source for iNKT cell-based cancer immunotherapy. PMID:24292792

  20. Antigen specificity of invariant natural killer T-cells.

    PubMed

    Birkholz, Alysia M; Kronenberg, Mitchell

    2015-12-01

    Natural killer T-cells, with an invariant T-cell antigen receptor α-chain (iNKT cells), are unique and conserved subset of lymphocytes capable of altering the immune system through their rapid and potent cytokine responses. They are reactive to lipid antigens presented by the CD1d molecule, an antigen-presenting molecule that is not highly polymorphic. iNKT cell responses frequently involve mixtures of cytokines that work against each other, and therefore attempts are underway to develop synthetic antigens that elicit only strong interferon-gamma (IFNγ) or only strong interleukin-4 responses but not both. Strong IFNγ responses may correlate with tighter binding to CD1d and prolonged stimulation of iNKT cells, and this may be useful for vaccine adjuvants and for stimulating anti-tumor responses. iNKT cells are self-reactive although the structure of the endogenous antigen is controversial. By contrast, bacterial and fungal lipids that engage the T-cell receptor and activate IFNγ from iNKT cells have been identified from both pathogenic and commensal organisms and the responses are in some cases highly protective from pathogens in mice. It is possible that the expanding knowledge of iNKT cell antigens and iNKT cell activation will provide the basis for therapies for patients suffering from infectious and immune diseases and cancer. PMID:27013447

  1. KLRG+ invariant natural killer T cells are long-lived effectors.

    PubMed

    Shimizu, Kanako; Sato, Yusuke; Shinga, Jun; Watanabe, Takashi; Endo, Takaho; Asakura, Miki; Yamasaki, Satoru; Kawahara, Kazuyoshi; Kinjo, Yuki; Kitamura, Hiroshi; Watarai, Hiroshi; Ishii, Yasuyuki; Tsuji, Moriya; Taniguchi, Masaru; Ohara, Osamu; Fujii, Shin-ichiro

    2014-08-26

    Immunological memory has been regarded as a unique feature of the adaptive immune response mediated in an antigen-specific manner by T and B lymphocytes. However, natural killer (NK) cells and γδT cells, which traditionally are classified as innate immune cells, have been shown in recent studies to have hallmark features of memory cells. Invariant NKT cell (iNKT cell)-mediated antitumor effects indicate that iNKT cells are activated in vivo by vaccination with iNKT cell ligand-loaded CD1d(+) cells, but not by vaccination with unbound NKT cell ligand. In such models, it previously was thought that the numbers of IFN-γ-producing cells in the spleen returned to the basal level around 1 wk after the vaccination. In the current study, we demonstrate the surprising presence of effector memory-like iNKT cells in the lung. We found long-term antitumor activity in the lungs of mice was enhanced after vaccination with iNKT cell ligand-loaded dendritic cells. Further analyses showed that the KLRG1(+) (Killer cell lectin-like receptor subfamily G, member 1-positive) iNKT cells coexpressing CD49d and granzyme A persisted for several months and displayed a potent secondary response to cognate antigen. Finally, analyses of CDR3β by RNA deep sequencing demonstrated that some particular KLRG1(+) iNKT-cell clones accumulated, suggesting the selection of certain T-cell receptor repertoires by an antigen. The current findings identifying effector memory-like KLRG1(+) iNKT cells in the lung could result in a paradigm shift regarding the basis of newly developed extrathymic iNKT cells and could contribute to the future development of antitumor immunotherapy by uniquely energizing iNKT cells. PMID:25118276

  2. Commensal Microbiota and CD8+ T Cells Shape the Formation of Invariant NKT Cells

    PubMed Central

    Wei, Bo; Wingender, Gerhard; Fujiwara, Daisuke; Chen, Diana YuHui; McPherson, Michael; Brewer, Sarah; Borneman, James; Kronenberg, Mitchell; Braun, Jonathan

    2012-01-01

    Commensal bacteria play an important role in formation of the immune system, but the mechanisms involved are incompletely understood. In this study, we analyze CD1d-restricted invariant NKT (iNKT) cells in germfree mice and in two colonies of C57BL/6 mice termed conventional flora and restricted flora (RF), stably bearing commensal microbial communities of diverse but distinct composition. In germfree mice, iNKT cells were moderately reduced, suggesting that commensal microbiota were partially required for the antigenic drive in maintaining systemic iNKT cells. Surprisingly, even greater depletion of iNKT cell population occurred in RF mice. This was in part attributable to reduced RF levels of intestinal microbial taxa (Sphingomonas spp.) known to express antigenic glycosphingolipid products. However, memory and activated CD8+ T cells were also expanded in RF mice, prompting us to test whether CD8+ T cell activity might be further depleting iNKT cells. Indeed, iNKT cell numbers were restored in RF mice bearing the CD8α−/− genotype or in adult wild-type RF mice acutely depleted with anti-CD8 Ab. Moreover, iNKT cells were restored in RF mice bearing the Prf1−/− phenotype, a key component of cytolytic function. These findings indicate that commensal microbiota, through positive (antigenic drive) and negative (cytolytic depletion by CD8+ T cells) mechanisms, profoundly shape the iNKT cell compartment. Because individuals greatly vary in the composition of their microbial communities, enteric microbiota may play an important epigenetic role in the striking differences in iNKT cell abundance in humans and therefore in their potential contribution to host immune status. PMID:20048124

  3. Interleukin-13 Pathway Alterations Impair Invariant Natural Killer T-Cell-Mediated Regulation of Effector T Cells in Type 1 Diabetes.

    PubMed

    Usero, Lorena; Sánchez, Ana; Pizarro, Eduarda; Xufré, Cristina; Martí, Mercè; Jaraquemada, Dolores; Roura-Mir, Carme

    2016-08-01

    Many studies have shown that human natural killer T (NKT) cells can promote immunity to pathogens, but their regulatory function is still being investigated. Invariant NKT (iNKT) cells have been shown to be effective in preventing type 1 diabetes in the NOD mouse model. Activation of plasmacytoid dendritic cells, modulation of B-cell responses, and immune deviation were proposed to be responsible for the suppressive effect of iNKT cells. We studied the regulatory capacity of human iNKT cells from control subjects and patients with type 1 diabetes (T1D) at disease clinical onset. We demonstrate that control iNKT cells suppress the proliferation of effector T cells (Teffs) through a cell contact-independent mechanism. Of note, suppression depended on the secretion of interleukin-13 (IL-13) by iNKT cells because an antibody blocking this cytokine resulted from the abrogation of Teff suppression; however, T1D-derived iNKT cells showed impaired regulation that could be attributed to the decrease in IL-13 secretion. Thus, alteration of the IL-13 pathway at disease onset may lead to the progression of the autoimmune response in T1D. Advances in the study of iNKT cells and the selection of agonists potentiating IL-13 secretion should permit new therapeutic strategies to prevent the development of T1D. PMID:27207542

  4. Invariant natural killer T cells in hematopoietic stem cell transplantation: killer choice for natural suppression.

    PubMed

    Guan, P; Bassiri, H; Patel, N P; Nichols, K E; Das, R

    2016-05-01

    Invariant natural killer T cells (iNKTs) are innate-like lipid-reactive T lymphocytes that express an invariant T-cell receptor (TCR). Following engagement of the iTCR, iNKTs rapidly secrete copious amounts of Th1 and Th2 cytokines and promote the functions of several immune cells including NK, T, B and dendritic cells. Accordingly, iNKTs bridge the innate and adaptive immune responses and modulate susceptibility to autoimmunity, infection, allergy and cancer. Allogeneic hematopoietic stem cell transplantation (HSCT) is one of the most effective treatments for patients with hematologic malignancies. However, the beneficial graft versus leukemia (GvL) effect mediated by the conventional T cells contained within the allograft is often hampered by the concurrent occurrence of graft versus host disease (GvHD). Thus, developing strategies that can dissociate GvHD from GvL remain clinically challenging. Several preclinical and clinical studies demonstrate that iNKTs significantly attenuate GvHD without abrogating the GvL effect. Besides preserving the GvL activity of the donor graft, iNKTs themselves exert antitumor immune responses via direct and indirect mechanisms. Herein, we review the various mechanisms by which iNKTs provide antitumor immunity and discuss their roles in GvHD suppression. We also highlight the opportunities and obstacles in manipulating iNKTs for use in the cellular therapy of hematologic malignancies. PMID:26878658

  5. Neutrophilic granulocytes modulate invariant natural killer T cell function in mice and humans

    PubMed Central

    Wingender, Gerhard; Hiss, Marcus; Engel, Isaac; Peukert, Konrad; Ley, Klaus; Haller, Hermann; Kronenberg, Mitchell; von Vietinghoff, Sibylle

    2012-01-01

    Invariant natural killer T (iNKT) cells are a conserved αβTCR+ T cell population that can swiftly produce large amounts of cytokines, thereby activating other leukocytes, including neutrophilic granulocytes (neutrophils). Here we investigated the reverse relationship, showing that high neutrophil concentrations suppress the iNKT cell response in mice and humans. Peripheral Vα14i NKT cells from spontaneously neutrophilic mice produced reduced cytokines in response to the model iNKT cell antigen αGalCer and expressed lower amounts of the T-bet and GATA3 transcription factors than did wild-type controls. This influence was extrinsic, as iNKT cell transcription factor expression in mixed chimeric mice depended on neutrophil count, not iNKT cell genotype. Transcription factor expression was also decreased in primary iNKT cells from the neutrophil rich bone marrow compared to spleen in wild-type mice. In vitro, the function of both mouse and human iNKT cells was inhibited by co-incubation with neutrophils. This required cell-cell contact with live neutrophils. Neutrophilic inflammation in experimental peritonitis in mice decreasediNKT cell T-bet and GATA3 expression and αGalCer induced cytokine production in vivo. This was reverted by blockade of neutrophil mobilization. Similarly, iNKT cells from the human peritoneal cavity expressed lower transcription factor levels during neutrophilic peritonitis. Our data reveal a novel regulatory axis whereby neutrophils reduce iNKT cell responses, which may be important in shaping the extent of inflammation. PMID:22387552

  6. The Role of Invariant Natural Killer T Cells in Dendritic Cell Licensing, Cross-Priming, and Memory CD8+ T Cell Generation

    PubMed Central

    Gottschalk, Catherine; Mettke, Elisabeth; Kurts, Christian

    2015-01-01

    New vaccination strategies focus on achieving CD8+ T cell (CTL) immunity rather than on induction of protective antibody responses. While the requirement of CD4+ T (Th) cell help in dendritic cell (DC) activation and licensing, and in CTL memory induction has been described in several disease models, CTL responses may occur in a Th cell help-independent manner. Invariant natural killer T cells (iNKT cells) can substitute for Th cell help and license DC as well. iNKT cells produce a broad spectrum of Th1 and Th2 cytokines, thereby inducing a similar set of costimulatory molecules and cytokines in DC. This form of licensing differs from Th cell help by inducing other chemokines, while Th cell-licensed DCs produce CCR5 ligands, iNKT cell-licensed DCs produce CCL17, which attracts CCR4+ CD8+ T cells for subsequent activation. It has recently been shown that iNKT cells do not only enhance immune responses against bacterial pathogens or parasites but also play a role in viral infections. The inclusion of iNKT cell ligands in influenza virus vaccines enhanced memory CTL generation and protective immunity in a mouse model. This review will focus on the role of iNKT cells in the cross-talk with cross-priming DC and memory CD8+ T cell formation. PMID:26284065

  7. Pulmonary natural killer T cells play an essential role in mediating hyperoxic acute lung injury.

    PubMed

    Nowak-Machen, Martina; Schmelzle, Moritz; Hanidziar, Dusan; Junger, Wolfgang; Exley, Mark; Otterbein, Leo; Wu, Yan; Csizmadia, Eva; Doherty, Glen; Sitkovsky, Michail; Robson, Simon C

    2013-05-01

    Critically ill patients are routinely exposed to high concentrations of supplemental oxygen for prolonged periods of time, which can be life-saving in the short term, but such exposure also causes severe lung injury and increases mortality. To address this therapeutic dilemma, we studied the mechanisms of the tissue-damaging effects of oxygen in mice. We show that pulmonary invariant natural killer T (iNKT) cells are unexpectedly crucial in the development of acute oxygen-induced lung injury. iNKT cells express high concentrations of the ectonucleotidase CD39, which regulates their state of activation. Both iNKT cell-deficient (Jα18(-/-)) and CD39-null mice tolerate hyperoxia, compared with wild-type control mice that exhibit severe lung injury. An adoptive transfer of wild-type iNKT cells into Jα18(-/-) mice results in hyperoxic lung injury, whereas the transfer of CD39-null iNKT cells does not. Pulmonary iNKT cell activation and proliferation are modulated by ATP-dependent purinergic signaling responses. Hyperoxic lung injury can be induced by selective P2X7-receptor blockade in CD39-null mice. Our data indicate that iNKT cells are involved in the pathogenesis of hyperoxic lung injury, and that tissue protection can be mediated through ATP-induced P2X7 receptor signaling, resulting in iNKT cell death. In conclusion, our data suggest that iNKT cells and purinergic signaling should be evaluated as potential novel therapeutic targets to prevent hyperoxic lung injury. PMID:23349052

  8. NKT Cell Immune Responses to Viral Infection

    PubMed Central

    Tessmer, Marlowe S.; Fatima, Ayesha; Paget, Christophe; Trottein, François; Brossay, Laurent

    2010-01-01

    Background Natural killer T (NKT) cells are a heterogeneous population of innate T cells that have attracted recent interest because of their potential to regulate immune responses to a variety of pathogens. The most widely studied NKT cell subset is the invariant (i)NKT cells that recognize glycolipids in the context of the CD1d molecule. The multifaceted methods of activation iNKT cells possess and their ability to produce regulatory cytokines has made them a primary target for therapeutic studies. Objective/Methods This review gives insight into the roles of iNKT cells during infectious diseases, particularly viral infections. We also highlight the different mechanisms leading to iNKT cell activation in response to pathogens. Conclusions The iNKT cell versatility allows them to detect and respond to several viral infections. However, therapeutic approaches to specifically target iNKT cells will require additional research. Notably, examination of the roles of non-invariant NKT cells in response to pathogens warrant further investigations. PMID:19236234

  9. Roles of the programmed cell death 1, T cell immunoglobulin mucin-3, and cluster of differentiation 288 pathways in the low reactivity of invariant natural killer T cells after chronic hepatitis B virus infection.

    PubMed

    Yang, Zhixin; Lei, Yu; Chen, Chunbo; Ren, Hong; Shi, Tongdong

    2015-10-01

    One of the main responses of invariant natural killer T (iNKT) cells to antigen stimulation is the rapid production of interleukin (IL)-4 and interferon (IFN)-γ cytokines. There is a decline in the function of iNKT cells in chronic hepatitis B (CHB) patients. In this study, we explored the impact of programmed cell death 1 (PD-1), T cell immunoglobulin mucin-3 (Tim-3), and cluster of differentiation 28 (CD28) expression on iNKT cell functions in CHB patients. Flow cytometry was used to test iNKT frequencies and levels of PD-1, Tim-3, CD28, IL-4, and IFN-γ secreted by iNKT cells. An enzyme-linked immunosorbent assay (ELISA) was used to measure IL-4 and IFN-γ secretion upon α-galactosylceramide (α-GalCer) activation ex vivo. We found that the levels of expression of PD-1 and Tim-3 from iNKT cells in CHB patients were significantly higher than in healthy donors (p < 0.05), but there was lower expression of CD28 (p < 0.05) and an impaired capability to produce IL-4 and IFN-γ (p < 0.05). In vitro α-GalCer stimulation upregulated the expression of PD-1(+) iNKT cells (p < 0.05), Tim-3(+) iNKT cells (p < 0.05), and CD28(+) iNKT cells (p < 0.05). In response to combination therapies consisting of α-GalCer and anti-PDL1 monoclonal antibody (mAb) and/or anti-Tim-3 mAbs and/or anti-CD80/anti-CD28 mAbs, IL-4(+) and IFN-γ(+) iNKT cells demonstrated different degrees of growth (p < 0.05). The functional decline of iNKT cells was closely related to the decrease in CD28 expression and the increases of Tim-3 and PD-1. In addition, clinical antiviral treatment with lamivudine could partially restore the immune function of iNKT cells in CHB patients. PMID:26215444

  10. Cellular Adjuvant Properties, Direct Cytotoxicity of Re-differentiated Vα24 Invariant NKT-like Cells from Human Induced Pluripotent Stem Cells

    PubMed Central

    Kitayama, Shuichi; Zhang, Rong; Liu, Tian-Yi; Ueda, Norihiro; Iriguchi, Shoichi; Yasui, Yutaka; Kawai, Yohei; Tatsumi, Minako; Hirai, Norihito; Mizoro, Yasutaka; Iwama, Tatsuaki; Watanabe, Akira; Nakanishi, Mahito; Kuzushima, Kiyotaka; Uemura, Yasushi; Kaneko, Shin

    2016-01-01

    Summary Vα24 invariant natural killer T (iNKT) cells are a subset of T lymphocytes implicated in the regulation of broad immune responses. They recognize lipid antigens presented by CD1d on antigen-presenting cells and induce both innate and adaptive immune responses, which enhance effective immunity against cancer. Conversely, reduced iNKT cell numbers and function have been observed in many patients with cancer. To recover these numbers, we reprogrammed human iNKT cells to pluripotency and then re-differentiated them into regenerated iNKT cells in vitro through an IL-7/IL-15-based optimized cytokine combination. The re-differentiated iNKT cells showed proliferation and IFN-γ production in response to α-galactosylceramide, induced dendritic cell maturation and downstream activation of both cytotoxic T lymphocytes and NK cells, and exhibited NKG2D- and DNAM-1-mediated NK cell-like cytotoxicity against cancer cell lines. The immunological features of re-differentiated iNKT cells and their unlimited availability from induced pluripotent stem cells offer a potentially effective immunotherapy against cancer. PMID:26862702

  11. CD1d Expression and Invariant NKT Cell Responses in Herpesvirus Infections

    PubMed Central

    Chung, Brian K.; Priatel, John J.; Tan, Rusung

    2015-01-01

    Invariant natural killer T (iNKT) cells are a highly conserved subset of unconventional T lymphocytes that express a canonical, semi-invariant T cell receptor and surface markers shared with the natural killer cell lineage. iNKT cells recognize exogenous and endogenous glycolipid antigens restricted by non-polymorphic CD1d molecules, and are highly responsive to the prototypical agonist, α-galactosylceramide. Upon activation, iNKT cells rapidly coordinate signaling between innate and adaptive immune cells through the secretion of proinflammatory cytokines, leading to the maturation of antigen-presenting cells, and expansion of antigen-specific CD4+ and CD8+ T cells. Because of their potent immunoregulatory properties, iNKT cells have been extensively studied and are known to play a pivotal role in mediating immune responses against microbial pathogens including viruses. Here, we review evidence that herpesviruses manipulate CD1d expression to escape iNKT cell surveillance and establish lifelong latency in humans. Collectively, published findings suggest that iNKT cells play critical roles in anti-herpesvirus immune responses and could be harnessed therapeutically to limit viral infection and viral-associated disease. PMID:26161082

  12. Innate Invariant NKT Cell Recognition of HIV-1-Infected Dendritic Cells Is an Early Detection Mechanism Targeted by Viral Immune Evasion.

    PubMed

    Paquin-Proulx, Dominic; Gibbs, Anna; Bächle, Susanna M; Checa, Antonio; Introini, Andrea; Leeansyah, Edwin; Wheelock, Craig E; Nixon, Douglas F; Broliden, Kristina; Tjernlund, Annelie; Moll, Markus; Sandberg, Johan K

    2016-09-01

    Invariant NKT (iNKT) cells are innate-like T cells that respond rapidly with a broad range of effector functions upon recognition of glycolipid Ags presented by CD1d. HIV-1 carries Nef- and Vpu-dependent mechanisms to interfere with CD1d surface expression, indirectly suggesting a role for iNKT cells in control of HIV-1 infection. In this study, we investigated whether iNKT cells can participate in the innate cell-mediated immune response to HIV-1. Infection of dendritic cells (DCs) with Nef- and Vpu-deficient HIV-1 induced upregulation of CD1d in a TLR7-dependent manner. Infection of DCs caused modulation of enzymes in the sphingolipid pathway and enhanced expression of the endogenous glucosylceramide Ag. Importantly, iNKT cells responded specifically to rare DCs productively infected with Nef- and Vpu-defective HIV-1. Transmitted founder viral isolates differed in their CD1d downregulation capacity, suggesting that diverse strains may be differentially successful in inhibiting this pathway. Furthermore, both iNKT cells and DCs expressing CD1d and HIV receptors resided in the female genital mucosa, a site where HIV-1 transmission occurs. Taken together, these findings suggest that innate iNKT cell sensing of HIV-1 infection in DCs is an early immune detection mechanism, which is independent of priming and adaptive recognition of viral Ag, and is actively targeted by Nef- and Vpu-dependent viral immune evasion mechanisms. PMID:27481843

  13. Activation of invariant Natural Killer T lymphocytes in response to the α-galactosylceramide analogue KRN7000 encapsulated in PLGA-based nanoparticles and microparticles.

    PubMed

    Macho Fernandez, Elodie; Chang, Jiang; Fontaine, Josette; Bialecki, Emilie; Rodriguez, Fabien; Werkmeister, Elisabeth; Krieger, Vanessa; Ehret, Christophe; Heurtault, Béatrice; Fournel, Sylvie; Frisch, Benoit; Betbeder, Didier; Faveeuw, Christelle; Trottein, François

    2012-02-14

    Invariant Natural Killer T (iNKT) cells have potent immunostimulatory activities that could be exploited for human therapies. The high-affinity CD1d antigen α-galactosylceramide analogue KRN7000 (KRN) activates a cascade of anti-tumor effector cells and clinical studies have already had some initial success. To improve the efficacy of the treatment, strategies that aim to vectorize KRN would be valuable. In this study, we intended to characterize and compare the effect of KRN encapsulated in poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs, 90nm) and microparticles instead of macroparticles (MPs, 715nm) on the iNKT cell response. Our data show that whatever the size of the particles, vectorized KRN induced potent primary activation of iNKT cells in vitro and in vivo. We show that endocytosis of PLGA-based particles by dendritic cells is mediated by a clathrin-dependent manner and that this event is important to stimulate iNKT cells. Finally, we report that KRN vectorized in NPs and MPs exhibited different behaviours in vivo in terms of iNKT cell expansion and responsiveness to a recall stimulation. Collectively, our data validate the concept that KRN encapsulated in PLGA-based particles can be used as delivery systems to activate iNKT cells in vitro and in vivo. PMID:21575695

  14. Invariant Natural Killer T cells in children with Eosinophilic Esophagitis

    PubMed Central

    Jyonouchi, Soma; Smith, Cara Lea; Saretta, Francesca; Abraham, Valsamma; Ruymann, Kathryn R; Modayur-Chandramouleeswaran, Prasanna; Wang, Mei-Lun; Spergel, Jonathan M.; Cianferoni, Antonella

    2013-01-01

    Background Eosinophilic esophagitis (EoE) is an atopic disease characterized by eosinophilic inflammation in which dietary antigens (in particular, milk) play a major role. EoE is most likely a mixed IgE and non-IgE food-mediated reaction in which over-expression of Th2 cytokines, particularly IL-13, play a major role; however, the cells responsible for IL-13 over-expression remain elusive. Th2-cytokines are secreted following the ligation of invariant natural killer T cell receptors to sphingolipids (SL). Sphingolipids (SL) are presented via the CD1d molecule on the INKT cell surface. Cow’s milk-derived SL has been shown to activate iNKTs from children with IgE-mediated food allergies to milk (FA-MA) to produce Th2 cytokines. The role of iNKTs and milk-SL in EoE pathogenesis is currently unknown. Objective To investigate the role of iNKTs and milk-SL in EoE. Methods Peripheral blood mononuclear cells (PBMCs) from 10 children with active EoE (EoE-A), 10 children with controlled EoE (EoE-C), and 16 healthy controls (Non-EoE) were measured ex-vivo and then incubated with α-galactosylceramide (αGal) and milk-SL. INKTs from peripheral blood (PB) and esophageal biopsies were studied. Results EoE-A-children had significantly fewer peripheral blood iNKTs with a greater Th2-response to αGal and milk-SM compared to iNKTs of EoE-C and Non-EoE children. Additionally, EoE-A children had increased iNKT levels in esophageal biopsies compared to EoE-C children. Conclusion Milk-SLs are able to activate peripheral blood iNKTs in EoE-A children to produce Th2 cytokines. Additionally, iNKT levels are higher at the site of active esophageal eosinophilic inflammation. Clinical Relevance This study suggests that sphingolipids (SL) contained in milk may drive the development of EoE by promoting an iNKT cell-mediated Th2-type cytokine response that facilitates eosinophil-mediated allergic inflammation. PMID:24118614

  15. Contribution of Invariant Natural Killer T Cells to Skin Wound Healing.

    PubMed

    Tanno, Hiromasa; Kawakami, Kazuyoshi; Ritsu, Masae; Kanno, Emi; Suzuki, Aiko; Kamimatsuno, Rina; Takagi, Naoyuki; Miyasaka, Tomomitsu; Ishii, Keiko; Imai, Yoshimichi; Maruyama, Ryoko; Tachi, Masahiro

    2015-12-01

    In the present study, we determined the contribution of invariant natural killer T (iNKT) cells to the skin wound healing process. In iNKT cell-deficient (Jα18KO) mice lacking iNKT cells, wound closure was significantly delayed compared with wild-type mice. Collagen deposition, expression of α-smooth muscle actin and CD31, and wound breaking strength were significantly attenuated in Jα18KO mice. The adoptive transfer of liver mononuclear cells from wild-type but not from Jα18KO or interferon (IFN)-γ gene-disrupted (IFN-γKO) mice resulted in the reversal of this impaired wound healing in Jα18KO mice. IFN-γ expression was induced in the wounded tissues, which was significantly decreased at 6, 12, and 24 hours, but increased on day 3 after wounding in Jα18KO mice. The main source of the late-phase IFN-γ production in Jα18KO mice were neutrophils rather than NK cells and T cells. Administration of α-galactosylceramide, an activator of iNKT cells, resulted in the acceleration of wound healing on day 3 in wild-type mice. This effect was not observed in IFN-γKO mice. These results indicate that iNKT cells play important roles in wound healing. The iNKT cell-induced IFN-γ production may regulate the wound healing process in the early phase. PMID:26468976

  16. Innate Invariant NKT Cell Recognition of HIV-1–Infected Dendritic Cells Is an Early Detection Mechanism Targeted by Viral Immune Evasion

    PubMed Central

    Paquin-Proulx, Dominic; Gibbs, Anna; Bächle, Susanna M.; Checa, Antonio; Introini, Andrea; Leeansyah, Edwin; Wheelock, Craig E.; Nixon, Douglas F.; Broliden, Kristina; Tjernlund, Annelie; Moll, Markus

    2016-01-01

    Invariant NKT (iNKT) cells are innate-like T cells that respond rapidly with a broad range of effector functions upon recognition of glycolipid Ags presented by CD1d. HIV-1 carries Nef- and Vpu-dependent mechanisms to interfere with CD1d surface expression, indirectly suggesting a role for iNKT cells in control of HIV-1 infection. In this study, we investigated whether iNKT cells can participate in the innate cell–mediated immune response to HIV-1. Infection of dendritic cells (DCs) with Nef- and Vpu-deficient HIV-1 induced upregulation of CD1d in a TLR7-dependent manner. Infection of DCs caused modulation of enzymes in the sphingolipid pathway and enhanced expression of the endogenous glucosylceramide Ag. Importantly, iNKT cells responded specifically to rare DCs productively infected with Nef- and Vpu-defective HIV-1. Transmitted founder viral isolates differed in their CD1d downregulation capacity, suggesting that diverse strains may be differentially successful in inhibiting this pathway. Furthermore, both iNKT cells and DCs expressing CD1d and HIV receptors resided in the female genital mucosa, a site where HIV-1 transmission occurs. Taken together, these findings suggest that innate iNKT cell sensing of HIV-1 infection in DCs is an early immune detection mechanism, which is independent of priming and adaptive recognition of viral Ag, and is actively targeted by Nef- and Vpu-dependent viral immune evasion mechanisms. PMID:27481843

  17. Functional Invariant NKT Cells in Pig Lungs Regulate the Airway Hyperreactivity: A Potential Animal Model

    PubMed Central

    Manickam, Cordelia; Khatri, Mahesh; Rauf, Abdul; Li, Xiangming; Tsuji, Moriya; Rajashekara, Gireesh; Dwivedi, Varun

    2015-01-01

    Important roles played by invariant natural killer T (iNKT) cells in asthma pathogenesis have been demonstrated. We identified functional iNKT cells and CD1d molecules in pig lungs. Pig iNKT cells cultured in the presence of α-GalCer proliferated and secreted Th1 and Th2 cytokines. Like in other animal models, direct activation of pig lung iNKT cells using α-GalCer resulted in acute airway hyperreactivity (AHR). Clinically, acute AHR-induced pigs had increased respiratory rate, enhanced mucus secretion in the airways, fever, etc. In addition, we observed petechial hemorrhages, infiltration of CD4+ cells, and increased Th2 cytokines in AHR-induced pig lungs. Ex vivo proliferated iNKT cells of asthma induced pigs in the presence of C-glycoside analogs of α-GalCer had predominant Th2 phenotype and secreted more of Th2 cytokine, IL-4. Thus, baby pigs may serve as a useful animal model to study iNKT cell-mediated AHR caused by various environmental and microbial CD1d-specific glycolipid antigens. PMID:21042929

  18. Mutation of the Traj18 gene segment using TALENs to generate Natural Killer T cell deficient mice.

    PubMed

    Zhang, Jingjing; Bedel, Romain; Krovi, S Harsha; Tuttle, Kathryn D; Zhang, Bicheng; Gross, James; Gapin, Laurent; Matsuda, Jennifer L

    2016-01-01

    Invariant Natural Killer T (iNKT) cells are a unique subset of T lymphocytes that have been implicated in both promoting and suppressing a multitude of immune responses. In mice, iNKT cells express T cell antigen receptors (TCRs) comprising a unique TCRα rearrangement between the Trav11 and Traj18 gene segments. When paired with certain Trbv TCRβ chains, these TCRs recognize lipid antigens presented by the major histocompatibility complex (MHC) class I-like molecule, CD1d. Until recently, the sole model of iNKT deficiency targeted the Jα18, which is absolutely required to form the TCR with the appropriate antigenic specificity. However, these mice were demonstrated to have a large reduction in TCR repertoire diversity, which could confound results arising from studies using these mice. Here, we have created a new NKT-deficient mouse strain using transcription activator-like effector nuclease (TALEN) technology to only disrupt the expression of Jα18, leaving the remaining Jα repertoire unperturbed. We confirm that these mice lack iNKT cells and do not respond to lipid antigen stimulation while the development of conventional T cells, regulatory T cells, and type Ib NKT cells is normal. This new mouse strain will serve as a new model of iNKT cell deficiency to facilitate our understanding of iNKT biology. PMID:27256918

  19. Mutation of the Traj18 gene segment using TALENs to generate Natural Killer T cell deficient mice

    PubMed Central

    Zhang, Jingjing; Bedel, Romain; Krovi, S. Harsha; Tuttle, Kathryn D.; Zhang, Bicheng; Gross, James; Gapin, Laurent; Matsuda, Jennifer L.

    2016-01-01

    Invariant Natural Killer T (iNKT) cells are a unique subset of T lymphocytes that have been implicated in both promoting and suppressing a multitude of immune responses. In mice, iNKT cells express T cell antigen receptors (TCRs) comprising a unique TCRα rearrangement between the Trav11 and Traj18 gene segments. When paired with certain Trbv TCRβ chains, these TCRs recognize lipid antigens presented by the major histocompatibility complex (MHC) class I-like molecule, CD1d. Until recently, the sole model of iNKT deficiency targeted the Jα18, which is absolutely required to form the TCR with the appropriate antigenic specificity. However, these mice were demonstrated to have a large reduction in TCR repertoire diversity, which could confound results arising from studies using these mice. Here, we have created a new NKT-deficient mouse strain using transcription activator-like effector nuclease (TALEN) technology to only disrupt the expression of Jα18, leaving the remaining Jα repertoire unperturbed. We confirm that these mice lack iNKT cells and do not respond to lipid antigen stimulation while the development of conventional T cells, regulatory T cells, and type Ib NKT cells is normal. This new mouse strain will serve as a new model of iNKT cell deficiency to facilitate our understanding of iNKT biology. PMID:27256918

  20. Recognition of Microbial Glycolipids by Natural Killer T Cells

    PubMed Central

    Zajonc, Dirk M.; Girardi, Enrico

    2015-01-01

    T cells can recognize microbial antigens when presented by dedicated antigen-presenting molecules. While peptides are presented by classical members of the major histocompatibility complex (MHC) family (MHC I and II), lipids, glycolipids, and lipopeptides can be presented by the non-classical MHC member, CD1. The best studied subset of lipid-reactive T cells are type I natural killer T (iNKT) cells that recognize a variety of different antigens when presented by the non-classical MHCI homolog CD1d. iNKT cells have been shown to be important for the protection against various microbial pathogens, including B. burgdorferi, the causative agents of Lyme disease, and S. pneumoniae, which causes pneumococcal meningitis and community-acquired pneumonia. Both pathogens carry microbial glycolipids that can trigger the T cell antigen receptor (TCR), leading to iNKT cell activation. iNKT cells have an evolutionary conserved TCR alpha chain, yet retain the ability to recognize structurally diverse glycolipids. They do so using a conserved recognition mode, in which the TCR enforces a conserved binding orientation on CD1d. TCR binding is accompanied by structural changes within the TCR binding site of CD1d, as well as the glycolipid antigen itself. In addition to direct recognition of microbial antigens, iNKT cells can also be activated by a combination of cytokines (IL-12/IL-18) and TCR stimulation. Many microbes carry TLR antigens, and microbial infections can lead to TLR activation. The subsequent cytokine response in turn lower the threshold of TCR-mediated iNKT cell activation, especially when weak microbial or even self-antigens are presented during the cause of the infection. In summary, iNKT cells can be directly activated through TCR triggering of strong antigens, while cytokines produced by the innate immune response may be necessary for TCR triggering and iNKT cell activation in the presence of weak antigens. Here, we will review the molecular basis of iNKT cell

  1. Invariant natural killer T-cell neutralization is a possible novel therapy for human eosinophilic esophagitis

    PubMed Central

    Rayapudi, Madhavi; Rajavelu, Priya; Zhu, Xiang; Kaul, Ajay; Niranjan, Rituraj; Dynda, Scott; Mishra, Akanksha; Mattner, Jochen; Zaidi, Asifa; Dutt, Parmesh; Mishra, Anil

    2014-01-01

    Eosinophilic esophagitis (EoE) is a recently recognized inflammatory disorder that needs a potential therapeutic strategy. We earlier showed that iNKT cell-deficient mice are protected from allergen-induced EoE. Therefore, we now tested the hypothesis that iNKT cells are induced in the human EoE and is a novel possible target for the treatment of human EoE. Accordingly, we examine number of iNKT cells and eosinophils and expression of iNKT-associated cell surface receptors and chemokines by performing immunofluorescence, qPCR and ELISA in the esophageal biopsies and blood samples of normal subjects (comparison control) and EoE patients. Herein, we show that iNKT cell number, their receptor subcomponents Vα24 and Vβ11 expression, and associated chemokine CXCL16 levels (or expression) are induced significantly in EoE patients compared with normal individuals. In addition, we show that CXCL16 levels (or expression) correlate with the mRNA levels of Vα24 receptor but not well with esophageal eosinophilia in human EoE. Of note, we show that in vivo activation of iNKT cells is sufficient to induce EoE in mice. Furthermore, we show that anti-mCD1d- and anti-hVα24Jα18-neutralizing antibody treatment protects allergen-induced experimental EoE. Taken together, we have shown first time that iNKT cells have a critical pathogenic role in human and experimental EoE. iNKT cell neutralization by humanized anti-CD1d and anti-Vα24Jα18 antibodies might be a novel and potential therapy for human EoE. PMID:25505954

  2. Human Invariant Natural Killer T cells possess immune-modulating functions during Aspergillus infection.

    PubMed

    Beitzen-Heineke, Antonia; Bouzani, Maria; Schmitt, Anna-Lena; Kurzai, Oliver; Hünniger, Kerstin; Einsele, Hermann; Loeffler, Juergen

    2016-02-01

    Aspergillus fumigatus is the most common cause for invasive fungal infections, a disease associated with high mortality in immune-compromised patients. CD1d-restricted invariant natural killer T (iNKT) cells compose a small subset of T cells known to impact the immune response toward various infectious pathogens. To investigate the role of human iNKT cells during A. fumigatus infection, we studied their activation as determined by CD69 expression and cytokine production in response to distinct fungal morphotypes in the presence of different CD1d(+) antigen presenting cells using flow cytometry and multiplex enzyme-linked immunosorbent assay (ELISA). Among CD1d(+) subpopulations, CD1d(+)CD1c(+) mDCs showed the highest potential to activate iNKT cells on a per cell basis. The presence of A. fumigatus decreased this effect of CD1d(+)CD1c(+) mDCs on iNKT cells and led to reduced secretion of TNF-α, G-CSF and RANTES. Production of other Th1 and Th2 cytokines was not affected by the fungus, suggesting an immune-modulating function for human iNKT cells during A. fumigatus infection. PMID:26483428

  3. α-Galactosylceramide-activated murine NK1.1(+) invariant-NKT cells in the myometrium induce miscarriages in mice.

    PubMed

    Ichikawa, Tomoko; Negishi, Yasuyuki; Shimizu, Masumi; Takeshita, Toshiyuki; Takahashi, Hidemi

    2016-08-01

    Innate immunity, which is unable to discriminate self from allo-antigens, is thought to be important players in the induction of miscarriages. Here, we show that the administration of IL-12 to syngeneic-mated C57BL/6 mice on gestation day 7.5 (Gd 7.5), drives significant miscarriages in pregnant females. Furthermore, the administration on Gd 7.5 of α-galactosylceramide (α-GalCer), which is known to activate invariant natural killer T (iNKT) cells, induced miscarriages in both syngeneic-mated C57BL/6 mice and allogeneic-mated mice (C57BL/6 (♀) × BALB/c (♂)). Surprisingly, the percentages of both DEC-205(+) DCs and CD1d-restricted NK1.1(+) iNKT cells were higher in the myometrium of pregnant mice treated i.p. with α-GalCer than in the decidua. IL-12 secreted from α-GalCer-activated DEC-205(+) DCs stimulated the secretion of cytokines, including IL-2, IL-4, IFN-γ, TNF-α, perforin, and granzyme B, from the NK1.1(+) iNKT cells in the myometrium, leading to fetal loss in pregnant mice. Finally, the i.p. administration of IL-12 and/or α-GalCer in iNKT-deficient Jα18(-/-) (Jα18 KO) mice did not induce miscarriages. This study provides a new perspective on the importance of the myometrium, rather than the decidua, in regulating pregnancy and a mechanism of miscarriage mediated by activated DEC-205(+) DCs and NK1.1(+) iNKT cells in the myometrium of pregnant mice. PMID:27198610

  4. Preparation, characterisation and entrapment of a non-glycosidic threitol ceramide into liposomes for presentation to invariant natural killer T cells

    PubMed Central

    Kaur, Randip; Chen, Jili; Dawoodji, Amina; Cerundolo, Vincenzo; Garcia-Diaz, Yoel R.; Wojno, Justyna; Cox, Liam R.; Besra, Gurdyal S; Moghaddam, Behfar; Perrie, Yvonne

    2013-01-01

    Dendritic cells (DCs) are able to present glycolipids to invariant natural killer T (iNKT) cells in vivo. Very few compounds have been found that stimulate iNKT cells and of these the best-characterised is the glycolipid α-galactosylceramide (α-GalCer 1), which stimulates the production of large quantities of IFNγ and IL-4. However, αGalCer leads to overstimulation of iNKT cells. It has been demonstrated that the αGalCer analogue, threitol ceramide (ThrCer 2), successfully activates iNKT cells and overcomes the problematic iNKT cell activation-induced anergy. In this study, ThrCer 2 has been inserted into the bilayers of liposomes composed of a neutral lipid, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) or dimethyldioctadecylammonium bromide (DDA), a cationic lipid. Incorporation efficiencies of ThrCer within the liposomes was 96 % for DSPC liposomes and 80 % for DDA liposomes with the vesicle size (large multilamellar vs small unilamellar vesicles) making no significant difference. Langmuir-Blodgett studies suggest both DSPC and DDA stack within the monolayer co-operatively with the ThrCer molecules with no condensing effect. In terms of cellular responses IFNγ secretion was higher for cells treated with small DDA liposomes compared to the other liposome formulations, suggesting that ThrCer encapsulation in this liposome formulation resulted in a higher uptake by DCs. PMID:21283989

  5. IVIg immune reconstitution treatment alleviates the state of persistent immune activation and suppressed CD4 T cell counts in CVID.

    PubMed

    Paquin-Proulx, Dominic; Santos, Bianca A N; Carvalho, Karina I; Toledo-Barros, Myrthes; Barreto de Oliveira, Ana Karolina; Kokron, Cristina M; Kalil, Jorge; Moll, Markus; Kallas, Esper G; Sandberg, Johan K

    2013-01-01

    Common variable immunodeficiency (CVID) is characterized by defective B cell function, impaired antibody production, and increased susceptibility to bacterial infections. Here, we addressed the hypothesis that poor antibody-mediated immune control of infections may result in substantial perturbations in the T cell compartment. Newly diagnosed CVID patients were sampled before, and 6-12 months after, initiation of intravenous immunoglobulin (IVIg) therapy. Treatment-naïve CVID patients displayed suppressed CD4 T cell counts and myeloid dendritic cell (mDC) levels, as well as high levels of immune activation in CD8 T cells, CD4 T cells, and invariant natural killer T (iNKT) cells. Expression of co-stimulatory receptors CD80 and CD83 was elevated in mDCs and correlated with T cell activation. Levels of both FoxP3+ T regulatory (Treg) cells and iNKT cells were low, whereas soluble CD14 (sCD14), indicative of monocyte activation, was elevated. Importantly, immune reconstitution treatment with IVIg partially restored the CD4 T cell and mDC compartments. Treatment furthermore reduced the levels of CD8 T cell activation and mDC activation, whereas levels of Treg cells and iNKT cells remained low. Thus, primary deficiency in humoral immunity with impaired control of microbial infections is associated with significant pathological changes in cell-mediated immunity. Furthermore, therapeutic enhancement of humoral immunity with IVIg infusions alleviates several of these defects, indicating a relationship between poor antibody-mediated immune control of infections and the occurrence of abnormalities in the T cell and mDC compartments. These findings help our understanding of the immunopathogenesis of primary immunodeficiency, as well as acquired immunodeficiency caused by HIV-1 infection. PMID:24130688

  6. Invariant natural killer T cells and their ligands: focus on multiple sclerosis

    PubMed Central

    O'Keeffe, Joan; Podbielska, Maria; Hogan, Edward L

    2015-01-01

    Invariant natural killer T (iNKT) cells are an innate population of T cells identified by the expression of an invariant T-cell receptor and reactivity to lipid-based antigens complexed with CD1d. They account for a small percentage of lymphocytes, but are extremely potent and play central roles in immunity to infection, in some cancers, and in autoimmunity. The list of relevant stimulatory lipids and glycolipid antigens now includes a range of endogenous self-antigens including the myelin-derived acetylated galactosylceramides. Recent progress in studies to identify the nature of lipid recognition for iNKT cells in autoimmune diseases like multiple sclerosis is likely to foster the development of therapeutic strategies aimed at harnessing iNKT cell activity. PMID:25976210

  7. CD252 regulates mast cell mediated, CD1d-restricted NKT-cell activation in mice.

    PubMed

    Gonzalez Roldan, Nestor; Orinska, Zane; Ewers, Hanno; Bulfone-Paus, Silvia

    2016-02-01

    The interaction between tissue-resident mast cells (MCs) and recruited immune cells contributes to tissue immunosurveillance. However, the cells, mechanisms, and receptors involved in this crosstalk remain ill defined. Invariant natural killer T (iNKT) cells are CD1d-restricted innate lymphocytes that recognize glycolipid antigens and have emerged as critical players in immunity. Here, we show that primary mouse peritoneal MCs express surface CD1d, which is upregulated in vivo following administration of alpha-galactosylceramide. In contrast, in BM-derived MCs CD1d was found to be stored intracellularly and to relocate at the cell surface upon IgE-mediated degranulation. Activated BM-derived MCs expressing surface CD1d and loaded with alpha-galactosylceramide were found to induce iNKT-cell proliferation and the release of IFN-γ, IL-13, and IL-4 in a CD1d-restricted manner. Moreover, the costimulatory molecules CD48, CD137L, CD252, CD274, and CD275 affected MC-induced IFN-γ release and iNKT-cell proliferation. Interestingly, among the costimulatory molecules, CD48 and CD252 exhibited a distinctly regulatory activity on iNKT-cell release of both IFN-γ and IL-13. In conclusion, we demonstrate that the crosstalk between MCs and iNKT cells may regulate inflammatory immune responses. PMID:26564814

  8. Flagellin Modulates the Function of Invariant NKT Cells From Patients With Asthma via Dendritic Cells

    PubMed Central

    Shim, Jae-Uoong; Rhee, Joon-Haeng; Jeong, Ji-Ung

    2016-01-01

    Purpose Invariant natural killer T (iNKT) cells play a critical role in the pathogenesis of asthma. We previously reported the association between circulating Th2-like iNKT cells and lung function in asthma patients and the suppressive effect of Toll-like receptor 5 ligand flagellin B (FlaB) on asthmatic in a mouse model. Thus, we investigated whether FlaB modulates the function of circulating iNKT cells in asthmatic patients. Methods Peripheral blood mononuclear cells (PBMCs) were treated with FlaB, and the secreted and intracellular cytokines of iNKT cells were evaluated by using ELISA and flow cytometry, respectively, following stimulation with α-galactosylceramide. Foxp3+ iNKT cells were also measured. To determine the effect of FlaB-treated dendritic cells (DCs) on iNKT cells, we co-cultured CD14+ monocyte-derived DCs and T cells from patients with house dust mite-sensitive asthma and analyzed intracellular cytokines in iNKT cells. Results A reduction of IL-4 and IL-17 production by iNKT cells in PBMCs after FlaB treatment was alleviated following blocking of IL-10 signaling. A decrease in the frequencies of IL-4+ and IL-17+ iNKT cells by FlaB-treated DCs was reversed after blocking of IL-10 signaling. Simultaneously, an increase in Foxp3+ iNKT cells induced by FlaB treatment disappeared after blocking of IL-10. Conclusions FlaB may inhibit Th2- and Th17-like iNKT cells and induce Foxp3+ iNKT cells by DCs via an IL-10-dependent mechanism in asthmatic patients. In patients with a specific asthma phenotype associated with iNKT cells, FlaB may be an effective immunomodulator for iNKT cell-targeted immunotherapy. PMID:26922930

  9. Effect of invariant natural killer T cells with IL-5 and activated IL-6 receptor in ventilator-associated lung injury in mice.

    PubMed

    Shiga, Yuka; Sugamata, Ryuichi; Iwamura, Chiaki; Nagao, Tomokazu; Zao, Jun; Kawakami, Kazuyoshi; Kawachi, Shoji; Nakayama, Toshinori; Suzuki, Kazuo

    2014-02-01

    Mechanical ventilation (MV) is well known to potentially cause ventilator-associated lung injury (VALI). It has also been reported recently that activation of invariant natural killer T (iNKT) cells is involved in the onset/progression of airway inflammation. We analyzed the roles of inflammatory cells, including iNKT cells, and cytokines/chemokines in a mouse model of VALI. C57BL/6 and Vα14(+)NKT cell-deficient (Jα18KO) female mice were subjected to MV for 5 hours. The MV induced lung injury in the mice, with severe histological abnormalities, elevation in the percentages of neutrophils in the bronchoalveolar lavage fluid (BALF), and increase in the number of iNKT cells in the lung. Jα18KO mice subjected to MV for 5 hours also showed lung injury, with decrease of the PaO2/FiO2 ratio (P/F ratio) and elevation of the levels of total protein, IL-5, IL-6, IL-12p40, and keratinocyte-derived cytokine (KC) in the BALF. Intranasal administration of anti-IL-5 monoclonal antibody (mAb) or anti-IL-6 receptor (IL-6R) mAb into the Jα18KO mice prior to the start of MV resulted in significant improvement in the blood oxygenation. In addition, the anti-IL-5 mAb administration was associated with a decrease in the levels of IL-5, IL-9, and IL-6R in the BALF, and anti-IL-6R mAb administration suppressed the mRNA expressions of IL-5, IL-6, IL-6R, and KC. These results suggest that iNKT cells may play a role in attenuating the inflammatory caused by ventilation through IL-5 and IL-6R. PMID:24246030

  10. Essential functions for ID proteins at multiple checkpoints in natural killer T cell development

    PubMed Central

    Verykokakis, Mihalis; Krishnamoorthy, Veena; Iavarone, Antonio; Lasorella, Anna; Sigvardsson, Mikael; Kee, Barbara L.

    2013-01-01

    Invariant natural killer T (iNKT) cells display characteristics of both adaptive and innate lymphoid cells (ILCs). Like other ILCs, iNKT cells constitutively express ID proteins, which antagonize the E protein transcription factors that are essential for adaptive lymphocyte development. However, unlike ILCs, ID2 is not essential for thymic iNKT cell development. Here we demonstrated that ID2 and ID3 redundantly promoted iNKT cell lineage specification involving the induction of the signature transcription factor PLZF and that ID3 was critical for development of TBET-dependent NKT1 cells. In contrast, both ID2 and ID3 limited iNKT cell numbers by enforcing the post-selection checkpoint in conventional thymocytes. Therefore, iNKT cells show both adaptive and innate-like requirements for ID proteins at distinct checkpoints during iNKT cell development. PMID:24244015

  11. T-Cell-Specific Deletion of Map3k1 Reveals the Critical Role for Mekk1 and Jnks in Cdkn1b-Dependent Proliferative Expansion.

    PubMed

    Suddason, Tesha; Anwar, Saba; Charlaftis, Nikolaos; Gallagher, Ewen

    2016-01-26

    MAPK signaling is important for T lymphocyte development, homeostasis, and effector responses. To better understand the role of Mekk1 (encoded by Map3k1) in T cells, we conditionally deleted Map3k1 in Lck(Cre/+)Map3k1(f/f) mice, and these display larger iNKT cell populations within the liver, spleen, and bone marrow. Mekk1 signaling controls splenic and liver iNKT cell expansion in response to glycolipid antigen. Lck(Cre/+)Map3k1(f/f) mice have enhanced liver damage in response to glycolipid antigen. Mekk1 regulates Jnk activation in iNKT cells and binds and transfers Lys63-linked poly-ubiquitin onto Carma1. Map3k1 is critical for the regulation of p27(Kip1) (encoded by Cdkn1b). PMID:26774476

  12. T-Cell-Specific Deletion of Map3k1 Reveals the Critical Role for Mekk1 and Jnks in Cdkn1b-Dependent Proliferative Expansion

    PubMed Central

    Suddason, Tesha; Anwar, Saba; Charlaftis, Nikolaos; Gallagher, Ewen

    2016-01-01

    Summary MAPK signaling is important for T lymphocyte development, homeostasis, and effector responses. To better understand the role of Mekk1 (encoded by Map3k1) in T cells, we conditionally deleted Map3k1 in LckCre/+Map3k1f/f mice, and these display larger iNKT cell populations within the liver, spleen, and bone marrow. Mekk1 signaling controls splenic and liver iNKT cell expansion in response to glycolipid antigen. LckCre/+Map3k1f/f mice have enhanced liver damage in response to glycolipid antigen. Mekk1 regulates Jnk activation in iNKT cells and binds and transfers Lys63-linked poly-ubiquitin onto Carma1. Map3k1 is critical for the regulation of p27Kip1 (encoded by Cdkn1b). PMID:26774476

  13. NKT cells mediate pulmonary inflammation and dysfunction in murine sickle cell disease through production of IFN-γ and CXCR3 chemokines

    PubMed Central

    Wallace, Kori L.; Marshall, Melissa A.; Ramos, Susan I.; Lannigan, Joanne A.; Field, Joshua J.; Strieter, Robert M.

    2009-01-01

    Ischemia-reperfusion injury (IRI) triggers an inflammatory cascade that is initiated by the activation of CD1d-restricted iNKT cells. In sickle cell disease (SCD), misshapen erythrocytes evoke repeated transient bouts of microvascular IRI. Compared with C57BL/6 controls, NY1DD mice have more numerous and activated (CD69+, interferon-γ+ [IFN-γ+]) lung, liver, and spleen iNKT cells that are hyperresponsive to hypoxia/reoxygenation. NY1DD mice have increased pulmonary levels of IFN-γ, IFN-γ–inducible chemokines (CXCL9, CXCL10), and elevated numbers of lymphocytes expressing the chemokine receptor CXCR3. Treating NY1DD mice with anti-CD1d antibody to inhibit iNKT cell activation reverses baseline pulmonary dysfunction manifested as elevated vascular permeability, decreased arterial oxygen saturation, and increased numbers of activated leukocytes. Anti-CD1d antibodies decrease pulmonary levels of IFN-γ and CXCR3 chemokines. Neutralization of CXCR3 receptors ameliorates pulmonary dysfunction. Crossing NY1DD to lymphocyte-deficient Rag1−/− mice decreases pulmonary dysfunction. This is counteracted by the adoptive transfer of 1 million NKT cells. Like mice, people with SCD have increased numbers of activated circulating iNKT cells expressing CXCR3. Together, these data indicate that iNKT cells play a pivotal role in sustaining inflammation in SCD mice by a pathway involving IFN-γ and production of chemotactic CXCR3 chemokines and that this mechanism may translate to human disease. PMID:19433855

  14. Exploiting the Role of Endogenous Lymphoid-Resident Dendritic Cells in the Priming of NKT Cells and CD8+ T Cells to Dendritic Cell-Based Vaccines

    PubMed Central

    Petersen, Troels R.; Sika-Paotonu, Dianne; Knight, Deborah A.; Simkins, Helen M. A.; Hermans, Ian F.

    2011-01-01

    Transfer of antigen between antigen-presenting cells (APCs) is potentially a physiologically relevant mechanism to spread antigen to cells with specialized stimulatory functions. Here we show that specific CD8+ T cell responses induced in response to intravenous administration of antigen-loaded bone marrow-derived dendritic cells (BM-DCs), were ablated in mice selectively depleted of endogenous lymphoid-resident langerin+ CD8α+ dendritic cells (DCs), suggesting that the antigen is transferred from the injected cells to resident APCs. In contrast, antigen-specific CD4+ T cells were primed predominantly by the injected BM-DCs, with only very weak contribution of resident APCs. Crucially, resident langerin+ CD8α+ DCs only contributed to the priming of CD8+ T cells in the presence of maturation stimuli such as intravenous injection of TLR ligands, or by loading the BM-DCs with the glycolipid α-galactosylceramide (α-GalCer) to recruit the adjuvant activity of activated invariant natural killer-like T (iNKT) cells. In fact, injection of α-GalCer-loaded CD1d−/− BM-DCs resulted in potent iNKT cell activation, suggesting that this glycolipid antigen can also be transferred to resident CD1d+ APCs. While iNKT cell activation per se was independent of langerin+ CD8α+ DCs, some iNKT cell-mediated activities were reduced, notably release of IL-12p70 and transactivation of NK cells. We conclude that both protein and glycolipid antigens can be exchanged between distinct DC species. These data suggest that the efficacy of DC-based vaccination strategies may be improved by the incorporation of a systemic maturation signal aimed to engage resident APCs in CD8+ T cell priming, and α-GalCer may be particularly well suited to this purpose. PMID:21483862

  15. Activation of Nonclassical CD1d-Restricted NK T Cells Induces Airway Hyperreactivity in β2-Microglobulin-Deficient Mice1

    PubMed Central

    Meyer, Everett H.; Pichavant, Muriel; Akbari, Omid; Yasumi, Takahiro; Savage, Paul B.; DeKruyff, Rosemarie H.; Umetsu, Dale T.

    2016-01-01

    Allergic asthma is characterized by Th2-driven eosinophilic airway inflammation and by a central feature called airway hyperreactivity (AHR), development of which requires the presence of classical type I invariant NK T (iNKT) cells. Allergen-induced AHR, however, develops in β2-microglobulin (β2m)−/− mice, which lack classical iNKT cells, suggesting that in some situations iNKT cells may be dispensable for the development of AHR. In contrast, our studies now suggest that a CD1d-restricted, NK1.1+ noninvariant TCR NKT cell population is present in β2m−/− mice and is responsible for the development of AHR but not for Th2 responses. Furthermore, treatment of β2m−/− mice with anti-CD1d mAb or anti-NK1.1 mAb unexpectedly abolished allergen-induced AHR. The CD1-restricted NKT cells in these mice, which failed to respond to α-galactosylceramide and which therefore were not classical type I iNKT cells, appear to represent an NKT cell subset restricted by a β2m-independent form of CD1d. These results indicate that, although classical type I iNKT cells are normally required for the development of AHR, under different circumstances other NKT cell subsets, including nonclassical NKT cells, may substitute for classical iNKT cells and induce AHR. PMID:18802058

  16. Cytokine expression by invariant natural killer T cells is tightly regulated throughout development and settings of type-2 inflammation

    PubMed Central

    O'Brien, T F; Bao, K; Dell'Aringa, M; Ang, W X G; Abraham, S; Reinhardt, R L

    2016-01-01

    Invariant natural killer T (iNKT) cells produce cytokines interleukin-4 (IL-4) and IL-13 during type-2 inflammatory responses. However, the nature in which iNKT cells acquire type-2 cytokine competency and the precise contribution of iNKT cell–derived IL-4 and IL-13 in vivo remains unclear. Using IL-13-reporter mice to fate-map cytokine–expressing cells in vivo, this study reveals that thymic iNKT cells express IL-13 early during development, and this IL-13-expressing intermediate gives rise to mature iNKT1, iNKT2, and iNKT17 subsets. IL-4 and IL-13 reporter mice also reveal that effector iNKT2 cells produce IL-4 but little IL-13 in settings of type-2 inflammation. The preferential production of IL-4 over IL-13 in iNKT2 cells results in part from their reduced GATA-3 expression. In summary, this work helps integrate current models of iNKT cell development, and further establishes non-coordinate production of IL-4 and IL-13 as the predominant pattern of type-2 cytokine expression among innate cells in vivo. PMID:26349658

  17. Invariant NKT Cell Activation Induces Late Preterm Birth That Is Attenuated by Rosiglitazone.

    PubMed

    St Louis, Derek; Romero, Roberto; Plazyo, Olesya; Arenas-Hernandez, Marcia; Panaitescu, Bogdan; Xu, Yi; Milovic, Tatjana; Xu, Zhonghui; Bhatti, Gaurav; Mi, Qing-Sheng; Drewlo, Sascha; Tarca, Adi L; Hassan, Sonia S; Gomez-Lopez, Nardhy

    2016-02-01

    Preterm birth (PTB) is the leading cause of neonatal morbidity and mortality worldwide. Although intra-amniotic infection is a recognized cause of spontaneous preterm labor, the noninfection-related etiologies are poorly understood. In this article, we demonstrated that the expansion of activated CD1d-restricted invariant NKT (iNKT) cells in the third trimester by administration of α-galactosylceramide (α-GalCer) induced late PTB and neonatal mortality. In vivo imaging revealed that fetuses from mice that underwent α-GalCer-induced late PTB had bradycardia and died shortly after delivery. Yet, administration of α-GalCer in the second trimester did not cause pregnancy loss. Peroxisome proliferator-activated receptor (PPAR)γ activation, through rosiglitazone treatment, reduced the rate of α-GalCer-induced late PTB and improved neonatal survival. Administration of α-GalCer in the third trimester suppressed PPARγ activation, as shown by the downregulation of Fabp4 and Fatp4 in myometrial and decidual tissues, respectively; this suppression was rescued by rosiglitazone treatment. Administration of α-GalCer in the third trimester induced an increase in the activation of conventional CD4(+) T cells in myometrial tissues and the infiltration of activated macrophages, neutrophils, and mature dendritic cells to myometrial and/or decidual tissues. All of these effects were blunted after rosiglitazone treatment. Administration of α-GalCer also upregulated the expression of inflammatory genes at the maternal-fetal interface and systemically, and rosiglitazone treatment partially attenuated these responses. Finally, an increased infiltration of activated iNKT-like cells in human decidual tissues is associated with noninfection-related preterm labor/birth. Collectively, these results demonstrate that iNKT cell activation in vivo leads to late PTB by initiating innate and adaptive immune responses and suggest that the PPARγ pathway has potential as a target for

  18. Expression of activation-induced cytidine deaminase enhances the clearance of pneumococcal pneumonia: evidence of a subpopulation of protective anti-pneumococcal B1a cells.

    PubMed

    Yamamoto, Natsuo; Kerfoot, Steven M; Hutchinson, Andrew T; Dela Cruz, Charles S; Nakazawa, Naomi; Szczepanik, Marian; Majewska-Szczepanik, Monika; Nazimek, Katarzyna; Ohana, Noboru; Bryniarski, Krzysztof; Mori, Tsutomu; Muramatsu, Masamichi; Kanemitsu, Keiji; Askenase, Philip W

    2016-01-01

    We describe a protective early acquired immune response to pneumococcal pneumonia that is mediated by a subset of B1a cells. Mice deficient in B1 cells (xid), or activation-induced cytidine deaminase (AID(-/-) ), or invariant natural killer T (iNKT) cells (Jα18(-/-) ), or interleukin-13 (IL-13(-/-) ) had impaired early clearance of pneumococci in the lung, compared with wild-type mice. In contrast, AID(-/-) mice adoptively transferred with AID(+/+) B1a cells, significantly cleared bacteria from the lungs as early as 3 days post infection. We show that this early bacterial clearance corresponds to an allergic contact sensitivity-like cutaneous response, probably due to a subpopulation of initiating B1a cells. In the pneumonia model, these B1a cells were found to secrete higher affinity antigen-specific IgM. In addition, as in contact sensitivity, iNKT cells were required for the anti-pneumococcal B1a cell initiating response, probably through early production of IL-13, given that IL-13(-/-) mice also failed to clear infection. Our study is the first to demonstrate the importance of AID in generating an appropriate B1a cell response to pathogenic bacteria. Given the antibody affinity and pneumonia resistance data, natural IgM produced by conventional B1a cells are not responsible for pneumonia clearance compared with the AID-dependent subset. PMID:26456931

  19. Adjuvant effects of invariant NKT cell ligand potentiates the innate and adaptive immunity to an inactivated H1N1 swine influenza virus vaccine in pigs.

    PubMed

    Dwivedi, Varun; Manickam, Cordelia; Dhakal, Santosh; Binjawadagi, Basavaraj; Ouyang, Kang; Hiremath, Jagadish; Khatri, Mahesh; Hague, Jacquelyn Gervay; Lee, Chang Won; Renukaradhya, Gourapura J

    2016-04-15

    Pigs are considered as the source of some of the emerging human flu viruses. Inactivated swine influenza virus (SwIV) vaccine has been in use in the US swine herds, but it failed to control the flu outbreaks. The main reason has been attributed to lack of induction of strong local mucosal immunity in the respiratory tract. Invariant natural killer T (iNKT) cell is a unique T cell subset, and activation of iNKT cell using its ligand α-Galactosylceramide (α-GalCer) has been shown to potentiate the cross-protective immunity to inactivated influenza virus vaccine candidates in mice. Recently, we discovered iNKT cell in pig and demonstrated its activation using α-GalCer. In this study, we evaluated the efficacy of an inactivated H1N1 SwIV coadministered with α-GalCer intranasally against a homologous viral challenge. Our results demonstrated the potent adjuvant effects of α-GalCer in potentiating both innate and adaptive immune responses to SwIV Ags in the lungs of pigs, which resulted in reduction in the lung viral load by 3 logs compared to without adjuvant. Immunologically, in the lungs of pigs vaccinated with α-GalCer an increased virus specific IgA response, IFN-α secretion and NK cell-cytotoxicity was observed. In addition, iNKT cell-stimulation enhanced the secretion of Th1 cytokines (IFN-γ and IL-12) and reduced the production of immunosuppressive cytokines (IL-10 and TGF-β) in the lungs of pigs⋅ In conclusion, we demonstrated for the first time iNKT cell adjuvant effects in pigs to SwIV Ags through augmenting the innate and adaptive immune responses in the respiratory tract. PMID:27016770

  20. The tumor antigen N-glycolyl-GM3 is a human CD1d ligand capable of mediating B cell and natural killer T cell interaction.

    PubMed

    Gentilini, M Virginia; Pérez, M Eugenia; Fernández, Pablo Mariano; Fainboim, Leonardo; Arana, Eloísa

    2016-05-01

    The expression of N-glycolyl-monosialodihexosyl-ganglioside (NGcGM3) in humans is restricted to cancer cells; therefore, it is a tumor antigen. There are measurable quantities of circulating anti-NGcGM3 antibodies (aNGcGM3 Abs) in human serum. Interestingly, some people have circulating Ag-specific immunoglobulins G (IgGs) that are capable of complement mediated cytotoxicity against NGcGM3 positive cells, which is relevant for tumor surveillance. In light of the chemical nature of Ag, we postulated it as a candidate ligand for CD1d. Furthermore, we hypothesize that the immune mechanism involved in the generation of these Abs entails cross talk between B lymphocytes (Bc) and invariant natural killer T cells (iNKT). Combining cellular techniques, such as flow cytometry and biochemical assays, we demonstrated that CD1d binds to NGcGM3 and that human Bc present NGcGM3 in a CD1d context according to two alternative strategies. We also showed that paraformaldehyde treatment of cells expressing CD1d affects the presentation. Finally, by co-culturing primary human Bc with iNKT and measuring Ki-67 expression, we detected a reproducible increment in the proliferation of the iNKT population when Ag was on the medium. Our findings identify a novel, endogenous, human CD1d ligand, which is sufficiently competent to stimulate iNKT. We postulate that CD1d-restricted Bc presentation of NGcGM3 drives effective iNKT activation, an immunological mechanism that has not been previously described for humans, which may contribute to understanding aNGcGM3 occurrence. PMID:26969612

  1. Antitumor Responses of Invariant Natural Killer T Cells

    PubMed Central

    Altman, Jennie B.; Benavides, Adriana D.; Das, Rupali; Bassiri, Hamid

    2015-01-01

    Natural killer T (NKT) cells are innate-like lymphocytes that were first described in the late 1980s. Since their initial description, numerous studies have collectively shed light on their development and effector function. These studies have highlighted the unique requirements for the activation of these lymphocytes and the functional responses that distinguish these cells from other effector lymphocyte populations such as conventional T cells and NK cells. This body of literature suggests that NKT cells play diverse nonredundant roles in a number of disease processes, including the initiation and propagation of airway hyperreactivity, protection against a variety of pathogens, development of autoimmunity, and mediation of allograft responses. In this review, however, we focus on the role of a specific lineage of NKT cells in antitumor immunity. Specifically, we describe the development of invariant NKT (iNKT) cells and the factors that are critical for their acquisition of effector function. Next, we delineate the mechanisms by which iNKT cells influence and modulate the activity of other immune cells to directly or indirectly affect tumor growth. Finally, we review the successes and failures of clinical trials employing iNKT cell-based immunotherapies and explore the future prospects for the use of such strategies. PMID:26543874

  2. CDR3β sequence motifs regulate autoreactivity of human invariant NKT cell receptors.

    PubMed

    Chamoto, Kenji; Guo, Tingxi; Imataki, Osamu; Tanaka, Makito; Nakatsugawa, Munehide; Ochi, Toshiki; Yamashita, Yuki; Saito, Akiko M; Saito, Toshiki I; Butler, Marcus O; Hirano, Naoto

    2016-04-01

    Invariant natural killer T (iNKT) cells are a subset of T lymphocytes that recognize lipid ligands presented by monomorphic CD1d. Human iNKT T cell receptor (TCR) is largely composed of invariant Vα24 (Vα24i) TCRα chain and semi-variant Vβ11 TCRβ chain, where complementarity-determining region (CDR)3β is the sole variable region. One of the characteristic features of iNKT cells is that they retain autoreactivity even after the thymic selection. However, the molecular features of human iNKT TCR CDR3β sequences that regulate autoreactivity remain unknown. Since the numbers of iNKT cells with detectable autoreactivity in peripheral blood is limited, we introduced the Vα24i gene into peripheral T cells and generated a de novo human iNKT TCR repertoire. By stimulating the transfected T cells with artificial antigen presenting cells (aAPCs) presenting self-ligands, we enriched strongly autoreactive iNKT TCRs and isolated a large panel of human iNKT TCRs with a broad range autoreactivity. From this panel of unique iNKT TCRs, we deciphered three CDR3β sequence motifs frequently encoded by strongly-autoreactive iNKT TCRs: a VD region with 2 or more acidic amino acids, usage of the Jβ2-5 allele, and a CDR3β region of 13 amino acids in length. iNKT TCRs encoding 2 or 3 sequence motifs also exhibit higher autoreactivity than those encoding 0 or 1 motifs. These data facilitate our understanding of the molecular basis for human iNKT cell autoreactivity involved in immune responses associated with human disease. PMID:26748722

  3. Invariant natural killer T cells direct B cell responses to cognate lipid antigen in an interleukin 21- dependent manner

    PubMed Central

    King, Irah L; Fortier, Anne; Tighe, Michael; Dibble, John; Watts, Gerald FM; Veerapen, Natacha; Haberman, Ann M; Besral, Gurdyal S; Mohrs, Markus; Brenner, Michael B; Leadbetter, Elizabeth A

    2013-01-01

    Murine invariant natural killer T (iNKT) cells provide cognate and non-cognate help for lipid and protein-specific B cells, respectively. However, the long term B cell outcome following cognate iNKT help is currently unknown. We show that cognate iNKT cell help resulted in a B cell differentiation program characterized by extrafollicular plasmablasts, germinal center formation, affinity maturation and a robust primary IgG antibody response that was uniquely dependent on iNKT-derived interleukin 21 (IL-21). However, cognate iNKT cell help did not generate an enhanced humoral memory response. Thus, iNKT cell cognate help for lipid-specific B cells induces a unique signature which is a hybrid of classic T-dependent (TD) and T-independent type 2 (TI-2) B cell responses. PMID:22120118

  4. Vitamin D and 1,25(OH)2D regulation of T cells.

    PubMed

    Cantorna, Margherita T; Snyder, Lindsay; Lin, Yang-Ding; Yang, Linlin

    2015-04-01

    Vitamin D is a direct and indirect regulator of T cells. The mechanisms by which vitamin D directly regulates T cells are reviewed and new primary data on the effects of 1,25 dihydroxyvitamin D (1,25(OH)2D) on human invariant natural killer (iNK)T cells is presented. The in vivo effects of vitamin D on murine T cells include inhibition of T cell proliferation, inhibition of IFN-γ, IL-17 and induction of IL-4. Experiments in mice demonstrate that the effectiveness of 1,25(OH)2D requires NKT cells, IL-10, the IL-10R and IL-4. Comparisons of mouse and human T cells show that 1,25(OH)2D inhibits IL-17 and IFN-γ, and induces T regulatory cells and IL-4. IL-4 was induced by 1,25(OH)2D in mouse and human iNKT cells. Activation for 72 h was required for optimal expression of the vitamin D receptor (VDR) in human and mouse T and iNKT cells. In addition, T cells are potential autocrine sources of 1,25(OH)2D but again only 48-72 h after activation. Together the data support the late effects of vitamin D on diseases like inflammatory bowel disease and multiple sclerosis where reducing IL-17 and IFN-γ, while inducing IL-4 and IL-10, would be beneficial. PMID:25912039

  5. CD1d-restricted antigen presentation by Vγ9Vδ2-T cells requires trogocytosis.

    PubMed

    Schneiders, Famke L; Prodöhl, Jan; Ruben, Jurjen M; O'Toole, Tom; Scheper, Rik J; Bonneville, Marc; Scotet, Emmanuel; Verheul, Henk M W; de Gruijl, Tanja D; van der Vliet, Hans J

    2014-08-01

    CD1d-restricted invariant natural killer T cells (iNKT) constitute an important immunoregulatory T-cell subset that can be activated by the synthetic glycolipid α-galactosylceramide (α-GalCer) and play a dominant role in antitumor immunity. Clinical trials with α-GalCer-pulsed monocyte-derived dendritic cells (moDC) have shown anecdotal antitumor activity in advanced cancer. It was reported that phosphoantigen (pAg)-activated Vγ9Vδ2-T cells can acquire characteristics of professional antigen-presenting cells (APC). Considering the clinical immunotherapeutic applications, Vγ9Vδ2-T APC can offer important advantages over moDC, potentially constituting an attractive novel APC platform. Here, we demonstrate that Vγ9Vδ2-T APC can present antigens to iNKT. However, this does not result from de novo synthesis of CD1d by Vγ9Vδ2-T, but critically depends on trogocytosis of CD1d-containing membrane fragments from pAg-expressing cells. CD1d-expressing Vγ9Vδ2-T cells were able to activate iNKT in a CD1d-restricted and α-GalCer-dependent fashion. Although α-GalCer-loaded moDC outperformed Vγ9Vδ2-T APC on a per cell basis, Vγ9Vδ2-T APC possess unique features with respect to clinical immunotherapeutic application that make them an interesting platform for consideration in future clinical trials. PMID:24934445

  6. Invariant NKT cells regulate the CD8 T cell response during Theiler's virus infection.

    PubMed

    Mars, Lennart T; Mas, Magali; Beaudoin, Lucie; Bauer, Jan; Leite-de-Moraes, Maria; Lehuen, Agnès; Bureau, Jean-Francois; Liblau, Roland S

    2014-01-01

    Invariant NKT cells are innate lymphocytes with a broad tissue distribution. Here we demonstrate that iNKT cells reside in the central nervous system (CNS) in the absence of inflammation. Their presence in the CNS dramatically augments following inoculation of C57Bl/6 mice with the neurotropic Theiler's murine encephalomyelitis virus (TMEV). At the peak of inflammation the cellular infiltrate comprises 45,000 iNKT cells for 1250 CD8 T cells specific for the immunodominant TMEV epitope. To study the interaction between these two T cell subsets, we infected both iNKT cell deficient Jα18(-/-) mice and iNKT cell enriched Vα14 transgenic mice with TMEV. The CD8 T cell response readily cleared TMEV infection in the iNKT cell deficient mice. However, in the iNKT cell enriched mice TMEV infection persisted and was associated with significant mortality. This was caused by the inhibition of the CD8 T cell response in the cervical lymph nodes and spleen after T cell priming. Taken together we demonstrate that iNKT cells reside in the CNS in the absence of inflammation and that their enrichment is associated with the inhibition of the anti-viral CD8 T cell response and an augmented mortality during acute encephalomyelitis. PMID:24498175

  7. Natural Killer T Cells Activated by a Lipopeptidophosphoglycan from Entamoeba histolytica Are Critically Important To Control Amebic Liver Abscess

    PubMed Central

    Lindner, Buko; Winau, Florian; Isibasi, Armando; Moreno-Lafont, Martha; Ulmer, Artur J.; Holst, Otto; Tannich, Egbert; Jacobs, Thomas

    2009-01-01

    The innate immune response is supposed to play an essential role in the control of amebic liver abscess (ALA), a severe form of invasive amoebiasis due to infection with the protozoan parasite Entamoeba histolytica. In a mouse model for the disease, we previously demonstrated that Jα18-/- mice, lacking invariant natural killer T (iNKT) cells, suffer from more severe abscess development. Here we show that the specific activation of iNKT cells using α-galactosylceramide (α-GalCer) induces a significant reduction in the sizes of ALA lesions, whereas CD1d−/− mice develop more severe abscesses. We identified a lipopeptidophosphoglycan from E. histolytica membranes (EhLPPG) as a possible natural NKT cell ligand and show that the purified phosphoinositol (PI) moiety of this molecule induces protective IFN-γ but not IL-4 production in NKT cells. The main component of EhLPPG responsible for NKT cell activation is a diacylated PI, (1-O-[(28∶0)-lyso-glycero-3-phosphatidyl-]2-O-(C16:0)-Ins). IFN-γ production by NKT cells requires the presence of CD1d and simultaneously TLR receptor signalling through MyD88 and secretion of IL-12. Similar to α-GalCer application, EhLPPG treatment significantly reduces the severity of ALA in ameba-infected mice. Our results suggest that EhLPPG is an amebic molecule that is important for the limitation of ALA development and may explain why the majority of E. histolytica-infected individuals do not develop amebic liver abscess. PMID:19436711

  8. Natural killer T cells activated by a lipopeptidophosphoglycan from Entamoeba histolytica are critically important to control amebic liver abscess.

    PubMed

    Lotter, Hannelore; González-Roldán, Nestor; Lindner, Buko; Winau, Florian; Isibasi, Armando; Moreno-Lafont, Martha; Ulmer, Artur J; Holst, Otto; Tannich, Egbert; Jacobs, Thomas

    2009-05-01

    The innate immune response is supposed to play an essential role in the control of amebic liver abscess (ALA), a severe form of invasive amoebiasis due to infection with the protozoan parasite Entamoeba histolytica. In a mouse model for the disease, we previously demonstrated that Jalpha18(-/-) mice, lacking invariant natural killer T (iNKT) cells, suffer from more severe abscess development. Here we show that the specific activation of iNKT cells using alpha-galactosylceramide (alpha-GalCer) induces a significant reduction in the sizes of ALA lesions, whereas CD1d(-/-) mice develop more severe abscesses. We identified a lipopeptidophosphoglycan from E. histolytica membranes (EhLPPG) as a possible natural NKT cell ligand and show that the purified phosphoinositol (PI) moiety of this molecule induces protective IFN-gamma but not IL-4 production in NKT cells. The main component of EhLPPG responsible for NKT cell activation is a diacylated PI, (1-O-[(28:0)-lyso-glycero-3-phosphatidyl-]2-O-(C16:0)-Ins). IFN-gamma production by NKT cells requires the presence of CD1d and simultaneously TLR receptor signalling through MyD88 and secretion of IL-12. Similar to alpha-GalCer application, EhLPPG treatment significantly reduces the severity of ALA in ameba-infected mice. Our results suggest that EhLPPG is an amebic molecule that is important for the limitation of ALA development and may explain why the majority of E. histolytica-infected individuals do not develop amebic liver abscess. PMID:19436711

  9. Mouse and Human CD1d-Self-Lipid Complexes Are Recognized Differently by Murine Invariant Natural Killer T Cell Receptors

    PubMed Central

    Guo, Tingxi; Chamoto, Kenji; Nakatsugawa, Munehide; Ochi, Toshiki; Yamashita, Yuki; Anczurowski, Mark; Butler, Marcus O.; Hirano, Naoto

    2016-01-01

    Invariant natural killer T (iNKT) cells recognize self-lipids presented by CD1d through characteristic TCRs, which mainly consist of the invariant Vα14-Jα18 TCRα chain and Vβ8.2, 7 or 2 TCRβ chains with hypervariable CDR3β sequences in mice. The iNKT cell-CD1d axis is conserved between humans and mice, and human CD1d reactivity of murine iNKT cells have been described. However, the detailed differences between the recognition of human and mouse CD1d bound to various self-lipids by mouse iNKT TCRs are largely unknown. In this study, we generated a de novo murine iNKT TCR repertoire with a wider range of autoreactivity compared with that of naturally occurring peripheral iNKT TCRs. Vβ8.2 mouse iNKT TCRs capable of recognizing the human CD1d-self-lipid tetramer were identified, although such clones were not detectable in the Vβ7 or Vβ2 iNKT TCR repertoire. In line with previously reports, clonotypic Vβ8.2 iNKT TCRs with unique CDR3β loops did not discriminate among lipids presented by mouse CD1d. Unexpectedly, however, these iNKT TCRs showed greater ligand selectivity toward human CD1d presenting the same lipids. Our findings demonstrated that the recognition of mouse and human CD1d-self-lipid complexes by murine iNKT TCRs is not conserved, thereby further elucidating the differences between cognate and cross-species reactivity of self-antigens by mouse iNKT TCRs. PMID:27213277

  10. TLR9-induced miR-155 and Ets-1 decrease expression of CD1d on B cells in SLE.

    PubMed

    Liu, Fei; Fan, Hongye; Ren, Deshan; Dong, Guanjun; Hu, Erling; Ji, Jianjian; Hou, Yayi

    2015-07-01

    B cells present lipid antigens to CD1d-restricted invariant natural killer T (iNKT) cells to maintain autoimmune tolerance, and this process is disrupted in systemic lupus erythematosus (SLE). Inflammation may inhibit CD1d expression to exacerbate the pathology of lupus. However, how inflammation regulates CD1d expression on B cells is unclear in SLE. In the present study, we showed that the surface expression of CD1d on B cells from SLE mice was decreased and that stimulation of inflammatory responses through TLR9 decreased the membrane and total CD1d levels of CD1d on B cells. Moreover, inflammation-related microRNA-155 (miR-155) negatively correlated with the expression of CD1d in B cells. miR-155 directly targeted the 3'-untranslated region (3'-UTR) of CD1d upon TLR9 activation in both humans and mice. The inhibitory effects of miR-155 on CD1d expression in B cells impaired their antigen-presenting capacity to iNKT cells. In addition, Ets-1, a susceptibility gene of SLE, also directly regulated the expression of the CD1d gene at the transcriptional level. These findings provide new insight into the mechanism underlying decreased CD1d expression on B cells in SLE, suggesting that inhibition of inflammation may increase CD1d expression in B cells to ameliorate SLE via modulating iNKT cells. PMID:25929465

  11. A novel glycolipid antigen for NKT cells that preferentially induces IFN-γ production

    PubMed Central

    Birkholz, Alysia M.; Girardi, Enrico; Wingender, Gerhard; Khurana, Archana; Wang, Jing; Zhao, Meng; Zahner, Sonja; Illarionov, Petr A.; Wen, Xiangshu; Li, Michelle; Yuan, Weiming; Porcelli, Steven A.; Besra, Gurdyal S.; Zajonc, Dirk M.; Kronenberg, Mitchell

    2015-01-01

    Here we characterize a novel Ag for invariant natural killer T-cells (iNKT cells) capable of producing an especially robust Th1 response. This glycosphingolipid (GSL), DB06-1, is similar in chemical structure to the well-studied α-galactosylceramide (αGalCer), the only change being in a single atom, the substitution of a carbonyl oxygen with a sulfur atom. Although DB06-1 is not a more effective Ag in vitro, the small chemical change has a marked impact on the ability of this lipid Ag to stimulate iNKT cells in vivo, with increased IFN-γ production at 24 h compared to αGalCer, increased IL-12, and increased activation of NK cells to produce IFN-γ. These changes are correlated with an enhanced ability of DB06-1 to load in the CD1d molecules expressed by DCs in vivo. Moreover, structural studies suggest a tighter fit into the CD1d binding groove by DB061 compared to αGalCer. Surprisingly, when iNKT cells previously exposed to DB06-1 are restimulated weeks later, they have greatly increased IL-10 production. Our data are therefore consistent with a model whereby augmented and or prolonged presentation of a glycolipid Ag leads to increased activation of NK cells and a Th1-skewed immune response, which may result in part from enhanced loading into CD1d. Furthermore, our data suggest that strong antigenic stimulation in vivo may lead to the expansion of IL-10 producing iNKT cells, which could counteract the benefits of increased, early IFN-γ production. PMID:26078271

  12. A Novel Glycolipid Antigen for NKT Cells That Preferentially Induces IFN-γ Production.

    PubMed

    Birkholz, Alysia M; Girardi, Enrico; Wingender, Gerhard; Khurana, Archana; Wang, Jing; Zhao, Meng; Zahner, Sonja; Illarionov, Petr A; Wen, Xiangshu; Li, Michelle; Yuan, Weiming; Porcelli, Steven A; Besra, Gurdyal S; Zajonc, Dirk M; Kronenberg, Mitchell

    2015-08-01

    In this article, we characterize a novel Ag for invariant NKT (iNKT) cells capable of producing an especially robust Th1 response. This glycosphingolipid, DB06-1, is similar in chemical structure to the well-studied α-galactosylceramide (αGalCer), with the only change being a single atom: the substitution of a carbonyl oxygen with a sulfur atom. Although DB06-1 is not a more effective Ag in vitro, the small chemical change has a marked impact on the ability of this lipid Ag to stimulate iNKT cells in vivo, with increased IFN-γ production at 24 h compared with αGalCer, increased IL-12, and increased activation of NK cells to produce IFN-γ. These changes are correlated with an enhanced ability of DB06-1 to load in the CD1d molecules expressed by dendritic cells in vivo. Moreover, structural studies suggest a tighter fit into the CD1d binding groove by DB06-1 compared with αGalCer. Surprisingly, when iNKT cells previously exposed to DB06-1 are restimulated weeks later, they have greatly increased IL-10 production. Therefore, our data are consistent with a model whereby augmented and or prolonged presentation of a glycolipid Ag leads to increased activation of NK cells and a Th1-skewed immune response, which may result, in part, from enhanced loading into CD1d. Furthermore, our data suggest that strong antigenic stimulation in vivo may lead to the expansion of IL-10-producing iNKT cells, which could counteract the benefits of increased early IFN-γ production. PMID:26078271

  13. An efferocytosis-induced, IL-4–dependent macrophage-iNKT cell circuit suppresses sterile inflammation and is defective in murine CGD

    PubMed Central

    Zeng, Melody Yue; Pham, Duy; Bagaitkar, Juhi; Liu, Jianyun; Otero, Karel; Shan, Ming; Wynn, Thomas A.; Brombacher, Frank; Brutkiewicz, Randy R.; Kaplan, Mark H.

    2013-01-01

    Efferocytosis of apoptotic neutrophils by macrophages following tissue injury is fundamental to the resolution of inflammation and initiation of tissue repair. Using a sterile peritonitis model in mice, we identified interleukin (IL)-4–producing efferocytosing macrophages in the peritoneum that activate invariant natural killer T (iNKT) cells to produce cytokines including IL-4, IL-13, and interferon-γ. Importantly, IL-4 from macrophages contributes to alternative activation of peritoneal exudate macrophages and augments type 2 cytokine production from NKT cells to suppress inflammation. The increased peritonitis in mice deficient in IL-4, NKT cells, or IL-4Rα expression on myeloid cells suggested that each is a key component for resolution of sterile inflammation. The reduced NAD phosphate oxidase is also critical for this model, because in mice with X-linked chronic granulomatous disease (X-CGD) that lack oxidase subunits, activation of iNKT cells by X-CGD peritoneal exudate macrophages was impaired during sterile peritonitis, resulting in enhanced and prolonged inflammation in these mice. Therefore, efferocytosis-induced IL-4 production and activation of IL-4–producing iNKT cells by macrophages are immunomodulatory events in an innate immune circuit required to resolve sterile inflammation and promote tissue repair. PMID:23426944

  14. Expression of CD11c Is Associated with Unconventional Activated T Cell Subsets with High Migratory Potential

    PubMed Central

    Cantero, Jon; Tarrats, Antoni; Fernández, Marco Antonio; Sumoy, Lauro; Rodolosse, Annie; McSorley, Stephen J.

    2016-01-01

    CD11c is an α integrin classically employed to define myeloid dendritic cells. Although there is little information about CD11c expression on human T cells, mouse models have shown an association of CD11c expression with functionally relevant T cell subsets. In the context of genital tract infection, we have previously observed increased expression of CD11c in circulating T cells from mice and women. Microarray analyses of activated effector T cells expressing CD11c derived from naïve mice demonstrated enrichment for natural killer (NK) associated genes. Here we find that murine CD11c+ T cells analyzed by flow cytometry display markers associated with non-conventional T cell subsets, including γδ T cells and invariant natural killer T (iNKT) cells. However, in women, only γδ T cells and CD8+ T cells were enriched within the CD11c fraction of blood and cervical tissue. These CD11c+ cells were highly activated and had greater interferon (IFN)-γ secretory capacity than CD11c- T cells. Furthermore, circulating CD11c+ T cells were associated with the expression of multiple adhesion molecules in women, suggesting that these cells have high tissue homing potential. These data suggest that CD11c expression distinguishes a population of circulating T cells during bacterial infection with innate capacity and mucosal homing potential. PMID:27119555

  15. Innate lymphoid cells and natural killer T cells in the gastrointestinal tract immune system.

    PubMed

    Montalvillo, Enrique; Garrote, José Antonio; Bernardo, David; Arranz, Eduardo

    2014-05-01

    The gastrointestinal tract is equipped with a highly specialized intrinsic immune system. However, the intestine is exposed to a high antigenic burden that requires a fast, nonspecific response -so-called innate immunity- to maintain homeostasis and protect the body from incoming pathogens. In the last decade multiple studies helped to unravel the particular developmental requirements and specific functions of the cells that play a role in innate immunity. In this review we shall focus on innate lymphoid cells, a newly discovered, heterogeneous set of cells that derive from an Id2-dependent lymphoid progenitor cell population. These cells have been categorized on the basis of the pattern of cytokines that they secrete, and the transcription factors that regulate their development and functions. Innate lymphoid cells play a role in the early response to pathogens, the anatomical contention of the commensal flora, and the maintenance of epithelial integrity.Amongst the various innate lymphoid cells we shall lay emphasis on a subpopulation with several peculiarities, namely that of natural killer T cells, a subset of T lymphocytes that express both T-cell and NK-cell receptors. The most numerous fraction of the NKT population are the so-called invariant NKT or iNKT cells. These iNKT cells have an invariant TCR and recognize the glycolipidic structures presented by the CD1d molecule, a homolog of class-I MHC molecules. Following activation they rapidly acquire cytotoxic activity and secrete both Th1 and Th2 cytokines, including IL-17. While their specific role is not yet established, iNKT cells take part in a great variety of intestinal immune responses ranging from oral tolerance to involvement in a number of gastrointestinal conditions. PMID:25287236

  16. CD155/CD226-interaction impacts on the generation of innate CD8(+) thymocytes by regulating iNKT-cell differentiation.

    PubMed

    Georgiev, Hristo; Ravens, Inga; Shibuya, Akira; Förster, Reinhold; Bernhardt, Günter

    2016-04-01

    The cell surface receptor CD155 influences a variety of immune processes by binding to its ligands CD226, CD96, or TIGIT. Here, we report that the interaction of CD155 with CD226 in the thymus of BALB/c mice has a dual function. It directly influences the dwell time of memory-like CD8(+) T cells, while it is indirectly involved in generating these cells. It was shown earlier that a massive emergence of memory-like CD8 T cells in thymus crucially depends on abundant IL-4, secreted in steady state by iNKT2 (where iNKT is invariant NKT) cells, a subclass of iNKT cells. Here, we show that absence of either CD155 or CD226 in BALB/c mice causes a profound shift in the iNKT subtype composition in thymus, expanding the frequency and numbers of iNKT1 cells at the expense of iNKT2 cells, as well as iNKT17 cells. This shift results in a drop of available IL-4 and creates a scenario similar to that observed in C57BL/6 mice, where iNKT1 cells predominate and iNKT2 cells are much less frequent when compared with BALB/c mice. Yet also in C57BL/6 mice, lack of CD155 or CD226 provokes a further decline in iNKT2 cells, suggesting that the observed effects are not restricted to a particular inbred strain. PMID:26689152

  17. E and Id proteins influence invariant Natural Killer T cell sublineage differentiation and proliferation

    PubMed Central

    D'Cruz, Louise M.; Stradner, Martin H.; Yang, Cliff Y.; Goldrath, Ananda W.

    2014-01-01

    Disease outcome is known to be influenced by defined subsets of invariant Natural Killer T (iNKT) cells residing in distinct locations within peripheral tissue. However, the factors governing the development of these unique iNKT sublineages during thymic development are unknown. Here we explored the mechanism by which E protein transcription factors and their negative regulators, the Id proteins control the development of iNKT sublineages after positive selection. We found that E proteins directly bound the PLZF promoter and were required for expression of this lineage-defining transcription factor and for the maturation and expansion of thymic iNKT cells. Moreover, expression of the negative regulators of E proteins, Id2 and Id3, defined distinct iNKT cell sublineages. Id3 was expressed in PLZFhigh NKT2 cells and loss of Id3 allowed for increased thymic iNKT cell expansion and abundance of the PLZF+ NKT2 sublineage. Id2 was expressed in TBET+ NKT1 cells and both Id proteins were required for the formation of this sublineage. Thus, we provide insight into E and Id protein regulation of iNKT cell proliferation and differentiation to specific sublineages during development in the thymus. PMID:24470501

  18. Preserved Function of Circulating Invariant Natural Killer T Cells in Patients With Chronic Hepatitis B Virus Infection

    PubMed Central

    Zhu, Haoxiang; Zhang, Yongmei; Liu, Hongyan; Zhang, Yijun; Kang, Yaoyue; Mao, Richeng; Yang, Feifei; Zhou, Dapeng; Zhang, Jiming

    2015-01-01

    Abstract To date, the role of invariant natural killer T (iNKT) cells in chronic hepatitis B virus (HBV) infection is not fully understood. In previous reports, iNKT cells were identified by indirect methods. However, discrepancies regarding the prevalence and function of iNKT cells during HBV infection were observed. In this study, we have devised a direct, highly specific CD1d tetramer-based methodology to test whether patients with HBV infection have associated iNKT-cell defects. In our study, a total of 93 chronic HBV-infected patients and 30 healthy individuals (as control) were enrolled. The prevalence of iNKT cells, their cytokine producing capacity, and in vitro expansion were determined by flow cytometric analysis with CD1d tetramer staining. Our observation demonstrated that there was no significant difference in circulating CD1d-tetramer positive iNKT cell numbers between HBV-infected patients and healthy controls. The capacity of iNKT cells to produce IFN-γ or IL-4 as well as their in vitro expansion was also comparable between these 2 groups. However, among chronic HBV-infected patients, a decrease in iNKT cell-number was observed in chronic hepatitis B (CHB) and cirrhosis patients in comparison to that in immune tolerant (IT) patients. These results indicated that patients with chronic HBV infection may have normal prevalence and preserved function of circulating iNKT cells. And antiviral therapy with nucleot(s)ide analogue does not alter the frequency and function of circulating iNKT cells in chronic Hepatitis B patients.

  19. Antigen mRNA-transfected, allogeneic fibroblasts loaded with NKT-cell ligand confer antitumor immunity.

    PubMed

    Fujii, Shin-ichiro; Goto, Akira; Shimizu, Kanako

    2009-04-30

    The maturation of dendritic cells (DCs) in situ by danger signals plays a central role in linking innate and adaptive immunity. We previously demonstrated that the activation of invariant natural killer T (iNKT) cells by administration of alpha-galactosylceramide (alpha-GalCer)-loaded tumor cells can act as a cellular adjuvant through the DC maturation. In the current study, we used allogeneic fibroblasts loaded with alpha-GalCer and transfected with antigen-encoding mRNA, thus combining the adjuvant effects of iNKT-cell activation with delivery of antigen to DCs in vivo. We found that these cells produce antigen protein and activate NK and iNKT cells. When injected into major histocompatibility complex (MHC)-mismatched mice, they elicited antigen-specific T-cell responses and provided tumor protection, suggesting that these immune responses depend on host DCs. In addition, antigen-expressing fibroblasts loaded with alpha-GalCer lead to a more potent T-cell response than those expressing NK cell ligands. Thus, glycolipid-loaded, mRNA-transfected allogeneic fibroblasts act as cellular vectors to provide iNKT-cell activation, leading to DC maturation and T-cell immunity. By harnessing the innate immune system and generating an adaptive immune response to a variety of antigens, this unique tool could prove clinically beneficial in the development of immunotherapies against malignant and infectious diseases. PMID:19164596

  20. Solar cell activation system

    SciTech Connect

    Apelian, L.

    1983-07-05

    A system for activating solar cells involves the use of phosphorescent paint, the light from which is amplified by a thin magnifying lens and used to activate solar cells. In a typical system, a member painted with phosphorescent paint is mounted adjacent a thin magnifying lens which focuses the light on a predetermined array of sensitive cells such as selenium, cadmium or silicon, mounted on a plastic board. A one-sided mirror is mounted adjacent the cells to reflect the light back onto said cells for purposes of further intensification. The cells may be coupled to rechargeable batteries or used to directly power a small radio or watch.

  1. NKT cells prevent chronic joint inflammation after infection with Borrelia burgdorferi.

    PubMed

    Tupin, Emmanuel; Benhnia, Mohammed Rafii-El-Idrissi; Kinjo, Yuki; Patsey, Rebeca; Lena, Christopher J; Haller, Matthew C; Caimano, Melissa J; Imamura, Masakazu; Wong, Chi-Huey; Crotty, Shane; Radolf, Justin D; Sellati, Timothy J; Kronenberg, Mitchell

    2008-12-16

    Borrelia burgdorferi is the etiologic agent of Lyme disease, a multisystem inflammatory disorder that principally targets the skin, joints, heart, and nervous system. The role of T lymphocytes in the development of chronic inflammation resulting from B. burgdorferi infection has been controversial. We previously showed that natural killer T (NKT) cells with an invariant (i) TCR alpha chain (iNKT cells) recognize glycolipids from B. burgdorferi, but did not establish an in vivo role for iNKT cells in Lyme disease pathogenesis. Here, we evaluate the importance of iNKT cells for host defense against these pathogenic spirochetes by using Valpha14i NKT cell-deficient (Jalpha18(-/-)) BALB/c mice. On tick inoculation with B. burgdorferi, Jalpha18(-/-) mice exhibited more severe and prolonged arthritis as well as a reduced ability to clear spirochetes from infected tissues. Valpha14i NKT cell deficiency also resulted in increased production of antibodies directed against both B. burgdorferi protein antigens and borrelial diacylglycerols; the latter finding demonstrates that anti-glycolipid antibody production does not require cognate help from Valpha14i NKT cells. Valpha14i NKT cells in infected wild-type mice expressed surface activation markers and produced IFNgamma in vivo after infection, suggesting a participatory role for this unique population in cellular immunity. Our data are consistent with the hypothesis that the antigen-specific activation of Valpha14i NKT cells is important for the prevention of persistent joint inflammation and spirochete clearance, and they counter the long-standing notion that humoral rather than cellular immunity is sufficient to facilitate Lyme disease resolution. PMID:19060201

  2. NKT cells prevent chronic joint inflammation after infection with Borrelia burgdorferi

    PubMed Central

    Tupin, Emmanuel; Benhnia, Mohammed Rafii-El-Idrissi; Kinjo, Yuki; Patsey, Rebeca; Lena, Christopher J.; Haller, Matthew C.; Caimano, Melissa J.; Imamura, Masakazu; Wong, Chi-Huey; Crotty, Shane; Radolf, Justin D.; Sellati, Timothy J.; Kronenberg, Mitchell

    2008-01-01

    Borrelia burgdorferi is the etiologic agent of Lyme disease, a multisystem inflammatory disorder that principally targets the skin, joints, heart, and nervous system. The role of T lymphocytes in the development of chronic inflammation resulting from B. burgdorferi infection has been controversial. We previously showed that natural killer T (NKT) cells with an invariant (i) TCR α chain (iNKT cells) recognize glycolipids from B. burgdorferi, but did not establish an in vivo role for iNKT cells in Lyme disease pathogenesis. Here, we evaluate the importance of iNKT cells for host defense against these pathogenic spirochetes by using Vα14i NKT cell-deficient (Jα18−/−) BALB/c mice. On tick inoculation with B. burgdorferi, Jα18−/− mice exhibited more severe and prolonged arthritis as well as a reduced ability to clear spirochetes from infected tissues. Vα14i NKT cell deficiency also resulted in increased production of antibodies directed against both B. burgdorferi protein antigens and borrelial diacylglycerols; the latter finding demonstrates that anti-glycolipid antibody production does not require cognate help from Vα14i NKT cells. Vα14i NKT cells in infected wild-type mice expressed surface activation markers and produced IFNγ in vivo after infection, suggesting a participatory role for this unique population in cellular immunity. Our data are consistent with the hypothesis that the antigen-specific activation of Vα14i NKT cells is important for the prevention of persistent joint inflammation and spirochete clearance, and they counter the long-standing notion that humoral rather than cellular immunity is sufficient to facilitate Lyme disease resolution. PMID:19060201

  3. Contribution of lipid-reactive natural killer T cells to obesity-associated inflammation and insulin resistance.

    PubMed

    Wu, Lan; Van Kaer, Luc

    2013-01-01

    Obesity is associated with a low-grade, chronic inflammation that promotes the development of a variety of diseases, most notably type 2 diabetes. A number of cell types of the innate and adaptive immune systems have been implicated in this process. Recent studies have focused on the role of natural killer T (NKT) cells, a subset of T lymphocytes that react with lipids, in the development of obesity-associated diseases. These studies have shown that invariant NKT (iNKT) cells, a population of NKT cells expressing a semi-invariant T cell receptor, become rapidly activated in response to lipid excess, and that these cells influence the capacity of other leukocytes to produce cytokines during the progression of obesity. The role of NKT cells in obesity-associated inflammation and insulin resistance has been investigated using NKT cell-deficient animals, adoptive transfer of NKT cells and an iNKT cell agonist. While divergent results have been obtained, it is now clear that NKT cells can modulate the inflammatory milieu in obesity, suggesting that these cells could be targeted for therapeutic intervention in obesity-associated diseases. PMID:23700548

  4. Genetic insights into Map3k-dependent proliferative expansion of T cells.

    PubMed

    Suddason, Tesha; Gallagher, Ewen

    2016-08-01

    Mapks are important regulators of T cell proliferative expansion and cell cycle progression. Detailed genetic analysis of unconventional iNKT cells in both Map3k1(ΔKD) and Lck(Cre/+)Map3k1(f/f) mice demonstrated that Mekk1 (encoded by Map3k1) signaling activates Mapks to regulate Cdkn1b (encoding p27(Kip1)) expression and p27(Kip1)-dependent proliferative expansion in response to antigen. Mekk1 signaling and activation of E3 ubiquitin ligase Itch, by a phosphorylation-dependent conformational change, is also an important regulatory mechanism for the control of T helper cell cytokine production. Cdkn1b expression is regulated by Mekk1-dependent signaling in differentiated Th17 cells. Mekk1 is one of the 19 Ste11-like Map3ks, and Mekk1 signaling regulates iNKT cell proliferative expansion in response to glycolipid antigens and T cell homeostasis in the liver. Tak1 (encoded by Map3k7), a related Map3k to Mekk1, similarly regulates the proliferative expansion and homeostasis of T cells in the liver, and this illustrates the importance of multiple Map3ks for mammalian Mapk signaling. PMID:27246297

  5. Helminth-Induced Interleukin-4 Abrogates Invariant Natural Killer T Cell Activation-Associated Clearance of Bacterial Infection

    PubMed Central

    Hsieh, Yi-Ju; Fu, Chi-Ling

    2014-01-01

    Helminth infections affect 1 billion people worldwide and render these individuals susceptible to bacterial coinfection through incompletely understood mechanisms. This includes urinary tract coinfection by bacteria and Schistosoma haematobium worms, the etiologic agent of urogenital schistosomiasis. To study the mechanisms of S. haematobium-bacterial urinary tract coinfections, we combined the first tractable model of urogenital schistosomiasis with an established mouse model of bacterial urinary tract infection (UTI). A single bladder exposure to S. haematobium eggs triggers interleukin-4 (IL-4) production and makes BALB/c mice susceptible to bacterial UTI when they are otherwise resistant. Ablation of IL-4 receptor alpha (IL-4Rα) signaling restored the baseline resistance of BALB/c mice to bacterial UTI despite prior exposure to S. haematobium eggs. Interestingly, numbers of NKT cells were decreased in coexposed versus bacterially monoinfected bladders. Given that schistosome-induced, non-natural killer T (NKT) cell leukocyte infiltration may dilute NKT cell numbers in the bladders of coexposed mice without exerting a specific functional effect on these cells, we next examined NKT cell biology on a per-cell basis. Invariant NKT (iNKT) cells from coexposed mice expressed less gamma interferon (IFN-γ) per cell than did those from mice with UTI alone. Moreover, coexposure resulted in lower CD1d expression in bladder antigen-presenting cells (APC) than did bacterial UTI alone in an IL-4Rα-dependent fashion. Finally, coexposed mice were protected from prolonged bacterial infection by administration of α-galactosylceramide, an iNKT cell agonist. Our findings point to a previously unappreciated role for helminth-induced IL-4 in impairment of iNKT cell-mediated clearance of bacterial coexposure. PMID:24643536

  6. Protection Against Type 1 Diabetes Upon Coxsackievirus B4 Infection and iNKT-Cell Stimulation

    PubMed Central

    Ghazarian, Liana; Diana, Julien; Beaudoin, Lucie; Larsson, Pär G.; Puri, Raj K.; van Rooijen, Nico; Flodström-Tullberg, Malin; Lehuen, Agnès

    2013-01-01

    Invariant natural killer T (iNKT) cells belong to the innate immune system and exercise a dual role as potent regulators of autoimmunity and participate in responses against different pathogens. They have been shown to prevent type 1 diabetes development and to promote antiviral responses. Many studies in the implication of environmental factors on the etiology of type 1 diabetes have suggested a link between enteroviral infections and the development of this disease. This study of the pancreatropic enterovirus Coxsackievirus B4 (CVB4) shows that although infection accelerated type 1 diabetes development in a subset of proinsulin 2–deficient NOD mice, the activation of iNKT cells by a specific agonist, α-galactosylceramide, at the time of infection inhibited the disease. Diabetes development was associated with the infiltration of pancreatic islets by inflammatory macrophages, producing high levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α and activation of anti-islet T cells. On the contrary, macrophages infiltrating the islets after CVB4 infection and iNKT-cell stimulation expressed a number of suppressive enzymes, among which indoleamine 2,3-dioxygenase was sufficient to inhibit anti-islet T-cell response and to prevent diabetes. This study highlights the critical interaction between virus and the immune system in the acceleration or prevention of type 1 diabetes. PMID:23894189

  7. Lysophospholipid presentation by CD1d and recognition by a human Natural Killer T-cell receptor

    PubMed Central

    López-Sagaseta, Jacinto; Sibener, Leah V; Kung, Jennifer E; Gumperz, Jenny; Adams, Erin J

    2012-01-01

    Invariant Natural Killer T (iNKT) cells use highly restricted αβ T cell receptors (TCRs) to probe the repertoire of lipids presented by CD1d molecules. Here, we describe our studies of lysophosphatidylcholine (LPC) presentation by human CD1d and its recognition by a native, LPC-specific iNKT TCR. Human CD1d presenting LPC adopts an altered conformation from that of CD1d presenting glycolipid antigens, with a shifted α1 helix resulting in an open A' pocket. Binding of the iNKT TCR requires a 7-Å displacement of the LPC headgroup but stabilizes the CD1d–LPC complex in a closed conformation. The iNKT TCR CDR loop footprint on CD1d–LPC is anchored by the conserved positioning of the CDR3α loop, whereas the remaining CDR loops are shifted, due in part to amino-acid differences in the CDR3β and Jβ segment used by this iNKT TCR. These findings provide insight into how lysophospholipids are presented by human CD1d molecules and how this complex is recognized by some, but not all, human iNKT cells. PMID:22395072

  8. Lysophospholipid presentation by CD1d and recognition by a human Natural Killer T-cell receptor

    SciTech Connect

    López-Sagaseta, Jacinto; Sibener, Leah V.; Kung, Jennifer E.; Gumperz, Jenny; Adams, Erin J.

    2014-10-02

    Invariant Natural Killer T (iNKT) cells use highly restricted {alpha}{beta} T cell receptors (TCRs) to probe the repertoire of lipids presented by CD1d molecules. Here, we describe our studies of lysophosphatidylcholine (LPC) presentation by human CD1d and its recognition by a native, LPC-specific iNKT TCR. Human CD1d presenting LPC adopts an altered conformation from that of CD1d presenting glycolipid antigens, with a shifted {alpha}1 helix resulting in an open A pocket. Binding of the iNKT TCR requires a 7-{angstrom} displacement of the LPC headgroup but stabilizes the CD1d-LPC complex in a closed conformation. The iNKT TCR CDR loop footprint on CD1d-LPC is anchored by the conserved positioning of the CDR3{alpha} loop, whereas the remaining CDR loops are shifted, due in part to amino-acid differences in the CDR3{beta} and J{beta} segment used by this iNKT TCR. These findings provide insight into how lysophospholipids are presented by human CD1d molecules and how this complex is recognized by some, but not all, human iNKT cells.

  9. Id2 regulates hyporesponsive invariant natural killer T cells.

    PubMed

    Stradner, Martin H; Cheung, Kitty P; Lasorella, Anna; Goldrath, Ananda W; D'Cruz, Louise M

    2016-08-01

    While the invariant natural killer T (iNKT)-cell response to primary stimulation with the glycolipid, α-galactosylceramide (αGalCer), is robust, the secondary response to this stimulus is muted resulting in a hyporesponsive state characterized by anti-inflammatory interleukin-10 (IL-10) production and high expression of programmed cell death 1 (PD1) and neuropilin 1 (NRP1). The E protein transcription factors and their negative regulators, the Id proteins, have previously been shown to regulate iNKT cell thymic development, subset differentiation and peripheral survival. Here, we provide evidence that the expression of the transcriptional regulator Id2 is downregulated upon stimulation of iNKT cells with their cognate antigen. Moreover, loss of Id2 expression by iNKT cells resulted in a hyporesponsive state, with splenic Id2-deficient iNKT cells expressing low levels of TBET, high levels of PD1 and NRP1 and production of IL-10 upon stimulation. We propose that downregulation of Id2 expression is an essential component of induction of the anti-inflammatory, hyporesponsive state in iNKT cells. PMID:26880074

  10. Id2 regulates hyporesponsive invariant natural killer T cells

    PubMed Central

    Stradner, Martin H; Cheung, Kitty P; Lasorella, Anna; Goldrath, Ananda W; D’Cruz, Louise M

    2016-01-01

    While the invariant natural killer T (iNKT)-cell response to primary stimulation with the glycolipid, α-galactosylceramide (αGalCer), is robust, the secondary response to this stimulus is muted resulting in a hyporesponsive state characterized by anti-inflammatory interleukin-10 (IL-10) production and high expression of programmed cell death 1 (PD1) and neuropilin 1 (NRP1). The E protein transcription factors and their negative regulators, the Id proteins, have previously been shown to regulate iNKT cell thymic development, subset differentiation and peripheral survival. Here, we provide evidence that the expression of the transcriptional regulator Id2 is downregulated upon stimulation of iNKT cells with their cognate antigen. Moreover, loss of Id2 expression by iNKT cells resulted in a hyporesponsive state, with splenic Id2-deficient iNKT cells expressing low levels of TBET, high levels of PD1 and NRP1 and production of IL-10 upon stimulation. We propose that downregulation of Id2 expression is an essential component of induction of the anti-inflammatory, hyporesponsive state in iNKT cells. PMID:26880074

  11. Fluorescence activated cell sorting.

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Hulett, H. R.; Sweet, R. G.; Herzenberg, L. A.

    1972-01-01

    An instrument has been developed for sorting biological cells. The cells are rendered differentially fluorescent and incorporated into a small liquid stream illuminated by a laser beam. The cells pass sequentially through the beam, and fluorescent light from the cells gives rise to electrical signals. The stream is broken into a series of uniform size drops downstream of the laser. The cell signals are used to give appropriate electrostatic charges to drops containing the cells. The drops then pass between two charged plates and are deflected to appropriate containers. The system has proved capable of providing fractions containing large numbers of viable cells highly enriched in a particular functional type.

  12. Restored Circulating Invariant NKT Cells Are Associated with Viral Control in Patients with Chronic Hepatitis B

    PubMed Central

    Jiang, Xiaotao; Zhang, Mingxia; Lai, Qintao; Huang, Xuan; Li, Yongyin; Sun, Jian; Abbott, William G.H.; Ma, Shiwu; Hou, Jinlin

    2011-01-01

    Invariant NKT (iNKT) cells are involved in the pathogenesis of various infectious diseases. However, their role in hepatitis B virus (HBV) infection is not fully understood, especially in human species. In this study, 35 chronic hepatitis B (CHB) patients, 25 inactive carriers (IC) and 36 healthy controls (HC) were enrolled and the proportions of circulating iNKT cells in fresh isolated peripheral blood mononuclear cells (PBMC) were detected by flow cytometry. A longitudinal analysis was also conducted in 19 CHB patients who received antiviral therapy with telbivudine. Thereafter, the immune functions of iNKT cells were evaluated by cytokine secretion and a two-chamber technique. The median frequency of circulating iNKT cells in CHB patients (0.13%) was lower than that in HC (0.24%, P = 0.01) and IC (0.19%, P = 0.02), and increased significantly during antiviral therapy with telbivudine (P = 0.0176). The expressions of CC chemokine receptor 5 (CCR5) and CCR6 were dramatically higher on iNKT cells (82.83%±9.87%, 67.67%±16.83% respectively) than on conventional T cells (30.5%±5.65%, 14.02%±5.92%, both P<0.001) in CHB patients. Furthermore, iNKT cells could migrate toward the CC chemokine ligand 5. Patients with a high ratio (≥1.0) of CD4−/CD4+ iNKT cells at baseline had a higher rate (58.33%) of HBeAg seroconversion than those with a low ratio (<1.0, 0%, P = 0.0174). In conclusion, there is a low frequency of peripheral iNKT cells in CHB patients, which increases to normal levels with viral control. The ratio of CD4−/CD4+ iNKT cells at baseline may be a useful predictor for HBeAg seroconversion in CHB patients on telbivudine therapy. PMID:22194934

  13. PLZF confers effector functions to donor T cells that preserve graft-versus-tumor effects while attenuating graft-versus-host-disease

    PubMed Central

    Ghosh, Arnab; Holland, Amanda M.; Dogan, Yildirim; Yim, Nury L.; Rao, Uttam K.; Young, Lauren F.; West, Mallory L.; Singer, Natalie V.; Lee, Hae; Na, Il-Kang; Tsai, Jennifer J.; Jenq, Robert R.; Penack, Olaf; Hanash, Alan M.; Lezcano, Cecilia; Murphy, George; Liu, Chen; Sadelain, Michel; Sauer, Martin G.; Sant’Angelo, Derek; van den Brink, Marcel R.M.

    2013-01-01

    Efforts to limit graft-versus-host disease (GVHD) mediated by alloreactive donor T cells after allogeneic bone marrow transplantation (allo-BMT) are limited by a concomitant decrease in graft-versus-tumor (GVT) activity and increased possibilities of tumor relapse. Using a novel approach, we adoptively transferred conventional T cells expressing the transcription factor promyelocytic leukemia zinc finger (PLZF), which confers effector properties resembling invariant natural killer T cells (iNKT cells), such as copious production of cytokines under suboptimal stimulation. PLZF expression in T cell allografts attenuates expansion of alloreactive T cells, leading to lower GVHD. Intact alloreactivity-driven antitumor cytokine responses result in preserved GVT effects leading to improved survival. Our findings suggest that therapy with PLZF-overexpressing T cells would result in overall improved outcomes due to less GVHD and intact GVT effects. PMID:23733752

  14. Cernunnos deficiency reduces thymocyte life span and alters the T cell repertoire in mice and humans.

    PubMed

    Vera, Gabriella; Rivera-Munoz, Paola; Abramowski, Vincent; Malivert, Laurent; Lim, Annick; Bole-Feysot, Christine; Martin, Christelle; Florkin, Benoit; Latour, Sylvain; Revy, Patrick; de Villartay, Jean-Pierre

    2013-02-01

    Cernunnos is a DNA repair factor of the nonhomologous end-joining machinery. Its deficiency in humans causes radiosensitive severe combined immune deficiency (SCID) with microcephaly, characterized in part by a profound lymphopenia. In contrast to the human condition, the immune system of Cernunnos knockout (KO) mice is not overwhelmingly affected. In particular, Cernunnos is dispensable during V(D)J recombination in lymphoid cells. Nevertheless, the viability of thymocytes is reduced in Cernunnos KO mice, owing to the chronic activation of a P53-dependent DNA damage response. This translates into a qualitative alteration of the T cell repertoire to one in which the most distal Vα and Jα segments are missing. This results in the contraction of discrete T cell populations, such as invariant natural killer T (iNKT) and mucosa-associated invariant T (MAIT) cells, in both humans and mice. PMID:23207905

  15. Multitarget magnetic activated cell sorter

    PubMed Central

    Adams, Jonathan D.; Kim, Unyoung; Soh, H. Tom

    2008-01-01

    Magnetic selection allows high-throughput sorting of target cells based on surface markers, and it is extensively used in biotechnology for a wide range of applications from in vitro diagnostics to cell-based therapies. However, existing methods can only perform separation based on a single parameter (i.e., the presence or absence of magnetization), and therefore, the simultaneous sorting of multiple targets at high levels of purity, recovery, and throughput remains a challenge. In this work, we present an alternative system, the multitarget magnetic activated cell sorter (MT-MACS), which makes use of microfluidics technology to achieve simultaneous spatially-addressable sorting of multiple target cell types in a continuous-flow manner. We used the MT-MACS device to purify 2 types of target cells, which had been labeled via target-specific affinity reagents with 2 different magnetic tags with distinct saturation magnetization and size. The device was engineered so that the combined effects of the hydrodynamic force produced from the laminar flow and the magnetophoretic force produced from patterned ferromagnetic structures within the microchannel result in the selective purification of the differentially labeled target cells into multiple independent outlets. We demonstrate here the capability to simultaneously sort multiple magnetic tags with >90% purity and >5,000-fold enrichment and multiple bacterial cell types with >90% purity and >500-fold enrichment at a throughput of 109 cells per hour. PMID:19015523

  16. Helicobacter pylori Cholesteryl α-Glucosides Contribute to Its Pathogenicity and Immune Response by Natural Killer T Cells

    PubMed Central

    Ito, Yuki; Vela, Jose Luis; Matsumura, Fumiko; Hoshino, Hitomi; Tyznik, Aaron; Lee, Heeseob; Girardi, Enrico; Zajonc, Dirk M.; Liddington, Robert; Kobayashi, Motohiro; Bao, Xingfeng; Bugaytsova, Jeanna; Borén, Thomas; Jin, Rongsheng; Zong, Yinong; Seeberger, Peter H.; Nakayama, Jun; Kronenberg, Mitchell; Fukuda, Minoru

    2013-01-01

    Approximately 10–15% of individuals infected with Helicobacter pylori will develop ulcer disease (gastric or duodenal ulcer), while most people infected with H. pylori will be asymptomatic. The majority of infected individuals remain asymptomatic partly due to the inhibition of synthesis of cholesteryl α-glucosides in H. pylori cell wall by α1,4-GlcNAc-capped mucin O-glycans, which are expressed in the deeper portion of gastric mucosa. However, it has not been determined how cholesteryl α-glucosyltransferase (αCgT), which forms cholesteryl α-glucosides, functions in the pathogenesis of H. pylori infection. Here, we show that the activity of αCgT from H. pylori clinical isolates is highly correlated with the degree of gastric atrophy. We investigated the role of cholesteryl α-glucosides in various aspects of the immune response. Phagocytosis and activation of dendritic cells were observed at similar degrees in the presence of wild-type H. pylori or variants harboring mutant forms of αCgT showing a range of enzymatic activity. However, cholesteryl α-glucosides were recognized by invariant natural killer T (iNKT) cells, eliciting an immune response in vitro and in vivo. Following inoculation of H. pylori harboring highly active αCgT into iNKT cell-deficient (Jα18−/−) or wild-type mice, bacterial recovery significantly increased in Jα18−/− compared to wild-type mice. Moreover, cytokine production characteristic of Th1 and Th2 cells dramatically decreased in Jα18−/− compared to wild-type mice. These findings demonstrate that cholesteryl α-glucosides play critical roles in H. pylori-mediated gastric inflammation and precancerous atrophic gastritis. PMID:24312443

  17. Structural and Functional Changes of the Invariant NKT Clonal Repertoire in Early Rheumatoid Arthritis.

    PubMed

    Mansour, Salah; Tocheva, Anna S; Sanderson, Joseph P; Goulston, Lyndsey M; Platten, Helen; Serhal, Lina; Parsons, Camille; Edwards, Mark H; Woelk, Christopher H; Elkington, Paul T; Elliott, Tim; Cooper, Cyrus; Edwards, Christopher J; Gadola, Stephan D

    2015-12-15

    Invariant NKT cells (iNKT) are potent immunoregulatory T cells that recognize CD1d via a semi-invariant TCR (iNKT-TCR). Despite the knowledge of a defective iNKT pool in several autoimmune conditions, including rheumatoid arthritis (RA), a clear understanding of the intrinsic mechanisms, including qualitative and structural changes of the human iNKT repertoire at the earlier stages of autoimmune disease, is lacking. In this study, we compared the structure and function of the iNKT repertoire in early RA patients with age- and gender-matched controls. We analyzed the phenotype and function of the ex vivo iNKT repertoire as well as CD1d Ag presentation, combined with analyses of a large panel of ex vivo sorted iNKT clones. We show that circulating iNKTs were reduced in early RA, and their frequency was inversely correlated to disease activity score 28. Proliferative iNKT responses were defective in early RA, independent of CD1d function. Functional iNKT alterations were associated with a skewed iNKT-TCR repertoire with a selective reduction of high-affinity iNKT clones in early RA. Furthermore, high-affinity iNKTs in early RA exhibited an altered functional Th profile with Th1- or Th2-like phenotype, in treatment-naive and treated patients, respectively, compared with Th0-like Th profiles exhibited by high-affinity iNKTs in controls. To our knowledge, this is the first study to provide a mechanism for the intrinsic qualitative defects of the circulating iNKT clonal repertoire in early RA, demonstrating defects of iNKTs bearing high-affinity TCRs. These defects may contribute to immune dysregulation, and our findings could be exploited for future therapeutic intervention. PMID:26553073

  18. The Epstein-Barr Virus Glycoprotein gp150 Forms an Immune-Evasive Glycan Shield at the Surface of Infected Cells

    PubMed Central

    Gram, Anna M.; Oosenbrug, Timo; Lindenbergh, Marthe F. S.; Büll, Christian; Comvalius, Anouskha; Dickson, Kathryn J. I.; Wiegant, Joop; Vrolijk, Hans; Lebbink, Robert Jan; Wolterbeek, Ron; Adema, Gosse J.; Griffioen, Marieke; Heemskerk, Mirjam H. M.; Tscharke, David C.; Hutt-Fletcher, Lindsey M.; Ressing, Maaike E.

    2016-01-01

    Cell-mediated immunity plays a key role in host control of viral infection. This is exemplified by life-threatening reactivations of e.g. herpesviruses in individuals with impaired T-cell and/or iNKT cell responses. To allow lifelong persistence and virus production in the face of primed immunity, herpesviruses exploit immune evasion strategies. These include a reduction in viral antigen expression during latency and a number of escape mechanisms that target antigen presentation pathways. Given the plethora of foreign antigens expressed in virus-producing cells, herpesviruses are conceivably most vulnerable to elimination by cell-mediated immunity during the replicative phase of infection. Here, we show that a prototypic herpesvirus, Epstein-Barr virus (EBV), encodes a novel, broadly acting immunoevasin, gp150, that is expressed during the late phase of viral replication. In particular, EBV gp150 inhibits antigen presentation by HLA class I, HLA class II, and the non-classical, lipid-presenting CD1d molecules. The mechanism of gp150-mediated T-cell escape does not depend on degradation of the antigen-presenting molecules nor does it require gp150’s cytoplasmic tail. Through its abundant glycosylation, gp150 creates a shield that impedes surface presentation of antigen. This is an unprecedented immune evasion mechanism for herpesviruses. In view of its likely broader target range, gp150 could additionally have an impact beyond escape of T cell activation. Importantly, B cells infected with a gp150-null mutant EBV displayed rescued levels of surface antigen presentation by HLA class I, HLA class II, and CD1d, supporting an important role for iNKT cells next to classical T cells in fighting EBV infection. At the same time, our results indicate that EBV gp150 prolongs the timespan for producing viral offspring at the most vulnerable stage of the viral life cycle. PMID:27077376

  19. Tracking and treating activated T cells

    PubMed Central

    Kim, N.H.; Nadithe, V.; Elsayed, M.; Merkel, O.M.

    2014-01-01

    Upon activation, T cells of various subsets are the most important mediators in cell-mediated immune responses. Activated T cells play an important role in immune system related diseases such as chronic inflammatory diseases, viral infections, autoimmune disease, transplant rejection, Crohn disease, diabetes, and many more. Therefore, efforts have been made to both visualize and treat activated T cells specifically. This review summarizes imaging approaches and selective therapeutics for activated T cells and gives an outlook on how tracking and treating can be combined into theragnositc agents for activated T cells. PMID:24660025

  20. Viral Evasion of Natural Killer Cell Activation

    PubMed Central

    Ma, Yi; Li, Xiaojuan; Kuang, Ersheng

    2016-01-01

    Natural killer (NK) cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral evasion of NK cells via the impairment of NK cell-activating receptors and ligands, which provide new insights on the relationship between NK cells and viral actions during persistent viral infections. PMID:27077876

  1. Mechanisms of Cell Propulsion by Active Stresses.

    PubMed

    Carlsson, A E

    2011-07-01

    The mechanisms by which cytoskeletal flows and cell-substrate interactions interact to generate cell motion are explored using a simplified model of the cytoskeleton as a viscous gel containing active stresses. This model yields explicit general results relating cell speed and traction forces to the distributions of active stress and cell-substrate friction. It is found that 1) the cell velocity is given by a function that quantifies the asymmetry of the active-stress distribution, 2) gradients in cell-substrate friction can induce motion even when the active stresses are symmetrically distributed, 3) the traction-force dipole is enhanced by protrusive stresses near the cell edges or contractile stresses near the center of the cell, and 4) the cell velocity depends biphasically on the cell-substrate adhesion strength if active stress is enhanced by adhesion. Specific experimental tests of the calculated dependences are proposed. PMID:21804763

  2. Mechanisms of Cell Propulsion by Active Stresses

    PubMed Central

    Carlsson, A. E.

    2011-01-01

    The mechanisms by which cytoskeletal flows and cell-substrate interactions interact to generate cell motion are explored using a simplified model of the cytoskeleton as a viscous gel containing active stresses. This model yields explicit general results relating cell speed and traction forces to the distributions of active stress and cell-substrate friction. It is found that 1) the cell velocity is given by a function that quantifies the asymmetry of the active-stress distribution, 2) gradients in cell-substrate friction can induce motion even when the active stresses are symmetrically distributed, 3) the traction-force dipole is enhanced by protrusive stresses near the cell edges or contractile stresses near the center of the cell, and 4) the cell velocity depends biphasically on the cell-substrate adhesion strength if active stress is enhanced by adhesion. Specific experimental tests of the calculated dependences are proposed. PMID:21804763

  3. Dynamics of NKT-Cell Responses to Chlamydial Infection

    PubMed Central

    Shekhar, Sudhanshu; Joyee, Antony George; Yang, Xi

    2015-01-01

    Natural killer T (NKT) cells have gained great attention owing to their critical functional roles in immunity to various pathogens. In this review, we provide an overview of the current knowledge on the role of NKT cells in host defense against and pathogenesis due to Chlamydia, which is an intracellular bacterial pathogen that poses a threat to the public health worldwide. Accumulating evidence has demonstrated that NKT cells, particularly invariant NKT (iNKT) cells, play a crucial role in host defense against chlamydial infections, especially in C. pneumoniae infection. iNKT cells can promote type-1 protective responses to C. pneumoniae by inducing enhanced production of IL-12 by dendritic cells (DCs), in particular CD8α+ DCs, which promote the differentiation of naive T cells into protective IFN-γ-producing Th1/Tc1 type CD4+/CD8+ T cells. This iNKT-cell-mediated modulation of DC function is largely dependent upon CD40–CD40L interaction, IFN-γ production, and cell-to-cell contact. In addition, iNKT cells modulate the function of natural killer cells. NKT cells may be also involved in the pathogenesis of some chlamydial diseases by inducing different patterns of cytokine production. A better understanding of NKT-cell biology will enable us to rationally design prophylactic and therapeutic tools to combat infectious diseases. PMID:26029217

  4. Mast cells enhance T cell activation: Importance of mast cell-derived TNF

    NASA Astrophysics Data System (ADS)

    Nakae, Susumu; Suto, Hajime; Kakurai, Maki; Sedgwick, Jonathon D.; Tsai, Mindy; Galli, Stephen J.

    2005-05-01

    Mast cells are not only important effector cells in immediate hypersensitivity reactions and immune responses to pathogens but also can contribute to T cell-mediated disorders. However, the mechanisms by which mast cells might influence T cells in such settings are not fully understood. We find that mast cells can enhance proliferation and cytokine production in multiple T cell subsets. Mast cell-dependent enhancement of T cell activation can be promoted by FcRI-dependent mast cell activation, TNF production by both mast cells and T cells, and mast cell-T cell contact. However, at high concentrations of cells, mast cells can promote T cell activation independent of IgE or TNF. Finally, mast cells also can promote T cell activation by means of soluble factors. These findings identify multiple mechanisms by which mast cells can influence T cell proliferation and cytokine production. allergy | asthma | autoimmunity | cytokines | immune response

  5. Evolution of nonclassical MHC-dependent invariant T cells

    PubMed Central

    Edholm, Eva-Stina; Grayfer, Leon; Robert, Jacques

    2014-01-01

    TCR-mediated specific recognition of antigenic peptides in the context of classical MHC molecules is a cornerstone of adaptive immunity of jawed vertebrate. Ancillary to these interactions, the T cell repertoire also includes unconventional T cells that recognize endogenous and/or exogenous antigens in a classical MHC-unrestricted manner. Among these, the mammalian nonclassical MHC class I-restricted invariant T cell (iT) subsets, such as iNKT and MAIT cells, are now believed to be integral to immune response initiation as well as in orchestrating subsequent adaptive immunity. Until recently the evolutionary origins of these cells were unknown. Here we review our current understanding of a nonclassical MHC class I-restricted iT cell population in the amphibian Xenopus laevis. Parallels with the mammalian iNKT and MAIT cells underline the crucial biological roles of these evolutionarily ancient immune subsets. PMID:25117267

  6. Immunoregulation of NKT Cells in Systemic Lupus Erythematosus

    PubMed Central

    Chen, Junwei; Wu, Meng; Wang, Jing; Li, Xiaofeng

    2015-01-01

    Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease with different variety of clinical manifestations. Natural killer T (NKT) cells are innate lymphocytes that play a regulatory role during broad range of immune responses. A number of studies demonstrated that the quantity and quality of invariant NKT (iNKT) cells showed marked defects in SLE patients in comparison to healthy controls. This finding suggests that iNKT cells may play a regulatory role in the occurrence and development of this disease. In this review, we mainly summarized the most recent findings about the behavior of NKT cells in SLE patients and mouse models, as well as how NKT cells affect the proportion of T helper cells and the production of autoreactive antibodies in the progress of SLE. This will help people better understand the role of NKT cells in the development of SLE and improve the therapy strategy. PMID:26819956

  7. CRISPR-Mediated Triple Knockout of SLAMF1, SLAMF5 and SLAMF6 Supports Positive Signaling Roles in NKT Cell Development

    PubMed Central

    Huang, Bonnie; Gomez-Rodriguez, Julio; Preite, Silvia; Garrett, Lisa J.; Harper, Ursula L.; Schwartzberg, Pamela L.

    2016-01-01

    The SLAM family receptors contribute to diverse aspects of lymphocyte biology and signal via the small adaptor molecule SAP. Mutations affecting SAP lead to X-linked lymphoproliferative syndrome Type 1, a severe immunodysregulation characterized by fulminant mononucleosis, dysgammaglobulinemia, and lymphoproliferation/lymphomas. Patients and mice having mutations affecting SAP also lack germinal centers due to a defect in T:B cell interactions and are devoid of invariant NKT (iNKT) cells. However, which and how SLAM family members contribute to these phenotypes remains uncertain. Three SLAM family members: SLAMF1, SLAMF5 and SLAMF6, are highly expressed on T follicular helper cells and germinal center B cells. SLAMF1 and SLAMF6 are also implicated in iNKT development. Although individual receptor knockout mice have limited iNKT and germinal center phenotypes compared to SAP knockout mice, the generation of multi-receptor knockout mice has been challenging, due to the genomic linkage of the genes encoding SLAM family members. Here, we used Cas9/CRISPR-based mutagenesis to generate mutations simultaneously in Slamf1, Slamf5 and Slamf6. Genetic disruption of all three receptors in triple-knockout mice (TKO) did not grossly affect conventional T or B cell development and led to mild defects in germinal center formation post-immunization. However, the TKO worsened defects in iNKT cells development seen in SLAMF6 single gene-targeted mice, supporting data on positive signaling and potential redundancy between these receptors. PMID:27258160

  8. Myosin II Activity Softens Cells in Suspension

    PubMed Central

    Chan, Chii J.; Ekpenyong, Andrew E.; Golfier, Stefan; Li, Wenhong; Chalut, Kevin J.; Otto, Oliver; Elgeti, Jens; Guck, Jochen; Lautenschläger, Franziska

    2015-01-01

    The cellular cytoskeleton is crucial for many cellular functions such as cell motility and wound healing, as well as other processes that require shape change or force generation. Actin is one cytoskeleton component that regulates cell mechanics. Important properties driving this regulation include the amount of actin, its level of cross-linking, and its coordination with the activity of specific molecular motors like myosin. While studies investigating the contribution of myosin activity to cell mechanics have been performed on cells attached to a substrate, we investigated mechanical properties of cells in suspension. To do this, we used multiple probes for cell mechanics including a microfluidic optical stretcher, a microfluidic microcirculation mimetic, and real-time deformability cytometry. We found that nonadherent blood cells, cells arrested in mitosis, and naturally adherent cells brought into suspension, stiffen and become more solidlike upon myosin inhibition across multiple timescales (milliseconds to minutes). Our results hold across several pharmacological and genetic perturbations targeting myosin. Our findings suggest that myosin II activity contributes to increased whole-cell compliance and fluidity. This finding is contrary to what has been reported for cells attached to a substrate, which stiffen via active myosin driven prestress. Our results establish the importance of myosin II as an active component in modulating suspended cell mechanics, with a functional role distinctly different from that for substrate-adhered cells. PMID:25902426

  9. Myosin II Activity Softens Cells in Suspension.

    PubMed

    Chan, Chii J; Ekpenyong, Andrew E; Golfier, Stefan; Li, Wenhong; Chalut, Kevin J; Otto, Oliver; Elgeti, Jens; Guck, Jochen; Lautenschläger, Franziska

    2015-04-21

    The cellular cytoskeleton is crucial for many cellular functions such as cell motility and wound healing, as well as other processes that require shape change or force generation. Actin is one cytoskeleton component that regulates cell mechanics. Important properties driving this regulation include the amount of actin, its level of cross-linking, and its coordination with the activity of specific molecular motors like myosin. While studies investigating the contribution of myosin activity to cell mechanics have been performed on cells attached to a substrate, we investigated mechanical properties of cells in suspension. To do this, we used multiple probes for cell mechanics including a microfluidic optical stretcher, a microfluidic microcirculation mimetic, and real-time deformability cytometry. We found that nonadherent blood cells, cells arrested in mitosis, and naturally adherent cells brought into suspension, stiffen and become more solidlike upon myosin inhibition across multiple timescales (milliseconds to minutes). Our results hold across several pharmacological and genetic perturbations targeting myosin. Our findings suggest that myosin II activity contributes to increased whole-cell compliance and fluidity. This finding is contrary to what has been reported for cells attached to a substrate, which stiffen via active myosin driven prestress. Our results establish the importance of myosin II as an active component in modulating suspended cell mechanics, with a functional role distinctly different from that for substrate-adhered cells. PMID:25902426

  10. Natural killer cell activity during measles.

    PubMed Central

    Griffin, D E; Ward, B J; Jauregui, E; Johnson, R T; Vaisberg, A

    1990-01-01

    Natural killer cells are postulated to play an important role in host anti-viral defences. We measured natural killer cell activity in 30 individuals with acute measles (73 +/- 21 lytic units (LU)/10(7) cells) and 16 individuals with other infectious diseases (149 +/- 95 LU) and found it reduced compared with values for adults (375 +/- 70 LU; P less than 0.001) or children (300 +/- 73 LU, P less than 0.01) without infection. Reduced natural killer cell activity was found in measles patients with (84 +/- 30 LU) and without (55 +/- 18 LU) complications and was present for at least 3 weeks after the onset of the rash. Activity was increased by in vitro exposure of cells to interleukin-2. Depressed natural killer cell activity parallels in time the suppression of other parameters of cell-mediated immunity that occurs during measles. PMID:1696863

  11. Cell death sensitization of leukemia cells by opioid receptor activation

    PubMed Central

    Friesen, Claudia; Roscher, Mareike; Hormann, Inis; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf A.; Debatin, Klaus-Michael; Miltner, Erich

    2013-01-01

    Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in leukemia cells. However, the mechanism how opioids trigger apoptosis and activate caspases in leukemia cells is not understood. In this study, we demonstrate that downregulation of cAMP induced by opioid receptor activation using the opioid D,L-methadone kills and sensitizes leukemia cells for doxorubicin treatment. Enhancing cAMP levels by blocking opioid-receptor signaling strongly reduced D,L-methadone-induced apoptosis, caspase activation and doxorubicin-sensitivity. Induction of cell death in leukemia cells by activation of opioid receptors using the opioid D,L-methadone depends on critical levels of opioid receptor expression on the cell surface. Doxorubicin increased opioid receptor expression in leukemia cells. In addition, the opioid D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux in leukemia cells, suggesting that the opioid D,L-methadone as well as doxorubicin mutually increase their cytotoxic potential. Furthermore, we found that opioid receptor activation using D,L-methadone alone or in addition to doxorubicin inhibits tumor growth significantly in vivo. These results demonstrate that opioid receptor activation via triggering the downregulation of cAMP induces apoptosis, activates caspases and sensitizes leukemia cells for doxorubicin treatment. Hence, opioid receptor activation seems to be a promising strategy to improve anticancer therapies. PMID:23633472

  12. Stem cell tracking with optically active nanoparticles

    PubMed Central

    Gao, Yu; Cui, Yan; Chan, Jerry KY; Xu, Chenjie

    2013-01-01

    Stem-cell-based therapies hold promise and potential to address many unmet clinical needs. Cell tracking with modern imaging modalities offers insight into the underlying biological process of the stem-cell-based therapies, with the goal to reveal cell survival, migration, homing, engraftment, differentiation, and functions. Adaptability, sensitivity, resolution, and non-invasiveness have contributed to the longstanding use of optical imaging for stem cell tracking and analysis. To identify transplanted stem cells from the host tissue, optically active probes are usually used to label stem cells before the administration. In comparison to the traditional fluorescent probes like fluorescent proteins and dyes, nanoparticle-based probes are advantageous in terms of the photo-stabilities and minimal changes to the cell phenotype. The main focus here is to overview the recent development of optically active nanoparticles for stem cells tracking. The related optical imaging modalities include fluorescence imaging, photoacoustic imaging, Raman and surface enhanced Raman spectroscopy imaging. PMID:23638335

  13. Mitochondrial ROS fire up T cell activation.

    PubMed

    Murphy, Michael P; Siegel, Richard M

    2013-02-21

    Metabolic reprogramming has emerged as an important feature of immune cell activation. Two new studies, including Sena et al. (2013) in this issue of Immunity, identify mitochondrial reactive oxygen species (ROS) arising from metabolic reprogramming as signaling molecules in T cell activation. PMID:23438817

  14. Notch Signaling Regulates the Homeostasis of Tissue-Restricted Innate-like T Cells.

    PubMed

    Chennupati, Vijaykumar; Koch, Ute; Coutaz, Manuel; Scarpellino, Leonardo; Tacchini-Cottier, Fabienne; Luther, Sanjiv A; Radtke, Freddy; Zehn, Dietmar; MacDonald, H Robson

    2016-08-01

    Although Notch signaling plays important roles in lineage commitment and differentiation of multiple cell types including conventional T cells, nothing is currently known concerning Notch function in innate-like T cells. We have found that the homeostasis of several well-characterized populations of innate-like T cells including invariant NKT cells (iNKT), CD8ααTCRαβ small intestinal intraepithelial lymphocytes, and innate memory phenotype CD8 T cells is controlled by Notch. Notch selectively regulates hepatic iNKT cell survival via tissue-restricted control of B cell lymphoma 2 and IL-7Rα expression. More generally, Notch regulation of innate-like T cell homeostasis involves both cell-intrinsic and -extrinsic mechanisms and relies upon context-dependent interactions with Notch ligand-expressing fibroblastic stromal cells. Collectively, using conditional ablation of Notch receptors on peripheral T cells or Notch ligands on putative fibroblastic stromal cells, we show that Notch signaling is indispensable for the homeostasis of three tissue-restricted populations of innate-like T cells: hepatic iNKT, CD8ααTCRαβ small intestinal intraepithelial lymphocytes, and innate memory phenotype CD8 T cells, thus supporting a generalized role for Notch in innate T cell homeostasis. PMID:27324132

  15. Orchestration of Invariant Natural Killer T cell development by E and Id proteins

    PubMed Central

    Roy, Sumedha; Zhuang, Yuan

    2015-01-01

    Natural Killer T (NKT) cells are αβ T cells that express a semi-invariant T cell receptor (TCR) along with Natural Killer (NK) cell markers, and have an innate cell-like ability to produce a myriad of cytokines very quickly upon antigen exposure and subsequent activation. These cells are diverted from conventional single positive (SP) T cell fate at the double positive (DP) stage where TCR-mediated recognition of a lipid antigen presented on a CD1d molecule promotes their selection into the NKT lineage. Although many key regulatory molecules have been shown to play important roles in the development of NKT cells, the mechanism of lineage specification and acquisition of effector functions in these cells still remain to be fully addressed. In this review we specifically discuss the role of a family of class I Helix Loop Helix proteins known as E proteins, and of their antagonists Id proteins in NKT cell development. Recent works have shown that these proteins play key roles in iNKT development, from the invariant TCR rearrangement to terminal differentiation and maturation. Elucidating these roles provides an opportunity to uncover the transcriptional network that separates NKT cells from the concurrently developed conventional αβ T cells. PMID:25746046

  16. Estrogen Therapy Delays Autoimmune Diabetes and Promotes the Protective Efficiency of Natural Killer T-Cell Activation in Female Nonobese Diabetic Mice.

    PubMed

    Gourdy, Pierre; Bourgeois, Elvire A; Levescot, Anaïs; Pham, Linh; Riant, Elodie; Ahui, Marie-Louise; Damotte, Diane; Gombert, Jean-Marc; Bayard, Francis; Ohlsson, Claes; Arnal, Jean-François; Herbelin, André

    2016-01-01

    Therapeutic strategies focused on restoring immune tolerance remain the main avenue to prevent type 1 diabetes (T1D). Because estrogens potentiate FoxP3+ regulatory T cells (Treg) and invariant natural killer T (iNKT) cells, two regulatory lymphocyte populations that are functionally deficient in nonobese diabetic (NOD) mice, we investigated whether estradiol (E2) therapy influences the course of T1D in this model. To this end, female NOD mice were sc implanted with E2- or placebo-delivering pellets to explore the course of spontaneous and cyclophosphamide-induced diabetes. Treg-depleted and iNKT-cell-deficient (Jα18(-/-)) NOD mice were used to assess the respective involvement of these lymphocyte populations in E2 effects. Early E2 administration (from 4 wk of age) was found to preserve NOD mice from both spontaneous and cyclophosphamide-induced diabetes, and a complete protection was also observed throughout treatment when E2 treatment was initiated after the onset of insulitis (from 12 wk of age). This delayed E2 treatment remained fully effective in Treg-depleted mice but failed to entirely protect Jα18(-/-) mice. Accordingly, E2 administration was shown to restore the cytokine production of iNKT cells in response to in vivo challenge with the cognate ligand α-galactosylceramide. Finally, transient E2 administration potentiated the previously described protective action of α-galactosylceramide treatment in NOD females. This study provides original evidence that E2 therapy strongly protects NOD mice from T1D and reveals the estrogen/iNKT cell axis as a new effective target to counteract diabetes onset at the stage of insulitis. Estrogen-based therapy should thus be considered for T1D prevention. PMID:26485613

  17. Activity-driven fluctuations in living cells

    NASA Astrophysics Data System (ADS)

    Fodor, É.; Guo, M.; Gov, N. S.; Visco, P.; Weitz, D. A.; van Wijland, F.

    2015-05-01

    We propose a model for the dynamics of a probe embedded in a living cell, where both thermal fluctuations and nonequilibrium activity coexist. The model is based on a confining harmonic potential describing the elastic cytoskeletal matrix, which undergoes random active hops as a result of the nonequilibrium rearrangements within the cell. We describe the probe's statistics and we bring forth quantities affected by the nonequilibrium activity. We find an excellent agreement between the predictions of our model and experimental results for tracers inside living cells. Finally, we exploit our model to arrive at quantitative predictions for the parameters characterizing nonequilibrium activity, such as the typical time scale of the activity and the amplitude of the active fluctuations.

  18. Kinetic discrimination in T-cell activation.

    PubMed Central

    Rabinowitz, J D; Beeson, C; Lyons, D S; Davis, M M; McConnell, H M

    1996-01-01

    We propose a quantitative model for T-cell activation in which the rate of dissociation of ligand from T-cell receptors determines the agonist and antagonist properties of the ligand. The ligands are molecular complexes between antigenic peptides and proteins of the major histocompatibility complex on the surfaces of antigen-presenting cells. Binding of ligand to receptor triggers a series of biochemical reactions in the T cell. If the ligand dissociates after these reactions are complete, the T cell receives a positive activation signal. However, dissociation of ligand after completion of the first reaction but prior to generation of the final products results in partial T-cell activation, which acts to suppress a positive response. Such a negative signal is brought about by T-cell ligands containing the variants of antigenic peptides referred to as T-cell receptor antagonists. Results of recent experiments with altered peptide ligands compare favorably with T-cell responses predicted by this model. PMID:8643643

  19. Lipolytic activity in adipocyte cell fractions.

    PubMed

    Oschry, Y; Shapiro, B

    1980-05-28

    Adipocytes release only negligible amounts of free fatty acids unless stimulated, but reveal considerable lipolytic activity when homogenized. Epinephrine treatment of the cells caused only a 20-40% increase in the activity of infranatants of homogenates while raising the activity associated with the fat layer up to 10-fold. Full activity (i.e. that of intact-activated cells) could be revealed by epinephrine treatment of the homogenate as well as by sonication of the fat layer in buffer. The combination of both treatments did not yield higher activities. The fat cake contains the bulk of the potential activities which are only realized when dispersed in the aqueous phase by sonication, or upon hormone activation of the whole homogenate. Increase in activity could also be obtained by removal of most of the lipid from the fat layer by extraction with petroleum ether. Re-introduction of extracted lipid inhibited lipolysis. The active enzyme could be separated by flotation at 1.12 specific gravity. The data suggest that the lack of activity in the intact non-stimulated cell may be due to the lack of availability of the aqueous phase to the enzyme. PMID:7378439

  20. Lymphatic endothelial cells actively regulate prostate cancer cell invasion.

    PubMed

    Shah, Tariq; Wildes, Flonne; Kakkad, Samata; Artemov, Dmitri; Bhujwalla, Zaver M

    2016-07-01

    Lymphatic vessels serve as the primary route for metastatic spread to lymph nodes. However, it is not clear how interactions between cancer cells and lymphatic endothelial cells (LECs), especially within hypoxic microenvironments, affect the invasion of cancer cells. Here, using an MR compatible cell perfusion assay, we investigated the role of LEC-prostate cancer (PCa) cell interaction in the invasion and degradation of the extracellular matrix (ECM) by two human PCa cell lines, PC-3 and DU-145, under normoxia and hypoxia, and determined the metabolic changes that occurred under these conditions. We observed a significant increase in the invasion of ECM by invasive PC-3 cells, but not poorly invasive DU-145 cells when human dermal lymphatic microvascular endothelial cells (HMVEC-dlys) were present. Enhanced degradation of ECM by PC-3 cells in the presence of HMVEC-dlys identified interactions between HMVEC-dlys and PCa cells influencing cancer cell invasion. The enhanced ECM degradation was partly attributed to increased MMP-9 enzymatic activity in PC-3 cells when HMVEC-dlys were in close proximity. Significantly higher uPAR and MMP-9 expression levels observed in PC-3 cells compared to DU-145 cells may be one mechanism for increased invasion and degradation of matrigel by these cells irrespective of the presence of HMVEC-dlys. Hypoxia significantly decreased invasion by PC-3 cells, but this decrease was significantly attenuated when HMVEC-dlys were present. Significantly higher phosphocholine was observed in invasive PC-3 cells, while higher glycerophosphocholine was observed in DU-145 cells. These metabolites were not altered in the presence of HMVEC-dlys. Significantly increased lipid levels and lipid droplets were observed in PC-3 and DU-145 cells under hypoxia reflecting an adaptive survival response to oxidative stress. These results suggest that in vivo, invasive cells in or near lymphatic endothelial cells are likely to be more invasive and degrade the ECM

  1. Activation of intraislet lymphoid cells causes destruction of islet cells.

    PubMed Central

    Lacy, P. E.; Finke, E. H.

    1991-01-01

    In vitro culture of rat islets at 24 degrees C for 7 days in tissue culture medium CMRL 1066 almost completely eliminated lymphoid cells from the islets. Immunostaining of the islets with monoclonal antibody OX4 for demonstration of class II major histocompatibility complex (MHC)-expressing cells revealed a decrease from 13.1 +/- 0.6 positive cells per islet on day 0 to 0.7 +/- 0.1 cells per islet on day 7. A comparable decrease was found using OX1 for demonstration of all leukocytes. In contrast, culture of rat islets at 24 degrees C for 7 days with tissue culture Roswell Park Memorial Institute (RPMI) 1640 medium was not as effective in eliminating lymphoid cells as in medium CMRL 1066 (3.0 +/- 0.2 class II MHC positive cells per islet at 7 days). Effective elimination of intraislet lymphoid cells apparently is due to the combined effect of low temperature culture and the tissue culture medium CMRL-1066. The second goal of the study was to determine whether the destructive effect of interferon gamma (IFN-gamma) on rat islets in culture was due to intraislet lymphoid cells. In vitro culture of rat islets with IFN-gamma (1000 units/ml) at 37 degrees C caused almost complete destruction of the islets at 7 days. If intraislet lymphoid cells were eliminated from the islets by in vitro culture at 24 degrees C followed by exposure to IFN-gamma (1000 units/ml) for 7 days at 37 degrees C, then IFN-gamma did not cause destruction of the islets and transplants of the treated islets produced normoglycemia in diabetic recipient mice. These findings indicate that intraislet lymphoid cells are responsible for destruction of islet cells when these cells (presumably macrophages) are activated by IFN-gamma. Intraislet lymphoid cells may play a significant role in destroying islet cells in autoimmune diabetes. Images Figure 1 Figure 2 PMID:1902627

  2. Protrusive Activity Guides Changes in Cell-Cell Tension during Epithelial Cell Scattering

    PubMed Central

    Maruthamuthu, Venkat; Gardel, Margaret L.

    2014-01-01

    Knowing how epithelial cells regulate cell-matrix and cell-cell adhesions is essential to understand key events in morphogenesis as well as pathological events such as metastasis. During epithelial cell scattering, epithelial cell islands rupture their cell-cell contacts and migrate away as single cells on the extracellular matrix (ECM) within hours of growth factor stimulation, even as adhesion molecules such as E-cadherin are present at the cell-cell contact. How the stability of cell-cell contacts is modulated to effect such morphological transitions is still unclear. Here, we report that in the absence of ECM, E-cadherin adhesions continue to sustain substantial cell-generated forces upon hepatocyte growth factor (HGF) stimulation, consistent with undiminished adhesion strength. In the presence of focal adhesions, constraints that preclude the spreading and movement of cells at free island edges also prevent HGF-mediated contact rupture. To explore the role of cell motion and cell-cell contact rupture, we examine the biophysical changes that occur during the scattering of cell pairs. We show that the direction of cell movement with respect to the cell-cell contact is correlated with changes in the average intercellular force as well as the initial direction of cell-cell contact rupture. Our results suggest an important role for protrusive activity resulting in cell displacement and force redistribution in guiding cell-cell contact rupture during scattering. PMID:25099795

  3. Activation of radiosensitizers by hypoxic cells.

    PubMed Central

    Olive, P. L.; Durand, R. E.

    1978-01-01

    Hypoxic cells can metabolize nitroheterocyclic compounds to produce toxic intermediates capable of affecting the survival of neighbouring oxygenated cells. Mutagenesis experiments with E. coli WP-2 343 (deficient in nitroreductase) indicated that reduction of nitroheterocyclics outside bacteria causes killing and mutations within bacteria, presumably due to the transfer of the "active" specie (s). Using animal tissue slices to reduce nitrofurans, cultured L-929 cells incubated under aerobic conditions were far more sensitive to the toxic and DNA damaging effects of these drugs. Transfer of the active species also occurs in a tissue-like environment in multicell spheroids where the presence of a hypoxic central core served to convert the nitroheterocyclics to intermediates which also damaged the neighbouring oxygenated cells. PMID:354676

  4. Polyclonal B cell activation in ankylosing spondylitis.

    PubMed Central

    Barbieri, P; Olivieri, I; Benedettini, G; Marelli, P; Ciompi, M L; Pasero, G; Campa, M

    1990-01-01

    The peripheral blood lymphocyte response of patients with ankylosing spondylitis (AS) to several polyclonal B cell activators was investigated. No differences were found in the reactivity to pokeweed mitogen and protein A between patients and controls; in contrast, the peripheral blood lymphocyte response to Staphylococcus aureus strain Cowan I (SAC) was significantly higher in patients with AS than in controls. This responsiveness was not influenced either by the presence of the HLA-B27 antigen or by environmental factors or associated diseases, and it was higher in patients with active AS than in those with inactive disease. The percentage of circulating B cells was normal. The responses to T cell mitogens and the percentages of T cell subpopulations were similar in patients and in controls. The peripheral blood lymphocyte hyperactivity of patients with AS to SAC was associated with an increased in vitro production of immunoglobulins. PMID:2383063

  5. (+)-Catechin attenuates activation of hepatic stellate cells.

    PubMed

    Bragança de Moraes, Cristina Machado; Bitencourt, Shanna; de Mesquita, Fernanda Cristina; Mello, Denizar; de Oliveira, Leticia Paranhos; da Silva, Gabriela Viegas; Lorini, Vinicius; Caberlon, Eduardo; de Souza Basso, Bruno; Schmid, Julia; Ferreira, Gabriela Acevedo; de Oliveira, Jarbas Rodrigues

    2014-04-01

    (+)-Catechin is a type of catechin present in large amounts in açaí fruits and cocoa seeds. Besides its antioxidant and anti-inflammatory activities, little is known about its effects in the liver, especially during hepatic fibrosis. We report here the effects of (+)-catechin on hepatic stellate cells. (+)-Catechin induced quiescent phenotype in GRX cells, along with an increase in lipid droplets. Proliferator-activated receptor γ mRNA expression was upregulated, whereas type I collagen mRNA expression was downregulated. Pro-inflammatory cytokines were not influenced by (+)-catechin, whereas the levels of interleukin 10 were significantly increased. The data provide evidence that (+)-catechin can reduce hepatic stellate cell activation. PMID:24353036

  6. Entangled active matter: From cells to ants

    NASA Astrophysics Data System (ADS)

    Hu, D. L.; Phonekeo, S.; Altshuler, E.; Brochard-Wyart, F.

    2016-07-01

    Both cells and ants belong to the broad field of active matter, a novel class of non-equilibrium materials composed of many interacting units that individually consume energy and collectively generate motion or mechanical stresses. However cells and ants differ from fish and birds in that they can support static loads. This is because cells and ants can be entangled, so that individual units are bound by transient links. Entanglement gives cells and ants a set of remarkable properties usually not found together, such as the ability to flow like a fluid, spring back like an elastic solid, and self-heal. In this review, we present the biology, mechanics and dynamics of both entangled cells and ants. We apply concepts from soft matter physics and wetting to characterize these systems as well as to point out their differences, which arise from their differences in size. We hope that our viewpoints will spur further investigations into cells and ants as active materials, and inspire the fabrication of synthetic active matter.

  7. Imaging CREB Activation in Living Cells*

    PubMed Central

    Friedrich, Michael W.; Aramuni, Gayane; Mank, Marco; Mackinnon, Jonathan A. G.; Griesbeck, Oliver

    2010-01-01

    The Ca2+- and cAMP-responsive element-binding protein (CREB) and the related ATF-1 and CREM are stimulus-inducible transcription factors that link certain forms of cellular activity to changes in gene expression. They are attributed to complex integrative activation characteristics, but current biochemical technology does not allow dynamic imaging of CREB activation in single cells. Using fluorescence resonance energy transfer between mutants of green fluorescent protein we here develop a signal-optimized genetically encoded indicator that enables imaging activation of CREB due to phosphorylation of the critical serine 133. The indicator of CREB activation due to phosphorylation (ICAP) was used to investigate the role of the scaffold and anchoring protein AKAP79/150 in regulating signal pathways converging on CREB. We show that disruption of AKAP79/150-mediated protein kinase A anchoring or knock-down of AKAP150 dramatically reduces the ability of protein kinase A to activate CREB. In contrast, AKAP79/150 regulation of CREB via L-type channels may only have minor importance. ICAP allows dynamic and reversible imaging in living cells and may become useful in studying molecular components and cell-type specificity of activity-dependent gene expression. PMID:20484048

  8. Critical telomerase activity for uncontrolled cell growth.

    PubMed

    Wesch, Neil L; Burlock, Laura J; Gooding, Robert J

    2016-01-01

    The lengths of the telomere regions of chromosomes in a population of cells are modelled using a chemical master equation formalism, from which the evolution of the average number of cells of each telomere length is extracted. In particular, the role of the telomere-elongating enzyme telomerase on these dynamics is investigated. We show that for biologically relevant rates of cell birth and death, one finds a critical rate, R crit, of telomerase activity such that the total number of cells diverges. Further, R crit is similar in magnitude to the rates of mitosis and cell death. The possible relationship of this result to replicative immortality and its associated hallmark of cancer is discussed. PMID:27500377

  9. Critical telomerase activity for uncontrolled cell growth

    NASA Astrophysics Data System (ADS)

    Wesch, Neil L.; Burlock, Laura J.; Gooding, Robert J.

    2016-08-01

    The lengths of the telomere regions of chromosomes in a population of cells are modelled using a chemical master equation formalism, from which the evolution of the average number of cells of each telomere length is extracted. In particular, the role of the telomere-elongating enzyme telomerase on these dynamics is investigated. We show that for biologically relevant rates of cell birth and death, one finds a critical rate, R crit, of telomerase activity such that the total number of cells diverges. Further, R crit is similar in magnitude to the rates of mitosis and cell death. The possible relationship of this result to replicative immortality and its associated hallmark of cancer is discussed.

  10. Activated mast cells promote differentiation of B cells into effector cells

    PubMed Central

    Palm, Anna-Karin E.; Garcia-Faroldi, Gianni; Lundberg, Marcus; Pejler, Gunnar; Kleinau, Sandra

    2016-01-01

    Based on the known accumulation of mast cells (MCs) in B cell-dependent inflammatory diseases, including rheumatoid arthritis, we hypothesized that MCs directly modulate B cells. We show here that degranulated, and to a lesser extent naïve or IgE-sensitized, MCs activate both naïve and B cell receptor-activated B cells. This was shown by increased proliferation, blast formation, and expression of CD19, MHC class II and CD86 in the B cells. Further, MCs stimulated the secretion of IgM and IgG in IgM+ B cells, indicating that MCs can induce class-switch recombination in B cells. We also show that coculture of MCs with B cells promotes surface expression of L-selectin, a homing receptor, on the B cells. The effects of MCs on B cells were partly dependent on cell-cell contact and both follicular and marginal zone B cells could be activated by MCs. Our findings suggest that degranulated MCs support optimal activation of B cells, a finding that is in line with in vivo studies showing that MCs frequently degranulate in the context of B-cell driven pathologies such as arthritis. Together, our findings show that MCs have the capacity to differentiate B cells to effector cells. PMID:26847186

  11. Active mechanics and geometry of adherent cells and cell colonies

    NASA Astrophysics Data System (ADS)

    Banerjee, Shiladitya

    2014-03-01

    Measurements of traction stresses exerted by adherent cells or cell colonies on elastic substrates have yielded new insight on how the mechanical and geometrical properties of the substrate regulate cellular force distribution, mechanical energy, spreading, morphology or stress ber architecture. We have developed a generic mechanical model of adherent cells as an active contractile gel mechanically coupled to an elastic substrate and to neighboring cells in a tissue. The contractile gel model accurately predicts the distribution of cellular and traction stresses as observed in single cell experiments, and captures the dependence of cell shape, traction stresses and stress ber polarization on the substrate's mechanical and geometrical properties. The model further predicts that the total strain energy of an adherent cell is solely regulated by its spread area, in agreement with recent experiments on micropatterned substrates with controlled geometry. When used to describe the behavior of colonies of adherent epithelial cells, the model demonstrates the crucial role of the mechanical cross-talk between intercellular and extracellular adhesion in regulating traction force distribution. Strong intercellular mechanical coupling organizes traction forces to the colony periphery, whereas weaker intercellular coupling leads to the build up of traction stresses at intercellular junctions. Furthermore, in agreement with experiments on large cohesive keratinocyte colonies, the model predicts a linear scaling of traction forces with the colony size. This scaling suggests the emergence of an effective surface tension as a scale-free material property of the adherent tissue, originating from actomyosin contractility.

  12. Mechanically activated artificial cell by using microfluidics.

    PubMed

    Ho, Kenneth K Y; Lee, Lap Man; Liu, Allen P

    2016-01-01

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology. PMID:27610921

  13. Mechanically activated artificial cell by using microfluidics

    PubMed Central

    Ho, Kenneth K. Y.; Lee, Lap Man; Liu, Allen P.

    2016-01-01

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology. PMID:27610921

  14. Photochemical approaches to T-cell activation

    PubMed Central

    Huse, Morgan

    2010-01-01

    Despite decades of intensive research, T-cell activation has remained mysterious because of both the dizzying diversity of antigen recognition and the speed and comprehensiveness of the T-cell-receptor signalling network. Further progress will require new approaches and reagents that provide added levels of control. Photochemistry allows specific biochemical processes to be controlled with light and is well suited to mechanistic studies in complex cellular environments. In recent years, several laboratories have adopted approaches based on photoreactive peptide-major histocompatibility complex reagents in order to study T-cell activation and function with high precision. Here, I review these efforts and outline future directions for this exciting area of research. PMID:20406301

  15. Development and function of invariant natural killer T cells producing T(h)2- and T(h)17-cytokines.

    PubMed

    Watarai, Hiroshi; Sekine-Kondo, Etsuko; Shigeura, Tomokuni; Motomura, Yasutaka; Yasuda, Takuwa; Satoh, Rumi; Yoshida, Hisahiro; Kubo, Masato; Kawamoto, Hiroshi; Koseki, Haruhiko; Taniguchi, Masaru

    2012-02-01

    There is heterogeneity in invariant natural killer T (iNKT) cells based on the expression of CD4 and the IL-17 receptor B (IL-17RB), a receptor for IL-25 which is a key factor in T(H)2 immunity. However, the development pathway and precise function of these iNKT cell subtypes remain unknown. IL-17RB⁺iNKT cells are present in the thymic CD44⁺/⁻ NK1.1⁻ population and develop normally even in the absence of IL-15, which is required for maturation and homeostasis of IL-17RB⁻iNKT cells producing IFN-γ. These results suggest that iNKT cells contain at least two subtypes, IL-17RB⁺ and IL-17RB⁻ subsets. The IL-17RB⁺iNKT subtypes can be further divided into two subtypes on the basis of CD4 expression both in the thymus and in the periphery. CD4⁺ IL-17RB⁺iNKT cells produce T(H)2 (IL-13), T(H)9 (IL-9 and IL-10), and T(H)17 (IL-17A and IL-22) cytokines in response to IL-25 in an E4BP4-dependent fashion, whereas CD4⁻ IL-17RB⁺iNKT cells are a retinoic acid receptor-related orphan receptor (ROR)γt⁺ subset producing T(H)17 cytokines upon stimulation with IL-23 in an E4BP4-independent fashion. These IL-17RB⁺iNKT cell subtypes are abundantly present in the lung in the steady state and mediate the pathogenesis in virus-induced airway hyperreactivity (AHR). In this study we demonstrated that the IL-17RB⁺iNKT cell subsets develop distinct from classical iNKT cell developmental stages in the thymus and play important roles in the pathogenesis of airway diseases. PMID:22346732

  16. Epigenetic Changes during Hepatic Stellate Cell Activation

    PubMed Central

    Götze, Silke; Schumacher, Eva C.; Kordes, Claus; Häussinger, Dieter

    2015-01-01

    Background and Aims Hepatic stellate cells (HSC), which can participate in liver regeneration and fibrogenesis, have recently been identified as liver-resident mesenchymal stem cells. During their activation HSC adopt a myofibroblast-like phenotype accompanied by profound changes in the gene expression profile. DNA methylation changes at single genes have been reported during HSC activation and may participate in the regulation of this process, but comprehensive DNA methylation analyses are still missing. The aim of the present study was to elucidate the role of DNA methylation during in vitro activation of HSC. Methods and Results The analysis of DNA methylation changes by antibody-based assays revealed a strong decrease in the global DNA methylation level during culture-induced activation of HSC. To identify genes which may be regulated by DNA methylation, we performed a genome-wide Methyl-MiniSeq EpiQuest sequencing comparing quiescent and early culture-activated HSC. Approximately 400 differentially methylated regions with a methylation change of at least 20% were identified, showing either hypo- or hypermethylation during activation. Further analysis of selected genes for DNA methylation and expression were performed revealing a good correlation between DNA methylation changes and gene expression. Furthermore, global DNA demethylation during HSC activation was investigated by 5-bromo-2-deoxyuridine assay and L-mimosine treatment showing that demethylation was independent of DNA synthesis and thereby excluding a passive DNA demethylation mechanism. Conclusions In summary, in vitro activation of HSC initiated strong DNA methylation changes, which were associated with gene regulation. These results indicate that epigenetic mechanisms are important for the control of early HSC activation. Furthermore, the data show that global DNA demethylation during activation is based on an active DNA demethylation mechanism. PMID:26065684

  17. Transition metals activate TFEB in overexpressing cells

    PubMed Central

    Peña, Karina A.; Kiselyov, Kirill

    2015-01-01

    Transition metal toxicity is an important factor in the pathogenesis of numerous human disorders, including neurodegenerative diseases. Lysosomes have emerged as important factors in transition metal toxicity because they handle transition metals via endocytosis, autophagy, absorption from the cytoplasm and exocytosis. Transcription factor EB (TFEB) regulates lysosomal biogenesis and the expression of lysosomal proteins in response to lysosomal and/or metabolic stresses. Since transition metals cause lysosomal dysfunction, we proposed that TFEB may be activated to drive gene expression in response to transition metal exposure and that such activation may influence transition metal toxicity. We found that transition metals copper (Cu) and iron (Fe) activate recombinant TFEB and stimulate the expression of TFEB-dependent genes in TFEB-overexpressing cells. In cells that show robust lysosomal exocytosis, TFEB was cytoprotective at moderate levels of Cu exposure, decreasing oxidative stress as reported by the expression of heme oxygenase-1 (HMOX1) gene. However, at high levels of Cu exposure, particularly in cells with low levels of lysosomal exocytosis, activation of overexpressed TFEB was toxic, increasing oxidative stress and mitochondrial damage. Based on these data, we conclude that TFEB-driven gene network is a component of the cellular response to transition metals. These data suggest limitations and disadvantages of TFEB overexpression as a therapeutic approach. PMID:26251447

  18. Decidual Cell Polyploidization Necessitates Mitochondrial Activity

    PubMed Central

    Ma, Xinghong; Gao, Fei; Rusie, Allison; Hemingway, Jennifer; Ostmann, Alicia B.; Sroga, Julie M.; Jegga, Anil G.; Das, Sanjoy K.

    2011-01-01

    Cellular polyploidy has been widely reported in nature, yet its developmental mechanism and function remain poorly understood. In the present study, to better define the aspects of decidual cell polyploidy, we isolated pure polyploid and non-polyploid decidual cell populations from the in vivo decidual bed. Three independent RNA pools prepared for each population were then subjected to the Affymetrix gene chip analysis for the whole mouse genome transcripts. Our data revealed up-regulation of 1015 genes and down-regulation of 1207 genes in the polyploid populations, as compared to the non-polyploid group. Comparative RT-PCR and in situ hybridization results indeed confirmed differential expressional regulation of several genes between the two populations. Based on functional enrichment analyses, up-regulated polyploidy genes appeared to implicate several functions, which primarily include cell/nuclear division, ATP binding, metabolic process, and mitochondrial activity, whereas that of down-regulated genes primarily included apoptosis and immune processes. Further analyses of genes that are related to mitochondria and bi-nucleation showed differential and regional expression within the decidual bed, consistent with the pattern of polyploidy. Consistently, studies revealed a marked induction of mitochondrial mass and ATP production in polyploid cells. The inhibition of mitochondrial activity by various pharmacological inhibitors, as well as by gene-specific targeting using siRNA-mediated technology showed a dramatic attenuation of polyploidy and bi-nucleation development during in vitro stromal cell decidualization, suggesting mitochondria play a major role in positive regulation of decidual cell polyploidization. Collectively, analyses of unique polyploidy markers and molecular signaling networks may be useful to further characterize functional aspects of decidual cell polyploidy at the site of implantation. PMID:22046353

  19. Fluorescence activated cell sorting of plant protoplasts.

    PubMed

    Bargmann, Bastiaan O R; Birnbaum, Kenneth D

    2010-01-01

    High-resolution, cell type-specific analysis of gene expression greatly enhances understanding of developmental regulation and responses to environmental stimuli in any multicellular organism. In situ hybridization and reporter gene visualization can to a limited extent be used to this end but for high resolution quantitative RT-PCR or high-throughput transcriptome-wide analysis the isolation of RNA from particular cell types is requisite. Cellular dissociation of tissue expressing a fluorescent protein marker in a specific cell type and subsequent Fluorescence Activated Cell Sorting (FACS) makes it possible to collect sufficient amounts of material for RNA extraction, cDNA synthesis/amplification and microarray analysis. An extensive set of cell type-specific fluorescent reporter lines is available to the plant research community. In this case, two marker lines of the Arabidopsis thaliana root are used: P(SCR;)::GFP (endodermis and quiescent center) and P(WOX5;)::GFP (quiescent center). Large numbers (thousands) of seedlings are grown hydroponically or on agar plates and harvested to obtain enough root material for further analysis. Cellular dissociation of plant material is achieved by enzymatic digestion of the cell wall. This procedure makes use of high osmolarity-induced plasmolysis and commercially available cellulases, pectinases and hemicellulases to release protoplasts into solution. FACS of GFP-positive cells makes use of the visualization of the green versus the red emission spectra of protoplasts excited by a 488 nm laser. GFP-positive protoplasts can be distinguished by their increased ratio of green to red emission. Protoplasts are typically sorted directly into RNA extraction buffer and stored for further processing at a later time. This technique is revealed to be straightforward and practicable. Furthermore, it is shown that it can be used without difficulty to isolate sufficient numbers of cells for transcriptome analysis, even for very scarce

  20. Chronic variable stress activates hematopoietic stem cells

    PubMed Central

    Courties, Gabriel; Dutta, Partha; Iwamoto, Yoshiko; Zaltsman, Alex; von zur Muhlen, Constantin; Bode, Christoph; Fricchione, Gregory L.; Denninger, John; Lin, Charles P.; Vinegoni, Claudio; Libby, Peter; Swirski, Filip K.; Weissleder, Ralph; Nahrendorf, Matthias

    2014-01-01

    Exposure to psychosocial stress is a risk factor for many diseases, including atherosclerosis1,2. While incompletely understood, interaction between the psyche and the immune system provides one potential mechanism linking stress and disease inception and progression. Known crosstalk between the brain and immune system includes the hypothalamic–pituitary–adrenal axis, which centrally drives glucocorticoid production in the adrenal cortex, and the sympathetic–adrenal–medullary axis, which controls stress–induced catecholamine release in support of the fight–or–flight reflex3,4. It remains unknown however if chronic stress changes hematopoietic stem cell activity. Here we show that stress increases proliferation of these most primitive progenitors, giving rise to higher levels of disease–promoting inflammatory leukocytes. We found that chronic stress induced monocytosis and neutrophilia in humans. While investigating the source of leukocytosis in mice, we discovered that stress activates upstream hematopoietic stem cells. Sympathetic nerve fibers release surplus noradrenaline, which uses the β3 adrenergic receptor to signal bone marrow niche cells to decrease CXCL12 levels. Consequently, elevated hematopoietic stem cell proliferation increases output of neutrophils and inflammatory monocytes. When atherosclerosis–prone ApoE−/− mice encounter chronic stress, accelerated hematopoiesis promotes plaque features associated with vulnerable lesions that cause myocardial infarction and stroke in humans. PMID:24952646

  1. Persistent neural activity in head direction cells

    NASA Technical Reports Server (NTRS)

    Taube, Jeffrey S.; Bassett, Joshua P.; Oman, C. M. (Principal Investigator)

    2003-01-01

    Many neurons throughout the rat limbic system discharge in relation to the animal's directional heading with respect to its environment. These so-called head direction (HD) cells exhibit characteristics of persistent neural activity. This article summarizes where HD cells are found, their major properties, and some of the important experiments that have been conducted to elucidate how this signal is generated. The number of HD and angular head velocity cells was estimated for several brain areas involved in the generation of the HD signal, including the postsubiculum, anterior dorsal thalamus, lateral mammillary nuclei and dorsal tegmental nucleus. The HD cell signal has many features in common with what is known about how neural integration is accomplished in the oculomotor system. The nature of the HD cell signal makes it an attractive candidate for using neural network models to elucidate the signal's underlying mechanisms. The conditions that any network model must satisfy in order to accurately represent how the nervous system generates this signal are highlighted and areas where key information is missing are discussed.

  2. Transgelin-2 in B-Cells Controls T-Cell Activation by Stabilizing T Cell - B Cell Conjugates

    PubMed Central

    Chae, Myoung-Won; Kim, Hye-Ran; Kim, Chang-Hyun; Jun, Chang-Duk; Park, Zee-Yong

    2016-01-01

    The immunological synapse (IS), a dynamic and organized junction between T-cells and antigen presenting cells (APCs), is critical for initiating adaptive immunity. The actin cytoskeleton plays a major role in T-cell reorganization during IS formation, and we previously reported that transgelin-2, an actin-binding protein expressed in T-cells, stabilizes cortical F-actin, promoting T-cell activation in response to antigen stimulation. Transgelin-2 is also highly expressed in B-cells, although no specific function has been reported. In this study, we found that deficiency in transgelin-2 (TAGLN2-/-) in B-cells had little effect on B-cell development and activation, as measured by the expression of CD69, MHC class II molecules, and CD80/86. Nevertheless, in B-cells, transgelin-2 accumulated in the IS during the interaction with T-cells. These results led us to hypothesize that transgelin-2 may also be involved in IS stability in B-cells, thereby influencing T-cell function. Notably, we found that transgelin-2 deficiency in B-cells reduced T-cell activation, as determined by the release of IL-2 and interferon-γ and the expression of CD69. Furthermore, the reduced T-cell activation was correlated with reduced B-cell–T-cell conjugate formation. Collectively, these results suggest that actin stability in B-cells during IS formation is critical for the initiation of adaptive T-cell immunity. PMID:27232882

  3. Cell Micromanipulation with an Active Handheld Micromanipulator

    PubMed Central

    Tabarés, Jaime Cuevas; MacLachlan, Robert A.; Ettensohn, Charles A.

    2012-01-01

    The paper describes the use of an active handheld micromanipulator, known as Micron, for micromanipulation of cells. The device enables users to manipulate objects on the order of tens of microns in size, with the natural ease of use of a fully handheld tool. Micron senses its own position using a purpose-built microscale optical tracker, estimates the erroneous or undesired component of hand motion, and actively corrects it by deflecting its own tool tip using piezoelectric actuators. Benchtop experiments in tip positioning show that active compensation can reduce positioning error by up to 51% compared to unaided performance. Preliminary experiments in bisection of sea urchin embryos exhibit an increased success rate when performed with the help of Micron. PMID:21096452

  4. Active stochastic stress fluctuations in the cell cytoskeleton stir the cell and activate primary cilia

    NASA Astrophysics Data System (ADS)

    Schmidt, Christoph F.; Fakhri, Nikta; Battle, Christopher; Ott, Carolyn M.; Wessel, Alok D.; Lippincott-Schwartz, Jennifer; Mackintosh, Frederick C.

    2015-03-01

    Cells are active systems with molecular force generation that drives complex dynamics at the supramolecular scale. Much of cellular dynamics is driven by myosin motors interacting with the actin cytoskeleton. We discovered active random ``stirring'' driven by cytoplasmic myosin as an intermediate mode of transport, different from both thermal diffusion and directed motor activity. We found a further manifestation of cytoskeletal dynamics in the active motion patterns of primary cilia generated by epithelial cells. These cilia were thought to be immotile due to the absence of dynein motors, but it turns out that their anchoring deeper inside the cell in combination with the strongly fluctuating cortex results in clearly measurable non-equilibrium fluctuations.

  5. Probing cell activity in random access modality

    NASA Astrophysics Data System (ADS)

    Sacconi, L.; Crocini, C.; Lotti, J.; Coppini, R.; Ferrantini, C.; Tesi, C.; Yan, P.; Loew, L. M.; Cerbai, E.; Poggesi, C.; Pavone, F. S.

    2013-06-01

    We combined the advantage of an ultrafast random access microscope with novel labelling technologies to study the intra- and inter-cellular action potential propagation in neurons and cardiac myocytes with sub-millisecond time resolution. The random accesses microscopy was used in combination with a new fluorinated voltage sensitive dye with improved photostability to record membrane potential from multiple Purkinje cells with near simultaneous sampling. The RAMP system rapidly scanned between lines drawn in the membranes of neurons to perform multiplex measurements of the TPF signal. This recording was achieved by rapidly positioning the laser excitation with the AOD to sample a patch of membrane from each cell in <100 μs for recording from five cells, multiplexing permits a temporal resolution of 400 μs sufficient to capture every spike. The system is capable to record spontaneous activity over 800 ms from five neighbouring cells simultaneously, showing that spiking is not temporally correlated. The system was also used to investigate the electrical properties of tubular system (TATS) in isolated rat ventricular myocytes.

  6. Hymenoptera Allergy and Mast Cell Activation Syndromes.

    PubMed

    Bonadonna, Patrizia; Bonifacio, Massimiliano; Lombardo, Carla; Zanotti, Roberta

    2016-01-01

    Mast cell activation syndrome (MCAS) can be diagnosed in patients with recurrent, severe symptoms from mast cell (MC)-derived mediators, which are transiently increased in serum and are attenuated by mediator-targeting drugs. When KIT-mutated, clonal MC are detected in these patients, a diagnosis of primary MCAS can be made. Severe systemic reactions to hymenoptera venom (HV) represent the most common form of anaphylaxis in patients with mastocytosis. Patients with primary MCAS and HV anaphylaxis are predominantly males and do not have skin lesions in the majority of cases, and anaphylaxis is characterized by hypotension and syncope in the absence of urticaria and angioedema. A normal value of tryptase (≤11.4 ng/ml) in these patients does not exclude a diagnosis of mastocytosis. Patients with primary MCAS and HV anaphylaxis have to undergo lifelong venom immunotherapy, in order to prevent further potentially fatal severe reactions. PMID:26714690

  7. Sertoli Cells Maintain Leydig Cell Number and Peritubular Myoid Cell Activity in the Adult Mouse Testis

    PubMed Central

    Monteiro, Ana; Milne, Laura; Cruickshanks, Lyndsey; Jeffrey, Nathan; Guillou, Florian; Freeman, Tom C.; Mitchell, Rod T.; Smith, Lee B.

    2014-01-01

    The Sertoli cells are critical regulators of testis differentiation and development. In the adult, however, their known function is restricted largely to maintenance of spermatogenesis. To determine whether the Sertoli cells regulate other aspects of adult testis biology we have used a novel transgenic mouse model in which Amh-Cre induces expression of the receptor for Diphtheria toxin (iDTR) specifically within Sertoli cells. This causes controlled, cell-specific and acute ablation of the Sertoli cell population in the adult animal following Diphtheria toxin injection. Results show that Sertoli cell ablation leads to rapid loss of all germ cell populations. In addition, adult Leydig cell numbers decline by 75% with the remaining cells concentrated around the rete and in the sub-capsular region. In the absence of Sertoli cells, peritubular myoid cell activity is reduced but the cells retain an ability to exclude immune cells from the seminiferous tubules. These data demonstrate that, in addition to support of spermatogenesis, Sertoli cells are required in the adult testis both for retention of the normal adult Leydig cell population and for support of normal peritubular myoid cell function. This has implications for our understanding of male reproductive disorders and wider androgen-related conditions affecting male health. PMID:25144714

  8. Mitochondrial uncouplers inhibit hepatic stellate cell activation

    PubMed Central

    2012-01-01

    Background Mitochondrial dysfunction participates in the progression of several pathologies. Although there is increasing evidence for a mitochondrial role in liver disease, little is known about its contribution to hepatic stellate cell (HSC) activation. In this study we investigated the role of mitochondrial activity through mild uncoupling during in vitro activation of HSCs. Methods Cultured primary human and mouse HSCs were treated with the chemical uncouplers FCCP and Valinomycin. ATP levels were measured by luciferase assay and production of reactive oxygen species was determined using the fluorescent probe DCFH-DA. Possible cytotoxicity by uncoupler treatment was evaluated by caspase 3/7 activity and cytoplasmic protease leakage. Activation of HSCs and their response to the pro-fibrogenic cytokine TGF-β was evaluated by gene expression of activation markers and signal mediators using RT-qPCR. Proliferation was measured by incorporation of EdU and protein expression of α-smooth muscle actin was analyzed by immunocytochemistry and western blot. Results FCCP and Valinomycin treatment mildly decreased ATP and reactive oxygen species levels. Both uncouplers increased the expression of mitochondrial genes such as Tfam and COXIV while inducing morphological features of quiescent mouse HSCs and abrogating TGF-β signal transduction. Mild uncoupling reduced HSC proliferation and expression of pro-fibrogenic markers of mouse and human HSCs. Conclusions Mild mitochondrial uncoupling inhibits culture-induced HSC activation and their response to pro-fibrogenic cytokines like TGF-β. These results therefore suggest mitochondrial uncoupling of HSCs as a strategy to reduce progression of liver fibrosis. PMID:22686625

  9. Activity of nintedanib in germ cell tumors.

    PubMed

    Steinemann, Gustav; Jacobsen, Christine; Gerwing, Mirjam; Hauschild, Jessica; von Amsberg, Gunhild; Höpfner, Michael; Nitzsche, Bianca; Honecker, Friedemann

    2016-02-01

    Germ cell tumors (GCTs) are the most frequent malignancy in male patients between 15 and 45 years of age. Cisplatin-based chemotherapy shows excellent cure rates, but patients with cisplatin-resistant GCTs have a poor prognosis. Nintedanib (BIBF 1120, Vargatef) inhibits the receptor classes vascular endothelial growth factor receptor, platelet derived growth factor receptor, and fibroblast growth factor receptor, and has shown activity against many tumors, as well as in idiopathic lung fibrosis and bleomycin-induced lung injury. Here, we investigated the antineoplastic and antiangiogenic properties of nintedanib in cisplatin-resistant and cisplatin-sensitive GCT cells, both alone and in combination with classical cytotoxic agents such as cisplatin, etoposide, and bleomycin. The half-maximal inhibitory concentration (IC50) of nintedanib was 4.5 ± 0.43 μmol/l, 3.1 ± 0.45 μmol/l, and 3.6 ± 0.33 μmol/l in cisplatin-sensitive NTERA2, 2102Ep, and NCCIT cells, whereas the IC50 doses of the cisplatin-resistant counterparts were 6.6 ± 0.37 μmol/l (NTERA2-R), 4.5 ± 0.83 μmol/l (2102Ep-R), and 6.1 ± 0.41 μmol/l (NCCIT-R), respectively. Single treatment with nintedanib induced apoptosis and resulted in a sustained reduction in the capacity of colony formation in both cisplatin-sensitive and cisplatin-resistant GCT cells. Cell cycle analysis showed that nintedanib induced a strong G0/G1-phase arrest in all investigated cell lines. Combination treatment with cisplatin did not result in additive, synergistic, or antagonistic effects. The in-vivo activity was studied using the chorioallantoic membrane assay and indicated the antiangiogenic potency of nintedanib with markedly reduced microvessel density. Topical treatment of inoculated tumor plaques resulted in a significant reduction of the tumor size. This indicates that nintedanib might be a promising substance in the treatment of GCT. PMID:26479145

  10. T helper cell activation and human retroviral pathogenesis.

    PubMed Central

    Copeland, K F; Heeney, J L

    1996-01-01

    T helper (Th) cells are of central importance in regulating many critical immune effector mechanisms. The profile of cytokines produced by Th cells correlates with the type of effector cells induced during the immune response to foreign antigen. Th1 cells induce the cell-mediated immune response, while Th2 cells drive antibody production. Th cells are the preferential targets of human retroviruses. Infections with human T-cell leukemia virus (HTLV) or human immunodeficiency virus (HIV) result in the expansion of Th cells by the action of HTLV (adult T-cell leukemia) or the progressive loss of T cells by the action of HIV (AIDS). Both retrovirus infections impart a high-level activation state in the host immune cells as well as systemically. However, diverging responses to this activation state have contrasting effects on the Th-cell population. In HIV infection, Th-cell loss has been attributed to several mechanisms, including a selective elimination of cells by apoptosis. The induction of apoptosis in HIV infection is complex, with many different pathways able to induce cell death. In contrast, infection of Th cells with HTLV-1 affords the cell a protective advantage against apoptosis. This advantage may allow the cell to escape immune surveillance, providing the opportunity for the development of Th-cell cancer. In this review, we will discuss the impact of Th-cell activation and general immune activation on human retrovirus expression with a focus upon Th-cell function and the progression to disease. PMID:8987361

  11. Kinase Activity Studied in Living Cells Using an Immunoassay

    ERIC Educational Resources Information Center

    Bavec, Aljos?a

    2014-01-01

    This laboratory exercise demonstrates the use of an immunoassay for studying kinase enzyme activity in living cells. The advantage over the classical method, in which students have to isolate the enzyme from cell material and measure its activity in vitro, is that enzyme activity is modulated and measured in living cells, providing a more…

  12. Application of user-guided automated cytometric data analysis to large-scale immunoprofiling of invariant natural killer T cells

    PubMed Central

    Hu, Xinli; Kim, Hyun; Brennan, Patrick J.; Han, Buhm; Baecher-Allan, Clare M.; De Jager, Philip L.; Brenner, Michael B.; Raychaudhuri, Soumya

    2013-01-01

    Defining and characterizing pathologies of the immune system requires precise and accurate quantification of abundances and functions of cellular subsets via cytometric studies. At this time, data analysis relies on manual gating, which is a major source of variability in large-scale studies. We devised an automated, user-guided method, X-Cyt, which specializes in rapidly and robustly identifying targeted populations of interest in large data sets. We first applied X-Cyt to quantify CD4+ effector and central memory T cells in 236 samples, demonstrating high concordance with manual analysis (r = 0.91 and 0.95, respectively) and superior performance to other available methods. We then quantified the rare mucosal associated invariant T cell population in 35 samples, achieving manual concordance of 0.98. Finally we characterized the population dynamics of invariant natural killer T (iNKT) cells, a particularly rare peripheral lymphocyte, in 110 individuals by assaying 19 markers. We demonstrated that although iNKT cell numbers and marker expression are highly variable in the population, iNKT abundance correlates with sex and age, and the expression of phenotypic and functional markers correlates closely with CD4 expression. PMID:24191009

  13. Random mitotic activities across human embryonic stem cell colonies.

    SciTech Connect

    Jin, Q.; Duggan, R.; Dasa, S.; Li, F.; Chen, L.

    2010-08-01

    A systemic and quantitative study was performed to examine whether different levels of mitotic activities, assessed by the percentage of S-phase cells at any given time point, existed at different physical regions of human embryonic stem (hES) cell colonies at 2, 4, 6 days after cell passaging. Mitotically active cells were identified by the positive incorporation of 5-bromo-2-deoxyuridine (BrdU) within their newly synthesized DNA. Our data indicated that mitotically active cells were often distributed as clusters randomly across the colonies within the examined growth period, presumably resulting from local deposition of newly divided cells. This latter notion was further demonstrated by the confined growth of enhanced green florescence protein (EGFP) expressing cells amongst non-GFP expressing cells. Furthermore, the overall percentage of mitotically active cells remained constantly at about 50% throughout the 6-day culture period, indicating mitotic activities of hES cell cultures were time-independent under current growth conditions.

  14. Mast cell activation syndrome masquerading as agranulocytosis.

    PubMed

    Afrin, Lawrence B

    2012-01-01

    Acquired agranulocytosis is a rare, life-threatening disorder. The few known causes/associations usually are readily identifiable (e.g., drug reaction, Felty syndrome, megaloblastosis, large granular lymphocytic leukemia, etc.). We report a novel association with mast cell disease. A 61-year-old morbidly obese man developed rheumatoid arthritis unresponsive to several medications. Agranulocytosis developed shortly after sulfasalazine was started but did not improve when the drug was soon stopped. Other symptoms across many systems developed including hives and presyncope. Marrow aspiration and biopsy showed only neutropenia. Serum tryptase was mildly elevated; urinary prostaglandin D2 was markedly elevated. Other causes were not found. Mast cell activation syndrome (MCAS) was diagnosed. Oral antihistamines, montelukast, and cromolyn were unhelpful; aspirin was initially felt contraindicated. Imatinib immediately increased neutrophils from 0% to 25% but did not help symptoms; subsequent addition of aspirin increased neutrophils further and abated symptoms. Different presentations of different MCAS patients reflect elaboration of different mediators likely consequent to different Kit mutations. Mast cells (MCs) help regulate adipocytes, and adipocytes can inhibit granulopoiesis; thus, a Kit-mutated MC clone may have directly and/or indirectly driven agranulocytosis. MCAS should be considered in otherwise idiopathic agranulocytosis presenting with comorbidities best explained by MC mediator release. PMID:22338992

  15. MAIT cells are activated during human viral infections.

    PubMed

    van Wilgenburg, Bonnie; Scherwitzl, Iris; Hutchinson, Edward C; Leng, Tianqi; Kurioka, Ayako; Kulicke, Corinna; de Lara, Catherine; Cole, Suzanne; Vasanawathana, Sirijitt; Limpitikul, Wannee; Malasit, Prida; Young, Duncan; Denney, Laura; Moore, Michael D; Fabris, Paolo; Giordani, Maria Teresa; Oo, Ye Htun; Laidlaw, Stephen M; Dustin, Lynn B; Ho, Ling-Pei; Thompson, Fiona M; Ramamurthy, Narayan; Mongkolsapaya, Juthathip; Willberg, Christian B; Screaton, Gavin R; Klenerman, Paul

    2016-01-01

    Mucosal-associated invariant T (MAIT) cells are abundant in humans and recognize bacterial ligands. Here, we demonstrate that MAIT cells are also activated during human viral infections in vivo. MAIT cells activation was observed during infection with dengue virus, hepatitis C virus and influenza virus. This activation-driving cytokine release and Granzyme B upregulation-is TCR-independent but dependent on IL-18 in synergy with IL-12, IL-15 and/or interferon-α/β. IL-18 levels and MAIT cell activation correlate with disease severity in acute dengue infection. Furthermore, HCV treatment with interferon-α leads to specific MAIT cell activation in vivo in parallel with an enhanced therapeutic response. Moreover, TCR-independent activation of MAIT cells leads to a reduction of HCV replication in vitro mediated by IFN-γ. Together these data demonstrate MAIT cells are activated following viral infections, and suggest a potential role in both host defence and immunopathology. PMID:27337592

  16. Chronic lymphocytic leukemia: a disease of activated monoclonal B cells

    PubMed Central

    Damle, Rajendra N.; Calissano, Carlo; Chiorazzi, Nicholas

    2010-01-01

    B-cell type chronic lymphocytic leukemia (CLL) has long been considered a disease of resting lymphocytes. However cell surface and intracellular phenotypes suggest that most CLL cells are activated cells, although only a small subset progresses beyond the G1 stage of the cell cycle. In addition, traditional teaching says that CLL cells divide rarely, and therefore the buildup of leukemic cells is due to an inherent defect in cell death. However, in vivo labeling of CLL cells indicates a much more active rate of cell birth than originally estimated, suggesting that CLL is a dynamic disease. Here we review the observations that have led to these altered views of the activation state and proliferative capacities of CLL cells and also provide our interpretation of these observations in light of their potential impact on patients. PMID:20620969

  17. Hyperoxia Inhibits T Cell Activation in Mice

    NASA Astrophysics Data System (ADS)

    Hughes-Fulford, M.; Meissler, J.; Aguayo, E. T.; Globus, R.; Aguado, J.; Candelario, T.

    2013-02-01

    , spleens were removed and the splenocytes were isolated and kept as individual biological samples. We have also examined transcription factors (JASPAR) and pathways of the immune system to help us understand the mechanism of regulation. Results: Our recent mouse immunology experiment aboard STS-131 suggests that the early T cell immune response was inhibited in animals that have been exposed to spaceflight, even 24 hours after return to earth. Moreover, recent experiments in hyperoxic mice show that many of the same genes involved in early T cell activation were altered. Specifically, expression of IL-2Rα, Cxcl2, TNFα, FGF2, LTA and BCL2 genes are dysregulated in mice exposed to hyperoxia. Conclusions: If these hyperoxia-induced changes of gene expression in early T cell activation are additive to the changes seen in the microgravity of spaceflight, there could be an increased infection risk to EVA astronauts, which should be addressed prior to conducting a Mars or other long-term mission.

  18. Elasticity of adherent active cells on a compliant substrate

    NASA Astrophysics Data System (ADS)

    Banerjee, Shiladitya; Mertz, Aaron F.; Dufresne, Eric R.; Marchetti, M. Cristina

    2012-02-01

    We present a continuum mechanical model of rigidity sensing by livings cells adhering to a compliant substrate. The cell or cell colony is modeled as an elastic active gel, adapting recently developed continuum theories of active viscoelastic fluids. The coupling to the substrate enters as a boundary condition that relates the cell's deformation field to local stress gradients. In the presence of activity, the substrate induces spatially inhomogeneous contractile stresses and deformations, with a power law dependence of the total traction forces on cell or colony size. This is in agreement with recent experiments on keratinocyte colonies adhered to fibronectin coated surfaces. In the presence of acto-myosin activity, the substrate also enhances the cell polarization, breaking the cell's front-rear symmetry. Maximal polarization is observed when the substrate stiffness matches that of the cell, in agreement with experiments on stem cells.

  19. MAIT cells are activated during human viral infections

    PubMed Central

    van Wilgenburg, Bonnie; Scherwitzl, Iris; Hutchinson, Edward C.; Leng, Tianqi; Kurioka, Ayako; Kulicke, Corinna; de Lara, Catherine; Cole, Suzanne; Vasanawathana, Sirijitt; Limpitikul, Wannee; Malasit, Prida; Young, Duncan; Denney, Laura; Barnes, Eleanor; Ball, Jonathan; Burgess, Gary; Cooke, Graham; Dillon, John; Gore, Charles; Foster, Graham; Guha, Neil; Halford, Rachel; Herath, Cham; Holmes, Chris; Howe, Anita; Hudson, Emma; Irving, William; Khakoo, Salim; Koletzki, Diana; Martin, Natasha; Mbisa, Tamyo; McKeating, Jane; McLauchlan, John; Miners, Alec; Murray, Andrea; Shaw, Peter; Simmonds, Peter; Spencer, Chris; Targett-Adams, Paul; Thomson, Emma; Vickerman, Peter; Zitzmann, Nicole; Moore, Michael D.; Fabris, Paolo; Giordani, Maria Teresa; Oo, Ye Htun; Laidlaw, Stephen M.; Dustin, Lynn B.; Ho, Ling-Pei; Thompson, Fiona M.; Ramamurthy, Narayan; Mongkolsapaya, Juthathip; Willberg, Christian B.; Screaton, Gavin R.; Klenerman, Paul

    2016-01-01

    Mucosal-associated invariant T (MAIT) cells are abundant in humans and recognize bacterial ligands. Here, we demonstrate that MAIT cells are also activated during human viral infections in vivo. MAIT cells activation was observed during infection with dengue virus, hepatitis C virus and influenza virus. This activation—driving cytokine release and Granzyme B upregulation—is TCR-independent but dependent on IL-18 in synergy with IL-12, IL-15 and/or interferon-α/β. IL-18 levels and MAIT cell activation correlate with disease severity in acute dengue infection. Furthermore, HCV treatment with interferon-α leads to specific MAIT cell activation in vivo in parallel with an enhanced therapeutic response. Moreover, TCR-independent activation of MAIT cells leads to a reduction of HCV replication in vitro mediated by IFN-γ. Together these data demonstrate MAIT cells are activated following viral infections, and suggest a potential role in both host defence and immunopathology. PMID:27337592

  20. Functionally Active Gap Junctions between Connexin 43-Positive Mesenchymal Stem Cells and Glioma Cells.

    PubMed

    Gabashvili, A N; Baklaushev, V P; Grinenko, N F; Levinskii, A B; Mel'nikov, P A; Cherepanov, S A; Chekhonin, V P

    2015-05-01

    The formation of functional gap junctions between mesenchymal stem cells and cells of low-grade rat glioma C6 cells was studied in in vitro experiments. Immunocytochemical analysis with antibodies to connexin 43 extracellular loop 2 showed that mesenchymal stem cells as well as C6 glioma cells express the main astroglial gap junction protein connexin 43. Analysis of migration activity showed that mesenchymal stem cells actively migrate towards C6 glioma cells. During co-culturing, mesenchymal stem cells and glioma C6 form functionally active gap junctions mediating the transport of cytoplasmic dye from glioma cells to mesenchymal stem cells in the opposite direction. Fluorometry showed that the intensity of transport of low-molecular substances through heterologous gap junctions between mesenchymal stem cells and glioma cells is similar to that through homologous gap junctions between glioma cells. This phenomenon can be used for the development of new methods of cell therapy of high-grade gliomas. PMID:26033611

  1. Langerhans Cells Serve as Immunoregulatory Cells by Activating NKT Cells1

    PubMed Central

    Fukunaga, Atsushi; Khaskhely, Noor M.; Ma, Ying; Sreevidya, Coimbatore S.; Taguchi, Kumiko; Nishigori, Chikako; Ullrich, Stephen E.

    2010-01-01

    UV exposure alters the morphology and function of epidermal Langerhans cells, which plays a role in UV-induced immune suppression. It is generally believed that UV exposure triggers the migration of immature Langerhans cells (LC) from the skin to the draining lymph nodes, where they induce tolerance. However, because most of the previous studies employed in vitro UV-irradiated LC, the data generated may not adequately reflect what is happening in vivo. In this study we isolated migrating Langerhans cells from the lymph nodes of UV-irradiated mice and studied their function. We found prolonged LC survival in the lymph nodes of UV-irradiated mice. LC were necessary for UV-induced immune suppression because no immune suppression was observed in Langerhans cells-deficient mice. Transferring LC from UV-irradiated mice into normal recipient animals transferred immune suppression and induced tolerance. We found that LC co-localized with lymph node Natural Killer T (NKT) cells. No immune suppression was observed when LC were transferred from UV-irradiated mice into NKT cell-deficient mice. NKT cells isolated from the lymph nodes of UV-irradiated mice secreted significantly more IL-4 than NKT cells isolated from non-irradiated controls. Injecting the wild type mice with anti-IL-4 blocked the induction of immune suppression. Our findings indicate that UV exposure activates the migration of mature LC to the skin draining lymph nodes where they induce immune regulation in vivo by activating NKT cells. PMID:20844203

  2. Single cell multiplexed assay for proteolytic activity using droplet microfluidics.

    PubMed

    Ng, Ee Xien; Miller, Miles A; Jing, Tengyang; Chen, Chia-Hung

    2016-07-15

    Cellular enzymes interact in a post-translationally regulated fashion to govern individual cell behaviors, yet current platform technologies are limited in their ability to measure multiple enzyme activities simultaneously in single cells. Here, we developed multi-color Förster resonance energy transfer (FRET)-based enzymatic substrates and use them in a microfluidics platform to simultaneously measure multiple specific protease activities from water-in-oil droplets that contain single cells. By integrating the microfluidic platform with a computational analytical method, Proteolytic Activity Matrix Analysis (PrAMA), we are able to infer six different protease activity signals from individual cells in a high throughput manner (~100 cells/experimental run). We characterized protease activity profiles at single cell resolution for several cancer cell lines including breast cancer cell line MDA-MB-231, lung cancer cell line PC-9, and leukemia cell line K-562 using both live-cell and in-situ cell lysis assay formats, with special focus on metalloproteinases important in metastasis. The ability to measure multiple proteases secreted from or expressed in individual cells allows us to characterize cell heterogeneity and has potential applications including systems biology, pharmacology, cancer diagnosis and stem cell biology. PMID:26995287

  3. Activated Muscle Satellite Cells Chase Ghosts.

    PubMed

    Mourikis, Philippos; Relaix, Frédéric

    2016-02-01

    The in vivo behaviors of skeletal muscle stem cells, i.e., satellite cells, during homeostasis and after injury are poorly understood. In this issue of Cell Stem Cell, Webster et al. (2016) now perform a tour de force intravital microscopic analysis of this population, showing that "ghost fiber" remnants act as scaffolds to guide satellite cell divisions after injury. PMID:26849298

  4. A Simple Laboratory Exercise Illustrating Active Transport in Yeast Cells.

    ERIC Educational Resources Information Center

    Stambuk, Boris U.

    2000-01-01

    Describes a simple laboratory activity illustrating the chemiosmotic principles of active transport in yeast cells. Demonstrates the energy coupling mechanism of active a-glucoside uptake by Saccaromyces cerevisiae cells with a colorimetric transport assay using very simple equipment. (Contains 22 references.) (Author/YDS)

  5. Mycoplasma pneumoniae induces cytotoxic activity in guinea pig bronchoalveolar cells

    SciTech Connect

    Kist, M.; Koester, H.; Bredt, W.

    1985-06-01

    Precultured guinea pig alveolar macrophages (AM) and freshly harvested alveolar cells (FHAC) activated by interaction with Mycoplasma pneumoniae were cytotoxic for xenogeneic /sup 75/selenomethionine-labeled tumor target cells. Phagocytosis of whole opsonized or nonopsonized M. pneumoniae cells was more effective in eliciting cytotoxicity than uptake of sonicated microorganisms. The addition of living mycoplasma cells to the assay system enhanced the cytotoxic effect considerably. Target cells were significantly more susceptible to the cytotoxic action of phagocytes if they were coated with mycoplasma antigen or cocultured together with M. pneumoniae. The activation of the phagocytes could be inhibited by 2-deoxy-D-glucose but not by antimicrobial substances suppressing mycoplasma protein synthesis. It was accompanied by /sup 51/Cr release without detectable signs of cell damage. The supernatants of activated cells were cytotoxic for approximately 24 h. Inhibition, release, and cytotoxic activity indicate the necessity of an intact metabolism of the effector cells and suggest a secretion of cytotoxic substances.

  6. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation

    PubMed Central

    Bruno, Stefania; Grange, Cristina; Tapparo, Marta; Pasquino, Chiara; Romagnoli, Renato; Dametto, Ennia; Amoroso, Antonio; Tetta, Ciro; Camussi, Giovanni

    2016-01-01

    Human liver stem cells (HLSCs) are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs), and dendritic cells (DCs) in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2) and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs), HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response. PMID:27127520

  7. Active unjamming of confluent cell layers

    NASA Astrophysics Data System (ADS)

    Marchetti, M. Cristina

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. Motivated by these observations, we have studied a model of dense tissues that combines self-propelled particle models and vertex models of confluent cell layers. In this model, referred to as self-propelled Voronoi (SPV), cells are described as polygons in a Voronoi tessellation with directed noisy cell motility and interactions governed by a shape energy that incorporates the effects of cell volume incompressibility, contractility and cell-cell adhesion. Using this model, we have demonstrated a new density-independent solid-liquid transition in confluent tissues controlled by cell motility and a cell-shape parameter measuring the interplay of cortical tension and cell-cell adhesion. An important insight of this work is that the rigidity and dynamics of cell layers depends sensitively on cell shape. We have also used the SPV model to test a new method developed by our group to determine cellular forces and tissue stresses from experimentally accessible cell shapes and traction forces, hence providing the spatio-temporal distribution of stresses in motile dense tissues. This work was done with Dapeng Bi, Lisa Manning and Xingbo Yang. MCM was supported by NSF-DMR-1305184 and by the Simons Foundation.

  8. Radiation exposure induces inflammasome pathway activation in immune cells.

    PubMed

    Stoecklein, Veit M; Osuka, Akinori; Ishikawa, Shizu; Lederer, Madeline R; Wanke-Jellinek, Lorenz; Lederer, James A

    2015-02-01

    Radiation exposure induces cell and tissue damage, causing local and systemic inflammatory responses. Because the inflammasome pathway is triggered by cell death and danger-associated molecular patterns, we hypothesized that the inflammasome may signal acute and chronic immune responses to radiation. Using a mouse radiation model, we show that radiation induces a dose-dependent increase in inflammasome activation in macrophages, dendritic cells, NK cells, T cells, and B cells as judged by cleaved caspase-1 detection in cells. Time course analysis showed the appearance of cleaved caspase-1 in cells by day 1 and sustained expression until day 7 after radiation. Also, cells showing inflammasome activation coexpressed the cell surface apoptosis marker annexin V. The role of caspase-1 as a trigger for hematopoietic cell losses after radiation was studied in caspase-1(-/-) mice. We found less radiation-induced cell apoptosis and immune cell loss in caspase-1(-/-) mice than in control mice. Next, we tested whether uric acid might mediate inflammasome activation in cells by treating mice with allopurinol and discovered that allopurinol treatment completely blocked caspase-1 activation in cells. Finally, we demonstrate that radiation-induced caspase-1 activation occurs by a Nod-like receptor family protein 3-independent mechanism because radiation-exposed Nlrp3(-/-) mice showed caspase-1 activation profiles that were indistinguishable from those of wild-type mice. In summary, our data demonstrate that inflammasome activation occurs in many immune cell types following radiation exposure and that allopurinol prevented radiation-induced inflammasome activation. These results suggest that targeting the inflammasome may help control radiation-induced inflammation. PMID:25539818

  9. Dengue Virus Directly Stimulates Polyclonal B Cell Activation

    PubMed Central

    Papa, Michelle Premazzi; de Morais, Ana Theresa Silveira; Peçanha, Ligia Maria Torres; de Arruda, Luciana Barros

    2015-01-01

    Dengue infection is associated to vigorous inflammatory response, to a high frequency of activated B cells, and to increased levels of circulating cross-reactive antibodies. We investigated whether direct infection of B cells would promote activation by culturing primary human B lymphocytes from healthy donors with DENV in vitro. B cells were susceptible, but poorly permissive to infection. Even though, primary B cells cultured with DENV induced substantial IgM secretion, which is a hallmark of polyclonal B cell activation. Notably, DENV induced the activation of B cells obtained from either DENV immune or DENV naïve donors, suggesting that it was not dependent on DENV-specific secondary/memory response. B cell stimulation was dependent on activation of MAPK and CD81. B cells cultured with DENV also secreted IL-6 and presented increased expression of CD86 and HLA-DR, which might contribute to B lymphocyte co-stimulatory function. Indeed, PBMCs, but not isolated B cells, secreted high amounts of IgG upon DENV culture, suggesting that interaction with other cell types in vivo might promote Ig isotype switching and IgG secretion from different B cell clones. These findings suggest that activation signaling pathways triggered by DENV interaction with non-specific receptors on B cells might contribute to the exacerbated response observed in dengue patients. PMID:26656738

  10. Shape control and compartmentalization in active colloidal cells.

    PubMed

    Spellings, Matthew; Engel, Michael; Klotsa, Daphne; Sabrina, Syeda; Drews, Aaron M; Nguyen, Nguyen H P; Bishop, Kyle J M; Glotzer, Sharon C

    2015-08-25

    Small autonomous machines like biological cells or soft robots can convert energy input into control of function and form. It is desired that this behavior emerges spontaneously and can be easily switched over time. For this purpose we introduce an active matter system that is loosely inspired by biology and which we term an active colloidal cell. The active colloidal cell consists of a boundary and a fluid interior, both of which are built from identical rotating spinners whose activity creates convective flows. Similarly to biological cell motility, which is driven by cytoskeletal components spread throughout the entire volume of the cell, active colloidal cells are characterized by highly distributed energy conversion. We demonstrate that we can control the shape of the active colloidal cell and drive compartmentalization by varying the details of the boundary (hard vs. flexible) and the character of the spinners (passive vs. active). We report buckling of the boundary controlled by the pattern of boundary activity, as well as formation of core-shell and inverted Janus phase-separated configurations within the active cell interior. As the cell size is increased, the inverted Janus configuration spontaneously breaks its mirror symmetry. The result is a bubble-crescent configuration, which alternates between two degenerate states over time and exhibits collective migration of the fluid along the boundary. Our results are obtained using microscopic, non-momentum-conserving Langevin dynamics simulations and verified via a phase-field continuum model coupled to a Navier-Stokes equation. PMID:26253763

  11. Shape control and compartmentalization in active colloidal cells

    PubMed Central

    Spellings, Matthew; Engel, Michael; Klotsa, Daphne; Sabrina, Syeda; Drews, Aaron M.; Nguyen, Nguyen H. P.; Bishop, Kyle J. M.; Glotzer, Sharon C.

    2015-01-01

    Small autonomous machines like biological cells or soft robots can convert energy input into control of function and form. It is desired that this behavior emerges spontaneously and can be easily switched over time. For this purpose we introduce an active matter system that is loosely inspired by biology and which we term an active colloidal cell. The active colloidal cell consists of a boundary and a fluid interior, both of which are built from identical rotating spinners whose activity creates convective flows. Similarly to biological cell motility, which is driven by cytoskeletal components spread throughout the entire volume of the cell, active colloidal cells are characterized by highly distributed energy conversion. We demonstrate that we can control the shape of the active colloidal cell and drive compartmentalization by varying the details of the boundary (hard vs. flexible) and the character of the spinners (passive vs. active). We report buckling of the boundary controlled by the pattern of boundary activity, as well as formation of core–shell and inverted Janus phase-separated configurations within the active cell interior. As the cell size is increased, the inverted Janus configuration spontaneously breaks its mirror symmetry. The result is a bubble–crescent configuration, which alternates between two degenerate states over time and exhibits collective migration of the fluid along the boundary. Our results are obtained using microscopic, non–momentum-conserving Langevin dynamics simulations and verified via a phase-field continuum model coupled to a Navier–Stokes equation. PMID:26253763

  12. The DNA methylation profile of activated human natural killer cells.

    PubMed

    Wiencke, John K; Butler, Rondi; Hsuang, George; Eliot, Melissa; Kim, Stephanie; Sepulveda, Manuel A; Siegel, Derick; Houseman, E Andres; Kelsey, Karl T

    2016-05-01

    Natural killer (NK) cells are now recognized to exhibit characteristics akin to cells of the adaptive immune system. The generation of adaptive memory is linked to epigenetic reprogramming including alterations in DNA methylation. The study herein found reproducible genome wide DNA methylation changes associated with human NK cell activation. Activation led predominately to CpG hypomethylation (81% of significant loci). Bioinformatics analysis confirmed that non-coding and gene-associated differentially methylated sites (DMS) are enriched for immune related functions (i.e., immune cell activation). Known DNA methylation-regulated immune loci were also identified in activated NK cells (e.g., TNFA, LTA, IL13, CSF2). Twenty-one loci were designated high priority and further investigated as potential markers of NK activation. BHLHE40 was identified as a viable candidate for which a droplet digital PCR assay for demethylation was developed. The assay revealed high demethylation in activated NK cells and low demethylation in naïve NK, T- and B-cells. We conclude the NK cell methylome is plastic with potential for remodeling. The differentially methylated region signature of activated NKs revealed similarities with T cell activation, but also provided unique biomarker candidates of NK activation, which could be useful in epigenome-wide association studies to interrogate the role of NK subtypes in global methylation changes associated with exposures and/or disease states. PMID:26967308

  13. Remote Control of T Cell Activation Using Magnetic Janus Particles.

    PubMed

    Lee, Kwahun; Yi, Yi; Yu, Yan

    2016-06-20

    We report a strategy for using magnetic Janus microparticles to control the stimulation of T cell signaling with single-cell precision. To achieve this, we designed Janus particles that are magnetically responsive on one hemisphere and stimulatory to T cells on the other side. By manipulating the rotation and locomotion of Janus particles under an external magnetic field, we could control the orientation of the particle-cell recognition and thereby the initiation of T cell activation. This study demonstrates a step towards employing anisotropic material properties of Janus particles to control single-cell activities without the need of complex magnetic manipulation devices. PMID:27144475

  14. Activation of B cells by antigens on follicular dendritic cells

    PubMed Central

    El Shikh, Mohey Eldin M.; El Sayed, Rania M.; Sukumar, Selvakumar; Szakal, Andras K.; Tew, John G.

    2010-01-01

    A need for antigen-processing and presentation to B cells is not widely appreciated. However, cross-linking of multiple B cell receptors (BCRs) by T-independent antigens delivers a potent signal that induces antibody responses. Such BCR cross-linking also occurs in germinal centers where follicular dendritic cells (FDCs) present multimerized antigens as periodically arranged antigen-antibody complexes (ICs). Unlike T cells that recognize antigens as peptide-MHC complexes, optimal B cell-responses are induced by multimerized FDC-ICs that simultaneously engage multiple BCRs. FDC-FcγRIIB mediates IC-periodicity and FDC-BAFF, -IL-6 and -C4bBP are co-stimulators. Remarkably, specific antibody responses can be induced by FDC-ICs in the absence of T cells, opening up the exciting possibility that people with T cell insufficiencies may be immunized with T-dependent vaccines via FDC-ICs. PMID:20418164

  15. Cell trapping in activated micropores for functional analysis.

    PubMed

    Talasaz, AmirAli H; Powell, Ashley A; Stahl, Patrik; Ronaghi, Mostafa; Jeffrey, Stefanie S; Mindrinos, Michael; Davis, Ronald W

    2006-01-01

    This paper presents a novel device which provides the opportunity to perform high-throughput biochemical assays on different individual cells. In particular, the proposed device is suited to screen the rare cells in biological samples for early stage cancer diagnosis and explore their biochemical functionality. In the process, single cells are precisely positioned and captured in activated micropores. To show the performance of the proposed device, cultured yeast cells and human epithelial circulating tumor cells are successfully captured. PMID:17945673

  16. IL-2 induces STAT4 activation in primary NK cells and NK cell lines, but not in T cells.

    PubMed

    Wang, K S; Ritz, J; Frank, D A

    1999-01-01

    IL-2 exerts potent but distinct functional effects on two critical cell populations of the immune system, T cells and NK cells. Whereas IL-2 leads to proliferation in both cell types, it enhances cytotoxicity primarily in NK cells. In both T cells and NK cells, IL-2 induces the activation of STAT1, STAT3, and STAT5. Given this similarity in intracellular signaling, the mechanism underlying the distinct response to IL-2 in T cells and NK cells is not clear. In this study, we show that in primary NK cells and NK cell lines, in addition to the activation of STAT1 and STAT5, IL-2 induces tyrosine phosphorylation of STAT4, a STAT previously reported to be activated only in response to IL-12 and IFN-alpha. This activation of STAT4 in response to IL-2 is not due to the autocrine production of IL-12 or IFN-alpha. STAT4 activated in response to IL-2 is able to bind to a STAT-binding DNA sequence, suggesting that in NK cells IL-2 is capable of activating target genes through phosphorylation of STAT4. IL-2 induces the activation of Jak2 uniquely in NK cells, which may underlie the ability of IL-2 to activate STAT4 only in these cells. Although the activation of STAT4 in response to IL-2 occurs in primary resting and activated NK cells, it does not occur in primary resting T cells or mitogen-activated T cells. The unique activation of the STAT4-signaling pathway in NK cells may underlie the distinct functional effect of IL-2 on this cell population. PMID:9886399

  17. Senescence of activated stellate cells limits liver fibrosis

    PubMed Central

    Krizhanovsky, Valery; Yon, Monica; Dickins, Ross A.; Hearn, Stephen; Simon, Janelle; Miething, Cornelius; Yee, Herman; Zender, Lars; Lowe, Scott W.

    2011-01-01

    Summary Cellular senescence acts as a potent mechanism of tumor suppression; however, its functional contribution to non-cancer pathologies has not been examined. Here we show that senescent cells accumulate in murine livers treated to produce fibrosis, a precursor pathology to cirrhosis. The senescent cells are derived primarily from activated hepatic stellate cells, which initially proliferate in response to liver damage and produce the extracellular matrix deposited in the fibrotic scar. In mice lacking key senescence regulators, stellate cells continue to proliferate, leading to excessive liver fibrosis. Furthermore, senescent activated stellate cells exhibit gene expression profile consistent with cell cycle exit, reduced secretion of extracellular matrix components, enhanced secretion of extracellular matrix degrading enzymes, and enhanced immune surveillance. Accordingly natural killer cells preferentially kill senescent activated stellate cells in vitro and in vivo, thereby facilitating the resolution of fibrosis. Therefore, the senescence program limits the fibrogenic response to acute tissue damage. PMID:18724938

  18. Mast cells and their activation in lung disease.

    PubMed

    Virk, Harvinder; Arthur, Greer; Bradding, Peter

    2016-08-01

    Mast cells and their activation contribute to lung health via innate and adaptive immune responses to respiratory pathogens. They are also involved in the normal response to tissue injury. However, mast cells are involved in disease processes characterized by inflammation and remodeling of tissue structure. In these diseases mast cells are often inappropriately and chronically activated. There is evidence for activation of mast cells contributing to the pathophysiology of asthma, pulmonary fibrosis, and pulmonary hypertension. They may also play a role in chronic obstructive pulmonary disease, acute respiratory distress syndrome, and lung cancer. The diverse mechanisms through which mast cells sense and interact with the external and internal microenvironment account for their role in these diseases. Newly discovered mechanisms of redistribution and interaction between mast cells, airway structural cells, and other inflammatory cells may offer novel therapeutic targets in these disease processes. PMID:26845625

  19. Cisplatin-induced Casepase-3 activation in different tumor cells

    NASA Astrophysics Data System (ADS)

    Shi, Hua; Li, Xiao; Su, Ting; Zhang, Yu-Hai

    2008-12-01

    Apoptosis plays an essential role in normal organism development which is one of the main types of programmed cell death to help tissues maintain homeostasis. Defective apoptosis can result in cell accumulation and therefore effects on tumor pathogenesis, progression and therapy resistance. A family of proteins, known as caspases, is typically activated in the early stages of apoptosis. Therefore, studying the kinetics of activation of caspases induced by antitumor drugs can contribute to antitumor drug discovery and explanation of the molecular mechanisms. This paper detected the Caspase-3 activity induced by cisplatin in human adenoid cystic carcinoma cell line (ACC-M), human hepatocellular liver carcinoma cell line (HepG2) and human epithelial carcinoma cell line (Hela) with stably expressing ECFP-DEVDDsRed (CD3) probe, a fluorescent probe consisting of Enhanced Cyan Fluorescent Protein (ECFP), red fluorescent protein (DsRed) and a linker with a recognition site of Caspase-3, by using the capillary electrophoresis (CE) and fluorescence resonance energy transfer (FRET) imaging system. Under the same concentration of cisplatin, ACC-M cells responded the most rapidly, and then HepG2 cells and Hela cells, respectively, in the early 30 hours. Later, HepG2 cells represented acceleration in the Caspase-3 activation speed and reached full activation the earliest comparing to other two cell types. The results demonstrated that ACC-M cell is more sensitive than the other two cell types under the treatment of cisplatin.

  20. Immobilization of Pichia pastoris cells containing alcohol oxidase activity

    PubMed Central

    Maleknia, S; Ahmadi, H; Norouzian, D

    2011-01-01

    Background and Objectives The attempts were made to describe the development of a whole cell immobilization of P. pastoris by entrapping the cells in polyacrylamide gel beads. The alcohol oxidase activity of the whole cell Pichia pastoris was evaluated in comparison with yeast biomass production. Materials and Methods Methylotrophic yeast P. pastoris was obtained from Collection of Standard Microorganisms, Department of Bacterial Vaccines, Pasteur Institute of Iran (CSMPI). Stock culture was maintained on YPD agar plates. Alcohol oxidase was strongly induced by addition of 0.5% methanol as the carbon source. The cells were harvested by centrifugation then permeabilized. Finally the cells were immobilized in polyacrylamide gel beads. The activity of alcohol oxidase was determined by method of Tane et al. Results At the end of the logarithmic phase of cell culture, the alcohol oxidase activity of the whole cell P. Pastoris reached the highest level. In comparison, the alcohol oxidase activity was measured in an immobilized P. pastoris when entrapped in polyacrylamide gel beads. The alcohol oxidase activity of cells was induced by addition of 0.5% methanol as the carbon source. The cells were permeabilized by cetyltrimethylammonium bromide (CTAB) and immobilized. CTAB was also found to increase the gel permeability. Alcohol oxidase activity of immobilized cells was then quantitated by ABTS/POD spectrophotometric method at OD 420. There was a 14% increase in alcohol oxidase activity in immobilized cells as compared with free cells. By addition of 2-butanol as a substrate, the relative activity of alcohol oxidase was significantly higher as compared with other substrates added to the reaction media. Conclusion Immobilization of cells could eliminate lengthy and expensive procedures of enzyme separation and purification, protect and stabilize enzyme activity, and perform easy separation of the enzyme from the reaction media. PMID:22530090

  1. Antiviral Regulation in Porcine Monocytic Cells at Different Activation States

    PubMed Central

    Rowland, Raymond R. R.

    2014-01-01

    ABSTRACT Monocytic cells, including macrophages and dendritic cells, exist in different activation states that are critical to the regulation of antimicrobial immunity. Many pandemic viruses are monocytotropic, including porcine reproductive and respiratory syndrome virus (PRRSV), which directly infects subsets of monocytic cells and interferes with antiviral responses. To study antiviral responses in PRRSV-infected monocytic cells, we characterized inflammatory cytokine responses and genome-wide profiled signature genes to investigate response pathways in uninfected and PRRSV-infected monocytic cells at different activation states. Our findings showed suppressed interferon (IFN) production in macrophages in non-antiviral states and an arrest of lipid metabolic pathways in macrophages at antiviral states. Importantly, porcine monocytic cells at different activation states were susceptible to PRRSV and responded differently to viral infection. Based on Gene Ontology (GO) analysis, two approaches were used to potentiate antiviral activity: (i) pharmaceutical modulation of cellular lipid metabolism and (ii) in situ PRRSV replication-competent expression of interferon alpha (IFN-α). Both approaches significantly suppressed exogenous viral infection in monocytic cells. In particular, the engineered IFN-expressing PRRSV strain eliminated exogenous virus infection and sustained cell viability at 4 days postinfection in macrophages. These findings suggest an intricate interaction of viral infection with the activation status of porcine monocytic cells. An understanding and integration of antiviral infection with activation status of monocytic cells may provide a means of potentiating antiviral immunity. IMPORTANCE Activation statuses of monocytic cells, including monocytes, macrophages (Mϕs), and dendritic cells (DCs), are critically important for antiviral immunity. Unfortunately, the activation status of porcine monocytic cells or how cell activation status

  2. AUGMENTATION OF MURINE NATURAL KILLER CELL ACTIVITY BY MANGANESE CHLORIDE

    EPA Science Inventory

    Natural Killer (NK) cell activity of spleen cells from male CBA/J mice was augmented by a single parenteral injection of MnCl2 administered 1 day prior to testing by in vitro and in vivo isotope release assays. Increased cytotoxic activity was observed in vitro against both NK-se...

  3. Pacemaker activity resulting from the coupling with nonexcitable cells

    NASA Astrophysics Data System (ADS)

    Jacquemet, Vincent

    2006-07-01

    Fibroblasts are nonexcitable cells that are sometimes coupled with excitable cells (cardiomyocytes). Due to a higher resting potential, these cells may act as a current source or sink and therefore disturb the electrical activity of the surrounding excitable cells. The possible occurrence of spontaneous pacemaker activity resulting from these electrotonic interactions was investigated in a theoretical model of two coupled cells as well as in a multicellular fiber model based on the Courtemanche kinetics. The results indicate that repeated spontaneous activations can be observed after an alteration in the activation and recovery properties of the sodium current (changes in excitability properties), provided that the difference in the resting potential as well as the coupling between the excitable and nonexcitable cells is sufficiently high. This may constitute a mechanism of focal sources triggering arrhythmias such as atrial fibrillation.

  4. GATA3 inhibits GCM1 activity and trophoblast cell invasion.

    PubMed

    Chiu, Yueh Ho; Chen, Hungwen

    2016-01-01

    Development of human placenta involves the invasion of trophoblast cells from anchoring villi into the maternal decidua. Placental transcription factor GCM1 regulates trophoblast cell invasion via transcriptional activation of HtrA4 gene, which encodes a serine protease enzyme. The GATA3 transcription factor regulates trophoblast cell differentiation and is highly expressed in invasive murine trophoblast giant cells. The regulation of trophoblastic invasion by GCM1 may involve novel cellular factors. Here we show that GATA3 interacts with GCM1 and inhibits its activity to suppress trophoblastic invasion. Immunohistochemistry demonstrates that GATA3 and GCM1 are coexpressed in villous cytotrophoblast cells, syncytiotrophoblast layer, and extravillous trophoblast cells of human placenta. Interestingly, GATA3 interacts with GCM1, but not the GCM2 homologue, through the DNA-binding domain and first transcriptional activation domain in GCM1 and the transcriptional activation domains and zinc finger 1 domain in GATA3. While GATA3 did not affect DNA-binding activity of GCM1, it suppressed transcriptional activity of GCM1 and therefore HtrA4 promoter activity. Correspondingly, GATA3 knockdown elevated HtrA4 expression in BeWo and JEG-3 trophoblast cell lines and enhanced the invasion activities of both lines. This study uncovered a new GATA3 function in placenta as a negative regulator of GCM1 activity and trophoblastic invasion. PMID:26899996

  5. GATA3 inhibits GCM1 activity and trophoblast cell invasion

    PubMed Central

    Chiu, Yueh Ho; Chen, Hungwen

    2016-01-01

    Development of human placenta involves the invasion of trophoblast cells from anchoring villi into the maternal decidua. Placental transcription factor GCM1 regulates trophoblast cell invasion via transcriptional activation of HtrA4 gene, which encodes a serine protease enzyme. The GATA3 transcription factor regulates trophoblast cell differentiation and is highly expressed in invasive murine trophoblast giant cells. The regulation of trophoblastic invasion by GCM1 may involve novel cellular factors. Here we show that GATA3 interacts with GCM1 and inhibits its activity to suppress trophoblastic invasion. Immunohistochemistry demonstrates that GATA3 and GCM1 are coexpressed in villous cytotrophoblast cells, syncytiotrophoblast layer, and extravillous trophoblast cells of human placenta. Interestingly, GATA3 interacts with GCM1, but not the GCM2 homologue, through the DNA-binding domain and first transcriptional activation domain in GCM1 and the transcriptional activation domains and zinc finger 1 domain in GATA3. While GATA3 did not affect DNA-binding activity of GCM1, it suppressed transcriptional activity of GCM1 and therefore HtrA4 promoter activity. Correspondingly, GATA3 knockdown elevated HtrA4 expression in BeWo and JEG-3 trophoblast cell lines and enhanced the invasion activities of both lines. This study uncovered a new GATA3 function in placenta as a negative regulator of GCM1 activity and trophoblastic invasion. PMID:26899996

  6. Signal transduction pathways in mast cell granule-mediated endothelial cell activation.

    PubMed Central

    Chi, Luqi; Stehno-Bittel, Lisa; Smirnova, Irina; Stechschulte, Daniel J; Dileepan, Kottarappat N

    2003-01-01

    BACKGROUND: We have previously shown that incubation of human endothelial cells with mast cell granules results in potentiation of lipopolysaccharide-induced production of interleukin-6 and interleukin-8. AIMS: The objective of the present study was to identify candidate molecules and signal transduction pathways involved in the synergy between mast cell granules and lipopolysaccharide on endothelial cell activation. METHODS: Human umbilical vein endothelial cells were incubated with rat mast cell granules in the presence and absence of lipopolysaccharide, and IL-6 production was quantified. The status of c-Jun amino-terminal kinase and extracellular signal-regulated kinase 1/2 activation, nuclear factor-kappaB translocation and intracellular calcium levels were determined to identify the mechanism of synergy between mast cell granules and lipopolysaccaride. RESULTS: Mast cell granules induced low levels of interleukin-6 production by endothelial cells, and this effect was markedly enhanced by lipopolysaccharide. The results revealed that both serine proteases and histamine present in mast cell granules were involved in this activation process. Mast cell granules increased intracellular calcium, and activated c-Jun amino-terminal kinase and extracellular signal-regulated kinase 1/2. The combination of lipopolysaccharide and mast cell granules prolonged c-Jun amino-terminal kinase activity beyond the duration of induction by either stimulant alone and was entirely due to active proteases. However, both proteases and histamine contributed to calcium mobilization and extracellular signal-regulated kinase 1/2 activation. The nuclear translocation of nuclear factor-kappaB proteins was of greater magnitude in endothelial cells treated with the combination of mast cell granules and lipopolysaccharide. CONCLUSIONS:Mast cell granule serine proteases and histamine can amplify lipopolysaccharide-induced endothelial cell activation, which involves calcium mobilization, mitogen-activated

  7. Imaging the coordination of multiple signaling activities in living cells

    PubMed Central

    Welch, Christopher M.; Elliott, Hunter; Danuser, Gaudenz; Hahn, Klaus M.

    2013-01-01

    Preface Cellular signal transduction occurs in complex and redundant interaction networks that are best examined at the level of single cells by simultaneously monitoring the activation dynamics of multiple components. Recent advances in biosensor technology have made it possible to visualize and quantify the activation of multiple network nodes in the same living cell. The precision and scope of this approach has been greatly extended by novel computational approaches to determine the relationships between different networks, studied in separate cells. PMID:22016058

  8. Effects of Neuroendocrine CB1 Activity on Adult Leydig Cells

    PubMed Central

    Cobellis, Gilda; Meccariello, Rosaria; Chianese, Rosanna; Chioccarelli, Teresa; Fasano, Silvia; Pierantoni, Riccardo

    2016-01-01

    Endocannabinoids control male reproduction acting at central and local level via cannabinoid receptors. The cannabinoid receptor CB1 has been characterized in the testis, in somatic and germ cells of mammalian and non-mammalian animal models, and its activity related to Leydig cell differentiation, steroidogenesis, spermiogenesis, sperm quality, and maturation. In this short review, we provide a summary of the insights concerning neuroendocrine CB1 activity in male reproduction focusing on adult Leydig cell ontogenesis and steroid biosynthesis. PMID:27375550

  9. Calcium alloy as active material in secondary electrochemical cell

    DOEpatents

    Roche, Michael F.; Preto, Sandra K.; Martin, Allan E.

    1976-01-01

    Calcium alloys such as calcium-aluminum and calcium-silicon, are employed as active material within a rechargeable negative electrode of an electrochemical cell. Such cells can use a molten salt electrolyte including calcium ions and a positive electrode having sulfur, sulfides, or oxides as active material. The calcium alloy is selected to prevent formation of molten calcium alloys resulting from reaction with the selected molten electrolytic salt at the cell operating temperatures.

  10. Effects of Neuroendocrine CB1 Activity on Adult Leydig Cells.

    PubMed

    Cobellis, Gilda; Meccariello, Rosaria; Chianese, Rosanna; Chioccarelli, Teresa; Fasano, Silvia; Pierantoni, Riccardo

    2016-01-01

    Endocannabinoids control male reproduction acting at central and local level via cannabinoid receptors. The cannabinoid receptor CB1 has been characterized in the testis, in somatic and germ cells of mammalian and non-mammalian animal models, and its activity related to Leydig cell differentiation, steroidogenesis, spermiogenesis, sperm quality, and maturation. In this short review, we provide a summary of the insights concerning neuroendocrine CB1 activity in male reproduction focusing on adult Leydig cell ontogenesis and steroid biosynthesis. PMID:27375550

  11. Microwave-induced thermogenetic activation of single cells

    SciTech Connect

    Safronov, N. A.; Fedotov, I. V.; Ermakova, Yu. G.; Matlashov, M. E.; Belousov, V. V.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Zheltikov, A. M.

    2015-04-20

    Exposure to a microwave field is shown to enable thermogenetic activation of individual cells in a culture of cell expressing thermosensitive ion channels. Integration of a microwave transmission line with an optical fiber and a diamond quantum thermometer has been shown to allow thermogenetic single-cell activation to be combined with accurate local online temperature measurements based on an optical detection of electron spin resonance in nitrogen–vacancy centers in diamond.

  12. Effects of dexamethasone on palate mesenchymal cell phospholipase activity

    SciTech Connect

    Bulleit, R.F.; Zimmerman, E.F.

    1984-09-15

    Corticosteroids will induce cleft palate in mice. One suggested mechanism for this effect is through inhibition of phospholipase activity. This hypothesis was tested by measuring the effects of dexamethasone, a synthetic corticosteroid, on phospholipase activity in cultures of palate mesenchymal cells. Palate mesenchymal cells were prelabeled with (3H)arachidonic acid. The cells were subsequently treated with various concentrations of dexamethasone. Concurrently, cultures of M-MSV-transformed 3T3 cells were prepared identically. After treatment, phospholipase activity was stimulated by the addition of serum or epidermal growth factor (EGF), and radioactivity released into the medium was taken as a measure of phospholipase activity. Dexamethasone (1 X 10(-5) or 1 X 10(-4) M) could inhibit serum-stimulated phospholipase activity in transformed 3T3 cells after 1 to 24 hr of treatment. However, no inhibition of activity was measured in palate mesenchymal cells following this period of treatment. Not until 120 hr of treatment with dexamethasone (1 X 10(-4) M) was any significant inhibition of serum-stimulated phospholipase activity observed in palate mesenchymal cells. When EGF was used to stimulate phospholipase activity, dexamethasone (1 X 10(-5) M) caused an increase in phospholipase activity in palate mesenchymal cells. These observations suggested that phospholipase in transformed 3T3 cells was sensitive to inhibition by dexamethasone. However, palate mesenchymal cell phospholipase is only minimally sensitive to dexamethasone, and in certain instances can be enhanced. These results cannot support the hypothesis that corticosteroids mediate their teratogenic effect via inhibition of phospholipase activity.

  13. Mitogen-activated Tasmanian devil blood mononuclear cells kill devil facial tumour disease cells.

    PubMed

    Brown, Gabriella K; Tovar, Cesar; Cooray, Anne A; Kreiss, Alexandre; Darby, Jocelyn; Murphy, James M; Corcoran, Lynn M; Bettiol, Silvana S; Lyons, A Bruce; Woods, Gregory M

    2016-08-01

    Devil facial tumour disease (DFTD) is a transmissible cancer that has brought the host species, the Tasmanian devil, to the brink of extinction. The cancer cells avoid allogeneic immune recognition by downregulating cell surface major histocompatibility complex (MHC) I expression. This should prevent CD8(+) T cell, but not natural killer (NK) cell, cytotoxicity. The reason why NK cells, normally reactive to MHC-negative cells, are not activated to kill DFTD cells has not been determined. The immune response of wild devils to DFTD, if it occurs, is uncharacterised. To investigate this, we tested 12 wild devils with DFTD, and found suggestive evidence of low levels of antibodies against DFTD cells in one devil. Eight of these devils were also analysed for cytotoxicity, however, none showed evidence for cytotoxicity against cultured DFTD cells. To establish whether mimicking activation of antitumour responses could induce cytotoxic activity against DFTD, Tasmanian devil peripheral blood mononuclear cells (PBMCs) were treated with either the mitogen Concanavalin A, the Toll-like receptor agonist polyinosinic:polycytidylic acid or recombinant Tasmanian devil IL-2. All induced the PBMC cells to kill cultured DFTD cells, suggesting that activation does not occur after encounter with DFTD cells in vivo, but can be induced. The identification of agents that activate cytotoxicity against DFTD target cells is critical for developing strategies to protect against DFTD. Such agents could function as adjuvants to induce functional immune responses capable of targeting DFTD cells and tumours in vivo. PMID:27089941

  14. A Single Subset of Dendritic Cells Controls the Cytokine Bias of Natural Killer T Cell Responses to Diverse Glycolipid Antigens

    PubMed Central

    Arora, Pooja; Baena, Andres; Yu, Karl O.A.; Saini, Neeraj K.; Kharkwal, Shalu S.; Goldberg, Michael F.; Kunnath-Velayudhan, Shajo; Carreño, Leandro J.; Venkataswamy, Manjunatha M.; Kim, John; Lazar-Molnar, Eszter; Lauvau, Gregoire; Chang, Young-tae; Liu, Zheng; Bittman, Robert; Al-Shamkhani, Aymen; Cox, Liam R.; Jervis, Peter J.; Veerapen, Natacha; Besra, Gurdyal S.; Porcelli, Steven A.

    2014-01-01

    Summary Many hematopoietic cell types express CD1d and are capable of presenting glycolipid antigens to invariant natural killer T cells (iNKT cells). However, the question of which cells are the principal presenters of glycolipid antigens in vivo remains controversial, and it has been suggested that this might vary depending on the structure of a particular glycolipid antigen. Here we have shown that a single type of cell, the CD8α+ DEC-205+ dendritic cell, was mainly responsible for capturing and presenting a variety of different glycolipid antigens, including multiple forms of α-galactosylceramide that stimulate widely divergent cytokine responses. After glycolipid presentation, these dendritic cells rapidly altered their expression of various costimulatory and coinhibitory molecules in a manner that was dependent on the structure of the antigen. These findings show flexibility in the outcome of two-way communication between CD8α+ dendritic cells and iNKT cells, providing a mechanism for biasing toward either proinflammatory or anti-inflammatory responses. PMID:24412610

  15. Selective activation of functional suppressor cells by human seminal fluid.

    PubMed Central

    Witkin, S S

    1986-01-01

    The ability of seminal fluid (SF) to induce suppressor cell activity from peripheral blood mononuclear cells (PBMN) was examined. PBMN were incubated with SF for 48 h, washed to remove SF components, treated with mitomycin C (mit C) and co-cultured with Raji cells, a lymphoblastoid cell line. Raji cell proliferation was inhibited by SF-treated PBMN proportionally to SF concentration. SF (50-200 micrograms), mit C-treated Raji cells or mit C-treated PBMN pre-incubated with phytohaemagglutinin were without effect on Raji cell growth. Suppressor T lymphocytes generated by incubation of PBMN with concanavalin A inhibited Raji cells to the same extent as did SF-treated PBMN. All activity was lost following heating at 56 degrees C for 30 min; freezing and thawing reduced the ability of SF to induce suppression by 50%. Dialysis of SF or treatment with antibody to prostaglandin E2 led to a 50% reduction in suppression. PMID:2943541

  16. Platelet activating factor: regulation by mast cells and aspirin.

    PubMed

    Denburg, J A; Williams, D B; Kinlough-Rathbone, R L; Cazenave, J P; Bienenstock, J

    1984-02-01

    We have investigated some aspects of the regulation of production of rat platelet activating factor (PAF)2 in vitro. Suspensions of unseparated (PLC1), mast cell-depleted (PLC2), or mast cell (MC)-enriched rat peritoneal lavage cells (PLC) were analyzed for PAF content by extraction at alkaline pH. PAF activity extracted from PLC1 varied inversely with viable cell concentration: at 1 X 10(6) cells/ml, 32 +/- 9.3 PAF units, decreasing to 11.2 +/- 9.5 units at 10 X 10(6) cells/ml, and no activity at higher concentrations. Incubation of PLC1 in Tyrode's buffer or acetylsalicylic acid (ASA), but not salicylate, resulted in a time-dependent loss of PAF activity. Mean PAF activity of PLC2 was similar to that in PLC1, while no PAF activity was extractable from MC. Co-incubation with MC extracts inhibited PAF activity of PLC1 extracts in a dose-dependent fashion. Ultracentrifugation of PAF-containing samples led to a loss of all PAF activity in PLC1 extracts, suggesting the association of PAF activity with subcellular components. PAF appears to be derived from a non-MC population of rat PLC, is not extractable from rat PLC in the presence of ASA and is inhibited by MC extracts. These studies suggest that ASA regulates PAF availability unrelated to its effect on cyclooxygenase and that MC membrane products directly inhibit PAF activity from rat PLC. PMID:6711391

  17. Effect of substrate mechanical properties on T cell activation

    NASA Astrophysics Data System (ADS)

    Hui, King; Upadhyaya, Arpita

    2013-03-01

    T cell activation is a key process in cell-mediated immunity, and engagement of T cell receptors by peptides on antigen presenting cells leads to activation of signaling cascades as well as cytoskeletal reorganization and large scale membrane deformations. While significant advances have been made in understanding the biochemical signaling pathways, the effects imposed by the physical environment and the role of mechanical forces on cell activation are not well understood. In this study, we have used anti-CD3 coated elastic polyacrylamide gels as stimulatory substrates to enable the spreading of Jurkat T cells and the measurement of cellular traction forces. We have investigated the effect of substrate stiffness on the dynamics of T cell spreading and cellular force generation. We found that T cells display more active and sustained edge dynamics on softer gels and that they exert increased traction stresses with increasing gel stiffness. A dynamic actin cytoskeleton was required to maintain the forces generated during activation, as inferred from small molecule inhibition experiments. Our results indicate an important role for physical properties of the antigen presenting cell as well as cytoskeleton-driven forces in signaling activation.

  18. BMP2 Transfer to Neighboring Cells and Activation of Signaling.

    PubMed

    Alborzinia, Hamed; Shaikhkarami, Marjan; Hortschansky, Peter; Wölfl, Stefan

    2016-09-01

    Morphogen gradients and concentration are critical features during early embryonic development and cellular differentiation. Previously we reported the preparation of biologically active, fluorescently labeled BMP2 and quantitatively analyzed their binding to the cell surface and followed BMP2 endocytosis over time on the level of single endosomes. Here we show that this internalized BMP2 can be transferred to neighboring cells and, moreover, also activates downstream BMP signaling in adjacent cells, indicated by Smad1/5/8 phosphorylation and activation of the downstream target gene id1. Using a 3D matrix to modulate cell-cell contacts in culture we could show that direct cell-cell contact significantly increased BMP2 transfer. Using inhibitors of vesicular transport, transfer was strongly inhibited. Interestingly, cotreatment with the physiological BMP inhibitor Noggin increased BMP2 uptake and transfer, albeit activation of Smad signaling in neighboring cells was completely suppressed. Our findings present a novel and interesting mechanism by which morphogens such as BMP2 can be transferred between cells and how this is modulated by BMP antagonists such as Noggin, and how this influences activation of Smad signaling by BMP2 in neighboring cells. PMID:27306974

  19. Functional Implications of Plasma Membrane Condensation for T Cell Activation

    PubMed Central

    Quinn, Carmel M.; Engelhardt, Karin; Williamson, David; Grewal, Thomas; Jessup, Wendy; Harder, Thomas; Gaus, Katharina

    2008-01-01

    The T lymphocyte plasma membrane condenses at the site of activation but the functional significance of this receptor-mediated membrane reorganization is not yet known. Here we demonstrate that membrane condensation at the T cell activation sites can be inhibited by incorporation of the oxysterol 7-ketocholesterol (7KC), which is known to prevent the formation of raft-like liquid-ordered domains in model membranes. We enriched T cells with 7KC, or cholesterol as control, to assess the importance of membrane condensation for T cell activation. Upon 7KC treatment, T cell antigen receptor (TCR) triggered calcium fluxes and early tyrosine phosphorylation events appear unaltered. However, signaling complexes form less efficiently on the cell surface, fewer phosphorylated signaling proteins are retained in the plasma membrane and actin restructuring at activation sites is impaired in 7KC-enriched cells resulting in compromised downstream activation responses. Our data emphasizes lipids as an important medium for the organization at T cell activation sites and strongly indicates that membrane condensation is an important element of the T cell activation process. PMID:18509459

  20. Activation-induced necroptosis contributes to B-cell lymphopenia in active systemic lupus erythematosus

    PubMed Central

    Fan, H; Liu, F; Dong, G; Ren, D; Xu, Y; Dou, J; Wang, T; Sun, L; Hou, Y

    2014-01-01

    B-cell abnormality including excessive activation and lymphopenia is a central feature of systemic lupus erythematosus (SLE). Although activation threshold, auto-reaction and death of B cells can be affected by intrinsical and/or external signaling, the underlying mechanisms are unclear. Herein, we demonstrate that co-activation of Toll-like receptor 7 (TLR7) and B-cell receptor (BCR) pathways is a core event for the survival/dead states of B cells in SLE. We found that the mortalities of CD19+CD27- and CD19+IgM+ B-cell subsets were increased in the peripheral blood mononuclear cells (PBMCs) of SLE patients. The gene microarray analysis of CD19+ B cells from active SLE patients showed that the differentially expressed genes were closely correlated to TLR7, BCR, apoptosis, necroptosis and immune pathways. We also found that co-activation of TLR7 and BCR could trigger normal B cells to take on SLE-like B-cell characters including the elevated viability, activation and proliferation in the first 3 days and necroptosis in the later days. Moreover, the necroptotic B cells exhibited mitochondrial dysfunction and hypoxia, along with the elevated expression of necroptosis-related genes, consistent with that in both SLE B-cell microarray and real-time PCR verification. Expectedly, pretreatment with the receptor-interacting protein kinase 1 (RIPK1) inhibitor Necrostatin-1, and not the apoptosis inhibitor zVAD, suppressed B-cell death. Importantly, B cells from additional SLE patients also significantly displayed high expression levels of necroptosis-related genes compared with those from healthy donors. These data indicate that co-activation of TLR7 and BCR pathways can promote B cells to hyperactivation and ultimately necroptosis. Our finding provides a new explanation on B-cell lymphopenia in active SLE patients. These data suggest that extrinsic factors may increase the intrinsical abnormality of B cells in SLE patients. PMID:25210799

  1. Mast cells and dendritic cells form synapses that facilitate antigen transfer for T cell activation

    PubMed Central

    Carroll-Portillo, Amanda; Cannon, Judy L.; te Riet, Joost; Holmes, Anna; Kawakami, Yuko; Kawakami, Toshiaki; Cambi, Alessandra

    2015-01-01

    Mast cells (MCs) produce soluble mediators such as histamine and prostaglandins that are known to influence dendritic cell (DC) function by stimulating maturation and antigen processing. Whether direct cell–cell interactions are important in modulating MC/DC function is unclear. In this paper, we show that direct contact between MCs and DCs occurs and plays an important role in modulating the immune response. Activation of MCs through FcεRI cross-linking triggers the formation of stable cell–cell interactions with immature DCs that are reminiscent of the immunological synapse. Direct cellular contact differentially regulates the secreted cytokine profile, indicating that MC modulation of DC populations is influenced by the nature of their interaction. Synapse formation requires integrin engagement and facilitates the transfer of internalized MC-specific antigen from MCs to DCs. The transferred material is ultimately processed and presented by DCs and can activate T cells. The physiological outcomes of the MC–DC synapse suggest a new role for intercellular crosstalk in defining the immune response. PMID:26304724

  2. Tubular solid oxide fuel cell demonstration activities

    SciTech Connect

    Veyo, S.E.

    1995-08-01

    The development of a viable fuel cell driven electrical power generation system involves not only the development of cell and stack technology, but also the development of the overall system concept, the strategy for control, and the ancillary subsystems. The design requirements used to guide system development must reflect a customer focus in order to evolve a commercial product. In order to obtain useful customer feedback, Westinghouse has practiced the deployment with customers of fully integrated, automatically controlled, packaged solid oxide fuel cell power generation systems. These field units have served to demonstrate to customers first hand the beneficial attributes of the SOFC, to expose deficiencies through experience in order to guide continued development, and to garner real world feedback and data concerning not only cell and stack parameters, but also transportation, installation, permitting and licensing, start-up and shutdown, system alarming, fault detection, fault response, and operator interaction.

  3. Interleukin-7 and Toll-Like Receptor 7 Induce Synergistic B Cell and T Cell Activation

    PubMed Central

    Bikker, Angela; Kruize, Aike A.; van der Wurff-Jacobs, Kim M. G.; Peters, Rogier P.; Kleinjan, Marije; Redegeld, Frank; de Jager, Wilco; Lafeber, Floris P. J. G.; van Roon, Joël A. G.

    2014-01-01

    Objectives To investigate the potential synergy of IL-7-driven T cell-dependent and TLR7-mediated B cell activation and to assess the additive effects of monocyte/macrophages in this respect. Methods Isolated CD19 B cells and CD4 T cells from healthy donors were co-cultured with TLR7 agonist (TLR7A, Gardiquimod), IL-7, or their combination with or without CD14 monocytes/macrophages (T/B/mono; 1 : 1 : 0,1). Proliferation was measured using 3H-thymidine incorporation and Ki67 expression. Activation marker (CD19, HLA-DR, CD25) expression was measured by FACS analysis. Immunoglobulins were measured by ELISA and release of cytokines was measured by Luminex assay. Results TLR7-induced B cell activation was not associated with T cell activation. IL-7-induced T cell activation alone and together with TLR7A synergistically increased numbers of both proliferating (Ki67+) B cells and T cells, which was further increased in the presence of monocytes/macrophages. This was associated by up regulation of activation markers on B cells and T cells. Additive or synergistic induction of production of immunoglobulins by TLR7 and IL-7 was associated by synergistic induction of T cell cytokines (IFNγ, IL-17A, IL-22), which was only evident in the presence of monocytes/macrophages. Conclusions IL-7-induced CD4 T cell activation and TLR7-induced B cell activation synergistically induce T helper cell cytokine and B cell immunoglobulin production, which is critically dependent on monocytes/macrophages. Our results indicate that previously described increased expression of IL-7 and TLR7 together with increased numbers of macrophages at sites of inflammation in autoimmune diseases like RA and pSS significantly contributes to enhanced lymphocyte activation. PMID:24740301

  4. Cutting edge: cell surface linker for activation of T cells is recruited to microclusters and is active in signaling.

    PubMed

    Balagopalan, Lakshmi; Barr, Valarie A; Kortum, Robert L; Park, Anna K; Samelson, Lawrence E

    2013-04-15

    A controversy has recently emerged regarding the location of the cellular pool of the adapter linker for activation of T cells (LAT) that participates in propagation of signals downstream of the TCR. In one model phosphorylation and direct recruitment of cell surface LAT to activation-induced microclusters is critical for T cell activation, whereas in the other model vesicular, but not surface, LAT participates in these processes. By using a chimeric version of LAT that can be tracked via an extracellular domain, we provide evidence that LAT located at the cell surface can be recruited efficiently to activation-induced microclusters within seconds of TCR engagement. Importantly, we also demonstrate that this pool of LAT at the plasma membrane is rapidly phosphorylated. Our results provide support for the model in which the cell utilizes LAT from the cell surface for rapid responses to TCR stimulation. PMID:23487428

  5. Ly108 Expression Distinguishes Subsets of invariant NKT cells that Help Autoantibody Production and Secrete IL-21 from those that Secrete IL-17 in Lupus Prone NZB/W Mice

    PubMed Central

    Tang, Xiaobin; Zhang, Bo; Jarrell, Justin A; Price, Jordan V; Dai, Hongjie; Utz, Paul J; Strober, Samuel

    2014-01-01

    Lupus is a systemic autoimmune disease characterized by anti-nuclear antibodies in humans and genetically susceptible NZB/W mice that can cause immune complex glomerulonephritis. T cells contribute to lupus pathogenesis by secreting pro-inflammatory cytokines such as IL-17, and by interacting with B cells and secreting helper factors such as IL-21 that promote production of IgG autoantibodies. In the current study, we determined whether purified NKT cells or far more numerous conventional non-NKT cells in the spleen of NZB/W female mice secrete IL-17 and/or IL-21 after TCR activation in vitro, and provide help for spontaneous IgG autoantibody production by purified splenic CD19+ B cells. Whereas invariant NKT cells secreted large amounts of IL-17 and IL-21, and helped B cells, non-NKT cells did not. The subset of IL-17 secreting NZB/W NKT cells expressed the Ly108loCD4−NK1.1− phenotype, whereas the IL-21 secreting subset expressed the Ly108hiCD4+NK1.1− phenotype and helped B cells secrete a variety of IgG anti-nuclear antibodies. α-galactocylceramide enhanced the helper activity of NZB/W and B6.Sle1b NKT cells for IgG autoantibodiy secretion by syngeneic B cells. In conclusion, different subsets of iNKT cells from mice with genetic susceptibility to lupus can contribute to pathogenesis by secreting pro-inflammatory cytokines and helping autoantibody production. PMID:24508410

  6. T Cell Activation Thresholds are Affected by Gravitational

    NASA Technical Reports Server (NTRS)

    Adams, Charley; Gonzalez, M.; Nelman-Gonzalez, M.

    1999-01-01

    T cells stimulated in space flight by various mitogenic signals show a dramatic reduction in proliferation and expression of early activation markers. Similar results are also obtained in a ground based model of microgravity, clinorotation, which provides a vector-averaged reduction of the apparent gravity on cells without significant shear force. Here we demonstrate that T cell inhibition is due to an increase in the required threshold for activation. Dose response curves indicate that cells activated during clinorotation require higher stimulation to achieve the same level of activation, as measured by CD69 expression. Interleukin 2 receptor expression, and DNA synthesis. The amount of stimulation necessary for 50% activation is 5 fold in the clinostat relative to static. Correlation of TCR internalization with activation also exhibit a dramatic right shift in clinorotation, demonstrating unequivocally that signal transduction mechanism independent of TCR triggering account for the increased activation threshold. Previous results from space flight experiments are consistent with the dose response curves obtained for clinorotation. Activation thresholds are important aspects of T cell memory, autoimmunity and tolerance Clinorotation is a useful, noninvasive tool for the study of cellular and biochemical event regulating T cell activation threshold and the effects of gravitation forces on these systems.

  7. Retinal Pigment Epithelial Cell Line Suppression of Phagolysosome Activation

    PubMed Central

    Taylor, AW; Dixit, S; Yu, J

    2015-01-01

    The eye is an immune privileged tissue with multiple mechanisms of immunosuppression to protect the light gathering tissues from the damage of inflammation. One of theses mechanisms involves retinal pigment epithelial cell suppression of phagosome activation in macrophages. The objective of this work is to determine if the human RPE cell line ARPE-19 is capable of suppressing the activation of the phagolysosome in macrophages in a manner similar to primary RPE. The conditioned media of RPE eyecups, sub-confluent, just confluent cultures, or established confluent cultures of human ARPE-19 cells were generated. These condition media were used to treat macrophages phagocytizing pHrodo bioparticles. After 24 hours incubation the macrophages were imaged by fluorescent microscopy, and fluorescence was measured. The fluorescent intensity is proportional to the amount of bioparticles phagocytized and are in an activated phagolysosome. The conditioned media of in situ mouse RPE eyecups significantly suppressed the activation of phagolysosome. The conditioned media from cultures of human ARPE-19 cells, grown to sub-confluence (50%) or grown to confluence had no effect on phagolysosome activation. In contrast, the conditioned media from established confluent cultures significantly suppressed phagolysosome activation. The neuropeptides alpha-MSH and NPY were depleted from the conditioned media of established confluent ARPE-19 cell cultures. This depleted conditioned media had diminished suppression of phagolysosome activation while promoting macrophage cell death. In addition, the condition media from cultures of ARPE-19 monolayers wounded with a bisecting scrape was diminished in suppressing phagolysosome activation. This technical report suggests that like primary RPE monolayers, established confluent cultures of ARPE-19 cells produce soluble factors that suppress the activation of macrophages, and can be used to study the molecular mechanisms of retinal immunobiology. In

  8. Activation of human inflammatory cells by secreted phospholipases A2.

    PubMed

    Triggiani, Massimo; Granata, Francescopaolo; Frattini, Annunziata; Marone, Gianni

    2006-11-01

    Secreted phospholipases A(2) (sPLA(2)s) are enzymes detected in serum and biological fluids of patients with various inflammatory, autoimmune and allergic disorders. Different isoforms of sPLA(2)s are expressed and released by human inflammatory cells, such as neutrophils, eosinophils, T cells, monocytes, macrophages and mast cells. sPLA(2)s generate arachidonic acid and lysophospholipids thus contributing to the production of bioactive lipid mediators in inflammatory cells. However, sPLA(2)s also activate human inflammatory cells by mechanisms unrelated to their enzymatic activity. Several human and non-human sPLA(2)s induce degranulation of mast cells, neutrophils and eosinophils and activate exocytosis in macrophages. In addition some, but not all, sPLA(2) isoforms promote cytokine and chemokine production from macrophages, neutrophils, eosinophils, monocytes and endothelial cells. These effects are primarily mediated by binding of sPLA(2)s to specific membrane targets (heparan sulfate proteoglycans, M-type, N-type or mannose receptors) expressed on effector cells. Thus, sPLA(2)s may play an important role in the initiation and amplification of inflammatory reactions by at least two mechanisms: production of lipid mediators and direct activation of inflammatory cells. Selective inhibitors of sPLA(2)-enzymatic activity and specific antagonists of sPLA(2) receptors are current being tested for pharmacological treatment of inflammatory and autoimmune diseases. PMID:16952481

  9. Active elastic dimers: cells moving on rigid tracks.

    PubMed

    Lopez, J H; Das, Moumita; Schwarz, J M

    2014-09-01

    Experiments suggest that the migration of some cells in the three-dimensional extracellular matrix bears strong resemblance to one-dimensional cell migration. Motivated by this observation, we construct and study a minimal one-dimensional model cell made of two beads and an active spring moving along a rigid track. The active spring models the stress fibers with their myosin-driven contractility and α-actinin-driven extendability, while the friction coefficients of the two beads describe the catch and slip-bond behaviors of the integrins in focal adhesions. In the absence of active noise, net motion arises from an interplay between active contractility (and passive extendability) of the stress fibers and an asymmetry between the front and back of the cell due to catch-bond behavior of integrins at the front of the cell and slip-bond behavior of integrins at the back. We obtain reasonable cell speeds with independently estimated parameters. We also study the effects of hysteresis in the active spring, due to catch-bond behavior and the dynamics of cross linking, and the addition of active noise on the motion of the cell. Our model highlights the role of α-actinin in three-dimensional cell motility and does not require Arp2/3 actin filament nucleation for net motion. PMID:25314473

  10. Active elastic dimers: Cells moving on rigid tracks

    NASA Astrophysics Data System (ADS)

    Lopez, J. H.; Das, Moumita; Schwarz, J. M.

    2014-09-01

    Experiments suggest that the migration of some cells in the three-dimensional extracellular matrix bears strong resemblance to one-dimensional cell migration. Motivated by this observation, we construct and study a minimal one-dimensional model cell made of two beads and an active spring moving along a rigid track. The active spring models the stress fibers with their myosin-driven contractility and α-actinin-driven extendability, while the friction coefficients of the two beads describe the catch and slip-bond behaviors of the integrins in focal adhesions. In the absence of active noise, net motion arises from an interplay between active contractility (and passive extendability) of the stress fibers and an asymmetry between the front and back of the cell due to catch-bond behavior of integrins at the front of the cell and slip-bond behavior of integrins at the back. We obtain reasonable cell speeds with independently estimated parameters. We also study the effects of hysteresis in the active spring, due to catch-bond behavior and the dynamics of cross linking, and the addition of active noise on the motion of the cell. Our model highlights the role of α-actinin in three-dimensional cell motility and does not require Arp2/3 actin filament nucleation for net motion.

  11. Human Immunodeficiency Syndromes Affecting Human Natural Killer Cell Cytolytic Activity

    PubMed Central

    Ham, Hyoungjun; Billadeau, Daniel D.

    2013-01-01

    Natural killer (NK) cells are lymphocytes of the innate immune system that secrete cytokines upon activation and mediate the killing of tumor cells and virus-infected cells, especially those that escape the adaptive T cell response caused by the down regulation of MHC-I. The induction of cytotoxicity requires that NK cells contact target cells through adhesion receptors, and initiate activation signaling leading to increased adhesion and accumulation of F-actin at the NK cell cytotoxic synapse. Concurrently, lytic granules undergo minus-end directed movement and accumulate at the microtubule-organizing center through the interaction with microtubule motor proteins, followed by polarization of the lethal cargo toward the target cell. Ultimately, myosin-dependent movement of the lytic granules toward the NK cell plasma membrane through F-actin channels, along with soluble N-ethylmaleimide-sensitive factor attachment protein receptor-dependent fusion, promotes the release of the lytic granule contents into the cleft between the NK cell and target cell resulting in target cell killing. Herein, we will discuss several disease-causing mutations in primary immunodeficiency syndromes and how they impact NK cell-mediated killing by disrupting distinct steps of this tightly regulated process. PMID:24478771

  12. EFFECT OF NICKEL AND MANGANESE ON NATURAL KILLER CELL ACTIVITY

    EPA Science Inventory

    A single intramuscular injection of NiCl2 causes a suppression of natural killer (NK) cell activity, while a single injection of MnCl2 enhances NK activity. When injected together Mn preempts the suppressive effect of Ni on NK activity.

  13. Microchamber Device for Detection of Transporter Activity of Adherent Cells

    PubMed Central

    Tsugane, Mamiko; Uejima, Etsuko; Suzuki, Hiroaki

    2015-01-01

    We present a method to detect the transporter activity of intact adherent cells using a microchamber device. When adherent cells are seeded onto the poly-di-methyl siloxane substrate having microchambers with openings smaller than the size of a cell, the cells form a confluent layer that covers the microchambers, creating minute, confined spaces. As substances exported across the cell membrane accumulate, transporter activity can be detected by observing the fluorescence intensity increase in the microchamber. We tested the microchamber device with HeLa cells over-expressing MDR1, an ATP-binding cassette transporter, and succeeded in detecting the transport of fluorescence-conjugated paclitaxel, the anti-cancer drug, at the single-cell level. PMID:25853126

  14. Modeling Active Mechanosensing in Cell-Matrix Interactions.

    PubMed

    Chen, Bin; Ji, Baohua; Gao, Huajian

    2015-01-01

    Cells actively sense the mechanical properties of the extracellular matrix, such as its rigidity, morphology, and deformation. The cell-matrix interaction influences a range of cellular processes, including cell adhesion, migration, and differentiation, among others. This article aims to review some of the recent progress that has been made in modeling mechanosensing in cell-matrix interactions at different length scales. The issues discussed include specific interactions between proteins, the structure and mechanosensitivity of focal adhesions, the cluster effects of the specific binding, the structure and behavior of stress fibers, cells' sensing of substrate stiffness, and cell reorientation on cyclically stretched substrates. The review concludes by looking toward future opportunities in the field and at the challenges to understanding active cell-matrix interactions. PMID:26098510

  15. Peptide mini-scaffold facilitates JNK3 activation in cells

    PubMed Central

    Zhan, Xuanzhi; Stoy, Henriette; Kaoud, Tamer S.; Perry, Nicole A.; Chen, Qiuyan; Perez, Alejandro; Els-Heindl, Sylvia; Slagis, Jack V.; Iverson, Tina M.; Beck-Sickinger, Annette G.; Gurevich, Eugenia V.; Dalby, Kevin N.; Gurevich, Vsevolod V.

    2016-01-01

    Three-kinase mitogen-activated protein kinase (MAPK) signaling cascades are present in virtually all eukaryotic cells. MAPK cascades are organized by scaffold proteins, which assemble cognate kinases into productive signaling complexes. Arrestin-3 facilitates JNK activation in cells, and a short 25-residue arrestin-3 peptide was identified as the critical JNK3-binding element. Here we demonstrate that this peptide also binds MKK4, MKK7, and ASK1, which are upstream JNK3-activating kinases. This peptide is sufficient to enhance JNK3 activity in cells. A homologous arrestin-2 peptide, which differs only in four positions, binds MKK4, but not MKK7 or JNK3, and is ineffective in cells at enhancing activation of JNK3. The arrestin-3 peptide is the smallest MAPK scaffold known. This peptide or its mimics can regulate MAPKs, affecting cellular decisions to live or die. PMID:26868142

  16. Twin Knudsen Cell Configuration for Activity Measurements by Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.

    1996-01-01

    A twin Knudsen cell apparatus for alloy activity measurements by mass spectrometry is described. Two Knudsen cells - one containing an alloy and one containing a pure component - are mounted on a single flange and translated into the sampling region via a motorized x-y table. Mixing of the molecular beams from the cells is minimized by a novel system of shutters. Activity measurements were taken on two well-characterized alloys to verify the operation of the system. Silver activity measurements are reported for Ag-Cu alloys and aluminum activity measurements are reported for Fe-Al alloys. The temperature dependence of activity for a 0.474 mol fraction Al-Fe alloy gives a partial molar heat of aluminum. Measurements taken with the twin cell show good agreement with literature values for these alloys.

  17. Cytotoxic activity of allogeneic natural killer cells on U251 glioma cells in vitro.

    PubMed

    Guo, Meng; Wu, Tingting; Wan, Lixin

    2016-07-01

    The present study aimed to observe the cytotoxic activity of allogeneic natural killer (NK) cells on U251 glioma cells and to investigate their mechanism of action to establish an effective treatment strategy for neuroglioma. Cell survival curves, colony formation assays and karyotype analysis were performed to investigate the characteristics of U251 glioma cells. The present study demonstrated that natural killer group 2, member D (NKG2D)‑major histocompatibility complex class I‑related chain A/B (MICA/B) interactions contributed to the cytotoxic effect of NK cells on K562 and U251 cells. In antibody‑blocking assays to inhibit NKG2D ligands, the cytotoxic activity was not completely attenuated, which suggested that other signaling pathways contribute to the cytotoxic activity of NK cells on tumor cells in addition to the NKG2D‑mediated activity. The present study identified that the expression levels of NKG2D ligands on the surface of target cells influenced the strength of the NK cell immune response. Furthermore, allogeneic NK cells were observed to kill glioma cells in vitro, and this anticancer activity is associated with the rate of NKG2D expression on the surface of glioma cells. PMID:27175912

  18. Active Cellular Mechanics and Information Processing in the Living Cell

    NASA Astrophysics Data System (ADS)

    Rao, M.

    2014-07-01

    I will present our recent work on the organization of signaling molecules on the surface of living cells. Using novel experimental and theoretical approaches we have found that many cell surface receptors are organized as dynamic clusters driven by active currents and stresses generated by the cortical cytoskeleton adjoining the cell surface. We have shown that this organization is optimal for both information processing and computation. In connecting active mechanics in the cell with information processing and computation, we bring together two of the seminal works of Alan Turing.

  19. Aldehyde dehydrogenase activity promotes survival of human muscle precursor cells

    PubMed Central

    Jean, Elise; Laoudj-Chenivesse, Dalila; Notarnicola, Cécile; Rouger, Karl; Serratrice, Nicolas; Bonnieu, Anne; Gay, Stéphanie; Bacou, Francis; Duret, Cédric; Carnac, Gilles

    2011-01-01

    Abstract Aldehyde dehydrogenases (ALDH) are a family of enzymes that efficiently detoxify aldehydic products generated by reactive oxygen species and might therefore participate in cell survival. Because ALDH activity has been used to identify normal and malignant cells with stem cell properties, we asked whether human myogenic precursor cells (myoblasts) could be identified and isolated based on their levels of ALDH activity. Human muscle explant-derived cells were incubated with ALDEFLUOR, a fluorescent substrate for ALDH, and we determined by flow cytometry the level of enzyme activity. We found that ALDH activity positively correlated with the myoblast-CD56+ fraction in those cells, but, we also observed heterogeneity of ALDH activity levels within CD56-purified myoblasts. Using lentiviral mediated expression of shRNA we demonstrated that ALDH activity was associated with expression of Aldh1a1 protein. Surprisingly, ALDH activity and Aldh1a1 expression levels were very low in mouse, rat, rabbit and non-human primate myoblasts. Using different approaches, from pharmacological inhibition of ALDH activity by diethylaminobenzaldehyde, an inhibitor of class I ALDH, to cell fractionation by flow cytometry using the ALDEFLUOR assay, we characterized human myoblasts expressing low or high levels of ALDH. We correlated high ALDH activity ex vivo to resistance to hydrogen peroxide (H2O2)-induced cytotoxic effect and in vivo to improved cell viability when human myoblasts were transplanted into host muscle of immune deficient scid mice. Therefore detection of ALDH activity, as a purification strategy, could allow non-toxic and efficient isolation of a fraction of human myoblasts resistant to cytotoxic damage. PMID:19840193

  20. Enzyme Activities in Polarized Cell Membranes

    PubMed Central

    Bass, L.; McIlroy, D. K.

    1968-01-01

    The theoretical pH dependence of enzyme activities in membranes of low dielectric constant is estimated. It is shown that in biological membranes some types of enzymes may attain a limiting pH sensitivity such that an increment of only 0.2 pH unit (sufficient to induce action potentials in squid axons) causes a relative activity change of over 25%. The transients of enzyme activity generated by membrane depolarization and by pH increments in the bathing solution are discussed in relation to the transients of nervous excitation. PMID:5641405

  1. Activated microglia cause reversible apoptosis of pheochromocytoma cells, inducing their cell death by phagocytosis

    PubMed Central

    Hornik, Tamara C.; Vilalta, Anna; Brown, Guy C.

    2016-01-01

    ABSTRACT Some apoptotic processes, such as phosphatidylserine exposure, are potentially reversible and do not necessarily lead to cell death. However, phosphatidylserine exposure can induce phagocytosis of a cell, resulting in cell death by phagocytosis: phagoptosis. Phagoptosis of neurons by microglia might contribute to neuropathology, whereas phagoptosis of tumour cells by macrophages might limit cancer. Here, we examined the mechanisms by which BV-2 microglia killed co-cultured pheochromocytoma (PC12) cells that were either undifferentiated or differentiated into neuronal cells. We found that microglia activated by lipopolysaccharide rapidly phagocytosed PC12 cells. Activated microglia caused reversible phosphatidylserine exposure on and reversible caspase activation in PC12 cells, and caspase inhibition prevented phosphatidylserine exposur and decreased subsequent phagocytosis. Nitric oxide was necessary and sufficient to induce the reversible phosphatidylserine exposure and phagocytosis. The PC12 cells were not dead at the time they were phagocytised, and inhibition of their phagocytosis left viable cells. Cell loss was inhibited by blocking phagocytosis mediated by phosphatidylserine, MFG-E8, vitronectin receptors or P2Y6 receptors. Thus, activated microglia can induce reversible apoptosis of target cells, which is insufficient to cause apoptotic cell death, but sufficient to induce their phagocytosis and therefore cell death by phagoptosis. PMID:26567213

  2. Monocytic Cells Become Less Compressible but More Deformable upon Activation

    PubMed Central

    Ravetto, Agnese; Wyss, Hans M.; Anderson, Patrick D.; den Toonder, Jaap M. J.; Bouten, Carlijn V. C.

    2014-01-01

    Aims Monocytes play a significant role in the development of atherosclerosis. During the process of inflammation, circulating monocytes become activated in the blood stream. The consequent interactions of the activated monocytes with the blood flow and endothelial cells result in reorganization of cytoskeletal proteins, in particular of the microfilament structure, and concomitant changes in cell shape and mechanical behavior. Here we investigate the full elastic behavior of activated monocytes in relation to their cytoskeletal structure to obtain a better understanding of cell behavior during the progression of inflammatory diseases such as atherosclerosis. Methods and Results The recently developed Capillary Micromechanics technique, based on exposing a cell to a pressure difference in a tapered glass microcapillary, was used to measure the deformation of activated and non-activated monocytic cells. Monitoring the elastic response of individual cells up to large deformations allowed us to obtain both the compressive and the shear modulus of a cell from a single experiment. Activation by inflammatory chemokines affected the cytoskeletal organization and increased the elastic compressive modulus of monocytes with 73–340%, while their resistance to shape deformation decreased, as indicated by a 25–88% drop in the cell’s shear modulus. This decrease in deformability is particularly pronounced at high strains, such as those that occur during diapedesis through the vascular wall. Conclusion Overall, monocytic cells become less compressible but more deformable upon activation. This change in mechanical response under different modes of deformation could be important in understanding the interplay between the mechanics and function of these cells. In addition, our data are of direct relevance for computational modeling and analysis of the distinct monocytic behavior in the circulation and the extravascular space. Lastly, an understanding of the changes of monocyte

  3. Ionizing Radiation Impairs T Cell Activation by Affecting Metabolic Reprogramming

    PubMed Central

    Li, Heng-Hong; Wang, Yi-wen; Chen, Renxiang; Zhou, Bin; Ashwell, Jonathan D.; Fornace, Albert J.

    2015-01-01

    Ionizing radiation has a variety of acute and long-lasting adverse effects on the immune system. Whereas measureable effects of radiation on immune cell cytotoxicity and population change have been well studied in human and animal models, little is known about the functional alterations of the surviving immune cells after ionizing radiation. The objective of this study was to delineate the effects of radiation on T cell function by studying the alterations of T cell receptor activation and metabolic changes in activated T cells isolated from previously irradiated animals. Using a global metabolomics profiling approach, for the first time we demonstrate that ionizing radiation impairs metabolic reprogramming of T cell activation, which leads to substantial decreases in the efficiency of key metabolic processes required for activation, such as glucose uptake, glycolysis, and energy metabolism. In-depth understanding of how radiation impacts T cell function highlighting modulation of metabolism during activation is not only a novel approach to investigate the pivotal processes in the shift of T cell homeostasis after radiation, it also may lead to new targets for therapeutic manipulation in the combination of radiotherapy and immune therapy. Given that appreciable effects were observed with as low as 10 cGy, our results also have implications for low dose environmental exposures. PMID:26078715

  4. Real-time transposable element activity in individual live cells

    PubMed Central

    Lee, Gloria; Martini, K. Michael

    2016-01-01

    The excision and reintegration of transposable elements (TEs) restructure their host genomes, generating cellular diversity involved in evolution, development, and the etiology of human diseases. Our current knowledge of TE behavior primarily results from bulk techniques that generate time and cell ensemble averages, but cannot capture cell-to-cell variation or local environmental and temporal variability. We have developed an experimental system based on the bacterial TE IS608 that uses fluorescent reporters to directly observe single TE excision events in individual cells in real time. We find that TE activity depends upon the TE’s orientation in the genome and the amount of transposase protein in the cell. We also find that TE activity is highly variable throughout the lifetime of the cell. Upon entering stationary phase, TE activity increases in cells hereditarily predisposed to TE activity. These direct observations demonstrate that real-time live-cell imaging of evolution at the molecular and individual event level is a powerful tool for the exploration of genome plasticity in stressed cells. PMID:27298350

  5. Real-time transposable element activity in individual live cells.

    PubMed

    Kim, Neil H; Lee, Gloria; Sherer, Nicholas A; Martini, K Michael; Goldenfeld, Nigel; Kuhlman, Thomas E

    2016-06-28

    The excision and reintegration of transposable elements (TEs) restructure their host genomes, generating cellular diversity involved in evolution, development, and the etiology of human diseases. Our current knowledge of TE behavior primarily results from bulk techniques that generate time and cell ensemble averages, but cannot capture cell-to-cell variation or local environmental and temporal variability. We have developed an experimental system based on the bacterial TE IS608 that uses fluorescent reporters to directly observe single TE excision events in individual cells in real time. We find that TE activity depends upon the TE's orientation in the genome and the amount of transposase protein in the cell. We also find that TE activity is highly variable throughout the lifetime of the cell. Upon entering stationary phase, TE activity increases in cells hereditarily predisposed to TE activity. These direct observations demonstrate that real-time live-cell imaging of evolution at the molecular and individual event level is a powerful tool for the exploration of genome plasticity in stressed cells. PMID:27298350

  6. Utilizing Chimeric Antigen Receptors to Direct Natural Killer Cell Activity

    PubMed Central

    Hermanson, David L.; Kaufman, Dan S.

    2015-01-01

    Natural killer (NK) cells represent an attractive lymphocyte population for cancer immunotherapy due to their ability to lyse tumor targets without prior sensitization and without need for human leukocyte antigens-matching. Chimeric antigen receptors (CARs) are able to enhance lymphocyte targeting and activation toward diverse malignancies. CARs consist of an external recognition domain (typically a small chain variable fragment) directed at a specific tumor antigen that is linked with one or more intracellular signaling domains that mediate lymphocyte activation. Most CAR studies have focused on their expression in T cells. However, use of CARs in NK cells is starting to gain traction because they provide a method to redirect these cells more specifically to target refractory cancers. CAR-mediated anti-tumor activity has been demonstrated using NK cell lines, as well as NK cells isolated from peripheral blood, and NK cells produced from human pluripotent stem cells. This review will outline the CAR constructs that have been reported in NK cells with a focus on comparing the use of different signaling domains in combination with other co-activating domains. PMID:25972867

  7. Activated Murine B Lymphocytes and Dendritic Cells Produce a Novel CC Chemokine which Acts Selectively on Activated T Cells

    PubMed Central

    Schaniel, Christoph; Pardali, Evangelia; Sallusto, Federica; Speletas, Mattheos; Ruedl, Christiane; Shimizu, Takeyuki; Seidl, Thomas; Andersson, Jan; Melchers, Fritz; Rolink, Antonius G.; Sideras, Paschalis

    1998-01-01

    Genes were isolated using the suppression subtractive hybridization method by stimulation of pro/pre B cells with anti-CD40 and interleukin (IL)-4 to mature Sμ-Sε–switched cells. One of the strongly upregulated genes encodes a novel murine CC chemokine we have named ABCD-1. The ABCD-1 gene has three exons separated by 1.2- and 2.7-kb introns. It gives rise to a 2.2-kb transcript containing an open reading frame of 276 nucleotides. Two polyadenylation sites are used, giving rise to cDNAs with either 1550 or 1850 bp of 3′ untranslated regions. The open reading frame encodes a 24 amino acid–long leader peptide and a 68 amino acid–long mature protein with a predicted molecular mass of 7.8 kD. ABCD-1 mRNA is found in highest quantities in activated splenic B lymphocytes and dendritic cells. Little chemokine mRNA is present in lung, in unstimulated splenic cells, in thymocytes, and in lymph node cells. No ABCD-1 mRNA is detected in bone marrow, liver, kidney, or brain, in peritoneal exudate cells as well as in the majority of all unstimulated B lineage cells tested. It is also undetectable in Concanavalin A–activated/IL-2–restimulated splenic T cells, and in bone marrow–derived IL-2–induced natural killer cells and IL-3–activated macrophages. Recombinant ABCD-1 revealed a concentration-dependent and specific migration of activated splenic T lymphoblasts in chemotaxis assays. FACS® analyses of migrated cells showed no preferential difference in migration of CD4+ versus CD8+ T cell blasts. Murine as well as human T cells responded to ABCD-1. Freshly isolated cells from bone marrow, thymus, spleen, and lymph node, IL-2–activated NK cells, and LPS-stimulated splenic cells, all did not show any chemotactic response. Thus, ABCD-1 is the first chemokine produced in large amounts by activated B cells and acting selectively on activated T lymphocytes. Therefore, ABCD-1 is expected to play an important role in the collaboration of dendritic cells and B

  8. Rapidly rendering cells phagocytic through a cell surface display technique and concurrent Rac activation.

    PubMed

    Onuma, Hiroki; Komatsu, Toru; Arita, Makoto; Hanaoka, Kenjiro; Ueno, Tasuku; Terai, Takuya; Nagano, Tetsuo; Inoue, Takanari

    2014-07-15

    Cell surfaces represent a platform through which extracellular signals that determine diverse cellular processes, including migration, division, adhesion, and phagocytosis, are transduced. Techniques to rapidly reconfigure the surface properties of living cells should thus offer the ability to harness these cellular functions. Although the molecular mechanism of phagocytosis is well characterized, the minimal molecular players that are sufficient to activate this elaborate process remain elusive. We developed and implemented a technique to present a molecule of interest at the cell surface in an inducible manner on a time scale of minutes. We simultaneously induced the cell surface display of the C2 domain of milk fat globule epidermal growth factor factor 8 (MFG-E8) and activated the intracellular small guanosine triphosphatase Rac, which stimulates actin polymerization at the cell periphery. The C2 domain binds to phosphatidylserine, a lipid exposed on the surface of apoptotic cells. By integrating the stimulation of these two processes, we converted HeLa cells into a phagocytic cell line that bound to and engulfed apoptotic human Jurkat cells. Inducing either the cell surface display of the C2 domain or activating Rac alone was not sufficient to stimulate phagocytosis, which suggests that attachment to the target cell and actin reorganization together constitute the minimal molecular events that are needed to induce phagocytosis. This cell surface display technique might be useful as part of a targeted, cell-based therapy in which unwanted cells with characteristic surface molecules could be rapidly consumed by engineered cells. PMID:25028719

  9. Rapidly rendering cells phagocytic through a cell-surface display technique and concurrent Rac activation

    PubMed Central

    Onuma, Hiroki; Arita, Makoto; Hanaoka, Kenjiro; Ueno, Tasuku; Terai, Takuya; Nagano, Tetsuo

    2014-01-01

    Cell surfaces represent a platform through which extracellular signals that determine diverse cellular processes, including migration, division, adhesion, and phagocytosis, are transduced. Techniques to rapidly reconfigure the surface properties of living cells should thus offer the ability to harness these cellular functions. Although the molecular mechanism of phagocytosis is well-characterized, the minimal molecular players that are sufficient to activate this elaborate process remain elusive. We developed and implemented a technique to present a molecule of interest at the cell surface in an inducible manner on a timescale of minutes. We simultaneously induced the cell-surface display of the C2 domain of milk fat globule-EGF factor 8 (MFG-E8) and activated the intracellular small guanosine triphosphatase Rac, which stimulates actin polymerization at the cell periphery. The C2 domain binds to phosphatidylserine, a lipid exposed on the surface of apoptotic cells. By integrating the stimulation of these two processes, we converted HeLa cells into a phagocytic cell line that bound to and engulfed apoptotic human Jurkat cells. Inducing either the cell-surface display of the C2 domain or activating Rac alone was not sufficient to stimulate phagocytosis, which suggests that attachment to the target cell and actin reorganization together constitute the minimal molecular events that are needed to induce phagocytosis. This cell-surface display technique might be useful as part of a targeted, cell-based therapy in which unwanted cells with characteristic surface molecules could be rapidly consumed by engineered cells. PMID:25028719

  10. Activation of B cells by non-canonical helper signals

    PubMed Central

    Cerutti, Andrea; Cols, Montserrat; Puga, Irene

    2012-01-01

    Cognate interaction between T and B lymphocytes of the adaptive immune system is essential for the production of high-affinity antibodies against microbes, and for the establishment of long-term immunological memory. Growing evidence shows that—in addition to presenting antigens to T and B cells—macrophages, dendritic cells and other cells of the innate immune system provide activating signals to B cells, as well as survival signals to antibody-secreting plasma cells. Here, we discuss how these innate immune cells contribute to the induction of highly diversified and temporally sustained antibody responses, both systemically and at mucosal sites of antigen entry. PMID:22868664

  11. Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitri; Lukianova, Ekaterina; Shnip, Alexander; Zheltov, George; Potapnev, Michail; Savitsky, Valeriy; Klimovich, Olga; Oraevsky, Alexander

    2005-04-01

    We are developing new diagnostic and therapeutic technologies for leukemia based on selective targeting of leukemia cells with gold nanoparticles and thermomechanical destruction of the tumor cells with laser-induced microbubbles. Clusters of spherical gold nanoparticles that have strong optical absorption of laser pulses at 532 nm served as nucleation sites of vapor microbubbles. The nanoparticles were targeted selectively to leukemia cells using leukemia-specific surface receptors and a set of two monoclonal antibodies. Application of a primary myeloid-specific antibody to tumor cells followed by targeting the cells with 30-nm nanoparticles conjugated with a secondary antibody (IgG) resulted in formation of nanoparticulate clusters due to aggregation of IgGs. Formation of clusters resulted in substantial decrease of the damage threshold for target cells. The results encourage development of Laser Activated Nanothermolysis as a Cell Elimination Therapy (LANCET) for leukemia. The proposed technology can be applied separately or in combination with chemotherapy for killing leukemia cells without damage to other blood cells. Potential applications include initial reduction of concentration of leukemia cells in blood prior to chemotherapy and treatment of residual tumor cells after the chemotherapy. Laser-induced bubbles in individual cells and cell damage were monitored by analyzing profile of photothermal response signals over the entire cell after irradiation with a single 10-ns long laser pulse. Photothermal microscopy was utilized for imaging formation of microbubbles around nanoparticulate clusters.

  12. Acetaminophen Induces Human Neuroblastoma Cell Death through NFKB Activation

    PubMed Central

    Posadas, Inmaculada; Santos, Pablo; Ceña, Valentín

    2012-01-01

    Neuroblastoma resistance to apoptosis may contribute to the aggressive behavior of this tumor. Therefore, it would be relevant to activate endogenous cellular death mechanisms as a way to improve neuroblastoma therapy. We used the neuroblastoma SH-SY5Y cell line as a model to study the mechanisms involved in acetaminophen (AAP)-mediated toxicity by measuring CYP2E1 enzymatic activity, NFkB p65 subunit activation and translocation to the nucleus, Bax accumulation into the mitochondria, cytochrome c release and caspase activation. AAP activates the intrinsic death pathway in the SH-SY5Y human neuroblastoma cell line. AAP metabolism is partially responsible for this activation, because blockade of the cytochrome CYP2E1 significantly reduced but did not totally prevent, AAP-induced SH-SY5Y cell death. AAP also induced NFkB p65 activation by phosphorylation and its translocation to the nucleus, where NFkB p65 increased IL-1β production. This increase contributed to neuroblastoma cell death through a mechanism involving Bax accumulation into the mitochondria, cytochrome c release and caspase3 activation. Blockade of NFkB translocation to the nucleus by the peptide SN50 prevented AAP-mediated cell death and IL-1β production. Moreover, overexpression of the antiapoptotic protein Bcl-xL did not decrease AAP-mediated IL-1β production, but prevented both AAP and IL-1β-mediated cell death. We also confirmed the AAP toxic actions on SK-N-MC neuroepithelioma and U87MG glioblastoma cell lines. The results presented here suggest that AAP activates the intrinsic death pathway in neuroblastoma cells through a mechanism involving NFkB and IL-1β. PMID:23166834

  13. Protein Translation Activity: A New Measure of Host Immune Cell Activation.

    PubMed

    Seedhom, Mina O; Hickman, Heather D; Wei, Jiajie; David, Alexandre; Yewdell, Jonathan W

    2016-08-15

    We describe the in vivo ribopuromycylation (RPM) method, which uses a puromycin-specific Ab to fluorescently label ribosome-bound puromycylated nascent chains, enabling measurement of translational activity via immunohistochemistry or flow cytometry. Tissue staining provides a unique view of virus-induced activation of adaptive, innate, and stromal immune cells. RPM flow precisely quantitates virus-induced activation of lymphocytes and innate immune cells, and it provides a unique measure of immune cell deactivation and quiescence. Using RPM we find that high endothelial cells in draining lymph nodes rapidly increase translation in the first day of vaccinia virus infection. We also find a population of constitutively activated splenic T cells in naive mice and further that most bone marrow T cells activate 3 d after vaccinia virus infection. Bone marrow T cell activation is nonspecific, IL-12-dependent, and induces innate memory T cell phenotypic markers. Thus, RPM measures translational activity to uniquely identify cell populations that participate in the immune response to pathogens, other foreign substances, and autoantigens. PMID:27385780

  14. Cytolytic activity against tumor cells by macrophage cell lines and augmentation by macrophage stimulants.

    PubMed

    Taniyama, T; Holden, H T

    1980-07-15

    Previous studies have shown that macrophage cell lines retained the ability to phagocytize, to secrete lysosomal enzymes, and to function as effector cells in antibody-dependent cellular cytoxicity. In this paper, the cytolytic activity of murine macrophage cell lines against tumor target cells was assessed using an 18-h 51Cr release assay. Of the macrophage cell lines tested, RAW 264, PU5-1.8 and IC-21 had intermediate to high levels of spontaneous cytolytic activity, P388D, and J774 had low to intermediate levels, while /WEHI-3 showed little or no cytolytic activity against RBL-5, MBL-2 and TU-5 target cells. Tumor-cell killing by macrophage cell lines could be augmented by the addition of macrophage stimulants, such as bacterial lipopolysaccharide and poly I:C, indicating that the activation of macrophages by these stimulants does not require the participation of other cell types. Treatment with interferon also augmented the tumor-cell killing by macrophage cell lines. Although the mechanism by which these cell lines exert their spontaneous or boosted cytotoxic activity is not clear, it does not appear to be due to depletion of nutrients since cell lines with high metabolic and proliferative activities, such as WEHI-3 and RBL-5, showed little or no cytotoxicity and supernatants from the macrophage cell lines did not exert any cytotoxic effects in their essay. Thus, it appears that the different macrophage cell lines represent different levels of activation and/or differentiation and may be useful for studying the development of these processes as well as providing a useful tool for analyzing the mechanisms of macrophage-mediated cytolysis. PMID:6165690

  15. γδ T Cells Support Pancreatic Oncogenesis by Restraining αβ T Cell Activation.

    PubMed

    Daley, Donnele; Zambirinis, Constantinos Pantelis; Seifert, Lena; Akkad, Neha; Mohan, Navyatha; Werba, Gregor; Barilla, Rocky; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu Raj Kumar; Avanzi, Antonina; Tippens, Daniel; Narayanan, Rajkishen; Jang, Jung-Eun; Newman, Elliot; Pillarisetty, Venu Gopal; Dustin, Michael Loran; Bar-Sagi, Dafna; Hajdu, Cristina; Miller, George

    2016-09-01

    Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4(+) and CD8(+) T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk. PMID:27569912

  16. Smooth muscle cell calcium activation mechanisms

    PubMed Central

    Berridge, Michael J

    2008-01-01

    Smooth muscle cell (SMC) contraction is controlled by the Ca2+ and Rho kinase signalling pathways. While the SMC Rho kinase system seems to be reasonably constant, there is enormous variation with regard to the mechanisms responsible for generating Ca2+ signals. One way of dealing with this diversity is to consider how this system has been adapted to control different SMC functions. Phasic SMCs (vas deferens, uterus and bladder) rely on membrane depolarization to drive Ca2+ influx across the plasma membrane. This depolarization can be induced by neurotransmitters or through the operation of a membrane oscillator. Many tonic SMCs (vascular, airway and corpus cavernosum) are driven by a cytosolic Ca2+ oscillator that generates periodic pulses of Ca2+. A similar oscillator is present in pacemaker cells such as the interstitial cells of Cajal (ICCs) and atypical SMCs that control other tonic SMCs (gastrointestinal, urethra, ureter). The changes in membrane potential induced by these cytosolic oscillators does not drive contraction directly but it functions to couple together individual oscillators to provide the synchronization that is a characteristic feature of many tonic SMCs. PMID:18787034

  17. Activation of normal murine B cells by Echinococcus granulosus.

    PubMed Central

    Cox, D A; Marshall-Clarke, S; Dixon, J B

    1989-01-01

    Echinococcus granulosus protoscolex (PSC) infection of BALB/c mice led, after 4 days, to raised numbers of cells forming plaques with trinitrophenyl-treated sheep red cells and bromelain-treated mouse red cells. The findings were similar in athymic and euthymic CBA mice. Activation of B cells was accompanied by secretion of immunoglobulin, as indicated by the reverse plaque technique. In addition, co-culture of PSC with the 7OZ/3 pre-B-cell led to the induction of differentiation, resulting in the expression of surface immunoglobulin (Ig). It is concluded that E. granulosus is a polyclonal activator of B cells inducing both transformation and differentiation, and that the effect is thymus-independent. PMID:2661414

  18. Characterization of tissue plasminogen activator binding proteins isolated from endothelial cells and other cell types

    SciTech Connect

    Beebe, D.P.; Wood, L.L.; Moos, M. )

    1990-07-15

    Human tissue plasminogen activator (t-PA) was shown to bind specifically to human osteosarcoma cells (HOS), and human epidermoid carcinoma cells (A-431 cells). Crosslinking studies with DTSSP demonstrated high molecular weight complexes (130,000) between {sup 125}I-t-PA and cell membrane protein on human umbilical vein endothelial cells (HUVEC), HOS, and A-431 cells. A 48-65,000 molecular weight complex was demonstrated after crosslinking t-PA peptide (res. 7-20) to cells. Ligand blotting of cell lysates which had been passed over a t-PA affinity column revealed binding of t-PA to 54,000 and 95,000 molecular weight proteins. Several t-PA binding proteins were identified in immunopurified cell lysates, including tubulin beta chain, plasminogen activator inhibitor type 1 and single chain urokinase.

  19. Activation of antitumor cytotoxic T lymphocytes by fusions of human dendritic cells and breast carcinoma cells

    PubMed Central

    Gong, Jianlin; Avigan, David; Chen, Dongshu; Wu, Zekui; Koido, Shigeo; Kashiwaba, Masahiro; Kufe, Donald

    2000-01-01

    We have reported that fusions of murine dendritic cells (DCs) and murine carcinoma cells reverse unresponsiveness to tumor-associated antigens and induce the rejection of established metastases. In the present study, fusions were generated with primary human breast carcinoma cells and autologous DCs. Fusion cells coexpressed tumor-associated antigens and DC-derived costimulatory molecules. The fusion cells also retained the functional potency of DCs and stimulated autologous T cell proliferation. Significantly, the results show that autologous T cells are primed by the fusion cells to induce MHC class I-dependent lysis of autologous breast tumor cells. These findings demonstrate that fusions of human breast cancer cells and DCs activate T cell responses against autologous tumors. PMID:10688917

  20. New CD1d agonists: Synthesis and biological activity of 6″-triazole-substituted α-galactosyl ceramides

    PubMed Central

    Jervis, Peter J.; Graham, Lisa M.; Foster, Erin L.; Cox, Liam R.; Porcelli, Steven A.; Besra, Gurdyal S.

    2012-01-01

    Huisgen [3+2] dipolar cycloaddition of 6″-azido-6″-deoxy-α-galactosyl ceramide 11 with a range of alkynes (or a benzyne precursor) yielded a series of triazole-containing α-galactosyl ceramide (α-GalCer) analogues in high yield. These α-GalCer analogues and the precursor azide 11 were tested for their ability to activate iNKT cells and stimulate IL-2 cytokine secretion in vitro, and IFN-γ and IL-4 cytokine secretion in vivo. Some of these analogues, specifically 11, 12b, 12f and 13, were more potent IL-2 stimulators than the prototypical CD1d agonist, α-GalCer 1. In terms of any cytokine bias, most of the triazole-containing analogues exhibited a small Th2 cytokine-biasing response relative to that shown by α-GalCer 1. In contrast, the cycloaddition precursor, namely azide 11, provided a small Th1 cytokine-biasing response. PMID:22652050

  1. Autophagy is activated for cell survival after endoplasmic reticulum stress.

    PubMed

    Ogata, Maiko; Hino, Shin-ichiro; Saito, Atsushi; Morikawa, Keisuke; Kondo, Shinichi; Kanemoto, Soshi; Murakami, Tomohiko; Taniguchi, Manabu; Tanii, Ichiro; Yoshinaga, Kazuya; Shiosaka, Sadao; Hammarback, James A; Urano, Fumihiko; Imaizumi, Kazunori

    2006-12-01

    Eukaryotic cells deal with accumulation of unfolded proteins in the endoplasmic reticulum (ER) by the unfolded protein response, involving the induction of molecular chaperones, translational attenuation, and ER-associated degradation, to prevent cell death. Here, we found that the autophagy system is activated as a novel signaling pathway in response to ER stress. Treatment of SK-N-SH neuroblastoma cells with ER stressors markedly induced the formation of autophagosomes, which were recognized at the ultrastructural level. The formation of green fluorescent protein (GFP)-LC3-labeled structures (GFP-LC3 "dots"), representing autophagosomes, was extensively induced in cells exposed to ER stress with conversion from LC3-I to LC3-II. In IRE1-deficient cells or cells treated with c-Jun N-terminal kinase (JNK) inhibitor, the autophagy induced by ER stress was inhibited, indicating that the IRE1-JNK pathway is required for autophagy activation after ER stress. In contrast, PERK-deficient cells and ATF6 knockdown cells showed that autophagy was induced after ER stress in a manner similar to the wild-type cells. Disturbance of autophagy rendered cells vulnerable to ER stress, suggesting that autophagy plays important roles in cell survival after ER stress. PMID:17030611

  2. Autophagy Is Activated for Cell Survival after Endoplasmic Reticulum Stress▿

    PubMed Central

    Ogata, Maiko; Hino, Shin-ichiro; Saito, Atsushi; Morikawa, Keisuke; Kondo, Shinichi; Kanemoto, Soshi; Murakami, Tomohiko; Taniguchi, Manabu; Tanii, Ichiro; Yoshinaga, Kazuya; Shiosaka, Sadao; Hammarback, James A.; Urano, Fumihiko; Imaizumi, Kazunori

    2006-01-01

    Eukaryotic cells deal with accumulation of unfolded proteins in the endoplasmic reticulum (ER) by the unfolded protein response, involving the induction of molecular chaperones, translational attenuation, and ER-associated degradation, to prevent cell death. Here, we found that the autophagy system is activated as a novel signaling pathway in response to ER stress. Treatment of SK-N-SH neuroblastoma cells with ER stressors markedly induced the formation of autophagosomes, which were recognized at the ultrastructural level. The formation of green fluorescent protein (GFP)-LC3-labeled structures (GFP-LC3 “dots”), representing autophagosomes, was extensively induced in cells exposed to ER stress with conversion from LC3-I to LC3-II. In IRE1-deficient cells or cells treated with c-Jun N-terminal kinase (JNK) inhibitor, the autophagy induced by ER stress was inhibited, indicating that the IRE1-JNK pathway is required for autophagy activation after ER stress. In contrast, PERK-deficient cells and ATF6 knockdown cells showed that autophagy was induced after ER stress in a manner similar to the wild-type cells. Disturbance of autophagy rendered cells vulnerable to ER stress, suggesting that autophagy plays important roles in cell survival after ER stress. PMID:17030611

  3. [CELLS FORM AND THEIR SENSITIVITY TO LYTIC ACTIVITY OF NATURAL KILLER CELLS UNDER THE ANTIOXIDANT ACTION].

    PubMed

    Kirpichnikova, K M; Petrov, Yu P; Filatova, N A; Gamaley, I A

    2015-01-01

    The present paper is an attempt to estimate the influence of cell surface morphology changes to functional activity under the effect of antioxidant, N-acetylcysteine (NAC), and alpha-lipoic asid (ALA). Two experimental parameters were used to characterize transformed fibroblasts 3T3-SV40 status. The functional one was the cell sensitivity to lysis by natural killer (NK) mouse splenocytes, and morphology index (cell form index) was a cell area. We showed that addition of NAC or ALA to the cell medium caused fast decrease of cell area and changes of cell form. On the other hand, their sensitivity to lysis NK cells gradually and significantly decreased. Then we compared NAC or ALA effect with the effects of other substances, which were non-antioxidants but caused cell responses which concurred with of antioxidants, at least partly. They were: latrunculin B, desorganizing actin filaments (as both antioxidants), OTZ reducing ROS level in the cell (as NAC), BSO (inhibitor of glutathione synthesis), increasing ROS level in the cell (as ALA), antibodies to gelatinases, MMP-2 and MMP-9 inactivating their activities (as both antioxidants). The results obtained showed a correlation between changes of morphology index and functional activity, sensitivity to lysis by NK cells. We suppose that geometry of cell surface might be a functional indicator of cell reaction to the antioxidant. PMID:26591569

  4. A Model Approach to the Electrochemical Cell: An Inquiry Activity

    ERIC Educational Resources Information Center

    Cullen, Deanna M.; Pentecost, Thomas C.

    2011-01-01

    In an attempt to address some student misconceptions in electrochemistry, this guided-inquiry laboratory was devised to give students an opportunity to use a manipulative that simulates the particulate-level activity within an electrochemical cell, in addition to using an actual electrochemical cell. Students are led through a review of expected…

  5. SIRT1 activating compounds reduce oxidative stress and prevent cell death in neuronal cells

    PubMed Central

    Khan, Reas S.; Fonseca-Kelly, Zoe; Callinan, Catherine; Zuo, Ling; Sachdeva, Mira M.; Shindler, Kenneth S.

    2012-01-01

    Activation of SIRT1, an NAD+-dependent deacetylase, prevents retinal ganglion cell (RGC) loss in optic neuritis, an inflammatory demyelinating optic nerve disease. While SIRT1 deacetylates numerous protein targets, downstream mechanisms of SIRT1 activation mediating this neuroprotective effect are unknown. SIRT1 increases mitochondrial function and reduces oxidative stress in muscle and other cells, and oxidative stress occurs in neuronal degeneration. We examined whether SIRT1 activators reduce oxidative stress and promote mitochondrial function in neuronal cells. Oxidative stress, marked by reactive oxygen species (ROS) accumulation, was induced in RGC-5 cells by serum deprivation, or addition of doxorubicin or hydrogen peroxide, and resulted in significant cell loss. SIRT1 activators resveratrol (RSV) and SRTAW04 reduced ROS levels and promoted cell survival in RGC-5 cells as well as primary RGC cultures. Effects were blocked by SIRT1 siRNA. SIRT1 activators also increased expression of succinate dehydrogenase (SDH), a mitochondrial enzyme, and promoted deacetylation of PGC-1α, a co-enzyme involved in mitochondrial function. Results show SIRT1 activators prevent cell loss by reducing oxidative stress and promoting mitochondrial function in a neuronal cell line. Results suggest SIRT1 activators can mediate neuroprotective effects during optic neuritis by these mechanisms, and they have the potential to preserve neurons in other neurodegenerative diseases that involve oxidative stress. PMID:23293585

  6. Buoyancy-activated cell sorting using targeted biotinylated albumin microbubbles.

    PubMed

    Liou, Yu-Ren; Wang, Yu-Hsin; Lee, Chia-Ying; Li, Pai-Chi

    2015-01-01

    Cell analysis often requires the isolation of certain cell types. Various isolation methods have been applied to cell sorting, including fluorescence-activated cell sorting and magnetic-activated cell sorting. However, these conventional approaches involve exerting mechanical forces on the cells, thus risking cell damage. In this study we applied a novel isolation method called buoyancy-activated cell sorting, which involves using biotinylated albumin microbubbles (biotin-MBs) conjugated with antibodies (i.e., targeted biotin-MBs). Albumin MBs are widely used as contrast agents in ultrasound imaging due to their good biocompatibility and stability. For conjugating antibodies, biotin is conjugated onto the albumin MB shell via covalent bonds and the biotinylated antibodies are conjugated using an avidin-biotin system. The albumin microbubbles had a mean diameter of 2 μm with a polydispersity index of 0.16. For cell separation, the MDA-MB-231 cells are incubated with the targeted biotin-MBs conjugated with anti-CD44 for 10 min, centrifuged at 10 g for 1 min, and then allowed 1 hour at 4 °C for separation. The results indicate that targeted biotin-MBs conjugated with anti-CD44 antibodies can be used to separate MDA-MB-231 breast cancer cells; more than 90% of the cells were collected in the MB layer when the ratio of the MBs to cells was higher than 70:1. Furthermore, we found that the separating efficiency was higher for targeted biotin-MBs than for targeted avidin-incorporated albumin MBs (avidin-MBs), which is the most common way to make targeted albumin MBs. We also demonstrated that the recovery rate of targeted biotin-MBs was up to 88% and the sorting purity was higher than 84% for a a heterogenous cell population containing MDA-MB-231 cells (CD44(+)) and MDA-MB-453 cells (CD44-), which are classified as basal-like breast cancer cells and luminal breast cancer cells, respectively. Knowing that the CD44(+) is a commonly used cancer-stem-cell biomarker, our

  7. Buoyancy-Activated Cell Sorting Using Targeted Biotinylated Albumin Microbubbles

    PubMed Central

    Liou, Yu-Ren; Wang, Yu-Hsin; Lee, Chia-Ying; Li, Pai-Chi

    2015-01-01

    Cell analysis often requires the isolation of certain cell types. Various isolation methods have been applied to cell sorting, including florescence-activated cell sorting and magnetic-activated cell sorting. However, these conventional approaches involve exerting mechanical forces on the cells, thus risking cell damage. In this study we applied a novel isolation method called buoyancy-activated cell sorting, which involves using biotinylated albumin microbubbles (biotin-MBs) conjugated with antibodies (i.e., targeted biotin-MBs). Albumin MBs are widely used as contrast agents in ultrasound imaging due to their good biocompatibility and stability. For conjugating antibodies, biotin is conjugated onto the albumin MB shell via covalent bonds and the biotinylated antibodies are conjugated using an avidin-biotin system. The albumin microbubbles had a mean diameter of 2μm with a polydispersity index of 0.16. For cell separation, the MDA-MB-231 cells are incubated with the targeted biotin-MBs conjugated with anti-CD44 for 10 min, centrifuged at 10g for 1 min, and then allowed 1 hour at 4°C for separation. The results indicate that targeted biotin-MBs conjugated with anti-CD44 antibodies can be used to separate MDA-MB-231 breast cancer cells; more than 90% of the cells were collected in the MB layer when the ratio of the MBs to cells was higher than 70:1. Furthermore, we found that the separating efficiency was higher for targeted biotin-MBs than for targeted avidin-incorporated albumin MBs (avidin-MBs), which is the most common way to make targeted albumin MBs. We also demonstrated that the recovery rate of targeted biotin-MBs was up to 88% and the sorting purity was higher than 84% for a a heterogenous cell population containing MDA-MB-231 cells (CD44+) and MDA-MB-453 cells (CD44–), which are classified as basal-like breast cancer cells and luminal breast cancer cells, respectively. Knowing that the CD44+ is a commonly used cancer-stem-cell biomarker, our targeted

  8. Cellular localization of BARF1 oncoprotein and its cell stimulating activity in human epithelial cell.

    PubMed

    Sakka, Emna; Zur Hausen, Axel; Houali, Karim; Liu, Haying; Fiorini, Sylvie; Ooka, Tadamasa

    2013-06-01

    BARF1 gene encoded by Epstein-Barr virus is capable of immortalizing the primary monkey epithelial cells and of inducing malignant transformation in human EBV-negative B cell lines as well as rodent fibroblast. This oncoprotein is a secreted protein capable of acting as a powerful mitogen. We have studied the effect of BARF1 protein in transfected or BARF1 protein treated human HaCaT epithelial cells. In BARF1-transfected cells, cell growth was activated and its protein was found both in culture medium and cellular compartment (membrane, cytoplasm and nuclei). When purified BARF1 protein was exogenously added in the cell culture medium of HaCaT cells in absence of fetal calf serum led to its entrance into cells and its intracellular localization in cytoplasm, nuclear periphery and nuclei at 14h treatment, determined by confocal and immunoelectron microscopy. Cell fractionation confirmed its nuclear localization. Nuclear localization was observed in both systems. More interestingly, purified BARF1 protein p29 exogenously added in the cell culture medium activated cell passage of G1 to S phase. S phase activation by its autocrine activity and its tumorigenic activity would be associated with the development of EBV-associated carcinomas. PMID:23458996

  9. The intersection of cell death and inflammasome activation.

    PubMed

    Vince, James E; Silke, John

    2016-06-01

    Inflammasomes sense cellular danger to activate the cysteine-aspartic protease caspase-1, which processes precursor interleukin-1β (IL-1β) and IL-18 into their mature bioactive fragments. In addition, activated caspase-1 or the related inflammatory caspase, caspase-11, can cleave gasdermin D to induce a lytic cell death, termed pyroptosis. The intertwining of IL-1β activation and cell death is further highlighted by research showing that the extrinsic apoptotic caspase, caspase-8, may, like caspase-1, directly process IL-1β, activate the NLRP3 inflammasome itself, or bind to inflammasome complexes to induce apoptotic cell death. Similarly, RIPK3- and MLKL-dependent necroptotic signaling can activate the NLRP3 inflammasome to drive IL-1β inflammatory responses in vivo. Here, we review the mechanisms by which cell death signaling activates inflammasomes to initiate IL-1β-driven inflammation, and highlight the clinical relevance of these findings to heritable autoinflammatory diseases. We also discuss whether the act of cell death can be separated from IL-1β secretion and evaluate studies suggesting that several cell death regulatory proteins can directly interact with, and modulate the function of, inflammasome and IL-1β containing protein complexes. PMID:27066895

  10. GSK621 Targets Glioma Cells via Activating AMP-Activated Protein Kinase Signalings

    PubMed Central

    Jiang, Hong; Liu, Wei; Zhan, Shi-Kun; Pan, Yi-Xin; Bian, Liu-Guan; Sun, Bomin; Sun, Qing-Fang; Pan, Si-Jian

    2016-01-01

    Here, we studied the anti-glioma cell activity by a novel AMP-activated protein kinase (AMPK) activator GSK621. We showed that GSK621 was cytotoxic to human glioma cells (U87MG and U251MG lines), possibly via provoking caspase-dependent apoptotic cell death. Its cytotoxicity was alleviated by caspase inhibitors. GSK621 activated AMPK to inhibit mammalian target of rapamycin (mTOR) and downregulate Tetraspanin 8 (Tspan8) in glioma cells. AMPK inhibition, through shRNA knockdown of AMPKα or introduction of a dominant negative (T172A) AMPKα, almost reversed GSK621-induced AMPK activation, mTOR inhibition and Tspan8 degradation. Consequently, GSK621’s cytotoxicity in glioma cells was also significantly attenuated by AMPKα knockdown or mutation. Further studies showed that GSK621, at a relatively low concentration, significantly potentiated temozolomide (TMZ)’s sensitivity and lethality against glioma cells. We summarized that GSK621 inhibits human glioma cells possibly via activating AMPK signaling. This novel AMPK activator could be a novel and promising anti-glioma cell agent. PMID:27532105

  11. Indoleamine 2,3-dioxygenase Activity Contributes to Local Immune Suppression in the Skin Expressing Human Papillomavirus Oncoprotein E7

    PubMed Central

    Mittal, D; Kassianos, AJ; Tran, LS; Bergot, AS; Gosmann, C; Hofmann, J; Blumenthal, A; Leggatt, GR; Frazer, IH

    2013-01-01

    Chronic infection of anogenital epithelium with human papillomavirus (HPV) promotes development of cancer. Many pathogens evoke immunosuppressive mechanisms to enable persistent infection. We have previously shown that grafted skin expressing HPV16 E7 oncoprotein from a keratin-14 promoter (K14E7) is not rejected by a syngeneic, immunocompetent host. In this study we show that indoleamine 2, 3-dioxygenase (IDO) 1, an IFN-γ inducible immunoregulatory molecule, is more highly expressed by langerin−ve dermal dendritic cells from K14E7 skin than nontransgenic control skin. Furthermore, inhibiting IDO activity using 1-D/L-methyl tryptophan promotes K14E7 skin graft rejection. Increased IDO1 expression and activity in K14E7 skin requires IFN-γ and iNKT cells, both of which have been shown to negatively regulate T-cell effector function and suppress K14E7 graft rejection. Further, dendritic cells from K14E7 skin express higher level of IFN-γ receptor (IFN-γR) than dendritic cells from control skin. K14E7 transgenic skin recruits significantly higher number of dendritic cells, independent of IFN-γ and IFN-γR expression. Consistent with these observations in a murine model, we found higher expression of IDO1 and IFN-γ but not IDO2 in the cervical epithelium of patients with HPV-associated cervical intraepithelial neoplasia (CIN) 2/3. Our data support a hypothesis that induction of IDO1 in HPV infected skin contributes to evasion of host immunity. PMID:23652797

  12. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression.

    PubMed

    Pinton, Laura; Solito, Samantha; Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-12

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression. PMID:26700461

  13. Aberrant activation of nuclear factor of activated T cell 2 in lamina propria mononuclear cells in ulcerative colitis

    PubMed Central

    Shih, Tsung-Chieh; Hsieh, Sen-Yung; Hsieh, Yi-Yueh; Chen, Tse-Chin; Yeh, Chien-Yu; Lin, Chun-Jung; Lin, Deng-Yn; Chiu, Cheng-Tang

    2008-01-01

    AIM: To investigate the role of nuclear factor of activated T cell 2 (NFAT2), the major NFAT protein in peripheral T cells, in sustained T cell activation and intractable inflammation in human ulcerative colitis (UC). METHODS: We used two-dimensional gel-electrophoresis, immunohistochemistry, double immunohistochemical staining, and confocal microscopy to inspect the expression of NFAT2 in 107, 15, 48 and 5 cases of UC, Crohn’s disease (CD), non-specific colitis, and 5 healthy individuals, respectively. RESULTS: Up-regulation with profound nucleo-translocation/activation of NFAT2 of lamina propria mononuclear cells (LPMC) of colonic mucosa was found specifically in the affected colonic mucosa from patients with UC, as compared to CD or NC (P < 0.001, Kruskal-Wallis test). Nucleo-translocation/activation of NFAT2 primarily occurred in CD8+T, but was less prominent in CD4+ T cells or CD20+B cells. It was strongly associated with the disease activity, including endoscopic stage (τ = 0.2145, P = 0.0281) and histologic grade (τ = 0.4167, P < 0.001). CONCLUSION: We disclose for the first time the nucleo-translocation/activatin of NFAT2 in lamina propria mononuclear cells in ulcerative colitis. Activation of NFAT2 was specific for ulcerative colitis and highly associated with disease activity. Since activation of NFAT2 is implicated in an auto-regulatory positive feedback loop of sustained T-cell activation and NFAT proteins play key roles in the calcium/calcineurin signaling pathways, our results not only provide new insights into the mechanism for sustained intractable inflammation, but also suggest the calcium-calcineurin/NFAT pathway as a new therapeutic target for ulcerative colitis. PMID:18350607

  14. Fluorescence-Activated Cell Sorting of Live Versus Dead Bacterial Cells and Spores

    NASA Technical Reports Server (NTRS)

    Bernardini, James N.; LaDuc, Myron T.; Diamond, Rochelle; Verceles, Josh

    2012-01-01

    This innovation is a coupled fluorescence-activated cell sorting (FACS) and fluorescent staining technology for purifying (removing cells from sampling matrices), separating (based on size, density, morphology, and live versus dead), and concentrating cells (spores, prokaryotic, eukaryotic) from an environmental sample.

  15. Activated Rac1 requires gp130 for Stat3 activation, cell proliferation and migration

    SciTech Connect

    Arulanandam, Rozanne; Geletu, Mulu; Feracci, Helene; Raptis, Leda

    2010-03-10

    Rac1 (Rac) is a member of the Rho family of small GTPases which controls cell migration by regulating the organization of actin filaments. Previous results suggested that mutationally activated forms of the Rho GTPases can activate the Signal Transducer and Activator of Transcription-3 (Stat3), but the exact mechanism is a matter of controversy. We recently demonstrated that Stat3 activity of cultured cells increases dramatically following E-cadherin engagement. To better understand this pathway, we now compared Stat3 activity levels in mouse HC11 cells before and after expression of the mutationally activated Rac1 (Rac{sup V12}), at different cell densities. The results revealed for the first time a dramatic increase in protein levels and activity of both the endogenous Rac and Rac{sup V12} with cell density, which was due to inhibition of proteasomal degradation. In addition, Rac{sup V12}-expressing cells had higher Stat3, tyrosine-705 phosphorylation and activity levels at all densities, indicating that Rac{sup V12} is able to activate Stat3. Further examination of the mechanism of Stat3 activation showed that Rac{sup V12} expression caused a surge in mRNA of Interleukin-6 (IL6) family cytokines, known potent Stat3 activators. Knockdown of gp130, the common subunit of this family reduced Stat3 activity, indicating that these cytokines may be responsible for the Stat3 activation by Rac{sup V12}. The upregulation of IL6 family cytokines was required for cell migration and proliferation induced by Rac{sup V12}, as shown by gp130 knockdown experiments, thus demonstrating that the gp130/Stat3 axis represents an essential effector of activated Rac for the regulation of key cellular functions.

  16. Spontaneous Activity of Cochlear Hair Cells Triggered by Fluid Secretion Mechanism in Adjacent Support Cells.

    PubMed

    Wang, Han Chin; Lin, Chun-Chieh; Cheung, Rocky; Zhang-Hooks, YingXin; Agarwal, Amit; Ellis-Davies, Graham; Rock, Jason; Bergles, Dwight E

    2015-12-01

    Spontaneous electrical activity of neurons in developing sensory systems promotes their maturation and proper connectivity. In the auditory system, spontaneous activity of cochlear inner hair cells (IHCs) is initiated by the release of ATP from glia-like inner supporting cells (ISCs), facilitating maturation of central pathways before hearing onset. Here, we find that ATP stimulates purinergic autoreceptors in ISCs, triggering Cl(-) efflux and osmotic cell shrinkage by opening TMEM16A Ca(2+)-activated Cl(-) channels. Release of Cl(-) from ISCs also forces K(+) efflux, causing transient depolarization of IHCs near ATP release sites. Genetic deletion of TMEM16A markedly reduces the spontaneous activity of IHCs and spiral ganglion neurons in the developing cochlea and prevents ATP-dependent shrinkage of supporting cells. These results indicate that supporting cells in the developing cochlea have adapted a pathway used for fluid secretion in other organs to induce periodic excitation of hair cells. PMID:26627734

  17. Enhancement of endothelial cell migration by constitutively active LPA{sub 1}-expressing tumor cells

    SciTech Connect

    Kitayoshi, Misaho; Kato, Kohei; Tanabe, Eriko; Yoshikawa, Kyohei; Fukui, Rie; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer Mutated LPA{sub 1} stimulates cell migration of endothelial cells. Black-Right-Pointing-Pointer VEGF expressions are increased by mutated LPA{sub 1}. Black-Right-Pointing-Pointer LPA signaling via mutated LPA{sub 1} is involved in angiogenesis. Black-Right-Pointing-Pointer Mutated LPA{sub 1} promotes cancer cell progression. -- Abstract: Lysophosphatidic acid (LPA) receptors belong to G protein-coupled transmembrane receptors (LPA receptors; LPA{sub 1} to LPA{sub 6}). They indicate a variety of cellular response by the interaction with LPA, including cell proliferation, migration and differentiation. Recently, we have reported that constitutive active mutated LPA{sub 1} induced the strong biological effects of rat neuroblastoma B103 cells. In the present study, we examined the effects of mutated LPA{sub 1} on the interaction between B103 cells and endothelial F-2 cells. Each LPA receptor expressing B103 cells were maintained in serum-free DMEM and cell motility assay was performed with a Cell Culture Insert. When F-2 cells were cultured with conditioned medium from Lpar1 and Lpar3-expressing cells, the cell motility of F-2 cells was significantly higher than control cells. Interestingly, the motile activity of F-2 cells was strongly induced by mutated LPA{sub 1} than other cells, correlating with the expression levels of vascular endothelial growth factor (Vegf)-A and Vegf-C. Pretreatment of LPA signaling inhibitors inhibited F-2 cell motility stimulated by mutated LPA{sub 1}. These results suggest that activation of LPA signaling via mutated LPA{sub 1} may play an important role in the promotion of angiogenesis in rat neuroblastoma cells.

  18. Dengue Virus Infection of Mast Cells Triggers Endothelial Cell Activation

    PubMed Central

    Brown, Michael G.; Hermann, Laura L.; Issekutz, Andrew C.; Marshall, Jean S.; Rowter, Derek; Al-Afif, Ayham; Anderson, Robert

    2011-01-01

    Vascular perturbation is a hallmark of severe forms of dengue disease. We show here that antibody-enhanced dengue virus infection of primary human cord blood-derived mast cells (CBMCs) and the human mast cell-like line HMC-1 results in the release of factor(s) which activate human endothelial cells, as evidenced by increased expression of the adhesion molecules ICAM-1 and VCAM-1. Endothelial cell activation was prevented by pretreatment of mast cell-derived supernatants with a tumor necrosis factor (TNF)-specific blocking antibody, thus identifying TNF as the endothelial cell-activating factor. Our findings suggest that mast cells may represent an important source of TNF, promoting vascular endothelial perturbation following antibody-enhanced dengue virus infection. PMID:21068256

  19. Mast cell degranulation activates a pain pathway underlying migraine headache

    PubMed Central

    Levy, Dan; Burstein, Rami; Kainz, Vanessa; Jakubowski, Moshe; Strassman, Andrew M.

    2007-01-01

    Intracranial headaches such as that of migraine are generally accepted to be mediated by prolonged activation of meningeal nociceptors but the mechanisms responsible for such nociceptor activation are poorly understood. In this study, we examined the hypothesis that meningeal nociceptors can be activated locally through a neuroimmune interaction with resident mast cells, granulated immune cells that densely populate the dura mater. Using in vivo electrophysiological single unit recording of meningeal nociceptors in the rat we observed that degranulation of dural mast cells using intraperitoneal administration of the basic secretagogue agent compound 48/80 (2 mg/kg) induced a prolonged state of excitation in meningeal nociceptors. Such activation was accompanied by increased expression of the phosphorylated form of the extracellular signal-regulated kinase (pERK), an anatomical marker for nociceptor activation. Mast cell - induced nociceptor interaction was also associated with downstream activation of the spinal trigeminal nucleus as indicated by an increase in c-fos expression. Our findings provide evidence linking dural mast cell degranulation to prolonged activation of the trigeminal pain pathway believed to underlie intracranial headaches such as that of migraine. PMID:17459586

  20. Ghrelin Inhibits Oligodendrocyte Cell Death by Attenuating Microglial Activation

    PubMed Central

    Lee, Jee Youn

    2014-01-01

    Background Recently, we reported the antiapoptotic effect of ghrelin in spinal cord injury-induced apoptotic cell death of oligodendrocytes. However, how ghrelin inhibits oligodendrocytes apoptosis, is still unknown. Therefore, in the present study, we examined whether ghrelin inhibits microglia activation and thereby inhibits oligodendrocyte apoptosis. Methods Using total cell extracts prepared from BV-2 cells activated by lipopolysaccharide (LPS) with or without ghrelin, the levels of p-p38 phosphor-p38 mitogen-activated protein kinase (p-p38MAPK), phospho-c-Jun N-terminal kinase (pJNK), p-c-Jun, and pro-nerve growth factor (proNGF) were examined by Western blot analysis. Reactive oxygen species (ROS) production was investigated by using dichlorodihydrofluorescein diacetate. To examine the effect of ghrelin on oligodendrocyte cell death, oligodendrocytes were cocultured in transwell chambers of 24-well plates with LPS-stimulated BV-2 cells. After 48 hours incubation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and terminal deoxynucleotidyl transferase 2'-deoxyuridine, 5'-triphosphate nick end labeling staining were assessed. Results Ghrelin treatment significantly decreased levels of p-p38MAPK, p-JNK, p-c-Jun, and proNGF in LPS-stimulated BV-2 cells. ROS production increased in LPS-stimulated BV-2 cells was also significantly inhibited by ghrelin treatment. In addition, ghrelin significantly inhibited oligodendrocyte cell death when cocultured with LPS-stimulated BV-2 cells. Conclusion Ghrelin inhibits oligodendrocyte cell death by decreasing proNGF and ROS production as well as p38MAPK and JNK activation in activated microglia as an anti-inflammatory hormone. PMID:25309797

  1. Antiproliferative activities of Garcinia bracteata extract and its active ingredient, isobractatin, against human tumor cell lines.

    PubMed

    Shen, Tao; Li, Wei; Wang, Yan-Yan; Zhong, Qing-Qing; Wang, Shu-Qi; Wang, Xiao-Ning; Ren, Dong-Mei; Lou, Hong-Xiang

    2014-03-01

    In our cell based screening of antitumor ingredients from plants, the EtOH extract of Garcinia bracteata displayed antiproliferative effect against human lung adenocarcinoma A549 cells, human breast cancer MCF-7 cells, and human prostate cancer PC3 cells. Phytochemical investigation of this active extract produced nine ingredients, and their structures were established by analysis of MS and NMR spectra. Antiproliferative evaluation of isolated ingredients on A549, MCF-7 and PC3 cells indicated that a xanthone named isobractatin (1) exhibited potent antiproliferative activity against the above three human cancer cell lines with IC50 values ranging from 2.90 to 4.15 μM. Treatment of PC3 cells with 1 led to an enhancement of the cell apoptosis, and arrested cell cycle in the G0/G1 phase. The G0/G1 phase cycle-related proteins analysis showed that the expressions of cyclins D1 and E were reduced by 1, whereas the protein level of cyclin dependent kinase (CDK) inhibitor P21 was induced. Additionally, 1 enhanced PC3 cell apoptosis by activations of Bax, caspases 3 and 9, and by inhibition of Bcl-2. Our combined data illustrated that isobractatin (1) was the antiproliferative ingredient of G. bracteata against three human cancer cell lines, which exerted its antiproliferatrive effect via cell cycle arrest and induction of apoptosis. PMID:23812779

  2. Studies of T-cell activation in chronic inflammation

    PubMed Central

    2002-01-01

    Chapter summary The strong association between specific alleles encoded within the MHC class II region and the development of rheumatoid arthritis (RA) has provided the best evidence to date that CD4+ T cells play a role in the pathogenesis of this chronic inflammatory disease. However, the unusual phenotype of synovial T cells, including their profound proliferative hyporesponsiveness to TCR ligation, has challenged the notion that T-cell effector responses are driven by cognate cartilage antigens in inflamed synovial joints. The hierarchy of T-cell dysfunction from peripheral blood to inflamed joint suggests that these defects are acquired through prolonged exposure to proinflammatory cytokines such as tumour necrosis factor (TNF)-α. Indeed, there are now compelling data to suggest that chronic cytokine activation may contribute substantially to the phenotype and effector function of synovial T cells. Studies reveal that chronic exposure of T cells to TNF uncouples TCR signal transduction pathways by impairing the assembly and stability of the TCR/CD3 complex at the cell surface. Despite this membrane-proximal effect, TNF selectively uncouples downstream signalling pathways, as is shown by the dramatic suppression of calcium signalling responses, while Ras/ERK activation is spared. On the basis of these data, it is proposed that T-cell survival and effector responses are driven by antigen-independent, cytokine-dependent mechanisms, and that therapeutic strategies that seek to restore T-cell homeostasis rather than further depress T-cell function should be explored in the future. PMID:12110140

  3. Minimal model for spontaneous cell polarization and edge activity in oscillating, rotating and migrating cells

    NASA Astrophysics Data System (ADS)

    Raynaud, Franck; Ambühl, Mark E.; Gabella, Chiara; Bornert, Alicia; Sbalzarini, Ivo F.; Meister, Jean-Jacques; Verkhovsky, Alexander B.

    2016-04-01

    How cells break symmetry and organize activity at their edges to move directionally is a fundamental question in cell biology. Physical models of cell motility commonly incorporate gradients of regulatory proteins and/or feedback from the motion itself to describe the polarization of this edge activity. These approaches, however, fail to explain cell behaviour before the onset of polarization. We use polarizing and moving fish epidermal cells as a model system to bridge the gap between cell behaviours before and after polarization. Our analysis suggests a novel and simple principle of self-organizing cell activity, in which local cell-edge dynamics depends on the distance from the cell centre, but not on the orientation with respect to the front-back axis. We validate this principle with a stochastic model that faithfully reproduces a range of cell-migration behaviours. Our findings indicate that spontaneous polarization, persistent motion and cell shape are emergent properties of the local cell-edge dynamics controlled by the distance from the cell centre.

  4. Volume Changes During Active Shape Fluctuations in Cells

    NASA Astrophysics Data System (ADS)

    La Porta, Caterina A. M.; Taloni, Alessandro; Kardash, Elena; Salman, Oguz Umut; Truskinovsky, Lev; Zapperi, Stefano

    Cells modify their volume in response to changes in osmotic pressure but it is usually assumed that other active shape variations do not involve significant volume fluctuations. Here we report experiments demonstrating that water transport in and out of the cell is needed for the formation of blebs, commonly observed protrusions in the plasma membrane driven by cortex contraction. We develop and simulate a model of fluid-mediated membrane-cortex deformations and show that a permeable membrane is necessary for bleb formation which is otherwise impaired. Taken together, our experimental and theoretical results emphasize the subtle balance between hydrodynamics and elasticity in actively driven cell morphological changes.

  5. Volume Changes During Active Shape Fluctuations in Cells

    NASA Astrophysics Data System (ADS)

    Taloni, Alessandro; Kardash, Elena; Salman, Oguz Umut; Truskinovsky, Lev; Zapperi, Stefano; La Porta, Caterina A. M.

    2015-05-01

    Cells modify their volume in response to changes in osmotic pressure but it is usually assumed that other active shape variations do not involve significant volume fluctuations. Here we report experiments demonstrating that water transport in and out of the cell is needed for the formation of blebs, commonly observed protrusions in the plasma membrane driven by cortex contraction. We develop and simulate a model of fluid-mediated membrane-cortex deformations and show that a permeable membrane is necessary for bleb formation which is otherwise impaired. Taken together, our experimental and theoretical results emphasize the subtle balance between hydrodynamics and elasticity in actively driven cell morphological changes.

  6. CD1d- and MR1-Restricted T Cells in Sepsis

    PubMed Central

    Szabo, Peter A.; Anantha, Ram V.; Shaler, Christopher R.; McCormick, John K.; Haeryfar, S.M. Mansour

    2015-01-01

    Dysregulated immune responses to infection, such as those encountered in sepsis, can be catastrophic. Sepsis is typically triggered by an overwhelming systemic response to an infectious agent(s) and is associated with high morbidity and mortality even under optimal critical care. Recent studies have implicated unconventional, innate-like T lymphocytes, including CD1d- and MR1-restricted T cells as effectors and/or regulators of inflammatory responses during sepsis. These cell types are typified by invariant natural killer T (iNKT) cells, variant NKT (vNKT) cells, and mucosa-associated invariant T (MAIT) cells. iNKT and vNKT cells are CD1d-restricted, lipid-reactive cells with remarkable immunoregulatory properties. MAIT cells participate in antimicrobial defense, and are restricted by major histocompatibility complex-related protein 1 (MR1), which displays microbe-derived vitamin B metabolites. Importantly, NKT and MAIT cells are rapid and potent producers of immunomodulatory cytokines. Therefore, they may be considered attractive targets during the early hyperinflammatory phase of sepsis when immediate interventions are urgently needed, and also in later phases when adjuvant immunotherapies could potentially reverse the dangerous state of immunosuppression. We will highlight recent findings that point to the significance or the therapeutic potentials of NKT and MAIT cells in sepsis and will also discuss what lies ahead in research in this area. PMID:26322041

  7. Activation of Human T-Helper/Inducer Cell, T-Cytotoxic Cell, B-Cell, and Natural Killer (NK)-Cells and induction of Natural Killer Cell Activity against K562 Chronic Myeloid Leukemia Cells with Modified Citrus Pectin

    PubMed Central

    2011-01-01

    Background Modified citrus pectin (MCP) is known for its anti-cancer effects and its ability to be absorbed and circulated in the human body. In this report we tested the ability of MCP to induce the activation of human blood lymphocyte subsets like T, B and NK-cells. Methods MCP treated human blood samples were incubated with specific antibody combinations and analyzed in a flow cytometer using a 3-color protocol. To test functionality of the activated NK-cells, isolated normal lymphocytes were treated with increasing concentrations of MCP. Log-phase PKH26-labeled K562 leukemic cells were added to the lymphocytes and incubated for 4 h. The mixture was stained with FITC-labeled active form of caspase 3 antibody and analyzed by a 2-color flow cytometry protocol. The percentage of K562 cells positive for PKH26 and FITC were calculated as the dead cells induced by NK-cells. Monosaccharide analysis of the MCP was performed by high-performance anion-exchange chromatography with pulse amperometric detection (HPAEC-PAD). Results MCP activated T-cytotoxic cells and B-cell in a dose-dependent manner, and induced significant dose-dependent activation of NK-cells. MCP-activated NK-cells demonstrated functionality in inducing cancer cell death. MCP consisted of oligogalacturonic acids with some containing 4,5-unsaturated non-reducing ends. Conclusions MCP has immunostimulatory properties in human blood samples, including the activation of functional NK cells against K562 leukemic cells in culture. Unsaturated oligogalacturonic acids appear to be the immunostimulatory carbohydrates in MCP. PMID:21816083

  8. Enzymatic Activity Assays for Base Excision Repair Enzymes in Cell Extracts from Vertebrate Cells

    PubMed Central

    Çağlayan, Melike; Horton, Julie K.; Wilson, Samuel H.

    2016-01-01

    We previously reported enzymatic activity assays for the base excision repair (BER) enzymes DNA polymerase β (pol β), aprataxin (APTX), and flap endonuclease 1 (FEN1) in cell extracts from Saccharomyces cerevisiae (Çağlayan and Wilson, 2014). Here, we describe a method to prepare cell extracts from vertebrate cells to investigate these enzymatic activities for the processing of the 5′-adenylated-sugar phosphate-containing BER intermediate. This new protocol complements our previous publication. The cell lines used are wild-type and APTX-deficient human lymphoblast cells from an Ataxia with Oculomotor Apraxia Type 1 (AOA1) disease patient, wild-type and APTX-null DT40 chicken B cells, and mouse embryonic fibroblast (MEF) cells. This protocol is a quick and efficient way to make vertebrate cell extracts without using commercial kits. PMID:27390764

  9. Decrease in T Cell Activation and Calcium Flux during Clinorotation

    NASA Technical Reports Server (NTRS)

    Sams, Clarence; Holtzclaw, J. David

    2006-01-01

    We investigated the effect of altered gravitational environments on T cell activation. We isolated human, naive T cells (CD3+CD14-CD19-CD16-CD56-CD25-CD69-CD45RA-) following IRB approved protocols. These purified T cells were then incubated with 6 mm polystyrene beads coated with OKT3 (Ortho Biotech, Raritan, NJ) and antiCD28 (Becton Dickinson (BD), San Jose, CA) at 37 C for 24 hours. Antibodies were at a 1:1 ratio and the bead-to-cell ratio was 2:1. Four incubation conditions existed: 1) static or "1g"; 2) centrifugation at 10 relative centrifugal force (RCF) or "10g"; 3) clinorotation at 25 RPM (functional weightlessness or "0g"); and 4) clinorotation at 80 RPM ("1g" plus net shear force approx.30 dynes/sq cm). Following incubation, T cells were stained for CD25 expression (BD) and intracellular calcium (ratio of Fluo4 to Fura Red, Molecular Probes, Eugene, OR) and analyzed by flow cytometry (Coulter EPICS XL, Miami, FL). Results: Static or "1g" T cells had the highest level of CD25 expression and intracellular calcium. T cells centrifuged at 10 RCF ("10g") had lower CD25 expression and calcium levels compared to the static control. However, cells centrifuged at 10 RCF had higher CD25 expression and calcium levels than those exposed to 24 RPM clinorotation ("0g"). T cells exposed to 24 RPM clinorotation had lower CD25 expression, but the approximately the same calcium levels than T cells exposed to 80 RPM clinorotation. These data suggest that stress-activated calcium channel exist in T cells and may play a role during T cell activation.

  10. Activation of protease-activated receptor 2 reduces glioblastoma cell apoptosis

    PubMed Central

    2014-01-01

    Background The pathogenesis of glioma is unclear. The disturbance of the apoptosis process plays a critical role in glioma growth. Factors regulating the apoptosis process are to be further understood. This study aims to investigate the role of protease activated receptor-2 (PAR2) in regulation the apoptosis process in glioma cells. Results The results showed that U87 cells and human glioma tissue expressed PAR2. Exposure to tryptase, or the PAR2 active peptide, increased STAT3 phosphorylation in the radiated U87 cells, reduced U87 cell apoptosis, suppressed the expression of p53 in U87 cells. Conclusions Activation of PAR2 can reduce the radiated U87 cell apoptosis via modulating the expression of p53. The results implicate that PAR2 may be a novel therapeutic target in the treatment of glioma. PMID:24670244

  11. Nattokinase-promoted tissue plasminogen activator release from human cells.

    PubMed

    Yatagai, Chieko; Maruyama, Masugi; Kawahara, Tomoko; Sumi, Hiroyuki

    2008-01-01

    When heated to a temperature of 70 degrees C or higher, the strong fibrinolytic activity of nattokinase in a solution was deactivated. Similar results were observed in the case of using Suc-Ala-Ala-Pro-Phe-pNA and H-D-Val-Leu-Lys-pNA, which are synthetic substrates of nattokinase. In the current study, tests were conducted on the indirect fibrinolytic effects of the substances containing nattokinase that had been deactivated through heating at 121 degrees C for 15 min. Bacillus subtilis natto culture solutions made from three types of bacteria strain were heat-treated and deactivated, and it was found that these culture solutions had the ability to generate tissue plasminogen activators (tPA) from vascular endothelial cells and HeLa cells at certain concentration levels. For example, it was found that the addition of heat-treated culture solution of the Naruse strain (undiluted solution) raises the tPA activity of HeLa cells to about 20 times that of the control. Under the same conditions, tPA activity was raised to a level about 5 times higher for human vascular endothelial cells (HUVEC), and to a level about 24 times higher for nattokinase sold on the market. No change in cell count was observed for HeLa cells and HUVEC in the culture solution at these concentrations, and the level of activity was found to vary with concentration. PMID:19996631

  12. Cell proliferation in vitro modulates fibroblast collagenase activity

    SciTech Connect

    Lindblad, W.J.; Flood, L.

    1986-05-01

    Collagenase enzyme activity is regulated by numerous control mechanisms which prevent excessive release and activation of this protease. A primary mechanism for regulating enzyme extracellular activity may be linked to cell division, therefore they have examined the release of collagenase by fibroblasts in vitro in response to cellular proliferation. Studies were performed using fibroblasts derived from adult rat dermis maintained in DMEM containing 10% newborn calf serum, 25 mM tricine buffer, and antibiotics. Cells between subculture 10 and 19 were used with enzyme activity determined with a /sup 14/C-labelled soluble Type I collagen substrate with and without trypsin activation. Fibroblasts, trypsinized and plated at low density secreted 8.5 fold more enzyme than those cells at confluence (975 vs. 115 dpm/..mu..g DNA). This diminution occurred gradually as the cells went from logrithmic growth towards confluence. Confluent fibroblast monolayers were scraped in a grid arrangement, stimulating the remaining cells to divide, without exposure to trypsin. Within 24-48 hr postscraping enzyme levels had increased 260-400%, accompanied by enhanced incorporation of /sup 3/H-thymidine and /sup 3/H-uridine into cell macromolecules. The burst of enzyme release began to subside 12 hr later. These results support a close relationship between fibroblast proliferation and collagenase secretion.

  13. Direct determination of phosphatase activity from physiological substrates in cells.

    PubMed

    Ren, Zhongyuan; Do, Le Duy; Bechkoff, Géraldine; Mebarek, Saida; Keloglu, Nermin; Ahamada, Saandia; Meena, Saurabh; Magne, David; Pikula, Slawomir; Wu, Yuqing; Buchet, René

    2015-01-01

    A direct and continuous approach to determine simultaneously protein and phosphate concentrations in cells and kinetics of phosphate release from physiological substrates by cells without any labeling has been developed. Among the enzymes having a phosphatase activity, tissue non-specific alkaline phosphatase (TNAP) performs indispensable, multiple functions in humans. It is expressed in numerous tissues with high levels detected in bones, liver and neurons. It is absolutely required for bone mineralization and also necessary for neurotransmitter synthesis. We provided the proof of concept that infrared spectroscopy is a reliable assay to determine a phosphatase activity in the osteoblasts. For the first time, an overall specific phosphatase activity in cells was determined in a single step by measuring simultaneously protein and substrate concentrations. We found specific activities in osteoblast like cells amounting to 116 ± 13 nmol min(-1) mg(-1) for PPi, to 56 ± 11 nmol min(-1) mg(-1) for AMP, to 79 ± 23 nmol min(-1) mg(-1) for beta-glycerophosphate and to 73 ± 15 nmol min(-1) mg(-1) for 1-alpha-D glucose phosphate. The assay was also effective to monitor phosphatase activity in primary osteoblasts and in matrix vesicles. The use of levamisole--a TNAP inhibitor--served to demonstrate that a part of the phosphatase activity originated from this enzyme. An IC50 value of 1.16 ± 0.03 mM was obtained for the inhibition of phosphatase activity of levamisole in osteoblast like cells. The infrared assay could be extended to determine any type of phosphatase activity in other cells. It may serve as a metabolomic tool to monitor an overall phosphatase activity including acid phosphatases or other related enzymes. PMID:25785438

  14. Calcium Activation Profile In Electrically Stimulated Intact Rat Heart Cells

    NASA Astrophysics Data System (ADS)

    Geerts, Hugo; Nuydens, Rony; Ver Donck, Luc; Nuyens, Roger; De Brabander, Marc; Borgers, Marcel

    1988-06-01

    Recent advances in fluorescent probe technology and image processing equipment have made available the measurement of calcium in living systems on a real-time basis. We present the use of the calcium indicator Fura-2 in intact normally stimulated rat heart cells for the spatial and dynamic measurement of the calcium excitation profile. After electric stimulation (1 Hz), the activation proceeds from the center of the myocyte toward the periphery. Within two frame times (80 ms), the whole cell is activated. The activation is slightly faster in the center of the cell than in the periphery. The mean recovery time is 200-400 ms. There is no difference along the cell's long axis. The effect of a beta-agonist and of a calcium antagonist is described.

  15. Activity-based probes for detection of active MALT1 paracaspase in immune cells and lymphomas.

    PubMed

    Eitelhuber, Andrea C; Vosyka, Oliver; Nagel, Daniel; Bognar, Miriam; Lenze, Dido; Lammens, Katja; Schlauderer, Florian; Hlahla, Daniela; Hopfner, Karl-Peter; Lenz, Georg; Hummel, Michael; Verhelst, Steven H L; Krappmann, Daniel

    2015-01-22

    MALT1 paracaspase is activated upon antigen receptor stimulation to promote lymphocyte activation. In addition, deregulated MALT1 protease activity drives survival of distinct lymphomas such as the activated B cell type of diffuse large B cell lymphoma (ABC-DLBCL). Here, we designed fluorophore or biotin-coupled activity based-probes (ABP) that covalently modify the active center of MALT1. MALT1-ABPs are exclusively labeling an active modified full length form of MALT1 upon T cell stimulation. Further, despite the CARMA1 requirement for initial MALT1 activation, the MALT1-ABPs show that protease activity is not confined to the high-molecular CARMA1-BCL10-MALT1 (CBM) complex. Using biotin-coupled ABPs, we developed a robust assay for sensitive and selective detection of active MALT1 in cell lines, primary lymphocytes, and DLBCL tumor biopsies. Taken together, MALT1-ABPs represent powerful chemical tools to measure cellular MALT1 activation, determine efficacy of small molecule inhibitors, and classify lymphomas based on MALT1 activity status. PMID:25556945

  16. Capsaicin modulates proliferation, migration, and activation of hepatic stellate cells.

    PubMed

    Bitencourt, Shanna; Mesquita, Fernanda; Basso, Bruno; Schmid, Júlia; Ferreira, Gabriela; Rizzo, Lucas; Bauer, Moises; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis; Mannaerts, Inge; van Grunsven, Leo Adrianus; Oliveira, Jarbas

    2014-03-01

    Capsaicin, the active component of chili pepper, has been reported to have antiproliferative and anti-inflammatory effects on a variety of cell lines. In the current study, we aimed to investigate the effects of capsaicin during HSC activation and maintenance. Activated and freshly isolated HSCs were treated with capsaicin. Proliferation was measured by incorporation of EdU. Cell cycle arrest and apoptosis were investigated using flow cytometry. The migratory response to chemotactic stimuli was evaluated by a modified Boyden chamber assay. Activation markers and inflammatory cytokines were determined by qPCR, immunocytochemistry, and flow cytometry. Our results show that capsaicin reduces HSC proliferation, migration, and expression of profibrogenic markers of activated and primary mouse HSCs. In conclusion, the present study shows that capsaicin modulates proliferation, migration, and activation of HSC in vitro. PMID:23955514

  17. Hydrogen Sulfide Is an Endogenous Potentiator of T Cell Activation*

    PubMed Central

    Miller, Thomas W.; Wang, Evelyn A.; Gould, Serge; Stein, Erica V.; Kaur, Sukhbir; Lim, Langston; Amarnath, Shoba; Fowler, Daniel H.; Roberts, David D.

    2012-01-01

    H2S is an endogenous signaling molecule that may act via protein sulfhydrylation to regulate various physiological functions. H2S is also a byproduct of dietary sulfate metabolism by gut bacteria. Inflammatory bowel diseases such as ulcerative colitis are associated with an increase in the colonization of the intestine by sulfate reducing bacteria along with an increase in H2S production. Consistent with its increased production, H2S is implicated as a mediator of ulcerative colitis both in its genesis or maintenance. As T cells are well established mediators of inflammatory bowel disease, we investigated the effect of H2S exposure on T cell activation. Using primary mouse T lymphocytes (CD3+), OT-II CD4+ T cells, and the human Jurkat T cell line, we show that physiological levels of H2S potentiate TCR-induced activation. Nanomolar levels of H2S (50–500 nm) enhance T cell activation assessed by CD69 expression, interleukin-2 expression, and CD25 levels. Exposure of T cells to H2S dose-dependently enhances TCR-stimulated proliferation with a maximum at 300 nm (30% increase, p < 0.01). Furthermore, activation increases the capacity of T cells to make H2S via increased expression of cystathionine γ-lyase and cystathionine β-synthase. Disrupting this response by silencing these H2S producing enzymes impairs T cell activation, and proliferation and can be rescued by the addition of 300 nm H2S. Thus, H2S represents a novel autocrine immunomodulatory molecule in T cells. PMID:22167178

  18. Cell wounding activates phospholipase D in primary mouse keratinocytes

    PubMed Central

    Arun, Senthil N.; Xie, Ding; Howard, Amber C.; Zhong, Quincy; Zhong, Xiaofeng; McNeil, Paul L.; Bollag, Wendy B.

    2013-01-01

    Plasma membrane disruptions occur in mechanically active tissues such as the epidermis and can lead to cell death if the damage remains unrepaired. Repair occurs through fusion of vesicle patches to the damaged membrane region. The enzyme phospholipase D (PLD) is involved in membrane traffickiing; therefore, the role of PLD in membrane repair was investigated. Generation of membrane disruptions by lifting epidermal keratinocytes from the substratum induced PLD activation, whereas removal of cells from the substratum via trypsinization had no effect. Pretreatment with 1,25-dihydroxyvitamin D3, previously shown to increase PLD1 expression and activity, had no effect on, and a PLD2-selective (but not a PLD1-selective) inhibitor decreased, cell lifting-induced PLD activation, suggesting PLD2 as the isoform activated. PLD2 interacts functionally with the glycerol channel aquaporin-3 (AQP3) to produce phosphatidylglycerol (PG); however, wounding resulted in decreased PG production, suggesting a potential PG deficiency in wounded cells. Cell lifting-induced PLD activation was transient, consistent with a possible role in membrane repair, and PLD inhibitors inhibited membrane resealing upon laser injury. In an in vivo full-thickness mouse skin wound model, PG accelerated wound healing. These results suggest that PLD and the PLD2/AQP3 signaling module may be involved in membrane repair and wound healing. PMID:23288946

  19. Cell wounding activates phospholipase D in primary mouse keratinocytes.

    PubMed

    Arun, Senthil N; Xie, Ding; Howard, Amber C; Zhong, Quincy; Zhong, Xiaofeng; McNeil, Paul L; Bollag, Wendy B

    2013-03-01

    Plasma membrane disruptions occur in mechanically active tissues such as the epidermis and can lead to cell death if the damage remains unrepaired. Repair occurs through fusion of vesicle patches to the damaged membrane region. The enzyme phospholipase D (PLD) is involved in membrane traffickiing; therefore, the role of PLD in membrane repair was investigated. Generation of membrane disruptions by lifting epidermal keratinocytes from the substratum induced PLD activation, whereas removal of cells from the substratum via trypsinization had no effect. Pretreatment with 1,25-dihydroxyvitamin D₃, previously shown to increase PLD1 expression and activity, had no effect on, and a PLD2-selective (but not a PLD1-selective) inhibitor decreased, cell lifting-induced PLD activation, suggesting PLD2 as the isoform activated. PLD2 interacts functionally with the glycerol channel aquaporin-3 (AQP3) to produce phosphatidylglycerol (PG); however, wounding resulted in decreased PG production, suggesting a potential PG deficiency in wounded cells. Cell lifting-induced PLD activation was transient, consistent with a possible role in membrane repair, and PLD inhibitors inhibited membrane resealing upon laser injury. In an in vivo full-thickness mouse skin wound model, PG accelerated wound healing. These results suggest that PLD and the PLD2/AQP3 signaling module may be involved in membrane repair and wound healing. PMID:23288946

  20. Rho GTPase activity modulates paramyxovirus fusion protein-mediated cell-cell fusion

    SciTech Connect

    Schowalter, Rachel M.; Wurth, Mark A.; Aguilar, Hector C.; Lee, Benhur; Moncman, Carole L.; McCann, Richard O.; Dutch, Rebecca Ellis . E-mail: rdutc2@uky.edu

    2006-07-05

    The paramyxovirus fusion protein (F) promotes fusion of the viral envelope with the plasma membrane of target cells as well as cell-cell fusion. The plasma membrane is closely associated with the actin cytoskeleton, but the role of actin dynamics in paramyxovirus F-mediated membrane fusion is unclear. We examined cell-cell fusion promoted by two different paramyxovirus F proteins in three cell types in the presence of constitutively active Rho family GTPases, major cellular coordinators of actin dynamics. Reporter gene and syncytia assays demonstrated that expression of either Rac1{sup V12} or Cdc42{sup V12} could increase cell-cell fusion promoted by the Hendra or SV5 glycoproteins, though the effect was dependent on the cell type expressing the viral glycoproteins. In contrast, RhoA{sup L63} decreased cell-cell fusion promoted by Hendra glycoproteins but had little affect on SV5 F-mediated fusion. Also, data suggested that GTPase activation in the viral glycoprotein-containing cell was primarily responsible for changes in fusion. Additionally, we found that activated Cdc42 promoted nuclear rearrangement in syncytia.

  1. Activated NKT cells imprint NK-cell differentiation, functionality and education.

    PubMed

    Riese, Peggy; Trittel, Stephanie; May, Tobias; Cicin-Sain, Luka; Chambers, Benedict J; Guzmán, Carlos A

    2015-06-01

    NK cells represent a vital component of the innate immune system. The recent discoveries demonstrating that the functionality of NK cells depends on their differentiation and education status underscore their potential as targets for immune intervention. However, to exploit their full potential, a detailed understanding of the cellular interactions involved in these processes is required. In this regard, the cross-talk between NKT cells and NK cells needs to be better understood. Our results provide strong evidence for NKT cell-induced effects on key biological features of NK cells. NKT-cell activation results in the generation of highly active CD27(high) NK cells with improved functionality. In this context, degranulation activity and IFNγ production were mainly detected in the educated subset. In a mCMV infection model, we also demonstrated that NKT-cell stimulation induced the generation of highly functional educated and uneducated NK cells, crucial players in viral control. Thus, our findings reveal new fundamental aspects of the NKT-NK cell axis that provide important hints for the manipulation of NK cells in clinical settings. PMID:25808315

  2. Phosphatidylinositol-3-kinase regulates mast cell ion channel activity.

    PubMed

    Lam, Rebecca S; Shumilina, Ekaterina; Matzner, Nicole; Zemtsova, Irina M; Sobiesiak, Malgorzata; Lang, Camelia; Felder, Edward; Dietl, Paul; Huber, Stephan M; Lang, Florian

    2008-01-01

    Stimulation of the mast cell IgE-receptor (FcepsilonRI) by antigen leads to stimulation of Ca(2+) entry with subsequent mast cell degranulation and release of inflammatory mediators. Ca(2+) further activates Ca(2+)-activated K(+) channels, which in turn provide the electrical driving force for Ca(2+) entry. Since phosphatidylinositol (PI)-3-kinase has previously been shown to be required for mast cell activation and degranulation, we explored, whether mast cell Ca(2+) and Ca(2+)-activated K(+) channels may be sensitive to PI3-kinase activity. Whole-cell patch clamp experiments and Fura-2 fluorescence measurements for determination of cytosolic Ca(2+) concentration were performed in mouse bone marrow-derived mast cells either treated or untreated with the PI3-kinase inhibitors LY-294002 (10 muM) and wortmannin (100 nM). Antigen-stimulated Ca(2+) entry but not Ca(2+) release from the intracellular stores was dramatically reduced upon PI3-kinase inhibition. Ca(2+) entry was further inhibited by TRPV blocker ruthenium red (10 muM). Ca(2+) entry following readdition after Ca(+)-store depletion with thapsigargin was again decreased by LY-294002, pointing to inhibition of store-operated channels (SOCs). Moreover, inhibition of PI3-kinase abrogated IgE-stimulated, but not ionomycin-induced stimulation of Ca(2+)-activated K(+) channels. These observations disclose PI3-kinase-dependent regulation of Ca(2+) entry and Ca(2+)-activated K(+)-channels, which in turn participate in triggering mast cell degranulation. PMID:18769043

  3. Passive versus active local microrheology in mammalian cells and amoebae

    NASA Astrophysics Data System (ADS)

    Riviere, C.; Gazeau, F.; Marion, S.; Bacri, J.-C.; Wilhelm, C.

    2004-12-01

    We compare in this paper the rotational magnetic microrheology detailed by Marion et al [18] and Wilhelm et al [19] to the passive tracking microrheology. The rotational microrheology has been designed to explore, using magnetic rotating probes, the local intracellular microenvironment of living cells in terms of viscoelasticity. Passive microrheology techniques is based on the analysis of spontaneous diffusive motions of Brownian probes. The dependence of mean square displacement (MSD) with the time then directly reflects the type of movement (sub-, hyper- or diffusive motions). Using the same intracellular probes, we performed two types of measurements (active and passive). Based on the fluctuation-dissipation theorem, one should obtain the same information from the both techniques in a thermally equilibrium system. Interestingly, our measurements differ, and the discordances directly inform on active biological processes, which add to thermally activated fluctuations in our out-of equilibrium systems. In both cell models used, mammalian Hela cells and amoebae Entamoeba Histolytica, a hyper-diffusive regime at a short time is observed, which highlights the presence of an active non-thermal driving force, acting on the probe. However, the nature of this active force in mammalian cells and amoebae is different, according to their different phenotypes. In mammalian cells active processes are governed by the transport, via molecular motors, on the microtubule network. In amoebae, which are highly motile cells free of microtubule network, the active processes are dominated by strong fluxes of cytoplasm driven by extension of pseudopodia, in random directions, leading to an amplitude of motion one order of magnitude higher than for mammalian cells. Figs 7, Refs 32.

  4. High efficiency cell-specific targeting of cytokine activity

    NASA Astrophysics Data System (ADS)

    Garcin, Geneviève; Paul, Franciane; Staufenbiel, Markus; Bordat, Yann; van der Heyden, José; Wilmes, Stephan; Cartron, Guillaume; Apparailly, Florence; de Koker, Stefaan; Piehler, Jacob; Tavernier, Jan; Uzé, Gilles

    2014-01-01

    Systemic toxicity currently prevents exploiting the huge potential of many cytokines for medical applications. Here we present a novel strategy to engineer immunocytokines with very high targeting efficacies. The method lies in the use of mutants of toxic cytokines that markedly reduce their receptor-binding affinities, and that are thus rendered essentially inactive. Upon fusion to nanobodies specifically binding to marker proteins, activity of these cytokines is selectively restored for cell populations expressing this marker. This ‘activity-by-targeting’ concept was validated for type I interferons and leptin. In the case of interferon, activity can be directed to target cells in vitro and to selected cell populations in mice, with up to 1,000-fold increased specific activity. This targeting strategy holds promise to revitalize the clinical potential of many cytokines.

  5. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility

    PubMed Central

    Yang, Yi; Nguyen, Thanh Thi; Jeong, Min-Hye; Crişan, Florin; Yu, Young Hyun; Ha, Hyung-Ho; Choi, Kyung Hee; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2016-01-01

    Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+)-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+)-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+)-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+)-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+)-usnic acid and cetuximab. These results implied that (+)-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+)-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action. PMID:26751081

  6. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility.

    PubMed

    Yang, Yi; Nguyen, Thanh Thi; Jeong, Min-Hye; Crişan, Florin; Yu, Young Hyun; Ha, Hyung-Ho; Choi, Kyung Hee; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2016-01-01

    Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+)-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+)-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+)-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+)-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+)-usnic acid and cetuximab. These results implied that (+)-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+)-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action. PMID:26751081

  7. Alkaline pH activates the transport activity of GLUT1in L929 fibroblast cells

    PubMed Central

    Gunnink, Stephen M.; Kerk, Samuel A.; Kuiper, Benjamin D.; Alabi, Ola D.; Kuipers, David P.; Praamsma, Riemer C.; Wrobel, Kathryn E.; Louters, Larry L.

    2016-01-01

    The widely expressed mammalian glucose transporter, GLUT1, can be acutely activated in L929 fibroblast cells by a variety of conditions, including glucose deprivation, or treatment with various respiration inhibitors. Known thiol reactive compounds including phenylarsine oxide and nitroxyl are the fastest acting stimulators of glucose uptake, implicating cysteine biochemistry as critical to the acute activation of GLUT1. In this study, we report that in L929 cells glucose uptake increases 6-fold as the pH of the uptake solution is increased from 6 to 9 with the half-maximal activation at pH 7.5; consistent with the pKa of cysteine residues. This pH effect is essentially blocked by the pretreatment of the cells with either iodoacetamide or cinnamaldehyde, compounds that form covalent adducts with reduced cysteine residues. In addition, the activation by alkaline pH is not additive at pH 8 with known thiol reactive activators such as phenylarsine oxide or hydroxylamine. Kinetic analysis in L929 cells at pH 7 and 8 indicate that alkaline conditions both increases the Vmax and decreases the Km of transport. This is consistent with the observation that pH activation is additive to methylene blue, which activates uptake by increasing the Vmax, as well as to berberine, which activates uptake by decreasing the Km. This suggests that cysteine biochemistry is utilized in both methylene blue and berberine activation of glucose uptake. In contrast a pH increase from 7 to 8 in HCLE cells does not further activate glucose uptake. HCLE cells have a 25-fold higher basal glucose uptake rate than L929 cells and the lack of a pH effect suggests that the cysteine biochemistry has already occurred in HCLE cells. The data are consistent with pH having a complex mechanism of action, but one likely mediated by cysteine biochemistry. PMID:24333987

  8. Alkaline pH activates the transport activity of GLUT1 in L929 fibroblast cells.

    PubMed

    Gunnink, Stephen M; Kerk, Samuel A; Kuiper, Benjamin D; Alabi, Ola D; Kuipers, David P; Praamsma, Riemer C; Wrobel, Kathryn E; Louters, Larry L

    2014-04-01

    The widely expressed mammalian glucose transporter, GLUT1, can be acutely activated in L929 fibroblast cells by a variety of conditions, including glucose deprivation, or treatment with various respiration inhibitors. Known thiol reactive compounds including phenylarsine oxide and nitroxyl are the fastest acting stimulators of glucose uptake, implicating cysteine biochemistry as critical to the acute activation of GLUT1. In this study, we report that in L929 cells glucose uptake increases 6-fold as the pH of the uptake solution is increased from 6 to 9 with the half-maximal activation at pH 7.5; consistent with the pKa of cysteine residues. This pH effect is essentially blocked by the pretreatment of the cells with either iodoacetamide or cinnamaldehyde, compounds that form covalent adducts with reduced cysteine residues. In addition, the activation by alkaline pH is not additive at pH 8 with known thiol reactive activators such as phenylarsine oxide or hydroxylamine. Kinetic analysis in L929 cells at pH 7 and 8 indicate that alkaline conditions both increases the Vmax and decreases the Km of transport. This is consistent with the observation that pH activation is additive to methylene blue, which activates uptake by increasing the Vmax, as well as to berberine, which activates uptake by decreasing the Km. This suggests that cysteine biochemistry is utilized in both methylene blue and berberine activation of glucose uptake. In contrast a pH increase from 7 to 8 in HCLE cells does not further activate glucose uptake. HCLE cells have a 25-fold higher basal glucose uptake rate than L929 cells and the lack of a pH effect suggests that the cysteine biochemistry has already occurred in HCLE cells. The data are consistent with pH having a complex mechanism of action, but one likely mediated by cysteine biochemistry. PMID:24333987

  9. Fibroblast activation protein predicts prognosis in clear cell renal cell carcinoma.

    PubMed

    López, José I; Errarte, Peio; Erramuzpe, Asier; Guarch, Rosa; Cortés, Jesús M; Angulo, Javier C; Pulido, Rafael; Irazusta, Jon; Llarena, Roberto; Larrinaga, Gorka

    2016-08-01

    Clear cell renal cell carcinoma is a complex disease with only partial response to therapy and scarce reliable clinical parameters indicative of progression and survival. Fibroblast activation protein expression has been correlated with prognosis in several malignancies but never in renal cancer. We aim to analyze the immunohistochemical expression of fibroblast activation protein in 208 clear cell renal cell carcinomas and to evaluate its impact on the prognosis and survival. A positive cytoplasmic immunostaining of this protein in the stromal fibroblasts associated to cancer cells is associated with large tumor diameter (≥4cm), high-grade (G3/4) tumors, and high-stage (≥pT3) tumors. Fibroblast activation protein-positive cases had significantly shorter survivals after 5 (P=.00015), 10 (P=.0000042), and 15 (P=.000043) years of follow-up, with a hazard ratio of 0.31. Multivariate analysis showed that fibroblast activation protein (P=.00117) was stronger than grade and stage in predicting clinical aggressiveness in clear cell renal cell carcinoma. This study confirms the usefulness of fibroblast activation protein detection in the stromal fibroblast associated to cancer in clear cell renal cell carcinoma and adds a new immunohistochemical marker to predict clinical behavior in these patients. PMID:27063470

  10. Radiosensitivity of human natural killer cells: Binding and cytotoxic activities of natural killer cell subsets

    SciTech Connect

    Rana, R.; Vitale, M.; Mazzotti, G.; Manzoli, L.; Papa, S. )

    1990-10-01

    The sensitivity of human natural killer (NK) cell activities (both binding and killing) after exposure of peripheral blood mononuclear cells to different doses of gamma radiation was studied. A panel of monoclonal antibodies was used to identify the NK and T-lymphocyte subsets and to evaluate their radiosensitivity. Peripheral blood mononuclear cells were irradiated with low (2-6 Gy) and high (10-30 Gy) doses and NK cell binding and cytotoxic activity against K562 target cells were studied after 3 h and 48 h in culture. The primary damage to NK cell activity was identified at the postbinding level and affected mainly the lytic machinery. After 48 h culture postirradiation, an overall depression of cytotoxic activity was observed, but ionizing radiation produced either a selection of the more cytotoxic NK cell subsets, which therefore might be considered more resistant to radiation damage than the less cytotoxic NK cells, or a long-term stimulation of cytotoxic activity in surviving cells.

  11. Active Biochemical Regulation of Cell Volume and a Simple Model of Cell Tension Response.

    PubMed

    Tao, Jiaxiang; Sun, Sean X

    2015-10-20

    Active contractile forces exerted by eukaryotic cells play significant roles during embryonic development, tissue formation, and cell motility. At the molecular level, small GTPases in signaling pathways can regulate active cell contraction. Here, starting with mechanical force balance at the cell cortex, and the recent discovery that tension-sensitive membrane channels can catalyze the conversion of the inactive form of Rho to the active form, we show mathematically that this active regulation of cellular contractility together with osmotic regulation can robustly control the cell size and membrane tension against external mechanical or osmotic shocks. We find that the magnitude of active contraction depends on the rate of mechanical pulling, but the cell tension can recover. The model also predicts that the cell exerts stronger contractile forces against a stiffer external environment, and therefore exhibits features of mechanosensation. These results suggest that a simple system for maintaining homeostatic values of cell volume and membrane tension could explain cell tension response and mechanosensation in different environments. PMID:26488645

  12. Plasma-activated medium induced apoptosis on tumor cells

    NASA Astrophysics Data System (ADS)

    Hori, Masaru; Tanaka, Hiromasa; Mizuno, Masaaki; Nakamura, Kae; Kajiyama, Hiroaki; Takeda, Keigo; Ishikawa, Kenji; Kano, Hiroyuki; Kikkawa, Fumitaka

    2013-09-01

    The non-equilibrium atmospheric pressure plasma (NEAPP) has attracted attention in cancer therapy. In this study, the fresh medium was treated with our developed NEAPP, ultra-high electron density (approximately 2 × 1016 cm-3). The medium called the plasma-activated medium (PAM) killed not normal cells but tumor cells through induction of apoptosis. Cell proliferation assays showed that the tumor cells were selectively killed by the PAM. Those cells induced apoptosis using an apoptotic molecular marker, cleaved Caspase3/7. The molecular mechanisms of PAM-mediated apoptosis in the tumor cells were also found that the PAM downregulated the expression of AKT kinase, a marker molecule in a survival signal transduction pathway. These results suggest that PAM may be a promising tool for tumor therapy by downregulating the survival signals in cancers.

  13. Ikaros limits follicular B cell activation by regulating B cell receptor signaling pathways.

    PubMed

    Heizmann, Beate; Sellars, MacLean; Macias-Garcia, Alejandra; Chan, Susan; Kastner, Philippe

    2016-02-12

    The Ikaros transcription factor is essential for early B cell development, but its effect on mature B cells is debated. We show that Ikaros is required to limit the response of naive splenic B cells to B cell receptor signals. Ikaros deficient follicular B cells grow larger and enter cell cycle faster after anti-IgM stimulation. Unstimulated mutant B cells show deregulation of positive and negative regulators of signal transduction at the mRNA level, and constitutive phosphorylation of ERK, p38, SYK, BTK, AKT and LYN. Stimulation results in enhanced and prolonged ERK and p38 phosphorylation, followed by hyper-proliferation. Pharmacological inhibition of ERK and p38 abrogates the increased proliferative response of Ikaros deficient cells. These results suggest that Ikaros functions as a negative regulator of follicular B cell activation. PMID:26775846

  14. RACK1 inhibits colonic cell growth by regulating Src activity at cell cycle checkpoints.

    PubMed

    Mamidipudi, V; Dhillon, N K; Parman, T; Miller, L D; Lee, K C; Cartwright, C A

    2007-05-01

    Previously, we showed that Src tyrosine kinases are activated early in the development of human colon cancer and are suppressed as intestinal cells differentiate. We identified RACK1 as an endogenous substrate, binding partner and inhibitor of Src. Here we show (by overexpressing RACK1, depleting Src or RACK1 and utilizing cell-permeable peptides that perturb RACK1's interaction with Src) that RACK1 regulates growth of colon cells by suppressing Src activity at G(1) and mitotic checkpoints, and consequently delaying cell cycle progression. Activated Src rescues RACK1-inhibited growth of HT-29 cells. Conversely, inhibiting Src abolishes growth promoted by RACK1 depletion in normal cells. Two potential mechanisms whereby RACK1 regulates mitotic exit are identified: suppression of Src-mediated Sam68 phosphorylation and maintenance of the cyclin-dependent kinase (CDK) 1-cyclin B complex in an active state. Our results reveal novel mechanisms of cell cycle control in G(1) and mitosis of colon cells. The significance of this work lies in the discovery of a mechanism by which the growth of colon cancer cells can be slowed, by RACK1 suppression of an oncogenic kinase at critical cell cycle checkpoints. Small molecules that mimic RACK1 function may provide a powerful new approach to the treatment of colon cancer. PMID:17072338

  15. Evaluating cell-surface expression and measuring activation of mammalian odorant receptors in heterologous cells

    PubMed Central

    Zhuang, Hanyi; Matsunami, Hiroaki

    2009-01-01

    A fundamental question in olfaction is which odorant receptors (ORs) are activated by a given odorant. A major roadblock to investigate odorant-OR relationship in mammals has been an inability to express ORs in heterologous cells suitable for screening active ligands for ORs. The discovery of the receptor-transporting protein (RTP) family has facilitated the effective cell-surface expression of ORs in heterologous cells. The establishment of a robust heterologous expression system for mammalian ORs facilitates the high-throughput “deorphanization” of these receptors by matching them to their cognate ligands. This protocol details the method used for evaluating the cell-surface expression and measuring the functional activation of ORs of transiently-expressed mammalian odorant receptors in HEK293T cells. The stages of odorant receptor cell-surface expression include cell culture preparation, transfer of cells, transfection, and immunocytochemistry/flow cytometry, odorant stimulation, and luciferase assay. This protocol can be completed in a period of 3 days from transfer of cells to cell-surface expression detection and/or measurement of functional activation. PMID:18772867

  16. Hypoxia promotes drug resistance in osteosarcoma cells via activating AMP-activated protein kinase (AMPK) signaling

    PubMed Central

    Zhao, Changfu; Zhang, Qiao; Yu, Tao; Sun, Shudong; Wang, Wenjun; Liu, Guangyao

    2016-01-01

    Purpose Drug resistance has been recognized to be a major obstacle to the chemotherapy for osteosarcoma. And the potential importance of hypoxia as a target to reverse drug resistance in osteosarcoma has been indicated, though the mechanism underlining such role is not clarified. The present study aims to investigate the role of hypoxia in the drug resistance in osteosarcoma cells via activating AMP-activated protein kinase (AMPK) signaling. Experimental design We investigated the promotion of the resistance to doxorubicin of osteosarcoma MG-63 and U2-os cells in vitro, and then determined the role of hypoxia-inducible factor-1 (HIF-1)α and HIF-1β, the activation and regulatory role of AMPK in the osteosarcoma U2-os cells which were treated with doxorubicin under hypoxia. Results It was demonstrated that hypoxia significantly reduced the sensitivity of MG-63 and U2-os cells to doxorubicin, indicating an inhibited viability reduction and a reduced apoptosis promotion. And such reduced sensitivity was not associated with HIF-1α, though it was promoted by hypoxia in U2-os cells. Interestingly, the AMPK signaling was significantly promoted by hypoxia in the doxorubicin-treated U2-os cells, with a marked upregulation of phosphorylated AMPK (Thr 172) and phosphorylated acetyl-CoA carboxylase (ACC) (Ser 79), which were sensitive to the AMPK activator, AICAR and the AMPK inhibitor, Compound C. Moreover, the promoted AMPK activity by AICAR or the downregulated AMPK activity by Compound C significantly reduced or promoted the sensitivity of U2-os cells to doxorubicin. Conclusion The present study confirmed the AMPK signaling activation in the doxorubicin-treated osteosarcoma cells, in response to hypoxia, and the chemical upregulation or downregulation of AMPK signaling reduced or increased the chemo-sensitivity of osteosarcoma U2-os cells in vitro. Our study implies that AMPK inhibition might be a effective strategy to sensitize osteocarcoma cells to chemotherapy. PMID

  17. Isolation of Skeletal Muscle Stem Cells by Fluorescence-Activated Cell Sorting

    PubMed Central

    Liu, Ling; Cheung, Tom H.; Charville, Gregory W.; Rando, Thomas A.

    2016-01-01

    The prospective isolation of purified stem cell populations has dramatically altered the field of stem cell biology and has been a major focus of research across tissues in different organisms. Muscle stem cells are now among the most intensely studied stem cell populations in mammalian systems and the prospective isolation of these cells has allowed cellular and molecular characterizations not dreamed of a decade ago. In this protocol, we describe how to isolate muscle stem cells from limb muscles of adult mice by fluorescence-activated cell sorting (FACS). We provide a detailed description of the physical and enzymatic dissociation of mononucleated cells from limb muscles, a procedure that is essential to maximize cell yield. We then describe a FACS-based method for obtaining exquisitely pure populations of either quiescent or activated muscle stem cells (VCAM+/CD31−/CD45−/Sca1−). The protocol also allows for the isolation of endothelial cells, hematopoietic cells, and mesenchymal stem cells from muscle tissue. PMID:26401916

  18. Selective GPER activation decreases proliferation and activates apoptosis in tumor Leydig cells.

    PubMed

    Chimento, A; Casaburi, I; Bartucci, M; Patrizii, M; Dattilo, R; Avena, P; Andò, S; Pezzi, V; Sirianni, R

    2013-01-01

    We have previously shown that estrogens binding to estrogen receptor (ER) α increase proliferation of Leydig tumor cells. Estrogens can also bind to G protein-coupled ER (GPER) and activation of this receptor can either increase or decrease cell proliferation of several tumor types. The aim of this study was to investigate GPER expression in R2C rat tumor Leydig cells, evaluate effects of its activation on Leydig tumor cell proliferation and define the molecular mechanisms triggered in response to its activation. R2C cells express GPER and its activation, using the specific ligand G-1, is associated with decreased cell proliferation and initiation of apoptosis. Apoptosis after G-1 treatment was asserted by appearance of DNA condensation and fragmentation, decrease in Bcl-2 and increase in Bax expression, cytochrome c release, caspase and poly (ADP-ribose) polymerase-1 (PARP-1) activation. These effects were dependent on GPER activation because after silencing of the gene, using a specific small interfering RNA, cyt c release, PARP-1 activation and decrease in cell proliferation were abrogated. These events required a rapid, however, sustained extracellular regulated kinase 1/2 activation. G-1 was able to decrease the growth of R2C xenograft tumors in CD1 nude mice while increasing the number of apoptotic cells. In addition, in vivo administration of G-1 to male CD1 mice did not cause any alteration in testicular morphology, while cisplatin, the cytotoxic drug currently used for the therapy of Leydig tumors, severely damaged testicular structure, an event associated with infertility in cisplatin-treated patients. These observations indicate that GPER targeting for the therapy of Leydig cell tumor may represent a good alternative to cisplatin to preserve fertility in Leydig tumor patients. PMID:23907461

  19. Selective GPER activation decreases proliferation and activates apoptosis in tumor Leydig cells

    PubMed Central

    Chimento, A; Casaburi, I; Bartucci, M; Patrizii, M; Dattilo, R; Avena, P; Andò, S; Pezzi, V; Sirianni, R

    2013-01-01

    We have previously shown that estrogens binding to estrogen receptor (ER) α increase proliferation of Leydig tumor cells. Estrogens can also bind to G protein-coupled ER (GPER) and activation of this receptor can either increase or decrease cell proliferation of several tumor types. The aim of this study was to investigate GPER expression in R2C rat tumor Leydig cells, evaluate effects of its activation on Leydig tumor cell proliferation and define the molecular mechanisms triggered in response to its activation. R2C cells express GPER and its activation, using the specific ligand G-1, is associated with decreased cell proliferation and initiation of apoptosis. Apoptosis after G-1 treatment was asserted by appearance of DNA condensation and fragmentation, decrease in Bcl-2 and increase in Bax expression, cytochrome c release, caspase and poly (ADP-ribose) polymerase-1 (PARP-1) activation. These effects were dependent on GPER activation because after silencing of the gene, using a specific small interfering RNA, cyt c release, PARP-1 activation and decrease in cell proliferation were abrogated. These events required a rapid, however, sustained extracellular regulated kinase 1/2 activation. G-1 was able to decrease the growth of R2C xenograft tumors in CD1 nude mice while increasing the number of apoptotic cells. In addition, in vivo administration of G-1 to male CD1 mice did not cause any alteration in testicular morphology, while cisplatin, the cytotoxic drug currently used for the therapy of Leydig tumors, severely damaged testicular structure, an event associated with infertility in cisplatin-treated patients. These observations indicate that GPER targeting for the therapy of Leydig cell tumor may represent a good alternative to cisplatin to preserve fertility in Leydig tumor patients. PMID:23907461

  20. Contribution of myosin II activity to cell spreading dynamics.

    PubMed

    Nisenholz, Noam; Paknikar, Aishwarya; Köster, Sarah; Zemel, Assaf

    2016-01-14

    Myosin II activity and actin polymerization at the leading edge of the cell are known to be essential sources of cellular stress. However, a quantitative account of their separate contributions is still lacking; so is the influence of the coupling between the two phenomena on cell spreading dynamics. We present a simple analytic elastic theory of cell spreading dynamics that quantitatively demonstrates how actin polymerization and myosin activity cooperate in the generation of cellular stress during spreading. Consistent with experiments, myosin activity is assumed to polarize in response to the stresses generated during spreading. The characteristic response time and the overall spreading time are predicted to determine different evolution profiles of cell spreading dynamics. These include, a (regular) monotonic increase of cell projected area with time, a non-monotonic (overshooting) profile with a maximum, and damped oscillatory modes. In addition, two populations of myosin II motors are distinguished based on their location in the lamella; those located above the major adhesion zone at the cell periphery are shown to facilitate spreading whereas those in deeper regions of the lamella are shown to oppose spreading. We demonstrate that the attenuation of myosin activity in the two regions may result in reciprocal effects on spreading. These findings provide important new insight into the function of myosin II motors in the course of spreading. PMID:26481613

  1. Synthesis and cancer cell growth inhibitory activity of icaritin derivatives.

    PubMed

    Wang, Chen; Wu, Ping; Shi, Jing-Fang; Jiang, Zi-Hua; Wei, Xiao-Yi

    2015-07-15

    A series of icaritin derivatives bearing carboxylic acid or carboxylic ester groups are synthesized, and their in vitro cytotoxic activity against three cancer cell lines, MCF-7, MDA-MB-435s, and A549, are evaluated by MTT assay. Several derivatives including 2h, 2j, 5b and 5d show higher cytotoxic activity than the parent compound icaritin against these cancer cell lines. Compounds 5b and 5d are even more cytotoxic to MCF-7 cells than the clinic drug tamoxifen. Moreover, compound 5b is found to be non-toxic to normal cells (Vero) and both 5b and 5d exhibit good selectivity towards estrogen receptor positive MCF-7 breast cancer cells over estrogen receptor negative MDA-MB-435s breast cancer cells. The structure activity relationship analysis has revealed that mono-substitution at either C-3 or C-7 hydroxyl group of icaritin could improve the cytotoxicity of icaritin, and the C-3 hydroxyl group may be a preferable site for chemical modification. In addition, the length, the flexibility and the additional branching substituent group of the substitution chain(s) at both C-3 and C-7 hydroxyl groups can all affect the anti-cancer activity of these derivatives. PMID:26079090

  2. Dopamine Modulates the Activity of Sensory Hair Cells

    PubMed Central

    Toro, Cecilia; Trapani, Josef G.; Pacentine, Itallia; Maeda, Reo; Sheets, Lavinia; Mo, Weike

    2015-01-01

    The senses of hearing and balance are subject to modulation by efferent signaling, including the release of dopamine (DA). How DA influences the activity of the auditory and vestibular systems and its site of action are not well understood. Here we show that dopaminergic efferent fibers innervate the acousticolateralis epithelium of the zebrafish during development but do not directly form synapses with hair cells. However, a member of the D1-like receptor family, D1b, tightly localizes to ribbon synapses in inner ear and lateral-line hair cells. To assess modulation of hair-cell activity, we reversibly activated or inhibited D1-like receptors (D1Rs) in lateral-line hair cells. In extracellular recordings from hair cells, we observed that D1R agonist SKF-38393 increased microphonic potentials, whereas D1R antagonist SCH-23390 decreased microphonic potentials. Using ratiometric calcium imaging, we found that increased D1R activity resulted in larger calcium transients in hair cells. The increase of intracellular calcium requires Cav1.3a channels, as a Cav1 calcium channel antagonist, isradipine, blocked the increase in calcium transients elicited by the agonist SKF-38393. Collectively, our results suggest that DA is released in a paracrine fashion and acts at ribbon synapses, likely enhancing the activity of presynaptic Cav1.3a channels and thereby increasing neurotransmission. SIGNIFICANCE STATEMENT The neurotransmitter dopamine acts in a paracrine fashion (diffusion over a short distance) in several tissues and bodily organs, influencing and regulating their activity. The cellular target and mechanism of the action of dopamine in mechanosensory organs, such as the inner ear and lateral-line organ, is not clearly understood. Here we demonstrate that dopamine receptors are present in sensory hair cells at synaptic sites that are required for signaling to the brain. When nearby neurons release dopamine, activation of the dopamine receptors increases the activity of

  3. Strategies to reduce dendritic cell activation through functional biomaterial design

    PubMed Central

    Hume, Patrick S.; He, Jing; Haskins, Kathryn; Anseth, Kristi S.

    2012-01-01

    Dendritic cells play a key role in determining adaptive immunity, and there is growing interest in characterizing and manipulating the interactions between dendritic cells and biomaterial surfaces. Contact with several common biomaterials can induce the maturation of immature dendritic cells, but substrates that reduce dendritic cell maturation are of particular interest within the field of cell-based therapeutics where the goal is to reduce the immune response to cell-laden material carriers. In this study, we use a materials-based strategy to functionalize poly(ethylene glycol) hydrogels with immobilized immunosuppressive factors (TGF-β1 and IL-10) to reduce the maturation of immature dendritic cells. TGF-β1 and IL-10 are commonly employed as soluble factors to program dendritic cells in vitro, and we demonstrate that these proteins retain bioactivity towards dendritic cells when immobilized on hydrogel surfaces. Following stimulation with lipopolysaccharide (LPS) and/or cytokines, a dendritic cell line interacting with the surfaces of immunosuppressive hydrogels expressed reduced markers of maturation, including IL-12 and MHCII. The bioactivity of these immunomodulatory hydrogels was further confirmed with primary bone marrow dendritic cells (BMDCs) isolated from non-obese diabetic (NOD) mice, as quantified by a decrease in activation markers and a significantly reduced capacity to activate T cells. Furthermore, by introducing a second signal to promote BMDC-material interactions combined with the presentation of tolerizing signals, the mulitfunctional PEG hydrogels were found to further increase signaling towards BMDCs, as evidenced by greater reductions in maturation markers. PMID:22361099

  4. CD83 Modulates B Cell Activation and Germinal Center Responses.

    PubMed

    Krzyzak, Lena; Seitz, Christine; Urbat, Anne; Hutzler, Stefan; Ostalecki, Christian; Gläsner, Joachim; Hiergeist, Andreas; Gessner, André; Winkler, Thomas H; Steinkasserer, Alexander; Nitschke, Lars

    2016-05-01

    CD83 is a maturation marker for dendritic cells. In the B cell lineage, CD83 is expressed especially on activated B cells and on light zone B cells during the germinal center (GC) reaction. The function of CD83 during GC responses is unclear. CD83(-/-) mice have a strong reduction of CD4(+) T cells, which makes it difficult to analyze a functional role of CD83 on B cells during GC responses. Therefore, in the present study we generated a B cell-specific CD83 conditional knockout (CD83 B-cKO) model. CD83 B-cKO B cells show defective upregulation of MHC class II and CD86 expression and impaired proliferation after different stimuli. Analyses of GC responses after immunization with various Ags revealed a characteristic shift in dark zone and light zone B cell numbers, with an increase of B cells in the dark zone of CD83 B-cKO mice. This effect was not accompanied by alterations in the level of IgG immune responses or by major differences in affinity maturation. However, an enhanced IgE response was observed in CD83 B-cKO mice. Additionally, we observed a strong competitive disadvantage of CD83-cKO B cells in GC responses in mixed bone marrow chimeras. Furthermore, infection of mice with Borrelia burgdorferi revealed a defect in bacterial clearance of CD83 B-cKO mice with a shift toward a Th2 response, indicated by a strong increase in IgE titers. Taken together, our results show that CD83 is important for B cell activation and modulates GC composition and IgE Ab responses in vivo. PMID:26983787

  5. Myeloid cell distribution and activity in multiple sclerosis.

    PubMed

    Moliné-Velázquez, Verónica; Vila-Del Sol, Virginia; de Castro, Fernando; Clemente, Diego

    2016-04-01

    Multiple sclerosis (MS) is a demyelinating disease in which an exacerbated immune response provokes oligodendrocyte loss and demyelination, the hallmarks of this neurological disease. The destruction of myelin due to the uncontrolled activity of the invading immune cells leads to the formation of MS plaques. Among the different leukocytes that participate in the immune response associated with MS, the role of myeloid cells has been analyzed extensively (i.e. macrophages, dendritic cells -DCs- and neutrophils). Hence, in this review we will summarize what is known about the distribution, expression and markers available to study myeloid cells, and their histopathology, not only in a standard animal model of MS (autoimmune experimental encephalomyelitis -EAE) but also in MS tissue. In this review, we will not only refer to mature myeloid cells but also to the undifferentiated and almost unexplored myeloid-derived suppressor cells (MDSCs). The active role of MDSCs in the prompt resolution of an immune episode is gaining importance, yet is still the subject of some debate. Finally, the similarities and differences between MS and EAE are discussed, particularly in terms of myeloid cell phenotype, activity and the markers used. PMID:26592711

  6. LPS induces pulp progenitor cell recruitment via complement activation.

    PubMed

    Chmilewsky, F; Jeanneau, C; Laurent, P; About, I

    2015-01-01

    Complement system, a major component of the natural immunity, has been recently identified as an important mediator of the dentin-pulp regeneration process through STRO-1 pulp cell recruitment by the C5a active fragment. Moreover, it has been shown recently that under stimulation with lipoteichoic acid, a complex component of the Gram-positive bacteria cell wall, human pulp fibroblasts are able to synthesize all proteins required for complement activation. However, Gram-negative bacteria, which are also involved in tooth decay, are known as powerful activators of complement system and inflammation. Here, we investigated the role of Gram-negative bacteria-induced complement activation on the pulp progenitor cell recruitment using lipopolysaccharide (LPS), a major component of all Gram-negative bacteria. Our results show that incubating pulp fibroblasts with LPS induced membrane attack complex formation and C5a release in serum-free fibroblast cultures. The produced C5a binds to the pulp progenitor cells' membrane and induces their migration toward the LPS stimulation chamber, as revealed by the dynamic transwell migration assays. The inhibition of this migration by the C5aR-specific antagonist W54011 indicates that the pulp progenitor migration is mediated by the interaction between C5a and C5aR. Our findings demonstrate, for the first time, a direct interaction between the recruitment of progenitor pulp cells and the activation of complement system generated by pulp fibroblast stimulation with LPS. PMID:25359783

  7. Peptide fibrils with altered stability, activity, and cell selectivity

    PubMed Central

    Chen, Long; Liang, Jun F.

    2014-01-01

    Peptides have some unique and superior features compared to proteins. However, the use of peptides as therapeutics is hampered by their low stability and cell selectivity. In this study, a new lytic peptide (CL-1, FLGALFRALSRLL) was constructed. Under the physiological condition, peptide CL-1 self-assembled into dynamically stable aggregates with fibrils-like structures. Aggregated CL-1 demonstrated dramatically altered activity and stability in comparison with single molecule CL-1 and other lytic peptides: when incubated with co-cultured bacteria and tissue cells, CL-1 aggregates killed bacteria selectively but spared co-cultured human cells; CL-1 aggregates kept intact in human serum for more than five hours. Peptide-cell interaction studies performed on lipid monolayers and live human tissue cells revealed that in comparison with monomeric CL-1, aggregated CL-1 had decreased cell affinity and membrane insertion capability on tissue cells. A dynamic process involving aggregate dissociation and rearrangement seemed to be an essential step for membrane bound CL-1 aggregates to realize its cytotoxicity to tissue cells. Our study suggests that peptide aggregation could be as important as the charge and secondary structure of a peptide in affecting peptide-cell interactions. Controlling peptide self-assembly represents a new way to increase the stability and cell selectivity of bioactive peptides for wide biomedical applications. PMID:23713839

  8. Antitumor activity of dobutamine on human osteosarcoma cells

    PubMed Central

    YIN, JUN; DONG, QIRONG; ZHENG, MINQIAN; XU, XIAOZU; ZOU, GUOYOU; MA, GUOLIN; LI, KEFENG

    2016-01-01

    Dobutamine has been widely used for the treatment of heart failure and cardiogenic shock since the 1970s. Osteosarcoma is the most commonly observed malignant bone tumor in children. Currently, there are no effective drugs for the treatment of osteosarcoma. In the present study, the potential anticancer activity of dobutamine on human osteosarcoma cells was examined. Human osteosarcoma MG-63 cells were treated with dobutamine at various concentrations and for various incubation times. The inhibition of cell growth by dobutamine was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Flow cytometry was utilized to evaluate the effect of dobutamine on cell apoptosis and the cell cycle. Furthermore, the expression levels of caspase-3 and caspase-9 were assessed by western blot analysis. The influence of dobutamine on cancer cell migration and invasion was additionally evaluated using wound-healing assay and the Boyden Chamber migration method. Dobutamine significantly inhibited the growth of MG-63 cells at a concentration of 10 µM or higher when incubated for 12 h or longer (P=0.023). Dobutamine augmented cell apoptosis and arrested the cell cycle in the G2/M phase. Western blot analysis revealed that dobutamine induces expression of caspase-3 and caspase-9. In addition, the invasiveness and migration of MG-63 cells was inhibited by dobutamine in a concentration-dependent manner. The results of the present study may lead to novel applications for dobutamine in the treatment of osteosarcoma. PMID:27284371

  9. B cell mitogenic activity of sea squirt antigen.

    PubMed

    Segawa, K; Ono, K; Oka, S; Jyo, T; Kuroiwa, A; Yamashita, U

    1994-07-01

    The activity of sea squirt antigen, one of the allergy-inducing substances for humans, on murine and human lymphocytes was studied in vitro. Sea squirt antigen stimulated normal mouse spleen cells to proliferate, as detected by [3H]-TdR incorporation, in a dose-dependent manner. The responder cells are B cells because the response was reduced by the treatment of spleen cells with anti-immunoglobulin antibody and complement and passing through a nylon wool column, but not with anti-Thy-1 antibody and complement. Spleen cells of C3H/HeJ mice, which are lipopolysaccharide low responders, were also stimulated as well as spleen cells of C3H/HeN mice, suggesting that this response is not due to lipopolysaccharide in the antigen fraction. Sea squirt antigen stimulated not only proliferative response of B cells, but also polyclonal immunoglobulin production. Furthermore, sea squirt antigen also stimulated human lymphocytes to proliferate and to produce immunoglobulin. All these results suggest that sea squirt antigen has mitogenic activity on B cells, and this ability is concerned with the induction of allergic reaction. PMID:8032238

  10. Virulent Treponema pallidum activates human vascular endothelial cells.

    PubMed

    Riley, B S; Oppenheimer-Marks, N; Hansen, E J; Radolf, J D; Norgard, M V

    1992-03-01

    Perivascular lymphocytic infiltration, fibrin deposition, and endothelial cell abnormalities consistent with cellular activation are prominent histopathologic features of syphilis, a sexually transmitted disease caused by the spirochetal bacterium Treponema pallidum. Because activated endothelial cells play important roles in lymphocyte homing and hemostasis, the ability of virulent T. pallidum to activate cultured human umbilical vein endothelial cells (HUVEC) was investigated. T. pallidum induced the expression of intercellular adhesion molecule-1 (ICAM-1) and procoagulant activity on the surface of HUVEC. Electron microscopy of T. pallidum-stimulated HUVEC revealed extensive networks of fibrin strands not observed in cultures without treponemes. ICAM-1 expression in HUVEC also was promoted by a 47-kDa integral membrane lipoprotein purified from T. pallidum, implicating a role for spirochete membrane lipoproteins in endothelial cell activation. The combined findings are consistent with the pathology of syphilis and provide the first evidence that a pathogenic spirochetal bacterium such as T. pallidum or its constituent integral membrane lipoprotein(s) can activate directly host vascular endothelium. PMID:1347056

  11. Tim-1-Mediated T Cell Activation Requires Recruitment and Activation of PI 3-Kinase

    PubMed Central

    de Souza, Anjali J.; Oak, Jean S.; Jordanhazy, Ryan; DeKruyff, Rosemarie H.; Fruman, David A.; Kane, Lawrence P.

    2009-01-01

    Ligation of the transmembrane protein Tim-1 can co-stimulate T cell activation. Agonistic antibodies to Tim-1 are also capable of inducing T cell activation without additional stimuli. However, little is known about the biochemical mechanisms underlying T cell stimulation or co-stimulation through Tim-1. We show that a tyrosine in Tim-1 becomes phosphorylated in an lck-dependent manner, whereupon it can directly recruit p85 adaptor subunits of PI 3-kinase. This results in PI3K activation, which is required for Tim-1 function. We also provide genetic evidence that p85 expression is required for optimal Tim-1 function. Thus, we describe a pathway from Tim-1 tyrosine phosphorylation to the PI3K signaling pathway, which appears to be a major effector of Tim-1-mediated T cell activation. PMID:18453570

  12. Unirradiated cells rescue cells exposed to ionizing radiation: Activation of NF-κB pathway in irradiated cells.

    PubMed

    Lam, R K K; Han, Wei; Yu, K N

    2015-12-01

    We studied the involvement of NF-κB pathway activation in the rescue effect in HeLa and NIH/3T3 cells irradiated by α particles. Firstly, upon irradiation by 5 cGy of α particles, for both cell lines, the numbers of 53BP1 foci/cell at 12 h post-irradiation were significantly smaller when only 2.5% of the cell population was irradiated as compared to 100% irradiation, which demonstrated the rescue effect. Secondly, we studied the effect of NF-κB on the rescue effect through the use of the NF-κB activation inhibitor BAY-11-7082. Novel experimental setup and procedures were designed to prepare the medium (CM) which had conditioned the bystander cells previously partnered with irradiated cells, to ensure physical separation between rescue and bystander signals. BAY-11-7082 itself did not inflict DNA damages in the cells or have effects on activation of the NF-κB response pathway in the irradiated cells through direct irradiation. The rescue effect was induced in both cell lines by the CM, which was abrogated if BAY-11-7082 was added to the CM. Thirdly, we studied the effect of NF-κB on the rescue effect through staining for phosphorylated NF-κB (p-NF-κB) expression using the anti-NF-κB p65 (phospho S536) antibody. When the fraction of irradiated cells dropped from 100% to 2.5%, the p-NF-κB expression in the cell nuclei of irradiated NIH/3T3 cells increased significantly, while that in the cell nuclei of irradiated HeLa cells also increased although not significantly. Moreover, the p-NF-κB expression in the cell nuclei of irradiated HeLa cells and NIH/3T3 cells treated with CM also increased significantly. PMID:26524645

  13. ERK activation of p21 activated kinase-1 (Pak1) is critical for medulloblastoma cell migration.

    PubMed

    Yuan, Liangping; Santi, Mariarita; Rushing, Elisabeth J; Cornelison, Robert; MacDonald, Tobey J

    2010-10-01

    We previously identified that overexpression of the platelet-derived growth factor receptor (PDGFR) is associated with metastatic medulloblastoma (MB) and showed that PDGF treatment increases ERK activity and promotes MB cell migration. In this study, we investigated whether ERK regulates Rac1/Pak1 signaling and is critically linked to MB cell migration. Herein we demonstrate that PDGF-BB treatment of MB cells induces concomitant activation of PDGFRβ, MEK1/ERK, Rac1 and Pak1, but suppresses Rho activity, which together significantly promotes cell migration. Conversely, cells transfected with either PDGFRβ or Pak1 siRNA or treated with an inhibitor of Rac1 (NSC23766) or N-myristoyltransferase-1 (Tris-dipalladium) are unable to activate Rac1 or Pak1 in response to PDGF, and consequently, are unable to undergo PDGF-mediated cell migration. Furthermore, we also demonstrate that either chemical inhibition of MEK/ERK (U0126) or stable downregulation of PDGFRβ by shRNA similarly results in the loss of PDGF-induced ERK phosphorylation and abolishes Rac1/Pak1 activation and cell migration in response to PDGF. However, specific depletion of Pak1 by siRNA has no effect on PDGF-induced ERK phosphorylation, indicating that in MB cells ERK signaling is Pak1-independent, but PDGF-induced migration is dependent on ERK-mediated activation of Pak1. Finally, using tissue microarrays, we detect phosphorylated Pak1 in 53% of medulloblastomas and show that immunopositivity is associated with unfavorable outcome. We conclude that Rac1/Pak1 signaling is critical to MB cell migration and is functionally dependent on PDGFRβ/ERK activity. PMID:20526801

  14. ERK activation of p21 activated kinase-1 (Pak1) is critical for medulloblastoma cell migration

    PubMed Central

    Yuan, Liangping; Santi, Mariarita; Rushing, Elisabeth J.; Cornelison, Robert

    2010-01-01

    We previously identified that overexpression of the platelet-derived growth factor receptor (PDGFR) is associated with metastatic medulloblastoma (MB) and showed that PDGF treatment increases ERK activity and promotes MB cell migration. In this study, we investigated whether ERK regulates Rac1/Pak1 signaling and is critically linked to MB cell migration. Herein we demonstrate that PDGF-BB treatment of MB cells induces concomitant activation of PDGFRβ, MEK1/ERK, Rac1 and Pak1, but suppresses Rho activity, which together significantly promotes cell migration. Conversely, cells transfected with either PDGFRβ or Pak1 siRNA or treated with an inhibitor of Rac1 (NSC23766) or N-myristoyltransferase-1 (Tris-dipalladium) are unable to activate Rac1 or Pak1 in response to PDGF, and consequently, are unable to undergo PDGF-mediated cell migration. Furthermore, we also demonstrate that either chemical inhibition of MEK/ ERK (U0126) or stable downregulation of PDGFRβ by shRNA similarly results in the loss of PDGF-induced ERK phosphorylation and abolishes Rac1/Pak1 activation and cell migration in response to PDGF. However, specific depletion of Pak1 by siRNA has no effect on PDGF-induced ERK phosphorylation, indicating that in MB cells ERK signaling is Pak1-independent, but PDGF-induced migration is dependent on ERK-mediated activation of Pak1. Finally, using tissue microarrays, we detect phosphorylated Pak1 in 53% of medulloblastomas and show that immunopositivity is associated with unfavorable outcome. We conclude that Rac1/Pak1 signaling is critical to MB cell migration and is functionally dependent on PDGFRβ/ERK activity. PMID:20526801

  15. Active and passive calcium transport systems in plant cells

    SciTech Connect

    Sze, H.

    1990-01-01

    The ability to change cytoplasmic Ca{sup 2+} levels ((Ca{sup 2+})) by cells has made this cation a key regulator of many biological processes. Cytoplasmic (Ca{sup 2+}) is determined by the coordination of passive Ca{sup 2+} fluxes which increase cytosolic (Ca{sup 2+}) and active Ca{sup 2+} transport systems that lower cytosolic (Ca{sup 2+}). The mechanisms by which plant cells achieve this is poorly understood. We have initially used isolated vesicles from the plasma membrane or organellar membranes to study Ca{sup 2+} transport systems in oat roots (a monocot) and carrot suspension cells (a dicot). The objectives of the proposal were to identify and characterize active (energy-dependent) and passive calcium transport systems that work together to regulate calcium levels in the cytoplasm of plant cells. 10 figs., 2 tabs.

  16. Active and passive calcium transport systems in plant cells

    SciTech Connect

    Sze, H.

    1991-01-01

    The ability to change cytoplasmic Ca{sup 2+} levels ((Ca{sup 2+})) by cells has made this cation a key regulator of many biological processes. Cytoplasmic (Ca{sup 2+}) is determined by the coordination of passive Ca{sup 2+} fluxes which increase cytosolic (Ca{sup 2+}) and active Ca{sup 2+} transport systems that lower cytosolic (Ca{sup 2+}). The mechanisms by which plant cells achieve this is poorly understood. We have initially used isolated vesicles from the plasma membrane or organellar membranes to study Ca{sup 2+} transport systems in oat roots (a monocot) and carrot suspension cells (a dicot). The objectives of the proposal were to identify and characterize active (energy-dependent) and passive calcium transport systems that work together to regulate calcium levels in the cytoplasm of plant cells.

  17. [An electrochemical method for measuring metabolic activity and counting cells].

    PubMed

    Kuznetsov, B a; Khlupova, M e; Shleev, S V; Kaprel'iants, A S; Iaropolov, A I

    2006-01-01

    An express electrochemical method for determining the metabolic activity of live cells based on the possibility of an electron exchange between an electrode and elements of the biological electron transfer chain in the presence of a mediator is proposed. This method is useful for studying any live cells (animal, plant, and microbial), including anaerobic, dormant, and spore cells. The sample preparation and measurement itself does not take more than 30 min. The detection limit in a volume of 15 ml amounts to 10-5 cells/ml. The applicability of the assessment method of the metabolic activity level during the transition of the bacteria Mycobacterium smegmatis into an uncultivable dormant state was demonstrated. This method is of special value for medicine and environmental control, detecting latent forms of pathogens. An optimal combination of the methods for the express analysis of latent pathogens is proposed. PMID:17066962

  18. Cytoplasmic myosin exposed apoptotic cells appear with caspase-3 activation and enhance CLL cell viability

    PubMed Central

    Cui, Xiaoxuan; Zhang, Lu; Magli, Amanda R.; Catera, Rosa; Yan, Xiao-Jie; Griffin, Daniel O.; Rothstein, Thomas L.; Barrientos, Jacqueline; Kolitz, Jonathan E.; Allen, Steven L.; Rai, Kanti R.; Chiorazzi, Nicholas; Chu, Charles C.

    2015-01-01

    The degree of chronic lymphocytic leukemia (CLL) B-cell antigen receptor (BCR) binding to myosin exposed apoptotic cells (MEACs) correlates with worse patient outcomes, suggesting a link to disease activity. Therefore, we studied MEAC formation and the effects of MEAC binding on CLL cells. In cell line studies, both intrinsic (spontaneous or camptothecin-induced) and extrinsic (FasL- or anti-Fas-induced) apoptosis created a high percent of MEACs over time in a process associated with caspase-3 activation, leading to cytoplasmic myosin cleavage and trafficking to cell membranes. The involvement of common apoptosis pathways suggests that most cells can produce MEACs and indeed CLL cells themselves form MEACs. Consistent with the idea that MEAC formation may be a signal to remove dying cells, we found that natural IgM antibodies bind to MEACs. Functionally, co-culture of MEACs with CLL cells, regardless of immunoglobulin heavy chain variable region gene mutation status, improved leukemic cell viability. Based on inhibitor studies, this improved viability involved BCR signaling molecules. These results support the hypothesis that stimulation of CLL cells with antigen, such as those on MEACs, promotes CLL cell viability, which in turn could lead to progression to worse disease. PMID:26220042

  19. CCL5 activation of CCR5 regulates cell metabolism to enhance proliferation of breast cancer cells

    PubMed Central

    Gao, Darrin; Rahbar, Ramtin; Fish, Eleanor N.

    2016-01-01

    In earlier studies, we showed that CCL5 enhances proliferation and survival of MCF-7 breast cancer cells in an mTOR-dependent manner and we provided evidence that, for T cells, CCL5 activation of CCR5 results in increased glycolysis and enhanced ATP production. Increases in metabolic activity of cancer cells, specifically increased glycolytic activity and increased expression of glucose transporters, are associated with tumour progression. In this report, we provide evidence that CCL5 enhances the proliferation of human breast cancer cell lines (MDA-MB-231, MCF-7) and mouse mammary tumour cells (MMTV-PyMT), mediated by CCR5 activation. Concomitant with enhanced proliferation we show that CCL5 increases cell surface expression of the glucose transporter GLUT1, and increases glucose uptake and ATP production by these cells. Blocking CCL5-inducible glucose uptake abrogates the enhanced proliferation induced by CCL5. We provide evidence that increased glucose uptake is associated with enhanced glycolysis, as measured by extracellular acidification. Moreover, CCL5 enhances the invasive capacity of these breast cancer cells. Using metabolomics, we demonstrate that the metabolic signature of CCL5-treated primary mouse mammary tumour cells reflects increased anabolic metabolism. The implications are that CCL5–CCR5 interactions in the tumour microenvironment regulate metabolic events, specifically glycolysis, to promote tumour proliferation and invasion. PMID:27335323

  20. CCL5 activation of CCR5 regulates cell metabolism to enhance proliferation of breast cancer cells.

    PubMed

    Gao, Darrin; Rahbar, Ramtin; Fish, Eleanor N

    2016-06-01

    In earlier studies, we showed that CCL5 enhances proliferation and survival of MCF-7 breast cancer cells in an mTOR-dependent manner and we provided evidence that, for T cells, CCL5 activation of CCR5 results in increased glycolysis and enhanced ATP production. Increases in metabolic activity of cancer cells, specifically increased glycolytic activity and increased expression of glucose transporters, are associated with tumour progression. In this report, we provide evidence that CCL5 enhances the proliferation of human breast cancer cell lines (MDA-MB-231, MCF-7) and mouse mammary tumour cells (MMTV-PyMT), mediated by CCR5 activation. Concomitant with enhanced proliferation we show that CCL5 increases cell surface expression of the glucose transporter GLUT1, and increases glucose uptake and ATP production by these cells. Blocking CCL5-inducible glucose uptake abrogates the enhanced proliferation induced by CCL5. We provide evidence that increased glucose uptake is associated with enhanced glycolysis, as measured by extracellular acidification. Moreover, CCL5 enhances the invasive capacity of these breast cancer cells. Using metabolomics, we demonstrate that the metabolic signature of CCL5-treated primary mouse mammary tumour cells reflects increased anabolic metabolism. The implications are that CCL5-CCR5 interactions in the tumour microenvironment regulate metabolic events, specifically glycolysis, to promote tumour proliferation and invasion. PMID:27335323

  1. Early kinetic window of target T cell susceptibility to CD25+ regulatory T cell activity.

    PubMed

    Sojka, Dorothy K; Hughson, Angela; Sukiennicki, Teresa L; Fowell, Deborah J

    2005-12-01

    Peripheral tolerance is maintained in part by thymically derived CD25+CD4+ T cells (regulatory T cells (Tregs)). Their mechanism of action has not been well characterized. Therefore, to get a better understanding of Treg action, we investigated the kinetics of murine Treg activity in vitro. Tregs were suppressive within a surprisingly narrow kinetic window: necessary and sufficient only in the first 6-10 h of culture. Visualization of this time frame, using a sensitive single-cell assay for IL-2, revealed the early elaboration of target cell IL-2 producers in the first 6 h despite the presence of CD25+CD4+ Tregs. However, after 6 h, a rapid rise in the number of IL-2 producers in the absence of Tregs was dramatically abrogated by the presence of Tregs. Importantly, the timing of suppression was dictated by the kinetics of target T cell activation suggesting that early target T cell signals may alter susceptibility to suppression. Modulating target T cell activation signals with provision of CD28, IL-2, or high Ag dose all abrogated suppression of proliferation late in culture. However, only CD28 signals enabled target T cells to resist the early Treg-induced down-regulation of IL-2. Therefore the quality of early target T cell activation signals, in particular engagement of CD28, represents an important control point in the balance between vulnerability and resistance to Treg suppression. PMID:16301632

  2. Mucosal Regulatory T Cells and T Helper 17 Cells in HIV-Associated Immune Activation

    PubMed Central

    Pandiyan, Pushpa; Younes, Souheil-Antoine; Ribeiro, Susan Pereira; Talla, Aarthi; McDonald, David; Bhaskaran, Natarajan; Levine, Alan D.; Weinberg, Aaron; Sekaly, Rafick P.

    2016-01-01

    Residual mucosal inflammation along with chronic systemic immune activation is an important feature in individuals infected with human immunodeficiency virus (HIV), and has been linked to a wide range of co-morbidities, including malignancy, opportunistic infections, immunopathology, and cardiovascular complications. Although combined antiretroviral therapy (cART) can reduce plasma viral loads to undetectable levels, reservoirs of virus persist, and increased mortality is associated with immune dysbiosis in mucosal lymphoid tissues. Immune-based therapies are pursued with the goal of improving CD4+ T-cell restoration, as well as reducing chronic immune activation in cART-treated patients. However, the majority of research on immune activation has been derived from analysis of circulating T cells. How immune cell alterations in mucosal tissues contribute to HIV immune dysregulation and the associated risk of non-infectious chronic complications is less studied. Given the significant differences between mucosal T cells and circulating T cells, and the immediate interactions of mucosal T cells with the microbiome, more attention should be devoted to mucosal immune cells and their contribution to systemic immune activation in HIV-infected individuals. Here, we will focus on mucosal immune cells with a specific emphasis on CD4+ T lymphocytes, such as T helper 17 cells and CD4+Foxp3+ regulatory T cells (Tregs), which play crucial roles in maintaining mucosal barrier integrity and preventing inflammation, respectively. We hypothesize that pro-inflammatory milieu in cART-treated patients with immune activation significantly contributes to enhanced loss of Th17 cells and increased frequency of dysregulated Tregs in the mucosa, which in turn may exacerbate immune dysfunction in HIV-infected patients. We also present initial evidence to support this hypothesis. A better comprehension of how pro-inflammatory milieu impacts these two types of cells in the mucosa will shed light

  3. Doxorubicin resistant cancer cells activate myeloid-derived suppressor cells by releasing PGE2.

    PubMed

    Rong, Yuan; Yuan, Chun-Hui; Qu, Zhen; Zhou, Hu; Guan, Qing; Yang, Na; Leng, Xiao-Hua; Bu, Lang; Wu, Ke; Wang, Fu-Bing

    2016-01-01

    Chemotherapies often induce drug-resistance in cancer cells and simultaneously stimulate proliferation and activation of Myeloid-Derived Suppressor Cells (MDSCs) to inhibit anti-tumor T cells, thus result in poor prognosis of patients with breast cancers. To date, the mechanism underlying the expansion of MDSCs in response to chemotherapies is poorly understood. In the present study, we used in vitro cell culture and in vivo animal studies to demonstrate that doxorubicin-resistant breast cancer cells secret significantly more prostaglandin E2 (PGE2) than their parental doxorubicin-sensitive cells. The secreted PGE2 can stimulate expansion and polymerization of MDSCs by directly target to its receptors, EP2/EP4, on the surface of MDSCs, which consequently triggers production of miR-10a through activating PKA signaling. More importantly, activated MDSCs can inhibit CD4(+)CD25(-) T cells as evidenced by reduced proliferation and IFN-γ release. In order to determine the molecular pathway that involves miR-10a mediated activation of MDSCs, biochemical and pharmacological studies were carried out. We found that miR-10a can activate AMPK signaling to promote expansion and activation of MDSCs. Thus, these results reveal, for the first time, a novel role of PGE2/miR-10a/AMPK signaling axis in chemotherapy-induced immune resistance, which might be targeted for treatment of chemotherapy resistant tumors. PMID:27032536

  4. Doxorubicin resistant cancer cells activate myeloid-derived suppressor cells by releasing PGE2

    PubMed Central

    Rong, Yuan; Yuan, Chun-Hui; Qu, Zhen; Zhou, Hu; Guan, Qing; Yang, Na; Leng, Xiao-Hua; Bu, Lang; Wu, Ke; Wang, Fu-Bing

    2016-01-01

    Chemotherapies often induce drug-resistance in cancer cells and simultaneously stimulate proliferation and activation of Myeloid-Derived Suppressor Cells (MDSCs) to inhibit anti-tumor T cells, thus result in poor prognosis of patients with breast cancers. To date, the mechanism underlying the expansion of MDSCs in response to chemotherapies is poorly understood. In the present study, we used in vitro cell culture and in vivo animal studies to demonstrate that doxorubicin-resistant breast cancer cells secret significantly more prostaglandin E2 (PGE2) than their parental doxorubicin-sensitive cells. The secreted PGE2 can stimulate expansion and polymerization of MDSCs by directly target to its receptors, EP2/EP4, on the surface of MDSCs, which consequently triggers production of miR-10a through activating PKA signaling. More importantly, activated MDSCs can inhibit CD4+CD25− T cells as evidenced by reduced proliferation and IFN-γ release. In order to determine the molecular pathway that involves miR-10a mediated activation of MDSCs, biochemical and pharmacological studies were carried out. We found that miR-10a can activate AMPK signaling to promote expansion and activation of MDSCs. Thus, these results reveal, for the first time, a novel role of PGE2/miR-10a/AMPK signaling axis in chemotherapy-induced immune resistance, which might be targeted for treatment of chemotherapy resistant tumors. PMID:27032536

  5. Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells.

    PubMed

    Zhao, Yinghua; Chu, Xiao; Chen, Jintong; Wang, Ying; Gao, Sujun; Jiang, Yuxue; Zhu, Xiaoqing; Tan, Guangyun; Zhao, Wenjie; Yi, Huanfa; Xu, Honglin; Ma, Xingzhe; Lu, Yong; Yi, Qing; Wang, Siqing

    2016-01-01

    Dectin-1 signalling in dendritic cells (DCs) has an important role in triggering protective antifungal Th17 responses. However, whether dectin-1 directs DCs to prime antitumour Th9 cells remains unclear. Here, we show that DCs activated by dectin-1 agonists potently promote naive CD4(+) T cells to differentiate into Th9 cells. Abrogation of dectin-1 in DCs completely abolishes their Th9-polarizing capability in response to dectin-1 agonist curdlan. Notably, dectin-1 stimulation of DCs upregulates TNFSF15 and OX40L, which are essential for dectin-1-activated DC-induced Th9 cell priming. Mechanistically, dectin-1 activates Syk, Raf1 and NF-κB signalling pathways, resulting in increased p50 and RelB nuclear translocation and TNFSF15 and OX40L expression. Furthermore, immunization of tumour-bearing mice with dectin-1-activated DCs induces potent antitumour response that depends on Th9 cells and IL-9 induced by dectin-1-activated DCs in vivo. Our results identify dectin-1-activated DCs as a powerful inducer of Th9 cells and antitumour immunity and may have important clinical implications. PMID:27492902

  6. Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells

    PubMed Central

    Zhao, Yinghua; Chu, Xiao; Chen, Jintong; Wang, Ying; Gao, Sujun; Jiang, Yuxue; Zhu, Xiaoqing; Tan, Guangyun; Zhao, Wenjie; Yi, Huanfa; Xu, Honglin; Ma, Xingzhe; Lu, Yong; Yi, Qing; Wang, Siqing

    2016-01-01

    Dectin-1 signalling in dendritic cells (DCs) has an important role in triggering protective antifungal Th17 responses. However, whether dectin-1 directs DCs to prime antitumour Th9 cells remains unclear. Here, we show that DCs activated by dectin-1 agonists potently promote naive CD4+ T cells to differentiate into Th9 cells. Abrogation of dectin-1 in DCs completely abolishes their Th9-polarizing capability in response to dectin-1 agonist curdlan. Notably, dectin-1 stimulation of DCs upregulates TNFSF15 and OX40L, which are essential for dectin-1-activated DC-induced Th9 cell priming. Mechanistically, dectin-1 activates Syk, Raf1 and NF-κB signalling pathways, resulting in increased p50 and RelB nuclear translocation and TNFSF15 and OX40L expression. Furthermore, immunization of tumour-bearing mice with dectin-1-activated DCs induces potent antitumour response that depends on Th9 cells and IL-9 induced by dectin-1-activated DCs in vivo. Our results identify dectin-1-activated DCs as a powerful inducer of Th9 cells and antitumour immunity and may have important clinical implications. PMID:27492902

  7. NKG2D is a Key Receptor for Recognition of Bladder Cancer Cells by IL-2-Activated NK Cells and BCG Promotes NK Cell Activation

    PubMed Central

    García-Cuesta, Eva María; López-Cobo, Sheila; Álvarez-Maestro, Mario; Esteso, Gloria; Romera-Cárdenas, Gema; Rey, Mercedes; Cassady-Cain, Robin L.; Linares, Ana; Valés-Gómez, Alejandro; Reyburn, Hugh Thomson; Martínez-Piñeiro, Luis; Valés-Gómez, Mar

    2015-01-01

    Intravesical instillation of bacillus Calmette–Guérin (BCG) is used to treat superficial bladder cancer, either papillary tumors (after transurethral resection) or high-grade flat carcinomas (carcinoma in situ), reducing recurrence in about 70% of patients. Initially, BCG was proposed to work through an inflammatory response, mediated by phagocytic uptake of mycobacterial antigens and cytokine release. More recently, other immune effectors such as monocytes, natural killer (NK), and NKT cells have been suggested to play a role in this immune response. Here, we provide a comprehensive study of multiple bladder cancer cell lines as putative targets for immune cells and evaluated their recognition by NK cells in the presence and absence of BCG. We describe that different bladder cancer cells can express multiple activating and inhibitory ligands for NK cells. Recognition of bladder cancer cells depended mainly on NKG2D, with a contribution from NKp46. Surprisingly, exposure to BCG did not affect the immune phenotype of bladder cells nor increased NK cell recognition of purified IL-2-activated cell lines. However, NK cells were activated efficiently when BCG was included in mixed lymphocyte cultures, suggesting that NK activation after mycobacteria treatment requires the collaboration of various immune cells. We also analyzed the percentage of NK cells in peripheral blood of a cohort of bladder cancer patients treated with BCG. The total numbers of NK cells did not vary during treatment, indicating that a more detailed study of NK cell activation in the tumor site will be required to evaluate the response in each patient. PMID:26106390

  8. Ionizing Radiation Activates AMP-Activated Kinase (AMPK): A Target for Radiosensitization of Human Cancer Cells

    SciTech Connect

    Sanli, Toran; Rashid, Ayesha; Liu Caiqiong

    2010-09-01

    Purpose: Adenosine monophosphate (AMP)-activated kinase (AMPK) is a molecular energy sensor regulated by the tumor suppressor LKB1. Starvation and growth factors activate AMPK through the DNA damage sensor ataxia-telangiectasia mutated (ATM). We explored the regulation of AMPK by ionizing radiation (IR) and its role as a target for radiosensitization of human cancer cells. Methods and Materials: Lung, prostate, and breast cancer cells were treated with IR (2-8 Gy) after incubation with either ATM or AMPK inhibitors or the AMPK activator metformin. Then, cells were subjected to either lysis and immunoblotting, immunofluorescence microscopy, clonogenic survival assays, or cell cycle analysis. Results: IR induced a robust phosphorylation and activation of AMPK in all tumor cells, independent of LKB1. IR activated AMPK first in the nucleus, and this extended later into cytoplasm. The ATM inhibitor KU-55933 blocked IR activation of AMPK. AMPK inhibition with Compound C or anti-AMPK {alpha} subunit small interfering RNA (siRNA) blocked IR induction of the cell cycle regulators p53 and p21{sup waf/cip} as well as the IR-induced G2/M arrest. Compound C caused resistance to IR, increasing the surviving fraction after 2 Gy, but the anti-diabetic drug metformin enhanced IR activation of AMPK and lowered the surviving fraction after 2 Gy further. Conclusions: We provide evidence that IR activates AMPK in human cancer cells in an LKB1-independent manner, leading to induction of p21{sup waf/cip} and regulation of the cell cycle and survival. AMPK appears to (1) participate in an ATM-AMPK-p21{sup waf/cip} pathway, (2) be involved in regulation of the IR-induced G2/M checkpoint, and (3) may be targeted by metformin to enhance IR responses.

  9. Structured variability in Purkinje cell activity during locomotion

    PubMed Central

    Sauerbrei, Britton A.; Lubenov, Evgueniy V.; Siapas, Athanassios G.

    2015-01-01

    Summary The cerebellum is a prominent vertebrate brain structure that is critically involved in sensorimotor function. During locomotion, cerebellar Purkinje cells are rhythmically active, shaping descending signals and coordinating commands from higher brain areas with the step cycle. However, the variation in this activity across steps has not been studied, and its statistical structure, afferent mechanisms, and relationship to behavior remain unknown. Here, using multi-electrode recordings in freely moving rats, we show that behavioral variables systematically influence the shape of the step-locked firing rate. This effect depends strongly on the phase of the step cycle and reveals a functional clustering of Purkinje cells. Furthermore, we find a pronounced disassociation between patterns of variability driven by the parallel and climbing fibers. These results suggest that Purkinje cell activity not only represents step phase within each cycle, but is also shaped by behavior across steps, facilitating control of movement under dynamic conditions. PMID:26291165

  10. Femtosecond laser fabricated microfluorescence-activated cell sorter for single cell recovery

    NASA Astrophysics Data System (ADS)

    Bragheri, F.; Paiè, P.; Nava, G.; Yang, T.; Minzioni, P.; Martinez Vazquez, R.; Bellini, N.; Ramponi, R.; Cristiani, I.; Osellame, R.

    2014-03-01

    Manipulation, sorting and recovering of specific live cells from samples containing less than a few thousand cells is becoming a major hurdle in rare cell exploration such as stem cell research or cell based diagnostics. Moreover the possibility of recovering single specific cells for culturing and further analysis would be of great impact in many biological fields ranging from regenerative medicine to cancer therapy. In recent years considerable effort has been devoted to the development of integrated and low-cost optofluidic devices able to handle single cells, which usually rely on microfluidic circuits that guarantee a controlled flow of the cells. Among the different microfabrication technologies, femtosecond laser micromachining (FLM) is ideally suited for this purpose as it provides the integration of both microfluidic and optical functions on the same glass chip leading to monolithic, robust and portable devices. Here a new optofluidic device is presented, which is capable of sorting and recovering of single cells, through optical forces, on the basis of their fluorescence and. Both fluorescence detection and single cell sorting functions are integrated in the microfluidic chip by FLM. The device, which is specifically designed to operate with a limited amount of cells but with a very high selectivity, is fabricated by a two-step process that includes femtosecond laser irradiation followed by chemical etching. The capability of the device to act as a micro fluorescence-activated cell sorter has been tested on polystyrene beads and on tumor cells and the results on the single live cell recovery are reported.

  11. Effect Of Simulated Microgravity On Activated T Cell Gene Transcription

    NASA Technical Reports Server (NTRS)

    Morrow, Maureen A.

    2003-01-01

    Studies of T lymphocytes under the shear stress environment of clinorotation have demonstrated an inhibition of activation in response to TCR mediated signaling. These results mimic those observed during space flight. This work investigates the molecular signaling events of T lymphocyte activation with clinorotation. Purified human T lymphocytes and the T cell clone Jurkat exhibit an uncoupling of signaling as mediated through the TCR. Activation of the transcription factor AP-1 is inhibited while activation of NFAT occurs. NFAT dephosphorylation and activation is dependent on sustained Ca(++) influx. Alternatively, AP-1, which consists of two transcription factors, jun and fos, is activated by PKC and Ras mediated pathways. TCR signaling is known to be dependent on cytoskeletal rearrangements, in particular, raft aggregation is critical. Raft aggregation, as mediated through GM, crosslinking, overcomes the inhibition of T lymphocyte activation with clinorotation, indicating that the block is occurring upstream of raft aggregation. Clinorotation is shown to have an effect similar to a weak TCR signal.

  12. T-Cell Immunophenotyping Distinguishes Active From Latent Tuberculosis

    PubMed Central

    Pollock, Katrina M.; Whitworth, Hilary S.; Montamat-Sicotte, Damien J.; Grass, Lisa; Cooke, Graham S.; Kapembwa, Moses S.; Kon, Onn M.; Sampson, Robert D.; Taylor, Graham P.; Lalvani, Ajit

    2013-01-01

    Background. Changes in the phenotype and function of Mycobacterium tuberculosis (M. tuberculosis)-specific CD4+ and CD8+ T-cell subsets in response to stage of infection may allow discrimination between active tuberculosis and latent tuberculosis infection. Methods. A prospective comparison of M. tuberculosis-specific cellular immunity in subjects with active tuberculosis and latent tuberculosis infection, with and without human immunodeficiency virus (HIV) coinfection. Polychromatic flow cytometry was used to measure CD4+ and CD8+ T-cell subset phenotype and secretion of interferon γ (IFN-γ), interleukin 2 (IL-2), and tumor necrosis factor α (TNF-α). Results. Frequencies of CD4+ and CD8+ cells secreting IFN-γ-only, TNF-α-only and dual IFN-γ/TNF-α were greater in active tuberculosis vs latent tuberculosis infection. All M. tuberculosis-specific CD4+ subsets, with the exception of IL-2-only cells, switched from central to effector memory phenotype in active tuberculosis vs latent tuberculosis infection, accompanied by a reduction in IL-7 receptor α (CD127) expression. The frequency of PPD-specific CD4+ TNF-α-only-secreting T cells with an effector phenotype accurately distinguished active tuberculosis from latent tuberculosis infection with an area under the curve of 0.99, substantially more discriminatory than measurement of function alone. Conclusions. Combined measurement of T-cell phenotype and function defines a highly discriminatory biomarker of tuberculosis disease activity. Unlocking the diagnostic and monitoring potential of this combined approach now requires validation in large-scale prospective studies. PMID:23966657

  13. Stochasticity and spatial heterogeneity in T-cell activation.

    PubMed

    Burroughs, Nigel J; van der Merwe, P Anton

    2007-04-01

    Stochastic and spatial aspects are becoming increasingly recognized as an important factor in T-cell activation. Activation occurs in an intrinsically noisy environment, requiring only a handful of agonist peptide-major histocompatibility complex molecules, thus making consideration of signal to noise of prime importance in understanding sensitivity and specificity. Furthermore, it is widely established that surface-bound ligands are more effective at activation than soluble forms, while surface patternation has highlighted the role of spatial relocation in activation. Here we consider the results of a number of models of T-cell activation, from a realistic model of kinetic segregation-induced T-cell receptor (TCR) triggering through to simple queuing theory models. These studies highlight the constraints on cell activation by a surface receptor that recruits kinases. Our analysis shows that TCR triggering based on trapping of bound TCRs in regions of close proximity that exclude large ectodomain-containing molecules, such as the phosphatases CD45 and CD148, can effectively reproduce known signaling characteristics and is a viable 'signal transduction' mechanism distinct from oligomerization and conformation-based mechanisms. A queuing theory analysis shows the interrelation between sensitivity and specificity, emphasizing that these are properties of individual cell functions and need not be, nor are likely to be, uniform across different functions. In fact, threshold-based mechanisms of detection are shown to be poor at ligand discrimination because, although they can be highly specific, that specificity is limited to a small range of peptide densities. Time integration mechanisms however are able to control noise effectively, while kinetic proofreading mechanisms endow them with good specificity properties. Thus, threshold mechanisms are likely to be important for rapidly detecting minimal signaling requirements, thus achieving efficient scanning of antigen

  14. Immune activation by combination human lymphokine-activated killer and dendritic cell therapy

    PubMed Central

    West, E J; Scott, K J; Jennings, V A; Melcher, A A

    2011-01-01

    Background: Optimal cellular immunotherapy for cancer should ideally harness both the innate and adaptive arms of the immune response. Lymphokine-activated killer cells (LAKs) can trigger early innate killing of tumour targets, whereas long-term adaptive-specific tumour control requires priming of CD8+ cytotoxic lymphocytes (CTLs) following acquisition of tumour-associated antigens (TAAs) by antigen-presenting cells such as dendritic cells (DCs). As DCs stimulate both innate and adaptive effectors, combination cell therapy using LAKs and DCs has the potential to maximise anti-tumour immune priming. Methods: Reciprocal activation between human clinical grade LAKs and DCs on co-culture, and its immune consequences, was monitored by cell phenotype, cytokine release and priming of both innate and adaptive cytotoxicity against melanoma targets. Results: Co-culture of DCs and LAKs led to phenotypic activation of natural killer (NK) cells within the LAK population, which was associated with increased production of inflammatory cytokines and enhanced innate cytotoxicity against tumour cell targets. The LAKs reciprocally matured DCs, and the combination of LAKs and DCs, on addition of melanoma cells, supported priming of specific anti-tumour CTLs better than DCs alone. Conclusion: Clinical-grade LAKs/DCs represents a practical, effective combination cell immunotherapy for stimulation of both innate and adaptive anti-tumour immunity in cancer patients. PMID:21847125

  15. Endothelial juxtaposition of distinct adult stem cells activates angiogenesis signaling molecules in endothelial cells.

    PubMed

    Mohammadi, Elham; Nassiri, Seyed Mahdi; Rahbarghazi, Reza; Siavashi, Vahid; Araghi, Atefeh

    2015-12-01

    Efficacy of therapeutic angiogenesis needs a comprehensive understanding of endothelial cell (EC) function and biological factors and cells that interplay with ECs. Stem cells are considered the key components of pro- and anti-angiogenic milieu in a wide variety of physiopathological states, and interactions of EC-stem cells have been the subject of controversy in recent years. In this study, the potential effects of three tissue-specific adult stem cells, namely rat marrow-derived mesenchymal stem cells (rBMSCs), rat adipose-derived stem cells (rADSCs) and rat muscle-derived satellite cells (rSCs), on the endothelial activation of key angiogenic signaling molecules, including VEGF, Ang-2, VEGFR-2, Tie-2, and Tie2-pho, were investigated. Human umbilical vein endothelial cells (HUVECs) and rat lung microvascular endothelial cells (RLMECs) were cocultured with the stem cells or incubated with the stem cell-derived conditioned media on Matrigel. Following HUVEC-stem cell coculture, CD31-positive ECs were flow sorted and subjected to western blotting to analyze potential changes in the expression of the pro-angiogenic signaling molecules. Elongation and co-alignment of the stem cells were seen along the EC tubes in the EC-stem cell cocultures on Matrigel, with cell-to-cell dye communication in the EC-rBMSC cocultures. Moreover, rBMSCs and rADSCs significantly improved endothelial tubulogenesis in both juxtacrine and paracrine manners. These two latter stem cells dynamically up-regulated VEGF, Ang-2, VREGR-2, and Tie-2 but down-regulated Tie2-pho and the Tie2-pho/Tie-2 ratio in HUVECs. Induction of pro-angiogenic signaling in ECs by marrow- and adipose-derived MSCs further indicates the significance of stem cell milieu in angiogenesis dynamics. PMID:26068799

  16. Schistosoma mansoni larvicidal activity of murine bronchoalveolar lavage cells.

    PubMed

    Lewis, F A; White-Ziegler, C A; Ball, J E; Niemann, G M

    1990-12-01

    We have investigated the ability of cells obtained from both normal and immune mice by bronchoalveolar lavage (BACs) to kill Schistosoma mansoni larvae in vitro. In cultures with mechanically derived schistosomules, high levels of larvicidal activity were displayed by BACs from both normal and irradiated cercaria-immunized C57BL/6 mice. Based on effector-to-target-cell ratios, BAC-mediated killing was two- to threefold more efficient than killing mediated by macrophage-rich cell populations obtained from the peritoneal cavity. BACs from normal A/J mice were essentially as larvicidal as normal C57BL/6 cells. However, BACs from a strain of mouse (P/J) with a known macrophage defect possessed negligible larvicidal activity. Macrophages made up 85 to 95% of BACs from all three strains tested. In contrast to cells of the IC-21 macrophage cell line, B6 BACs did not show enhanced killing activity when preincubated with lymphokine-containing supernatants. Lung schistosomules harvested 10 days after cercarial penetration were refractory to BAC-mediated killing. PMID:2254018

  17. Schistosoma mansoni larvicidal activity of murine bronchoalveolar lavage cells.

    PubMed Central

    Lewis, F A; White-Ziegler, C A; Ball, J E; Niemann, G M

    1990-01-01

    We have investigated the ability of cells obtained from both normal and immune mice by bronchoalveolar lavage (BACs) to kill Schistosoma mansoni larvae in vitro. In cultures with mechanically derived schistosomules, high levels of larvicidal activity were displayed by BACs from both normal and irradiated cercaria-immunized C57BL/6 mice. Based on effector-to-target-cell ratios, BAC-mediated killing was two- to threefold more efficient than killing mediated by macrophage-rich cell populations obtained from the peritoneal cavity. BACs from normal A/J mice were essentially as larvicidal as normal C57BL/6 cells. However, BACs from a strain of mouse (P/J) with a known macrophage defect possessed negligible larvicidal activity. Macrophages made up 85 to 95% of BACs from all three strains tested. In contrast to cells of the IC-21 macrophage cell line, B6 BACs did not show enhanced killing activity when preincubated with lymphokine-containing supernatants. Lung schistosomules harvested 10 days after cercarial penetration were refractory to BAC-mediated killing. PMID:2254018

  18. Biphasic activity of chloroquine in human colorectal cancer cells.

    PubMed

    Park, Deokbae; Lee, Youngki

    2014-12-01

    Autophagy is a homeostatic degradation process that is involved in tumor development and normal development. Autophagy is induced in cancer cells in response to chemotherapeutic agents, and inhibition of autophagy results in enhanced cancer cell death or survival. Chloroquine (CQ), an anti-malarial devrepug, is a lysosomotropic agent and is currently used as a potential anticancer agent as well as an autophagy inhibitor. Here, we evaluate the characteristics of these dual activities of CQ using human colorectal cancer cell line HCT15. The results show that CQ inhibited cell viability in dose-and time-dependent manner in the range between 20 to 80 uM, while CQ did not show any antiproliferative activity at 5 and 10 uM. Cotreatment of CQ with antitumor agent NVP-BEZ235, a dual inhibitor of PI3K/mTOR, rescued the cell viability at low concentrations meaning that CQ acted as an autophagy inhibitor, but CQ induced the lethal effect at high concentrations. Acridine orange staining revealed that CQ at high doses induced lysosomal membrane permeabilization (LMP). High doses of CQ produced cellular reactive oxygen species (ROS) and cotreatment of antioxidants, such as NAC and trolox, with high doses of CQ rescued the cell viability. These results suggest that CQ may exert its dual activities, as autophagy inhibitor or LMP inducer, in concentration-dependent manner. PMID:25949192

  19. Directed Ig class switch recombination in activated murine B cells.

    PubMed Central

    Winter, E; Krawinkel, U; Radbruch, A

    1987-01-01

    Immunoglobulin class switch recombination occurs at frequencies of up to 10%/cell/generation in activated murine B-lymphocytes. We analysed cH gene rearrangements and switch recombinations from active and inactive IgH loci of B-cells activated in various ways and immortalized by cell fusion. Although about half of the IgM+ cells show rearrangement of c mu genes, the deletion of c mu is a rare event. Half of the IgG3+ and IgG1+ cells show rearrangement of c mu genes on the inactive IgH locus and the other half of the IgG+ cells have deleted c mu from both IgH loci by switch recombination. This recombination is directed to the same switch regions on both IgH loci in 60-80% of all cases. Interleukin 4 may play a critical role in programming murine B-lymphocytes for specific switch recombination. Images Fig. 1. Fig. 2. Fig. 6. PMID:3038529

  20. Antihelminthic niclosamide modulates dendritic cells activation and function.

    PubMed

    Wu, Chieh-Shan; Li, Yi-Rong; Chen, Jeremy J W; Chen, Ying-Che; Chu, Chiang-Liang; Pan, I-Hong; Wu, Yu-Shan; Lin, Chi-Chen

    2014-01-01

    Dendritic cells (DCs) link the sensing of the environment by the innate immune system to the initiation of adaptive immune responses. Accordingly, DCs are considered to be a major target in the development of immunomodulating compounds. In this study, the effect of niclosamide, a Food and Drug Administration-approved antihelminthic drug, on the activation of lipopolysaccharide (LPS)-stimulated murine bone marrow-derived DCs was examined. Our experimental results show that niclosamide reduced the pro-inflammatory cytokine and chemokine expression of LPS-activated DCs. In addition, niclosamide also affected the expression of MHC and costimulatory molecules and influenced the ability of the cells to take up antigens. Therefore, in mixed cell cultures composed of syngeneic OVA-specific T cells and DCs, niclosamide-treated DCs showed a decreased ability to stimulate T cell proliferation and IFN-γ production. Furthermore, intravenous injection of niclosamide also attenuated contact hypersensitivity (CHS) in mice during sensitization with 2,4-dinitro-1-fluorobenzene. Blocking the LPS-induced activation of MAPK-ERK, JNK and NF-κB may contribute to the inhibitory effect of niclosamide on DC activation. Collectively, our findings suggest that niclosamide can manipulate the function of DCs. These results provide new insight into the immunopharmacological role of niclosamide and suggest that it may be useful for the treatment of chronic inflammatory disorders or DC-mediated autoimmune diseases. PMID:24561310

  1. Cathepsin B Activity Initiates Apoptosis via Digestive Protease Activation in Pancreatic Acinar Cells and Experimental Pancreatitis.

    PubMed

    Sendler, Matthias; Maertin, Sandrina; John, Daniel; Persike, Maria; Weiss, F Ulrich; Krüger, Burkhard; Wartmann, Thomas; Wagh, Preshit; Halangk, Walter; Schaschke, Norbert; Mayerle, Julia; Lerch, Markus M

    2016-07-01

    Pancreatitis is associated with premature activation of digestive proteases in the pancreas. The lysosomal hydrolase cathepsin B (CTSB) is a known activator of trypsinogen, and its deletion reduces disease severity in experimental pancreatitis. Here we studied the activation mechanism and subcellular compartment in which CTSB regulates protease activation and cellular injury. Cholecystokinin (CCK) increased the activity of CTSB, cathepsin L, trypsin, chymotrypsin, and caspase 3 in vivo and in vitro and induced redistribution of CTSB to a secretory vesicle-enriched fraction. Neither CTSB protein nor activity redistributed to the cytosol, where the CTSB inhibitors cystatin-B/C were abundantly present. Deletion of CTSB reduced and deletion of cathepsin L increased intracellular trypsin activation. CTSB deletion also abolished CCK-induced caspase 3 activation, apoptosis-inducing factor, as well as X-linked inhibitor of apoptosis protein degradation, but these depended on trypsinogen activation via CTSB. Raising the vesicular pH, but not trypsin inhibition, reduced CTSB activity. Trypsin inhibition did not affect apoptosis in hepatocytes. Deletion of CTSB affected apoptotic but not necrotic acinar cell death. In summary, CTSB in pancreatitis undergoes activation in a secretory, vesicular, and acidic compartment where it activates trypsinogen. Its deletion or inhibition regulates acinar cell apoptosis but not necrosis in two models of pancreatitis. Caspase 3-mediated apoptosis depends on intravesicular trypsinogen activation induced by CTSB, not CTSB activity directly, and this mechanism is pancreas-specific. PMID:27226576

  2. Activation of cells using femtosecond laser beam (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Batabyal, Subrata; Satpathy, Sarmishtha; Kim, Young-tae; Mohanty, Samarendra K.

    2016-03-01

    Study of communication in cellular systems requires precise activation of targeted cell(s) in the network. In contrast to chemical, electrical, thermal, mechanical stimulation, optical stimulation is non-invasive and is better suited for stimulation of targeted cells. As compared to visible lasers, the near infrared (NIR) microsecond/nanosecond pulsed laser beams are being used as preferred stimulation tool as they provide higher penetration depth in tissues. Femotosecond (FS) laser beams in NIR are also being used for direct and indirect (i.e. via two-photon optogenetics) stimulation of cells. Here, we present a comparative evaluation of efficacy of NIR FS laser beam for direct (no optogenetic sensitization) and 2ph optogenetic stimulation of cells. Further, for the first time, we demonstrate the use of blue (~450 nm, obtained by second harmonic generation) FS laser beam for stimulation of cells with and without Channelrhodopisn-2 (ChR2) expression. Comparative analysis of photocurrent generated by blue FS laser beam and continuous wave blue light for optogenetics stimulation of ChR2 transfected HEK cells will be presented. The use of ultrafast laser micro-beam for focal, non-contact, and repeated stimulation of single cells in a cellular circuitry allowed us to study the communication between different cell types.

  3. Responses of cells in plasma-activated medium

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiromasa; Mizuno, Masaaki; Ishikawa, Kenji; Takeda, Keigo; Hashizume, Hiroshi; Nakamura, Kae; Kajiyama, Hiroaki; Kano, Hiroyuki; Okazaki, Yasumasa; Toyokuni, Shinya; Maruyama, Shoichi; Kodera, Yasuhiro; Terasaki, Hiroko; Adachi, Tetsuo; Kato, Masashi; Kikkawa, Fumitaka; Hori, Masaru

    2015-09-01

    Plasma consists of electrons, ions, radicals, and lights, and produces various reactive species in gas and liquid phase. Cells receive various inputs from their circumstances, and induce several physiological outputs. Our goal is to clarify the relationships between plasma inputs and physiological outputs. Plasma-activated medium (PAM) is a circumstance that plasma provides cells and our previous studies suggest that PAM is a promising tool for cancer therapy. However, the mode of actions remains to be elucidated. We propose survival and proliferation signaling networks as well as redox signaling networks are key factors to understand cellular responses of PAM-treated glioblastoma cells.

  4. ASBESTOS-INDUCED ACTIVATION OF CELL SIGNALING PATHWAYS IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Using respiratory epithelial cells transfected with either superoxide dismutase (SOD) or catalase, the authors tested the hypothesis that the activation of the epidermal growth factor (EGF) receptor signal pathway after asbestos exposure involves an oxidative stress. Western blot...

  5. Benfotiamine upregulates antioxidative system in activated BV-2 microglia cells

    PubMed Central

    Bozic, Iva; Savic, Danijela; Stevanovic, Ivana; Pekovic, Sanja; Nedeljkovic, Nadezda; Lavrnja, Irena

    2015-01-01

    Chronic microglial activation and resulting sustained neuroinflammatory reaction are generally associated with neurodegeneration. Activated microglia acquires proinflammatory cellular profile that generates oxidative burst. Their persistent activation exacerbates inflammation, which damages healthy neurons via cytotoxic mediators, such as superoxide radical anion and nitric oxide. In our recent study, we have shown that benfotiamine (S-benzoylthiamine O-monophosphate) possesses anti-inflammatory effects. Here, the effects of benfotiamine on the pro-oxidative component of activity of LPS-stimulated BV-2 cells were investigated. The activation of microglia was accompanied by upregulation of intracellular antioxidative defense, which was further promoted in the presence of benfotiamine. Namely, activated microglia exposed to non-cytotoxic doses of benfotiamine showed increased levels and activities of hydrogen peroxide- and superoxide-removing enzymes—catalase and glutathione system, and superoxide dismutase. In addition, benfotiamine showed the capacity to directly scavenge superoxide radical anion. As a consequence, benfotiamine suppressed the activation of microglia and provoked a decrease in NO and ·O−2 production and lipid peroxidation. In conclusion, benfotiamine might silence pro-oxidative activity of microglia to alleviate/prevent oxidative damage of neighboring CNS cells. PMID:26388737

  6. Sphingosine Kinase Activity Is Not Required for Tumor Cell Viability

    PubMed Central

    Brown, Matthew L.; Carlson, Timothy; Coxon, Angela; Fajardo, Flordeliza; Frank, Brendon; Gustin, Darin; Kamb, Alexander; Kassner, Paul D.; Li, Shyun; Li, Yihong; Morgenstern, Kurt; Plant, Matthew; Quon, Kim; Ruefli-Brasse, Astrid; Schmidt, Joanna; Swearingen, Elissa; Walker, Nigel; Wang, Zhulun; Watson, J. E. Vivienne; Wickramasinghe, Dineli; Wong, Mariwil; Xu, Guifen; Wesche, Holger

    2013-01-01

    Sphingosine kinases (SPHKs) are enzymes that phosphorylate the lipid sphingosine, leading to the formation of sphingosine-1-phosphate (S1P). In addition to the well established role of extracellular S1P as a mitogen and potent chemoattractant, SPHK activity has been postulated to be an important intracellular regulator of apoptosis. According to the proposed rheostat theory, SPHK activity shifts the intracellular balance from the pro-apoptotic sphingolipids ceramide and sphingosine to the mitogenic S1P, thereby determining the susceptibility of a cell to apoptotic stress. Despite numerous publications with supporting evidence, a clear experimental confirmation of the impact of this mechanism on tumor cell viability in vitro and in vivo has been hampered by the lack of suitable tool reagents. Utilizing a structure based design approach, we developed potent and specific SPHK1/2 inhibitors. These compounds completely inhibited intracellular S1P production in human cells and attenuated vascular permeability in mice, but did not lead to reduced tumor cell growth in vitro or in vivo. In addition, siRNA experiments targeting either SPHK1 or SPHK2 in a large panel of cell lines failed to demonstrate any statistically significant effects on cell viability. These results show that the SPHK rheostat does not play a major role in tumor cell viability, and that SPHKs might not be attractive targets for pharmacological intervention in the area of oncology. PMID:23861887

  7. Functional Anatomy of T Cell Activation and Synapse Formation

    PubMed Central

    Fooksman, David R.; Vardhana, Santosh; Vasiliver-Shamis, Gaia; Liese, Jan; Blair, David; Waite, Janelle; Sacristán, Catarina; Victora, Gabriel; Zanin-Zhorov, Alexandra; Dustin, Michael L.

    2010-01-01

    T cell activation and function require a structured engagement of antigen-presenting cells. These cell contacts are characterized by two distinct dynamics in vivo: transient contacts resulting from promigratory junctions called immunological kinapses or prolonged contacts from stable junctions called immunological synapses. Kinapses operate in the steady state to allow referencing to self-peptide-MHC (pMHC) and searching for pathogen-derived pMHC. Synapses are induced by T cell receptor (TCR) interactions with agonist pMHC under specific conditions and correlate with robust immune responses that generate effector and memory T cells. High-resolution imaging has revealed that the synapse is highly coordinated, integrating cell adhesion, TCR recognition of pMHC complexes, and an array of activating and inhibitory ligands to promote or prevent T cell signaling. In this review, we examine the molecular components, geometry, and timing underlying kinapses and synapses. We integrate recent molecular and physiological data to provide a synthesis and suggest ways forward. PMID:19968559

  8. Long noncoding RNAs in B-cell development and activation

    PubMed Central

    Brazão, Tiago F.; Johnson, Jethro S.; Müller, Jennifer; Heger, Andreas; Ponting, Chris P.

    2016-01-01

    Long noncoding RNAs (lncRNAs) are potentially important regulators of cell differentiation and development, but little is known about their roles in B lymphocytes. Using RNA-seq and de novo transcript assembly, we identified 4516 lncRNAs expressed in 11 stages of B-cell development and activation. Most of these lncRNAs have not been previously detected, even in the closely related T-cell lineage. Comparison with lncRNAs previously described in human B cells identified 185 mouse lncRNAs that have human orthologs. Using chromatin immunoprecipitation-seq, we classified 20% of the lncRNAs as either enhancer-associated (eRNA) or promoter-associated RNAs. We identified 126 eRNAs whose expression closely correlated with the nearest coding gene, thereby indicating the likely location of numerous enhancers active in the B-cell lineage. Furthermore, using this catalog of newly discovered lncRNAs, we show that PAX5, a transcription factor required to specify the B-cell lineage, bound to and regulated the expression of 109 lncRNAs in pro-B and mature B cells and 184 lncRNAs in acute lymphoblastic leukemia. PMID:27381906

  9. Many ways to die: passive and active cell death styles.

    PubMed

    Fietta, Pieranna

    2006-01-01

    In multicellular organisms, cells may undergo passive, pathological death in response to various environmental injuries, or actively decide to self-destroy in order to ensure proper physiological morphogenesis, preserve tissue homeostasis and eliminate abnormal cells. While the passive cell demise occurs in an accidental, violent and chaotic way, corresponding to "necrosis", the active auto-elimination, defined "programmed cell death" (PCD), is executed in planned modalities. Different PCD pathways have been described, such as apoptosis, autophagic death, para-apoptosis and programmed necrosis. However, death patterns may overlap or integrate, providing a variety of cellular responses to various circumstances or stimuli. The consequences for the whole organism of necrosis and PCD are quite different. In the case of classical necrosis, cytosolic constituents chaotically spill into extracellular space through damaged plasma membrane and provoke an inflammatory response, while in most PCDs the cellular components are safely isolated by membranes, and then consumed by adjacent parenchymal cells and/or resident phagocytes without inflammation. Thus, whereas the necrotic cell removal induces and amplifies pathological processes, the elimination of PCD debris may remain virtually unnoticed by the body. Otherwise, alterations of PCD controls may be involved in human diseases, such as developmental abnormalities, or neurodegenerative, autoimmune and neoplastic affections, whose treatment implies the complete understanding of cell suicide processes. In this review, the cellular death patterns are focused and their significance discussed. PMID:16791791

  10. Long noncoding RNAs in B-cell development and activation.

    PubMed

    Brazão, Tiago F; Johnson, Jethro S; Müller, Jennifer; Heger, Andreas; Ponting, Chris P; Tybulewicz, Victor L J

    2016-08-18

    Long noncoding RNAs (lncRNAs) are potentially important regulators of cell differentiation and development, but little is known about their roles in B lymphocytes. Using RNA-seq and de novo transcript assembly, we identified 4516 lncRNAs expressed in 11 stages of B-cell development and activation. Most of these lncRNAs have not been previously detected, even in the closely related T-cell lineage. Comparison with lncRNAs previously described in human B cells identified 185 mouse lncRNAs that have human orthologs. Using chromatin immunoprecipitation-seq, we classified 20% of the lncRNAs as either enhancer-associated (eRNA) or promoter-associated RNAs. We identified 126 eRNAs whose expression closely correlated with the nearest coding gene, thereby indicating the likely location of numerous enhancers active in the B-cell lineage. Furthermore, using this catalog of newly discovered lncRNAs, we show that PAX5, a transcription factor required to specify the B-cell lineage, bound to and regulated the expression of 109 lncRNAs in pro-B and mature B cells and 184 lncRNAs in acute lymphoblastic leukemia. PMID:27381906

  11. Novel yeast cell dehydrogenase activity assay in situ.

    PubMed

    Berłowska, Joanna; Kregiel, Dorota; Klimek, Leszek; Orzeszyna, Bartosz; Ambroziak, Wojciech

    2006-01-01

    The aim of this research was to develop a suitable method of succinate dehydrogenase activity assay in situ for different industrial yeast strains. For this purpose different compounds: EDTA, Triton X-100, sodium deoxycholate, digitonin, nystatin and beta-mercaptoethanol were used. The permeabilization process was controlled microscopically by primuline staining. Enzyme assay was conducted in whole yeast cells with Na-succinate as substrate, phenazine methosulfate (PMS) as electron carrier and in the presence one of two different tetrazolium salts: tetrazolium blue chloride (BT) or cyanoditolyl tetrazolium chloride (CTC) reduced during the assay. In comparabile studies of yeast vitality the amount of intracellular ATP was determined according to luciferin/luciferase method. During the succinate dehydrogenase assay in intact yeast cells without permeabilization, BT formazans were partially visualized in the cells, but CTC formazans appeared to be totally extracellular or associated with the plasma membrane. Under these conditions there was no linear relationship between formazan color intensity signal and yeast cell density. From all chemical compounds tested, only digitonin was effective in membrane permeabilization without negative influence on cell morphology. Furthermore, with digitonin-treated cells a linear relationship between formazan color intensity signal and yeast cell number was noticed. Significant decreasing of succinate dehydrogenase activity and ATP content were observed during aging of the tested yeast strains. PMID:17419290

  12. Islet cell thymidine kinase activity as indicator of islet cell proliferation in rat pancreas

    SciTech Connect

    Swenne, I. )

    1990-01-01

    The activity of thymidine kinase in homogenates of isolated rat islets of Langerhans was measured and correlated with the DNA replicatory activity of the islet cells. Adult and fetal rat islets were cultured in medium with 2.7 or 16.7 mM glucose or 16.7 mM glucose and 1 microgram/ml human growth hormone. In both types of islets, 16.7 mM glucose doubled (3H)thymidine incorporation compared with 2.7 mM glucose, and the addition of growth hormone caused a further increase in DNA replication. TK activity in the islets showed similar changes in response to glucose and growth hormone. The correlation between (3H)thymidine incorporation and TK activity was thus highly significant. Cell-cycle analysis of cultured fetal rat islets showed that TK activity was preferentially expressed during the S phase of the cell cycle. TK activity of freshly isolated islets declined with the age of the animal. In pancreatic sections, the islet cell autoradiographic labeling index after (3H)thymidine administration in vivo likewise declined with age and was correlated with the TK activity in freshly isolated islets. It is suggested that measurements of islet TK activity can be used as index of islet cell proliferation; this method has the distinct advantage of avoiding the cumbersome procedure of preparing and scoring autoradiograms.

  13. Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells.

    PubMed

    Luo, Yuping; Coskun, Volkan; Liang, Aibing; Yu, Juehua; Cheng, Liming; Ge, Weihong; Shi, Zhanping; Zhang, Kunshan; Li, Chun; Cui, Yaru; Lin, Haijun; Luo, Dandan; Wang, Junbang; Lin, Connie; Dai, Zachary; Zhu, Hongwen; Zhang, Jun; Liu, Jie; Liu, Hailiang; deVellis, Jean; Horvath, Steve; Sun, Yi Eve; Li, Siguang

    2015-05-21

    The scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133(+)/GFAP(-) ependymal (E) cells in the adult mouse forebrain neurogenic zone. Surprisingly, prominent hub genes of the gene network unique to ependymal CD133(+)/GFAP(-) quiescent cells were enriched for immune-responsive genes, as well as genes encoding receptors for angiogenic factors. Administration of vascular endothelial growth factor (VEGF) activated CD133(+) ependymal neural stem cells (NSCs), lining not only the lateral but also the fourth ventricles and, together with basic fibroblast growth factor (bFGF), elicited subsequent neural lineage differentiation and migration. This study revealed the existence of dormant ependymal NSCs throughout the ventricular surface of the CNS, as well as signals abundant after injury for their activation. PMID:26000486

  14. Berberine-induced anticancer activities in FaDu head and neck squamous cell carcinoma cells.

    PubMed

    Seo, Yo-Seob; Yim, Min-Ji; Kim, Bok-Hee; Kang, Kyung-Rok; Lee, Sook-Young; Oh, Ji-Su; You, Jae-Seek; Kim, Su-Gwan; Yu, Sang-Joun; Lee, Gyeong-Je; Kim, Do Kyung; Kim, Chun Sung; Kim, Jin-Soo; Kim, Jae-Sung

    2015-12-01

    In the present study, we investigated berberine‑induced apoptosis and the signaling pathways underlying its activity in FaDu head and neck squamous cell carcinoma cells. Berberine did not affect the viability of primary human normal oral keratinocytes. In contrast, the cytotoxicity of berberine was significantly increased in FaDu cells stimulated with berberine for 24 h. Furthermore, berberine increased nuclear condensation and apoptosis rates in FaDu cells than those in untreated control cells. Berberine also induced the upregulation of apoptotic ligands, such as FasL and TNF-related apoptosis-inducing ligand, and triggered the activation of caspase-8, -7 and -3, and poly(ADP ribose) polymerase, characteristic of death receptor-dependent extrinsic apoptosis. Moreover, berberine activated the mitochondria‑dependent apoptotic signaling pathway by upregulating pro-apoptotic factors, such as Bax, Bad, Apaf-1, and the active form of caspase-9, and downregulating anti-apoptotic factors, such as Bcl-2 and Bcl-xL. In addition, berberine increased the expression of the tumor suppressor p53 in FaDu cells. The pan-caspase inhibitor Z-VAD-fmk suppressed the activation of caspase-3 and prevented cytotoxicity in FaDu cells treated with berberine. Interestingly, berberine suppressed cell migration through downregulation of vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP)-2, and MMP-9. Moreover, the phosphorylation of extracellular signal-regulated kinase (ERK1/2) and p38, components of the mitogen-activated protein kinase pathway that are associated with the expression of MMP and VEGF, was suppressed in FaDu cells treated with berberine for 24 h. Therefore, these data suggested that berberine exerted anticancer effects in FaDu cells through induction of apoptosis and suppression of migration. Berberine may have potential applications as a chemotherapeutic agent for the management of head and neck squamous carcinoma. PMID:26503508

  15. Mesenchymal stem cells inhibit complement activation by secreting factor H.

    PubMed

    Tu, Zhidan; Li, Qing; Bu, Hong; Lin, Feng

    2010-11-01

    Mesenchymal stem cells (MSCs) possess potent and broad immunosuppressive capabilities, and have shown promise in clinical trials treating many inflammatory diseases. Previous studies have found that MSCs inhibit dendritic cell, T-cell, and B-cell activities in the adaptive immunity; however, whether MSCs inhibit complement in the innate immunity, and if so, by which mechanism, have not been established. In this report, we found that MSCs constitutively secrete factor H, which potently inhibits complement activation. Depletion of factor H in the MSC-conditioned serum-free media abolishes their complement inhibitory activities. In addition, production of factor H by MSCs is augmented by inflammatory cytokines TNF-α and interferon-γ (IFN-γ) in dose- and time-dependent manners, while IL-6 does not have a significant effect. Furthermore, the factor H production from MSCs is significantly suppressed by the prostaglandin E2 (PGE2) synthesis inhibitor indomethacin and the indoleamine 2,3-dioxygenase (IDO) inhibitor 1-methyl-d-tryptophan (1-MT), both of which inhibitors are known to efficiently dampen MSCs immunosuppressive activity. These results indicate that MSCs inhibit complement activation by producing factor H, which could be another mechanism underlying MSCs broad immunosuppressive capabilities. PMID:20163251

  16. Tomato waste: Carotenoids content, antioxidant and cell growth activities.

    PubMed

    Stajčić, Sladjana; Ćetković, Gordana; Čanadanović-Brunet, Jasna; Djilas, Sonja; Mandić, Anamarija; Četojević-Simin, Dragana

    2015-04-01

    The carotenoid content, antioxidant and cell growth activities of tomato waste extracts, obtained from five different tomato genotypes, was investigated. High performance liquid chromatography was used to identify and quantify the main carotenoids present in tomato waste extracts. The antioxidant activity of tomato waste extracts was tested using spectrophotometric methods, 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity and reducing power assay. The highest DPPH scavenging activity (IC50 = 0.057 mg/ml) was obtained for Bačka extract. The Knjaz extract showed the best reducing power (IC50 = 2.12 mg/ml). Cell growth effects were determined in HeLa, MCF7 and MRC-5 cell lines by sulforhodamine B test. Anti-proliferative effects were observed in all cell lines at higher concentrations (⩾ 0.125 mg/ml). The carotenoid contents exhibited a strong correlation with antioxidant and anti-proliferation activity. The results obtained indicated that tomato waste should be regarded as potential nutraceutic resource and may be used as a functional food ingredient. PMID:25442547

  17. Master switches of T-cell activation and differentiation.

    PubMed

    Beier, K C; Kallinich, T; Hamelmann, E

    2007-04-01

    T-cells play a central role in allergic airway diseases such as bronchial asthma. The imbalance between allergen-specific pro-inflammatory and pro-allergic T-cell responses on one hand and regulatory or suppressive T-cell responses on the other may best explain the development of unwanted immune responses against environmental allergens, which lead to immunoglobulin E production and airway inflammation. A key role in the fine tuning of any T-cell response is provided by the engagement of so-called co-stimulatory molecules that are required for the full activation of T-cells and the recognition of antigens via the antigen-specific T-cell receptor. Many of these co-stimulatory molecules have been identified only recently, leading to a fundamental change in the overall understanding of T-cell regulation. Due to their pivotal impact on T-cell differentiation and control, co-stimulatory molecules are promising targets for therapeutic intervention in T-cell-regulated or -mediated immune disorders, including allergic diseases and asthma. In the present article, an attempt is made to summarise the current knowledge on the basic concept of co-stimulation, the presently known co-stimulatory molecules and their various functions on T-cell activation or suppression. The mini-series will be completed by two more articles describing the recent experimental studies and preliminary clinical findings regarding the role of co-stimulatory molecules in allergic disorders and bronchial asthma, and a discussion regarding the feasibility of co-stimulatory molecules as potential targets for the treatment of allergic airway disease. Although it is too early for any clinical implication or utilisation at this moment, the authors are convinced that a better understanding of co-stimulation in the context of allergic asthma will finally provide novel and promising approaches for treatment and prevention. PMID:17400879

  18. Modulation of Dendritic Cell Activation and Subsequent Th1 Cell Polarization by Lidocaine.

    PubMed

    Jeon, Young-Tae; Na, Hyeongjin; Ryu, Heeju; Chung, Yeonseok

    2015-01-01

    Dendritic cells play an essential role in bridging innate and adaptive immunity by recognizing cellular stress including pathogen- and damage-associated molecular patterns and by shaping the types of antigen-specific T cell immunity. Although lidocaine is widely used in clinical settings that trigger cellular stress, it remains unclear whether such treatment impacts the activation of innate immune cells and subsequent differentiation of T cells. Here we showed that lidocaine inhibited the production of IL-6, TNFα and IL-12 from dendritic cells in response to toll-like receptor ligands including lipopolysaccharide, poly(I:C) and R837 in a dose-dependent manner. Notably, the differentiation of Th1 cells was significantly suppressed by the addition of lidocaine while the same treatment had little effect on the differentiation of Th17, Th2 and regulatory T cells in vitro. Moreover, lidocaine suppressed the ovalbumin-specific Th1 cell responses in vivo induced by the adoptive transfer of ovalbumin-pulsed dendritic cells. These results demonstrate that lidocaine inhibits the activation of dendritic cells in response to toll-like receptor signals and subsequently suppresses the differentiation of Th1 cell responses. PMID:26445366

  19. PARP activation promotes nuclear AID accumulation in lymphoma cells

    PubMed Central

    Böttcher, Katrin; Schmidt, Angelika; Davari, Kathrin; Müller, Peter; Kremmer, Elisabeth; Hemmerich, Peter; Pfeil, Ines; Jungnickel, Berit

    2016-01-01

    Activation-induced cytidine deaminase (AID) initiates immunoglobulin diversification in germinal center B cells by targeted introduction of DNA damage. As aberrant nuclear AID action contributes to the generation of B cell lymphoma, the protein's activity is tightly regulated, e.g. by nuclear/cytoplasmic shuttling and nuclear degradation. In the present study, we asked whether DNA damage may affect regulation of the AID protein. We show that exogenous DNA damage that mainly activates base excision repair leads to prevention of proteasomal degradation of AID and hence its nuclear accumulation. Inhibitor as well as knockout studies indicate that activation of poly (ADP-ribose) polymerase (PARP) by DNA damaging agents promotes both phenomena. These findings suggest that PARP inhibitors influence DNA damage dependent AID regulation, with interesting implications for the regulation of AID function and chemotherapy of lymphoma. PMID:26921193

  20. Effects of physical activity on endothelial progenitor cells (EPCs)

    PubMed Central

    De Biase, Chiara; De Rosa, Roberta; Luciano, Rossella; De Luca, Stefania; Capuano, Ernesto; Trimarco, Bruno; Galasso, Gennaro

    2014-01-01

    Physical activity has a therapeutic role in cardiovascular disease (CVD), through its beneficial effects on endothelial function and cardiovascular system. Circulating endothelial progenitor cells (EPCs) are bone marrow (BM) derived cells that represent a novel therapeutic target in CVD patients, because of their ability to home to sites of ischemic injury and repair the damaged vessels. Several studies show that physical activity results in a significant increase in circulating EPCs, and, in particular, there are some evidence of the beneficial exercise-induced effects on EPCs activity in CVD settings, including coronary artery disease (CAD), heart failure (HF), and peripheral artery disease (PAD). The aim of this paper is to review the current evidence about the beneficial effects of physical exercise on endothelial function and EPCs levels and activity in both healthy subjects and patients with CVD. PMID:24550833

  1. Increased Intraepithelial Vα24 Invariant NKT Cells in the Celiac Duodenum

    PubMed Central

    Montalvillo, Enrique; Bernardo, David; Martínez-Abad, Beatriz; Allegretti, Yessica; Fernández-Salazar, Luis; Calvo, Carmen; Chirdo, Fernando G.; Garrote, José A.; Arranz, Eduardo

    2015-01-01

    Celiac Disease (CD) is an interferon (IFN)γ-mediated duodenal hypersensitivity to wheat gluten occurring in genetically predisposed individuals. Gluten-free diet (GFD) leads to a complete remission of the disease. Vα24-restricted invariant NKT (iNKT) cells are important to maintain immune homeostasis in the gut mucosa because of their unique capacity to rapidly produce large quantities of both T-helper (Th)1 and Th2 cytokines upon stimulation. We studied the presence of these cells in the CD duodenum. Duodenal biopsies were obtained from 45 untreated-CD patients (uCD), 15 Gluten Free Diet-CD patients (GFD-CD), 44 non-inflamed non-CD controls (C-controls) and 15 inflamed non-CD controls (I-controls). Two populations from Spain and Argentina were recruited. Messenger RNA (mRNA) expression of Vα24-Jα18 (invariant TCRα chain of human iNKT cells), IFNγ and intracellular transcription factor Forkhead Box P3 (Foxp3), and flow cytometry intraepithelial lymphocyte (IEL) profile were determined. Both uCD and GFD-CD patients had higher Vα24-Jα18 mRNA levels than non-CD controls (I and C-controls). The expression of Vα24-Jα18 correlated with Marsh score for the severity of mucosal lesion and also with increased mRNA IFNγ levels. uCD and GFD-CD patients had decreased mRNA expression of FoxP3 but increased expression of Vα24-Jα18, which revealed a CD-like molecular profile. Increased numbers of iNKT cells were confirmed by flow cytometry within the intraepithelial lymphocyte compartment of uCD and GFD-CD patients and correlated with Vα24-Jα18 mRNA expression. In conclusion, we have found an increased number of iNKT cells in the duodenum from both uCD and GFD-CD patients, irrespective of the mucosal status. A CD-like molecular profile, defined by an increased mRNA expression of Vα24-Jα18 together with a decreased expression of FoxP3, may represent a pro-inflammatory signature of the CD duodenum. PMID:26529008

  2. Human Dendritic Cells Activated by TSLP and CD40L Induce Proallergic Cytotoxic T Cells

    PubMed Central

    Gilliet, Michel; Soumelis, Vassili; Watanabe, Norihiko; Hanabuchi, Shino; Antonenko, Svetlana; de Waal-Malefyt, Rene; Liu, Yong-Jun

    2003-01-01

    Human thymic stromal lymphopoietin (TSLP) is a novel epithelial cell–derived cytokine, which induces dendritic cell (DC)-mediated CD4+ T cell responses with a proallergic phenotype. Although the participation of CD8+ T cells in allergic inflammation is well documented, their functional properties as well as the pathways leading to their generation remain poorly understood. Here, we show that TSLP-activated CD11c+ DCs potently activate and expand naive CD8+ T cells, and induce their differentiation into interleukin (IL)-5 and IL-13–producing effectors exhibiting poor cytolytic activity. Additional CD40L triggering of TSLP-activated DCs induced CD8+ T cells with potent cytolytic activity, producing large amounts of interferon (IFN)-γ, while retaining their capacity to produce IL-5 and IL-13. These data further support the role of TSLP as initial trigger of allergic T cell responses and suggest that CD40L-expressing cells may act in combination with TSLP to amplify and sustain pro-allergic responses and cause tissue damage by promoting the generation of IFN-γ–producing cytotoxic effectors. PMID:12707303

  3. Characterization of a serine protease-mediated cell death program activated in human leukemia cells

    SciTech Connect

    O'Connell, A.R.; Holohan, C.; Torriglia, A.; Lee, B.F.; Stenson-Cox, C. . E-mail: catherine.stenson@nuigalway.ie

    2006-01-01

    Tightly controlled proteolysis is a defining feature of apoptosis and caspases are critical in this regard. Significant roles for non-caspase proteases in cell death have been highlighted. Staurosporine causes a rapid induction of apoptosis in virtually all mammalian cell types. Numerous studies demonstrate that staurosporine can activate cell death under caspase-inhibiting circumstances. The aim of this study was to investigate the proteolytic mechanisms responsible for cell death under these conditions. To that end, we show that inhibitors of serine proteases can delay cell death in one such system. Furthermore, through profiling of proteolytic activation, we demonstrate, for the first time, that staurosporine activates a chymotrypsin-like serine protease-dependent cell death in HL-60 cells independently, but in parallel with the caspase controlled systems. Features of the serine protease-mediated system include cell shrinkage and apoptotic morphology, regulation of caspase-3, altered nuclear morphology, generation of an endonuclease and DNA degradation. We also demonstrate a staurosporine-induced activation of a putative 16 kDa chymotrypsin-like protein during apoptosis.

  4. Necroptosis of Dendritic Cells Promotes Activation of γδ T Cells.

    PubMed

    Collins, Cheryl C; Bashant, Kathleen; Erikson, Cuixia; Thwe, Phyu Myat; Fortner, Karen A; Wang, Hong; Morita, Craig T; Budd, Ralph C

    2016-01-01

    γδ T cells function at the interface between innate and adaptive immunity and have well-demonstrated roles in response to infection, autoimmunity and tumors. A common characteristic of these seemingly disparate conditions may be cellular stress or death. However, the conditions under which ligands for γδ T cells are induced or exposed remain largely undefined. We observed that induction of necroptosis of murine or human dendritic cells (DC) by inhibition of caspase activity paradoxically augments their ability to activate γδ T cells. Furthermore, upregulation of the stabilizer of caspase-8 activity, c-FLIP, by IL-4, not only greatly reduced the susceptibility of DC to necroptosis, but also considerably decreased their ability to activate γδ T cells. Collectively, these findings suggest that the induction of necroptosis in DC upregulates or exposes the expression of γδ T cell ligands, and they support the view that γδ T cells function in the immune surveillance of cell stress. PMID:27431410

  5. DOCK2 regulates cell proliferation through Rac and ERK activation in B cell lymphoma

    SciTech Connect

    Wang, Lei; Nishihara, Hiroshi; Kimura, Taichi; Kato, Yasutaka; Tanino, Mishie; Nishio, Mitsufumi; Obara, Masato; Endo, Tomoyuki; Koike, Takao; Tanaka, Shinya

    2010-04-23

    DOCK2; a member of the CDM protein family, regulates cell motility and cytokine production through the activation of Rac in mammalian hematopoietic cells and plays a pivotal role in the modulation of the immune system. Here we demonstrated the alternative function of DOCK2 in hematopoietic tumor cells, especially in terms of its association with the tumor progression. Immunostaining for DOCK2 in 20 cases of human B cell lymphoma tissue specimens including diffuse large B cell lymphoma and follicular lymphoma revealed the prominent expression of DOCK2 in all of the lymphoma cells. DOCK2-knockdown (KD) of the B cell lymphoma cell lines, Ramos and Raji, using the lentiviral shRNA system presented decreased cell proliferation compared to the control cells. Furthermore, the tumor formation of DOCK2-KD Ramos cell in nude mice was significantly abrogated. Western blotting analysis and pull-down assay using GST-PAK-RBD kimeric protein suggested the presence of DOCK2-Rac-ERK pathway regulating the cell proliferation of these lymphoma cells. This is the first report to clarify the prominent role of DOCK2 in hematopoietic malignancy.

  6. Ragweed subpollen particles of respirable size activate human dendritic cells.

    PubMed

    Pazmandi, Kitti; Kumar, Brahma V; Szabo, Krisztina; Boldogh, Istvan; Szoor, Arpad; Vereb, Gyorgy; Veres, Agota; Lanyi, Arpad; Rajnavolgyi, Eva; Bacsi, Attila

    2012-01-01

    Ragweed (Ambrosia artemisiifolia) pollen grains, which are generally considered too large to reach the lower respiratory tract, release subpollen particles (SPPs) of respirable size upon hydration. These SPPs contain allergenic proteins and functional NAD(P)H oxidases. In this study, we examined whether exposure to SPPs initiates the activation of human monocyte-derived dendritic cells (moDCs). We found that treatment with freshly isolated ragweed SPPs increased the intracellular levels of reactive oxygen species (ROS) in moDCs. Phagocytosis of SPPs by moDCs, as demonstrated by confocal laser-scanning microscopy, led to an up-regulation of the cell surface expression of CD40, CD80, CD86, and HLA-DQ and an increase in the production of IL-6, TNF-α, IL-8, and IL-10. Furthermore, SPP-treated moDCs had an increased capacity to stimulate the proliferation of naïve T cells. Co-culture of SPP-treated moDCs with allogeneic CD3(+) pan-T cells resulted in increased secretion of IFN-γ and IL-17 by T cells of both allergic and non-allergic subjects, but induced the production of IL-4 exclusively from the T cells of allergic individuals. Addition of exogenous NADPH further increased, while heat-inactivation or pre-treatment with diphenyleneiodonium (DPI), an inhibitor of NADPH oxidases, strongly diminished, the ability of SPPs to induce phenotypic and functional changes in moDCs, indicating that these processes were mediated, at least partly, by the intrinsic NAD(P)H oxidase activity of SPPs. Collectively, our data suggest that inhaled ragweed SPPs are fully capable of activating dendritic cells (DCs) in the airways and SPPs' NAD(P)H oxidase activity is involved in initiation of adaptive immune responses against innocuous pollen proteins. PMID:23251688

  7. Optical Control of Living Cells Electrical Activity by Conjugated Polymers.

    PubMed

    Martino, Nicola; Bossio, Caterina; Vaquero Morata, Susana; Lanzani, Guglielmo; Antognazza, Maria Rosa

    2016-01-01

    Hybrid interfaces between organic semiconductors and living tissues represent a new tool for in-vitro and in-vivo applications. In particular, conjugated polymers display several optimal properties as substrates for biological systems, such as good biocompatibility, excellent mechanical properties, cheap and easy processing technology, and possibility of deposition on light, thin and flexible substrates. These materials have been employed for cellular interfaces like neural probes, transistors for excitation and recording of neural activity, biosensors and actuators for drug release. Recent experiments have also demonstrated the possibility to use conjugated polymers for all-optical modulation of the electrical activity of cells. Several in-vitro study cases have been reported, including primary neuronal networks, astrocytes and secondary line cells. Moreover, signal photo-transduction mediated by organic polymers has been shown to restore light sensitivity in degenerated retinas, suggesting that these devices may be used for artificial retinal prosthesis in the future. All in all, light sensitive conjugated polymers represent a new approach for optical modulation of cellular activity. In this work, all the steps required to fabricate a bio-polymer interface for optical excitation of living cells are described. The function of the active interface is to transduce the light stimulus into a modulation of the cell membrane potential. As a study case, useful for in-vitro studies, a polythiophene thin film is used as the functional, light absorbing layer, and Human Embryonic Kidney (HEK-293) cells are employed as the biological component of the interface. Practical examples of successful control of the cell membrane potential upon stimulation with light pulses of different duration are provided. In particular, it is shown that both depolarizing and hyperpolarizing effects on the cell membrane can be achieved depending on the duration of the light stimulus. The reported

  8. Ligand Mobility Modulates Immunological Synapse Formation and T Cell Activation

    PubMed Central

    Hsu, Chih-Jung; Hsieh, Wan-Ting; Waldman, Abraham; Clarke, Fiona; Huseby, Eric S.; Burkhardt, Janis K.; Baumgart, Tobias

    2012-01-01

    T cell receptor (TCR) engagement induces clustering and recruitment to the plasma membrane of many signaling molecules, including the protein tyrosine kinase zeta-chain associated protein of 70 kDa (ZAP70) and the adaptor SH2 domain-containing leukocyte protein of 76 kDa (SLP76). This molecular rearrangement results in formation of the immunological synapse (IS), a dynamic protein array that modulates T cell activation. The current study investigates the effects of apparent long-range ligand mobility on T cell signaling activity and IS formation. We formed stimulatory lipid bilayers on glass surfaces from binary lipid mixtures with varied composition, and characterized these surfaces with respect to diffusion coefficient and fluid connectivity. Stimulatory ligands coupled to these surfaces with similar density and orientation showed differences in their ability to activate T cells. On less mobile membranes, central supramolecular activation cluster (cSMAC) formation was delayed and the overall accumulation of CD3ζ at the IS was reduced. Analysis of signaling microcluster (MC) dynamics showed that ZAP70 MCs exhibited faster track velocity and longer trajectories as a function of increased ligand mobility, whereas movement of SLP76 MCs was relatively insensitive to this parameter. Actin retrograde flow was observed on all surfaces, but cell spreading and subsequent cytoskeletal contraction were more pronounced on mobile membranes. Finally, increased tyrosine phosphorylation and persistent elevation of intracellular Ca2+ were observed in cells stimulated on fluid membranes. These results point to ligand mobility as an important parameter in modulating T cell responses. PMID:22384241

  9. XIAP reverses various functional activities of FRNK in endothelial cells

    SciTech Connect

    Ahn, Sunyoung; Kim, Hyun Jeong; Chi, Sung-Gil; Park, Heonyong

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer FRNK domain is recruited into focal adhesion (FA), controlling endothelial cell adhesion. Black-Right-Pointing-Pointer XIAP binds the FRNK domain of FAK. Black-Right-Pointing-Pointer XIAP inhibits recruitment of FRNK into Fas and FRNK-promoted cell adhesion. Black-Right-Pointing-Pointer XIAP plays a key role in vascular functions of FRNK or FRNK domain-mediated vascular functions of FAK. -- Abstract: In endothelial cells, focal adhesion kinase (FAK) regulates cell proliferation, migration, adhesion, and shear-stimulated activation of MAPK. We recently found that FAK is recruited into focal adhesion (FA) sites through interactions with XIAP (X-chromosome linked inhibitor of apoptosis protein) and activated by Src kinase in response to shear stress. In this study, we examined which domain(s) of FAK is(are) important for various vascular functions such as FA recruiting, XIAP-binding and shear stress-stimulated ERK activation. Through a series of experiments, we determined that the FRNK domain is recruited into FA sites and promotes endothelial cell adhesion. Interestingly, XIAP knockdown was shown to reduce FA recruitment of FRNK and the cell adhesive effect of FRNK. In addition, we found that XIAP interacts with FRNK, suggesting cross-talk between XIAP and FRNK. We also demonstrated that FRNK inhibits endothelial cell migration and shear-stimulated ERK activation. These inhibitory effects of FRNK were reversed by XIAP knockdown. Taken together, we can conclude that XIAP plays a key role in vascular functions of FRNK or FRNK domain-mediated vascular functions of FAK.

  10. New thiazolidinediones affect endothelial cell activation and angiogenesis.

    PubMed

    Rudnicki, Martina; Tripodi, Gustavo L; Ferrer, Renila; Boscá, Lisardo; Pitta, Marina G R; Pitta, Ivan R; Abdalla, Dulcineia S P

    2016-07-01

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor-γ (PPARγ) agonists used in treating type 2 diabetes that may exhibit beneficial pleiotropic effects on endothelial cells. In this study, we characterized the effects of three new TZDs [GQ-32 (3-biphenyl-4-ylmethyl-5-(4-nitro-benzylidene)-thiazolidine-2,4-dione), GQ-169 (5-(4-chloro-benzylidene)-3-(2,6-dichloro-benzyl)-thiazolidine-2,4-dione), and LYSO-7 (5-(5-bromo-1H-indol-3-ylmethylene)-3-(4-chlorobenzyl)-thiazolidine-2,4-dione)] on endothelial cells. The effects of the new TZDs were evaluated on the production of nitric oxide (NO) and reactive oxygen species (ROS), cell migration, tube formation and the gene expression of adhesion molecules and angiogenic mediators in human umbilical vein endothelial cells (HUVECs). PPARγ activation by new TZDs was addressed with a reporter gene assay. The three new TZDs activated PPARγ and suppressed the tumor necrosis factor α-induced expression of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1. GQ-169 and LYSO-7 also inhibited the glucose-induced ROS production. Although NO production assessed with 4-amino-5-methylamino-2',7'-difluorofluorescein-FM probe indicated that all tested TZDs enhanced intracellular levels of NO, only LYSO-7 treatment significantly increased the release of NO from HUVEC measured by chemiluminescence analysis of culture media. Additionally, GQ-32 and GQ-169 induced endothelial cell migration and tube formation by the up-regulation of angiogenic molecules expression, such as vascular endothelial growth factor A and interleukin 8. GQ-169 also increased the mRNA levels of basic fibroblast growth factor, and GQ-32 enhanced transforming growth factor-β expression. Together, the results of this study reveal that these new TZDs act as partial agonists of PPARγ and modulate endothelial cell activation and endothelial dysfunction besides to stimulate migration and tube formation. PMID:27108791

  11. Intracellular localization of mevalonate-activating enzymes in plant cells

    PubMed Central

    Rogers, L. J.; Shah, S. P. J.; Goodwin, T. W.

    1966-01-01

    Mevalonate-activating enzymes are shown to be present in the chloroplasts of French-bean leaves. The chloroplast membrane is impermeable to mevalonic acid. Mevalonate-activating enzymes also appear to be found outside the chloroplast. These results support the view that terpenoid biosynthesis in the plant cell is controlled by a combination of enzyme segregation and specific membrane permeability. ImagesFig. 1.Fig. 2. PMID:5947149

  12. Aminobisphosphonates Synergize with Human Cytomegalovirus To Activate the Antiviral Activity of Vγ9Vδ2 Cells.

    PubMed

    Daguzan, Charline; Moulin, Morgane; Kulyk-Barbier, Hanna; Davrinche, Christian; Peyrottes, Suzanne; Champagne, Eric

    2016-03-01

    Human Vγ9Vδ2 T cells are activated through their TCR by neighboring cells producing phosphoantigens. Zoledronate (ZOL) treatment induces intracellular accumulation of the phosphoantigens isopentenyl pyrophosphate and ApppI. Few attempts have been made to use immunomanipulation of Vγ9Vδ2 lymphocytes in chronic viral infections. Although Vγ9Vδ2 T cells seem to ignore human CMV (HCMV)-infected cells, we examined whether they can sense HCMV when a TCR stimulus is provided with ZOL. Fibroblasts treated with ZOL activate Vγ9Vδ2 T cells to produce IFN-γ but not TNF. Following the same treatment, HCMV-infected fibroblasts stimulate TNF secretion and an increased production of IFN-γ, indicating that Vγ9Vδ2 cells can sense HCMV infection. Increased lymphokine production was observed with most clinical isolates and laboratory HCMV strains, HCMV-permissive astrocytoma, or dendritic cells, as well as "naive" and activated Vγ9Vδ2 cells. Quantification of intracellular isopentenyl pyrophosphate/ApppI following ZOL treatment showed that HCMV infection boosts their accumulation. This was explained by an increased capture of ZOL and by upregulation of HMG-CoA synthase and reductase transcription. Using an experimental setting where infected fibroblasts were cocultured with γδ cells in submicromolar concentrations of ZOL, we show that Vγ9Vδ2 cells suppressed substantially the release of infectious particles while preserving uninfected cells. Vγ9Vδ2 cytotoxicity was decreased by HCMV infection of targets whereas anti-IFN-γ and anti-TNF Abs significantly blocked the antiviral effect. Our experiments indicate that cytokines produced by Vγ9Vδ2 T cells have an antiviral potential in HCMV infection. This should lead to in vivo studies to explore the possible antiviral effect of immunostimulation with ZOL in this context. PMID:26819204

  13. Oxytocin-Stimulated NFAT Transcriptional Activation in Human Myometrial Cells

    PubMed Central

    McArdle, Craig A.; López Bernal, Andrés

    2012-01-01

    Oxytocin (OXT) is a peptide hormone that binds the OXT receptor on myometrial cells, initiating an intracellular signaling cascade, resulting in accumulation of intracellular calcium and smooth muscle contraction. In other systems, an elevation of intracellular Ca2+ stimulates nuclear translocation of the transcription factor, nuclear factor of activated T cells (NFAT), which is transcriptionally active in arterial and ileal smooth muscle. Here we have investigated the role of NFAT in the mechanism of action of OXT. Human myometrial cells expressed all five NFAT isoforms (NFATC1–C4 and -5). Myometrial cells were transduced with a recombinant adenovirus expressing a NFATC1-EFP reporter, and a semi-automated imaging system was used to monitor effects of OXT on reporter localization in live cells. OXT induced a concentration-dependent nuclear translocation of NFATC1-EFP in a reversible manner, which was inhibited by OXT antagonists and calcineurin inhibitors. Pulsatile stimulation with OXT caused intermittent, pulse-frequency-dependent, nuclear translocation of NFATC1-EFP, which was more efficient than sustained stimulation. OXT induced nuclear translocation of endogenous NFAT that was transcriptionally active, because OXT stimulated activity of a NFAT-response element-luciferase reporter and induced calcineurin-NFAT dependent expression of RGS2, RCAN1, and PTGS2 (COX2) mRNA. Furthermore, OXT-dependent transcription was dependent on protein neosynthesis; cycloheximide abolished RGS2 transcription but augmented RCAN1 and COX2 transcriptional readouts. This study identifies a novel signaling mechanism within the myometrium, whereby calcineurin-NFAT signaling mediates OXT-induced transcriptional activity. Furthermore, we show NFATC1-EFP is responsive to pulses of OXT, a mechanism by which myometrial cells could decode OXT pulse frequency. PMID:22902539

  14. Flt3 permits survival during infection by rendering dendritic cells competent to activate NK cells.

    PubMed

    Eidenschenk, Céline; Crozat, Karine; Krebs, Philippe; Arens, Ramon; Popkin, Daniel; Arnold, Carrie N; Blasius, Amanda L; Benedict, Chris A; Moresco, Eva Marie Y; Xia, Yu; Beutler, Bruce

    2010-05-25

    A previously unappreciated signal necessary for dendritic cell (DC)-mediated activation of natural killer (NK) cells during viral infection was revealed by a recessive N-ethyl-N-nitrosourea-induced mutation called warmflash (wmfl). Wmfl homozygotes displayed increased susceptibility to mouse cytomegalovirus (MCMV) infection. In response to MCMV infection in vivo, delayed NK cell activation was observed, but no intrinsic defects in NK cell activation or function were identified. Rather, coculture experiments demonstrated that NK cells are suboptimally activated by wmfl DCs, which showed impaired cytokine production in response to MCMV or synthetic TLR7 and TLR9 ligands. The wmfl mutation was identified in the gene encoding the Fms-like tyrosine kinase 3 (Flt3). Flt3 ligand (Flt3L) is transiently induced in the serum upon infection or TLR activation. However, antibody blockade reveals no acute requirement for Flt3L, suggesting that the Flt3L --> Flt3 axis programs the development of DCs, making them competent to support NK effector function. In the absence of Flt3 signaling, NK cell activation is delayed and survival during MCMV infection is markedly compromised. PMID:20457904

  15. Flt3 permits survival during infection by rendering dendritic cells competent to activate NK cells

    PubMed Central

    Eidenschenk, Céline; Crozat, Karine; Krebs, Philippe; Arens, Ramon; Popkin, Daniel; Arnold, Carrie N.; Blasius, Amanda L.; Benedict, Chris A.; Moresco, Eva Marie Y.; Xia, Yu; Beutler, Bruce

    2010-01-01

    A previously unappreciated signal necessary for dendritic cell (DC)-mediated activation of natural killer (NK) cells during viral infection was revealed by a recessive N-ethyl-N-nitrosourea-induced mutation called warmflash (wmfl). Wmfl homozygotes displayed increased susceptibility to mouse cytomegalovirus (MCMV) infection. In response to MCMV infection in vivo, delayed NK cell activation was observed, but no intrinsic defects in NK cell activation or function were identified. Rather, coculture experiments demonstrated that NK cells are suboptimally activated by wmfl DCs, which showed impaired cytokine production in response to MCMV or synthetic TLR7 and TLR9 ligands. The wmfl mutation was identified in the gene encoding the Fms-like tyrosine kinase 3 (Flt3). Flt3 ligand (Flt3L) is transiently induced in the serum upon infection or TLR activation. However, antibody blockade reveals no acute requirement for Flt3L, suggesting that the Flt3L → Flt3 axis programs the development of DCs, making them competent to support NK effector function. In the absence of Flt3 signaling, NK cell activation is delayed and survival during MCMV infection is markedly compromised. PMID:20457904

  16. Identification of a novel gene expressed in activated natural killer cells and T cells

    SciTech Connect

    Dahl, C.A.; Schall, R.P.; He, H.; Cairns, J.S. )

    1992-01-15

    The authors have isolated a cDNA clone from a human activated NK cell-derived cDNA library that identifies a transcript [NK4] that is selectively expressed in lymphocytes. The expression of this transcript is increased after activation of T cells by mitogens or activation of NK cells by IL-2 (lymphokine-activated killer cells). The transcript levels demonstrated by Northern blot analysis increase by 12 h after activation, remain high for at least 48 h, and require protein synthesis for expression. Southern blot analysis of B lymphoblastoid lines derived from 18 unrelated individuals reveal variable banding patterns suggestive of polymorphism within the NK4 gene. No homology was found between the sequence of the coding region of this transcript and any sequences in the GenBank data base. Sequence homology to the U1 small nuclear RNA was found within the 3[prime] untranslated region immediately upstream of the site of polyadenylation, suggesting a possible role for U1 in the polyadenylation process. Sequence analysis indicates the transcript would encode a protein having a mass of 27 kDa. The presence of a signal sequence and lack of a transmembrane region suggests that the protein is secreted. In addition, the protein contains an RGD sequence that may be involved in cellular adhesion. This transcript appears to encode a novel product common to the activation pathways of both NK cells and T cells. 50 refs., 8 figs.

  17. Initial activation of EpCAM cleavage via cell-to-cell contact

    PubMed Central

    2009-01-01

    Background Epithelial cell adhesion molecule EpCAM is a transmembrane glycoprotein, which is frequently over-expressed in simple epithelia, progenitors, embryonic and tissue stem cells, carcinoma and cancer-initiating cells. Besides functioning as a homophilic adhesion protein, EpCAM is an oncogenic receptor that requires regulated intramembrane proteolysis for activation of its signal transduction capacity. Upon cleavage, the extracellular domain EpEX is released as a soluble ligand while the intracellular domain EpICD translocates into the cytoplasm and eventually into the nucleus in combination with four-and-a-half LIM domains protein 2 (FHL2) and β-catenin, and drives cell proliferation. Methods EpCAM cleavage, induction of the target genes, and transmission of proliferation signals were investigated under varying density conditions using confocal laser scanning microscopy, immunoblotting, cell counting, and conditional cell systems. Results EpCAM cleavage, induction of the target genes, and transmission of proliferation signals were dependent on adequate cell-to-cell contact. If cell-to-cell contact was prohibited EpCAM did not provide growth advantages. If cells were allowed to undergo contact to each other, EpCAM transmitted proliferation signals based on signal transduction-related cleavage processes. Accordingly, the pre-cleaved version EpICD was not dependent on cell-to-cell contact in order to induce c-myc and cell proliferation, but necessitated nuclear translocation. For the case of contact-inhibited cells, although cleavage of EpCAM occurred, nuclear translocation of EpICD was reduced, as were EpCAM effects. Conclusion Activation of EpCAM's cleavage and oncogenic capacity is dependent on cellular interaction (juxtacrine) to provide for initial signals of regulated intramembrane proteolysis, which then support signalling via soluble EpEX (paracrine). PMID:19925656

  18. Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation.

    PubMed

    Deshpande, R V; Goust, J M; Chakrabarti, A K; Barbosa, E; Hogan, E L; Banik, N L

    1995-02-10

    Although calpain is ubiquitously present in human tissues and is thought to play a role in demyelination, its activity is very low in resting normal lymphocytes. To determine the nature of calpain expression at the mRNA and protein levels in human lymphoid cells, we studied human T lymphocytic, B lymphocytic, and monocytic lines as well as peripheral blood mononuclear cells. Stimulation of cells with the phorbol ester phorbol myristate acetate and the calcium ionophore A23187 resulted in increased calpain mRNA and protein expression. Calpain mRNA expression is also increased in human T cells stimulated with anti-CD3. A dissociation between the increases of RNA and protein suggested that calpain could be released from the cells; the subsequent experiments showed its presence in the extracellular environment. 5,6-Dichloro-1b-D-ribofuranosylbenzimidazole, a reversible inhibitor of mRNA synthesis, reduced calpain mRNA levels by 50-67% and protein levels by 72-91%. Its removal resulted in resumption of both calpain mRNA and protein synthesis. Cycloheximide, a translational inhibitor, reduced calpain protein levels by 77-81% and calpain mRNA levels by 96% in activated THP-1 cells. Interferon-gamma induced calpain mRNA and protein in U-937 and THP-1 cells. Dexamethasone increased mRNA expression in THP-1 cells. Our results indicate that activation of lymphoid cells results in de novo synthesis and secretion of calpain. PMID:7852311

  19. Blockade of Mast Cell Activation Reduces Cutaneous Scar Formation

    PubMed Central

    Ranzer, Matthew J.; Wilgus, Traci A.; DiPietro, Luisa A.

    2014-01-01

    Damage to the skin initiates a cascade of well-orchestrated events that ultimately leads to repair of the wound. The inflammatory response is key to wound healing both through preventing infection and stimulating proliferation and remodeling of the skin. Mast cells within the tissue are one of the first immune cells to respond to trauma, and upon activation they release pro-inflammatory molecules to initiate recruitment of leukocytes and promote a vascular response in the tissue. Additionally, mast cells stimulate collagen synthesis by dermal fibroblasts, suggesting they may also influence scar formation. To examine the contribution of mast cells in tissue repair, we determined the effects the mast cell inhibitor, disodium cromoglycate (DSCG), on several parameters of dermal repair including, inflammation, re-epithelialization, collagen fiber organization, collagen ultrastructure, scar width and wound breaking strength. Mice treated with DSCG had significantly reduced levels of the inflammatory cytokines IL-1α, IL-1β, and CXCL1. Although DSCG treatment reduced the production of inflammatory mediators, the rate of re-epithelialization was not affected. Compared to control, inhibition of mast cell activity caused a significant decrease in scar width along with accelerated collagen re-organization. Despite the reduced scar width, DSCG treatment did not affect the breaking strength of the healed tissue. Tryptase β1 exclusively produced by mast cells was found to increase significantly in the course of wound healing. However, DSCG treatment did not change its level in the wounds. These results indicate that blockade of mast cell activation reduces scar formation and inflammation without further weakening the healed wound. PMID:24465509

  20. Blockade of mast cell activation reduces cutaneous scar formation.

    PubMed

    Chen, Lin; Schrementi, Megan E; Ranzer, Matthew J; Wilgus, Traci A; DiPietro, Luisa A

    2014-01-01

    Damage to the skin initiates a cascade of well-orchestrated events that ultimately leads to repair of the wound. The inflammatory response is key to wound healing both through preventing infection and stimulating proliferation and remodeling of the skin. Mast cells within the tissue are one of the first immune cells to respond to trauma, and upon activation they release pro-inflammatory molecules to initiate recruitment of leukocytes and promote a vascular response in the tissue. Additionally, mast cells stimulate collagen synthesis by dermal fibroblasts, suggesting they may also influence scar formation. To examine the contribution of mast cells in tissue repair, we determined the effects the mast cell inhibitor, disodium cromoglycate (DSCG), on several parameters of dermal repair including, inflammation, re-epithelialization, collagen fiber organization, collagen ultrastructure, scar width and wound breaking strength. Mice treated with DSCG had significantly reduced levels of the inflammatory cytokines IL-1α, IL-1β, and CXCL1. Although DSCG treatment reduced the production of inflammatory mediators, the rate of re-epithelialization was not affected. Compared to control, inhibition of mast cell activity caused a significant decrease in scar width along with accelerated collagen re-organization. Despite the reduced scar width, DSCG treatment did not affect the breaking strength of the healed tissue. Tryptase β1 exclusively produced by mast cells was found to increase significantly in the course of wound healing. However, DSCG treatment did not change its level in the wounds. These results indicate that blockade of mast cell activation reduces scar formation and inflammation without further weakening the healed wound. PMID:24465509

  1. Photodynamic activation as a molecular switch to promote osteoblast cell differentiation via AP-1 activation.

    PubMed

    Kushibiki, Toshihiro; Tu, Yupeng; Abu-Yousif, Adnan O; Hasan, Tayyaba

    2015-01-01

    In photodynamic therapy (PDT), cells are impregnated with a photosensitizing agent that is activated by light irradiation, thereby photochemically generating reactive oxygen species (ROS). The amounts of ROS produced depends on the PDT dose and the nature of the photosensitizer. Although high levels of ROS are cytotoxic, at physiological levels they play a key role as second messengers in cellular signaling pathways, pluripotency, and differentiation of stem cells. To investigate further the use of photochemically triggered manipulation of such pathways, we exposed mouse osteoblast precursor cells and rat primary mesenchymal stromal cells to low-dose PDT. Our results demonstrate that low-dose PDT can promote osteoblast differentiation via the activation of activator protein-1 (AP-1). Although PDT has been used primarily as an anti-cancer therapy, the use of light as a photochemical "molecular switch" to promote differentiation should expand the utility of this method in basic research and clinical applications. PMID:26279470

  2. Photodynamic activation as a molecular switch to promote osteoblast cell differentiation via AP-1 activation

    PubMed Central

    Kushibiki, Toshihiro; Tu, Yupeng; Abu-Yousif, Adnan O.; Hasan, Tayyaba

    2015-01-01

    In photodynamic therapy (PDT), cells are impregnated with a photosensitizing agent that is activated by light irradiation, thereby photochemically generating reactive oxygen species (ROS). The amounts of ROS produced depends on the PDT dose and the nature of the photosensitizer. Although high levels of ROS are cytotoxic, at physiological levels they play a key role as second messengers in cellular signaling pathways, pluripotency, and differentiation of stem cells. To investigate further the use of photochemically triggered manipulation of such pathways, we exposed mouse osteoblast precursor cells and rat primary mesenchymal stromal cells to low-dose PDT. Our results demonstrate that low-dose PDT can promote osteoblast differentiation via the activation of activator protein-1 (AP-1). Although PDT has been used primarily as an anti-cancer therapy, the use of light as a photochemical “molecular switch” to promote differentiation should expand the utility of this method in basic research and clinical applications. PMID:26279470

  3. Immunomodulation of phloretin by impairing dendritic cell activation and function.

    PubMed

    Lin, Chi-Chen; Chu, Ching-Liang; Ng, Chin-Sheng; Lin, Ching-Yen; Chen, Der-Yuan; Pan, I-Hong; Huang, Kao-Jean

    2014-05-01

    Dietary compounds in fruits and vegetables have been shown to exert many biological activities. In addition to antioxidant effects, a number of flavonoids are able to modulate inflammatory responses. Here, we demonstrated that phloretin (PT), a natural dihydrochalcone found in many fruits, suppressed the activation and function of mouse dendritic cells (DCs). Phloretin disturbed the multiple intracellular signaling pathways in DCs induced by the Toll-like receptor 4 (TLR4) agonist lipopolysaccharide (LPS), including ROS, MAPKs (ERK, JNK, p38 MAPK), and NF-κB, and thereby reducing the production of inflammatory cytokines and chemokines. Phloretin also effectively suppressed the activation of DCs treated with different dosages of LPS or various TLR agonists. The LPS-induced DC maturation was attenuated by phloretin because the expression levels of the MHC class II and the co-stimulatory molecules were down-regulated, which then inhibited the LPS-stimulating DCs and the subsequent naïve T cell activation in a mixed lymphocyte reaction. Moreover, in vivo administration of phloretin suppressed the phenotypic maturation of the LPS-challenged splenic DCs and decreased the IFN-γ production from the activated CD4 T cells. Thus, we suggest that phloretin may potentially be an immunomodulator by impairing the activation and function of DCs and phloretin-contained fruits may be helpful in the improvement of inflammation and autoimmune diseases. PMID:24651121

  4. CNR-TAE`s activity on fuel cells

    SciTech Connect

    Staiti, P.; Freni, S.; Passalacqua, E.; Antonucci, V.

    1997-07-01

    The recognition of the advantages and efficiencies implicit in an economy based upon the electrochemical conversion of fuels has led to intensive efforts toward the development of the fuel cells technology. On phosphoric acid fuel cells (PAFC), the CNR-TAE owns a full capability in PAFC technology and has built and tested 1 kW power plant in an ENEA supported program. On molten carbonate fuel cells (MCFC), the CNR-TAE has matured a sound experience on the modeling of energy balances of MCFC with external or internal reforming, screening design and testing of reforming catalysts, on mechanisms of components aging, catalysts formulation and innovative methods to control catalyst poisoning by means of porous ceramic membranes. In solid oxide fuel cells (SOFC) research, a comparison between steam internal and external reforming, exhaust gas recycling reforming and use of partial oxidation has been performed. Basic researches on the mechanism of conduction in solids and search for novel electrolytes are on course. In the field of fuel cells operating at low temperatures, the activity is addressed to the development of low Pt loading electrodes for polymer electrolyte fuel cells (PEFC) and development of ternary catalysts supported on carbon black for electrochemical oxidation of methanol in direct methanol fuel cells (DMFC). Further research is on the fuel cell utilizing a new type of electrolyte; in this field, an heteropolyacid lab-scale monocell has been realized and successful tested.

  5. A Micro Fluorescent Activated Cell Sorter for Astrobiology Applications

    NASA Technical Reports Server (NTRS)

    Platt, Donald W.; Hoover, Richard B.

    2009-01-01

    A micro-scale Fluorescent Activated Cell Sorter (microFACS) for astrobiology applications is under development. This device is designed to have a footprint of 7 cm x 7 cm x 4 cm and allow live-dead counts and sorting of cells that have fluorescent characteristics from staining. The FACS system takes advantage of microfluidics to create a cell sorter that can fit in the palm of the hand. A micron-scale channel allows cells to pass by a blue diode which causes emission of marker-expressed cells which