Sample records for activate intracellular signalling

  1. Key mediators of intracellular amino acids signaling to mTORC1 activation.

    PubMed

    Duan, Yehui; Li, Fengna; Tan, Kunrong; Liu, Hongnan; Li, Yinghui; Liu, Yingying; Kong, Xiangfeng; Tang, Yulong; Wu, Guoyao; Yin, Yulong

    2015-05-01

    Mammalian target of rapamycin complex 1 (mTORC1) is activated by amino acids to promote cell growth via protein synthesis. Specifically, Ras-related guanosine triphosphatases (Rag GTPases) are activated by amino acids, and then translocate mTORC1 to the surface of late endosomes and lysosomes. Ras homolog enriched in brain (Rheb) resides on this surface and directly activates mTORC1. Apart from the presence of intracellular amino acids, Rag GTPases and Rheb, other mediators involved in intracellular amino acid signaling to mTORC1 activation include human vacuolar sorting protein-34 (hVps34) and mitogen-activating protein kinase kinase kinase kinase-3 (MAP4K3). Those molecular links between mTORC1 and its mediators form a complicate signaling network that controls cellular growth, proliferation, and metabolism. Moreover, it is speculated that amino acid signaling to mTORC1 may start from the lysosomal lumen. In this review, we discussed the function of these mediators in mTORC1 pathway and how these mediators are regulated by amino acids in details.

  2. Intracellular Signaling by Hydrolysis of Phospholipids and Activation of Protein Kinase C

    NASA Astrophysics Data System (ADS)

    Nishizuka, Yasutomi

    1992-10-01

    Hydrolysis of inositol phospholipids by phospholipase C is initiated by either receptor stimulation or opening of Ca2+ channels. This was once thought to be the sole mechanism to produce the diacylglycerol that links extracellular signals to intracellular events through activation of protein kinase C. It is becoming clear that agonist-induced hydrolysis of other membrane phospholipids, particularly choline phospholipids, by phospholipase D and phospholipase A_2 may also take part in cell signaling. The products of hydrolysis of these phospholipids may enhance and prolong the activation of protein kinase C. Such prolonged activation of protein kinase C is essential for long-term cellular responses such as cell proliferation and differentiation.

  3. Evaluation of Intracellular Signaling Downstream Chimeric Antigen Receptors

    PubMed Central

    Karlsson, Hannah; Svensson, Emma; Gigg, Camilla; Jarvius, Malin; Olsson-Strömberg, Ulla; Savoldo, Barbara; Dotti, Gianpietro; Loskog, Angelica

    2015-01-01

    CD19-targeting CAR T cells have shown potency in clinical trials targeting B cell leukemia. Although mainly second generation (2G) CARs carrying CD28 or 4-1BB have been investigated in patients, preclinical studies suggest that third generation (3G) CARs with both CD28 and 4-1BB have enhanced capacity. However, little is known about the intracellular signaling pathways downstream of CARs. In the present work, we have analyzed the signaling capacity post antigen stimulation in both 2G and 3G CARs. 3G CAR T cells expanded better than 2G CAR T cells upon repeated stimulation with IL-2 and autologous B cells. An antigen-driven accumulation of CAR+ cells was evident post antigen stimulation. The cytotoxicity of both 2G and 3G CAR T cells was maintained by repeated stimulation. The phosphorylation status of intracellular signaling proteins post antigen stimulation showed that 3G CAR T cells had a higher activation status than 2G. Several proteins involved in signaling downstream the TCR were activated, as were proteins involved in the cell cycle, cell adhesion and exocytosis. In conclusion, 3G CAR T cells had a higher degree of intracellular signaling activity than 2G CARs which may explain the increased proliferative capacity seen in 3G CAR T cells. The study also indicates that there may be other signaling pathways to consider when designing or evaluating new generations of CARs. PMID:26700307

  4. The intracellular carboxyl tail of the PAR-2 receptor controls intracellular signaling and cell death.

    PubMed

    Zhu, Zhihui; Stricker, Rolf; Li, Rong yu; Zündorf, Gregor; Reiser, Georg

    2015-03-01

    The protease-activated receptors are a group of unique G protein-coupled receptors, including PAR-1, PAR-2, PAR-3 and PAR-4. PAR-2 is activated by multiple trypsin-like serine proteases, including trypsin, tryptase and coagulation proteases. The clusters of phosphorylation sites in the PAR-2 carboxyl tail are suggested to be important for the binding of adaptor proteins to initiate intracellular signaling to Ca(2+) and mitogen-activated protein kinases. To explore the functional role of PAR-2 carboxyl tail in controlling intracellular Ca(2+), ERK and AKT signaling, a series of truncated mutants containing different clusters of serines/threonines were generated and expressed in HEK293 cells. Firstly, we observed that lack of the complete C-terminus of PAR-2 in a mutated receptor gave a relatively low level of localization on the cell plasma membrane. Secondly, the shortened carboxyl tail containing 13 amino acids was sufficient for receptor internalization. Thirdly, the cells expressing truncation mutants showed deficits in their capacity to couple to intracellular Ca(2+) and ERK and AKT signaling upon trypsin challenge. In addition, HEK293 cells carrying different PAR-2 truncation mutants displayed decreased levels of cell survival after long-lasting trypsin stimulation. In summary, the PAR-2 carboxyl tail was found to control the receptor localization, internalization, intracellular Ca(2+) responses and signaling to ERK and AKT. The latter can be considered to be important for cell death control.

  5. Pharmacology of intracellular signalling pathways

    PubMed Central

    Nahorski, Stefan R

    2006-01-01

    This article provides a brief and somewhat personalized review of the dramatic developments that have occurred over the last 45 years in our understanding of intracellular signalling pathways associated with G-protein-coupled receptor activation. Signalling via cyclic AMP, the phosphoinositides and Ca2+ is emphasized and these systems have already been revealed as new pharmacological targets. The therapeutic benefits of most of such targets are, however, yet to be realized, but it is certain that the discipline of pharmacology needs to widen its boundaries to meet these challenges in the future. PMID:16402119

  6. Miro1 Regulates Activity-Driven Positioning of Mitochondria within Astrocytic Processes Apposed to Synapses to Regulate Intracellular Calcium Signaling

    PubMed Central

    Stephen, Terri-Leigh; Higgs, Nathalie F.; Sheehan, David F.; Al Awabdh, Sana; López-Doménech, Guillermo; Arancibia-Carcamo, I. Lorena

    2015-01-01

    It is fast emerging that maintaining mitochondrial function is important for regulating astrocyte function, although the specific mechanisms that govern astrocyte mitochondrial trafficking and positioning remain poorly understood. The mitochondrial Rho-GTPase 1 protein (Miro1) regulates mitochondrial trafficking and detachment from the microtubule transport network to control activity-dependent mitochondrial positioning in neurons. However, whether Miro proteins are important for regulating signaling-dependent mitochondrial dynamics in astrocytic processes remains unclear. Using live-cell confocal microscopy of rat organotypic hippocampal slices, we find that enhancing neuronal activity induces transient mitochondrial remodeling in astrocytes, with a concomitant, transient reduction in mitochondrial trafficking, mediated by elevations in intracellular Ca2+. Stimulating neuronal activity also induced mitochondrial confinement within astrocytic processes in close proximity to synapses. Furthermore, we show that the Ca2+-sensing EF-hand domains of Miro1 are important for regulating mitochondrial trafficking in astrocytes and required for activity-driven mitochondrial confinement near synapses. Additionally, activity-dependent mitochondrial positioning by Miro1 reciprocally regulates the levels of intracellular Ca2+ in astrocytic processes. Thus, the regulation of intracellular Ca2+ signaling, dependent on Miro1-mediated mitochondrial positioning, could have important consequences for astrocyte Ca2+ wave propagation, gliotransmission, and ultimately neuronal function. SIGNIFICANCE STATEMENT Mitochondria are key cellular organelles that play important roles in providing cellular energy and buffering intracellular calcium ions. The mechanisms that control mitochondrial distribution within the processes of glial cells called astrocytes and the impact this may have on calcium signaling remains unclear. We show that activation of glutamate receptors or increased neuronal

  7. INTRACELLULAR SIGNALING BY BILE ACIDS

    PubMed Central

    Anwer, Mohammed Sawkat

    2014-01-01

    Bile acids, synthesized from cholesterol, are known to produce beneficial as well as toxic effects in the liver. The beneficial effects include choleresis, immunomodulation, cell survival, while the toxic effects include cholestasis, apoptosis and cellular toxicity. It is believed that bile acids produce many of these effects by activating intracellular signaling pathways. However, it has been a challenge to relate intracellular signaling to specific and at times opposing effects of bile acids. It is becoming evident that bile acids produce different effects by activating different isoforms of phosphoinositide 3-kinase (PI3K), Protein kinase Cs (PKCs), and mitogen activated protein kinases (MAPK). Thus, the apoptotic effect of bile acids may be mediated via PI3K-110γ, while cytoprotection induce by cAMP-GEF pathway involves activation of PI3K-p110α/β isoforms. Atypical PKCζ may mediate beneficial effects and nPKCε may mediate toxic effects, while cPKCα and nPKCδ may be involved in both beneficial and toxic effects of bile acids. The opposing effects of nPKCδ activation may depend on nPKCδ phosphorylation site(s). Activation of ERK1/2 and JNK1/2 pathway appears to mediate beneficial and toxic effects, respectively, of bile acids. Activation of p38α MAPK and p38β MAPK may mediate choleretic and cholestatic effects, respectively, of bile acids. Future studies clarifying the isoform specific effects on bile formation should allow us to define potential therapeutic targets in the treatment of cholestatic disorders. PMID:25378891

  8. Intracellular signals mediating the food intake suppressive effects of hindbrain glucagon-like-peptide-1 receptor activation

    PubMed Central

    Hayes, Matthew R.; Leichner, Theresa M.; Zhao, Shiru; Lee, Grace S.; Chowansky, Amy; Zimmer, Derek; De Jonghe, Bart C.; Kanoski, Scott E.; Grill, Harvey J.; Bence, Kendra K.

    2011-01-01

    Summary Glucagon-like-peptide-1 receptor (GLP-1R) activation within the nucleus tractus solitarius (NTS) suppresses food intake and body weight (BW), but the intracellular signals mediating these effects are unknown. Here, hindbrain (4th icv) GLP-1R activation by Exendin-4 increased PKA and MAPK activity and decreased phosphorylation of AMPK in NTS. PKA and MAPK signaling contribute to food intake and BW suppression by Exendin-4, as inhibitors RpcAMP and U0126 (4th icv), respectively, attenuated Exendin-4's effects. Hindbrain GLP-1R activation inhibited feeding by reducing meal number, not meal size. This effect was attenuated with stimulation of AMPK activity by AICAR (4th icv). The PKA, MAPK and AMPK signaling responses by Ex-4 were present in immortalized GLP-1R-expressing neurons (GT1-7). In conclusion, hindbrain GLP-1R activation suppresses food intake and BW through coordinated PKA-mediated suppression of AMPK and activation of MAPK. Pharmacotherapies targeting these signaling pathways, which mediate intake-suppressive effects of CNS GLP-1R activation, may prove efficacious in treating obesity. PMID:21356521

  9. [Intracellular signaling mechanisms in thyroid cancer].

    PubMed

    Mondragón-Terán, Paul; López-Hernández, Luz Berenice; Gutiérrez-Salinas, José; Suárez-Cuenca, Juan Antonio; Luna-Ceballos, Rosa Isela; Erazo Valle-Solís, Aura

    2016-01-01

    Thyroid cancer is the most common malignancy of the endocrine system, the papillary variant accounts for 80-90% of all diagnosed cases. In the development of papillary thyroid cancer, BRAF and RAS genes are mainly affected, resulting in a modification of the system of intracellular signaling proteins known as «protein kinase mitogen-activated» (MAPK) which consist of «modules» of internal signaling proteins (Receptor/Ras/Raf/MEK/ERK) from the cell membrane to the nucleus. In thyroid cancer, these signanling proteins regulate diverse cellular processes such as differentiation, growth, development and apoptosis. MAPK play an important role in the pathogenesis of thyroid cancer as they are used as molecular biomarkers for diagnostic, prognostic and as possible therapeutic molecular targets. Mutations in BRAF gene have been correlated with poor response to treatment with traditional chemotherapy and as an indicator of poor prognosis. To review the molecular mechanisms involved in intracellular signaling of BRAF and RAS genes in thyroid cancer. Molecular therapy research is in progress for this type of cancer as new molecules have been developed in order to inhibit any of the components of the signaling pathway (RET/PTC)/Ras/Raf/MEK/ERK; with special emphasis on the (RET/PTC)/Ras/Raf section, which is a major effector of ERK pathway. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  10. Intracellular staining for analysis of the expression and phosphorylation of signal transducers and activators of transcription (STATs) in NK cells.

    PubMed

    Miyagi, Takuya; Lee, Seung-Hwan; Biron, Christine A

    2010-01-01

    Cytokines stimulate biological responses by activating intracellular signaling pathways. We have been adapting flow cytometric techniques to measure the levels of expression and activation of signaling molecules within mixed populations containing NK cells and to characterize their differences within NK cell subpopulations. Approaches for evaluating the total levels of the signal transducers and activators of transcription STAT1 and STAT4, of STAT1 in cells expressing IFNgamma, and of the type 1 interferon (type 1 IFN) activation by phosphorylation, i.e., induction of pSTAT1 and pSTAT4, have been developed. The results of experiments using these techniques have demonstrated that an unusual feature of NK cells is high basal expression of STAT4 but reduced STAT1 levels. The condition predisposes for pSTAT4 activation by type 1 IFNs. The work has also shown, however, that total STAT1 levels are induced during viral infections as a result of IFN exposure, and that this change acts to promote the activation of STAT1 but limit both the activation of STAT4 and IFNgamma expression. The intracellular staining approaches used for the studies described here have utility in characterizing other mechanisms regulating cytokine-mediated signaling, and defining additional pathways shaping cellular responses to cytokines.

  11. INTRACELLULAR SIGNALING AND DEVELOPMENTAL NEUROTOXICITY.

    EPA Science Inventory

    A book chapter in ?Molecular Toxicology: Transcriptional Targets? reviewed the role of intracellular signaling in the developmental neurotoxicity of environmental chemicals. This chapter covered a number of aspects including the development of the nervous system, role of intrace...

  12. Two zebrafish G2A homologs activate multiple intracellular signaling pathways in acidic environment.

    PubMed

    Ichijo, Yuta; Mochimaru, Yuta; Azuma, Morio; Satou, Kazuhiro; Negishi, Jun; Nakakura, Takashi; Oshima, Natsuki; Mogi, Chihiro; Sato, Koichi; Matsuda, Kouhei; Okajima, Fumikazu; Tomura, Hideaki

    2016-01-01

    Human G2A is activated by various stimuli such as lysophosphatidylcholine (LPC), 9-hydroxyoctadecadienoic acid (9-HODE), and protons. The receptor is coupled to multiple intracellular signaling pathways, including the Gs-protein/cAMP/CRE, G12/13-protein/Rho/SRE, and Gq-protein/phospholipase C/NFAT pathways. In the present study, we examined whether zebrafish G2A homologs (zG2A-a and zG2A-b) could respond to these stimuli and activate multiple intracellular signaling pathways. We also examined whether histidine residue and basic amino acid residue in the N-terminus of the homologs also play roles similar to those played by human G2A residues if the homologs sense protons. We found that the zG2A-a showed the high CRE, SRE, and NFAT activities, however, zG2A-b showed only the high SRE activity under a pH of 8.0. Extracellular acidification from pH 7.4 to 6.3 ameliorated these activities in zG2A-a-expressing cells. On the other hand, acidification ameliorated the SRE activity but not the CRE and NFAT activities in zG2A-b-expressing cells. LPC or 9-HODE did not modify any activity of either homolog. The substitution of histidine residue at the 174(th) position from the N-terminus of zG2A-a to asparagine residue attenuated proton-induced CRE and NFAT activities but not SRE activity. The substitution of arginine residue at the 32nd position from the N-terminus of zG2A-a to the alanine residue also attenuated its high and the proton-induced CRE and NFAT activities. On the contrary, the substitution did not attenuate SRE activity. The substitution of the arginine residue at the 10th position from the N-terminus of zG2A-b to the alanine residue also did not attenuate its high or the proton-induced SRE activity. These results indicate that zebrafish G2A homologs were activated by protons but not by LPC and 9-HODE, and the activation mechanisms of the homologs were similar to those of human G2A. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Non-T cell activation linker (NTAL) proteolytic cleavage as a terminator of activatory intracellular signals.

    PubMed

    Arbulo-Echevarria, Mikel M; Muñoz-Miranda, Juan Pedro; Caballero-García, Andrés; Poveda-Díaz, José L; Fernández-Ponce, Cecilia; Durán-Ruiz, M Carmen; Miazek, Arkadiusz; García-Cózar, Francisco; Aguado, Enrique

    2016-08-01

    Non-T cell activation linker is an adaptor protein that is tyrosine phosphorylated upon cross-linking of immune receptors expressed on B lymphocytes, NK cells, macrophages, basophils, or mast cells, allowing the recruitment of cytosolic mediators for downstream signaling pathways. Fas receptor acts mainly as a death receptor, and when cross-linked with Fas ligand, many proteins are proteolytically cleaved, including several signaling molecules in T and B cells. Fas receptor triggering also interferes with TCR intracellular signals, probably by means of proteolytic cleavage of several adaptor proteins. We have previously found that the adaptor linker for activation of T cells, evolutionarily related to non-T cell activation linker, is cleaved upon proapoptotic stimuli in T lymphocytes and thymocytes, in a tyrosine phosphorylation-dependent fashion. Here, we describe non-T cell activation linker proteolytic cleavage triggered in human B cells and monocytes by Fas cross-linking and staurosporine treatment. Non-T cell activation linker is cleaved, producing an N-terminal fragment of ∼22 kDa, and such cleavage is abrogated in the presence of caspase 8/granzyme B and caspase 3 inhibitors. Moreover, we have identified an aspartic acid residue at which non-T cell activation linker is cleaved, which similar to linker for activation of T cells, this aspartic acid residue is located close to tyrosine and serine residues, suggesting an interdependence of phosphorylation and proteolytic cleavage. Consistently, induction of non-T cell activation linker phosphorylation by pervanadate inhibits its cleavage. Interestingly, the truncated isoform of non-T cell activation linker, generated after cleavage, has a decreased signaling ability when compared with the full-length molecule. Altogether, our results suggest that cleavage of transmembrane adaptors constitutes a general mechanism for signal termination of immune receptors. © Society for Leukocyte Biology.

  14. Increased thrombospondin-4 after nerve injury mediates disruption of intracellular calcium signaling in primary sensory neurons

    PubMed Central

    Guo, Yuan; Zhang, Zhiyong; Wu, Hsiang-en; Luo, Z. David; Hogan, Quinn H.; Pan, Bin

    2017-01-01

    Painful nerve injury disrupts Ca2+ signaling in primary sensory neurons by elevating plasma membrane Ca2+-ATPase (PMCA) function and depressing sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) function, which decreases endoplasmic reticulum (ER) Ca2+ stores and stimulates store-operated Ca2+ entry (SOCE). The extracellular matrix glycoprotein thrombospondin-4 (TSP4), which is increased after painful nerve injury, decreases Ca2+ current (ICa) through high-voltage–activated Ca2+ channels and increases ICa through low-voltage–activated Ca2+ channels in dorsal root ganglion neurons, which are events similar to the effect of nerve injury. We therefore examined whether TSP4 plays a critical role in injury-induced disruption of intracellular Ca2+ signaling. We found that TSP4 increases PMCA activity, inhibits SERCA, depletes ER Ca2+ stores, and enhances store-operated Ca2+ influx. Injury-induced changes of SERCA and PMCA function are attenuated in TSP4 knock-out mice. Effects of TSP4 on intracellular Ca2+ signaling are attenuated in voltage-gated Ca2+ channel α2δ1 subunit (Cavα2δ1) conditional knock-out mice and are also Protein Kinase C (PKC) signaling dependent. These findings suggest that TSP4 elevation may contribute to the pathogenesis of chronic pain following nerve injury by disrupting intracellular Ca2+ signaling via interacting with the Cavα2δ1 and the subsequent PKC signaling pathway. Controlling TSP4 mediated intracellular Ca2+ signaling in peripheral sensory neurons may be a target for analgesic drug development for neuropathic pain. PMID:28232180

  15. Apoptosis of Alcohol-Exposed Human Placental Cytotrophoblast Cells is Downstream of Intracellular Calcium Signaling

    PubMed Central

    Bolnick, Jay M.; Karana, Rita; Chiang, Po Jen; Kilburn, Brian A.; Romero, Roberto; Diamond, Michael P.; Smith, Susan M.; Armant, D. Randall

    2014-01-01

    Background Apoptosis is induced by ethanol in human placental trophoblast cells, possibly disrupting placentation and contributing to intrauterine growth restriction in fetal alcohol spectrum disorder (FASD). Ethanol induces programmed cell death in several embryonic tissues by raising intracellular Ca2+. Therefore, the role of Ca2+ signaling in ethanol-induced apoptosis was examined using human first trimester cytotrophoblast cell lines, examining the hypothesis that apoptosis is dependent on intracellular Ca2+ signaling. Methods Using HTR-8/SVneo and SW.71 cytotrophoblast cell lines, real-time intracellular Ca2+ concentration was monitored by fluo-4 epifluorescence microscopy and apoptosis was assessed by flow cytometry of cells fluorescently labeled for DNA fragmentation (TUNEL) and annexin V binding. Results Intracellular Ca2+ concentrations increased synchronously in all cells within 10 s of exposure to 50 mM ethanol, but not at lower ethanol concentrations (10–25 mM) incapable of inducing apoptosis. Trophoblast cells treated with inhibitors of Ca2+ signaling (BAPTA-AM, U73122, xestospongin D, BAPTA, SKF-96365) produced no intracellular Ca2+ transients after exposure to 50 mM ethanol and were protected from cell death induced by ethanol. Conclusions Ethanol-induced apoptosis in human cytotrophoblast cells, identified by DNA fragmentation and externalized phosphatidylserine, was dependent upon Ca2+ signaling. Both intracellular Ca2+ mobilization and extracellular Ca2+ influx were required, as well as phosphatidylinositol signaling. Inhibition by SKF-96365 suggests that the capacitative Ca2+ entry mechanism that utilizes TRPC channels was activated by ethanol. Apoptosis occurs downsteam of Ca2+ signaling in trophoblasts, and may contribute to placental insufficiency and poor fetal growth associated with FASD. PMID:24889927

  16. Intracellular leptin signaling following effective weight loss.

    PubMed

    Sahin-Efe, Ayse; Polyzos, Stergios A; Dincer, Fadime; Zaichenko, Lesya; McGovern, Rosemary; Schneider, Benjamin; Mantzoros, Christos S

    2015-08-01

    To investigate the effect of ex-vivo leptin treatment before and after weight loss on key-molecules of intracellular leptin signaling in peripheral blood mononuclear cells (PBMCs) of obese women. Five healthy obese women underwent a 12-week medical nutrition treatment aiming at inducing 10% weight loss. Isolated PBMCs at baseline, and at weeks 8 and 12 were treated with increasing leptin doses (0, 25 and 75 ng/ml) for 30 min. The phosphorylation of signal transducer and activator of transcription (STAT)3, extracellular-signal-regulated kinase (ERK), protein kinase B (Akt) and 5' adenosine monophosphate-activated protein kinase (AMPK) of PBMCs was analyzed using Western blotting. Women lost 10 ± 1% and 13 ± 1% of weight at week 8 and 12, respectively. Circulating leptin and insulin significantly decreased from 39.5 ± 7.7 to 12.2 ± 2.4 ng/ml (p = 0.026) and from 13.0 ± 1.6 to 5.4 ± 0.9 μU/ml (p = 0.005) at week 12, respectively. In the ex vivo study, a significant decrease in STAT3 phosphorylation was observed in the control group after weight loss. Treatment of PBMCs with leptin 75 ng/ml increased significantly ERK, STAT3 and Akt phosphorylation, but no weight loss induced change was observed in response to leptin treatment ex vivo. A 10%-15% weight loss decreases baseline STAT3 phosphorylation ex vivo, but does not alter the effect of increasing doses of leptin on the incremental intracellular phosphorylation of STAT3, ERK, Akt and AMPK. Supraphysiologic leptin doses (75 ng/ml) result in higher protein phosphorylation compared to either physiologic doses or no treatment, before and after weight loss. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Intracellular autocrine VEGF signaling promotes EBDC cell proliferation, which can be inhibited by Apatinib.

    PubMed

    Peng, Sui; Zhang, Yanyan; Peng, Hong; Ke, Zunfu; Xu, Lixia; Su, Tianhong; Tsung, Allan; Tohme, Samer; Huang, Hai; Zhang, Qiuyang; Lencioni, Riccardo; Zeng, Zhirong; Peng, Baogang; Chen, Minhu; Kuang, Ming

    2016-04-10

    Tumor cells produce vascular endothelial growth factor (VEGF) which can interact with membrane or cytoplasmic VEGF receptors (VEGFRs) to promote cell growth. We aimed to investigate the role of extracellular/intracellular autocrine VEGF signaling and Apatinib, a highly selective VEGFR2 inhibitor, in extrahepatic bile duct cancer (EBDC). We found conditioned medium or recombinant human VEGF treatment promoted EBDC cell proliferation through a phospholipase C-γ1-dependent pathway. This pro-proliferative effect was diminished by VEGF, VEGFR1 or VEGFR2 neutralizing antibodies, but more significantly suppressed by intracellular VEGFR inhibitor. The rhVEGF induced intracellular VEGF signaling by promoting nuclear accumulation of pVEGFR1/2 and enhancing VEGF promoter activity, mRNA and protein expression. Internal VEGFR2 inhibitor Apatinib significantly inhibited intracellular VEGF signaling, suppressed cell proliferation in vitro and delayed xenograft tumor growth in vivo, while anti-VEGF antibody Bevacizumab showed no effect. Clinically, overexpression of pVEGFR1 and pVEGFR2 was significantly correlated with poorer overall survival (P = .007 and P = .020, respectively). In conclusion, the intracellular autocrine VEGF loop plays a predominant role in VEGF-induced cell proliferation. Apatinib is an effective intracellular VEGF pathway blocker that presents a great therapeutic potential in EBDC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Intracellular Signalling in Retinal Ischemia

    DTIC Science & Technology

    1990-07-01

    36) However, vascularization of the RPE is not known to occur in human diseases of photoreceptor degeneration, such as retinitis pigmentosa ...A.C. (1986) Retinitis pigmentosa and retinal neovascularization. Ophthalmology 91, 1599- 1603. Figure la: Control rat retina, 8 weeks of age, central...TITLE (Include Security Classification) Intracellular Signalling in Retinal Ischemia 12. PERSONAL AUTHOR(S) Burns, Margaret Sue; Bellhorn, Roy William

  19. Secreted Glioblastoma Nanovesicles Contain Intracellular Signaling Proteins and Active Ras Incorporated in a Farnesylation-dependent Manner*

    PubMed Central

    Luhtala, Natalie; Aslanian, Aaron; Yates, John R.; Hunter, Tony

    2017-01-01

    Glioblastomas (GBMs) are malignant brain tumors with a median survival of less than 18 months. Redundancy of signaling pathways represented within GBMs contributes to their therapeutic resistance. Exosomes are extracellular nanovesicles released from cells and present in human biofluids that represent a possible biomarker of tumor signaling state that could aid in personalized treatment. Herein, we demonstrate that mouse GBM cell-derived extracellular nanovesicles resembling exosomes from an H-RasV12 myr-Akt mouse model for GBM are enriched for intracellular signaling cascade proteins (GO: 0007242) and Ras protein signal transduction (GO: 0007265), and contain active Ras. Active Ras isolated from human and mouse GBM extracellular nanovesicles lysates using the Ras-binding domain of Raf also coprecipitates with ESCRT (endosomal sorting complex required for transport)-associated exosome proteins Vps4a and Alix. Although we initially hypothesized a role for active Ras protein signaling in exosome biogenesis, we found that GTP binding of K-Ras was dispensable for its packaging within extracellular nanovesicles and for the release of Alix. By contrast, farnesylation of K-Ras was required for its packaging within extracellular nanovesicles, yet expressing a K-Ras farnesylation mutant did not decrease the number of nanovesicles or the amount of Alix protein released per cell. Overall, these results emphasize the primary importance of membrane association in packaging of extracellular nanovesicle factors and indicate that screening nanovesicles within human fluids could provide insight into tissue origin and the wiring of signaling proteins at membranes to predict onset and behavior of cancer and other diseases linked to deregulated membrane signaling states. PMID:27909058

  20. Structural Basis of Intracellular TGF-β Signaling: Receptors and Smads.

    PubMed

    Chaikuad, Apirat; Bullock, Alex N

    2016-11-01

    Stimulation of the transforming growth factor β (TGF-β) family receptors activates an intracellular phosphorylation-dependent signaling cascade that culminates in Smad transcriptional activation and turnover. Structural studies have identified a number of allosteric mechanisms that control the localization, conformation, and oligomeric state of the receptors and Smads. Such mechanisms dictate the ordered binding of substrate and adaptor proteins that determine the directionality of the signaling process. Activation of the pathway has been illustrated by the various structures of the receptor-activated Smads (R-Smads) with SARA, Smad4, and YAP, respectively, whereas mechanisms of down-regulation have been elucidated by the structural complexes of FKBP12, Ski, and Smurf1. Interesting parallels have emerged between the R-Smads and the Forkhead-associated (FHA) and interferon regulatory factor (IRF)-associated domains, as well as the Hippo pathway. However, important questions remain as to the mechanism of Smad-independent signaling. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  1. Characteristics of receptor- and transducer-coupled activation of the intracellular signalling in sensory neuron revealed by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Khalisov, M. M.; Penniyaynen, V. A.; Esikova, N. A.; Ankudinov, A. V.; Krylov, B. V.

    2017-01-01

    The mechanical properties of sensory neurons upon activation of intracellular cascade processes by comenic acid binding to a membrane opioid-like receptor (receptor-coupled), as well as a very low (endogenous) concentration of ouabain (transducer-coupled), have been investigated. Using atomic force microscopy, it is established that exposure to ouabain, in contrast to the impact of comenic acid, leads to a hardening of the neuron soma. This suggests that the receptor-coupled signal transmission to the cell genome is carried out through mechanisms that are different from the transducer-coupled signal pathways.

  2. Evolution of the Calcium-Based Intracellular Signaling System

    PubMed Central

    Marchadier, Elodie; Oates, Matt E.; Fang, Hai; Donoghue, Philip C.J.; Hetherington, Alistair M.; Gough, Julian

    2016-01-01

    To progress our understanding of molecular evolution from a collection of well-studied genes toward the level of the cell, we must consider whole systems. Here, we reveal the evolution of an important intracellular signaling system. The calcium-signaling toolkit is made up of different multidomain proteins that have undergone duplication, recombination, sequence divergence, and selection. The picture of evolution, considering the repertoire of proteins in the toolkit of both extant organisms and ancestors, is radically different from that of other systems. In eukaryotes, the repertoire increased in both abundance and diversity at a far greater rate than general genomic expansion. We describe how calcium-based intracellular signaling evolution differs not only in rate but in nature, and how this correlates with the disparity of plants and animals. PMID:27358427

  3. Intracellular signaling by phospholipase D as a therapeutic target.

    PubMed

    Steed, P M; Chow, A H

    2001-09-01

    The pharmaceutical industry has recently focused on intracellular signaling as a means to integrate the multiple facets of complex disease states, such as inflammation, because these pathways respond to numerous extracellular signals and coordinate a collection of cell responses contributing to pathology. One critical aspect of intracellular signaling is regulation of key cell functions by lipid mediators, in particular the generation of a key mediator, phosphatidic acid (PA) via the hydrolysis of phosphatidylcholine by phospholipase D (PLD). Research in this field has intensified, due in part to the recent cloning and partial characterization of the two PLD isoforms in mammalian cells, and this work has contributed significantly to our understanding of events downstream of PA generation. It is these effector functions of PLD activity that make this pathway attractive as a therapeutic target while the biochemical properties of the PLD isozymes make them amenable to small molecule intervention. Recent studies indicate that PA, and its immediate metabolites diacylglycerol and lyso-PA, affect numerous cellular pathways including ligand-mediated secretion, cytoskeletal reorganisations, respiratory burst, prostaglandin release, cell migration, cytokine release, and mitogenesis. This review summarises the data implicating signaling via PLD in these cell functions, obtained from: (i) molecular analyses of PLD/effector interactions, (ii) correlation between PA production and cell responses, (iii) experimental manipulation of PA levels, (iv) inhibition of PLD regulators, and (v) direct inhibition of PA production. The utility of targeting PLD signaling for the treatment of acute/chronic inflammation and other indications is discussed in light of these data.

  4. β2-Adrenergic receptor activation mobilizes intracellular calcium via a non-canonical cAMP-independent signaling pathway.

    PubMed

    Galaz-Montoya, Monica; Wright, Sara J; Rodriguez, Gustavo J; Lichtarge, Olivier; Wensel, Theodore G

    2017-06-16

    Beta adrenergic receptors (βARs) are G-protein-coupled receptors essential for physiological responses to the hormones/neurotransmitters epinephrine and norepinephrine which are found in the nervous system and throughout the body. They are the targets of numerous widely used drugs, especially in the case of the most extensively studied βAR, β 2 AR, whose ligands are used for asthma and cardiovascular disease. βARs signal through Gα s G-proteins and via activation of adenylyl cyclase and cAMP-dependent protein kinase, but some alternative downstream pathways have also been proposed that could be important for understanding normal physiological functioning of βAR signaling and its disruption in disease. Using fluorescence-based Ca 2+ flux assays combined with pharmacology and gene knock-out methods, we discovered a previously unrecognized endogenous pathway in HEK-293 cells whereby β 2 AR activation leads to robust Ca 2+ mobilization from intracellular stores via activation of phospholipase C and opening of inositol trisphosphate (InsP 3 ) receptors. This pathway did not involve cAMP, Gα s , or Gα i or the participation of the other members of the canonical β 2 AR signaling cascade and, therefore, constitutes a novel signaling mechanism for this receptor. This newly uncovered mechanism for Ca 2+ mobilization by β 2 AR has broad implications for adrenergic signaling, cross-talk with other signaling pathways, and the effects of βAR-directed drugs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Inhibitors of Intracellular Signaling Pathways that Lead to Stimulated Epidermal Pigmentation: Perspective of Anti-Pigmenting Agents

    PubMed Central

    Imokawa, Genji; Ishida, Koichi

    2014-01-01

    Few anti-pigmenting agents have been designed and developed according to their known hyperpigmentation mechanisms and corresponding intracellular signaling cascades. Most anti-pigmenting agents developed so far are mechanistically involved in the interruption of constitutional melanogenic mechanisms by which skin color is maintained at a normal and unstimulated level. Thus, owing to the difficulty of confining topical application to a specific hyperpigmented skin area, potent anti-pigmenting agents capable of attenuating the natural unstimulated pigmentation process have the risk of leading to hypopigmentation. Since intracellular signaling pathways within melanocytes do not function substantially in maintaining normal skin color and are activated only by environmental stimuli such as UV radiation, specifically down-regulating the activation of melanogenesis to the constitutive level would be an appropriate strategy to develop new potent anti-pigmenting agents with a low risk of hypopigmentation. In this article, we review the hyperpigmentation mechanisms and intracellular signaling pathways that lead to the stimulation of melanogenesis. We also discuss a screening and evaluation system to select candidates for new anti-melanogenic substances by focusing on inhibitors of endothelin-1 or stem cell factor-triggered intracellular signaling cascades. From this viewpoint, we show that extracts of the herbs Withania somnifera and Melia toosendan and the natural chemicals Withaferin A and Astaxanthin are new candidates for potent anti-pigmenting substances that avoid the risk of hypopigmentation. PMID:24823877

  6. No-flow ischemia inhibits insulin signaling in heart by decreasing intracellular pH.

    PubMed

    Beauloye, C; Bertrand, L; Krause, U; Marsin, A S; Dresselaers, T; Vanstapel, F; Vanoverschelde, J L; Hue, L

    2001-03-16

    Glucose-insulin-potassium solutions exert beneficial effects on the ischemic heart by reducing infarct size and mortality and improving postischemic left ventricular function. Insulin could be the critical protective component of this mixture, although the insulin response of the ischemic and postischemic myocardium has not been systematically investigated. The aim of this work was to study the insulin response during ischemia by analyzing insulin signaling. This was evaluated by measuring changes in activity and/or phosphorylation state of insulin signaling elements in isolated perfused rat hearts submitted to no-flow ischemia. Intracellular pH (pH(i)) was measured by NMR. No-flow ischemia antagonized insulin signaling including insulin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, protein kinase B, p70 ribosomal S6 kinase, and glycogen synthase kinase-3. These changes were concomitant with intracellular acidosis. Perfusing hearts with ouabain and amiloride in normoxic conditions decreased pH(i) and insulin signaling, whereas perfusing at pH 8.2 counteracted the drop in pH(i) and the inhibition of insulin signaling by ischemia. Incubation of cardiomyocytes in normoxic conditions, but at pH values below 6.75, mimicked the effect of ischemia and also inhibited insulin-stimulated glucose uptake. Finally, the in vitro insulin receptor tyrosine kinase activity was progressively inhibited at pH values below physiological pH(i), being abolished at pH 6.0. Therefore, ischemic acidosis decreases kinase activity and tyrosine phosphorylation of the insulin receptor thereby preventing activation of the downstream components of the signaling pathway. We conclude that severe ischemia inhibits insulin signaling by decreasing pH(i).

  7. Neutrophil cell surface receptors and their intracellular signal transduction pathways☆

    PubMed Central

    Futosi, Krisztina; Fodor, Szabina; Mócsai, Attila

    2013-01-01

    Neutrophils play a critical role in the host defense against bacterial and fungal infections, but their inappropriate activation also contributes to tissue damage during autoimmune and inflammatory diseases. Neutrophils express a large number of cell surface receptors for the recognition of pathogen invasion and the inflammatory environment. Those include G-protein-coupled chemokine and chemoattractant receptors, Fc-receptors, adhesion receptors such as selectins/selectin ligands and integrins, various cytokine receptors, as well as innate immune receptors such as Toll-like receptors and C-type lectins. The various cell surface receptors trigger very diverse signal transduction pathways including activation of heterotrimeric and monomeric G-proteins, receptor-induced and store-operated Ca2 + signals, protein and lipid kinases, adapter proteins and cytoskeletal rearrangement. Here we provide an overview of the receptors involved in neutrophil activation and the intracellular signal transduction processes they trigger. This knowledge is crucial for understanding how neutrophils participate in antimicrobial host defense and inflammatory tissue damage and may also point to possible future targets of the pharmacological therapy of neutrophil-mediated autoimmune or inflammatory diseases. PMID:23994464

  8. EphrinA2 Receptor (EphA2) Is an Invasion and Intracellular Signaling Receptor for Chlamydia trachomatis

    PubMed Central

    Subbarayal, Prema; Karunakaran, Karthika; Winkler, Ann-Cathrin; Rother, Marion; Gonzalez, Erik; Meyer, Thomas F.; Rudel, Thomas

    2015-01-01

    The obligate intracellular bacterium Chlamydia trachomatis invades into host cells to replicate inside a membrane-bound vacuole called inclusion. Multiple different host proteins are recruited to the inclusion and are functionally modulated to support chlamydial development. Invaded and replicating Chlamydia induces a long-lasting activation of the PI3 kinase signaling pathway that is required for efficient replication. We identified the cell surface tyrosine kinase EphrinA2 receptor (EphA2) as a chlamydial adherence and invasion receptor that induces PI3 kinase (PI3K) activation, promoting chlamydial replication. Interfering with binding of C. trachomatis serovar L2 (Ctr) to EphA2, downregulation of EphA2 expression or inhibition of EphA2 activity significantly reduced Ctr infection. Ctr interacts with and activates EphA2 on the cell surface resulting in Ctr and receptor internalization. During chlamydial replication, EphA2 remains active accumulating around the inclusion and interacts with the p85 regulatory subunit of PI3K to support the activation of the PI3K/Akt signaling pathway that is required for normal chlamydial development. Overexpression of full length EphA2, but not the mutant form lacking the intracellular cytoplasmic domain, enhanced PI3K activation and Ctr infection. Despite the depletion of EphA2 from the cell surface, Ctr infection induces upregulation of EphA2 through the activation of the ERK pathway, which keeps the infected cell in an apoptosis-resistant state. The significance of EphA2 as an entry and intracellular signaling receptor was also observed with the urogenital C. trachomatis-serovar D. Our findings provide the first evidence for a host cell surface receptor that is exploited for invasion as well as for receptor-mediated intracellular signaling to facilitate chlamydial replication. In addition, the engagement of a cell surface receptor at the inclusion membrane is a new mechanism by which Chlamydia subverts the host cell and

  9. EphrinA2 receptor (EphA2) is an invasion and intracellular signaling receptor for Chlamydia trachomatis.

    PubMed

    Subbarayal, Prema; Karunakaran, Karthika; Winkler, Ann-Cathrin; Rother, Marion; Gonzalez, Erik; Meyer, Thomas F; Rudel, Thomas

    2015-04-01

    The obligate intracellular bacterium Chlamydia trachomatis invades into host cells to replicate inside a membrane-bound vacuole called inclusion. Multiple different host proteins are recruited to the inclusion and are functionally modulated to support chlamydial development. Invaded and replicating Chlamydia induces a long-lasting activation of the PI3 kinase signaling pathway that is required for efficient replication. We identified the cell surface tyrosine kinase EphrinA2 receptor (EphA2) as a chlamydial adherence and invasion receptor that induces PI3 kinase (PI3K) activation, promoting chlamydial replication. Interfering with binding of C. trachomatis serovar L2 (Ctr) to EphA2, downregulation of EphA2 expression or inhibition of EphA2 activity significantly reduced Ctr infection. Ctr interacts with and activates EphA2 on the cell surface resulting in Ctr and receptor internalization. During chlamydial replication, EphA2 remains active accumulating around the inclusion and interacts with the p85 regulatory subunit of PI3K to support the activation of the PI3K/Akt signaling pathway that is required for normal chlamydial development. Overexpression of full length EphA2, but not the mutant form lacking the intracellular cytoplasmic domain, enhanced PI3K activation and Ctr infection. Despite the depletion of EphA2 from the cell surface, Ctr infection induces upregulation of EphA2 through the activation of the ERK pathway, which keeps the infected cell in an apoptosis-resistant state. The significance of EphA2 as an entry and intracellular signaling receptor was also observed with the urogenital C. trachomatis-serovar D. Our findings provide the first evidence for a host cell surface receptor that is exploited for invasion as well as for receptor-mediated intracellular signaling to facilitate chlamydial replication. In addition, the engagement of a cell surface receptor at the inclusion membrane is a new mechanism by which Chlamydia subverts the host cell and

  10. A Mechanism of Intracellular P2X Receptor Activation*

    PubMed Central

    Sivaramakrishnan, Venketesh; Fountain, Samuel J.

    2012-01-01

    P2X receptors (P2XRs) are ATP-activated calcium-permeable ligand-gated ion channels traditionally viewed as sensors of extracellular ATP during diverse physiological processes including pain, inflammation, and taste. However, in addition to a cell surface residency P2XRs also populate the membranes of intracellular compartments, including mammalian lysosomes, phagosomes, and the contractile vacuole (CV) of the amoeba Dictyostelium. The function of intracellular P2XRs is unclear and represents a major gap in our understanding of ATP signaling. Here, we exploit the genetic versatility of Dictyostelium to investigate the effects of physiological concentrations of ATP on calcium signaling in isolated CVs. Within the CV, an acidic calcium store, P2XRs are orientated to sense luminal ATP. Application of ATP to isolated vacuoles leads to luminal translocation of ATP and release of calcium. Mechanisms of luminal ATP translocation and ATP-evoked calcium release share common pharmacology, suggesting that they are linked processes. The ability of ATP to mobilize stored calcium is reduced in vacuoles isolated from P2XAR knock-out amoeba and ablated in cells devoid of P2XRs. Pharmacological inhibition of luminal ATP translocation or depletion of CV calcium attenuates CV function in vivo, manifesting as a loss of regulatory cell volume decrease following osmotic swelling. We propose that intracellular P2XRs regulate vacuole activity by acting as calcium release channels, activated by translocation of ATP into the vacuole lumen. PMID:22736763

  11. Minireview: Role of Intracellular Scaffolding Proteins in the Regulation of Endocrine G Protein-Coupled Receptor Signaling

    PubMed Central

    Walther, Cornelia

    2015-01-01

    The majority of hormones stimulates and mediates their signal transduction via G protein-coupled receptors (GPCRs). The signal is transmitted into the cell due to the association of the GPCRs with heterotrimeric G proteins, which in turn activates an extensive array of signaling pathways to regulate cell physiology. However, GPCRs also function as scaffolds for the recruitment of a variety of cytoplasmic protein-interacting proteins that bind to both the intracellular face and protein interaction motifs encoded by GPCRs. The structural scaffolding of these proteins allows GPCRs to recruit large functional complexes that serve to modulate both G protein-dependent and -independent cellular signaling pathways and modulate GPCR intracellular trafficking. This review focuses on GPCR interacting PSD95-disc large-zona occludens domain containing scaffolds in the regulation of endocrine receptor signaling as well as their potential role as therapeutic targets for the treatment of endocrinopathies. PMID:25942107

  12. Signal-activated phospholipase regulation of leukocyte chemotaxis.

    PubMed

    Cathcart, Martha K

    2009-04-01

    Signal-activated phospholipases are a recent focus of the rapidly growing field of lipid signaling. The extent of their impact on the pathways regulating diverse cell functions is beginning to be appreciated. A critical step in inflammation is the attraction of leukocytes to injured or diseased tissue. Chemotaxis of leukocytes, a requisite process for monocyte and neutrophil extravasation from the blood into tissues, is a critical step for initiating and maintaining inflammation in both acute and chronic settings. Recent studies have identified new important and required roles for two signal-activated phospholipases A2 (PLA2) in regulating chemotaxis. The two intracellular phospholipases, cPLA2alpha (Group IVA) and iPLA2beta (Group VIA), act in parallel to provide distinct lipid mediators at different intracellular sites that are both required for leukocytes to migrate toward the chemokine monocyte chemoattractant protein-1. This review will summarize the separate roles of these phospholipases as well as what is currently known about the influence of two other classes of intracellular signal-activated phospholipases, phospholipase C and phospholipase D, in regulating chemotaxis in eukaryotic cells, but particularly in human monocytes. The contributions of these phospholipases to chemotaxis both in vitro and in vivo will be highlighted.

  13. Intracellular redox status controls membrane localization of pro- and anti-migratory signaling molecules.

    PubMed

    Hempel, Nadine; Melendez, J Andres

    2014-01-01

    Shifts in intracellular Reactive Oxygen Species (ROS) have been shown to contribute to carcinogenesis and to tumor progression. In addition to DNA and cell damage by surges in ROS, sub-lethal increases in ROS are implicated in regulating cellular signaling that enhances pro-metastatic behavior. We previously showed that subtle increases in endogenous H2O2 regulate migratory and invasive behavior of metastatic bladder cancer cells through phosphatase inhibition and consequential phosphorylation of p130cas, an adapter of the FAK signaling pathway. We further showed that enhanced redox status contributed to enhanced localization of p130cas to the membrane of metastatic cells. Here we show that this signaling complex can similarly be induced in a redox-engineered cell culture model that enables regulation of intracellular steady state H2O2 level by enforced expression of superoxide dismutase 2 (Sod2) and catalase. Expression of Sod2 leads to enhanced p130cas phosphorylation in HT-1080 fibrosarcoma and UM-UC-6 bladder cancer cells. These changes are mediated by H2O2, as co-expression of Catalase abrogates p130cas phosphorylation and its interaction with the adapter protein Crk. Importantly, we establish that the redox environment influence the localization of the tumor suppressor and phosphatase PTEN, in both redox-engineered and metastatic bladder cancer cells that display endogenous increases in H2O2. Importantly, PTEN oxidation leads to its dissociation from the plasma membrane. This indicates that oxidation of PTEN not only influences its activity, but also regulates its cellular localization, effectively removing it from its primary site of lipid phosphatase activity. These data introduce hitherto unappreciated paradigms whereby ROS can reciprocally regulate the cellular localization of pro- and anti-migratory signaling molecules, p130cas and PTEN, respectively. These data further confirm that altering antioxidant status and the intracellular ROS environment can

  14. Calcium-Oxidant Signaling Network Regulates AMP-activated Protein Kinase (AMPK) Activation upon Matrix Deprivation*

    PubMed Central

    Sundararaman, Ananthalakshmy; Amirtham, Usha; Rangarajan, Annapoorni

    2016-01-01

    The AMP-activated protein kinase (AMPK) has recently been implicated in anoikis resistance. However, the molecular mechanisms that activate AMPK upon matrix detachment remain unexplored. In this study, we show that AMPK activation is a rapid and sustained phenomenon upon matrix deprivation, whereas re-attachment to the matrix leads to its dephosphorylation and inactivation. Because matrix detachment leads to loss of integrin signaling, we investigated whether integrin signaling negatively regulates AMPK activation. However, modulation of focal adhesion kinase or Src, the major downstream components of integrin signaling, failed to cause a corresponding change in AMPK signaling. Further investigations revealed that the upstream AMPK kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) contribute to AMPK activation upon detachment. In LKB1-deficient cells, we found AMPK activation to be predominantly dependent on CaMKKβ. We observed no change in ATP levels under detached conditions at early time points suggesting that rapid AMPK activation upon detachment was not triggered by energy stress. We demonstrate that matrix deprivation leads to a spike in intracellular calcium as well as oxidant signaling, and both these intracellular messengers contribute to rapid AMPK activation upon detachment. We further show that endoplasmic reticulum calcium release-induced store-operated calcium entry contributes to intracellular calcium increase, leading to reactive oxygen species production, and AMPK activation. We additionally show that the LKB1/CaMKK-AMPK axis and intracellular calcium levels play a critical role in anchorage-independent cancer sphere formation. Thus, the Ca2+/reactive oxygen species-triggered LKB1/CaMKK-AMPK signaling cascade may provide a quick, adaptable switch to promote survival of metastasizing cancer cells. PMID:27226623

  15. Intracellular Zn(2+) signaling in the dentate gyrus is required for object recognition memory.

    PubMed

    Takeda, Atsushi; Tamano, Haruna; Ogawa, Taisuke; Takada, Shunsuke; Nakamura, Masatoshi; Fujii, Hiroaki; Ando, Masaki

    2014-11-01

    The role of perforant pathway-dentate granule cell synapses in cognitive behavior was examined focusing on synaptic Zn(2+) signaling in the dentate gyrus. Object recognition memory was transiently impaired when extracellular Zn(2+) levels were decreased by injection of clioquinol and N,N,N',N'-tetrakis-(2-pyridylmethyl) ethylendediamine. To pursue the effect of the loss and/or blockade of Zn(2+) signaling in dentate granule cells, ZnAF-2DA (100 pmol, 0.1 mM/1 µl), an intracellular Zn(2+) chelator, was locally injected into the dentate molecular layer of rats. ZnAF-2DA injection, which was estimated to chelate intracellular Zn(2+) signaling only in the dentate gyrus, affected object recognition memory 1 h after training without affecting intracellular Ca(2+) signaling in the dentate molecular layer. In vivo dentate gyrus long-term potentiation (LTP) was affected under the local perfusion of the recording region (the dentate granule cell layer) with 0.1 mM ZnAF-2DA, but not with 1-10 mM CaEDTA, an extracellular Zn(2+) chelator, suggesting that the blockade of intracellular Zn(2+) signaling in dentate granule cells affects dentate gyrus LTP. The present study demonstrates that intracellular Zn(2+) signaling in the dentate gyrus is required for object recognition memory, probably via dentate gyrus LTP expression. Copyright © 2014 Wiley Periodicals, Inc.

  16. Pasteurella haemolytica A1-Derived Leukotoxin and Endotoxin Induce Intracellular Calcium Elevation in Bovine Alveolar Macrophages by Different Signaling Pathways

    PubMed Central

    Hsuan, S. L.; Kannan, M. S.; Jeyaseelan, S.; Prakash, Y. S.; Sieck, G. C.; Maheswaran, S. K.

    1998-01-01

    Leukotoxin and endotoxin derived from Pasteurella haemolytica serotype 1 are the primary virulence factors contributing to the pathogenesis of lung injury in bovine pneumonic pasteurellosis. Activation of bovine alveolar macrophages with endotoxin or leukotoxin results in the induction of cytokine gene expression, with different kinetics (H. S. Yoo, S. K. Maheswaran, G. Lin, E. L. Townsend, and T. R. Ames, Infect. Immun. 63:381–388, 1995; H. S. Yoo, B. S. Rajagopal, S. K. Maheswaran, and T. R. Ames, Microb. Pathog. 18:237–252, 1995). Furthermore, extracellular Ca2+ is required for leukotoxin-induced cytokine gene expression. However, the involvement of Ca2+ in endotoxin effects and the precise signaling mechanisms in the regulation of intracellular Ca2+ by leukotoxin and endotoxin are not known. In fura-2-acetoxymethyl ester-loaded alveolar macrophages, intracellular Ca2+ regulation by leukotoxin and endotoxin was studied by video fluorescence microscopy. Leukotoxin induced a sustained elevation of intracellular Ca2+ in a concentration-dependent fashion by influx of extracellular Ca2+ through voltage-gated channels. In the presence of fetal bovine serum, endotoxin elevated intracellular Ca2+ even in the absence of extracellular Ca2+. Leukotoxin-induced intracellular Ca2+ elevation was inhibited by pertussis toxin, inhibitors of phospholipases A2 and C, and the arachidonic acid analog 5,8,11,14-eicosatetraynoic acid. Intracellular Ca2+ elevation by endotoxin was inhibited by inhibitors of phospholipase C and protein tyrosine kinase, but not by pertussis toxin, or the arachidonic acid analog. To the best of our knowledge, this is the first report of Ca2+ signaling by leukotoxin through a G-protein-coupled mechanism involving activation of phospholipases A2 and C and release of arachidonic acid in bovine alveolar macrophages. Ca2+ signaling by endotoxin, on the other hand, involves activation of phospholipase C and requires tyrosine phosphorylation. The

  17. Pasteurella haemolytica A1-derived leukotoxin and endotoxin induce intracellular calcium elevation in bovine alveolar macrophages by different signaling pathways.

    PubMed

    Hsuan, S L; Kannan, M S; Jeyaseelan, S; Prakash, Y S; Sieck, G C; Maheswaran, S K

    1998-06-01

    Leukotoxin and endotoxin derived from Pasteurella haemolytica serotype 1 are the primary virulence factors contributing to the pathogenesis of lung injury in bovine pneumonic pasteurellosis. Activation of bovine alveolar macrophages with endotoxin or leukotoxin results in the induction of cytokine gene expression, with different kinetics (H. S. Yoo, S. K. Maheswaran, G. Lin, E. L. Townsend, and T. R. Ames, Infect. Immun. 63:381-388, 1995; H. S. Yoo, B. S. Rajagopal, S. K. Maheswaran, and T. R. Ames, Microb. Pathog. 18:237-252, 1995). Furthermore, extracellular Ca2+ is required for leukotoxin-induced cytokine gene expression. However, the involvement of Ca2+ in endotoxin effects and the precise signaling mechanisms in the regulation of intracellular Ca2+ by leukotoxin and endotoxin are not known. In fura-2-acetoxymethyl ester-loaded alveolar macrophages, intracellular Ca2+ regulation by leukotoxin and endotoxin was studied by video fluorescence microscopy. Leukotoxin induced a sustained elevation of intracellular Ca2+ in a concentration-dependent fashion by influx of extracellular Ca2+ through voltage-gated channels. In the presence of fetal bovine serum, endotoxin elevated intracellular Ca2+ even in the absence of extracellular Ca2+. Leukotoxin-induced intracellular Ca2+ elevation was inhibited by pertussis toxin, inhibitors of phospholipases A2 and C, and the arachidonic acid analog 5,8,11,14-eicosatetraynoic acid. Intracellular Ca2+ elevation by endotoxin was inhibited by inhibitors of phospholipase C and protein tyrosine kinase, but not by pertussis toxin, or the arachidonic acid analog. To the best of our knowledge, this is the first report of Ca2+ signaling by leukotoxin through a G-protein-coupled mechanism involving activation of phospholipases A2 and C and release of arachidonic acid in bovine alveolar macrophages. Ca2+ signaling by endotoxin, on the other hand, involves activation of phospholipase C and requires tyrosine phosphorylation. The differences in

  18. Neurotrophin-3 Regulates Synapse Development by Modulating TrkC-PTPσ Synaptic Adhesion and Intracellular Signaling Pathways.

    PubMed

    Han, Kyung Ah; Woo, Doyeon; Kim, Seungjoon; Choii, Gayoung; Jeon, Sangmin; Won, Seoung Youn; Kim, Ho Min; Heo, Won Do; Um, Ji Won; Ko, Jaewon

    2016-04-27

    Neurotrophin-3 (NT-3) is a secreted neurotrophic factor that binds neurotrophin receptor tyrosine kinase C (TrkC), which in turn binds to presynaptic protein tyrosine phosphatase σ (PTPσ) to govern excitatory synapse development. However, whether and how NT-3 cooperates with the TrkC-PTPσ synaptic adhesion pathway and TrkC-mediated intracellular signaling pathways in rat cultured neurons has remained unclear. Here, we report that NT-3 enhances TrkC binding affinity for PTPσ. Strikingly, NT-3 treatment bidirectionally regulates the synaptogenic activity of TrkC: at concentrations of 10-25 ng/ml, NT-3 further enhanced the increase in synapse density induced by TrkC overexpression, whereas at higher concentrations, NT-3 abrogated TrkC-induced increases in synapse density. Semiquantitative immunoblotting and optogenetics-based imaging showed that 25 ng/ml NT-3 or light stimulation at a power that produced a comparable level of NT-3 (6.25 μW) activated only extracellular signal-regulated kinase (ERK) and Akt, whereas 100 ng/ml NT-3 (light intensity, 25 μW) further triggered the activation of phospholipase C-γ1 and CREB independently of PTPσ. Notably, disruption of TrkC intracellular signaling pathways, extracellular ligand binding, or kinase activity by point mutations compromised TrkC-induced increases in synapse density. Furthermore, only sparse, but not global, TrkC knock-down in cultured rat neurons significantly decreased synapse density, suggesting that intercellular differences in TrkC expression level are critical for its synapse-promoting action. Together, our data demonstrate that NT-3 is a key factor in excitatory synapse development that may direct higher-order assembly of the TrkC/PTPσ complex and activate distinct intracellular signaling cascades in a concentration-dependent manner to promote competition-based synapse development processes. In this study, we present several lines of experimental evidences to support the conclusion that

  19. Intracellular mature IL-37 suppresses tumor metastasis via inhibiting Rac1 activation.

    PubMed

    Li, Y; Zhao, M; Guo, C; Chu, H; Li, W; Chen, X; Wang, X; Li, Y; Jia, Y; Koussatidjoa, S; Zhu, F; Wang, J; Wang, X; Wang, Q; Zhao, W; Shi, Y; Chen, W; Zhang, L

    2018-02-22

    IL-37, a newly found anti-inflammatory cytokine of the IL-1 family, has both extracellular and intracellular functions. Accumulating evidences indicate that it is also involved in tumor progression. However, the mechanism and its intracellular target are unclear. In this study, clinical data from 84 patients showed that loss or reduced expression of IL-37 in lung adenocarcinoma tissues was significantly associated with tumor metastasis. We further provided evidence that IL-37 inhibited effectively tumor metastasis in vitro and in vivo. Moreover, we uncovered a novel mechanism by which IL-37 suppressed tumor cell migration via its intracellular mature form (amino acids 46-218). Intracellular mature form of IL-37, but not its extracellular form, markedly inhibited migration of multiple kinds of tumor cells through inhibiting Rac1 activation. Mechanistically, intracellular mature IL-37 directly bound to the CAAX motif in the C-terminal hypervariable region of Rac1, and then inhibited Rac1 membrane translocation and subsequent downstream signaling. Our research identifies intracellular mature IL-37 as a novel endogenous inhibitor of Rac1. Given the crucial roles of Rac1 in tumor angiogenesis and metastasis, intracellular mature IL-37 might serve as a potential strategy for the control of Rac1 activity and tumor progression.

  20. Enzymatic signal amplification for sensitive detection of intracellular antigens by flow cytometry.

    PubMed

    Karkmann, U; Radbruch, A; Hölzel, V; Scheffold, A

    1999-11-19

    Flow cytometry is the method of choice for the analysis of single cells with respect to the expression of specific antigens. Antigens can be detected with specific antibodies either on the cell surface or within the cells, after fixation and permeabilization of the cell membrane. Using conventional fluorochrome-labeled antibodies several thousand antigens are required for clear-cut separation of positive and negative cells. More sensitive reagents, e.g., magnetofluorescent liposomes conjugated to specific antibodies permit the detection of less than 200 molecules per cell but cannot be used for the detection of intracellular antigens. Here, we describe an enzymatic amplification technique (intracellular tyramine-based signal amplification, ITSA) for the sensitive cytometric analysis of intracellular cytokines by immunofluorescence. This approach results in a 10 to 15-fold improvement of the signal-to-noise ratio compared to conventional fluorochrome labeled antibodies and permits the detection of as few as 300-400 intracellular antigens per cell.

  1. Intracellular antibody signalling is regulated by phosphorylation of the Fc receptor TRIM21

    PubMed Central

    Vaysburd, Marina; Yang, Ji-Chun; Mallery, Donna L; Zeng, Jingwei; Johnson, Christopher M; McLaughlin, Stephen H; Skehel, Mark; Maslen, Sarah; Cruickshank, James; Huguenin-Dezot, Nicolas; Chin, Jason W; Neuhaus, David

    2018-01-01

    Cell surface Fc receptors activate inflammation and are tightly controlled to prevent autoimmunity. Antibodies also simulate potent immune signalling from inside the cell via the cytosolic antibody receptor TRIM21, but how this is regulated is unknown. Here we show that TRIM21 signalling is constitutively repressed by its B-Box domain and activated by phosphorylation. The B-Box occupies an E2 binding site on the catalytic RING domain by mimicking E2-E3 interactions, inhibiting TRIM21 ubiquitination and preventing immune activation. TRIM21 is derepressed by IKKβ and TBK1 phosphorylation of an LxxIS motif in the RING domain, at the interface with the B-Box. Incorporation of phosphoserine or a phosphomimetic within this motif relieves B-Box inhibition, promoting E2 binding, RING catalysis, NF-κB activation and cytokine transcription upon infection with DNA or RNA viruses. These data explain how intracellular antibody signalling is regulated and reveal that the B-Box is a critical regulator of RING E3 ligase activity. PMID:29667579

  2. Spatio-temporal modelling of the NF-κB intracellular signalling pathway: the roles of diffusion, active transport, and cell geometry.

    PubMed

    Terry, Alan J; Chaplain, Mark A J

    2011-12-07

    The nuclear factor kappa B (NF-κB) intracellular signalling pathway is central to many stressful, inflammatory, and innate immune responses. NF-κB proteins themselves are transcription factors for hundreds of genes. Experiments have shown that the NF-κB pathway can exhibit oscillatory dynamics-a negative feedback loop causes oscillatory nuclear-cytoplasmic translocation of NF-κB. Given that cell size and shape are known to influence intracellular signal transduction, we consider a spatio-temporal model of partial differential equations for the NF-κB pathway, where we model molecular movement by diffusion and, for several key species including NF-κB, by active transport as well. Through numerical simulations we find values for model parameters such that sustained oscillatory dynamics occur. Our spatial profiles and animations bear a striking resemblance to experimental images and movie clips employing fluorescent fusion proteins. We discover that oscillations in nuclear NF-κB may occur when active transport is across the nuclear membrane only, or when no species are subject to active transport. However, when active transport is across the nuclear membrane and NF-κB is additionally actively transported through the cytoplasm, oscillations are lost. Hence transport mechanisms in a cell will influence its response to activation of its NF-κB pathway. We also demonstrate that sustained oscillations in nuclear NF-κB are somewhat robust to changes in the shape of the cell, or the shape, location, and size of its nucleus, or the location of ribosomes. Yet if the cell is particularly flat or the nucleus sufficiently small, then oscillations are lost. Thus the geometry of a cell may partly determine its response to NF-κB activation. The NF-κB pathway is known to be constitutively active in several human cancers. Our spatially explicit modelling approach will allow us, in future work, to investigate targeted drug therapy of tumours. Copyright © 2011 Elsevier Ltd

  3. Calcium-pH crosstalks in rat mast cells: cytosolic alkalinization, but not intracellular calcium release, is a sufficient signal for degranulation

    PubMed Central

    Alfonso, A; Cabado, A G; Vieytes, M R; Botana, L M

    2000-01-01

    The aim of this work was to study the relationship between intracellular alkalinization, calcium fluxes and histamine release in rat mast cells. Intracellular alkalinization was induced by nigericin, a monovalent cation ionophore, and by NH4Cl (ammonium chloride). Calcium cytosolic and intracellular pH were measured by fluorescence digital imaging using Fura-2-AM and BCECF-AM.In rat mast cells, nigericin and NH4Cl induce a dose-dependent intracellular alkalinization, a dose-dependent increase in intracellular calcium levels by releasing calcium from intracellular pools, and an activation of capacitative calcium influx.The increase in both intracellular calcium and pH activates exocytosis (histamine release) in the absence of external calcium. Under the same conditions, thapsigargin does not activate exocytosis, the main difference being that thapsigargin does not alkalinize the cytosol.After alkalinization, histamine release is intracellular-calcium dependent. With 2.5 mM EGTA and thapsigargin the cell response decreases by 62%.The cytosolic alkalinization, in addition to the calcium increase it is enough signal to elicit the exocytotic process in rat mast cells. PMID:10952669

  4. PKC-η-MARCKS Signaling Promotes Intracellular Survival of Unopsonized Burkholderia thailandensis.

    PubMed

    Micheva-Viteva, Sofiya N; Shou, Yulin; Ganguly, Kumkum; Wu, Terry H; Hong-Geller, Elizabeth

    2017-01-01

    Pathogenic Burkholderia rely on host factors for efficient intracellular replication and are highly refractory to antibiotic treatment. To identify host genes that are required by Burkholderia spp. during infection, we performed a RNA interference (RNAi) screen of the human kinome and identified 35 host kinases that facilitated Burkholderia thailandensis intracellular survival in human monocytic THP-1 cells. We validated a selection of host kinases using imaging flow cytometry to assess efficiency of B. thailandensis survival in the host upon siRNA-mediated knockdown. We focused on the role of the novel protein kinase C isoform, PKC-η, in Burkholderia infection and characterized PKC-η/MARCKS signaling as a key event that promotes the survival of unopsonized B. thailandensis CDC2721121 within host cells. While infection of lung epithelial cells with unopsonized Gram-negative bacteria stimulated phosphorylation of Ser175/160 in the MARCKS effector domain, siRNA-mediated knockdown of PKC-η expression reduced the levels of phosphorylated MARCKS by >3-fold in response to infection with Bt CDC2721121. We compared the effect of the conventional PKC-α and novel PKC-η isoforms on the growth of B. thailandensis CDC2721121 within monocytic THP-1 cells and found that ≥75% knock-down of PRKCH transcript levels reduced intracellular bacterial load 100% more efficiently when compared to growth in cells siRNA-depleted of the classical PKC-α, suggesting that the PKC-η isoform can specifically mediate Burkholderia intracellular survival. Based on imaging studies of intracellular B. thailandensis , we found that PKC-η function stimulates phagocytic pathways that promote B. thailandensis escape into the cytoplasm leading to activation of autophagosome flux. Identification of host kinases that are targeted by Burkholderia during infection provides valuable molecular insights in understanding Burkholderia pathogenesis, and ultimately, in designing effective host

  5. Congenitally learned helpless rats show abnormalities in intracellular signaling.

    PubMed

    Kohen, Ruth; Neumaier, John F; Hamblin, Mark W; Edwards, Emmeline

    2003-03-15

    Affective disorders and the drugs used to treat them lead to changes in intracellular signaling. We used a genetic animal model to investigate to what extent changes in intracellular signal transduction confer a vulnerability to mood or anxiety disorders. Levels of gene expression in a selectively bred strain of rats with a high vulnerability to develop congenitally learned helplessness (cLH), a strain highly resistant to the same behavior (cNLH) and outbred Sprague-Dawley (SD) control animals were compared using quantitative reverse transcription polymerase chain reaction. Congenitally learned helpless animals had a 24%-30% reduced expression of the cyclic adenosine monophosphate response element binding protein messenger ribonucleic acid (mRNA) in the hippocampus and a 40%-41% increased level of the antiapoptotic protein bcl-2 mRNA in the prefrontal cortex compared to cNLH and SD rats. Other significant changes included changes in the expression levels of the alpha catalytic subunit of protein kinase A, glycogen synthase kinase 3beta, and protein kinase C epsilon. Congenitally learned helpless animals show evidence of altered signal transduction and regulation of apoptosis compared to cNLH and SD control animals.

  6. New intracellular activities of matrix metalloproteinases shine in the moonlight.

    PubMed

    Jobin, Parker G; Butler, Georgina S; Overall, Christopher M

    2017-11-01

    Adaption of a single protein to perform multiple independent functions facilitates functional plasticity of the proteome allowing a limited number of protein-coding genes to perform a multitude of cellular processes. Multifunctionality is achievable by post-translational modifications and by modulating subcellular localization. Matrix metalloproteinases (MMPs), classically viewed as degraders of the extracellular matrix (ECM) responsible for matrix protein turnover, are more recently recognized as regulators of a range of extracellular bioactive molecules including chemokines, cytokines, and their binders. However, growing evidence has convincingly identified select MMPs in intracellular compartments with unexpected physiological and pathological roles. Intracellular MMPs have both proteolytic and non-proteolytic functions, including signal transduction and transcription factor activity thereby challenging their traditional designation as extracellular proteases. This review highlights current knowledge of subcellular location and activity of these "moonlighting" MMPs. Intracellular roles herald a new era of MMP research, rejuvenating interest in targeting these proteases in therapeutic strategies. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Intracellular GPCRs Play Key Roles in Synaptic Plasticity.

    PubMed

    Jong, Yuh-Jiin I; Harmon, Steven K; O'Malley, Karen L

    2018-02-16

    The trillions of synaptic connections within the human brain are shaped by experience and neuronal activity, both of which underlie synaptic plasticity and ultimately learning and memory. G protein-coupled receptors (GPCRs) play key roles in synaptic plasticity by strengthening or weakening synapses and/or shaping dendritic spines. While most studies of synaptic plasticity have focused on cell surface receptors and their downstream signaling partners, emerging data point to a critical new role for the very same receptors to signal from inside the cell. Intracellular receptors have been localized to the nucleus, endoplasmic reticulum, lysosome, and mitochondria. From these intracellular positions, such receptors may couple to different signaling systems, display unique desensitization patterns, and/or show distinct patterns of subcellular distribution. Intracellular GPCRs can be activated at the cell surface, endocytosed, and transported to an intracellular site or simply activated in situ by de novo ligand synthesis, diffusion of permeable ligands, or active transport of non-permeable ligands. Current findings reinforce the notion that intracellular GPCRs play a dynamic role in synaptic plasticity and learning and memory. As new intracellular GPCR roles are defined, the need to selectively tailor agonists and/or antagonists to both intracellular and cell surface receptors may lead to the development of more effective therapeutic tools.

  8. The Role of Membrane Curvature in Nanoscale Topography-Induced Intracellular Signaling.

    PubMed

    Lou, Hsin-Ya; Zhao, Wenting; Zeng, Yongpeng; Cui, Bianxiao

    2018-05-15

    Over the past decade, there has been growing interest in developing biosensors and devices with nanoscale and vertical topography. Vertical nanostructures induce spontaneous cell engulfment, which enhances the cell-probe coupling efficiency and the sensitivity of biosensors. Although local membranes in contact with the nanostructures are found to be fully fluidic for lipid and membrane protein diffusions, cells appear to actively sense and respond to the surface topography presented by vertical nanostructures. For future development of biodevices, it is important to understand how cells interact with these nanostructures and how their presence modulates cellular function and activities. How cells recognize nanoscale surface topography has been an area of active research for two decades before the recent biosensor works. Extensive studies show that surface topographies in the range of tens to hundreds of nanometers can significantly affect cell functions, behaviors, and ultimately the cell fate. For example, titanium implants having rough surfaces are better for osteoblast attachment and host-implant integration than those with smooth surfaces. At the cellular level, nanoscale surface topography has been shown by a large number of studies to modulate cell attachment, activity, and differentiation. However, a mechanistic understanding of how cells interact and respond to nanoscale topographic features is still lacking. In this Account, we focus on some recent studies that support a new mechanism that local membrane curvature induced by nanoscale topography directly acts as a biochemical signal to induce intracellular signaling, which we refer to as the curvature hypothesis. The curvature hypothesis proposes that some intracellular proteins can recognize membrane curvatures of a certain range at the cell-to-material interface. These proteins then recruit and activate downstream components to modulate cell signaling and behavior. We discuss current technologies

  9. Single-Molecule Imaging Reveals the Activation Dynamics of Intracellular Protein Smad3 on Cell Membrane

    NASA Astrophysics Data System (ADS)

    Li, Nan; Yang, Yong; He, Kangmin; Zhang, Fayun; Zhao, Libo; Zhou, Wei; Yuan, Jinghe; Liang, Wei; Fang, Xiaohong

    2016-09-01

    Smad3 is an intracellular protein that plays a key role in propagating transforming growth factor β (TGF-β) signals from cell membrane to nucleus. However whether the transient process of Smad3 activation occurs on cell membrane and how it is regulated remains elusive. Using advanced live-cell single-molecule fluorescence microscopy to image and track fluorescent protein-labeled Smad3, we observed and quantified, for the first time, the dynamics of individual Smad3 molecules docking to and activation on the cell membrane. It was found that Smad3 docked to cell membrane in both unstimulated and stimulated cells, but with different diffusion rates and dissociation kinetics. The change in its membrane docking dynamics can be used to study the activation of Smad3. Our results reveal that Smad3 binds with type I TGF-β receptor (TRI) even in unstimulated cells. Its activation is regulated by TRI phosphorylation but independent of receptor endocytosis. This study offers new information on TGF-β/Smad signaling, as well as a new approach to investigate the activation of intracellular signaling proteins for a better understanding of their functions in signal transduction.

  10. Kinetic insulation as an effective mechanism for achieving pathway specificity in intracellular signaling networks

    PubMed Central

    Behar, Marcelo; Dohlman, Henrik G.; Elston, Timothy C.

    2007-01-01

    Intracellular signaling pathways that share common components often elicit distinct physiological responses. In most cases, the biochemical mechanisms responsible for this signal specificity remain poorly understood. Protein scaffolds and cross-inhibition have been proposed as strategies to prevent unwanted cross-talk. Here, we report a mechanism for signal specificity termed “kinetic insulation.” In this approach signals are selectively transmitted through the appropriate pathway based on their temporal profile. In particular, we demonstrate how pathway architectures downstream of a common component can be designed to efficiently separate transient signals from signals that increase slowly over time. Furthermore, we demonstrate that upstream signaling proteins can generate the appropriate input to the common pathway component regardless of the temporal profile of the external stimulus. Our results suggest that multilevel signaling cascades may have evolved to modulate the temporal profile of pathway activity so that stimulus information can be efficiently encoded and transmitted while ensuring signal specificity. PMID:17913886

  11. Bicaudal-D1 regulates the intracellular sorting and signalling of neurotrophin receptors

    PubMed Central

    Terenzio, Marco; Golding, Matthew; Russell, Matthew R G; Wicher, Krzysztof B; Rosewell, Ian; Spencer-Dene, Bradley; Ish-Horowicz, David; Schiavo, Giampietro

    2014-01-01

    We have identified a new function for the dynein adaptor Bicaudal D homolog 1 (BICD1) by screening a siRNA library for genes affecting the dynamics of neurotrophin receptor-containing endosomes in motor neurons (MNs). Depleting BICD1 increased the intracellular accumulation of brain-derived neurotrophic factor (BDNF)-activated TrkB and p75 neurotrophin receptor (p75NTR) by disrupting the endosomal sorting, reducing lysosomal degradation and increasing the co-localisation of these neurotrophin receptors with retromer-associated sorting nexin 1. The resulting re-routing of active receptors increased their recycling to the plasma membrane and altered the repertoire of signalling-competent TrkB isoforms and p75NTR available for ligand binding on the neuronal surface. This resulted in attenuated, but more sustained, AKT activation in response to BDNF stimulation. These data, together with our observation that Bicd1 expression is restricted to the developing nervous system when neurotrophin receptor expression peaks, indicate that BICD1 regulates neurotrophin signalling by modulating the endosomal sorting of internalised ligand-activated receptors. PMID:24920579

  12. Bicaudal-D1 regulates the intracellular sorting and signalling of neurotrophin receptors.

    PubMed

    Terenzio, Marco; Golding, Matthew; Russell, Matthew R G; Wicher, Krzysztof B; Rosewell, Ian; Spencer-Dene, Bradley; Ish-Horowicz, David; Schiavo, Giampietro

    2014-07-17

    We have identified a new function for the dynein adaptor Bicaudal D homolog 1 (BICD1) by screening a siRNA library for genes affecting the dynamics of neurotrophin receptor-containing endosomes in motor neurons (MNs). Depleting BICD1 increased the intracellular accumulation of brain-derived neurotrophic factor (BDNF)-activated TrkB and p75 neurotrophin receptor (p75(NTR)) by disrupting the endosomal sorting, reducing lysosomal degradation and increasing the co-localisation of these neurotrophin receptors with retromer-associated sorting nexin 1. The resulting re-routing of active receptors increased their recycling to the plasma membrane and altered the repertoire of signalling-competent TrkB isoforms and p75(NTR) available for ligand binding on the neuronal surface. This resulted in attenuated, but more sustained, AKT activation in response to BDNF stimulation. These data, together with our observation that Bicd1 expression is restricted to the developing nervous system when neurotrophin receptor expression peaks, indicate that BICD1 regulates neurotrophin signalling by modulating the endosomal sorting of internalised ligand-activated receptors. © 2014 The Authors.

  13. Intracellular Redox Compartmentation and ROS-Related Communication in Regulation and Signaling.

    PubMed

    Noctor, Graham; Foyer, Christine H

    2016-07-01

    Recent years have witnessed enormous progress in understanding redox signaling related to reactive oxygen species (ROS) in plants. The consensus view is that such signaling is intrinsic to many developmental processes and responses to the environment. ROS-related redox signaling is tightly wedded to compartmentation. Because membranes function as barriers, highly redox-active powerhouses such as chloroplasts, peroxisomes, and mitochondria may elicit specific signaling responses. However, transporter functions allow membranes also to act as bridges between compartments, and so regulated capacity to transmit redox changes across membranes influences the outcome of triggers produced at different locations. As well as ROS and other oxidizing species, antioxidants are key players that determine the extent of ROS accumulation at different sites and that may themselves act as signal transmitters. Like ROS, antioxidants can be transported across membranes. In addition, the intracellular distribution of antioxidative enzymes may be modulated to regulate or facilitate redox signaling appropriate to the conditions. Finally, there is substantial plasticity in organellar shape, with extensions such as stromules, peroxules, and matrixules playing potentially crucial roles in organelle-organelle communication. We provide an overview of the advances in subcellular compartmentation, identifying the gaps in our knowledge and discussing future developments in the area. © 2016 American Society of Plant Biologists. All Rights Reserved.

  14. Fluoxetine suppresses calcium signaling in human T lymphocytes through depletion of intracellular calcium stores.

    PubMed

    Gobin, V; De Bock, M; Broeckx, B J G; Kiselinova, M; De Spiegelaere, W; Vandekerckhove, L; Van Steendam, K; Leybaert, L; Deforce, D

    2015-09-01

    Selective serotonin reuptake inhibitors, such as fluoxetine, have recently been shown to exert anti-inflammatory and immunosuppressive effects. Although the effects on cytokine secretion, proliferation and viability of T lymphocytes have been extensively characterized, little is known about the mechanism behind these effects. It is well known that Ca(2+) signaling is an important step in the signaling transduction pathway following T cell receptor activation. Therefore, we investigated if fluoxetine interferes with Ca(2+) signaling in Jurkat T lymphocytes. Fluoxetine was found to suppress Ca(2+) signaling in response to T cell receptor activation. Moreover, fluoxetine was found to deplete intracellular Ca(2+) stores, thereby leaving less Ca(2+) available for release upon IP3- and ryanodine-receptor activation. The Ca(2+)-modifying effects of fluoxetine are not related to its capability to block the serotonin transporter, as even a large excess of 5HT did not abolish the effects. In conclusion, these data show that fluoxetine decreases IP3- and ryanodine-receptor mediated Ca(2+) release in Jurkat T lymphocytes, an effect likely to be at the basis of the observed immunosuppression. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. The calcium feedback loop and T cell activation: how cytoskeleton networks control intracellular calcium flux.

    PubMed

    Joseph, Noah; Reicher, Barak; Barda-Saad, Mira

    2014-02-01

    During T cell activation, the engagement of a T cell with an antigen-presenting cell (APC) results in rapid cytoskeletal rearrangements and a dramatic increase of intracellular calcium (Ca(2+)) concentration, downstream to T cell antigen receptor (TCR) ligation. These events facilitate the organization of an immunological synapse (IS), which supports the redistribution of receptors, signaling molecules and organelles towards the T cell-APC interface to induce downstream signaling events, ultimately supporting T cell effector functions. Thus, Ca(2+) signaling and cytoskeleton rearrangements are essential for T cell activation and T cell-dependent immune response. Rapid release of Ca(2+) from intracellular stores, e.g. the endoplasmic reticulum (ER), triggers the opening of Ca(2+) release-activated Ca(2+) (CRAC) channels, residing in the plasma membrane. These channels facilitate a sustained influx of extracellular Ca(2+) across the plasma membrane in a process termed store-operated Ca(2+) entry (SOCE). Because CRAC channels are themselves inhibited by Ca(2+) ions, additional factors are suggested to enable the sustained Ca(2+) influx required for T cell function. Among these factors, we focus here on the contribution of the actin and microtubule cytoskeleton. The TCR-mediated increase in intracellular Ca(2+) evokes a rapid cytoskeleton-dependent polarization, which involves actin cytoskeleton rearrangements and microtubule-organizing center (MTOC) reorientation. Here, we review the molecular mechanisms of Ca(2+) flux and cytoskeletal rearrangements, and further describe the way by which the cytoskeletal networks feedback to Ca(2+) signaling by controlling the spatial and temporal distribution of Ca(2+) sources and sinks, modulating TCR-dependent Ca(2+) signals, which are required for an appropriate T cell response. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters

  16. Tetraspanin CD63 Bridges Autophagic and Endosomal Processes To Regulate Exosomal Secretion and Intracellular Signaling of Epstein-Barr Virus LMP1

    PubMed

    Hurwitz, Stephanie N; Cheerathodi, Mujeeb R; Nkosi, Dingani; York, Sara B; Meckes, David G

    2018-03-01

    The tetraspanin protein CD63 has been recently described as a key factor in extracellular vesicle (EV) production and endosomal cargo sorting. In the context of Epstein-Barr virus (EBV) infection, CD63 is required for the efficient packaging of the major viral oncoprotein latent membrane protein 1 (LMP1) into exosomes and other EV populations and acts as a negative regulator of LMP1 intracellular signaling. Accumulating evidence has also pointed to intersections of the endosomal and autophagy pathways in maintaining cellular secretory processes and as sites for viral assembly and replication. Indeed, LMP1 can activate the mammalian target of rapamycin (mTOR) pathway to suppress host cell autophagy and facilitate cell growth and proliferation. Despite the growing recognition of cross talk between endosomes and autophagosomes and its relevance to viral infection, little is understood about the molecular mechanisms governing endosomal and autophagy convergence. Here, we demonstrate that CD63-dependent vesicle protein secretion directly opposes intracellular signaling activation downstream of LMP1, including mTOR-associated proteins. Conversely, disruption of normal autolysosomal processes increases LMP1 secretion and dampens signal transduction by the viral protein. Increases in mTOR activation following CD63 knockout are coincident with the development of serum-dependent autophagic vacuoles that are acidified in the presence of high LMP1 levels. Altogether, these findings suggest a key role of CD63 in regulating the interactions between endosomal and autophagy processes and limiting cellular signaling activity in both noninfected and virally infected cells. IMPORTANCE The close connection between extracellular vesicles and viruses is becoming rapidly and more widely appreciated. EBV, a human gamma herpesvirus that contributes to the progression of a multitude of lymphomas and carcinomas in immunocompromised or genetically susceptible populations, packages its major

  17. Aromatase up-regulation, insulin and raised intracellular oestrogens in men, induce adiposity, metabolic syndrome and prostate disease, via aberrant ER-α and GPER signalling.

    PubMed

    Williams, Graeme

    2012-04-04

    For some years now, reduced testosterone levels have been related to obesity, insulin resistance, type 2 diabetes, heart disease, benign prostatic hypertrophy and even prostate cancer--often considered guilty more by association, than actual cause--with little attention paid to the important role of increased intracellular oestrogen, in the pathogenesis of these chronic diseases. In the final stage of the steroidogenic cascade, testosterone is metabolised to oestradiol by P450 aromatase, in the cytoplasm of adipocytes, breast cells, endothelial cells and prostate cells, to increase intracellular oestradiol concentration at the expense of testosterone. It follows therefore, that any compound that up-regulates aromatase, or any molecule that mimics oestrogen, will not only increase the activation of the mainly proliferative, classic ER-α, oestrogen receptors to induce adipogenesis and growth disorders in oestrogen-sensitive tissues, but also activate the recently identified transmembrane G protein-coupled oestrogen receptors (GPER), and deleteriously alter important intracellular signalling sequences, that promote mitogenic growth and endothelial damage. This paper simplifies how stress, xeno-oestrogens, poor dietary choices and reactive toxins up-regulate aromatase to increase intracellular oestradiol production; how oestradiol in combination with leptin and insulin cause insulin resistance and leptin resistance through aberrant serine phosphorylation; how the increased oestradiol, insulin and leptin stimulate rapid, non-genomic G protein-coupled phosphorylation cascades, to increase fat deposition and create the vasoconstrictive, dyslipidemic features of metabolic syndrome; how aberrant GPER signalling induces benign prostatic hypertrophy; and how increased intracellular oestradiol stimulates mitogenic change and tumour-cell activators, to cause prostate cancer. In essence, the up-regulation of aromatase produces increased intracellular oestradiol, increases ER

  18. Role of CheW protein in coupling membrane receptors to the intracellular signaling system of bacterial chemotaxis.

    PubMed Central

    Liu, J D; Parkinson, J S

    1989-01-01

    Chemotactic behavior in Escherichia coli is mediated by membrane-associated chemoreceptors that transmit sensory signals to the flagellar motors through an intracellular signaling system, which appears to involve a protein phosphorylation cascade. This study concerns the role of CheW, a cytoplasmic protein, in coupling methyl-accepting chemotaxis proteins (MCPs), the major class of membrane receptors, to the intracellular signaling system. Steady-state flagellar rotation behavior was examined in a series of strains with different combinations and relative amounts of CheW, MCPs, and other signaling components. At normal expression levels, CheW stimulated clockwise rotation, and receptors appeared to enhance this stimulatory effect. At high expression levels, MCPs inhibited clockwise rotation, and CheW appeared to augment this inhibitory effect. Since overexpression of CheW or MCP molecules had the same behavioral effect as their absence, chemoreceptors probably use CheW to modulate two distinct signals, one that stimulates and one that inhibits the intracellular phosphorylation cascade. Images PMID:2682657

  19. An Odor-Specific Threshold Deficit Implicates Abnormal Intracellular Cyclic AMP Signaling in Schizophrenia

    PubMed Central

    Turetsky, Bruce I.; Moberg, Paul J.

    2012-01-01

    Objective Although olfactory deficits are common in schizophrenia, their underlying pathophysiology remains unknown. Recent evidence has suggested that cAMP signaling may be disrupted in schizophrenia. Since cAMP mediates signal transduction in olfactory receptor neurons, this could contribute to the etiology of observed olfactory deficits. This study was designed to test this hypothesis by determining odor detection threshold sensitivities to two odorants that differ in their relative activations of this intracellular cAMP signaling cascade. Method Thirty schizophrenia patients, 25 healthy comparison subjects, and 19 unaffected first-degree relatives of schizophrenia patients were studied. Odor detection threshold sensitivities were measured for the two odorants citralva and lyral. Although both have fruity/floral scents, citralva strongly activates adenylyl cyclase to increase cAMP levels, while lyral is a very weak activator of adenylyl cyclase. Results There was a significant group-by-odor interaction. Both schizophrenia patients and unaffected first-degree relatives were impaired in their ability to detect lyral versus citralva. Comparison subjects were equally sensitive to both odorants. This selective deficit could not be explained by differences in age, sex, smoking, clinical symptom profile, or medication use. Conclusions This study establishes the presence of an odor-specific hyposmia that may denote a disruption of cAMP-mediated signal transduction in schizophrenia. The presence of a parallel deficit in the patients’ unaffected first-degree relatives suggests that this deficit is genetically mediated. Although additional physiological studies are needed to confirm the underlying mechanism, these results offer strong inferential support for the hypothesis that cAMP signaling is dys-regulated in schizophrenia. PMID:19074977

  20. An odor-specific threshold deficit implicates abnormal intracellular cyclic AMP signaling in schizophrenia.

    PubMed

    Turetsky, Bruce I; Moberg, Paul J

    2009-02-01

    Although olfactory deficits are common in schizophrenia, their underlying pathophysiology remains unknown. Recent evidence has suggested that cAMP signaling may be disrupted in schizophrenia. Since cAMP mediates signal transduction in olfactory receptor neurons, this could contribute to the etiology of observed olfactory deficits. This study was designed to test this hypothesis by determining odor detection threshold sensitivities to two odorants that differ in their relative activations of this intracellular cAMP signaling cascade. Thirty schizophrenia patients, 25 healthy comparison subjects, and 19 unaffected first-degree relatives of schizophrenia patients were studied. Odor detection threshold sensitivities were measured for the two odorants citralva and lyral. Although both have fruity/floral scents, citralva strongly activates adenylyl cyclase to increase cAMP levels, while lyral is a very weak activator of adenylyl cyclase. There was a significant group-by-odor interaction. Both schizophrenia patients and unaffected first-degree relatives were impaired in their ability to detect lyral versus citralva. Comparison subjects were equally sensitive to both odorants. This selective deficit could not be explained by differences in age, sex, smoking, clinical symptom profile, or medication use. This study establishes the presence of an odor-specific hyposmia that may denote a disruption of cAMP-mediated signal transduction in schizophrenia. The presence of a parallel deficit in the patients' unaffected first-degree relatives suggests that this deficit is genetically mediated. Although additional physiological studies are needed to confirm the underlying mechanism, these results offer strong inferential support for the hypothesis that cAMP signaling is dysregulated in schizophrenia.

  1. Spatiotemporal intracellular dynamics of neurotrophin and its receptors. Implications for neurotrophin signaling and neuronal function.

    PubMed

    Bronfman, F C; Lazo, O M; Flores, C; Escudero, C A

    2014-01-01

    Neurons possess a polarized morphology specialized to contribute to neuronal networks, and this morphology imposes an important challenge for neuronal signaling and communication. The physiology of the network is regulated by neurotrophic factors that are secreted in an activity-dependent manner modulating neuronal connectivity. Neurotrophins are a well-known family of neurotrophic factors that, together with their cognate receptors, the Trks and the p75 neurotrophin receptor, regulate neuronal plasticity and survival and determine the neuronal phenotype in healthy and regenerating neurons. Is it now becoming clear that neurotrophin signaling and vesicular transport are coordinated to modify neuronal function because disturbances of vesicular transport mechanisms lead to disturbed neurotrophin signaling and to diseases of the nervous system. This chapter summarizes our current understanding of how the regulated secretion of neurotrophin, the distribution of neurotrophin receptors in different locations of neurons, and the intracellular transport of neurotrophin-induced signaling in distal processes are achieved to allow coordinated neurotrophin signaling in the cell body and axons.

  2. Impact of Photosensitizers Activation on Intracellular Trafficking and Viscosity

    PubMed Central

    Aubertin, Kelly; Bonneau, Stéphanie; Silva, Amanda K. A.; Bacri, Jean-Claude; Gallet, François; Wilhelm, Claire

    2013-01-01

    The intracellular microenvironment is essential for the efficiency of photo-induced therapies, as short-lived reactive oxygen species generated must diffuse through their intracellular surrounding medium to reach their cellular target. Here, by combining measurements of local cytoplasmic dissipation and active trafficking, we found that photosensitizers activation induced small changes in surrounding viscosity but a massive decrease in diffusion. These effects are the signature of a return to thermodynamic equilibrium of the system after photo-activation and correlated with depolymerization of the microtubule network, as shown in a reconstituted system. These mechanical measurements were performed with two intracellular photosensitizing chlorins having similar quantum yield of singlet oxygen production but different intracellular localizations (cytoplasmic for mTHPC, endosomal for TPCS2a). These two agents demonstrated different intracellular impact. PMID:24386423

  3. Intracellular signaling pathways required for rat vascular smooth muscle cell migration. Interactions between basic fibroblast growth factor and platelet-derived growth factor.

    PubMed Central

    Bilato, C; Pauly, R R; Melillo, G; Monticone, R; Gorelick-Feldman, D; Gluzband, Y A; Sollott, S J; Ziman, B; Lakatta, E G; Crow, M T

    1995-01-01

    Intracellular signaling pathways activated by both PDGF and basic fibroblast growth factor (bFGF) have been implicated in the migration of vascular smooth muscle cells (VSMC), a key step in the pathogenesis of many vascular diseases. We demonstrate here that, while bFGF is a weak chemoattractant for VSMCs, it is required for the PDGF-directed migration of VSMCs and the activation of calcium/calmodulin-dependent protein kinase II (CamKinase II), an intracellular event that we have previously shown to be important in the regulation of VSMC migration. Neutralizing antibodies to bFGF caused a dramatic reduction in the size of the intracellular calcium transient normally seen after PDGF stimulation and inhibited both PDGF-directed VSMC migration and CamKinase II activation. Partially restoring the calcium transient with ionomycin restored migration and CamKinase II activation as did the forced expression of a mutant CamKinase II that had been "locked" in the active state by site-directed mutagenesis. These results suggest that bFGF links PDGF receptor stimulation to changes in intracellular calcium and CamKinase II activation, reinforcing the central role played by CamKinase II in regulating VSMC migration. Images PMID:7560082

  4. Involvement of intracellular Zn2+ signaling in LTP at perforant pathway-CA1 pyramidal cell synapse.

    PubMed

    Tamano, Haruna; Nishio, Ryusuke; Takeda, Atsushi

    2017-07-01

    Physiological significance of synaptic Zn 2+ signaling was examined at perforant pathway-CA1 pyramidal cell synapses. In vivo long-term potentiation (LTP) at perforant pathway-CA1 pyramidal cell synapses was induced using a recording electrode attached to a microdialysis probe and the recording region was locally perfused with artificial cerebrospinal fluid (ACSF) via the microdialysis probe. Perforant pathway LTP was not attenuated under perfusion with CaEDTA (10 mM), an extracellular Zn 2+ chelator, but attenuated under perfusion with ZnAF-2DA (50 μM), an intracellular Zn 2+ chelator, suggesting that intracellular Zn 2+ signaling is required for perforant pathway LTP. Even in rat brain slices bathed in CaEDTA in ACSF, intracellular Zn 2+ level, which was measured with intracellular ZnAF-2, was increased in the stratum lacunosum-moleculare where perforant pathway-CA1 pyramidal cell synapses were contained after tetanic stimulation. These results suggest that intracellular Zn 2+ signaling, which originates in internal stores/proteins, is involved in LTP at perforant pathway-CA1 pyramidal cell synapses. Because the influx of extracellular Zn 2+ , which originates in presynaptic Zn 2+ release, is involved in LTP at Schaffer collateral-CA1 pyramidal cell synapses, synapse-dependent Zn 2+ dynamics may be involved in plasticity of postsynaptic CA1 pyramidal cells. © 2017 Wiley Periodicals, Inc.

  5. Intracellular Redox Compartmentation and ROS-Related Communication in Regulation and Signaling1[OPEN

    PubMed Central

    2016-01-01

    Recent years have witnessed enormous progress in understanding redox signaling related to reactive oxygen species (ROS) in plants. The consensus view is that such signaling is intrinsic to many developmental processes and responses to the environment. ROS-related redox signaling is tightly wedded to compartmentation. Because membranes function as barriers, highly redox-active powerhouses such as chloroplasts, peroxisomes, and mitochondria may elicit specific signaling responses. However, transporter functions allow membranes also to act as bridges between compartments, and so regulated capacity to transmit redox changes across membranes influences the outcome of triggers produced at different locations. As well as ROS and other oxidizing species, antioxidants are key players that determine the extent of ROS accumulation at different sites and that may themselves act as signal transmitters. Like ROS, antioxidants can be transported across membranes. In addition, the intracellular distribution of antioxidative enzymes may be modulated to regulate or facilitate redox signaling appropriate to the conditions. Finally, there is substantial plasticity in organellar shape, with extensions such as stromules, peroxules, and matrixules playing potentially crucial roles in organelle-organelle communication. We provide an overview of the advances in subcellular compartmentation, identifying the gaps in our knowledge and discussing future developments in the area. PMID:27208308

  6. Cell type- and activity-dependent extracellular correlates of intracellular spiking

    PubMed Central

    Perin, Rodrigo; Buzsáki, György; Markram, Henry; Koch, Christof

    2015-01-01

    Despite decades of extracellular action potential (EAP) recordings monitoring brain activity, the biophysical origin and inherent variability of these signals remain enigmatic. We performed whole cell patch recordings of excitatory and inhibitory neurons in rat somatosensory cortex slice while positioning a silicon probe in their vicinity to concurrently record intra- and extracellular voltages for spike frequencies under 20 Hz. We characterize biophysical events and properties (intracellular spiking, extracellular resistivity, temporal jitter, etc.) related to EAP recordings at the single-neuron level in a layer-specific manner. Notably, EAP amplitude was found to decay as the inverse of distance between the soma and the recording electrode with similar (but not identical) resistivity across layers. Furthermore, we assessed a number of EAP features and their variability with spike activity: amplitude (but not temporal) features varied substantially (∼30–50% compared with mean) and nonmonotonically as a function of spike frequency and spike order. Such EAP variation only partly reflects intracellular somatic spike variability and points to the plethora of processes contributing to the EAP. Also, we show that the shape of the EAP waveform is qualitatively similar to the negative of the temporal derivative to the intracellular somatic voltage, as expected from theory. Finally, we tested to what extent EAPs can impact the lowpass-filtered part of extracellular recordings, the local field potential (LFP), typically associated with synaptic activity. We found that spiking of excitatory neurons can significantly impact the LFP at frequencies as low as 20 Hz. Our results question the common assertion that the LFP acts as proxy for synaptic activity. PMID:25995352

  7. A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts.

    PubMed

    Galperin, Michael Y

    2005-06-14

    Analysis of complete microbial genomes showed that intracellular parasites and other microorganisms that inhabit stable ecological niches encode relatively primitive signaling systems, whereas environmental microorganisms typically have sophisticated systems of environmental sensing and signal transduction. This paper presents results of a comprehensive census of signal transduction proteins--histidine kinases, methyl-accepting chemotaxis receptors, Ser/Thr/Tyr protein kinases, adenylate and diguanylate cyclases and c-di-GMP phosphodiesterases--encoded in 167 bacterial and archaeal genomes, sequenced by the end of 2004. The data have been manually checked to avoid false-negative and false-positive hits that commonly arise during large-scale automated analyses and compared against other available resources. The census data show uneven distribution of most signaling proteins among bacterial and archaeal phyla. The total number of signal transduction proteins grows approximately as a square of genome size. While histidine kinases are found in representatives of all phyla and are distributed according to the power law, other signal transducers are abundant in certain phylogenetic groups but virtually absent in others. The complexity of signaling systems differs even among closely related organisms. Still, it usually can be correlated with the phylogenetic position of the organism, its lifestyle, and typical environmental challenges it encounters. The number of encoded signal transducers (or their fraction in the total protein set) can be used as a measure of the organism's ability to adapt to diverse conditions, the 'bacterial IQ', while the ratio of transmembrane receptors to intracellular sensors can be used to define whether the organism is an 'extrovert', actively sensing the environmental parameters, or an 'introvert', more concerned about its internal homeostasis. Some of the microorganisms with the highest IQ, including the current leader Wolinella succinogenes

  8. Measurements of intracellular calcium signals in polarized primary cultures of normal and cystic fibrosis human airway epithelia.

    PubMed

    Ribeiro, Carla M P

    2011-01-01

    The airways are continuously challenged by a variety of stimuli including bacteria, viruses, allergens, and inflammatory factors that act as agonists for G protein-coupled receptors (GPCR). Intracellular calcium (Ca(2+) (i)) mobilization in airway epithelia in response to extracellular stimuli regulates key airway innate defense functions, e.g., Ca(2+)-activated Cl(-) secretion, ciliary beating, mucin secretion, and inflammatory responses. Because Ca(2+) (i) mobilization in response to luminal stimuli is larger in CF vs. normal human airway epithelia, alterations in Ca(2+) (i) signals have been associated with the pathogenesis of CF airway disease. Hence, assessment of Ca(2+) (i) signaling has become an important area of CF research. This chapter will focus on measurements of cytoplasmic and mitochondrial Ca(2+) signals resulting from GPCR activation in polarized primary cultures of normal and CF human bronchial epithelia (HBE).

  9. An intracellular signaling hierarchy determines direction of migration in opposing chemotactic gradients.

    PubMed

    Heit, Bryan; Tavener, Samantha; Raharjo, Eko; Kubes, Paul

    2002-10-14

    chemoattractants activate p38 MAPK, which inhibits intermediary chemoattractant-induced PI3K/Akt pathway, establishing an intracellular signaling hierarchy.

  10. Intracellular mediators of transforming growth factor beta superfamily signaling localize to endosomes in chicken embryo and mouse lenses in vivo.

    PubMed

    Rajagopal, Ramya; Ishii, Shunsuke; Beebe, David C

    2007-06-25

    Endocytosis is a key regulator of growth factor signaling pathways. Recent studies showed that the localization to endosomes of intracellular mediators of growth factor signaling may be required for their function. Although there is substantial evidence linking endocytosis and growth factor signaling in cultured cells, there has been little study of the endosomal localization of signaling components in intact tissues or organs. Proteins that are downstream of the transforming growth factor-beta superfamily signaling pathway were found on endosomes in chicken embryo and postnatal mouse lenses, which depend on signaling by members of the TGFbeta superfamily for their normal development. Phosphorylated Smad1 (pSmad1), pSmad2, Smad4, Smad7, the transcriptional repressors c-Ski and TGIF and the adapter molecules Smad anchor for receptor activation (SARA) and C184M, localized to EEA-1- and Rab5-positive vesicles in chicken embryo and/or postnatal mouse lenses. pSmad1 and pSmad2 also localized to Rab7-positive late endosomes. Smad7 was found associated with endosomes, but not caveolae. Bmpr1a conditional knock-out lenses showed decreased nuclear and endosomal localization of pSmad1. Many of the effectors in this pathway were distributed differently in vivo from their reported distribution in cultured cells. Based on the findings reported here and data from other signaling systems, we suggest that the localization of activated intracellular mediators of the transforming growth factor-beta superfamily to endosomes is important for the regulation of growth factor signaling.

  11. Uptake and intracellular activity of AM-1155 in phagocytic cells.

    PubMed Central

    Yamamoto, T; Kusajima, H; Hosaka, M; Fukuda, H; Oomori, Y; Shinoda, H

    1996-01-01

    The uptake and intracellular activity of AM-1155 in murine J774.1 macrophages and human polymorphonuclear leukocytes were investigated. AM-1155 penetrated phagocytic cells rapidly and reversibly, although the penetration process was not affected by metabolic inhibitors such as sodium fluoride, cyanide m-chlorophenylhydrazone, or ouabain or by nucleoside transport system inhibitors such as adenosine. The intracellular concentration-to-extracellular concentration ratio of AM-1155 in both cell types of phagocytes ranged from 5 to 7. These ratios were almost equal to those for sparfloxacin. The intracellular activity of AM-1155 in J774.1 macrophages, examined with Staphylococcus aureus 209P as a test bacterium, was dependent on the extracellular concentration. AM-1155 at a concentration of 1 microgram/ml reduced the number of viable cells of S. aureus ingested by more than 90%. The intracellular activity of AM-1155 was more potent than those of sparfloxacin, ofloxacin, ciprofloxacin, flomoxef, and erythromycin. These results suggest that the potent intracellular activity of AM-1155 might mainly be due to the high intracellular concentration and its potent in vitro activity. PMID:9124835

  12. A census of membrane-bound and intracellular signal transduction proteins in bacteria: Bacterial IQ, extroverts and introverts

    PubMed Central

    Galperin, Michael Y

    2005-01-01

    Background Analysis of complete microbial genomes showed that intracellular parasites and other microorganisms that inhabit stable ecological niches encode relatively primitive signaling systems, whereas environmental microorganisms typically have sophisticated systems of environmental sensing and signal transduction. Results This paper presents results of a comprehensive census of signal transduction proteins – histidine kinases, methyl-accepting chemotaxis receptors, Ser/Thr/Tyr protein kinases, adenylate and diguanylate cyclases and c-di-GMP phosphodiesterases – encoded in 167 bacterial and archaeal genomes, sequenced by the end of 2004. The data have been manually checked to avoid false-negative and false-positive hits that commonly arise during large-scale automated analyses and compared against other available resources. The census data show uneven distribution of most signaling proteins among bacterial and archaeal phyla. The total number of signal transduction proteins grows approximately as a square of genome size. While histidine kinases are found in representatives of all phyla and are distributed according to the power law, other signal transducers are abundant in certain phylogenetic groups but virtually absent in others. Conclusion The complexity of signaling systems differs even among closely related organisms. Still, it usually can be correlated with the phylogenetic position of the organism, its lifestyle, and typical environmental challenges it encounters. The number of encoded signal transducers (or their fraction in the total protein set) can be used as a measure of the organism's ability to adapt to diverse conditions, the 'bacterial IQ', while the ratio of transmembrane receptors to intracellular sensors can be used to define whether the organism is an 'extrovert', actively sensing the environmental parameters, or an 'introvert', more concerned about its internal homeostasis. Some of the microorganisms with the highest IQ, including the

  13. Intracellular amyloid beta expression leads to dysregulation of the mitogen-activated protein kinase and bone morphogenetic protein-2 signaling axis

    PubMed Central

    Cruz, Eric; Kumar, Sushil; Yuan, Li; Arikkath, Jyothi

    2018-01-01

    Alzheimer’s disease (AD) is a neurodegenerative syndrome classically depicted by the parenchymal accumulation of extracellular amyloid beta plaques. However, recent findings suggest intraneuronal amyloid beta (iAβ1–42) accumulation precedes extracellular deposition. Furthermore, the pathologic increase in iAβ1–42 has been implicated in dysregulation of cellular mechanisms critically important in axonal transport. Owing to neuronal cell polarity, retrograde and anterograde axonal transport are essential trafficking mechanism necessary to convey membrane bound neurotransmitters, neurotrophins, and endosomes between soma and synaptic interfaces. Although iAβ1–42 disruption of axonal transport has been implicated in dysregulation of neuronal synaptic transmission, the role of iAβ1–42 and its influence on signal transduction involving the mitogen-activated protein kinase (MAPK) and morphogenetic signaling axis are unknown. Our biochemical characterization of intracellular amyloid beta accumulation on MAPK and morphogenetic signaling have revealed increased iAβ1–42 expression leads to significant reduction in ERK 1/2 phosphorylation and increased bone morphogenetic protein 2 dependent Smad 1/5/8 phosphorylation. Furthermore, rescue of iAβ1–42 mediated attenuation of MAPK signaling can be accomplished with the small molecule PLX4032 as a downstream enhancer of the MAPK pathway. Consequently, our observations regarding the dysregulation of these gatekeepers of neuronal viability may have important implications in understanding the iAβ1–42 mediated effects observed in AD. PMID:29470488

  14. Activation of oral trigeminal neurons by fatty acids is dependent upon intracellular calcium.

    PubMed

    Yu, Tian; Shah, Bhavik P; Hansen, Dane R; Park-York, MieJung; Gilbertson, Timothy A

    2012-08-01

    The chemoreception of dietary fat in the oral cavity has largely been attributed to activation of the somatosensory system that conveys the textural properties of fat. However, the ability of fatty acids, which are believed to represent the proximate stimulus for fat taste, to stimulate rat trigeminal neurons has remained unexplored. Here, we found that several free fatty acids are capable of activating trigeminal neurons with different kinetics. Further, a polyunsaturated fatty acid, linoleic acid (LA), activates trigeminal neurons by increasing intracellular calcium concentration and generating depolarizing receptor potentials. Ion substitution and pharmacological approaches reveal that intracellular calcium store depletion is crucial for LA-induced signaling in a subset of trigeminal neurons. Using pseudorabies virus (PrV) as a live cell tracer, we identified a subset of lingual nerve-innervated trigeminal neurons that respond to different subsets of fatty acids. Quantitative real-time PCR of several transient receptor potential channel markers in individual neurons validated that PrV labeled a subset but not the entire population of lingual-innervated trigeminal neurons. We further confirmed that the LA-induced intracellular calcium rise is exclusively coming from the release of calcium stores from the endoplasmic reticulum in this subset of lingual nerve-innervated trigeminal neurons.

  15. Activation of Oral Trigeminal Neurons by Fatty Acids is Dependent upon Intracellular Calcium

    PubMed Central

    Yu, Tian; Shah, Bhavik P.; Hansen, Dane R.; Park-York, MieJung; Gilbertson, Timothy A.

    2012-01-01

    The chemoreception of dietary fat in the oral cavity has largely been attributed to activation of the somatosensory system that conveys the textural properties of fat. However, the ability of fatty acids, which are believed to represent the proximate stimulus for fat taste, to stimulate rat trigeminal neurons has remained unexplored. Here, we found that several free fatty acids are capable of activating trigeminal neurons with different kinetics. Further, a polyunsaturated fatty acid, linoleic acid (LA), activates trigeminal neurons by increasing intracellular calcium concentration and generating depolarizing receptor potentials. Ion substitution and pharmacological approaches reveal that intracellular calcium store depletion is crucial for LA-induced signaling in a subset of trigeminal neurons. Using pseudorabies virus (PrV) as a live cell tracer, we identified a subset of lingual nerve-innervated trigeminal neurons that respond to different subsets of fatty acids. Quantitative real-time PCR of several transient receptor potential (TRP) channel markers in individual neurons validated that PrV labeled a subset but not the entire population of lingual-innervated trigeminal neurons. We further confirmed that the LA-induced intracellular calcium rise is exclusively coming from the release of calcium stores from the endoplasmic reticulum in this subset of lingual nerve-innervated trigeminal neurons. PMID:22644615

  16. Essential role of flotillin-1 palmitoylation in the intracellular localization and signaling function of IGF-1 receptor.

    PubMed

    Jang, Donghwan; Kwon, Hayeong; Jeong, Kyuho; Lee, Jaewoong; Pak, Yunbae

    2015-06-01

    Here, we explored flotillin-1-mediated regulation of insulin-like growth factor-1 (IGF-1) signaling. Flotillin-1-deficient cells exhibited a reduction in the activation of IGF-1 receptor (IGF-1R), ERK1/2 and Akt pathways, and the transcriptional activation of Elk-1 and the proliferation in response to IGF-1 were reduced in these cells. We found that IGF-1-independent flotillin-1 palmitoylation at Cys34 in the endoplasmic reticulum (ER) was required for the ER exit and the plasma membrane localization of flotillin-1 and IGF-1R. IGF-1-dependent depalmitoylation and repalmitoylation of flotillin-1 sustained tyrosine kinase activation of the plasma-membrane-targeted IGF-1R. Dysfunction and blocking the turnover of flotillin-1 palmitoylation abrogated cancer cell proliferation after IGF-1R signaling activation. Our data show that flotillin-1 palmitoylation is a new mechanism by which the intracellular localization and activation of IGF-1R are controlled. © 2015. Published by The Company of Biologists Ltd.

  17. Neurodegeneration in Alzheimer disease: role of amyloid precursor protein and presenilin 1 intracellular signaling.

    PubMed

    Nizzari, Mario; Thellung, Stefano; Corsaro, Alessandro; Villa, Valentina; Pagano, Aldo; Porcile, Carola; Russo, Claudio; Florio, Tullio

    2012-01-01

    Alzheimer disease (AD) is a heterogeneous neurodegenerative disorder characterized by (1) progressive loss of synapses and neurons, (2) intracellular neurofibrillary tangles, composed of hyperphosphorylated Tau protein, and (3) amyloid plaques. Genetically, AD is linked to mutations in few proteins amyloid precursor protein (APP) and presenilin 1 and 2 (PS1 and PS2). The molecular mechanisms underlying neurodegeneration in AD as well as the physiological function of APP are not yet known. A recent theory has proposed that APP and PS1 modulate intracellular signals to induce cell-cycle abnormalities responsible for neuronal death and possibly amyloid deposition. This hypothesis is supported by the presence of a complex network of proteins, clearly involved in the regulation of signal transduction mechanisms that interact with both APP and PS1. In this review we discuss the significance of novel finding related to cell-signaling events modulated by APP and PS1 in the development of neurodegeneration.

  18. Extremely low frequency electromagnetic fields promote mesenchymal stem cell migration by increasing intracellular Ca2+ and activating the FAK/Rho GTPases signaling pathways in vitro.

    PubMed

    Zhang, Yingchi; Yan, Jiyuan; Xu, Haoran; Yang, Yong; Li, Wenkai; Wu, Hua; Liu, Chaoxu

    2018-05-21

    The ability of mesenchymal stem cells (MSCs) to migrate to the desired tissues or lesions is crucial for stem cell-based regenerative medicine and tissue engineering. Optimal therapeutics for promoting MSC migration are expected to become an effective means for tissue regeneration. Electromagnetic fields (EMF), as a noninvasive therapy, can cause a lot of biological changes in MSCs. However, whether EMF can promote MSC migration has not yet been reported. We evaluated the effects of EMF on cell migration in human bone marrow-derived MSCs. With the use of Helmholtz coils and an EMF stimulator, 7.5, 15, 30, 50, and 70 Hz/1 mT EMF was generated. Additionally, we employed the L-type calcium channel blocker verapamil and the focal adhesion kinase (FAK) inhibitor PF-573228 to investigate the role of intracellular calcium content, cell adhesion proteins, and the Rho GTPase protein family (RhoA, Rac1, and Cdc42) in EMF-mediated MSC migration. Cell adhesion proteins (FAK, talin, and vinculin) were detected by Western blot analysis. The Rho GTPase protein family activities were assessed by G-LISA, and F-actin levels, which reflect actin cytoskeletal organization, were detected using immunofluorescence. All the 7.5, 15, 30, 50, and 70 Hz/1 mT EMF promoted MSC migration. EMF increased MSC migration in an intracellular calcium-dependent manner. Notably, EMF-enhanced migration was mediated by FAK activation, which was critical for the formation of focal contacts, as evidenced by increased talin and vinculin expression. Moreover, RhoA, Rac1, and Cdc42 were activated by FAK to increase cytoskeletal organization, thus promoting cell contraction. EMF promoted MSC migration by increasing intracellular calcium and activating the FAK/Rho GTPase signaling pathways. This study provides insights into the mechanisms of MSC migration and will enable the rational design of targeted therapies to improve MSC engraftment.

  19. β adrenergic receptor/cAMP/PKA signaling contributes to the intracellular Ca2+ release by tentacle extract from the jellyfish Cyanea capillata.

    PubMed

    Wang, Qianqian; Zhang, Hui; Wang, Bo; Wang, Chao; Xiao, Liang; Zhang, Liming

    2017-07-25

    Intracellular Ca 2+ overload induced by extracellular Ca 2+ entry has previously been confirmed to be an important mechanism for the cardiotoxicity as well as the acute heart dysfunction induced by jellyfish venom, while the underlying mechanism remains to be elucidated. Under extracellular Ca 2+ -free or Ca 2+ -containing conditions, the Ca 2+ fluorescence in isolated adult mouse cardiomyocytes pre-incubated with tentacle extract (TE) from the jellyfish Cyanea capillata and β blockers was scanned by laser scanning confocal microscope. Then, the cyclic adenosine monophosphate (cAMP) concentration and protein kinase A (PKA) activity in primary neonatal rat ventricular cardiomyocytes were determined by ELISA assay. Furthermore, the effect of propranolol against the cardiotoxicity of TE was evaluated in Langendorff-perfused rat hearts and intact rats. The increase of intracellular Ca 2+ fluorescence signal by TE was significantly attenuated and delayed when the extracellular Ca 2+ was removed. The β adrenergic blockers, including propranolol, atenolol and esmolol, partially inhibited the increase of intracellular Ca 2+ in the presence of 1.8 mM extracellular Ca 2+ and completely abolished the Ca 2+ increase under an extracellular Ca 2+ -free condition. Both cAMP concentration and PKA activity were stimulated by TE, and were inhibited by the β adrenergic blockers. Cardiomyocyte toxicity of TE was antagonized by β adrenergic blockers and the PKA inhibitor H89. Finally, the acute heart dysfuction by TE was antagonized by propranolol in Langendorff-perfused rat hearts and intact rats. Our findings indicate that β adrenergic receptor/cAMP/PKA signaling contributes to the intracellular Ca 2+ overload through intracellular Ca 2+ release by TE from the jellyfish C. capillata.

  20. An enhanced functional interrogation/manipulation of intracellular signaling pathways with the peptide 'stapling' technology.

    PubMed

    He, Y; Chen, D; Zheng, W

    2015-11-12

    Specific protein-protein interactions (PPIs) constitute a key underlying mechanism for the presence of a multitude of intracellular signaling pathways, which are essential for the survival of normal and cancer cells. Specific molecular blockers for a crucial PPI would therefore be invaluable tools for an enhanced functional interrogation of the signaling pathway harboring this particular PPI. On the other hand, if a particular PPI is essential for the survival of cancer cells but is absent in or dispensable for the survival of normal cells, its specific molecular blockers could potentially be developed into effective anticancer therapeutics. Due to the flat and extended PPI interface, it would be conceivably difficult for small molecules to achieve an effective blockade, a problem which could be potentially circumvented with peptides or proteins. However, the well-documented proteolytic instability and cellular impermeability of peptides and proteins in general would make their developing into effective intracellular PPI blockers quite a challenge. With the advent of the peptide 'stapling' technology which was demonstrated to be able to stabilize the α-helical conformation of a peptide via bridging two neighboring amino-acid side chains with a 'molecular staple', a linear parent peptide could be transformed into a stronger PPI blocker with enhanced proteolytic stability and cellular permeability. This review will furnish an account on the peptide 'stapling' technology and its exploitation in efforts to achieve an enhanced functional interrogation or manipulation of intracellular signaling pathways especially those that are cancer relevant.

  1. Reciprocal inhibition between intracellular antiviral signaling and the RNAi machinery in mammalian cells

    PubMed Central

    Seo, Gil Ju; Kincaid, Rodney P.; Phanaksri, Teva; Burke, James M.; Pare, Justin M.; Cox, Jennifer E.; Hsiang, Tien-Ying; Krug, Robert M.; Sullivan, Christopher S.

    2013-01-01

    SUMMARY RNA interference (RNAi) is an established antiviral defense mechanism in plants and invertebrates. Whether RNAi serves a similar function in mammalian cells remains unresolved. We find that in some cell types, mammalian RNAi activity is reduced shortly after viral infection via poly ADP-ribosylation of the RNA induced silencing complex (RISC), a core component of RNAi. Well-established antiviral signaling pathways, including RIG-I/MAVS and RNAseL, contribute to inhibition of RISC. In the absence of virus infection, microRNAs repress interferon-stimulated genes (ISGs) associated with cell death and proliferation, thus maintaining homeostasis. Upon detection of intracellular pathogen-associated molecular patterns, RISC activity decreases, contributing to increased expression of ISGs. Our results suggest that unlike in lower eukaryotes, mammalian RISC is not antiviral in some contexts, but rather, RISC has been co-opted to negatively regulate toxic host antiviral effectors via microRNAs. PMID:24075860

  2. Intracellular Signal Modulation by Nanomaterials

    PubMed Central

    Hussain, Salik; Garantziotis, Stavros; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Baeza-Squiban, Armelle; Boland, Sonja

    2016-01-01

    A thorough understanding of the interactions of nanomaterials with biological systems and the resulting activation of signal transduction pathways is essential for the development of safe and consumer friendly nanotechnology. Here we present an overview of signaling pathways induced by nanomaterial exposures and describe the possible correlation of their physicochemical characteristics with biological outcomes. In addition to the hierarchical oxidative stress model and a review of the intrinsic and cell-mediated mechanisms of reactive Oxygen species (ROS) generating capacities of nanomaterials, we also discuss other oxidative stress dependent and independent cellular signaling pathways. Induction of the inflammasome, calcium signaling, and endoplasmic reticulum stress are reviewed. Furthermore, the uptake mechanisms can crucially affect the cytotoxicity of nanomaterials and membrane-dependent signaling pathways can be responsible for cellular effects of nanomaterials. Epigenetic regulation by nanomaterials effects of nanoparticle-protein interactions on cell signaling pathways, and the induction of various cell death modalities by nanomaterials are described. We describe the common trigger mechanisms shared by various nanomaterials to induce cell death pathways and describe the interplay of different modalities in orchestrating the final outcome after nanomaterial exposures. A better understanding of signal modulations induced by nanomaterials is not only essential for the synthesis and design of safer nanomaterials but will also help to discover potential nanomedical applications of these materials. Several biomedical applications based on the different signaling pathways induced by nanomaterials are already proposed and will certainly gain a great deal of attraction in the near future. PMID:24683030

  3. Distinct intracellular sAC-cAMP domains regulate ER Ca2+ signaling and OXPHOS function.

    PubMed

    Valsecchi, Federica; Konrad, Csaba; D'Aurelio, Marilena; Ramos-Espiritu, Lavoisier S; Stepanova, Anna; Burstein, Suzanne R; Galkin, Alexander; Magranè, Jordi; Starkov, Anatoly; Buck, Jochen; Levin, Lonny R; Manfredi, Giovanni

    2017-11-01

    cAMP regulates a wide variety of physiological functions in mammals. This single second messenger can regulate multiple, seemingly disparate functions within independently regulated cell compartments. We have previously identified one such compartment inside the matrix of the mitochondria, where soluble adenylyl cyclase (sAC) regulates oxidative phosphorylation (OXPHOS). We now show that sAC knockout fibroblasts have a defect in OXPHOS activity and attempt to compensate for this defect by increasing OXPHOS proteins. Importantly, sAC knockout cells also exhibit decreased probability of endoplasmic reticulum (ER) Ca 2+ release associated with diminished phosphorylation of the inositol 3-phosphate receptor. Restoring sAC expression exclusively in the mitochondrial matrix rescues OXPHOS activity and reduces mitochondrial biogenesis, indicating that these phenotypes are regulated by intramitochondrial sAC. In contrast, Ca 2+ release from the ER is only rescued when sAC expression is restored throughout the cell. Thus, we show that functionally distinct, sAC-defined, intracellular cAMP signaling domains regulate metabolism and Ca 2+ signaling. © 2017. Published by The Company of Biologists Ltd.

  4. Intracellular signal modulation by nanomaterials.

    PubMed

    Hussain, Salik; Garantziotis, Stavros; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Baeza-Squiban, Armelle; Boland, Sonja

    2014-01-01

    A thorough understanding of the interactions of nanomaterials with biological systems and the resulting activation of signal transduction pathways is essential for the development of safe and consumer friendly nanotechnology. Here we present an overview of signaling pathways induced by nanomaterial exposures and describe the possible correlation of their physicochemical characteristics with biological outcomes. In addition to the hierarchical oxidative stress model and a review of the intrinsic and cell-mediated mechanisms of reactive oxygen species (ROS) generating capacities of nanomaterials, we also discuss other oxidative stress dependent and independent cellular signaling pathways. Induction of the inflammasome, calcium signaling, and endoplasmic reticulum stress are reviewed. Furthermore, the uptake mechanisms can be of crucial importance for the cytotoxicity of nanomaterials and membrane-dependent signaling pathways have also been shown to be responsible for cellular effects of nanomaterials. Epigenetic regulation by nanomaterials, effects of nanoparticle-protein interactions on cell signaling pathways, and the induction of various cell death modalities by nanomaterials are described. We describe the common trigger mechanisms shared by various nanomaterials to induce cell death pathways and describe the interplay of different modalities in orchestrating the final outcome after nanomaterial exposures. A better understanding of signal modulations induced by nanomaterials is not only essential for the synthesis and design of safer nanomaterials but will also help to discover potential nanomedical applications of these materials. Several biomedical applications based on the different signaling pathways induced by nanomaterials are already proposed and will certainly gain a great deal of attraction in the near future.

  5. Quantitative imaging of intracellular signaling for personalized pancreatic cancer therapy in an in vivo avatar (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Samkoe, Kimberley S.; Schultz, Emily; Park, Yeonjae; Fischer, Dawn; Pogue, Brian W.; Smith, Kerrington; Tichauer, Kenneth M.; Gibbs, Summer L.

    2017-02-01

    Pancreatic ductal adenocarcinomas (PDAC) are notoriously difficult to treat and in general, molecular targeted therapies have failed even when the targeted protein is overexpressed in the tumor tissue. Genetic mutations in extracellular receptors and downstream signaling proteins (i.e., RAS signaling pathway) and convoluted intracellular cross-talk between cell signaling pathways are likely reasons that these promising therapies fail. Monitoring the complex relationship between intracellular protein signaling is difficult and to-date, standard techniques that are used (Western blot, flow cytometry, immunohistochemistry, etc.) are invasive, static and do not accurately represent in vivo structure-function relationships. Here, we describe the development of an in ovo avatar using patient derived tumors grown on the chicken chorioallantoic membrane (CAM) and the novel fluorescence-based Quantitative Protein Expression Tracking (QUIET) methodology to bridge the gap between oncology, genomics and patient outcomes. Previously developed paired-agent imaging, was extended to a three-compartment model system in QUIET, which utilizes three types of imaging agents: novel fluorophore conjugated cell permeable targeted and untargeted small molecule paired-agents, in addition to a tumor perfusion agent that is not cell membrane permeable. We have demonstrated the ability to quantify the intracellular binding domain of a trans-membrane protein in vitro using cell permeable fluorescent agents (erlotinib-TRITC and control isotype-BODIPY FL). In addition, we have demonstrated imaging protocols to simultaneously image up to 6 spectrally distinct organic fluorophores in in ovo avatars using the Nuance EX (Perkin Elmer) and established proof-of-principle intracellular and extracellular protein concentrations of epidermal growth factor receptor using QUIET and traditional paired-agent imaging.

  6. Focal Activation of Cells by Plasmon Resonance Assisted Optical Injection of Signaling Molecules

    PubMed Central

    2015-01-01

    Experimental methods for single cell intracellular delivery are essential for probing cell signaling dynamics within complex cellular networks, such as those making up the tumor microenvironment. Here, we show a quantitative and general method of interrogation of signaling pathways. We applied highly focused near-infrared laser light to optically inject gold-coated liposomes encapsulating bioactive molecules into single cells for focal activation of cell signaling. For this demonstration, we encapsulated either inositol trisphosphate (IP3), an endogenous cell signaling second messenger, or adenophostin A (AdA), a potent analogue of IP, within 100 nm gold-coated liposomes, and injected these gold-coated liposomes and their contents into the cytosol of single ovarian carcinoma cells to initiate calcium (Ca2+) release from intracellular stores. Upon optical injection of IP3 or AdA at doses above the activation threshold, we observed increases in cytosolic Ca2+ concentration within the injected cell initiating the propagation of a Ca2+ wave throughout nearby cells. As confirmed by octanol-induced inhibition, the intercellular Ca2+ wave traveled via gap junctions. Optical injection of gold-coated liposomes represents a quantitative method of focal activation of signaling cascades of broad interest in biomedical research. PMID:24877558

  7. Gamma Band Activity in the RAS-intracellular mechanisms

    PubMed Central

    Garcia-Rill, E.; Kezunovic, N.; D’Onofrio, S.; Luster, B.; Hyde, J.; Bisagno, V.; Urbano, F.J.

    2014-01-01

    Gamma band activity participates in sensory perception, problem solving, and memory. This review considers recent evidence showing that cells in the reticular activating system (RAS) exhibit gamma band activity, and describes the intrinsic membrane properties behind such manifestation. Specifically, we discuss how cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine Subcoeruleus nucleus dorsalis (SubCD) all fire in the gamma band range when maximally activated, but no higher. The mechanisms involve high threshold, voltage-dependent P/Q-type calcium channels or sodium-dependent subthreshold oscillations. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. We address three necessary next steps resulting from these discoveries, an intracellular mechanism responsible for maintaining gamma band activity based on persistent G-protein activation, separate intracellular pathways that differentiate between gamma band activity during waking vs during REM sleep, and an intracellular mechanism responsible for the dysregulation in gamma band activity in schizophrenia. These findings open several promising research avenues that have not been thoroughly explored. What are the effects of sleep or REM sleep deprivation on these RAS mechanisms? Are these mechanisms involved in memory processing during waking and/or during REM sleep? Does gamma band processing differ during waking vs REM sleep after sleep or REM sleep deprivation? PMID:24309750

  8. Gamma band activity in the RAS-intracellular mechanisms.

    PubMed

    Garcia-Rill, E; Kezunovic, N; D'Onofrio, S; Luster, B; Hyde, J; Bisagno, V; Urbano, F J

    2014-05-01

    Gamma band activity participates in sensory perception, problem solving, and memory. This review considers recent evidence showing that cells in the reticular activating system (RAS) exhibit gamma band activity, and describes the intrinsic membrane properties behind such manifestation. Specifically, we discuss how cells in the mesopontine pedunculopontine nucleus, intralaminar parafascicular nucleus, and pontine SubCoeruleus nucleus dorsalis all fire in the gamma band range when maximally activated, but no higher. The mechanisms involve high-threshold, voltage-dependent P/Q-type calcium channels, or sodium-dependent subthreshold oscillations. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness and provide the essential stream of information for the formulation of many of our actions. We address three necessary next steps resulting from these discoveries: an intracellular mechanism responsible for maintaining gamma band activity based on persistent G-protein activation, separate intracellular pathways that differentiate between gamma band activity during waking versus during REM sleep, and an intracellular mechanism responsible for the dysregulation in gamma band activity in schizophrenia. These findings open several promising research avenues that have not been thoroughly explored. What are the effects of sleep or REM sleep deprivation on these RAS mechanisms? Are these mechanisms involved in memory processing during waking and/or during REM sleep? Does gamma band processing differ during waking versus REM sleep after sleep or REM sleep deprivation?

  9. Cell-autonomous intracellular androgen receptor signaling drives the growth of human prostate cancer initiating cells.

    PubMed

    Vander Griend, Donald J; D'Antonio, Jason; Gurel, Bora; Antony, Lizamma; Demarzo, Angelo M; Isaacs, John T

    2010-01-01

    The lethality of prostate cancer is due to the continuous growth of cancer initiating cells (CICs) which are often stimulated by androgen receptor (AR) signaling. However, the underlying molecular mechanism(s) for such AR-mediated growth stimulation are not fully understood. Such mechanisms may involve cancer cell-dependent induction of tumor stromal cells to produce paracrine growth factors or could involve cancer cell autonomous autocrine and/or intracellular AR signaling pathways. We utilized clinical samples, animal models and a series of AR-positive human prostate cancer cell lines to evaluate AR-mediated growth stimulation of prostate CICs. The present studies document that stromal AR expression is not required for prostate cancer growth, since tumor stroma surrounding AR-positive human prostate cancer metastases (N = 127) are characteristically AR-negative. This lack of a requirement for AR expression in tumor stromal cells is also documented by the fact that human AR-positive prostate cancer cells grow equally well when xenografted in wild-type versus AR-null nude mice. AR-dependent growth stimulation was documented to involve secretion, extracellular binding, and signaling by autocrine growth factors. Orthotopic xenograft animal studies documented that the cellautonomous autocrine growth factors which stimulate prostate CIC growth are not the andromedins secreted by normal prostate stromal cells. Such cell autonomous and extracellular autocrine signaling is necessary but not sufficient for the optimal growth of prostate CICs based upon the response to anti-androgen plus/or minus preconditioned media. AR-induced growth stimulation of human prostate CICs requires AR-dependent intracellular pathways. The identification of such AR-dependent intracellular pathways offers new leads for the development of effective therapies for prostate cancer. (c) 2009 Wiley-Liss, Inc.

  10. Interrogation of Cellular Innate Immunity by Diamond-Nanoneedle-Assisted Intracellular Molecular Fishing.

    PubMed

    Wang, Zixun; Yang, Yang; Xu, Zhen; Wang, Ying; Zhang, Wenjun; Shi, Peng

    2015-10-14

    Understanding intracellular signaling cascades and network is one of the core topics in modern biology. Novel tools based on nanotechnologies have enabled probing and analyzing intracellular signaling with unprecedented sensitivity and specificity. In this study, we developed a minimally invasive method for in situ probing specific signaling components of cellular innate immunity in living cells. The technique was based on diamond-nanoneedle arrays functionalized with aptamer-based molecular sensors, which were inserted into cytoplasmic domain using a centrifugation controlled process to capture molecular targets. Simultaneously, these diamond-nanoneedles also facilitated the delivery of double-strand DNAs (dsDNA90) into cells to activate the pathway involving the stimulator of interferon genes (STING). We showed that the nanoneedle-based biosensors can be successfully utilized to isolate transcriptional factor, NF-κB, from intracellular regions without damaging the cells, upon STING activation. By using a reversible protocol and repeated probing in living cells, we were able to examine the singling dynamics of NF-κB, which was quickly translocated from cytoplasm to nucleus region within ∼40 min of intracellular introduction of dsDNA90 for both A549 and neuron cells. These results demonstrated a novel and versatile tool for targeted in situ dissection of intracellular signaling, providing the potential to resolve new sights into various cellular processes.

  11. Early intracellular signaling events induced by in vitro metreleptin administration in cardiac myocytes and uterine smooth muscle cells.

    PubMed

    Choi, S K; Park, S; Choi, Y; Moon, H-S

    2015-08-05

    Intracellular signaling pathways regulated by leptin have largely been studied in metabolically important organs such as adipose tissue and peripheral blood mononuclear cells, suggesting that leptin plays a key role in pathophysiology of insulin resistance. However, whether synthetic analog of leptin, metreleptin, has similar effects on cardiac myocytes (CM) and uterine smooth muscle cells (USMC) has not yet been studied. Hence, in order to address these questions, we extended previous observations and investigated in vitro signaling study whether metreleptin may activate key signaling pathways. We observed that metreleptin activates Jak2 and STAT3 signaling pathways in dose- and time-dependent manner in CM and USMC. Also, we found that metreleptin increases ERK1/2, JNK and/or p38 phosphorylation in CM. In vitro metreleptin administration also increased ERK1/2 and/or p38 phosphorylation in USMC. By contrast, JNK was not regulated by in vitro metreleptin administration in USMC. Moreover, metreleptin-activated all signaling pathways were blocked by pre-treatment of PD98095 (ERK inhibitor), SB203580 (p38 inhibitor) and/or SP600125 (JNK inhibitor), respectively. Finally, metreleptin increased cell size (hypertrophy) in both CM and USMC. Our data provide novel insights into the role of Jak2, STAT3, ERK1/2, JNK and/or p38 as probable mediators of the action of leptin in regulating hypertrophy in CM and USMC.

  12. Differential activation of stress-response signaling in load-induced cardiac hypertrophy and failure

    PubMed Central

    Rothermel, Beverly A.; Berenji, Kambeez; Tannous, Paul; Kutschke, William; Dey, Asim; Nolan, Bridgid; Yoo, Ki-Dong; Demetroulis, Elaine; Gimbel, Michael; Cabuay, Barry; Karimi, Mohsen; Hill, Joseph A.

    2014-01-01

    Hypertrophic growth of the myocardium occurs in most forms of heart failure and may contribute to the pathogenesis of the failure state. Little is known about the regulatory mechanisms governing the often-coexisting phenotypes of hypertrophy, systolic failure, and diastolic stiffness that characterize clinical disease. We hypothesized that intracellular signaling pathways are differentially activated by graded degrees of hemodynamic stress. To test this, we developed models of graded pressure stress in mice and used them to directly compare compensated hypertrophy and pressure-overload heart failure. Surgical interventions were designed to be similar, on either side of a threshold separating compensated from decompensated responses. Our findings revealed two dramatically different hypertrophic phenotypes with only modest differences in the activation of relevant intracellular signaling pathways. Furthermore, we uncovered a functional requirement of calcineurin signaling in each model such that calcineurin suppression blunted hypertrophic growth. Remarkably, in each case, suppression of calcineurin signaling was not associated with clinical deterioration or increased mortality. Profiles of stress-response signaling and Ca2+ handling differ between the steady-state, maintenance phases of load-induced cardiac hypertrophy and failure. This information may be useful in identifying novel targets of therapy in chronic disease. PMID:16033866

  13. Differential activation of stress-response signaling in load-induced cardiac hypertrophy and failure.

    PubMed

    Rothermel, Beverly A; Berenji, Kambeez; Tannous, Paul; Kutschke, William; Dey, Asim; Nolan, Bridgid; Yoo, Ki-Dong; Demetroulis, Elaine; Gimbel, Michael; Cabuay, Barry; Karimi, Mohsen; Hill, Joseph A

    2005-09-21

    Hypertrophic growth of the myocardium occurs in most forms of heart failure and may contribute to the pathogenesis of the failure state. Little is known about the regulatory mechanisms governing the often-coexisting phenotypes of hypertrophy, systolic failure, and diastolic stiffness that characterize clinical disease. We hypothesized that intracellular signaling pathways are differentially activated by graded degrees of hemodynamic stress. To test this, we developed models of graded pressure stress in mice and used them to directly compare compensated hypertrophy and pressure-overload heart failure. Surgical interventions were designed to be similar, on either side of a threshold separating compensated from decompensated responses. Our findings revealed two dramatically different hypertrophic phenotypes with only modest differences in the activation of relevant intracellular signaling pathways. Furthermore, we uncovered a functional requirement of calcineurin signaling in each model such that calcineurin suppression blunted hypertrophic growth. Remarkably, in each case, suppression of calcineurin signaling was not associated with clinical deterioration or increased mortality. Profiles of stress-response signaling and Ca2+ handling differ between the steady-state, maintenance phases of load-induced cardiac hypertrophy and failure. This information may be useful in identifying novel targets of therapy in chronic disease.

  14. [Activity of macrolides and fluoroquinolones against intracellular Legionella pneumophila].

    PubMed

    Yu, Ling-ling; Hu, Bi-jie; Huang, Sheng-lei; Zhou, Zhao-yan; Tao, Li-li

    2011-06-01

    To evaluate the activity of macrolides and fluoroquinolones against Legionella pneumophila by intracellular susceptibility testing. Minimum inhibitory concentration (MIC) was determined by standard agar dilution test according to the CLSI. For intracellular assays, legionella pneumonia was used to infect human monocytic cell line THP-1. Erythromycin, azithromycin, levofloxacin and moxifloxacin at 1 × MIC, 4 × MIC, 8 × MIC were added following phagocytosis. Number of viable bacteria was enumerated at 24 h on BCYE (buffered charcoal yeast extract) agar in duplicates using standard plate count method. The result was expressed as percentage inhibition. Mann-Whitney U test was used to determine the significant differences in mean percentage inhibition between agents. Percentage inhibition at 24 h were as follows: Erythromycin 1 × MIC (50.18 ± 27.29)%, 4 × MIC (79.48 ± 20.08)%, 8 × MIC (91.46 ± 8.70)%; Azithromycin 1 × MIC (66.77 ± 26.18)%, 4 × MIC (91.73 ± 8.72)%, 8 × MIC (97.10 ± 3.37)%; Levofloxacin 1 × MIC (99.84 ± 0.25)%, 4 × MIC (99.99 ± 0.02)%, 8 × MIC (99.99 ± 0.01)%; Moxifloxacin 1 × MIC (99.90 ± 0.10)%, 4 × MIC (99.99 ± 0.03)%, 8 × MIC (99.99 ± 0.03)%. The fluoroquinolones showed greater inhibitory activity than macrolides against legionella pneumophila(u = 1.0, 2.0, 5.0, P < 0.05). Levofloxacin and moxifloxacin had the same intracellular activity against legionella pneumophila (u = 190, 183, 217, P > 0.05). Azithromycin was more effective than erythromycin in inhibiting intracellular legionella pneumophila (u = 132, 125, 128, P < 0.05). The fluoroquinolones were more active than macrolides against legionella pneumophila. The intracellular activity of levofloxacin against legionella pneumophila appeared to be similar to moxifloxacin. Azithromycin was demonstrated to have superior activity against legionella pneumophila compared with erythromycin.

  15. Synthetic estrogen derivatives demonstrate the functionality of intracellular GPR30.

    PubMed

    Revankar, Chetana M; Mitchell, Hugh D; Field, Angela S; Burai, Ritwik; Corona, Cesear; Ramesh, Chinnasamy; Sklar, Larry A; Arterburn, Jeffrey B; Prossnitz, Eric R

    2007-08-17

    Estrogen mediates its effects through multiple cellular receptors. In addition to the classical nuclear estrogen receptors (ERalpha and ERbeta), estrogen also signals through the seven-transmembrane G-protein-coupled receptor (GPCR) GPR30. Although estrogen is a cell-permeable ligand, it is often assumed that all GPCRs function solely as cell surface receptors. Our previous results showed that GPR30 appeared to be expressed predominantly in the endoplasmic reticulum. A critical question that arises is whether this localization represents the site of functional receptor. To address this question, we synthesized a collection of cell-permeable and cell-impermeable estrogen derivatives. We hypothesized that if functional GPR30 were expressed at the cell surface, both permeable and impermeable derivatives would show activity. However, if functional GPR30 were predominantly intracellular, like ERalpha, only the permeable ligands should show activity. Cell permeability was assessed using cells expressing ERalpha as a model intracellular estrogen-binding receptor. Our results reveal that despite exhibiting similar binding affinities for GPR30, only the cell-permeable ligands are capable of stimulating rapid calcium mobilization and phosphoinositide 3-kinase (PI3K) activation. We conclude that GPR30 expressed intracellularly is capable of initiating cellular signaling and that there is insufficient GPR30 expressed on the cell surface to initiate signaling in response to impermeable ligands in the cell lines examined. To our knowledge, this is the first definitive demonstration of a functional intracellular transmembrane estrogen receptor.

  16. Phosphodiesterase inhibitors suppress Lactobacillus casei cell-wall-induced NF-κB and MAPK activations and cell proliferation through protein kinase A--or exchange protein activated by cAMP-dependent signal pathway.

    PubMed

    Saito, Takekatsu; Sugimoto, Naotoshi; Ohta, Kunio; Shimizu, Tohru; Ohtani, Kaori; Nakayama, Yuko; Nakamura, Taichi; Hitomi, Yashiaki; Nakamura, Hiroyuki; Koizumi, Shoichi; Yachie, Akihiro

    2012-01-01

    Specific strains of Lactobacillus have been found to be beneficial in treating some types of diarrhea and vaginosis. However, a high mortality rate results from underlying immunosuppressive conditions in patients with Lactobacillus casei bacteremia. Cyclic AMP (cAMP) is a small second messenger molecule that mediates signal transduction. The onset and progression of inflammatory responses are sensitive to changes in steady-state cAMP levels. L. casei cell wall extract (LCWE) develops arteritis in mice through Toll-like receptor-2 signaling. The purpose of this study was to investigate whether intracellular cAMP affects LCWE-induced pathological signaling. LCWE was shown to induce phosphorylation of the nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways and cell proliferation in mice fibroblast cells. Theophylline and phosphodiesterase inhibitor increased intracellular cAMP and inhibited LCWE-induced cell proliferation as well as phosphorylation of NF-κB and MAPK. Protein kinase A inhibitor H89 prevented cAMP-induced MAPK inhibition, but not cAMP-induced NF-κB inhibition. An exchange protein activated by cAMP (Epac) agonist inhibited NF-κB activation but not MAPK activation. These results indicate that an increase in intracellular cAMP prevents LCWE induction of pathological signaling pathways dependent on PKA and Epac signaling.

  17. Identification of intracellular proteins and signaling pathways in human endothelial cells regulated by angiotensin-(1-7).

    PubMed

    Meinert, Christian; Gembardt, Florian; Böhme, Ilka; Tetzner, Anja; Wieland, Thomas; Greenberg, Barry; Walther, Thomas

    2016-01-01

    The study aimed to identify proteins regulated by the cardiovascular protective peptide angiotensin-(1-7) and to determine potential intracellular signaling cascades. Human endothelial cells were stimulated with Ang-(1-7) for 1 h, 3 h, 6 h, and 9 h. Peptide effects on intracellular signaling were assessed via antibody microarray, containing antibodies against 725 proteins. Bioinformatics software was used to identify affected intracellular signaling pathways. Microarray data was verified exemplarily by Western blot, Real-Time RT-PCR, and immunohistochemical studies. The microarray identified 110 regulated proteins after 1 h, 119 after 3 h, 31 after 6 h, and 86 after 9 h Ang-(1-7) stimulation. Regulated proteins were associated with high significance to several metabolic pathways like “Molecular Mechanism of Cancer” and “p53 signaling” in a time dependent manner. Exemplarily, Western blots for the E3-type small ubiquitin-like modifier ligase PIAS2 confirmed the microarray data and displayed a decrease by more than 50% after Ang-(1-7) stimulation at 1 h and 3 h without affecting its mRNA. Immunohistochemical studies with PIAS2 in human endothelial cells showed a decrease in cytoplasmic PIAS2 after Ang-(1-7) treatment. The Ang-(1-7) mediated decrease of PIAS2 was reproduced in other endothelial cell types. The results suggest that angiotensin-(1-7) plays a role in metabolic pathways related to cell death and cell survival in human endothelial cells.

  18. Phosphorylation of PPP(S/T)P motif of the free LRP6 intracellular domain is not required to activate the Wnt/beta-catenin pathway and attenuate GSK3beta activity.

    PubMed

    Beagle, Brandon; Mi, Kaihong; Johnson, Gail V W

    2009-11-01

    The canonical Wnt/beta-catenin signaling pathway plays a critical role in numerous physiological and pathological processes. LRP6 is an essential co-receptor for Wnt/beta-catenin signaling; as transduction of the Wnt signal is strongly dependent upon GSK3beta-mediated phosphorylation of multiple PPP(S/T)P motifs within the membrane-anchored LRP6 intracellular domain. Previously, we showed that the free LRP6 intracellular domain (LRP6-ICD) can activate the Wnt/beta-catenin pathway in a beta-catenin and TCF/LEF-1 dependent manner, as well as interact with and attenuate GSK3beta activity. However, it is unknown if the ability of LRP6-ICD to attenuate GSK3beta activity and modulate activation of the Wnt/beta-catenin pathway requires phosphorylation of the LRP6-ICD PPP(S/T)P motifs, in a manner similar to the membrane-anchored LRP6 intracellular domain. Here we provide evidence that the LRP6-ICD does not have to be phosphorylated at its PPP(S/T)P motif by GSK3beta to stabilize endogenous cytosolic beta-catenin resulting in activation of TCF/LEF-1 and the Wnt/beta-catenin pathway. LRP6-ICD and a mutant in which all 5 PPP(S/T)P motifs were changed to PPP(A)P motifs equivalently interacted with and attenuated GSK3beta activity in vitro, and both constructs inhibited the in situ GSK3beta-mediated phosphorylation of beta-catenin and tau to the same extent. These data indicate that the LRP6-ICD attenuates GSK3beta activity similar to other GSK3beta binding proteins, and is not a result of it being a GSK3beta substrate. Our findings suggest the functional and regulatory mechanisms governing the free LRP6-ICD may be distinct from membrane-anchored LRP6, and that release of the LRP6-ICD may provide a complimentary signaling cascade capable of modulating Wnt-dependent gene expression. (c) 2009 Wiley-Liss, Inc.

  19. A Miniature Couette to Generate Shear for Flow Cytometry: Studying Real-Time Modulation of Intracellular Calcium in Monocytic Cells

    PubMed Central

    Zwartz, Gordon J.; Chigaev, Alexandre; Foutz, Terry D.; Edwards, Bruce; Sklar, Larry A.

    2013-01-01

    Extracellular hydrodynamic forces may be transmitted to the interior of cells through the alteration of integrin conformation and affinity. Integrin activation regulates leukocyte recruitment, cell activation, and transmigration. The cellular and molecular mechanisms for integrin activation are not precisely known, although intracellular calcium signaling is involved. Flow cytometry offers a versatile way to study intracellular calcium signaling in real-time. We report a novel method to generate defined shear by using a miniature Couette. Testing involved measuring shear induced intracellular calcium signals of human monoblastoid U937 cells in suspension. The Couette was connected externally to a flow cytometer and pressurized at 6 PSI (4.1 N/m2). Cells were subjected to well-defined shear between 0 and 1000 s−1 and delivered continuously within 10 s to a FACScan at 1 μl/s. Intracellular calcium levels and the percentage of cells activated increased as shear increased in duration and intensity. PMID:22045643

  20. Activity of 10 antimicrobial agents against intracellular Rhodococcus equi.

    PubMed

    Giguère, Steeve; Berghaus, Londa J; Lee, Elise A

    2015-08-05

    Studies with facultative intracellular bacterial pathogens have shown that evaluation of the bactericidal activity of antimicrobial agents against intracellular bacteria is more closely associated with in vivo efficacy than traditional in vitro susceptibility testing. The objective of this study was to determine the relative activity of 10 antimicrobial agents against intracellular Rhodococcus equi. Equine monocyte-derived macrophages were infected with virulent R. equi and exposed to erythromycin, clarithromycin, azithromycin, rifampin, ceftiofur, gentamicin, enrofloxacin, vancomycin, imipenem, or doxycycline at concentrations achievable in plasma at clinically recommended dosages in foals. The number of intracellular R. equi was determined 48h after infection by counting colony forming units (CFUs). The number of R. equi CFUs in untreated control wells were significantly higher than those of monolayers treated with antimicrobial agents. Numbers of R. equi were significantly lower in monolayers treated with enrofloxacin followed by those treated with gentamicin, and vancomycin, when compared to monolayers treated with other antimicrobial agents. Numbers of R. equi in monolayers treated with doxycycline were significantly higher than those of monolayers treated with other antimicrobial agents. Differences in R. equi CFUs between monolayers treated with other antimicrobial agents were not statistically significant. Enrofloxacin, gentamicin, and vancomycin are the most active drugs in equine monocyte-derived macrophages infected with R. equi. Additional studies will be needed to determine if these findings correlate with in vivo efficacy. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Staphylococcal leukotoxins trigger free intracellular Ca2+ rise in neurones, signalling through acidic stores and activation of store-operated channels

    PubMed Central

    Jover, Emmanuel; Tawk, Mira Y; Laventie, Benoît-Joseph; Poulain, Bernard; Prévost, Gilles

    2013-01-01

    Headache, muscle aches and chest pain of mild to medium intensity are among the most common clinical symptoms in moderate Staphylococcus aureus infections, with severe infections usually associated with worsening pain symptoms. These nociceptive responses of the body raise the question of how bacterial infection impinges on the nervous system. Does S. aureus, or its released virulence factors, act directly on neurones? To address this issue, we evaluated the potential effects on neurones of certain bi-component leukotoxins, which are virulent factors released by the bacterium. The activity of four different leukotoxins was verified by measuring the release of glutamate from rat cerebellar granular neurones. The bi-component γ-haemolysin HlgC/HlgB was the most potent leukotoxin, initiating transient rises in intracellular Ca2+ concentration in cerebellar neurones and in primary sensory neurones from dorsal root ganglia, as probed with the Fura-2 Ca2+ indicator dye. Using pharmacological antagonists of receptors and Ca2+ channels, the variations in intracellular Ca2+ concentration were found independent of the activation of voltage-operatedCa2+ channels or glutamate receptors. Drugs targeting Sarco-Endoplasmic Reticulum Ca2+-ATPase (SERCA) or H+-ATPase and antagonists of the store-operated Ca2+ entry complex blunted, or significantly reduced, the leukotoxin-induced elevation in intracellular Ca2+. Moreover, activation of the ADP-ribosyl cyclase CD38 was also required to initiate the release of Ca2+ from acidic stores. These findings suggest that, prior to forming a pore at the plasma membrane, leukotoxin HlgC/HlgB triggers a multistep process which initiates the release of Ca2+ from lysosomes, modifies the steady-state level of reticular Ca2+ stores and finally activates the Store-Operated Calcium Entry complex. PMID:23152983

  2. Staphylococcal leukotoxins trigger free intracellular Ca(2+) rise in neurones, signalling through acidic stores and activation of store-operated channels.

    PubMed

    Jover, Emmanuel; Tawk, Mira Y; Laventie, Benoît-Joseph; Poulain, Bernard; Prévost, Gilles

    2013-05-01

    Headache, muscle aches and chest pain of mild to medium intensity are among the most common clinical symptoms in moderate Staphylococcus aureus infections, with severe infections usually associated with worsening pain symptoms. These nociceptive responses of the body raise the question of how bacterial infection impinges on the nervous system. Does S. aureus, or its released virulence factors, act directly on neurones? To address this issue, we evaluated the potential effects on neurones of certain bi-component leukotoxins, which are virulent factors released by the bacterium. The activity of four different leukotoxins was verified by measuring the release of glutamate from rat cerebellar granular neurones. The bi-component γ-haemolysin HlgC/HlgB was the most potent leukotoxin, initiating transient rises in intracellular Ca(2+) concentration in cerebellar neurones and in primary sensory neurones from dorsal root ganglia, as probed with the Fura-2 Ca(2+) indicator dye. Using pharmacological antagonists of receptors and Ca(2+) channels, the variations in intracellular Ca(2+) concentration were found independent of the activation of voltage-operated Ca(2+) channels or glutamate receptors. Drugs targeting Sarco-Endoplasmic Reticulum Ca(2+)-ATPase (SERCA) or H(+)-ATPase and antagonists of the store-operated Ca(2+) entry complex blunted, or significantly reduced, the leukotoxin-induced elevation in intracellular Ca(2+). Moreover, activation of the ADP-ribosyl cyclase CD38 was also required to initiate the release of Ca(2+) from acidic stores. These findings suggest that, prior to forming a pore at the plasma membrane, leukotoxin HlgC/HlgB triggers a multistep process which initiates the release of Ca(2+) from lysosomes, modifies the steady-state level of reticular Ca(2+) stores and finally activates the Store-Operated Calcium Entry complex. © 2012 Blackwell Publishing Ltd.

  3. Calmodulin activity regulates group I metabotropic glutamate receptor-mediated signal transduction and synaptic depression.

    PubMed

    Sethna, Ferzin; Zhang, Ming; Kaphzan, Hanoch; Klann, Eric; Autio, Dawn; Cox, Charles L; Wang, Hongbing

    2016-05-01

    Group I metabotropic glutamate receptors (mGluR), including mGluR1 and mGluR 5 (mGluR1/5), are coupled to Gq and modulate activity-dependent synaptic plasticity. Direct activation of mGluR1/5 causes protein translation-dependent long-term depression (LTD). Although it has been established that intracellular Ca(2+) and the Gq-regulated signaling molecules are required for mGluR1/5 LTD, whether and how Ca(2+) regulates Gq signaling and upregulation of protein expression remain unknown. Through pharmacological inhibition, we tested the function of the Ca(2+) sensor calmodulin (CaM) in intracellular signaling triggered by the activation of mGluR1/5. CaM inhibitor N-[4-aminobutyl]-5-chloro-2-naphthalenesulfonamide hydrochloride (W13) suppressed the mGluR1/5-stimulated activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and p70-S6 kinase 1 (S6K1) in hippocampal neurons. W13 also blocked the mGluR1/5 agonist-induced synaptic depression in hippocampal slices and in anesthetized mice. Consistent with the function of CaM, inhibiting the downstream targets Ca(2+) /CaM-dependent protein kinases (CaMK) blocked ERK1/2 and S6K1 activation. Furthermore, disruption of the CaM-CaMK-ERK1/2 signaling cascade suppressed the mGluR1/5-stimulated upregulation of Arc expression. Altogether, our data suggest CaM as a new Gq signaling component for coupling Ca(2+) and protein upregulation and regulating mGluR1/5-mediated synaptic modification. © 2016 Wiley Periodicals, Inc.

  4. Single-cell codetection of metabolic activity, intracellular functional proteins, and genetic mutations from rare circulating tumor cells.

    PubMed

    Zhang, Yu; Tang, Yin; Sun, Shuai; Wang, Zhihua; Wu, Wenjun; Zhao, Xiaodong; Czajkowsky, Daniel M; Li, Yan; Tian, Jianhui; Xu, Ling; Wei, Wei; Deng, Yuliang; Shi, Qihui

    2015-10-06

    The high glucose uptake and activation of oncogenic signaling pathways in cancer cells has long made these features, together with the mutational spectrum, prime diagnostic targets of circulating tumor cells (CTCs). Further, an ability to characterize these properties at a single cell resolution is widely believed to be essential, as the known extensive heterogeneity in CTCs can obscure important correlations in data obtained from cell population-based methods. However, to date, it has not been possible to quantitatively measure metabolic, proteomic, and genetic data from a single CTC. Here we report a microchip-based approach that allows for the codetection of glucose uptake, intracellular functional proteins, and genetic mutations at the single-cell level from rare tumor cells. The microchip contains thousands of nanoliter grooves (nanowells) that isolate individual CTCs and allow for the assessment of their glucose uptake via imaging of a fluorescent glucose analog, quantification of a panel of intracellular signaling proteins using a miniaturized antibody barcode microarray, and retrieval of the individual cell nuclei for subsequent off-chip genome amplification and sequencing. This approach integrates molecular-scale information on the metabolic, proteomic, and genetic status of single cells and permits the inference of associations between genetic signatures, energy consumption, and phosphoproteins oncogenic signaling activities in CTCs isolated from blood samples of patients. Importantly, this microchip chip-based approach achieves this multidimensional molecular analysis with minimal cell loss (<20%), which is the bottleneck of the rare cell analysis.

  5. The effect of high pressure on the intracellular trehalose synthase activity of Thermus aquaticus.

    PubMed

    Dong, Yongsheng; Ma, Lei; Duan, Yuanliang

    2016-01-01

    To understand the effect of high pressure on the intracellular trehalose synthase activity, Thermus aquaticus (T. aquaticus) in the logarithmic growth phase was treated with high-pressure air, and its intracellular trehalose synthase (TSase) activity was determined. Our results indicated that pressure is a factor strongly affecting the cell growth. High pressure significantly attenuated the growth rate of T. aquaticus and shortened the duration of stationary phase. However, after 2 h of culture under 1.0 MPa pressure, the activity of intracellular TSase in T. aquaticus reached its maximum value, indicating that pressure can significantly increase the activity of intracellular TSase in T. aquaticus. Thus the present study provides an important guide for the enzymatic production of trehalose.

  6. PKC-η-MARCKS Signaling Promotes Intracellular Survival of Unopsonized Burkholderia thailandensis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micheva-Viteva, Sofiya N.; Shou, Yulin; Ganguly, Kumkum

    Pathogenic Burkholderia rely on host factors for efficient intracellular replication and are highly refractory to antibiotic treatment. To identify host genes that are required by Burkholderia spp. during infection, we performed a RNA interference (RNAi) screen of the human kinome and identified 35 host kinases that facilitated Burkholderia thailandensis intracellular survival in human monocytic THP-1 cells. We validated a selection of host kinases using imaging flow cytometry to assess efficiency of B. thailandensis survival in the host upon siRNA-mediated knockdown. We focused on the role of the novel protein kinase C isoform, PKC-η, in Burkholderia infection and characterized PKC-η/MARCKS signalingmore » as a key event that promotes the survival of unopsonized B. thailandensis CDC2721121 within host cells. While infection of lung epithelial cells with unopsonized Gram-negative bacteria stimulated phosphorylation of Ser175/160 in the MARCKS effector domain, siRNA-mediated knockdown of PKC-η expression reduced the levels of phosphorylated MARCKS by >3-fold in response to infection with Bt CDC2721121. We compared the effect of the conventional PKC-α and novel PKC-η isoforms on the growth of B. thailandensis CDC2721121 within monocytic THP-1 cells and found that ≥75% knock-down of PRKCH transcript levels reduced intracellular bacterial load 100% more efficiently when compared to growth in cells siRNA-depleted of the classical PKC-α, suggesting that the PKC-η isoform can specifically mediate Burkholderia intracellular survival. Based on imaging studies of intracellular B. thailandensis, we found that PKC-η function stimulates phagocytic pathways that promote B. thailandensis escape into the cytoplasm leading to activation of autophagosome flux. As a result, identification of host kinases that are targeted by Burkholderia during infection provides valuable molecular insights in understanding Burkholderia pathogenesis, and ultimately, in designing effective

  7. PKC-η-MARCKS Signaling Promotes Intracellular Survival of Unopsonized Burkholderia thailandensis

    DOE PAGES

    Micheva-Viteva, Sofiya N.; Shou, Yulin; Ganguly, Kumkum; ...

    2017-06-07

    Pathogenic Burkholderia rely on host factors for efficient intracellular replication and are highly refractory to antibiotic treatment. To identify host genes that are required by Burkholderia spp. during infection, we performed a RNA interference (RNAi) screen of the human kinome and identified 35 host kinases that facilitated Burkholderia thailandensis intracellular survival in human monocytic THP-1 cells. We validated a selection of host kinases using imaging flow cytometry to assess efficiency of B. thailandensis survival in the host upon siRNA-mediated knockdown. We focused on the role of the novel protein kinase C isoform, PKC-η, in Burkholderia infection and characterized PKC-η/MARCKS signalingmore » as a key event that promotes the survival of unopsonized B. thailandensis CDC2721121 within host cells. While infection of lung epithelial cells with unopsonized Gram-negative bacteria stimulated phosphorylation of Ser175/160 in the MARCKS effector domain, siRNA-mediated knockdown of PKC-η expression reduced the levels of phosphorylated MARCKS by >3-fold in response to infection with Bt CDC2721121. We compared the effect of the conventional PKC-α and novel PKC-η isoforms on the growth of B. thailandensis CDC2721121 within monocytic THP-1 cells and found that ≥75% knock-down of PRKCH transcript levels reduced intracellular bacterial load 100% more efficiently when compared to growth in cells siRNA-depleted of the classical PKC-α, suggesting that the PKC-η isoform can specifically mediate Burkholderia intracellular survival. Based on imaging studies of intracellular B. thailandensis, we found that PKC-η function stimulates phagocytic pathways that promote B. thailandensis escape into the cytoplasm leading to activation of autophagosome flux. As a result, identification of host kinases that are targeted by Burkholderia during infection provides valuable molecular insights in understanding Burkholderia pathogenesis, and ultimately, in designing effective

  8. Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction

    PubMed Central

    Weidinger, Adelheid; Kozlov, Andrey V.

    2015-01-01

    In the past, reactive oxygen and nitrogen species (RONS) were shown to cause oxidative damage to biomolecules, contributing to the development of a variety of diseases. However, recent evidence has suggested that intracellular RONS are an important component of intracellular signaling cascades. The aim of this review was to consolidate old and new ideas on the chemical, physiological and pathological role of RONS for a better understanding of their properties and specific activities. Critical consideration of the literature reveals that deleterious effects do not appear if only one primary species (superoxide radical, nitric oxide) is present in a biological system, even at high concentrations. The prerequisite of deleterious effects is the formation of highly reactive secondary species (hydroxyl radical, peroxynitrite), emerging exclusively upon reaction with another primary species or a transition metal. The secondary species are toxic, not well controlled, causing irreversible damage to all classes of biomolecules. In contrast, primary RONS are well controlled (superoxide dismutase, catalase), and their reactions with biomolecules are reversible, making them ideal for physiological/pathophysiological intracellular signaling. We assume that whether RONS have a signal transducing or damaging effect is primarily defined by their quality, being primary or secondary RONS, and only secondly by their quantity. PMID:25884116

  9. Neuroglian activates Echinoid to antagonize the Drosophila EGF receptor signaling pathway.

    PubMed

    Islam, Rafique; Wei, Shu-Yi; Chiu, Wei-Hsin; Hortsch, Michael; Hsu, Jui-Chou

    2003-05-01

    echinoid (ed) encodes an cell-adhesion molecule (CAM) that contains immunoglobulin domains and regulates the EGFR signaling pathway during Drosophila eye development. Based on our previous genetic mosaic and epistatic analysis, we proposed that Ed, via homotypic interactions, activates a novel, as yet unknown pathway that antagonizes EGFR signaling. In this report, we demonstrate that Ed functions as a homophilic adhesion molecule and also engages in a heterophilic trans-interaction with Drosophila Neuroglian (Nrg), an L1-type CAM. Co-expression of ed and nrg in the eye exhibits a strong genetic synergy in inhibiting EGFR signaling. This synergistic effect requires the intracellular domain of Ed, but not that of Nrg. In addition, Ed and Nrg colocalize in the Drosophila eye and are efficiently co-immunoprecipitated. Together, our results suggest a model in which Nrg acts as a heterophilic ligand and activator of Ed, which in turn antagonizes EGFR signaling.

  10. Targeting the intracellular signaling "STOP" and "GO" pathways for the treatment of alcohol use disorders.

    PubMed

    Ron, Dorit; Berger, Anthony

    2018-06-01

    In recent years, research has identified the molecular and neural substrates underlying the transition of moderate "social" consumption of alcohol to the characteristic alcohol use disorder (AUD) phenotypes including excessive and compulsive alcohol use which we define in the review as the GO signaling pathways. In addition, growing evidence points to the existence of molecular mechanisms that keep alcohol consumption in check and that confer resilience for the development of AUD which we define herein as the STOP signaling pathways. In this review, we focus on examples of the GO and the STOP intracellular signaling pathways and discuss our current knowledge of how manipulations of these pathways may be used for the treatment of AUD.

  11. Wave failure at strong coupling in intracellular C a2 + signaling system with clustered channels

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Wu, Yuning; Gao, Xuejuan; Cai, Meichun; Shuai, Jianwei

    2018-01-01

    As an important intracellular signal, C a2 + ions control diverse cellular functions. In this paper, we discuss the C a2 + signaling with a two-dimensional model in which the inositol 1,4,5-trisphosphate (I P3 ) receptor channels are distributed in clusters on the endoplasmic reticulum membrane. The wave failure at large C a2 + diffusion coupling is discussed in detail in the model. We show that with varying model parameters the wave failure is a robust behavior with either deterministic or stochastic channel dynamics. We suggest that the wave failure should be a general behavior in inhomogeneous diffusing systems with clustered excitable regions and may occur in biological C a2 + signaling systems.

  12. Proteinase activated-receptors-associated signaling in the control of gastric cancer

    PubMed Central

    Sedda, Silvia; Marafini, Irene; Caruso, Roberta; Pallone, Francesco; Monteleone, Giovanni

    2014-01-01

    Gastric cancer (GC) is the fourth most common cancer in the world and the second cause of cancer-related death. Gastric carcinogenesis is a multifactorial process, in which environmental and genetic factors interact to activate multiple intracellular signals thus leading to uncontrolled growth and survival of GC cells. One such a pathway is regulated by proteinase activated-receptors (PARs), seven transmembrane-spanning domain G protein-coupled receptors, which comprise four receptors (i.e., PAR-1, PAR-2, PAR-3, and PAR-4) activated by various proteases. Both PAR-1 and PAR-2 are over-expressed on GC cells and their activation triggers and/or amplifies intracellular pathways, which sustain gastric carcinogenesis. There is also evidence that expression of either PAR-1 or PAR-2 correlates with depth of wall invasion and metastatic dissemination and inversely with the overall survival of patients. Consistently, data emerging from experimental models of GC suggest that both these receptors can be important targets for therapeutic interventions in GC patients. In contrast, PAR-4 levels are down-regulated in GC and correlate inversely with the aggressiveness of GC, thus suggesting a negative role of this receptor in the control of GC. In this article we review the available data on the expression and role of PARs in GC and discuss whether manipulation of PAR-driven signals may be useful for interfering with GC cell behavior. PMID:25232234

  13. Skeletal (stromal) stem cells: an update on intracellular signaling pathways controlling osteoblast differentiation.

    PubMed

    Abdallah, Basem M; Jafari, Abbas; Zaher, Walid; Qiu, Weimin; Kassem, Moustapha

    2015-01-01

    Skeletal (marrow stromal) stem cells (BMSCs) are a group of multipotent cells that reside in the bone marrow stroma and can differentiate into osteoblasts, chondrocytes and adipocytes. Studying signaling pathways that regulate BMSC differentiation into osteoblastic cells is a strategy for identifying druggable targets for enhancing bone formation. This review will discuss the functions and the molecular mechanisms of action on osteoblast differentiation and bone formation; of a number of recently identified regulatory molecules: the non-canonical Notch signaling molecule Delta-like 1/preadipocyte factor 1 (Dlk1/Pref-1), the Wnt co-receptor Lrp5 and intracellular kinases. This article is part of a Special Issue entitled: Stem Cells and Bone. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Impairment of neutrophil Fc gamma receptor mediated transmembrane signalling in active rheumatoid arthritis.

    PubMed Central

    Goulding, N J; Guyre, P M

    1992-01-01

    Neutrophil Fc gamma receptor (Fc gamma R) signalling responses were compared in healthy subjects, patients with definite rheumatoid arthritis (RA), ankylosing spondylitis, and osteoarthritis. The patients with A were subdivided into those with active synovitis and those with quiescent disease. Basal intracellular calcium ion concentrations in patients with inactive RA were significantly higher than in control subjects, which in turn were greater than in patients with active RA. Transient cytosolic calcium ion fluxes were observed after binding Fc gamma RII or Fc gamma RIII with specific monoclonal antibodies and cross linking with the F(ab')2 fragment of antimouse IgG. Response times were significantly faster for Fc gamma RII than for Fc gamma RIII. Peak concentrations of intracellular calcium ions after neutrophil stimulation were comparable for Fc gamma RII and RIII in healthy subjects. Neutrophils in patients with ankylosing spondylitis and osteoarthritis responded to Fc gamma R triggering, but in the group with active RA fluxes of calcium ions were severely depressed. Neutrophils isolated from patients with RA with quiescent disease showed exaggerated responses when compared with controls. Expression of all three Fc gamma R types on neutrophils from patients with active RA, as measured by monoclonal antibody binding, was comparable with control cells. Impairment of neutrophil Fc gamma R cytosolic signalling in active RA could reflect a receptor signalling defect with potential effects on Fc mediated functions, or a fundamental defect in calcium ion homeostasis within these cells. PMID:1535494

  15. Emergence of tissue polarization from synergy of intracellular and extracellular auxin signaling

    PubMed Central

    Wabnik, Krzysztof; Kleine-Vehn, Jürgen; Balla, Jozef; Sauer, Michael; Naramoto, Satoshi; Reinöhl, Vilém; Merks, Roeland M H; Govaerts, Willy; Friml, Jiří

    2010-01-01

    Plant development is exceptionally flexible as manifested by its potential for organogenesis and regeneration, which are processes involving rearrangements of tissue polarities. Fundamental questions concern how individual cells can polarize in a coordinated manner to integrate into the multicellular context. In canalization models, the signaling molecule auxin acts as a polarizing cue, and feedback on the intercellular auxin flow is key for synchronized polarity rearrangements. We provide a novel mechanistic framework for canalization, based on up-to-date experimental data and minimal, biologically plausible assumptions. Our model combines the intracellular auxin signaling for expression of PINFORMED (PIN) auxin transporters and the theoretical postulation of extracellular auxin signaling for modulation of PIN subcellular dynamics. Computer simulations faithfully and robustly recapitulated the experimentally observed patterns of tissue polarity and asymmetric auxin distribution during formation and regeneration of vascular systems and during the competitive regulation of shoot branching by apical dominance. Additionally, our model generated new predictions that could be experimentally validated, highlighting a mechanistically conceivable explanation for the PIN polarization and canalization of the auxin flow in plants. PMID:21179019

  16. Novel actions of IGFBP-3 on intracellular signaling pathways of insulin-secreting cells

    PubMed Central

    Chen, Xiaoyan; Ferry, Robert J.

    2011-01-01

    Understanding mechanisms underlying apoptotic destruction of insulin-secreting cells is critical to validate therapeutic targets for type 1 diabetes mellitus. We recently reported insulin-like growth factor binding protein-3 (IGFBP-3) as a novel mediator of apoptosis in insulin-secreting cells. In light of emerging IGF-independent roles for IGFBP-3, we investigated the mechanisms underlying actions of the novel, recombinant human mutant G56G80G81-IGFBP-3, which lacks intrinsic IGF binding affinity. Using the rat insulinoma RINm5F cell line, we report the first studies in insulin-secreting cells that IGFBP-3 selectively suppresses multiple, key intracellular phosphorelays. By immunoblot, we demonstrate that G56G80G81-IGFBP-3 suppresses phosphorylation of c-raf-MEK-ERK pathway and p38 kinase in time-dependent and dose-dependent manners. SAPK/JNK signaling was unaffected. These data delineate several novel intracellular sites of action for IGFBP-3 in insulin-secreting cells. PMID:16275148

  17. Mitochondrial reactive oxygen species (ROS) as signaling molecules of intracellular pathways triggered by the cardiac renin-angiotensin II-aldosterone system (RAAS)

    PubMed Central

    De Giusti, V. C.; Caldiz, C. I.; Ennis, I. L.; Pérez, N. G.; Cingolani, H. E.; Aiello, E. A.

    2013-01-01

    Mitochondria represent major sources of basal reactive oxygen species (ROS) production of the cardiomyocyte. The role of ROS as signaling molecules that mediate different intracellular pathways has gained increasing interest among physiologists in the last years. In our lab, we have been studying the participation of mitochondrial ROS in the intracellular pathways triggered by the renin-angiotensin II-aldosterone system (RAAS) in the myocardium during the past few years. We have demonstrated that acute activation of cardiac RAAS induces mitochondrial ATP-dependent potassium channel (mitoKATP) opening with the consequent enhanced production of mitochondrial ROS. These oxidant molecules, in turn, activate membrane transporters, as sodium/hydrogen exchanger (NHE-1) and sodium/bicarbonate cotransporter (NBC) via the stimulation of the ROS-sensitive MAPK cascade. The stimulation of such effectors leads to an increase in cardiac contractility. In addition, it is feasible to suggest that a sustained enhanced production of mitochondrial ROS induced by chronic cardiac RAAS, and hence, chronic NHE-1 and NBC stimulation, would also result in the development of cardiac hypertrophy. PMID:23755021

  18. Mitochondrial reactive oxygen species (ROS) as signaling molecules of intracellular pathways triggered by the cardiac renin-angiotensin II-aldosterone system (RAAS).

    PubMed

    De Giusti, V C; Caldiz, C I; Ennis, I L; Pérez, N G; Cingolani, H E; Aiello, E A

    2013-01-01

    Mitochondria represent major sources of basal reactive oxygen species (ROS) production of the cardiomyocyte. The role of ROS as signaling molecules that mediate different intracellular pathways has gained increasing interest among physiologists in the last years. In our lab, we have been studying the participation of mitochondrial ROS in the intracellular pathways triggered by the renin-angiotensin II-aldosterone system (RAAS) in the myocardium during the past few years. We have demonstrated that acute activation of cardiac RAAS induces mitochondrial ATP-dependent potassium channel (mitoKATP) opening with the consequent enhanced production of mitochondrial ROS. These oxidant molecules, in turn, activate membrane transporters, as sodium/hydrogen exchanger (NHE-1) and sodium/bicarbonate cotransporter (NBC) via the stimulation of the ROS-sensitive MAPK cascade. The stimulation of such effectors leads to an increase in cardiac contractility. In addition, it is feasible to suggest that a sustained enhanced production of mitochondrial ROS induced by chronic cardiac RAAS, and hence, chronic NHE-1 and NBC stimulation, would also result in the development of cardiac hypertrophy.

  19. Molecular Mechanisms Controlling GLUT4 Intracellular Retention

    PubMed Central

    Blot, Vincent

    2008-01-01

    In basal adipocytes, glucose transporter 4 (GLUT4) is sequestered intracellularly by an insulin-reversible retention mechanism. Here, we analyze the roles of three GLUT4 trafficking motifs (FQQI, TELEY, and LL), providing molecular links between insulin signaling, cellular trafficking machinery, and the motifs in the specialized trafficking of GLUT4. Our results support a GLUT4 retention model that involves two linked intracellular cycles: one between endosomes and a retention compartment, and the other between endosomes and specialized GLUT4 transport vesicles. Targeting of GLUT4 to the former is dependent on the FQQI motif and its targeting to the latter is dependent on the TELEY motif. These two motifs act independently in retention, with the TELEY-dependent step being under the control of signaling downstream of the AS160 rab GTPase activating protein. Segregation of GLUT4 from endosomes, although positively correlated with the degree of basal retention, does not completely account for GLUT4 retention or insulin-responsiveness. Mutation of the LL motif slows return to basal intracellular retention after insulin withdrawal. Knockdown of clathrin adaptin protein complex-1 (AP-1) causes a delay in the return to intracellular retention after insulin withdrawal. The effects of mutating the LL motif and knockdown of AP-1 were not additive, establishing that AP-1 regulation of GLUT4 trafficking requires the LL motif. PMID:18550797

  20. Zinc Signals and Immunity.

    PubMed

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-10-24

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as "zinc waves", and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.

  1. Zinc Signals and Immunity

    PubMed Central

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-01-01

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as “zinc waves”, and late homeostatic zinc signals regarding prolonged changes in intracellular zinc. PMID:29064429

  2. The Drosophila FTZ-F1 Nuclear Receptor Mediates Juvenile Hormone Activation of E75A Gene Expression through an Intracellular Pathway*

    PubMed Central

    Dubrovsky, Edward B.; Dubrovskaya, Veronica A.; Bernardo, Travis; Otte, Valerie; DiFilippo, Robert; Bryan, Heather

    2011-01-01

    Juvenile hormone (JH) regulates a wide variety of biological activities in holometabolous insects, ranging from vitellogenesis and caste determination in adults to the timing of metamorphosis in larvae. The mechanism of JH signaling in such a diverse array of processes remains either unknown or contentious. We previously found that the nuclear receptor gene E75A is activated in S2 cells as a primary response to JH. Here, by expressing an intracellular form of JH esterase, we demonstrate that JH must enter the cell in order to activate E75A. To find intracellular receptors involved in the JH response, we performed an RNAi screen against nuclear receptor genes expressed in this cell line and identified the orphan receptor FTZ-F1. Removal of FTZ-F1 prevents JH activation of E75A, whereas overexpression enhances activation, implicating FTZ-F1 as a critical component of the JH response. FTZ-F1 is bound in vivo to multiple enhancers upstream of E75A, suggesting that it participates in direct JH-mediated gene activation. To better define the role of FTZ-F1 in JH signaling, we investigated interactions with candidate JH receptors and found that the bHLH-PAS proteins MET and GCE both interact with FTZ-F1 and can activate transcription through the FTZ-F1 response element. Removal of endogenous GCE, but not MET, prevents JH activation of E75A. We propose that FTZ-F1 functions as a competence factor by loading JH signaling components to the promoter, thus facilitating the direct regulation of E75A gene expression by JH. PMID:21832074

  3. Cortical Circuit Activity Evokes Rapid Astrocyte Calcium Signals on a Similar Timescale to Neurons.

    PubMed

    Stobart, Jillian L; Ferrari, Kim David; Barrett, Matthew J P; Glück, Chaim; Stobart, Michael J; Zuend, Marc; Weber, Bruno

    2018-05-16

    Sensory stimulation evokes intracellular calcium signals in astrocytes; however, the timing of these signals is disputed. Here, we used novel combinations of genetically encoded calcium indicators for concurrent two-photon imaging of cortical astrocytes and neurons in awake mice during whisker deflection. We identified calcium responses in both astrocyte processes and endfeet that rapidly followed neuronal events (∼120 ms after). These fast astrocyte responses were largely independent of IP 3 R2-mediated signaling and known neuromodulator activity (acetylcholine, serotonin, and norepinephrine), suggesting that they are evoked by local synaptic activity. The existence of such rapid signals implies that astrocytes are fast enough to play a role in synaptic modulation and neurovascular coupling. VIDEO ABSTRACT. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Methoxychlor and Vinclozolin Induce Rapid Changes in Intercellular and Intracellular Signaling in Liver Progenitor Cells

    PubMed Central

    Babica, Pavel; Zurabian, Rimma; Kumar, Esha R.; Chopra, Rajus; Mianecki, Maxwell J.; Park, Joon-Suk; Jaša, Libor; Trosko, James E.; Upham, Brad L.

    2016-01-01

    Methoxychlor (MXC) and vinclozolin (VIN) are well-recognized endocrine disrupting chemicals known to alter epigenetic regulations and transgenerational inheritance; however, non-endocrine disruption endpoints are also important. Thus, we determined the effects of MXC and VIN on the dysregulation of gap junctional intercellular communication (GJIC) and activation of mitogen-activated protein kinases (MAPKs) in WB-F344 rat liver epithelial cells. Both chemicals induced a rapid dysregulation of GJIC at non-cytotoxic doses, with 30 min EC50 values for GJIC inhibition being 10 µM for MXC and 126 µM for VIN. MXC inhibited GJIC for at least 24 h, while VIN effects were transient and GJIC recovered after 4 h. VIN induced rapid hyperphosphorylation and internalization of gap junction protein connexin43, and both chemicals also activated MAPK ERK1/2 and p38. Effects on GJIC were not prevented by MEK1/2 inhibitor, but by an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), resveratrol, and in the case of VIN, also, by a p38 inhibitor. Estrogen (ER) and androgen receptor (AR) modulators (estradiol, ICI 182,780, HPTE, testosterone, flutamide, VIN M2) did not attenuate MXC or VIN effects on GJIC. Our data also indicate that the effects were elicited by the parental compounds of MXC and VIN. Our study provides new evidence that MXC and VIN dysregulate GJIC via mechanisms involving rapid activation of PC-PLC occurring independently of ER- or AR-dependent genomic signaling. Such alterations of rapid intercellular and intracellular signaling events involved in regulations of gene expression, tissue development, function and homeostasis, could also contribute to transgenerational epigenetic effects of endocrine disruptors. PMID:27413106

  5. Intracellular studies of the nucleoside reverse transcriptase inhibitor active metabolites: a review.

    PubMed

    Rodriguez Orengo, J F; Santana, J; Febo, I; Diaz, C; Rodriguez, J L; Garcia, R; Font, E; Rosario, O

    2000-03-01

    Nucleoside reverse transcriptase inhibitors (NRTIs) plasma concentrations do not correlate with clinical efficacy or toxicity. These agents need to be phosphorylated to become active against HIV-infection. Thus, the characterization of the NRTIs intracellular metabolite pharmacological parameters will provide a better understanding that could lead to the development of more rational dose regimens in the HIV-infected population. Furthermore, intracellular measurements of NRTIs may provide a better marker with respect to clinical efficacy and toxicity than plasma concentrations. Thus, in this article we review the latest information regarding the intracellular pharmacological parameters of zidovudine (ZDV) and lamivudine (3TC) active metabolites in HIV-infected patients including the results from our recent clinical studies. We will start the discussion with ZDV and 3TC clinical efficacy, followed by systemic pharmacokinetics studies. We will then discuss the in vitro and in vivo intracellular studies with particular emphasis in the method development to measure these metabolites and we will conclude with the most current data from our clinical trials.

  6. Standardized Assay Medium To Measure Lactococcus lactis Enzyme Activities while Mimicking Intracellular Conditions

    PubMed Central

    Goel, Anisha; Santos, Filipe; de Vos, Willem M.; Teusink, Bas

    2012-01-01

    Knowledge of how the activity of enzymes is affected under in vivo conditions is essential for analyzing their regulation and constructing models that yield an integrated understanding of cell behavior. Current kinetic parameters for Lactococcus lactis are scattered through different studies and performed under different assay conditions. Furthermore, assay conditions often diverge from conditions prevailing in the intracellular environment. To establish uniform assay conditions that resemble intracellular conditions, we analyzed the intracellular composition of anaerobic glucose-limited chemostat cultures of L. lactis subsp. cremoris MG 1363. Based on this, we designed a new assay medium for enzyme activity measurements of growing cells of L. lactis, mimicking as closely as practically possible its intracellular environment. Procedures were optimized to be carried out in 96-well plates, and the reproducibility and dynamic range were checked for all enzyme activity measurements. The effects of freezing and the carryover of ammonium sulfate from the addition of coupling enzymes were also established. Activities of all 10 glycolytic and 4 fermentative enzymes were measured. Remarkably, most in vivo-like activities were lower than previously published data. Yet, the ratios of Vmax over measured in vivo fluxes were above 1. With this work, we have developed and extensively validated standard protocols for enzyme activity measurements for L. lactis. PMID:22020503

  7. Membrane attachment is key to protecting transducin GTPase-activating complex from intracellular proteolysis in photoreceptors.

    PubMed

    Gospe, Sidney M; Baker, Sheila A; Kessler, Christopher; Brucato, Martha F; Winter, Joan R; Burns, Marie E; Arshavsky, Vadim Y

    2011-10-12

    The members of the R7 regulator of G-protein signaling (RGS) protein subfamily are versatile regulators of G-protein signaling throughout the nervous system. Recent studies indicate that they are often found in complexes with membrane anchor proteins that serve as versatile modulators of their activity, intracellular targeting, and stability. One striking example is the interplay between the membrane anchor R9AP and the RGS9-1 · Gβ5 GTPase-activating complex responsible for the rapid inactivation of the G-protein transducin in vertebrate photoreceptor cells during their recovery from light excitation. The amount of this complex in photoreceptors sets their temporal resolution and is precisely regulated by the expression level of R9AP, which serves to protect the RGS9-1 and Gβ5 subunits from intracellular proteolysis. In this study, we investigated the mechanism by which R9AP performs its protective function in mouse rods and found that it is entirely confined to recruiting RGS9-1 · Gβ5 to cellular membranes. Furthermore, membrane attachment of RGS9-1 · Gβ5 is sufficient for its stable expression in rods even in the absence of R9AP. Our second finding is that RGS9-1 · Gβ5 possesses targeting information that specifies its exclusion from the outer segment and that this information is neutralized by association with R9AP to allow outer segment targeting. Finally, we demonstrate that the ability of R9AP · RGS9-1 · Gβ5 to accelerate GTP hydrolysis on transducin is independent of its means of membrane attachment, since replacing the transmembrane domain of R9AP with a site for lipid modification did not impair the catalytic activity of this complex.

  8. Heat shock protein 70 (Hsp70) interacts with the Notch1 intracellular domain and contributes to the activity of Notch signaling in myelin-reactive CD4 T cells.

    PubMed

    Juryńczyk, Maciej; Lewkowicz, Przemysław; Domowicz, Małgorzata; Mycko, Marcin P; Selmaj, Krzysztof W

    2015-10-15

    Notch receptors (Notch1-4) are involved in the differentiation of CD4 T cells and the development of autoimmunity. Mechanisms regulating Notch signaling in CD4 T cells are not fully elucidated. In this study we investigated potential crosstalk between Notch pathway molecules and heat shock protein 70 (Hsp70), the major intracellular chaperone involved in the protein transport during immune responses and other stress conditions. Using Hsp70(-/-) mice we found that Hsp70 is critical for up-regulation of NICD1 and induction of Notch target genes in Jagged1- and Delta-like1-stimulated CD4 T cells. Co-immunoprecipitation analysis of wild-type CD4 T cells stimulated with either Jagged1 or Delta-like1 showed a direct interaction between NICD1 and Hsp70. Both molecules co-localized within the nucleus of CD4 T cells stimulated with Notch ligands. Molecular interaction and nuclear colocalization of NICD1 and Hsp70 were also detected in CD4 T cells reactive against myelin oligodendrocyte glycoprotein (MOG)35-55, which showed Hsp70-dependent up-regulation of both NICD1 and Notch target genes. In conclusion, we demonstrate for the first time that Hsp70 interacts with NICD1 and contributes to the activity of Notch signaling in CD4 T cells. Interaction between Hsp70 and NICD1 may represent a novel mechanism regulating Notch signaling in activated CD4 T cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. [Effects of several inhibitors of intracellular signaling on production of cytokines and signal proteins in RAW 264.7 cells cultivated with low dose ammonium].

    PubMed

    Novoselova, E G; Parfeniuk, S B; Glushkova, O V; Khrenov, M O; Novoselova, T V; Lunin, S M; Fesenko, E E

    2012-01-01

    Effects of four inhibitors of NF-kappaB, SAPK/JNK and TLR4 signaling, namely, inhibitor XII, SP600125, CLI-095 and Oxpapc on a macrophage response to low dose ammonium were studied in RAW 264.7 cells. Low dose ammonium induced pro-inflammatory response in cells as judged from enhanced production of TNF-alpha, IF-gamma, and IL-6, and by activation of signal cascades. The increase in production of cytokines, namely TNF, IFN, and IL-6, demonstrated that low-dose ammonium induced a pro-inflammatory cellular response. In addition, an activation of NF-kappaB and SAPK/JNK cascades, as well as enhancement of TLR4 expression was shown. Each of used inhibitors reduced to a variable degree the pro-inflammatory response of RAW 264.7 cells on chemical toxin by decreasing cytokine production. The inhibitor of NF-kappaB cascade, IKK Inhibitor XII, was more effective, and not only prevented the development of pro-inflammatory response induced by ammonium, but also decreased cytokine production below control values. The inhibitor of extra cellular domains of TLR2 and TLR4 (OxPAPC) had almost the same anti-inflammatory effect, and an addition of the inhibitor of JNK cascade (SP600125) to cell culture practically neutralized effect of ammonium ions by decreasing cytokine production to control level. Inhibitory analysis showed that activation of RAW 264.7 cells induced by chemical toxin coincide incompletely with intracellular signaling pathways that were early determined regarding macrophage's response to toxin from gram-negative bacteria. Nevertheless, application of the inhibitors defended RAW 264.7 from toxic effect of the low dose ammonium.

  10. TGF-β signaling controls FSHR signaling-reduced ovarian granulosa cell apoptosis through the SMAD4/miR-143 axis.

    PubMed

    Du, Xing; Zhang, Lifan; Li, Xinyu; Pan, Zengxiang; Liu, Honglin; Li, Qifa

    2016-11-24

    Follicle-stimulating hormone receptor (FSHR) and its intracellular signaling control mammalian follicular development and female infertility. Our previous study showed that FSHR is downregulated during follicular atresia of porcine ovaries. However, its role and regulation in follicular atresia remain unclear. Here, we showed that FSHR knockdown induced porcine granulosa cell (pGC) apoptosis and follicular atresia, and attenuated the levels of intracellular signaling molecules such as PKA, AKT and p-AKT. FSHR was identified as a target of miR-143, a microRNA that was upregulated during porcine follicular atresia. miR-143 enhanced pGC apoptosis by targeting FSHR, and reduced the levels of intracellular signaling molecules. SMAD4, the final molecule in transforming growth factor (TGF)-β signaling, bound to the promoter and induced significant downregulation of miR-143 in vitro and in vivo. Activated TGF-β signaling rescued miR-143-reduced FSHR and intracellular signaling molecules, and miR-143-induced pGC apoptosis. Overall, our findings offer evidence to explain how TGF-β signaling influences and FSHR signaling for regulation of pGC apoptosis and follicular atresia by a specific microRNA, miR-143.

  11. TGF-β signaling controls FSHR signaling-reduced ovarian granulosa cell apoptosis through the SMAD4/miR-143 axis

    PubMed Central

    Du, Xing; Zhang, Lifan; Li, Xinyu; Pan, Zengxiang; Liu, Honglin; Li, Qifa

    2016-01-01

    Follicle-stimulating hormone receptor (FSHR) and its intracellular signaling control mammalian follicular development and female infertility. Our previous study showed that FSHR is downregulated during follicular atresia of porcine ovaries. However, its role and regulation in follicular atresia remain unclear. Here, we showed that FSHR knockdown induced porcine granulosa cell (pGC) apoptosis and follicular atresia, and attenuated the levels of intracellular signaling molecules such as PKA, AKT and p-AKT. FSHR was identified as a target of miR-143, a microRNA that was upregulated during porcine follicular atresia. miR-143 enhanced pGC apoptosis by targeting FSHR, and reduced the levels of intracellular signaling molecules. SMAD4, the final molecule in transforming growth factor (TGF)-β signaling, bound to the promoter and induced significant downregulation of miR-143 in vitro and in vivo. Activated TGF-β signaling rescued miR-143-reduced FSHR and intracellular signaling molecules, and miR-143-induced pGC apoptosis. Overall, our findings offer evidence to explain how TGF-β signaling influences and FSHR signaling for regulation of pGC apoptosis and follicular atresia by a specific microRNA, miR-143. PMID:27882941

  12. Cyproheptadine Enhances the I K of Mouse Cortical Neurons through Sigma-1 Receptor-Mediated Intracellular Signal Pathway

    PubMed Central

    He, Yan-Lin; Zhang, Chun-Lei; Gao, Xiao-Fei; Yao, Jin-Jing; Hu, Chang-Long; Mei, Yan-Ai

    2012-01-01

    Cyproheptadine (CPH) is a histamine- and serotonin-receptor antagonist, and its effects are observed recently in the modulation of multiple intracellular signals. In this study, we used cortical neurons and HEK-293 cells transfected with Kv2.1 α-subunit to address whether CPH modify neural voltage-gated K+ channels by a mechanism independent of its serotonergic and histaminergic properties. Our results demonstrate that intracellularly delivered CPH increased the I K by reducing the activity of protein kinas A (PKA). Inhibition of Gi eliminated the CPH-induced effect on both the I K and PKA. Blocking of 5-HT-, M-, D2-, H1- or H2- type GPCR receptors with relevant antagonists did not eliminate the CPH-induced effect on the I K. Antagonists of the sigma-1 receptor, however, blocked the effect of CPH. Moreover, the inhibition of sigma-1 by siRNA knockdown significantly reduced the CPH-induced effect on the I K. On the contrary, sigma-1 receptor agonist mimicked the effects of CPH on the induction of I K. A ligand-receptor binding assay indicated that CPH bound to the sigma-1 receptor. Similar effect of CPH were obtained from HEK-293 cells transfected with the α-subunit of Kv2.1. In overall, we reveal for the first time that CPH enhances the I K by modulating activity of PKA, and that the associated activation of the sigma-1 receptor/Gi-protein pathway might be involved. Our findings illustrate an uncharacterized effect of CPH on neuron excitability through the I K, which is independent of histamine H1 and serotonin receptors. PMID:22844454

  13. Methoxychlor and Vinclozolin Induce Rapid Changes in Intercellular and Intracellular Signaling in Liver Progenitor Cells.

    PubMed

    Babica, Pavel; Zurabian, Rimma; Kumar, Esha R; Chopra, Rajus; Mianecki, Maxwell J; Park, Joon-Suk; Jaša, Libor; Trosko, James E; Upham, Brad L

    2016-09-01

    Methoxychlor (MXC) and vinclozolin (VIN) are well-recognized endocrine disrupting chemicals known to alter epigenetic regulations and transgenerational inheritance; however, non-endocrine disruption endpoints are also important. Thus, we determined the effects of MXC and VIN on the dysregulation of gap junctional intercellular communication (GJIC) and activation of mitogen-activated protein kinases (MAPKs) in WB-F344 rat liver epithelial cells. Both chemicals induced a rapid dysregulation of GJIC at non-cytotoxic doses, with 30 min EC50 values for GJIC inhibition being 10 µM for MXC and 126 µM for VIN. MXC inhibited GJIC for at least 24 h, while VIN effects were transient and GJIC recovered after 4 h. VIN induced rapid hyperphosphorylation and internalization of gap junction protein connexin43, and both chemicals also activated MAPK ERK1/2 and p38. Effects on GJIC were not prevented by MEK1/2 inhibitor, but by an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), resveratrol, and in the case of VIN, also, by a p38 inhibitor. Estrogen (ER) and androgen receptor (AR) modulators (estradiol, ICI 182,780, HPTE, testosterone, flutamide, VIN M2) did not attenuate MXC or VIN effects on GJIC. Our data also indicate that the effects were elicited by the parental compounds of MXC and VIN. Our study provides new evidence that MXC and VIN dysregulate GJIC via mechanisms involving rapid activation of PC-PLC occurring independently of ER- or AR-dependent genomic signaling. Such alterations of rapid intercellular and intracellular signaling events involved in regulations of gene expression, tissue development, function and homeostasis, could also contribute to transgenerational epigenetic effects of endocrine disruptors. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Co-Encapsulating the Fusogenic Peptide INF7 and Molecular Imaging Probes in Liposomes Increases Intracellular Signal and Probe Retention

    PubMed Central

    Martin, Erik W.; Li, Changqing; Lu, Wuyuan; Kao, Joseph P. Y.

    2015-01-01

    Liposomes are promising vehicles to deliver diagnostic and therapeutic agents to cells in vivo. After uptake into cells by endocytosis, liposomes are degraded in the endolysosomal system. Consequently, the encapsulated cargo molecules frequently remain sequestered in endosomal compartments; this limits their usefulness in many applications (e.g. gene delivery). To overcome this, various fusogenic peptides have been developed to facilitate delivery of liposomally-encapsulated molecules into the cytosol. One such peptide is the pH-sensitive influenza-derived peptide INF7. Liposomal delivery of imaging agents is an attractive approach for enabling cell imaging and cell tracking in vivo, but can be hampered by inadequate intracellular accumulation and retention of probes caused by exocytosis (and possible degradation) of endosome-entrapped probes. Such signal loss could be minimized by facilitating escape of probe molecules from endolysosomal compartments into the cytosol. We investigated the ability of co-encapsulated INF7 to release liposomally-delivered rhodamine fluorophores into the cytosol after endosomal acidification/maturation. We co-encapsulated INF7 and fluorescent rhodamine derivatives having vastly different transport properties to show that after endocytosis by CV1 cells, the INF7 peptide is activated by acidic endosomal pH and facilitates efficient release of the fluorescent tracers into the cytosol. Furthermore, we show that INF7-facilitated escape from endosomes markedly enhanced retention of tracers that cannot be actively extruded from the cytosol. Minimizing loss of intracellular probes improves cellular imaging by increasing the signal-to-noise ratio of images and lengthening the time window that imaging can be performed. In particular, this will enhance in vivo electron paramagnetic resonance imaging, an emergent magnetic resonance imaging modality requires exogenous paramagnetic imaging agents and is highly promising for cellular and molecular

  15. FK506 binding proteins: cellular regulators of intracellular Ca2+ signalling.

    PubMed

    MacMillan, Debbi

    2013-01-30

    In many cell types the intracellular Ca(2+) store performs a central role in the regulation of the cytosolic Ca(2+) concentration ([Ca(2+)](c)), the elevation of which triggers diverse and fundamental activities from reproduction to apoptosis, as well as being the major trigger for contraction. Two distinct classes of Ca(2+) release channels, which mobilize Ca(2+) from the store, exist; the inositol 1,4,5-trisphosphate (IP(3)) receptor and the ryanodine receptor. Considerable attention has been directed towards the importance of modulatory proteins that interact with these channels including, FK506 binding proteins (FKBPs), FKBP12 and its isoform, FKBP12.6. Although FKBP12 was first identified as the principal intracellular target for the immunosuppressive drugs, FK506 and rapamycin, new insights into the role of FKBPs have since emerged. These regulatory proteins are reportedly important modulators of intracellular Ca(2+) release. FKBPs may regulate ryanodine and IP(3) receptors either directly, by binding to the cytoplasmic aspect of the channel, or indirectly via modulation of two targets, the phosphatase, calcineurin or the kinase, mammalian target of rapamycin (mTOR). Dissociation of FKBP12 or FKBP12.6 from either Ca(2+) release channel may increase, decrease or have no effect on ryanodine receptor- or IP(3) receptor-mediated Ca(2+) release. These important controversies may be attributed to FKBPs' ability to regulate the receptor indirectly via the kinase and phosphatase pathways modulated by the accessory proteins. This brief review discusses the regulation of intracellular ryanodine and IP(3) receptor Ca(2+) release channels by accessory FKBPs, with important implications for the role of FKBPs in the pathophysiology of a number of diseases. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I.

    PubMed

    Peisley, Alys; Wu, Bin; Xu, Hui; Chen, Zhijian J; Hur, Sun

    2014-05-01

    Ubiquitin (Ub) has important roles in a wide range of intracellular signalling pathways. In the conventional view, ubiquitin alters the signalling activity of the target protein through covalent modification, but accumulating evidence points to the emerging role of non-covalent interaction between ubiquitin and the target. In the innate immune signalling pathway of a viral RNA sensor, RIG-I, both covalent and non-covalent interactions with K63-linked ubiquitin chains (K63-Ubn) were shown to occur in its signalling domain, a tandem caspase activation and recruitment domain (hereafter referred to as 2CARD). Non-covalent binding of K63-Ubn to 2CARD induces its tetramer formation, a requirement for downstream signal activation. Here we report the crystal structure of the tetramer of human RIG-I 2CARD bound by three chains of K63-Ub2. 2CARD assembles into a helical tetramer resembling a 'lock-washer', in which the tetrameric surface serves as a signalling platform for recruitment and activation of the downstream signalling molecule, MAVS. Ubiquitin chains are bound along the outer rim of the helical trajectory, bridging adjacent subunits of 2CARD and stabilizing the 2CARD tetramer. The combination of structural and functional analyses reveals that binding avidity dictates the K63-linkage and chain-length specificity of 2CARD, and that covalent ubiquitin conjugation of 2CARD further stabilizes the Ub-2CARD interaction and thus the 2CARD tetramer. Our work provides unique insights into the novel types of ubiquitin-mediated signal-activation mechanism, and previously unexpected synergism between the covalent and non-covalent ubiquitin interaction modes.

  17. Simplified Quantitative Assay System for Measuring Activities of Drugs against Intracellular Legionella pneumophila

    PubMed Central

    Higa, Futoshi; Kusano, Nobuchika; Tateyama, Masao; Shinzato, Takashi; Arakaki, Noriko; Kawakami, Kazuyoshi; Saito, Atsushi

    1998-01-01

    We developed a new simple assay for the quantitation of the activities of drugs against intracellular Legionella pneumophila. The cells of a murine macrophage-like cell line (J774.1 cells) allowed the intracellular growth and replication of the bacteria, which ultimately resulted in cell death. The infected J774.1 cell monolayers in 96-well microplates were first treated with antibiotics and were further cultured for 72 h. The number of viable J774.1 cells in each well was quantified by a colorimetric assay with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and an enzyme-linked immunosorbent assay reader. The number of growing bacteria in each well was also determined by counting the numbers of CFU on buffered charcoal yeast extract-α agar plates. Viable J774.1 cell counts, determined by the colorimetric assay, were inversely proportional to the number of intracellular replicating bacteria. The minimum extracellular concentrations (MIECs) of 24 antibiotics causing inhibition of intracellular growth of L. pneumophila were determined by the colorimetric assay system. The MIECs of beta-lactams and aminoglycosides were markedly higher than the MICs in buffered yeast extract-α broth. The MIECs of macrolides, fluoroquinolones, rifampin, and minocycline were similar to the respective MICs. According to their intracellular activities, clarithromycin and sparfloxacin were the most potent among the macrolides or fluoroquinolones tested in this study. Our results indicated that the MTT assay system allows comparative and quantitative evaluations of the intracellular activities of antibiotics and efficient processing of a large number of samples. PMID:9574712

  18. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression.

    PubMed

    Liu, Xin-Hua; Yao, Shen; Qiao, Rui-Fang; Levine, Alice C; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Bauman, William A; Cardozo, Christopher P

    2011-10-14

    Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy. Copyright © 2011. Published by Elsevier Inc.

  19. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer’s disease

    PubMed Central

    Haas, Laura T.; Salazar, Santiago V.; Kostylev, Mikhail A.; Um, Ji Won; Kaufman, Adam C.

    2016-01-01

    Alzheimer’s disease-related phenotypes in mice can be rescued by blockade of either cellular prion protein or metabotropic glutamate receptor 5. We sought genetic and biochemical evidence that these proteins function cooperatively as an obligate complex in the brain. We show that cellular prion protein associates via transmembrane metabotropic glutamate receptor 5 with the intracellular protein mediators Homer1b/c, calcium/calmodulin-dependent protein kinase II, and the Alzheimer’s disease risk gene product protein tyrosine kinase 2 beta. Coupling of cellular prion protein to these intracellular proteins is modified by soluble amyloid-β oligomers, by mouse brain Alzheimer’s disease transgenes or by human Alzheimer’s disease pathology. Amyloid-β oligomer-triggered phosphorylation of intracellular protein mediators and impairment of synaptic plasticity in vitro requires Prnp–Grm5 genetic interaction, being absent in transheterozygous loss-of-function, but present in either single heterozygote. Importantly, genetic coupling between Prnp and Grm5 is also responsible for signalling, for survival and for synapse loss in Alzheimer’s disease transgenic model mice. Thus, the interaction between metabotropic glutamate receptor 5 and cellular prion protein has a central role in Alzheimer’s disease pathogenesis, and the complex is a potential target for disease-modifying intervention. PMID:26667279

  20. Activity Dependent Signal Transduction in Skeletal Muscle

    NASA Technical Reports Server (NTRS)

    Hamilton, Susan L.

    1999-01-01

    The overall goals of this project are: 1) to define the initial signal transduction events whereby the removal of gravitational load from antigravity muscles, such as the soleus, triggers muscle atrophy, and 2) to develop countermeasures to prevent this from happening. Our rationale for this approach is that, if countermeasures can be developed to regulate these early events, we could avoid having to deal with the multiple cascades of events that occur downstream from the initial event. One of our major findings is that hind limb suspension causes an early and sustained increase in intracellular Ca(2+) concentration ([Ca (2+)](sub i)). In most cells the consequences of changes in ([Ca (2+)](sub i))depend on the amplitude, frequency and duration of the Ca(2+) signal and on other factors in the intracellular environment. We propose that muscle remodeling in microgravity represents a change in the balance among several CA(2+) regulated signal transduction pathways, in particular those involving the transcription factors NFAT and NFkB and the pro-apoptotic protein BAD. Other Ca(2+) sensitive pathways involving PKC, ras, rac, and CaM kinase II may also contribute to muscle remodeling.

  1. ARL11 regulates lipopolysaccharide-stimulated macrophage activation by promoting mitogen-activated protein kinase (MAPK) signaling.

    PubMed

    Arya, Subhash B; Kumar, Gaurav; Kaur, Harmeet; Kaur, Amandeep; Tuli, Amit

    2018-06-22

    A DP- r ibosylation factor- l ike GTPase 11 ( ARL11 ) is a cancer-predisposing gene that has remained functionally uncharacterized to date. In this study, we report that ARL11 is endogenously expressed in mouse and human macrophages and regulates their activation in response to lipopolysaccharide (LPS) stimulation. Accordingly, depletion of ARL11 impaired both LPS-stimulated pro-inflammatory cytokine production by macrophages and their ability to control intracellular replication of Salmonella. LPS-stimulated activation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) was substantially compromised in Arl11 -silenced macrophages. In contrast, increased expression of ARL11 led to constitutive ERK1/2 phosphorylation, resulting in macrophage exhaustion. Finally, we found that ARL11 forms a complex with phospho-ERK in macrophages within minutes of LPS stimulation. Taken together, our findings establish ARL11 as a novel regulator of ERK signaling in macrophages, required for macrophage activation and immune function. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Bisindoylmaleimide I suppresses adipocyte differentiation through stabilization of intracellular {beta}-catenin protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Munju; Park, Seoyoung; Gwak, Jungsug

    2008-02-29

    The Wnt/{beta}-catenin signaling pathway plays important roles in cell differentiation. Activation of this pathway, likely by Wnt-10b, has been shown to inhibit adipogenesis in cultured 3T3-L1 preadipocytes and mice. Here we revealed that bisindoylmaleimide I (BIM), which is widely used as a specific inhibitor of protein kinase C (PKC), inhibits adipocyte differentiation through activation of the Wnt/{beta}-catenin signaling pathway. BIM increased {beta}-catenin responsive transcription (CRT) and up-regulated intracellular {beta}-catenin levels in HEK293 cells and 3T3-L1 preadipocytes. BIM significantly decreased intracellular lipid accumulation and reduced expression of important adipocyte marker genes including peroxisome-proliferator-activated receptor {gamma} (PPAR{gamma}) and CAATT enhancer-binding protein {alpha}more » (C/EBP{alpha}) in 3T3-L1 preadipocytes. Taken together, our findings indicate that BIM inhibits adipogenesis by increasing the stability of {beta}-catenin protein in 3T3-L1 preadipocyte cells.« less

  3. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xin-Hua; Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029; Yao, Shen

    2011-10-14

    Highlights: {yields} Nerve transection increased Notch signaling in paralyzed muscle. {yields} Nandrolone prevented denervation-induced Notch signaling. {yields} Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. {yields} Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signalingmore » in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.« less

  4. A Carboxyl Ester Lipase (CEL) Mutant Causes Chronic Pancreatitis by Forming Intracellular Aggregates That Activate Apoptosis.

    PubMed

    Xiao, Xunjun; Jones, Gabrielle; Sevilla, Wednesday A; Stolz, Donna B; Magee, Kelsey E; Haughney, Margaret; Mukherjee, Amitava; Wang, Yan; Lowe, Mark E

    2016-10-28

    Patients with chronic pancreatitis (CP) frequently have genetic risk factors for disease. Many of the identified genes have been connected to trypsinogen activation or trypsin inactivation. The description of CP in patients with mutations in the variable number of tandem repeat (VNTR) domain of carboxyl ester lipase (CEL) presents an opportunity to study the pathogenesis of CP independently of trypsin pathways. We tested the hypothesis that a deletion and frameshift mutation (C563fsX673) in the CEL VNTR causes CP through proteotoxic gain-of-function activation of maladaptive cell signaling pathways including cell death pathways. HEK293 or AR42J cells were transfected with constructs expressing CEL with 14 repeats in the VNTR (CEL14R) or C563fsX673 CEL (CEL maturity onset diabetes of youth with a deletion mutation in the VNTR (MODY)). In both cell types, CEL MODY formed intracellular aggregates. Secretion of CEL MODY was decreased compared with that of CEL14R. Expression of CEL MODY increased endoplasmic reticulum stress, activated the unfolded protein response, and caused cell death by apoptosis. Our results demonstrate that disorders of protein homeostasis can lead to CP and suggest that novel therapies to decrease the intracellular accumulation of misfolded protein may be successful in some patients with CP. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. MEMBRANE-TYPE 1 MATRIX METALLOPROTEINASE DOWNREGULATES FIBROBLAST GROWTH FACTOR-2 BINDING TO THE CELL SURFACE AND INTRACELLULAR SIGNALING

    PubMed Central

    Tassone, Evelyne; Valacca, Cristina; Mignatti, Paolo

    2014-01-01

    Membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP-14), a transmembrane proteinase with an extracellular catalytic domain and a short cytoplasmic tail, degrades extracellular matrix components and controls diverse cell functions through proteolytic and non-proteolytic interactions with extracellular, intracellular and transmembrane proteins. Here we show that in tumor cells MT1-MMP downregulates fibroblast growth factor-2 (FGF-2) signaling by reducing the amount of FGF-2 bound to the cell surface with high and low affinity. FGF-2 induces weaker activation of ERK1/2 MAP kinase in MT1-MMP expressing cells than in cells devoid of MT1-MMP. This effect is abolished in cells that express proteolytically inactive MT1-MMP but persists in cells expressing MT1-MMP mutants devoid of hemopexin-like or cytoplasmic domain, showing that FGF-2 signaling is downregulated by MT1-MMP proteolytic activity. MT1-MMP expression results in downregulation of FGFR-1 and -4, and in decreased amount of cell surface-associated FGF-2. In addition, MT1-MMP strongly reduces the amount of FGF-2 bound to the cell surface with low affinity. Because FGF-2 association with low-affinity binding sites is a prerequisite for binding to its high-affinity receptors, downregulation of low-affinity binding to the cell surface results in decreased FGF-2 signaling. Consistent with this conclusion, FGF-2 induction of tumor cell migration and invasion in vitro is stronger in cells devoid of MT1-MMP than in MT1-MMP expressing cells. Thus, MT1-MMP controls FGF-2 signaling by a proteolytic mechanism that decreases the cell’s biological response to FGF-2. PMID:24986796

  6. The kinase activity of fibroblast growth factor receptor 3 with activation loop mutations affects receptor trafficking and signaling.

    PubMed

    Lievens, Patricia M-J; Mutinelli, Chiara; Baynes, Darcie; Liboi, Elio

    2004-10-08

    Amino acid substitutions at the Lys-650 codon within the activation loop kinase domain of fibroblast growth factor receptor 3 (FGFR3) result in graded constitutive phosphorylation of the receptor. Accordingly, the Lys-650 mutants are associated with dwarfisms with graded clinical severity. To assess the importance of the phosphorylation level on FGFR3 maturation along the secretory pathway, hemagglutinin A-tagged derivatives were studied. The highly activated SADDAN (severe achondroplasia with developmental delay and acanthosis nigricans) mutant accumulates in its immature and phosphorylated form in the endoplasmic reticulum (ER), which fails to be degraded. Furthermore, the Janus kinase (Jak)/STAT pathway is activated from the ER by direct recruitment of Jak1. Abolishing the autocatalytic property of the mutated FGFR3 by replacing the critical Tyr-718 reestablishes the receptor full maturation and inhibits signaling. Differently, the low activated hypochondroplasia mutant is present as a mature phosphorylated form on the plasma membrane, although with a delayed transition in the ER, and is completely processed. Signaling does not occur in the presence of brefeldin A; instead, STAT1 is activated when protein secretion is blocked with monensin, suggesting that the hypochondroplasia receptor signals at the exit from the ER. Our results suggest that kinase activity affects FGFR3 trafficking and determines the spatial segregation of signaling pathways. Consequently, the defect in down-regulation of the highly activated receptors results in the increased signaling capacity from the intracellular compartments, and this may determine the severity of the diseases.

  7. A Bayesian Active Learning Experimental Design for Inferring Signaling Networks.

    PubMed

    Ness, Robert O; Sachs, Karen; Mallick, Parag; Vitek, Olga

    2018-06-21

    Machine learning methods for learning network structure are applied to quantitative proteomics experiments and reverse-engineer intracellular signal transduction networks. They provide insight into the rewiring of signaling within the context of a disease or a phenotype. To learn the causal patterns of influence between proteins in the network, the methods require experiments that include targeted interventions that fix the activity of specific proteins. However, the interventions are costly and add experimental complexity. We describe an active learning strategy for selecting optimal interventions. Our approach takes as inputs pathway databases and historic data sets, expresses them in form of prior probability distributions on network structures, and selects interventions that maximize their expected contribution to structure learning. Evaluations on simulated and real data show that the strategy reduces the detection error of validated edges as compared with an unguided choice of interventions and avoids redundant interventions, thereby increasing the effectiveness of the experiment.

  8. Quantifying intracellular hydrogen peroxide perturbations in terms of concentration

    PubMed Central

    Huang, Beijing K.; Sikes, Hadley D.

    2014-01-01

    Molecular level, mechanistic understanding of the roles of reactive oxygen species (ROS) in a variety of pathological conditions is hindered by the difficulties associated with determining the concentration of various ROS species. Here, we present an approach that converts fold-change in the signal from an intracellular sensor of hydrogen peroxide into changes in absolute concentration. The method uses extracellular additions of peroxide and an improved biochemical measurement of the gradient between extracellular and intracellular peroxide concentrations to calibrate the intracellular sensor. By measuring peroxiredoxin activity, we found that this gradient is 650-fold rather than the 7–10-fold that is widely cited. The resulting calibration is important for understanding the mass-action kinetics of complex networks of redox reactions, and it enables meaningful characterization and comparison of outputs from endogenous peroxide generating tools and therapeutics across studies. PMID:25460730

  9. Herpes simplex virus triggers activation of calcium-signaling pathways

    PubMed Central

    Cheshenko, Natalia; Del Rosario, Brian; Woda, Craig; Marcellino, Daniel; Satlin, Lisa M.; Herold, Betsy C.

    2003-01-01

    The cellular pathways required for herpes simplex virus (HSV) invasion have not been defined. To test the hypothesis that HSV entry triggers activation of Ca2+-signaling pathways, the effects on intracellular calcium concentration ([Ca2+]i) after exposure of cells to HSV were examined. Exposure to virus results in a rapid and transient increase in [Ca2+]i. Pretreatment of cells with pharmacological agents that block release of inositol 1,4,5-triphosphate (IP3)–sensitive endoplasmic reticulum stores abrogates the response. Moreover, treatment of cells with these pharmacological agents inhibits HSV infection and prevents focal adhesion kinase (FAK) phosphorylation, which occurs within 5 min after viral infection. Viruses deleted in glycoprotein L or glycoprotein D, which bind but do not penetrate, fail to induce a [Ca2+]i response or trigger FAK phosphorylation. Together, these results support a model for HSV infection that requires activation of IP3-responsive Ca2+-signaling pathways and that is associated with FAK phosphorylation. Defining the pathway of viral invasion may lead to new targets for anti-viral therapy. PMID:14568989

  10. Macrophage activation induced by Brucella DNA suppresses bacterial intracellular replication via enhancing NO production.

    PubMed

    Liu, Ning; Wang, Lin; Sun, Changjiang; Yang, Li; Tang, Bin; Sun, Wanchun; Peng, Qisheng

    2015-12-01

    Brucella DNA can be sensed by TLR9 on endosomal membrane and by cytosolic AIM2-inflammasome to induce proinflammatory cytokine production that contributes to partially activate innate immunity. Additionally, Brucella DNA has been identified to be able to act as a major bacterial component to induce type I IFN. However, the role of Brucella DNA in Brucella intracellular growth remains unknown. Here, we showed that stimulation with Brucella DNA promote macrophage activation in TLR9-dependent manner. Activated macrophages can suppresses wild type Brucella intracellular replication at early stage of infection via enhancing NO production. We also reported that activated macrophage promotes bactericidal function of macrophages infected with VirB-deficient Brucella at the early or late stage of infection. This study uncovers a novel function of Brucella DNA, which can help us further elucidate the mechanism of Brucella intracellular survival. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Oridonin stabilizes retinoic acid receptor alpha through ROS-activated NF-κB signaling.

    PubMed

    Cao, Yang; Wei, Wei; Zhang, Nan; Yu, Qing; Xu, Wen-Bin; Yu, Wen-Jun; Chen, Guo-Qiang; Wu, Ying-Li; Yan, Hua

    2015-04-10

    Retinoic acid receptor alpha (RARα) plays an essential role in the regulation of many biological processes, such as hematopoietic cell differentiation, while abnormal RARα function contributes to the pathogenesis of certain diseases including cancers, especially acute promyelocytic leukemia (APL). Recently, oridonin, a natural diterpenoid isolated from Rabdosia rubescens, was demonstrated to regulate RARα by increasing its protein level. However, the underlying molecular mechanism for this action has not been fully elucidated. In the APL cell line, NB4, the effect of oridonin on RARα protein was analyzed by western blot and real-time quantitative RT-PCR analyses. Flow cytometry was performed to detect intracellular levels of reactive oxygen species (ROS). The association between nuclear factor-kappa B (NF-κB) signaling and the effect of oridonin was assessed using specific inhibitors, shRNA gene knockdown, and immunofluorescence assays. In addition, primary leukemia cells were treated with oridonin and analyzed by western blot in this study. RARα possesses transcriptional activity in the presence of its ligand, all-trans retinoic acid (ATRA). Oridonin remarkably stabilized the RARα protein, which retained transcriptional activity. Oridonin also moderately increased intracellular ROS levels, while pretreatment with the ROS scavenger, N-acetyl-l-cysteine (NAC), dramatically abrogated RARα stabilization by oridonin. More intriguingly, direct exposure to low concentrations of H2O2 also increased RARα protein but not mRNA levels, suggesting a role for ROS in oridonin stabilization of RARα protein. Further investigations showed that NAC antagonized oridonin-induced activation of NF-κB signaling, while the NF-κB signaling inhibitor, Bay 11-7082, effectively blocked the oridonin increase in RARα protein levels. In line with this, over-expression of IκΒα (A32/36), a super-repressor form of IκΒα, or NF-κB-p65 knockdown inhibited oridonin or H2O2-induced

  12. DUOX enzyme activity promotes AKT signalling in prostate cancer cells.

    PubMed

    Pettigrew, Christopher A; Clerkin, John S; Cotter, Thomas G

    2012-12-01

    Reactive oxygen species (ROS) and oxidative stress are related to tumour progression, and high levels of ROS have been observed in prostate tumours compared to normal prostate. ROS can positively influence AKT signalling and thereby promote cell survival. The aim of this project was to establish whether the ROS generated in prostate cancer cells positively regulate AKT signalling and enable resistance to apoptotic stimuli. In PC3 cells, dual oxidase (DUOX) enzymes actively generate ROS, which inactivate phosphatases, thereby maintaining AKT phosphorylation. Inhibition of DUOX by diphenylene iodium (DPI), intracellular calcium chelation and small-interfering RNA (siRNA) resulted in lower ROS levels, lower AKT and glycogen synthase kinase 3β (GSK3β) phosphorylation, as well as reduced cell viability and increased susceptibility to apoptosis stimulating fragment (FAS) induced apoptosis. This report shows that ROS levels in PC3 cells are constitutively maintained by DUOX enzymes, and these ROS positively regulate AKT signalling through inactivating phosphatases, leading to increased resistance to apoptosis.

  13. Enhanced migration of tissue inhibitor of metalloproteinase overexpressing hepatoma cells is attributed to gelatinases: Relevance to intracellular signaling pathways

    PubMed Central

    Roeb, Elke; Bosserhoff, Anja-Katrin; Hamacher, Sabine; Jansen, Bettina; Dahmen, Judith; Wagner, Sandra; Matern, Siegfried

    2005-01-01

    AIM: To study the effect of gelatinases (especially MMP-9) on migration of tissue inhibitor of metalloproteinase (TIMP-1) overexpressing hepatoma cells. METHODS: Wild type HepG2 cells, cells stably transfected with TIMP-1 and TIMP-1 antagonist (MMP-9-H401A, a catalytically inactive matrix metalloproteinase (MMP) which still binds and neutralizes TIMP-1) were incubated in Boyden chambers either with or without Galardin (a synthetic inhibitor of MMP-1, -2, -3, -8, -9) or a specific inhibitor of gelatinases. RESULTS: Compared to wild type HepG2 cells, the cells overexpressing TIMP-1 showed 115% migration (P<0.05) and the cells overexpressing MMP-9-H401A showed 62% migration (P<0.01). Galardin reduced cell migration dose dependently in all cases. The gelatinase inhibitor reduced migration in TIMP-1 overexpressing cells predominantly. Furthermore, we examined intracellular signal transduction pathways of TIMP-1-dependent HepG2 cells. TIMP-1 deactivates cell signaling pathways of MMP-2 and MMP-9 involving p38 mitogen-activated protein kinase. Specific blockade of the ERK pathway suppresses gelatinase expression either in the presence or absence of TIMP-1. CONCLUSION: Overexpressing functional TIMP-1- enhanced migration of HepG2-TIMP-1 cells depends on enhanced MMP-activity, especially MMP-9. PMID:15754388

  14. Smad7 enables STAT3 activation and promotes pluripotency independent of TGF-β signaling

    PubMed Central

    Yu, Yi; Gu, Shuchen; Li, Wenjian; Sun, Chuang; Chen, Fenfang; Xiao, Mu; Wang, Lei; Xu, Dewei; Li, Ye; Ding, Chen; Xia, Zongping; Li, Yi; Ye, Sheng; Xu, Pinglong; Zhao, Bin; Qin, Jun; Chen, Ye-Guang; Lin, Xia; Feng, Xin-Hua

    2017-01-01

    Smad7 is a negative feedback product of TGF-β superfamily signaling and fine tunes a plethora of pleiotropic responses induced by TGF-β ligands. However, its noncanonical functions independent of TGF-β signaling remain to be elucidated. Here, we show that Smad7 activates signal transducers and activators of transcription 3 (STAT3) signaling in maintaining mouse embryonic stem cell pluripotency in a manner independent of the TGF-β receptors, yet dependent on the leukemia inhibitory factor (LIF) coreceptor glycoprotein 130 (gp130). Smad7 directly binds to the intracellular domain of gp130 and disrupts the SHP2–gp130 or SOCS3–gp130 complex, thereby amplifying STAT3 activation. Consequently, Smad7 facilitates LIF-mediated self-renewal of mouse ESCs and is also critical for induced pluripotent stem cell reprogramming. This finding illustrates an uncovered role of the Smad7–STAT3 interplay in maintaining cell pluripotency and also implicates a mechanism involving Smad7 underlying cytokine-dependent regulation of cancer and inflammation. PMID:28874583

  15. Intracellular mGluR5 plays a critical role in neuropathic pain

    PubMed Central

    Vincent, Kathleen; Cornea, Virginia M.; Jong, Yuh-Jiin I.; Laferrière, André; Kumar, Naresh; Mickeviciute, Aiste; Fung, Jollee S. T.; Bandegi, Pouya; Ribeiro-da-Silva, Alfredo; O'Malley, Karen L.; Coderre, Terence J.

    2016-01-01

    Spinal mGluR5 is a key mediator of neuroplasticity underlying persistent pain. Although brain mGluR5 is localized on cell surface and intracellular membranes, neither the presence nor physiological role of spinal intracellular mGluR5 is established. Here we show that in spinal dorsal horn neurons >80% of mGluR5 is intracellular, of which ∼60% is located on nuclear membranes, where activation leads to sustained Ca2+ responses. Nerve injury inducing nociceptive hypersensitivity also increases the expression of nuclear mGluR5 and receptor-mediated phosphorylated-ERK1/2, Arc/Arg3.1 and c-fos. Spinal blockade of intracellular mGluR5 reduces neuropathic pain behaviours and signalling molecules, whereas blockade of cell-surface mGluR5 has little effect. Decreasing intracellular glutamate via blocking EAAT-3, mimics the effects of intracellular mGluR5 antagonism. These findings show a direct link between an intracellular GPCR and behavioural expression in vivo. Blockade of intracellular mGluR5 represents a new strategy for the development of effective therapies for persistent pain. PMID:26837579

  16. Origins of intracellular calcium mobilization evoked by infrared laser stimulation

    NASA Astrophysics Data System (ADS)

    Olsovsky, Cory A.; Tolstykh, Gleb P.; Ibey, Bennett L.; Beier, Hope T.

    2015-03-01

    Cellular delivery of pulsed IR laser energy has been shown to stimulate action potentials in neurons. The mechanism for this stimulation is not completely understood. Certain hypotheses suggest the rise in temperature from IR exposure could activate temperature- or pressure-sensitive channels, or create pores in the cellular outer membrane. Studies using intensity-based Ca2+-responsive dyes show changes in Ca2+ levels after various IR stimulation parameters; however, determination of the origin of this signal proved difficult. An influx of larger, typically plasma-membrane-impermeant ions has been demonstrated, which suggests that Ca2+ may originate from the external solution. However, activation of intracellular signaling pathways, possibly indicating a more complex role of increasing Ca2+ concentration, has also been shown. By usingCa2+ sensitive dye Fura-2 and a high-speed ratiometric imaging system that rapidly alternates the excitation wavelengths, we have quantified the Ca2+ mobilization in terms of influx from the external solution and efflux from intracellular organelles. CHO-K1 cells, which lack voltage-gated Ca2+ channels, and NG-108 neuroblastoma cells, which do not produce action potentials in an early undifferentiated state, are used to determine the origin of the Ca2+ signals and investigate the role these mechanisms may play in IR neural stimulation.

  17. Modulation of substance P signaling by dipeptidyl peptidase-IV enzymatic activity in human glioma cell lines.

    PubMed

    Busek, P; Stremenová, J; Krepela, E; Sedo, A

    2008-01-01

    Dipeptidyl peptidase-IV (DPP-IV, CD26) is a serine protease almost ubiquitously expressed on cell surface and present in body fluids. DPP-IV has been suggested to proteolytically modify a number of biologically active peptides including substance P (SP) and the chemokine stromal cell derived factor-1alpha (SDF-1alpha, CXCL12). SP and SDF-1alpha have been implicated in the regulation of multiple biological processes and also induce responses that may be relevant for glioma progression. Both SP and SDF-1alpha are signaling through cell surface receptors and use intracellular calcium as a second messenger. The effect of DPP-IV on intracellular calcium mobilization mediated by SP and SDF-1alpha was monitored in suspension of wild type U373 and DPP-IV transfected U373DPPIV glioma cells using indicator FURA-2. Nanomolar concentrations of SP triggered a transient dose dependent increase in intracellular calcium rendering the cells refractory to repeated stimulation, while SDF-1 had no measurable effect. SP signaling in DPP-IV overexpressing U373DPPIV cells was not substantially different from that in wild type cells. However, preincubation of SP with the DPP-IV overexpressing cells lead to the loss of its signaling potential, which could be prevented with DPP-IV inhibitors. Taken together, DPP-IV may proteolytically inactivate local mediators involved in gliomagenesis.

  18. Intracellular signal propagation in a two-dimensional autocatalytic reaction model.

    PubMed

    Castiglione, F; Bernaschi, M; Succi, S; Heinrich, R; Kirschner, M W

    2002-09-01

    We study a simple reaction scheme in a two-dimensional lattice of particles or molecules with a refractory state. We analyze the dynamics of the propagating front as a function of physical-chemical properties of the host medium. The anisotropy of the medium significantly affects the smoothness of the wave front. Similarly, if particles or molecules may diffuse slowly to neighboring sites, then the front wave is more likely to be irregular. Both situations affect the ability of the whole system to relax to the original state, which is a required feature in the biological cells. Attempts to map this simple reaction scheme to reactions involved in the intracellular pathways suggest that, in some cases, signal transduction might take both connotation of a random walk and a propagating wave, depending on the local density of the medium. In particular, a sufficient condition for the appearance of waves in high-density regions of the media, is the existence of at least one autocatalytic reaction in the chain of reactions characterizing the pathway.

  19. Mechanism of intracellular signal transduction during injury of renal tubular cells induced by postasphyxial serum in neonates with asphyxia.

    PubMed

    Zhao, Jin; Dong, Wen-Bin; Li, Peng-yun; Deng, Chun-liang

    2009-01-01

    Renal injury is a severe and extremely common complication that occurs early in neonates with asphyxia. Reperfusion injury has been suggested as the cause of kidney damage during resuscitation of neonatal asphyxia. Previous studies have demonstrated that postasphyxial serum from neonates with asphyxia may result in apoptosis of renal tubular cells. However, the mechanisms that mediate renal tubular cell apoptosis induced by postasphyxial serum remain poorly understood. In this report we investigate the intracellular signal transduction mechanisms that operate during injury of renal tubular cells induced by postasphyxial serum in neonates. Cultured human renal proximal tubular cells HK-2 cell were exposed to 10% fetal calf serum (normal control), 20% postasphyxial serum or 20% postasphyxial serum with pyrrolidine dithiocarbamate (PDTC). The expression of both BAD and BAX in the cytoplasm was detected by immunohistochemistry. The mitochondria membrane potential (Deltapsim) was examined by confocal microscopy, and the release of the apoptogenic mitochondrial proteins cytochrome C and AIF was assessed by Western blot analysis. Loss of mitochondria membrane potential was detected in HK-2 cells treated with 20% postasphyxial serum as compared to cells in normal serum or PTDC-pretreated cells in 20% postasphyxial serum. A significant increase of Bad and Bax protein expression was also detected, along with the release of cytochrome C and AIF from mitochondria to cytosol in the postasphyxial serum treated cells, but not in the normal or PTDC-pretreated control cells. Our findings suggest that postasphyxial serum may induce renal tubular cell apoptosis through the mitochondrial pathway, and its intracellular signal transduction mechanism includes the activation of nuclear factor-kappaB. Copyright 2009 S. Karger AG, Basel.

  20. A molecular signature in the pannexin1 intracellular loop confers channel activation by the α1 adrenoreceptor in smooth muscle cells.

    PubMed

    Billaud, Marie; Chiu, Yu-Hsin; Lohman, Alexander W; Parpaite, Thibaud; Butcher, Joshua T; Mutchler, Stephanie M; DeLalio, Leon J; Artamonov, Mykhaylo V; Sandilos, Joanna K; Best, Angela K; Somlyo, Avril V; Thompson, Roger J; Le, Thu H; Ravichandran, Kodi S; Bayliss, Douglas A; Isakson, Brant E

    2015-02-17

    Both purinergic signaling through nucleotides such as ATP (adenosine 5'-triphosphate) and noradrenergic signaling through molecules such as norepinephrine regulate vascular tone and blood pressure. Pannexin1 (Panx1), which forms large-pore, ATP-releasing channels, is present in vascular smooth muscle cells in peripheral blood vessels and participates in noradrenergic responses. Using pharmacological approaches and mice conditionally lacking Panx1 in smooth muscle cells, we found that Panx1 contributed to vasoconstriction mediated by the α1 adrenoreceptor (α1AR), whereas vasoconstriction in response to serotonin or endothelin-1 was independent of Panx1. Analysis of the Panx1-deficient mice showed that Panx1 contributed to blood pressure regulation especially during the night cycle when sympathetic nervous activity is highest. Using mimetic peptides and site-directed mutagenesis, we identified a specific amino acid sequence in the Panx1 intracellular loop that is essential for activation by α1AR signaling. Collectively, these data describe a specific link between noradrenergic and purinergic signaling in blood pressure homeostasis. Copyright © 2015, American Association for the Advancement of Science.

  1. Intracellular logistics of BST-2/tetherin.

    PubMed

    Fujita, Hideaki; Fujimoto, Keiko; Tokunaga, Kenzo; Tanaka, Yoshitaka

    2012-06-01

    Bone marrow stromal antigen 2 (BST-2) is a type II membrane protein with two targeting signals, one of which is located in the cytoplasmic domain and contains a non-canonical dual tyrosine-based motif responsible for its endocytosis from the plasma membrane, and the other is a C-terminal glycosylphosphatidylinositol anchor that facilitates its association with detergent-resistant membranes/lipid rafts and targeting to the apical domain in polarized epithelial cells. Due to its unusual topology at the membrane, BST-2 takes unique and complicated trafficking routes in cells. Recently, a physiological role for BST-2 as the "tetherin" molecule for viruses, especially for HIV-1, has been extensively examined. These studies have shown that the biosynthesis, intracellular trafficking, localization, and structure of human BST-2 are closely related to its antiviral activity. This review provides an overview of the intracellular logistics of human BST-2.

  2. Intracellular acidification is required for full activation of the sweet taste receptor by miraculin

    PubMed Central

    Sanematsu, Keisuke; Kitagawa, Masayuki; Yoshida, Ryusuke; Nirasawa, Satoru; Shigemura, Noriatsu; Ninomiya, Yuzo

    2016-01-01

    Acidification of the glycoprotein, miraculin (MCL), induces sweet taste in humans, but not in mice. The sweet taste induced by MCL is more intense when acidification occurs with weak acids as opposed to strong acids. MCL interacts with the human sweet receptor subunit hTAS1R2, but the mechanisms by which the acidification of MCL activates the sweet taste receptor remain largely unexplored. The work reported here speaks directly to this activation by utilizing a sweet receptor TAS1R2 + TAS1R3 assay. In accordance with previous data, MCL-applied cells displayed a pH dependence with citric acid (weak acid) being right shifted to that with hydrochloric acid (strong acid). When histidine residues in both the intracellular and extracellular region of hTAS1R2 were exchanged for alanine, taste-modifying effect of MCL was reduced or abolished. Stronger intracellular acidification of HEK293 cells was induced by citric acid than by HCl and taste-modifying effect of MCL was proportional to intracellular pH regardless of types of acids. These results suggest that intracellular acidity is required for full activation of the sweet taste receptor by MCL. PMID:26960429

  3. Structural basis for signal recognition and transduction by platelet-activating-factor receptor.

    PubMed

    Cao, Can; Tan, Qiuxiang; Xu, Chanjuan; He, Lingli; Yang, Linlin; Zhou, Ye; Zhou, Yiwei; Qiao, Anna; Lu, Minmin; Yi, Cuiying; Han, Gye Won; Wang, Xianping; Li, Xuemei; Yang, Huaiyu; Rao, Zihe; Jiang, Hualiang; Zhao, Yongfang; Liu, Jianfeng; Stevens, Raymond C; Zhao, Qiang; Zhang, Xuejun C; Wu, Beili

    2018-06-01

    Platelet-activating-factor receptor (PAFR) responds to platelet-activating factor (PAF), a phospholipid mediator of cell-to-cell communication that exhibits diverse physiological effects. PAFR is considered an important drug target for treating asthma, inflammation and cardiovascular diseases. Here we report crystal structures of human PAFR in complex with the antagonist SR 27417 and the inverse agonist ABT-491 at 2.8-Å and 2.9-Å resolution, respectively. The structures, supported by molecular docking of PAF, provide insights into the signal-recognition mechanisms of PAFR. The PAFR-SR 27417 structure reveals an unusual conformation showing that the intracellular tips of helices II and IV shift outward by 13 Å and 4 Å, respectively, and helix VIII adopts an inward conformation. The PAFR structures, combined with single-molecule FRET and cell-based functional assays, suggest that the conformational change in the helical bundle is ligand dependent and plays a critical role in PAFR activation, thus greatly extending knowledge about signaling by G-protein-coupled receptors.

  4. Filamin A Modulates Kinase Activation and Intracellular Trafficking of Epidermal Growth Factor Receptors in Human Melanoma Cells

    PubMed Central

    Fiori, Jennifer L.; Zhu, Tie-Nian; O'Connell, Michael P.; Hoek, Keith S.; Indig, Fred E.; Frank, Brittany P.; Morris, Christa; Kole, Sutapa; Hasskamp, Joanne; Elias, George; Weeraratna, Ashani T.; Bernier, Michel

    2009-01-01

    The actin-binding protein filamin A (FLNa) affects the intracellular trafficking of various classes of receptors and has a potential role in oncogenesis. However, it is unclear whether FLNa regulates the signaling capacity and/or down-regulation of the activated epidermal growth factor receptor (EGFR). Here it is shown that partial knockdown of FLNa gene expression blocked ligand-induced EGFR responses in metastatic human melanomas. To gain greater insights into the role of FLNa in EGFR activation and intracellular sorting, we used M2 melanoma cells that lack endogenous FLNa and a subclone in which human FLNa cDNA has been stably reintroduced (M2A7 cells). Both tyrosine phosphorylation and ubiquitination of EGFR were significantly lower in epidermal growth factor (EGF)-stimulated M2 cells when compared with M2A7 cells. Moreover, the lack of FLNa interfered with EGFR interaction with the ubiquitin ligase c-Cbl. M2 cells exhibited marked resistance to EGF-induced receptor degradation, which was very active in M2A7 cells. Despite comparable rates of EGF-mediated receptor endocytosis, internalized EGFR colocalized with the lysosomal marker lysosome-associated membrane protein-1 in M2A7 cells but not M2 cells, in which EGFR was found to be sequestered in large vesicles and subsequently accumulated in punctated perinuclear structures after EGF stimulation. These results suggest the requirement of FLNa for efficient EGFR kinase activation and the sorting of endocytosed receptors into the degradation pathway. PMID:19213840

  5. A Discrete Dynamical System Approach to Pathway Activation Profiles of Signaling Cascades.

    PubMed

    Catozzi, S; Sepulchre, J-A

    2017-08-01

    In living organisms, cascades of covalent modification cycles are one of the major intracellular signaling mechanisms, allowing to transduce physical or chemical stimuli of the external world into variations of activated biochemical species within the cell. In this paper, we develop a novel method to study the stimulus-response of signaling cascades and overall the concept of pathway activation profile which is, for a given stimulus, the sequence of activated proteins at each tier of the cascade. Our approach is based on a correspondence that we establish between the stationary states of a cascade and pieces of orbits of a 2D discrete dynamical system. The study of its possible phase portraits in function of the biochemical parameters, and in particular of the contraction/expansion properties around the fixed points of this discrete map, as well as their bifurcations, yields a classification of the cascade tiers into three main types, whose biological impact within a signaling network is examined. In particular, our approach enables to discuss quantitatively the notion of cascade amplification/attenuation from this new perspective. The method allows also to study the interplay between forward and "retroactive" signaling, i.e., the upstream influence of an inhibiting drug bound to the last tier of the cascade.

  6. Feedback Regulation of Intracellular Hydrostatic Pressure in Surface Cells of the Lens

    PubMed Central

    Gao, Junyuan; Sun, Xiurong; White, Thomas W.; Delamere, Nicholas A.; Mathias, Richard T.

    2015-01-01

    In wild-type lenses from various species, an intracellular hydrostatic pressure gradient goes from ∼340 mmHg in central fiber cells to 0 mmHg in surface cells. This gradient drives a center-to-surface flow of intracellular fluid. In lenses in which gap-junction coupling is increased, the central pressure is lower, whereas if gap-junction coupling is reduced, the central pressure is higher but surface pressure is always zero. Recently, we found that surface cell pressure was elevated in PTEN null lenses. This suggested disruption of a feedback control system that normally maintained zero surface cell pressure. Our purpose in this study was to investigate and characterize this feedback control system. We measured intracellular hydrostatic pressures in mouse lenses using a microelectrode/manometer-based system. We found that all feedback went through transport by the Na/K ATPase, which adjusted surface cell osmolarity such that pressure was maintained at zero. We traced the regulation of Na/K ATPase activity back to either TRPV4, which sensed positive pressure and stimulated activity, or TRPV1, which sensed negative pressure and inhibited activity. The inhibitory effect of TRPV1 on Na/K pumps was shown to signal through activation of the PI3K/AKT axis. The stimulatory effect of TRPV4 was shown in previous studies to go through a different signal transduction path. Thus, there is a local two-legged feedback control system for pressure in lens surface cells. The surface pressure provides a pedestal on which the pressure gradient sits, so surface pressure determines the absolute value of pressure at each radial location. We speculate that the absolute value of intracellular pressure may set the radial gradient in the refractive index, which is essential for visual acuity. PMID:26536260

  7. Development of Quenching-qPCR (Q-Q) assay for measuring absolute intracellular cleavage efficiency of ribozyme.

    PubMed

    Kim, Min Woo; Sun, Gwanggyu; Lee, Jung Hyuk; Kim, Byung-Gee

    2018-06-01

    Ribozyme (Rz) is a very attractive RNA molecule in metabolic engineering and synthetic biology fields where RNA processing is required as a control unit or ON/OFF signal for its cleavage reaction. In order to use Rz for such RNA processing, Rz must have highly active and specific catalytic activity. However, current methods for assessing the intracellular activity of Rz have limitations such as difficulty in handling and inaccuracies in the evaluation of correct cleavage activity. In this paper, we proposed a simple method to accurately measure the "intracellular cleavage efficiency" of Rz. This method deactivates unwanted activity of Rz which may consistently occur after cell lysis using DNA quenching method, and calculates the cleavage efficiency by analyzing the cleaved fraction of mRNA by Rz from the total amount of mRNA containing Rz via quantitative real-time PCR (qPCR). The proposed method was applied to measure "intracellular cleavage efficiency" of sTRSV, a representative Rz, and its mutant, and their intracellular cleavage efficiencies were calculated as 89% and 93%, respectively. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Improvement of dexamethasone sensitivity by chelation of intracellular Ca2+ in pediatric acute lymphoblastic leukemia cells through the prosurvival kinase ERK1/2 deactivation.

    PubMed

    Abdoul-Azize, Souleymane; Dubus, Isabelle; Vannier, Jean-Pierre

    2017-04-18

    Previous studies have demonstrated that glucocorticoid hormones, including dexamethasone, induced alterations in intracellular calcium homeostasis in acute lymphoblastic leukemia (ALL) cells. However, the mechanism by which intracellular calcium homeostasis participates in dexamethasone sensitivity and resistance on ALL cells remains elusive. Here, we found that treatment of cells with dexamethasone resulted in increased intracellular calcium concentrations through store-operated calcium entry stimulation, which was curtailed by store-operated calcium channel blockers. We show that BAPTA-AM, an intracellular Ca2+ chelator, synergistically enhances dexamethasone lethality in two human ALL cell lines and in three primary specimens. This effect correlated with the inhibition of the prosurvival kinase ERK1/2 signaling pathway. Chelating intracellular calcium with Bapta-AM or inhibiting ERK1/2 with PD98059 significantly potentiated dexamethasone-induced mitochondrial membrane potential collapse, reactive oxygen species production, cytochrome c release, caspase-3 activity, and cell death. Moreover, we show that thapsigargin elevates intracellular free calcium ion level, and activates ERK1/2 signaling, resulting in the inhibition of dexamethasone-induced ALL cells apoptosis. Together, these results indicate that calcium-related ERK1/2 signaling pathway contributes to protect cells from dexamethasone sensitivity by limiting mitochondrial apoptotic pathway. This report provides a novel resistance pathway underlying the regulatory effect of dexamethasone on ALL cells.

  9. Improvement of dexamethasone sensitivity by chelation of intracellular Ca2+ in pediatric acute lymphoblastic leukemia cells through the prosurvival kinase ERK1/2 deactivation

    PubMed Central

    Abdoul-Azize, Souleymane; Dubus, Isabelle; Vannier, Jean-Pierre

    2017-01-01

    Previous studies have demonstrated that glucocorticoid hormones, including dexamethasone, induced alterations in intracellular calcium homeostasis in acute lymphoblastic leukemia (ALL) cells. However, the mechanism by which intracellular calcium homeostasis participates in dexamethasone sensitivity and resistance on ALL cells remains elusive. Here, we found that treatment of cells with dexamethasone resulted in increased intracellular calcium concentrations through store-operated calcium entry stimulation, which was curtailed by store-operated calcium channel blockers. We show that BAPTA-AM, an intracellular Ca2+ chelator, synergistically enhances dexamethasone lethality in two human ALL cell lines and in three primary specimens. This effect correlated with the inhibition of the prosurvival kinase ERK1/2 signaling pathway. Chelating intracellular calcium with Bapta-AM or inhibiting ERK1/2 with PD98059 significantly potentiated dexamethasone-induced mitochondrial membrane potential collapse, reactive oxygen species production, cytochrome c release, caspase-3 activity, and cell death. Moreover, we show that thapsigargin elevates intracellular free calcium ion level, and activates ERK1/2 signaling, resulting in the inhibition of dexamethasone-induced ALL cells apoptosis. Together, these results indicate that calcium-related ERK1/2 signaling pathway contributes to protect cells from dexamethasone sensitivity by limiting mitochondrial apoptotic pathway. This report provides a novel resistance pathway underlying the regulatory effect of dexamethasone on ALL cells. PMID:28423696

  10. JS-K, a glutathione/glutathione S-transferase-activated nitric oxide releasing prodrug inhibits androgen receptor and WNT-signaling in prostate cancer cells.

    PubMed

    Laschak, Martin; Spindler, Klaus-Dieter; Schrader, Andres J; Hessenauer, Andrea; Streicher, Wolfgang; Schrader, Mark; Cronauer, Marcus V

    2012-03-30

    Nitric oxide (NO) and its oxidative reaction products have been repeatedly shown to block steroid receptor function via nitrosation of zinc finger structures in the DNA-binding domain (DBD). In consequence NO-donors could be of special interest for the treatment of deregulated androgen receptor(AR)-signaling in castration resistant prostate cancer (CRPC). Prostate cancer (PCa) cells were treated with JS-K, a diazeniumdiolate derivate capable of generating large amounts of intracellular NO following activation by glutathione S-transferase. Generation of NO was determined indirectly by the detection of nitrate in tissue culture medium or by immunodetection of nitrotyrosine in the cytoplasm. Effects of JS-K on intracellular AR-levels were determined by western blotting. AR-dimerization was analyzed by mammalian two hybrid assay, nuclear translocation of the AR was visualized in PCa cells transfected with a green fluorescent AR-Eos fusion protein using fluorescence microscopy. Modulation of AR- and WNT-signalling by JS-K was investigated using reporter gene assays. Tumor cell proliferation following JS-K treatment was measured by MTT-Assay. The NO-releasing compound JS-K was shown to inhibit AR-mediated reporter gene activity in 22Rv1 CRPC cells. Inhibition of AR signaling was neither due to an inhibition of nuclear import nor to a reduction in AR-dimerization. In contrast to previously tested NO-donors, JS-K was able to reduce the intracellular concentration of functional AR. This could be attributed to the generation of extremely high intracellular levels of the free radical NO as demonstrated indirectly by high levels of nitrotyrosine in JS-K treated cells. Moreover, JS-K diminished WNT-signaling in AR-positive 22Rv1 cells. In line with these observations, castration resistant 22Rv1 cells were found to be more susceptible to the growth inhibitory effects of JS-K than the androgen dependent LNCaP which do not exhibit an active WNT-signaling pathway. Our results

  11. JS-K, a glutathione/glutathione S-transferase-activated nitric oxide releasing prodrug inhibits androgen receptor and WNT-signaling in prostate cancer cells

    PubMed Central

    2012-01-01

    Background Nitric oxide (NO) and its oxidative reaction products have been repeatedly shown to block steroid receptor function via nitrosation of zinc finger structures in the DNA-binding domain (DBD). In consequence NO-donors could be of special interest for the treatment of deregulated androgen receptor(AR)-signaling in castration resistant prostate cancer (CRPC). Methods Prostate cancer (PCa) cells were treated with JS-K, a diazeniumdiolate derivate capable of generating large amounts of intracellular NO following activation by glutathione S-transferase. Generation of NO was determined indirectly by the detection of nitrate in tissue culture medium or by immunodetection of nitrotyrosine in the cytoplasm. Effects of JS-K on intracellular AR-levels were determined by western blotting. AR-dimerization was analyzed by mammalian two hybrid assay, nuclear translocation of the AR was visualized in PCa cells transfected with a green fluorescent AR-Eos fusion protein using fluorescence microscopy. Modulation of AR- and WNT-signalling by JS-K was investigated using reporter gene assays. Tumor cell proliferation following JS-K treatment was measured by MTT-Assay. Results The NO-releasing compound JS-K was shown to inhibit AR-mediated reporter gene activity in 22Rv1 CRPC cells. Inhibition of AR signaling was neither due to an inhibition of nuclear import nor to a reduction in AR-dimerization. In contrast to previously tested NO-donors, JS-K was able to reduce the intracellular concentration of functional AR. This could be attributed to the generation of extremely high intracellular levels of the free radical NO as demonstrated indirectly by high levels of nitrotyrosine in JS-K treated cells. Moreover, JS-K diminished WNT-signaling in AR-positive 22Rv1 cells. In line with these observations, castration resistant 22Rv1 cells were found to be more susceptible to the growth inhibitory effects of JS-K than the androgen dependent LNCaP which do not exhibit an active WNT-signaling

  12. Function-specific intracellular signaling pathways downstream of heparin-binding EGF-like growth factor utilized by human trophoblasts.

    PubMed

    Jessmon, Philip; Kilburn, Brian A; Romero, Roberto; Leach, Richard E; Armant, D Randall

    2010-05-01

    Heparin-binding EGF-like growth factor (HBEGF) is expressed by trophoblast cells throughout gestation. First-trimester cytotrophoblast cells are protected from hypoxia-induced apoptosis because of the accumulation of HBEGF through a posttranscriptional autocrine mechanism. Exogenous application of HBEGF is cytoprotective in a hypoxia/reoxygenation (H/R) injury model and initiates trophoblast extravillous differentiation to an invasive phenotype. The downstream signaling pathways induced by HBEGF that mediate these various cellular activities were identified using two human first-trimester cytotrophoblast cell lines, HTR-8/SVneo and SW.71, with similar results. Recombinant HBEGF (1 nM) induced transient phosphorylation of MAPK3/1 (ERK), MAPK14 (p38), and AKT within 15 min and JNK after 1-2 h. To determine which downstream pathways regulate the various functions of HBEGF, cells were treated with specific inhibitors of the ERK upstream regulator MEK (U0126), the AKT upstream regulator phosphoinositide-3 (PI3)-kinase (LY294002), MAPK14 (SB203580), and JNK (SP600125), as well as with inactive structural analogues. Only SB203580 specifically prevented HBEGF-mediated rescue during H/R, while each inhibitor attenuated HBEGF-stimulated cell migration. Accumulation of HBEGF at reduced oxygen was blocked only by a combination of U0126, SB203580, and SP600125. We conclude that HBEGF advances trophoblast extravillous differentiation through coordinate activation of PI3 kinase, ERK, MAPK14, and JNK, while only MAPK14 is required for its antiapoptotic activity. Additionally, hypoxia induces an autocrine increase in HBEGF protein levels through MAPK14, JNK or ERK. These experiments reveal a complexity of the intracellular signaling circuitry that regulates trophoblast functions critical for implantation and placentation.

  13. Infrared neural stimulation induces intracellular Ca2+ release mediated by phospholipase C.

    PubMed

    Moreau, David; Lefort, Claire; Pas, Jolien; Bardet, Sylvia M; Leveque, Philippe; O'Connor, Rodney P

    2018-02-01

    The influence of infrared laser pulses on intracellular Ca 2+ signaling was investigated in neural cell lines with fluorescent live cell imaging. The probe Fluo-4 was used to measure Ca 2+ in HT22 mouse hippocampal neurons and nonelectrically excitable U87 human glioblastoma cells exposed to 50 to 500 ms infrared pulses at 1470 nm. Fluorescence recordings of Fluo-4 demonstrated that infrared stimulation induced an instantaneous intracellular Ca 2+ transient with similar dose-response characteristics in hippocampal neurons and glioblastoma cells (half-maximal effective energy density EC 50 of around 58 J.cm -2 ). For both type of cells, the source of the infrared-induced Ca 2+ transients was found to originate from intracellular stores and to be mediated by phospholipase C and IP 3 -induced Ca 2+ release from the endoplasmic reticulum. The activation of phosphoinositide signaling by IR light is a new mechanism of interaction relevant to infrared neural stimulation that will also be widely applicable to nonexcitable cell types. The prospect of infrared optostimulation of the PLC/IP 3 cell signaling cascade has many potential applications including the development of optoceutical therapeutics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Intracellular Activation of Tenofovir Alafenamide and the Effect of Viral and Host Protease Inhibitors

    PubMed Central

    Bam, Rujuta A.; Willkom, Madeleine; Frey, Christian R.; Tsai, Luong; Stray, Kirsten M.; Yant, Stephen R.; Cihlar, Tomas

    2015-01-01

    Tenofovir alafenamide fumarate (TAF) is an oral phosphonoamidate prodrug of the HIV reverse transcriptase nucleotide inhibitor tenofovir (TFV). Previous studies suggested a principal role for the lysosomal serine protease cathepsin A (CatA) in the intracellular activation of TAF. Here we further investigated the role of CatA and other human hydrolases in the metabolism of TAF. Overexpression of CatA or liver carboxylesterase 1 (Ces1) in HEK293T cells increased intracellular TAF hydrolysis 2- and 5-fold, respectively. Knockdown of CatA expression with RNA interference (RNAi) in HeLa cells reduced intracellular TAF metabolism 5-fold. Additionally, the anti-HIV activity and the rate of CatA hydrolysis showed good correlation within a large set of TFV phosphonoamidate prodrugs. The covalent hepatitis C virus (HCV) protease inhibitors (PIs) telaprevir and boceprevir potently inhibited CatA-mediated TAF activation (50% inhibitory concentration [IC50] = 0.27 and 0.16 μM, respectively) in vitro and also reduced its anti-HIV activity in primary human CD4+ T lymphocytes (21- and 3-fold, respectively) at pharmacologically relevant concentrations. In contrast, there was no inhibition of CatA or any significant effect on anti-HIV activity of TAF observed with cobicistat, noncovalent HIV and HCV PIs, or various prescribed inhibitors of host serine proteases. Collectively, these studies confirm that CatA plays a pivotal role in the intracellular metabolism of TAF, whereas the liver esterase Ces1 likely contributes to the hepatic activation of TAF. Moreover, this work demonstrates that a wide range of viral and host PIs, with the exception of telaprevir and boceprevir, do not interfere with the antiretroviral activity of TAF. PMID:26503655

  15. Effects of Ursodeoxycholic Acid and Insulin on Palmitate-Induced ROS Production and Down-Regulation of PI3K/Akt Signaling Activity.

    PubMed

    Yokoyama, Kunihiro; Tatsumi, Yasuaki; Hayashi, Kazuhiko; Goto, Hidemi; Ishikawa, Tetsuya; Wakusawa, Shinya

    2017-01-01

    In obese and diabetic patients, plasma free fatty acid (FFA) levels are often elevated and may play a causal role in insulin resistance and reactive oxygen species (ROS) production. We have previously shown that ursodeoxycholic acid (UDCA) has antioxidative activity through the phosphatidylinositol 3-kinase (PI3K)/Akt signaling-mediated glutathione production. In this study, we investigated the effects of UDCA on insulin response by analyzing intracellular ROS and the activation of the PI3K/Akt signaling pathway in HepG2 cells treated with palmitate. The level of ROS was quantified using 2',7'-dichlorodihydrofluorescein diacetate (H 2 DCFDA), and the activation of the PI3K/Akt signaling pathway was determined by Western blotting assay using appropriate antibodies. The intracellular ROS levels were increased by palmitate but were reduced by treatment with UDCA and insulin. Furthermore, insulin significantly stimulated the phosphorylation of Akt. When the cells were pre-treated with palmitate, insulin-induced Akt-phosphorylation was markedly inhibited. However, when the cells were treated with palmitate and UDCA, the effects of insulin were partially restored. UDCA may have protective effects against palmitate-induced decreases in responsiveness to insulin.

  16. The effects of heat stress on morphological properties and intracellular signaling of denervated and intact soleus muscles in rats.

    PubMed

    Ohira, Takashi; Higashibata, Akira; Seki, Masaya; Kurata, Yoichi; Kimura, Yayoi; Hirano, Hisashi; Kusakari, Yoichiro; Minamisawa, Susumu; Kudo, Takashi; Takahashi, Satoru; Ohira, Yoshinobu; Furukawa, Satoshi

    2017-08-01

    The effects of heat stress on the morphological properties and intracellular signaling of innervated and denervated soleus muscles were investigated. Heat stress was applied to rats by immersing their hindlimbs in a warm water bath (42°C, 30 min/day, every other day following unilateral denervation) under anesthesia. During 14 days of experimental period, heat stress for a total of seven times promoted growth-related hypertrophy in sham-operated muscles and attenuated atrophy in denervated muscles. In denervated muscles, the transcription of ubiquitin ligase, atrogin-1/muscle atrophy F-box ( Atrogin-1 ), and muscle RING-finger protein-1 ( MuRF-1 ), genes was upregulated and ubiquitination of proteins was also increased. Intermittent heat stress inhibited the upregulation of Atrogin-1 , but not MuRF-1 transcription. And the denervation-caused reduction in phosphorylated protein kinase B (Akt), 70-kDa heat-shock protein (HSP70), and peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1 α ), which are negative regulators of Atrogin-1 and MuRF-1 transcription, was mitigated. In sham-operated muscles, repeated application of heat stress did not affect Atrogin-1 and MuRF-1 transcription, but increased the level of phosphorylated Akt and HSP70, but not PGC-1 α Furthermore, the phosphorylation of Akt and ribosomal protein S6, which is known to stimulate protein synthesis, was increased immediately after a single heat stress particularly in the sham-operated muscles. The effect of a heat stress was suppressed in denervated muscles. These results indicated that the beneficial effects of heat stress on the morphological properties of muscles were brought regardless of innervation. However, the responses of intracellular signaling to heat stress were distinct between the innervated and denervated muscles. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological

  17. CalQuo: automated, simultaneous single-cell and population-level quantification of global intracellular Ca2+ responses.

    PubMed

    Fritzsche, Marco; Fernandes, Ricardo A; Colin-York, Huw; Santos, Ana M; Lee, Steven F; Lagerholm, B Christoffer; Davis, Simon J; Eggeling, Christian

    2015-11-13

    Detecting intracellular calcium signaling with fluorescent calcium indicator dyes is often coupled with microscopy techniques to follow the activation state of non-excitable cells, including lymphocytes. However, the analysis of global intracellular calcium responses both at the single-cell level and in large ensembles simultaneously has yet to be automated. Here, we present a new software package, CalQuo (Calcium Quantification), which allows the automated analysis and simultaneous monitoring of global fluorescent calcium reporter-based signaling responses in up to 1000 single cells per experiment, at temporal resolutions of sub-seconds to seconds. CalQuo quantifies the number and fraction of responding cells, the temporal dependence of calcium signaling and provides global and individual calcium-reporter fluorescence intensity profiles. We demonstrate the utility of the new method by comparing the calcium-based signaling responses of genetically manipulated human lymphocytic cell lines.

  18. Near-Infrared Light Activation of Proteins Inside Living Cells Enabled by Carbon Nanotube-Mediated Intracellular Delivery.

    PubMed

    Li, He; Fan, Xinqi; Chen, Xing

    2016-02-01

    Light-responsive proteins have been delivered into the cells for controlling intracellular events with high spatial and temporal resolution. However, the choice of wavelength is limited to the UV and visible range; activation of proteins inside the cells using near-infrared (NIR) light, which has better tissue penetration and biocompatibility, remains elusive. Here, we report the development of a single-walled carbon nanotube (SWCNT)-based bifunctional system that enables protein intracellular delivery, followed by NIR activation of the delivered proteins inside the cells. Proteins of interest are conjugated onto SWCNTs via a streptavidin-desthiobiotin (SA-DTB) linkage, where the protein activity is blocked. SWCNTs serve as both a nanocarrier for carrying proteins into the cells and subsequently a NIR sensitizer to photothermally cleave the linkage and release the proteins. The released proteins become active and exert their functions inside the cells. We demonstrated this strategy by intracellular delivery and NIR-triggered nuclear translocation of enhanced green fluorescent protein, and by intracellular delivery and NIR-activation of a therapeutic protein, saporin, in living cells. Furthermore, we showed that proteins conjugated onto SWCNTs via the SA-DTB linkage could be delivered to the tumors, and optically released and activated by using NIR light in living mice.

  19. Multiple intracellular signaling pathways orchestrate adipocytic differentiation of human bone marrow stromal stem cells.

    PubMed

    Ali, Dalia; Abuelreich, Sarah; Alkeraishan, Nora; Shwish, Najla Bin; Hamam, Rimi; Kassem, Moustapha; Alfayez, Musaad; Aldahmash, Abdullah; Alajez, Nehad M

    2018-02-28

    Bone marrow adipocyte formation plays a role in bone homeostasis and whole body energy metabolism. However, the transcriptional landscape and signaling pathways associated with adipocyte lineage commitment and maturation are not fully delineated. Thus, we performed global gene expression profiling during adipocyte differentiation of human bone marrow stromal (mesenchymal) stem cells (hMSCs) and identified 2,589 up-regulated and 2,583 down-regulated mRNA transcripts. Pathway analysis on the up-regulated gene list untraveled enrichment in multiple signaling pathways including insulin receptor signaling, focal Adhesion, metapathway biotransformation, a number of metabolic pathways e.g. selenium metabolism, Benzo(a)pyrene metabolism, fatty acid, triacylglycerol, ketone body metabolism, tryptophan metabolism, and catalytic cycle of mammalian flavin-containing monooxygenase (FMOs). On the other hand, pathway analysis on the down-regulated genes revealed significant enrichment in pathways related to cell cycle regulation. Based on these data, we assessed the effect of pharmacological inhibition of FAK signaling using PF-573228, PF-562271, and InsR/IGF-1R using NVP-AEW541 and GSK-1904529A on adipocyte differentiation. hMSCs exposed to FAK or IGF-1R/InsR inhibitors exhibited fewer adipocyte formation (27-58% inhibition, P <0005). Concordantly, the expression of adipocyte-specific genes AP2, AdipoQ, and CEBPα was significantly reduced. On the other hand, we did not detect significant effects on cell viability as a result of FAK or IGF-1R/InsR inhibition. Our data identified FAK and insulin signaling as important intracellular signaling pathways relevant to bone marrow adipogenesis. © 2018 The Author(s).

  20. Muscle aging is associated with compromised Ca2+ spark signaling and segregated intracellular Ca2+ release

    PubMed Central

    Weisleder, Noah; Brotto, Marco; Komazaki, Shinji; Pan, Zui; Zhao, Xiaoli; Nosek, Thomas; Parness, Jerome; Takeshima, Hiroshi; Ma, Jianjie

    2006-01-01

    Reduced homeostatic capacity for intracellular Ca2+ ([Ca2+]i) movement may underlie the progression of sarcopenia and contractile dysfunction during muscle aging. We report two alterations to Ca2+ homeostasis in skeletal muscle that are associated with aging. Ca2+ sparks, which are the elemental units of Ca2+ release from sarcoplasmic reticulum, are silent under resting conditions in young muscle, yet activate in a dynamic manner upon deformation of membrane structures. The dynamic nature of Ca2+ sparks appears to be lost in aged skeletal muscle. Using repetitive voltage stimulation on isolated muscle preparations, we identify a segregated [Ca2+]i reserve that uncouples from the normal excitation–contraction process in aged skeletal muscle. Similar phenotypes are observed in adolescent muscle null for a synaptophysin-family protein named mitsugumin-29 (MG29) that is involved in maintenance of muscle membrane ultrastructure and Ca2+ signaling. This finding, coupled with decreased expression of MG29 in aged skeletal muscle, suggests that MG29 expression is important in maintaining skeletal muscle Ca2+ homeostasis during aging. PMID:16943181

  1. Pulsed magneto-motive ultrasound imaging to detect intracellular trafficking of magnetic nanoparticles

    PubMed Central

    Mehrmohamamdi, Mohammad; Qu, Min; Ma, Li L.; Romanovicz, Dwight K.; Johnston, Keith P.; Sokolov, Konstantin V.; Emelianov, Stanislav Y.

    2012-01-01

    As applications of nanoparticles in medical imaging and biomedicine rapidly expand, the interactions of nanoparticles with living cells have become an area of active interest. For example, intracellular trafficking of nanoparticles – an important part of cell-nanoparticle interaction, has been well studied using plasmonic nanoparticles and optical or optics-based techniques due to the change in optical properties of the nanoparticle aggregates. However, magnetic nanoparticles, despite their wide range of clinical applications, do not exhibit plasmonic-resonant properties and therefore their intracellular aggregation cannot be detected by optics-based imaging techniques. In this study, we investigated the feasibility of a novel imaging technique – pulsed magneto-motive ultrasound (pMMUS), to identify intracellular trafficking of endocytosed magnetic nanoparticles. In pulsed magneto-motive ultrasound imaging a focused, high intensity, pulsed magnetic field is used to excite the cells labeled with magnetic nanoparticles, and ultrasound imaging is then used to monitor the mechanical response of the tissue. We demonstrated previously that clusters of magnetic nanoparticles amplify the pMMUS signal in comparison to signal from individual nanoparticles. Here we further demonstrate that pMMUS imaging can identify interaction between magnetic nanoparticles and living cells, i.e. intracellular aggregation of nanoparticles within the cells. The results of our study suggest that pMMUS imaging can not only detect the presence of magnetic nanoparticles but also provides information about their intracellular trafficking non-invasively and in real-time. PMID:21926454

  2. Parvovirus interference with intracellular signalling: mechanism of PKCeta activation in MVM-infected A9 fibroblasts.

    PubMed

    Lachmann, Sylvie; Bär, Severine; Rommelaere, Jean; Nüesch, Jürg P F

    2008-03-01

    Autonomous parvoviruses are strongly dependent on the phosphorylation of the major non-structural protein NS1 by members of the protein kinase C (PKC) family. Besides being accompanied with changes in the overall phosphorylation pattern of NS1 and acquiring new modifications at consensus PKC sites, ongoing minute virus of mice (MVM) infections lead to the appearance of new phosphorylated cellular protein species. This prompted us to investigate whether MVM actively interferes with phosphoinositol-dependent kinase (PDK)/PKC signalling. The activity, subcellular localization and phosphorylation status of the protein kinases PDK1, PKCeta and PKClambda were measured in A9 cells in the presence or absence of MVM infection. Parvovirus infection was found to result in activation of both PDK1 and PKCeta, as evidenced by changes in their subcellular distribution and overall (auto)phosphorylation. We show evidence that activation of PKCeta by PDK1 is driven by atypical PKClambda. By modifying the hydrophobic motif of PKCeta, PKClambda appeared to control docking and consecutive phosphorylation of PKCeta's activation-loop by PDK1, a process that was inhibited in vivo in the presence of a dominant-negative PKClambda mutant.

  3. Na+ influx via Orai1 inhibits intracellular ATP-induced mTORC2 signaling to disrupt CD4 T cell gene expression and differentiation.

    PubMed

    Miao, Yong; Bhushan, Jaya; Dani, Adish; Vig, Monika

    2017-05-11

    T cell effector functions require sustained calcium influx. However, the signaling and phenotypic consequences of non-specific sodium permeation via calcium channels remain unknown. α-SNAP is a crucial component of Orai1 channels, and its depletion disrupts the functional assembly of Orai1 multimers. Here we show that α-SNAP hypomorph, hydrocephalus with hopping gait, Napa hyh/hyh mice harbor significant defects in CD4 T cell gene expression and Foxp3 regulatory T cell (Treg) differentiation. Mechanistically, TCR stimulation induced rapid sodium influx in Napa hyh/hyh CD4 T cells, which reduced intracellular ATP, [ATP] i . Depletion of [ATP] i inhibited mTORC2 dependent NFκB activation in Napa hyh/hyh cells but ablation of Orai1 restored it. Remarkably, TCR stimulation in the presence of monensin phenocopied the defects in Napa hyh/hyh signaling and Treg differentiation, but not IL-2 expression. Thus, non-specific sodium influx via bonafide calcium channels disrupts unexpected signaling nodes and may provide mechanistic insights into some divergent phenotypes associated with Orai1 function.

  4. Na+ influx via Orai1 inhibits intracellular ATP-induced mTORC2 signaling to disrupt CD4 T cell gene expression and differentiation

    PubMed Central

    Miao, Yong; Bhushan, Jaya; Dani, Adish; Vig, Monika

    2017-01-01

    T cell effector functions require sustained calcium influx. However, the signaling and phenotypic consequences of non-specific sodium permeation via calcium channels remain unknown. α-SNAP is a crucial component of Orai1 channels, and its depletion disrupts the functional assembly of Orai1 multimers. Here we show that α-SNAP hypomorph, hydrocephalus with hopping gait, Napahyh/hyh mice harbor significant defects in CD4 T cell gene expression and Foxp3 regulatory T cell (Treg) differentiation. Mechanistically, TCR stimulation induced rapid sodium influx in Napahyh/hyh CD4 T cells, which reduced intracellular ATP, [ATP]i. Depletion of [ATP]i inhibited mTORC2 dependent NFκB activation in Napahyh/hyh cells but ablation of Orai1 restored it. Remarkably, TCR stimulation in the presence of monensin phenocopied the defects in Napahyh/hyh signaling and Treg differentiation, but not IL-2 expression. Thus, non-specific sodium influx via bonafide calcium channels disrupts unexpected signaling nodes and may provide mechanistic insights into some divergent phenotypes associated with Orai1 function. DOI: http://dx.doi.org/10.7554/eLife.25155.001 PMID:28492364

  5. Nonsecreted cytoplasmic alpha-fetoprotein: a newly discovered role in intracellular signaling and regulation. An update and commentary.

    PubMed

    Mizejewski, G J

    2015-12-01

    The concept of a non-secreted cytoplasmic-bound form of alpha-fetoprotein is not a new notion in AFP biological activities. Cytoplasmic AFP (CyAFP) is a long known but forgotten protein in search of a function other than a histochemical biomarker. In this report, CyAFP is presented as an "old" protein with a newly described intracellular function. In 1976, CyAFP was shown to be a product of hepatoma cells utilizing 14Cleucine incorporation and demonstrated by autoradiographic procedures. The synthesis of CyAFP without secretion was demonstrated to occur in both malignant and non-malignant cells encompassing hepatomas, ascite fluid cells, immature rodent uterus, MCF-7 breast cancers, and cytosols from human breast cancer patients. Using computer protein matching and alignments in AFP versus members of the nuclear receptor superfamily, a consecutive series of leucine zipper (heptad) repeats in AFP was previously reported, suggesting the possibility for protein-to-protein interactions. The potential for heptad heterodimerization between protein-binding partners provided the rationale for proposing that CyAFP might have the capability to form molecular hetero-complexes with cytoplasmic based transcription factors. More recent investigations have now provided experimental evidence that CyAFP is capable of colocalizing and interacting with transcription-associated factors. Such proteins can modulate intracellular signaling leading to regulation of transcription factors and initiation of growth in human cancer cells. Although circulating serum AFP is known as a growth-enhancing factor during development, cytoplasmic AFP has a lethal role in the oncogenesis, growth, and metastasis of adult liver cancer.

  6. Relationship between carbachol hyperstimulation-induced pancreatic intracellular trypsinogen and NF-kappa B activation in rats in vitro.

    PubMed

    Jiang, Chunfang; Zheng, Hai; Liu, Sunan; Fang, Kaifeng

    2008-02-01

    The relationship between intracellular trypsinogen activation and NF-kappa B activation in rat pancreatic acinar cells induced by M3 cholinergic receptor agonist (carbachol) hyperstimulation was studied. Rat pancreatic acinar cells were isolated, cultured and treated with carbachol, the active protease inhibitor (pefabloc) and NF-kappa B inhibitor (PDTC) in vitro. Intracellular trypsin activity was measured by using a fluorogenic substrate. The activity of NF-kappa B was monitored by using electrophoretic mobility shift assay. The results showed that after pretreatment with 2 mmol/L pefabloc, the activities of trypsin and NF-kappa B in pancreatic acinar cells treated with high concentrations of carbachol (10(-3) mol/L) in vitro was significantly decreased as compared with control group (P<0.01). The addition of 10(-2) mol/L PDTC resulted in a significant decrease of NF-kappa B activities in pancreatic acinar cells after treated with high concentrations of carbachol (10(-3) mol/L) in vitro, but the intracellular trypsinogen activity was not obviously inhibited (P>0.05). It was concluded that intracellular trypsinogen activation is likely involved in the regulation of high concentrations of carbachol-induced NF-kappa B activation in pancreatic acinar cells in vitro. NF-kappa B activation is likely not necessary for high concentrations of carbachol-induced trypsinogen activation in pancreatic acinar cells in vitro.

  7. The Fibroblast Growth Factor signaling pathway

    PubMed Central

    Ornitz, David M; Itoh, Nobuyuki

    2015-01-01

    The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. © 2015 Wiley Periodicals, Inc. PMID:25772309

  8. Trypanosoma cruzi Exploits Wnt Signaling Pathway to Promote Its Intracellular Replication in Macrophages.

    PubMed

    Volpini, Ximena; Ambrosio, Laura F; Fozzatti, Laura; Insfran, Constanza; Stempin, Cinthia C; Cervi, Laura; Motran, Claudia Cristina

    2018-01-01

    During the acute phase of Trypanosoma cruzi infection, macrophages can act as host cells for the parasites as well as effector cells in the early anti-parasitic immune response. Thus, the targeting of specific signaling pathways could modulate macrophages response to restrict parasite replication and instruct an appropriate adaptive response. Recently, it has become evident that Wnt signaling has immunomodulatory functions during inflammation and infection. Here, we tested the hypothesis that during T. cruzi infection, the activation of Wnt signaling pathway in macrophages plays a role in modulating the inflammatory/tolerogenic response and therefore regulating the control of parasite replication. In this report, we show that early after T. cruzi infection of bone marrow-derived macrophages (BMM), β-catenin was activated and Wnt3a, Wnt5a, and some Frizzled receptors as well as Wnt/β-catenin pathway's target genes were upregulated, with Wnt proteins signaling sustaining the activation of Wnt/β-catenin pathway and then activating the Wnt/Ca +2 pathway. Wnt signaling pathway activation was critical to sustain the parasite's replication in BMM; since the treatments with specific inhibitors of β-catenin transcriptional activation or Wnt proteins secretion limited the parasite replication. Mechanistically, inhibition of Wnt signaling pathway armed BMM to fight against T. cruzi by inducing the production of pro-inflammatory cytokines and indoleamine 2,3-dioxygenase activity and by downregulating arginase activity. Likewise, in vivo pharmacological inhibition of the Wnts' interaction with its receptors controlled the parasite replication and improved the survival of lethally infected mice. It is well established that T. cruzi infection activates a plethora of signaling pathways that ultimately regulate immune mediators to determine the modulation of a defined set of effector functions in macrophages. In this study, we have revealed a new signaling pathway that is

  9. Molecular design and nanoparticle-mediated intracellular delivery of functional proteins to target cellular pathways

    NASA Astrophysics Data System (ADS)

    Shah, Dhiral Ashwin

    Intracellular delivery of specific proteins and peptides represents a novel method to influence stem cells for gain-of-function and loss-of-function. Signaling control is vital in stem cells, wherein intricate control of and interplay among critical pathways directs the fate of these cells into either self-renewal or differentiation. The most common route to manipulate cellular function involves the introduction of genetic material such as full-length genes and shRNA into the cell to generate (or prevent formation of) the target protein, and thereby ultimately alter cell function. However, viral-mediated gene delivery may result in relatively slow expression of proteins and prevalence of oncogene insertion into the cell, which can alter cell function in an unpredictable fashion, and non-viral delivery may lead to low efficiency of genetic delivery. For example, the latter case plagues the generation of induced pluripotent stem cells (iPSCs) and hinders their use for in vivo applications. Alternatively, introducing proteins into cells that specifically recognize and influence target proteins, can result in immediate deactivation or activation of key signaling pathways within the cell. In this work, we demonstrate the cellular delivery of functional proteins attached to hydrophobically modified silica (SiNP) nanoparticles to manipulate specifically targeted cell signaling proteins. In the Wnt signaling pathway, we have targeted the phosphorylation activity of glycogen synthase kinase-3beta (GSK-3beta) by designing a chimeric protein and delivering it in neural stem cells. Confocal imaging indicates that the SiNP-chimeric protein conjugates were efficiently delivered to the cytosol of human embryonic kidney cells and rat neural stem cells, presumably via endocytosis. This uptake impacted the Wnt signaling cascade, indicated by the elevation of beta-catenin levels, and increased transcription of Wnt target genes, such as c-MYC. The results presented here suggest that

  10. Sound-Induced Intracellular Ca2+ Dynamics in the Adult Hearing Cochlea

    PubMed Central

    Chan, Dylan K.; Rouse, Stephanie L.

    2016-01-01

    Ca2+ signaling has been implicated in the initial pathophysiologic mechanisms underlying the cochlea's response to acoustic overstimulation. Intracellular Ca2+ signaling (ICS) waves, which occur in glia and retinal cells in response to injury to activate cell regulatory pathways, have been proposed as an early event in cochlear injury. Disruption of ICS activity is thought to underlie Connexin 26-associated hearing loss, the most common genetic form of deafness, and downstream sequelae of ICS wave activity, such as MAP kinase pathway activation, have been implicated in noise-induced hearing loss. However, ICS waves have only been observed in neonatal cochlear cultures and are thought to be quiescent after the onset of hearing. In this study, we employ an acute explant model of an adult, hearing cochlea that retains many in vivo physiologic features to investigate Ca2+ changes in response to sound. We find that both slow monotonic changes in intracellular Ca2+ concentration as well as discrete ICS waves occur with acoustic overstimulation. The ICS waves share many intrinsic features with their better-described neonatal counterparts, including ATP and gap-junction dependence, and propagation velocity and distance. This identification of ICS wave activity in the adult, hearing cochlea thus confirms and characterizes an important early detection mechanism for cochlear trauma and provides a target for interventions for noise-induced and Connexin 26-associated hearing loss. PMID:27959894

  11. Intracellular recording of action potentials by nanopillar electroporation.

    PubMed

    Xie, Chong; Lin, Ziliang; Hanson, Lindsey; Cui, Yi; Cui, Bianxiao

    2012-02-12

    Action potentials have a central role in the nervous system and in many cellular processes, notably those involving ion channels. The accurate measurement of action potentials requires efficient coupling between the cell membrane and the measuring electrodes. Intracellular recording methods such as patch clamping involve measuring the voltage or current across the cell membrane by accessing the cell interior with an electrode, allowing both the amplitude and shape of the action potentials to be recorded faithfully with high signal-to-noise ratios. However, the invasive nature of intracellular methods usually limits the recording time to a few hours, and their complexity makes it difficult to simultaneously record more than a few cells. Extracellular recording methods, such as multielectrode arrays and multitransistor arrays, are non-invasive and allow long-term and multiplexed measurements. However, extracellular recording sacrifices the one-to-one correspondence between the cells and electrodes, and also suffers from significantly reduced signal strength and quality. Extracellular techniques are not, therefore, able to record action potentials with the accuracy needed to explore the properties of ion channels. As a result, the pharmacological screening of ion-channel drugs is usually performed by low-throughput intracellular recording methods. The use of nanowire transistors, nanotube-coupled transistors and micro gold-spine and related electrodes can significantly improve the signal strength of recorded action potentials. Here, we show that vertical nanopillar electrodes can record both the extracellular and intracellular action potentials of cultured cardiomyocytes over a long period of time with excellent signal strength and quality. Moreover, it is possible to repeatedly switch between extracellular and intracellular recording by nanoscale electroporation and resealing processes. Furthermore, vertical nanopillar electrodes can detect subtle changes in action

  12. Intracellular recording of action potentials by nanopillar electroporation

    NASA Astrophysics Data System (ADS)

    Xie, Chong; Lin, Ziliang; Hanson, Lindsey; Cui, Yi; Cui, Bianxiao

    2012-03-01

    Action potentials have a central role in the nervous system and in many cellular processes, notably those involving ion channels. The accurate measurement of action potentials requires efficient coupling between the cell membrane and the measuring electrodes. Intracellular recording methods such as patch clamping involve measuring the voltage or current across the cell membrane by accessing the cell interior with an electrode, allowing both the amplitude and shape of the action potentials to be recorded faithfully with high signal-to-noise ratios. However, the invasive nature of intracellular methods usually limits the recording time to a few hours, and their complexity makes it difficult to simultaneously record more than a few cells. Extracellular recording methods, such as multielectrode arrays and multitransistor arrays, are non-invasive and allow long-term and multiplexed measurements. However, extracellular recording sacrifices the one-to-one correspondence between the cells and electrodes, and also suffers from significantly reduced signal strength and quality. Extracellular techniques are not, therefore, able to record action potentials with the accuracy needed to explore the properties of ion channels. As a result, the pharmacological screening of ion-channel drugs is usually performed by low-throughput intracellular recording methods. The use of nanowire transistors, nanotube-coupled transistors and micro gold-spine and related electrodes can significantly improve the signal strength of recorded action potentials. Here, we show that vertical nanopillar electrodes can record both the extracellular and intracellular action potentials of cultured cardiomyocytes over a long period of time with excellent signal strength and quality. Moreover, it is possible to repeatedly switch between extracellular and intracellular recording by nanoscale electroporation and resealing processes. Furthermore, vertical nanopillar electrodes can detect subtle changes in action

  13. Polymeric nanoparticles affect the intracellular delivery, antiretroviral activity and cytotoxicity of the microbicide drug candidate dapivirine.

    PubMed

    das Neves, José; Michiels, Johan; Ariën, Kevin K; Vanham, Guido; Amiji, Mansoor; Bahia, Maria Fernanda; Sarmento, Bruno

    2012-06-01

    To assess the intracellular delivery, antiretroviral activity and cytotoxicity of poly(ε-caprolactone) (PCL) nanoparticles containing the antiretroviral drug dapivirine. Dapivirine-loaded nanoparticles with different surface properties were produced using three surface modifiers: poloxamer 338 NF (PEO), sodium lauryl sulfate (SLS) and cetyl trimethylammonium bromide (CTAB). The ability of nanoparticles to promote intracellular drug delivery was assessed in different cell types relevant for vaginal HIV transmission/microbicide development. Also, antiretroviral activity of nanoparticles was determined in different cell models, as well as their cytotoxicity. Dapivirine-loaded nanoparticles were readily taken up by different cells, with particular kinetics depending on the cell type and nanoparticles, resulting in enhanced intracellular drug delivery in phagocytic cells. Different nanoparticles showed similar or improved antiviral activity compared to free drug. There was a correlation between increased antiviral activity and increased intracellular drug delivery, particularly when cell models were submitted to a single initial short-course treatment. PEO-PCL and SLS-PCL nanoparticles consistently showed higher selectivity index values than free drug, contrasting with high cytotoxicity of CTAB-PCL. These results provide evidence on the potential of PCL nanoparticles to affect in vitro toxicity and activity of dapivirine, depending on surface engineering. Thus, this formulation approach may be a promising strategy for the development of next generation microbicides.

  14. Control of endothelial cell tube formation by Notch ligand intracellular domain interactions with activator protein 1 (AP-1).

    PubMed

    Forghany, Zary; Robertson, Francesca; Lundby, Alicia; Olsen, Jesper V; Baker, David A

    2018-01-26

    Notch signaling is a ubiquitous signal transduction pathway found in most if not all metazoan cell types characterized to date. It is indispensable for cell differentiation as well as tissue growth, tissue remodeling, and apoptosis. Although the canonical Notch signaling pathway is well characterized, accumulating evidence points to the existence of multiple, less well-defined layers of regulation. In this study, we investigated the function of the intracellular domain (ICD) of the Notch ligand Delta-like 4 (DLL4). We provide evidence that the DLL4 ICD is required for normal DLL4 subcellular localization. We further show that it is cleaved and interacts with the JUN proto-oncogene, which forms part of the activator protein 1 (AP-1) transcription factor complex. Mechanistically, the DLL4 ICD inhibited JUN binding to DNA and thereby controlled the expression of JUN target genes, including DLL4 Our work further demonstrated that JUN strongly stimulates endothelial cell tube formation and that DLL4 constrains this process. These results raise the possibility that Notch/DLL4 signaling is bidirectional and suggest that the DLL4 ICD could represent a point of cross-talk between Notch and receptor tyrosine kinase (RTK) signaling. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Nanoconjugation prolongs endosomal signaling of the epidermal growth factor receptor and enhances apoptosis

    NASA Astrophysics Data System (ADS)

    Wu, L.; Xu, F.; Reinhard, B. M.

    2016-07-01

    It is becoming increasingly clear that intracellular signaling can be subject to strict spatial control. As the covalent attachment of a signaling ligand to a nanoparticle (NP) impacts ligand-receptor binding, uptake, and trafficking, nanoconjugation provides new opportunities for manipulating intracellular signaling in a controlled fashion. To establish the effect of nanoconjugation on epidermal growth factor (EGF) mediated signaling, we investigate here the intracellular fate of nanoconjugated EGF (NP-EGF) and its bound receptor (EGFR) by quantitative correlated darkfield/fluorescence microscopy and density-based endosomal fractionation. We demonstrate that nanoconjugation prolongs the dwell time of phosphorylated receptors in the early endosomes and that the retention of activated EGFR in the early endosomes is accompanied by an EGF mediated apoptosis at effective concentrations that do not induce apoptosis in the case of free EGF. Overall, these findings indicate nanoconjugation as a rational strategy for modifying signaling that acts by modulating the temporo-spatial distribution of the activated EGF-EGFR ligand-receptor complex.It is becoming increasingly clear that intracellular signaling can be subject to strict spatial control. As the covalent attachment of a signaling ligand to a nanoparticle (NP) impacts ligand-receptor binding, uptake, and trafficking, nanoconjugation provides new opportunities for manipulating intracellular signaling in a controlled fashion. To establish the effect of nanoconjugation on epidermal growth factor (EGF) mediated signaling, we investigate here the intracellular fate of nanoconjugated EGF (NP-EGF) and its bound receptor (EGFR) by quantitative correlated darkfield/fluorescence microscopy and density-based endosomal fractionation. We demonstrate that nanoconjugation prolongs the dwell time of phosphorylated receptors in the early endosomes and that the retention of activated EGFR in the early endosomes is accompanied by an EGF

  16. Function-Specific Intracellular Signaling Pathways Downstream of Heparin-Binding EGF-Like Growth Factor Utilized by Human Trophoblasts1

    PubMed Central

    Jessmon, Philip; Kilburn, Brian A.; Romero, Roberto; Leach, Richard E.; Armant, D. Randall

    2010-01-01

    Heparin-binding EGF-like growth factor (HBEGF) is expressed by trophoblast cells throughout gestation. First-trimester cytotrophoblast cells are protected from hypoxia-induced apoptosis because of the accumulation of HBEGF through a posttranscriptional autocrine mechanism. Exogenous application of HBEGF is cytoprotective in a hypoxia/reoxygenation (H/R) injury model and initiates trophoblast extravillous differentiation to an invasive phenotype. The downstream signaling pathways induced by HBEGF that mediate these various cellular activities were identified using two human first-trimester cytotrophoblast cell lines, HTR-8/SVneo and SW.71, with similar results. Recombinant HBEGF (1 nM) induced transient phosphorylation of MAPK3/1 (ERK), MAPK14 (p38), and AKT within 15 min and JNK after 1–2 h. To determine which downstream pathways regulate the various functions of HBEGF, cells were treated with specific inhibitors of the ERK upstream regulator MEK (U0126), the AKT upstream regulator phosphoinositide-3 (PI3)-kinase (LY294002), MAPK14 (SB203580), and JNK (SP600125), as well as with inactive structural analogues. Only SB203580 specifically prevented HBEGF-mediated rescue during H/R, while each inhibitor attenuated HBEGF-stimulated cell migration. Accumulation of HBEGF at reduced oxygen was blocked only by a combination of U0126, SB203580, and SP600125. We conclude that HBEGF advances trophoblast extravillous differentiation through coordinate activation of PI3 kinase, ERK, MAPK14, and JNK, while only MAPK14 is required for its antiapoptotic activity. Additionally, hypoxia induces an autocrine increase in HBEGF protein levels through MAPK14, JNK or ERK. These experiments reveal a complexity of the intracellular signaling circuitry that regulates trophoblast functions critical for implantation and placentation. PMID:20130271

  17. Intracellular and Extracellular Recording of Spontaneous Action Potentials in Mammalian Neurons and Cardiac Cells with 3D Plasmonic Nanoelectrodes.

    PubMed

    Dipalo, Michele; Amin, Hayder; Lovato, Laura; Moia, Fabio; Caprettini, Valeria; Messina, Gabriele C; Tantussi, Francesco; Berdondini, Luca; De Angelis, Francesco

    2017-06-14

    Three-dimensional vertical micro- and nanostructures can enhance the signal quality of multielectrode arrays and promise to become the prime methodology for the investigation of large networks of electrogenic cells. So far, access to the intracellular environment has been obtained via spontaneous poration, electroporation, or by surface functionalization of the micro/nanostructures; however, these methods still suffer from some limitations due to their intrinsic characteristics that limit their widespread use. Here, we demonstrate the ability to continuously record both extracellular and intracellular-like action potentials at each electrode site in spontaneously active mammalian neurons and HL-1 cardiac-derived cells via the combination of vertical nanoelectrodes with plasmonic optoporation. We demonstrate long-term and stable recordings with a very good signal-to-noise ratio. Additionally, plasmonic optoporation does not perturb the spontaneous electrical activity; it permits continuous recording even during the poration process and can regulate extracellular and intracellular contributions by means of partial cellular poration.

  18. The selective Bcl-2 inhibitor venetoclax, a BH3 mimetic, does not dysregulate intracellular Ca2+ signaling.

    PubMed

    Vervloessem, Tamara; Ivanova, Hristina; Luyten, Tomas; Parys, Jan B; Bultynck, Geert

    2017-06-01

    Anti-apoptotic B cell-lymphoma-2 (Bcl-2) proteins are emerging as therapeutic targets in a variety of cancers for precision medicines, like the BH3-mimetic drug venetoclax (ABT-199), which antagonizes the hydrophobic cleft of Bcl-2. However, the impact of venetoclax on intracellular Ca 2+ homeostasis and dynamics in cell systems has not been characterized in detail. Here, we show that venetoclax did not affect Ca 2+ -transport systems from the endoplasmic reticulum (ER) in permeabilized cell systems. Venetoclax (1μM) did neither trigger Ca 2+ release by itself nor affect agonist-induced Ca 2+ release in a variety of intact cell models. Among the different cell types, we also studied two Bcl-2-dependent cancer cell models with a varying sensitivity towards venetoclax, namely SU-DHL-4 and OCI-LY-1, both diffuse large B-cell lymphoma cell lines. Acute application of venetoclax did also not dysregulate Ca 2+ signaling in these Bcl-2-dependent cancer cells. Moreover, venetoclax-induced cell death was independent of intracellular Ca 2+ overload, since Ca 2+ buffering using BAPTA-AM did not suppress venetoclax-induced cell death. This study therefore shows that venetoclax does not dysregulate the intracellular Ca 2+ homeostasis in a variety of cell types, which may underlie its limited toxicity in human patients. Furthermore, venetoclax-induced cell death in Bcl-2-dependent cancer cells is not mediated by intracellular Ca 2+ overload. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rössler, Oliver G.; Glatzel, Daniel; Thiel, Gerald, E-mail: gerald.thiel@uks.eu

    2015-03-01

    Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interruptsmore » the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1. - Highlights: • The plant polyphenol resveratrol upregulates Egr-1 expression and activity. • The stimulation of Egr-1 requires the protein kinases ERK and Raf. • Resveratrol treatment upregulates the transcriptional activation potential of Elk-1. • Resveratrol-induced stimulation of Egr-1 requires ternary complex factors. • Two distinct resveratrol-responsive elements were identified.« less

  20. Dance band on the Titanic: biomechanical signaling in cardiac hypertrophy.

    PubMed

    Sussman, Mark A; McCulloch, Andrew; Borg, Thomas K

    2002-11-15

    Biomechanical signaling is a complex interaction of both intracellular and extracellular components. Both passive and active components are involved in the extracellular environment to signal through specific receptors to multiple signaling pathways. This review provides an overview of extracellular matrix, specific receptors, and signaling pathways for biomechanical stimulation in cardiac hypertrophy.

  1. Assembly and intracellular delivery of quantum dot-fluorescent protein bioconjugates

    NASA Astrophysics Data System (ADS)

    Medintz, Igor L.; Pons, Thomas; Delehanty, James B.; Susumu, Kimihiro; Dawson, Philip E.; Mattoussi, Hedi

    2008-02-01

    We have previously assembled semiconductor quantum dot (QD)-based fluorescence resonance energy transfer (FRET) sensors that can specifically detect nutrients, explosives or enzymatic activity. These sensors utilized the inherent benefits of QDs as FRET donors to optimize signal transduction. In this report we functionalize QDs with the multi-subunit multi-chromophore b-phycoerythrin (b-PE) light harvesting complex using biotin-Streptavidin binding. FRET and gel electrophoretic analyses were used to characterize and confirm the QD-b-PE self-assembly. We found that immobilizing additional cell-penetrating peptides on the nanocrystal surface along with the b-PE was the key factor allowing the mixed surface QD-cargos to undergo endocytosis and intracellular delivery. Our findings on the intracellular uptake promoted by CPP were compared to those collected using microinjection technique, where QD-assemblies were delivered directly into the cytoplasm; this strategy allows bypassing of the endocytic uptake pathway. Intracellular delivery of multifunctional QD-fluorescent protein assemblies has potential applications for use in protein tracking, sensing and diagnostics.

  2. PKD signaling and pancreatitis

    PubMed Central

    Yuan, Jingzhen; Pandol, Stephen J.

    2016-01-01

    Background Acute pancreatitis is a serious medical disorder with no current therapies directed to the molecular pathogenesis of the disorder. Inflammation, inappropriate intracellular activation of digestive enzymes, and parenchymal acinar cell death by necrosis are the critical pathophysiologic processes of acute pancreatitis. Thus, it is necessary to elucidate the key molecular signals that mediate these pathobiologic processes and develop new therapeutic strategies to attenuate the appropriate signaling pathways in order to improve outcomes for this disease. A novel serine/threonine protein kinase D (PKD) family has emerged as key participants in signal transduction, and this family is increasingly being implicated in the regulation of multiple cellular functions and diseases. Methods This review summarizes recent findings of our group and others regarding the signaling pathway and the biological roles of the PKD family in pancreatic acinar cells. In particular, we highlight our studies of the functions of PKD in several key pathobiologic processes associated with acute pancreatitis in experimental models. Results Our findings reveal that PKD signaling is required for NF-κB activation/inflammation, intracellular zymogen activation, and acinar cell necrosis in rodent experimental pancreatitis. Novel small-molecule PKD inhibitors attenuate the severity of pancreatitis in both in vitro and in vivo experimental models. Further, this review emphasizes our latest advances in the therapeutic application of PKD inhibitors to experimental pancreatitis after the initiation of pancreatitis. Conclusions These novel findings suggest that PKD signaling is a necessary modulator in key initiating pathobiologic processes of pancreatitis, and that it constitutes a novel therapeutic target for treatments of this disorder. PMID:26879861

  3. Imaging Intracellular Ca2+ Signals in Striatal Astrocytes from Adult Mice Using Genetically-encoded Calcium Indicators

    PubMed Central

    Jiang, Ruotian; Haustein, Martin D.; Sofroniew, Michael V.; Khakh, Baljit S.

    2014-01-01

    Astrocytes display spontaneous intracellular Ca2+ concentration fluctuations ([Ca2+]i) and in several settings respond to neuronal excitation with enhanced [Ca2+]i signals. It has been proposed that astrocytes in turn regulate neurons and blood vessels through calcium-dependent mechanisms, such as the release of signaling molecules. However, [Ca2+]i imaging in entire astrocytes has only recently become feasible with genetically encoded calcium indicators (GECIs) such as the GCaMP series. The use of GECIs in astrocytes now provides opportunities to study astrocyte [Ca2+]i signals in detail within model microcircuits such as the striatum, which is the largest nucleus of the basal ganglia. In the present report, detailed surgical methods to express GECIs in astrocytes in vivo, and confocal imaging approaches to record [Ca2+]i signals in striatal astrocytes in situ, are described. We highlight precautions, necessary controls and tests to determine if GECI expression is selective for astrocytes and to evaluate signs of overt astrocyte reactivity. We also describe brain slice and imaging conditions in detail that permit reliable [Ca2+]i imaging in striatal astrocytes in situ. The use of these approaches revealed the entire territories of single striatal astrocytes and spontaneous [Ca2+]i signals within their somata, branches and branchlets. The further use and expansion of these approaches in the striatum will allow for the detailed study of astrocyte [Ca2+]i signals in the striatal microcircuitry. PMID:25490346

  4. ARE MACROPHAGES ACTIVATED AND INDUCE PULMONARY INJURY BY INTRACELLULARLY BIOAVAILABLE IRON?

    EPA Science Inventory

    ARE MACROPHAGES ACTIVATED AND INDUCE PULMONARY INJURY BY INTRACELLULARLY BIOAVAILABLE IRON? UP Kodavanti1, MCJ Schladweiler1, S Becker2, DL Costa1, P Mayer3, A Ziesenis3, WG Kreyling3, 1ETD, 2HSDivision, NHEERL, USEPA, Research Triangle Park, NC, USA, and 3GSF, Inhalation Biology...

  5. Stimulation of fibroblast growth factor 23 by metabolic acidosis requires osteoblastic intracellular calcium signaling and prostaglandin synthesis.

    PubMed

    Krieger, Nancy S; Bushinsky, David A

    2017-10-01

    Serum fibroblast growth factor 23 (FGF23) increases progressively in chronic kidney disease (CKD) and is associated with increased mortality. FGF23 is synthesized in osteoblasts and osteocytes; however, the factors regulating its production are not clear. Patients with CKD have decreased renal acid excretion leading to metabolic acidosis (MET). During MET, acid is buffered by bone with release of mineral calcium (Ca) and phosphate (P). MET increases intracellular Ca signaling and cyclooxygenase 2 (COX2)-induced prostaglandin production in the osteoblast, leading to decreased bone formation and increased bone resorption. We found that MET directly stimulates FGF23 in mouse bone organ cultures and primary osteoblasts. We hypothesized that MET increases FGF23 through similar pathways that lead to bone resorption. Neonatal mouse calvariae were incubated in neutral (NTL, pH = 7.44, Pco 2 = 38 mmHg, [HCO 3 - ] = 27 mM) or acid (MET, pH = 7.18, Pco 2 = 37 mmHg, [HCO 3 - ] = 13 mM) medium without or with 2-APB (50 μM), an inhibitor of intracellular Ca signaling or NS-398 (1 μM), an inhibitor of COX2. Each agent significantly inhibited MET stimulation of medium FGF23 protein and calvarial FGF23 RNA as well as bone resorption at 48 h. To exclude the potential contribution of MET-induced bone P release, we utilized primary calvarial osteoblasts. In these cells each agent inhibited MET stimulation of FGF23 RNA expression at 6 h. Thus stimulation of FGF23 by MET in mouse osteoblasts utilizes the same initial signaling pathways as MET-induced bone resorption. Therapeutic interventions directed toward correction of MET, especially in CKD, have the potential to not only prevent bone resorption but also lower FGF23 and perhaps decrease mortality. Copyright © 2017 the American Physiological Society.

  6. Visual Snapshots of Intracellular Kinase Activity At The Onset of Mitosis

    PubMed Central

    Dai, Zhaohua; Dulyaninova, Natalya G.; Kumar, Sanjai; Bresnick, Anne R.; Lawrence, David S.

    2007-01-01

    Summary Visual snapshots of intracellular kinase activity can be acquired with exquisite temporal control using a light-activatable (caged) sensor, thereby providing a means to interrogate enzymatic activity at any point during the cell division cycle. Robust protein kinase activity transpires just prior to, but not immediately following, nuclear envelope breakdown (NEB). Furthermore, kinase activity is required for progression from prophase into metaphase. Finally, the application of selective protein kinase C (PKC) inhibitors, in combination with the caged sensor, correlates the action of the PKC β isoform with subsequent NEB. PMID:18022564

  7. Liraglutide, leptin, and their combined effects on feeding: additive intake reduction through common intracellular signaling mechanisms

    PubMed Central

    Kanoski, Scott E.; Ong, Zhi Yi; Fortin, Samantha M.; Schlessinger, Elizabeth S.; Grill, Harvey J.

    2014-01-01

    Aims Glucagon like peptide-1 receptor (GLP-1R) agonists and leptin each exert anorexigenic effects. In combination, the intake inhibitory and weight loss effects are greater than either treatment alone, however the mechanisms unclear. Materials and methods Effects of liraglutide (a long-acting GLP-1 analogue) and leptin co-treatment, delivered in low or moderate doses subcutaneously (SC) or to the 3rd ventricle respectively, on cumulative intake, meal patterns, and hypothalamic expression of intracellular signaling proteins [phosphorylated signal transducer and activator of transcription-3 (pSTAT3) and protein tyrosine phosphatase-1B (PTP1B)] were examined in lean rats. Results A low-dose combination of liraglutide (25μg/kg) and leptin (0.75μg) additively reduced cumulative food intake and body weight, a result mediated predominantly through a significant reduction in meal frequency that was not present with either drug alone. Liraglutide treatment alone also reduced meal size; an effect not enhanced with leptin co-administration. Moderate doses of liraglutide (75μg/kg) and leptin (4μg) examined separately each reduced meal frequency, cumulative food intake, and body weight; only liraglutide reduced meal size. In combination these doses did not further enhance the anorexigenic effects of either treatment alone. Ex vivo immunoblot showed elevated pSTAT3 in hypothalamic tissue following liraglutide-leptin co-treatment, an effect greater than leptin treatment alone. In addition, SC liraglutide reduced expression of PTP1B (a negative regulator of leptin receptor signaling), revealing a potential mechanism for the enhanced pSTAT3 response following liraglutide-leptin co-administration. Conclusions Collectively, these results provide novel behavioral and molecular mechanisms underlying the additive reduction in food intake and body weight following liraglutide-leptin combination treatment. PMID:25475828

  8. Obligate intracellular bacterium Ehrlichia inhibiting mitochondrial activity

    PubMed Central

    Liu, Yan; Zhang, Zhikai; Jiang, Yongquan; Zhang, Lihong; Popov, Vsevolod L.; Zhang, Jianzhi; Walker, David H.; Yu, Xue-jie

    2010-01-01

    Ehrlichia are obligately intracellular bacteria that reside in a vacuole in the cytoplasm of phagocytes. We determined by confocal microscopy the interaction between Ehrlichia and mitochondria in DH82 cells to investigate the mechanism of Ehrlichia survival inside the phagocyte. The most remarkable finding of our study was that Ehrlichia morulae interacted with mitochondria and inhibited mitochondrial metabolism,. We showed that in E. chaffeensis-infected DH82 cells, mitochondria did not incorporate BrdU and transcriptional level of the mitochondrial gene NADPH2 was significantly reduced, indicating the inhibition of mitochondrial metabolism. This study demonstrates that Ehrlichia are able to inhibit mitochondrial activities, and it opens up a new avenue for the study of Ehrlichia pathogenesis. PMID:21070861

  9. Activators of G-protein signaling 3: a drug addiction molecular gateway.

    PubMed

    Bowers, Michael Scott

    2010-09-01

    Drug addiction is marked by continued drug-seeking behavior despite deleterious consequences and a heightened propensity to relapse not withstanding long, drug-free periods. The enduring nature of addiction has been hypothesized to arise from perturbations in intracellular signaling, gene expression, and brain circuitry induced by substance abuse. Ameliorating some of these aberrations should abate behavioral and neurochemical markers associated with an 'addiction phenotype'. This review summarizes data showing that protein expression and signaling through the nonreceptor activator of G-protein signaling 3 (AGS3) are altered by commonly abused substances in rat and in in-vitro addiction models. AGS3 structure and function are unrelated to the more broadly studied regulator of G-protein signaling family. Thus, the unique role of AGS3 is the focus of this review. Intriguingly, AGS3 protein changes persist into drug abstinence. Accordingly, studies probing the role of AGS3 in the neurochemistry of drug-seeking behavior and relapse are studied in detail. To illuminate this study, AGS3 structure, cellular localization, and function are covered so that an idealized AGS3-targeted pharmacotherapy can be proposed.

  10. Activators of G-protein Signaling 3: A drug addiction molecular gateway

    PubMed Central

    Bowers, M. Scott

    2010-01-01

    Drug addiction is marked by continued drug-seeking behavior despite deleterious consequences and a heightened propensity to relapse notwithstanding long, drug-free periods. The enduring nature of addiction has been hypothesized to arise from perturbations in intracellular signaling, gene expression, and brain circuitry induced by substance abuse. Ameliorating some of these aberrations should abate behavioral and neurochemical markers associated with an “addiction phenotype”. This review summarizes data showing that protein expression and signaling through the non-receptor Activator of heterotrimeric G-protein Signaling 3 (AGS3) is altered by commonly abused substances in rat and in vitro addiction models. AGS3 structure and function are unrelated to the more broadly studied Regulator of G-protein Signaling (RGS) family. Thus, the unique role of AGS3 is the focus of this review. Intriguingly, AGS3 protein changes persist into drug abstinence. Accordingly, studies probing the role of AGS3 in the neurochemistry of drug-seeking behavior and relapse are reviewed in detail. To illuminate this work, AGS3 structure, cellular localization, and function are covered so that an idealized AGS3-targeted pharmacotherapy can be proposed. PMID:20700046

  11. An intracellular motif of GLUT4 regulates fusion of GLUT4-containing vesicles.

    PubMed

    Heyward, Catherine A; Pettitt, Trevor R; Leney, Sophie E; Welsh, Gavin I; Tavaré, Jeremy M; Wakelam, Michael J O

    2008-05-20

    Insulin stimulates glucose uptake by adipocytes through increasing translocation of the glucose transporter GLUT4 from an intracellular compartment to the plasma membrane. Fusion of GLUT4-containing vesicles at the cell surface is thought to involve phospholipase D activity, generating the signalling lipid phosphatidic acid, although the mechanism of action is not yet clear. Here we report the identification of a putative phosphatidic acid-binding motif in a GLUT4 intracellular loop. Mutation of this motif causes a decrease in the insulin-induced exposure of GLUT4 at the cell surface of 3T3-L1 adipocytes via an effect on vesicle fusion. The potential phosphatidic acid-binding motif identified in this study is unique to GLUT4 among the sugar transporters, therefore this motif may provide a unique mechanism for regulating insulin-induced translocation by phospholipase D signalling.

  12. Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signalling.

    PubMed Central

    Denhardt, D T

    1996-01-01

    The features of three distinct protein phosphorylation cascades in mammalian cells are becoming clear. These signalling pathways link receptor-mediated events at the cell surface or intracellular perturbations such as DNA damage to changes in cytoskeletal structure, vesicle transport and altered transcription factor activity. The best known pathway, the Ras-->Raf-->MEK-->ERK cascade [where ERK is extracellular-signal-regulated kinase and MEK is mitogen-activated protein (MAP) kinase/ERK kinase], is typically stimulated strongly by mitogens and growth factors. The other two pathways, stimulated primarily by assorted cytokines, hormones and various forms of stress, predominantly utilize p21 proteins of the Rho family (Rho, Rac and CDC42), although Ras can also participate. Diagnostic of each pathway is the MAP kinase component, which is phosphorylated by a unique dual-specificity kinase on both tyrosine and threonine in one of three motifs (Thr-Glu-Tyr, Thr-Phe-Tyr or Thr-Gly-Tyr), depending upon the pathway. In addition to activating one or more protein phosphorylation cascades, the initiating stimulus may also mobilize a variety of other signalling molecules (e.g. protein kinase C isoforms, phospholipid kinases, G-protein alpha and beta gamma subunits, phospholipases, intracellular Ca2+). These various signals impact to a greater or lesser extent on multiple downstream effectors. Important concepts are that signal transmission often entails the targeted relocation of specific proteins in the cell, and the reversible formation of protein complexes by means of regulated protein phosphorylation. The signalling circuits may be completed by the phosphorylation of upstream effectors by downstream kinases, resulting in a modulation of the signal. Signalling is terminated and the components returned to the ground state largely by dephosphorylation. There is an indeterminant amount of cross-talk among the pathways, and many of the proteins in the pathways belong to families

  13. Cardiac-specific overexpression of insulin-like growth factor I (IGF-1) rescues lipopolysaccharide-induced cardiac dysfunction and activation of stress signaling in murine cardiomyocytes.

    PubMed

    Zhao, Peng; Turdi, Subat; Dong, Feng; Xiao, Xiaoyan; Su, Guohai; Zhu, Xinglei; Scott, Glenda I; Ren, Jun

    2009-07-01

    Lipopolysaccharide (LPS), a component of the outer membrane of Gram-negative bacteria, plays a key role in cardiac dysfunction in sepsis. Low circulating levels of insulin-like growth factor 1 (IGF-1) are found in sepsis, although the influence of IGF-1 on septic cardiac defect is unknown. This study was designed to examine the impact of IGF-1 on LPS-induced cardiac contractile and intracellular Ca2+ dysfunction, activation of stress signal and endoplasmic reticulum (ER) stress. Mechanical and intracellular Ca2+ properties were examined in cardiomyocytes from Fast Violet B and cardiac-specific IGF-1 overexpression mice treated with or without LPS (4 mg kg(-1), 6 h). Reactive oxygen species (ROS), protein carbonyl formation and apoptosis were measured. Activation of mitogen-activated protein kinase pathways (p38, c-jun N-terminal kinase [JNK] and extracellular signal-related kinase [ERK]), ER stress and apoptotic markers were evaluated using Western blot analysis. Our results revealed decreased peak shortening and maximal velocity of shortening/relengthening and prolonged duration of relengthening in LPS-treated Fast Violet B cardiomyocytes associated with reduced intracellular Ca2+ decay. Accumulation of ROS protein carbonyl and apoptosis were elevated after LPS treatment. Western blot analysis revealed activated p38 and JNK, up-regulated Bax, and the ER stress markers GRP78 and Gadd153 in LPS-treated mouse hearts without any change in ERK and Bcl-2. Total protein expression of p38, JNK, and ERK was unaffected by either LPS or IGF-1. Interestingly, these LPS-induced changes in mechanical and intracellular Ca2+ properties, ROS, protein carbonyl, apoptosis, stress signal activation, and ER stress markers were effectively ablated by IGF-1. In vitro LPS exposure (1 microg mL(-1)) produced cardiomyocyte mechanical dysfunction reminiscent of the in vivo setting, which was alleviated by exogenous IGF-1 (50 nM). These data collectively suggested a beneficial of IGF-1 in

  14. Control of the ethylene signaling pathway prevents plant defenses during intracellular accommodation of the rhizobia.

    PubMed

    Berrabah, Fathi; Balliau, Thierry; Aït-Salem, El Hosseyn; George, Jeoffrey; Zivy, Michel; Ratet, Pascal; Gourion, Benjamin

    2018-04-18

    Massive intracellular populations of symbiotic bacteria, referred to as rhizobia, are housed in legume root nodules. Little is known about the mechanisms preventing the development of defense in these organs although genes such as SymCRK and DNF2 of the model legume Medicago truncatula are required for this control after rhizobial internalization in host nodule cells. Here we investigated the molecular basis of the symbiotic control of immunity. Proteomic analysis was performed to compare functional (wild-type) and defending nodules (symCRK). Based on the results, the control of plant immunity during the functional step of the symbiosis was further investigated by biochemical and pharmacological approaches as well as by transcript and histology analysis. Ethylene was identified as a potential signal inducing plant defenses in symCRK nodules. Involvement of this phytohormone in symCRK and dnf2-developed defenses and in the death of intracellular rhizobia was confirmed. This negative effect of ethylene depended on the M. truncatula sickle gene and was also observed in the legume Lotus japonicus. Together, these data indicate that prevention of ethylene-triggered defenses is crucial for the persistence of endosymbiosis and that the DNF2 and SymCRK genes are required for this process. © 2018 CNRS New Phytologist © 2018 New Phytologist Trust.

  15. Alpha-2 adrenoceptors and imidazoline receptors in cardiomyocytes mediate counterbalancing effect of agmatine on NO synthesis and intracellular calcium handling.

    PubMed

    Maltsev, Alexander V; Kokoz, Yuri M; Evdokimovskii, Edward V; Pimenov, Oleg Y; Reyes, Santiago; Alekseev, Alexey E

    2014-03-01

    Evidence suggests that intracellular Ca(2+) levels and contractility of cardiomyocytes can be modulated by targeting receptors other than already identified adrenergic or non-adrenergic sarcolemmal receptors. This study uncovers the presence in myocardial cells of adrenergic α2 (α2-AR) and imidazoline I1 (I1R) receptors. In isolated left ventricular myocytes generating stationary spontaneous Ca(2+) transients in the absence of triggered action potentials, the prototypic agonist of both receptors agmatine can activate corresponding signaling cascades with opposing outcomes on nitric oxide (NO) synthesis and intracellular Ca(2+) handling. Specifically, activation of α2-AR signaling through PI3 kinase and Akt/protein kinase B stimulates NO production and abolishes Ca(2+) transients, while targeting of I1R signaling via phosphatidylcholine-specific phospholipase C (PC-PLC) and protein kinase C (PKC) suppresses NO synthesis and elevates averaged intracellular Ca(2+). We identified that endothelial NO synthase (eNOS) is a major effector for both signaling cascades. According to the established eNOS transitions between active (Akt-dependent) and inactive (PKC-dependent) conformations, we suggest that balance between α2-AR and I1R signaling pathways sets eNOS activity, which by defining operational states of myocellular sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) can adjust Ca(2+) re-uptake and thereby cardiac inotropy. These results indicate that the conventional catalog of cardiomyocyte sarcolemmal receptors should be expanded by the α2-AR and I1R populations, unveiling previously unrecognized targets for endogenous ligands as well as for existing and potential pharmacological agents in cardiovascular medicine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Modulation of intracellular Ca(2+) via alpha(1B)-adrenoreceptor signaling molecules, G alpha(h) (transglutaminase II) and phospholipase C-delta 1.

    PubMed

    Kang, Sung Koo; Kim, Dae Kyong; Damron, Derek S; Baek, Kwang Jin; Im, Mie-Jae

    2002-04-26

    We characterized the alpha(1B)-adrenoreceptor (alpha(1B)-AR)-mediated intracellular Ca(2+) signaling involving G alpha(h) (transglutaminase II, TGII) and phospholipase C (PLC)-delta 1 using DDT1-MF2 cell. Expression of wild-type TGII and a TGII mutant lacking transglutaminase activity resulted in significant increases in a rapid peak and a sustained level of intracellular Ca(2+) concentration ([Ca(2+)](i)) in response to activation of the alpha(1B)-AR. Expression of a TGII mutant lacking the interaction with the receptor or PLC-delta 1 substantially reduced both the peak and sustained levels of [Ca(2+)](i). Expression of TGII mutants lacking the interaction with PLC-delta 1 resulted in a reduced capacitative Ca(2+) entry. Reduced expression of PLC-delta 1 displayed a transient elevation of [Ca(2+)](i) and a reduction in capacitative Ca(2+) entry. Expression of the C2-domain of PLC-delta 1, which contains the TGII interaction site, resulted in reduction of the alpha(1B)-AR-evoked peak increase in [Ca(2+)](i), while the sustained elevation in [Ca(2+)](i) and capacitative Ca(2+) entry remained unchanged. These findings demonstrate that stimulation of PLC-delta 1 via coupling of the alpha(1B)-AR with TGII evokes both Ca(2+) release and capacitative Ca(2+) entry and that capacitative Ca(2+) entry is mediated by the interaction of TGII with PLC-delta 1.

  17. The Fibroblast Growth Factor signaling pathway.

    PubMed

    Ornitz, David M; Itoh, Nobuyuki

    2015-01-01

    The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. For further resources related to this article, please visit the WIREs website. © 2015 The Authors. WIREs Developmental Biology published by Wiley Periodicals, Inc.

  18. Host-Directed Antimicrobial Drugs with Broad-Spectrum Efficacy against Intracellular Bacterial Pathogens

    PubMed Central

    Czyż, Daniel M.; Potluri, Lakshmi-Prasad; Jain-Gupta, Neeta; Riley, Sean P.; Martinez, Juan J.; Steck, Theodore L.; Crosson, Sean; Gabay, Joëlle E.

    2014-01-01

    ABSTRACT We sought a new approach to treating infections by intracellular bacteria, namely, by altering host cell functions that support their growth. We screened a library of 640 Food and Drug Administration (FDA)-approved compounds for agents that render THP-1 cells resistant to infection by four intracellular pathogens. We identified numerous drugs that are not antibiotics but were highly effective in inhibiting intracellular bacterial growth with limited toxicity to host cells. These compounds are likely to target three kinds of host functions: (i) G protein-coupled receptors, (ii) intracellular calcium signals, and (iii) membrane cholesterol distribution. The compounds that targeted G protein receptor signaling and calcium fluxes broadly inhibited Coxiella burnetii, Legionella pneumophila, Brucella abortus, and Rickettsia conorii, while those directed against cholesterol traffic strongly attenuated the intracellular growth of C. burnetii and L. pneumophila. These pathways probably support intracellular pathogen growth so that drugs that perturb them may be therapeutic candidates. Combining host- and pathogen-directed treatments is a strategy to decrease the emergence of drug-resistant intracellular bacterial pathogens. PMID:25073644

  19. Separation of extra- and intracellular metabolites using hyperpolarized 13C diffusion weighted MR

    NASA Astrophysics Data System (ADS)

    Koelsch, Bertram L.; Sriram, Renuka; Keshari, Kayvan R.; Leon Swisher, Christine; Van Criekinge, Mark; Sukumar, Subramaniam; Vigneron, Daniel B.; Wang, Zhen J.; Larson, Peder E. Z.; Kurhanewicz, John

    2016-09-01

    This work demonstrates the separation of extra- and intracellular components of glycolytic metabolites with diffusion weighted hyperpolarized 13C magnetic resonance spectroscopy. Using b-values of up to 15,000 s mm-2, a multi-exponential signal response was measured for hyperpolarized [1-13C] pyruvate and lactate. By fitting the fast and slow asymptotes of these curves, their extra- and intracellular weighted diffusion coefficients were determined in cells perfused in a MR compatible bioreactor. In addition to measuring intracellular weighted diffusion, extra- and intracellular weighted hyperpolarized 13C metabolites pools are assessed in real-time, including their modulation with inhibition of monocarboxylate transporters. These studies demonstrate the ability to simultaneously assess membrane transport in addition to enzymatic activity with the use of diffusion weighted hyperpolarized 13C MR. This technique could be an indispensible tool to evaluate the impact of microenvironment on the presence, aggressiveness and metastatic potential of a variety of cancers.

  20. Separation of extra- and intracellular metabolites using hyperpolarized 13C diffusion weighted MR✩

    PubMed Central

    Koelsch, Bertram L.; Sriram, Renuka; Keshari, Kayvan R.; Swisher, Christine Leon; Van Criekinge, Mark; Sukumar, Subramaniam; Vigneron, Daniel B.; Wang, Zhen J.; Larson, Peder E.Z.; Kurhanewicz, John

    2017-01-01

    This work demonstrates the separation of extra- and intracellular components of glycolytic metabolites with diffusion weighted hyperpolarized 13C magnetic resonance spectroscopy. Using b-values of up to 15,000 s mm−2, a multi-exponential signal response was measured for hyperpolarized [1-13C] pyruvate and lactate. By fitting the fast and slow asymptotes of these curves, their extra- and intracellular weighted diffusion coefficients were determined in cells perfused in a MR compatible bioreactor. In addition to measuring intracellular weighted diffusion, extra- and intracellular weighted hyperpolarized 13C metabolites pools are assessed in real-time, including their modulation with inhibition of monocarboxylate transporters. These studies demonstrate the ability to simultaneously assess membrane transport in addition to enzymatic activity with the use of diffusion weighted hyperpolarized 13C MR. This technique could be an indispensible tool to evaluate the impact of microenvironment on the presence, aggressiveness and metastatic potential of a variety of cancers. PMID:27434780

  1. Oxidative stress activates the TRPM2-Ca2+-CaMKII-ROS signaling loop to induce cell death in cancer cells.

    PubMed

    Wang, Qian; Huang, Lihong; Yue, Jianbo

    2017-06-01

    High intracellular levels of reactive oxygen species (ROS) cause oxidative stress that results in numerous pathologies, including cell death. Transient potential receptor melastatin-2 (TRPM2), a Ca 2+ -permeable cation channel, is mainly activated by intracellular adenosine diphosphate ribose (ADPR) in response to oxidative stress. Here we studied the role and mechanisms of TRPM2-mediated Ca 2+ influx on oxidative stress-induced cell death in cancer cells. We found that oxidative stress activated the TRPM2-Ca 2+ -CaMKII cascade to inhibit early autophagy induction, which ultimately led to cell death in TRPM2 expressing cancer cells. On the other hand, TRPM2 knockdown switched cells from cell death to autophagy for survival in response to oxidative stress. Moreover, we found that oxidative stress activated the TRPM2-CaMKII cascade to further induce intracellular ROS production, which led to mitochondria fragmentation and loss of mitochondrial membrane potential. In summary, our data demonstrated that oxidative stress activates the TRPM2-Ca 2+ -CaMKII-ROS signal loop to inhibit autophagy and induce cell death. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Neu1 sialidase and matrix metalloproteinase-9 cross-talk regulates nucleic acid-induced endosomal TOLL-like receptor-7 and -9 activation, cellular signaling and pro-inflammatory responses.

    PubMed

    Abdulkhalek, Samar; Szewczuk, Myron R

    2013-11-01

    The precise mechanism(s) by which intracellular TOLL-like receptors (TLRs) become activated by their ligands remains unclear. Here, we report a molecular organizational G-protein coupled receptor (GPCR) signaling platform to potentiate a novel mammalian neuraminidase-1 (Neu1) and matrix metalloproteinase-9 (MMP-9) cross-talk in alliance with neuromedin B GPCR, all of which form a tripartite complex with TLR-7 and -9. siRNA silencing Neu1, MMP-9 and neuromedin-B GPCR in RAW-blue macrophage cells significantly reduced TLR7 imiquimod- and TLR9 ODN1826-induced NF-κB (NF-κB-pSer(536)) activity. Tamiflu, specific MMP-9 inhibitor, neuromedin B receptor specific antagonist BIM23127, and the selective inhibitor of whole heterotrimeric G-protein complex BIM-46174 significantly block nucleic acid-induced TLR-7 and -9 MyD88 recruitment, NF-κB activation and proinflammatory TNFα and MCP-1 cytokine responses. For the first time, Neu1 clearly plays a central role in mediating nucleic acid-induced intracellular TLR activation, and the interactions involving NMBR-MMP9-Neu1 cross-talk constitute a novel intracellular TLR signaling platform that is essential for NF-κB activation and pro-inflammatory responses. © 2013. Published by Elsevier Inc. All rights reserved.

  3. Valproic Acid Influences MTNR1A Intracellular Trafficking and Signaling in a β-Arrestin 2-Dependent Manner.

    PubMed

    Hong, Ling-juan; Jiang, Quan; Long, Sen; Wang, Huan; Zhang, Ling-di; Tian, Yun; Wang, Cheng-kun; Cao, Jing-jing; Tao, Rong-rong; Huang, Ji-yun; Liao, Mei-hua; Lu, Ying-mei; Fukunaga, Kohji; Zhou, Nai-ming; Han, Feng

    2016-03-01

    Valproate exposure is associated with increased risks of autism spectrum disorder. To date, the mechanistic details of disturbance of melatonin receptor subtype 1 (MTNR1A) internalization upon valproate exposure remain elusive. By expressing epitope-tagged receptors (MTNR1A-EGFP) in HEK-293 and Neuro-2a cells, we recorded the dynamic changes of MTNR1A intracellular trafficking after melatonin treatment. Using time-lapse confocal microscopy, we showed in living cells that valproic acid interfered with the internalization kinetics of MTNR1A in the presence of melatonin. This attenuating effect was associated with a decrease in the phosphorylation of PKA (Thr197) and ERK (Thr202/Tyr204). VPA treatment did not alter the whole-cell currents of cells with or without melatonin. Furthermore, fluorescence resonance energy transfer imaging data demonstrated that valproic acid reduced the melatonin-initiated association between YFP-labeled β-arrestin 2 and CFP-labeled MTNR1A. Together, we suggest that valproic acid influences MTNR1A intracellular trafficking and signaling in a β-arrestin 2-dependent manner.

  4. Intracellular activity of clinical concentrations of phenothiazines including thioridiazine against phagocytosed Staphylococcus aureus.

    PubMed

    Ordway, Diane; Viveiros, Miguel; Leandro, Clara; Arroz, Maria Jorge; Amaral, Leonard

    2002-07-01

    The effect of thioridazine (TZ) was studied on the killing activity of human peripheral blood monocyte derived macrophages (HPBMDM) and of human macrophage cell line THP-1 at extracellular concentrations below those achievable clinically. These macrophages have nominal killing activity against bacteria and therefore, would not influence any activity that the compounds may have against intracellular localised Staphylococcus aureus. The results indicated that whereas TZ has an in vitro minimum inhibitory concentration (MIC) against the strains of S. aureus of 18, 0.1 mg/l of TZ in the medium completely inhibits the growth of S. aureus that has been phagocytosed by macrophages. The latter concentration was non-toxic to macrophages, did not cause cellular expression of activation marker CD69 nor induction of CD3+ T cell production of IFN-gamma, but blocked cellular proliferation and down-regulated the production of T cell-derived cytokines (IFN-gamma, IL-5). These results suggest that TZ induces intracellular bactericidal activities independent of the capacity to generate Type 1 responses against S. aureus.

  5. Neuronal activity-regulated gene transcription: how are distant synaptic signals conveyed to the nucleus?

    PubMed Central

    Matamales, Miriam

    2012-01-01

    Synaptic activity can trigger gene expression programs that are required for the stable change of neuronal properties, a process that is essential for learning and memory. Currently, it is still unclear how the stimulation of dendritic synapses can be coupled to transcription in the nucleus in a timely way given that large distances can separate these two cellular compartments. Although several mechanisms have been proposed to explain long distance communication between synapses and the nucleus, the possible co-existence of these models and their relevance in physiological conditions remain elusive. One model suggests that synaptic activation triggers the translocation to the nucleus of certain transcription regulators localised at postsynaptic sites that function as synapto-nuclear messengers. Alternatively, it has been hypothesised that synaptic activity initiates propagating regenerative intracellular calcium waves that spread through dendrites into the nucleus where nuclear transcription machinery is thereby regulated. It has also been postulated that membrane depolarisation of voltage-gated calcium channels on the somatic membrane is sufficient to increase intracellular calcium concentration and activate transcription without the need for transported signals from distant synapses. Here I provide a critical overview of the suggested mechanisms for coupling synaptic stimulation to transcription, the underlying assumptions behind them and their plausible physiological significance. PMID:24327840

  6. Neuronal activity-regulated gene transcription: how are distant synaptic signals conveyed to the nucleus?

    PubMed

    Matamales, Miriam

    2012-12-19

    Synaptic activity can trigger gene expression programs that are required for the stable change of neuronal properties, a process that is essential for learning and memory. Currently, it is still unclear how the stimulation of dendritic synapses can be coupled to transcription in the nucleus in a timely way given that large distances can separate these two cellular compartments. Although several mechanisms have been proposed to explain long distance communication between synapses and the nucleus, the possible co-existence of these models and their relevance in physiological conditions remain elusive. One model suggests that synaptic activation triggers the translocation to the nucleus of certain transcription regulators localised at postsynaptic sites that function as synapto-nuclear messengers. Alternatively, it has been hypothesised that synaptic activity initiates propagating regenerative intracellular calcium waves that spread through dendrites into the nucleus where nuclear transcription machinery is thereby regulated. It has also been postulated that membrane depolarisation of voltage-gated calcium channels on the somatic membrane is sufficient to increase intracellular calcium concentration and activate transcription without the need for transported signals from distant synapses. Here I provide a critical overview of the suggested mechanisms for coupling synaptic stimulation to transcription, the underlying assumptions behind them and their plausible physiological significance.

  7. Neuronal activity-regulated gene transcription: how are distant synaptic signals conveyed to the nucleus?

    PubMed

    Matamales, Miriam

    2012-01-01

    Synaptic activity can trigger gene expression programs that are required for the stable change of neuronal properties, a process that is essential for learning and memory. Currently, it is still unclear how the stimulation of dendritic synapses can be coupled to transcription in the nucleus in a timely way given that large distances can separate these two cellular compartments. Although several mechanisms have been proposed to explain long distance communication between synapses and the nucleus, the possible co-existence of these models and their relevance in physiological conditions remain elusive. One model suggests that synaptic activation triggers the translocation to the nucleus of certain transcription regulators localised at postsynaptic sites that function as synapto-nuclear messengers. Alternatively, it has been hypothesised that synaptic activity initiates propagating regenerative intracellular calcium waves that spread through dendrites into the nucleus where nuclear transcription machinery is thereby regulated. It has also been postulated that membrane depolarisation of voltage-gated calcium channels on the somatic membrane is sufficient to increase intracellular calcium concentration and activate transcription without the need for transported signals from distant synapses. Here I provide a critical overview of the suggested mechanisms for coupling synaptic stimulation to transcription, the underlying assumptions behind them and their plausible physiological significance.

  8. Extracellular signal-regulated protein kinases 1 and 2 activation by addictive drugs: a signal toward pathological adaptation.

    PubMed

    Pascoli, Vincent; Cahill, Emma; Bellivier, Frank; Caboche, Jocelyne; Vanhoutte, Peter

    2014-12-15

    Addiction is a chronic and relapsing psychiatric disorder that is thought to occur in vulnerable individuals. Synaptic plasticity evoked by drugs of abuse in the so-called neuronal circuits of reward has been proposed to underlie behavioral adaptations that characterize addiction. By increasing dopamine in the striatum, addictive drugs alter the balance of dopamine and glutamate signals converging onto striatal medium-sized spiny neurons (MSNs) and activate intracellular events involved in long-term behavioral alterations. Our laboratory contributed to the identification of salient molecular changes induced by administration of addictive drugs to rodents. We pioneered the observation that a common feature of addictive drugs is to activate, by a double tyrosine/threonine phosphorylation, the extracellular signal-regulated kinases 1 and 2 (ERK1/2) in the striatum, which control a plethora of substrates, some of them being critically involved in cocaine-mediated molecular and behavioral adaptations. Herein, we review how the interplay between dopamine and glutamate signaling controls cocaine-induced ERK1/2 activation in MSNs. We emphasize the key role of N-methyl-D-aspartate receptor potentiation by D1 receptor to trigger ERK1/2 activation and its subsequent nuclear translocation where it modulates both epigenetic and genetic processes engaged by cocaine. We discuss how cocaine-induced long-term synaptic and structural plasticity of MSNs, as well as behavioral adaptations, are influenced by ERK1/2-controlled targets. We conclude that a better knowledge of molecular mechanisms underlying ERK1/2 activation by drugs of abuse and/or its role in long-term neuronal plasticity in the striatum may provide a new route for therapeutic treatment in addiction. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  9. Concerted vs. Sequential. Two Activation Patterns of Vast Arrays of Intracellular Ca2+ Channels in Muscle

    PubMed Central

    Zhou, Jinsong; Brum, Gustavo; González, Adom; Launikonis, Bradley S.; Stern, Michael D.; Ríos, Eduardo

    2005-01-01

    To signal cell responses, Ca2+ is released from storage through intracellular Ca2+ channels. Unlike most plasmalemmal channels, these are clustered in quasi-crystalline arrays, which should endow them with unique properties. Two distinct patterns of local activation of Ca2+ release were revealed in images of Ca2+ sparks in permeabilized cells of amphibian muscle. In the presence of sulfate, an anion that enters the SR and precipitates Ca2+, sparks became wider than in the conventional, glutamate-based solution. Some of these were “protoplatykurtic” (had a flat top from early on), suggesting an extensive array of channels that activate simultaneously. Under these conditions the rate of production of signal mass was roughly constant during the rise time of the spark and could be as high as 5 μm3 ms−1, consistent with a release current >50 pA since the beginning of the event. This pattern, called “concerted activation,” was observed also in rat muscle fibers. When sulfate was combined with a reduced cytosolic [Ca2+] (50 nM) these sparks coexisted (and interfered) with a sequential progression of channel opening, probably mediated by Ca2+-induced Ca2+ release (CICR). Sequential propagation, observed only in frogs, may require parajunctional channels, of RyR isoform β, which are absent in the rat. Concerted opening instead appears to be a property of RyR α in the amphibian and the homologous isoform 1 in the mammal. PMID:16186560

  10. Intracellular ca2+ stores could participate to abscisic acid-induced depolarization and stomatal closure in Arabidopsis thaliana

    PubMed Central

    Meimoun, Patrice; Vidal, Guillaume; Bohrer, Anne-Sophie; Lehner, Arnaud; Tran, Daniel; Briand, Joël; Bouteau, François

    2009-01-01

    In Arabidopsis thaliana cell suspension,abscisic acid (aBa) induces changes in cytosolic calcium concentration ([Ca2+]cyt) which are the trigger for aBa-induced plasma membrane anion current activation, H+-aTPase inhibition, and subsequent plasma membrane depolarization. In the present study, we took advantage of this model to analyze the implication of intracellular Ca2+ stores in aBa signal transduction through electrophysiological current measurements, cytosolic Ca2+ activity measurements with the apoaequorin Ca2+ reporter protein and external pH measurement. Intracellular Ca2+ stores involvement was determined by using specific inhibitors of CICR channels: the cADP-ribose/ryanodine receptor (Br-cADPR and dantrolene) and of the inositol trisphosphate receptor (U73122). In addition experiments were performed on epidermal strips of A. thaliana leaves to monitor stomatal closure in response to ABA in presence of the same pharmacology. Our data provide evidence that ryanodine receptor and inositol trisphosphate receptor could be involved in ABA-induced (1) Ca2+ release in the cytosol, (2) anion channel activation and H+-ATPase inhibition leading to plasma membrane depolarization and (3) stomatal closure. Intracellular Ca2+ release could thus contribute to the control of early events in the ABA signal transduction pathway in A. thaliana. PMID:19847112

  11. Intracellular Chloride and Scaffold Protein Mo25 Cooperatively Regulate Transepithelial Ion Transport through WNK Signaling in the Malpighian Tubule.

    PubMed

    Sun, Qifei; Wu, Yipin; Jonusaite, Sima; Pleinis, John M; Humphreys, John M; He, Haixia; Schellinger, Jeffrey N; Akella, Radha; Stenesen, Drew; Krämer, Helmut; Goldsmith, Elizabeth J; Rodan, Aylin R

    2018-05-01

    Background With No Lysine kinase (WNK) signaling regulates mammalian renal epithelial ion transport to maintain electrolyte and BP homeostasis. Our previous studies showed a conserved role for WNK in the regulation of transepithelial ion transport in the Drosophila Malpighian tubule. Methods Using in vitro assays and transgenic Drosophila lines, we examined two potential WNK regulators, chloride ion and the scaffold protein mouse protein 25 (Mo25), in the stimulation of transepithelial ion flux. Results In vitro , autophosphorylation of purified Drosophila WNK decreased as chloride concentration increased. In conditions in which tubule intracellular chloride concentration decreased from 30 to 15 mM as measured using a transgenic sensor, Drosophila WNK activity acutely increased. Drosophila WNK activity in tubules also increased or decreased when bath potassium concentration decreased or increased, respectively. However, a mutation that reduces chloride sensitivity of Drosophila WNK failed to alter transepithelial ion transport in 30 mM chloride. We, therefore, examined a role for Mo25. In in vitro kinase assays, Drosophila Mo25 enhanced the activity of the Drosophila WNK downstream kinase Fray, the fly homolog of mammalian Ste20-related proline/alanine-rich kinase (SPAK), and oxidative stress-responsive 1 protein (OSR1). Knockdown of Drosophila Mo25 in the Malpighian tubule decreased transepithelial ion flux under stimulated but not basal conditions. Finally, whereas overexpression of wild-type Drosophila WNK , with or without Drosophila Mo25 , did not affect transepithelial ion transport, Drosophila Mo25 overexpressed with chloride-insensitive Drosophila WNK increased ion flux. Conclusions Cooperative interactions between chloride and Mo25 regulate WNK signaling in a transporting renal epithelium. Copyright © 2018 by the American Society of Nephrology.

  12. Emerging Paradigm of Intracellular Targeting of G Protein-Coupled Receptors.

    PubMed

    Chaturvedi, Madhu; Schilling, Justin; Beautrait, Alexandre; Bouvier, Michel; Benovic, Jeffrey L; Shukla, Arun K

    2018-05-04

    G protein-coupled receptors (GPCRs) recognize a diverse array of extracellular stimuli, and they mediate a broad repertoire of signaling events involved in human physiology. Although the major effort on targeting GPCRs has typically been focused on their extracellular surface, a series of recent developments now unfold the possibility of targeting them from the intracellular side as well. Allosteric modulators binding to the cytoplasmic surface of GPCRs have now been described, and their structural mechanisms are elucidated by high-resolution crystal structures. Furthermore, pepducins, aptamers, and intrabodies targeting the intracellular face of GPCRs have also been successfully utilized to modulate receptor signaling. Moreover, small molecule compounds, aptamers, and synthetic intrabodies targeting β-arrestins have also been discovered to modulate GPCR endocytosis and signaling. Here, we discuss the emerging paradigm of intracellular targeting of GPCRs, and outline the current challenges, potential opportunities, and future outlook in this particular area of GPCR biology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Activity of Medicinal Plant Extracts on Multiplication of Mycobacterium tuberculosis under Reduced Oxygen Conditions Using Intracellular and Axenic Assays

    PubMed Central

    Bhatter, Purva D.; Gupta, Pooja D.; Birdi, Tannaz J.

    2016-01-01

    Aim. Test the activity of selected medicinal plant extracts on multiplication of Mycobacterium tuberculosis under reduced oxygen concentration which represents nonreplicating conditions. Material and Methods. Acetone, ethanol and aqueous extracts of the plants Acorus calamus L. (rhizome), Ocimum sanctum L. (leaf), Piper nigrum L. (seed), and Pueraria tuberosa DC. (tuber) were tested on Mycobacterium tuberculosis H37Rv intracellularly using an epithelial cell (A549) infection model. The extracts found to be active intracellularly were further studied axenically under reducing oxygen concentrations. Results and Conclusions. Intracellular multiplication was inhibited ≥60% by five of the twelve extracts. Amongst these 5 extracts, in axenic culture, P. nigrum (acetone) was active under aerobic, microaerophilic, and anaerobic conditions indicating presence of multiple components acting at different levels and P. tuberosa (aqueous) showed bactericidal activity under microaerophilic and anaerobic conditions implying the influence of anaerobiosis on its efficacy. P. nigrum (aqueous) and A. calamus (aqueous and ethanol) extracts were not active under axenic conditions but only inhibited intracellular growth of Mycobacterium tuberculosis, suggesting activation of host defense mechanisms to mediate bacterial killing rather than direct bactericidal activity. PMID:26941797

  14. Proteins in phytohormone signaling pathways for abiotic stress in plants

    USDA-ARS?s Scientific Manuscript database

    Plant hormones and their signaling network systems have an essential role in activating and regulating plant responses to both biotic and abiotic stress factors. This chapter describes proteins that are involved in hormone biosynthesis, long distance and intra-cellular transport, the signaling sensi...

  15. Diet-induced obesity elevates colonic TNF-alpha in mice and is accompanied by an activation of Wnt signaling: a mechanism for obesity-associated colorectal cancer

    USDA-ARS?s Scientific Manuscript database

    Inflammation associated with obesity may play a role in colorectal carcinogenesis, but the underlying mechanism remains unclear. This study investigated whether the Wnt pathway, an intracellular signaling cascade that plays a critical role in colorectal carcinogenesis, is activated by obesity-induce...

  16. Anti-infective Activity of 2-Cyano-3-Acrylamide Inhibitors with Improved Drug-Like Properties against Two Intracellular Pathogens

    PubMed Central

    Passalacqua, Karla D.; Charbonneau, Marie-Eve; Donato, Nicholas J.; Showalter, Hollis D.; Sun, Duxin; Wen, Bo; He, Miao; Sun, Hanshi

    2016-01-01

    Due to the rise of antibiotic resistance and the small number of effective antiviral drugs, new approaches for treating infectious diseases are urgently needed. Identifying targets for host-based therapies represents an emerging strategy for drug discovery. The ubiquitin-proteasome system is a central mode of signaling in the eukaryotic cell and may be a promising target for therapies that bolster the host's ability to control infection. Deubiquitinase (DUB) enzymes are key regulators of the host inflammatory response, and we previously demonstrated that a selective DUB inhibitor and its derivative promote anti-infective activities in host cells. To find compounds with anti-infective efficacy but improved toxicity profiles, we tested a library of predominantly 2-cyano-3-acrylamide small-molecule DUB inhibitors for anti-infective activity in macrophages against two intracellular pathogens: murine norovirus (MNV) and Listeria monocytogenes. We identified compound C6, which inhibited DUB activity in human and murine cells and reduced intracellular replication of both pathogens with minimal toxicity in cell culture. Treatment with C6 did not significantly affect the ability of macrophages to internalize virus, suggesting that the anti-infective activity interferes with postentry stages of the MNV life cycle. Metabolic stability and pharmacokinetic assays showed that C6 has a half-life in mouse liver microsomes of ∼20 min and has a half-life of approximately 4 h in mice when administered intravenously. Our results provide a framework for targeting the host ubiquitin system in the development of host-based therapies for infectious disease. Compound C6 represents a promising tool with which to elucidate the role of DUBs in the macrophage response to infection. PMID:27139470

  17. Pharmacodynamic Evaluation of the Intracellular Activities of Antibiotics against Staphylococcus aureus in a Model of THP-1 Macrophages

    PubMed Central

    Barcia-Macay, Maritza; Seral, Cristina; Mingeot-Leclercq, Marie-Paule; Tulkens, Paul M.; Van Bambeke, Françoise

    2006-01-01

    The pharmacodynamic properties governing the activities of antibiotics against intracellular Staphylococcus aureus are still largely undetermined. Sixteen antibiotics of seven different pharmacological classes (azithromycin and telithromycin [macrolides]; gentamicin [an aminoglycoside]; linezolid [an oxazolidinone]; penicillin V, nafcillin, ampicillin, and oxacillin [β-lactams]; teicoplanin, vancomycin, and oritavancin [glycopeptides]; rifampin [an ansamycin]; and ciprofloxacin, levofloxacin, garenoxacin, and moxifloxacin [quinolones]) have been examined for their activities against S. aureus (ATCC 25923) in human THP-1 macrophages (intracellular) versus that in culture medium (extracellular) by using a 0- to 24-h exposure time and a wide range of extracellular concentrations (including the range of the MIC to the maximum concentration in serum [Cmax; total drug] of humans). All molecules except the macrolides caused a net reduction in bacterial counts that was time and concentration/MIC ratio dependent (four molecules tested in detail [gentamicin, oxacillin, moxifloxacin, and oritavancin] showed typical sigmoidal dose-response curves at 24 h). Maximal intracellular activities remained consistently lower than extracellular activities, irrespective of the level of drug accumulation and of the pharmacological class. Relative potencies (50% effective concentration or at a fixed extracellular concentration/MIC ratio) were also decreased, but to different extents. At an extracellular concentration corresponding to their Cmaxs (total drug) in humans, only oxacillin, levofloxacin, garenoxacin, moxifloxacin, and oritavancin had truly intracellular bactericidal effects (2-log decrease or more, as defined by the Clinical and Laboratory Standards Institute guidelines). The intracellular activities of antibiotics against S. aureus (i) are critically dependent upon their extracellular concentrations and the duration of cell exposure (within the 0- to 24-h time frame) to

  18. Constitutive activation of NOTCH1 signaling in Sertoli cells causes gonocyte exit from quiescence

    PubMed Central

    Garcia, Thomas Xavier; DeFalco, Tony; Capel, Blanche; Hofmann, Marie-Claude

    2013-01-01

    Notch signaling components have long been detected in Sertoli and germ cells in the developing and mature testis. However, the role of this pathway in testis development and spermatogenesis remains unknown. Using reporter mice expressing green fluorescent protein following Notch receptor activation, we found that Notch signaling was active in Sertoli cells at various fetal, neonatal, and adult stages. Since Notch signaling specifies stem cell fate in many developing and mature organ systems, we hypothesized that maintenance and differentiation of gonocytes and/or spermatogonial stem cells would be modulated through this pathway in Sertoli cells. To this end, we generated mutant mice constitutively expressing the active, intracellular domain of NOTCH1 (NICD1) in Sertoli cells. We found that mutant Sertoli cells were morphologically normal before and after birth, but presented a number of functional changes that drastically affected gonocyte numbers and physiology. We observed aberrant exit of gonocytes from mitotic arrest, migration toward cord periphery, and premature differentiation before birth. These events, presumably unsupported by the cellular microenvironment, were followed by gonocyte apoptosis and near complete disappearance of the gonocytes by day 2 after birth. Molecular analysis demonstrated that these effects are correlated with a dysregulation of Sertoli-expressed genes that are required for germ cell maintenance, such as Cyp26b1 and Gdnf. Taken together, our results demonstrate that Notch signaling is active in Sertoli cells throughout development and that proper regulation of Notch signaling in Sertoli cells is required for the maintenance of gonocytes in an undifferentiated state during fetal development. PMID:23391689

  19. Antibacterial activities of gemifloxacin, levofloxacin, gatifloxacin, moxifloxacin and erythromycin against intracellular Legionella pneumophila and Legionella micdadei in human monocytes.

    PubMed

    Baltch, Aldona L; Bopp, Lawrence H; Smith, Raymond P; Michelsen, Phyllis B; Ritz, William J

    2005-07-01

    The antibacterial activity of a new fluoroquinolone, gemifloxacin, was tested against intracellular Legionella pneumophila and Legionella micdadei and was compared with the activities of levofloxacin, gatifloxacin, moxifloxacin and erythromycin. For intracellular assays, bacteria were used to infect human monocyte-derived macrophages prepared from heparinized blood of healthy volunteers. Antibiotics were added following phagocytosis. Numbers of viable bacteria were determined at 0, 24, 48, 72 and 96 h. The intracellular antibacterial activity of gemifloxacin was concentration- and time-dependent. All of the quinolones had similar activities against L. pneumophila and L. micdadei at 10 x MIC, but there were minor differences: at 24 h moxifloxacin was significantly more active than the other quinolones against L. pneumophila, while gemifloxacin was more active against L. micdadei (P < 0.01). All of the quinolones were markedly more active than erythromycin (P < 0.01). The antibacterial effect of gemifloxacin against L. pneumophila following drug removal at 24 h persisted for 72 h at 20 x MIC but not at 10 x MIC, while for L. micdadei the antibacterial effect persisted for 24 h at 10 x MIC. All of the quinolones had similar activities against intracellular L. pneumophila and L. micdadei and were markedly more effective than erythromycin.

  20. Localization of the Intracellular Activity Domain of Pasteurella multocida Toxin to the N Terminus

    PubMed Central

    Wilson, Brenda A.; Ponferrada, Virgilio G.; Vallance, Jefferson E.; Ho, Mengfei

    1999-01-01

    We have shown that Pasteurella multocida toxin (PMT) directly causes transient activation of Gqα protein that is coupled to phosphatidylinositol-specific phospholipase Cβ1 in Xenopus oocytes (B. A. Wilson, X. Zhu, M. Ho, and L. Lu, J. Biol. Chem. 272:1268–1275, 1997). We found that antibodies directed against an N-terminal peptide of PMT inhibited the toxin-induced response in Xenopus oocytes, but antibodies against a C-terminal peptide did not. To test whether the intracellular activity domain of PMT is localized to the N terminus, we conducted a deletion mutational analysis of the PMT protein, using the Xenopus oocyte system as a means of screening for toxin activity. Using PCR and conventional cloning techniques, we cloned from a toxinogenic strain of P. multocida the entire toxA gene, encoding the 1,285-amino-acid PMT protein, and expressed the recombinant toxin as a His-tagged fusion protein in Escherichia coli. We subsequently generated a series of N-terminal and C-terminal deletion mutants and expressed the His-tagged PMT fragments in E. coli. These proteins were screened for cytotoxic activity on cultured Vero cells and for intracellular activity in the Xenopus oocyte system. Only the full-length protein without the His tag exhibited activity on Vero cells. The full-length PMT and N-terminal fragments containing the first 500 residues elicited responses in oocytes, but the C-terminal 780 amino acid fragment did not. Our results confirm that the intracellular activity domain of PMT is localized to the N-terminal 500 amino acids of the protein and that the C terminus is required for entry into cells. PMID:9864199

  1. Cellular Metabolic Activity and the Oxygen and Hydrogen Stable Isotope Composition of Intracellular Water and Metabolites

    NASA Astrophysics Data System (ADS)

    Kreuzer-Martin, H. W.; Hegg, E. L.

    2008-12-01

    Intracellular water is an important pool of oxygen and hydrogen atoms for biosynthesis. Intracellular water is usually assumed to be isotopically identical to extracellular water, but an unexpected experimental result caused us to question this assumption. Heme O isolated from Escherichia coli cells grown in 95% H218O contained only a fraction of the theoretical value of labeled oxygen at a position where the O atom was known to be derived from water. In fact, fewer than half of the oxygen atoms were labeled. In an effort to explain this surprising result, we developed a method to determine the isotope ratios of intracellular water in cultured cells. The results of our experiments showed that during active growth, up to 70% of the oxygen atoms and 50% of the hydrogen atoms in the intracellular water of E. coli are generated during metabolism and can be isotopically distinct from extracellular water. The fraction of isotopically distinct atoms was substantially less in stationary phase and chilled cells, consistent with our hypothesis that less metabolically-generated water would be present in cells with lower metabolic activity. Our results were consistent with and explained the result of the heme O labeling experiment. Only about 40% of the O atoms on the heme O molecule were labeled because, presumably, only about 40% of the water inside the cells was 18O water that had diffused in from the culture medium. The rest of the intracellular water contained 16O atoms derived from either nutrients or atmospheric oxygen. To test whether we could also detect metabolically-derived hydrogen atoms in cellular constituents, we isolated fatty acids from log-phase and stationary phase E. coli and determined the H isotope ratios of individual fatty acids. The results of these experiments showed that environmental water contributed more H atoms to fatty acids isolated in stationary phase than to the same fatty acids isolated from log-phase cells. Stable isotope analyses of

  2. Effects of Thalidomide on Intracellular Mycobacterium leprae in Normal and Activated Macrophages

    PubMed Central

    Tadesse, A.; Shannon, E. J.

    2005-01-01

    Thalidomide is an effective drug for the treatment of erythema nodosum leprosum (ENL). ENL is an inflammatory reaction that may occur in multibacillary leprosy patients. Its cause(s) as well as the mechanism of thalidomide in arresting this condition are not fully understood. It has been suggested that ENL is an immune complex-mediated hypersensitivity precipitated by the release of Mycobacterium leprae from macrophages. The released antigen may complex with precipitating antibodies, initiating complement fixation and the production of inflammatory cytokines like tumor necrosis factor alpha (TNF-α). Thalidomide has been shown in vitro to reduce antigen- or mitogen-activated macrophage production of TNF-α. We investigated if thalidomide could also influence the viability of intracellular M. leprae. Mouse peritoneal macrophages were infected with M. leprae, activated with gamma interferon and endotoxin, or nonactivated, and treated with thalidomide. Intracellular bacilli were recovered, and metabolic activity was assessed by a radiorespirometric procedure. Thalidomide did not possess antimicrobial action against M. leprae in normal and activated host macrophages. This suggests that thalidomide does not retard the release of mycobacterial antigens, a possible prelude or precipitating factor for ENL. A distinct sequence of events explaining the mechanism of action for thalidomide's successful treatment of ENL has yet to be established. PMID:15642997

  3. Intracellular pH regulation in unstimulated Calliphora salivary glands is Na+ dependent and requires V-ATPase activity.

    PubMed

    Schewe, Bettina; Blenau, Wolfgang; Walz, Bernd

    2012-04-15

    Salivary gland cells of the blowfly Calliphora vicina have a vacuolar-type H(+)-ATPase (V-ATPase) that lies in their apical membrane and energizes the secretion of a KCl-rich primary saliva upon stimulation with serotonin (5-hydroxytryptamine). Whether and to what extent V-ATPase contributes to intracellular pH (pH(i)) regulation in unstimulated gland cells is unknown. We used the fluorescent dye BCECF to study intracellular pH(i) regulation microfluorometrically and show that: (1) under resting conditions, the application of Na(+)-free physiological saline induces an intracellular alkalinization attributable to the inhibition of the activity of a Na(+)-dependent glutamate transporter; (2) the maintenance of resting pH(i) is Na(+), Cl(-), concanamycin A and DIDS sensitive; (3) recovery from an intracellular acid load is Na(+) sensitive and requires V-ATPase activity; (4) the Na(+)/H(+) antiporter is not involved in pH(i) recovery after a NH(4)Cl prepulse; and (5) at least one Na(+)-dependent transporter and the V-ATPase maintain recovery from an intracellular acid load. Thus, under resting conditions, the V-ATPase and at least one Na(+)-dependent transporter maintain normal pH(i) values of pH 7.5. We have also detected the presence of a Na(+)-dependent glutamate transporter, which seems to act as an acid loader. Despite this not being a common pH(i)-regulating transporter, its activity affects steady-state pH(i) in C. vicina salivary gland cells.

  4. In vitro and intracellular activities of peptide deformylase inhibitor GSK1322322 against Legionella pneumophila isolates.

    PubMed

    Dubois, Jacques; Dubois, Maïtée; Martel, Jean-François; Aubart, Kelly; Butler, Deborah

    2015-01-01

    GSK1322322, a novel peptide deformylase inhibitor currently in development as an oral and intravenous agent for the treatment of hospitalized community-acquired bacterial pneumonia, showed poor in vitro activity against a panel of 50 Legionella pneumophila strains, with MICs ranging from 1 to 16 μg/ml and an MIC90 of 16 μg/ml, but very potent intracellular activity, with the minimum extracellular concentrations capable of inhibiting intracellular proliferation (MIECs) ranging from 0.12 to 2 μg/ml and 98% of the strains being inhibited by concentrations of ≤ 1 μg/ml. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. IRAK4 activity controls immune responses to intracellular bacteria Listeria monocytogenes and Mycobacterium smegmatis.

    PubMed

    Pattabiraman, Goutham; Murphy, Michael; Agliano, Federica; Karlinsey, Keaton; Medvedev, Andrei E

    2018-05-11

    IL-1 receptor-associated kinase (IRAK) 4 is a central enzyme of the TLR pathways. This study tested the hypothesis that IRAK4 kinase activity is prerequisite for regulating innate immunity during infections with intracellular bacteria. To this end, we analyzed responses of macrophages obtained from mice expressing wild-type (WT) IRAK4 or its kinase-inactive K213M mutant (IRAK4 KI ) upon infection with intracellular bacteria Listeria monocytogenes or Mycobacterium smegmatis. In contrast to robust induction of cytokines by macrophages expressing kinase-sufficient IRAK4, IRAK4 KI macrophages expressed decreased TNF-α, IL-6, IL-1β, and C-C motif chemokine ligand 5 upon infection with L. monocytogenes or M. smegmatis. Bacterial infection of IRAK4 KI macrophages led to attenuated activation of IRAK1, MAPKs and NF-κB, impaired induction of inducible NO synthase mRNA and secretion of NO, but resulted in elevated microbial burdens. Compared with WT animals, systemic infection of IRAK4 KI mice with M. smegmatis or L. monocytogenes resulted in decreased levels of serum IL-6 and CXCL-1 but increased bacterial burdens in the spleen and liver. Thus, a loss of IRAK4 kinase activity underlies deficient cytokine and microbicidal responses during infection with intracellular bacteria L. monocytogenes or M. smegmatis via impaired activation of IRAK1, MAPKs, and NF-κB but increases bacterial burdens, correlating with decreased induction of NO. ©2018 Society for Leukocyte Biology.

  6. Intracellular biosynthesis of lipids and cholesterol by Scap and Insig in mesenchymal cells regulates long bone growth and chondrocyte homeostasis.

    PubMed

    Tsushima, Hidetoshi; Tang, Yuning J; Puviindran, Vijitha; Hsu, Shu-Hsuan Claire; Nadesan, Puviindran; Yu, Chunying; Zhang, Hongyuan; Mirando, Anthony J; Hilton, Matthew J; Alman, Benjamin A

    2018-06-13

    During enchondral ossification, mesenchymal cells express genes regulating the intracellular biosynthesis of cholesterol and lipids. Here we investigated conditional deletion of Scap or Insig1 and Insig2 (inhibits or activates intracellular biosynthesis respectively). Mesenchymal condensation and chondrogenesis was disrupted in mice lacking Scap in mesenchymal progenitors, while mice lacking the Insig genes in mesenchymal progenitors had short limbs, but normal chondrogenesis. Mice lacking Scap in chondrocytes showed severe dwarfism, with ectopic hypertrophic cells, while deletion of Insig genes in chondrocytes caused a mild dwarfism and shorting of the hypertrophic zone. In-vitro studies showed that intracellular cholesterol in chondrocytes can derive from exogenous and endogenous sources, but that exogenous sources cannot completely overcome the phenotypic effect of Scap deficiency. Genes encoding cholesterol biosynthetic proteins are regulated by Hedgehog (Hh) signaling, and Hh signaling is also regulated by intracellular cholesterol in chondrocytes, suggesting a feedback loop in chondrocyte differentiation. Precise regulation of intracellular biosynthesis is required for chondrocyte homeostasis and long bone growth, and this data supports pharmacologic modulation of cholesterol biosynthesis as a therapy for select cartilage pathologies. © 2018. Published by The Company of Biologists Ltd.

  7. Intracellular regulation of the insect chemoreceptor complex impacts odour localization in flying insects.

    PubMed

    Getahun, Merid N; Thoma, Michael; Lavista-Llanos, Sofia; Keesey, Ian; Fandino, Richard A; Knaden, Markus; Wicher, Dieter; Olsson, Shannon B; Hansson, Bill S

    2016-11-01

    Flying insects are well known for airborne odour tracking and have evolved diverse chemoreceptors. While ionotropic receptors (IRs) are found across protostomes, insect odorant receptors (ORs) have only been identified in winged insects. We therefore hypothesized that the unique signal transduction of ORs offers an advantage for odour localization in flight. Using Drosophila, we found expression and increased activity of the intracellular signalling protein PKC in antennal sensilla following odour stimulation. Odour stimulation also enhanced phosphorylation of the OR co-receptor Orco in vitro, while site-directed mutation of Orco or mutations in PKC subtypes reduced the sensitivity and dynamic range of OR-expressing neurons in vivo, but not IR-expressing neurons. We ultimately show that these mutations reduce competence for odour localization of flies in flight. We conclude that intracellular regulation of OR sensitivity is necessary for efficient odour localization, which suggests a mechanistic advantage for the evolution of the OR complex in flying insects. © 2016. Published by The Company of Biologists Ltd.

  8. Signaling through G protein coupled receptors.

    PubMed

    Tuteja, Narendra

    2009-10-01

    Heterotrimeric G proteins (Galpha, Gbeta/Ggamma subunits) constitute one of the most important components of cell signaling cascade. G Protein Coupled Receptors (GPCRs) perceive many extracellular signals and transduce them to heterotrimeric G proteins, which further transduce these signals intracellular to appropriate downstream effectors and thereby play an important role in various signaling pathways. GPCRs exist as a superfamily of integral membrane protein receptors that contain seven transmembrane alpha-helical regions, which bind to a wide range of ligands. Upon activation by a ligand, the GPCR undergoes a conformational change and then activate the G proteins by promoting the exchange of GDP/GTP associated with the Galpha subunit. This leads to the dissociation of Gbeta/Ggamma dimer from Galpha. Both these moieties then become free to act upon their downstream effectors and thereby initiate unique intracellular signaling responses. After the signal propagation, the GTP of Galpha-GTP is hydrolyzed to GDP and Galpha becomes inactive (Galpha-GDP), which leads to its re-association with the Gbeta/Ggamma dimer to form the inactive heterotrimeric complex. The GPCR can also transduce the signal through G protein independent pathway. GPCRs also regulate cell cycle progression. Till to date thousands of GPCRs are known from animal kingdom with little homology among them, but only single GPCR has been identified in plant system. The Arabidopsis GPCR was reported to be cell cycle regulated and also involved in ABA and in stress signaling. Here I have described a general mechanism of signal transduction through GPCR/G proteins, structure of GPCRs, family of GPCRs and plant GPCR and its role.

  9. Reversible cysteine oxidation in hydrogen peroxide sensing and signal transduction.

    PubMed

    García-Santamarina, Sarela; Boronat, Susanna; Hidalgo, Elena

    2014-04-29

    Activation of redox cascades through hydrogen peroxide-mediated reversible cysteine oxidation is a major mechanism for intracellular signaling. Understanding why some cysteine residues are specifically oxidized, in competition with other proximal cysteine residues and in the presence of strong redox buffers, is therefore crucial for understanding redox signaling. In this review, we explore the recent advances in thiol-redox chemistry linked to signaling. We describe the last findings in the field of redox sensors, those that are naturally present in different model organisms as well as those that have been engineered to quantify intracellular hydrogen peroxide concentrations. Finally, we provide a summary of the newest approaches developed to study reversible cysteine oxidation at the proteomic level.

  10. Mapping intracellular mechanics on micropatterned substrates

    PubMed Central

    Mandal, Kalpana; Asnacios, Atef; Goud, Bruno; Manneville, Jean-Baptiste

    2016-01-01

    The mechanical properties of cells impact on their architecture, their migration, intracellular trafficking, and many other cellular functions and have been shown to be modified during cancer progression. We have developed an approach to map the intracellular mechanical properties of living cells by combining micropatterning and optical tweezers-based active microrheology. We optically trap micrometer-sized beads internalized in cells plated on crossbow-shaped adhesive micropatterns and track their displacement following a step displacement of the cell. The local intracellular complex shear modulus is measured from the relaxation of the bead position assuming that the intracellular microenvironment of the bead obeys power-law rheology. We also analyze the data with a standard viscoelastic model and compare with the power-law approach. We show that the shear modulus decreases from the cell center to the periphery and from the cell rear to the front along the polarity axis of the micropattern. We use a variety of inhibitors to quantify the spatial contribution of the cytoskeleton, intracellular membranes, and ATP-dependent active forces to intracellular mechanics and apply our technique to differentiate normal and cancer cells. PMID:27799529

  11. Identification of Host-Targeted Small Molecules That Restrict Intracellular Mycobacterium tuberculosis Growth

    PubMed Central

    Silvis, Melanie R.; Luo, Samantha S.; Sogi, Kimberly; Vokes, Martha; Bray, Mark-Anthony; Carpenter, Anne E.; Moore, Christopher B.; Siddiqi, Noman; Rubin, Eric J.; Hung, Deborah T.

    2014-01-01

    Mycobacterium tuberculosis remains a significant threat to global health. Macrophages are the host cell for M. tuberculosis infection, and although bacteria are able to replicate intracellularly under certain conditions, it is also clear that macrophages are capable of killing M. tuberculosis if appropriately activated. The outcome of infection is determined at least in part by the host-pathogen interaction within the macrophage; however, we lack a complete understanding of which host pathways are critical for bacterial survival and replication. To add to our understanding of the molecular processes involved in intracellular infection, we performed a chemical screen using a high-content microscopic assay to identify small molecules that restrict mycobacterial growth in macrophages by targeting host functions and pathways. The identified host-targeted inhibitors restrict bacterial growth exclusively in the context of macrophage infection and predominantly fall into five categories: G-protein coupled receptor modulators, ion channel inhibitors, membrane transport proteins, anti-inflammatories, and kinase modulators. We found that fluoxetine, a selective serotonin reuptake inhibitor, enhances secretion of pro-inflammatory cytokine TNF-α and induces autophagy in infected macrophages, and gefitinib, an inhibitor of the Epidermal Growth Factor Receptor (EGFR), also activates autophagy and restricts growth. We demonstrate that during infection signaling through EGFR activates a p38 MAPK signaling pathway that prevents macrophages from effectively responding to infection. Inhibition of this pathway using gefitinib during in vivo infection reduces growth of M. tuberculosis in the lungs of infected mice. Our results support the concept that screening for inhibitors using intracellular models results in the identification of tool compounds for probing pathways during in vivo infection and may also result in the identification of new anti-tuberculosis agents that work by

  12. Intracellular Signal Triggered by Cholera Toxin in Saccharomyces boulardii and Saccharomyces cerevisiae

    PubMed Central

    Brandão, Rogelio L.; Castro, Ieso M.; Bambirra, Eduardo A.; Amaral, Sheila C.; Fietto, Luciano G.; Tropia, Maria José M.; Neves, Maria José; Dos Santos, Raquel G.; Gomes, Newton C. M.; Nicoli, Jacques R.

    1998-01-01

    As is the case for Saccharomyces boulardii, Saccharomyces cerevisiae W303 protects Fisher rats against cholera toxin (CT). The addition of glucose or dinitrophenol to cells of S. boulardii grown on a nonfermentable carbon source activated trehalase in a manner similar to that observed for S. cerevisiae. The addition of CT to the same cells also resulted in trehalase activation. Experiments performed separately on the A and B subunits of CT showed that both are necessary for activation. Similarly, the addition of CT but not of its separate subunits led to a cyclic AMP (cAMP) signal in both S. boulardii and S. cerevisiae. These data suggest that trehalase stimulation by CT probably occurred through the cAMP-mediated protein phosphorylation cascade. The requirement of CT subunit B for both the cAMP signal and trehalase activation indicates the presence of a specific receptor on the yeasts able to bind to the toxin, a situation similar to that observed for mammalian cells. This hypothesis was reinforced by experiments with 125I-labeled CT showing specific binding of the toxin to yeast cells. The adhesion of CT to a receptor on the yeast surface through the B subunit and internalization of the A subunit (necessary for the cAMP signal and trehalase activation) could be one more mechanism explaining protection against the toxin observed for rats treated with yeasts. PMID:9464394

  13. Calcium signalling silencing in atrial fibrillation.

    PubMed

    Greiser, Maura

    2017-06-15

    Subcellular calcium signalling silencing is a novel and distinct cellular and molecular adaptive response to rapid cardiac activation. Calcium signalling silencing develops during short-term sustained rapid atrial activation as seen clinically during paroxysmal atrial fibrillation (AF). It is the first 'anti-arrhythmic' adaptive response in the setting of AF and appears to counteract the maladaptive changes that lead to intracellular Ca 2+ signalling instability and Ca 2+ -based arrhythmogenicity. Calcium signalling silencing results in a failed propagation of the [Ca 2+ ] i signal to the myocyte centre both in patients with AF and in a rabbit model. This adaptive mechanism leads to a substantial reduction in the expression levels of calcium release channels (ryanodine receptors, RyR2) in the sarcoplasmic reticulum, and the frequency of Ca 2+ sparks and arrhythmogenic Ca 2+ waves remains low. Less Ca 2+ release per [Ca 2+ ] i transient, increased fast Ca 2+ buffering strength, shortened action potentials and reduced L-type Ca 2+ current contribute to a substantial reduction of intracellular [Na + ]. These features of Ca 2+ signalling silencing are distinct and in contrast to the changes attributed to Ca 2+ -based arrhythmogenicity. Some features of Ca 2+ signalling silencing prevail in human AF suggesting that the Ca 2+ signalling 'phenotype' in AF is a sum of Ca 2+ stabilizing (Ca 2+ signalling silencing) and Ca 2+ destabilizing (arrhythmogenic unstable Ca 2+ signalling) factors. Calcium signalling silencing is a part of the mechanisms that contribute to the natural progression of AF and may limit the role of Ca 2+ -based arrhythmogenicity after the onset of AF. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  14. Protein kinases as mediators of fluid shear stress stimulated signal transduction in endothelial cells: a hypothesis for calcium-dependent and calcium-independent events activated by flow.

    PubMed

    Berk, B C; Corson, M A; Peterson, T E; Tseng, H

    1995-12-01

    Fluid shear stress regulates endothelial cell function, but the signal transduction mechanisms involved in mechanotransduction remain unclear. Recent findings demonstrate that several intracellular kinases are activated by mechanical forces. In particular, members of the mitogen-activated protein (MAP) kinase family are stimulated by hyperosmolarity, stretch, and stress such as heat shock. We propose a model for mechanotransduction in endothelial cells involving calcium-dependent and calcium-independent protein kinase pathways. The calcium-dependent pathway involves activation of phospholipase C, hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), increases in intracellular calcium and stimulation of kinases such as calcium-calmodulin and C kinases (PKC). The calcium-independent pathway involves activation of a small GTP-binding protein and stimulation of calcium-independent PKC and MAP kinases. The calcium-dependent pathway mediates the rapid, transient response to fluid shear stress including activation of nitric oxide synthase (NOS) and ion transport. In contrast, the calcium-independent pathway mediates a slower response including the sustained activation of NOS and changes in cell morphology and gene expression. We propose that focal adhesion complexes link the calcium-dependent and calcium-independent pathways by regulating activity of phosphatidylinositol 4-phosphate (PIP) 5-kinase (which regulates PIP2 levels) and p125 focal adhesion kinase (FAK, which phosphorylates paxillin and interacts with cytoskeletal proteins). This model predicts that dynamic interactions between integrin molecules present in focal adhesion complexes and membrane events involved in mechanotransduction will be integrated by calcium-dependent and calcium-independent kinases to generate intracellular signals involved in the endothelial cell response to flow.

  15. Nerve Growth Factor Regulates Transient Receptor Potential Vanilloid 2 via Extracellular Signal-Regulated Kinase Signaling To Enhance Neurite Outgrowth in Developing Neurons

    PubMed Central

    Cohen, Matthew R.; Johnson, William M.; Pilat, Jennifer M.; Kiselar, Janna; DeFrancesco-Lisowitz, Alicia; Zigmond, Richard E.

    2015-01-01

    Neurite outgrowth is key to the formation of functional circuits during neuronal development. Neurotrophins, including nerve growth factor (NGF), increase neurite outgrowth in part by altering the function and expression of Ca2+-permeable cation channels. Here we report that transient receptor potential vanilloid 2 (TRPV2) is an intracellular Ca2+-permeable TRPV channel upregulated by NGF via the mitogen-activated protein kinase (MAPK) signaling pathway to augment neurite outgrowth. TRPV2 colocalized with Rab7, a late endosome protein, in addition to TrkA and activated extracellular signal-regulated kinase (ERK) in neurites, indicating that the channel is closely associated with signaling endosomes. In line with these results, we showed that TRPV2 acts as an ERK substrate and identified the motifs necessary for phosphorylation of TRPV2 by ERK. Furthermore, neurite length, TRPV2 expression, and TRPV2-mediated Ca2+ signals were reduced by mutagenesis of these key ERK phosphorylation sites. Based on these findings, we identified a previously uncharacterized mechanism by which ERK controls TRPV2-mediated Ca2+ signals in developing neurons and further establish TRPV2 as a critical intracellular ion channel in neuronal function. PMID:26416880

  16. Intracellular signalling and plasma hormone profiles associated with the expression of unconditioned and conditioned fear and anxiety in female rats.

    PubMed

    Simone, Jonathan J; McCormick, Cheryl M

    2017-02-01

    There is considerable overlap in the neural regions and intracellular signalling pathways implicated in anxiety and fear, although less is known in females. Here, we investigated whether unconditioned and conditioned fear are associated with distinct patterns of expression of extracellular signal-regulated kinase-1 and -2 (ERK1/2), protein kinase B (Akt), and calcineurin (CaN) (proteins that are key regulators of the expression of and/or memory processes of fear and anxiety) in the dorsal and ventral hippocampus, medial prefrontal cortex, and amygdala (important regions in neural fear circuitry) of adult female rats, and used a multivariate approach to find patterns of signalling that might discriminate between the different states of fear. To isolate fear to the conditioned cue from generalized fear to the test context, rats were conditioned to an auditory tone (i.e. tone paired with footshock) and twenty-four hours later exposed to a novel context in the presence or absence of the conditioned cue. A third group that was exposed to the conditioning context without undergoing fear conditioning was included to control for unconditioned responses to the testing procedures, which are anxiogenic. A discriminate function analysis and MANOVA determined that hippocampal signalling best discriminated the three groups from each other. The addition of values for plasma concentrations of corticosterone and progesterone (as indices of activation of the hypothalamic-pituitary-adrenal stress axis) to statistical analyses increased the separation of the three groups. There was high degree of association among the three signalling molecules in the four brain regions within each group. There was an absence of the associations between the medial prefrontal cortex and the amygdala in the cued fear recall group that were strong for the non-conditioned group. These results demonstrated unique neuronal and hormonal signalling profiles associated with unconditioned, generalized, and

  17. Calcium signaling properties of a thyrotroph cell line, mouse TαT1 cells.

    PubMed

    Tomić, Melanija; Bargi-Souza, Paula; Leiva-Salcedo, Elias; Nunes, Maria Tereza; Stojilkovic, Stanko S

    2015-12-01

    TαT1 cells are mouse thyrotroph cell line frequently used for studies on thyroid-stimulating hormone beta subunit gene expression and other cellular functions. Here we have characterized calcium-signaling pathways in TαT1 cells, an issue not previously addressed in these cells and incompletely described in native thyrotrophs. TαT1 cells are excitable and fire action potentials spontaneously and in response to application of thyrotropin-releasing hormone (TRH), the native hypothalamic agonist for thyrotrophs. Spontaneous electrical activity is coupled to small amplitude fluctuations in intracellular calcium, whereas TRH stimulates both calcium mobilization from intracellular pools and calcium influx. Non-receptor-mediated depletion of intracellular pool also leads to a prominent facilitation of calcium influx. Both receptor and non-receptor stimulated calcium influx is substantially attenuated but not completely abolished by inhibition of voltage-gated calcium channels, suggesting that depletion of intracellular calcium pool in these cells provides a signal for both voltage-independent and -dependent calcium influx, the latter by facilitating the pacemaking activity. These cells also express purinergic P2Y1 receptors and their activation by extracellular ATP mimics TRH action on calcium mobilization and influx. The thyroid hormone triiodothyronine prolongs duration of TRH-induced calcium spikes during 30-min exposure. These data indicate that TαT1 cells are capable of responding to natively feed-forward TRH signaling and intrapituitary ATP signaling with acute calcium mobilization and sustained calcium influx. Amplification of TRH-induced calcium signaling by triiodothyronine further suggests the existence of a pathway for positive feedback effects of thyroid hormones probably in a non-genomic manner. Published by Elsevier Ltd.

  18. Imaging intracellular Ca²⁺ signals in striatal astrocytes from adult mice using genetically-encoded calcium indicators.

    PubMed

    Jiang, Ruotian; Haustein, Martin D; Sofroniew, Michael V; Khakh, Baljit S

    2014-11-19

    Astrocytes display spontaneous intracellular Ca(2+) concentration fluctuations ([Ca(2+)]i) and in several settings respond to neuronal excitation with enhanced [Ca(2+)]i signals. It has been proposed that astrocytes in turn regulate neurons and blood vessels through calcium-dependent mechanisms, such as the release of signaling molecules. However, [Ca(2+)]i imaging in entire astrocytes has only recently become feasible with genetically encoded calcium indicators (GECIs) such as the GCaMP series. The use of GECIs in astrocytes now provides opportunities to study astrocyte [Ca(2+)]i signals in detail within model microcircuits such as the striatum, which is the largest nucleus of the basal ganglia. In the present report, detailed surgical methods to express GECIs in astrocytes in vivo, and confocal imaging approaches to record [Ca(2+)]i signals in striatal astrocytes in situ, are described. We highlight precautions, necessary controls and tests to determine if GECI expression is selective for astrocytes and to evaluate signs of overt astrocyte reactivity. We also describe brain slice and imaging conditions in detail that permit reliable [Ca(2+)]i imaging in striatal astrocytes in situ. The use of these approaches revealed the entire territories of single striatal astrocytes and spontaneous [Ca(2+)]i signals within their somata, branches and branchlets. The further use and expansion of these approaches in the striatum will allow for the detailed study of astrocyte [Ca(2+)]i signals in the striatal microcircuitry.

  19. TMEM203 Is a Novel Regulator of Intracellular Calcium Homeostasis and Is Required for Spermatogenesis

    PubMed Central

    Shambharkar, Prashant B.; Bittinger, Mark; Latario, Brian; Xiong, ZhaoHui; Bandyopadhyay, Somnath; Davis, Vanessa; Lin, Victor; Yang, Yi; Valdez, Reginald; Labow, Mark A.

    2015-01-01

    Intracellular calcium signaling is critical for initiating and sustaining diverse cellular functions including transcription, synaptic signaling, muscle contraction, apoptosis and fertilization. Trans-membrane 203 (TMEM203) was identified here in cDNA overexpression screens for proteins capable of modulating intracellular calcium levels using activation of a calcium/calcineurin regulated transcription factor as an indicator. Overexpression of TMEM203 resulted in a reduction of Endoplasmic Reticulum (ER) calcium stores and elevation in basal cytoplasmic calcium levels. TMEM203 protein was localized to the ER and found associated with a number of ER proteins which regulate ER calcium entry and efflux. Mouse Embryonic Fibroblasts (MEFs) derived from Tmem203 deficient mice had reduced ER calcium stores and altered calcium homeostasis. Tmem203 deficient mice were viable though male knockout mice were infertile and exhibited a severe block in spermiogenesis and spermiation. Expression profiling studies showed significant alternations in expression of calcium channels and pumps in testes and concurrently Tmem203 deficient spermatocytes demonstrated significantly altered calcium handling. Thus Tmem203 is an evolutionarily conserved regulator of cellular calcium homeostasis, is required for spermatogenesis and provides a causal link between intracellular calcium regulation and spermiogenesis. PMID:25996873

  20. Sodium signaling and astrocyte energy metabolism.

    PubMed

    Chatton, Jean-Yves; Magistretti, Pierre J; Barros, L Felipe

    2016-10-01

    The Na(+) gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na(+) -dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na(+) load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na(+) extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na(+) following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na(+) as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na(+) and the metabolic machinery. GLIA 2016;64:1667-1676. © 2016 Wiley Periodicals, Inc.

  1. Active site structure and catalytic mechanism of phosphodiesterase for degradation of intracellular second messengers

    NASA Astrophysics Data System (ADS)

    Zhan, Chang-Guo

    2002-03-01

    Phosphodiesterases are clinical targets for a variety of biological disorders, because this superfamily of enzymes regulate intracellular concentration of cyclic nucleotides that serve as the second messengers playing a critical role in a variety of physiological processes. Understanding structure and mechanism of a phosphodiesterase will provide a solid basis for rational design of the more efficient therapeutics. Although a three-dimensional X-ray crystal structure of the catalytic domain of human phosphodiesterase 4B2B was recently reported, it was uncertain whether a critical bridging ligand in the active site is a water molecule or a hydroxide ion. The identity of this bridging ligand has been determined by performing first-principles quantum chemical calculations on models of the active site. All the results obtained indicate that this critical bridging ligand in the active site of the reported X-ray crystal structure is a hydroxide ion, rather than a water molecule, expected to serve as the nucleophile to initialize the catalytic degradation of the intracellular second messengers.

  2. Redox-regulated growth factor survival signaling.

    PubMed

    Woolley, John F; Corcoran, Aoife; Groeger, Gillian; Landry, William D; Cotter, Thomas G

    2013-11-20

    Once the thought of as unwanted byproducts of cellular respiration in eukaryotes, reactive oxygen species (ROS) have been shown to facilitate essential physiological roles. It is now understood that ROS are critical mediators of intracellular signaling. Control of signal transduction downstream of growth factor receptors by ROS is a complex process whose details are only recently coming to light. Indeed, recent evidence points to control of signal propagation by ROS at multiple levels in the typical cascade. Growth factor stimulation activates nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Noxs) at the membrane, producing superoxide in the extracellular matrix, which is catalyzed to the membrane-permeable hydrogen peroxide (H2O2) that mediates intracellular signaling events. The potential for H2O2, however, to disrupt cellular functions by damaging proteins and nucleic acids demands that its levels are kept in check by receptor-associated peroxiredoxins. This interplay of Nox and peroxiredoxin activity moderates levels of H2O2 sufficiently to modify signaling partners locally. Among the best studied of these partners are redox-controlled phosphatases that are inactivated by H2O2. Phosphatases regulate signal propagation downstream of receptors, and thus their inactivation allows a further level of control. Transmission of information further downstream to targets such as transcription factors, themselves regulated by ROS, completes this pathway. Thus, signal propagation or attenuation can be dictated by ROS at multiple points. Given the complex nature of these processes, we envisage the emerging trends in the field of redox signaling in the context of growth factor stimulation.

  3. Novel Insights on Thyroid-Stimulating Hormone Receptor Signal Transduction

    PubMed Central

    Neumann, Susanne; Grüters, Annette; Krude, Heiko

    2013-01-01

    The TSH receptor (TSHR) is a member of the glycoprotein hormone receptors, a subfamily of family A G protein-coupled receptors. The TSHR is of great importance for the growth and function of the thyroid gland. The TSHR and its endogenous ligand TSH are pivotal proteins with respect to a variety of physiological functions and malfunctions. The molecular events of TSHR regulation can be summarized as a process of signal transduction, including signal reception, conversion, and amplification. The steps during signal transduction from the extra- to the intracellular sites of the cell are not yet comprehensively understood. However, essential new insights have been achieved in recent years on the interrelated mechanisms at the extracellular region, the transmembrane domain, and intracellular components. This review contains a critical summary of available knowledge of the molecular mechanisms of signal transduction at the TSHR, for example, the key amino acids involved in hormone binding or in the structural conformational changes that lead to G protein activation or signaling regulation. Aspects of TSHR oligomerization, signaling promiscuity, signaling selectivity, phenotypes of genetic variations, and potential extrathyroidal receptor activity are also considered, because these are relevant to an understanding of the overall function of the TSHR, including physiological, pathophysiological, and pharmacological perspectives. Directions for future research are discussed. PMID:23645907

  4. Dibenzoylmethane Protects Against CCl4-Induced Acute Liver Injury by Activating Nrf2 via JNK, AMPK, and Calcium Signaling.

    PubMed

    Cao, Mingnan; Wang, Huixia; Guo, Limei; Yang, Simin; Liu, Chun; Khor, Tin Oo; Yu, Siwang; Kong, Ah-Ng

    2017-11-01

    Oxidative stress is an important pathogenic factor in various hepatic diseases. Nuclear factor-erythroid 2-related factor-2 (Nrf2), which coordinates the expression of an array of antioxidant and detoxifying genes, has been proposed as a potential target for prevention and treatment of liver disease. Dibenzoylmethane (DBM) is a minor ingredient in licorice that activates Nrf2 and prevents various cancers and oxidative damage. In the present study, the mechanisms by which DBM activates Nrf2 signaling were delineated, and its protective effect against carbon tetrachloride (CCl 4 )-induced liver injury was examined. DBM potently induced the expression of HO-1 in cells and in the livers of mice, but this induction was diminished in Nrf2-deficient mice and cells. Overexpression of Nrf2 enhanced DBM-induced HO-1 expression, while overexpression of a dominant-negative fragment of Nrf2 inhibited this induction. DBM treatment resulted in dissociation from Keap1 and nuclear translocation of Nrf2. Moreover, DBM activated Akt/protein kinase B, mitogen-activated protein kinases, and AMP-activated protein kinase and increased intracellular calcium levels. Inhibition of JNK, AMPK, or intracellular calcium signaling significantly suppressed the induction of HO-1 expression by DBM. Finally, DBM treatment significantly inhibited CCl 4 -induced acute liver injury in wild-type but not in Nrf2-deficient mice. Taken together, our results revealed the mechanisms by which DBM activates Nrf2 and induces HO-1 expression, and provide molecular basis for the design and development of DBM and its derivatives for prevention or treatment of liver diseases by targeting Nrf2.

  5. Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity

    PubMed Central

    Carroll, Bernadette; Maetzel, Dorothea; Maddocks, Oliver DK; Otten, Gisela; Ratcliff, Matthew; Smith, Graham R; Dunlop, Elaine A; Passos, João F; Davies, Owen R; Jaenisch, Rudolf; Tee, Andrew R; Sarkar, Sovan; Korolchuk, Viktor I

    2016-01-01

    The mammalian target of rapamycin complex 1 (mTORC1) is the key signaling hub that regulates cellular protein homeostasis, growth, and proliferation in health and disease. As a prerequisite for activation of mTORC1 by hormones and mitogens, there first has to be an available pool of intracellular amino acids. Arginine, an amino acid essential during mammalian embryogenesis and early development is one of the key activators of mTORC1. Herein, we demonstrate that arginine acts independently of its metabolism to allow maximal activation of mTORC1 by growth factors via a mechanism that does not involve regulation of mTORC1 localization to lysosomes. Instead, arginine specifically suppresses lysosomal localization of the TSC complex and interaction with its target small GTPase protein, Rheb. By interfering with TSC-Rheb complex, arginine relieves allosteric inhibition of Rheb by TSC. Arginine cooperates with growth factor signaling which further promotes dissociation of TSC2 from lysosomes and activation of mTORC1. Arginine is the main amino acid sensed by the mTORC1 pathway in several cell types including human embryonic stem cells (hESCs). Dependence on arginine is maintained once hESCs are differentiated to fibroblasts, neurons, and hepatocytes, highlighting the fundamental importance of arginine-sensing to mTORC1 signaling. Together, our data provide evidence that different growth promoting cues cooperate to a greater extent than previously recognized to achieve tight spatial and temporal regulation of mTORC1 signaling. DOI: http://dx.doi.org/10.7554/eLife.11058.001 PMID:26742086

  6. A novel T cell receptor single-chain signaling complex mediates antigen-specific T cell activity and tumor control

    PubMed Central

    Stone, Jennifer D.; Harris, Daniel T.; Soto, Carolina M.; Chervin, Adam S.; Aggen, David H.; Roy, Edward J.; Kranz, David M.

    2014-01-01

    Adoptive transfer of genetically modified T cells to treat cancer has shown promise in several clinical trials. Two main strategies have been applied to redirect T cells against cancer: 1) introduction of a full-length T cell receptor (TCR) specific for a tumor-associated peptide-MHC, or 2) introduction of a chimeric antigen receptor (CAR), including an antibody fragment specific for a tumor cell surface antigen, linked intracellularly to T cell signaling domains. Each strategy has advantages and disadvantages for clinical applications. Here, we present data on the in vitro and in vivo effectiveness of a single-chain signaling receptor incorporating a TCR variable fragment as the targeting element (referred to as TCR-SCS). This receptor contained a single-chain TCR (Vβ-linker-Vα) from a high-affinity TCR called m33, linked to the intracellular signaling domains of CD28 and CD3ζ. This format avoided mispairing with endogenous TCR chains, and mediated specific T cell activity when expressed in either CD4 or CD8 T cells. TCR-SCS-transduced CD8-negative cells showed an intriguing sensitivity, compared to full-length TCRs, to higher densities of less stable pepMHC targets. T cells that expressed this peptide-specific receptor persisted in vivo, and exhibited polyfunctional responses. Growth of metastatic antigen-positive tumors was significantly inhibited by T cells that expressed this receptor, and tumor cells that escaped were antigen loss variants. TCR-SCS receptors represent an alternative targeting receptor strategy that combines the advantages of single-chain expression, avoidance of TCR chain mispairing, and targeting of intracellular antigens presented in complex with MHC proteins. PMID:25082071

  7. Intracellular Fluid Mechanics: Coupling Cytoplasmic Flow with Active Cytoskeletal Gel

    NASA Astrophysics Data System (ADS)

    Mogilner, Alex; Manhart, Angelika

    2018-01-01

    The cell is a mechanical machine, and continuum mechanics of the fluid cytoplasm and the viscoelastic deforming cytoskeleton play key roles in cell physiology. We review mathematical models of intracellular fluid mechanics, from cytoplasmic fluid flows, to the flow of a viscous active cytoskeletal gel, to models of two-phase poroviscous flows, to poroelastic models. We discuss application of these models to cell biological phenomena, such as organelle positioning, blebbing, and cell motility. We also discuss challenges of understanding fluid mechanics on the cellular scale.

  8. Localized intracellular calcium signaling in muscle: calcium sparks and calcium quarks.

    PubMed

    Niggli, E

    1999-01-01

    Subcellularly localized Ca2+ signals in cardiac and skeletal muscle have recently been identified as elementary Ca2+ signaling events. The signals, termed Ca2+ sparks and Ca2+ quarks, represent openings of Ca2+ release channels located in the membrane of the sarcoplasmic reticulum (SR). In cardiac muscle, the revolutionary discovery of Ca2+ sparks has allowed the development of a fundamentally different concept for the amplification of Ca2+ signals by Ca(2+)-induced Ca2+ release. In such a system, a graded amplification of the triggering Ca2+ signal entering the myocyte via L-type Ca2+ channels is accomplished by a recruitment process whereby individual SR Ca2+ release units are locally controlled by L-type Ca2+ channels. In skeletal muscle, the initial SR Ca2+ release is governed by voltage-sensors but subsequently activates additional Ca2+ sparks by Ca(2+)-induced Ca2+ release from the SR. Results from studies on elementary Ca2+ release events will improve our knowledge of muscle Ca2+ signaling at all levels of complexity, from the molecule to normal cellular function, and from the regulation of cardiac and skeletal muscle force to the pathophysiology of excitation-contraction coupling.

  9. Optimizing Nanoelectrode Arrays for Scalable Intracellular Electrophysiology.

    PubMed

    Abbott, Jeffrey; Ye, Tianyang; Ham, Donhee; Park, Hongkun

    2018-03-20

    Electrode technology for electrophysiology has a long history of innovation, with some decisive steps including the development of the voltage-clamp measurement technique by Hodgkin and Huxley in the 1940s and the invention of the patch clamp electrode by Neher and Sakmann in the 1970s. The high-precision intracellular recording enabled by the patch clamp electrode has since been a gold standard in studying the fundamental cellular processes underlying the electrical activities of neurons and other excitable cells. One logical next step would then be to parallelize these intracellular electrodes, since simultaneous intracellular recording from a large number of cells will benefit the study of complex neuronal networks and will increase the throughput of electrophysiological screening from basic neurobiology laboratories to the pharmaceutical industry. Patch clamp electrodes, however, are not built for parallelization; as for now, only ∼10 patch measurements in parallel are possible. It has long been envisioned that nanoscale electrodes may help meet this challenge. First, nanoscale electrodes were shown to enable intracellular access. Second, because their size scale is within the normal reach of the standard top-down fabrication, the nanoelectrodes can be scaled into a large array for parallelization. Third, such a nanoelectrode array can be monolithically integrated with complementary metal-oxide semiconductor (CMOS) electronics to facilitate the large array operation and the recording of the signals from a massive number of cells. These are some of the central ideas that have motivated the research activity into nanoelectrode electrophysiology, and these past years have seen fruitful developments. This Account aims to synthesize these findings so as to provide a useful reference. Summing up from the recent studies, we will first elucidate the morphology and associated electrical properties of the interface between a nanoelectrode and a cellular membrane

  10. Mitochondrial Division Inhibitor 1 (mdivi-1) Protects Neurons against Excitotoxicity through the Modulation of Mitochondrial Function and Intracellular Ca2+ Signaling.

    PubMed

    Ruiz, Asier; Alberdi, Elena; Matute, Carlos

    2018-01-01

    Excessive dynamin related protein 1 (Drp1)-triggered mitochondrial fission contributes to apoptosis under pathological conditions and therefore it has emerged as a promising therapeutic target. Mitochondrial division inhibitor 1 (mdivi-1) inhibits Drp1-dependent mitochondrial fission and is neuroprotective in several models of brain ischemia and neurodegeneration. However, mdivi-1 also modulates mitochondrial function and oxidative stress independently of Drp1, and consequently the mechanisms through which it protects against neuronal injury are more complex than previously foreseen. In this study, we have analyzed the effects of mdivi-1 on mitochondrial dynamics, Ca 2+ signaling, mitochondrial bioenergetics and cell viability during neuronal excitotoxicity in vitro . Time-lapse fluorescence microscopy revealed that mdivi-1 blocked NMDA-induced mitochondrial fission but not that triggered by sustained AMPA receptor activation, showing that mdivi-1 inhibits excitotoxic mitochondrial fragmentation in a source specific manner. Similarly, mdivi-1 strongly reduced NMDA-triggered necrotic-like neuronal death and, to a lesser extent, AMPA-induced toxicity. Interestingly, neuroprotection provided by mdivi-1 against NMDA, but not AMPA, correlated with a reduction in cytosolic Ca 2+ ([Ca 2+ ] cyt ) overload and calpain activation indicating additional cytoprotective mechanisms. Indeed, mdivi-1 depolarized mitochondrial membrane and depleted ER Ca 2+ content, leading to attenuation of mitochondrial [Ca 2+ ] increase and enhancement of the integrated stress response (ISR) during NMDA receptor activation. Finally, lentiviral knockdown of Drp1 did not rescue NMDA-induced mitochondrial fission and toxicity, indicating that neuroprotective activity of mdivi-1 is Drp1-independent. Together, these results suggest that mdivi-1 induces a Drp1-independent protective phenotype that prevents predominantly NMDA receptor-mediated excitotoxicity through the modulation of mitochondrial

  11. Intracellular activation of the fibrinolytic cascade in the Quebec Platelet Disorder.

    PubMed

    Sheth, Prameet M; Kahr, Walter H A; Haq, M Anwar; Veljkovic, Dragoslava Kika; Rivard, Georges E; Hayward, Catherine P M

    2003-08-01

    The Quebec Platelet Disorder (QPD) is an unusual bleeding disorder associated with increased platelet stores of urokinase-type plasminogen activator (u-PA) and proteolysis of platelet alpha-granule proteins. The increased u-PA and proteolyzed plasminogen in QPD platelets led us to investigate possible contributions of intracellular plasmin generation to QPD alpha-granule proteolysis. ELISA indicated there were normal amounts of plasminogen and plasmin-alpha(2)-antiplasmin (PAP) complexes in QPD plasmas. Like normal platelets, QPD platelets contained only a small proportion of the blood plasminogen, however, they contained an increased amount of PAP complexes compared to normal platelets (P < 0.005). The quantities of plasminogen stored in platelets were important to induce QPD-like proteolysis of normal alpha-granule proteins by two chain u-PA (tcu-PA) in vitro. Moreover, adding supplemental plasminogen to QPD, but not to control, platelet lysates, triggered further alpha-granule protein proteolysis to forms that comigrated with plasmin degraded proteins. These data suggest the generation of increased but limiting amounts of plasmin within platelets is involved in producing the unique phenotypic changes to alpha-granule proteins in QPD platelets. The QPD is the only known bleeding disorder associated with chronic, intracellular activation of the fibrinolytic cascade.

  12. Mitochondria-derived hydrogen peroxide selectively enhances T cell receptor-initiated signal transduction.

    PubMed

    Gill, Tejpal; Levine, Alan D

    2013-09-06

    T cell receptor (TCR)-initiated signal transduction is reported to increase production of intracellular reactive oxygen species, such as superoxide (O2˙(-)) and hydrogen peroxide (H2O2), as second messengers. Although H2O2 can modulate signal transduction by inactivating protein phosphatases, the mechanism and the subcellular localization of intracellular H2O2 as a second messenger of the TCR are not known. The antioxidant enzyme superoxide dismutase (SOD) catalyzes the dismutation of highly reactive O2˙(-) into H2O2 and thus acts as an intracellular generator of H2O2. As charged O2˙(-) is unable to diffuse through intracellular membranes, cells express distinct SOD isoforms in the cytosol (Cu,Zn-SOD) and mitochondria (Mn-SOD), where they locally scavenge O2˙(-) leading to production of H2O2. A 2-fold organelle-specific overexpression of either SOD in Jurkat T cell lines increases intracellular production of H2O2 but does not alter the levels of intracellular H2O2 scavenging enzymes such as catalase, membrane-bound peroxiredoxin1 (Prx1), and cytosolic Prx2. We report that overexpression of Mn-SOD enhances tyrosine phosphorylation of TCR-associated membrane proximal signal transduction molecules Lck, LAT, ZAP70, PLCγ1, and SLP76 within 1 min of TCR cross-linking. This increase in mitochondrial H2O2 specifically modulates MAPK signaling through the JNK/cJun pathway, whereas overexpressing Cu,Zn-SOD had no effect on any of these TCR-mediated signaling molecules. As mitochondria translocate to the immunological synapse during TCR activation, we hypothesize this translocation provides the effective concentration of H2O2 required to selectively modulate downstream signal transduction pathways.

  13. Oncogenic Kit signals on endolysosomes and endoplasmic reticulum are essential for neoplastic mast cell proliferation

    PubMed Central

    Obata, Yuuki; Toyoshima, Shota; Wakamatsu, Ei; Suzuki, Shunichi; Ogawa, Shuhei; Esumi, Hiroyasu; Abe, Ryo

    2014-01-01

    Kit is a receptor-type tyrosine kinase found on the plasma membrane. It can transform mast cells through activating mutations. Here, we show that a mutant Kit from neoplastic mast cells from mice, Kit(D814Y), is permanently active and allows cells to proliferate autonomously. It does so by activating two signalling pathways from different intracellular compartments. Mutant Kit from the cell surface accumulates on endolysosomes through clathrin-mediated endocytosis, which requires Kit’s kinase activity. Kit(D814Y) is constitutively associated with phosphatidylinositol 3-kinase, but the complex activates Akt only on the cytoplasmic surface of endolysosomes. It resists destruction because it is under-ubiquitinated. Kit(D814Y) also appears in the endoplasmic reticulum soon after biosynthesis, and there, can activate STAT5 aberrantly. These mechanisms of oncogenic signalling are also seen in rat and human mast cell leukemia cells. Thus, oncogenic Kit signalling occurs from different intracellular compartments, and the mutation acts by altering Kit trafficking as well as activation. PMID:25493654

  14. Taste Receptor Signaling-- From Tongues to Lungs

    PubMed Central

    Kinnamon, Sue C.

    2013-01-01

    Taste buds are the transducing endorgans of gustation. Each taste bud comprises 50–100 elongated cells, which extend from the basal lamina to the surface of the tongue, where their apical microvilli encounter taste stimuli in the oral cavity. Salts and acids utilize apically located ion channels for transduction, while bitter, sweet and umami (glutamate) stimuli utilize G protein coupled receptors (GPCRs) and second messenger signaling mechanisms. This review will focus on GPCR signaling mechanisms. Two classes of taste GPCRs have been identified, the T1Rs for sweet and umami (glutamate) stimuli, and the T2Rs for bitter stimuli. These low affinity GPCRs all couple to the same downstream signaling effectors that include Gβγ activation of PLCβ2, IP3-mediated release of Ca2+ from intracellular stores, and Ca2+-dependent activation of the monovalent selective cation channel, TrpM5. These events lead to membrane depolarization, action potentials, and release of ATP as a transmitter to activate gustatory afferents. The Gα subunit, α-gustducin, activates a phosphodiesterase to decrease intracellular cAMP levels, although the precise targets of cAMP have not been identified. With the molecular identification of the taste GPCRs, it has become clear that taste signaling is not limited to taste buds, but occurs in many cell types of the airways. These include solitary chemosensory cells, ciliated epithelial cells, and smooth muscle cells. Bitter receptors are most abundantly expressed in the airways, where they respond to irritating chemicals and promote protective airway reflexes, utilizing the same downstream signaling effectors as taste cells. PMID:21481196

  15. Single cell analysis of low-power laser irradiation-induced activation of signaling pathway in cell proliferation

    NASA Astrophysics Data System (ADS)

    Xing, Da; Gao, Xuejuan

    2007-02-01

    Low-power laser irradiation (LPLI) has been shown to promote cell proliferation in various cell types, yet the mechanism of which has not been fully clarified. Investigating the signaling pathways involved in the laser irradiation is important for understanding these processes. The small G protein Ras works as a binary switch in many important intracellular signaling pathways and, therefore, has been one of the focal targets of signal-transduction investigations and drug development. The Ras/Raf/MEK/ERK (extracellular-signal-regulated kinase) signaling pathway is a network that governs proliferation, differentiation and cell survival. Recent studies suggest that Ras/Raf signaling pathway is involved in the LPLI-induced cell proliferation. On the other hand, Protein kinase Cs (PKCs), the Ca 2+ activated, phospholipid-dependent serine/threonine protein kinases, have been recently presumed to be involved in the regulation of cell proliferation induced by LPLI. In this report, to monitor the direct activations of Ras and PKCs after LPLI treatment in living cells in real time, Raichu-Ras reporter and C kinase activity reporter (CKAR) were utilized, both of which were constructed based on fluorescence resonance energy transfer (FRET) technique. The direct activation of Ras is predominantly initiated from the different microdomains of the plasma membrane. The results are monitored during cell proliferation induced by LPLI (0.8 J/cm2) in serum-starved COS-7 cells expressing Raichu-Ras reporter using FRET imaging on laser scanning confocal microscope. Furthermore, the increasing activation of PKCs is also monitored during cell proliferation induced by LPLI (0.8 J/cm2) in serum-starved human lung adenocarcinoma cells (ASTC-a-1) expressing CKAR reporter using the similar way. Taken together, the dynamic increases of H-Ras and PKCs activities are observed during the processes of cell proliferation induced by LPLI.

  16. Herbivory Rapidly Activates MAPK Signaling in Attacked and Unattacked Leaf Regions but Not between Leaves of Nicotiana attenuata[W

    PubMed Central

    Wu, Jianqiang; Hettenhausen, Christian; Meldau, Stefan; Baldwin, Ian T.

    2007-01-01

    Mitogen-activated protein kinase (MAPK) signaling plays a central role in transducing extracellular stimuli into intracellular responses, but its role in mediating plant responses to herbivore attack remains largely unexplored. When Manduca sexta larvae attack their host plant, Nicotiana attenuata, the plant's wound response is reconfigured at transcriptional, phytohormonal, and defensive levels due to the introduction of oral secretions (OS) into wounds during feeding. We show that OS dramatically amplify wound-induced MAPK activity and that fatty acid–amino acid conjugates in M. sexta OS are the elicitors. Virus-induced gene silencing of salicylic acid–induced protein kinase (SIPK) and wound-induced protein kinase revealed their importance in mediating wound and OS-elicited hormonal responses and transcriptional regulation of defense-related genes. We found that after applying OS to wounds created in one portion of a leaf, SIPK is activated in both wounded and specific unwounded regions of the leaf but not in phylotactically connected adjacent leaves. We propose that M. sexta attack elicits a mobile signal that travels to nonwounded regions of the attacked leaf where it activates MAPK signaling and, thus, downstream responses; subsequently, a different signal is transported by the vascular system to systemic leaves to initiate defense responses without activating MAPKs in systemic leaves. PMID:17400894

  17. Thioredoxin-1 promotes survival in cells exposed to S-nitrosoglutathione: Correlation with reduction of intracellular levels of nitrosothiols and up-regulation of the ERK1/2 MAP Kinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, Roberto J.; Ogata, Fernando T.; Batista, Wagner L.

    2008-12-01

    Accumulating evidence indicates that post-translational protein modifications by nitric oxide and its derived species are critical effectors of redox signaling in cells. These protein modifications are most likely controlled by intracellular reductants. Among them, the importance of the 12 kDa dithiol protein thioredoxin-1 (TRX-1) has been increasingly recognized. However, the effects of TRX-1 in cells exposed to exogenous nitrosothiols remain little understood. We investigated the levels of intracellular nitrosothiols and survival signaling in HeLa cells over-expressing TRX-1 and exposed to S-nitrosoglutahione (GSNO). A role for TRX-1 expression on GSNO catabolism and cell viability was demonstrated by the concentration-dependent effects ofmore » GSNO on decreasing TRX-1 expression, activation of caspase-3, and increasing cell death. The over-expression of TRX-1 in HeLa cells partially attenuated caspase-3 activation and enhanced cell viability upon GSNO treatment. This was correlated with reduction of intracellular levels of nitrosothiols and increasing levels of nitrite and nitrotyrosine. The involvement of ERK, p38 and JNK pathways were investigated in parental cells treated with GSNO. Activation of ERK1/2 MAP kinases was shown to be critical for survival signaling. In cells over-expressing TRX-1, basal phosphorylation levels of ERK1/2 MAP kinases were higher and further increased after GSNO treatment. These results indicate that the enhanced cell viability promoted by TRX-1 correlates with its capacity to regulate the levels of intracellular nitrosothiols and to up-regulate the survival signaling pathway mediated by the ERK1/2 MAP kinases.« less

  18. Notch Signaling Pathway Is Activated in Motoneurons of Spinal Muscular Atrophy

    PubMed Central

    Caraballo-Miralles, Víctor; Cardona-Rossinyol, Andrea; Garcera, Ana; Torres-Benito, Laura; Soler, Rosa M.; Tabares, Lucía; Lladó, Jerònia; Olmos, Gabriel

    2013-01-01

    Spinal muscular atrophy (SMA) is a neurodegenerative disease produced by low levels of Survival Motor Neuron (SMN) protein that affects alpha motoneurons in the spinal cord. Notch signaling is a cell-cell communication system well known as a master regulator of neural development, but also with important roles in the adult central nervous system. Aberrant Notch function is associated with several developmental neurological disorders; however, the potential implication of the Notch pathway in SMA pathogenesis has not been studied yet. We report here that SMN deficiency, induced in the astroglioma cell line U87MG after lentiviral transduction with a shSMN construct, was associated with an increase in the expression of the main components of Notch signaling pathway, namely its ligands, Jagged1 and Delta1, the Notch receptor and its active intracellular form (NICD). In the SMNΔ7 mouse model of SMA we also found increased astrocyte processes positive for Jagged1 and Delta1 in intimate contact with lumbar spinal cord motoneurons. In these motoneurons an increased Notch signaling was found, as denoted by increased NICD levels and reduced expression of the proneural gene neurogenin 3, whose transcription is negatively regulated by Notch. Together, these findings may be relevant to understand some pathologic attributes of SMA motoneurons. PMID:23759991

  19. Efficient secretory expression of recombinant proteins in Escherichia coli with a novel actinomycete signal peptide.

    PubMed

    Cui, Yanbing; Meng, Yiwei; Zhang, Juan; Cheng, Bin; Yin, Huijia; Gao, Chao; Xu, Ping; Yang, Chunyu

    2017-01-01

    In well-established heterologous hosts, such as Escherichia coli, recombinant proteins are usually intracellular and frequently found as inclusion bodies-especially proteins possessing high rare codon content. In this study, successful secretory expression of three hydrolases, in a constructed inducible or constitutive system, was achieved by fusion with a novel signal peptide (Kp-SP) from an actinomycete. The signal peptide efficiently enabled extracellular protein secretion and also contributed to the active expression of the intracellular recombinant proteins. The thermophilic α-amylase gene of Bacillus licheniformis was fused with Kp-SP. Both recombinants, carrying inducible and constitutive plasmids, showed remarkable increases in extracellular and intracellular amylolytic activity. Amylase activity was observed to be > 10-fold in recombinant cultures with the constitutive plasmid, pBSPPc, compared to that in recombinants lacking Kp-SP. Further, the signal peptide enabled efficient secretion of a thermophilic cellulase into the culture medium, as demonstrated by larger halo zones and increased enzymatic activities detected in both constructs from different plasmids. For heterologous proteins with a high proportion of rare codons, it is difficult to obtain high expression in E. coli owing to the codon bias. Here, the fusion of an archaeal homologue of the amylase encoding gene, FSA, with Kp-SP resulted in > 5-fold higher extracellular activity. The successful extracellular expression of the amylase indicated that the signal peptide also contributed significantly to its active expression and signified the potential value of this novel and versatile signal peptide in recombinant protein production. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Two Naturally Occurring Terpenes, Dehydrocostuslactone and Costunolide, Decrease Intracellular GSH Content and Inhibit STAT3 Activation

    PubMed Central

    Butturini, Elena; Cavalieri, Elisabetta; Carcereri de Prati, Alessandra; Darra, Elena; Rigo, Antonella; Shoji, Kazuo; Murayama, Norie; Yamazaki, Hiroshi; Watanabe, Yasuo; Suzuki, Hisanori; Mariotto, Sofia

    2011-01-01

    The main purpose of the present study is to envisage the molecular mechanism of inhibitory action ofdehydrocostuslactone (DCE) andcostunolide (CS), two naturally occurring sesquiterpene lactones, towards the activation of signal transducer and activator of transcription 3 (STAT3). We report that, in human THP-1 cell line, they inhibit IL-6-elicited tyrosine phosphorylation of STAT3 and its DNA binding activity with EC50 of 10 µM with concomitantdown-regulation ofthe phosphorylation of the tyrosine Janus kinases JAK1, JAK2 and Tyk2. Furthermore, these compounds that contain an α-β-unsatured carbonyl moiety and function as potent Michael reaction acceptor, induce a rapid drop in intracellular glutathione (GSH) concentration by direct interaction with it, thereby triggering S-glutathionylation of STAT3. Dehydrocostunolide (HCS), the reduced form of CS lacking only the α-β-unsaturated carbonyl group, fails to exert any inhibitory action. Finally, the glutathione ethylene ester (GEE), the cell permeable GSH form, reverts the inhibitory action of DCE and CS on STAT3 tyrosine phosphorylation. We conclude that these two sesquiterpene lactones are able to induce redox-dependent post-translational modification of cysteine residues of STAT3 protein in order to regulate its function. PMID:21625597

  1. Intracellular and membrane-damaging activities of methyl gallate isolated from Terminalia chebula against multidrug-resistant Shigella spp.

    PubMed

    Acharyya, Saurabh; Sarkar, Prodipta; Saha, Dhira R; Patra, Amarendra; Ramamurthy, T; Bag, Prasanta K

    2015-08-01

    Shigella spp. (Shigella dysenteriae, Shigella flexneri, Shigella boydii and Shigella sonnei) cause bacillary dysentery (shigellosis), which is characterized by bloody mucous diarrhoea. Although a variety of antibiotics have been effective for treatment of shigellosis, options are becoming limited due to globally emerging drug resistance. In the present study, in vitro antibacterial activity of methyl gallate (MG) isolated from Terminalia chebula was determined by performing MIC, minimal bactericidal concentration (MBC) and time-kill kinetic studies. Bacterial membrane-damaging activity of MG was determined by membrane perturbation and transmission electron microscopy (TEM). Cellular drug accumulation, cell infection and assessment of intracellular activities of MG and reference antibiotics were performed using HeLa cell cultures. The bactericidal activity of MG against multidrug-resistant (MDR) Shigella spp. in comparison with other commonly used drugs including fluoroquinolone was demonstrated here. TEM findings in the present study revealed that MG caused the total disintegration of inner and outer membranes, and leakage of the cytoplasmic contents of S. dysenteriae. The level of accumulation of MG and tetracycline in HeLa cells incubated for 24  h was relatively higher than that of ciprofloxacin and nalidixic acid (ratio of intracellular concentration/extracellular concentration of antibiotic for MG and tetracycline>ciprofloxacin and nalidixic acid). The viable number of intracellular S. dysenteriae was decreased in a time-dependent manner in the presence of MG (4 × MBC) and reduced to zero within 20  h. The significant intracellular activities of MG suggested that it could potentially be used as an effective antibacterial agent for the treatment of severe infections caused by MDR Shigella spp.

  2. Four Ca2+ Ions Activate TRPM2 Channels by Binding in Deep Crevices near the Pore but Intracellularly of the Gate

    PubMed Central

    Törőcsik, Beáta

    2009-01-01

    TRPM2 is a tetrameric Ca2+-permeable channel involved in immunocyte respiratory burst and in postischaemic neuronal death. In whole cells, TRPM2 activity requires intracellular ADP ribose (ADPR) and intra- or extracellular Ca2+, but the mechanism and the binding sites for Ca2+ activation remain unknown. Here we study TRPM2 gating in inside-out patches while directly controlling intracellular ligand concentrations. Concentration jump experiments at various voltages and Ca2+ dependence of steady-state single-channel gating kinetics provide unprecedented insight into the molecular mechanism of Ca2+ activation. In patches excised from Xenopus laevis oocytes expressing human TRPM2, coapplication of intracellular ADPR and Ca2+ activated ∼50-pS nonselective cation channels; K1/2 for ADPR was ∼1 µM at saturating Ca2+. Intracellular Ca2+ dependence of TRPM2 steady-state opening and closing rates (at saturating [ADPR] and low extracellular Ca2+) reveals that Ca2+ activation is a consequence of tighter binding of Ca2+ in the open rather than in the closed channel conformation. Four Ca2+ ions activate TRPM2 with a Monod-Wymann-Changeux mechanism: each binding event increases the open-closed equilibrium constant ∼33-fold, producing altogether 106-fold activation. Experiments in the presence of 1 mM of free Ca2+ on the extracellular side clearly show that closed channels do not sense extracellular Ca2+, but once channels have opened Ca2+ entering passively through the pore slows channel closure by keeping the “activating sites” saturated, despite rapid continuous Ca2+-free wash of the intracellular channel surface. This effect of extracellular Ca2+ on gating is gradually lost at progressively depolarized membrane potentials, where the driving force for Ca2+ influx is diminished. Thus, the activating sites lie intracellularly from the gate, but in a shielded crevice near the pore entrance. Our results suggest that in intact cells that contain micromolar ADPR a single

  3. Eupatilin inhibits T-cell activation by modulation of intracellular calcium flux and NF-kappaB and NF-AT activity.

    PubMed

    Kim, Young-Dae; Choi, Suck-Chei; Oh, Tae-Young; Chun, Jang-Soo; Jun, Chang-Duk

    2009-09-01

    Eupatilin, one of the pharmacologically active ingredients of Artemisia princeps, exhibits a potent anti-ulcer activity, but its effects on T-cell immunity have not been investigated. Here, we show that eupatilin has a profound inhibitory effect on IL-2 production in Jurkat T cells as well as in human peripheral blood leukocytes. Eupatilin neither influenced clustering of CD3 and LFA-1 to the immunological synapse nor inhibited conjugate formation between T cells and B cells in the presence or absence of superantigen (SEE). Eupatilin also failed to inhibit T-cell receptor (TCR) internalization, thereby, suggesting that eupatilin does not interfere with TCR-mediated signals on the membrane proximal region. In unstimulated T cells, eupatilin significantly induced apoptotic cell death, as evidenced by an increased population of annexin V(+)/PI(+) cells and cleavage of caspase-3 and PARP. To our surprise, however, once cells were activated, eupatilin had little effect on apoptosis, and instead slightly protected cells from activation-induced cell death, suggesting that apoptosis also is not a mechanism for eupatilin-induced T-cell suppression. On the contrary, eupatilin dramatically inhibited I-kappaBalpha degradation and NF-AT dephosphorylation and, consequently, inhibited NF-kappaB and NF-AT promoter activities in PMA/A23187-stimulated T cells. Interestingly, intracellular calcium flux was significantly perturbed in cells pre-treated with eupatilin, suggesting that calcium-dependent cascades might be targets for eupatilin action. Collectively, our results provide evidence for dual regulatory functions of eupatilin: (1) a pro-apoptotic effect on resting T cells and (2) an immunosuppressive effect on activated T cells, presumably through modulation of Ca(2+) flux. (c) 2009 Wiley-Liss, Inc.

  4. Ligand-activated epidermal growth factor receptor (EGFR) signaling governs endocytic trafficking of unliganded receptor monomers by non-canonical phosphorylation.

    PubMed

    Tanaka, Tomohiro; Zhou, Yue; Ozawa, Tatsuhiko; Okizono, Ryuya; Banba, Ayako; Yamamura, Tomohiro; Oga, Eiji; Muraguchi, Atsushi; Sakurai, Hiroaki

    2018-02-16

    The canonical description of transmembrane receptor function is initial binding of ligand, followed by initiation of intracellular signaling and then internalization en route to degradation or recycling to the cell surface. It is known that low concentrations of extracellular ligand lead to a higher proportion of receptor that is recycled and that non-canonical mechanisms of receptor activation, including phosphorylation by the kinase p38, can induce internalization and recycling. However, no connections have been made between these pathways; i.e. it has yet to be established what happens to unbound receptors following stimulation with ligand. Here we demonstrate that a minimal level of activation of epidermal growth factor receptor (EGFR) tyrosine kinase by low levels of ligand is sufficient to fully activate downstream mitogen-activated protein kinase (MAPK) pathways, with most of the remaining unbound EGFR molecules being efficiently phosphorylated at intracellular serine/threonine residues by activated mitogen-activated protein kinase. This non-canonical, p38-mediated phosphorylation of the C-tail of EGFR, near Ser-1015, induces the clathrin-mediated endocytosis of the unliganded EGFR monomers, which occurs slightly later than the canonical endocytosis of ligand-bound EGFR dimers via tyrosine autophosphorylation. EGFR endocytosed via the non-canonical pathway is largely recycled back to the plasma membrane as functional receptors, whereas p38-independent populations are mainly sorted for lysosomal degradation. Moreover, ligand concentrations balance these endocytic trafficking pathways. These results demonstrate that ligand-activated EGFR signaling controls unliganded receptors through feedback phosphorylation, identifying a dual-mode regulation of the endocytic trafficking dynamics of EGFR. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Structure and mechanism of the essential two-component signal-transduction system WalKR in Staphylococcus aureus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Quanjiang; Chen, Peter J.; Qin, Guangrong

    Most low GC Gram-positive bacteria possess an essential walKR two-component system (TCS) for signal transduction involved in regulating cell wall homoeostasis. Despite the well-established intracellular regulatory mechanism, the role of this TCS in extracellular signal recognition and factors that modulate the activity of this TCS remain largely unknown. Here we identify the extracellular receptor of the kinase ‘WalK’ (erWalK) as a key hub for bridging extracellular signal input and intracellular kinase activity modulation in Staphylococcus aureus. Characterization of the crystal structure of erWalK revealed a canonical Per-Arnt-Sim (PAS) domain for signal sensing. Single amino-acid mutation of potential signal-transduction residues resultedmore » in severely impaired function of WalKR. A small molecule derived from structure-based virtual screening against erWalK is capable of selectively activating the walKR TCS. Lastly, the molecular level characterization of erWalK will not only facilitate exploration of natural signal(s) but also provide a template for rational design of erWalK inhibitors.« less

  6. Structure and mechanism of the essential two-component signal-transduction system WalKR in Staphylococcus aureus

    DOE PAGES

    Ji, Quanjiang; Chen, Peter J.; Qin, Guangrong; ...

    2016-03-18

    Most low GC Gram-positive bacteria possess an essential walKR two-component system (TCS) for signal transduction involved in regulating cell wall homoeostasis. Despite the well-established intracellular regulatory mechanism, the role of this TCS in extracellular signal recognition and factors that modulate the activity of this TCS remain largely unknown. Here we identify the extracellular receptor of the kinase ‘WalK’ (erWalK) as a key hub for bridging extracellular signal input and intracellular kinase activity modulation in Staphylococcus aureus. Characterization of the crystal structure of erWalK revealed a canonical Per-Arnt-Sim (PAS) domain for signal sensing. Single amino-acid mutation of potential signal-transduction residues resultedmore » in severely impaired function of WalKR. A small molecule derived from structure-based virtual screening against erWalK is capable of selectively activating the walKR TCS. Lastly, the molecular level characterization of erWalK will not only facilitate exploration of natural signal(s) but also provide a template for rational design of erWalK inhibitors.« less

  7. Intracellular calcium: a prerequisite for aldosterone action.

    PubMed

    Schäfer, C; Shahin, V; Albermann, L; Schillers, H; Hug, M J; Oberleithner, H

    2003-12-01

    Transport of salt and water in various tissues is under control of the mineralocorticoid hormone aldosterone. As a liphophilic hormone, aldosterone diffuses through the plasma membrane and, then, binds to cytosolic mineralocorticoid receptors in the target cells. After binding to nuclear pore complexes, the activated receptor is translocated to the nucleus where transcription processes are initiated. After a lag period of about 20 minutes hormone-specific early mRNA transcripts leave the nucleus through nuclear pores. Some of the steps in this cascade can be followed by electrophysiology in Xenopus laevis oocyte nuclei. In addition to the genomic pathway, aldosterone exerts a rapid pre-genomic response that involves an increase in intracellular calcium. In this study, we tested for the potential role of Ca(2+) in the genomic response of the hormone. We measured the electrical resistance across the nuclear envelope in response to aldosterone, in presence and absence of intracellular Ca(2+). Nuclear envelope electrical resistance reflects receptor binding to the nuclear pore complexes ("early" resistance peak, 2 minutes after aldosterone), ongoing transcription ("transient" resistance drop, 5-15 minutes after aldosterone) and mRNA export ("late" resistance peak, 20 minutes after aldosterone). Pre-injection of the Ca(2+) chelator EGTA eliminated all electrical responses evoked by aldosterone. The transient resistance drop and the late resistance peak, induced by the hormone, were prevented by the transcription inhibitor actinomycin D, coinjected with aldosterone, while the early resistance peak remained unaffected. We conclude that (i). the presence of intracellular Ca(2+) is a prerequisite for the genomic action of aldosterone. (ii). Intracellular calcium plays a role early in the signaling cascade, either in agonist-receptor interaction, or receptor transport/docking to the nuclear pore complexes.

  8. Neoplasia Driven by Mutant c-KIT Is Mediated by Intracellular, Not Plasma Membrane, Receptor Signaling▿

    PubMed Central

    Xiang, Zhifu; Kreisel, Frederike; Cain, Jennifer; Colson, AnnaLynn; Tomasson, Michael H.

    2007-01-01

    Activating mutations in c-KIT are associated with gastrointestinal stromal tumors, mastocytosis, and acute myeloid leukemia. In attempting to establish a murine model of human KITD816V (hKITD816V)-mediated leukemia, we uncovered an unexpected relationship between cellular transformation and intracellular trafficking. We found that transport of hKITD816V protein was blocked at the endoplasmic reticulum in a species-specific fashion. We exploited these species-specific trafficking differences and a set of localization domain-tagged KIT mutants to explore the relationship between subcellular localization of mutant KIT and cellular transformation. The protein products of fully transforming KIT mutants localized to the Golgi apparatus and to a lesser extent the plasma membrane. Domain-tagged KITD816V targeted to the Golgi apparatus remained constitutively active and transforming. Chemical inhibition of intracellular transport demonstrated that Golgi localization is sufficient, but plasma membrane localization is dispensable, for downstream signaling mediated by KIT mutation. When expressed in murine bone marrow, endoplasmic reticulum-localized hKITD816V failed to induce disease in mice, while expression of either Golgi-localized HyKITD816V or cytosol-localized, ectodomain-deleted KITD816V uniformly caused fatal myeloproliferative diseases. Taken together, these data demonstrate that intracellular, non-plasma membrane receptor signaling is sufficient to drive neoplasia caused by mutant c-KIT and provide the first animal model of myelomonocytic neoplasia initiated by human KITD816V. PMID:17060458

  9. Dandelion Root Extract Induces Intracellular Ca2+ Increases in HEK293 Cells.

    PubMed

    Gerbino, Andrea; Russo, Daniela; Colella, Matilde; Procino, Giuseppe; Svelto, Maria; Milella, Luigi; Carmosino, Monica

    2018-04-07

    Dandelion (Taraxacum officinale Weber ex F.H.Wigg.) has been used for centuries as an ethnomedical remedy. Nonetheless, the extensive use of different kinds of dandelion extracts and preparations is based on empirical findings. Some of the tissue-specific effects reported for diverse dandelion extracts may result from their action on intracellular signaling cascades. Therefore, the aim of this study was to evaluate the effects of an ethanolic dandelion root extract (DRE) on Ca 2+ signaling in human embryonic kidney (HEK) 293 cells. The cytotoxicity of increasing doses of crude DRE was determined by the Calcein viability assay. Fura-2 and the fluorescence resonance energy transfer (FRET)-based probe ERD1 were used to measure cytoplasmic and intraluminal endoplasmic reticulum (ER) Ca 2+ levels, respectively. Furthermore, a green fluorescent protein (GFP)-based probe was used to monitor phospholipase C (PLC) activation (pleckstrin homology [PH]-PLCδ-GFP). DRE (10-400 µg/mL) exposure, in the presence of external Ca 2+ , dose-dependently increased intracellular Ca 2+ levels. The DRE-induced Ca 2+ increase was significantly reduced in the absence of extracellular Ca 2+ . In addition, DRE caused a significant Ca 2+ release from the ER of intact cells and a concomitant translocation of PH-PLCδ-GFP. In conclusion, DRE directly activates both the release of Ca 2+ from internal stores and a significant Ca 2+ influx at the plasma membrane. The resulting high Ca 2+ levels within the cell seem to directly stimulate PLC activity.

  10. Hydrogen peroxide - production, fate and role in redox signaling of tumor cells.

    PubMed

    Lennicke, Claudia; Rahn, Jette; Lichtenfels, Rudolf; Wessjohann, Ludger A; Seliger, Barbara

    2015-09-14

    Hydrogen peroxide (H2O2) is involved in various signal transduction pathways and cell fate decisions. The mechanism of the so called "redox signaling" includes the H2O2-mediated reversible oxidation of redox sensitive cysteine residues in enzymes and transcription factors thereby altering their activities. Depending on its intracellular concentration and localization, H2O2 exhibits either pro- or anti-apoptotic activities. In comparison to normal cells, cancer cells are characterized by an increased H2O2 production rate and an impaired redox balance thereby affecting the microenvironment as well as the anti-tumoral immune response. This article reviews the current knowledge about the intracellular production of H2O2 along with redox signaling pathways mediating either the growth or apoptosis of tumor cells. In addition it will be discussed how the targeting of H2O2-linked sources and/or signaling components involved in tumor progression and survival might lead to novel therapeutic targets.

  11. The role of PIP2 and the IP3/DAG pathway in intracellular calcium release and cell survival during nanosecond electric pulse exposures

    NASA Astrophysics Data System (ADS)

    Steelman, Zachary A.; Tolstykh, Gleb P.; Estlack, Larry E.; Roth, Caleb C.; Ibey, Bennett L.

    2015-03-01

    Phosphatidylinositol4,5-biphosphate (PIP2) is a membrane phospholipid of particular importance in cell-signaling pathways. Hydrolysis of PIP2 releases inositol-1,4,5-triphosphate (IP3) from the membrane, activating IP3 receptors on the smooth endoplasmic reticulum (ER) and facilitating a release of intracellular calcium stores and activation of protein kinase C (PKC). Recent studies suggest that nanosecond pulsed electric fields (nsPEF) cause depletion of PIP2 in the cellular membrane, activating the IP3 signaling pathway. However, the exact mechanism(s) causing this observed depletion of PIP2 are unknown. Complicating the matter, nsPEF create nanopores in the plasma membrane, allowing calcium to enter the cell and thus causing an increase in intracellular calcium. While elevated intracellular calcium can cause activation of phospholipase C (PLC) (a known catalyst of PIP2 hydrolysis), PIP2 depletion has been shown to occur in the absence of both extracellular and intracellular calcium. These observations have led to the hypothesis that the high electric field itself may be playing a direct role in the hydrolysis of PIP2 from the plasma membrane. To support this hypothesis, we used edelfosine to block PLC and prevent activation of the IP3/DAG pathway in Chinese Hamster Ovarian (CHO) cells prior to applying nsPEF. Fluorescence microscopy was used to monitor intracellular calcium bursts during nsPEF, while MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) survivability assays were utilized to determine whether edelfosine improved cell survival during nsPEF exposure. This work is critical to refine the role of PIP2 in the cellular response to nsPEF, and also to determine the fundamental biological effects of high electric field exposures.

  12. Involvement of PI3K/Akt Signaling Pathway and Its Downstream Intracellular Targets in the Antidepressant-Like Effect of Creatine.

    PubMed

    Cunha, Mauricio P; Budni, Josiane; Ludka, Fabiana K; Pazini, Francis L; Rosa, Julia Macedo; Oliveira, Ágatha; Lopes, Mark W; Tasca, Carla I; Leal, Rodrigo B; Rodrigues, Ana Lúcia S

    2016-07-01

    Creatine has been proposed to exert beneficial effects in the management of depression, but the cell signaling pathways implicated in its antidepressant effects are not well established. This study investigated the involvement of PI3K/Akt signaling pathway and its downstream intracellular targets in the antidepressant-like effect of creatine. The acute treatment of mice with creatine (1 mg/kg, po) increased the Akt and P70S6K phosphorylation, and HO-1, GPx and PSD95 immunocontents. The pretreatment of mice with LY294002 (10 nmol/mouse, icv, PI3K inhibitor), wortmannin (0.1 μg/mouse, icv, PI3K inhibitor), ZnPP (10 μg/mouse, icv, HO-1 inhibitor), or rapamycin (0.2 nmol/mouse, icv, mTOR inhibitor) prevented the antidepressant-like effect of creatine (1 mg/kg, po) in the TST. In addition, the administration of subeffective dose of either the selective GSK3 inhibitor AR-A014418 (0.01 μg/mouse, icv), the nonselective GSK3 inhibitor lithium chloride (10 mg/kg, po), or the HO-1 inductor CoPP (0.01 μg/mouse, icv), in combination with a subeffective dose of creatine (0.01 mg/kg, po) reduced the immobility time in the TST as compared with either drug alone. No treatment caused significant changes in the locomotor activity of mice. These results indicate that the antidepressant-like effect of creatine in the TST depends on the activation of Akt, Nrf2/HO-1, GPx, and mTOR, and GSK3 inhibition.

  13. Novel pathways to erythropoiesis induced by dimerization of intracellular C-Mpl in human hematopoietic progenitors.

    PubMed

    Parekh, Chintan; Sahaghian, Arineh; Kim, William; Scholes, Jessica; Ge, Shundi; Zhu, Yuhua; Asgharzadeh, Shahab; Hollis, Roger; Kohn, Donald; Ji, Lingyun; Malvar, Jemily; Wang, Xiaoyan; Crooks, Gay

    2012-04-01

    The cytokine thrombopoietin (Tpo) plays a critical role in hematopoiesis by binding to the extracellular domain and inducing homodimerization of the intracellular signaling domain of its receptor, c-Mpl. Mpl homodimerization can also be accomplished by binding of a synthetic ligand to a constitutively expressed fusion protein F36VMpl consisting of a ligand binding domain (F36V) and the intracellular signaling domain of Mpl. Unexpectedly, in contrast to Tpo stimulation, robust erythropoiesis is induced after dimerization of F36VMpl in human CD34+ progenitor cells. The goal of this study was to define the hematopoietic progenitor stages at which dimerization of intracellular Mpl induces erythropoiesis and the downstream molecular events that mediate this unanticipated effect. Dimerization (in the absence of erythropoietin and other cytokines) in human common myeloid progenitors and megakaryocytic erythroid progenitors caused a significant increase in CD34+ cells (p < .01) and induced all stages of erythropoiesis including production of enucleated red blood cells. In contrast, erythropoiesis was not seen with Tpo stimulation. CD34+ cell expansion was the result of increased cell cycling and survival (p < .05). Microarray profiling of CD34+ cells demonstrated that a unique transcriptional pattern is activated in progenitors by F36VMpl dimerization. Ligand-inducible dimerization of intracellular Mpl in human myeloerythroid progenitors induces progenitor expansion and erythropoiesis through molecular mechanisms that are not shared by Tpo stimulation of endogenous Mpl. Copyright © 2012 AlphaMed Press.

  14. Efficient Intracellular Delivery of Molecules with High Cell Viability Using Nanosecond-Pulsed Laser-Activated Carbon Nanoparticles

    PubMed Central

    2015-01-01

    Conventional physical and chemical methods that efficiently deliver molecules into cells are often associated with low cell viability. In this study, we evaluated the cellular effects of carbon nanoparticles believed to emit photoacoustic waves due to nanosecond-pulse laser activation to test the hypothesis that this method could achieve efficient intracellular delivery while maintaining high cell viability. Suspensions of DU145 human prostate carcinoma cells, carbon black (CB) nanoparticles, and calcein were exposed to 5–9 ns long laser pulses of near-infrared (1064 nm wavelength) light and then analyzed by flow cytometry for intracellular uptake of calcein and cell viability by propidium iodide staining. We found that intracellular uptake increased and in some cases saturated at high levels with only small losses in cell viability as a result of increasing laser fluence, laser exposure time, and as a unifying parameter, the total laser energy. Changing interpulse spacing between 0.1 and 10 s intervals showed no significant change in bioeffects, suggesting that the effects of each pulse were independent when spaced by at least 0.1 s intervals. Pretreatment of CB nanoparticles to intense laser exposure followed by mixing with cells also had no significant effect on uptake or viability. Similar uptake and viability were seen when CB nanoparticles were substituted with India ink, when DU145 cells were substituted with H9c2 rat cardiomyoblast cells, and when calcein was substituted with FITC-dextran. The best laser exposure conditions tested led to 88% of cells with intracellular uptake and close to 100% viability, indicating that nanosecond-pulse laser-activated carbon nanoparticles can achieve efficient intracellular delivery while maintaining high cell viability. PMID:24547946

  15. Mangiferin attenuates oxidative stress induced renal cell damage through activation of PI3K induced Akt and Nrf-2 mediated signaling pathways.

    PubMed

    Saha, Sukanya; Sadhukhan, Pritam; Sinha, Krishnendu; Agarwal, Namrata; Sil, Parames C

    2016-03-01

    Mangiferin is a polyphenolic xanthonoid with remarkable antioxidant activity. Oxidative stress plays the key role in tert-butyl hydroperoxide (tBHP) induced renal cell damage. In this scenario, we consider mangiferin, as a safe agent in tBHP induced renal cell death and rationalize its action systematically, in normal human kidney epithelial cells (NKE). NKE cells were exposed to 20 µM mangiferin for 2 h followed by 50 µM tBHP for 18 h. The effect on endogenous ROS production, antioxidant status (antioxidant enzymes and thiols), mitochondrial membrane potential, apoptotic signaling molecules, PI3K mediated signaling cascades and cell cycle progression were examined using various biochemical assays, FACS and immunoblot analyses. tBHP exposure damaged the NKE cells and decreased its viability. It also elevated the intracellular ROS and other oxidative stress-related biomarkers within the cells. However, mangiferin dose dependently, exhibited significant protection against this oxidative cellular damage. Mangiferin inhibited tBHP induced activation of different pro-apoptotic signals and thus protected the renal cells against mitochondrial permeabilization. Further, mangiferin enhanced the expression of cell proliferative signaling cascade molecules, Cyclin d1, NFκB and antioxidant molecules HO-1, SOD2, by PI3K/Akt dependent pathway. However, the inhibitor of PI3K abolished mangiferin's protective activity. Results show Mangiferin maintains the intracellular anti-oxidant status, induces the expression of PI3K and its downstream molecules and shields NKE cells against the tBHP induced cytotoxicity. Mangiferin can be indicated as a therapeutic agent in oxidative stress-mediated renal toxicity. This protective action of mangiferin primarily attributes to its potent antioxidant and antiapoptotic nature.

  16. Biatriosporin D displays anti-virulence activity through decreasing the intracellular cAMP levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ming; Chang, Wenqiang; Shi, Hongzhuo

    Candidiasis has long been a serious human health problem, and novel antifungal approaches are greatly needed. During both superficial and systemic infection, C. albicans relies on a battery of virulence factors, such as adherence, filamentation, and biofilm formation. In this study, we found that a small phenolic compound, Biatriosporin D (BD), isolated from an endolichenic fungus, Biatriospora sp., displayed anti-virulence activity by inhibiting adhesion, hyphal morphogenesis and biofilm formation of C. albicans. Of note is the high efficacy of BD in preventing filamentation with a much lower dose than its MIC value. Furthermore, BD prolonged the survival of worms infectedmore » by C. albicans in vivo. Quantitative real-time PCR analysis, exogenous cAMP rescue experiments and intracellular cAMP measurements revealed that BD regulates the Ras1-cAMP-Efg1 pathway by reducing cAMP levels to inhibit the hyphal formation. Further investigation showed that BD could upregulate Dpp3 to synthesize much more farnesol, which could inhibit the activity of Cdc35 and reduce the generation of cAMP. Taken together, these findings indicate that BD stimulates the expression of Dpp3 to synthesize more farnesol that directly inhibits the Cdc35 activity, reducing intracellular cAMP and thereby disrupting the morphologic transition and attenuating the virulence of C. albicans. Our study uncovers the underlying mechanism of BD as a prodrug in fighting against pathogenic C. albicans and provides a potential application of BD in fighting clinically relevant fungal infections by targeting fungal virulence. - Highlights: • BD inhibits the filamentation of C. albicans in multiple hypha-inducing conditions. • BD can prolong the survival of nematodes infected by C. albicans. • BD stimulates the expression of Dpp3 to synthesize more farnesol. • BD reduces intracellular cAMP and regulates Ras1-cAMP-PKA pathway.« less

  17. Signal focusing through active transport

    NASA Astrophysics Data System (ADS)

    Godec, Aljaž; Metzler, Ralf

    2015-07-01

    The accuracy of molecular signaling in biological cells and novel diagnostic devices is ultimately limited by the counting noise floor imposed by the thermal diffusion. Motivated by the fact that messenger RNA and vesicle-engulfed signaling molecules transiently bind to molecular motors and are actively transported in biological cells, we show here that the random active delivery of signaling particles to within a typical diffusion distance to the receptor generically reduces the correlation time of the counting noise. Considering a variety of signaling particle sizes from mRNA to vesicles and cell sizes from prokaryotic to eukaryotic cells, we show that the conditions for active focusing—faster and more precise signaling—are indeed compatible with observations in living cells. Our results improve the understanding of molecular cellular signaling and novel diagnostic devices.

  18. Discrete Dynamics Model for the Speract-Activated Ca2+ Signaling Network Relevant to Sperm Motility

    PubMed Central

    Espinal, Jesús; Aldana, Maximino; Guerrero, Adán; Wood, Christopher

    2011-01-01

    Understanding how spermatozoa approach the egg is a central biological issue. Recently a considerable amount of experimental evidence has accumulated on the relation between oscillations in intracellular calcium ion concentration ([Ca]) in the sea urchin sperm flagellum, triggered by peptides secreted from the egg, and sperm motility. Determination of the structure and dynamics of the signaling pathway leading to these oscillations is a fundamental problem. However, a biochemically based formulation for the comprehension of the molecular mechanisms operating in the axoneme as a response to external stimulus is still lacking. Based on experiments on the S. purpuratus sea urchin spermatozoa, we propose a signaling network model where nodes are discrete variables corresponding to the pathway elements and the signal transmission takes place at discrete time intervals according to logical rules. The validity of this model is corroborated by reproducing previous empirically determined signaling features. Prompted by the model predictions we performed experiments which identified novel characteristics of the signaling pathway. We uncovered the role of a high voltage-activated channel as a regulator of the delay in the onset of fluctuations after activation of the signaling cascade. This delay time has recently been shown to be an important regulatory factor for sea urchin sperm reorientation. Another finding is the participation of a voltage-dependent calcium-activated channel in the determination of the period of the fluctuations. Furthermore, by analyzing the spread of network perturbations we find that it operates in a dynamically critical regime. Our work demonstrates that a coarse-grained approach to the dynamics of the signaling pathway is capable of revealing regulatory sperm navigation elements and provides insight, in terms of criticality, on the concurrence of the high robustness and adaptability that the reproduction processes are predicted to have developed

  19. Intracellular zinc activates KCNQ channels by reducing their dependence on phosphatidylinositol 4,5-bisphosphate

    PubMed Central

    Gao, Haixia; Boillat, Aurélien; Huang, Dongyang; Liang, Ce; Peers, Chris

    2017-01-01

    M-type (Kv7, KCNQ) potassium channels are proteins that control the excitability of neurons and muscle cells. Many physiological and pathological mechanisms of excitation operate via the suppression of M channel activity or expression. Conversely, pharmacological augmentation of M channel activity is a recognized strategy for the treatment of hyperexcitability disorders such as pain and epilepsy. However, physiological mechanisms resulting in M channel potentiation are rare. Here we report that intracellular free zinc directly and reversibly augments the activity of recombinant and native M channels. This effect is mechanistically distinct from the known redox-dependent KCNQ channel potentiation. Interestingly, the effect of zinc cannot be attributed to a single histidine- or cysteine-containing zinc-binding site within KCNQ channels. Instead, zinc dramatically reduces KCNQ channel dependence on its obligatory physiological activator, phosphatidylinositol 4,5-bisphosphate (PIP2). We hypothesize that zinc facilitates interactions of the lipid-facing interface of a KCNQ protein with the inner leaflet of the plasma membrane in a way similar to that promoted by PIP2. Because zinc is increasingly recognized as a ubiquitous intracellular second messenger, this discovery might represent a hitherto unknown native pathway of M channel modulation and provide a fresh strategy for the design of M channel activators for therapeutic purposes. PMID:28716904

  20. Intracellular zinc activates KCNQ channels by reducing their dependence on phosphatidylinositol 4,5-bisphosphate.

    PubMed

    Gao, Haixia; Boillat, Aurélien; Huang, Dongyang; Liang, Ce; Peers, Chris; Gamper, Nikita

    2017-08-01

    M-type (Kv7, KCNQ) potassium channels are proteins that control the excitability of neurons and muscle cells. Many physiological and pathological mechanisms of excitation operate via the suppression of M channel activity or expression. Conversely, pharmacological augmentation of M channel activity is a recognized strategy for the treatment of hyperexcitability disorders such as pain and epilepsy. However, physiological mechanisms resulting in M channel potentiation are rare. Here we report that intracellular free zinc directly and reversibly augments the activity of recombinant and native M channels. This effect is mechanistically distinct from the known redox-dependent KCNQ channel potentiation. Interestingly, the effect of zinc cannot be attributed to a single histidine- or cysteine-containing zinc-binding site within KCNQ channels. Instead, zinc dramatically reduces KCNQ channel dependence on its obligatory physiological activator, phosphatidylinositol 4,5-bisphosphate (PIP 2 ). We hypothesize that zinc facilitates interactions of the lipid-facing interface of a KCNQ protein with the inner leaflet of the plasma membrane in a way similar to that promoted by PIP 2 Because zinc is increasingly recognized as a ubiquitous intracellular second messenger, this discovery might represent a hitherto unknown native pathway of M channel modulation and provide a fresh strategy for the design of M channel activators for therapeutic purposes.

  1. INTRACELLULAR CHOLESTEROL HOMEOSTASIS AND AMYLOID PRECURSOR PROTEIN PROCESSING

    PubMed Central

    Burns, Mark; Rebeck, G. William

    2010-01-01

    Many preclinical and clinical studies have implied a role for cholesterol in the pathogenesis of Alzheimer's disease (AD). In this review we will discuss the movement of intracellular cholesterol and how normal distribution, transport, and export of cholesterol is vital for regulation of the AD related protein, Aβ. We focus on cholesterol distribution in the plasma membrane, transport through the endosomal/lysosomal system, control of cholesterol intracellular signaling at the endoplasmic reticulum and Golgi, the HMG-CoA reductase pathway and finally export of cholesterol from the cell. PMID:20304094

  2. Nanovesicular carrier-based formulation for skin cancer targeting: evaluation of cytotoxicity, intracellular uptake, and preclinical anticancer activity.

    PubMed

    Jain, Subheet Kumar; Puri, Richa; Mahajan, Mohit; Yadav, Subodh; Pathak, C M; Ganesh, N

    2015-04-01

    Skin cancer has turned into global epidemic leading to higher incidences among cancer stricken population. The aim of the present investigation is to evaluate the anticancer potential and intracellular uptake of a novel nanovesicular formulation of 5-FU. Detailed intracellular uptake study in conjunction with estimation of intracellular reactive oxygen species was done using skin melanoma cell lines (A375) along with cytotoxicity studies. To further obtain the mechanistic insights into inhibition of tumor cell proliferation, cell-cycle arrest studies were conducted. The preclinical anticancer activity was carried out employing in vivo DMBA-croton oil-induced skin cancer model in mice. Significant reduction in the number of papillomas was observed in skin cancer-bearing mice on treatment with nanovesicular formulation (51.4 ± 3.2%) in comparison with marketed formulation (21.3 ± 2.1%) of 5-FU. Tumor volume was found to be reduced to 46.3 ± 3.5% with prepared formulation, whereas the marketed formulation-treated group showed the reduction of 18.6 ± 1.8% in comparison with the control (untreated) group. The results of present study demonstrated that nanovesicular formulation of 5-FU possessed the enhanced anticancer activity which could be attributed to better intracellular uptake, cellular retention, and sustained release of drug.

  3. Preface: cardiac control pathways: signaling and transport phenomena.

    PubMed

    Sideman, Samuel

    2008-03-01

    Signaling is part of a complex system of communication that governs basic cellular functions and coordinates cellular activity. Transfer of ions and signaling molecules and their interactions with appropriate receptors, transmembrane transport, and the consequent intracellular interactions and functional cellular response represent a complex system of interwoven phenomena of transport, signaling, conformational changes, chemical activation, and/or genetic expression. The well-being of the cell thus depends on a harmonic orchestration of all these events and the existence of control mechanisms that assure the normal behavior of the various parameters involved and their orderly expression. The ability of cells to sustain life by perceiving and responding correctly to their microenvironment is the basis for development, tissue repair, and immunity, as well as normal tissue homeostasis. Natural deviations, or human-induced interference in the signaling pathways and/or inter- and intracellular transport and information transfer, are responsible for the generation, modulation, and control of diseases. The present overview aims to highlight some major topics of the highly complex cellular information transfer processes and their control mechanisms. Our goal is to contribute to the understanding of the normal and pathophysiological phenomena associated with cardiac functions so that more efficient therapeutic modalities can be developed. Our objective in this volume is to identify and enhance the study of some basic passive and active physical and chemical transport phenomena, physiological signaling pathways, and their biological consequences.

  4. Imaging and controlling intracellular reactions: Lysosome transport as a function of diameter and the intracellular synthesis of conducting polymers

    NASA Astrophysics Data System (ADS)

    Payne, Christine

    2014-03-01

    Eukaryotic cells are the ultimate complex environment with intracellular chemical reactions regulated by the local cellular environment. For example, reactants are sequestered into specific organelles to control local concentration and pH, motor proteins transport reactants within the cell, and intracellular vesicles undergo fusion to bring reactants together. Current research in the Payne Lab in the School of Chemistry and Biochemistry at Georgia Tech is aimed at understanding and utilizing this complex environment to control intracellular chemical reactions. This will be illustrated using two examples, intracellular transport as a function of organelle diameter and the intracellular synthesis of conducting polymers. Using single particle tracking fluorescence microscopy, we measured the intracellular transport of lysosomes, membrane-bound organelles, as a function of diameter as they underwent transport in living cells. Both ATP-dependent active transport and diffusion were examined. As expected, diffusion scales with the diameter of the lysosome. However, active transport is unaffected suggesting that motor proteins are insensitive to cytosolic drag. In a second example, we utilize intracellular complexity, specifically the distinct micro-environments of different organelles, to carry out chemical reactions. We show that catalase, found in the peroxisomes of cells, can be used to catalyze the polymerization of the conducting polymer PEDOT:PSS. More importantly, we have found that a range of iron-containing biomolecules are suitable catalysts with different iron-containing biomolecules leading to different polymer properties. These experiments illustrate the advantage of intracellular complexity for the synthesis of novel materials.

  5. Endothelial remodelling and intracellular calcium machinery.

    PubMed

    Moccia, F; Tanzi, F; Munaron, L

    2014-05-01

    Rather being an inert barrier between vessel lumen and surrounding tissues, vascular endothelium plays a key role in the maintenance of cardiovascular homeostasis. The de-endothelialization of blood vessels is regarded as the early event that results in the onset of severe vascular disorders, including atherosclerosis, acute myocardial infarction, brain stroke, and aortic aneurysm. Restoration of the endothelial lining may be accomplished by the activation of neighbouring endothelial cells (ECs) freed by contact inhibition and by circulating endothelial progenitor cells (EPCs). Intracellular Ca(2+) signalling is essential to promote wound healing: however, the molecular underpinnings of the Ca(2+) response to injury are yet to be fully elucidated. Similarly, the components of the Ca(2+) toolkit that drive EPC incorporation into denuded vessels are far from being fully elucidated. The present review will survey the current knowledge on the role of Ca(2+) signalling in endothelial repair and in EPC activation. We propose that endothelial regeneration might be boosted by intraluminal release of specific Ca(2+) channel agonists or by gene transfer strategies aiming to enhance the expression of the most suitable Ca(2+) channels at the wound site. In this view, connexin (Cx) channels/hemichannels and store-operated Ca(2+) entry (SOCE) stand amid the most proper routes to therapeutically induce the regrowth of denuded vessels. Cx stimulation might trigger the proliferative and migratory behaviour of ECs facing the lesion site, whereas activation of SOCE is likely to favour EPC homing to the wounded vessel.

  6. Curcumin improves intestinal barrier function: modulation of intracellular signaling, and organization of tight junctions.

    PubMed

    Wang, Jing; Ghosh, Siddhartha S; Ghosh, Shobha

    2017-04-01

    Association between circulating lipopolysaccharide (LPS) and metabolic diseases (such as type 2 diabetes and atherosclerosis) has shifted the focus from high-fat high-cholesterol containing Western-type diet (WD)-induced changes in gut microbiota per se to release of gut bacteria-derived products (e.g., LPS) into circulation due to intestinal barrier dysfunction as the possible mechanism for the chronic inflammatory state underlying the development of these diseases. We demonstrated earlier that oral supplementation with curcumin attenuates WD-induced development of type 2 diabetes and atherosclerosis. Poor bioavailability of curcumin has precluded the establishment of a causal relationship between oral supplementation and it is in vivo effects. We hypothesized that curcumin attenuates WD-induced chronic inflammation and associated metabolic diseases by modulating the function of intestinal epithelial cells (IECs) and the intestinal barrier function. The objective of the present study was to delineate the underlying mechanisms. The human IEC lines Caco-2 and HT-29 were used for these studies and modulation of direct as well as indirect effects of LPS on intracellular signaling as well as tight junctions were examined. Pretreatment with curcumin significantly attenuated LPS-induced secretion of master cytokine IL-1β from IECs and macrophages. Furthermore, curcumin also reduced IL-1β-induced activation of p38 MAPK in IECs and subsequent increase in expression of myosin light chain kinase involved in the phosphorylation of tight junction proteins and ensuing disruption of their normal arrangement. The major site of action of curcumin is, therefore, likely the IECs and the intestinal barrier, and by reducing intestinal barrier dysfunction, curcumin modulates chronic inflammatory diseases despite poor bioavailability. Copyright © 2017 the American Physiological Society.

  7. Coupling of active motion and advection shapes intracellular cargo transport.

    PubMed

    Khuc Trong, Philipp; Guck, Jochen; Goldstein, Raymond E

    2012-07-13

    Intracellular cargo transport can arise from passive diffusion, active motor-driven transport along cytoskeletal filament networks, and passive advection by fluid flows entrained by such cargo-motor motion. Active and advective transport are thus intrinsically coupled as related, yet different representations of the same underlying network structure. A reaction-advection-diffusion system is used here to show that this coupling affects the transport and localization of a passive tracer in a confined geometry. For sufficiently low diffusion, cargo localization to a target zone is optimized either by low reaction kinetics and decoupling of bound and unbound states, or by a mostly disordered cytoskeletal network with only weak directional bias. These generic results may help to rationalize subtle features of cytoskeletal networks, for example as observed for microtubules in fly oocytes.

  8. Regulation of molecular clock oscillations and phagocytic activity via muscarinic Ca2+ signaling in human retinal pigment epithelial cells

    PubMed Central

    Ikarashi, Rina; Akechi, Honami; Kanda, Yuzuki; Ahmad, Alsawaf; Takeuchi, Kouhei; Morioka, Eri; Sugiyama, Takashi; Ebisawa, Takashi; Ikeda, Masaaki; Ikeda, Masayuki

    2017-01-01

    Vertebrate eyes are known to contain circadian clocks, however, the intracellular mechanisms regulating the retinal clockwork remain largely unknown. To address this, we generated a cell line (hRPE-YC) from human retinal pigmental epithelium, which stably co-expressed reporters for molecular clock oscillations (Bmal1-luciferase) and intracellular Ca2+ concentrations (YC3.6). The hRPE-YC cells demonstrated circadian rhythms in Bmal1 transcription. Also, these cells represented circadian rhythms in Ca2+-spiking frequencies, which were canceled by dominant-negative Bmal1 transfections. The muscarinic agonist carbachol, but not photic stimulation, phase-shifted Bmal1 transcriptional rhythms with a type-1 phase response curve. This is consistent with significant M3 muscarinic receptor expression and little photo-sensor (Cry2 and Opn4) expression in these cells. Moreover, forskolin phase-shifted Bmal1 transcriptional rhythm with a type-0 phase response curve, in accordance with long-lasting CREB phosphorylation levels after forskolin exposure. Interestingly, the hRPE-YC cells demonstrated apparent circadian rhythms in phagocytic activities, which were abolished by carbachol or dominant-negative Bmal1 transfection. Because phagocytosis in RPE cells determines photoreceptor disc shedding, molecular clock oscillations and cytosolic Ca2+ signaling may be the driving forces for disc-shedding rhythms known in various vertebrates. In conclusion, the present study provides a cellular model to understand molecular and intracellular signaling mechanisms underlying human retinal circadian clocks. PMID:28276525

  9. Expression of CLAVATA3 fusions indicates rapid intracellular processing and a role of ERAD.

    PubMed

    De Marchis, Francesca; Colanero, Sara; Klein, Eva M; Mainieri, Davide; Prota, Viviana M; Bellucci, Michele; Pagliuca, Giampiero; Zironi, Elisa; Gazzotti, Teresa; Vitale, Alessandro; Pompa, Andrea

    2018-06-01

    The 12 amino acid peptide derived from the Arabidopsis soluble secretory protein CLAVATA3 (CLV3) acts at the cell surface in a signalling system that regulates the size of apical meristems. The subcellular pathway involved in releasing the peptide from its precursor is unknown. We show that a CLV3-GFP fusion expressed in transfected tobacco protoplasts or transgenic tobacco plants has very short intracellular half-life that cannot be extended by the secretory traffic inhibitors brefeldin A and wortmannin. The fusion is biologically active, since the incubation medium of protoplasts from CLV3-GFP-expressing tobacco contains the CLV3 peptide and inhibits root growth. The rapid disappearance of intact CLV3-GFP requires the signal peptide and is inhibited by the proteasome inhibitor MG132 or coexpression with a mutated CDC48 that inhibits endoplasmic reticulum-associated protein degradation (ERAD). The synthesis of CLV3-GFP is specifically supported by the endoplasmic reticulum chaperone endoplasmin in an in vivo assay. Our results indicate that processing of CLV3 starts intracellularly in an early compartment of the secretory pathway and that ERAD could play a regulatory or direct role in the active peptide synthesis. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Memantine Can Reduce Ethanol-Induced Caspase-3 Activity and Apoptosis in H4 Cells by Decreasing Intracellular Calcium.

    PubMed

    Wang, Xiaolong; Chen, Jiajun; Wang, Hongbo; Yu, Hao; Wang, Changliang; You, Jiabin; Wang, Pengfei; Feng, Chunmei; Xu, Guohui; Wu, Xu; Zhao, Rui; Zhang, Guohua

    2017-08-01

    Caspase-3 activation and apoptosis are associated with various neurodegenerative disorders. Calcium activation is an important factor in promoting apoptosis. We, therefore, assessed the role of intracellular calcium in ethanol-induced activation of caspase-3 in H4 human neuroglioma cells and the protective effect of the NMDA receptor antagonist, memantine, on ethanol-induced apoptosis in H4 cells. H4 cells were treated with 100 mM EtOH (in culture medium) for 2 days. For interaction studies, cells were treated with memantine (4 μM), EDTA (1 mM), or BAPTA-AM (10 μM) before treatment with EtOH. Knockdown of the gene encoding the NR1 subunit of the NMDA receptor was performed using RNAi. Apoptosis was detected by Annexin V-FITC/PI staining and flow cytometry. Cell viability was detected using an MTS cell proliferation kit. Fluorescence dual wavelength spectrophotometry was used to determine the intracellular calcium concentration. The levels of NR1, caspase-3, IP3R1, and SERCA1 proteins were detected by western blotting. NR1, IP3R1, and SERCA1 mRNA levels were detected by qPCR. We observed increased expression of NR1, IP3R1, SERCA1, and increased intracellular levels of calcium ions in H4 cells exposed to ethanol. In addition, the calcium chelators, EDTA and BAPTA, and RNAi disruption of the NMDA receptor reduced ethanol-induced caspase-3 activation in H4 cells. Memantine treatment reduced the ethanol-induced increase of intracellular calcium, caspase-3 activation, apoptosis, and the ethanol-induced decrease in cell viability. Our results indicate that ethanol-induced caspase-3 activation and apoptosis are likely to be dependent on cytosolic calcium levels and that they can be reduced by memantine treatment.

  11. C-Terminal Clipping of Chemokine CCL1/I-309 Enhances CCR8-Mediated Intracellular Calcium Release and Anti-Apoptotic Activity

    PubMed Central

    Denis, Catherine; Deiteren, Kathleen; Mortier, Anneleen; Tounsi, Amel; Fransen, Erik; Proost, Paul; Renauld, Jean-Christophe; Lambeir, Anne-Marie

    2012-01-01

    Carboxypeptidase M (CPM) targets the basic amino acids arginine and lysine present at the C-terminus of peptides or proteins. CPM is thought to be involved in inflammatory processes. This is corroborated by CPM-mediated trimming and modulation of inflammatory factors, and expression of the protease in inflammatory environments. Since the function of CPM in and beyond inflammation remains mainly undefined, the identification of natural substrates can aid in discovering the (patho)physiological role of CPM. CCL1/I-309, with its three C-terminal basic amino acids, forms a potential natural substrate for CPM. CCL1 plays a role not only in inflammation but also in apoptosis, angiogenesis and tumor biology. Enzymatic processing differently impacts the biological activity of chemokines thereby contributing to the complex regulation of the chemokine system. The aim of the present study was to investigate whether (i) CCL1/I-309 is prone to trimming by CPM, and (ii) the biological activity of CCL1 is altered after C-terminal proteolytic processing. CCL1 was identified as a novel substrate for CPM in vitro using mass spectrometry. C-terminal clipping of CCL1 augmented intracellular calcium release mediated by CCR8 but reduced the binding of CCL1 to CCR8. In line with the higher intracellular calcium release, a pronounced increase of the anti-apoptotic activity of CCL1 was observed in the BW5147 cellular model. CCR8 signaling, CCR8 binding and anti-apoptotic activity were unaffected when CPM was exposed to the carboxypeptidase inhibitor DL-2-mercaptomethyl-3-guanidino-ethylthiopropanoic acid. The results of this study suggest that CPM is a likely candidate for the regulation of biological processes relying on the CCL1-CCR8 system. PMID:22479563

  12. Intracellular cysteine oxidation is modulated by aquaporin-8-mediated hydrogen peroxide channeling in leukaemia cells.

    PubMed

    Vieceli Dalla Sega, Francesco; Prata, Cecilia; Zambonin, Laura; Angeloni, Cristina; Rizzo, Benedetta; Hrelia, Silvana; Fiorentini, Diana

    2017-03-01

    The modulation of H 2 O 2 production by NADPH oxidase (Nox), on vascular endothelial growth factor (VEGF) stimulation, affects the redox signaling linked to cancer cell proliferation. H 2 O 2 signal transduction involves reversible oxidation of thiol proteins, leading to the formation of cysteine sulfenic acids, responsible for the temporary inactivation of many phosphatases. These events imply that H 2 O 2 reaches its intracellular targets. As Aquaporin-8 (AQP8) has been demonstrated to funnel Nox-produced H 2 O 2 across the plasma membrane, this study aims to elucidate the role of AQP8 in the redox signaling occurring in human leukaemia B1647 cells that constitutively produce VEGF. AQP8 overexpression or silencing resulted in the modulation of VEGF ability of increasing or decreasing, respectively, H 2 O 2 intracellular level. Moreover, data obtained by a dimedone-based immunochemical method for sulfenic acid detection demonstrate that the expression of AQP8 can modulate the amplitude of downstream events, altering the activity of redox-sensitive targets. In particular, AQP8 affected VEGF-induced redox signaling by increasing the sulfenation of the tumor suppressor PTEN, which resulted in its inactivation and, in turn, caused Akt activation. Therefore, the dimedone-based method for easily monitoring cellular protein sulfenation allowed to demonstrate, for the first time, the role of AQP8 on the fine tune of cysteine oxidation in target proteins involved in leukaemia cell proliferation pathways. © 2016 BioFactors, 43(2):232-242, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  13. Intracellular signaling entropy can be a biomarker for predicting the development of cervical intraepithelial neoplasia.

    PubMed

    Sato, Masakazu; Kawana, Kei; Adachi, Katsuyuki; Fujimoto, Asaha; Yoshida, Mitsuyo; Nakamura, Hiroe; Nishida, Haruka; Inoue, Tomoko; Taguchi, Ayumi; Ogishima, Juri; Eguchi, Satoko; Yamashita, Aki; Tomio, Kensuke; Wada-Hiraike, Osamu; Oda, Katsutoshi; Nagamatsu, Takeshi; Osuga, Yutaka; Fujii, Tomoyuki

    2017-01-01

    While the mortality rates for cervical cancer have been drastically reduced after the introduction of the Pap smear test, it still is one of the leading causes of death in women worldwide. Additionally, studies that appropriately evaluate the risk of developing cervical lesions are needed. Therefore, we investigated whether intracellular signaling entropy, which is measured with microarray data, could be useful for predicting the risks of developing cervical lesions. We used three datasets, GSE63514 (histology), GSE27678 (cytology) and GSE75132 (cytology, a prospective study). From the data in GSE63514, the entropy rate was significantly increased with disease progression (normal < cervical intraepithelial neoplasia, CIN < cancer) (Kruskal-Wallis test, p < 0.0001). From the data in GSE27678, similar results (normal < low-grade squamous intraepithelial lesions, LSILs < high-grade squamous intraepithelial lesions, HSILs ≤ cancer) were obtained (Kruskal-Wallis test, p < 0.001). From the data in GSE75132, the entropy rate tended to be higher in the HPV-persistent groups than the HPV-negative group. The group that was destined to progress to CIN 3 or higher had a tendency to have a higher entropy rate than the HPV16-positive without progression group. In conclusion, signaling entropy was suggested to be different for different lesion statuses and could be a useful biomarker for predicting the development of cervical intraepithelial neoplasia.

  14. Intracellular signaling entropy can be a biomarker for predicting the development of cervical intraepithelial neoplasia

    PubMed Central

    Sato, Masakazu; Adachi, Katsuyuki; Fujimoto, Asaha; Yoshida, Mitsuyo; Nakamura, Hiroe; Nishida, Haruka; Inoue, Tomoko; Taguchi, Ayumi; Ogishima, Juri; Eguchi, Satoko; Yamashita, Aki; Tomio, Kensuke; Wada-Hiraike, Osamu; Oda, Katsutoshi; Nagamatsu, Takeshi; Osuga, Yutaka; Fujii, Tomoyuki

    2017-01-01

    While the mortality rates for cervical cancer have been drastically reduced after the introduction of the Pap smear test, it still is one of the leading causes of death in women worldwide. Additionally, studies that appropriately evaluate the risk of developing cervical lesions are needed. Therefore, we investigated whether intracellular signaling entropy, which is measured with microarray data, could be useful for predicting the risks of developing cervical lesions. We used three datasets, GSE63514 (histology), GSE27678 (cytology) and GSE75132 (cytology, a prospective study). From the data in GSE63514, the entropy rate was significantly increased with disease progression (normal < cervical intraepithelial neoplasia, CIN < cancer) (Kruskal-Wallis test, p < 0.0001). From the data in GSE27678, similar results (normal < low-grade squamous intraepithelial lesions, LSILs < high-grade squamous intraepithelial lesions, HSILs ≤ cancer) were obtained (Kruskal-Wallis test, p < 0.001). From the data in GSE75132, the entropy rate tended to be higher in the HPV-persistent groups than the HPV-negative group. The group that was destined to progress to CIN 3 or higher had a tendency to have a higher entropy rate than the HPV16-positive without progression group. In conclusion, signaling entropy was suggested to be different for different lesion statuses and could be a useful biomarker for predicting the development of cervical intraepithelial neoplasia. PMID:28453530

  15. Self-organization principles of intracellular pattern formation.

    PubMed

    Halatek, J; Brauns, F; Frey, E

    2018-05-26

    Dynamic patterning of specific proteins is essential for the spatio-temporal regulation of many important intracellular processes in prokaryotes, eukaryotes and multicellular organisms. The emergence of patterns generated by interactions of diffusing proteins is a paradigmatic example for self-organization. In this article, we review quantitative models for intracellular Min protein patterns in Escherichia coli , Cdc42 polarization in Saccharomyces cerevisiae and the bipolar PAR protein patterns found in Caenorhabditis elegans By analysing the molecular processes driving these systems we derive a theoretical perspective on general principles underlying self-organized pattern formation. We argue that intracellular pattern formation is not captured by concepts such as 'activators', 'inhibitors' or 'substrate depletion'. Instead, intracellular pattern formation is based on the redistribution of proteins by cytosolic diffusion, and the cycling of proteins between distinct conformational states. Therefore, mass-conserving reaction-diffusion equations provide the most appropriate framework to study intracellular pattern formation. We conclude that directed transport, e.g. cytosolic diffusion along an actively maintained cytosolic gradient, is the key process underlying pattern formation. Thus the basic principle of self-organization is the establishment and maintenance of directed transport by intracellular protein dynamics.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Authors.

  16. Intracellular TLR22 acts as an inflammation equalizer via suppression of NF-κB and selective activation of MAPK pathway in fish.

    PubMed

    Ding, Xu; Liang, Yaosi; Peng, Wan; Li, Ruozhu; Lin, Haoran; Zhang, Yong; Lu, Danqi

    2018-01-01

    TLR22, a typical member of the fish-specific TLRs, is a crucial sensor in virally triggered innate immune signalling retained from natural selection. To elucidate the role of the TLR22-specific signalling cascade mechanism, we provide evidence that the double-stranded (ds) RNA-sensor TLR22 positively regulates the ERK pathway and negatively regulates the JNK, p38 MAP kinase and NF-κB pathway. Here, we show that TLR22 restrains NF-κB activation and IFN (interferon) β and AP-1 (activator protein-1) promoter binding (impairing "primary response" genes (TNF and IL-1)), induces "secondary response" genes (IL-12 and IL-6) and mediates the irregular expression of inflammatory genes. Therefore, TLR22 promotes ERK phosphorylation but impairs the JNK and p38 MAP kinases and IκB phosphorylation. Additionally, TLR22 controls the excessive generation of reactive oxygen species (ROS) to avoid damaging the organism. The specific kinetics of TLR22 depends on its distinct cellular localization. We demonstrate that TLR22 is an intracellular receptor localized in the endosome, and the TLR22-TIR domain is the functional structure inducing the signalling cascade post-viral replication in the body. As mentioned above, our data reveal a novel mechanism whereby TLR22-induced positive adjustment and negative regulation evolved independently to avoid harmful and inappropriate inflammatory responses. Copyright © 2017. Published by Elsevier Ltd.

  17. Plasmodesmata in integrated cell signalling: insights from development and environmental signals and stresses

    PubMed Central

    Sager, Ross; Lee, Jung-Youn

    2014-01-01

    To survive as sedentary organisms built of immobile cells, plants require an effective intercellular communication system, both locally between neighbouring cells within each tissue and systemically across distantly located organs. Such a system enables cells to coordinate their intracellular activities and produce concerted responses to internal and external stimuli. Plasmodesmata, membrane-lined intercellular channels, are essential for direct cell-to-cell communication involving exchange of diffusible factors, including signalling and information molecules. Recent advances corroborate that plasmodesmata are not passive but rather highly dynamic channels, in that their density in the cell walls and gating activities are tightly linked to developmental and physiological processes. Moreover, it is becoming clear that specific hormonal signalling pathways play crucial roles in relaying primary cellular signals to plasmodesmata. In this review, we examine a number of studies in which plasmodesmal structure, occurrence, and/or permeability responses are found to be altered upon given cellular or environmental signals, and discuss common themes illustrating how plasmodesmal regulation is integrated into specific cellular signalling pathways. PMID:25262225

  18. Disruption of glycolytic flux is a signal for inflammasome signaling and pyroptotic cell death

    PubMed Central

    Sanman, Laura E; Qian, Yu; Eisele, Nicholas A; Ng, Tessie M; van der Linden, Wouter A; Monack, Denise M; Weerapana, Eranthie; Bogyo, Matthew

    2016-01-01

    When innate immune cells such as macrophages are challenged with environmental stresses or infection by pathogens, they trigger the rapid assembly of multi-protein complexes called inflammasomes that are responsible for initiating pro-inflammatory responses and a form of cell death termed pyroptosis. We describe here the identification of an intracellular trigger of NLRP3-mediated inflammatory signaling, IL-1β production and pyroptosis in primed murine bone marrow-derived macrophages that is mediated by the disruption of glycolytic flux. This signal results from a drop of NADH levels and induction of mitochondrial ROS production and can be rescued by addition of products that restore NADH production. This signal is also important for host-cell response to the intracellular pathogen Salmonella typhimurium, which can disrupt metabolism by uptake of host-cell glucose. These results reveal an important inflammatory signaling network used by immune cells to sense metabolic dysfunction or infection by intracellular pathogens. DOI: http://dx.doi.org/10.7554/eLife.13663.001 PMID:27011353

  19. Connection between integrins and cell activation in rat adrenal glomerulosa cells: a role for Arg-Gly-Asp peptide in the activation of the p42/p44(mapk) pathway and intracellular calcium.

    PubMed

    Campbell, Shirley; Otis, Melissa; Côté, Mylène; Gallo-Payet, Nicole; Payet, Marcel Daniel

    2003-04-01

    Integrins are responsible for adhesion and activation of several intracellular cascades. The present study was aimed at determining whether the interaction between fibronectin and integrins could generate pathways involved in physiological functions of rat adrenal glomerulosa cells. Immunofluorescence studies and adhesion assays showed that fibronectin was the best matrix in promoting the formation of focal adhesion. Binding of glomerulosa cells to fibronectin, but not to collagen I or poly-L-lysine, involved the integrin-binding sequence Arg-Gly-Asp (RGD). Activation of glomerulosa cells with Arg-Gly-Asp-Ser (RGDS) induced an increase in [Ca(2+)](i), whereas fibronectin triggered a release of Ca(2+) from InsP(3)-sensitive Ca(2+) stores. Aldosterone secretion induced by ACTH, angiotensin II, and RGDS and proliferation were improved on fibronectin, compared with poly-L-lysine. The RGDS peptide induced a transient increase in the activity of the p42/p44(mapk), independent of phosphatidylinositol-3 kinase and protein kinase C. Integrins alpha(5) and alpha(V) as well as their fibronectin receptor partners beta(1) and beta(3), were identified. These results suggest that in rat adrenal glomerulosa cells, binding of the alpha(5)beta(1), alpha(v)beta(1), or alpha(v)beta(3) integrins to fibronectin is involved in the generation of two important signaling events, increase in intracellular calcium, and activation of the p42/p44(mapk) cascade, leading to cell proliferation and aldosterone secretion.

  20. Tripeptidyl Peptidase II Regulates Sperm Function by Modulating Intracellular Ca2+ Stores via the Ryanodine Receptor

    PubMed Central

    Zhou, Yuchuan; Ru, Yanfei; Wang, Chunmei; Wang, Shoulin; Zhou, Zuomin; Zhang, Yonglian

    2013-01-01

    Recent studies have identified Ca2+ stores in sperm cells; however, it is not clear whether these Ca2+ stores are functional and how they are mobilized. Here, in vitro and in vivo, we determined that tripeptidyl peptidase II antagonists strongly activated the cAMP/PKA signaling pathway that drives sperm capacitation-associated protein tyrosine phosphorylation. We demonstrated that in the absence of Ca2+, TPIII antagonists elevated the intracellular Ca2+ levels in sperm, resulting in a marked improvement in sperm movement, capacitation, acrosome reaction, and the in vitro fertilizing ability. This antagonist-induced release of intracellular Ca2+ could be blocked by the inhibitors of ryanodine receptors (RyRs) which are the main intracellular Ca2+ channels responsible for releasing stored Ca2+. Consistent with these results, indirect immunofluorescence assay using anti-RyR antibodies further validated the presence of RyR3 in the acrosomal region of mature sperm. Thus, TPPII can regulate sperm maturation by modulating intracellular Ca2+ stores via the type 3 RyR. PMID:23818952

  1. CETSA screening identifies known and novel thymidylate synthase inhibitors and slow intracellular activation of 5-fluorouracil

    PubMed Central

    Almqvist, Helena; Axelsson, Hanna; Jafari, Rozbeh; Dan, Chen; Mateus, André; Haraldsson, Martin; Larsson, Andreas; Molina, Daniel Martinez; Artursson, Per; Lundbäck, Thomas; Nordlund, Pär

    2016-01-01

    Target engagement is a critical factor for therapeutic efficacy. Assessment of compound binding to native target proteins in live cells is therefore highly desirable in all stages of drug discovery. We report here the first compound library screen based on biophysical measurements of intracellular target binding, exemplified by human thymidylate synthase (TS). The screen selected accurately for all the tested known drugs acting on TS. We also identified TS inhibitors with novel chemistry and marketed drugs that were not previously known to target TS, including the DNA methyltransferase inhibitor decitabine. By following the cellular uptake and enzymatic conversion of known drugs we correlated the appearance of active metabolites over time with intracellular target engagement. These data distinguished a much slower activation of 5-fluorouracil when compared with nucleoside-based drugs. The approach establishes efficient means to associate drug uptake and activation with target binding during drug discovery. PMID:27010513

  2. Intracellular Protein Shuttling: A Mechanism Relevant for Myelin Repair in Multiple Sclerosis?

    PubMed Central

    Göttle, Peter; Küry, Patrick

    2015-01-01

    A prominent feature of demyelinating diseases such as multiple sclerosis (MS) is the degeneration and loss of previously established functional myelin sheaths, which results in impaired signal propagation and axonal damage. However, at least in early disease stages, partial replacement of lost oligodendrocytes and thus remyelination occur as a result of resident oligodendroglial precursor cell (OPC) activation. These cells represent a widespread cell population within the adult central nervous system (CNS) that can differentiate into functional myelinating glial cells to restore axonal functions. Nevertheless, the spontaneous remyelination capacity in the adult CNS is inefficient because OPCs often fail to generate new oligodendrocytes due to the lack of stimulatory cues and the presence of inhibitory factors. Recent studies have provided evidence that regulated intracellular protein shuttling is functionally involved in oligodendroglial differentiation and remyelination activities. In this review we shed light on the role of the subcellular localization of differentiation-associated factors within oligodendroglial cells and show that regulation of intracellular localization of regulatory factors represents a crucial process to modulate oligodendroglial maturation and myelin repair in the CNS. PMID:26151843

  3. Decoding the phosphorylation code in Hedgehog signal transduction

    PubMed Central

    Chen, Yongbin; Jiang, Jin

    2013-01-01

    Hedgehog (Hh) signaling plays pivotal roles in embryonic development and adult tissue homeostasis, and its deregulation leads to numerous human disorders including cancer. Binding of Hh to Patched (Ptc), a twelve-transmembrane protein, alleviates its inhibition of Smoothened (Smo), a seven-transmembrane protein related to G-protein-coupled receptors (GPCRs), leading to Smo phosphorylation and activation. Smo acts through intracellular signaling complexes to convert the latent transcription factor Cubitus interruptus (Ci)/Gli from a truncated repressor to a full-length activator, leading to derepression/activation of Hh target genes. Increasing evidence suggests that phosphorylation participates in almost every step in the signal relay from Smo to Ci/Gli, and that differential phosphorylation of several key pathway components may be crucial for translating the Hh morphogen gradient into graded pathway activities. In this review, we focus on the multifaceted roles that phosphorylation plays in Hh signal transduction, and discuss the conservation and difference between Drosophila and mammalian Hh signaling mechanisms. PMID:23337587

  4. Structure and signalling functions of C3 receptors on human B cells.

    PubMed

    Frade, R

    1990-03-01

    CR1 (C3b receptor) and CR2 (C3d/EBV receptor) are two C3 receptors expressed on B lymphocytes. CR1 and CR2 have structural similarities and their cross-linking at the B cell surface by antibodies or specific ligands in multimeric forms induce B cell activation. However, activation of human B cells through cell surface interactions or by intracellular protein kinase C activators leads to phosphorylation of CR2 but not CR1. CR2 is phosphorylated on serine and tyrosine residues. Analysis of post-membrane events associated with CR2 revealed intracellular interactions of CR2 with p53, a plasma membrane anti-oncogene-encoded phosphoprotein, and with p120, a nuclear phosphoribonucleoprotein. These intracellular interactions probably represent important steps in the signalling functions of CR2.

  5. Dandelion Root Extract Induces Intracellular Ca2+ Increases in HEK293 Cells

    PubMed Central

    Russo, Daniela; Svelto, Maria; Carmosino, Monica

    2018-01-01

    Dandelion (Taraxacum officinale Weber ex F.H.Wigg.) has been used for centuries as an ethnomedical remedy. Nonetheless, the extensive use of different kinds of dandelion extracts and preparations is based on empirical findings. Some of the tissue-specific effects reported for diverse dandelion extracts may result from their action on intracellular signaling cascades. Therefore, the aim of this study was to evaluate the effects of an ethanolic dandelion root extract (DRE) on Ca2+ signaling in human embryonic kidney (HEK) 293 cells. The cytotoxicity of increasing doses of crude DRE was determined by the Calcein viability assay. Fura-2 and the fluorescence resonance energy transfer (FRET)-based probe ERD1 were used to measure cytoplasmic and intraluminal endoplasmic reticulum (ER) Ca2+ levels, respectively. Furthermore, a green fluorescent protein (GFP)-based probe was used to monitor phospholipase C (PLC) activation (pleckstrin homology [PH]–PLCδ–GFP). DRE (10–400 µg/mL) exposure, in the presence of external Ca2+, dose-dependently increased intracellular Ca2+ levels. The DRE-induced Ca2+ increase was significantly reduced in the absence of extracellular Ca2+. In addition, DRE caused a significant Ca2+ release from the ER of intact cells and a concomitant translocation of PH–PLCδ–GFP. In conclusion, DRE directly activates both the release of Ca2+ from internal stores and a significant Ca2+ influx at the plasma membrane. The resulting high Ca2+ levels within the cell seem to directly stimulate PLC activity. PMID:29642457

  6. The intracellular delivery of TAT-aequorin reveals calcium-mediated sensing of environmental and symbiotic signals by the arbuscular mycorrhizal fungus Gigaspora margarita.

    PubMed

    Moscatiello, Roberto; Sello, Simone; Novero, Mara; Negro, Alessandro; Bonfante, Paola; Navazio, Lorella

    2014-08-01

    Arbuscular mycorrhiza (AM) is an ecologically relevant symbiosis between most land plants and Glomeromycota fungi. The peculiar traits of AM fungi have so far limited traditional approaches such as genetic transformation. The aim of this work was to investigate whether the protein transduction domain of the HIV-1 transactivator of transcription (TAT) protein, previously shown to act as a potent nanocarrier for macromolecule delivery in both animal and plant cells, may translocate protein cargoes into AM fungi. We evaluated the internalization into germinated spores of Gigaspora margarita of two recombinant TAT fusion proteins consisting of either a fluorescent (GFP) or a luminescent (aequorin) reporter linked to the TAT peptide. Both TAT-fused proteins were found to enter AM fungal mycelia after a short incubation period (5-10 min). Ca2+ measurements in G. margarita mycelia pre-incubated with TAT-aequorin demonstrated the occurrence of changes in the intracellular free Ca2+ concentration in response to relevant stimuli, such as touch, cold, salinity, and strigolactones, symbiosis-related plant signals. These data indicate that the cell-penetrating properties of the TAT peptide can be used as an effective strategy for intracellularly delivering proteins of interest and shed new light on Ca2+ homeostasis and signalling in AM fungi. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  7. High Throughput, Real-time, Dual-readout Testing of Intracellular Antimicrobial Activity and Eukaryotic Cell Cytotoxicity

    PubMed Central

    Chiaraviglio, Lucius; Kang, Yoon-Suk; Kirby, James E.

    2016-01-01

    Traditional measures of intracellular antimicrobial activity and eukaryotic cell cytotoxicity rely on endpoint assays. Such endpoint assays require several additional experimental steps prior to readout, such as cell lysis, colony forming unit determination, or reagent addition. When performing thousands of assays, for example, during high-throughput screening, the downstream effort required for these types of assays is considerable. Therefore, to facilitate high-throughput antimicrobial discovery, we developed a real-time assay to simultaneously identify inhibitors of intracellular bacterial growth and assess eukaryotic cell cytotoxicity. Specifically, real-time intracellular bacterial growth detection was enabled by marking bacterial screening strains with either a bacterial lux operon (1st generation assay) or fluorescent protein reporters (2nd generation, orthogonal assay). A non-toxic, cell membrane-impermeant, nucleic acid-binding dye was also added during initial infection of macrophages. These dyes are excluded from viable cells. However, non-viable host cells lose membrane integrity permitting entry and fluorescent labeling of nuclear DNA (deoxyribonucleic acid). Notably, DNA binding is associated with a large increase in fluorescent quantum yield that provides a solution-based readout of host cell death. We have used this combined assay to perform a high-throughput screen in microplate format, and to assess intracellular growth and cytotoxicity by microscopy. Notably, antimicrobials may demonstrate synergy in which the combined effect of two or more antimicrobials when applied together is greater than when applied separately. Testing for in vitro synergy against intracellular pathogens is normally a prodigious task as combinatorial permutations of antibiotics at different concentrations must be assessed. However, we found that our real-time assay combined with automated, digital dispensing technology permitted facile synergy testing. Using these

  8. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation

    PubMed Central

    Dzamukova, Maria R.; Naumenko, Ekaterina A.; Lvov, Yuri M.; Fakhrullin, Rawil F.

    2015-01-01

    Fabrication of stimuli-triggered drug delivery vehicle s is an important milestone in treating cancer. Here we demonstrate the selective anticancer drug delivery into human cells with biocompatible 50-nm diameter halloysite nanotube carriers. Physically-adsorbed dextrin end stoppers secure the intercellular release of brilliant green. Drug-loaded nanotubes penetrate through the cellular membranes and their uptake efficiency depends on the cells growth rate. Intercellular glycosyl hydrolases-mediated decomposition of the dextrin tube-end stoppers triggers the release of the lumen-loaded brilliant green, which allowed for preferable elimination of human lung carcinoma cells (А549) as compared with hepatoma cells (Hep3b). The enzyme-activated intracellular delivery of brilliant green using dextrin-coated halloysite nanotubes is a promising platform for anticancer treatment. PMID:25976444

  9. Implication of TLR- but Not of NOD2-Signaling Pathways in Dendritic Cell Activation by Group B Streptococcus Serotypes III and V

    PubMed Central

    Lemire, Paul; Roy, David; Fittipaldi, Nahuel; Okura, Masatoshi; Takamatsu, Daisuke; Bergman, Eugenia; Segura, Mariela

    2014-01-01

    Group B Streptococcus (GBS) is an important agent of life-threatening invasive infection. It has been previously shown that encapsulated type III GBS is easily internalized by dendritic cells (DCs), and that this internalization had an impact on cytokine production. The receptors underlying these processes are poorly characterized. Knowledge on the mechanisms used by type V GBS to activate DCs is minimal. In this work, we investigated the role of Toll-like receptor (TLR)/MyD88 signaling pathway, the particular involvement of TLR2, and that of the intracellular sensing receptor NOD2 in the activation of DCs by types III and V GBS. The role of capsular polysaccharide (CPS, one of the most important GBS virulence factors) in bacterial-DC interactions was evaluated using non-encapsulated mutants. Despite differences in the role of CPS between types III and V GBS in bacterial internalization and intracellular survival, no major differences were observed in their capacity to modulate release of cytokines by DC. For both serotypes, CPS had a minor role in this response. Production of cytokines by DCs was shown to strongly rely on MyD88-dependent signaling pathways, suggesting that DCs recognize GBS and become activated mostly through TLR signaling. Yet, GBS-infected TLR2-/- DCs only showed a partial reduction in the production of IL-6 and CXCL1 compared to control DCs. Surprisingly, CXCL10 release by type III or type V GBS-infected DCs was MyD88-independent. No differences in DC activation were observed between NOD2-/- and control DCs. These results demonstrate the involvement of various receptors and the complexity of the cytokine production pathways activated by GBS upon DC infection. PMID:25436906

  10. Spatial separation of two different pathways accounting for the generation of calcium signals in astrocytes.

    PubMed

    Oschmann, Franziska; Mergenthaler, Konstantin; Jungnickel, Evelyn; Obermayer, Klaus

    2017-02-01

    Astrocytes integrate and process synaptic information and exhibit calcium (Ca2+) signals in response to incoming information from neighboring synapses. The generation of Ca2+ signals is mostly attributed to Ca2+ release from internal Ca2+ stores evoked by an elevated metabotropic glutamate receptor (mGluR) activity. Different experimental results associated the generation of Ca2+ signals to the activity of the glutamate transporter (GluT). The GluT itself does not influence the intracellular Ca2+ concentration, but it indirectly activates Ca2+ entry over the membrane. A closer look into Ca2+ signaling in different astrocytic compartments revealed a spatial separation of those two pathways. Ca2+ signals in the soma are mainly generated by Ca2+ release from internal Ca2+ stores (mGluR-dependent pathway). In astrocytic compartments close to the synapse most Ca2+ signals are evoked by Ca2+ entry over the plasma membrane (GluT-dependent pathway). This assumption is supported by the finding, that the volume ratio between the internal Ca2+ store and the intracellular space decreases from the soma towards the synapse. We extended a model for mGluR-dependent Ca2+ signals in astrocytes with the GluT-dependent pathway. Additionally, we included the volume ratio between the internal Ca2+ store and the intracellular compartment into the model in order to analyze Ca2+ signals either in the soma or close to the synapse. Our model results confirm the spatial separation of the mGluR- and GluT-dependent pathways along the astrocytic process. The model allows to study the binary Ca2+ response during a block of either of both pathways. Moreover, the model contributes to a better understanding of the impact of channel densities on the interaction of both pathways and on the Ca2+ signal.

  11. Drosophila VAMP7 regulates Wingless intracellular trafficking.

    PubMed

    Gao, Han; He, Fang; Lin, Xinhua; Wu, Yihui

    2017-01-01

    Drosophila Wingless (Wg) is a morphogen that determines cell fate during development. Previous studies have shown that endocytic pathways regulate Wg trafficking and signaling. Here, we showed that loss of vamp7, a gene required for vesicle fusion, dramatically increased Wg levels and decreased Wg signaling. Interestingly, we found that levels of Dally-like (Dlp), a glypican that can interact with Wg to suppress Wg signaling at the dorsoventral boundary of the Drosophila wing, were also increased in vamp7 mutant cells. Moreover, Wg puncta in Rab4-dependent recycling endosomes were Dlp positive. We hypothesize that VAMP7 is required for Wg intracellular trafficking and the accumulation of Wg in Rab4-dependent recycling endosomes might affect Wg signaling.

  12. Somatostatin/somatostatin receptor signalling: phosphotyrosine phosphatases.

    PubMed

    Florio, Tullio

    2008-05-14

    Activation of phosphotyrosine phosphatases (PTPs) by somatostatin receptor (SSTR) represents one of the main intracellular mechanisms involved in the antiproliferative effect of somatostatin (SST) and analogues. Since their molecular cloning, the role of PTPs is emerging as a major regulator of different cell functions including cell proliferation, differentiation, cell to cell interactions, cell matrix adhesion and cell migration. It was demonstrated that PTPs possess high substrate specificity and their activity is tightly regulated. Importantly, different G protein-coupled receptors transduce their biological activities through PTPs. PTPs were identified as down-stream effectors of SSTRs to transduce antiproliferative signals, and so far, three family members (SHP-1, SHP-2 and DEP-1/PTPeta) have been identified as selective SSTR intracellular effectors. Here, the molecular mechanisms leading SSTRs to regulate PTP activity are discussed, focusing on recent data showing a close interplay between PTPs and tyrosine kinases to transduce tumoral cell growth arrest following SST analogs administration.

  13. Coordinate Intracellular Expression of Salmonella Genes Induced during Infection

    PubMed Central

    Heithoff, Douglas M.; Conner, Christopher P.; Hentschel, Ute; Govantes, Fernando; Hanna, Philip C.; Mahan, Michael J.

    1999-01-01

    Salmonella typhimurium in vivo-induced (ivi) genes were grouped by their coordinate behavior in response to a wide variety of environmental and genetic signals, including pH, Mg2+, Fe2+, and PhoPQ. All of the seven ivi fusions that are induced by both low pH and low Mg2+ (e.g., iviVI-A) are activated by the PhoPQ regulatory system. Iron-responsive ivi fusions include those induced under iron limitation (e.g., entF) as well as one induced by iron excess but only in the absence of PhoP (pdu). Intracellular expression studies showed that each of the pH- and Mg2+-responsive fusions is induced upon entry into and growth within three distinct mammalian cell lines: RAW 264.7 murine macrophages and two cultured human epithelial cell lines: HEp-2 and Henle-407. Each ivi fusion has a characteristic level of induction consistent within all three cell types, suggesting that this class of coordinately expressed ivi genes responds to general intracellular signals that are present both in initial and in progressive stages of infection and may reflect their responses to similar vacuolar microenvironments in these cell types. Investigation of ivi expression patterns reveals not only the inherent versatility of pathogens to express a given gene(s) at various host sites but also the ability to modify their expression within the context of different animal hosts, tissues, cell types, or subcellular compartments. PMID:9922242

  14. Nano hydroxyapatite-blasted titanium surface affects pre-osteoblast morphology by modulating critical intracellular pathways.

    PubMed

    Bezerra, Fábio; Ferreira, Marcel R; Fontes, Giselle N; da Costa Fernandes, Célio Jr; Andia, Denise C; Cruz, Nilson C; da Silva, Rodrigo A; Zambuzzi, Willian F

    2017-08-01

    Although, intracellular signaling pathways are proposed to predict the quality of cell-surface relationship, this study addressed pre-osteoblast behavior in response to nano hydroxyapatite (HA)-blasted titanium (Ti) surface by exploring critical intracellular pathways and pre-osteoblast morphological change. Physicochemical properties were evaluated by atomic force microscopy (AFM) and wettability considering water contact angle of three differently texturized Ti surfaces: Machined (Mac), Dual acid-etching (DAE), and nano hydroxyapatite-blasted (nHA). The results revealed critical differences in surface topography, impacting the water contact angle and later the osteoblast performance. In order to evaluate the effect of those topographical characteristics on biological responses, we have seeded pre-osteoblast cells on the Ti discs for up to 4 h and subjected the cultures to biological analysis. First, we have observed pre-osteoblasts morphological changes resulting from the interaction with the Ti texturized surfaces whereas the cells cultured on nHA presented a more advanced spreading process when compared with the cells cultured on the other surfaces. These results argued us for analyzing the molecular machinery and thus, we have shown that nHA promoted a lower Bax/Bcl2 ratio, suggesting an interesting anti-apoptotic effect, maybe explained by the fact that HA is a natural element present in bone composition. Thereafter, we investigated the potential effect of those surfaces on promoting pre-osteoblast adhesion and survival signaling by performing crystal violet and immunoblotting approaches, respectively. Our results showed that nHA promoted a higher pre-osteoblast adhesion supported by up-modulating FAK and Src activations, both signaling transducers involved during eukaryotic cell adhesion. Also, we have shown Ras-Erk stimulation by the all evaluated surfaces. Finally, we showed that all Ti-texturing surfaces were able to promote osteoblast differentiation

  15. BCR mediated signal transduction in immature and mature B cells.

    PubMed

    Koncz, Gábor; Bodor, Csaba; Kövesdi, Dorottya; Gáti, Róbert; Sármay, Gabriella

    2002-06-03

    Ligation of B cell receptors (BCR) on immature B cells may induce apoptosis, while in mature B cells it stimulates cell activation and growth. The signaling pathway regulating the differential functional response, death or survival of the B cell is not fully characterized. We have tested the intracellular signaling requirement of these processes using B cells isolated from the spleen of irradiated auto-reconstituted (transitional immature B cells) and untreated mice (mature B cells), respectively. We compared the BCR induced intracellular [Ca2+] transient, protein tyrosine phosphorylation and ERK phosphorylation, furthermore, the activation of Elk-1 and CREB transcription factors. The BCR induced rise of intracellular [Ca2+] did not significantly differ in the two populations, only a slight difference in the late phase of the response was observed. Immature B cells responded with a maximum tyrosine phosphorylation to a five times lower dose of anti-IgM compared to the mature population. Most importantly, we have found a significant difference in the tyrosine phosphorylation of the Gab family adaptor proteins, Gab1/2. In contrast to mature B cells, crosslinking of BCR on immature B cells did not induce tyrosine phosphorylation of Gab2, thus the Gab2-organized signal amplification complex could not be produced. Furthermore, we detected a significant difference in the kinetics of BCR induced ERK, Elk-1 and CREB phosphorylation. In immature B cells, ERK was transiently phosphorylated, ceasing after 120 min, while in mature cells, ERK phosphorylation was sustained. Elk-1 and CREB activation was also transient in immature B cells, followed the kinetics of ERK phosphorylation. The lack of sustained Erk1/2 activation suppresses the transcription factors necessary for the proliferation signal. Since ERK is regulated by the phosphorylated Gab1/2, these data demonstrate that BCR triggered phosphorylation and signal amplification of Gab1/2 is a critical step in a life or death

  16. IP{sub 3}-dependent intracellular Ca{sup 2+} release is required for cAMP-induced c-fos expression in hippocampal neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wenting; Tingare, Asmita; Ng, David Chi-Heng

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer cAMP-induced c-fos expression in hippocampal neurons requires a submembraneous Ca{sup 2+} pool. Black-Right-Pointing-Pointer The submembraneous Ca{sup 2+} pool derives from intracellular ER stores. Black-Right-Pointing-Pointer Expression of IP{sub 3}-metabolizing enzymes inhibits cAMP-induced c-fos expression. Black-Right-Pointing-Pointer SRE-mediated and CRE-mediated gene expression is sensitive to IP{sub 3}-metabolizing enzymes. Black-Right-Pointing-Pointer Intracellular Ca{sup 2+} release is required for cAMP-induced nuclear translocation of TORC1. -- Abstract: Ca{sup 2+} and cAMP are widely used in concert by neurons to relay signals from the synapse to the nucleus, where synaptic activity modulates gene expression required for synaptic plasticity. Neurons utilize different transcriptional regulators to integrate informationmore » encoded in the spatiotemporal dynamics and magnitude of Ca{sup 2+} and cAMP signals, including some that are Ca{sup 2+}-responsive, some that are cAMP-responsive and some that detect coincident Ca{sup 2+} and cAMP signals. Because Ca{sup 2+} and cAMP can influence each other's amplitude and spatiotemporal characteristics, we investigated how cAMP acts to regulate gene expression when increases in intracellular Ca{sup 2+} are buffered. We show here that cAMP-mobilizing stimuli are unable to induce expression of the immediate early gene c-fos in hippocampal neurons in the presence of the intracellular Ca{sup 2+} buffer BAPTA-AM. Expression of enzymes that attenuate intracellular IP{sub 3} levels also inhibited cAMP-dependent c-fos induction. Synaptic activity induces c-fos transcription through two cis regulatory DNA elements - the CRE and the SRE. We show here that in response to cAMP both CRE-mediated and SRE-mediated induction of a luciferase reporter gene is attenuated by IP{sub 3} metabolizing enzymes. Furthermore, cAMP-induced nuclear translocation of the CREB coactivator TORC1 was

  17. Inhibition of myostatin signaling through Notch activation following acute resistance exercise.

    PubMed

    MacKenzie, Matthew G; Hamilton, David Lee; Pepin, Mark; Patton, Amy; Baar, Keith

    2013-01-01

    Myostatin is a TGFβ family member and negative regulator of muscle size. Due to the complexity of the molecular pathway between myostatin mRNA/protein and changes in transcription, it has been difficult to understand whether myostatin plays a role in resistance exercise-induced skeletal muscle hypertrophy. To circumvent this problem, we determined the expression of a unique myostatin target gene, Mighty, following resistance exercise. Mighty mRNA increased by 6 h (82.9 ± 24.21%) and remained high out to 48 h (56.5 ± 19.67%) after resistance exercise. Further examination of the soleus, plantaris and tibialis anterior muscles showed that the change in Mighty mRNA at 6 h correlated with the increase in muscle size associated with this protocol (R(2) = 0.9996). The increase in Mighty mRNA occurred both independent of Smad2 phosphorylation and in spite of an increase in myostatin mRNA (341.8 ± 147.14% at 3 h). The myostatin inhibitor SKI remained unchanged. However, activated Notch, another potential inhibitor of TGFβ signaling, increased immediately following resistance exercise (83 ± 11.2%) and stayed elevated out to 6 h (78 ± 16.6%). Electroportion of the Notch intracellular domain into the tibialis anterior resulted in an increase in Mighty mRNA (63 ± 13.4%) that was equivalent to the canonical Notch target HES-1 (94.4 ± 7.32%). These data suggest that acute resistance exercise decreases myostatin signaling through the activation of the TGFβ inhibitor Notch resulting in a decrease in myostatin transcriptional activity that correlates well with muscle hypertrophy.

  18. Endocannabinoid signaling enhances visual responses through modulation of intracellular chloride levels in retinal ganglion cells

    PubMed Central

    Miraucourt, Loïs S; Tsui, Jennifer; Gobert, Delphine; Desjardins, Jean-François; Schohl, Anne; Sild, Mari; Spratt, Perry; Castonguay, Annie; De Koninck, Yves; Marsh-Armstrong, Nicholas; Wiseman, Paul W; Ruthazer, Edward S

    2016-01-01

    Type 1 cannabinoid receptors (CB1Rs) are widely expressed in the vertebrate retina, but the role of endocannabinoids in vision is not fully understood. Here, we identified a novel mechanism underlying a CB1R-mediated increase in retinal ganglion cell (RGC) intrinsic excitability acting through AMPK-dependent inhibition of NKCC1 activity. Clomeleon imaging and patch clamp recordings revealed that inhibition of NKCC1 downstream of CB1R activation reduces intracellular Cl− levels in RGCs, hyperpolarizing the resting membrane potential. We confirmed that such hyperpolarization enhances RGC action potential firing in response to subsequent depolarization, consistent with the increased intrinsic excitability of RGCs observed with CB1R activation. Using a dot avoidance assay in freely swimming Xenopus tadpoles, we demonstrate that CB1R activation markedly improves visual contrast sensitivity under low-light conditions. These results highlight a role for endocannabinoids in vision and present a novel mechanism for cannabinoid modulation of neuronal activity through Cl− regulation. DOI: http://dx.doi.org/10.7554/eLife.15932.001 PMID:27501334

  19. Insecticide resistance and intracellular proteases.

    PubMed

    Wilkins, Richard M

    2017-12-01

    Pesticide resistance is an example of evolution in action with mechanisms of resistance arising from mutations or increased expression of intrinsic genes. Intracellular proteases have a key role in maintaining healthy cells and in responding to stressors such as pesticides. Insecticide-resistant insects have constitutively elevated intracellular protease activity compared to corresponding susceptible strains. This increase was shown for some cases originally through biochemical enzyme studies and subsequently putatively by transcriptomics and proteomics methods. Upregulation and expression of proteases have been characterised in resistant strains of some insect species, including mosquitoes. This increase in proteolysis results in more degradation products (amino acids) of intracellular proteins. These may be utilised in the resistant strain to better protect the cell from stress. There are changes in insect intracellular proteases shortly after insecticide exposure, suggesting a role in stress response. The use of protease and proteasome inhibitors or peptide mimetics as synergists with improved application techniques and through protease gene knockdown using RNA interference (possibly expressed in crop plants) may be potential pest management strategies, in situations where elevated intracellular proteases are relevant. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Activation of IGF-1 and insulin signaling pathways ameliorate mitochondrial function and energy metabolism in Huntington's Disease human lymphoblasts.

    PubMed

    Naia, Luana; Ferreira, I Luísa; Cunha-Oliveira, Teresa; Duarte, Ana I; Ribeiro, Márcio; Rosenstock, Tatiana R; Laço, Mário N; Ribeiro, Maria J; Oliveira, Catarina R; Saudou, Frédéric; Humbert, Sandrine; Rego, A Cristina

    2015-02-01

    Huntington's disease (HD) is an inherited neurodegenerative disease caused by a polyglutamine repeat expansion in the huntingtin protein. Mitochondrial dysfunction associated with energy failure plays an important role in this untreated pathology. In the present work, we used lymphoblasts obtained from HD patients or unaffected parentally related individuals to study the protective role of insulin-like growth factor 1 (IGF-1) versus insulin (at low nM) on signaling and metabolic and mitochondrial functions. Deregulation of intracellular signaling pathways linked to activation of insulin and IGF-1 receptors (IR,IGF-1R), Akt, and ERK was largely restored by IGF-1 and, at a less extent, by insulin in HD human lymphoblasts. Importantly, both neurotrophic factors stimulated huntingtin phosphorylation at Ser421 in HD cells. IGF-1 and insulin also rescued energy levels in HD peripheral cells, as evaluated by increased ATP and phosphocreatine, and decreased lactate levels. Moreover, IGF-1 effectively ameliorated O2 consumption and mitochondrial membrane potential (Δψm) in HD lymphoblasts, which occurred concomitantly with increased levels of cytochrome c. Indeed, constitutive phosphorylation of huntingtin was able to restore the Δψm in lymphoblasts expressing an abnormal expansion of polyglutamines. HD lymphoblasts further exhibited increased intracellular Ca(2+) levels before and after exposure to hydrogen peroxide (H2O2), and decreased mitochondrial Ca(2+) accumulation, being the later recovered by IGF-1 and insulin in HD lymphoblasts pre-exposed to H2O2. In summary, the data support an important role for IR/IGF-1R mediated activation of signaling pathways and improved mitochondrial and metabolic function in HD human lymphoblasts.

  1. Non-genomic oestrogen receptor signal in B lymphocytes: An approach towards therapeutic interventions for infection, autoimmunity and cancer.

    PubMed

    Seto, Karsen; Hoang, Minh; Santos, Thaddeus; Bandyopadhyay, Mausumi; Kindy, Mark S; Dasgupta, Subhajit

    2016-07-01

    The non-genomic membrane bound oestrogen receptor (mER) regulates intracellular signals through receptor-ligand interactions. The mER, along with G-protein coupled oestrogen receptor GPR 30 (GPER), induces diverse cell signalling pathways in murine lymphocytes. The mER isoform ER-alpha46 has recently been demonstrated in human B and T lymphocytes as an analogue receptor for chemokine CCL18, the signalling events of which are not clearly understood. Ligand-induced mER and GPER signalling events are shared with BCR, CD19 mediated intracellular signalling through phospholipase C, PIP2/IP3/PI3 mediated activation of Akt, MAP kinase, and mTOR. Oestrogen has the ability to induce CD40-mediated activation of B cells. The complete signalling pathways of mER, GPR30 and their interaction with other signals are targeted areas for novel drug development in B cells during infection, autoimmunity and cancer. Therefore, an in depth investigation is critical for determining shared signal outputs during B cell activation. Here, we focus on the mode of action of membrane bound ER in B cells as therapeutic checkpoints. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Fluid shear promotes chondrosarcoma cell invasion by activating matrix metalloproteinase 12 via IGF-2 and VEGF signaling pathways

    PubMed Central

    Wang, P; Chen, S-H; Hung, W-C; Paul, C; Zhu, F; Guan, P-P; Huso, DL; Kontrogianni-Konstantopoulos, A; Konstantopoulos, K

    2015-01-01

    Interstitial fluid flow in and around the tumor tissue is a physiologically relevant mechanical signal that regulates intracellular signaling pathways throughout the tumor. Yet, the effects of interstitial flow and associated fluid shear stress on the tumor cell function have been largely overlooked. Using in vitro bioengineering models in conjunction with molecular cell biology tools, we found that fluid shear (2 dyn/cm2) markedly upregulates matrix metalloproteinase 12 (MMP-12) expression and its activity in human chondrosarcoma cells. MMP-12 expression is induced in human chondrocytes during malignant transformation. However, the signaling pathway regulating MMP-12 expression and its potential role in human chondrosarcoma cell invasion and metastasis have yet to be delineated. We discovered that fluid shear stress induces the synthesis of insulin growth factor-2 (IGF-2) and vascular endothelial growth factor (VEGF) B and D, which in turn transactivate MMP-12 via PI3-K, p38 and JNK signaling pathways. IGF-2-, VEGF-B- or VEGF-D-stimulated chondrosarcoma cells display markedly higher migratory and invasive potentials in vitro, which are blocked by inhibiting MMP-12, PI3-K, p38 or JNK activity. Moreover, recombinant human MMP-12 or MMP-12 overexpression can potentiate chondrosarcoma cell invasion in vitro and the lung colonization in vivo. By reconstructing and delineating the signaling pathway regulating MMP-12 activation, potential therapeutic strategies that interfere with chondrosarcoma cell invasion may be identified. PMID:25435370

  3. Fluid shear promotes chondrosarcoma cell invasion by activating matrix metalloproteinase 12 via IGF-2 and VEGF signaling pathways.

    PubMed

    Wang, P; Chen, S-H; Hung, W-C; Paul, C; Zhu, F; Guan, P-P; Huso, D L; Kontrogianni-Konstantopoulos, A; Konstantopoulos, K

    2015-08-27

    Interstitial fluid flow in and around the tumor tissue is a physiologically relevant mechanical signal that regulates intracellular signaling pathways throughout the tumor. Yet, the effects of interstitial flow and associated fluid shear stress on the tumor cell function have been largely overlooked. Using in vitro bioengineering models in conjunction with molecular cell biology tools, we found that fluid shear (2 dyn/cm(2)) markedly upregulates matrix metalloproteinase 12 (MMP-12) expression and its activity in human chondrosarcoma cells. MMP-12 expression is induced in human chondrocytes during malignant transformation. However, the signaling pathway regulating MMP-12 expression and its potential role in human chondrosarcoma cell invasion and metastasis have yet to be delineated. We discovered that fluid shear stress induces the synthesis of insulin growth factor-2 (IGF-2) and vascular endothelial growth factor (VEGF) B and D, which in turn transactivate MMP-12 via PI3-K, p38 and JNK signaling pathways. IGF-2-, VEGF-B- or VEGF-D-stimulated chondrosarcoma cells display markedly higher migratory and invasive potentials in vitro, which are blocked by inhibiting MMP-12, PI3-K, p38 or JNK activity. Moreover, recombinant human MMP-12 or MMP-12 overexpression can potentiate chondrosarcoma cell invasion in vitro and the lung colonization in vivo. By reconstructing and delineating the signaling pathway regulating MMP-12 activation, potential therapeutic strategies that interfere with chondrosarcoma cell invasion may be identified.

  4. Antisense knockdown of sphingosine kinase 1 in human macrophages inhibits C5a receptor-dependent signal transduction, Ca2+ signals, enzyme release, cytokine production, and chemotaxis.

    PubMed

    Melendez, Alirio J; Ibrahim, Farazeela Bte Mohd

    2004-08-01

    The anaphylatoxin C5a is produced following the activation of the complement system and is associated with a variety of pathologies, including septic shock and adult respiratory distress syndrome, and with immune complex-dependent diseases such as rheumatoid arthritis. C5a has been shown to regulate inflammatory functions by interacting with its receptor, C5aR, which belong to the rhodopsin family of seven-transmembrane GPCRs. However, the intracellular signaling pathways triggered by C5aR on immune-effector cells are not well understood. In this report we present data showing that, in human monocyte-derived macrophages, C5aR uses the intracellular signaling molecule sphingosine kinase (SPHK)1 to trigger various physiological responses. Our data show that C5a rapidly stimulates the generation of sphingosine-1-phosphate, SPHK activity, and membrane translocation of SPHK1. Using an antisense oligonucleotide against SPHK1, we show that knockdown of SPHK1 abolishes the C5a-triggered intracellular Ca(2+) signals, degranulation, cytokine generation, and chemotaxis. Our study shows for the first time that SPHK1 not only plays a key role in the generation and release of proinflammatory mediators triggered by anaphylatoxins from human macrophages but is also involved in the process of immune cell motility, thus pointing out SPHK1 as a potential therapeutic target for the treatment of inflammatory and autoimmune diseases.

  5. Molecular pathways of platelet factor 4/CXCL4 signaling.

    PubMed

    Kasper, Brigitte; Petersen, Frank

    2011-01-01

    The platelet-derived chemokine CXCL4 takes a specific and unique position within the family of chemotactic cytokines. Today, much attention is directed to CXCL4's capacity to inhibit angiogenesis and to promote innate immune responses, which makes this chemokine an interesting tool and target for potential intervention in tumor growth and inflammation. However, such attempts demand a comprehensive knowledge on the molecular mechanisms and pathways underlying the corresponding cellular functions. At least two structurally different receptors, CXCR3-B and a chondroitin sulfate proteoglycan, are capable of binding CXCL4 and to induce a specific intracellular signaling machinery. While signaling mediated by CXCR3-B involves Gs proteins, elevated cAMP levels, and p38 MAP kinase, signaling via proteoglycans appears to be more complicated and varies strongly between the cell types analyzed. In CXCL4-activated neutrophils and monocytes, tyrosine kinases of the Src family and Syk as well as monomeric GTPases and members of the MAP kinase family have been identified as essential intracellular signals. Most intriguingly, signaling does not proceed in a linear sequence of events but in a repeated activation of certain transducing elements like Rac2 or sphingosine kinase 1. Depending on the downstream targets, such biphasic kinetics either leads to a redundant and prolonged activation of a single pathway or to a timely separated initiation of disparate signals and functions. Results of the studies reviewed here help to understand the molecular basis of CXCL4's functional diversity and provide insights into integrated signaling processes in general. Copyright © 2011 Elsevier GmbH. All rights reserved.

  6. Selenium potentiates the anticancer effect of cisplatin against oxidative stress and calcium ion signaling-induced intracellular toxicity in MCF-7 breast cancer cells: involvement of the TRPV1 channel.

    PubMed

    Sakallı Çetin, Esin; Nazıroğlu, Mustafa; Çiğ, Bilal; Övey, İshak Suat; Aslan Koşar, Pınar

    2017-02-01

    In breast cancers, calcium signaling is a main cause of proliferation and apoptosis of breast cancer cells. Although previous studies have implicated the transient receptor potential vanilloid 1 (TRPV1) cation channel, the synergistic inhibition effects of selenium (Se) and cisplatin in cancer and the suppression of ongoing apoptosis have not yet been investigated in MCF-7 breast cancer cells. This study investigates the anticancer properties of Se through TRPV1 channel activity in MCF-7 breast cancer cell line cultures when given alone or in combination with cisplatin. The MCF-7 cells were divided into four groups: the control group, the Se-treated group (200 nM), the cisplatin-treated group (40 μM) and the Se + cisplatin-treated group. The intracellular free calcium ion concentration and current densities increased with TRPV1 channel activator capsaicin (0.01 mM), but they decreased with the TRPV1 blocker capsazepine (0.1 mM), Se, cisplatin, and Se + cisplatin incubations. However, mitochondrial membrane depolarization, apoptosis, and the caspase 3, and caspase 9 values increased in the Se-treated group and the cisplatin-treated group, although Western blot (procaspase 3 and 9) results and the cell viability levels decreased with the Se and Se + cisplatin treatments. Apoptosis and caspase-3 were further increased with the Se + cisplatin treatment. Intracellular reactive oxygen species production increased with the cisplatin treatment, but not with the Se treatment. This study's results report, for the first time, that at a cellular level, Se and cisplatin interact on the same intracellular toxic cascade, and the combination of these two drugs can result in a remarkable anticancer effect through modulation of the TRPV1.

  7. Src kinases and ERK activate distinct responses to Stitcher receptor tyrosine kinase signaling during wound healing in Drosophila.

    PubMed

    Tsarouhas, Vasilios; Yao, Liqun; Samakovlis, Christos

    2014-04-15

    Metazoans have evolved efficient mechanisms for epidermal repair and survival following injury. Several cellular responses and key signaling molecules that are involved in wound healing have been identified in Drosophila, but the coordination of cytoskeletal rearrangements and the activation of gene expression during barrier repair are poorly understood. The Ret-like receptor tyrosine kinase (RTK) Stitcher (Stit, also known as Cad96Ca) regulates both re-epithelialization and transcriptional activation by Grainy head (Grh) to induce restoration of the extracellular barrier. Here, we describe the immediate downstream effectors of Stit signaling in vivo. Drk (Downstream of receptor kinase) and Src family tyrosine kinases bind to the same docking site in the Stit intracellular domain. Drk is required for the full activation of transcriptional responses but is dispensable for re-epithelialization. By contrast, Src family kinases (SFKs) control both the assembly of a contractile actin ring at the wound periphery and Grh-dependent activation of barrier-repair genes. Our analysis identifies distinct pathways mediating injury responses and reveals an RTK-dependent activation mode for Src kinases and their central functions during epidermal wound healing in vivo.

  8. Arachidonic acid can function as a signaling modulator by activating the TRPM5 cation channel in taste receptor cells.

    PubMed

    Oike, Hideaki; Wakamori, Minoru; Mori, Yasuo; Nakanishi, Hiroki; Taguchi, Ryo; Misaka, Takumi; Matsumoto, Ichiro; Abe, Keiko

    2006-09-01

    Vertebrate sensory cells such as vomeronasal neurons and Drosophila photoreceptor cells use TRP channels to respond to exogenous stimuli. In mammalian taste cells, bitter and sweet substances as well as some amino acids are received by G protein-coupled receptors (T2Rs or T1Rs). As a result of activation of G protein and phospholipase Cbeta2, the TRPM5 channel is activated. Intracellular Ca(2+) is known to be a TRPM5 activator, but the participation of lipid activators remains unreported. To clarify the effect of arachidonic acid on TRPM5 in taste cells, we investigated the expression profile of a series of enzymes involved in controlling the intracellular free arachidonic acid level, with the result that in a subset of taste bud cells, monoglyceride lipase (MGL) and cyclooxygenase-2 (COX-2) are expressed as well as the previously reported group IIA phospholipase A(2) (PLA(2)-IIA). Double-labeling analysis revealed that MGL, COX-2 and PLA(2)-IIA are co-expressed in some cells that express TRPM5. We then investigated whether arachidonic acid activates TRPM5 via a heterologous expression system in HEK293 cells, and found that its activation occurred at 10 microM arachidonic acid. These results strongly suggest the possibility that arachidonic acid acts as a modulator of TRPM5 in taste signaling pathways.

  9. SERS-Active Nanoinjector for Intracellular Spectroscopy

    NASA Astrophysics Data System (ADS)

    Vitol, Elina; Orynbayeva, Zulfiya; Bouchard, Michael; Azizkhan-Clifford, Jane; Friedman, Gary; Gogotsi, Yury

    2009-03-01

    We developed a multifunctional nanopipette which allows simultaneous cell injection and intacellular surface-enhanced Raman spectroscopy (SERS) analysis. SERS spectra contain the characteristic frequencies of molecular bond vibrations. This is a unique method for studying cell biochemistry and physiology on a single organelle level. Unlike the fluorescence spectroscopy, it does not require any specific staining. The principle of SERS is based on very large electromagnetic field enhancement localized around a nano-rough metallic surface. Gold colloids are widely used SERS substrates. Previously, the colloidal nanoparticles were introduced into a cell by the mechanism of endocytosis. The disadvantage of this method is the uncontrollable aggregation and distribution of gold nanoparticles inside a cell which causes a significant uncertainty in the origin of the acquired data. At the same time, the nanoparticle uptake is irreversible. We present a SERS-active nanoinjector, coated with gold nanoparticles, which enables selective signal acquisition from any point-of-interest inside a cell. The nanoinjector provides a highly localized SERS signal with sub-nanometer resolution in real time.

  10. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation

    DOE PAGES

    Dzamukova, Maria R.; Naumenko, Ekaterina A.; Lvov, Yuri M.; ...

    2015-05-15

    Fabrication of stimuli-triggered drug delivery vehicle is is an important milestone in treating cancer. Here we demonstrate the selective anticancer drug delivery into human cells with biocompatible 50-nm diameter halloysite nanotube carriers. Physically-adsorbed dextrin end stoppers secure the intercellular release of brilliant green. Drug-loaded nanotubes penetrate through the cellular membranes and their uptake efficiency depends on the cells growth rate. Intercellular glycosyl hydrolases-mediated decomposition of the dextrin tube-end stoppers triggers the release of the lumen-loaded brilliant green, which allowed for preferable elimination of human lung carcinoma cells (А549) as compared with hepatoma cells (Hep3b). In conclusion, the enzyme-activated intracellular deliverymore » of brilliant green using dextrin-coated halloysite nanotubes is a promising platform for anticancer treatment.« less

  11. Depletion of Intracellular Thiols and Increased Production of 4-Hydroxynonenal that Occur During Cryopreservation of Stallion Spermatozoa Lead to Caspase Activation, Loss of Motility, and Cell Death.

    PubMed

    Martin Muñoz, Patricia; Ortega Ferrusola, Cristina; Vizuete, Guillermo; Plaza Dávila, Maria; Rodriguez Martinez, Heriberto; Peña, Fernando J

    2015-12-01

    Oxidative stress has been linked to sperm death and the accelerated senescence of cryopreserved spermatozoa. However, the molecular mechanisms behind this phenomenon remain poorly understood. Reactive oxygen species (ROS) are considered relevant signaling molecules for sperm function, only becoming detrimental when ROS homeostasis is lost. We hereby hypothesize that a major component of the alteration of ROS homeostasis in cryopreserved spermatozoa is the exhaustion of intrinsic antioxidant defense mechanisms. To test this hypothesis, semen from seven stallions was frozen using a standard technique. The parameters of sperm quality (motility, velocity, and membrane integrity) and markers of sperm senescence (caspase 3, 4-hydroxynonenal, and mitochondrial membrane potential) were assessed before and after cryopreservation. Changes in the intracellular thiol content were also monitored. Cryopreservation caused significant increases in senescence markers as well as dramatic depletion of intracellular thiols to less than half of the initial values (P < 0.001) postthaw. Interestingly, very high and positive correlations were observed among thiol levels with sperm functionality postthaw: total motility (r = 0.931, P < 0.001), progressive motility (r = 0.904, P < 0.001), and percentage of live spermatozoa without active caspase 3 (r = 0.996, P < 0.001). In contrast, negative correlations were detected between active caspase 3 and thiol content both in living (r = -0.896) and dead (r = -0.940) spermatozoa; additionally, 4-hydroxynonenal levels were negatively correlated with thiol levels (r = -0.856). In conclusion, sperm functionality postthaw correlates with the maintenance of adequate levels of intracellular thiols. The accelerated senescence of thawed spermatozoa is related to oxidative and electrophilic stress induced by increased production of 4-hydroxynoneal in thawed samples once intracellular thiols are depleted. © 2015 by the Society for the Study of Reproduction

  12. Horseradish Peroxidase-Encapsulated Hollow Silica Nanospheres for Intracellular Sensing of Reactive Oxygen Species

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Yi; Wu, Si-Han; Chen, Chien-Tsu; Chen, Yi-Ping; Chang, Feng-Peng; Chien, Fan-Ching; Mou, Chung-Yuan

    2018-04-01

    Reactive oxygen species (ROS) have crucial roles in cell signaling and homeostasis. Overproduction of ROS can induce oxidative damage to various biomolecules and cellular structures. Therefore, developing an approach capable of monitoring and quantifying ROS in living cells is significant for physiology and clinical diagnoses. Some cell-permeable fluorogenic probes developed are useful for the detection of ROS while in conjunction with horseradish peroxidase (HRP). Their intracellular scenario is however hindered by the membrane-impermeable property of enzymes. Herein, a new approach for intracellular sensing of ROS by using horseradish peroxidase-encapsulated hollow silica nanospheres (designated HRP@HSNs), with satisfactory catalytic activity, cell membrane permeability, and biocompatibility, was prepared via a microemulsion method. These HRP@HSNs, combined with selective probes or targeting ligands, could be foreseen as ROS-detecting tools in specific organelles or cell types. As such, dihydrorhodamine 123-coupled HRP@HSNs were used for the qualitative and semi-quantitative analysis of physiological H2O2 levels in activated RAW 264.7 macrophages. We envision that this HSNs encapsulating active enzymes can be conjugated with selective probes and targeting ligands to detect ROS in specific organelles or cell types of interest.

  13. The intracellular nucleotide binding leucine-rich repeat receptor - SlNRC4a enhances immune signaling elicited by extracellular perception.

    PubMed

    Leibman-Markus, Meirav; Pizarro, Lorena; Schuster, Silvia; Lin, Z J Daniel; Gershony, Ofir; Bar, Maya; Coaker, Gitta; Avni, Adi

    2018-05-23

    Plant recognition and defense against pathogens employs a two-tiered perception system. Surface localized pattern recognition receptors (PRRs) act to recognize microbial features, while intracellular nucleotide binding leucine-rich repeat receptors (NLRs) directly or indirectly recognize pathogen effectors inside host cells. Employing the tomato PRR LeEIX2/EIX model system, we explored the molecular mechanism of signaling pathways. We identified an NLR that can associate with LeEIX2, termed SlNRC4a (NB-LRR Required for HR-associated Cell death-4). Co-immunoprecipitation demonstrates that SlNRC4a is able to associate with different PRRs. Physiological assays with specific elicitors revealed that SlNRC4a generally alters PRR-mediated responses. SlNRC4a overexpression enhances defense responses while silencing SlNRC4 reduces plant immunity. Moreover, the coiled-coil domain of SlNRC4a is able to associate with LeEIX2 and is sufficient to enhance responses upon EIX perception. Based on these findings, we propose that SlNRC4a acts as a non-canonical positive regulator of immunity mediated by diverse PRRs. Thus, SlNRC4a could link both intracellular and extracellular immune perception. This article is protected by copyright. All rights reserved.

  14. Intracellular activation of digestive zymogens in rat pancreatic acini. Stimulation by high doses of cholecystokinin.

    PubMed Central

    Leach, S D; Modlin, I M; Scheele, G A; Gorelick, F S

    1991-01-01

    The mechanism by which digestive zymogens become activated during acute pancreatitis remains poorly understood. Given the ability for cholecystokinin (CCK) to induce pancreatitis in vivo, the effects of high dose CCK on preparations of isolated pancreatic acini were examined. Using an immunologic technique for the detection of zymogen activation, CCK was found to stimulate the conversion of procarboxypeptidase A1 to a 35-kD form having the same net charge and electrophoretic mobility as purified recombinant carboxypeptidase A1. This enhanced conversion was proportional to the dose of CCK (maximal at 100 nM), and time dependent. CCK also produced changes in the electrophoretic mobility of procarboxypeptidase B and chymotrypsinogen 2 immunoreactivity, consistent with activation of these zymogens. These events were detectable only within acinar cell pellets and not in the incubation medium, suggesting an intracellular site of conversion. The conversion of procarboxypeptidase A1 to its active form was inhibited by pretreatment with the weak base chloroquine (40 microM) and the protonophore monensin (10 microM). This conversion was also inhibited by pretreatment with the serine protease inhibitor benzamidine (10 mM) but not the cysteine protease inhibitor E64 (100 microM). The results suggest that high dose CCK stimulates the intracellular activation of digestive zymogens within isolated pancreatic acini. This event appears to require an acidic subcellular compartment and serine protease activity. Images PMID:1985109

  15. Protease-activated receptor-4 and purinergic receptor P2Y12 dimerize, co-internalize, and activate Akt signaling via endosomal recruitment of β-arrestin.

    PubMed

    Smith, Thomas H; Li, Julia G; Dores, Michael R; Trejo, JoAnn

    2017-08-18

    Vascular inflammation and thrombosis require the concerted actions of several different agonists, many of which act on G protein-coupled receptors (GPCRs). GPCR dimerization is a well-established phenomenon that can alter protomer function. In platelets and other cell types, protease-activated receptor-4 (PAR4) has been shown to dimerize with the purinergic receptor P2Y12 to coordinate β-arrestin-mediated Akt signaling, an important mediator of integrin activation. However, the mechanism by which the PAR4-P2Y12 dimer controls β-arrestin-dependent Akt signaling is not known. We now report that PAR4 and P2Y12 heterodimer internalization is required for β-arrestin recruitment to endosomes and Akt signaling. Using bioluminescence resonance energy transfer, immunofluorescence microscopy, and co-immunoprecipitation in cells expressing receptors exogenously and endogenously, we demonstrate that PAR4 and P2Y12 specifically interact and form dimers expressed at the cell surface. We also found that activation of PAR4 but not of P2Y12 drives internalization of the PAR4-P2Y12 heterodimer. Remarkably, activated PAR4 internalization was required for recruitment of β-arrestin to endocytic vesicles, which was dependent on co-expression of P2Y12. Interestingly, stimulation of the PAR4-P2Y12 heterodimer promotes β-arrestin and Akt co-localization to intracellular vesicles. Moreover, activated PAR4-P2Y12 internalization is required for sustained Akt activation. Thus, internalization of the PAR4-P2Y12 heterodimer is necessary for β-arrestin recruitment to endosomes and Akt signaling and lays the foundation for examining whether blockade of PAR4 internalization reduces integrin and platelet activation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Calcium Signaling Is Involved in Cadmium-Induced Neuronal Apoptosis via Induction of Reactive Oxygen Species and Activation of MAPK/mTOR Network

    PubMed Central

    Luo, Yan; Chen, Zi; Liu, Lei; Zhou, Hongyu; Chen, Wenxing; Shen, Tao; Han, Xiuzhen; Chen, Long; Huang, Shile

    2011-01-01

    Cadmium (Cd), a toxic environmental contaminant, induces oxidative stress, leading to neurodegenerative disorders. Recently we have demonstrated that Cd induces neuronal apoptosis in part by activation of the mitogen-activated protein kineses (MAPK) and mammalian target of rapamycin (mTOR) pathways. However, the underlying mechanism remains elusive. Here we show that Cd elevated intracellular calcium ion ([Ca2+]i) level in PC12, SH-SY5Y cells and primary murine neurons. BAPTA/AM, an intracellular Ca2+ chelator, abolished Cd-induced [Ca2+]i elevation, and blocked Cd activation of MAKPs including extracellular signal-regulated kinase 1/2 (Erk1/2), c-Jun N-terminal kinase (JNK) and p38, and mTOR-mediated signaling pathways, as well as cell death. Pretreatment with the extracellular Ca2+ chelator EGTA also prevented Cd-induced [Ca2+]i elevation, MAPK/mTOR activation, as well as cell death, suggesting that Cd-induced extracellular Ca2+ influx plays a critical role in contributing to neuronal apoptosis. In addition, calmodulin (CaM) antagonist trifluoperazine (TFP) or silencing CaM attenuated the effects of Cd on MAPK/mTOR activation and cell death. Furthermore, Cd-induced [Ca2+]i elevation or CaM activation resulted in induction of reactive oxygen species (ROS). Pretreatment with BAPTA/AM, EGTA or TFP attenuated Cd-induced ROS and cleavage of caspase-3 in the neuronal cells. Our findings indicate that Cd elevates [Ca2+]i, which induces ROS and activates MAPK and mTOR pathways, leading to neuronal apoptosis. The results suggest that regulation of Cd-disrupted [Ca2+]i homeostasis may be a new strategy for prevention of Cd-induced neurodegenerative diseases. PMID:21544200

  17. LH and hCG Action on the Same Receptor Results in Quantitatively and Qualitatively Different Intracellular Signalling

    PubMed Central

    Casarini, Livio; Lispi, Monica; Longobardi, Salvatore; Milosa, Fabiola; La Marca, Antonio; Tagliasacchi, Daniela; Pignatti, Elisa; Simoni, Manuela

    2012-01-01

    Human luteinizing hormone (hLH) and chorionic gonadotropin (hCG) act on the same receptor (LHCGR) but it is not known whether they elicit the same cellular and molecular response. This study compares for the first time the activation of cell-signalling pathways and gene expression in response to hLH and hCG. Using recombinant hLH and recombinant hCG we evaluated the kinetics of cAMP production in COS-7 and hGL5 cells permanently expressing LHCGR (COS-7/LHCGR, hGL5/LHCGR), as well as cAMP, ERK1/2, AKT activation and progesterone production in primary human granulosa cells (hGLC). The expression of selected target genes was measured in the presence or absence of ERK- or AKT-pathways inhibitors. In COS-7/LHCGR cells, hCG is 5-fold more potent than hLH (cAMP ED50: 107.1±14.3 pM and 530.0±51.2 pM, respectively). hLH maximal effect was significantly faster (10 minutes by hLH; 1 hour by hCG). In hGLC continuous exposure to equipotent doses of gonadotropins up to 36 hours revealed that intracellular cAMP production is oscillating and significantly higher by hCG versus hLH. Conversely, phospho-ERK1/2 and -AKT activation was more potent and sustained by hLH versus hCG. ERK1/2 and AKT inhibition removed the inhibitory effect on NRG1 (neuregulin) expression by hLH but not by hCG; ERK1/2 inhibition significantly increased hLH- but not hCG-stimulated CYP19A1 (aromatase) expression. We conclude that: i) hCG is more potent on cAMP production, while hLH is more potent on ERK and AKT activation; ii) hGLC respond to equipotent, constant hLH or hCG stimulation with a fluctuating cAMP production and progressive progesterone secretion; and iii) the expression of hLH and hCG target genes partly involves the activation of different pathways depending on the ligand. Therefore, the LHCGR is able to differentiate the activity of hLH and hCG. PMID:23071612

  18. CD22 ligation inhibits downstream B cell receptor signaling and Ca(2+) flux upon activation.

    PubMed

    Sieger, N; Fleischer, S J; Mei, H E; Reiter, K; Shock, A; Burmester, G R; Daridon, C; Dörner, T

    2013-03-01

    CD22 is a surface molecule exclusively expressed on B cells that regulates adhesion and B cell receptor (BCR) signaling as an inhibitory coreceptor of the BCR. Central downstream signaling molecules that are activated upon BCR engagement include spleen tyrosine kinase (Syk) and, subsequently, phospholipase Cγ2 (PLCγ2), which results in calcium (Ca(2+)) mobilization. The humanized anti-CD22 monoclonal antibody epratuzumab is currently being tested in clinical trials. This study was undertaken to determine the potential mechanism by which this drug regulates B cell activation. Purified B cells were preincubated with epratuzumab, and the colocalization of CD22 and CD79α, without BCR engagement, was assessed by confocal microscopy. The phosphorylation of Syk (Y348, Y352) and PLCγ2 (Y759) as well as the Ca(2+) flux in the cells were analyzed by flow cytometry upon stimulation of the BCR and/or Toll-like receptor 9 (TLR-9). The influence of CD22 ligation on BCR signaling was assessed by pretreating the cells with epratuzumab or F(ab')(2) fragment of epratuzumab, in comparison with control cells (medium alone or isotype-matched IgG1). Epratuzumab induced colocalization of CD22 and components of the BCR independent of BCR engagement, and also reduced intracellular Ca(2+) mobilization and diminished the phosphorylation of Syk and PLCγ2 after BCR stimulation in vitro. Inhibition of kinase phosphorylation was demonstrated in both CD27- and CD27+ B cells, and this appeared to be independent of Fc receptor signaling. Preactivation of the cells via the stimulation of TLR-9 did not circumvent the inhibitory effect of epratuzumab on BCR signaling. These findings are consistent with the concept of targeting CD22 to raise the threshold of BCR activation, which could offer therapeutic benefit in patients with autoimmune diseases. Copyright © 2013 by the American College of Rheumatology.

  19. OsCERK1-Mediated Chitin Perception and Immune Signaling Requires Receptor-like Cytoplasmic Kinase 185 to Activate an MAPK Cascade in Rice.

    PubMed

    Wang, Chao; Wang, Gang; Zhang, Chi; Zhu, Pinkuan; Dai, Huiling; Yu, Nan; He, Zuhua; Xu, Ling; Wang, Ertao

    2017-04-03

    Conserved pathogen-associated molecular patterns (PAMPs), such as chitin, are perceived by pattern recognition receptors (PRRs) located at the host cell surface and trigger rapid activation of mitogen-activated protein kinase (MAPK) cascades, which are required for plant resistance to pathogens. However, the direct links from PAMP perception to MAPK activation in plants remain largely unknown. In this study, we found that the PRR-associated receptor-like cytoplasmic kinase Oryza sativa RLCK185 transmits immune signaling from the PAMP receptor OsCERK1 to an MAPK signaling cascade through interaction with an MAPK kinase kinase, OsMAPKKKε, which is the initial kinase of the MAPK cascade. OsRLCK185 interacts with and phosphorylates the C-terminal regulatory domain of OsMAPKKKε. Coexpression of phosphomimetic OsRLCK185 and OsMAPKKKε activates MAPK3/6 phosphorylation in Nicotiana benthamiana leaves. Moreover, OsMAPKKKε interacts with and phosphorylates OsMKK4, a key MAPK kinase that transduces the chitin signal. Overexpression of OsMAPKKKε increases chitin-induced MAPK3/6 activation, whereas OsMAPKKKε knockdown compromises chitin-induced MAPK3/6 activation and resistance to rice blast fungus. Taken together, our results suggest the existence of a phospho-signaling pathway from cell surface chitin perception to intracellular activation of an MAPK cascade in rice. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  20. Protein Translation and Signaling in Human Eosinophils

    PubMed Central

    Esnault, Stephane; Shen, Zhong-Jian; Malter, James S.

    2017-01-01

    We have recently reported that, unlike IL-5 and GM-CSF, IL-3 induces increased translation of a subset of mRNAs. In addition, we have demonstrated that Pin1 controls the activity of mRNA binding proteins, leading to enhanced mRNA stability, GM-CSF protein production and prolonged eosinophil (EOS) survival. In this review, discussion will include an overview of cap-dependent protein translation and its regulation by intracellular signaling pathways. We will address the more general process of mRNA post-transcriptional regulation, especially regarding mRNA binding proteins, which are critical effectors of protein translation. Furthermore, we will focus on (1) the roles of IL-3-driven sustained signaling on enhanced protein translation in EOS, (2) the mechanisms regulating mRNA binding proteins activity in EOS, and (3) the potential targeting of IL-3 signaling and the signaling leading to mRNA binding activity changes to identify therapeutic targets to treat EOS-associated diseases. PMID:28971096

  1. TIRAP, an Adaptor Protein for TLR2/4, Transduces a Signal from RAGE Phosphorylated upon Ligand Binding

    PubMed Central

    Sakaguchi, Masakiyo; Murata, Hitoshi; Yamamoto, Ken-ichi; Ono, Tomoyuki; Sakaguchi, Yoshihiko; Motoyama, Akira; Hibino, Toshihiko; Kataoka, Ken; Huh, Nam-ho

    2011-01-01

    The receptor for advanced glycation end products (RAGE) is thought to be involved in the pathogenesis of a broad range of inflammatory, degenerative and hyperproliferative diseases. It binds to diverse ligands and activates multiple intracellular signaling pathways. Despite these pivotal functions, molecular events just downstream of ligand-activated RAGE have been surprisingly unknown. Here we show that the cytoplasmic domain of RAGE is phosphorylated at Ser391 by PKCζ upon binding of ligands. TIRAP and MyD88, which are known to be adaptor proteins for Toll-like receptor-2 and -4 (TLR2/4), bound to the phosphorylated RAGE and transduced a signal to downstream molecules. Blocking of the function of TIRAP and MyD88 largely abrogated intracellular signaling from ligand-activated RAGE. Our findings indicate that functional interaction between RAGE and TLRs coordinately regulates inflammation, immune response and other cellular functions. PMID:21829704

  2. Intracellular pathways and nuclear localization signal peptide-mediated gene transfection by cationic polymeric nanovectors.

    PubMed

    Hu, Qinglian; Wang, Jinlei; Shen, Jie; Liu, Min; Jin, Xue; Tang, Guping; Chu, Paul K

    2012-02-01

    Polyethylenimine (PEI) - based polymers are promising cationic nanovectors. A good understanding of the mechanism by which cationic polymers/DNA complexes are internalized and delivered to nuclei helps to identify which transport steps may be manipulated in order to improve the transfection efficiency. In this work, cell internalization and trafficking of PEI-CyD (PC) composed of β-cyclodextrin (β-CyD) and polyethylenimine (PEI, Mw 600) are studied. The results show that the PC transfected DNA is internalized by binding membrane-associated proteoglycans. The endocytic pathway of the PC particles is caveolae- and clathrin-dependent with both pathways converging to the lysosome. The intracellular fate of the PC provides visual evidence that it can escape from the lysosome. Lysosomal inhibition with chloroquine has no effect on PC mediated transfection implying that blocking the lysosomal traffic does not improve transfection. To improve the nuclear delivery of PC transfected DNA, nuclear localization signal (NLS) peptides are chosen to conjugate and combine with the PC. Compared to PC/pDNA, PC-NLS/pDNA, and PC/pDNA/NLS can effectively improve gene transfection in dividing and non-dividing cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Effect of introduction of chondroitin sulfate into polymer-peptide conjugate responding to intracellular signals

    NASA Astrophysics Data System (ADS)

    Tomiyama, Tetsuro; Toita, Riki; Kang, Jeong-Hun; Koga, Haruka; Shiosaki, Shujiro; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki

    2011-09-01

    We recently developed a novel tumor-targeted gene delivery system responding to hyperactivated intracellular signals. Polymeric carrier for gene delivery consists of hydrophilic neutral polymer as main chains and cationic peptide substrate for target enzyme as side chains, and was named polymer-peptide conjugate (PPC). Introduction of chondroitin sulfate (CS), which induces receptor-medicated endocytosis, into polymers mainly with a high cationic charge density such as polyethylenimine can increase tumor-targeted gene delivery. In the present study, we examined whether introduction of CS into PPC containing five cationic amino acids can increase gene expression in tumor cells. Size and zeta potential of plasmid DNA (pDNA)/PPC/CS complex were <200 nm and between -10 and -15 mV, respectively. In tumor cell experiments, pDNA/PPC/CS complex showed lower stability and gene regulation, compared with that of pDNA/PPC. Moreover, no difference in gene expression was identified between positive and negative polymer. These results were caused by fast disintegration of pDNA/PPC/CS complexes in the presence of serum. Thus, we suggest that introduction of negatively charged CS into polymers with a low charge density may lead to low stability and gene regulation of complexes.

  4. Cellular uptake mediated by epidermal growth factor receptor facilitates the intracellular activity of phosphorothioate-modified antisense oligonucleotides

    PubMed Central

    Wang, Shiyu; Allen, Nickolas; Vickers, Timothy A; Revenko, Alexey S; Sun, Hong; Liang, Xue-hai; Crooke, Stanley T

    2018-01-01

    Abstract Chemically modified antisense oligonucleotides (ASOs) with phosphorothioate (PS) linkages have been extensively studied as research and therapeutic agents. PS-ASOs can enter the cell and trigger cleavage of complementary RNA by RNase H1 even in the absence of transfection reagent. A number of cell surface proteins have been identified that bind PS-ASOs and mediate their cellular uptake; however, the mechanisms that lead to productive internalization of PS-ASOs are not well understood. Here, we characterized the interaction between PS-ASOs and epidermal growth factor receptor (EGFR). We found that PS-ASOs trafficked together with EGF and EGFR into clathrin-coated pit structures. Their co-localization was also observed at early endosomes and inside enlarged late endosomes. Reduction of EGFR decreased PS-ASO activity without affecting EGF-mediated signaling pathways and overexpression of EGFR increased PS-ASO activity in cells. Furthermore, reduction of EGFR delays PS-ASO trafficking from early to late endosomes. Thus, EGFR binds to PS-ASOs at the cell surface and mediates essential steps for active (productive) cellular uptake of PS-ASOs through its cargo-dependent trafficking processes which migrate PS-ASOs from early to late endosomes. This EGFR-mediated process can also serve as an additional model to better understand the mechanism of intracellular uptake and endosomal release of PS-ASOs. PMID:29514240

  5. Intracellular Action of a Secreted Peptide Required for Fungal Virulence.

    PubMed

    Homer, Christina M; Summers, Diana K; Goranov, Alexi I; Clarke, Starlynn C; Wiesner, Darin L; Diedrich, Jolene K; Moresco, James J; Toffaletti, Dena; Upadhya, Rajendra; Caradonna, Ippolito; Petnic, Sarah; Pessino, Veronica; Cuomo, Christina A; Lodge, Jennifer K; Perfect, John; Yates, John R; Nielsen, Kirsten; Craik, Charles S; Madhani, Hiten D

    2016-06-08

    Quorum sensing (QS) is a bacterial communication mechanism in which secreted signaling molecules impact population function and gene expression. QS-like phenomena have been reported in eukaryotes with largely unknown contributing molecules, functions, and mechanisms. We identify Qsp1, a secreted peptide, as a central signaling molecule that regulates virulence in the fungal pathogen Cryptococcus neoformans. QSP1 is a direct target of three transcription factors required for virulence, and qsp1Δ mutants exhibit attenuated infection, slowed tissue accumulation, and greater control by primary macrophages. Qsp1 mediates autoregulatory signaling that modulates secreted protease activity and promotes cell wall function at high cell densities. Peptide production requires release from a secreted precursor, proQsp1, by a cell-associated protease, Pqp1. Qsp1 sensing requires an oligopeptide transporter, Opt1, and remarkably, cytoplasmic expression of mature Qsp1 complements multiple phenotypes of qsp1Δ. Thus, C. neoformans produces an autoregulatory peptide that matures extracellularly but functions intracellularly to regulate virulence. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Signal transduction by the Wnt family of ligands.

    PubMed Central

    Dale, T C

    1998-01-01

    The Wnt genes encode a large family of secreted polypeptides that mediate cell-cell communication in diverse developmental processes. The loss or inappropriate activation of Wnt expression has been shown to alter cell fate, morphogenesis and mitogenesis. Recent progress has identified Wnt receptors and components of an intracellular signalling pathway that mediate Wnt-dependent transcription. This review will highlight this 'core' Wnt signal-transduction pathway, but also aims to reveal the potential diversity of Wnt signalling targets. Particular attention will be paid to the overlap between developmental biology and oncogenesis, since recent progress shows Wnt signalling forms a paradigm for an interdisciplinary approach. PMID:9425102

  7. Sticholysin II-mediated cytotoxicity involves the activation of regulated intracellular responses that anticipates cell death.

    PubMed

    Soto, Carmen; Bergado, Gretchen; Blanco, Rancés; Griñán, Tania; Rodríguez, Hermis; Ros, Uris; Pazos, Fabiola; Lanio, María Eliana; Hernández, Ana María; Álvarez, Carlos

    2018-05-01

    Sticholysin II (StII) is a pore-forming toxin of biomedical interest that belongs to the actinoporin protein family. Sticholysins are currently under examination as an active immunomodulating component of a vaccinal platform against tumoral cells and as a key element of a nucleic acids delivery system to cell cytosol. These proteins form pores in the plasma membrane leading to ion imbalance and cell lysis. However, the intracellular mechanisms triggered by actinoporins upon binding to membranes and its consequences for cell death are barely understood. Here, we have examined the cytotoxicity and intracellular responses induced by StII upon binding to human B-cell lymphoma Raji in vitro. StII cytotoxicity involves a functional actin cytoskeleton, induces cellular swelling, lysis and the concomitant release of cytosol content. In addition, StII induces calcium release mainly from the Endoplasmic Reticulum, activates Mitogen-Activated Protein Kinase ERK and impairs mitochondrial membrane potential. Furthermore, StII stimulates the expression of receptor interacting protein kinase 1 (RIP1), normally related to different forms of regulated cell death such as apoptosis and necroptosis. In correspondence, necrostatin-1, an inhibitor of this kinase, reduces StII cytotoxicity. However, the mechanism of cell death activated by StII does not involve caspases activation, typical molecular features of apoptosis and pyroptosis. Our results suggest that, beyond pore-formation and cell lysis, StII-induced cytotoxicity could involve other regulated intracellular mechanisms connected to RIP1-MEK1/2 -ERK1/2- pathways. This opens new perspectives and challenges the general point of view that these toxins induce a completely unregulated mechanism of necrotic cell death. This study contributes to a better understanding of the molecular mechanisms involved in toxin-cell interaction and the implications for cell functioning, with connotation for the exploitations of these toxins in

  8. N-Acetylcysteine-induced vasodilatation is modulated by KATP channels, Na+/K+-ATPase activity and intracellular calcium concentration: An in vitro study.

    PubMed

    Vezir, Özden; Çömelekoğlu, Ülkü; Sucu, Nehir; Yalın, Ali Erdinç; Yılmaz, Şakir Necat; Yalın, Serap; Söğüt, Fatma; Yaman, Selma; Kibar, Kezban; Akkapulu, Merih; Koç, Meryem İlkay; Seçer, Didem

    2017-08-01

    In this study, we aimed to investigate the role of ATP-sensitive potassium (K ATP ) channel, Na + /K + -ATPase activity, and intracellular calcium levels on the vasodilatory effect of N-acetylcysteine (NAC) in thoracic aorta by using electrophysiological and molecular techniques. Rat thoracic aorta ring preparations and cultured thoracic aorta cells were divided into four groups as control, 2mM NAC, 5mM NAC, and 10mM NAC. Thoracic aorta rings were isolated from rats for measurements of relaxation responses and Na + /K + -ATPase activity. In the cultured thoracic aorta cells, we measured the currents of K ATP channel, the concentration of intracellular calcium and mRNA expression level of K ATP channel subunits (KCNJ8, KCNJ11, ABCC8 and ABCC9). The relaxation rate significantly increased in all NAC groups compared to control. Similarly, Na + /K + - ATPase activity also significantly decreased in NAC groups. Outward K ATP channel current significantly increased in all NAC groups compared to the control group. Intracellular calcium concentration decreased significantly in all groups with compared control. mRNA expression level of ABCC8 subunit significantly increased in all NAC groups compared to the control group. Pearson correlation analysis showed that relaxation rate was significantly associated with K ATP current, intracellular calcium concentration, Na + /K + -ATPase activity and mRNA expression level of ABCC8 subunit. Our findings suggest that NAC relaxes vascular smooth muscle cells through a direct effect on K ATP channels, by increasing outward K+ flux, partly by increasing mRNA expression of K ATP subunit ABCC8, by decreasing in intracellular calcium and by decreasing in Na + /K + -ATPase activity. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  9. Estradiol coupling to human monocyte nitric oxide release is dependent on intracellular calcium transients: evidence for an estrogen surface receptor.

    PubMed

    Stefano, G B; Prevot, V; Beauvillain, J C; Fimiani, C; Welters, I; Cadet, P; Breton, C; Pestel, J; Salzet, M; Bilfinger, T V

    1999-10-01

    We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase (cNOS) activity in human peripheral monocytes by acting on an estrogen surface receptor. NO release was measured in real time with an amperometric probe. 17beta-estradiol exposure to monocytes stimulated NO release within seconds in a concentration-dependent manner, whereas 17alpha-estradiol had no effect. 17beta-estradiol conjugated to BSA (E2-BSA) also stimulated NO release, suggesting mediation by a membrane surface receptor. Tamoxifen, an estrogen receptor inhibitor, antagonized the action of both 17beta-estradiol and E2-BSA, whereas ICI 182,780, a selective inhibitor of the nuclear estrogen receptor, had no effect. We further showed, using a dual emission microfluorometry in a calcium-free medium, that the 17beta-estradiol-stimulated release of monocyte NO was dependent on the initial stimulation of intracellular calcium transients in a tamoxifen-sensitive process. Leeching out the intracellular calcium stores abolished the effect of 17beta-estradiol on NO release. RT-PCR analysis of RNA obtained from the cells revealed a strong estrogen receptor-alpha amplification signal and a weak beta signal. Taken together, a physiological dose of estrogen acutely stimulates NO release from human monocytes via the activation of an estrogen surface receptor that is coupled to increases in intracellular calcium.

  10. Heterogeneous Intracellular Trafficking Dynamics of Brain-Derived Neurotrophic Factor Complexes in the Neuronal Soma Revealed by Single Quantum Dot Tracking

    PubMed Central

    Vermehren-Schmaedick, Anke; Krueger, Wesley; Jacob, Thomas; Ramunno-Johnson, Damien; Balkowiec, Agnieszka; Lidke, Keith A.; Vu, Tania Q.

    2014-01-01

    Accumulating evidence underscores the importance of ligand-receptor dynamics in shaping cellular signaling. In the nervous system, growth factor-activated Trk receptor trafficking serves to convey biochemical signaling that underlies fundamental neural functions. Focus has been placed on axonal trafficking but little is known about growth factor-activated Trk dynamics in the neuronal soma, particularly at the molecular scale, due in large part to technical hurdles in observing individual growth factor-Trk complexes for long periods of time inside live cells. Quantum dots (QDs) are intensely fluorescent nanoparticles that have been used to study the dynamics of ligand-receptor complexes at the plasma membrane but the value of QDs for investigating ligand-receptor intracellular dynamics has not been well exploited. The current study establishes that QD conjugated brain-derived neurotrophic factor (QD-BDNF) binds to TrkB receptors with high specificity, activates TrkB downstream signaling, and allows single QD tracking capability for long recording durations deep within the soma of live neurons. QD-BDNF complexes undergo internalization, recycling, and intracellular trafficking in the neuronal soma. These trafficking events exhibit little time-synchrony and diverse heterogeneity in underlying dynamics that include phases of sustained rapid motor transport without pause as well as immobility of surprisingly long-lasting duration (several minutes). Moreover, the trajectories formed by dynamic individual BDNF complexes show no apparent end destination; BDNF complexes can be found meandering over long distances of several microns throughout the expanse of the neuronal soma in a circuitous fashion. The complex, heterogeneous nature of neuronal soma trafficking dynamics contrasts the reported linear nature of axonal transport data and calls for models that surpass our generally limited notions of nuclear-directed transport in the soma. QD-ligand probes are poised to provide

  11. Initial analysis of peripheral lymphocytic extracellular signal related kinase activation in autism.

    PubMed

    Erickson, Craig A; Ray, Balmiki; Wink, Logan K; Bayon, Baindu L; Pedapati, Ernest V; Shaffer, Rebecca; Schaefer, Tori L; Lahiri, Debomoy K

    2017-01-01

    Dysregulation of extracellular signal-related kinase (ERK) activity has been potentially implicated in the pathophysiology of autistic disorder (autism). ERK is part of a central intracellular signaling cascade responsible for a myriad of cellular functions. ERK is expressed in peripheral blood lymphocytes, and measurement of activated (phosphorylated) lymphocytic ERK is commonly executed in many areas of medicine. We sought to conduct the first study of ERK activation in humans with autism by utilizing a lymphocytic ERK activation assay. We hypothesized that ERK activation would be enhanced in peripheral blood lymphocytes from persons with autism compared to those of neurotypical control subjects. We conducted an initial study of peripheral lymphocyte ERK activation in 45 subjects with autism and 26 age- and gender-matched control subjects (total n = 71). ERK activation was measured using a lymphocyte counting method (primary outcome expressed as lymphocytes staining positive for cytosolic phosphorylated ERK divided by total cells counted) and additional Western blot analysis of whole cell phosphorylated ERK adjusted for total ERK present in the lymphocyte lysate sample. Cytosolic/nuclear localization of pERK activated cells were increased by almost two-fold in the autism subject group compared to matched neurotypical control subjects (cell count ratio of 0.064 ± 0.044 versus 0.034 ± 0.031; p = 0.002). Elevated phosphorylated ERK levels in whole cell lysates also showed increased activated ERK in the autism group compared to controls (n = 54 total) in Western blot analysis. The results of this first in human ERK activation study are consistent with enhanced peripheral lymphocytic ERK activation in autism, as well as suggesting that cellular compartmentalization of activated ERK may be altered in this disorder. Future work will be required to explore the impact of concomitant medication use and other subject characteristics such as level of cognitive

  12. Initial analysis of peripheral lymphocytic extracellular signal related kinase activation in autism

    PubMed Central

    Erickson, Craig A.; Ray, Balmiki; Wink, Logan K.; Bayon, Baindu L.; Pedapati, Ernest V.; Shaffer, Rebecca; Schaefer, Tori L.; Lahiri, Debomoy K.

    2018-01-01

    Background Dysregulation of extracellular signal-related kinase (ERK) activity has been potentially implicated in the pathophysiology of autistic disorder (autism). ERK is part of a central intracellular signaling cascade responsible for a myriad of cellular functions. ERK is expressed in peripheral blood lymphocytes, and measurement of activated (phosphorylated) lymphocytic ERK is commonly executed in many areas of medicine. We sought to conduct the first study of ERK activation in humans with autism by utilizing a lymphocytic ERK activation assay. We hypothesized that ERK activation would be enhanced in peripheral blood lymphocytes from persons with autism compared to those of neurotypical control subjects. Method We conducted an initial study of peripheral lymphocyte ERK activation in 45 subjects with autism and 26 age- and gender-matched control subjects (total n = 71). ERK activation was measured using a lymphocyte counting method (primary outcome expressed as lymphocytes staining positive for cytosolic phosphorylated ERK divided by total cells counted) and additional Western blot analysis of whole cell phosphorylated ERK adjusted for total ERK present in the lymphocyte lysate sample. Results Cytosolic/nuclear localization of pERK activated cells were increased by almost two-fold in the autism subject group compared to matched neurotypical control subjects (cell count ratio of 0.064 ± 0.044 versus 0.034 ± 0.031; p = 0.002). Elevated phosphorylated ERK levels in whole cell lysates also showed increased activated ERK in the autism group compared to controls (n = 54 total) in Western blot analysis. Conclusions The results of this first in human ERK activation study are consistent with enhanced peripheral lymphocytic ERK activation in autism, as well as suggesting that cellular compartmentalization of activated ERK may be altered in this disorder. Future work will be required to explore the impact of concomitant medication use and other subject characteristics

  13. Intracellular HMGB1 as a novel tumor suppressor of pancreatic cancer

    PubMed Central

    Kang, Rui; Xie, Yangchun; Zhang, Qiuhong; Hou, Wen; Jiang, Qingping; Zhu, Shan; Liu, Jinbao; Zeng, Dexing; Wang, Haichao; Bartlett, David L; Billiar, Timothy R; Zeh, Herbert J; Lotze, Michael T; Tang, Daolin

    2017-01-01

    Pancreatic ductal adenocarcinoma (PDAC) driven by oncogenic K-Ras remains among the most lethal human cancers despite recent advances in modern medicine. The pathogenesis of PDAC is partly attributable to intrinsic chromosome instability and extrinsic inflammation activation. However, the molecular link between these two events in pancreatic tumorigenesis has not yet been fully established. Here, we show that intracellular high mobility group box 1 (HMGB1) remarkably suppresses oncogenic K-Ras-driven pancreatic tumorigenesis by inhibiting chromosome instability-mediated pro-inflammatory nucleosome release. Conditional genetic ablation of either single or both alleles of HMGB1 in the pancreas renders mice extremely sensitive to oncogenic K-Ras-driven initiation of precursor lesions at birth, including pancreatic intraepithelial neoplasms, intraductal papillary mucinous neoplasms, and mucinous cystic neoplasms. Loss of HMGB1 in the pancreas is associated with oxidative DNA damage and chromosomal instability characterized by chromosome rearrangements and telomere abnormalities. These lead to inflammatory nucleosome release and propagate K-Ras-driven pancreatic tumorigenesis. Extracellular nucleosomes promote interleukin 6 (IL-6) secretion by infiltrating macrophages/neutrophils and enhance oncogenic K-Ras signaling activation in pancreatic lesions. Neutralizing antibodies to IL-6 or histone H3 or knockout of the receptor for advanced glycation end products all limit K-Ras signaling activation, prevent cancer development and metastasis/invasion, and prolong animal survival in Pdx1-Cre;K-RasG12D/+;Hmgb1−/− mice. Pharmacological inhibition of HMGB1 loss by glycyrrhizin limits oncogenic K-Ras-driven tumorigenesis in mice under inflammatory conditions. Diminished nuclear and total cellular expression of HMGB1 in PDAC patients correlates with poor overall survival, supporting intracellular HMGB1 as a novel tumor suppressor with prognostic and therapeutic relevance in

  14. Intracellular sodium modulates the state of protein kinase C phosphorylation of rat proximal tubule Na+,K+-ATPase.

    PubMed

    Ibarra, F R; Cheng, S X Jun; Agrén, M; Svensson, L-B; Aizman, O; Aperia, A

    2002-06-01

    The natriuretic hormone dopamine and the antinatriuretic hormone noradrenaline, acting on alpha-adrenergic receptors, have been shown to bidirectionally modulate the activity of renal tubular Na+,K+-adenosine triphosphate (ATPase). Here we have examined whether intracellular sodium concentration influences the effects of these bidirectional forces on the state of phosphorylation of Na+,K+-ATPase. Proximal tubules dissected from rat kidney were incubated with dopamine or the alpha-adrenergic agonist, oxymetazoline, and transiently permeabilized in a medium where sodium concentration ranged between 5 and 70 mM. The variations of sodium concentration in the medium had a proportional effect on intracellular sodium. Dopamine and protein kinase C (PKC) phosphorylate the catalytic subunit of rat Na+,K+-ATPase on the Ser23 residue. The level of PKC induced Na+,K+-ATPase phosphorylation was determined using an antibody that only recognizes Na+,K+-ATPase, which is not phosphorylated on its PKC site. Under basal conditions Na+,K+-ATPase was predominantly in its phosphorylated state. When intracellular sodium was increased, Na+,K+-ATPase was predominantly in its dephosphorylated state. Phosphorylation of Na+,K+-ATPase by dopamine was most pronounced when intracellular sodium was high, and dephosphorylation by oxymetazoline was most pronounced when intracellular sodium was low. The oxymetazoline effect was mimicked by the calcium ionophore A23187. An inhibitor of the calcium-dependent protein phosphatase, calcineurin, increased the state of Na+,K+-ATPase phosphorylation. The results imply that phosphorylation of renal Na+,K+-ATPase activity is modulated by the level of intracellular sodium and that this effect involves PKC and calcium signalling pathways. The findings may have implication for the regulation of salt excretion and sodium homeostasis.

  15. A novel MPL point mutation resulting in thrombopoietin-independent activation.

    PubMed

    Abe, M; Suzuki, K; Inagaki, O; Sassa, S; Shikama, H

    2002-08-01

    Thrombopoietin (TPO) and its receptor (MPL) are important regulators of megakaryopoiesis. MPL belongs to a cytokine receptor superfamily. To date, all constitutively active MPL mutants have been artificially constructed with amino acid substitutions in the transmembrane domain or extracellular domain of the protein, and they activate signal transduction pathways in Ba/F3 cells that can also be activated by the normal MPL. In this paper, we report a novel spontaneously occurring mutation of MPL, with an amino acid substitution of Trp(508) to Ser(508) in the intracellular domain of MPL, that induces the factor-independent growth of Ba/F3 cells. Examination of intracellular signaling pathways demonstrated that the mutant MPL protein constitutively activates three distinct signaling pathways, SHC-Ras-Raf-MAPK/JNK, JAK-STAT, and PI3K-Akt-Bad.

  16. ERK1/2 mediates sperm acrosome reaction through elevation of intracellular calcium concentration.

    PubMed

    Jaldety, Yael; Breitbart, Haim

    2015-10-01

    Mammalian sperm acquire fertilization capacity after residing in the female reproductive tract for a few hours in a process called capacitation. Only capacitated sperm can bind the zona pellucida (ZP) of the egg and undergo the acrosome reaction, a process that allows penetration and fertilization. Extracellular signal regulated kinase (ERK1/2) mediates signalling in many cell types, however its role in sperm function is largely unknown. Here we show that ERK1/2 is highly phosphorylated/activated after a short incubation of mouse sperm under capacitation conditions and that this phosphorylation is reduced after longer incubation. Further phosphorylation was observed upon addition of crude extract of egg ZP or epidermal growth factor (EGF). The mitogen-activated ERK-kinase (MEK) inhibitor U0126 abolished ERK1/2 phosphorylation, in vitro fertilization rate and the acrosome reaction induced by ZP or EGF but not by the Ca2+-ionophore A23187. Moreover, inhibition of ERK1/2 along the capacitation process diminished almost completely the sperm's ability to go through the acrosome reaction, while inhibition at the end of capacitation attenuated the acrosome reaction rate by only 45%. The fact that the acrosome reaction, induced by the Ca2+ -ionophore A23187, was not inhibited by U0126 suggests that ERK1/2 mediates the acrosome reaction by activating Ca2+ transport into the cell. Direct determination of intracellular [Ca2+] revealed that Ca2+ influx induced by EGF or ZP was completely blocked by U0126. Thus, it has been established that the increase in ERK1/2 phosphorylation/activation in response to ZP or by activation of the EGF receptor (EGFR) by EGF, is a key event for intracellular Ca2+ elevation and the subsequent occurrence of the acrosome reaction.

  17. Enhanced intracellular delivery and antibacterial efficacy of enrofloxacin-loaded docosanoic acid solid lipid nanoparticles against intracellular Salmonella.

    PubMed

    Xie, Shuyu; Yang, Fei; Tao, Yanfei; Chen, Dongmei; Qu, Wei; Huang, Lingli; Liu, Zhenli; Pan, Yuanhu; Yuan, Zonghui

    2017-01-23

    Enrofloxacin-loaded docosanoic acid solid lipid nanoparticles (SLNs) with different physicochemical properties were developed to enhance activity against intracellular Salmonella. Their cellular uptake, intracellular elimination and antibacterial activity were studied in RAW 264.7 cells. During the experimental period, SLN-encapsulated enrofloxacin accumulated in the cells approximately 27.06-37.71 times more efficiently than free drugs at the same extracellular concentration. After incubation for 0.5 h, the intracellular enrofloxacin was enhanced from 0.336 to 1.147 μg/mg of protein as the sizes of nanoparticles were increased from 150 to 605 nm, and from 0.960 to 1.147 μg/mg of protein when the charge was improved from -8.1 to -24.9 mv. The cellular uptake was more significantly influenced by the size than it was by the charge, and was not affected by whether the charge was positive or negative. The elimination of optimal SLN-encapsulated enrofloxacin from the cells was significantly slower than that of free enrofloxacin after removing extracellular drug. The inhibition effect against intracellular Salmonella CVCC541 of 0.24 and 0.06 μg/mL encapsulated enrofloxacin was stronger than 0.6 μg/mL free drug after all of the incubation periods and at 48 h, respectively. Docosanoic acid SLNs are thus considered as a promising carrier for intracellular bacterial treatment.

  18. Regulation of intracellular pH in LLC-PK1 cells by Na+/H+ exchange.

    PubMed

    Montrose, M H; Murer, H

    1986-01-01

    Suspensions of LLC-PK1 cells (a continuous epitheliod cell line with renal characteristics) are examined for mechanisms of intracellular pH regulation using the fluorescent probe BCECF. Initial experiments determine suitable calibration procedures for use of the BCECF fluorescent signal. They also determine that the cell suspension contains cells which (after 4 hr in suspension) have Na+ and K+ gradients comparable to those of cells in monolayer culture. The steady-state intracellular pH (7.05 +/- 0.01, n = 5) of cells which have recovered in (pH 7.4) Na+-containing medium is not affected over several minutes by addition of 100 microM amiloride or removal of extracellular Na+ (Na+o less than 1 mM). In contrast, when the cells recover from an acid load (caused by NH4 preincubation and removal), the recovery is largely Na+ dependent and is sensitive to 100 microM amiloride. These results suggest that with resting pH near neutrality, both Na+o/H+i and Na+i/H+o exchange reactions are functionally inactive (compared to cellular buffering capacity). In contrast, Na+o/H+i exchange is activated by an increased cellular acid load. This activation may be observed directly either as a stimulation of net H+ efflux or net Na+ influx with decreasing intracellular pH. The extrapolation of this latter data suggests a "set point" of Na+/H+ exchange of approximately pH 7.0, consistent with the observed resting intracellular pH of approximately 7.05.

  19. Intracellular screen to identify metagenomic clones that induce or inhibit a quorum-sensing biosensor.

    PubMed

    Williamson, Lynn L; Borlee, Bradley R; Schloss, Patrick D; Guan, Changhui; Allen, Heather K; Handelsman, Jo

    2005-10-01

    The goal of this study was to design and evaluate a rapid screen to identify metagenomic clones that produce biologically active small molecules. We built metagenomic libraries with DNA from soil on the floodplain of the Tanana River in Alaska. We extracted DNA directly from the soil and cloned it into fosmid and bacterial artificial chromosome vectors, constructing eight metagenomic libraries that contain 53,000 clones with inserts ranging from 1 to 190 kb. To identify clones of interest, we designed a high throughput "intracellular" screen, designated METREX, in which metagenomic DNA is in a host cell containing a biosensor for compounds that induce bacterial quorum sensing. If the metagenomic clone produces a quorum-sensing inducer, the cell produces green fluorescent protein (GFP) and can be identified by fluorescence microscopy or captured by fluorescence-activated cell sorting. Our initial screen identified 11 clones that induce and two that inhibit expression of GFP. The intracellular screen detected quorum-sensing inducers among metagenomic clones that a traditional overlay screen would not. One inducing clone carries a LuxI homologue that directs the synthesis of an N-acyl homoserine lactone quorum-sensing signal molecule. The LuxI homologue has 62% amino acid sequence identity to its closest match in GenBank, AmfI from Pseudomonas fluorescens, and is on a 78-kb insert that contains 67 open reading frames. Another inducing clone carries a gene with homology to homocitrate synthase. Our results demonstrate the power of an intracellular screen to identify functionally active clones and biologically active small molecules in metagenomic libraries.

  20. Ionotropic and Metabotropic Mechanisms of Allosteric Modulation of α7 Nicotinic Receptor Intracellular Calcium.

    PubMed

    King, Justin R; Ullah, Aman; Bak, Ellen; Jafri, M Saleet; Kabbani, Nadine

    2018-06-01

    The pharmacological targeting of the α 7 nicotinic acetylcholine receptor ( α 7) is a promising strategy in the development of new drugs for neurologic diseases. Because α 7 receptors regulate cellular calcium, we investigated how the prototypical type II-positive allosteric modulator PNU120596 affects α 7-mediated calcium signaling. Live imaging experiments show that PNU120596 augments ryanodine receptor-driven calcium-induced calcium release (CICR), inositol-induced calcium release (IICR), and phospholipase C activation by the α 7 receptor. Both influx of calcium through the α 7 nicotinic acetylcholine receptor (nAChR) channel as well as the binding of intracellular G proteins were involved in the effect of PNU120596 on intracellular calcium. This is evidenced by the findings that chelation of extracellular calcium, expression of α 7 D44A or α 7 345-348A mutant subunits, or blockade of calcium store release compromised the ability of PNU120596 to increase intracellular calcium transients generated by α 7 ligand activation. Spatiotemporal stochastic modeling of calcium transient responses corroborates these results and indicates that α 7 receptor activation enables calcium microdomains locally and to lesser extent in the distant cytosol. From the model, allosteric modulation of the receptor activates CICR locally via ryanodine receptors and augments IICR through enhanced calcium influx due to prolonged α 7 nAChR opening. These findings provide a new mechanistic framework for understanding the effect of α 7 receptor allosteric modulation on both local and global calcium dynamics. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Suppressor of cytokine signaling 3 inhibits LPS-induced IL-6 expression in osteoblasts by suppressing CCAAT/enhancer-binding protein ß activity

    USDA-ARS?s Scientific Manuscript database

    Suppressors of cytokine signaling 3 (SOCS3) is an important intracellular regulator of TLR4 signaling and has been implicated in several inflammatory diseases. Although SOCS3 seems to contribute to the balance between the pro-inflammatory effects of IL-6 and antiinflammatory signaling of IL-10 by ne...

  2. Activation of the Notch-1 signaling pathway may be involved in intracerebral hemorrhage-induced reactive astrogliosis in rats.

    PubMed

    Zhong, Jian-Hua; Zhou, Hua-Jun; Tang, Tao; Cui, Han-Jin; Yang, A-Li; Zhang, Qi-Mei; Zhou, Jing-Hua; Zhang, Qiang; Gong, Xun; Zhang, Zhao-Hui; Mei, Zhi-Gang

    2017-10-27

    OBJECTIVE Reactive astrogliosis, a key feature that is characterized by glial proliferation, has been observed in rat brains after intracerebral hemorrhage (ICH). However, the mechanisms that control reactive astrogliosis formation remain unknown. Notch-1 signaling plays a critical role in modulating reactive astrogliosis. The purpose of this paper was to establish whether Notch-1 signaling is involved in reactive astrogliosis after ICH. METHODS ICH was induced in adult male Sprague-Dawley rats via stereotactic injection of autologous blood into the right globus pallidus. N-[ N-(3,5-difluorophenacetyl)-l-alanyl]- S-phenylglycine t-butyl ester (DAPT) was injected into the lateral ventricle to block Notch-1 signaling. The rats' brains were perfused to identify proliferating cell nuclear antigen (PCNA)-positive/GFAP-positive nuclei. The expression of GFAP, Notch-1, and the activated form of Notch-1 (Notch intracellular domain [NICD]) and its ligand Jagged-1 was assessed using immunohistochemical and Western blot analyses, respectively. RESULTS Notch-1 signaling was upregulated and activated after ICH as confirmed by an increase in the expression of Notch-1 and NICD and its ligand Jagged-1. Remarkably, blockade of Notch-1 signaling with the specific inhibitor DAPT suppressed astrocytic proliferation and GFAP levels caused by ICH. In addition, DAPT improved neurological outcome after ICH. CONCLUSIONS Notch-1 signaling is a critical regulator of ICH-induced reactive astrogliosis, and its blockage may be a potential therapeutic strategy for hemorrhagic injury.

  3. Jinlida granule inhibits palmitic acid induced-intracellular lipid accumulation and enhances autophagy in NIT-1 pancreatic β cells through AMPK activation.

    PubMed

    Wang, Dingkun; Tian, Min; Qi, Yuan; Chen, Guang; Xu, Lijun; Zou, Xin; Wang, Kaifu; Dong, Hui; Lu, Fuer

    2015-02-23

    Jinlida granule (JLDG), composed of seventeen Chinese medical herbs, is a widely used Chinese herbal prescription for treating diabetes mellitus. However, the mechanism underlying this effect remains unclear. To determine the main components in JLDG and to explore the effect of JLDG on autophagy and lipid accumulation in NIT-1 pancreatic β cells exposed to politic acid (PA) through AMP activated protein kinase (AMPK) signaling pathway. JLDG was prepared and the main components contained in the granules were identified by ultra performance liquid chromatography (UPLC) fingerprint. Intracellular lipid accumulation in NIT-1 cells was induced by culturing with medium containing PA. Intracellular lipid droplets were observed by Oil Red O staining and triglyceride (TG) content was measured by colorimetric assay. The formation of autophagosomes was observed under transmission electron microscope. The expression of AMPK and phospho-AMPK (pAMPK) proteins as well as its downstream fatty acid metabolism-related proteins (fatty acid synthase, FAS; acetyl-coA carboxylase, ACC; carnitine acyltransferase 1, CPT-1) and autophagy-related genes (mammal target of rapamycin, mTOR; tuberous sclerosis complex 1, TSC1; microtubule-associated protein 1 light chain 3, LC3-II) were determined by Western blot. The expression of sterol regulating element binding protein 1c (SREBP-1c) mRNA was examined by real time PCR (RT-PCR). Our data showed that JLDG could significantly reduce PA-induced intracellular lipid accumulation in NIT-1 pancreatic β cells. This effect was associated with increased protein expression of pAMPK and AMPK in NIT-1 cells. Treatment with JLDG also decreased the expression of AMPK downstream lipogenic genes (SREBP-1c mRNA, FAS and ACC proteins) whereas increased the expression of fatty acid oxidation gene (CPT-1 protein). Additionally, JLDG-treated cells displayed a markedly increase in the number of autophagosomes which was accompanied by the down-regulation of m

  4. Reactive oxygen species activate differentiation gene transcription of acute myeloid leukemia cells via the JNK/c-JUN signaling pathway.

    PubMed

    Lam, Chung Fan; Yeung, Hoi Ting; Lam, Yuk Man; Ng, Ray Kit

    2018-05-01

    Reactive oxygen species (ROS) and altered cellular redox status are associated with many malignancies. Acute myeloid leukemia (AML) cells are maintained at immature state by differentiation blockade, which involves deregulation of transcription factors in myeloid differentiation. AML cells can be induced to differentiate by phorbol-12-myristate-13-acetate (PMA), which possesses pro-oxidative activity. However, the signaling events mediated by ROS in the activation of transcriptional program during AML differentiation has not been fully elucidated. Here, we investigated AML cell differentiation by treatment with PMA and ROS scavenger N-acetyl-l-cysteine (NAC). We observed elevation of intracellular ROS level in the PMA-treated AML cells, which correlated with differentiated cell morphology and increased CD11b + mature cell population. The effect of PMA can be abolished by NAC co-treatment, supporting the involvement of ROS in the process. Moreover, we demonstrated that short ROS elevation mediated cell cycle arrest, but failed to activate myeloid gene transcription; whereas prolonged ROS elevation activated JNK/c-JUN signaling pathway. Inhibition of JNK suppressed the expression of key myeloid transcriptional regulators c-JUN, SPI-1 and MAFB, and prevented AML cells from undergoing terminal differentiation. These findings provide new insights into the crucial role of JNK/c-Jun signaling pathway in the activation of transcriptional program during ROS-mediated AML differentiation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Scallop-Inspired DNA Nanomachine: A Ratiometric Nanothermometer for Intracellular Temperature Sensing.

    PubMed

    Xie, Nuli; Huang, Jin; Yang, Xiaohai; He, Xiaoxiao; Liu, Jianbo; Huang, Jiaqi; Fang, Hongmei; Wang, Kemin

    2017-11-21

    Accurate measurement of intracellular temperature is of great significance in biology and medicine. With use of DNA nanotechnology and inspiration by nature's examples of "protective and reversible responses" exoskeletons, a scallop-inspired DNA nanomachine (SDN) is desgined as a ratiometric nanothermometer for intracellular temperature sensing. The SDN is composed of a rigid DNA tetrahedron, where a thermal-sensitive molecular beacon (MB) is embedded in one edge of the DNA tetrahedron. Relying on the thermal-sensitive MB and fluorescence resonance energy transfer (FRET) signaling mechanism, the "On" to "Off" signal is reversibly responding to "below" and "over" the melting temperature. Mimicking the functional anatomy of a scallop, the SDN exhibits high cellular permeability and resistance to enzymatic degradation, good reversibility, and tunable response range. Furthermore, FRET ratiometric signal that allows the simultaneous recording of two emission intensities at different wavelengths can provide a feasible approach for precise detection, minimizing the effect of system fluctuations.

  6. The Membrane Skeleton Controls Diffusion Dynamics and Signaling through the B Cell Receptor

    PubMed Central

    Treanor, Bebhinn; Depoil, David; Gonzalez-Granja, Aitor; Barral, Patricia; Weber, Michele; Dushek, Omer; Bruckbauer, Andreas; Batista, Facundo D.

    2010-01-01

    Summary Early events of B cell activation after B cell receptor (BCR) triggering have been well characterized. However, little is known about the steady state of the BCR on the cell surface. Here, we simultaneously visualize single BCR particles and components of the membrane skeleton. We show that an ezrin- and actin-defined network influenced steady-state BCR diffusion by creating boundaries that restrict BCR diffusion. We identified the intracellular domain of Igβ as important in mediating this restriction in diffusion. Importantly, alteration of this network was sufficient to induce robust intracellular signaling and concomitant increase in BCR mobility. Moreover, by using B cells deficient in key signaling molecules, we show that this signaling was most probably initiated by the BCR. Thus, our results suggest the membrane skeleton plays a crucial function in controlling BCR dynamics and thereby signaling, in a way that could be important for understanding tonic signaling necessary for B cell development and survival. PMID:20171124

  7. Increases in intracellular calcium via activation of potentially multiple phospholipase C isozymes in mouse olfactory neurons

    PubMed Central

    Szebenyi, Steven A.; Ogura, Tatsuya; Sathyanesan, Aaron; AlMatrouk, Abdullah K.; Chang, Justin; Lin, Weihong

    2014-01-01

    Phospholipase C (PLC) and internal Ca2+ stores are involved in a variety of cellular functions. However, our understanding of PLC in mammalian olfactory sensory neurons (OSNs) is generally limited to its controversial role in odor transduction. Here we employed single-cell Ca2+ imaging and molecular approaches to investigate PLC-mediated Ca2+ responses and its isozyme gene transcript expression. We found that the pan-PLC activator m-3M3FBS (25 μM) induces intracellular Ca2+ increases in vast majority of isolated mouse OSNs tested. Both the response amplitude and percent responding cells depend on m-3M3FBS concentrations. In contrast, the inactive analog o-3M3FBS fails to induce Ca2+ responses. The m-3M3FBS-induced Ca2+ increase is blocked by the PLC inhibitor U73122, while its inactive analog U73433 has no effect. Removal of extracellular Ca2+ does not change significantly the m-3M3FBS-induced Ca2+ response amplitude. Additionally, in the absence of external Ca2+, we found that a subset of OSNs respond to an odorant mixture with small Ca2+ increases, which are significantly suppressed by U73122. Furthermore, using reverse transcription polymerase chain reaction and real-time quantitative polymerase chain reaction, we found that multiple PLC isozyme gene transcripts are expressed in olfactory turbinate tissue in various levels. Using RNA in situ hybridization analysis, we further show expression of β4, γ1, γ2 gene transcripts in OSNs. Taken together, our results establish that PLC isozymes are potent enzymes for mobilizing intracellular Ca2+ in mouse OSNs and provide molecular insight for PLC isozymes-mediated complex cell signaling and regulation in the peripheral olfactory epithelium. PMID:25374507

  8. Activation of Ras-ERK Signaling and GSK-3 by Amyloid Precursor Protein and Amyloid Beta Facilitates Neurodegeneration in Alzheimer's Disease.

    PubMed

    Kirouac, Lisa; Rajic, Alexander J; Cribbs, David H; Padmanabhan, Jaya

    2017-01-01

    It is widely accepted that amyloid β (Aβ) generated from amyloid precursor protein (APP) oligomerizes and fibrillizes to form neuritic plaques in Alzheimer's disease (AD), yet little is known about the contribution of APP to intracellular signaling events preceding AD pathogenesis. The data presented here demonstrate that APP expression and neuronal exposure to oligomeric Aβ42 enhance Ras/ERK signaling cascade and glycogen synthase kinase 3 (GSK-3) activation. We find that RNA interference (RNAi)-directed knockdown of APP in B103 rat neuroblastoma cells expressing APP inhibits Ras-ERK signaling and GSK-3 activation, indicating that APP acts upstream of these signal transduction events. Both ERK and GSK-3 are known to induce hyperphosphorylation of tau and APP at Thr668, and our findings suggest that aberrant signaling by APP facilitates these events. Supporting this notion, analysis of human AD brain samples showed increased expression of Ras, activation of GSK-3, and phosphorylation of APP and tau, which correlated with Aβ levels in the AD brains. Furthermore, treatment of primary rat neurons with Aβ recapitulated these events and showed enhanced Ras-ERK signaling, GSK-3 activation, upregulation of cyclin D1, and phosphorylation of APP and tau. The finding that Aβ induces Thr668 phosphorylation on APP, which enhances APP proteolysis and Aβ generation, denotes a vicious feedforward mechanism by which APP and Aβ promote tau hyperphosphorylation and neurodegeneration in AD. Based on these results, we hypothesize that aberrant proliferative signaling by APP plays a fundamental role in AD neurodegeneration and that inhibition of this would impede cell cycle deregulation and neurodegeneration observed in AD.

  9. Recent advances in intracellular and in vivo ROS sensing: focus on nanoparticle and nanotube applications.

    PubMed

    Uusitalo, Larissa M; Hempel, Nadine

    2012-01-01

    Reactive oxygen species (ROS) are increasingly being implicated in the regulation of cellular signaling cascades. Intracellular ROS fluxes are associated with cellular function ranging from proliferation to cell death. Moreover, the importance of subtle, spatio-temporal shifts in ROS during localized cellular signaling events is being realized. Understanding the biochemical nature of the ROS involved will enhance our knowledge of redox-signaling. An ideal intracellular sensor should therefore resolve real-time, localized ROS changes, be highly sensitive to physiologically relevant shifts in ROS and provide specificity towards a particular molecule. For in vivo applications issues such as bioavailability of the probe, tissue penetrance of the signal and signal-to-noise ratio also need to be considered. In the past researchers have heavily relied on the use of ROS-sensitive fluorescent probes and, more recently, genetically engineered ROS sensors. However, there is a great need to improve on current methods to address the above issues. Recently, the field of molecular sensing and imaging has begun to take advantage of the unique physico-chemical properties of nanoparticles and nanotubes. Here we discuss the recent advances in the use of these nanostructures as alternative platforms for ROS sensing, with particular emphasis on intracellular and in vivo ROS detection and quantification.

  10. Salt stress signals shape the plant root.

    PubMed

    Galvan-Ampudia, Carlos S; Testerink, Christa

    2011-06-01

    Plants use different strategies to deal with high soil salinity. One strategy is activation of pathways that allow the plant to export or compartmentalise salt. Relying on their phenotypic plasticity, plants can also adjust their root system architecture (RSA) and the direction of root growth to avoid locally high salt concentrations. Here, we highlight RSA responses to salt and osmotic stress and the underlying mechanisms. A model is presented that describes how salinity affects auxin distribution in the root. Possible intracellular signalling pathways linking salinity to root development and direction of root growth are discussed. These involve perception of high cytosolic Na+ concentrations in the root, activation of lipid signalling and protein kinase activity and modulation of endocytic pathways. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Intracellular origin and ultrastructure of platelet-derived microparticles.

    PubMed

    Ponomareva, A A; Nevzorova, T A; Mordakhanova, E R; Andrianova, I A; Rauova, L; Litvinov, R I; Weisel, J W

    2017-08-01

    Essentials Platelet microparticles play a major role in pathologies, including hemostasis and thrombosis. Platelet microparticles have been analyzed and classified based on their ultrastructure. The structure and intracellular origin of microparticles depend on the cell-activating stimulus. Thrombin-treated platelets fall apart and form microparticles that contain cellular organelles. Background Platelet-derived microparticles comprise the major population of circulating blood microparticles that play an important role in hemostasis and thrombosis. Despite numerous studies on the (patho)physiological roles of platelet-derived microparticles, mechanisms of their formation and structural details remain largely unknown. Objectives Here we studied the formation, ultrastructure and composition of platelet-derived microparticles from isolated human platelets, either quiescent or stimulated with one of the following activators: arachidonic acid, ADP, collagen, thrombin or calcium ionophore A23187. Methods Using flow cytometry, transmission and scanning electron microscopy, we analyzed the intracellular origin, structural diversity and size distributions of the subcellular particles released from platelets. Results The structure, dimensions and intracellular origin of microparticles depend on the cell-activating stimulus. The main structural groups include a vesicle surrounded by one thin membrane or multivesicular structures. Thrombin, unlike other stimuli, induced formation of microparticles not only from the platelet plasma membrane and cytoplasm but also from intracellular structures. A fraction of these vesicular particles having an intracellular origin contained organelles, such as mitochondria, glycogen granules and vacuoles. The size of platelet-derived microparticles depended on the nature of the cell-activating stimulus. Conclusion The results obtained provide a structural basis for the qualitative differences of various platelet activators, for specific

  12. Receptor clustering affects signal transduction at the membrane level in the reaction-limited regime

    NASA Astrophysics Data System (ADS)

    Caré, Bertrand R.; Soula, Hédi A.

    2013-01-01

    Many types of membrane receptors are found to be organized as clusters on the cell surface. We investigate the potential effect of such receptor clustering on the intracellular signal transduction stage. We consider a canonical pathway with a membrane receptor (R) activating a membrane-bound intracellular relay protein (G). We use Monte Carlo simulations to recreate biochemical reactions using different receptor spatial distributions and explore the dynamics of the signal transduction. Results show that activation of G by R is severely impaired by R clustering, leading to an apparent blunted biological effect compared to control. Paradoxically, this clustering decreases the half maximal effective dose (ED50) of the transduction stage, increasing the apparent affinity. We study an example of inter-receptor interaction in order to account for possible compensatory effects of clustering and observe the parameter range in which such interactions slightly counterbalance the loss of activation of G. The membrane receptors’ spatial distribution affects the internal stages of signal amplification, suggesting a functional role for membrane domains and receptor clustering independently of proximity-induced receptor-receptor interactions.

  13. [Intracellular free calcium changes of mouse oocytes during activation induced by ethanol or electrical stimulations and parthenogenetic development].

    PubMed

    Deng, M Q; Fan, B Q

    1994-09-01

    Oocytes collected 18-19 h after HCG injection were stimulated with 7-8% ethanol or electrical pulses (1.7 KV/cm field strength, 80-100 microseconds duration, 3-4 times, 5-6 min interval). The parthenogenetic embryos derived from the above-mentioned methods developed to blastocyst stage just like those developed from fertilized eggs. Mouse oocytes were rather sensitive to ethanol stimulation. More than 95% of the treated oocytes were activated after stimulation of 7-8% ethanol for 5 min. Multiple electrical stimulations induced higher activation percentages of oocytes than only single electrical stimulation (71.5% vs. 63.6%). Intact oocytes were loaded with fluorescent Ca2+ indicator fura-2 and intracellular free calcium changes during artificial activation were measured by fluorescence detector. The results showed that ethanol could induce repetitive transient Ca2+ concentration increase in activated oocytes. Single electrical stimulation only induced single free calcium concentration elevation in oocyte while multiple electrical pulses could induce repetitive Ca2+ increase (each electrical pulse elicited the corresponding Ca2+ concentration peak). The pronuclei were not observed in the oocytes which had not exhibited calcium concentration rise during activation. Apart from electrical stimulation parameter, sufficient amount of Ca2+ in electric medium was crucial to mouse oocyte activation when stimulated with electrical pulses. The oocytes were hardly activated by electrical stimulations in a medium without Ca2+ even with longer pulse duration and the intracellular free calcium concentration in the oocytes showed no elevation. This indicates that the inflow of extracellular Ca2+ from tiny pores across the oocyte membrane caused by electrical stimulation is the main source of intracellular free calcium increase.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation

    PubMed Central

    Rahman, Md Shaifur; Akhtar, Naznin; Jamil, Hossen Mohammad; Banik, Rajat Suvra; Asaduzzaman, Sikder M

    2015-01-01

    Transforming growth factor-beta (TGF-β)/bone morphogenetic protein (BMP) plays a fundamental role in the regulation of bone organogenesis through the activation of receptor serine/threonine kinases. Perturbations of TGF-β/BMP activity are almost invariably linked to a wide variety of clinical outcomes, i.e., skeletal, extra skeletal anomalies, autoimmune, cancer, and cardiovascular diseases. Phosphorylation of TGF-β (I/II) or BMP receptors activates intracellular downstream Smads, the transducer of TGF-β/BMP signals. This signaling is modulated by various factors and pathways, including transcription factor Runx2. The signaling network in skeletal development and bone formation is overwhelmingly complex and highly time and space specific. Additive, positive, negative, or synergistic effects are observed when TGF-β/BMP interacts with the pathways of MAPK, Wnt, Hedgehog (Hh), Notch, Akt/mTOR, and miRNA to regulate the effects of BMP-induced signaling in bone dynamics. Accumulating evidence indicates that Runx2 is the key integrator, whereas Hh is a possible modulator, miRNAs are regulators, and β-catenin is a mediator/regulator within the extensive intracellular network. This review focuses on the activation of BMP signaling and interaction with other regulatory components and pathways highlighting the molecular mechanisms regarding TGF-β/BMP function and regulation that could allow understanding the complexity of bone tissue dynamics. PMID:26273537

  15. Activation of the proteasomes of sand dollar eggs at fertilization depends on the intracellular pH rise.

    PubMed

    Chiba, K; Alderton, J M; Hoshi, M; Steinhardt, R A

    1999-05-01

    The mechanism of the activation of intracellular proteasomes at fertilization was measured in living sand dollar eggs using the membrane-impermeant fluorogenic substrate, succinyl-Phe-Leu-Arg-coumarylamido-4-methanesulfonic acid. When the substrate was microinjected into unfertilized eggs, the initial velocity of hydrolysis of the substrate (V0) was low. V0 measured 5 to 10 min after fertilization was five to nine times the prefertilization level and remained high throughout the first cell cycle. Hydrolysis of the substrate was inhibited by clasto-lactacystin beta-lactone, a specific inhibitor of the proteasome. There has been in vitro evidence that calcium may be involved in regulation of proteasome activity to either inhibit the increase in peptidase activity associated with PA 28 binding to the 20S proteasome or stimulate activity of the PA 700-proteasome complex. Since both intracellular free Ca2+ concentration ([Ca2+]i) and intracellular pH (pHi) increase after fertilization, hydrolysis of the proteasome substrate was measured under conditions in which [Ca2+]i and pHi were varied independently during activation. When the pHi of unfertilized eggs was elevated by exposure to 15 mM ammonium chloride in pH 9 seawater, V0 increased to a level comparable to that measured after fertilization. In contrast, [Ca2+]i elevation without pHi change, induced by calcium ionophore in sodium-free seawater, had no effect on V0 in the unfertilized egg. Moreover, when unfertilized eggs were microinjected with buffers modulating pHi, V0 increased in a pH-dependent manner. These results indicate that the pHi rise at fertilization is the necessary prerequisite for activation of the proteasome, an essential component in the regulation of the cell cycle. Copyright 1999 Academic Press.

  16. Cadmium induces autophagy through ROS-dependent activation of the LKB1-AMPK signaling in skin epidermal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, Young-Ok; Wang Xin; Hitron, John Andrew

    2011-09-15

    Cadmium is a toxic heavy metal which is environmentally and occupationally relevant. The mechanisms underlying cadmium-induced autophagy are not yet completely understood. The present study shows that cadmium induces autophagy, as demonstrated by the increase of LC3-II formation and the GFP-LC3 puncta cells. The induction of autophagosomes was directly visualized by electron microscopy in cadmium-exposed skin epidermal cells. Blockage of LKB1 or AMPK by siRNA transfection suppressed cadmium-induced autophagy. Cadmium-induced autophagy was inhibited in dominant-negative AMPK-transfected cells, whereas it was accelerated in cells transfected with the constitutively active form of AMPK. mTOR signaling, a negative regulator of autophagy, was downregulatedmore » in cadmium-exposed cells. In addition, cadmium generated reactive oxygen species (ROS) at relatively low levels, and caused poly(ADP-ribose) polymerase-1 (PARP) activation and ATP depletion. Inhibition of PARP by pharmacological inhibitors or its siRNA transfection suppressed ATP reduction and autophagy in cadmium-exposed cells. Furthermore, cadmium-induced autophagy signaling was attenuated by either exogenous addition of catalase and superoxide dismutase, or by overexpression of these enzymes. Consequently, these results suggest that cadmium-mediated ROS generation causes PARP activation and energy depletion, and eventually induces autophagy through the activation of LKB1-AMPK signaling and the down-regulation of mTOR in skin epidermal cells. - Highlights: > Cadmium, a toxic heavy metal, induces autophagic cell death through ROS-dependent activation of the LKB1-AMPK signaling. > Cadmium generates intracellular ROS at low levels and this leads to severe DNA damage and PARP activation, resulting in ATP depletion, which are the upstream events of LKB1-AMPK-mediated autophagy. > This novel finding may contribute to further understanding of cadmium-mediated diseases.« less

  17. Rapid sodium signaling couples glutamate uptake to breakdown of ATP in perivascular astrocyte endfeet.

    PubMed

    Langer, Julia; Gerkau, Niklas J; Derouiche, Amin; Kleinhans, Christian; Moshrefi-Ravasdjani, Behrouz; Fredrich, Michaela; Kafitz, Karl W; Seifert, Gerald; Steinhäuser, Christian; Rose, Christine R

    2017-02-01

    Perivascular endfeet of astrocytes are highly polarized compartments that ensheath blood vessels and contribute to the blood-brain barrier. They experience calcium transients with neuronal activity, a phenomenon involved in neurovascular coupling. Endfeet also mediate the uptake of glucose from the blood, a process stimulated in active brain regions. Here, we demonstrate in mouse hippocampal tissue slices that endfeet undergo sodium signaling upon stimulation of glutamatergic synaptic activity. Glutamate-induced endfeet sodium transients were diminished by TFB-TBOA, suggesting that they were generated by sodium-dependent glutamate uptake. With local agonist application, they could be restricted to endfeet and immunohistochemical analysis revealed prominent expression of glutamate transporters GLAST and GLT-1 localized towards the neuropil vs. the vascular side of endfeet. Endfeet sodium signals spread at an apparent maximum velocity of ∼120 µm/s and directly propagated from stimulated into neighboring endfeet; this spread was omitted in Cx30/Cx43 double-deficient mice. Sodium transients resulted in elevation of intracellular magnesium, indicating a decrease in intracellular ATP. In summary, our results establish that excitatory synaptic activity and stimulation of glutamate uptake in astrocytes trigger transient sodium increases in perivascular endfeet which rapidly spread through gap junctions into neighboring endfeet and cause a reduction of intracellular ATP. The newly discovered endfeet sodium signaling thereby represents a fast, long-lived and inter-cellularly acting indicator of synaptic activity at the blood-brain barrier, which likely constitutes an important component of neuro-metabolic coupling in the brain. GLIA 2017;65:293-308. © 2016 Wiley Periodicals, Inc.

  18. Ethanol Enhances TGF-β Activity by Recruiting TGF-β Receptors From Intracellular Vesicles/Lipid Rafts/Caveolae to Non-Lipid Raft Microdomains.

    PubMed

    Huang, Shuan Shian; Chen, Chun-Lin; Huang, Franklin W; Johnson, Frank E; Huang, Jung San

    2016-04-01

    Regular consumption of moderate amounts of ethanol has important health benefits on atherosclerotic cardiovascular disease (ASCVD). Overindulgence can cause many diseases, particularly alcoholic liver disease (ALD). The mechanisms by which ethanol causes both beneficial and harmful effects on human health are poorly understood. Here we demonstrate that ethanol enhances TGF-β-stimulated luciferase activity with a maximum of 0.5-1% (v/v) in Mv1Lu cells stably expressing a luciferase reporter gene containing Smad2-dependent elements. In Mv1Lu cells, 0.5% ethanol increases the level of P-Smad2, a canonical TGF-β signaling sensor, by ∼ 2-3-fold. Ethanol (0.5%) increases cell-surface expression of the type II TGF-β receptor (TβR-II) by ∼ 2-3-fold from its intracellular pool, as determined by I(125) -TGF-β-cross-linking/Western blot analysis. Sucrose density gradient ultracentrifugation and indirect immunofluorescence staining analyses reveal that ethanol (0.5% and 1%) also displaces cell-surface TβR-I and TβR-II from lipid rafts/caveolae and facilitates translocation of these receptors to non-lipid raft microdomains where canonical signaling occurs. These results suggest that ethanol enhances canonical TGF-β signaling by increasing non-lipid raft microdomain localization of the TGF-β receptors. Since TGF-β plays a protective role in ASCVD but can also cause ALD, the TGF-β enhancer activity of ethanol at low and high doses appears to be responsible for both beneficial and harmful effects. Ethanol also disrupts the location of lipid raft/caveolae of other membrane proteins (e.g., neurotransmitter, growth factor/cytokine, and G protein-coupled receptors) which utilize lipid rafts/caveolae as signaling platforms. Displacement of these membrane proteins induced by ethanol may result in a variety of pathologies in nerve, heart and other tissues. © 2015 Wiley Periodicals, Inc.

  19. Evidence for calcium-mediated perception of plant symbiotic signals in aequorin-expressing Mesorhizobium loti

    PubMed Central

    2009-01-01

    Background During the interaction between rhizobia and leguminous plants the two partners engage in a molecular conversation that leads to reciprocal recognition and ensures the beginning of a successful symbiotic integration. In host plants, intracellular Ca2+ changes are an integral part of the signalling mechanism. In rhizobia it is not yet known whether Ca2+ can act as a transducer of symbiotic signals. Results A plasmid encoding the bioluminescent Ca2+ probe aequorin was introduced into Mesorhizobium loti USDA 3147T strain to investigate whether a Ca2+ response is activated in rhizobia upon perception of plant root exudates. We find that M. loti cells respond to environmental and symbiotic cues through transient elevations in intracellular free Ca2+ concentration. Only root exudates from the homologous host Lotus japonicus induce Ca2+ signalling and downstream activation of nodulation genes. The extracellular Ca2+ chelator EGTA inhibits both transient intracellular Ca2+ increase and inducible nod gene expression, while not affecting the expression of other genes, either constitutively expressed or inducible. Conclusion These findings indicate a newly described early event in the molecular dialogue between plants and rhizobia and highlight the use of aequorin-expressing bacterial strains as a promising novel approach for research in legume symbiosis. PMID:19775463

  20. Spatial modeling of the membrane-cytosolic interface in protein kinase signal transduction

    PubMed Central

    Schröder, Andreas

    2018-01-01

    The spatial architecture of signaling pathways and the interaction with cell size and morphology are complex, but little understood. With the advances of single cell imaging and single cell biology, it becomes crucial to understand intracellular processes in time and space. Activation of cell surface receptors often triggers a signaling cascade including the activation of membrane-attached and cytosolic signaling components, which eventually transmit the signal to the cell nucleus. Signaling proteins can form steep gradients in the cytosol, which cause strong cell size dependence. We show that the kinetics at the membrane-cytosolic interface and the ratio of cell membrane area to the enclosed cytosolic volume change the behavior of signaling cascades significantly. We suggest an estimate of average concentration for arbitrary cell shapes depending on the cell volume and cell surface area. The normalized variance, known from image analysis, is suggested as an alternative measure to quantify the deviation from the average concentration. A mathematical analysis of signal transduction in time and space is presented, providing analytical solutions for different spatial arrangements of linear signaling cascades. Quantification of signaling time scales reveals that signal propagation is faster at the membrane than at the nucleus, while this time difference decreases with the number of signaling components in the cytosol. Our investigations are complemented by numerical simulations of non-linear cascades with feedback and asymmetric cell shapes. We conclude that intracellular signal propagation is highly dependent on cell geometry and, thereby, conveys information on cell size and shape to the nucleus. PMID:29630597

  1. Trigeminal Ganglion Neurons of Mice Show Intracellular Chloride Accumulation and Chloride-Dependent Amplification of Capsaicin-Induced Responses

    PubMed Central

    Schöbel, Nicole; Radtke, Debbie; Lübbert, Matthias; Gisselmann, Günter; Lehmann, Ramona; Cichy, Annika; Schreiner, Benjamin S. P.; Altmüller, Janine; Spector, Alan C.; Spehr, Jennifer; Hatt, Hanns; Wetzel, Christian H.

    2012-01-01

    Intracellular Cl− concentrations ([Cl−]i) of sensory neurons regulate signal transmission and signal amplification. In dorsal root ganglion (DRG) and olfactory sensory neurons (OSNs), Cl− is accumulated by the Na+-K+-2Cl− cotransporter 1 (NKCC1), resulting in a [Cl−]i above electrochemical equilibrium and a depolarizing Cl− efflux upon Cl− channel opening. Here, we investigate the [Cl−]i and function of Cl− in primary sensory neurons of trigeminal ganglia (TG) of wild type (WT) and NKCC1−/− mice using pharmacological and imaging approaches, patch-clamping, as well as behavioral testing. The [Cl−]i of WT TG neurons indicated active NKCC1-dependent Cl− accumulation. Gamma-aminobutyric acid (GABA)A receptor activation induced a reduction of [Cl−]i as well as Ca2+ transients in a corresponding fraction of TG neurons. Ca2+ transients were sensitive to inhibition of NKCC1 and voltage-gated Ca2+ channels (VGCCs). Ca2+ responses induced by capsaicin, a prototypical stimulus of transient receptor potential vanilloid subfamily member-1 (TRPV1) were diminished in NKCC1−/− TG neurons, but elevated under conditions of a lowered [Cl−]o suggesting a Cl−-dependent amplification of capsaicin-induced responses. Using next generation sequencing (NGS), we found expression of different Ca2+-activated Cl− channels (CaCCs) in TGs of mice. Pharmacological inhibition of CaCCs reduced the amplitude of capsaicin-induced responses of TG neurons in Ca2+ imaging and electrophysiological recordings. In a behavioral paradigm, NKCC1−/− mice showed less avoidance of the aversive stimulus capsaicin. In summary, our results strongly argue for a Ca2+-activated Cl−-dependent signal amplification mechanism in TG neurons that requires intracellular Cl− accumulation by NKCC1 and the activation of CaCCs. PMID:23144843

  2. Evaluating the anti Mycobacterium tuberculosis activity of Alpinia galanga (L.) Willd. axenically under reducing oxygen conditions and in intracellular assays

    PubMed Central

    2014-01-01

    Background In tuberculosis (TB), the steadily increasing bacterial resistance to existing drugs and latent TB continue to be major concerns. A combination of conventional drugs and plant derived therapeutics can serve to expand the antimicrobial spectrum, prevent the emergence of drug resistant mutants and minimize toxicity. Alpinia galanga, used in various traditional medicines, possesses broad spectrum antibacterial properties. The study was undertaken to assess the antimycobacterial potential of A. galanga in axenic (under aerobic and anaerobic conditions) and intracellular assays. Methods Phytochemical analysis was done using HPTLC. The acetone, aqueous and ethanolic extracts (1, 10, 25, 50 and 100 μg/ml) of A. galanga were tested axenically using Microplate Alamar Blue Assay (MABA) against Mycobacterium tuberculosis (M.tb) H37Rv and three drug sensitive and three multi drug resistant clinical isolates. The activity of the extracts was also evaluated intracellularly in A549 cell line against these strains. The extracts active under intracellular conditions were further tested in an axenic setup under reducing oxygen concentrations using only H37Rv. Results 1´ acetoxychavicol acetate, the reference standard used, was present in all the three extracts. The acetone and ethanolic extracts were active in axenic (aerobic and anaerobic) and intracellular assays. The aqueous extract did not demonstrate activity under the defined assay parameters. Conclusion A. galanga exhibits anti M.tb activity with multiple modes of action. Since the activity of the extracts was observed under reducing oxygen concentrations, it may be effective in treating the dormant and non-replicating bacteria of latent TB. Though the hypothesis needs further testing, A. galanga being a regular dietary component may be utilized in combination with the conventional TB therapy for enhanced efficacy. PMID:24592852

  3. Intracellular signaling of the Ufo/Axl receptor tyrosine kinase is mediated mainly by a multi-substrate docking-site.

    PubMed

    Braunger, J; Schleithoff, L; Schulz, A S; Kessler, H; Lammers, R; Ullrich, A; Bartram, C R; Janssen, J W

    1997-06-05

    Ufo/Axl belongs to a new family of receptor tyrosine kinases with an extracellular structure similar to that of neural cell adhesion molecules. In order to elucidate intracellular signaling, the cytoplasmic moiety of Ufo/Axl was used to screen an expression library according to the CORT (cloning of receptor targets) method. Three putative Ufo substrates were identified: phospholipase Cgamma1 (PLCgamma), as well as p85alpha and p85beta subunits of phosphatidylinositol 3'-kinase (PI3-kinase). Subsequently, chimeric EGFR/Ufo receptors consisting of the extracellular domains of the epidermal growth factor receptor (EGFR) and the transmembrane and intracellular moiety of Ufo were engineered. Using different far-Western blot analyses and coimmunoprecipitation assays, receptor binding of PLCgamma and p85 proteins as well as GRB2, c-src and lck was examined in vitro and in vivo. Competitive inhibition of substrate binding and mutagenesis experiments with EGFR/Ufo constructs revealed C-terminal tyrosine 821 (EILpYVNMDEG) as a docking site for multiple effectors, namely PLCgamma, p85 proteins, GRB2, c-src and lck. Tyrosine 779 (DGLpYALMSRC) demonstrated an additional, but lower binding affinity for the p85 proteins in vitro. In addition, binding of PLCgamma occurred through tyrosine 866 (AGRpYVLCPST). Moreover, our in vivo data indicate that further direct or indirect binding sites for PLCgamma, GRB2, c-src and lck on the human Ufo receptor may exist.

  4. Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors

    PubMed Central

    Bonardi, Vera; Tang, Saijun; Stallmann, Anna; Roberts, Melinda; Cherkis, Karen; Dangl, Jeffery L.

    2011-01-01

    Plants and animals deploy intracellular immune receptors that perceive specific pathogen effector proteins and microbial products delivered into the host cell. We demonstrate that the ADR1 family of Arabidopsis nucleotide-binding leucine-rich repeat (NB-LRR) receptors regulates accumulation of the defense hormone salicylic acid during three different types of immune response: (i) ADRs are required as “helper NB-LRRs” to transduce signals downstream of specific NB-LRR receptor activation during effector-triggered immunity; (ii) ADRs are required for basal defense against virulent pathogens; and (iii) ADRs regulate microbial-associated molecular pattern-dependent salicylic acid accumulation induced by infection with a disarmed pathogen. Remarkably, these functions do not require an intact P-loop motif for at least one ADR1 family member. Our results suggest that some NB-LRR proteins can serve additional functions beyond canonical, P-loop–dependent activation by specific virulence effectors, extending analogies between intracellular innate immune receptor function from plants and animals. PMID:21911370

  5. Exposure to Electrophiles Impairs Reactive Persulfide-Dependent Redox Signaling in Neuronal Cells.

    PubMed

    Ihara, Hideshi; Kasamatsu, Shingo; Kitamura, Atsushi; Nishimura, Akira; Tsutsuki, Hiroyasu; Ida, Tomoaki; Ishizaki, Kento; Toyama, Takashi; Yoshida, Eiko; Abdul Hamid, Hisyam; Jung, Minkyung; Matsunaga, Tetsuro; Fujii, Shigemoto; Sawa, Tomohiro; Nishida, Motohiro; Kumagai, Yoshito; Akaike, Takaaki

    2017-09-18

    Electrophiles such as methylmercury (MeHg) affect cellular functions by covalent modification with endogenous thiols. Reactive persulfide species were recently reported to mediate antioxidant responses and redox signaling because of their strong nucleophilicity. In this study, we used MeHg as an environmental electrophile and found that exposure of cells to the exogenous electrophile elevated intracellular concentrations of the endogenous electrophilic molecule 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP), accompanied by depletion of reactive persulfide species and 8-SH-cGMP which is a metabolite of 8-nitro-cGMP. Exposure to MeHg also induced S-guanylation and activation of H-Ras followed by injury to cerebellar granule neurons. The electrophile-induced activation of redox signaling and the consequent cell damage were attenuated by pretreatment with a reactive persulfide species donor. In conclusion, exogenous electrophiles such as MeHg with strong electrophilicity impair the redox signaling regulatory mechanism, particularly of intracellular reactive persulfide species and therefore lead to cellular pathogenesis. Our results suggest that reactive persulfide species may be potential therapeutic targets for attenuating cell injury by electrophiles.

  6. Autoantibodies in the Autoimmune Disease Pemphigus Foliaceus Induce Blistering via p38 Mitogen-Activated Protein Kinase-Dependent Signaling in the Skin

    PubMed Central

    Berkowitz, Paula; Chua, Michael; Liu, Zhi; Diaz, Luis A.; Rubenstein, David S.

    2008-01-01

    Pemphigus foliaceus (PF) is a human autoimmune blistering disease in which a humoral immune response targeting the skin results in a loss of keratinocyte cell-cell adhesion in the superficial layers of the epidermal epithelium. In PF, desmoglein-1-specific autoantibodies induce blistering. Evidence is beginning to accumulate that activation of signaling may have an important role in the ability of pathogenic pemphigus IgGs to induce blistering and that both p38 mitogen-activated protein kinase (MAPK) and heat shock protein (HSP) 27 are part of this signaling pathway. This study was undertaken to investigate the ability of PF IgGs to activate signaling as well as the contribution of this signaling pathway to blister induction in an in vivo model of PF. Phosphorylation of both p38 MAPK and HSP25, the murine HSP27 homolog, was observed in the skin of PF IgG-treated mice. Furthermore, inhibition of p38 MAPK blocked the ability of PF IgGs to induce blistering in vivo. These results indicate that PF IgG-induced blistering is dependent on activation of p38 MAPK in the target keratinocyte. Rather than influencing the immune system, limiting the autoantibody-induced intracellular signaling response that leads to target end-organ damage may be a more viable therapeutic strategy for the treatment of autoimmune diseases. Inhibition of p38 MAPK may be an effective strategy for the treatment of PF. PMID:18988808

  7. Intelligent Signal Processing for Active Control

    DTIC Science & Technology

    1992-06-17

    FUNDING NUMSI Intelligent Signal Processing for Active Control C-NO001489-J-1633 G. AUTHOR(S) P.A. Ramamoorthy 7. P2RFORMING ORGANIZATION NAME(S) AND...unclassified .unclassified unclassified L . I mu-. W UNIVERSITY OF CINCINNATI COLLEGE OF ENGINEERING Intelligent Signal Processing For Rctiue Control...NAURI RESEARCH Conkact No: NO1489-J-1633 P.L: P.A.imoodh Intelligent Signal Processing For Active Control 1 Executive Summary The thrust of this

  8. Macromolecular assembly of the adaptor SLP-65 at intracellular vesicles in resting B cells.

    PubMed

    Engelke, Michael; Pirkuliyeva, Sona; Kühn, Julius; Wong, Leo; Boyken, Janina; Herrmann, Nadine; Becker, Stefan; Griesinger, Christian; Wienands, Jürgen

    2014-08-19

    The traditional view of how intracellular effector proteins are recruited to the B cell antigen receptor (BCR) complex at the plasma membrane is based on the occurrence of direct protein-protein interactions, as exemplified by the recruitment of the tyrosine kinase Syk (spleen tyrosine kinase) to phosphorylated motifs in BCR signaling subunits. By contrast, the subcellular targeting of the cytosolic adaptor protein SLP-65 (Src homology 2 domain-containing leukocyte adaptor protein of 65 kD), which serves as a proximal Syk substrate, is unclear. We showed that SLP-65 activation required its association at vesicular compartments in resting B cells. A module of ~50 amino acid residues located at the amino terminus of SLP-65 anchored SLP-65 to the vesicles. Nuclear magnetic resonance spectroscopy showed that the SLP-65 amino terminus was structurally disordered in solution but could bind in a structured manner to noncharged lipid components of cellular membranes. Our finding that preformed vesicular signaling scaffolds are required for B cell activation indicates that vesicles may deliver preassembled signaling cargo to sites of BCR activation. Copyright © 2014, American Association for the Advancement of Science.

  9. Meclozine Facilitates Proliferation and Differentiation of Chondrocytes by Attenuating Abnormally Activated FGFR3 Signaling in Achondroplasia

    PubMed Central

    Matsushita, Masaki; Kitoh, Hiroshi; Ohkawara, Bisei; Mishima, Kenichi; Kaneko, Hiroshi; Ito, Mikako; Masuda, Akio; Ishiguro, Naoki; Ohno, Kinji

    2013-01-01

    Achondroplasia (ACH) is one of the most common skeletal dysplasias with short stature caused by gain-of-function mutations in FGFR3 encoding the fibroblast growth factor receptor 3. We used the drug repositioning strategy to identify an FDA-approved drug that suppresses abnormally activated FGFR3 signaling in ACH. We found that meclozine, an anti-histamine drug that has long been used for motion sickness, facilitates chondrocyte proliferation and mitigates loss of extracellular matrix in FGF2-treated rat chondrosarcoma (RCS) cells. Meclozine also ameliorated abnormally suppressed proliferation of human chondrosarcoma (HCS-2/8) cells that were infected with lentivirus expressing constitutively active mutants of FGFR3-K650E causing thanatophoric dysplasia, FGFR3-K650M causing SADDAN, and FGFR3-G380R causing ACH. Similarly, meclozine alleviated abnormally suppressed differentiation of ATDC5 chondrogenic cells expressing FGFR3-K650E and -G380R in micromass culture. We also confirmed that meclozine alleviates FGF2-mediated longitudinal growth inhibition of embryonic tibia in bone explant culture. Interestingly, meclozine enhanced growth of embryonic tibia in explant culture even in the absence of FGF2 treatment. Analyses of intracellular FGFR3 signaling disclosed that meclozine downregulates phosphorylation of ERK but not of MEK in FGF2-treated RCS cells. Similarly, meclozine enhanced proliferation of RCS cells expressing constitutively active mutants of MEK and RAF but not of ERK, which suggests that meclozine downregulates the FGFR3 signaling by possibly attenuating ERK phosphorylation. We used the C-natriuretic peptide (CNP) as a potent inhibitor of the FGFR3 signaling throughout our experiments, and found that meclozine was as efficient as CNP in attenuating the abnormal FGFR3 signaling. We propose that meclozine is a potential therapeutic agent for treating ACH and other FGFR3-related skeletal dysplasias. PMID:24324705

  10. GPER activates Notch signaling in breast cancer cells and cancer-associated fibroblasts (CAFs).

    PubMed

    Pupo, Marco; Pisano, Assunta; Abonante, Sergio; Maggiolini, Marcello; Musti, Anna Maria

    2014-01-01

    The G protein-coupled receptor GPR30/GPER has been shown to mediate rapid effects of 17β-estradiol (E2) in diverse types of cancer cells. Here, we provide evidence for a novel crosstalk between GPER and the Notch signaling pathway in breast cancer cells and cancer-associated fibroblasts (CAFs). We show that E2 and the GPER selective ligand G-1 induce both the γ-secretase-dependent activation of Notch-1 and the expression of the Notch target gene Hes-1. These inductions are prevented by knocking down GPER or by using a dominant-negative mutant of the Notch transcriptional co-activator Master-mind like-1 (DN-MAML-1), hence suggesting the involvement of GPER in the Notch-dependent transcription. By performing chromatin-immunoprecipitation experiments and luciferase assays, we also demonstrate that E2 and G-1 induce the recruitment of the intracellular domain of Notch-1 (N1ICD) to the Hes-1 promoter and the transactivation of a Hes-1-reporter gene, respectively. Functionally, the E2 and G-1-induced migration of breast cancer cells and CAFs is abolished in presence of the γ-secretase inhibitor GSI or DN-MAML-1, which both inhibit the Notch signaling pathway. In addition, we demonstrate that E2 and G-1 prevent the expression of VE-Cadherin, while both compounds induce the expression of Snail, a Notch target gene acting as a repressor of cadherins expression. Notably, both GSI and DN-MAML-1 abolish the up-regulation of Snail-1 by E2 and G-1, whereas the use of GSI rescues VE-Cadherin expression. Taken together, our results prove the involvement of the Notch signaling pathway in mediating the effects of estrogenic GPER signaling in breast cancer cells and CAFs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Calcium signaling in smooth muscle.

    PubMed

    Hill-Eubanks, David C; Werner, Matthias E; Heppner, Thomas J; Nelson, Mark T

    2011-09-01

    Changes in intracellular Ca(2+) are central to the function of smooth muscle, which lines the walls of all hollow organs. These changes take a variety of forms, from sustained, cell-wide increases to temporally varying, localized changes. The nature of the Ca(2+) signal is a reflection of the source of Ca(2+) (extracellular or intracellular) and the molecular entity responsible for generating it. Depending on the specific channel involved and the detection technology employed, extracellular Ca(2+) entry may be detected optically as graded elevations in intracellular Ca(2+), junctional Ca(2+) transients, Ca(2+) flashes, or Ca(2+) sparklets, whereas release of Ca(2+) from intracellular stores may manifest as Ca(2+) sparks, Ca(2+) puffs, or Ca(2+) waves. These diverse Ca(2+) signals collectively regulate a variety of functions. Some functions, such as contractility, are unique to smooth muscle; others are common to other excitable cells (e.g., modulation of membrane potential) and nonexcitable cells (e.g., regulation of gene expression).

  12. Proinflammatory Actions of Visfatin/Nicotinamide Phosphoribosyltransferase (Nampt) Involve Regulation of Insulin Signaling Pathway and Nampt Enzymatic Activity*

    PubMed Central

    Jacques, Claire; Holzenberger, Martin; Mladenovic, Zvezdana; Salvat, Colette; Pecchi, Emilie; Berenbaum, Francis; Gosset, Marjolaine

    2012-01-01

    Visfatin (also termed pre-B-cell colony-enhancing factor (PBEF) or nicotinamide phosphoribosyltransferase (Nampt)) is a pleiotropic mediator acting on many inflammatory processes including osteoarthritis. Visfatin exhibits both an intracellular enzymatic activity (nicotinamide phosphoribosyltransferase, Nampt) leading to NAD synthesis and a cytokine function via the binding to its hypothetical receptor. We recently reported the role of visfatin in prostaglandin E2 (PGE2) synthesis in chondrocytes. Here, our aim was to characterize the signaling pathways involved in this response in exploring both the insulin receptor (IR) signaling pathway and Nampt activity. IR was expressed in human and murine chondrocytes, and visfatin triggered Akt phosphorylation in murine chondrocytes. Blocking IR expression with siRNA or activity using the hydroxy-2-naphthalenyl methyl phosphonic acid tris acetoxymethyl ester (HNMPA-(AM)3) inhibitor diminished visfatin-induced PGE2 release in chondrocytes. Moreover, visfatin-induced IGF-1R−/− chondrocytes released higher concentration of PGE2 than IGF-1R+/+ cells, a finding confirmed with an antibody that blocked IGF-1R. Using RT-PCR, we found that visfatin did not regulate IR expression and that an increased insulin release was also unlikely to be involved because insulin was unable to increase PGE2 release. Inhibition of Nampt activity using the APO866 inhibitor gradually decreased PGE2 release, whereas the addition of exogenous nicotinamide increased it. We conclude that the proinflammatory actions of visfatin in chondrocytes involve regulation of IR signaling pathways, possibly through the control of Nampt enzymatic activity. PMID:22399297

  13. Protease-activated Receptor-4 Signaling and Trafficking Is Regulated by the Clathrin Adaptor Protein Complex-2 Independent of β-Arrestins*

    PubMed Central

    Smith, Thomas H.; Coronel, Luisa J.; Li, Julia G.; Dores, Michael R.; Nieman, Marvin T.; Trejo, JoAnn

    2016-01-01

    Protease-activated receptor-4 (PAR4) is a G protein-coupled receptor (GPCR) for thrombin and is proteolytically activated, similar to the prototypical PAR1. Due to the irreversible activation of PAR1, receptor trafficking is intimately linked to signal regulation. However, unlike PAR1, the mechanisms that control PAR4 trafficking are not known. Here, we sought to define the mechanisms that control PAR4 trafficking and signaling. In HeLa cells depleted of clathrin by siRNA, activated PAR4 failed to internalize. Consistent with clathrin-mediated endocytosis, expression of a dynamin dominant-negative K44A mutant also blocked activated PAR4 internalization. However, unlike most GPCRs, PAR4 internalization occurred independently of β-arrestins and the receptor's C-tail domain. Rather, we discovered a highly conserved tyrosine-based motif in the third intracellular loop of PAR4 and found that the clathrin adaptor protein complex-2 (AP-2) is important for internalization. Depletion of AP-2 inhibited PAR4 internalization induced by agonist. In addition, mutation of the critical residues of the tyrosine-based motif disrupted agonist-induced PAR4 internalization. Using Dami megakaryocytic cells, we confirmed that AP-2 is required for agonist-induced internalization of endogenous PAR4. Moreover, inhibition of activated PAR4 internalization enhanced ERK1/2 signaling, whereas Akt signaling was markedly diminished. These findings indicate that activated PAR4 internalization requires AP-2 and a tyrosine-based motif and occurs independent of β-arrestins, unlike most classical GPCRs. Moreover, these findings are the first to show that internalization of activated PAR4 is linked to proper ERK1/2 and Akt activation. PMID:27402844

  14. MTOR-Driven Metabolic Reprogramming Regulates Legionella pneumophila Intracellular Niche Homeostasis

    PubMed Central

    Abshire, Camille F.; Roy, Craig R.

    2016-01-01

    Vacuolar bacterial pathogens are sheltered within unique membrane-bound organelles that expand over time to support bacterial replication. These compartments sequester bacterial molecules away from host cytosolic immunosurveillance pathways that induce antimicrobial responses. The mechanisms by which the human pulmonary pathogen Legionella pneumophila maintains niche homeostasis are poorly understood. We uncovered that the Legionella-containing vacuole (LCV) required a sustained supply of host lipids during expansion. Lipids shortage resulted in LCV rupture and initiation of a host cell death response, whereas excess of host lipids increased LCVs size and housing capacity. We found that lipids uptake from serum and de novo lipogenesis are distinct redundant supply mechanisms for membrane biogenesis in Legionella-infected macrophages. During infection, the metabolic checkpoint kinase Mechanistic Target of Rapamycin (MTOR) controlled lipogenesis through the Serum Response Element Binding Protein 1 and 2 (SREBP1/2) transcription factors. In Legionella-infected macrophages a host-driven response that required the Toll-like receptors (TLRs) adaptor protein Myeloid differentiation primary response gene 88 (Myd88) dampened MTOR signaling which in turn destabilized LCVs under serum starvation. Inactivation of the host MTOR-suppression pathway revealed that L. pneumophila sustained MTOR signaling throughout its intracellular infection cycle by a process that required the upstream regulator Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and one or more Dot/Icm effector proteins. Legionella-sustained MTOR signaling facilitated LCV expansion and inhibition of the PI3K-MTOR-SREPB1/2 axis through pharmacological or genetic interference or by activation of the host MTOR-suppression response destabilized expanding LCVs, which in turn triggered cell death of infected macrophages. Our work identified a host metabolic requirement for LCV homeostasis and demonstrated that L

  15. The Molecular Basis of Toxins’ Interactions with Intracellular Signaling via Discrete Portals

    PubMed Central

    Lahiani, Adi; Yavin, Ephraim; Lazarovici, Philip

    2017-01-01

    An understanding of the molecular mechanisms by which microbial, plant or animal-secreted toxins exert their action provides the most important element for assessment of human health risks and opens new insights into therapies addressing a plethora of pathologies, ranging from neurological disorders to cancer, using toxinomimetic agents. Recently, molecular and cellular biology dissecting tools have provided a wealth of information on the action of these diverse toxins, yet, an integrated framework to explain their selective toxicity is still lacking. In this review, specific examples of different toxins are emphasized to illustrate the fundamental mechanisms of toxicity at different biochemical, molecular and cellular- levels with particular consideration for the nervous system. The target of primary action has been highlighted and operationally classified into 13 sub-categories. Selected examples of toxins were assigned to each target category, denominated as portal, and the modulation of the different portal’s signaling was featured. The first portal encompasses the plasma membrane lipid domains, which give rise to pores when challenged for example with pardaxin, a fish toxin, or is subject to degradation when enzymes of lipid metabolism such as phospholipases A2 (PLA2) or phospholipase C (PLC) act upon it. Several major portals consist of ion channels, pumps, transporters and ligand gated ionotropic receptors which many toxins act on, disturbing the intracellular ion homeostasis. Another group of portals consists of G-protein-coupled and tyrosine kinase receptors that, upon interaction with discrete toxins, alter second messengers towards pathological levels. Lastly, subcellular organelles such as mitochondria, nucleus, protein- and RNA-synthesis machineries, cytoskeletal networks and exocytic vesicles are also portals targeted and deregulated by other diverse group of toxins. A fundamental concept can be drawn from these seemingly different toxins with

  16. Wnt signaling activates Shh signaling in early postnatal intervertebral discs, and re-activates Shh signaling in old discs in the mouse.

    PubMed

    Winkler, Tamara; Mahoney, Eric J; Sinner, Debora; Wylie, Christopher C; Dahia, Chitra Lekha

    2014-01-01

    Intervertebral discs (IVDs) are strong fibrocartilaginous joints that connect adjacent vertebrae of the spine. As discs age they become prone to failure, with neurological consequences that are often severe. Surgical repair of discs treats the result of the disease, which affects as many as one in seven people, rather than its cause. An ideal solution would be to repair degenerating discs using the mechanisms of their normal differentiation. However, these mechanisms are poorly understood. Using the mouse as a model, we previously showed that Shh signaling produced by nucleus pulposus cells activates the expression of differentiation markers, and cell proliferation, in the postnatal IVD. In the present study, we show that canonical Wnt signaling is required for the expression of Shh signaling targets in the IVD. We also show that Shh and canonical Wnt signaling pathways are down-regulated in adult IVDs. Furthermore, this down-regulation is reversible, since re-activation of the Wnt or Shh pathways in older discs can re-activate molecular markers of the IVD that are lost with age. These data suggest that biological treatments targeting Wnt and Shh signaling pathways may be feasible as a therapeutic for degenerative disc disease.

  17. Extracellular ATP Acts on Jasmonate Signaling to Reinforce Plant Defense.

    PubMed

    Tripathi, Diwaker; Zhang, Tong; Koo, Abraham J; Stacey, Gary; Tanaka, Kiwamu

    2018-01-01

    Damaged cells send various signals to stimulate defense responses. Recent identification and genetic studies of the plant purinoceptor, P2K1 (also known as DORN1), have demonstrated that extracellular ATP is a signal involved in plant stress responses, including wounding, perhaps to evoke plant defense. However, it remains largely unknown how extracellular ATP induces plant defense responses. Here, we demonstrate that extracellular ATP induces plant defense mediated through activation of the intracellular signaling of jasmonate (JA), a well-characterized defense hormone. In Arabidopsis ( Arabidopsis thaliana ) leaves, ATP pretreatment induced resistance against the necrotrophic fungus, Botrytis cinerea The induced resistance was enhanced in the P2K1 receptor overexpression line, but reduced in the receptor mutant, dorn1 - 3 Mining the transcriptome data revealed that ATP induces a set of JA-induced genes. In addition, the P2K1-associated coexpression network contains defense-related genes, including those encoding jasmonate ZIM-domain (JAZ) proteins, which play key roles as repressors of JA signaling. We examined whether extracellular ATP impacts the stability of JAZ1 in Arabidopsis. The results showed that the JAZ1 stability decreased in response to ATP addition in a proteasome-dependent manner. This reduction required intracellular signaling via second messengers-cytosolic calcium, reactive oxygen species, and nitric oxide. Interestingly, the ATP-induced JAZ1 degradation was attenuated in the JA receptor mutant, coi1 , but not in the JA biosynthesis mutant, aos , or upon addition of JA biosynthesis inhibitors. Immunoprecipitation analysis demonstrated that ATP increases the interaction between COI1 and JAZ1, suggesting direct cross talk between extracellular ATP and JA in intracellular signaling events. Taken together, these results suggest that extracellular ATP signaling directly impacts the JA signaling pathway to maximize plant defense responses. © 2018

  18. A 120-kDa alkaline peptidase from Trypanosoma cruzi is involved in the generation of a novel Ca(2+)-signaling factor for mammalian cells.

    PubMed

    Burleigh, B A; Andrews, N W

    1995-03-10

    Trypomastigotes, the infective stages of the intracellular parasite Trypanosoma cruzi, induce rapid and repetitive cytosolic free Ca2+ transients in fibroblasts. Buffering or depletion of intracellular free Ca2+ inhibits cell entry by trypomastigotes, indicating a role for this signaling event in invasion. We show here that the majority of the Ca(2+)-signaling activity is associated with the soluble fraction of parasites disrupted by sonication. Distinct cell types from different species are responsive to this soluble factor, and intracellular free Ca2+ transients occur rapidly and reach concentrations comparable to responses induced by thrombin and bombesin. The Ca(2+)-signaling activity does not bind concanavalin A and is strongly inhibited by a specific subset of protease inhibitors. The only detectable protease in the fractions with Ca(2+)-signaling activity is an unusual alkaline peptidase of 120 kDa, to which no function had been previously assigned. The activity of the protease and cell invasion by trypomastigotes are blocked by the same specific inhibitors that impair Ca(2+)-signaling, suggesting that the enzyme is required for generating the response leading to infection. We demonstrate that the 120-kDa peptidase is not sufficient for triggering Ca(2+)-signaling, possibly being involved in the processing of precursors present only in infective trypomastigotes. These findings indicate a biological function for a previously identified unusual protozoan protease and provide the first example of a proteolytically generated parasite factor with characteristics of a mammalian hormone.

  19. Pituitary adenylate cyclase 1 receptor internalization and endosomal signaling mediate the pituitary adenylate cyclase activating polypeptide-induced increase in guinea pig cardiac neuron excitability.

    PubMed

    Merriam, Laura A; Baran, Caitlin N; Girard, Beatrice M; Hardwick, Jean C; May, Victor; Parsons, Rodney L

    2013-03-06

    After G-protein-coupled receptor activation and signaling at the plasma membrane, the receptor complex is often rapidly internalized via endocytic vesicles for trafficking into various intracellular compartments and pathways. The formation of signaling endosomes is recognized as a mechanism that produces sustained intracellular signals that may be distinct from those generated at the cell surface for cellular responses including growth, differentiation, and survival. Pituitary adenylate cyclase activating polypeptide (PACAP; Adcyap1) is a potent neurotransmitter/neurotrophic peptide and mediates its diverse cellular functions in part through internalization of its cognate G-protein-coupled PAC1 receptor (PAC1R; Adcyap1r1). In the present study, we examined whether PAC1R endocytosis participates in the regulation of neuronal excitability. Although PACAP increased excitability in 90% of guinea pig cardiac neurons, pretreatment with Pitstop 2 or dynasore to inhibit clathrin and dynamin I/II, respectively, suppressed the PACAP effect. Subsequent addition of inhibitor after the PACAP-induced increase in excitability developed gradually attenuated excitability with no changes in action potential properties. Likewise, the PACAP-induced increase in excitability was markedly decreased at ambient temperature. Receptor trafficking studies with GFP-PAC1 cell lines demonstrated the efficacy of Pitstop 2, dynasore, and low temperatures at suppressing PAC1R endocytosis. In contrast, brefeldin A pretreatments to disrupt Golgi vesicle trafficking did not blunt the PACAP effect, and PACAP/PAC1R signaling still increased neuronal cAMP production even with endocytic blockade. Our results demonstrate that PACAP/PAC1R complex endocytosis is a key step for the PACAP modulation of cardiac neuron excitability.

  20. Intravital imaging of mouse urothelium reveals activation of extracellular signal-regulated kinase by stretch-induced intravesical release of ATP.

    PubMed

    Sano, Takeshi; Kobayashi, Takashi; Negoro, Hiromitsu; Sengiku, Atsushi; Hiratsuka, Takuya; Kamioka, Yuji; Liou, Louis S; Ogawa, Osamu; Matsuda, Michiyuki

    2016-11-01

    To better understand the roles played by signaling molecules in the bladder, we established a protocol of intravital imaging of the bladder of mice expressing a Förster/fluorescence resonance energy transfer (FRET) biosensor for extracellular signal-regulated kinase (ERK), which plays critical roles not only in cell growth but also stress responses. With an upright two-photon excitation microscope and a vacuum-stabilized imaging window, cellular ERK activity was visualized in the whole bladder wall, from adventitia to urothelium. We found that bladder distention caused by elevated intravesical pressure (IVP) activated ERK in the urothelium, but not in the detrusor smooth muscle. When bladder distension was prevented, high IVP failed to activate ERK, suggesting that mechanical stretch, but not the high IVP, caused ERK activation. To delineate its molecular mechanism, the stretch-induced ERK activation was reproduced in an hTERT-immortalized human urothelial cell line (TRT-HU1) in vitro. We found that uniaxial stretch raised the ATP concentration in the culture medium and that inhibition of ATP signaling by apyrase or suramin suppressed the stretch-induced ERK activation in TRT-HU1 cells. In agreement with this in vitro observation, pretreatment with apyrase or suramin suppressed the high IVP-induced urothelial ERK activation in vivo. Thus, we propose that mechanical stretch induces intravesical secretion of ATP and thereby activates ERK in the urothelium. Our method of intravital imaging of the bladder of FRET biosensor-expressing mice should open a pathway for the future association of physiological stimuli with the activities of intracellular signaling networks. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  1. Intracellular Ascorbate Prevents Endothelial Barrier Permeabilization by Thrombin*

    PubMed Central

    Parker, William H.; Qu, Zhi-chao; May, James M.

    2015-01-01

    Intracellular ascorbate (vitamin C) has previously been shown to tighten the endothelial barrier and maintain barrier integrity during acute inflammation in vitro. However, the downstream effectors of ascorbate in the regulation of endothelial permeability remain unclear. In this study, we evaluated ascorbate as a mediator of thrombin-induced barrier permeabilization in human umbilical vein endothelial cells and their immortalized hybridoma line, EA.hy926. We found that the vitamin fully prevented increased permeability to the polysaccharide inulin by thrombin in a dose-dependent manner, and it took effect both before and after subjection to thrombin. Thrombin exposure consumed intracellular ascorbate but not the endogenous antioxidant GSH. Likewise, the antioxidants dithiothreitol and tempol did not reverse permeabilization. We identified a novel role for ascorbate in preserving cAMP during thrombin stimulation, resulting in two downstream effects. First, ascorbate maintained the cortical actin cytoskeleton in a Rap1- and Rac1-dependent manner, thus preserving stable adherens junctions between adjacent cells. Second, ascorbate prevented actin polymerization and formation of stress fibers by reducing the activation of RhoA and phosphorylation of myosin light chain. Although ascorbate and thrombin both required calcium for their respective effects, ascorbate did not prevent thrombin permeabilization by obstructing calcium influx. However, preservation of cAMP by ascorbate was found to depend on both the production of nitric oxide by endothelial nitric-oxide synthase, which ascorbate is known to activate, and the subsequent generation cGMP by guanylate cyclase. Together, these data implicate ascorbate in the prevention of inflammatory endothelial barrier permeabilization and explain the underlying signaling mechanism. PMID:26152729

  2. Astaxanthin and withaferin A block paracrine cytokine interactions between UVB-exposed human keratinocytes and human melanocytes via the attenuation of endothelin-1 secretion and its downstream intracellular signaling.

    PubMed

    Niwano, Takao; Terazawa, Shuko; Nakajima, Hiroaki; Wakabayashi, Yuki; Imokawa, Genji

    2015-06-01

    of tyrosinase in melanocytes. Western blot analysis of intracellular signaling factors revealed that withaferin A but not astaxanthin significantly abolished the endothelin-1-stimulated phosphorylation of Raf-1, MEK, ERK, MITF and CREB in human melanocytes. These results demonstrate that this co-culture system is an appropriate model to characterize melanogenic paracrine interactions and that astaxanthin and withaferin A serve as potent inhibitors of those interactions. Their effects are caused not only by down-regulating the increased secretion of an intrinsic melanogenic cytokine, endothelin-1, by UVB-exposed human keratinocytes, but also by interrupting the endothelin-1-triggered downstream intracellular signaling between protein kinase C and Raf-1 in human melanocytes (only for withaferin A). Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Intracellular postsynaptic cannabinoid receptors link thyrotropin-releasing hormone receptors to TRPC-like channels in thalamic paraventricular nucleus neurons.

    PubMed

    Zhang, L; Kolaj, M; Renaud, L P

    2015-12-17

    In rat thalamic paraventricular nucleus of thalamus (PVT) neurons, activation of thyrotropin-releasing hormone (TRH) receptors enhances excitability via concurrent decrease in G protein-coupled inwardly-rectifying potassium (GIRK)-like and activation of transient receptor potential cation (TRPC)4/5-like cationic conductances. An exploration of intracellular signaling pathways revealed the TRH-induced current to be insensitive to phosphatidylinositol-specific phospholipase C (PI-PLC) inhibitors, but reduced by D609, an inhibitor of phosphatidylcholine-specific PLC (PC-PLC). A corresponding change in the I-V relationship implied suppression of the cationic component of the TRH-induced current. Diacylglycerol (DAG) is a product of the hydrolysis of PC. Studies focused on the isolated cationic component of the TRH-induced response revealed a reduction by RHC80267, an inhibitor of DAG lipase, the enzyme involved in the hydrolysis of DAG to the endocannabinoid 2-arachidonoylglycerol (2-AG). Further investigation revealed enhancement of the cationic component in the presence of either JZL184 or WWL70, inhibitors of enzymes involved in the hydrolysis of 2-AG. A decrease in the TRH-induced response was noted in the presence of rimonabant or SR144528, membrane permeable CB1 and CB2 receptor antagonists, respectively. A decrease in the TRH-induced current by intracellular, but not by bath application of the membrane impermeable peptide hemopressin, selective for CB1 receptors, suggests a postsynaptic intracellular localization of these receptors. The TRH-induced current was increased in the presence of arachidonyl-2'-chloroethylamide (ACEA) or JWH133, CB1 and CB2 receptor agonists, respectively. The PI3-kinase inhibitor LY294002, known to inhibit TRPC translocation, decreased the response to TRH. In addition, a TRH-induced enhancement of the low-threshold spike was prevented by both rimonabant, and SR144528. TRH had no influence on excitatory or inhibitory miniature

  4. Identification of Three Classes of Heteroaromatic Compounds with Activity against Intracellular Trypanosoma cruzi by Chemical Library Screening

    PubMed Central

    Bettiol, Esther; Samanovic, Marie; Murkin, Andrew S.; Raper, Jayne; Buckner, Frederick; Rodriguez, Ana

    2009-01-01

    The development of new drugs against Chagas disease is a priority since the currently available medicines have toxic effects, partial efficacy and are targeted against the acute phase of disease. At present, there is no drug to treat the chronic stage. In this study, we have optimized a whole cell-based assay for high throughput screening of compounds that inhibit infection of mammalian cells by Trypanosoma cruzi trypomastigotes. A 2000-compound chemical library was screened using a recombinant T. cruzi (Tulahuen strain) expressing β-galactosidase. Three hits were selected for their high activity against T. cruzi and low toxicity to host cells in vitro: PCH1, NT1 and CX1 (IC50: 54, 190 and 23 nM, respectively). Each of these three compounds presents a different mechanism of action on intracellular proliferation of T. cruzi amastigotes. CX1 shows strong trypanocidal activity, an essential characteristic for the development of drugs against the chronic stage of Chagas disease where parasites are found intracellular in a quiescent stage. NT1 has a trypanostatic effect, while PCH1 affects parasite division. The three compounds also show high activity against intracellular T. cruzi from the Y strain and against the related kinetoplastid species Leishmania major and L. amazonensis. Characterization of the anti–T. cruzi activity of molecules chemically related to the three library hits allowed the selection of two compounds with IC50 values of 2 nM (PCH6 and CX2). These values are approximately 100 times lower than those of the medicines used in patients against T. cruzi. These results provide new candidate molecules for the development of treatments against Chagas disease and leishmaniasis. PMID:19238193

  5. Identification of three classes of heteroaromatic compounds with activity against intracellular Trypanosoma cruzi by chemical library screening.

    PubMed

    Bettiol, Esther; Samanovic, Marie; Murkin, Andrew S; Raper, Jayne; Buckner, Frederick; Rodriguez, Ana

    2009-01-01

    The development of new drugs against Chagas disease is a priority since the currently available medicines have toxic effects, partial efficacy and are targeted against the acute phase of disease. At present, there is no drug to treat the chronic stage. In this study, we have optimized a whole cell-based assay for high throughput screening of compounds that inhibit infection of mammalian cells by Trypanosoma cruzi trypomastigotes. A 2000-compound chemical library was screened using a recombinant T. cruzi (Tulahuen strain) expressing beta-galactosidase. Three hits were selected for their high activity against T. cruzi and low toxicity to host cells in vitro: PCH1, NT1 and CX1 (IC(50): 54, 190 and 23 nM, respectively). Each of these three compounds presents a different mechanism of action on intracellular proliferation of T. cruzi amastigotes. CX1 shows strong trypanocidal activity, an essential characteristic for the development of drugs against the chronic stage of Chagas disease where parasites are found intracellular in a quiescent stage. NT1 has a trypanostatic effect, while PCH1 affects parasite division. The three compounds also show high activity against intracellular T. cruzi from the Y strain and against the related kinetoplastid species Leishmania major and L. amazonensis. Characterization of the anti-T. cruzi activity of molecules chemically related to the three library hits allowed the selection of two compounds with IC(50) values of 2 nM (PCH6 and CX2). These values are approximately 100 times lower than those of the medicines used in patients against T. cruzi. These results provide new candidate molecules for the development of treatments against Chagas disease and leishmaniasis.

  6. The Crossroads of Synaptic Growth Signaling, Membrane Traffic and Neurological Disease: Insights from Drosophila.

    PubMed

    Deshpande, Mugdha; Rodal, Avital A

    2016-02-01

    Neurons require target-derived autocrine and paracrine growth factors to maintain proper identity, innervation, homeostasis and survival. Neuronal growth factor signaling is highly dependent on membrane traffic, both for the packaging and release of the growth factors themselves, and for regulation of intracellular signaling by their transmembrane receptors. Here, we review recent findings from the Drosophila larval neuromuscular junction (NMJ) that illustrate how specific steps of intracellular traffic and inter-organelle interactions impinge on signaling, particularly in the bone morphogenic protein, Wingless and c-Jun-activated kinase pathways, regulating elaboration and stability of NMJ arbors, construction of synapses and synaptic transmission and homeostasis. These membrane trafficking and signaling pathways have been implicated in human motor neuron diseases including amyotrophic lateral sclerosis and hereditary spastic paraplegia, highlighting their importance for neuronal health and survival. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Influence of the protein kinase C activator phorbol myristate acetate on the intracellular activity of antibiotics against hemin- and menadione-auxotrophic small-colony variant mutants of Staphylococcus aureus and their wild-type parental strain in human THP-1 cells.

    PubMed

    Garcia, Laetitia G; Lemaire, Sandrine; Kahl, Barbara C; Becker, Karsten; Proctor, Richard A; Tulkens, Paul M; Van Bambeke, Françoise

    2012-12-01

    In a previous study (L. G. Garcia et al., Antimicrob. Agents Chemother. 56:3700-3711, 2012), we evaluated the intracellular fate of menD and hemB mutants (corresponding to menadione- and hemin-dependent small-colony variants, respectively) of the parental COL methicillin-resistant Staphylococcus aureus strain and the pharmacodynamic profile of the intracellular activity of a series of antibiotics in human THP-1 monocytes. We have now examined the phagocytosis and intracellular persistence of the same strains in THP-1 cells activated by phorbol 12-myristate 13-acetate (PMA) and measured the intracellular activity of gentamicin, moxifloxacin, and oritavancin in these cells. Postphagocytosis intracellular counts and intracellular survival were lower in PMA-activated cells, probably due to their higher killing capacities. Gentamicin and moxifloxacin showed a 5- to 7-fold higher potency (lower static concentrations) against the parental strain, its hemB mutant, and the genetically complemented strain in PMA-activated cells and against the menD strain in both activated and nonactivated cells. This effect was inhibited when cells were incubated with N-acetylcysteine (a scavenger of oxidant species). In parallel, we observed that the MICs of these drugs were markedly reduced if bacteria had been preexposed to H(2)O(2). In contrast, the intracellular potency of oritavancin was not different in activated and nonactivated cells and was not decreased by the addition of N-acetylcysteine, regardless of the phenotype of the strains. The oritavancin MIC was also unaffected by preincubation of the bacteria with H(2)O(2). Thus, activation of THP-1 cells by PMA may increase the intracellular potency of certain antibiotics (probably due to synergy with reactive oxygen species), but this effect cannot be generalized to all antibiotics.

  8. Stem Cells and Calcium Signaling

    PubMed Central

    Tonelli, Fernanda M.P.; Santos, Anderson K.; Gomes, Dawidson A.; da Silva, Saulo L.; Gomes, Katia N.; Ladeira, Luiz O.

    2014-01-01

    The increasing interest in stem cell research is linked to the promise of developing treatments for many lifethreatening, debilitating diseases, and for cell replacement therapies. However, performing these therapeutic innovations with safety will only be possible when an accurate knowledge about the molecular signals that promote the desired cell fate is reached. Among these signals are transient changes in intracellular Ca2+ concentration [Ca2+]i. Acting as an intracellular messenger, Ca2+ has a key role in cell signaling pathways in various differentiation stages of stem cells. The aim of this chapter is to present a broad overview of various moments in which Ca2+-mediated signaling is essential for the maintenance of stem cells and for promoting their development and differentiation, also focusing on their therapeutic potential. PMID:22453975

  9. Stem cells and calcium signaling.

    PubMed

    Tonelli, Fernanda M P; Santos, Anderson K; Gomes, Dawidson A; da Silva, Saulo L; Gomes, Katia N; Ladeira, Luiz O; Resende, Rodrigo R

    2012-01-01

    The increasing interest in stem cell research is linked to the promise of developing treatments for many lifethreatening, debilitating diseases, and for cell replacement therapies. However, performing these therapeutic innovations with safety will only be possible when an accurate knowledge about the molecular signals that promote the desired cell fate is reached. Among these signals are transient changes in intracellular Ca(2+) concentration [Ca(2+)](i). Acting as an intracellular messenger, Ca(2+) has a key role in cell signaling pathways in various differentiation stages of stem cells. The aim of this chapter is to present a broad overview of various moments in which Ca(2+)-mediated signaling is essential for the maintenance of stem cells and for promoting their development and differentiation, also focusing on their therapeutic potential.

  10. Activation of PLC by an endogenous cytokine (GBP) in Drosophila S3 cells and its application as a model for studying inositol phosphate signalling through ITPK1.

    PubMed

    Zhou, Yixing; Wu, Shilan; Wang, Huanchen; Hayakawa, Yoichi; Bird, Gary S; Shears, Stephen B

    2012-12-01

    Using immortalized [3H]inositol-labelled S3 cells, we demonstrated in the present study that various elements of the inositol phosphate signalling cascade are recruited by a Drosophila homologue from a cytokine family of so-called GBPs (growth-blocking peptides). HPLC analysis revealed that dGBP (Drosophila GBP) elevated Ins(1,4,5)P3 levels 9-fold. By using fluorescent Ca2+ probes, we determined that dGBP initially mobilized Ca2+ from intracellular pools; the ensuing depletion of intracellular Ca2+ stores by dGBP subsequently activated a Ca2+ entry pathway. The addition of dsRNA (double-stranded RNA) to knock down expression of the Drosophila Ins(1,4,5)P3 receptor almost completely eliminated mobilization of intracellular Ca2+ stores by dGBP. Taken together, the results of the present study describe a classical activation of PLC (phospholipase C) by dGBP. The peptide also promoted increases in the levels of other inositol phosphates with signalling credentials: Ins(1,3,4,5)P4, Ins(1,4,5,6)P4 and Ins(1,3,4,5,6)P5. These results greatly expand the regulatory repertoire of the dGBP family, and also characterize S3 cells as a model for studying the regulation of inositol phosphate metabolism and signalling by endogenous cell-surface receptors. We therefore created a cell-line (S3ITPK1) in which heterologous expression of human ITPK (inositol tetrakisphosphate kinase) was controlled by an inducible metallothionein promoter. We found that dGBP-stimulated S3ITPK1 cells did not synthesize Ins(3,4,5,6)P4, contradicting a hypothesis that the PLC-coupled phosphotransferase activity of ITPK1 [Ins(1,3,4,5,6)P5+Ins(1,3,4)P3→Ins(3,4,5,6)P4+Ins(1,3,4,6)P4] is driven solely by the laws of mass action [Chamberlain, Qian, Stiles, Cho, Jones, Lesley, Grabau, Shears and Spraggon (2007) J. Biol. Chem. 282, 28117-28125]. This conclusion represents a fundamental breach in our understanding of ITPK1 signalling.

  11. Role of intracellular Ca2+ signal in the ascorbate-induced apoptosis in a human hepatoma cell line.

    PubMed

    Lee, Yong Soo

    2004-12-01

    Although ascorbate (vitamin C) has been shown to have anti-cancer actions, its effect on human hepatoma cells has not yet been investigated, and thus, the exact mechanism of this action is not fully understood. In this study, the mechanism by which ascorbate induces apoptosis using HepG2 human hepatoblastoma cells is investigated. Ascorbate induced apoptotic cell death in a dose-dependent manner in the cells, was assessed through flow cytometric analysis. Contrary to expectation, ascorbate did not alter the cellular redox status, and treatment with antioxidants (N-acetyl cysteine and N,N-diphenyl-p-phenylenediamine) had no influence on the ascorbate-induced apoptosis. However, ascorbate induced a rapid and sustained increase in intracellular Ca2+ concentration. EGTA, an extracellular Ca2+ chelator did not significantly alter the ascorbate-induced intracellular Ca2+ increase and apoptosis, whereas dantrolene, an intracellular Ca2+ release blocker, completely blocked these actions of ascorbate. In addition, phospholipase C (PLC) inhibitors (U-73122 and manoalide) significantly suppressed the intracellular Ca2+ release and apoptosis induced by ascorbate. Collectively, these results suggest that ascorbate induced apoptosis without changes in the cellular redox status in HepG2 cells, and that the PLC-coupled intracellular Ca2+ release mechanism may mediate ascorbate-induced apoptosis.

  12. In vitro intracellular activity and in vivo efficacy of modithromycin, a novel bicyclolide, against Legionella pneumophila.

    PubMed

    Sato, Takafumi; Tateda, Kazuhiro; Kimura, Soichiro; Ishii, Yoshikazu; Yamaguchi, Keizo

    2011-04-01

    The in vitro and in vivo activities of modithromycin, a novel bicyclolide, against Legionella pneumophila were compared with those of telithromycin, clarithromycin, azithromycin, and levofloxacin. All the test agents decreased the intracellular growth of viable L. pneumophila bacteria over 96 h of incubation in both types of cells used, A/J mouse-derived macrophages and A549 human alveolar epithelial cells, at extracellular concentrations of 4× and 16× MIC, respectively. However, when the agents were removed from the medium after exposure for 2 h, regrowth of intracellular bacteria occurred in both cell systems when they were exposed to telithromycin, clarithromycin, and levofloxacin but not when they were exposed to modithromycin and azithromycin. Once-daily administration of modithromycin at a dose of 10 mg/kg of body weight for 5 days led to a significant decrease of intrapulmonary viable L. pneumophila bacteria in immunosuppressed A/J mice. The efficacy of modithromycin was superior to the efficacies of telithromycin and clarithromycin and comparable to the efficacies of azithromycin and levofloxacin. In addition, modithromycin and azithromycin inhibited the intrapulmonary regrowth of bacteria even at 72 h after the last treatment, but telithromycin and levofloxacin did not. These results suggested that modithromycin has longer-lasting cellular pharmacokinetic features like azithromycin. In conclusion, modithromycin, as well as azithromycin, has excellent in vitro and in vivo bactericidal activities and persistent efficacy against intracellular L. pneumophila. Modithromycin should be a useful agent for treatment of pulmonary infections caused by this pathogen.

  13. Redox signaling in cardiovascular health and disease

    PubMed Central

    Madamanchi, Nageswara R.; Runge, Marschall S.

    2013-01-01

    Spatiotemporal regulation of the activity of a vast array of intracellular proteins and signaling pathways by reactive oxygen species (ROS) governs normal cardiovascular function. However, data from experimental and animal studies strongly support that dysregulated redox signaling, resulting from hyper-activation of various cellular oxidases or mitochondrial dysfunction, is integral to the pathogenesis and progression of cardiovascular disease (CVD). In this review, we address how redox signaling modulates the protein function, the various sources of increased oxidative stress in CVD, and the labyrinth of redox-sensitive molecular mechanisms involved in the development of atherosclerosis, hypertension, cardiac hypertrophy and heart failure, and ischemia–reperfusion injury. Advances in redox biology and pharmacology for inhibiting ROS production in specific cell types and subcellular organelles combined with the development of nanotechnology-based new in vivo imaging systems and targeted drug delivery mechanisms may enable fine-tuning of redox signaling for the treatment and prevention of CVD. PMID:23583330

  14. Atypical Signaling and Functional Desensitization Response of MAS Receptor to Peptide Ligands

    PubMed Central

    Tirupula, Kalyan C.; Desnoyer, Russell; Speth, Robert C.; Karnik, Sadashiva S.

    2014-01-01

    MAS is a G protein-coupled receptor (GPCR) implicated in multiple physiological processes. Several physiological peptide ligands such as angiotensin-(1–7), angiotensin fragments and neuropeptide FF (NPFF) are reported to act on MAS. Studies of conventional G protein signaling and receptor desensitization upon stimulation of MAS with the peptide ligands are limited so far. Therefore, we systematically analyzed G protein signals activated by the peptide ligands. MAS-selective non-peptide ligands that were previously shown to activate G proteins were used as controls for comparison on a common cell based assay platform. Activation of MAS by the non-peptide agonist (1) increased intracellular calcium and D-myo-inositol-1-phosphate (IP1) levels which are indicative of the activation of classical Gαq-phospholipase C signaling pathways, (2) decreased Gαi mediated cAMP levels and (3) stimulated Gα12-dependent expression of luciferase reporter. In all these assays, MAS exhibited strong constitutive activity that was inhibited by the non-peptide inverse agonist. Further, in the calcium response assay, MAS was resistant to stimulation by a second dose of the non-peptide agonist after the first activation has waned suggesting functional desensitization. In contrast, activation of MAS by the peptide ligand NPFF initiated a rapid rise in intracellular calcium with very weak IP1 accumulation which is unlike classical Gαq-phospholipase C signaling pathway. NPFF only weakly stimulated MAS-mediated activation of Gα12 and Gαi signaling pathways. Furthermore, unlike non-peptide agonist-activated MAS, NPFF-activated MAS could be readily re-stimulated the second time by the agonists. Functional assays with key ligand binding MAS mutants suggest that NPFF and non-peptide ligands bind to overlapping regions. Angiotensin-(1–7) and other angiotensin fragments weakly potentiated an NPFF-like calcium response at non-physiological concentrations (≥100 µM). Overall, our data

  15. Modular Activating Receptors in Innate and Adaptive Immunity.

    PubMed

    Berry, Richard; Call, Matthew E

    2017-03-14

    Triggering of cell-mediated immunity is largely dependent on the recognition of foreign or abnormal molecules by a myriad of cell surface-bound receptors. Many activating immune receptors do not possess any intrinsic signaling capacity but instead form noncovalent complexes with one or more dimeric signaling modules that communicate with a common set of kinases to initiate intracellular information-transfer pathways. This modular architecture, where the ligand binding and signaling functions are detached from one another, is a common theme that is widely employed throughout the innate and adaptive arms of immune systems. The evolutionary advantages of this highly adaptable platform for molecular recognition are visible in the variety of ligand-receptor interactions that can be linked to common signaling pathways, the diversification of receptor modules in response to pathogen challenges, and the amplification of cellular responses through incorporation of multiple signaling motifs. Here we provide an overview of the major classes of modular activating immune receptors and outline the current state of knowledge regarding how these receptors assemble, recognize their ligands, and ultimately trigger intracellular signal transduction pathways that activate immune cell effector functions.

  16. Intracellular transport of fat-soluble vitamins A and E.

    PubMed

    Kono, Nozomu; Arai, Hiroyuki

    2015-01-01

    Vitamins are compounds that are essential for the normal growth, reproduction and functioning of the human body. Of the 13 known vitamins, vitamins A, D, E and K are lipophilic compounds and are therefore called fat-soluble vitamins. Because of their lipophilicity, fat-soluble vitamins are solubilized and transported by intracellular carrier proteins to exert their actions and to be metabolized properly. Vitamin A and its derivatives, collectively called retinoids, are solubilized by intracellular retinoid-binding proteins such as cellular retinol-binding protein (CRBP), cellular retinoic acid-binding protein (CRABP) and cellular retinal-binding protein (CRALBP). These proteins act as chaperones that regulate the metabolism, signaling and transport of retinoids. CRALBP-mediated intracellular retinoid transport is essential for vision in human. α-Tocopherol, the main form of vitamin E found in the body, is transported by α-tocopherol transfer protein (α-TTP) in hepatic cells. Defects of α-TTP cause vitamin E deficiency and neurological disorders in humans. Recently, it has been shown that the interaction of α-TTP with phosphoinositides plays a critical role in the intracellular transport of α-tocopherol and is associated with familial vitamin E deficiency. In this review, we summarize the mechanisms and biological significance of the intracellular transport of vitamins A and E. © 2014 The Authors. Traffic published by John Wiley & Sons Ltd.

  17. Piperine Promotes Glucose Uptake through ROS-Dependent Activation of the CAMKK/AMPK Signaling Pathway in Skeletal Muscle.

    PubMed

    Maeda, Ayumi; Shirao, Takeshi; Shirasaya, Daishi; Yoshioka, Yasukiyo; Yamashita, Yoko; Akagawa, Mitsugu; Ashida, Hitoshi

    2018-06-01

    The prevalence of type 2 diabetes mellitus (T2DM) is increasing yearly worldwide. Glycemic control is the basis for the treatment of T2DM, as it can prevent the progress of associated complications. Spices possess various health beneficial effects on humans. The aim of this study is to search for spices that can promote glucose uptake and to elucidate the underlying molecular mechanism(s). Among 24 spice extracts, the extracts from black pepper and white pepper significantly increase glucose uptake in L6 myotubes. Piperine is found to be the active compound in these extracts. Treatment of myotubes with piperine induces the translocation of glucose transporter 4 (GLUT4) to the plasma membrane by phosphorylation of AMP-activated protein kinase (AMPK). Piperine increases the intracellular Ca 2+ level and reactive oxygen species (ROS) generation through transient receptor potential vanilloid channel 1 (TRPV1), followed by activation of Ca 2+ /calmodulin-dependent protein kinase kinase-beta (CaMKKβ) as the upstream events for AMPK phosphorylation. Furthermore, oral administration of piperine to Wistar rats at 0.01 and 0.1 mg kg -1 body weight decreases postprandial hyperglycemia accompanied by GLUT4 translocation and AMPK phosphorylation. Piperine in pepper prevents hyperglycemia by GLUT4 translocation through CaMKKβ/AMPK signaling via TRPV1-dependent increase in the intracellular Ca 2+ level and ROS generation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Comparison of fluorescence probes for intracellular sodium imaging in prostate cancer cell lines.

    PubMed

    Iamshanova, Oksana; Mariot, Pascal; Lehen'kyi, V'yacheslav; Prevarskaya, Natalia

    2016-10-01

    Sodium (Na + ) ions are known to regulate many signaling pathways involved in both physiological and pathological conditions. In particular, alterations in intracellular concentrations of Na + and corresponding changes in membrane potential are known to be major actors of cancer progression to metastatic phenotype. Though the functionality of Na + channels and the corresponding Na + currents can be investigated using the patch-clamp technique, the latter is rather invasive and a technically difficult method to study intracellular Na + transients compared to Na + fluorescence imaging. Despite the fact that Na + signaling is considered an important controller of cancer progression, only few data using Na + imaging approaches are available so far, suggesting the persisting challenge within the scientific community. In this study, we describe in detail the approach for application of Na + imaging technique to measure intracellular Na + variations in human prostate cancer cells. Accordingly, we used three Na + -specific fluorescent dyes-Na + -binding benzofuran isophthalate (SBFI), CoroNa™ Green (Corona) and Asante NaTRIUM Green-2 (ANG-2). These dyes have been assessed for optimal loading conditions, dissociation constant and working range after different calibration methods, and intracellular Na + sensitivity, in order to determine which probe can be considered as the most reliable to visualize Na + fluctuations in vitro.

  19. Nitric Oxide-GAPDH Transcriptional Signaling Mediates Behavioral Actions of Cocaine.

    PubMed

    Harraz, Maged M; Snyder, Solomon H

    2015-01-01

    Psychotropic actions of cocaine are generally thought to involve its blockade of monoamine transporters leading to increased synaptic levels of monoamines, especially dopamine. Subsequent intracellular events have been less well characterized. We describe a signaling system wherein lower behavioral stimulant doses of cocaine, as well as higher neurotoxic doses, activate a cascade wherein nitric oxide nitrosylates glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to generate a complex with the ubiquitin-E3-ligase Siah1 which translocates to the nucleus. With lower cocaine doses, nuclear GAPDH augments CREB signaling, while at higher doses p53 signaling is enhanced. The drug CGP3466B very potently blocks GAPDH nitrosylation, hindering both signaling cascades and inhibits both behavioral activating and neurotoxic effects of cocaine. This system affords potentially novel approaches to the therapy of cocaine abuse.

  20. Mannheimia haemolytica leukotoxin activates a nonreceptor tyrosine kinase signaling cascade in bovine leukocytes, which induces biological effects.

    PubMed

    Jeyaseelan, S; Kannan, M S; Briggs, R E; Thumbikat, P; Maheswaran, S K

    2001-10-01

    The leukotoxin (LktA) produced by Mannheimia haemolytica binds to bovine lymphocyte function-associated antigen 1 (LFA-1) and induces biological effects in bovine leukocytes in a cellular and species-specific fashion. We have previously shown that LktA also binds to porcine LFA-1 without eliciting any effects. These findings suggest that the specificity of LktA effects must entail both binding to LFA-1 and activation of signaling pathways which are present in bovine leukocytes. However, the signaling pathways leading to biological effects upon LktA binding to LFA-1 have not been characterized. In this context, several reports have indicated that ligand binding to LFA-1 results in activation of a nonreceptor tyrosine kinase (NRTK) signaling cascade. We designed experiments with the following objectives: (i) to determine whether LktA binding to LFA-1 leads to activation of NRTKs, (ii) to examine whether LktA-induced NRTK activation is target cell specific, and (iii) to determine whether LktA-induced NRTK activation is required for biological effects. We used a biologically inactive mutant leukotoxin (DeltaLktA) for comparison with LktA. Our results indicate that LktA induces tyrosine phosphorylation (TP) of the CD18 tail of LFA-1 in bovine leukocytes. The DeltaLktA mutant does not induce TP of the CD18 tail, albeit binding to bovine LFA-1. LktA-induced TP of the CD18 tail was attenuated by an NRTK inhibitor, herbimycin A; a phosphatidylinositol 3'-kinase (PI 3-kinase) inhibitor, wortmannin; and a Src kinase inhibitor, PP2, in a concentration-dependent manner. Furthermore, LktA induces TP of the CD18 tail in bovine, but not porcine, leukocytes. Moreover, LktA-induced intracellular calcium ([Ca2+]i) elevation was also inhibited by herbimycin A, wortmannin, and PP2. Thus, our data represent the first evidence that binding of LktA to bovine LFA-1 induces a species-specific NRTK signaling cascade involving PI 3-kinase and Src kinases and that this signaling cascade is

  1. Physical principles of intracellular organization via active and passive phase transitions

    NASA Astrophysics Data System (ADS)

    Berry, Joel; Brangwynne, Clifford P.; Haataja, Mikko

    2018-04-01

    Exciting recent developments suggest that phase transitions represent an important and ubiquitous mechanism underlying intracellular organization. We describe key experimental findings in this area of study, as well as the application of classical theoretical approaches for quantitatively understanding these data. We also discuss the way in which equilibrium thermodynamic driving forces may interface with the fundamentally out-of-equilibrium nature of living cells. In particular, time and/or space-dependent concentration profiles may modulate the phase behavior of biomolecules in living cells. We suggest future directions for both theoretical and experimental work that will shed light on the way in which biological activity modulates the assembly, properties, and function of viscoelastic states of living matter.

  2. Physical principles of intracellular organization via active and passive phase transitions.

    PubMed

    Berry, Joel; Brangwynne, Clifford P; Haataja, Mikko

    2018-04-01

    Exciting recent developments suggest that phase transitions represent an important and ubiquitous mechanism underlying intracellular organization. We describe key experimental findings in this area of study, as well as the application of classical theoretical approaches for quantitatively understanding these data. We also discuss the way in which equilibrium thermodynamic driving forces may interface with the fundamentally out-of-equilibrium nature of living cells. In particular, time and/or space-dependent concentration profiles may modulate the phase behavior of biomolecules in living cells. We suggest future directions for both theoretical and experimental work that will shed light on the way in which biological activity modulates the assembly, properties, and function of viscoelastic states of living matter.

  3. Calcium-mediated signaling and calmodulin-dependent kinase regulate hepatocyte-inducible nitric oxide synthase expression.

    PubMed

    Zhang, Baochun; Crankshaw, Will; Nesemeier, Ryan; Patel, Jay; Nweze, Ikenna; Lakshmanan, Jaganathan; Harbrecht, Brian G

    2015-02-01

    Induced nitric oxide synthase (iNOS) is induced in hepatocytes by shock and inflammatory stimuli. Excessive NO from iNOS mediates shock-induced hepatic injury and death, so understanding the regulation of iNOS will help elucidate the pathophysiology of septic shock. In vitro, cytokines induce iNOS expression through activation of signaling pathways including mitogen-activated protein kinases and nuclear factor κB. Cytokines also induce calcium (Ca(2+)) mobilization and activate calcium-mediated intracellular signaling pathways, typically through activation of calmodulin-dependent kinases (CaMK). Calcium regulates NO production in macrophages but the role of calcium and calcium-mediated signaling in hepatocyte iNOS expression has not been defined. Primary rat hepatocytes were isolated, cultured, and induced to produce NO with proinflammatory cytokines. Calcium mobilization and Ca(2+)-mediated signaling were altered with ionophore, Ca(2+) channel blockers, and inhibitors of CaMK. The Ca(2+) ionophore A23187 suppressed cytokine-stimulated NO production, whereas Ethylene glycol tetraacetic acid and nifedipine increased NO production, iNOS messenger RNA, and iNOS protein expression. Inhibition of CaMK with KN93 and CBD increased NO production but the calcineurin inhibitor FK 506 decreased iNOS expression. These data demonstrate that calcium-mediated signaling regulates hepatocyte iNOS expression and does so through a mechanism independent of calcineurin. Changes in intracellular calcium levels may regulate iNOS expression during hepatic inflammation induced by proinflammatory cytokines. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Notch intracellular domain deficiency in nuclear localization activity retains the ability to enhance neural stem cell character and block neurogenesis in mammalian brain development.

    PubMed

    Jang, Jiwon; Byun, Sung-Hyun; Han, Dasol; Lee, Junsub; Kim, Juwan; Lee, Nayeon; Kim, Inhee; Park, Soojeong; Ha, Soobong; Kwon, Mookwang; Ahn, Jyhyun; Chung, Woo-Jae; Kweon, Dae-Hyuk; Cho, Jae Youl; Kim, Sunyoung; Yoon, Keejung

    2014-12-01

    Notch has a broad range of regulatory functions in many developmental processes, including hematopoiesis, neurogenesis, and angiogenesis. Notch has several key functional regions such as the RBP-Jκ/CBF1 association module (RAM) domain, nuclear localization signals (NLS), and ankyrin (ANK) repeats. However, previous reports assessing the level of importance of these domains in the Notch signaling pathway are controversial. In this study, we have assessed the level of contribution of each Notch domain to the regulation of mammalian neural stem cells in vivo as well as in vitro. Reporter assays and real-time polymerase chain reactions show that the ANK repeats and RAM domain are indispensable to the transactivation of Notch target genes, whereas a nuclear export signal (NES)-fused Notch intracellular domain (NICD) mutant defective in nuclear localization exerts a level of activity comparable to unmodified NICD. Transactivational ability appears to be tightly coupled to Notch functions during brain development. Unlike ANK repeats and RAM domain deletion mutants, NES-NICD recapitulates NICD features such as promotion of astrogenesis at the expense of neurogenesis in vitro and enhancement of neural stem cell character in vivo. Our data support the previous observation that intranuclear localization is not essential to the oncogenesis of Notch1 in certain types of cells and imply the importance of the noncanonical Notch signaling pathway in the regulation of mammalian neural stem cells.

  5. Calcium ion as intracellular messenger and cellular toxin.

    PubMed

    Rasmussen, H; Barrett, P; Smallwood, J; Bollag, W; Isales, C

    1990-03-01

    Ca2+ serves a nearly universal intracellular messenger function in cell activation, but excess Ca2+ is also a cellular toxin. The possibility of Ca2+ intoxication is minimized by an elaborate autoregulatory system in which changes in Ca2+ influx rate across the plasma membrane are rapidly compensated for by parallel changes in Ca2+ efflux rate. By this mean, cellular Ca2+ homestasis is maintained so that minimal changes in total cell calcium and cytosolic Ca2+ concentration occur during sustained Ca2(+)-mediated responses. Rather than a sustained increase in cytosolic Ca2+ concentration, it is the localized cycling of Ca2+ across the plasma membrane that is the critically important Ca2+ messenger during the sustained phase of cellular responses mediated via surface receptors linked to the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 hydrolysis gives rise to inositol(1,4,5)trisphosphate (IP3) and diacylglycerol (DAG). The IP3 acts to release Ca2+ from an intracellular pool, thereby causing a transient rise in cytosolic Ca2+ concentration. This transient Ca2+ signal activates calmodulin-dependent protein kinases transiently, and hence, causes the transient phosphorylation of a subset of cellular proteins that mediate the initial phase of the response. The DAG brings about the association of protein kinase C (PKC) with the plasma membrane where a receptor-mediated increase in Ca2+ cycling across the membrane regulates PKC activity. The sustained phosphorylation of a second subset of proteins by PKC mediates the sustained phase of the response. Hence, Ca2+ serves as a messenger during both phases of the cellular response, but its cellular sites of action, its mechanisms of generation, and its molecular targets differ during the initial and sustained phases of the response.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Calcium ion as intracellular messenger and cellular toxin.

    PubMed Central

    Rasmussen, H; Barrett, P; Smallwood, J; Bollag, W; Isales, C

    1990-01-01

    Ca2+ serves a nearly universal intracellular messenger function in cell activation, but excess Ca2+ is also a cellular toxin. The possibility of Ca2+ intoxication is minimized by an elaborate autoregulatory system in which changes in Ca2+ influx rate across the plasma membrane are rapidly compensated for by parallel changes in Ca2+ efflux rate. By this mean, cellular Ca2+ homestasis is maintained so that minimal changes in total cell calcium and cytosolic Ca2+ concentration occur during sustained Ca2(+)-mediated responses. Rather than a sustained increase in cytosolic Ca2+ concentration, it is the localized cycling of Ca2+ across the plasma membrane that is the critically important Ca2+ messenger during the sustained phase of cellular responses mediated via surface receptors linked to the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 hydrolysis gives rise to inositol(1,4,5)trisphosphate (IP3) and diacylglycerol (DAG). The IP3 acts to release Ca2+ from an intracellular pool, thereby causing a transient rise in cytosolic Ca2+ concentration. This transient Ca2+ signal activates calmodulin-dependent protein kinases transiently, and hence, causes the transient phosphorylation of a subset of cellular proteins that mediate the initial phase of the response. The DAG brings about the association of protein kinase C (PKC) with the plasma membrane where a receptor-mediated increase in Ca2+ cycling across the membrane regulates PKC activity. The sustained phosphorylation of a second subset of proteins by PKC mediates the sustained phase of the response. Hence, Ca2+ serves as a messenger during both phases of the cellular response, but its cellular sites of action, its mechanisms of generation, and its molecular targets differ during the initial and sustained phases of the response.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2190811

  7. Relationship between intracellular pH, metabolic co-factors and caspase-3 activation in cancer cells during apoptosis.

    PubMed

    Sergeeva, Tatiana F; Shirmanova, Marina V; Zlobovskaya, Olga A; Gavrina, Alena I; Dudenkova, Varvara V; Lukina, Maria M; Lukyanov, Konstantin A; Zagaynova, Elena V

    2017-03-01

    A complex cascade of molecular events occurs in apoptotic cells but cell-to-cell variability significantly complicates determination of the order and interconnections between different processes. For better understanding of the mechanisms of programmed cell death, dynamic simultaneous registration of several parameters is required. In this paper we used multiparameter fluorescence microscopy to analyze energy metabolism, intracellular pH and caspase-3 activation in living cancer cells in vitro during staurosporine-induced apoptosis. We performed metabolic imaging of two co-factors, NAD(P)H and FAD, and used the genetically encoded pH-indicator SypHer1 and the FRET-based sensor for caspase-3 activity, mKate2-DEVD-iRFP, to visualize these parameters by confocal fluorescence microscopy and two-photon fluorescence lifetime imaging microscopy. The correlation between energy metabolism, intracellular pH and caspase-3 activation and their dynamic changes were studied in CT26 cancer cells during apoptosis. Induction of apoptosis was accompanied by a switch to oxidative phosphorylation, cytosol acidification and caspase-3 activation. We showed that alterations in cytosolic pH and the activation of oxidative phosphorylation are relatively early events associated with the induction of apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Nanosecond-Pulsed DBD Plasma-Generated Reactive Oxygen Species Trigger Immunogenic Cell Death in A549 Lung Carcinoma Cells through Intracellular Oxidative Stress

    PubMed Central

    Lin, Abraham; Truong, Billy; Patel, Sohil; Kaushik, Nagendra; Choi, Eun Ha; Fridman, Gregory; Fridman, Alexander; Miller, Vandana

    2017-01-01

    A novel application for non-thermal plasma is the induction of immunogenic cancer cell death for cancer immunotherapy. Cells undergoing immunogenic death emit danger signals which facilitate anti-tumor immune responses. Although pathways leading to immunogenic cell death are not fully understood; oxidative stress is considered to be part of the underlying mechanism. Here; we studied the interaction between dielectric barrier discharge plasma and cancer cells for oxidative stress-mediated immunogenic cell death. We assessed changes to the intracellular oxidative environment after plasma treatment and correlated it to emission of two danger signals: surface-exposed calreticulin and secreted adenosine triphosphate. Plasma-generated reactive oxygen and charged species were recognized as the major effectors of immunogenic cell death. Chemical attenuators of intracellular reactive oxygen species successfully abrogated oxidative stress following plasma treatment and modulated the emission of surface-exposed calreticulin. Secreted danger signals from cells undergoing immunogenic death enhanced the anti-tumor activity of macrophages. This study demonstrated that plasma triggers immunogenic cell death through oxidative stress pathways and highlights its potential development for cancer immunotherapy. PMID:28467380

  9. Fluorescence imaging and dynamics of intracellular ionic concentrations in single living cells: application to pHi and Mgi variations

    NASA Astrophysics Data System (ADS)

    Viallet, Pierre M.; Yassine, Mohamed; Salmon, Jean-Marie; Vigo, Jean

    1996-05-01

    The intracellular concentration of ions such as H+, Hg2+, Ca2+ is known to monitor the activity of many intracellular enzymes. Furthermore these ions are considered as intracellular messengers involved in signal transducing. Moreover recent technological progresses gave rise to the feeling that accurate data are instantly accessible on microvolumes. So the determination of ionic intracellular concentrations has been achieved using fluorescent specific probes and different equipments (Microspectrofluorometer, Flow Cytometer, Numerical Image Analyzer with or without Confocal system), without taking care of the physico-chemical properties of the probe. Unfortunately fluorescent probes are supposed to fill up conflicting requirements in terms of ionic affinity, specificity, fluorescence quantum yield of the free and ion-bound probe, absence of fading and diffusibility out of the cell. Because most of the probes are not so specific than it is claimed, unexpected interactions may obscure the interpretation of results and even make it difficult to get an intracellular calibration curve. Such a situation generally precludes the use of the popular simplest methods of data acquisition and treatment. The scope of this presentation is to point out some underestimated difficulties, to discuss different ways for bypassing some of them and to rationale the use of Videomicrofluorometry.

  10. High-Throughput Intracellular Antimicrobial Susceptibility Testing of Legionella pneumophila

    PubMed Central

    Chiaraviglio, Lucius

    2015-01-01

    Legionella pneumophila is a Gram-negative opportunistic human pathogen that causes a severe pneumonia known as Legionnaires' disease. Notably, in the human host, the organism is believed to replicate solely within an intracellular compartment, predominantly within pulmonary macrophages. Consequently, successful therapy is predicated on antimicrobials penetrating into this intracellular growth niche. However, standard antimicrobial susceptibility testing methods test solely for extracellular growth inhibition. Here, we make use of a high-throughput assay to characterize intracellular growth inhibition activity of known antimicrobials. For select antimicrobials, high-resolution dose-response analysis was then performed to characterize and compare activity levels in both macrophage infection and axenic growth assays. Results support the superiority of several classes of nonpolar antimicrobials in abrogating intracellular growth. Importantly, our assay results show excellent correlations with prior clinical observations of antimicrobial efficacy. Furthermore, we also show the applicability of high-throughput automation to two- and three-dimensional synergy testing. High-resolution isocontour isobolograms provide in vitro support for specific combination antimicrobial therapy. Taken together, findings suggest that high-throughput screening technology may be successfully applied to identify and characterize antimicrobials that target bacterial pathogens that make use of an intracellular growth niche. PMID:26392509

  11. RSPO–LGR4 functions via IQGAP1 to potentiate Wnt signaling

    PubMed Central

    Carmon, Kendra S.; Gong, Xing; Yi, Jing; Thomas, Anthony; Liu, Qingyun

    2014-01-01

    R-spondins (RSPOs) and their receptor leucine-rich repeat-containing G-protein coupled receptor 4 (LGR4) play pleiotropic roles in normal and cancer development as well as the survival of adult stem cells through potentiation of Wnt signaling. Current evidence indicates that RSPO–LGR4 functions to elevate levels of Wnt receptors through direct inhibition of two membrane-bound E3 ligases (RNF43 and ZNRF3), which otherwise ubiquitinate Wnt receptors for degradation. Whether RSPO–LGR4 is coupled to intracellular signaling proteins to regulate Wnt pathways remains unknown. We identified the intracellular scaffold protein IQ motif containing GTPase-activating protein 1 (IQGAP1) as an LGR4-interacting protein that mediates RSPO–LGR4’s interaction with the Wnt signalosome. IQGAP1 binds to and modulates the activities of a plethora of signaling molecules, including MAP kinases, Rho GTPases, and components of the Wnt signaling pathways. Interaction of LGR4 with IQGAP1 brings RSPO–LGR4 to the Wnt signaling complex through enhanced IQGAP1–DVL interaction following RSPO stimulation. In this configuration, RSPO–LGR4–IQGAP1 potentiates β-catenin–dependent signaling by promoting MEK1/2-medidated phosphorylation of LRP5/6 as well as β-catenin–independent signaling through regulation of actin dynamics. Overall, these findings reveal that RSPO–LGR4 not only induces the clearance of RNF43/ZNRF3 to increase Wnt receptor levels but also recruits IQGAP1 into the Wnt signaling complex, leading to potent and robust potentiation of both the canonical and noncanonical pathways of Wnt signaling. PMID:24639526

  12. Aroclor 1254, a developmental neurotoxicant, alters energy metabolism- and intracellular signaling-associated protein networks in rat cerebellum and hippocampus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodavanti, Prasada Rao S., E-mail: kodavanti.prasada@epa.gov; Osorio, Cristina; Program on Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, North Carolina

    2011-11-15

    The vast literature on the mode of action of polychlorinated biphenyls (PCBs) indicates that PCBs are a unique model for understanding the mechanisms of toxicity of environmental mixtures of persistent chemicals. PCBs have been shown to adversely affect psychomotor function and learning and memory in humans. Although the molecular mechanisms for PCB effects are unclear, several studies indicate that the disruption of Ca{sup 2+}-mediated signal transduction plays significant roles in PCB-induced developmental neurotoxicity. Culminating events in signal transduction pathways include the regulation of gene and protein expression, which affects the growth and function of the nervous system. Our previous studiesmore » showed changes in gene expression related to signal transduction and neuronal growth. In this study, protein expression following developmental exposure to PCB is examined. Pregnant rats (Long Evans) were dosed with 0.0 or 6.0 mg/kg/day of Aroclor-1254 from gestation day 6 through postnatal day (PND) 21, and the cerebellum and hippocampus from PND14 animals were analyzed to determine Aroclor 1254-induced differential protein expression. Two proteins were found to be differentially expressed in the cerebellum following PCB exposure while 18 proteins were differentially expressed in the hippocampus. These proteins are related to energy metabolism in mitochondria (ATP synthase, sub unit {beta} (ATP5B), creatine kinase, and malate dehydrogenase), calcium signaling (voltage-dependent anion-selective channel protein 1 (VDAC1) and ryanodine receptor type II (RyR2)), and growth of the nervous system (dihydropyrimidinase-related protein 4 (DPYSL4), valosin-containing protein (VCP)). Results suggest that Aroclor 1254-like persistent chemicals may alter energy metabolism and intracellular signaling, which might result in developmental neurotoxicity. -- Highlights: Black-Right-Pointing-Pointer We performed brain proteomic analysis of rats exposed to the

  13. The effect of pulsed electric fields on the electrotactic migration of human neural progenitor cells through the involvement of intracellular calcium signaling.

    PubMed

    Hayashi, Hisamitsu; Edin, Fredrik; Li, Hao; Liu, Wei; Rask-Andersen, Helge

    2016-12-01

    Endogenous electric fields (EFs) are required for the physiological control of the central nervous system development. Application of the direct current EFs to neural stem cells has been studied for the possibility of stem cell transplantation as one of the therapies for brain injury. EFs generated within the nervous system are often associated with action potentials and synaptic activity, apparently resulting in a pulsed current in nature. The aim of this study is to investigate the effect of pulsed EF, which can reduce the cytotoxicity, on the migration of human neural progenitor cells (hNPCs). We applied the mono-directional pulsed EF with a strength of 250mV/mm to hNPCs for 6h. The migration distance of the hNPCs exposed to pulsed EF was significantly greater compared with the control not exposed to the EF. Pulsed EFs, however, had less of an effect on the migration of the differentiated hNPCs. There was no significant change in the survival of hNPCs after exposure to the pulsed EF. To investigate the role of Ca 2+ signaling in electrotactic migration of hNPCs, pharmacological inhibition of Ca 2+ channels in the EF-exposed cells revealed that the electrotactic migration of hNPCs exposed to Ca 2+ channel blockers was significantly lower compared to the control group. The findings suggest that the pulsed EF induced migration of hNPCs is partly influenced by intracellular Ca 2+ signaling. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Cell Signaling Pathways that Regulate Ag Presentation

    PubMed Central

    Brutkiewicz, Randy R.

    2016-01-01

    Cell signaling pathways regulate much in the life of a cell: from shuttling cargo through intracellular compartments and onto the cell surface, how it should respond to stress, protecting itself from harm (environmental insults or infections), to ultimately, death by apoptosis. These signaling pathways are important for various aspects of the immune response as well. However, not much is known in terms of the participation of cell signaling pathways in Ag presentation--a necessary first step in the activation of innate and adaptive T cells. In this brief review, I will discuss the known signaling molecules (and pathways) that regulate how Ags are presented to T cells and the mechanism(s) if identified. Studies in this area have important implications in vaccine development and new treatment paradigms against infectious diseases, autoimmunity and cancer. PMID:27824592

  15. Mycobacterium indicus pranii (MIP) mediated host protective intracellular mechanisms against tuberculosis infection: Involvement of TLR-4 mediated signaling.

    PubMed

    Das, Shibali; Chowdhury, Bidisha Paul; Goswami, Avranil; Parveen, Shabina; Jawed, Junaid; Pal, Nishith; Majumdar, Subrata

    2016-12-01

    Mycobacterium tuberculosis infection inflicts the disease Tuberculosis (TB), which is fatal if left untreated. During M. tuberculosis infection, the pathogen modulates TLR-4 receptor down-stream signaling, indicating the possible involvement of TLR-4 in the regulation of the host immune response. Mycobacterium indicus pranii (MIP) possesses immuno-modulatory properties which induces the pro-inflammatory responses via induction of TLR-4-mediated signaling. Here, we observed the immunomodulatory properties of MIP against tuberculosis infection. We have studied the detailed signaling mechanisms employed by MIP in order to restore the host immune response against the in vitro tuberculosis infection. We observed that in infected macrophages MIP treatment significantly increased the TLR-4 expression as well as activation of its downstream signaling, facilitating the activation of P38 MAP kinase. MIP treatment was able to activate NF-κB via involvement of TLR-4 signaling leading to the enhanced pro-inflammatory cytokine and NO generation in the infected macrophages and generation of protective immune response. Therefore, we may suggest that, TLR4 may represent a novel therapeutic target for the activation of the innate immune response during Tuberculosis infection. Copyright © 2016. Published by Elsevier Ltd.

  16. Leucine facilitates insulin signaling through a Gαi protein-dependent signaling pathway in hepatocytes.

    PubMed

    Yang, Xuefeng; Mei, Shuang; Wang, Xiaolei; Li, Xiang; Liu, Rui; Ma, Yan; Hao, Liping; Yao, Ping; Liu, Liegang; Sun, Xiufa; Gu, Haihua; Liu, Zhenqi; Cao, Wenhong

    2013-03-29

    In this study, we addressed the direct effect of leucine on insulin signaling. In investigating the associated mechanisms, we found that leucine itself does not activate the classical Akt- or ERK1/2 MAP kinase-dependent signaling pathways but can facilitate the insulin-induced phosphorylations of Akt(473) and ERK1/2 in a time- and dose-dependent manner in cultured hepatocytes. The leucine-facilitated insulin-induced phosphorylation of Akt at residue 473 was not affected by knocking down the key component of mTORC1 or -2 complexes but was blocked by inhibition of c-Src (PP2), PI3K (LY294002), Gαi protein (pertussis toxin or siRNA against Gαi1 gene, or β-arrestin 2 (siRNA)). Similarly, the leucine-facilitated insulin activation of ERK1/2 was also blunted by pertussis toxin. We further show that leucine facilitated the insulin-mediated suppression of glucose production and expression of key gluconeogenic genes in a Gαi1 protein-dependent manner in cultured primary hepatocytes. Together, these results show that leucine can directly facilitate insulin signaling through a Gαi protein-dependent intracellular signaling pathway. This is the first evidence showing that macronutrients like amino acid leucine can facilitate insulin signaling through G proteins directly.

  17. Leucine Facilitates Insulin Signaling through a Gαi Protein-dependent Signaling Pathway in Hepatocytes*

    PubMed Central

    Yang, Xuefeng; Mei, Shuang; Wang, Xiaolei; Li, Xiang; Liu, Rui; Ma, Yan; Hao, Liping; Yao, Ping; Liu, Liegang; Sun, Xiufa; Gu, Haihua; Liu, Zhenqi; Cao, Wenhong

    2013-01-01

    In this study, we addressed the direct effect of leucine on insulin signaling. In investigating the associated mechanisms, we found that leucine itself does not activate the classical Akt- or ERK1/2 MAP kinase-dependent signaling pathways but can facilitate the insulin-induced phosphorylations of Akt473 and ERK1/2 in a time- and dose-dependent manner in cultured hepatocytes. The leucine-facilitated insulin-induced phosphorylation of Akt at residue 473 was not affected by knocking down the key component of mTORC1 or -2 complexes but was blocked by inhibition of c-Src (PP2), PI3K (LY294002), Gαi protein (pertussis toxin or siRNA against Gαi1 gene, or β-arrestin 2 (siRNA)). Similarly, the leucine-facilitated insulin activation of ERK1/2 was also blunted by pertussis toxin. We further show that leucine facilitated the insulin-mediated suppression of glucose production and expression of key gluconeogenic genes in a Gαi1 protein-dependent manner in cultured primary hepatocytes. Together, these results show that leucine can directly facilitate insulin signaling through a Gαi protein-dependent intracellular signaling pathway. This is the first evidence showing that macronutrients like amino acid leucine can facilitate insulin signaling through G proteins directly. PMID:23404499

  18. THE ALTERATION OF INTRACELLULAR ENZYMES

    PubMed Central

    Kaplan, J. Gordin

    1954-01-01

    1. The ability of homologous series of alcohols, ketones, and aldehydes to cause alteration of intracellular catalase increases approximately threefold for each methylene group added, thus following Traube's rule. Equiactive concentrations of alcohols (methanol to octanol) varied over a 4,000-fold range, yet the average corresponding surface tension was 42 ± 2 dynes/cm., that for ketones 43 ± 2, and for aldehydes (above C1) 41 ± 3. 2. Above C8 the altering activity of alcohols ceased to follow Traube's rule, and at C18 was nil. Yet the surface activities of alcohols from nonanol to dodecanol did follow Traube's rule. These two facts show that the interface which is being affected by these agents is not the cell surface, for if it were, altering activity should not fall off between C9 and C12 where surface activity is undiminished; they show also that micelle formation by short range association of hydrocarbon "tails," usually invoked to explain decrease in biological activity of compounds above C8, is not responsible for this effect in these experiments, in which permeability of the cell membrane probably is involved. 3. The most soluble alcohols and aldehydes (alcohols C1 to C8; aldehydes C1, C2), but not ketones, cause, above optimal concentration, an irreversible inhibition of yeast catalase. 4. The critical concentration of altering agent (i.e., that concentration just sufficient to cause doubling of the catalase activity of the yeast suspension) was independent of the concentration of the yeast cells. 5. Viability studies show that the number of yeast cells killed by the altering agents was not related to the degree of activation of the catalase produced. While all the cells were invariably killed by concentrations of altering agent which produced complete activation, all the cells had been killed by concentrations which were insufficient to cause more than 50 per cent maximal activation. Further, the evidence suggested that the catalase may be partially

  19. Intracellular Enzymes Contribution to the Biocatalytic Removal of Pharmaceuticals by Trametes hirsuta.

    PubMed

    Haroune, Lounès; Saibi, Sabrina; Cabana, Hubert; Bellenger, Jean-Philippe

    2017-01-17

    The use of white rot fungi (WRF) for bioremediation of recalcitrant trace organic contaminants (TrOCs) is becoming greatly popular. Biosorption and lignin modifying enzymes (LMEs) are the most often reported mechanisms of action. Intracellular enzymes, such as cytochrome P450 (CYP450), have also been suggested to contribute. However, direct evidence of TrOCs uptake and intracellular transformation is lacking. The aim of this study was to evaluate the relative contribution of biosorption, extracellular LMEs activity, TrOCs uptake, and intracellular CYP450 on the removal of six nonsteroidal anti-inflammatories (NSAIs) by Trametes hirsuta. Results show that for most tested NSAIs, LMEs activity and biosorption failed to explain the observed removal. Most tested TrOCs are quickly taken up and intracellularly transformed. Fine characterization of intracellular transformation using ketoprofen showed that CYP450 is not the sole intracellular enzyme responsible for intracellular transformation. The contribution of CYP450 in further transformation of ketoprofen byproducts is also reported. These results illustrate that TrOCs transformation by WRF is a more complex process than previously reported. Rapid uptake of TrOCs and intracellular transformation through diverse enzymatic systems appears to be important components of WRF efficiency toward TrOCs.

  20. Noncanonical transforming growth factor β signaling in scleroderma fibrosis

    PubMed Central

    Trojanowska, Maria

    2014-01-01

    Purpose of review Persistent transforming growth factor β (TGF-β) signaling is the major factor contributing to scleroderma (SSc) fibrosis. This review will summarize recent progress on the noncanonical TGF-β signaling pathways and their role in SSc fibrosis. Recent findings Canonical TGF-β signaling involves activation of the TGF-β receptors and downstream signal transducers Smad2/3. The term noncanonical TGF-β signaling includes a variety of intracellular signaling pathways activated by TGF-β independently of Smad2/3 activation. There is evidence that these pathways play important role in SSc fibrosis. In a subset of SSc fibroblasts, a multiligand receptor complex consisting of TGF-β and CCN2 receptors drives constitutive activation of the Smad1 pathway. CCN2 is also a primary effector of this pathway, thus establishing an autocrine loop that amplifies TGF-β signaling. SSc fibroblasts also demonstrate reduced expression of endogenous antagonists of TGF-β signaling including transcriptional repressors, Friend leukemia integration-1 and perixosome proliferator-activated receptor-γ, as well as inhibitor of Smad3 phosphorylation, PTEN. PTEN is a key mediator of the cross-talk between the sphingosine kinase and the TGF-β pathways. Summary Discovery of the role of noncanonical TGF-β signaling in fibrosis offers new molecular targets for the antifibrotic therapies. Due to the heterogeneous nature of SSc, knowledge of these pathways could help to tailor the therapy to the individual patient depending on the activation status of a specific profibrotic pathway. PMID:19713852

  1. Extracellular and Intracellular Mechanisms Mediating Metastatic Activity of Exogenous Osteopontin

    PubMed Central

    Mandelin, Jami; Lin, Emme C. K.; Hu, Dana D.; Knowles, Susan K.; Do, Kim-Anh; Wang, Xuemei; Sage, E. Helene; Smith, Jeffrey W.; Arap, Wadih; Pasqualini, Renata

    2009-01-01

    BACKGROUND Osteopontin affects several steps of the metastatic cascade. Despite direct correlation with metastasis in experimental systems and in patient studies, the extracellular and intracellular basis for these observations remains unsolved. We used human melanoma and sarcoma cell lines to evaluate the effects of soluble osteopontin on metastasis. METHODS Exogenous osteopontin or negative controls, including a site-directed mutant osteopontin, were used in functional assays in vitro, ex vivo, and in vivo designed to test extracellular and intracellular mechanisms involved in experimental metastasis. RESULTS In the extracellular environment, we confirm that soluble osteopontin is required for its pro-metastatic effects; this phenomenon is specific, RGD-dependent, and evident in experimental models of metastasis. In the intracellular environment, osteopontin initially induces rapid Tyr-418 dephosphorylation of c-Src, with decreases in actin stress fibers and increased binding to the vascular endothelium. This heretofore undescribed Tyr dephosphorylation is followed by a tandem c-Src phosphorylation after tumor cell attachment to the metastatic site. CONCLUSION Our results reveal a complex molecular interaction as well as a dual role for osteopontin in metastasis that is dependent on whether tumor cells are in circulation or attached. Such context-dependent functional insights may contribute to anti-metastasis strategies. PMID:19224553

  2. BMP regulates regional gene expression in the dorsal otocyst through canonical and non-canonical intracellular pathways

    PubMed Central

    2016-01-01

    The inner ear consists of two otocyst-derived, structurally and functionally distinct components: the dorsal vestibular and ventral auditory compartments. BMP signaling is required to form the vestibular compartment, but how it complements other required signaling molecules and acts intracellularly is unknown. Using spatially and temporally controlled delivery of signaling pathway regulators to developing chick otocysts, we show that BMP signaling regulates the expression of Dlx5 and Hmx3, both of which encode transcription factors essential for vestibular formation. However, although BMP regulates Dlx5 through the canonical SMAD pathway, surprisingly, it regulates Hmx3 through a non-canonical pathway involving both an increase in cAMP-dependent protein kinase A activity and the GLI3R to GLI3A ratio. Thus, both canonical and non-canonical BMP signaling establish the precise spatiotemporal expression of Dlx5 and Hmx3 during dorsal vestibular development. The identification of the non-canonical pathway suggests an intersection point between BMP and SHH signaling, which is required for ventral auditory development. PMID:27151948

  3. Roles of mTOR Signaling in Brain Development.

    PubMed

    Lee, Da Yong

    2015-09-01

    mTOR is a serine/threonine kinase composed of multiple protein components. Intracellular signaling of mTOR complexes is involved in many of physiological functions including cell survival, proliferation and differentiation through the regulation of protein synthesis in multiple cell types. During brain development, mTOR-mediated signaling pathway plays a crucial role in the process of neuronal and glial differentiation and the maintenance of the stemness of neural stem cells. The abnormalities in the activity of mTOR and its downstream signaling molecules in neural stem cells result in severe defects of brain developmental processes causing a significant number of brain disorders, such as pediatric brain tumors, autism, seizure, learning disability and mental retardation. Understanding the implication of mTOR activity in neural stem cells would be able to provide an important clue in the development of future brain developmental disorder therapies.

  4. Dual-Color Luciferase Complementation for Chemokine Receptor Signaling.

    PubMed

    Luker, Kathryn E; Luker, Gary D

    2016-01-01

    Chemokine receptors may share common ligands, setting up potential competition for ligand binding, and association of activated receptors with downstream signaling molecules such as β-arrestin. Determining the "winner" of competition for shared effector molecules is essential for understanding integrated functions of chemokine receptor signaling in normal physiology, disease, and response to therapy. We describe a dual-color click beetle luciferase complementation assay for cell-based analysis of interactions of two different chemokine receptors, CXCR4 and ACKR3, with the intracellular scaffolding protein β-arrestin 2. This assay provides real-time quantification of receptor activation and signaling in response to chemokine CXCL12. More broadly, this general imaging strategy can be applied to quantify interactions of any set of two proteins that interact with a common binding partner. © 2016 Elsevier Inc. All rights reserved.

  5. Adhesion signaling promotes protease‑driven polyploidization of glioblastoma cells.

    PubMed

    Mercapide, Javier; Lorico, Aurelio

    2014-11-01

    An increase in ploidy (polyploidization) causes genomic instability in cancer. However, the determinants for the increased DNA content of cancer cells have not yet been fully elucidated. In the present study, we investigated whether adhesion induces polyploidization in human U87MG glioblastoma cells. For this purpose, we employed expression vectors that reported transcriptional activation by signaling networks implicated in cancer. Signaling activation induced by intercellular integrin binding elicited both extracellular signal‑regulated kinase (ERK) and Notch target transcription. Upon the prolonged activation of both ERK and Notch target transcription induced by integrin binding to adhesion protein, cell cultures accumulated polyploid cells, as determined by cell DNA content distribution analysis and the quantification of polynucleated cells. This linked the transcriptional activation induced by integrin adhesion to the increased frequency of polyploidization. Accordingly, the inhibition of signaling decreased the extent of polyploidization mediated by protease‑driven intracellular invasion. Therefore, the findings of this study indicate that integrin adhesion induces polyploidization through the stimulation of glioblastoma cell invasiveness.

  6. Analysis of signal transduction in cell-free extracts and rafts of Xenopus eggs.

    PubMed

    Tokmakov, Alexander A; Iwasaki, Tetsushi; Sato, Ken-Ichi; Fukami, Yasuo

    2010-05-01

    Intracellular signaling during egg activation/fertilization has been extensively studied using intact eggs, which can be manipulated by microinjection of different mRNAs, proteins, or chemical drugs. Furthermore, egg extracts, which retain high CSF activity (CSF-arrested extracts), were developed for studying fertilization/activation signal transduction, which have significant advantages as a model system. The addition of calcium to CSF-arrested extracts initiates a plethora of signaling events that take place during egg activation. Hence, the signaling downstream of calcium mobilization has been successfully studied in the egg extracts. Moreover, despite disruption of membrane-associated signaling compartments and ordered compartmentalization during extract preparation, CSF-arrested extracts can be successfully used to study early signaling events, which occur upstream of calcium release during egg activation/fertilization. In combination with the CSF-arrested extracts, activated egg rafts can reproduce some events of egg activation, including PLCgamma activation, IP3 production, transient calcium release, MAPK inactivation, and meiotic exit. This becomes possible due to complementation of the sperm-induced egg activation signaling machinery present in the rafts with the components of signal transduction system localized in the extracts. Herein, we describe protocols for studying molecular mechanisms of egg fertilization/activation using cell-free extracts and membrane rafts prepared from metaphase-arrested Xenopus eggs.

  7. Arsenic-induced alteration in intracellular calcium homeostasis induces head kidney macrophage apoptosis involving the activation of calpain-2 and ERK in Clarias batrachus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Chaitali; Goswami, Ramansu; Centre for Environmental Studies, Visva-Bharati University, Santiniketan 731 235

    2011-10-01

    We had earlier shown that exposure to arsenic (0.50 {mu}M) caused caspase-3 mediated head kidney macrophage (HKM) apoptosis involving the p38-JNK pathway in Clarias batrachus. Here we examined the roles of calcium (Ca{sup 2+}) and extra-cellular signal-regulated protein kinase (ERK), the other member of MAPK-pathway on arsenic-induced HKM apoptosis. Arsenic-induced HKM apoptosis involved increased expression of ERK and calpain-2. Nifedipine, verapamil and EGTA pre-treatment inhibited the activation of calpain-2, ERK and reduced arsenic-induced HKM apoptosis as evidenced from reduced caspase-3 activity, Annexin V-FITC-propidium iodide and Hoechst 33342 staining. Pre-incubation with ERK inhibitor U 0126 inhibited the activation of calpain-2 andmore » interfered with arsenic-induced HKM apoptosis. Additionally, pre-incubation with calpain-2 inhibitor also interfered with the activation of ERK and inhibited arsenic-induced HKM apoptosis. The NADPH oxidase inhibitor apocynin and diphenyleneiodonium chloride also inhibited ERK activation indicating activation of ERK in arsenic-exposed HKM also depends on signals from NADPH oxidase pathway. Our study demonstrates the critical role of Ca{sup 2+} homeostasis on arsenic-induced HKM apoptosis. We suggest that arsenic-induced alteration in intracellular Ca{sup 2+} levels initiates pro-apoptotic ERK and calpain-2; the two pathways influence each other positively and induce caspase-3 mediated HKM apoptosis. Besides, our study also indicates the role of ROS in the activation of ERK pathway in arsenic-induced HKM apoptosis in C. batrachus. - Highlights: > Altered Ca{sup 2+} homeostasis leads to arsenic-induced HKM apoptosis. > Calpain-2 plays a critical role in the process. > ERK is pro-apoptotic in arsenic-induced HKM apoptosis. > Arsenic-induced HKM apoptosis involves cross talk between calpain-2 and ERK.« less

  8. The role of protein-protein interactions in the intracellular traffic of the potassium channels TASK-1 and TASK-3.

    PubMed

    Kilisch, Markus; Lytovchenko, Olga; Schwappach, Blanche; Renigunta, Vijay; Daut, Jürgen

    2015-05-01

    The intracellular transport of membrane proteins is controlled by trafficking signals: Short peptide motifs that mediate the contact with COPI, COPII or various clathrin-associated coat proteins. In addition, many membrane proteins interact with accessory proteins that are involved in the sorting of these proteins to different intracellular compartments. In the K2P channels, TASK-1 and TASK-3, the influence of protein-protein interactions on sorting decisions has been studied in some detail. Both TASK paralogues interact with the adaptor protein 14-3-3; TASK-1 interacts, in addition, with the adaptor protein p11 (S100A10) and the endosomal SNARE protein syntaxin-8. The role of these interacting proteins in controlling the intracellular traffic of the channels and the underlying molecular mechanisms are summarised in this review. In the case of 14-3-3, the interacting protein masks a retention signal in the C-terminus of the channel; in the case of p11, the interacting protein carries a retention signal that localises the channel to the endoplasmic reticulum; and in the case of syntaxin-8, the interacting protein carries an endocytosis signal that complements an endocytosis signal of the channel. These examples illustrate some of the mechanisms by which interacting proteins may determine the itinerary of a membrane protein within a cell and suggest that the intracellular traffic of membrane proteins may be adapted to the specific functions of that protein by multiple protein-protein interactions.

  9. Intracellular Ascorbate Prevents Endothelial Barrier Permeabilization by Thrombin.

    PubMed

    Parker, William H; Qu, Zhi-chao; May, James M

    2015-08-28

    Intracellular ascorbate (vitamin C) has previously been shown to tighten the endothelial barrier and maintain barrier integrity during acute inflammation in vitro. However, the downstream effectors of ascorbate in the regulation of endothelial permeability remain unclear. In this study, we evaluated ascorbate as a mediator of thrombin-induced barrier permeabilization in human umbilical vein endothelial cells and their immortalized hybridoma line, EA.hy926. We found that the vitamin fully prevented increased permeability to the polysaccharide inulin by thrombin in a dose-dependent manner, and it took effect both before and after subjection to thrombin. Thrombin exposure consumed intracellular ascorbate but not the endogenous antioxidant GSH. Likewise, the antioxidants dithiothreitol and tempol did not reverse permeabilization. We identified a novel role for ascorbate in preserving cAMP during thrombin stimulation, resulting in two downstream effects. First, ascorbate maintained the cortical actin cytoskeleton in a Rap1- and Rac1-dependent manner, thus preserving stable adherens junctions between adjacent cells. Second, ascorbate prevented actin polymerization and formation of stress fibers by reducing the activation of RhoA and phosphorylation of myosin light chain. Although ascorbate and thrombin both required calcium for their respective effects, ascorbate did not prevent thrombin permeabilization by obstructing calcium influx. However, preservation of cAMP by ascorbate was found to depend on both the production of nitric oxide by endothelial nitric-oxide synthase, which ascorbate is known to activate, and the subsequent generation cGMP by guanylate cyclase. Together, these data implicate ascorbate in the prevention of inflammatory endothelial barrier permeabilization and explain the underlying signaling mechanism. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Receptor Tyrosine Kinase Signaling – A Proteomic Perspective

    PubMed Central

    Biarc, Jordane; Chalkley, Robert J.; Burlingame, A. L.; Bradshaw, Ralph A.

    2011-01-01

    The stimulation of various cellular processes through extracellular signals is of paramount importance in biological systems and is a central focus in the diagnosis, treatment and prevention of disease. The information transfer is accomplished in a variety of ways by the interaction of soluble, matrix-associated and cell bound ligands that either bind specifically to plasma membrane-associated proteins that act as receptors, or penetrate to the cytoplasmic/nuclear compartments to bind and activate receptors located there. The former class of entities generates intracellular signals that are transmitted and amplified by chemical modifications that are manifested as protein post-translational modifications (PTMs). These are both reversible and irreversible and range from phosphorylation of tyrosine, threonine and serine residues to endoproteolytic cleavages. Although the PTMs alter the activity and functions of many of the proteins in these cascades, the major outcomes of most of the signaling pathways are the activation/deactivation of transcriptional regulators with the concomitant changes in gene expression that generally underlie biological responses. PMID:21056590

  11. Subverting Toll-Like Receptor Signaling by Bacterial Pathogens

    PubMed Central

    McGuire, Victoria A.; Arthur, J. Simon C.

    2015-01-01

    Pathogenic bacteria are detected by pattern-recognition receptors (PRRs) expressed on innate immune cells, which activate intracellular signal transduction pathways to elicit an immune response. Toll-like receptors are, perhaps, the most studied of the PRRs and can activate the mitogen-activated protein kinase (MAPK) and Nuclear Factor-κB (NF-κB) pathways. These pathways are critical for mounting an effective immune response. In order to evade detection and promote virulence, many pathogens subvert the host immune response by targeting components of these signal transduction pathways. This mini-review highlights the diverse mechanisms that bacterial pathogens have evolved to manipulate the innate immune response, with a particular focus on those that target MAPK and NF-κB signaling pathways. Understanding the elaborate strategies that pathogens employ to subvert the immune response not only highlights the importance of these proteins in mounting effective immune responses, but may also identify novel approaches for treatment or prevention of infection. PMID:26648936

  12. Controlled release of GAG-binding enhanced transduction (GET) peptides for sustained and highly efficient intracellular delivery.

    PubMed

    Abu-Awwad, Hosam Al-Deen M; Thiagarajan, Lalitha; Dixon, James E

    2017-07-15

    Controlled release systems for therapeutic molecules are vital to allow the sustained local delivery of their activities which direct cell behaviour and enable novel regenerative strategies. Direct programming of cells using exogenously delivered transcription factors can by-pass growth factor signalling but there is still a requirement to deliver such activity spatio-temporally. We previously developed a technology termed GAG-binding enhanced transduction (GET) to efficiently deliver a variety of cargoes intracellularly, using GAG-binding domains which promote cell targeting, and cell penetrating peptides (CPPs) which allow cell entry. Herein we demonstrate that GET system can be used in controlled release systems to mediate sustained intracellular transduction over one week. We assessed the stability and activity of GET peptides in poly(dl-lactic acid-co-glycolic acid) (PLGA) microparticles (MPs) prepared using a S/O/W double emulsion method. Efficient encapsulation (∼65%) and tailored protein release profiles could be achieved, however intracellular transduction was significantly inhibited post-release. To retain GET peptide activity we optimized a strategy of co-encapsulation of l-Histidine, which may form a complex with the PLGA degradation products under acidic conditions. Simulations of the polymer microclimate showed that hydrolytic acidic PLGA degradation products directly inhibited GET peptide transduction activity, and use of l-Histidine significantly enhanced released protein delivery. The ability to control the intracellular transduction of functional proteins into cells will facilitate new localized delivery methods and allow approaches to direct cellular behaviour for many regenerative medicine applications. The goal for regenerative medicine is to restore functional biological tissue by controlling and augmenting cellular behaviour. Either Transcription (TFs) or growth factors (GFs) can be presented to cells in spatio-temporal gradients for

  13. Ca2+ signaling and emesis: Recent progress and new perspectives.

    PubMed

    Zhong, Weixia; Picca, Andrew J; Lee, Albert S; Darmani, Nissar A

    2017-01-01

    Cisplatin-like chemotherapeutics cause vomiting via calcium (Ca 2+ )-dependent release of multiple neurotransmitters (dopamine, serotonin, substance P, etc.) from the gastrointestinal enterochromaffin cells and/or the brainstem. Intracellular Ca 2+ signaling is triggered by activation of diverse emetic receptors (including tachykininergic NK 1 , serotonergic 5-HT 3 , dopaminergic D 2 , cholinergic M 1 , or histaminergic H 1 ) , whose activation in vomit-competent species can evoke emesis. Other emetogens such as cisplatin, rotavirus NSP4 protein and bacterial toxins can also induce intracellular Ca 2+ elevation. Netupitant is a highly selective neurokinin NK 1 receptor (NK 1 R) antagonist and palonosetron is a selective second-generation serotonin 5-HT 3 receptor (5-HT 3 R) antagonist with a distinct pharmacological profile. An oral fixed combination of netupitant/palonosetron (NEPA; Akynzeo(®)) with >85% antiemetic efficacy is available for use in the prevention of acute and delayed chemotherapy-induced nausea and vomiting (CINV). Cannabinoid CB 1 receptor agonists possess broad-spectrum antiemetic activity since they prevent vomiting caused by a variety of emetic stimuli including the chemotherapeutic agent cisplatin, 5-HT 3 R agonists, and D 2 R agonists. Our findings demonstrate that application of the L-type Ca 2+ channel (LTCC) agonist FPL 64176 and the intracellular Ca 2+ mobilizing agent thapsigargin (a sarco/endoplasmic reticulum Ca 2+ -ATPase inhibitor) cause vomiting in the least shrew. On the other hand, blockade of LTCCs by corresponding antagonists (nifedipine or amlodipine) not only provide broad-spectrum antiemetic efficacy against diverse agents that specifically activate emetogenic receptors such as 5-HT 3 , NK 1 , D 2 , and M 1 receptors, but can also potentiate the antiemetic efficacy of palonosetron against the non-specific emetogen, cisplatin. In this review, we will provide an overview of Ca 2+ involvement in the emetic process; discuss the

  14. Folic acid supplementation does not reduce intracellular homocysteine, and may disturb intracellular one-carbon metabolism.

    PubMed

    Smith, Desirée E C; Hornstra, Jacqueline M; Kok, Robert M; Blom, Henk J; Smulders, Yvo M

    2013-08-01

    In randomized trails, folic acid (FA) lowered plasma homocysteine, but failed to reduce cardiovascular risk. We hypothesize this is due to a discrepancy between plasma and intracellular effects of FA. In a double-blind trial, 50 volunteers were randomized to received 500 µg FA daily for 8 weeks, or placebo. Plasma and peripheral blood mononuclear cell (PBMC) concentrations of homocysteine, S-adenosylmethionine (SAM), S-adenosylhomocysteine, methionine, cystathionine and 5-methyltetrahydrofolate (bioactive folate) were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). PBMCs were used as a cellular model since they display the full spectrum of one-carbon (1C) enzymes and reactions. At baseline, plasma concentrations were a poor reflection of intracellular concentrations for most 1C metabolites, except 5-methyltetrahydrofolate (R=0.33, p=0.02), homocysteine (Hcy) (R=0.35, p=0.01), and cystathionine (R=0.45, p=0.001). FA significantly lowered plasma homocysteine (p=0.00), but failed to lower intracellular homocysteine or change the concentrations of any of the other PBMC 1C metabolites. At baseline, PBMC homocysteine concentrations correlated to PBMC SAM. After FA supplementation, PBMC homocysteine no longer correlated with PBMC SAM, suggesting a loss of SAM's regulatory function. In vitro experiments in lymphoblasts confirmed that at higher folate substrate concentrations, physiological concentrations of SAM no longer effectively inhibit the key regulatory enzyme methylenetetrahydrofolate reductase (MTHFR). FA supplementation does not reduce intracellular concentrations of Hcy or any of its closely related substances. Rather, FA may disturb physiological regulation of intracellular 1C metabolism by interfering with SAM's inhibitory effect on MTHFR activity.

  15. Critical Role for CD38-mediated Ca2+ Signaling in Thrombin-induced Procoagulant Activity of Mouse Platelets and Hemostasis*

    PubMed Central

    Mushtaq, Mazhar; Nam, Tae-Sik; Kim, Uh-Hyun

    2011-01-01

    CD38, a multifunctional enzyme that catalyzes the synthesis of intracellular Ca2+ messengers, cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), is known to be expressed on platelets. However, the role of CD38 in platelets remains unclear. Our present results show that treatment of platelets with thrombin results in a rapid and sustained Ca2+ signal, resulting from a coordinated interplay of Ca2+-mobilizing messengers, inositol 1,4,5-trisphosphate, cADPR, and NAADP. By dissecting the signaling pathway using various agents, we delineated that cADPR and NAADP are sequentially produced through CD38 internalization by protein kinase C via myosin heavy chain IIA following phospholipase C activation in thrombin-induced platelets. An inositol 1,4,5-trisphosphate receptor antagonist blocked the thrombin-induced formation of cADPR and NAADP as well as Ca2+ signals. An indispensable response of platelets relying on cytosolic calcium is the surface exposure of phosphatidylserine (PS), which implicates platelet procoagulant activity. Scrutinizing this parameter reveals that CD38+/+ platelets fully express PS on the surface when stimulated with thrombin, whereas this response was decreased on CD38−/− platelets. Similarly, PS exposure and Ca2+ signals were attenuated when platelets were incubated with 8-bromo-cADPR, bafilomycin A1, and a PKC inhibitor. Furthermore, in vivo, CD38-deficient mice exhibited longer bleeding times and unstable formation of thrombus than wild type mice. These results demonstrate that CD38 plays an essential role in thrombin-induced procoagulant activity of platelets and hemostasis via Ca2+ signaling mediated by its products, cADPR and NAADP. PMID:21339289

  16. Oxidative stress-induced increase of intracellular zinc in astrocytes decreases their functional expression of P2X7 receptors and engulfing activity.

    PubMed

    Furuta, Takahiro; Mukai, Ayumi; Ohishi, Akihiro; Nishida, Kentaro; Nagasawa, Kazuki

    2017-12-01

    Neuron-glia communication mediated by neuro- and glio-transmitters such as ATP and zinc is crucial for the maintenance of brain homeostasis, and its dysregulation is found under pathological conditions. It is reported that under oxidative stress-loaded conditions, astrocytes exhibit increased intra- and extra-cellular labile zinc, the latter triggering microglial M1 activation, while the pathophysiological role of the former remains unrevealed. In this study, we examined whether the oxidative stress-induced increase of intracellular labile zinc is involved in the P2X7 receptor (P2X7R)-mediated regulation of astrocytic engulfing activity. The exposure of cultured astrocytes to sub-lethal oxidative stress through their treatment with 400 μM H 2 O 2 increased intracellular labile zinc, of which the concentration reached a peak level of approximately 2 μM at 2 h after the treatment. In astrocytes under sub-lethal oxidative stress, the uptake of YO-PRO-1 and latex beads as markers for P2X7R channel/pore activity and astrocytic engulfing activity, respectively, was decreased, and these decreased activities were accompanied by decreased expression of P2X7R at the plasma membrane via intracellular labile zinc-mediated translocation of it. With the oxidative stress, the expression level of full length P2X7R relative to that of its splice variants in astrocytes was decreased, leading to a decrease of the relative expression of the trimer consisting of full length P2X7R. Collectively, sub-lethal oxidative stress induces an astrocytic modal shift from the normal resting engulfing mode to the activated astrogliosis mode via an intracellular labile zinc-mediated decrease of the functional expression of P2X7R.

  17. Luteinizing hormone stimulates mammalian target of rapamycin signaling in bovine luteal cells via pathways independent of AKT and mitogen-activated protein kinase: modulation of glycogen synthase kinase 3 and AMP-activated protein kinase.

    PubMed

    Hou, Xiaoying; Arvisais, Edward W; Davis, John S

    2010-06-01

    LH stimulates the production of cAMP in luteal cells, which leads to the production of progesterone, a hormone critical for the maintenance of pregnancy. The mammalian target of rapamycin (MTOR) signaling cascade has recently been examined in ovarian follicles where it regulates granulosa cell proliferation and differentiation. This study examined the actions of LH on the regulation and possible role of the MTOR signaling pathway in primary cultures of bovine corpus luteum cells. Herein, we demonstrate that activation of the LH receptor stimulates the phosphorylation of the MTOR substrates ribosomal protein S6 kinase 1 (S6K1) and eukaryotic translation initiation factor 4E binding protein 1. The actions of LH were mimicked by forskolin and 8-bromo-cAMP. LH did not increase AKT or MAPK1/3 phosphorylation. Studies with pathway-specific inhibitors demonstrated that the MAPK kinase 1 (MAP2K1)/MAPK or phosphatidylinositol 3-kinase/AKT signaling pathways were not required for LH-stimulated MTOR/S6K1 activity. However, LH decreased the activity of glycogen synthase kinase 3Beta (GSK3B) and AMP-activated protein kinase (AMPK). The actions of LH on MTOR/S6K1 were mimicked by agents that modulated GSK3B and AMPK activity. The ability of LH to stimulate progesterone secretion was not prevented by rapamycin, a MTOR inhibitor. In contrast, activation of AMPK inhibited LH-stimulated MTOR/S6K1 signaling and progesterone secretion. In summary, the LH receptor stimulates a unique series of intracellular signals to activate MTOR/S6K1 signaling. Furthermore, LH-directed changes in AMPK and GSK3B phosphorylation appear to exert a greater impact on progesterone synthesis in the corpus luteum than rapamycin-sensitive MTOR-mediated events.

  18. Tangeretin triggers melanogenesis through the activation of melanogenic signaling proteins and sustained extracellular signal- regulated kinase in B16/F10 murine melanoma cells.

    PubMed

    Yoon, Hoon Seok; Ko, Hee-Chul; Kim, Sang Suk; Park, Kyung Jin; An, Hyun Joo; Choi, Young Hun; Kim, Se-Jae; Lee, Nam-Ho; Hyun, Chang-Gu

    2015-03-01

    In order to test the effectiveness of tangeretin at ameliorating melanoma and melanoma-associated depigmentation, western blotting was used to assess the melanin content of treated melanoma cells. Tangeretin, a 4',5,6,7,8-pentamethoxyflavone, was found to trigger intracellular melanin production in a concentration-dependent manner in B16/F10 murine melanoma cells. Melanin content increased 1.74-fold in response to treatment with 25 μM of tangeretin, compared to that in non-treated cells. Examination of melanogenic protein expression showed that tyrosinase, tyrosinase-related protein (TRP)-1, and extracellular signal-regulated kinase (ERK) 1/2 levels increased in a dose-dependent manner. Furthermore, the expression of cyclic adenosine monophosphate response element binding protein (CREB) and microphthalmia transcription factor (MITF) was increased by tangeretin in 1 h and 4 h, respectively. Tangeretin- upregulated melanogenesis was suppressed by ERK 1/2 inhibitor and not by ERK1 inhibitor. These results suggest that tangeretin has therapeutic potential for melanoma and melanoma-associated depigmentation because it can induce hyperpigmentation through the activation of melanogenic signaling proteins and initiation of sustained ERK2 expression.

  19. ACTIVATION OF THE EGF RECEPTOR SIGNALING PATHWAY IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO UTAH VALLEY PARTICULATE MATTER

    EPA Science Inventory

    Exposure to ambient particulate matter (PM) in the Utah Valley (UV) has previously been associated with a variety of adverse health effects. To investigate intracellular signaling mechanisms for pulmonary responses to UV PM inhalation, human primary airway epithelial cells (NHBE)...

  20. Porphyromonas gingivalis evasion of autophagy and intracellular killing by human myeloid dendritic cells involves DC-SIGN-TLR2 crosstalk.

    PubMed

    El-Awady, Ahmed R; Miles, Brodie; Scisci, Elizabeth; Kurago, Zoya B; Palani, Chithra D; Arce, Roger M; Waller, Jennifer L; Genco, Caroline A; Slocum, Connie; Manning, Matthew; Schoenlein, Patricia V; Cutler, Christopher W

    2015-02-01

    Signaling via pattern recognition receptors (PRRs) expressed on professional antigen presenting cells, such as dendritic cells (DCs), is crucial to the fate of engulfed microbes. Among the many PRRs expressed by DCs are Toll-like receptors (TLRs) and C-type lectins such as DC-SIGN. DC-SIGN is targeted by several major human pathogens for immune-evasion, although its role in intracellular routing of pathogens to autophagosomes is poorly understood. Here we examined the role of DC-SIGN and TLRs in evasion of autophagy and survival of Porphyromonas gingivalis in human monocyte-derived DCs (MoDCs). We employed a panel of P. gingivalis isogenic fimbriae deficient strains with defined defects in Mfa-1 fimbriae, a DC-SIGN ligand, and FimA fimbriae, a TLR2 agonist. Our results show that DC-SIGN dependent uptake of Mfa1+P. gingivalis strains by MoDCs resulted in lower intracellular killing and higher intracellular content of P. gingivalis. Moreover, Mfa1+P. gingivalis was mostly contained within single membrane vesicles, where it survived intracellularly. Survival was decreased by activation of TLR2 and/or autophagy. Mfa1+P. gingivalis strain did not induce significant levels of Rab5, LC3-II, and LAMP1. In contrast, P. gingivalis uptake through a DC-SIGN independent manner was associated with early endosomal routing through Rab5, increased LC3-II and LAMP-1, as well as the formation of double membrane intracellular phagophores, a characteristic feature of autophagy. These results suggest that selective engagement of DC-SIGN by Mfa-1+P. gingivalis promotes evasion of antibacterial autophagy and lysosome fusion, resulting in intracellular persistence in myeloid DCs; however TLR2 activation can overcome autophagy evasion and pathogen persistence in DCs.

  1. miR-324-3p promotes gastric cancer development by activating Smad4-mediated Wnt/beta-catenin signaling pathway.

    PubMed

    Sun, Guang-Li; Li, Zheng; Wang, Wei-Zhi; Chen, Zheng; Zhang, Lei; Li, Qing; Wei, Song; Li, Bo-Wen; Xu, Jiang-Hao; Chen, Liang; He, Zhong-Yuan; Ying, Kai; Zhang, Xuan; Xu, Hao; Zhang, Dian-Cai; Xu, Ze-Kuan

    2018-06-01

    Emerging evidence suggested that miRNAs can function as oncogenes or tumor suppressors by regulating downstream target genes. miR-324-3p has been reported to function in several carcinomas, but its role in gastric cancer (GC) is still unknown. This study aims to explore the effects of miR-324-3p on the development of GC. Expression of miR-324-3p was examined in GC cells and tissues by qRT-PCR. Effects of miR-324-3p on GC cells were evaluated by cell vitality assay, colony formation assay, cell migration assay, and flow cytometric assay. The dual luciferase assay was used to verify whether miR-324-3p could interact with the potential target genes. Western blot was used to assess the expression level of Smad4 and beta-catenin. Intracellular ATP level was also examined. The tumor xenografts were established using nude mice. A gastric organoid model was made from fresh stomach tissue. miR-324-3p was expressed at higher levels in the tumor tissues compared with adjacent normal tissues. Overexpression of miR-324-3p promoted cell growth, migration, and decreased apoptosis. miR-324-3p repressed the expression of Smad4, and loss of Smad4 activated the Wnt/beta-catenin signaling pathway. Overexpression of Smad4 rescued the effects of miR-324-3p on GC cells. The intracellular ATP level was upregulated with overexpression of miR-324-3p. miR-324-3p facilitated tumor cell colonization and growth in vivo and contributed to the growth of gastric organoids. The results suggested that miR-324-3p promoted GC through activating the Smad4-mediated Wnt/beta-catenin signaling pathway. The miR-324-3p/Smad4/Wnt signaling axis may be a potential therapeutic target to prevent GC progression.

  2. Giga-ohm seals on intracellular membranes: a technique for studying intracellular ion channels in intact cells.

    PubMed

    Jonas, E A; Knox, R J; Kaczmarek, L K

    1997-07-01

    A method is outlined for obtaining giga-ohm seals on intracellular membranes in intact cells. The technique employs a variant of the patch-clamp technique: a concentric electrode arrangement protects an inner patch pipette during penetration of the plasma membrane, after which a seal can be formed on an internal organelle membrane. Using this technique, successful recordings can be obtained with the same frequency as with conventional patch clamping. To localize the position of the pipette within cells, lipophilic fluorescent dyes are included in the pipette solution. These dyes stain the membrane of internal organelles during seal formation and can then be visualized by video-enhanced or confocal imaging. The method can detect channels activated by inositol trisphosphate, as well as other types of intracellular membrane ion channel activity, and should facilitate studies of internal membranes in intact neurons and other cell types.

  3. High-Throughput Intracellular Antimicrobial Susceptibility Testing of Legionella pneumophila.

    PubMed

    Chiaraviglio, Lucius; Kirby, James E

    2015-12-01

    Legionella pneumophila is a Gram-negative opportunistic human pathogen that causes a severe pneumonia known as Legionnaires' disease. Notably, in the human host, the organism is believed to replicate solely within an intracellular compartment, predominantly within pulmonary macrophages. Consequently, successful therapy is predicated on antimicrobials penetrating into this intracellular growth niche. However, standard antimicrobial susceptibility testing methods test solely for extracellular growth inhibition. Here, we make use of a high-throughput assay to characterize intracellular growth inhibition activity of known antimicrobials. For select antimicrobials, high-resolution dose-response analysis was then performed to characterize and compare activity levels in both macrophage infection and axenic growth assays. Results support the superiority of several classes of nonpolar antimicrobials in abrogating intracellular growth. Importantly, our assay results show excellent correlations with prior clinical observations of antimicrobial efficacy. Furthermore, we also show the applicability of high-throughput automation to two- and three-dimensional synergy testing. High-resolution isocontour isobolograms provide in vitro support for specific combination antimicrobial therapy. Taken together, findings suggest that high-throughput screening technology may be successfully applied to identify and characterize antimicrobials that target bacterial pathogens that make use of an intracellular growth niche. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. CXCL4L1 and CXCL4 signaling in human lymphatic and microvascular endothelial cells and activated lymphocytes: involvement of mitogen-activated protein (MAP) kinases, Src and p70S6 kinase.

    PubMed

    Van Raemdonck, Katrien; Gouwy, Mieke; Lepers, Stefanie Antoinette; Van Damme, Jo; Struyf, Sofie

    2014-07-01

    CXC chemokines influence a variety of biological processes, such as angiogenesis, both in a physiological and pathological context. Platelet factor-4 (PF-4)/CXCL4 and its variant PF-4var/CXCL4L1 are known to favor angiostasis by inhibiting endothelial cell proliferation and chemotaxis. CXCL4L1 in particular is a potent inhibitor of angiogenesis with anti-tumoral characteristics, both through regulation of neovascularization and through attraction of activated lymphocytes. However, its underlying signaling pathways remain to be elucidated. Here, we have identified various intracellular pathways activated by CXCL4L1 in comparison with other CXCR3 ligands, including CXCL4 and interferon-γ-induced protein 10/CXCL10. Signaling experiments show involvement of the mitogen-activated protein kinase (MAPK) family in CXCR3A-transfected cells, activated lymphocytes and human microvascular endothelial cells (HMVEC). In CXCR3A transfectants, CXCL4 and CXCL4L1 activated p38 MAPK, as well as Src kinase within 30 and 5 min, respectively. Extracellular signal-regulated kinase (ERK) phosphorylation occurred in activated lymphocytes, yet was inhibited in microvascular and lymphatic endothelial cells. CXCL4L1 and CXCL4 counterbalanced the angiogenic chemokine stromal cell-derived factor-1/CXCL12 in both endothelial cell types. Notably, inhibition of ERK signaling by CXCL4L1 and CXCL4 in lymphatic endothelial cells implies that these chemokines might also regulate lymphangiogenesis. Furthermore, CXCL4, CXCL4L1 and CXCL10 slightly enhanced forskolin-stimulated cAMP production in HMVEC. Finally, CXCL4, but not CXCL4L1, induced activation of p70S6 kinase within 5 min in HMVEC. Our findings confirm that the angiostatic chemokines CXCL4L1 and CXCL4 activate both CXCR3A and CXCR3B and bring new insights into the complexity of their signaling cascades.

  5. Inquiry into Chemotherapy-Induced P53 Activation in Cancer Cells as a Model for Teaching Signal Transduction

    ERIC Educational Resources Information Center

    Srougi, Melissa C.; Carson, Susan

    2013-01-01

    Intracellular and extracellular communication is conducted through an intricate and interwoven network of signal transduction pathways. The mechanisms for how cells speak with one another are of significant biological importance to both basic and industrial scientists from a number of different disciplines. We have therefore developed and…

  6. ROS and ROS-Mediated Cellular Signaling.

    PubMed

    Zhang, Jixiang; Wang, Xiaoli; Vikash, Vikash; Ye, Qing; Wu, Dandan; Liu, Yulan; Dong, Weiguo

    2016-01-01

    It has long been recognized that an increase of reactive oxygen species (ROS) can modify the cell-signaling proteins and have functional consequences, which successively mediate pathological processes such as atherosclerosis, diabetes, unchecked growth, neurodegeneration, inflammation, and aging. While numerous articles have demonstrated the impacts of ROS on various signaling pathways and clarify the mechanism of action of cell-signaling proteins, their influence on the level of intracellular ROS, and their complex interactions among multiple ROS associated signaling pathways, the systemic summary is necessary. In this review paper, we particularly focus on the pattern of the generation and homeostasis of intracellular ROS, the mechanisms and targets of ROS impacting on cell-signaling proteins (NF-κB, MAPKs, Keap1-Nrf2-ARE, and PI3K-Akt), ion channels and transporters (Ca(2+) and mPTP), and modifying protein kinase and Ubiquitination/Proteasome System.

  7. ROS and ROS-Mediated Cellular Signaling

    PubMed Central

    Zhang, Jixiang; Wang, Xiaoli; Vikash, Vikash; Ye, Qing; Wu, Dandan; Liu, Yulan; Dong, Weiguo

    2016-01-01

    It has long been recognized that an increase of reactive oxygen species (ROS) can modify the cell-signaling proteins and have functional consequences, which successively mediate pathological processes such as atherosclerosis, diabetes, unchecked growth, neurodegeneration, inflammation, and aging. While numerous articles have demonstrated the impacts of ROS on various signaling pathways and clarify the mechanism of action of cell-signaling proteins, their influence on the level of intracellular ROS, and their complex interactions among multiple ROS associated signaling pathways, the systemic summary is necessary. In this review paper, we particularly focus on the pattern of the generation and homeostasis of intracellular ROS, the mechanisms and targets of ROS impacting on cell-signaling proteins (NF-κB, MAPKs, Keap1-Nrf2-ARE, and PI3K-Akt), ion channels and transporters (Ca2+ and mPTP), and modifying protein kinase and Ubiquitination/Proteasome System. PMID:26998193

  8. Elucidating Neuronal Mechanisms Using Intracellular Recordings during Behavior.

    PubMed

    Lee, Albert K; Brecht, Michael

    2018-06-01

    Intracellular recording allows measurement and perturbation of the membrane potential of identified neurons with sub-millisecond and sub-millivolt precision. This gives intracellular recordings a unique capacity to provide rich information about individual cells (e.g., high-resolution characterization of inputs, outputs, excitability, and structure). Hence, such recordings can elucidate the mechanisms that underlie fundamental phenomena, such as brain state, sparse coding, gating, gain modulation, and learning. Technical developments have increased the range of behaviors during which intracellular recording methods can be employed, such as in freely moving animals and head-fixed animals actively performing tasks, including in virtual environments. Such advances, and the combination of intracellular recordings with genetic and imaging techniques, have enabled investigation of the mechanisms that underlie neural computations during natural and trained behaviors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Signal transduction through the IL-4 and insulin receptor families.

    PubMed

    Wang, L M; Keegan, A; Frankel, M; Paul, W E; Pierce, J H

    1995-07-01

    Activation of tyrosine kinase-containing receptors and intracellular tyrosine kinases by ligand stimulation is known to be crucial for mediating initial and subsequent events involved in mitogenic signal transduction. Receptors for insulin and insulin-like growth factor 1 (IGF-1) contain cytoplasmic tyrosine kinase domains that undergo autophosphorylation upon ligand stimulation. Activation of these receptors also leads to pronounced and rapid tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) in cells of connective tissue origin. A related substrate, designated 4PS, is similarly phosphorylated by insulin and IGF-1 stimulation in many hematopoietic cell types. IRS-1 and 4PS possess a number of tyrosine phosphorylation sites that are within motifs that bind specific SH2-containing molecules known to be involved in mitogenic signaling such as PI-3 kinase, SHPTP-2 (Syp) and Grb-2. Thus, they appear to act as docking substrates for a variety of signaling molecules. The majority of hematopoietic cytokines bind to receptors that do not possess intrinsic kinase activity, and these receptors have been collectively termed as members of the hematopoietin receptor superfamily. Despite their lack of tyrosine kinase domains, stimulation of these receptors has been demonstrated to activate intracellular kinases leading to tyrosine phosphorylation of multiple substrates. Recent evidence has demonstrated that activation of different members of the Janus family of tyrosine kinases is involved in mediating tyrosine phosphorylation events by specific cytokines. Stimulation of the interleukin 4 (IL-4) receptor, a member of the hematopoietin receptor superfamily, is thought to result in activation of Jak1, Jak3, and/or Fes tyrosine kinases.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. LAPTM5 promotes lysosomal degradation of intracellular CD3ζ but not of cell surface CD3ζ.

    PubMed

    Kawai, Yohei; Ouchida, Rika; Yamasaki, Sho; Dragone, Leonard; Tsubata, Takeshi; Wang, Ji-Yang

    2014-07-01

    The lysosomal protein LAPTM5 has been shown to negatively regulate cell surface T cell receptor (TCR) expression and T-cell activation by promoting CD3ζ degradation in lysosomes, but the mechanism remains largely unknown. Here we show that LAPTM5 promotes lysosomal translocation of intracellular CD3ζ but not of the cell surface CD3ζ associated with the mature TCR complex. Kinetic analysis of the subcellular localization of the newly synthesized CD3ζ suggests that LAPTM5 targets CD3ζ in the Golgi apparatus and promotes its lysosomal translocation. Consistently, a Golgi-localizing mutant CD3ζ can be transported to and degraded in the lysosome by LAPTM5. A CD3ζ YF mutant in which all six tyrosine residues in the immunoreceptor tyrosine-based activation motif are mutated to phenylalanines is degraded as efficiently as is wild type CD3ζ, further suggesting that TCR signaling-triggered tyrosine phosphorylation of CD3ζ is dispensable for LAPTM5-mediated degradation. Previously, Src-like adapter protein (SLAP) and E3 ubiquitin ligase c-Cbl have been shown to mediate the ubiquitination of CD3ζ in the internalized TCR complex and its subsequent lysosomal degradation. We show that LAPTM5 and SLAP/c-Cbl function in distinct genetic pathways to negatively regulate TCR expression. Collectively, these results suggest that CD3ζ can be degraded by two pathways: SLAP/c-Cbl, which targets internalized cell surface CD3ζ dependent on TCR signaling, and LAPTM5, which targets intracellular CD3ζ independent of TCR signaling.

  11. A role for intracellular and extracellular DEK in regulating hematopoiesis.

    PubMed

    Capitano, Maegan L; Broxmeyer, Hal E

    2017-07-01

    Hematopoietic stem/progenitor cell fate decision during hematopoiesis is regulated by intracellular and extracellular signals such as transcription factors, growth factors, and cell-to-cell interactions. In this review, we explore the function of DEK, a nuclear phosphoprotein, on gene regulation. We also examine how DEK is secreted and internalized by cells, and discuss how both endogenous and extracellular DEK regulates hematopoiesis. Finally, we explore what currently is known about the regulation of DEK during inflammation. DEK negatively regulates the proliferation of early myeloid progenitor cells but has a positive effect on the differentiation of mature myeloid cells. Inflammation regulates intracellular DEK concentrations with inflammatory stimuli enhancing DEK expression. Inflammation-induced nuclear factor-kappa B activation is regulated by DEK, resulting in changes in the production of other inflammatory molecules such as IL-8. Inflammatory stimuli in turn regulates DEK secretion by cells of hematopoietic origin. However, how inflammation-induced expression and secretion of DEK regulates hematopoiesis remains unknown. Understanding how DEK regulates hematopoiesis under both homeostatic and inflammatory conditions may lead to a better understanding of the biology of HSCs and HPCs. Furthering our knowledge of the regulation of hematopoiesis will ultimately lead to new therapeutics that may increase the efficacy of hematopoietic stem cell transplantation.

  12. Cadherin Switching and Activation of β-Catenin Signaling Underlie Proinvasive Actions of Calcitonin-Calcitonin Receptor Axis in Prostate Cancer*S⃞

    PubMed Central

    Shah, Girish V.; Muralidharan, Anbalagan; Gokulgandhi, Mitan; Soan, Kamal; Thomas, Shibu

    2009-01-01

    Calcitonin, a neuroendocrine peptide, and its receptor are localized in the basal epithelium of benign prostate but in the secretory epithelium of malignant prostates. The abundance of calcitonin and calcitonin receptor mRNA displays positive correlation with the Gleason grade of primary prostate cancers. Moreover, calcitonin increases tumorigenicity and invasiveness of multiple prostate cancer cell lines by cyclic AMP-dependent protein kinase-mediated actions. These actions include increased secretion of matrix metalloproteinases and urokinase-type plasminogen activator and an increase in prostate cancer cell invasion. Activation of calcitonin-calcitonin receptor autocrine loop in prostate cancer cell lines led to the loss of cell-cell adhesion, destabilization of tight and adherens junctions, and internalization of key integral membrane proteins. In addition, the activation of calcitonin-calcitonin receptor axis induced epithelial-mesenchymal transition of prostate cancer cells as characterized by cadherin switch and the expression of the mesenchymal marker, vimentin. The activated calcitonin receptor phosphorylated glycogen synthase kinase-3, a key regulator of cytosolic β-catenin degradation within the WNT signaling pathway. This resulted in the accumulation of intracellular β-catenin, its translocation in the nucleus, and transactivation of β-catenin-responsive genes. These results for the first time identify actions of calcitonin-calcitonin receptor axis on prostate cancer cells that lead to the destabilization of cell-cell junctions, epithelial-to-mesenchymal transition, and activation of WNT/β-catenin signaling. The results also suggest that cyclic AMP-dependent protein kinase plays a key role in calcitonin receptor-induced destabilization of cell-cell junctions and activation of WNT-β-catenin signaling. PMID:19001380

  13. FGF2 activates TRPC and Ca2+ signaling leading to satellite cell activation

    PubMed Central

    Liu, Yewei; Schneider, Martin F.

    2013-01-01

    Satellite cells, as stem cells of adult skeletal muscle, are tightly associated with the differentiated muscle fibers and remain quiescent in the absence of muscle damage. In response to an injury, the quiescent satellite cell is activated by soluble factors, including FGFs released from injured myofibers. Using immunostaining, we here first show that TRPC1 channels are highly expressed in satellite cells attached to muscle fibers. Since CD34, a traditional stem cell marker, was recently found to be expressed in skeletal muscle satellite cells we labeled living satellite cells in their physiological niche associated with host FDB fibers using anti-CD34-FITC antibody. We then monitored intra-cellular calcium in anti-CD34-FITC labeled satellite cells attached to muscle fibers using the calcium sensitive dye X rhod-1 which has little fluorescence cross talk with FITC. FGF2 increased intracellular calcium in satellite cells, which was antagonized by the TRPC channel blocker SKF 96365. Immunostaining showed that NFATc3 is highly expressed in satellite cells, but not in host FDB fibers. Elevation of intracellular calcium by FGF2 is accompanied by nuclear translocation of NFATc3 and NFATc2 and by an increase in the number of MyoD positive cells per muscle fiber, both of which were attenuated by TRPC blocker SKF 96365. Our results suggest a novel pathway of satellite cell activation where FGF2 enhances calcium influx through a TRPC channel, and the increased cytosolic calcium leads to both NFATc3 and NFATc2 nuclear translocation and enhanced number of MyoD positive satellite cells per muscle fiber. PMID:24575047

  14. Diamond-Nanoneedle-Array-Facilitated Intracellular Delivery and the Potential Influence on Cell Physiology.

    PubMed

    Zhu, Xiaoyue; Yuen, Muk Fung; Yan, Li; Zhang, Zhenyu; Ai, Fujin; Yang, Yang; Yu, Peter K N; Zhu, Guangyu; Zhang, Wenjun; Chen, Xianfeng

    2016-05-01

    Vertical arrays of nanostructures can provide access to the cell cytoplasma and probe intracellular molecules. Here, the simple combination of diamond nanoneedle arrays with centrifugation-induced supergravity is shown to efficiently deliver drugs and biomaterials into the cytosol within several minutes, negotiating the endocytososomal system. The potential influence of the technique on cell metabolism is thoroughly studied. By detecting the phosphorylated histone variant H2AX (pH2AX) in the nucleus, it is proved that the operating process will not lead to DNA double-strand breaks. However, the mechanical disruption can temporarily improve the permeability of the cell membranes. Nanoneedle treatment affects cell metabolism at multiple points. The treatment can slightly elevate the apoptotic signal in A549 cells and can significantly increase the production of reactive oxygen species (ROS) in cells, particularly if combined with anticancer drugs. Meanwhile, the activity of cytosolic glucose 6-phosphate dehydrogenase (G6PD) is also raised to counterbalance the elevated ROS content. A detected depolarization of the mitochondrial membrane potential suggests mitochondrial involvement in the intracellular redox reactions and cell apoptosis which are induced by diamond nanoneedle treatment. Overall this study provides a novel understanding on the intracellular delivery mediated by nanoneedles, especially the impact on cell physiology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. mTOR signaling for biological control and cancer.

    PubMed

    Alayev, Anya; Holz, Marina K

    2013-08-01

    Mammalian target of rapamycin (mTOR) is a major intersection that connects signals from the extracellular milieu to corresponding changes in intracellular processes. When abnormally regulated, the mTOR signaling pathway is implicated in a wide spectrum of cancers, neurological diseases, and proliferative disorders. Therefore, pharmacological agents that restore the regulatory balance of the mTOR pathway could be beneficial for a great number of diseases. This review summarizes current understanding of mTOR signaling and some unanswered questions in the field. We describe the composition of the mTOR complexes, upstream signals that activate mTOR, and physiological processes that mTOR regulates. We also discuss the role of mTOR and its downstream effectors in cancer, obesity and diabetes, and autism. Copyright © 2013 Wiley Periodicals, Inc.

  16. BLNK: molecular scaffolding through ‘cis’-mediated organization of signaling proteins

    PubMed Central

    Chiu, Christopher W.; Dalton, Mark; Ishiai, Masamichi; Kurosaki, Tomohiro; Chan, Andrew C.

    2002-01-01

    Assembly of intracellular macromolecular complexes is thought to provide an important mechanism to coordinate the generation of second messengers upon receptor activation. We have previously identified a B cell linker protein, termed BLNK, which serves such a scaffolding function in B cells. We demonstrate here that phosphorylation of five tyrosine residues within human BLNK nucleates distinct signaling effectors following B cell antigen receptor activation. The phosphorylation of multiple tyrosine residues not only amplifies PLCγ-mediated signaling but also supports ‘cis’-mediated interaction between distinct signaling effectors within a large molecular complex. These data demonstrate the importance of coordinate phosphorylation of molecular scaffolds, and provide insights into how assembly of macromolecular complexes is required for normal receptor function. PMID:12456653

  17. Structural dynamics of the cell nucleus: basis for morphology modulation of nuclear calcium signaling and gene transcription.

    PubMed

    Queisser, Gillian; Wiegert, Simon; Bading, Hilmar

    2011-01-01

    Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons.

  18. Coordinated activation of AMP-activated protein kinase, extracellular signal-regulated kinase, and autophagy regulates phorbol myristate acetate-induced differentiation of SH-SY5Y neuroblastoma cells.

    PubMed

    Zogovic, Nevena; Tovilovic-Kovacevic, Gordana; Misirkic-Marjanovic, Maja; Vucicevic, Ljubica; Janjetovic, Kristina; Harhaji-Trajkovic, Ljubica; Trajkovic, Vladimir

    2015-04-01

    We explored the interplay between the intracellular energy sensor AMP-activated protein kinase (AMPK), extracellular signal-regulated kinase (ERK), and autophagy in phorbol myristate acetate (PMA)-induced neuronal differentiation of SH-SY5Y human neuroblastoma cells. PMA-triggered expression of neuronal markers (dopamine transporter, microtubule-associated protein 2, β-tubulin) was associated with an autophagic response, measured by the conversion of microtubule-associated protein light chain 3 (LC3)-I to autophagosome-bound LC3-II, increase in autophagic flux, and expression of autophagy-related (Atg) proteins Atg7 and beclin-1. This coincided with the transient activation of AMPK and sustained activation of ERK. Pharmacological inhibition or RNA interference-mediated silencing of AMPK suppressed PMA-induced expression of neuronal markers, as well as ERK activation and autophagy. A selective pharmacological blockade of ERK prevented PMA-induced neuronal differentiation and autophagy induction without affecting AMPK phosphorylation. Conversely, the inhibition of autophagy downstream of AMPK/ERK, either by pharmacological agents or LC3 knockdown, promoted the expression of neuronal markers, thus indicating a role of autophagy in the suppression of PMA-induced differentiation of SH-SY5Y cells. Therefore, PMA-induced neuronal differentiation of SH-SY5Y cells depends on a complex interplay between AMPK, ERK, and autophagy, in which the stimulatory effects of AMPK/ERK signaling are counteracted by the coinciding autophagic response. Phorbol myristate acetate (PMA) induces the expression of dopamine transporter, microtubule-associated protein 2, and β-tubulin, and subsequent neuronal differentiation of SH-SY5Y neuroblastoma cells through AMP-activated protein kinase (AMPK)-dependent activation of extracellular signal-regulated kinase (ERK). The activation of AMPK/ERK axis also induces the expression of beclin-1 and Atg7, and increases LC3 conversion, thereby triggering

  19. Different rate-limiting activities of intracellular pH regulators for HCO3- secretion stimulated by forskolin and carbachol in rat parotid intralobular ducts.

    PubMed

    Ueno, Kaori; Hirono, Chikara; Kitagawa, Michinori; Shiba, Yoshiki; Sugita, Makoto

    2016-11-01

    Intracellular pH (pH i ) regulation fundamentally participates in maintaining HCO 3 - release from HCO 3 - -secreting epithelia. We used parotid intralobular ducts loaded with BCECF to investigate the contributions of a carbonic anhydrase (CA), anion channels and a Na + -H + exchanger (NHE) to pH i regulation for HCO 3 - secretion by cAMP and Ca 2+ signals. Resting pH i was dispersed between 7.4 and 7.9. Forskolin consistently decreased pH i showing the dominance of pH i -lowering activities, but carbachol gathered pH i around 7.6. CA inhibition suppressed the forskolin-induced decrease in pH i , while it allowed carbachol to consistently increase pH i by revealing that carbachol prominently activated NHE via Ca 2+ -calmodulin. Under NHE inhibition, forskolin and carbachol induced the remarkable decreases in pH i , which were slowed predominantly by CA inhibition and by CA or anion channel inhibition, respectively. Our results suggest that forskolin and carbachol primarily activate the pH i -lowering CA and pH i -raising NHE, respectively, to regulate pH i for HCO 3 - secretion.

  20. Dopamine elevates intracellular zinc concentration in cultured rat embryonic cortical neurons through the cAMP-nitric oxide signaling cascade.

    PubMed

    Hung, Hui-Hsing; Kao, Lung-Sen; Liu, Pei-Shan; Huang, Chien-Chang; Yang, De-Ming; Pan, Chien-Yuan

    2017-07-01

    Zinc ion (Zn 2+ ), the second most abundant transition metal after iron in the body, is essential for neuronal activity and also induces toxicity if the concentration is abnormally high. Our previous results show that exposure of cultured cortical neurons to dopamine elevates intracellular Zn 2+ concentrations ([Zn 2+ ] i ) and induces autophagosome formation but the mechanism is not clear. In this study, we characterized the signaling pathway responsible for the dopamine-induced elevation of [Zn 2+ ] i and the effect of [Zn 2+ ] i in modulating the autophagy in cultured rat embryonic cortical neurons. N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), a membrane-permeable Zn 2+ chelator, could rescue the cell death and suppress the autophagosome puncta number induced by dopamine. Dopamine treatment increased the lipidation level of the endogenous microtubule-associated protein 1A/1B-light chain 3 (LC3 II), an autophagosome marker. TPEN added 1h before, but not after, dopamine treatment suppressed the dopamine-induced elevation of LC3 II level. Inhibitors of the dopamine D1-like receptor, protein kinase A (PKA), and NOS suppressed the dopamine-induced elevation of [Zn 2+ ] i . PKA activators and NO generators directly increased [Zn 2+ ] i in cultured neurons. Through cell fractionation, proteins with m.w. values between 5 and 10kD were found to release Zn 2+ following NO stimulation. In addition, TPEN pretreatment and an inhibitor against PKA could suppress the LC3 II level increased by NO and dopamine, respectively. Therefore, our results demonstrate that dopamine-induced elevation of [Zn 2+ ] i is mediated by the D1-like receptor-PKA-NO pathway and is important in modulating the cell death and autophagy. Copyright © 2017 Elsevier Inc. All rights reserved.