Donnelly-Roberts, Diana; McGaraughty, Steve; Shieh, Char-Chang; Honore, Prisca; Jarvis, Michael F
2008-02-01
Multiple P2 receptor-mediated mechanisms exist by which ATP can alter nociceptive sensitivity following tissue injury. Evidence from a variety of experimental strategies, including genetic disruption studies and the development of selective antagonists, has indicated that the activation of P2X receptor subtypes, including P2X(3), P2X(2/3), P2X(4) and P2X(7), and P2Y (e.g., P2Y(2)) receptors, can modulate pain. For example, administration of a selective P2X(3) antagonist, A-317491, has been shown to effectively block both hyperalgesia and allodynia in different animal models of pathological pain. Intrathecally delivered antisense oligonucleotides targeting P2X(4) receptors decrease tactile allodynia following nerve injury. Selective antagonists for the P2X(7) receptor also reduce sensitization in animal models of inflammatory and neuropathic pain, providing evidence that purinergic glial-neural interactions are important modulators of noxious sensory neurotransmission. Furthermore, activation of P2Y(2) receptors leads to sensitization of polymodal transient receptor potential-1 receptors. Thus, ATP acting at multiple purinergic receptors, either directly on neurons (e.g., P2X(3), P2X(2/3), and P2Y receptors) or indirectly through neural-glial cell interactions (P2X(4) and P2X(7) receptors), alters nociceptive sensitivity. The development of selective antagonists for some of these P2 receptors has greatly aided investigations into the nociceptive role of ATP. This perspective highlights some of the recent advances to identify selective P2 receptor ligands, which has enhanced the investigation of ATP-related modulation of pain sensitivity.
Schwiebert, Erik M; Liang, Lihua; Cheng, Nai-Lin; Williams, Clintoria Richards; Olteanu, Dragos; Welty, Elisabeth A; Zsembery, Akos
2005-12-01
In this review, we focus on two attributes of P2X receptor channel function, one essential and one novel. First, we propose that P2X receptors are extracellular sensors as well as receptors and ion channels. In particular, the large extracellular domain (that comprises 70% of the molecular mass of the receptor channel protein) lends itself to be a cellular sensor. Moreover, its exquisite sensitivity to extracellular pH, ionic strength, and multiple ligands evokes the function of a sensor. Second, we propose that P2X receptors are extracellular zinc receptors as well as receptors for nucleotides. We provide novel data in multiple publications and illustrative data in this invited review to suggest that zinc triggers ATP-independent activation of P2X receptor channel function. In this light, P2X receptors are the cellular site of integration between autocrine and paracrine zinc signaling and autocrine and paracrine purinergic signaling. P2X receptors may sense changes in these ligands as well as in extracellular pH and ionic strength and transduce these sensations via calcium and/or sodium entry and changes in membrane potential.
Tanigawa, Hitoshi; Toyoda, Futoshi; Kumagai, Kosuke; Okumura, Noriaki; Maeda, Tsutomu; Matsuura, Hiroshi; Imai, Shinji
2018-05-29
Extracellular ATP regulates various cellular functions by engaging multiple subtypes of P2 purinergic receptors. In many cell types, the ionotropic P2X7 receptor mediates pathological events such as inflammation and cell death. However, the importance of this receptor in chondrocytes remains largely unexplored. Here, we report the functional identification of P2X7 receptor in articular chondrocytes and investigate the involvement of P2X7 receptors in ATP-induced cytotoxicity. Chondrocytes were isolated from rabbit articular cartilage, and P2X7 receptor currents were examined using the whole-cell patch-clamp technique. ATP-induced cytotoxicity was evaluated by measuring caspase-3/7 activity, lactate dehydrogenase (LDH) leakage, and prostagrandin E 2 (PGE 2 ) release using microscopic and fluorimetric/colorimetric evaluation. Extracellular ATP readily evoked a cationic current without obvious desensitization. This ATP-activated current was dose related, but required millimolar concentrations. A more potent P2X7 receptor agonist, BzATP, also activated this current but at 100-fold lower concentrations. ATP-induced currents were largely abolished by selective P2X7 antagonists, suggesting a predominant role for the P2X7 receptor. RT-PCR confirmed the presence of P2X7 in chondrocytes. Heterologous expression of a rabbit P2X7 clone successfully reproduced the ATP-induced current. Exposure of chondrocytes to ATP increased caspase-3/7 activities, an effect that was totally abrogated by P2X7 receptor antagonists. Extracellular ATP also enhanced LDH release, which was partially attenuated by the P2X7 inhibitor. The P2X7 receptor-mediated elevation in apoptotic caspase signaling was accompanied by increased PGE 2 release and was attenuated by inhibition of either phospholipase A 2 or cyclooxygenase-2. This study provides direct evidence for the presence of functional P2X7 receptors in articular chondrocytes. Our results suggest that the P2X7 receptor is a potential therapeutic target in chondrocyte death associated with cartilage injury and disorders including osteoarthritis.
Robinson, Lucy E.; Shridar, Mitesh; Smith, Philip; Murrell-Lagnado, Ruth D.
2014-01-01
P2X7 receptors are nonselective cation channels gated by high extracellular ATP, but with sustained activation, receptor sensitization occurs, whereby the intrinsic pore dilates, making the cell permeable to large organic cations, which eventually leads to cell death. P2X7 receptors associate with cholesterol-rich lipid rafts, but it is unclear how this affects the properties of the receptor channel. Here we show that pore-forming properties of human and rodent P2X7 receptors are sensitive to perturbations of cholesterol levels. Acute depletion of cholesterol with 5 mm methyl-β-cyclodextrin (MCD) caused a substantial increase in the rate of agonist-evoked pore formation, as measured by the uptake of ethidium dye, whereas cholesterol loading inhibited this process. Patch clamp analysis of P2X7 receptor currents carried by Na+ and N-methyl-d-glucamine (NMDG+) showed enhanced activation and current facilitation following cholesterol depletion. This contrasts with the inhibitory effect of methyl-β-cyclodextrin reported for other P2X subtypes. Mutational analysis suggests the involvement of an N-terminal region and a proximal C-terminal region that comprises multiple cholesterol recognition amino acid consensus (CRAC) motifs, in the cholesterol sensitivity of channel gating. These results reveal cholesterol as a negative regulator of P2X7 receptor pore formation, protecting cells from P2X7-mediated cell death. PMID:25281740
Nucleoside reverse transcriptase inhibitors possess intrinsic anti-inflammatory activity
Fowler, Benjamin J.; Gelfand, Bradley D.; Kim, Younghee; Kerur, Nagaraj; Tarallo, Valeria; Hirano, Yoshio; Amarnath, Shoba; Fowler, Daniel H.; Radwan, Marta; Young, Mark T.; Pittman, Keir; Kubes, Paul; Agarwal, Hitesh K.; Parang, Keykavous A.; Hinton, David R.; Bastos-Carvalho, Ana; Li, Shengjian; Yasuma, Tetsuhiro; Mizutani, Takeshi; Yasuma, Reo; Wright, Charles; Ambati, Jayakrishna
2014-01-01
Nucleoside reverse transcriptase inhibitors (NRTIs) are mainstay therapeutics for HIV that block retrovirus replication. Alu (an endogenous retroelement that also requires reverse transcriptase for its life cycle)-derived RNAs activate P2X7 and the NLRP3 inflammasome to cause cell death of the retinal pigment epithelium (RPE) in geographic atrophy, a type of age-related macular degeneration. We found that NRTIs inhibit P2X7-mediated NLRP3 inflammasome activation independent of reverse transcriptase inhibition. Multiple approved and clinically relevant NRTIs prevented caspase-1 activation, the effector of the NLRP3 inflammasome, induced by Alu RNA. NRTIs were efficacious in mouse models of geographic atrophy, choroidal neovascularization, graft-versus-host disease (GVHD), and sterile liver inflammation. Our findings suggest that NRTIs are ripe for drug repurposing in P2X7-driven diseases. PMID:25414314
Qu, Yan; Dubyak, George R
2009-06-01
Activation of the P2X7 receptor (P2X7R) triggers a remarkably diverse array of membrane trafficking responses in leukocytes and epithelial cells. These responses result in altered profiles of cell surface lipid and protein composition that can modulate the direct interactions of P2X7R-expressing cells with other cell types in the circulation, in blood vessels, at epithelial barriers, or within sites of immune and inflammatory activation. Additionally, these responses can result in the release of bioactive proteins, lipids, and large membrane complexes into extracellular compartments for remote communication between P2X7R-expressing cells and other cells that amplify or modulate inflammation, immunity, and responses to tissue damages. This review will discuss P2X7R-mediated effects on membrane composition and trafficking in the plasma membrane (PM) and intracellular organelles, as well as actions of P2X7R in controlling various modes of non-classical secretion. It will review P2X7R regulation of: (1) phosphatidylserine distribution in the PM outer leaflet; (2) shedding of PM surface proteins; (3) release of PM-derived microvesicles or microparticles; (4) PM blebbing; (5) cell-cell fusion resulting in formation of multinucleate cells; (6) phagosome maturation and fusion with lysosomes; (7) permeability of endosomes with internalized pathogen-associated molecular patterns; (8) permeability/integrity of mitochondria; (9) exocytosis of secretory lysosomes; and (10) release of exosomes from multivesicular bodies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rades, Dirk, E-mail: Rades.Dirk@gmx.ne; Department of Radiation Oncology, University of Hamburg; Meyners, Thekla
2010-10-01
Purpose: Brain metastases in bladder cancer patients are extremely rare. Most patients with multiple lesions receive longer-course whole-brain radiotherapy (WBRT) with 10 x 3 Gy/2 weeks or 20 x 2 Gy/4 weeks. Because its radiosensitivity is relatively low, metastases from bladder cancer may be treated better with hypofractionated radiotherapy. This study compared short-course hypofractionated WBRT (5 x 4 Gy/1 week) to longer-course WBRT. Methods and Materials: Data for 33 patients receiving WBRT alone for multiple brain metastases from transitional cell bladder carcinoma were retrospectively analyzed. Short-course WBRT with 5 x 4 Gy (n = 12 patients) was compared to longer-coursemore » WBRT with 10 x 3 Gy/20 x 2 Gy (n = 21 patients) for overall survival (OS) and local (intracerebral) control (LC). Five additional potential prognostic factors were investigated: age, gender, Karnofsky performance score (KPS), number of brain metastases, and extracranial metastases. The Bonferroni correction for multiple tests was used to adjust the p values derived from the multivariate analysis. p values of <0.025 were considered significant. Results: At 6 months, OS was 42% after 5 x 4 Gy and 24% after 10 x 3/20 x 2 Gy (p = 0.31). On univariate analysis, improved OS was associated with less than four brain metastases (p = 0.021) and almost associated with a lack of extracranial metastases (p = 0.057). On multivariate analysis, both factors were not significant. At 6 months, LC was 83% after 5 x 4 Gy and 27% after 10 x 3/20 x 2 Gy (p = 0.035). Improved LC was almost associated with a KPS of {>=}70 (p = 0.051). On multivariate analysis, WBRT regimen was almost significant (p = 0.036). KPS showed a trend (p = 0.07). Conclusions: Short-course WBRT with 5 x 4 Gy should be seriously considered for most patients with multiple brain metastases from bladder cancer, as it resulted in improved LC.« less
Cockayne, Debra A; Dunn, Philip M; Zhong, Yu; Rong, Weifang; Hamilton, Sara G; Knight, Gillian E; Ruan, Huai-Zhen; Ma, Bei; Yip, Ping; Nunn, Philip; McMahon, Stephen B; Burnstock, Geoffrey; Ford, Anthony PDW
2005-01-01
Extracellular ATP plays a role in nociceptive signalling and sensory regulation of visceral function through ionotropic receptors variably composed of P2X2 and P2X3 subunits. P2X2 and P2X3 subunits can form homomultimeric P2X2, homomultimeric P2X3, or heteromultimeric P2X2/3 receptors. However, the relative contribution of these receptor subtypes to afferent functions of ATP in vivo is poorly understood. Here we describe null mutant mice lacking the P2X2 receptor subunit (P2X2−/−) and double mutant mice lacking both P2X2 and P2X3 subunits (P2X2/P2X3Dbl−/−), and compare these with previously characterized P2X3−/− mice. In patch-clamp studies, nodose, coeliac and superior cervical ganglia (SCG) neurones from wild-type mice responded to ATP with sustained inward currents, while dorsal root ganglia (DRG) neurones gave predominantly transient currents. Sensory neurones from P2X2−/− mice responded to ATP with only transient inward currents, while sympathetic neurones had barely detectable responses. Neurones from P2X2/P2X3Dbl−/− mice had minimal to no response to ATP. These data indicate that P2X receptors on sensory and sympathetic ganglion neurones involve almost exclusively P2X2 and P2X3 subunits. P2X2−/− and P2X2/P2X3Dbl−/− mice had reduced pain-related behaviours in response to intraplantar injection of formalin. Significantly, P2X3−/−, P2X2−/−, and P2X2/P2X3Dbl−/− mice had reduced urinary bladder reflexes and decreased pelvic afferent nerve activity in response to bladder distension. No deficits in a wide variety of CNS behavioural tests were observed in P2X2−/− mice. Taken together, these data extend our findings for P2X3−/− mice, and reveal an important contribution of heteromeric P2X2/3 receptors to nociceptive responses and mechanosensory transduction within the urinary bladder. PMID:15961431
Pharmacological characterization of recombinant human and rat P2X receptor subtypes.
Bianchi, B R; Lynch, K J; Touma, E; Niforatos, W; Burgard, E C; Alexander, K M; Park, H S; Yu, H; Metzger, R; Kowaluk, E; Jarvis, M F; van Biesen, T
1999-07-02
ATP functions as a fast neurotransmitter through the specific activation of a family of ligand-gated ion channels termed P2X receptors. In this report, six distinct recombinant P2X receptor subtypes were pharmacologically characterized in a heterologous expression system devoid of endogenous P2 receptor activity. cDNAs encoding four human P2X receptor subtypes (hP2X1, hP2X3, hP2X4, and hP2X7), and two rat P2X receptor subtypes (rP2X2 and rP2X3), were stably expressed in 1321N1 human astrocytoma cells. Furthermore, the rP2X2 and rP2X3 receptor subtypes were co-expressed in these same cells to form heteromultimeric receptors. Pharmacological profiles were determined for each receptor subtype, based on the activity of putative P2 ligands to stimulate Ca2+ influx. The observed potency and kinetics of each response was receptor subtype-specific and correlated with their respective electrophysiological properties. Each receptor subtype exhibited a distinct pharmacological profile, based on its respective sensitivity to nucleotide analogs, diadenosine polyphosphates and putative P2 receptor antagonists. Alphabeta-methylene ATP (alphabeta-meATP), a putative P2X receptor-selective agonist, was found to exhibit potent agonist activity only at the hP2X1, hP2X3 and rP2X3 receptor subtypes. Benzoylbenzoic ATP (BzATP, 2' and 3' mixed isomers), which has been reported to act as a P2X7 receptor-selective agonist, was least active at the rat and human P2X7 receptors, but was a potent (nM) agonist at hP2X1, rP2X3 and hP2X3 receptors. These data comprise a systematic examination of the functional pharmacology of P2X receptor activation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Daehwan; Song, Yuncheng; Larry Lee, Minjoo
We report 2.8 {mu}m emission from compressively strained type-I quantum wells (QWs) grown on InP-based metamorphic InAs{sub x}P{sub 1-x} step-graded buffers. High quality metamorphic graded buffers showed smooth surface morphology and low threading dislocation densities of approximately 2.5 Multiplication-Sign 10{sup 6} cm{sup -2}. High-resolution x-ray diffraction scans showed strong satellites from multiple quantum wells grown on metamorphic buffers, and cross-sectional transmission electron microscopy revealed smooth and coherent quantum well interfaces. Room-temperature photoluminescence emission at 2.8 {mu}m with a narrow linewidth ({approx}50 meV) shows the promise of metamorphic growth for mid-infrared laser diodes on InP.
Calcium release through P2X4 activates calmodulin to promote endolysosomal membrane fusion.
Cao, Qi; Zhong, Xi Zoë; Zou, Yuanjie; Murrell-Lagnado, Ruth; Zhu, Michael X; Dong, Xian-Ping
2015-06-22
Intra-endolysosomal Ca(2+) release is required for endolysosomal membrane fusion with intracellular organelles. However, the molecular mechanisms for intra-endolysosomal Ca(2+) release and the downstream Ca(2+) targets involved in the fusion remain elusive. Previously, we demonstrated that endolysosomal P2X4 forms channels activated by luminal adenosine triphosphate in a pH-dependent manner. In this paper, we show that overexpression of P2X4, as well as increasing endolysosomal P2X4 activity by alkalinization of endolysosome lumen, promoted vacuole enlargement in cells and endolysosome fusion in a cell-free assay. These effects were prevented by inhibiting P2X4, expressing a dominant-negative P2X4 mutant, and disrupting the P2X4 gene. We further show that P2X4 and calmodulin (CaM) form a complex at endolysosomal membrane where P2X4 activation recruits CaM to promote fusion and vacuolation in a Ca(2+)-dependent fashion. Moreover, P2X4 activation-triggered fusion and vacuolation were suppressed by inhibiting CaM. Our data thus suggest a new molecular mechanism for endolysosomal membrane fusion involving P2X4-mediated endolysosomal Ca(2+) release and subsequent CaM activation. © 2015 Cao et al.
Calcium release through P2X4 activates calmodulin to promote endolysosomal membrane fusion
Cao, Qi; Zhong, Xi Zoë; Zou, Yuanjie; Murrell-Lagnado, Ruth; Zhu, Michael X.
2015-01-01
Intra-endolysosomal Ca2+ release is required for endolysosomal membrane fusion with intracellular organelles. However, the molecular mechanisms for intra-endolysosomal Ca2+ release and the downstream Ca2+ targets involved in the fusion remain elusive. Previously, we demonstrated that endolysosomal P2X4 forms channels activated by luminal adenosine triphosphate in a pH-dependent manner. In this paper, we show that overexpression of P2X4, as well as increasing endolysosomal P2X4 activity by alkalinization of endolysosome lumen, promoted vacuole enlargement in cells and endolysosome fusion in a cell-free assay. These effects were prevented by inhibiting P2X4, expressing a dominant-negative P2X4 mutant, and disrupting the P2X4 gene. We further show that P2X4 and calmodulin (CaM) form a complex at endolysosomal membrane where P2X4 activation recruits CaM to promote fusion and vacuolation in a Ca2+-dependent fashion. Moreover, P2X4 activation-triggered fusion and vacuolation were suppressed by inhibiting CaM. Our data thus suggest a new molecular mechanism for endolysosomal membrane fusion involving P2X4-mediated endolysosomal Ca2+ release and subsequent CaM activation. PMID:26101220
Quintanilla-Martinez, Leticia; Kremer, Marcus; Specht, Katja; Calzada-Wack, Julia; Nathrath, Michaela; Schaich, Robert; Höfler, Heinz; Fend, Falko
2003-05-01
The signal transducer and activator of transcription molecules (Stats) play key roles in cytokine-induced signal transduction. Recently, it was proposed that constitutively activated Stat 3 (Stat 3 phosphorylated) contributes to the pathogenesis of multiple myeloma (MM) by preventing apoptosis and inducing proliferation. The study aim was to investigate Stat 3 activation in a series of multiple myeloma (MM) cases and its effect on downstream targets such as the anti-apoptotic proteins Bcl-xL, Mcl-1, and Bcl-2, and the cell-cycle protein cyclin D1. Forty-eight cases of MM were analyzed. Immunohistochemistry was performed on paraffin sections using antibodies against cyclin D1, Bcl-2, Bcl-xL, Mcl-1, p21, Stat 3, and Stat 3 phosphorylated (P). Their specificity was corroborated by Western blot analysis using eight human MM cell lines as control. The proliferation rate was assessed with the antibody MiB1. In addition, the mRNA levels of cyclin D1 and Stat 3 were determined by quantitative real-time reverse transcriptase-polymerase chain reaction of paraffin-embedded microdissected tissue. Three different groups determined by the expression of Stat 3P and cyclin D1 (protein and mRNA) were identified: group 1, Stat 3-activated (23 cases, 48%). All cases revealed nuclear expression of Stat 3P. No elevation of Stat 3 mRNA was identified in any of the cases. Three cases in this group showed intermediate to low cyclin D1 protein and mRNA expression. Group 2 included 15 (31%) cases with cyclin D1 staining and lack of Stat 3P. All cases showed intermediate to high levels of cyclin D1 mRNA expression. Group 3 included 10 (21%) cases with no expression of either cyclin D1 or Stat 3P. High levels of anti-apoptotic proteins Bcl-xL and Mcl-1 were identified in 89% and 100% of all cases, respectively. In contrast to Bcl-xL and Mcl-1, the expression of Bcl-2 showed an inverse correlation with proliferation rate (P: 0.0003). No significant differences were found between the three groups in terms of proliferation rate or expression of anti-apoptotic proteins. However, cyclin D1+ cases were always well differentiated and were more likely to show a lymphoplasmocytoid differentiation (chi-square = 9.55). Overall, constitutive activation of Stat 3 was found in almost half (48%) of the investigated MM cases. However, this does not seem to have a major impact on the expression of anti-apoptotic proteins and proliferation. We showed that cyclin D1 overexpression and Stat 3 activation are, mutually exclusive events in MM (P = 0.0066). The universal expression of Mcl-1, independent of activated Stat 3, suggests that its expression is constitutive and that it might play an important role in the pathogenesis of MM.
Hexanuclear gold(I) phosphide complexes as platforms for multiple redox-active ferrocenyl units.
Lee, Terence Kwok-Ming; Cheng, Eddie Chung-Chin; Zhu, Nianyong; Yam, Vivian Wing-Wah
2014-01-03
The synthesis, X-ray crystal structures, electrochemical, and spectroscopic studies of a series of hexanuclear gold(I) μ(3)-ferrocenylmethylphosphido complexes stabilized by bridging phosphine ligands, [Au(6)(P-P)(n)(Fc-CH(2)-P)(2)][PF(6)](2) (n=3, P-P=dppm (bis(diphenylphosphino)methane) (1), dppe (1,2-bis(diphenylphosphino)ethane) (2), dppp (1,3-bis(diphenylphosphino)propane) (3), Ph(2)PN(C(3)H(7))-PPh(2) (4), Ph(2)PN(Ph-CH(3)-p)PPh(2) (5), dppf (1,1′-bis(diphenylphosphino)ferrocene) (6); n=2, P-P=dpepp (bis(2-diphenylphosphinoethyl)phenylphosphine) (7)), as platforms for multiple redox-active ferrocenyl units, are reported. The investigation of the structural changes of the clusters has been probed by introducing different bridging phosphine ligands. This class of gold(I) μ(3)-ferrocenylmethylphosphido complexes has been found to exhibit one reversible oxidation couple, suggestive of the absence of electronic communication between the ferrocene units through the Au(6)P(2) cluster core, providing an understanding of the electronic properties of the hexanuclear Au(I) cluster linkage. The present complexes also serve as an ideal system for the design of multi-electron reservoir and molecular battery systems.
The Geometry of Enhancement in Multiple Regression
ERIC Educational Resources Information Center
Waller, Niels G.
2011-01-01
In linear multiple regression, "enhancement" is said to occur when R[superscript 2] = b[prime]r greater than r[prime]r, where b is a p x 1 vector of standardized regression coefficients and r is a p x 1 vector of correlations between a criterion y and a set of standardized regressors, x. When p = 1 then b [is congruent to] r and…
Glutamine and citrulline concentrations reflect nitric oxide synthesis in the human nervous system.
Pérez-Neri, I; Ramírez-Bermúdez, J; Ojeda-López, C; Montes, S; Soto-Hernández, J L; Ríos, C
2017-08-31
Although citrulline is produced by nitric oxide (NO) synthase upon activation of the NMDA glutamate receptor, nitrite and nitrate (NO x ) concentration is considered the best marker of NO synthesis, as citrulline is also metabolised by other enzymes. This study analyses the correlation between human cerebrospinal fluid NO x and citrulline concentrations in order to determine the extent to which citrulline reflects NO synthesis and glutamatergic neurotransmission. Participants were patients with acute neurological diseases undergoing lumbar puncture (n=240). NO x and amino acid concentrations were determined by HPLC. NO x concentrations did not vary significantly where infection (p=0,110) or inflammation (p=0,349) were present. Multiple regression analysis showed that NO x concentration was correlated with glutamine (r=-0,319, p<0,001) and citrulline concentrations (r=0,293, p=0,005) but not with the citrulline/arginine ratio (r=-0,160, p=0,173). ANCOVA confirmed that NO x concentration was correlated with citrulline concentration (F=7,6, p=0,007) but not with the citrulline/arginine ratio (F=2,2, p=0,136), or presence of infection (F=1,8, p=0,173) or inflammation (F=1,4, p=0,227). No association was found between NO x and arginine or glutamate concentrations. The results suggest that CSF citrulline concentration reflects NO x synthesis to some extent, despite the contribution of other metabolic pathways. In addition, this study shows that glutamine is an important modulator of NO synthase activity, and that arginine and glutamate are not correlated with NO x . Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Lipopolysaccharide Inhibits the Channel Activity of the P2X7 Receptor
Leiva-Salcedo, Elias; Coddou, Claudio; Rodríguez, Felipe E.; Penna, Antonello; Lopez, Ximena; Neira, Tanya; Fernández, Ricardo; Imarai, Mónica; Rios, Miguel; Escobar, Jorge; Montoya, Margarita; Huidobro-Toro, J. Pablo; Escobar, Alejandro; Acuña-Castillo, Claudio
2011-01-01
The purinergic P2X7 receptor (P2X7R) plays an important role during the immune response, participating in several events such as cytokine release, apoptosis, and necrosis. The bacterial endotoxin lipopolysaccharide (LPS) is one of the strongest stimuli of the immune response, and it has been shown that P2X7R activation can modulate LPS-induced responses. Moreover, a C-terminal binding site for LPS has been proposed. In order to evaluate if LPS can directly modulate the activity of the P2X7R, we tested several signaling pathways associated with P2X7R activation in HEK293 cells that do not express the TLR-4 receptor. We found that LPS alone was unable to induce any P2X7R-related activity, suggesting that the P2X7R is not directly activated by the endotoxin. On the other hand, preapplication of LPS inhibited ATP-induced currents, intracellular calcium increase, and ethidium bromide uptake and had no effect on ERK activation in HEK293 cells. In splenocytes-derived T-regulatory cells, in which ATP-induced apoptosis is driven by the P2X7R, LPS inhibited ATP-induced apoptosis. Altogether, these results demonstrate that LPS modulates the activity of the P2X7R and suggest that this effect could be of physiological relevance. PMID:21941410
Zhang, Wenhua; Chen, Zhihao; Al-Naji, Majd; Guo, Penghu; Cwik, Stefan; Halbherr, Olesia; Wang, Yuemin; Muhler, Martin; Wilde, Nicole; Gläser, Roger; Fischer, Roland A
2016-10-14
Simultaneous incorporation of palladium within Pd-Pd and/or Pd-Cu paddlewheels as framework-nodes and Pd nanoparticle (NP) dispersion into MOF have been achieved for the first time via one-pot synthesis. In particular, the framework substitution of Cu(2+) by Pd(2+) as well as the pore loading with PdNPs have been confirmed and characterized by XPS. The obtained solids featuring such multiple Pd-sites show enhanced catalytic activity in the aqueous-phase hydrogenation of p-nitrophenol (PNP) with NaBH4 to p-aminophenol (PAP).
Non-nucleotide Agonists Triggering P2X7 Receptor Activation and Pore Formation.
Di Virgilio, Francesco; Giuliani, Anna L; Vultaggio-Poma, Valentina; Falzoni, Simonetta; Sarti, Alba C
2018-01-01
The P2X7 receptor (P2X7R) is a ligand-gated plasma membrane ion channel belonging to the P2X receptor subfamily activated by extracellular nucleotides. General consensus holds that the physiological (and maybe the only) agonist is ATP. However, scattered evidence generated over the last several years suggests that ATP might not be the only agonist, especially at inflammatory sites. Solid data show that NAD + covalently modifies the P2X7R of mouse T lymphocytes, thus lowering the ATP threshold for activation. Other structurally unrelated agents have been reported to activate the P2X7R via a poorly understood mechanism of action: (a) the antibiotic polymyxin B, possibly a positive allosteric P2X7R modulator, (b) the bactericidal peptide LL-37, (c) the amyloidogenic β peptide, and (d) serum amyloid A. Some agents, such as Alu-RNA, have been suggested to activate the P2X7R acting on the intracellular N- or C-terminal domains. Mode of P2X7R activation by these non-nucleotide ligands is as yet unknown; however, these observations raise the intriguing question of how these different non-nucleotide ligands may co-operate with ATP at inflammatory or tumor sites. New information obtained from the cloning and characterization of the P2X7R from exotic mammalian species (e.g., giant panda) and data from recent patch-clamp studies are strongly accelerating our understanding of P2X7R mode of operation, and may provide hints to the mechanism of activation of P2X7R by non-nucleotide ligands.
P2 receptor subtypes in the cardiovascular system.
Kunapuli, S P; Daniel, J L
1998-01-01
Extracellular nucleotides have been implicated in a number of physiological functions. Nucleotides act on cell-surface receptors known as P2 receptors, of which several subtypes have been cloned. Both ATP and ADP are stored in platelets and are released upon platelet activation. Furthermore, nucleotides are also released from damaged or broken cells. Thus during vascular injury nucleotides play an important role in haemostasis through activation of platelets, modulation of vascular tone, recruitment of neutrophils and monocytes to the site of injury, and facilitation of adhesion of leucocytes to the endothelium. Nucleotides also moderate these functions by generating nitric oxide and prostaglandin I2 through activation of endothelial cells, and by activating different receptor subtypes on vascular smooth muscle cells. In the heart, P2 receptors regulate contractility through modulation of L-type Ca2+ channels, although the molecular mechanisms involved are still under investigation. Classical pharmacological studies have identified several P2 receptor subtypes in the cardiovascular system. Molecular pharmacological studies have clarified the nature of some of these receptors, but have complicated the picture with others. In platelets, the classical P2T receptor has now been resolved into three P2 receptor subtypes: the P2Y1, P2X1 and P2TAC receptors (the last of these, which is coupled to the inhibition of adenylate cyclase, is yet to be cloned). In peripheral blood leucocytes, endothelial cells, vascular smooth muscle cells and cardiomyocytes, the effects of classical P2X, P2Y and P2U receptors have been found to be mediated by more than one P2 receptor subtype. However, the exact functions of these multiple receptor subtypes remain to be understood, as P2-receptor-selective agonists and antagonists are still under development. PMID:9841859
Modulation of P2X7 Receptor during Inflammation in Multiple Sclerosis
Amadio, Susanna; Parisi, Chiara; Piras, Eleonora; Fabbrizio, Paola; Apolloni, Savina; Montilli, Cinzia; Luchetti, Sabina; Ruggieri, Serena; Gasperini, Claudio; Laghi-Pasini, Franco; Battistini, Luca; Volonté, Cinzia
2017-01-01
Multiple sclerosis (MS) is characterized by macrophage accumulation and inflammatory infiltrates into the CNS contributing to demyelination. Because purinergic P2X7 receptor (P2X7R) is known to be abundantly expressed on cells of the hematopoietic lineage and of the nervous system, we further investigated its phenotypic expression in MS and experimental autoimmune encephalomyelitis conditions. By quantitative reverse transcription polymerase chain reaction and flow cytometry, we analyzed the P2X7R expression in human mononuclear cells of peripheral blood from stable and acute relapsing-remitting MS phases. Human monocytes were also challenged in vitro with pro-inflammatory stimuli such as the lipopolysaccharide, or the P2X7R preferential agonist 2′(3′)-O-(4 Benzoylbenzoyl)adenosine 5′-triphosphate, before evaluating P2X7R protein expression. Finally, by immunohistochemistry and immunofluorescence confocal analysis, we investigated the P2X7R expression in frontal cortex from secondary progressive MS cases. We demonstrated that P2X7R is present and inhibited on peripheral monocytes isolated from MS donors during the acute phase of the disease, moreover it is down-regulated in human monocytes after pro-inflammatory stimulation in vitro. P2X7R is instead up-regulated on astrocytes in the parenchyma of frontal cortex from secondary progressive MS patients, concomitantly with monocyte chemoattractant protein-1 chemokine, while totally absent from microglia/macrophages or oligodendrocytes, despite the occurrence of inflammatory conditions. Our results suggest that inhibition of P2X7R on monocytes and up-regulation in astrocytes might contribute to sustain inflammatory mechanisms in MS. By acquiring further knowledge about P2X7R dynamics and identifying P2X7R as a potential marker for the disease, we expect to gain insights into the molecular pathways of MS. PMID:29187851
Pharmacological characterization of P2X7 receptors in rat peritoneal cells.
Chen, Y-W; Donnelly-Roberts, D L; Namovic, M T; Gintant, G A; Cox, B F; Jarvis, M F; Harris, R R
2005-03-01
P2X(7) receptor activation by ATP results in the release of IL-1beta and IL-18. Prolonged stimulation can lead to pore formation and cell death. In this study we pharmacologically characterized P2X(7) receptors on rat peritoneal cells (RPC) and on 1321N1 cells transfected with rat P2X(7) receptor (1321rP2X(7)-11). RPC were isolated from rats by lavage. P2X(7) agonist induced pore formation in RPC was measured by EtBr uptake. P2X(7)-stimulated pore formation and Ca(++) influx in 1321rP2X(7)-11 cells were measured by a fluorometric imaging plate reader. The effects of pyridoxal phosphate-6-azo phenyl -2'-4'-disulfonic acid (PPADS) on pore formation and Ca(++) influx were examined in both RPC and 1321rP2X(7)-11. P2X(7)-mediated IL-1beta release in RPC and the effect of PPADS were determined. RPC express functional P2X(7) receptors that were activated by ATP analogs with a rank order of potency of 2'- 3'-O-(4-Benzoylbenzoyl) adenosine 5'-triphosphate (BzATP) > ATP > alpha,beta-methylene ATP. Activation of P2X(7) receptors by BzATP was inhibited by PPADS. Similar results were also obtained in 1321rP2X(7)-11 cells. Activation of P2X(7) receptors on RPC resulted in IL-1 beta secretion, which was inhibited by PPADS. RPC express functional P2X(7) receptors that form pores and mediate the release of IL-1beta.
Multiple solutions for a class of fractional (p, q)-Laplacian system in RN
NASA Astrophysics Data System (ADS)
Chen, Caisheng; Bao, Jinfeng; Song, Hongxue
2018-03-01
In this work, the symmetric mountain pass lemma is employed to establish the existence of infinitely many solutions to the fractional (p, q)-Laplacian system: (-Δ)p su +V1(x ) |u |p -2u =α-1Fu(x ,u ,v ) +λ b1(x ) |u |m -2u and (-Δ)q sv +V2(x ) |v |q -2v =α-1Fv(x ,u ,v ) +μ b2(x ) |v |k -2v in RN, where (-Δ)p s and (-Δ)q s are the fractional p and q-Laplacian operators, respectively, and 0 < s < 1 < q ≤ p, sp < N, p
Trophic Activity of Human P2X7 Receptor Isoforms A and B in Osteosarcoma
Giuliani, Anna Lisa; Colognesi, Davide; Ricco, Tiziana; Roncato, Carlotta; Capece, Marina; Amoroso, Francesca; Wang, Qi Guang; De Marchi, Elena; Gartland, Allison; Di Virgilio, Francesco; Adinolfi, Elena
2014-01-01
The P2X7 receptor (P2X7R) is attracting increasing attention for its involvement in cancer. Several recent studies have shown a crucial role of P2X7R in tumour cell growth, angiogenesis and invasiveness. In this study, we investigated the role of the two known human P2X7R functional splice variants, the full length P2X7RA and the truncated P2X7RB, in osteosarcoma cell growth. Immunohistochemical analysis of a tissue array of human osteosarcomas showed that forty-four, of a total fifty-four tumours (81.4%), stained positive for both P2X7RA and B, thirty-one (57.4%) were positive using an anti-P2X7RA antibody, whereas fifteen of the total number (27.7%) expressed only P2X7RB. P2X7RB positive tumours showed increased cell density, at the expense of extracellular matrix. The human osteosarcoma cell line Te85, which lacks endogenous P2X7R expression, was stably transfected with either P2X7RA, P2X7RB, or both. Receptor expression was a powerful stimulus for cell growth, the most efficient growth-promoting isoform being P2X7RB alone. Growth stimulation was matched by increased Ca2+ mobilization and enhanced NFATc1 activity. Te85 P2X7RA+B cells presented pore formation as well as spontaneous extracellular ATP release. The ATP release was sustained in all clones by P2X7R agonist (BzATP) and reduced following P2X7R antagonist (A740003) application. BzATP also increased cell growth and activated NFATc1 levels. On the other hand cyclosporin A (CSA) affected both NFATc1 activation and cell growth, definitively linking P2X7R stimulation to NFATc1 and cell proliferation. All transfected clones also showed reduced RANK-L expression, and an overall decreased RANK-L/OPG ratio. Mineralization was increased in Te85 P2X7RA+B cells while it was significantly diminished in Te85 P2X7RB clones, in agreement with immunohistochemical results. In summary, our data show that the majority of human osteosarcomas express P2X7RA and B and suggest that expression of either isoform is differently coupled to cell growth or activity. PMID:25226385
The P2X4 purinergic receptor regulates hepatic myofibroblast activation during liver fibrogenesis.
Le Guilcher, Camille; Garcin, Isabelle; Dellis, Olivier; Cauchois, Florent; Tebbi, Ali; Doignon, Isabelle; Guettier, Catherine; Julien, Boris; Tordjmann, Thierry
2018-05-23
Liver fibrosis is characterized by the accumulation of extracellular matrix produced by hepatic myofibroblasts (hMF), the activation of which is critical to the fibrogenic process. Extracellular adenosine triphosphate, released by dying or stressed cells, and its purinergic receptors, constitute a powerful signaling network after injury. Although the P2X4 purinergic receptor (P2X4) is highly expressed in the liver, its functions in hMF had never been investigated during liver fibrogenesis. In vivo, bile duct ligation (BDL) and methionine- and choline-deficient (MCD) diet were performed in WT and P2X4 knock-out (P2X4-KO) mice. In vitro, hMF were isolated from mouse (WT and P2X4-KO) and human liver. P2X4 pharmacological inhibition (in vitro and in vivo) and P2X4 siRNAs (in vitro) were used. Histological, biochemical and cell culture analysis allowed us to study P2X4 expression and its involvement in the regulation of fibrogenic and fibrolytic factors, as well as of hMF activation markers and properties. P2X4 genetic invalidation or pharmacological inhibition protected mice from liver fibrosis and hMF accumulation after BDL or MCD diet. Human and mouse hMF expressed P2X4, mainly in lysosomes. Invalidation of P2X4 in human and mouse hMF blunted their activation marker expression and their fibrogenic properties. We finally showed that P2X4 regulates calcium entry and lysosomal exocytosis in hMF, with impact on ATP release, pro-fibrogenic secretory profile, and on transcription factor activation. P2X4 expression and activation is critical for hMF to sustain their activated and fibrogenic phenotype. Therefore, the inactivation of P2X4 may be of therapeutic interest during liver fibrotic diseases. During chronic injury, the liver often repairs with fibrotic tissue for which there is currently no treatment. We found that a previously unexplored pathway involving the purinergic receptor "P2X4", can modulate fibrotic liver repair, and could be considered for future translational investigations. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Multiple normalized solutions for a planar gauged nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Luo, Xiao
2018-06-01
We study the existence, multiplicity, quantitative property and asymptotic behavior of normalized solutions for a gauged nonlinear Schrödinger equation arising from the Chern-Simons theory Δ u + ω u +|x|^2u+ λ ( {{h^2}(| x | )}/{{{| x | ^2}}} + \\int \\limits _{| x | }^{ + ∞} {{h(s)}/s} {u^2}(s)ds) u = {| u | ^{p - 2}}u,\\quad x\\in R^2, where ω \\in R, λ >0, p>4 and h(s) = 1/2\\int \\limits _0^s {r{u^2}(r)dr} . Combining constraint minimization method and minimax principle, we prove that the problem possesses at least two normalized solutions: One is a ground state and the other is an excited state. Furthermore, the asymptotic behavior and quantitative property of the ground state are analyzed.
Estrada-Ortiz, Natalia; Neochoritis, Constantinos G; Dömling, Alexander
2016-04-19
A recent therapeutic strategy in oncology is based on blocking the protein-protein interaction between the murine double minute (MDM) homologues MDM2/X and the tumor-suppressor protein p53. Inhibiting the binding between wild-type (WT) p53 and its negative regulators MDM2 and/or MDMX has become an important target in oncology to restore the antitumor activity of p53, the so-called guardian of our genome. Interestingly, based on the multiple disclosed compound classes and structural analysis of small-molecule-MDM2 adducts, the p53-MDM2 complex is perhaps the best studied and most targeted protein-protein interaction. Several classes of small molecules have been identified as potent, selective, and efficient inhibitors of the p53-MDM2/X interaction, and many co-crystal structures with the protein are available. Herein we review the properties as well as preclinical and clinical studies of these small molecules and peptides, categorized by scaffold type. A particular emphasis is made on crystallographic structures and the observed binding modes of these compounds, including conserved water molecules present. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bele, Tanja; Fabbretti, Elsa
2016-08-01
P2X3 receptors, gated by extracellular ATP, are expressed by sensory neurons and are involved in peripheral nociception and pain sensitization. The ability of P2X3 receptors to transduce extracellular stimuli into neuronal signals critically depends on the dynamic molecular partnership with the calcium/calmodulin-dependent serine protein kinase (CASK). The present work used trigeminal sensory neurons to study the impact that activation of P2X3 receptors (evoked by the agonist α,β-meATP) has on the release of endogenous ATP and how CASK modulates this phenomenon. P2X3 receptor function was followed by ATP efflux via Pannexin1 (Panx1) hemichannels, a mechanism that was blocked by the P2X3 receptor antagonist A-317491, and by P2X3 silencing. ATP efflux was enhanced by nerve growth factor, a treatment known to potentiate P2X3 receptor function. Basal ATP efflux was not controlled by CASK, and carbenoxolone or Pannexin silencing reduced ATP release upon P2X3 receptor function. CASK-controlled ATP efflux followed P2X3 receptor activity, but not depolarization-evoked ATP release. Molecular biology experiments showed that CASK was essential for the transactivation of Panx1 upon P2X3 receptor activation. These data suggest that P2X3 receptor function controls a new type of feed-forward purinergic signaling on surrounding cells, with consequences at peripheral and spinal cord level. Thus, P2X3 receptor-mediated ATP efflux may be considered for the future development of pharmacological strategies aimed at containing neuronal sensitization. P2X3 receptors are involved in sensory transduction and associate to CASK. We have studied in primary sensory neurons the molecular mechanisms downstream P2X3 receptor activation, namely ATP release and partnership with CASK or Panx1. Our data suggest that CASK and P2X3 receptors are part of an ATP keeper complex, with important feed-forward consequences at peripheral and central level. © 2016 International Society for Neurochemistry.
P2X7 receptor-stimulation causes fever via PGE2 and IL-1β release.
Barberà-Cremades, Maria; Baroja-Mazo, Alberto; Gomez, Ana I; Machado, Francisco; Di Virgilio, Francesco; Pelegrín, Pablo
2012-07-01
Prostaglandins (PGs) are important lipid mediators involved in the development of inflammatory associated pain and fever. PGE2 is a well-established endogenous pyrogen activated by proinflammatory cytokine interleukin (IL)-1β. P2X7 receptors (P2X7Rs) expressed by inflammatory cells are stimulated by the danger signal extracellular ATP to activate the inflammasome and release IL-1β. Here we show that P2X7R activation is required for the release of PGE2 and other autacoids independent of inflammasome activation, with an ATP EC(50) for PGE2 and IL-1β release of 1.58 and 1.23 mM, respectively. Furthermore, lack of P2X7R or specific antagonism of P2X7R decreased the febrile response in mice triggered after intraperitoneal LPS or IL-1β inoculation. Accordingly, LPS inoculation caused intraperitoneal ATP accumulation. Therefore, P2X7R antagonists emerge as novel therapeutics for the treatment for acute inflammation, pain and fever, with wider anti-inflammatory activity than currently used cyclooxygenase inhibitors.-Barberà-Cremades, M., Baroja-Mazo, A., Gomez, A. I., Machado, F., Di Virgilio, F., Pelegrín, P. P2X7 receptor-stimulation causes fever via PGE2 and IL-1β release.
Dependence of purinergic P2X receptor activity on ectodomain structure.
He, Mu-Lan; Zemkova, Hana; Stojilkovic, Stanko S
2003-03-21
Purinergic receptors (P2XRs) activate and desensitize in response to the binding of extracellular nucleotides in a receptor- and ligand-specific manner, but the structural bases of their ligand preferences and channel kinetics have been incompletely characterized. Here we tested the hypothesis that affinity of agonists for binding domain accounts for a ligand-specific desensitization pattern. We generated chimeras using receptors with variable sensitivity to ATP in order: P2X(4)R > P2X(2a)R = P2X(2b)R P2X(7)R. Chimeras having the ectodomain Ile(66)-Tyr(310) sequence of P2X(2)R and Val(61)-Phe(313) sequence of P2X(7)R in the backbone of P2X(4)R were expressed but were non-functioning channels. P2X(2a) + X(4)R and P2X(2b) + X(4)R chimeras having the Val(66)-Tyr(315) ectodomain sequence of P2X(4)R in the backbones of P2X(2a)R and P2X(2b)R were functional and exhibited increased sensitivity to ligands as compared with both parental receptors. These chimeras also desensitized faster than parental receptors and in a ligand-nonspecific manner. However, like parental P2X(2b)R and P2X(2a)R, chimeric P2X(2b) + X(4)R desensitized more rapidly than P2X(2a) + X(4)R, and the rate of desensitization of P2X(2a)+X(4)R increased by substituting its Arg(371)-Pro(376) intracellular C-terminal sequence with the Glu(376)-Gly(381) sequence of P2X(4)R. These results indicate the relevance of interaction between the ectodomain and flanking regions around the transmembrane domains on ligand potency and receptor activation. Furthermore, the ligand potency positively correlates with the rate of receptor desensitization but does not affect the C-terminal-specific pattern of desensitization.
Serum nitric oxide metabolites and disease activity in patients with systemic sclerosis.
Mok, Mo Yin; Fung, Peter Chin Wah; Ooi, Clara; Tse, Hung Fat; Wong, Yik; Lam, Yui Ming; Wong, Woon Sing; Lau, Chak Sing
2008-03-01
There is no surrogate marker in serum for defining disease activity in scleroderma (SSc). Nitric oxide (NO), which regulates vasodilation and possesses pro-inflammatory actions, has been implicated in the pathogenesis of SSc. We compared serum NO(x) (total nitrate and nitrite) level in SSc patients to healthy controls and evaluated its correlation with detailed symptomatology and scoring systems for various organ involvement. Symptoms and physical findings that suggested disease activity in regard to various organs were documented. Lung function test, high-resolution computed tomographic (HRCT) scan of thorax and echocardiography were performed. Serum NO(x) was measured by chemiluminescence. Serum NO(x) levels in SSc (n = 43) were significantly higher (72.4 +/- 47.8 microM) than age- and sex-matched controls (n = 41; 37.1 +/- 13.5 microM; p < 0.001). Serum NO(x) were not found to be associated with lung fibrosis defined by lung function parameters or inflammation and fibrosis scores on HRCT. Twenty-two patients were found to have elevated serum NO(x) level defined as mean +/- 2 SD of normal controls. Logistic regression analysis revealed that age (OR 1.12, p = 0.02) and elevated pulmonary arterial pressure (PAP) (n = 9; OR 145.3, p = 0.01) were predictive factors for elevated serum NO(x). Prednisolone use was associated with lower serum NO(x) level (OR 0.06, p = 0.04). Elevated PAP of increasing severity was found to be associated with higher level of serum NO(x) (p = 0.004 by trend). Serum NO(x) in SSc patients were elevated compared to healthy controls. Serum NO(x) level was determined by multiple factors including age, prednisolone use, and elevated PAP.
Multiple solutions to a magnetic nonlinear Choquard equation
NASA Astrophysics Data System (ADS)
Cingolani, Silvia; Clapp, Mónica; Secchi, Simone
2012-04-01
We consider the stationary nonlinear magnetic Choquard equation (- inabla+ A(x))2u + V (x)u = (1/|x|^{α}ast |u|pright) |u|^{p-2}u,quad xin{R}N where A is a real-valued vector potential, V is a real-valued scalar potential, N ≥ 3, {α in (0, N)} and 2 - ( α/ N) < p < (2 N - α)/( N-2). We assume that both A and V are compatible with the action of some group G of linear isometries of {{R}N} . We establish the existence of multiple complex valued solutions to this equation which satisfy the symmetry condition u(gx) = tau(g)u(x)quad{for all } g in G,x in {R}N, where {tau : G rightarrow {S}1} is a given group homomorphism into the unit complex numbers.
Subtype-specific control of P2X receptor channel signaling by ATP and Mg2+.
Li, Mufeng; Silberberg, Shai D; Swartz, Kenton J
2013-09-03
The identity and forms of activating ligands for ion channels are fundamental to their physiological roles in rapid electrical signaling. P2X receptor channels are ATP-activated cation channels that serve important roles in sensory signaling and inflammation, yet the active forms of the nucleotide are unknown. In physiological solutions, ATP is ionized and primarily found in complex with Mg(2+). Here we investigated the active forms of ATP and found that the action of MgATP(2-) and ATP(4-) differs between subtypes of P2X receptors. The slowly desensitizing P2X2 receptor can be activated by free ATP, but MgATP(2-) promotes opening with very low efficacy. In contrast, both free ATP and MgATP(2-) robustly open the rapidly desensitizing P2X3 subtype. A further distinction between these two subtypes is the ability of Mg(2+) to regulate P2X3 through a distinct allosteric mechanism. Importantly, heteromeric P2X2/3 channels present in sensory neurons exhibit a hybrid phenotype, characterized by robust activation by MgATP(2-) and weak regulation by Mg(2+). These results reveal the existence of two classes of homomeric P2X receptors with differential sensitivity to MgATP(2-) and regulation by Mg(2+), and demonstrate that both restraining mechanisms can be disengaged in heteromeric channels to form fast and sensitive ATP signaling pathways in sensory neurons.
Subtype-specific control of P2X receptor channel signaling by ATP and Mg2+
Li, Mufeng; Silberberg, Shai D.; Swartz, Kenton J.
2013-01-01
The identity and forms of activating ligands for ion channels are fundamental to their physiological roles in rapid electrical signaling. P2X receptor channels are ATP-activated cation channels that serve important roles in sensory signaling and inflammation, yet the active forms of the nucleotide are unknown. In physiological solutions, ATP is ionized and primarily found in complex with Mg2+. Here we investigated the active forms of ATP and found that the action of MgATP2− and ATP4− differs between subtypes of P2X receptors. The slowly desensitizing P2X2 receptor can be activated by free ATP, but MgATP2− promotes opening with very low efficacy. In contrast, both free ATP and MgATP2− robustly open the rapidly desensitizing P2X3 subtype. A further distinction between these two subtypes is the ability of Mg2+ to regulate P2X3 through a distinct allosteric mechanism. Importantly, heteromeric P2X2/3 channels present in sensory neurons exhibit a hybrid phenotype, characterized by robust activation by MgATP2− and weak regulation by Mg2+. These results reveal the existence of two classes of homomeric P2X receptors with differential sensitivity to MgATP2− and regulation by Mg2+, and demonstrate that both restraining mechanisms can be disengaged in heteromeric channels to form fast and sensitive ATP signaling pathways in sensory neurons. PMID:23959888
Medicinal chemistry of P2X receptors: allosteric modulators.
Müller, Christa E
2015-01-01
P2X receptors are trimeric ligand-gated ion channels whose potential as novel drug targets for a number of diseases has been recognized. They are mainly involved in inflammatory processes, including neuroinflammation, and pain sensation. The orthosteric binding site is lined by basic amino acid residues that bind the negatively charged agonist ATP. Therefore it is not easy to develop orthosteric ligands that possess drug-like properties for such a highly polar binding site. However, ligand-gated ion channels offer multiple additional binding sites for allosteric ligands, positive or negative allosteric modulators enhancing or blocking receptor function. So far, the P2X3 (and P2X2/3), as well as the P2X7 receptor subtype have been the main focus of drug development efforts. A number of potent and selective allosteric antagonists have been developed to block these receptors. We start to see the development of novel allosteric ligands also for the other P2X receptor subtypes, P2X1, P2X2 and especially P2X4. The times when only poor, non-selective, non-drug-like tools for studying P2X receptor function were available have been overcome. The first clinical studies with allosteric P2X3 and P2X7 antagonists suggest that P2X therapeutics may soon become a reality.
High throughput functional assays for P2X receptors.
Namovic, Marian T; Jarvis, Michael F; Donnelly-Roberts, Diana
2012-06-01
Adenosine triphosphate (ATP) activates two receptor superfamilies, metabotropic P2Y and ionotropic P2X receptors. The P2X receptors are nonselective cation channels that are widely expressed on excitable cells including neurons, glia, and smooth muscle cells. The protocols in this unit are useful for evaluating ligands that interact with P2X receptors on native cells or that are cloned and expressed in recombinant heterologous cell systems. Calcium imaging methods are described for the pharmacological characterization of fast or slowly desensitizing P2X receptors. While these methods are readily applicable to a wide variety of ligand-gated ion channels, the protocols provided herein detail how they can be used to measure activation of homomeric P2X3 (fast desensitizing) and heteromeric P2X2/3 (slowly desensitizing) receptors. Appropriate agonists and/or calcium dyes can be substituted to assess activity at other P2X receptor subtypes. An additional protocol is provided for measuring P2X7 receptor-mediated pore formation in THP-1, a native human acute monocytic leukemia cell line that can be used to study homomeric P2X7 (non-desensitizing) receptors that are expressed on macrophages and microglial cells. © 2012 by John Wiley & Sons, Inc.
Pilutti, Lara A; Dlugonski, Deirdre; Sandroff, Brian M; Klaren, Rachel E; Motl, Robert W
2014-07-01
To examine the efficacy of a physical activity behavioral intervention for improving outcomes of body composition in persons with multiple sclerosis (MS). Secondary analysis of data from a randomized controlled trial. University research laboratory. Ambulatory persons with MS (N=82). A 6-month, internet-delivered physical activity behavioral intervention designed to increase lifestyle physical activity, primarily walking. The behavioral intervention was based on principles of social cognitive theory. Whole-body bone mineral content (BMC), bone mineral density (BMD), and soft tissue composition, using dual-energy x-ray absorptiometry. There were no significant differences between conditions posttrial on body composition outcomes using the adjusted critical value (P<.008). There was a significant effect of the intervention on whole-body BMC (P=.04, ω(2)<.001) and BMD (P=.01, ω(2)=.003) using the unadjusted critical value (P<.05). The effect of the intervention on percent body fat (P=.09, ω(2)=.001) and whole-body fat mass (P=.05, ω(2)=.003) approached significance using unadjusted criteria. There was not a significant effect on whole-body lean soft tissue (P=.28, ω(2)<.001) or body mass index (P=.86, ω(2)<.001). Our results provide preliminary evidence that an internet-delivered lifestyle physical activity intervention might improve bone health and body composition in MS. Such findings are important considering that physical activity is a modifiable behavior with the potential to confer long-term benefits for the prevention and management of fracture risk and comorbidities among those with MS. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
P2X receptors in the cardiovascular system and their potential as therapeutic targets in disease.
Ralevic, Vera
2015-01-01
This review considers the expression and roles of P2X receptors in the cardiovascular system in health and disease and their potential as therapeutic targets. P2X receptors are ligand gated ion channels which are activated by the endogenous ligand ATP. They are formed from the assembly of three P2X subunit proteins from the complement of seven (P2X1-7), which can associate to form homomeric or heteromeric P2X receptors. The P2X1 receptor is widely expressed in the cardiovascular system, being located in the heart, in the smooth muscle of the majority of blood vessels and in platelets. P2X1 receptors expressed in blood vessels can be activated by ATP coreleased with noradrenaline as a sympathetic neurotransmitter, leading to smooth muscle depolarisation and contraction. There is evidence that the purinergic component of sympathetic neurotransmission is increased in hypertension, identifying P2X1 receptors as a possible therapeutic target in this disorder. P2X3 and P2X2/3 receptors are expressed on cardiac sympathetic neurones and may, through positive feedback of neuronal ATP at this prejunctional site, amplify sympathetic neurotransmission. Activation of P2X receptors expressed in the heart increases cardiac myocyte contractility, and an important role of the P2X4 receptor in this has been identified. Deletion of P2X4 receptors in the heart depresses contractile performance in models of heart failure, while overexpression of P2X4 receptors has been shown to be cardioprotective, thus P2X4 receptors may be therapeutic targets in the treatment of heart disease. P2X receptors have been identified on endothelial cells. Although immunoreactivity for all P2X1-7 receptor proteins has been shown on the endothelium, relatively little is known about their function, with the exception of the endothelial P2X4 receptor, which has been shown to mediate endothelium-dependent vasodilatation to ATP released during shear stress. The potential of P2X receptors as therapeutic targets in the treatment of cardiovascular disease is discussed.
Zemkova, Hana; He, Mu-Lan; Koshimizu, Taka-aki; Stojilkovic, Stanko S
2004-08-04
The P2X receptors (P2XRs) are a family of ligand-gated channels activated by extracellular ATP through a sequence of conformational transitions between closed, open, and desensitized states. In this study, we examined the dependence of the activity of P2XRs on ectodomain structure and agonist potency. Experiments were done in human embryonic kidney 293 cells expressing rat P2X2aR, P2X2bR, and P2X3R, and chimeras having the V60-R180 or V60-F301 ectodomain sequences of P2X3R instead of the I66-H192 or I66-Y310 sequences of P2X2aR and P2X2bR. Chimeric P2X2a/V60-F301X3R and P2X2b/V60-F301X3R inherited the P2X3R ligand-selective profile, whereas the potency of agonists for P2X2a/V60-R180X3R was in between those observed at parental receptors. Furthermore, P2X2a/V60-F301X3R and P2X2a/V60-R180X3R desensitized in a P2X2aR-specific manner, and P2X2b/V60-F301X3R desensitized with rates comparable with those of P2X2bR. In striking contrast to parental receptors, the rates of decay in P2X2a/V60-F301X3R and P2X2b/V60-F301X3R currents after agonist withdrawal were 15- to 200-fold slower. For these chimeras, the decays in currents were not dependent on duration of stimuli and reflected both continuous desensitization and deactivation of receptors. Also, participation of deactivation in closure of channels inversely correlated with potency of agonists to activate receptors. The delay in deactivation was practically abolished in P2X2a/V60-R180X3R-expressing cells. However, the recovery from desensitization of P2X2a/V60-F301X3R and P2X2a/V60-R180X3R was similar and substantially delayed compared with that of parental receptors. These results indicate that both ectodomain halves participate in gating, but that the C and N halves influence the stability of open and desensitized conformation states, respectively, which in turn reflects on rates of receptor deactivation and resensitization.
Zhang, Aixia; Xu, Changshui; Liang, Shangdong; Gao, Yun; Li, Guilin; Wei, Jie; Wan, Fang; Liu, Shuangmei; Lin, Jiari
2008-12-01
Neuropathic pain usually is persistent and no effective treatment. ATP plays an important role in the initiation of pain. P2X(3) receptors are localized in the dorsal root ganglion (DRG) neurons and activated by extracellular ATP. Sodium ferulate (SF) is an active principle from Chinese herbal medicine and has anti-inflammatory activities. This study observed the effects of SF on the nociceptive facilitation of the primary sensory afferent after chronic constriction injury (CCI) mediated by P2X(3) receptor. In this study, the content of ATP in DRG neurons was measured by high-performance liquid chromatography (HPLC). P2X(3) agonist-activated currents in DRG neurons was recorded by the whole-cell patch-clamp skill. The expression of P2X(3) mRNA in DRG neurons was analyzed by in situ hybridization. The ATP content of DRG was increased after CCI. In CCI rats treated with SF, the content of ATP in DRG neurons was reduced. SF decreased the increment of P2X(3) agonist-activated currents and P2X(3) mRNA expression in DRG neurons during CCI. SF may inhibit the initiation of pain and primary afferent sensitization mediated by P2X(3) receptor during CCI.
Roles of purinergic P2X7 receptor in glioma and microglia in brain tumors.
McLarnon, James G
2017-08-28
This review considers evidence suggesting that activation of the ionotropic purinergic receptor P2X 7 (P2X 7 R) is a contributing factor in the growth of brain tumors. Importantly, expression of P2X 7 R may be upregulated in both glioma cells and in immune responding microglial cells with possible differential effects on tumor progression. The recruitment of immune cells into tumor regions may not only be involved in supporting an immunosuppressive environment aiding tumor growth but activated microglia could secrete inflammatory factors promoting neoangiogenesis in expanding tumors. The subtype P2X 7 R exhibits a number of unique properties including activation of the receptor in pathological conditions associated with developing brain tumors. In particular, the tumor microenvironment includes elevated levels of ATP required for activation of P2X 7 R and the sustained tumor and immune cell P2X 7 R-mediated responses which in total contribute to overall tumor growth and viability. Studies on cultured rat and human glioma show marked increases in expression of P2X 7 R and enhanced cell mobility relative to control. Glioma cell animal models demonstrate enhanced expression of P2X 7 R in both glioma and microglia with antagonism of receptor showing differential effects on tumor growth. Overall, P2X 7 R activation is associated with a complexity of modulatory actions on tumor growth in part due to ubiquitous expression of the receptor in glioma and immune responsive cells. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Wang, Shenglan; Dai, Yi; Kobayashi, Kimiko; Zhu, Wanjun; Kogure, Yoko; Yamanaka, Hiroki; Wan, You; Zhang, Wensheng; Noguchi, Koichi
2012-08-01
Proinflammatory agents trypsin and mast cell tryptase cleave and activate protease-activated receptor-2 (PAR-2), which is expressed on sensory nerves and causes neurogenic inflammation. P2X3 is a subtype of the ionotropic receptors for adenosine 5'-triphosphate (ATP), and is mainly localized on nociceptors. Here, we show that a functional interaction of the PAR-2 and P2X3 in primary sensory neurons could contribute to inflammatory pain. PAR-2 activation increased the P2X3 currents evoked by α, β, methylene ATP in dorsal root ganglia (DRG) neurons. Application of inhibitors of either protein kinase C (PKC) or protein kinase A (PKA) suppressed this potentiation. Consistent with this, a PKC or PKA activator mimicked the PAR-2-mediated potentiation of P2X3 currents. In the in vitro phosphorylation experiments, application of a PAR-2 agonist failed to establish phosphorylation of the P2X3 either on the serine or the threonine site. In contrast, application of a PAR-2 agonist induced trafficking of the P2X3 from the cytoplasm to the plasma membrane. These findings indicate that PAR-2 agonists may potentiate the P2X3, and the mechanism of this potentiation is likely to be a result of translocation, but not phosphorylation. The functional interaction between P2X3 and PAR-2 was also confirmed by detection of the α, β, methylene-ATP-evoked extracellular signal-regulated kinases (ERK) activation, a marker of neuronal signal transduction in DRG neurons, and pain behavior. These results demonstrate a functional interaction of the protease signal with the ATP signal, and a novel mechanism through which protease released in response to tissue inflammation might trigger the sensation to pain through P2X3 activation. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Kaneko, Yawara; Kishino, Katsumi
1994-08-01
Measurements of the refractive indices of (GaInP)m/(AlInP)n quasi-quaternaries (QQs), GaInP/AlInP multiple quantum wells (MQWs), and (Al(x)Ga(1 - x))(0.5) In(0.5)P quanternaries were made systematically, using the reflectance method, in photon energy ranges nearly as high as up to the band gap. Data was fitted using the modified single effective oscillator (MSEO) method. A single oscillator energy E(sub zero) of 4.17 + 0.49 x(sub eg) and dispersion energy (E(sub d) of 35.79 - 1.16 x(sub eg) was obtained for (GaInP)m/(AlInP)2 QQs, where the equivalent Al composition x(sub eg) is defined by the stacking film thickness ratio x(sub eg) = d(AlInP)/(d(GaInP) + d(AlInP). Agreement of refractive indices obtained for QQs and quaternary compounds with equivalent x(sub eg) has been confirmed. Still, for the GaInP/AlInP MQWs, MSEO fitting was also agreeable, using the same oscillator energy E(sub zero) and dispersion energy E(sub d) of the (GaInP)m/(AlInP)2 QQs with the same thickness ratio, and substituting band gap energy E(sub Gamma) values shifted due to quantum effects.
Periodic Recurrence Patterns In X-Ray Solar Flare Appearances
NASA Astrophysics Data System (ADS)
Gyenge, N.; Erdélyi, R.
2018-06-01
The temporal recurrence of micro-flare events is studied for a time interval before and after of major solar flares. Our sample is based on the X-ray flare observations by the Geostationary Operational Environmental Satellite (GOES) and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The analyzed data contain 1330/301 M-class and X-class GOES/RHESSI energetic solar flares and 4062/4119 GOES/RHESSI micro-flares covering the period elapse since 2002. The temporal analysis of recurrence, by Fast Fourier Transform, of the micro-flares, shows multiple significant periods. Based on the GOES and RHESSI data, the temporal analysis also demonstrates that multiple periods manifest simultaneously in both statistical samples without any significant shift over time. In the GOES sample, the detected significant periods are: 11.33, 5.61, 3.75, 2.80, and 2.24 minutes. The RHESSI data show similar significant periods at 8.54, 5.28, 3.66, 2.88, and 2.19 minutes. The periods are interpreted as signatures of standing oscillations, with the longest period (P 1) being the fundamental and others being higher harmonic modes. The period ratio of the fundamental and higher harmonics (P 1/P N ) is also analyzed. The standing modes may be signatures of global oscillations of the entire solar atmosphere encompassing magnetized plasma from the photosphere to the corona in active regions.
Ou, Amber; Gu, Ben J; Wiley, James S
2018-04-01
Activation of P2X7 receptors is widely recognised to initiate proinflammatory responses. However P2X7 also has a dual function as a scavenger receptor which is active in the absence of ATP and plasma proteins and may be important in central nervous system (CNS) diseases. Here, we investigated both P2X7 pore formation and its phagocytic function in fresh human monocytes (as a model of microglia) by measuring ATP-induced ethidium dye uptake and fluorescent bead uptake respectively. This was studied in monocytes expressing various polymorphic variants as well as in the presence of different P2X7 antagonists and ionic media. P2X7-mediated phagocytosis was found to account for about half of Latrunculin (or Cytochalasin D)-sensitive bead engulfment by fresh human monocytes. Monocytes harbouring P2X7 Ala348Thr or Glu496Ala polymorphic variants showed increase or loss of ethidium uptake respectively, but these changes in pore formation did not always correspond to the changes in phagocytosis of YG beads. Unlike pore function, P2X7-mediated phagocytosis was not affected by three potent selective P2X7 antagonists and remained identical in Na + and K + media. Taken together, our results show that P2X7 is a scavenger receptor with important function in the CNS but its phagocytic function has features distinct from its pore function. Both P2X7 pore formation and P2X7-mediated phagocytosis should be considered in the design of new P2X7 antagonists for the treatment of CNS diseases. Copyright © 2018 Elsevier B.V. All rights reserved.
Ceriello, A; Quatraro, A; Marchi, E; Barbanti, M; Dello Russo, P; Lefebvre, P; Giugliano, D
1990-05-01
Factor X concentration and factor X activation, antithrombin III anti-Xa activity and plasma concentration, and fibrinopeptide A were measured in 20 diabetic patients and 20 normal subjects. Although factor X activation (81.3 +/- 2.2 vs 97.3 +/- 2.1%, p less than 0.01; mean +/- SE) and antithrombin III activity (76.5 +/- 2.2 vs 96.3 +/- 1.8%, p less than 0.01) were reduced in the diabetic patients, fibrinopeptide A concentration was increased (3.7 +/- 0.4 vs 1.7 +/- 0.2 ng ml-1, p less than 0.01). The ratio of factor X activation to antithrombin III anti-factor Xa activity was increased in the diabetic patients (1.10 +/- 0.01 vs 1.01 +/- 0.02, p less than 0.01). Induced hyperglycaemia was able to mimic all these abnormalities, without changing factor X or antithrombin III concentration. The results suggest that in vivo hyperglycaemia produces a decrease of factor X activation, but at the same time increases fibrinopeptide A formation due to a greater decrease of antithrombin III anti-Xa activity.
Development of a Small Molecule P2X7R Antagonist as a Treatment for Acute SCI
2012-10-01
in isolated spinal astrocytes and microglia, concentrating on P2X7R activity -dependent transcription. In year 1, we established the injury...astroglia and microglia in response to SCI. Besides defining the effects of P2X7R activation and its blockade on phenotype-specific gene expression...injury (SCI) in isolated spinal astrocytes and microglia, concentrating on P2X7R activity - dependent transcription. In year 1, we established the injury
Smith, Stephanie MC; Mitchell, Gordon S; Friedle, Scott A; Sibigtroth, Christine M; Vinit, Stéphane; Watters, Jyoti J
2013-01-01
Hypoxia and increased extracellular nucleotides are frequently coincident in the brainstem. Extracellular nucleotides are potent modulators of microglial inflammatory gene expression via P2X purinergic receptor activation. Although hypoxia is also known to modulate inflammatory gene expression, little is known about how hypoxia or P2X receptor activation alone affects inflammatory molecule production in brainstem microglia, nor how hypoxia and P2X receptor signaling interact when they occur together. In the study reported here, we investigated the ability of a brief episode of hypoxia (2 hours) in the presence and absence of the nonselective P2X receptor agonist 2′(3′)-O-(4-benzoylbenzoyl)adenosine-5′-triphosphate (BzATP) to promote inflammatory gene expression in brainstem microglia in adult rats. We evaluated inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNFα), and interleukin (IL)-6 messenger RNA levels in immunomagnetically isolated brainstem microglia. While iNOS and IL-6 gene expression increased with hypoxia and BzATP alone, TNFα expression was unaffected. Surprisingly, BzATP-induced inflammatory effects were lost after hypoxia, suggesting that hypoxia impairs proinflammatory P2X-receptor signaling. We also evaluated the expression of key P2X receptors activated by BzATP, namely P2X1, P2X4, and P2X7. While hypoxia did not alter their expression, BzATP upregulated P2X4 and P2X7 mRNAs; these effects were ablated in hypoxia. Although both P2X4 and P2X7 receptor expression correlated with increased microglial iNOS and IL-6 levels in microglia from normoxic rats, in hypoxia, P2X7 only correlated with IL-6, and P2X4 correlated only with iNOS. In addition, correlations between P2X7 and P2X4 were lost following hypoxia, suggesting that P2X4 and P2X7 receptor signaling differs in normoxia and hypoxia. Together, these data suggest that hypoxia suppresses P2X receptor-induced inflammatory gene expression, indicating a potentially immunosuppressive role of extracellular nucleotides in brainstem microglia following exposure to hypoxia. PMID:24377098
Electrophysiological characterization of recombinant and native P2X receptors.
Niforatos, Wende; Jarvis, Michael F
2004-10-01
ATP acts as a fast neurotransmitter by activating a family of ligand-gated ion channels, the P2X receptors. Functional homomeric P2X(3) and heteromeric P2X(2/3) receptors are highly localized on primary sensory afferent neurons that transmit nociceptive sensory information. Activation of these P2X(3)-containing channels may provide a specific mechanism whereby ATP, released via synaptic transmission or by cellular injury, elicits pain. The experimental procedures described in this unit are useful for the electorphysiological characterization of P2X receptors. In addition, these protocols provide methods for the evaluation of ligands that interact with P2X receptors that are either natively expressed on excitable cells or cloned and expressed in heterologous cell systems. These methods are derived from standard electrophysiological principles and procedures that are applicable to a wide variety of ligand-gated ion channels. Specific attention is given here to the reliable electrophysiological measurement of both quickly (P2X(3)) and more slowly (P2X(2) and P2X(2/3)) desensitizing receptors.
Effect of the Purinergic Inhibitor Oxidized ATP in a Model of Islet Allograft Rejection
Vergani, Andrea; Fotino, Carmen; D’Addio, Francesca; Tezza, Sara; Podetta, Michele; Gatti, Francesca; Chin, Melissa; Bassi, Roberto; Molano, Ruth D.; Corradi, Domenico; Gatti, Rita; Ferrero, Maria E.; Secchi, Antonio; Grassi, Fabio; Ricordi, Camillo; Sayegh, Mohamed H.; Maffi, Paola; Pileggi, Antonello; Fiorina, Paolo
2013-01-01
The lymphocytic ionotropic purinergic P2X receptors (P2X1R-P2X7R, or P2XRs) sense ATP released during cell damage-activation, thus regulating T-cell activation. We aim to define the role of P2XRs during islet allograft rejection and to establish a novel anti-P2XRs strategy to achieve long-term islet allograft function. Our data demonstrate that P2X1R and P2X7R are induced in islet allograft-infiltrating cells, that only P2X7R is increasingly expressed during alloimmune response, and that P2X1R is augmented in both allogeneic and syngeneic transplantation. In vivo short-term P2X7R targeting (using periodate-oxidized ATP [oATP]) delays islet allograft rejection, reduces the frequency of Th1/Th17 cells, and induces hyporesponsiveness toward donor antigens. oATP-treated mice displayed preserved islet grafts with reduced Th1 transcripts. P2X7R targeting and rapamycin synergized in inducing long-term islet function in 80% of transplanted mice and resulted in reshaping of the recipient immune system. In vitro P2X7R targeting using oATP reduced T-cell activation and diminished Th1/Th17 cytokine production. Peripheral blood mononuclear cells obtained from long-term islet-transplanted patients showed an increased percentage of P2X7R+CD4+ T cells compared with controls. The beneficial effects of oATP treatment revealed a role for the purinergic system in islet allograft rejection, and the targeting of P2X7R is a novel strategy to induce long-term islet allograft function. PMID:23315496
Optical control of trimeric P2X receptors and acid-sensing ion channels.
Browne, Liam E; Nunes, João P M; Sim, Joan A; Chudasama, Vijay; Bragg, Laricia; Caddick, Stephen; North, R Alan
2014-01-07
P2X receptors are trimeric membrane proteins that function as ion channels gated by extracellular ATP. We have engineered a P2X2 receptor that opens within milliseconds by irradiation at 440 nm, and rapidly closes at 360 nm. This requires bridging receptor subunits via covalent attachment of 4,4'-bis(maleimido)azobenzene to a cysteine residue (P329C) introduced into each second transmembrane domain. The cis-trans isomerization of the azobenzene pushes apart the outer ends of the transmembrane helices and opens the channel in a light-dependent manner. Light-activated channels exhibited similar unitary currents, rectification, calcium permeability, and dye uptake as P2X2 receptors activated by ATP. P2X3 receptors with an equivalent mutation (P320C) were also light sensitive after chemical modification. They showed typical rapid desensitization, and they could coassemble with native P2X2 subunits in pheochromocytoma cells to form light-activated heteromeric P2X2/3 receptors. A similar approach was used to open and close human acid-sensing ion channels (ASICs), which are also trimers but are unrelated in sequence to P2X receptors. The experiments indicate that the opening of the permeation pathway requires similar and substantial movements of the transmembrane helices in both P2X receptors and ASICs, and the method will allow precise optical control of P2X receptors or ASICs in intact tissues.
Optical control of trimeric P2X receptors and acid-sensing ion channels
Browne, Liam E.; Nunes, João P. M.; Sim, Joan A.; Chudasama, Vijay; Bragg, Laricia; Caddick, Stephen; Alan North, R.
2014-01-01
P2X receptors are trimeric membrane proteins that function as ion channels gated by extracellular ATP. We have engineered a P2X2 receptor that opens within milliseconds by irradiation at 440 nm, and rapidly closes at 360 nm. This requires bridging receptor subunits via covalent attachment of 4,4'-bis(maleimido)azobenzene to a cysteine residue (P329C) introduced into each second transmembrane domain. The cis–trans isomerization of the azobenzene pushes apart the outer ends of the transmembrane helices and opens the channel in a light-dependent manner. Light-activated channels exhibited similar unitary currents, rectification, calcium permeability, and dye uptake as P2X2 receptors activated by ATP. P2X3 receptors with an equivalent mutation (P320C) were also light sensitive after chemical modification. They showed typical rapid desensitization, and they could coassemble with native P2X2 subunits in pheochromocytoma cells to form light-activated heteromeric P2X2/3 receptors. A similar approach was used to open and close human acid-sensing ion channels (ASICs), which are also trimers but are unrelated in sequence to P2X receptors. The experiments indicate that the opening of the permeation pathway requires similar and substantial movements of the transmembrane helices in both P2X receptors and ASICs, and the method will allow precise optical control of P2X receptors or ASICs in intact tissues. PMID:24367083
Barros-Barbosa, Aurora R; Oliveira, Ângela; Lobo, M Graça; Cordeiro, J Miguel; Correia-de-Sá, Paulo
2018-01-01
γ-Aminobutyric acid (GABA) and glutamate (Glu) are the main inhibitory and excitatory neurotransmitters in the central nervous system (CNS), respectively. Fine tuning regulation of extracellular levels of these amino acids is essential for normal brain activity. Recently, we showed that neocortical nerve terminals from patients with epilepsy express higher amounts of the non-desensitizing ionotropic P2X7 receptor. Once activated by ATP released from neuronal cells, the P2X7 receptor unbalances GABAergic vs. glutamatergic neurotransmission by differentially interfering with GABA and Glu uptake. Here, we investigated if activation of the P2X7 receptor also affects [ 3 H]GABA and [ 14 C]Glu release measured synchronously from isolated nerve terminals (synaptosomes) of the rat cerebral cortex. Data show that activation of the P2X7 receptor consistently increases [ 14 C]Glu over [ 3 H]GABA release from cortical nerve terminals, but the GABA/Glu ratio depends on extracellular Ca 2+ concentrations. While the P2X7-induced [ 3 H]GABA release is operated by a Ca 2+ -dependent pathway when external Ca 2+ is available, this mechanism shifts towards the reversal of the GAT1 transporter in low Ca 2+ conditions. A different scenario is verified regarding [ 14 C]Glu outflow triggered by the P2X7 receptor, since the amino acid seems to be consistently released through the recruitment of connexin-containing hemichannels upon P2X7 activation, both in the absence and in the presence of external Ca 2+ . Data from this study add valuable information suggesting that ATP, via P2X7 activation, not only interferes with the high-affinity uptake of GABA and Glu but actually favors the release of these amino acids through distinct molecular mechanisms amenable to differential therapeutic control. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fenton, Tanis R; Eliasziw, Misha; Tough, Suzanne C; Lyon, Andrew W; Brown, Jacques P; Hanley, David A
2010-05-10
The acid-ash hypothesis, the alkaline diet, and related products are marketed to the general public. Websites, lay literature, and direct mail marketing encourage people to measure their urine pH to assess their health status and their risk of osteoporosis.The objectives of this study were to determine whether 1) low urine pH, or 2) acid excretion in urine [sulfate + chloride + 1.8x phosphate + organic acids] minus [sodium + potassium + 2x calcium + 2x magnesium mEq] in fasting morning urine predict: a) fragility fractures; and b) five-year change of bone mineral density (BMD) in adults. Cohort study: the prospective population-based Canadian Multicentre Osteoporosis Study. Multiple logistic regression was used to examine associations between acid excretion (urine pH and urine acid excretion) in fasting morning with the incidence of fractures (6804 person years). Multiple linear regression was used to examine associations between acid excretion with changes in BMD over 5-years at three sites: lumbar spine, femoral neck, and total hip (n = 651). Potential confounders controlled included: age, gender, family history of osteoporosis, physical activity, smoking, calcium intake, vitamin D status, estrogen status, medications, renal function, urine creatinine, body mass index, and change of body mass index. There were no associations between either urine pH or acid excretion and either the incidence of fractures or change of BMD after adjustment for confounders. Urine pH and urine acid excretion do not predict osteoporosis risk.
Furuta, Takahiro; Mukai, Ayumi; Ohishi, Akihiro; Nishida, Kentaro; Nagasawa, Kazuki
2017-12-01
Neuron-glia communication mediated by neuro- and glio-transmitters such as ATP and zinc is crucial for the maintenance of brain homeostasis, and its dysregulation is found under pathological conditions. It is reported that under oxidative stress-loaded conditions, astrocytes exhibit increased intra- and extra-cellular labile zinc, the latter triggering microglial M1 activation, while the pathophysiological role of the former remains unrevealed. In this study, we examined whether the oxidative stress-induced increase of intracellular labile zinc is involved in the P2X7 receptor (P2X7R)-mediated regulation of astrocytic engulfing activity. The exposure of cultured astrocytes to sub-lethal oxidative stress through their treatment with 400 μM H 2 O 2 increased intracellular labile zinc, of which the concentration reached a peak level of approximately 2 μM at 2 h after the treatment. In astrocytes under sub-lethal oxidative stress, the uptake of YO-PRO-1 and latex beads as markers for P2X7R channel/pore activity and astrocytic engulfing activity, respectively, was decreased, and these decreased activities were accompanied by decreased expression of P2X7R at the plasma membrane via intracellular labile zinc-mediated translocation of it. With the oxidative stress, the expression level of full length P2X7R relative to that of its splice variants in astrocytes was decreased, leading to a decrease of the relative expression of the trimer consisting of full length P2X7R. Collectively, sub-lethal oxidative stress induces an astrocytic modal shift from the normal resting engulfing mode to the activated astrogliosis mode via an intracellular labile zinc-mediated decrease of the functional expression of P2X7R.
The P2X7 Receptor in Inflammatory Diseases: Angel or Demon?
Savio, Luiz E. B.; de Andrade Mello, Paola; da Silva, Cleide Gonçalves; Coutinho-Silva, Robson
2018-01-01
Under physiological conditions, adenosine triphosphate (ATP) is present at low levels in the extracellular milieu, being massively released by stressed or dying cells. Once outside the cells, ATP and related nucleotides/nucleoside generated by ectonucleotidases mediate a high evolutionary conserved signaling system: the purinergic signaling, which is involved in a variety of pathological conditions, including inflammatory diseases. Extracellular ATP has been considered an endogenous adjuvant that can initiate inflammation by acting as a danger signal through the activation of purinergic type 2 receptors—P2 receptors (P2Y G-protein coupled receptors and P2X ligand-gated ion channels). Among the P2 receptors, the P2X7 receptor is the most extensively studied from an immunological perspective, being involved in both innate and adaptive immune responses. P2X7 receptor activation induces large-scale ATP release via its intrinsic ability to form a membrane pore or in association with pannexin hemichannels, boosting purinergic signaling. ATP acting via P2X7 receptor is the second signal to the inflammasome activation, inducing both maturation and release of pro-inflammatory cytokines, such as IL-1β and IL-18, and the production of reactive nitrogen and oxygen species. Furthermore, the P2X7 receptor is involved in caspases activation, as well as in apoptosis induction. During adaptive immune response, P2X7 receptor modulates the balance between the generation of T helper type 17 (Th17) and T regulatory (Treg) lymphocytes. Therefore, this receptor is involved in several inflammatory pathological conditions. In infectious diseases and cancer, P2X7 receptor can have different and contrasting effects, being an angel or a demon depending on its level of activation, cell studied, type of pathogen, and severity of infection. In neuroinflammatory and neurodegenerative diseases, P2X7 upregulation and function appears to contribute to disease progression. In this review, we deeply discuss P2X7 receptor dual function and its pharmacological modulation in the context of different pathologies, and we also highlight the P2X7 receptor as a potential target to treat inflammatory related diseases. PMID:29467654
Jarvis, Michael F.
2013-01-01
The study of P2X receptors has long been handicapped by a poverty of small-molecule tools that serve as selective agonists and antagonists. There has been progress, particularly in the past 10 years, as cell-based high-throughput screening methods were applied, together with large chemical libraries. This has delivered some drug-like molecules in several chemical classes that selectively target P2X1, P2X3, or P2X7 receptors. Some of these are, or have been, in clinical trials for rheumatoid arthritis, pain, and cough. Current preclinical research programs are studying P2X receptor involvement in pain, inflammation, osteoporosis, multiple sclerosis, spinal cord injury, and bladder dysfunction. The determination of the atomic structure of P2X receptors in closed and open (ATP-bound) states by X-ray crystallography is now allowing new approaches by molecular modeling. This is supported by a large body of previous work using mutagenesis and functional expression, and is now being supplemented by molecular dynamic simulations and in silico ligand docking. These approaches should lead to P2X receptors soon taking their place alongside other ion channel proteins as therapeutically important drug targets. PMID:23253448
Mager, Peter P; Weber, Anje; Illes, Peter
2004-01-01
No details on P2X receptor architecture had been known at the atomic resolution level. Using comparative homology-based molecular modelling and threading, it was attempted to predict the three-dimensional structure of P2X receptors. This prediction could not be carried out, however, because important properties of the P2X family differ considerably from that of the potential template proteins. This paper reviews an alternative approach consisting of three research fields: bioinformatics, structural modelling, and a variety of the results of biological experiments. Starting point is the amino acid sequence. Using the sequential data, the first step is a secondary structure prediction. The resulting secondary structure is converted into a three-dimensional geometry. Then, the secondary and tertiary structures are optimized by using the quantum chemistry RHF/3-21G minimal basic set and the all-atom molecular mechanics AMBER96 force field. The fold of the membrane-embedded protein is simulated by a suitable dielectricum. The structure is refined using a conjugate gradient minimizer (Fletcher-Reeves modification of the Polak-Ribiere method). The results of the geometry optimization were checked by a Ramanchandran plot, rotamer analysis, all-atom contact dots, and the C(beta) deviation. As additional tools for the model building, multiple alignment analysis and comparative sequence-function analysis were used. The approach is exemplified on the membrane-embedded, ligand-gated P2X3 receptor subunit, a monovalent-bivalent cation channel-forming glycoprotein that is activated by extracellular adenosine 5'-triphosphate. From these results, a topology of the pore-forming motif of the P2X3 receptor subunit was proposed. It is believed that a fully functional P2X channel requires a precise coupling between (i) two distinct peptide modules, an extracellularly occurring ATP-binding module and a pore module that includes a long transmembrane and short intracellular part, (ii) an interaction surface with membranes, and (iii) hydrogen bonding forces of the residues and hydrated cations. Furthermore, this paper demonstrates the role of quantitative structure-activity relationships (QSARs) in P2X research (calcium ion permeability of the wild-type and after site-directed mutagenesis of the rat P2X2 receptor protein, KN-62 analogs as competitive antagonists of the human P2X7 receptor). EXPERIMENTAL PROOFS: The predictions are experimentally testable and may provide an additional interpretation of experimental observations published in literature. In particular, there is the good agreement of the geometry optimized P2X3 structure with experimentally proposed P2X receptor models obtained by neurophysiological, biochemical, pharmacological, and mutation experiments. Although the rat P2X3 receptor subunit is more complex (397 amino acids) than the KcsA protein (160 amino acids), the overall folds of the peptide backbone atoms are similar. To avoid semantic confusion, it should be noted that "prediction" is defined in a probabilistic sense. Matches to generic rules do not mean "this is true" but rather "this might be true". Only biological and chemical knowledge can determine whether or not these predictions are meaningful. Thus, the results from the computational tools are probabilistic predictions and subject to further experimental verification. The geometry optimized P2X3 receptor subunit is freely available for academic researchers on e-mail request (PDB format).
P2X receptor characterization and IL-1/IL-1Ra release from human endothelial cells.
Wilson, H L; Varcoe, R W; Stokes, L; Holland, K L; Francis, S E; Dower, S K; Surprenant, A; Crossman, D C
2007-05-01
The pro-inflammatory cytokine, interleukin-1beta (IL-1beta), has been implicated in the pathogenesis of atherosclerosis, potentially via its release from vascular endothelium. Endothelial cells (EC) synthesize IL-1beta in response to inflammatory stimuli, but the demonstration and mechanism of release of IL-1 from ECs remains unclear. In activated monocytes, efficient release of bioactive IL-1beta occurred via activation of ATP-gated P2X(7) receptors (P2X(7)Rs). Activation of P2X(7)R in ECs from human umbilical vein (HUVECs) released IL-1 receptor antagonist (IL-1Ra). The purpose of this study was to provide a quantitative investigation of P2XR expression and function, in parallel with IL-1beta and IL-1Ra synthesis, processing and release, in HUVECs under pro-inflammatory conditions. Quantitative RT-PCR, immunoblotting, ELISA, flow cytometry, and whole-cell patch clamp recordings were used to determine protein expression and receptor function. IL-8-luciferase-reporter was used as an IL-1 sensitive bioassay. HUVECs expressed P2X(4)R and P2X(7)R subtypes and both were significantly up-regulated under inflammatory conditions. P2X(7)R currents were increased 3-fold by inflammatory stimuli, whereas no P2X(4)R-mediated currents were detected. Caspase-1, but not IL-1beta, was present intracellularly under basal conditions; inflammatory stimuli activated the synthesis of intracellular pro-IL-1beta and increased caspase-1 levels. Activation of P2X(7)Rs resulted in low-level release of bioactive IL-1beta and simultaneous release of IL-1Ra. The net biological effect of release was anti-inflammatory. Endothelial P2X(7)Rs induced secretion of both pro- and anti-inflammatory IL-1 receptor ligands, the balance of which may provide a means for altering the inflammatory state of the arterial vessel wall.
Sorrell, Mary E; Hauser, Kurt F
2014-03-01
Emerging evidence suggests that opioid drugs, such as morphine and heroin, can exacerbate neuroAIDS. Microglia are the principal neuroimmune effectors thought to be responsible for neuron damage in HIV-infected individuals, and evidence suggests that opioid drugs acting via μ opioid receptors in microglia aggravate the neuropathophysiological effects of HIV. Key aspects of microglial function are regulated by the P2X family of ATP activated ligand-gated ion channels. In addition, opioid-dependent microglial activation has been reported to be mediated through P2X4 signaling, which prompted us to investigate whether the cation-permeable P2X receptors contribute to the neurotoxic effects of HIV and morphine. To address this question, neuron survival, as well as other endpoints including changes in dendritic length, extracellular ATP levels, and intracellular calcium levels, were assayed in primary neuron-glia co-cultures from mouse striatum. Treatment with TNP-ATP, a non-selective P2X antagonist, prevented the neurotoxic effects of exposure to morphine and/or HIV Tat, or ATP alone, suggesting P2X receptors mediate the neurotoxic effects of these insults in striatal neurons. Although P2X7, and perhaps P2X1, receptor activation decreases neuron survival, neither P2X1, P2X3, nor P2X7 selective receptor antagonists prevented Tat and/or morphine-induced neurotoxicity. These and other experiments indicate the P2X receptor family contributes to Tat- and morphine- related neuronal injury, and provide circumstantial evidence implicating P2X4 receptors in particular. Our findings reveal that members of the P2X receptor family, especially P2X4, may be novel therapeutic targets for restricting the synaptodendritic injury and neurodegeneration that accompanies neuroAIDS and opiate abuse.
CHANG, H.; YANACHKOV, I. B.; DIX, E. J.; LI, Y. F.; BARNARD, M. R.; WRIGHT, G. E.; MICHELSON, A. D.; FRELINGER, A. L.
2017-01-01
Summary Background Diadenosine 5′,5‴-P1,P4-tetraphosphate (Ap4A), a natural compound stored in platelet dense granules, inhibits ADP-induced platelet aggregation. Ap4A inhibits the platelet ADP receptors P2Y1 and P2Y12, is a partial agonist of P2Y12, and is a full agonist of the platelet ATP-gated ion channel P2X1. Modification of the Ap4A tetraphosphate backbone enhances inhibition of ADP-induced platelet aggregation. However, the effects of these Ap4A analogs on human platelet P2Y1, P2Y12 and P2X1 are unclear. Objective To determine the agonist and antagonist activities of diadenosine tetraphosphate analogs towards P2Y1, P2Y12, and P2X1. Methods We synthesized the following Ap4A analogs: P1,P4-dithiotetraphosphate; P2,P3-chloromethylenetetraphosphate; P1-thio-P2,P3-chloromethylenetetraphosphate; and P1,P4-dithio-P2,P3-chloromethylenetetraphosphate. We then measured the effects of these analogs on: (i) ADP-induced platelet aggregation; (ii) P2Y1-mediated changes in cytosolic Ca2+; (iii) P2Y12-mediated changes in vasodilator-stimulated phosphoprotein phosphorylation; and (iv) P2X1-mediated entry of extracellular Ca2+. Results Ap4A analogs with modifications in the phosphate backbone inhibited both P2Y1 and P2Y12, and showed no agonist activity towards these receptors. The dithio modification increased inhibition of P2Y1, P2Y12, and platelet aggregation, whereas the chloromethylene modification increased inhibition of P2Y12 and platelet aggregation, but decreased P2Y1 inhibition. Combining the dithio and chloromethylene modifications increased P2Y1 and P2Y12 inhibition. As compared with Ap4A, each modification decreased agonist activity towards P2X1, and the dual modification completely eliminated P2X1 agonist activity. Conclusions As compared with Ap4A, tetraphosphate backbone analogs of Ap4A have diminished activity towards P2X1 but inhibit both P2Y1 and P2Y12 and, with greater potency, inhibit ADP-induced platelet aggregation. Thus, diadenosine tetraphosphate analogs with dual receptor selectivity may have potential as antiplatelet drugs. PMID:23083103
P2X purinoceptors as a link between hyperexcitability and neuroinflammation in status epilepticus.
Henshall, David C; Engel, Tobias
2015-08-01
There remains a need for more efficacious treatments for status epilepticus. Prolonged seizures result in the release of ATP from cells which activates the P2 class of ionotropic and metabotropic purinoceptors. The P2X receptors gate depolarizing sodium and calcium entry and are expressed by both neurons and glia throughout the brain, and a number of subtypes are upregulated after status epilepticus. Recent studies have explored the in vivo effects of targeting ATP-gated P2X receptors in preclinical models of status epilepticus, with particular focus on the P2X7 receptor (P2X7R). The P2X7R mediates microglial activation and the release of the proepileptogenic inflammatory cytokine interleukin 1β. The receptor may also directly modulate neurotransmission and gliotransmission and promote the recruitment of immune cells into brain parenchyma. Data from our group and collaborators show that status epilepticus produced by intraamygdala microinjection of kainic acid increases P2X7R expression in the hippocampus and neocortex of mice. Antagonism of the P2X7R in the model reduced seizure severity, microglial activation and interleukin 1β release, and neuronal injury. Coadministration of a P2X7R antagonist with a benzodiazepine also provided seizure suppression in a model of drug-refractory status epilepticus when either treatment alone was minimally effective. More recently, we showed that status epilepticus in immature rats is also reduced by P2X7R antagonism. Together, these findings suggest that P2X receptors may be novel targets for seizure control and interruption of neuroinflammation after status epilepticus. This article is part of a Special Issue entitled "Status Epilepticus". Copyright © 2015 Elsevier Inc. All rights reserved.
Akopian, Tatos; Kandror, Olga; Tsu, Christopher; Lai, Jack H.; Wu, Wengen; Liu, Yuxin; Zhao, Peng; Park, Annie; Wolf, Lisa; Dick, Lawrence R.; Rubin, Eric J.; Bachovchin, William; Goldberg, Alfred L.
2015-01-01
The ClpP1P2 protease complex is essential for viability in Mycobacteria tuberculosis and is an attractive drug target. Using a fluorogenic tripeptide library (Ac-X3X2X1-aminomethylcoumarin) and by determining specificity constants (kcat/Km), we show that ClpP1P2 prefers Met ≫ Leu > Phe > Ala in the X1 position, basic residues or Trp in the X2 position, and Pro ≫ Ala > Trp in the X3 position. We identified peptide substrates that are hydrolyzed up to 1000 times faster than the standard ClpP substrate. These positional preferences were consistent with cleavage sites in the protein GFPssrA by ClpXP1P2. Studies of ClpP1P2 with inactive ClpP1 or ClpP2 indicated that ClpP1 was responsible for nearly all the peptidase activity, whereas both ClpP1 and ClpP2 contributed to protein degradation. Substrate-based peptide boronates were synthesized that inhibit ClpP1P2 peptidase activity in the submicromolar range. Some of them inhibited the growth of Mtb cells in the low micromolar range indicating that cleavage specificity of Mtb ClpP1P2 can be used to design novel anti-bacterial agents. PMID:25759383
Yu, Weiqun; Sun, Xiaofeng; Robson, Simon C.; Hill, Warren G.
2013-01-01
Bladder dysfunction characterized by abnormal bladder smooth muscle (BSM) contractions is pivotal to the disease process in overactive bladder, urge incontinence, and spinal cord injury. Purinergic signaling comprises one key pathway in modulating BSM contractility, but molecular mechanisms remain unclear. Here we demonstrate, using myography, that activation of P2Y6 by either UDP or a specific agonist (MRS 2693) induced a sustained increase in BSM tone (up to 2 mN) in a concentration-dependent manner. Notably, activation of P2Y6 enhanced ATP-mediated BSM contractile force by up to 45%, indicating synergistic interactions between P2X and P2Y signaling. P2Y6-activated responses were abolished by phospholipase C (PLC) and inositol trisphosphate (IP3) receptor antagonists U73122 and xestospongin C, demonstrating involvement of the PLC/IP3 signal pathway. Mice null for Entpd1, an ectonucleotidase on BSM, demonstrated increased force generation on P2Y6 activation (150%). Thus, in vivo perturbations to purinergic signaling resulted in altered P2Y6 activity and bladder contractility. We conclude that UDP, acting on P2Y6, regulates BSM tone and in doing so selectively maximizes P2X1-mediated contraction forces. This novel neurotransmitter pathway may play an important role in urinary voiding disorders characterized by abnormal bladder motility.—Yu, W., Sun, X., Robson, S. C., Hill, W. G. Extracellular UDP enhances P2X-mediated bladder smooth muscle contractility via P2Y6 activation of the phospholipase C/inositol trisphosphate pathway. PMID:23362118
Recombinant Salmonella expressing SspH2-EscI fusion protein limits its colonization in mice.
Hu, Maozhi; Zhao, Weixin; Gao, Wei; Li, Wenhua; Meng, Chuang; Yan, Qiuxiang; Wang, Yuyang; Zhou, Xiaohui; Geng, Shizhong; Pan, Zhiming; Cui, Guiyou; Jiao, Xinan
2017-05-03
Activation of inflammasome contributes to the clearance of intracellular bacteria. C-terminus of E. coli EscI protein can activate NLRC4 (NLR family, CARD domain containing-4) inflammasome in macrophages. The purpose of this study was to determine if activation of NLRC4 inflammasome by EscI can reduce the colonization of Salmonella in mice. A recombinant S. typhimurium strain expressing fusion protein of the N-terminal SspH2 (a Salmonella type III secretion system 2 effector) and C-terminal EscI was constructed and designated as X4550(pYA3334-SspH2-EscI). In vitro assay showed that X4550(pYA3334-SspH2-EscI) significantly enhanced IL-1β and IL-18 secretion (P < 0.05) and pyroptotic cell death of mouse peritoneal macrophages, compared with those infected with control strain, X4550(pYA3334-SspH2). In vivo studies showed that colonization of X4550(pYA3334-SspH2-EscI) in both spleen and liver were significantly lower than that of X4550(pYA3334-SspH2) (P < 0.05). The bacterial counts of X4550(pYA3334-SspH2-EscI) in mice decreased, while those of X4550(pYA3334-SspH2) increased over the time after infection. Additionally, X4550(pYA3334-SspH2-EscI) induced a less pathological alteration in spleen and liver than X4550(pYA3334-SspH2). Fusion protein SspH2-EscI may be translocated into macrophages and activate NLRC4 inflammasome, which limits Salmonella colonization in spleen and liver of mice.
Stretch-induced Ca2+ independent ATP release in hippocampal astrocytes.
Xiong, Yingfei; Teng, Sasa; Zheng, Lianghong; Sun, Suhua; Li, Jie; Guo, Ning; Li, Mingli; Wang, Li; Zhu, Feipeng; Wang, Changhe; Rao, Zhiren; Zhou, Zhuan
2018-02-28
Similar to neurons, astrocytes actively participate in synaptic transmission via releasing gliotransmitters. The Ca 2+ -dependent release of gliotransmitters includes glutamate and ATP. Following an 'on-cell-like' mechanical stimulus to a single astrocyte, Ca 2+ independent single, large, non-quantal, ATP release occurs. Astrocytic ATP release is inhibited by either selective antagonist treatment or genetic knockdown of P2X7 receptor channels. Our work suggests that ATP can be released from astrocytes via two independent pathways in hippocampal astrocytes; in addition to the known Ca 2+ -dependent vesicular release, larger non-quantal ATP release depends on P2X7 channels following mechanical stretch. Astrocytic ATP release is essential for brain functions such as synaptic long-term potentiation for learning and memory. However, whether and how ATP is released via exocytosis remains hotly debated. All previous studies of non-vesicular ATP release have used indirect assays. By contrast, two recent studies report vesicular ATP release using more direct assays. In the present study, using patch clamped 'ATP-sniffer cells', we re-investigated astrocytic ATP release at single-vesicle resolution in hippocampal astrocytes. Following an 'on-cell-like' mechanical stimulus of a single astrocyte, a Ca 2+ independent single large non-quantal ATP release occurred, in contrast to the Ca 2+ -dependent multiple small quantal ATP release in a chromaffin cell. The mechanical stimulation-induced ATP release from an astrocyte was inhibited by either exposure to a selective antagonist or genetic knockdown of P2X7 receptor channels. Functional P2X7 channels were expressed in astrocytes in hippocampal brain slices. Thus, in addition to small quantal ATP release, larger non-quantal ATP release depends on P2X7 channels in astrocytes. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
P2X receptors as targets for the treatment of status epilepticus.
Henshall, David C; Diaz-Hernandez, Miguel; Miras-Portugal, M Teresa; Engel, Tobias
2013-11-26
Prolonged seizures are amongst the most common neurological emergencies. Status epilepticus is a state of continuous seizures that is life-threatening and prompt termination of status epilepticus is critical to protect the brain from permanent damage. Frontline treatment comprises parenteral administration of anticonvulsants such as lorazepam that facilitate γ-amino butyric acid (GABA) transmission. Because status epilepticus can become refractory to anticonvulsants in a significant proportion of patients, drugs which act on different neurotransmitter systems may represent potential adjunctive treatments. P2X receptors are a class of ligand-gated ion channel activated by ATP that contributes to neuro- and glio-transmission. P2X receptors are expressed by both neurons and glia in various brain regions, including the hippocampus. Electrophysiology, pharmacology and genetic studies suggest certain P2X receptors are activated during pathologic brain activity. Expression of several members of the family including P2X2, P2X4, and P2X7 receptors has been reported to be altered in the hippocampus following status epilepticus. Recent studies have shown that ligands of the P2X7 receptor can have potent effects on seizure severity during status epilepticus and mice lacking this receptor display altered seizures in response to chemoconvulsants. Antagonists of the P2X7 receptor also modulate neuronal death, microglial responses and neuroinflammatory signaling. Recent work also found altered neuronal injury and inflammation after status epilepticus in mice lacking the P2X4 receptor. In summary, members of the P2X receptor family may serve important roles in the pathophysiology of status epilepticus and represent novel targets for seizure control and neuroprotection.
P2X receptors as targets for the treatment of status epilepticus
Henshall, David C.; Diaz-Hernandez, Miguel; Miras-Portugal, M. Teresa; Engel, Tobias
2013-01-01
Prolonged seizures are amongst the most common neurological emergencies. Status epilepticus is a state of continuous seizures that is life-threatening and prompt termination of status epilepticus is critical to protect the brain from permanent damage. Frontline treatment comprises parenteral administration of anticonvulsants such as lorazepam that facilitate γ-amino butyric acid (GABA) transmission. Because status epilepticus can become refractory to anticonvulsants in a significant proportion of patients, drugs which act on different neurotransmitter systems may represent potential adjunctive treatments. P2X receptors are a class of ligand-gated ion channel activated by ATP that contributes to neuro- and glio-transmission. P2X receptors are expressed by both neurons and glia in various brain regions, including the hippocampus. Electrophysiology, pharmacology and genetic studies suggest certain P2X receptors are activated during pathologic brain activity. Expression of several members of the family including P2X2, P2X4, and P2X7 receptors has been reported to be altered in the hippocampus following status epilepticus. Recent studies have shown that ligands of the P2X7 receptor can have potent effects on seizure severity during status epilepticus and mice lacking this receptor display altered seizures in response to chemoconvulsants. Antagonists of the P2X7 receptor also modulate neuronal death, microglial responses and neuroinflammatory signaling. Recent work also found altered neuronal injury and inflammation after status epilepticus in mice lacking the P2X4 receptor. In summary, members of the P2X receptor family may serve important roles in the pathophysiology of status epilepticus and represent novel targets for seizure control and neuroprotection. PMID:24324404
Davis, Christopher J; Taishi, Ping; Honn, Kimberly A; Koberstein, John N; Krueger, James M
2016-12-01
The ionotropic purine type 2X7 receptor (P2X7R) is a nonspecific cation channel implicated in sleep regulation and brain cytokine release. Many endogenous rhythms covary with sleep, including locomotor activity and core body temperature. Furthermore, brain-hypothalamic cytokines and purines play a role in the regulation of these physiological parameters as well as sleep. We hypothesized that these parameters are also affected by the absence of the P2X7 receptor. Herein, we determine spontaneous expression of body temperature and locomotor activity in wild-type (WT) and P2X7R knockout (KO) mice and how they are affected by sleep deprivation (SD). We also compare hypothalamic, hippocampal, and cortical cytokine- and purine-related receptor and enzyme mRNA expressions before and after SD in WT and P2X7RKO mice. Next, in a hypothesis-generating survey of hypothalamic long noncoding (lnc) RNAs, we compare lncRNA expression levels between strains and after SD. During baseline conditions, P2X7RKO mice had attenuated temperature rhythms compared with WT mice, although locomotor activity patterns were similar in both strains. After 6 h of SD, body temperature and locomotion were enhanced to a greater extent in P2X7RKO mice than in WT mice during the initial 2-3 h after SD. Baseline mRNA levels of cortical TNF-α and P2X4R were higher in the KO mice than WT mice. In response to SD, the KO mice failed to increase hypothalamic adenosine deaminase and P2X4R mRNAs. Further, hypothalamic lncRNA expressions varied by strain, and with SD. Current data are consistent with a role for the P2X7R in thermoregulation and lncRNA involvement in purinergic signaling. Copyright © 2016 the American Physiological Society.
Taishi, Ping; Honn, Kimberly A.; Koberstein, John N.; Krueger, James M.
2016-01-01
The ionotropic purine type 2X7 receptor (P2X7R) is a nonspecific cation channel implicated in sleep regulation and brain cytokine release. Many endogenous rhythms covary with sleep, including locomotor activity and core body temperature. Furthermore, brain-hypothalamic cytokines and purines play a role in the regulation of these physiological parameters as well as sleep. We hypothesized that these parameters are also affected by the absence of the P2X7 receptor. Herein, we determine spontaneous expression of body temperature and locomotor activity in wild-type (WT) and P2X7R knockout (KO) mice and how they are affected by sleep deprivation (SD). We also compare hypothalamic, hippocampal, and cortical cytokine- and purine-related receptor and enzyme mRNA expressions before and after SD in WT and P2X7RKO mice. Next, in a hypothesis-generating survey of hypothalamic long noncoding (lnc) RNAs, we compare lncRNA expression levels between strains and after SD. During baseline conditions, P2X7RKO mice had attenuated temperature rhythms compared with WT mice, although locomotor activity patterns were similar in both strains. After 6 h of SD, body temperature and locomotion were enhanced to a greater extent in P2X7RKO mice than in WT mice during the initial 2-3 h after SD. Baseline mRNA levels of cortical TNF-α and P2X4R were higher in the KO mice than WT mice. In response to SD, the KO mice failed to increase hypothalamic adenosine deaminase and P2X4R mRNAs. Further, hypothalamic lncRNA expressions varied by strain, and with SD. Current data are consistent with a role for the P2X7R in thermoregulation and lncRNA involvement in purinergic signaling. PMID:27707719
Impaired P2X1 Receptor-Mediated Adhesion in Eosinophils from Asthmatic Patients.
Wright, Adam; Mahaut-Smith, Martyn; Symon, Fiona; Sylvius, Nicolas; Ran, Shaun; Bafadhel, Mona; Muessel, Michelle; Bradding, Peter; Wardlaw, Andrew; Vial, Catherine
2016-06-15
Eosinophils play an important role in the pathogenesis of asthma and can be activated by extracellular nucleotides released following cell damage or inflammation. For example, increased ATP concentrations were reported in bronchoalveolar lavage fluids of asthmatic patients. Although eosinophils are known to express several subtypes of P2 receptors for extracellular nucleotides, their function and contribution to asthma remain unclear. In this article, we show that transcripts for P2X1, P2X4, and P2X5 receptors were expressed in healthy and asthmatic eosinophils. The P2X receptor agonist α,β-methylene ATP (α,β-meATP; 10 μM) evoked rapidly activating and desensitizing inward currents (peak 18 ± 3 pA/pF at -60 mV) in healthy eosinophils, typical of P2X1 homomeric receptors, which were abolished by the selective P2X1 antagonist NF449 (1 μM) (3 ± 2 pA/pF). α,β-meATP-evoked currents were smaller in eosinophils from asthmatic patients (8 ± 2 versus 27 ± 5 pA/pF for healthy) but were enhanced following treatment with a high concentration of the nucleotidase apyrase (17 ± 5 pA/pF for 10 IU/ml and 11 ± 3 pA/pF for 0.32 IU/ml), indicating that the channels are partially desensitized by extracellular nucleotides. α,β-meATP (10 μM) increased the expression of CD11b activated form in eosinophils from healthy, but not asthmatic, donors (143 ± 21% and 108 ± 11% of control response, respectively). Furthermore, α,β-meATP increased healthy (18 ± 2% compared with control 10 ± 1%) but not asthmatic (13 ± 1% versus 10 ± 0% for control) eosinophil adhesion. Healthy human eosinophils express functional P2X1 receptors whose activation leads to eosinophil αMβ2 integrin-dependent adhesion. P2X1 responses are constitutively reduced in asthmatic compared with healthy eosinophils, probably as the result of an increase in extracellular nucleotide concentration. Copyright © 2016 by The American Association of Immunologists, Inc.
P2X7R is involved in the progression of atherosclerosis by promoting NLRP3 inflammasome activation
PENG, KUANG; LIU, LUSHAN; WEI, DANGHENG; LV, YUNCHENG; WANG, GANG; XIONG, WENHAO; WANG, XIAOQING; ALTAF, AFRASYAB; WANG, LILI; HE, DAN; WANG, HONGYAN; QU, PENG
2015-01-01
Purinergic 2X7 receptor (P2X7R) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) are expressed in macrophages in atherosclerotic lesions. However, the mechanisms through which P2X7R participates in the inflammatory response in atherosclerosis remain largely unknown. The aim of the present study was to investigate the role of P2X7R in atherosclerosis and the mechanisms of action of the NLRP3 inflammasome following stimulation with oxidized low-density lipoprotein (oxLDL). We observed the expression and distribution of P2X7R in the atherosclerotic plaque in the coronary arteries from an autopsy specimen and in that of the aortic sinuses of apoE−/− mice by immunohistochemistry and immunofluorescence staining. The specificity of short interfering RNA (siRNA) was used to suppress P2X7R and NLRP3 mRNA expression. RT-qPCR and western blot analysis were used to analyze mRNA and protein expression, respectively. Co-immunoprecipitation was used to examine the interaction between protein kinase R (PKR) phosphorylation and NLRP3. P2X7R and NLRP3 were expressed at high levels in the atherosclerotic plaque in the coronary arteries. Stimulation with oxLDL upregulated P2X7R, NLRP3 and interleukin (IL)-1β expression. P2X7R knockdown by siRNA suppressed NLRP3 inflammasome activation by inhibiting the PKR phosphorylation mediated by oxLDL. In the atherosclerotic lesions in the aortic sinuses of apoE−/− mice, P2X7R expression was found at high levels. Moreover, P2X7R siRNA attenuated the development of atherosclerosis in the apoE−/− mice. In conclusion, our results demonstrate that P2X7R plays a significant role in the development of atherosclerosis and regulates NLRP3 inflammasome activation by promoting PKR phosphorylation. PMID:25761252
Selectivity and activity of adenine dinucleotides at recombinant P2X2 and P2Y1 purinoceptors.
Pintor, J.; King, B. F.; Miras-Portugal, M. T.; Burnstock, G.
1996-01-01
1. Adenine dinucleotides (Ap3A, x = 2-6) are naturally-occurring polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. The selectivity and activity of adenine dinucleotides for neuronally-derived recombinant P2 purinoceptors were studied using P2X2 and P2Y1 subtypes expressed in Xenopus oocytes. 2. For the P2Y1 subtype derived from chick brain, Ap3A was equipotent and as active as ATP (EC50 values: 375 +/- 86 nM and 334 +/- 25 nM, respectively). Ap4A was a weak partial agonist and other dinucleotides were inactive as agonists. None of the inactive dinucleotides were antagonists nor modulated the activity of Ap3A and ATP. 3. For the P2X2 subtype derived from rat PC12 cells, Ap4A was as active as ATP but less potent (EC50 values: 15.2 +/- 1 microM and 3.7 +/- 0.7 microM, respectively). Other adenosine dinucleotides were inactive as either agonists or antagonists. 4. Ap5A (1-100 nM) potentiated ATP-responses at the P2X2 subtype, showing an EC50 of 2.95 +/- 0.7 nM for this modulatory effect. Ap5A (10 nM) shifted the concentration-response curves for ATP to the left by one-half log10 unit but did not alter the Hill co-efficient for ATP (nH = 2.1 +/- 0.1). Ap5A (10 nM) failed to potentiate Ap4A-responses but did enhance the efficacy of the P2 purinoceptor antagonist, suramin, by 12 fold at the P2X2 subtype. 5. In conclusion, the results show that ionotropic (P2X2) and metabotropic (P2Y1) ATP receptors which occur in the CNS are activated selectively by naturally-occurring adenine dinucleotides which are known to be released with nucleotides from storage vesicles. The observed potentiation of P2X2-responses by Ap5A, where co-released with ATP by brain synaptosomes, may have a functional bearing in purinergic signalling in the CNS. PMID:8922753
Wei, Ze-Xiu; Liang, Yin-Li; Inoue, Mitsuhiro; Zhou, Mao-Juan; Huang, Mao-Lin; Gu, Jian-Feng; Wu, Yan
2009-07-01
With cucumber (Cucumis sativus L.) variety Jinyou 1 as test material, a greenhouse experiment was conducted to study the effects of different water and fertilizer supply on the cucumber soil nutrient content, enzyme activity, and microbial diversity. Three water regimes (50%-60%, 70%-80%, and 90%-100% soil relative moisture content) and two fertilization practices (600 kg N x hm(-2) + 420 kg P2O5 x hm(-2) and 420 kg N x hm(-2) + 294 kg P2O5 x hm(-2)) were designed. The increase of water and fertilizer supply benefited the increase of soil available P content and sucrase activity. Increasing fertilization rate increased soil NH(4+)-N content but decreased soil protease activity, and increasing soil relative moisture content decreased the soil NH(4+)-N content and urease activity. Soil microbial diversity had no significant correlations with soil nutrient contents, but significantly positively correlated with soil urease activity and negatively correlated with soil sucrase activity. Among the treatments, the treatment 70%-80% soil relative moisture content + 600 kg N x hm(-2) and 420 kg P2O5 x hm(-2) had the highest soil nutrient contents, soil urease, sucrase, and phosphatase activities, and soil microbial diversity and evenness, being the best in soil potential productivity.
Manipulation of P2X Receptor Activities by Light Stimulation.
Kim, Sang Seong
2016-01-01
P2X receptors are involved in amplification of inflammatory responses in peripheral nociceptive fibers and in mediating pain-related signals to the CNS. Control of P2X activation has significant importance in managing unwanted hypersensitive neuron responses. To overcome the limitations of chemical ligand treatment, optical stimulation methods of optogenetics and photoswitching achieve efficient control of P2X activation while allowing specificity at the target site and convenient stimulation by light illumination. There are many potential applications for photosensitive elements, such as improved uncaging methods, photoisomerizable ligands, photoswitches, and gold nanoparticles. Each technique has both advantages and downsides, and techniques are selected according to the purpose of the application. Technical advances not only provide novel approaches to manage inflammation or pain mediated by P2X receptors but also suggest a similar approach for controlling other ion channels.
Identification of P2X3 and P2X7 Purinergic Receptors Activated by ATP in Rat Lacrimal Gland
Vrouvlianis, Joanna; Scott, Rachel; Dartt, Darlene A.
2011-01-01
Purpose. To identify the type of purinergic receptors activated by adenosine triphosphate (ATP) in rat lacrimal gland and to determine their role in protein secretion. Methods. Purinergic receptors were identified by RT-PCR, Western blot analysis, and immunofluorescence techniques. Acini from rat lacrimal gland were isolated by collagenase digestion. Acini were incubated with the fluorescence indicator fura-2 tetra-acetoxylmethyl ester, and intracellular [Ca2+] ([Ca2+]i) was determined. Protein secretion was measured by fluorescence assay. Results. The authors previously showed that P2X7 receptors were functional in the lacrimal gland. In this study, they show that P2X1–4, and P2X6receptors were identified in the lacrimal gland by RT-PCR, Western blot, and immunofluorescence analyses. P2X5 receptors were not detected. ATP increased [Ca2+]i and protein secretion in a concentration-dependent manner. Removal of extracellular Ca2+ significantly reduced the ATP-stimulated increase in [Ca2+]i. Repeated applications of ATP caused desensitization of the [Ca2+]i response. Incubation with the P2X1 receptor inhibitor NF023 did not alter ATP-stimulated [Ca2+]i. Incubation with zinc, which potentiates P2X2 and P2X4 receptor responses, or lowering the pH to 6.8, which potentiates P2X2 receptor responses, did not alter the ATP-stimulated [Ca2+]i. P2X3 receptor inhibitors A-317491 and TNP-ATP significantly decreased ATP-stimulated [Ca2+]i and protein secretion, whereas the P2X3 receptor agonist α,β methylene ATP significantly increased them. The P2X7 receptor inhibitor A438079 had no effect on ATP-stimulated [Ca2+]i at 10−6 M but did have an effect at 10−4 M. Conclusions. Purinergic receptors P2X1–4 and P2X6 are present in the lacrimal gland. ATP uses P2X3 and P2X7 receptors to stimulate an increase in [Ca2+]i and protein secretion. PMID:21421865
Teixeira, Juliana Maia; Bobinski, Franciane; Parada, Carlos Amílcar; Sluka, Kathleen A; Tambeli, Cláudia Herrera
2017-10-01
Osteoarthritis (OA) is a degenerative and progressive disease characterized by cartilage breakdown and by synovial membrane inflammation, which results in disability, joint swelling, and pain. The purinergic P2X3 and P2X2/3 receptors contribute to development of inflammatory hyperalgesia, participate in arthritis processes in the knee joint, and are expressed in chondrocytes and nociceptive afferent fibers innervating the knee joint. In this study, we hypothesized that P2X3 and P2X2/3 receptors activation by endogenous ATP (adenosine 5'-triphosphate) induces articular hyperalgesia in the knee joint of male and female rats through an indirect sensitization of primary afferent nociceptors dependent on the previous release of pro-inflammatory cytokines and/or on neutrophil migration. We found that the blockade of articular P2X3 and P2X2/3 receptors significantly attenuated carrageenan-induced hyperalgesia in the knee joint of male and estrus female rats in a similar manner. The carrageenan-induced knee joint inflammation increased the expression of P2X3 receptors in chondrocytes of articular cartilage. Further, the blockade of articular P2X3 and P2X2/3 receptors significantly reduced the increased concentration of TNF-α, IL-6, and CINC-1 and the neutrophil migration induced by carrageenan. These findings indicate that P2X3 and P2X2/3 receptors activation by endogenous ATP is essential to hyperalgesia development in the knee joint through an indirect sensitization of primary afferent nociceptors dependent on the previous release of pro-inflammatory cytokines and/or on neutrophil migration.
Long-Term Heart Transplant Survival by Targeting the Ionotropic Purinergic Receptor P2X7
Vergani, Andrea; Tezza, Sara; D’Addio, Francesca; Fotino, Carmen; Liu, Kaifeng; Niewczas, Monika; Bassi, Roberto; Molano, R. Damaris; Kleffel, Sonja; Petrelli, Alessandra; Soleti, Antonio; Ammirati, Enrico; Frigerio, Maria; Visner, Gary; Grassi, Fabio; Ferrero, Maria E.; Corradi, Domenico; Abdi, Reza; Ricordi, Camillo; Sayegh, Mohamed H.; Pileggi, Antonello; Fiorina, Paolo
2013-01-01
Background Heart transplantation is a lifesaving procedure for patients with end-stage heart failure. Despite much effort and advances in the field, current immunosuppressive regimens are still associated with poor long-term cardiac allograft outcomes as well as with the development of complications including infections and malignancies. The development of a novel, short-term and effective immunomodulatory protocol will thus be an important achievement. The purine adenosine 5′-triphosphate (ATP), released during cell damage/activation, is sensed by the ionotropic purinergic receptor P2X7 (P2X7R) on lymphocytes and regulates T cell activation. Novel clinical-grade P2X7R inhibitors are available, rendering the targeting of P2X7R a potential therapy in cardiac transplantation. Methods and Results We analyzed P2X7R expression in patients and mice and P2X7R targeting in murine recipients in the context of cardiac transplantation. Our data demonstrate that P2X7R is specifically upregulated in graft-infiltrating lymphocytes in cardiac-transplanted humans and mice. Short-term P2X7R targeting with periodate-oxidized ATP (oATP) promotes long-term cardiac transplant survival in 80% of murine recipients of a fully mismatched allograft. Long-term survival of cardiac transplants was associated with reduced T cell activation, Th1/Th17 differentiation and inhibition of STAT3 phosphorylation in T cells, thus leading to a reduced transplant infiltrate and coronaropathy. In vitro genetic upregulation of the P2X7R pathway was also shown to stimulate Th1/Th17 cell generation. Finally, P2X7R targeting halted the progression of coronaropathy in a murine model of chronic rejection as well. Conclusions P2X7R targeting is a novel clinically relevant strategy to prolong cardiac transplant survival. PMID:23250993
Rubio-Araiz, Ana; Perez-Hernandez, Mercedes; Urrutia, Andrés; Porcu, Francesca; Borcel, Erika; Gutierrez-Lopez, Maria Dolores; O'Shea, Esther; Colado, Maria Isabel
2014-08-01
The recreational drug 3,4-methylenedioxymethamphetamine (MDMA; 'ecstasy') produces a neuro-inflammatory response in rats characterized by an increase in microglial activation and IL-1β levels. The integrity of the blood-brain barrier (BBB) is important in preserving the homeostasis of the brain and has been shown to be affected by neuro-inflammatory processes. We aimed to study the effect of a single dose of MDMA on the activity of metalloproteinases (MMPs), expression of extracellular matrix proteins, BBB leakage and the role of the ionotropic purinergic receptor P2X7 (P2X7R) in the changes induced by the drug. Adult male Dark Agouti rats were treated with MDMA (10 mg/kg, i.p.) and killed at several time-points in order to evaluate MMP-9 and MMP-3 activity in the hippocampus and laminin and collagen-IV expression and IgG extravasation in the dentate gyrus. Microglial activation, P2X7R expression and localization were also determined in the dentate gyrus. Separate groups were treated with MDMA and the P2X7R antagonists Brilliant Blue G (BBG; 50 mg/kg, i.p.) or A-438079 (30 mg/kg, i.p.). MDMA increased MMP-3 and MMP-9 activity, reduced laminin and collagen-IV expression and increased IgG immunoreactivity. In addition, MDMA increased microglial activation and P2X7R immunoreactivity in these cells. BBG suppressed the increase in MMP-9 and MMP-3 activity, prevented basal lamina degradation and IgG extravasation into the brain parenchyma. A-438079 also prevented the MDMA-induced reduction in laminin and collagen-IV immunoreactivity. These results indicate that MDMA alters BBB permeability through an early P2X7R-mediated event, which in turn leads to enhancement of MMP-9 and MMP-3 activity and degradation of extracellular matrix.
Yu, Ning; Zhao, Hong-Bo
2008-11-01
Intracochlear ATP is an important mediator in regulating hearing function. ATP can activate ionotropic purinergic (P2x) and metabotropic purinergic (P2y) receptors to influence cell functions. In this paper, we report that ATP can activate P2x receptors directly to modify outer hair cell (OHC) electromotility, which is an active cochlear amplifier determining hearing sensitivity and frequency selectivity in mammals. We found that ATP, but not UTP, a P2y receptor agonist, reduced the OHC electromotility-associated nonlinear capacitance (NLC) and shifted its voltage dependence to the right (depolarizing) direction. Blockage of the activation of P2x receptors by pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), suramin, and 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS) could block the ATP effect. This modification also required extracellular Ca(++) participation. Removal of extracellular Ca(++) abolished the ATP effect. However, chelation of intracellular Ca(++) concentration by a fast calcium-chelating reagent 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA, 10 mM) did not affect the effect of ATP on NLC. The effect is also independent of K(+) ions. Substitution of Cs(+) for intracellular or extracellular K(+) did not affect the ATP effect. Our findings indicate that ATP activates P2x receptors instead of P2y receptors to modify OHC electromotility. Extracellular Ca(++) is required for this modification.
Spinnler, C; Hedström, E; Li, H; de Lange, J; Nikulenkov, F; Teunisse, A F A S; Verlaan-de Vries, M; Grinkevich, V; Jochemsen, A G; Selivanova, G
2011-01-01
Inactivation of the p53 tumour suppressor, either by mutation or by overexpression of its inhibitors Hdm2 and HdmX is the most frequent event in cancer. Reactivation of p53 by targeting Hdm2 and HdmX is therefore a promising strategy for therapy. However, Hdm2 inhibitors do not prevent inhibition of p53 by HdmX, which impedes p53-mediated apoptosis. Here, we show that p53 reactivation by the small molecule RITA leads to efficient HdmX degradation in tumour cell lines of different origin and in xenograft tumours in vivo. Notably, HdmX degradation occurs selectively in cancer cells, but not in non-transformed cells. We identified the inhibition of the wild-type p53-induced phosphatase 1 (Wip1) as the major mechanism important for full engagement of p53 activity accomplished by restoration of the ataxia telangiectasia mutated (ATM) kinase-signalling cascade, which leads to HdmX degradation. In contrast to previously reported transactivation of Wip1 by p53, we observed p53-dependent repression of Wip1 expression, which disrupts the negative feedback loop conferred by Wip1. Our study reveals that the depletion of both HdmX and Wip1 potentiates cell death due to sustained activation of p53. Thus, RITA is an example of a p53-reactivating drug that not only blocks Hdm2, but also inhibits two important negative regulators of p53 – HdmX and Wip1, leading to efficient elimination of tumour cells. PMID:21546907
Spinnler, C; Hedström, E; Li, H; de Lange, J; Nikulenkov, F; Teunisse, A F A S; Verlaan-de Vries, M; Grinkevich, V; Jochemsen, A G; Selivanova, G
2011-11-01
Inactivation of the p53 tumour suppressor, either by mutation or by overexpression of its inhibitors Hdm2 and HdmX is the most frequent event in cancer. Reactivation of p53 by targeting Hdm2 and HdmX is therefore a promising strategy for therapy. However, Hdm2 inhibitors do not prevent inhibition of p53 by HdmX, which impedes p53-mediated apoptosis. Here, we show that p53 reactivation by the small molecule RITA leads to efficient HdmX degradation in tumour cell lines of different origin and in xenograft tumours in vivo. Notably, HdmX degradation occurs selectively in cancer cells, but not in non-transformed cells. We identified the inhibition of the wild-type p53-induced phosphatase 1 (Wip1) as the major mechanism important for full engagement of p53 activity accomplished by restoration of the ataxia telangiectasia mutated (ATM) kinase-signalling cascade, which leads to HdmX degradation. In contrast to previously reported transactivation of Wip1 by p53, we observed p53-dependent repression of Wip1 expression, which disrupts the negative feedback loop conferred by Wip1. Our study reveals that the depletion of both HdmX and Wip1 potentiates cell death due to sustained activation of p53. Thus, RITA is an example of a p53-reactivating drug that not only blocks Hdm2, but also inhibits two important negative regulators of p53 - HdmX and Wip1, leading to efficient elimination of tumour cells.
Purinergic regulation of cholangiocyte secretion: identification of a novel role for P2X receptors.
Doctor, R Brian; Matzakos, Thomas; McWilliams, Ryan; Johnson, Sylene; Feranchak, Andrew P; Fitz, J Gregory
2005-04-01
The P2X family of ligand-gated cation channels is comprised of seven distinct isoforms activated by binding of extracellular purines. Although originally identified in neurons, there is increasing evidence for expression of P2X receptors in epithelia as well. Because ATP is released by both hepatocytes and cholangiocytes, these studies were performed to evaluate whether P2X receptors are present in cholangiocytes and contribute to local regulation of biliary secretion and bile formation. RT-PCR of cDNA from cultured normal rat cholangiocytes detected transcripts for P2X receptors 2, 3, 4, and 6; products from P2X3 and P2X4 were robust and always detectable. In cholangiocyte lysates, P2X4 protein was readily detected, and immunohistochemical staining of intact rat liver revealed P2X4 protein concentrated in intrahepatic bile ducts. To assess the functional significance of P2X4, isolated Mz-ChA-1 cells were exposed to the P2X4-preferring agonist 2',3'-O-(4-benzoyl-benzoyl)-ATP (BzATP), which activated inward currents of -18.2 + 3.0 pA/pF. In cholangiocyte monolayers, BzATP but not P2X3 agonists elicited robust Cl(-) secretory responses (short-circuit current) when applied to either the apical (DeltaI(sc) 22.1 +/- 3.3 microA) or basolateral (18.5 +/- 1.6 microA) chamber, with half-maximal stimulation at approximately 10 microM and approximately 1 microM, respectively. The response to BzATP was unaffected by suramin (not significant) and was inhibited by Cu(2+) (P < 0.01). These studies provide molecular and biochemical evidence for the presence of P2X receptors in cholangiocytes. Functional studies indicate that P2X4 is likely the primary isoform involved, representing a novel and functionally important component of the purinergic signaling complex modulating biliary secretion.
Yang, Jihoon; Park, Keun Suk; Yoon, Jae Joon; Bae, Hong-Beom; Yoon, Myung Ha; Choi, Jeong Il
2016-07-13
For their analgesic and anti-arthritic effects, Aconitum species have been used in folk medicine in some East Asian countries. Although their analgesic effect is attributed to its action on voltage-dependent sodium channels, they also suppress purinergic receptor expression in dorsal root ganglion neurons in rats with neuropathic pain. In vitro study also demonstrated that the Aconitum suppresses ATP-induced P2X7 receptor (P2X7R)-mediated inflammatory responses in microglial cell lines. Herein, we examined the effect of intrathecal administration of thermally processed Aconitum jaluense (PA) on pain behavior, P2X7R expression and microglial activation in a rat spinal nerve ligation (SNL) model. Mechanical allodynia induced by L5 SNL in Sprague-Dawley rats was measured using the von Frey test to evaluate the effect of intrathecal injection of PA. Changes in the expression of P2X7R in the spinal cord were examined using RT-PCR and Western blot analysis. In addition, the effect of intrathecal PA on microglial activation was evaluated by immunofluorescence. Intrathecal PA attenuated mechanical allodynia in a dose-dependent manner showing both acute and chronic effects with 65 % of the maximal possible effect. The expression and production of spinal P2X7R was increased five days after SNL, but daily intrathecal PA injection significantly inhibited the increase to the level of naïve animals. Immunofluorescence of the spinal cord revealed a significant increase in P2X7R expression and activation of microglia in the dorsal horn, which was inhibited by intrathecal PA treatment. P2X7R co-localized with microglia marker, but not neurons. Intrathecal PA exerts anti-allodynic effects in neuropathic pain, possibly by suppressing P2X7R production and expression as well as reducing microglial activation in the spinal cord.
MacInnis, Morgan C; McDonald, Robert; Ferguson, Michael J; Tobisch, Sven; Turculet, Laura
2011-08-31
Unprecedented diamagnetic, four-coordinate, formally 14-electron (Cy-PSiP)RuX (Cy-PSiP = [κ(3)-(2-R(2)PC(6)H(4))(2)SiMe](-); X = amido, alkoxo) complexes that do not require agostic stabilization and that adopt a highly unusual trigonal pyramidal coordination geometry are reported. The tertiary silane [(2-Cy(2)PC(6)H(4))(2)SiMe]H ((Cy-PSiP)H) reacted with 0.5 [(p-cymene)RuCl(2)](2) in the presence of Et(3)N and PCy(3) to afford [(Cy-PSiP)RuCl](2) (1) in 74% yield. Treatment of 1 with KO(t)Bu led to the formation of (Cy-PSiP)RuO(t)Bu (2, 97% yield), which was crystallographically characterized and shown to adopt a trigonal pyramidal coordination geometry in the solid state. Treatment of 1 with NaN(SiMe(3))(2) led to the formation of (Cy-PSiP)RuN(SiMe(3))(2) (3, 70% yield), which was also found to adopt a trigonal pyramidal coordination geometry in the solid state. The related anilido complexes (Cy-PSiP)RuNH(2,6-R(2)C(6)H(3)) (4, R = H; 5, R = Me) were also prepared in >90% yields by treating 1 with LiNH(2,6-R(2)C(6)H(3)) (R = H, Me) reagents. The solid state structure of 5 indicates a monomeric trigonal pyramidal complex that features a C-H agostic interaction. Complexes 2 and 3 were found to react readily with 1 equiv of H(2)O to form the dimeric hydroxo-bridged complex [(Cy-PSiP)RuOH](2) (6, 94% yield), which was crystallographically characterized. Complexes 2 and 3 also reacted with 1 equiv of PhOH to form the new 18-electron η(5)-oxocyclohexadienyl complex (Cy-PSiP)Ru(η(5)-C(6)H(5)O) (7, 84% yield). Both amido and alkoxo (Cy-PSiP)RuX complexes reacted with H(3)B·NHRR' reagents to form bis(σ-B-H) complexes of the type (Cy-PSiP)RuH(η(2):η(2)-H(2)BNRR') (8, R = R' = H; 9, R = R' = Me; 10, R = H, R' = (t)Bu), which illustrates that such four-coordinate (Cy-PSiP)RuX (X = amido, alkoxo) complexes are able to undergo multiple E-H (E = main group element) bond activation steps. Computational methods were used to investigate structurally related PCP, PPP, PNP, and PSiP four-coordinate Ru complexes and confirmed the key role of the strongly σ-donating silyl group of the PSiP ligand set in enforcing the unusual trigonal pyramidal coordination geometry featured in complexes 2-5, thus substantiating a new strategy for the synthesis of low-coordinate Ru species. The mechanism of the activation of ammonia-borane by such low-coordinate (R-PSiP)RuX (X = amido, alkoxo) species was also studied computationally and was determined to proceed most likely in a stepwise fashion via intramolecular deprotonation of ammonia and subsequent borane B-H bond oxidative addition steps.
Manipulation of P2X Receptor Activities by Light Stimulation
Kim, Sang Seong
2016-01-01
P2X receptors are involved in amplification of inflammatory responses in peripheral nociceptive fibers and in mediating pain-related signals to the CNS. Control of P2X activation has significant importance in managing unwanted hypersensitive neuron responses. To overcome the limitations of chemical ligand treatment, optical stimulation methods of optogenetics and photoswitching achieve efficient control of P2X activation while allowing specificity at the target site and convenient stimulation by light illumination. There are many potential applications for photosensitive elements, such as improved uncaging methods, photoisomerizable ligands, photoswitches, and gold nanoparticles. Each technique has both advantages and downsides, and techniques are selected according to the purpose of the application. Technical advances not only provide novel approaches to manage inflammation or pain mediated by P2X receptors but also suggest a similar approach for controlling other ion channels. PMID:26884649
Asatryan, Liana; Khoja, Sheraz; Rodgers, Kathleen E; Alkana, Ronald L; Tsukamoto, Hidekatsu; Davies, Daryl L.
2015-01-01
The present investigation tested the role of ATP-activated P2X7 receptors (P2X7Rs) in alcohol-induced brain damage using a model that combines intragastric (iG) ethanol feeding and high fat diet in C57BL/6J mice (Hybrid). The Hybrid paradigm caused increased levels of pro-inflammatory markers, changes in microglia and astrocytes, reduced levels of neuronal marker NeuN and increased P2X7R expression in ethanol-sensitive brain regions. Observed changes in P2X7R and NeuN expression were more pronounced in Hybrid paradigm with inclusion of additional weekly binges. In addition, high fat diet during Hybrid exposure aggravated the increase in P2X7R expression and activation of glial cells. PMID:26198936
Allosteric modulation of ATP-gated P2X receptor channels
Coddou, Claudio; Stojilkovic, Stanko S.; Huidobro-Toro, J. Pablo
2013-01-01
Seven mammalian purinergic receptor subunits, denoted P2X1 to P2X7, and several spliced forms of these subunits have been cloned. When heterologously expressed, these cDNAs encode ATP-gated non-selective cation channels organized as trimers. All activated receptors produce cell depolarization and promote Ca2+ influx through their pores and indirectly by activating voltage-gated calcium channels. However, the biophysical and pharmacological properties of these receptors differ considerably, and the majority of these subunits are also capable of forming heterotrimers with other members of the P2X receptor family, which confers further different properties. These channels have three ATP binding domains, presumably located between neighboring subunits, and occupancy of at least two binding sites is needed for their activation. In addition to the orthosteric binding sites for ATP, these receptors have additional allosteric sites that modulate the agonist action at receptors, including sites for trace metals, protons, neurosteroids, reactive oxygen species and phosphoinositides. The allosteric regulation of P2X receptors is frequently receptor-specific and could be a useful tool to identify P2X members in native tissues and their roles in signaling. The focus of this review is on common and receptor-specific allosteric modulation of P2X receptors and the molecular base accounting for allosteric binding sites. PMID:21639805
1,4-Naphthoquinones potently inhibiting P2X7 receptor activity.
Faria, R X; Oliveira, F H; Salles, J P; Oliveira, A S; von Ranke, N L; Bello, M L; Rodrigues, C R; Castro, H C; Louvis, A R; Martins, D L; Ferreira, V F
2018-01-01
P2X7 receptor (P2X7R) is an ATP-gated ion-channel with potential therapeutic applications. In this study, we prepared and searched a series of 1,4-naphthoquinones derivatives to evaluate their antagonistic effect on both human and murine P2X7 receptors. We explored the structure-activity relationship and binding mode of the most active compounds using a molecular modeling approach. Biological analysis of this series (eight analogues and two compounds) revealed significant in vitro inhibition against both human and murine P2X7R. Further characterization revealed that AN-03 and AN-04 had greater potency than BBG and A740003 in inhibiting dye uptake, IL-1β release, and carrageenan-induced paw edema in vivo. Moreover, we used electrophysiology and molecular docking analysis for characterizing AN-03 and AN-04 action mechanism. These results suggest 1,4-napthoquinones, mainly AN-04, as potential leads to design new P2X7R blockers and anti-inflammatory drugs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Figliuolo, Vanessa R; Savio, Luiz Eduardo Baggio; Safya, Hanaa; Nanini, Hayandra; Bernardazzi, Cláudio; Abalo, Alessandra; de Souza, Heitor S P; Kanellopoulos, Jean; Bobé, Pierre; Coutinho, Cláudia M L M; Coutinho-Silva, Robson
2017-06-01
P2X7 receptor activation contributes to inflammation development in different pathologies. We previously reported that the P2X7 receptor is over-expressed in the gut mucosa of patients with inflammatory bowel disease, and that P2X7 inhibition protects against chemically induced colitis. Here, we investigated in detail the role of the P2X7 receptor in inflammatory bowel disease development, by treating P2X7 knockout (KO) and WT mice with two different (and established) colitis inductors. P2X7 KO mice were protected against gut inflammation induced by 2,4,6-trinitrobenzenesulfonic acid or oxazolone, with no weight loss or gut histological alterations after treatment. P2X7 receptor knockout induced regulatory T cell accumulation in the colon, as evaluated by qRT-PCR for FoxP3 expression and immunostaining for CD90/CD45RB low . Flow cytometry analysis of mesenteric lymph node cells showed that P2X7 activation (by ATP) triggered regulatory T cell death. In addition, such cells from P2X7 KO mice expressed more CD103, suggesting increased migration of regulatory T cells to the colon (relative to the WT). Our results show that the P2X7 has a key role during inflammation development in inflammatory bowel disease, by triggering the death and retention in the mesenteric lymph nodes of regulatory T cells that would otherwise promote immune system tolerance in the gut. Copyright © 2017 Elsevier B.V. All rights reserved.
Lack of the purinergic receptor P2X7 results in resistance to contact hypersensitivity
Weber, Felix C.; Esser, Philipp R.; Müller, Tobias; Ganesan, Jayanthi; Pellegatti, Patrizia; Simon, Markus M.; Zeiser, Robert; Idzko, Marco; Jakob, Thilo
2010-01-01
Sensitization to contact allergens requires activation of the innate immune system by endogenous danger signals. However, the mechanisms through which contact allergens activate innate signaling pathways are incompletely understood. In this study, we demonstrate that mice lacking the adenosine triphosphate (ATP) receptor P2X7 are resistant to contact hypersensitivity (CHS). P2X7-deficient dendritic cells fail to induce sensitization to contact allergens and do not release IL-1β in response to lipopolysaccharide (LPS) and ATP. These defects are restored by pretreatment with LPS and alum in an NLRP3- and ASC-dependent manner. Whereas pretreatment of wild-type mice with P2X7 antagonists, the ATP-degrading enzyme apyrase or IL-1 receptor antagonist, prevents CHS, IL-1β injection restores CHS in P2X7-deficient mice. Thus, P2X7 is a crucial receptor for extracellular ATP released in skin in response to contact allergens. The lack of P2X7 triggering prevents IL-1β release, which is an essential step in the sensitization process. Interference with P2X7 signaling may be a promising strategy for the prevention of allergic contact dermatitis. PMID:21059855
Liu, Dawei; Genetos, Damian C.; Shao, Ying; Geist, Derik J.; Li, Jiliang; Ke, Hua Zhu; Turner, Charles H.; Duncan, Randall L.
2010-01-01
To determine the role of Ca2+ signaling in activation of the Mitogen-Activated Protein Kinase (MAPK) pathway, we subjected MC3T3-E1 pre-osteoblastic cells to inhibitors of Ca2+ signaling during application of fluid shear stress (FSS). FSS only activated ERK1/2, rapidly inducing phosphorylation within 5 minutes of the onset of shear. Phosphorylation of ERK1/2 (pERK1/2) was significantly reduced when Ca2+i was chelated with BAPTA or when Ca2+ was removed from the flow media. Inhibition of both the L-type voltage-sensitive Ca2+ channel and the mechanosensitive cation-selective channel blocked FSS-induced pERK1/2. Inhibition of phospholipase C with U73122 significantly reduced pERK1/2. This inhibition did not result from block of intracellular Ca2+ release, but a loss of PKC activation. Recent data suggests a role of ATP release and purinergic receptor activation in mechanotransduction. Apyrase-mediated hydrolysis of extracellular ATP completely blocked FSS-induced phosphorylation of ERK1/2, while addition of exogenous ATP to static cells mimicked the effects of FSS on pERK1/2. Two P2 receptors, P2Y2 and P2X7, have been associated with the anabolic responses of bone to mechanical loading. Using both iRNA techniques and primary osteoblasts isolated from P2X7 knockout mice, we found that the P2X7, but not the P2Y2, purinergic receptor was involved in ERK1/2 activation under FSS. These data suggest that FSS-induced ERK1/2 phosphorylation requires Ca2+-dependent ATP release, however both increased Ca2+i and PKC activation are needed for complete activation. Further, this ATP-dependent ERK1/2 phosphorylation is mediated through P2X7, but not P2Y2, purinergic receptors. PMID:18291742
ATP excites mouse vomeronasal sensory neurons through activation of P2X receptors.
Vick, J S; Delay, R J
2012-09-18
Purinergic signaling through activation of P2X and P2Y receptors is critically important in the chemical senses. In the mouse main olfactory epithelium (MOE), adenosine 5'-triphosphate (ATP) elicits an increase in intracellular calcium ([Ca(2+)](I)) and reduces the responsiveness of olfactory sensory neurons to odorants through activation of P2X and P2Y receptors. We investigated the role of purinergic signaling in vomeronasal sensory neuron (VSN)s from the mouse vomeronasal organ (VNO), an olfactory organ distinct from the MOE that responds to many conspecific chemical cues. Using a combination of calcium imaging and patch-clamp electrophysiology with isolated VSNs, we demonstrated that ATP elicits an increase in [Ca(2+)](I) and an inward current with similar EC(50)s. Neither adenosine nor the P2Y receptor ligands adenosine 5'-diphosphate, uridine 5'-triphosphate, and uridine-5'-disphosphate could mimic either effect of ATP. Moreover, the increase in [Ca(2+)](I) required the presence of extracellular calcium and the inward current elicited by ATP was partially blocked by the P2X receptor antagonists pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate and 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate. Consistent with the activation of P2X receptors, we detected gene expression of the P2X1 and 3 receptors in the VNO by Reverse transcription polymerase chain reaction (RT-PCR). When co-delivered with dilute urine, a natural stimulus, ATP significantly increased the inward current above that elicited by dilute urine or ATP alone. Mechanical stimulation of the VNO induced the release of ATP, detected by luciferin-luciferase luminometry, and this release of ATP was completely abolished in the presence of the connexin/pannexin hemichannel blocker, carbenoxolone. We conclude that the release of ATP could occur during the activity of the vasomotor pump that facilitates the movement of chemicals into the VNO for detection by VSNs. This mechanism could lead to a global increase in excitability and the chemosensory response in VSNs through activation of P2X receptors. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Patsis, P. A.; Katsanikas, M.
2014-12-01
The investigation of the phase-space properties of structures encountered in a dynamical system is essential for understanding their formation and enhancement. In this paper, we explore the phase space in energy intervals where we have orbits that act as building blocks for boxy-peanut (b/p) and `X-shaped' structures in rotating potentials of galactic type. We underline the significance of the rotational tori around the 3D families x1v1 and x1v1' that have been bifurcated from the planar x1 family. These tori play a multiple role: (i) they belong to quasi-periodic orbits that reinforce the local density. (ii) They act as obstacles for the diffusion of chaotic orbits and (iii) they attract a large number of chaotic orbits that become sticky to them. There are also bifurcations of unstable families (x1v2, x1v2'). Their unstable asymptotic curves wind around the x1v1 and x1v1' tori generating orbits with hybrid morphologies between that of x1v1 and x1v2. In addition, a new family of multiplicity 2, called x1mul2, is found to be important for the peanut construction. This family produces stickiness phenomena in the critical area of the radial and vertical inner Lindblad resonances (ILRs) and reinforces b/p bulges. Our work shows also that there are peanut-supporting orbits before the vertical ILR. Non-periodic orbits associated with the x1 family secure this contribution as well as the support of b/p structures at several other energy intervals. Non-linear phenomena associated with complex instability of single and double multiplicity families of periodic orbits show that these structures are not interrupted in regions where such orbits prevail. Depending on the main mechanism behind their formation, boxy bulges exhibit different morphological features. Finally, our analysis indicates that `X' features shaped by orbits in the neighbourhood of x1v1 and x1v1' periodic orbits are pronounced only in side-on or nearly end-on views of the bar.
Abdi, Muna H; Beswick, Paul J; Billinton, Andy; Chambers, Laura J; Charlton, Andrew; Collins, Sue D; Collis, Katharine L; Dean, David K; Fonfria, Elena; Gleave, Robert J; Lejeune, Clarisse L; Livermore, David G; Medhurst, Stephen J; Michel, Anton D; Moses, Andrew P; Page, Lee; Patel, Sadhana; Roman, Shilina A; Senger, Stefan; Slingsby, Brian; Steadman, Jon G A; Stevens, Alexander J; Walter, Daryl S
2010-09-01
A computational lead-hopping exercise identified compound 4 as a structurally distinct P2X(7) receptor antagonist. Structure-activity relationships (SAR) of a series of pyroglutamic acid amide analogues of 4 were investigated and compound 31 was identified as a potent P2X(7) antagonist with excellent in vivo activity in animal models of pain, and a profile suitable for progression to clinical studies. Copyright 2010 Elsevier Ltd. All rights reserved.
Apical P2XR contribute to [Ca2+]i signaling and Isc in mouse renal MCD.
Li, Liuzhe; Lynch, I Jeanette; Zheng, Wencui; Cash, Melanie N; Teng, Xueling; Wingo, Charles S; Verlander, Jill W; Xia, Shen-Ling
2007-08-03
We examined P2X receptor expression and distribution in the mouse collecting duct (CD) and their functional role in Ca(2+) signaling. Both P2X(1) and P2X(4) were detected by RT-PCR and Western blot. Immunohistochemistry demonstrated apical P2X(1) and P2X(4) immunoreactivity in principal cells in the outer medullary CD (OMCD) and inner medullary CD (IMCD). Luminal ATP induced an increase in Ca(2+) signaling in native medullary CD (MCD) as measured by fluorescence imaging. ATP also induced an increase in Ca(2+) signaling in MCD cells grown in primary culture but not in the presence of P2XR antagonist PPNDS. Short circuit current (I(sc)) measurement with mouse IMCD cells showed that P2XR agonist BzATP induced a larger I(sc) than did P2YR agonist UTP in the apical membrane. Our data reveal for the first time that P2X(1) and P2X(4) are cell-specific with prominent immunoreactivity in the apical area of MCD cells. The finding that P2XR blockade inhibits ATP-induced Ca(2+) signaling suggests that activation of P2XR is a key step in Ca(2+)-dependent purinergic signaling. The result that activation of P2XR produces large I(sc) indicates the necessity of P2XR in renal CD ion transport.
Koshimizu, Taka-aki; Ueno, Susumu; Tanoue, Akito; Yanagihara, Nobuyuki; Stojilkovic, Stanko S; Tsujimoto, Gozoh
2002-12-06
P2X purinergic receptors (P2XRs) differ among themselves with respect to their ligand preferences and channel kinetics during activation, desensitization, and recovery. However, the contributions of distinct receptor subdomains to the subtype-specific behavior have been incompletely characterized. Here we show that homomeric receptors having the extracellular domain of the P2X(3) subunit in the P2X(2a)-based backbone (P2X(2a)/X(3)ex) mimicked two intrinsic functions of P2X(3)R, sensitivity to alphabeta-methylene ATP and ecto-ATPase-dependent recovery from endogenous desensitization; these two functions were localized to the N- and C-terminal halves of the P2X(3) extracellular loop, respectively. The chimeric P2X(2a)R/X(3)ex receptors also desensitized with accelerated rates compared with native P2X(2a)R, and the introduction of P2X(2) C-terminal splicing into the chimeric subunit (P2X(2b)/X(3)ex) further increased the rate of desensitization. Physical and functional heteromerization of native P2X(2a) and P2X(2b) subunits was also demonstrated. In heteromeric receptors, the ectodomain of P2X(3) was a structural determinant for ligand selectivity and recovery from desensitization, and the C terminus of P2X(2) was an important factor for the desensitization rate. Furthermore, [gamma-(32)P]8-azido ATP, a photoreactive agonist, was effectively cross-linked to P2X(3) subunit in homomeric receptors but not in heteromeric P2X(2) + P2X(3)Rs. These results indicate that heteromeric receptors formed by distinct P2XR subunits develop new functions resulting from integrative effects of the participating extracellular and C-terminal subdomains.
Purinergic P2X receptors: structural models and analysis of ligand-target interaction.
Dal Ben, Diego; Buccioni, Michela; Lambertucci, Catia; Marucci, Gabriella; Thomas, Ajiroghene; Volpini, Rosaria
2015-01-07
The purinergic P2X receptors are ligand-gated cation channels activated by the endogenous ligand ATP. They assemble as homo- or heterotrimers from seven cloned subtypes (P2X1-7) and all trimer subunits present a common topology consisting in intracellular N- and C- termini, two transmembrane domains and a large extracellular domain. These membrane proteins are present in virtually all mammalian tissues and regulate a large variety of responses in physio- and pathological conditions. The development of ligands that selectively activate or block specific P2X receptor subtypes hence represents a promising strategy to obtain novel pharmacological tools for the treatment of pain, cancer, inflammation, and neurological, cardiovascular, and endocrine diseases. The publication of the crystal structures of zebrafish P2X4 receptor in inactive and ATP-bound active forms provided structural data for the analysis of the receptor structure, the interpretation of mutagenesis data, and the depiction of ligand binding and receptor activation mechanism. In addition, the availability of ATP-competitive ligands presenting selectivity for P2X receptor subtypes supports the design of new potent and selective ligands with possibly improved pharmacokinetic profiles, with the final aim to obtain new drugs. This study describes molecular modelling studies performed to develop structural models of the human and rat P2X receptors in inactive and active states. These models allowed to analyse the role of some non-conserved residues at ATP binding site and to study the receptor interaction with some non-specific or subtype selective agonists and antagonists. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Hu, Jinsong; Van Valckenborgh, Els; Xu, Dehui; Menu, Eline; De Raeve, Hendrik; De Bruyne, Elke; De Bryune, Elke; Xu, Song; Van Camp, Ben; Handisides, Damian; Hart, Charles P; Vanderkerken, Karin
2013-09-01
Recently, we showed that hypoxia is a critical microenvironmental factor in multiple myeloma, and that the hypoxia-activated prodrug TH-302 selectively targets hypoxic multiple myeloma cells and improves multiple disease parameters in vivo. To explore approaches for sensitizing multiple myeloma cells to TH-302, we evaluated in this study the antitumor effect of TH-302 in combination with the clinically used proteasome inhibitor bortezomib. First, we show that TH-302 and bortezomib synergistically induce apoptosis in multiple myeloma cell lines in vitro. Second, we confirm that this synergism is related to the activation of caspase cascades and is mediated by changes of Bcl-2 family proteins. The combination treatment induces enhanced cleavage of caspase-3/8/9 and PARP, and therefore triggers apoptosis and enhances the cleavage of proapoptotic BH3-only protein BAD and BID as well as the antiapoptotic protein Mcl-1. In particular, TH-302 can abrogate the accumulation of antiapoptotic Mcl-1 induced by bortezomib, and decreases the expression of the prosurvival proteins Bcl-2 and Bcl-xL. Furthermore, we found that the induction of the proapoptotic BH3-only proteins PUMA (p53-upregulated modulator of apoptosis) and NOXA is associated with this synergism. In response to the genotoxic and endoplasmic reticulum stresses by TH-302 and bortezomib, the expression of PUMA and NOXA were upregulated in p53-dependent and -independent manners. Finally, in the murine 5T33MMvv model, we showed that the combination of TH-302 and bortezomib can improve multiple disease parameters and significantly prolong the survival of diseased mice. In conclusion, our studies provide a rationale for clinical evaluation of the combination of TH-302 and bortezomib in patients with multiple myeloma.
DIRECT MODULATION OF P2X1 RECEPTOR-CHANNELS BY THE LIPID PHOSPHATIDYLINOSITOL 4,5-BISPHOSPHATE
Bernier, Louis-Philippe; Ase, Ariel R.; Tong, Xinkang; Hamel, Edith; Blais, Dominique; Zhao, Qi; Logothetis, Diomedes E.; Séguéla, Philippe
2012-01-01
The P2X1 receptor-channels activated by extracellular ATP contribute to the neurogenic component of smooth muscle contraction in vascular beds and genito-urinary tracts of rodents and humans. In the present study, we investigated the interactions of plasma membrane phosphoinositides with P2X1 ATP receptors and their physiological consequences. In an isolated rat mesenteric artery preparation, we observed a strong inhibition of P2X1-mediated constrictive responses by depletion of PI(4,5)P2 with the PI4-kinase inhibitor wortmannin. Using the Xenopus oocyte expression system, we provided electrophysiological evidence that lowering PI(4,5)P2 levels with wortmannin significantly decreases P2X1 currents amplitude and recovery. Previously reported modulation of recovery of desensitized P2X1 currents by phospholipase C-coupled 5-HT2A metabotropic receptors was also found wortmannin-sensitive. Treatment with wortmannin alters the kinetics of P2X1 activation and inactivation without changing its sensitivity to ATP. The functional impact of wortmannin on P2X1 currents could be reversed by addition of intracellular PI(4,5)P2, but not PI(3,4,5)P3. and direct application of PI(4,5)P2 to excised inside-out macropatches rescued P2X1 currents from rundown. We showed that the proximal region of the intracellular C-terminus of P2X1 subunit directly binds to PI(4,5)P2 and other anionic phospholipids, and we identified the basic residue K364 as a critical determinant for phospholipid binding and sensitivity to wortmannin. Overall, these results indicate that PI(4,5)P2 plays a key role in the expression of full native and heterologous P2X1 function by regulating the amplitude, recovery and kinetics of ionotropic ATP responses through direct receptor-lipid interactions. PMID:18523136
Viatchenko-Karpinski, Viacheslav; Novosolova, Natalia; Ishchenko, Yevheniia; Azhar, M Ameruddin; Wright, Michael; Tsintsadze, Vera; Kamal, Ahmed; Burnashev, Nail; Miller, Andrew D; Voitenko, Nana; Giniatullin, Rashid; Lozovaya, Natalia
2016-01-01
A growing body of evidence suggests that ATP-gated P2X3 receptors (P2X3Rs) are implicated in chronic pain. We address the possibility that stable, synthetic analogs of diadenosine tetraphosphate (Ap4A) might induce antinociceptive effects by inhibiting P2X3Rs in peripheral sensory neurons. The effects of two stable, synthetic Ap4A analogs (AppNHppA and AppCH2ppA) are studied firstly in vitro on HEK293 cells expressing recombinant rat P2XRs (P2X2Rs, P2X3Rs, P2X4Rs, and P2X7Rs) and then using native rat brain cells (cultured trigeminal, nodose, or dorsal root ganglion neurons). Thereafter, the action of these stable, synthetic Ap4A analogs on inflammatory pain and thermal hyperalgesia is studied through the measurement of antinociceptive effects in formalin and Hargreaves plantar tests in rats in vivo. In vitro inhibition of rat P2X3Rs (not P2X2Rs, P2X4Rs nor P2X7Rs) is shown to take place mediated by high-affinity desensitization (at low concentrations; IC50 values 100-250 nM) giving way to only weak partial agonism at much higher concentrations (EC50 values ≥ 10 µM). Similar inhibitory activity is observed with human recombinant P2X3Rs. The inhibitory effects of AppNHppA on nodose, dorsal root, and trigeminal neuron whole cell currents suggest that stable, synthetic Ap4A analogs inhibit homomeric P2X3Rs in preference to heteromeric P2X2/3Rs. Both Ap4A analogs mediate clear inhibition of pain responses in both in vivo inflammation models. Stable, synthetic Ap4A analogs (AppNHppA and AppCH2ppA) being weak partial agonist provoke potent high-affinity desensitization-mediated inhibition of homomeric P2X3Rs at low concentrations. Therefore, both analogs demonstrate clear potential as potent analgesic agents for use in the management of chronic pain associated with heightened P2X3R activation. © The Author(s) 2016.
Viatchenko-Karpinski, Viacheslav; Novosolova, Natalia; Ishchenko, Yevheniia; Azhar, M Ameruddin; Wright, Michael; Tsintsadze, Vera; Kamal, Ahmed; Burnashev, Nail; Voitenko, Nana; Giniatullin, Rashid; Lozovaya, Natalia
2016-01-01
Background A growing body of evidence suggests that ATP-gated P2X3 receptors (P2X3Rs) are implicated in chronic pain. We address the possibility that stable, synthetic analogs of diadenosine tetraphosphate (Ap4A) might induce antinociceptive effects by inhibiting P2X3Rs in peripheral sensory neurons. Results The effects of two stable, synthetic Ap4A analogs (AppNHppA and AppCH2ppA) are studied firstly in vitro on HEK293 cells expressing recombinant rat P2XRs (P2X2Rs, P2X3Rs, P2X4Rs, and P2X7Rs) and then using native rat brain cells (cultured trigeminal, nodose, or dorsal root ganglion neurons). Thereafter, the action of these stable, synthetic Ap4A analogs on inflammatory pain and thermal hyperalgesia is studied through the measurement of antinociceptive effects in formalin and Hargreaves plantar tests in rats in vivo. In vitro inhibition of rat P2X3Rs (not P2X2Rs, P2X4Rs nor P2X7Rs) is shown to take place mediated by high-affinity desensitization (at low concentrations; IC50 values 100–250 nM) giving way to only weak partial agonism at much higher concentrations (EC50 values ≥ 10 µM). Similar inhibitory activity is observed with human recombinant P2X3Rs. The inhibitory effects of AppNHppA on nodose, dorsal root, and trigeminal neuron whole cell currents suggest that stable, synthetic Ap4A analogs inhibit homomeric P2X3Rs in preference to heteromeric P2X2/3Rs. Both Ap4A analogs mediate clear inhibition of pain responses in both in vivo inflammation models. Conclusions Stable, synthetic Ap4A analogs (AppNHppA and AppCH2ppA) being weak partial agonist provoke potent high-affinity desensitization-mediated inhibition of homomeric P2X3Rs at low concentrations. Therefore, both analogs demonstrate clear potential as potent analgesic agents for use in the management of chronic pain associated with heightened P2X3R activation. PMID:27030723
Algorithms to evaluate multiple sums for loop computations
NASA Astrophysics Data System (ADS)
Anzai, C.; Sumino, Y.
2013-03-01
We present algorithms to evaluate two types of multiple sums, which appear in higher-order loop computations. We consider expansions of a generalized hyper-geometric-type sums, sum _{n_1,\\cdots,n_N} Γ ({a}_1\\cdot {n}+c_1) Γ ({a}_2\\cdot {n}+c_2) \\cdots Γ ({a}_P\\cdot {n}+c_P) / Γ ({b_1\\cdot {n}+d_1) Γ ({b}_2\\cdot {n}+d_2) \\cdots Γ ({b}_Q\\cdot {n}+d_Q) } x_1^{n_1}\\cdots x_N^{n_N} with {a}_i \\cdot {n} = sum _{j=1}^N a_{ij}n_j, etc., in a small parameter ɛ around rational values of ci,di's. Type I sum corresponds to the case where, in the limit ɛ → 0, the summand reduces to a rational function of nj's times x_1^{n_1}\\cdots x_N^{n_N}; ci,di's can depend on an external integer index. Type II sum is a double sum (N = 2), where ci, di's are half-integers or integers as ɛ → 0 and xi = 1; we consider some specific cases where at most six Γ functions remain in the limit ɛ → 0. The algorithms enable evaluations of arbitrary expansion coefficients in ɛ in terms of Z-sums and multiple polylogarithms (generalized multiple zeta values). We also present applications of these algorithms. In particular, Type I sums can be used to generate a new class of relations among generalized multiple zeta values. We provide a Mathematica package, in which these algorithms are implemented.
NASA Astrophysics Data System (ADS)
Cipolla, Sam J.; Mildebrath, Mark E.
1983-12-01
The density of atoms in a solid target fosters a multiple-collision mechanism that leads to the production of an equilibrium fraction of L-shell vacancies in an incident heavy ion. It is then possiblein a subsequent ion-atom collision in the solid for an L-vacancy to be transferred to the K-shell of a target atom via rotational coupling of the 2p π-2p σ molecular orbitals formed in the ion-atom quasimolecule. The vacancy-transfer cross section and the equilibrium fraction and lifetime of the vacancies can be found by using an appropriate multiple-collision analysis of the characteristic target and projectile X-rays. Results will be presented for 160-380 keV Ar 2+ incident of targets of Mg, Al, and Si.
Chatterjee, Saurabh; Rana, Ritu; Corbett, Jean; Kadiiska, Maria B.; Goldstein, Joyce; Mason, Ronald P.
2012-01-01
While some studies show that carbon tetrachloride-mediated metabolic oxidative stress exacerbates steatohepatitic-like lesions in obese mice, the redox mechanisms that trigger the innate immune system and accentuate the inflammatory cascade remain unclear. Here we have explored the role of the purinergic receptor P2X7-NADPH oxidase axis as a primary event in recognizing the heightened release of extracellular ATP from CCl4-treated hepatocytes and generating redoxmediated Kupffer cell activation in obese mice. We found that an underlying condition of obesity led to the formation of protein radicals and post-translational nitration, primarily in Kupffer cells, at 24 h post-CCl4 administration. The free radical-mediated oxidation of cellular macromolecules, which was NADPH oxidase- and P2X7 receptor-dependent, correlated well with the release of TNF- α and MCP-2 from Kupffer cells. The Kupffer cells in CCl4-treated mice exhibited increased expression of MHC Class II proteins and showed an activated phenotype. Increased expression of MHC Class II was inhibited by the NADPH oxidase inhibitor apocynin , P2X7 receptor antagonist A438709 hydrochloride, and genetic deletions of the NADPH oxidase p47 phox subunit or the P2X7 receptor. The P2X7 receptor acted upstream of NADPH oxidase activation by up-regulating the expression of the p47 phox subunit and p47 phox binding to the membrane subunit, gp91 phox. We conclude that the P2X7 receptor is a primary mediator of oxidative stress-induced exacerbation of inflammatory liver injury in obese mice via NADPH oxidase-dependent mechanisms. PMID:22343416
Endosome-mediated retrograde axonal transport of P2X3 receptor signals in primary sensory neurons
Chen, Xu-Qiao; Wang, Bin; Wu, Chengbiao; Pan, Jin; Yuan, Bo; Su, Yuan-Yuan; Jiang, Xing-Yu; Zhang, Xu; Bao, Lan
2012-01-01
Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals. However, the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood. Here, we report that the signals of the purinergic (P)2X3 receptor, an ATP-gated ion channel, are retrogradely transported in dorsal root ganglion (DRG) neuron axons. We found that Rab5, a small GTPase, controls the early sorting of P2X3 receptors into endosomes, while Rab7 mediates the fast retrograde transport of P2X3 receptors. Intraplantar injection and axonal application into the microfluidic chamber of α, β-methylene-ATP (α, β-MeATP), a P2X selective agonist, enhanced the endocytosis and retrograde transport of P2X3 receptors. The α, β-MeATP-induced Ca2+ influx activated a pathway comprised of protein kinase C, rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK), which associated with endocytic P2X3 receptors to form signaling endosomes. Disruption of the lipid rafts abolished the α, β-MeATP-induced ERK phosphorylation, endocytosis and retrograde transport of P2X3 receptors. Furthermore, treatment of peripheral axons with α, β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability. Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α, β-MeATP-induced retrograde signals. These results indicate that P2X3 receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels. PMID:22157653
Endosome-mediated retrograde axonal transport of P2X3 receptor signals in primary sensory neurons.
Chen, Xu-Qiao; Wang, Bin; Wu, Chengbiao; Pan, Jin; Yuan, Bo; Su, Yuan-Yuan; Jiang, Xing-Yu; Zhang, Xu; Bao, Lan
2012-04-01
Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals. However, the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood. Here, we report that the signals of the purinergic (P)2X(3) receptor, an ATP-gated ion channel, are retrogradely transported in dorsal root ganglion (DRG) neuron axons. We found that Rab5, a small GTPase, controls the early sorting of P2X(3) receptors into endosomes, while Rab7 mediates the fast retrograde transport of P2X(3) receptors. Intraplantar injection and axonal application into the microfluidic chamber of α, β-methylene-ATP (α, β-MeATP), a P2X selective agonist, enhanced the endocytosis and retrograde transport of P2X(3) receptors. The α, β-MeATP-induced Ca(2+) influx activated a pathway comprised of protein kinase C, rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK), which associated with endocytic P2X(3) receptors to form signaling endosomes. Disruption of the lipid rafts abolished the α, β-MeATP-induced ERK phosphorylation, endocytosis and retrograde transport of P2X(3) receptors. Furthermore, treatment of peripheral axons with α, β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability. Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α, β-MeATP-induced retrograde signals. These results indicate that P2X(3) receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels.
Teixeira, Juliana Maia; Dias, Elayne Vieira; Parada, Carlos Amílcar; Tambeli, Cláudia Herrera
2017-02-01
Synovitis is a key factor in joint disease pathophysiology, which affects a greater proportion of women than men. P2X7 receptor activation contributes to arthritis, but whether it plays a role in articular inflammatory pain in a sex-dependent manner is unknown. We investigated whether the P2X7 receptor blockade in the knee joint of male and female rats reduces the articular hyperalgesia and inflammation induced by a carrageenan knee joint synovitis model. Articular hyperalgesia was quantified using the rat knee joint incapacitation test and the knee joint inflammation, characterized by the concentration of cytokines tumor necrosis factor-α, interleukin-1β, interleukin-6, and cytokine-induced neutrophil chemoattractant-1, and by neutrophil migration, was quantified using enzyme-linked immunosorbent assay and by myeloperoxidase enzyme activity measurement, respectively. P2X7 receptor blockade by the articular coadministration of selective P2X7 receptor antagonist A740003 with carrageenan significantly reduced articular hyperalgesia, pro-inflammatory cytokine concentrations, and myeloperoxidase activity induced by carrageenan injection into the knee joint of male and estrus female rats. However, a lower dose of P2X7 receptor antagonist was sufficient to significantly induce the antihyperalgesic and anti-inflammatory effects in estrus female but not in male rats. These results suggest that P2X7 receptor activation by endogenous adenosine 5'-triphosphate is essential to articular hyperalgesia and inflammation development in the knee joint of male and female rats. However, female rats are more responsive than male rats to the antihyperalgesic and anti-inflammatory effects induced by P2X7 receptor blockade. P2X7 receptors could be promising therapeutic targets in the treatment of knee joint disease symptoms, especially in women, who are more affected than men by these conditions. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.
Vandenbeuch, Aurelie; Larson, Eric D; Anderson, Catherine B; Smith, Steven A; Ford, Anthony P; Finger, Thomas E; Kinnamon, Sue C
2015-03-01
Taste buds release ATP to activate ionotropic purinoceptors composed of P2X2 and P2X3 subunits, present on the taste nerves. Mice with genetic deletion of P2X2 and P2X3 receptors (double knockout mice) lack responses to all taste stimuli presumably due to the absence of ATP-gated receptors on the afferent nerves. Recent experiments on the double knockout mice showed, however, that their taste buds fail to release ATP, suggesting the possibility of pleiotropic deficits in these global knockouts. To test further the role of postsynaptic P2X receptors in afferent signalling, we used AF-353, a selective antagonist of P2X3-containing receptors to inhibit the receptors acutely during taste nerve recording and behaviour. The specificity of AF-353 for P2X3-containing receptors was tested by recording Ca(2+) transients to exogenously applied ATP in fura-2 loaded isolated geniculate ganglion neurons from wild-type and P2X3 knockout mice. ATP responses were completely inhibited by 10 μm or 100 μm AF-353, but neither concentration blocked responses in P2X3 single knockout mice wherein the ganglion cells express only P2X2-containing receptors. Furthermore, AF-353 had no effect on taste-evoked ATP release from taste buds. In wild-type mice, i.p. injection of AF-353 or simple application of the drug directly to the tongue, inhibited taste nerve responses to all taste qualities in a dose-dependent fashion. A brief access behavioural assay confirmed the electrophysiological results and showed that preference for a synthetic sweetener, SC-45647, was abolished following i.p. injection of AF-353. These data indicate that activation of P2X3-containing receptors is required for transmission of all taste qualities. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Hemingway, Cheryl; Berk, Maurice; Anderson, Suzanne T; Wright, Victoria J; Hamilton, Shea; Eleftherohorinou, Hariklia; Kaforou, Myrsini; Goldgof, Greg M; Hickman, Katy; Kampmann, Beate; Schoeman, Johan; Eley, Brian; Beatty, David; Pienaar, Sandra; Nicol, Mark P; Griffiths, Michael J; Waddell, Simon J; Newton, Sandra M; Coin, Lachlan J; Relman, David A; Montana, Giovanni; Levin, Michael
2017-01-01
The WHO estimates around a million children contract tuberculosis (TB) annually with over 80 000 deaths from dissemination of infection outside of the lungs. The insidious onset and association with skin test anergy suggests failure of the immune system to both recognise and respond to infection. To understand the immune mechanisms, we studied genome-wide whole blood RNA expression in children with TB meningitis (TBM). Findings were validated in a second cohort of children with TBM and pulmonary TB (PTB), and functional T-cell responses studied in a third cohort of children with TBM, other extrapulmonary TB (EPTB) and PTB. The predominant RNA transcriptional response in children with TBM was decreased abundance of multiple genes, with 140/204 (68%) of all differentially regulated genes showing reduced abundance compared to healthy controls. Findings were validated in a second cohort with concordance of the direction of differential expression in both TBM (r2 = 0.78 p = 2x10-16) and PTB patients (r2 = 0.71 p = 2x10-16) when compared to a second group of healthy controls. Although the direction of expression of these significant genes was similar in the PTB patients, the magnitude of differential transcript abundance was less in PTB than in TBM. The majority of genes were involved in activation of leucocytes (p = 2.67E-11) and T-cell receptor signalling (p = 6.56E-07). Less abundant gene expression in immune cells was associated with a functional defect in T-cell proliferation that recovered after full TB treatment (p<0.0003). Multiple genes involved in T-cell activation show decreased abundance in children with acute TB, who also have impaired functional T-cell responses. Our data suggest that childhood TB is associated with an acquired immune defect, potentially resulting in failure to contain the pathogen. Elucidation of the mechanism causing the immune paresis may identify new treatment and prevention strategies.
Operando Spectroscopic Analysis of CoP Films Electrocatalyzing the Hydrogen-Evolution Reaction
Saadi, Fadl H.; Carim, Azhar I.; Drisdell, Walter S.; ...
2017-08-28
Transition metal phosphides exhibit high catalytic activity toward the electrochemical hydrogen-evolution reaction (HER) and resist chemical corrosion in acidic solutions. For example, an electrodeposited CoP catalyst exhibited an overpotential, η of -η < 100 mV at a current density of -10 mA cm -2 in 0.500 M H 2SO 4 (aq). To obtain a chemical description of the material as-prepared and also while effecting the HER in acidic media, such electrocatalyst films were investigated using Raman spectroscopy and X-ray absorption spectroscopy both ex situ as well as under in situ and operando conditions in 0.500 M H 2SO 4 (aq).more » Ex situ analysis using the tandem spectroscopies indicated the presence of multiple ordered and disordered phases that contained both near-zerovalent and oxidized Co species, in addition to reduced and oxygenated P species. Lastly, operando analysis indicated that the active electrocatalyst was primarily amorphous and predominantly consisted of near-zerovalent Co as well as reduced P.« less
Nuñez-Badinez, Paulina; Sepúlveda, Hugo; Diaz, Emilio; Greffrath, Wolfgang; Treede, Rolf-Detlef; Stehberg, Jimmy; Montecino, Martin; van Zundert, Brigitte
2018-05-01
The purinergic receptor P2X3 (P2X3-R) plays important roles in molecular pathways of pain, and reduction of its activity or expression effectively reduces chronic inflammatory and neuropathic pain sensation. Inflammation, nerve injury, and cancer-induced pain can increase P2X3-R mRNA and/or protein levels in dorsal root ganglia (DRG). However, P2X3-R expression is unaltered or even reduced in other pain studies. The reasons for these discrepancies are unknown and might depend on the applied traumatic intervention or on intrinsic factors such as age, gender, genetic background, and/or epigenetics. In this study, we sought to get insights into the molecular mechanisms responsible for inflammatory hyperalgesia by determining P2X3-R expression in DRG neurons of juvenile male rats that received a Complete Freund's Adjuvant (CFA) bilateral paw injection. We demonstrate that all CFA-treated rats showed inflammatory hyperalgesia, however, only a fraction (14-20%) displayed increased P2X3-R mRNA levels, reproducible across both sides. Immunostaining assays did not reveal significant increases in the percentage of P2X3-positive neurons, indicating that increased P2X3-R at DRG somas is not critical for inducing inflammatory hyperalgesia in CFA-treated rats. Chromatin immunoprecipitation (ChIP) assays showed a correlated (R 2 = 0.671) enrichment of the transcription factor Runx1 and the epigenetic active mark histone H3 acetylation (H3Ac) at the P2X3-R gene promoter in a fraction of the CFA-treated rats. These results suggest that animal-specific increases in P2X3-R mRNA levels are likely associated with the genetic/epigenetic context of the P2X3-R locus that controls P2X3-R gene transcription by recruiting Runx1 and epigenetic co-regulators that mediate histone acetylation. © 2017 Wiley Periodicals, Inc.
Chen, F; Zhu, L; Qiu, H; Qin, S
2017-04-01
One hundred and fifty 7-day-old Arbor Acres broilers were randomly assigned into five groups: group 1 served as a control that was fed a basal diet without selenium (Se) supplementation; groups 2, 3 and 4 were fed the basal diet supplemented with 0.15, 0.5 and 1.5 mg Se as Se-enriched Saccharomyces cerevisiae (SSC) per kg of diet; and group 5 was fed the basal diet supplemented with 0.15 mg per kg of Se as sodium selenite (SS). Growth performance, glutathione peroxidase (GP X ) and superoxide dismutase (SOD) activities, total antioxidant capacity (T-AOC), and malondialdehyde (MDA) content in plasma and liver, and cellular glutathione peroxidase (GP X -1) and phospholipid hydroperoxide glutathione peroxidase (GP X -4) mRNA levels in liver were determined. Compared with group 1, groups 2-4 exhibited higher body weights (p < 0.05), lower feed/gain ratios, and higher GP X activities in plasma (p < 0.05) and GP X and SOD activities and GP X -1 and GP X -4 mRNA levels in liver (p < 0.05). Compared with group 5, group 2 exhibited higher GP X activity in plasma on day 21 (p < 0.05). Compared with group 2 and 5, group 3 exhibited lower MDA content in plasma on day 7 (p < 0.05), higher GP X activity in plasma, SOD activity and GP X -1 mRNA levels in liver on day 14 and 21 (p < 0.05), and higher GP X -4 mRNA levels on day 14 (p < 0.05). Compared with group 4, group 3 exhibited lower MDA contents in plasma on day 14 (p < 0.05) and in liver on day 21 (p < 0.05), higher T-AOC in plasma and higher GP X -1 mRNA levels on day 14 and 21 (p < 0.05), and higher SOD activity in plasma and higher SOD and GP X activities in liver on day 21 (p < 0.05). Thus, SSC improves growth and antioxidant status of broilers; the short-term bioavailability of SS was faster than that of SSC, but the long-term bioavailability of SSC was greater than SS. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuanyuan; Yuan, Fahuan; Cao, Xuejiao
2014-11-15
Nephrotoxicity is a common complication of cisplatin chemotherapy and thus limits the use of cisplatin in clinic. The purinergic 2X7 receptor (P2X7R) plays important roles in inflammation and apoptosis in some inflammatory diseases; however, its roles in cisplatin-induced nephrotoxicity remain unclear. In this study, we first assessed the expression of P2X7R in cisplatin-induced nephrotoxicity in C57BL/6 mice, and then we investigated the changes of renal function, histological injury, inflammatory response, and apoptosis in renal tissues after P2X7R blockade in vivo using an antagonist A-438079. Moreover, we measured the changes of nod-like receptor family, pyrin domain containing proteins (NLRP3) inflammasome components,more » oxidative stress, and proapoptotic genes in renal tissues in cisplatin-induced nephrotoxicity after treatment with A-438079. We found that the expression of P2X7R was significantly upregulated in the renal tubular epithelial cells in cisplatin-induced nephrotoxicity compared with that of the normal control group. Furthermore, pretreatment with A-438079 markedly attenuated the cisplatin-induced renal injury while lightening the histological damage, inflammatory response and apoptosis in renal tissue, and improved the renal function. These effects were associated with the significantly reduced levels of NLRP3 inflammasome components, oxidative stress, p53 and caspase-3 in renal tissues in cisplatin-induced nephrotoxicity. In conclusions, our studies suggest that the upregulated activity of P2X7R might play important roles in the development of cisplatin-induced nephrotoxicity, and P2X7R blockade might become an effective therapeutic strategy for this disease. - Highlights: • The P2X7R expression was markedly upregulated in cisplatin-induced nephrotoxicity. • P2X7R blockade significantly attenuated the cisplatin-induced renal injury. • P2X7R blockade reduced activities of NLRP3 inflammasome components in renal tissue. • P2X7R blockade reduced levels of oxidative stress and apoptosis in renal tissue. • P2X7R blockade may be a novel adjunctive therapy strategy for this disease.« less
Hodges, Robin R.
2016-01-01
Abstract Purpose: Purinergic receptors play a key role in the function of the lacrimal gland (LG) as P1 purinergic receptors A1, A2A, and A2B, P2X1–7 receptors, and many of the P2Y receptors are expressed. Methods: This review examines the current knowledge of purinergic receptors in the LG as well as the signaling pathways activated by these receptors. Results: These receptors are expressed on the acinar, ductal, and myoepithelial cells. Considerable crosstalk exists between the pathways activated by P2X7 receptors with those activated by M3 muscarinic or α1D adrenergic receptors. The mechanism of the crosstalk between P2X7 and M3 muscarinic receptors differs from that of the crosstalk between P2X7 and α1D adrenergic receptors. Conclusions: Understanding purinergic receptors and how they modulate protein secretion could play a key role in normal and pathological responses of the LG. PMID:27463365
Ohbori, Kenshi; Fujiwara, Makiko; Ohishi, Akihiro; Nishida, Kentaro; Uozumi, Yoshinobu; Nagasawa, Kazuki
2017-01-01
The number of patients with colitis has been increasing year by year. Recently, intestinal inflammation, as one of the factors for its onset, has been demonstrated to be induced by P2X7 receptor-mediated activation of colonic immune cells such as mast cells. Activation of P2X7 receptor (P2X7R) is known to be inhibited by divalent metal cations such as magnesium, but whether or not magnesium administration prevents/relieves colitis is unknown so far. Here, we report that oral (per os (p.o.)) administration of MgCl 2 and ingestion of commercially available magnesium-rich mineral hard water relieves dextran sulfate sodium (DSS)-induced colitis in mice. Colitis was induced through ingestion of a 3% (w/v) DSS solution ad libitum for 10 d. Brilliant blue G (BBG, a P2X7R antagonist), MgCl 2 or magnesium-rich mineral hard water was administered p.o. to mice via gastric intubation once a day or ad libitum from a day before DSS administration for 11 times or 11 d, respectively. DSS-treated mice exhibited a low disease activity index, a short colon and a high histological score compared to in control mice. As BBG (250 mg/kg, p.o.), administration of a MgCl 2 solution (100 or 500 mg/kg, p.o.) and ad libitum ingestion of the magnesium-rich mineral hard water (212 ppm as magnesium) partially, but significantly, attenuated the severity of colitis by decreasing the accumulation of P2X7R-immunopositive mast cells in the colon. Therefore, prophylactic p.o. administration/ingestion of magnesium is considered to be partially effective to protect mice against DSS-induced colitis by inhibiting P2X7R-mediated activation/accumulation of colonic mast cells.
Central representation of postingestive chemosensory cues in mice that lack the ability to taste.
Stratford, Jennifer M; Finger, Thomas E
2011-06-22
The gustatory nerves of mice lacking P2X2 and P2X3 purinergic receptor subunits (P2X-dblKO) are unresponsive to taste stimulation (Finger et al., 2005). Surprisingly, P2X-dblKO mice show residual behavioral responses to concentrated tastants, presumably via postingestive detection. Therefore, the current study tested whether postingestive signaling is functional in P2X-dblKO mice and if so, whether it activates the primary viscerosensory nucleus of the medulla, the nucleus of the solitary tract (nTS). Like WT animals, P2X-dblKO mice learned to prefer a flavor paired with 150 mm monosodium glutamate (MSG) over a flavor paired with water. This preference shows that, even in the absence of taste sensory input, postingestive cues are detected and associated with a flavor in P2X-dblKO mice. MSG-evoked neuronal activation in the nTS was measured by expression of the immediate early gene c-Fos [c-Fos-like immunoreactivity (Fos-LI)]. In rostral, gustatory nTS, P2X-dblKO animals, unlike WT animals, showed no taste quality-specific labeling of neurons. Furthermore, MSG-evoked Fos-LI was significantly less in P2X-dblKO mice compared with WT animals. In contrast, in more posterior, viscerosensory nTS, MSG-induced Fos-LI was similar in WT and P2X-dblKO mice. Together, these results suggest that P2X-dblKO mice can form preferences based on postingestive cues and that postingestive detection of MSG does not rely on the same purinergic signaling that is crucial for taste.
Shin, Eun-Joo; Nam, Yunsung; Lee, Ji Won; Nguyen, Phuong-Khue Thi; Yoo, Ji Eun; Tran, The-Vinh; Jeong, Ji Hoon; Jang, Choon-Gon; Oh, Young J; Youdim, Moussa B H; Lee, Phil Ho; Nabeshima, Toshitaka; Kim, Hyoung-Chun
2016-11-01
Selegiline is a monoamine oxidase-B (MAO-B) inhibitor with anti-Parkinsonian effects, but it is metabolized to amphetamines. Since another MAO-B inhibitor N-Methyl, N-propynyl-2-phenylethylamine (MPPE) is not metabolized to amphetamines, we examined whether MPPE induces behavioral side effects and whether MPPE affects dopaminergic toxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Multiple doses of MPPE (2.5 and 5 mg/kg/day) did not show any significant locomotor activity and conditioned place preference, whereas selegiline (2.5 and 5 mg/kg/day) significantly increased these behavioral side effects. Treatment with MPPE resulted in significant attenuations against decreases in mitochondrial complex I activity, mitochondrial Mn-SOD activity, and expression induced by MPTP in the striatum of mice. Consistently, MPPE significantly attenuated MPTP-induced oxidative stress and MPPE-mediated antioxidant activity appeared to be more pronounced in mitochondrial-fraction than in cytosolic-fraction. Because MPTP promoted mitochondrial p53 translocation and p53/Bcl-xL interaction, it was also examined whether mitochondrial p53 inhibitor pifithrin-μ attenuates MPTP neurotoxicity. MPPE, selegiline, or pifithrin-μ significantly attenuated mitochondrial p53/Bcl-xL interaction, impaired mitochondrial transmembrane potential, cytosolic cytochrome c release, and cleaved caspase-3 in wild-type mice. Subsequently, these compounds significantly ameliorated MPTP-induced motor impairments. Neuroprotective effects of MPPE appeared to be more prominent than those of selegiline. MPPE or selegiline did not show any additional protective effects against the attenuation by p53 gene knockout, suggesting that p53 gene is a critical target for these compounds. Our results suggest that MPPE possesses anti-Parkinsonian potentials with guaranteed behavioral safety and that the underlying mechanism of MPPE requires inhibition of mitochondrial oxidative stress, mitochondrial translocation of p53, and pro-apoptotic process.
Macrophage P2X4 receptors augment bacterial killing and protect against sepsis
Csóka, Balázs; Németh, Zoltán H.; Szabó, Ildikó; Davies, Daryl L.; Varga, Zoltán V.; Pálóczi, János; Falzoni, Simonetta; Di Virgilio, Francesco; Muramatsu, Rieko; Pacher, Pál
2018-01-01
The macrophage is a major phagocytic cell type, and its impaired function is a primary cause of immune paralysis, organ injury, and death in sepsis. An incomplete understanding of the endogenous molecules that regulate macrophage bactericidal activity is a major barrier for developing effective therapies for sepsis. Using an in vitro killing assay, we report here that the endogenous purine ATP augments the killing of sepsis-causing bacteria by macrophages through P2X4 receptors (P2X4Rs). Using newly developed transgenic mice expressing a bioluminescent ATP probe on the cell surface, we found that extracellular ATP levels increase during sepsis, indicating that ATP may contribute to bacterial killing in vivo. Studies with P2X4R-deficient mice subjected to sepsis confirm the role of extracellular ATP acting on P2X4Rs in killing bacteria and protecting against organ injury and death. Results with adoptive transfer of macrophages, myeloid-specific P2X4R-deficient mice, and P2rx4 tdTomato reporter mice indicate that macrophages are essential for the antibacterial, antiinflammatory, and organ protective effects of P2X4Rs in sepsis. Pharmacological targeting of P2X4Rs with the allosteric activator ivermectin protects against bacterial dissemination and mortality in sepsis. We propose that P2X4Rs represent a promising target for drug development to control bacterial growth in sepsis and other infections. PMID:29875325
Okura, Dan; Horishita, Takafumi; Ueno, Susumu; Yanagihara, Nobuyuki; Sudo, Yuka; Uezono, Yasuhito; Minami, Tomoko; Kawasaki, Takashi; Sata, Takeyoshi
2015-03-01
Lidocaine has been widely used to relieve acute pain and chronic refractory pain effectively by both systemic and local administration. Numerous studies reported that lidocaine affects several pain signaling pathways as well as voltage-gated sodium channels, suggesting the existence of multiple mechanisms underlying pain relief by lidocaine. Some extracellular adenosine triphosphate (ATP) receptor subunits are thought to play a role in chronic pain mechanisms, but there have been few studies on the effects of lidocaine on ATP receptors. We studied the effects of lidocaine on purinergic P2X3, P2X4, and P2X7 receptors to explore the mechanisms underlying pain-relieving effects of lidocaine. We investigated the effects of lidocaine on ATP-induced currents in ATP receptor subunits, P2X3, P2X4, and P2X7 expressed in Xenopus oocytes, by using whole-cell, two-electrode, voltage-clamp techniques. Lidocaine inhibited ATP-induced currents in P2X7, but not in P2X3 or P2X4 subunits, in a concentration-dependent manner. The half maximal inhibitory concentration for lidocaine inhibition was 282 ± 45 μmol/L. By contrast, mepivacaine, ropivacaine, and bupivacaine exerted only limited effects on the P2X7 receptor. Lidocaine inhibited the ATP concentration-response curve for the P2X7 receptor via noncompetitive inhibition. Intracellular and extracellular N-(2,6-dimethylphenylcarbamoylmethyl) triethylammonium bromide (QX-314) and benzocaine suppressed ATP-induced currents in the P2X7 receptor in a concentration-dependent manner. In addition, repetitive ATP treatments at 5-minute intervals in the continuous presence of lidocaine revealed that lidocaine inhibition was use-dependent. Finally, the selective P2X7 receptor antagonists Brilliant Blue G and AZ11645373 did not affect the inhibitory actions of lidocaine on the P2X7 receptor. Lidocaine selectively inhibited the function of the P2X7 receptor expressed in Xenopus oocytes. This effect may be caused by acting on sites in the ion channel pore both extracellularly and intracellularly. These results help to understand the mechanisms underlying the analgesic effects of lidocaine when it is administered locally at least.
P2X receptor ligands and pain.
Shieh, Char-Chang; Jarvis, Michael F; Lee, Chih-Hung; Perner, Richard J
2006-08-01
P2X receptors belong to a superfamily of ligand-gated ion channels that conduct the influx of Ca(2+), Na(+) and K(+) cations following activation by extracellular nucleotides such as ATP. Molecular cloning studies have identified seven subunits, namely P2X(1-7), that share approximately 40 - 50% identity in amino acid sequences within the subfamily. Using gene-silencing, pharmacological and electrophysiological approaches, recent studies have revealed roles for P2X(2), P2X(3), P2X(4) and P2X(7) receptors in nociceptive signalling. Homomeric P2X(3) and heteromeric P2X(2/3) receptors are highly localised in the peripheral sensory afferent neurons that conduct nociceptive sensory information to the spinal chord and brain. The discovery of A-317491, a selective and potent non-nucleotide P2X(3) antagonist, provided a pharmacological tool to determine the site and mode of action of P2X(3)-containing receptors in different pain behaviours, including neuropathic, inflammatory and visceral pain. Other P2X receptors (P2X(4) and P2X(7)) that are predominantly expressed in microglia, macrophages and cells of immune origin can trigger the release of cytokines, such as IL-1-beta and TNF-alpha. Genetic disruption of P2X(4) and P2X(7) signalling has been demonstrated to reduce inflammatory and neuropathic pain, suggesting that these two receptors might serve as integrators of neuroinflammation and pain. This article provides an overview of recent scientific literature and patents focusing on P2X(3), P2X(4) and P2X(7) receptors, and the identification of small molecule ligands for the potential treatment of neuropathic and inflammatory pain.
Xu, Jun; Chu, Katharine L; Brederson, Jill-Desiree; Jarvis, Michael F; McGaraughty, Steve
2012-08-01
P2X3 and P2X2/3 receptors are selectively expressed on primary afferent nociceptors and have been implicated in modulating nociception in different models of pathological pain, including inflammatory pain. In an effort to delineate further the role of P2X3 receptors (homomeric and heteromeric) in the modulation of nociceptive transmission after a chronic inflammation injury, A-317491, a potent and selective P2X3-P2X2/3 antagonist, was administered to CFA-inflamed rats in order to examine its effects on responses of spinal dorsal horn neurons to mechanical and thermal stimulation. Systemic injection of A-317491 (30 μmol/kg, i.v.) reduced the responses of wide-dynamic-range (WDR) and nociceptive specific (NS) neurons to both high-intensity mechanical (pinch) and heat (49°C) stimulation. A-317491 also decreased low-intensity (10 g von Frey hair) mechanically evoked activity of WDR neurons but did not alter WDR neuronal responses to cold stimulation (5°C). Spontaneous firing of WDR neurons in CFA-inflamed rats was also significantly attenuated by A-317491 injection. By using immunohistochemistry, P2X3 receptors were demonstrated to be enhanced in lamina II of the spinal dorsal horn after inflammation. In summary, blockade of P2X3 and P2X2/3 receptors dampens mechanical- and heat-related signaling, as well as nonevoked activity of key classes of spinal nociceptive neurons in inflamed animals. These data suggest that P2X3 and/or P2X2/3 receptors have a broad contribution to somatosensory/nociceptive transmission in rats with a chronic inflammatory injury and are consistent with previous behavioral data demonstrating antiallodynic and antihyperalgesic effects of receptor antagonists. Copyright © 2012 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Xing, G. C.; Bachmann, Klaus J.
1993-01-01
The growth of ZnGeP2/GaP double and multiple heterostructures on GaP substrates by organometallic chemical vapor deposition is reported. These epitaxial films were deposited at a temperature of 580 C using dimethylzinc, trimethylgallium, germane, and phosphine as source gases. With appropriate deposition conditions, mirror smooth epitaxial GaP/ZnGeP2 multiple heterostructures were obtained on (001) GaP substrates. Transmission electron microscopy (TEM) and secondary ion mass spectroscopy (SIMS) studies of the films showed that the interfaces are sharp and smooth. Etching study of the films showed dislocation density on the order of 5x10(exp 4)cm(sup -2). The growth rates of the GaP layers depend linearly on the flow rates of trimethylgallium. While the GaP layers crystallize in zinc-blende structure, the ZnGeP2 layers crystallize in the chalcopyrite structure as determined by (010) electron diffraction pattern. This is the first time that multiple heterostructures combining these two crystal structures were made.
Aspects of porosity prediction using multivariate linear regression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byrnes, A.P.; Wilson, M.D.
1991-03-01
Highly accurate multiple linear regression models have been developed for sandstones of diverse compositions. Porosity reduction or enhancement processes are controlled by the fundamental variables, Pressure (P), Temperature (T), Time (t), and Composition (X), where composition includes mineralogy, size, sorting, fluid composition, etc. The multiple linear regression equation, of which all linear porosity prediction models are subsets, takes the generalized form: Porosity = C{sub 0} + C{sub 1}(P) + C{sub 2}(T) + C{sub 3}(X) + C{sub 4}(t) + C{sub 5}(PT) + C{sub 6}(PX) + C{sub 7}(Pt) + C{sub 8}(TX) + C{sub 9}(Tt) + C{sub 10}(Xt) + C{sub 11}(PTX) + C{submore » 12}(PXt) + C{sub 13}(PTt) + C{sub 14}(TXt) + C{sub 15}(PTXt). The first four primary variables are often interactive, thus requiring terms involving two or more primary variables (the form shown implies interaction and not necessarily multiplication). The final terms used may also involve simple mathematic transforms such as log X, e{sup T}, X{sup 2}, or more complex transformations such as the Time-Temperature Index (TTI). The X term in the equation above represents a suite of compositional variable and, therefore, a fully expanded equation may include a series of terms incorporating these variables. Numerous published bivariate porosity prediction models involving P (or depth) or Tt (TTI) are effective to a degree, largely because of the high degree of colinearity between p and TTI. However, all such bivariate models ignore the unique contributions of P and Tt, as well as various X terms. These simpler models become poor predictors in regions where colinear relations change, were important variables have been ignored, or where the database does not include a sufficient range or weight distribution for the critical variables.« less
Agonists and antagonists for P2 receptors
Jacobson, Kenneth A.; Costanzi, Stefano; Joshi, Bhalchandra V.; Besada, Pedro; Shin, Dae Hong; Ko, Hyojin; Ivanov, Andrei A.; Mamedova, Liaman
2015-01-01
Recent work has identified nucleotide agonists selective for P2Y1, P2Y2 and P2Y6 receptors and nucleotide antagonists selective for P2Y1, P2Y12 and P2X1 receptors. Selective non-nucleotide antagonists have been reported for P2Y1, P2Y2, P2Y6, P2Y12, P2Y13, P2X2/3/P2X3 and P2X7 receptors. For example, the dinucleotide INS 37217 (Up4dC) potently activates the P2Y2 receptor, and the non-nucleotide antagonist A-317491 is selective for P2X2/3/P2X3 receptors. Nucleotide analogues in which the ribose moiety is substituted by a variety of novel ring systems, including conformation-ally locked moieties, have been synthesized as ligands for P2Y receptors. The focus on conformational factors of the ribose-like moiety allows the inclusion of general modifications that lead to enhanced potency and selectivity. At P2Y1,2,4,11 receptors, there is a preference for the North conformation as indicated with (N)-methanocarba analogues. The P2Y1 antagonist MRS2500 inhibited ADP-induced human platelet aggregation with an IC50 of 0.95 nM. MRS2365, an (N)-methanocarba analogue of 2-MeSADP, displayed potency (EC50) of 0.4 nM at the P2Y1 receptor, with >10 000-fold selectivity in comparison to P2Y12 and P2Y13 receptors. At P2Y6 receptors there is a dramatic preference for the South conformation. Three-dimensional structures of P2Y receptors have been deduced from structure activity relationships (SAR), mutagenesis and modelling studies. Detailed three-dimensional structures of P2X receptors have not yet been proposed. PMID:16805423
Zhong, Xi Zoë; Cao, Qi; Sun, Xue
2016-01-01
Key points SLC17A9 proteins function as a lysosomal ATP transporter responsible for lysosomal ATP accumulation.P2X4 receptors act as lysosomal ion channels activated by luminal ATP.SLC17A9‐mediated ATP transport across the lysosomal membrane is suppressed by Bafilomycin A1, the V‐ATPase inhibitor.SLC17A9 mainly uses voltage gradient but not pH gradient generated by the V‐ATPase as the driving force to transport ATP into the lysosome to activate P2X4. Abstract The lysosome contains abundant ATP which plays important roles in lysosome functions and in cell signalling. Recently, solute carrier family 17 member 9 (SLC17A9, also known as VNUT for vesicular nucleotide transporter) proteins were suggested to function as a lysosomal ATP transporter responsible for lysosomal ATP accumulation, and P2X4 receptors were suggested to be lysosomal ion channels that are activated by luminal ATP. However, the molecular mechanism of SLC17A9 transporting ATP and the regulatory mechanism of lysosomal P2X4 are largely unknown. In this study, we report that SLC17A9‐mediated ATP transport across lysosomal membranes is suppressed by Bafilomycin A1, the V‐ATPase inhibitor. By measuring P2X4 activity, which is indicative of ATP transport across lysosomal membranes, we further demonstrated that SLC17A9 mainly uses voltage gradient but not pH gradient as the driving force to transport ATP into lysosomes. This study provides a molecular mechanism for lysosomal ATP transport mediated by SLC17A9. It also suggests a regulatory mechanism of lysosomal P2X4 by SLC17A9. PMID:27477609
Regulation of adult neural progenitor cell functions by purinergic signaling.
Tang, Yong; Illes, Peter
2017-02-01
Extracellular purines are signaling molecules in the neurogenic niches of the brain and spinal cord, where they activate cell surface purinoceptors at embryonic neural stem cells (NSCs) and adult neural progenitor cells (NPCs). Although mRNA and protein are expressed at NSCs/NPCs for almost all subtypes of the nucleotide-sensitive P2X/P2Y, and the nucleoside-sensitive adenosine receptors, only a few of those have acquired functional significance. ATP is sequentially degraded by ecto-nucleotidases to ADP, AMP, and adenosine with agonistic properties for distinct receptor-classes. Nucleotides/nucleosides facilitate or inhibit NSC/NPC proliferation, migration and differentiation. The most ubiquitous effect of all agonists (especially of ATP and ADP) appears to be the facilitation of cell proliferation, usually through P2Y1Rs and sometimes through P2X7Rs. However, usually P2X7R activation causes necrosis/apoptosis of NPCs. Differentiation can be initiated by P2Y2R-activation or P2X7R-blockade. A key element in the transduction mechanism of either receptor is the increase of the intracellular free Ca 2+ concentration, which may arise due to its release from intracellular storage sites (G protein-coupling; P2Y) or due to its passage through the receptor-channel itself from the extracellular space (ATP-gated ion channel; P2X). Further research is needed to clarify how purinergic signaling controls NSC/NPC fate and how the balance between the quiescent and activated states is established with fine and dynamic regulation. GLIA 2017;65:213-230. © 2016 Wiley Periodicals, Inc.
Ren, Xiaodong; Wang, Beizhou; Zhu, Jinzhen; Liu, Jianjun; Zhang, Wenqing; Wen, Zhaoyin
2015-06-14
A lithium-air battery as an energy storage technology can be used in electric vehicles due to its large energy density. However, its poor rate capability, low power density and large overpotential problems limit its practical usage. In this paper, the first-principles thermodynamic calculations were performed to study the catalytic activity of X-doped graphene (X = B, N, Al, Si, and P) materials as potential cathodes to enhance charge reactions in a lithium-air battery. Among these materials, P-doped graphene exhibits the highest catalytic activity in reducing the charge voltage by 0.25 V, while B-doped graphene has the highest catalytic activity in decreasing the oxygen evolution barrier by 0.12 eV. By combining these two catalytic effects, B,P-codoped graphene was demonstrated to have an enhanced catalytic activity in reducing the O2 evolution barrier by 0.70 eV and the charge voltage by 0.13 V. B-doped graphene interacts with Li2O2 by Li-sited adsorption in which the electron-withdrawing center can enhance charge transfer from Li2O2 to the substrate, facilitating reduction of O2 evolution barrier. In contrast, X-doped graphene (X = N, Al, Si, and P) prefers O-sited adsorption toward Li2O2, forming a X-O2(2-)···Li(+) interface structure between X-O2(2-) and the rich Li(+) layer. The active structure of X-O2(2-) can weaken the surrounding Li-O2 bonds and significantly reduce Li(+) desorption energy at the interface. Our investigation is helpful in developing a novel catalyst to enhance oxygen evolution reaction (OER) in Li-air batteries.
Teixeira, Pedro Celso Nogueira; de Souza, Cristina Alves Magalhães; de Freitas, Mônica Santos; Foguel, Débora; Caffarena, Ernesto Raul; Alves, Luiz Anastacio
2009-01-01
Scanning experiments have shown that the putative TM2 domain of the P2X7 receptor (P2X7R) lines the ionic pore. However, none has identified an α-helix structure, the paradigmatic secondary structure of ion channels in mammalian cells. In addition, some researchers have suggested a β-sheet conformation in the TM2 domain of P2X2. These data led us to investigate a new architecture within the P2X receptor family. P2X7R is considered an intriguing receptor because its activation induces nonselective large pore formation, in contrast to the majority of other ionic channel proteins in mammals. This receptor has two states: a low-conductance channel (∼10 pS) and a large pore (>400 pS). To our knowledge, one fundamental question remains unanswered: Are the P2X7R channel and the pore itself the same entity or are they different structures? There are no structural data to help solve this question. Thus, we investigated the hydrophobic M2 domain with the aim of predicting the fitted position and the secondary structure of the TM2 segment from human P2X7R (hP2X7R). We provide evidence for a β-sheet conformation, using bioinformatics algorithms and molecular-dynamics simulation in conjunction with circular dichroism in different environments and Fourier transform infrared spectroscopy. In summary, our study suggests the possibility that a segment composed of residues from part of the M2 domain and part of the putative TM2 segment of P2X7R is partially folded in a β-sheet conformation, and may play an important role in channel/pore formation associated with P2X7R activation. It is important to note that most nonselective large pores have a transmembrane β-sheet conformation. Thus, this study may lead to a paradigmatic change in the P2X7R field and/or raise new questions about this issue. PMID:19186133
Mittal, Rahul; Chan, Brandon; Grati, M'hamed; Mittal, Jeenu; Patel, Kunal; Debs, Luca H; Patel, Amit P; Yan, Denise; Chapagain, Prem; Liu, Xue Zhong
2016-08-01
The P2X purinergic receptors are cation-selective channels gated by extracellular adenosine 5'-triphosphate (ATP). These purinergic receptors are found in virtually all mammalian cell types and facilitate a number of important physiological processes. Within the past few years, the characterization of crystal structures of the zebrafish P2X4 receptor in its closed and open states has provided critical insights into the mechanisms of ligand binding and channel activation. Understanding of this gating mechanism has facilitated to design and interpret new modeling and structure-function experiments to better elucidate how different agonists and antagonists can affect the receptor with differing levels of potency. This review summarizes the current knowledge on the structure, activation, allosteric modulators, function, and location of the different P2X receptors. Moreover, an emphasis on the P2X2 receptors has been placed in respect to its role in the auditory system. In particular, the discovery of three missense mutations in P2X2 receptors could become important areas of study in the field of gene therapy to treat progressive and noise-induced hearing loss. J. Cell. Physiol. 231: 1656-1670, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
CHANDRA OBSERVATIONS OF GALAXY ZOO MERGERS: FREQUENCY OF BINARY ACTIVE NUCLEI IN MASSIVE MERGERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, Stacy H.; Schawinski, Kevin; Urry, C. Megan
We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10{sup 11} M{sub Sun} that already have optical active galactic nucleus (AGN) signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N{sub H} {approx}< 1.1 Multiplication-Sign 10{sup 22} cm{sup -2}) X-ray nuclei are relatively common (8/12), but the detections are too faint (<40 counts per nucleus; f{sub 2-10keV} {approx}< 1.2 Multiplication-Sign 10{sup -13} erg s{sup -1} cm{sup -2})more » to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGNs in these mergers are rare (0%-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.« less
Leis, J F; Knowles, A F; Kaplan, N O
1985-06-01
A plasma membrane preparation from a human astrocytoma contained p-nitrophenyl phosphate (pNPP), phosphotyrosyl histone, and phosphoseryl histone hydrolysis activities. The pNPPase and phosphotyrosyl histone phosphatase activities were inhibited by vanadate, whereas the phosphoseryl histone phosphatase activity was not; the latter activity was inhibited by pyrophosphate and nucleoside di- and triphosphates. When the membranes were solubilized by Triton X-100 and the solubilized proteins were subjected to column chromatography on DEAE-Sephadex, Sepharose 6B-C1, and wheat germ agglutinin-Sepharose 4B columns, the pNPPase activity from the phosphoseryl histone phosphatase activity. The results from column chromatography also indicated that there may be multiple phosphotyrosyl and phosphoseryl protein phosphatases in the plasma membranes.
Bavan, Selvan; Straub, Volko A; Blaxter, Mark L; Ennion, Steven J
2009-01-20
Orthologs of the vertebrate ATP gated P2X channels have been identified in Dictyostelium and green algae, demonstrating that the emergence of ionotropic purinergic signalling was an early event in eukaryotic evolution. However, the genomes of a number of animals including Drosophila melanogaster and Caenorhabditis elegans, both members of the Ecdysozoa superphylum, lack P2X-like proteins, whilst other species such as the flatworm Schistosoma mansoni have P2X proteins making it unclear as to what stages in evolution P2X receptors were lost. Here we describe the functional characterisation of a P2X receptor (HdP2X) from the tardigrade Hypsibius dujardini demonstrating that purinergic signalling is preserved in some ecdysozoa. ATP (EC50 approximately 44.5 microM) evoked transient inward currents in HdP2X with millisecond rates of activation and desensitisation. HdP2X is antagonised by pyridoxal-phosphate-6-azophenyl-2',4' disulfonic acid (IC50 15.0 microM) and suramin (IC50 22.6 microM) and zinc and copper inhibit ATP-evoked currents with IC50 values of 62.8 microM and 19.9 microM respectively. Site-directed mutagenesis showed that unlike vertebrate P2X receptors, extracellular histidines do not play a major role in coordinating metal binding in HdP2X. However, H306 was identified as playing a minor role in the actions of copper but not zinc. Ivermectin potentiated responses to ATP with no effect on the rates of current activation or decay. The presence of a P2X receptor in a tardigrade species suggests that both nematodes and arthropods lost their P2X genes independently, as both traditional and molecular phylogenies place the divergence between Nematoda and Arthropoda before their divergence from Tardigrada. The phylogenetic analysis performed in our study also clearly demonstrates that the emergence of the family of seven P2X channels in human and other mammalian species was a relatively recent evolutionary event that occurred subsequent to the split between vertebrates and invertebrates. Furthermore, several characteristics of HdP2X including fast kinetics with low ATP sensitivity, potentiation by ivermectin in a channel with fast kinetics and distinct copper and zinc binding sites not dependent on histidines make HdP2X a useful model for comparative structure-function studies allowing a better understanding of P2X receptors in higher organisms.
Bavan, Selvan; Straub, Volko A; Blaxter, Mark L; Ennion, Steven J
2009-01-01
Background Orthologs of the vertebrate ATP gated P2X channels have been identified in Dictyostelium and green algae, demonstrating that the emergence of ionotropic purinergic signalling was an early event in eukaryotic evolution. However, the genomes of a number of animals including Drosophila melanogaster and Caenorhabditis elegans, both members of the Ecdysozoa superphylum, lack P2X-like proteins, whilst other species such as the flatworm Schistosoma mansoni have P2X proteins making it unclear as to what stages in evolution P2X receptors were lost. Here we describe the functional characterisation of a P2X receptor (HdP2X) from the tardigrade Hypsibius dujardini demonstrating that purinergic signalling is preserved in some ecdysozoa. Results ATP (EC50 ~44.5 μM) evoked transient inward currents in HdP2X with millisecond rates of activation and desensitisation. HdP2X is antagonised by pyridoxal-phosphate-6-azophenyl-2',4' disulfonic acid (IC50 15.0 μM) and suramin (IC50 22.6 μM) and zinc and copper inhibit ATP-evoked currents with IC50 values of 62.8 μM and 19.9 μM respectively. Site-directed mutagenesis showed that unlike vertebrate P2X receptors, extracellular histidines do not play a major role in coordinating metal binding in HdP2X. However, H306 was identified as playing a minor role in the actions of copper but not zinc. Ivermectin potentiated responses to ATP with no effect on the rates of current activation or decay. Conclusion The presence of a P2X receptor in a tardigrade species suggests that both nematodes and arthropods lost their P2X genes independently, as both traditional and molecular phylogenies place the divergence between Nematoda and Arthropoda before their divergence from Tardigrada. The phylogenetic analysis performed in our study also clearly demonstrates that the emergence of the family of seven P2X channels in human and other mammalian species was a relatively recent evolutionary event that occurred subsequent to the split between vertebrates and invertebrates. Furthermore, several characteristics of HdP2X including fast kinetics with low ATP sensitivity, potentiation by ivermectin in a channel with fast kinetics and distinct copper and zinc binding sites not dependent on histidines make HdP2X a useful model for comparative structure-function studies allowing a better understanding of P2X receptors in higher organisms. PMID:19154569
Polychlorinated biphenyl (PCB) induction of CYP3A4 enzyme activity in healthy Faroese adults.
Petersen, Maria Skaalum; Halling, Jónrit; Damkier, Per; Nielsen, Flemming; Grandjean, Philippe; Weihe, Pál; Brøsen, Kim
2007-10-15
The CYP3A4 enzyme is, along with other cytochrome P450 enzymes, involved in the metabolism of environmental pollutants and is highly inducible by these substances. A commercial polychlorinated biphenyl (PCB) mixture, 1,1,1,-trichloro-2-(o-chlorophenyl), 2-(p'-chlorophenyl)ethane (o,p'-DDT) and 1,1,-dichloro-2,2-bis (p-chlorophenyl)ethene (p,p'-DDE) are known to induce CYP3A4 activity through activation of nuclear receptors, such as the pregnane X receptor. However, this induction of CYP3A4 has not yet been investigated in humans. Thus, the aim of the study was to determine the variability of the CYP3A4 phenotype in regard to increased concentrations of PCBs and other persistent organohalogen pollutants (POPs) in healthy Faroese adults. In 310 randomly selected Faroese residents aged 18-60 years, the CYP3A4 activity was determined based on the urinary 6beta-hydroxycortisol/cortisol (6beta-OHC/FC) ratio. POP exposures were assessed by measuring their concentrations in serum lipid. The results showed a unimodal distribution of the 6beta-OHC/FC ratio with values ranging from 0.58 to 27.38. Women had a slightly higher 6beta-OHC/FC ratio than men (p=0.07). Confounder-adjusted multiple regression analysis showed significant associations between 6beta-OHC/FC ratios and summation PCB, PCB-TEQ and p,p'-DDE, o,p'-DDT and HCB, respectively, but the associations were statistically significant for men only.
Vessey, Kirstan A; Gu, Ben J; Jobling, Andrew I; Phipps, Joanna A; Greferath, Ursula; Tran, Mai X; Dixon, Michael A; Baird, Paul N; Guymer, Robyn H; Wiley, James S; Fletcher, Erica L
2017-08-01
Age-related macular degeneration (AMD) is a leading cause of irreversible, severe vision loss in Western countries. Recently, we identified a novel pathway involving P2X7 receptor scavenger function expressed on ocular immune cells as a risk factor for advanced AMD. In this study, we investigate the effect of loss of P2X7 receptor function on retinal structure and function during aging. P2X7-null and wild-type C57bl6J mice were investigated at 4, 12, and 18 months of age for macrophage phagocytosis activity, ocular histological changes, and retinal function. Phagocytosis activity of blood-borne macrophages decreased with age at 18 months in the wild-type mouse. Lack of P2X7 receptor function reduced phagocytosis at all ages compared to wild-type mice. At 12 months of age, P2X7-null mice had thickening of Bruchs membrane and retinal pigment epithelium dysfunction. By 18 months of age, P2X7-null mice displayed phenotypic characteristics consistent with early AMD, including Bruchs membrane thickening, retinal pigment epithelium cell loss, retinal functional deficits, and signs of subretinal inflammation. Our present study shows that loss of function of the P2X7 receptor in mice induces retinal changes representing characteristics of early AMD, providing a valuable model for investigating the role of scavenger receptor function and the immune system in the development of this age-related disease. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Chen, Qianqian; Heston, Jonathan B; Burkett, Zachary D; White, Stephanie A
2013-10-01
Humans and songbirds are among the rare animal groups that exhibit socially learned vocalizations: speech and song, respectively. These vocal-learning capacities share a reliance on audition and cortico-basal ganglia circuitry, as well as neurogenetic mechanisms. Notably, the transcription factors Forkhead box proteins 1 and 2 (FoxP1, FoxP2) exhibit similar expression patterns in the cortex and basal ganglia of humans and the zebra finch species of songbird, among other brain regions. Mutations in either gene are associated with language disorders in humans. Experimental knock-down of FoxP2 in the basal ganglia song control region Area X during song development leads to imprecise copying of tutor songs. Moreover, FoxP2 levels decrease naturally within Area X when zebra finches sing. Here, we examined neural expression patterns of FoxP1 and FoxP2 mRNA in adult Bengalese finches, a songbird species whose songs exhibit greater sequence complexity and increased reliance on audition for maintaining their quality. We found that FoxP1 and FoxP2 expression in Bengalese finches is similar to that in zebra finches, including strong mRNA signals for both factors in multiple song control nuclei and enhancement of FoxP1 in these regions relative to surrounding brain tissue. As with zebra finches, when Bengalese finches sing, FoxP2 is behaviorally downregulated within basal ganglia Area X over a similar time course, and expression negatively correlates with the amount of singing. This study confirms that in multiple songbird species, FoxP1 expression highlights song control regions, and regulation of FoxP2 is associated with motor control of song.
Chen, Qianqian; Heston, Jonathan B.; Burkett, Zachary D.; White, Stephanie A.
2013-01-01
SUMMARY Humans and songbirds are among the rare animal groups that exhibit socially learned vocalizations: speech and song, respectively. These vocal-learning capacities share a reliance on audition and cortico-basal ganglia circuitry, as well as neurogenetic mechanisms. Notably, the transcription factors Forkhead box proteins 1 and 2 (FoxP1, FoxP2) exhibit similar expression patterns in the cortex and basal ganglia of humans and the zebra finch species of songbird, among other brain regions. Mutations in either gene are associated with language disorders in humans. Experimental knock-down of FoxP2 in the basal ganglia song control region Area X during song development leads to imprecise copying of tutor songs. Moreover, FoxP2 levels decrease naturally within Area X when zebra finches sing. Here, we examined neural expression patterns of FoxP1 and FoxP2 mRNA in adult Bengalese finches, a songbird species whose songs exhibit greater sequence complexity and increased reliance on audition for maintaining their quality. We found that FoxP1 and FoxP2 expression in Bengalese finches is similar to that in zebra finches, including strong mRNA signals for both factors in multiple song control nuclei and enhancement of FoxP1 in these regions relative to surrounding brain tissue. As with zebra finches, when Bengalese finches sing, FoxP2 is behaviorally downregulated within basal ganglia Area X over a similar time course, and expression negatively correlates with the amount of singing. This study confirms that in multiple songbird species, FoxP1 expression highlights song control regions, and regulation of FoxP2 is associated with motor control of song. PMID:24006346
Vandenbeuch, Aurelie; Larson, Eric D; Anderson, Catherine B; Smith, Steven A; Ford, Anthony P; Finger, Thomas E; Kinnamon, Sue C
2015-01-01
Abstract Taste buds release ATP to activate ionotropic purinoceptors composed of P2X2 and P2X3 subunits, present on the taste nerves. Mice with genetic deletion of P2X2 and P2X3 receptors (double knockout mice) lack responses to all taste stimuli presumably due to the absence of ATP-gated receptors on the afferent nerves. Recent experiments on the double knockout mice showed, however, that their taste buds fail to release ATP, suggesting the possibility of pleiotropic deficits in these global knockouts. To test further the role of postsynaptic P2X receptors in afferent signalling, we used AF-353, a selective antagonist of P2X3-containing receptors to inhibit the receptors acutely during taste nerve recording and behaviour. The specificity of AF-353 for P2X3-containing receptors was tested by recording Ca2+ transients to exogenously applied ATP in fura-2 loaded isolated geniculate ganglion neurons from wild-type and P2X3 knockout mice. ATP responses were completely inhibited by 10 μm or 100 μm AF-353, but neither concentration blocked responses in P2X3 single knockout mice wherein the ganglion cells express only P2X2-containing receptors. Furthermore, AF-353 had no effect on taste-evoked ATP release from taste buds. In wild-type mice, i.p. injection of AF-353 or simple application of the drug directly to the tongue, inhibited taste nerve responses to all taste qualities in a dose-dependent fashion. A brief access behavioural assay confirmed the electrophysiological results and showed that preference for a synthetic sweetener, SC-45647, was abolished following i.p. injection of AF-353. These data indicate that activation of P2X3-containing receptors is required for transmission of all taste qualities. Key points Acute inhibition of purinergic receptors with a selective P2X3 antagonist prevents transmission of information from taste buds to sensory nerves. The P2X3 antagonist has no effect on taste-evoked release of ATP, confirming the effect is postsynaptic. The results confirm previous results with P2X2/3 double knockout mice that ATP is required for transmission of all taste qualities, including sour and salty. Previously, ATP was confirmed to be required for bitter, sweet and umami tastes, but was questioned for salty and sour tastes due to pleomorphic deficits in the double knockout mice. The geniculate ganglion in mouse contains two populations of ganglion cells with different subunit composition of P2X2 and P2X3 receptors making them differently susceptible to pharmacological block and, presumably, desensitization. PMID:25524179
Agrawal, Gauravkuma; Wakte, Pravin; Shelke, Santosh
2017-01-01
The objectives of the present investigation were to prepare recombinant human insulin entrapped Eudragit-S100 microspheres containing protease inhibitors and to precisely analyze the outcome of different formulation variables on the microspheres properties using a response surface methodology to develop an optimized formulation with desirable features. A central composite design was employed to produce microspheres of therapeutic protein by w/o/w multiple emulsion solvent evaporation technique using Eudragit S-100 as coating material and polyvinyl alcohol as a stabilizer. The effect of formulation variables (independent variables) that is levels of Eudragit S-100 (X1), therapeutic protein (X2), volumes of inner aqueous phase (X3) and external aqueous phase (X4) on dependant variables, that are encapsulation efficiency (Y1), drug release at pH 1.2 after 2 h (Y2) and drug release at pH 7.4 after of 2 h (Y3) were evaluated. The significant terms in the mathematical models were generated for each response parameter using multiple linear regression analysis and analysis of variance. All the formulation variables except the volume of external aqueous phase (X4) exerted a significant effect (P <0.05) on drug encapsulation efficiency (Y1) whereas first two variables, namely the levels of Eudragit S-100 (X1) and therapeutic protein (X2) materialized as the determining factors which significantly influenced drug release at pH 1.2 after 2 h (Y2) and drug release at pH 7.4 after of 2 h (Y3). The formulation was numerically optimized by framing the constraints on the dependent and independent variables using the desirability approach. The experimental values for Y1 and Y2 of optimized formulation were found to be 77.65% and 3.64%, respectively which were quite closer to results suggested by software. The results recorded indicate that the recombinant human insulin loaded Eudragit S-100 microspheres containing aprotinin have the benefits of higher loading efficiency, pH responsive and prolonged release characteristics, which may help to carry insulin to the optimum site of absorption. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Operator Influence of Unexploded Ordnance Sensor Technologies
2007-03-01
chart display ActiveX control Mscomct2.dll – date/time display ActiveX control Pnpscr.dll – Systran SCRAMNet replicated shared memory device...response value database rgm_p2.dll – Phase 2 shared memory API and implementation Commercial components StripM.ocx – strip chart display ActiveX
Colchicine--Update on mechanisms of action and therapeutic uses.
Leung, Ying Ying; Yao Hui, Laura Li; Kraus, Virginia B
2015-12-01
To review the literature and provide an update on the mechanisms of action and therapeutic uses of oral colchicine in arthritis and inflammatory conditions. We performed PubMed database searches through June 2014 for relevant studies in the English literature published since the last update of colchicine in 2008. Searches encompassed colchicine mechanisms of action and clinical applications in medical conditions. A total of 381 articles were reviewed. The primary mechanism of action of colchicine is tubulin disruption. This leads to subsequent down regulation of multiple inflammatory pathways and modulation of innate immunity. Newly described mechanisms include various inhibitory effects on macrophages including the inhibition of the NACHT-LRRPYD-containing protein 3 (NALP3) inflammasome, inhibition of pore formation activated by purinergic receptors P2X7 and P2X2, and stimulation of dendritic cell maturation and antigen presentation. Colchicine also has anti-fibrotic activities and various effects on endothelial function. The therapeutic use of colchicine has extended beyond gouty arthritis and familial Mediterranean fever, to osteoarthritis, pericarditis, and atherosclerosis. Further understanding of the mechanisms of action underlying the therapeutic efficacy of colchicine will lead to its potential use in a variety of conditions. Copyright © 2015 Elsevier Inc. All rights reserved.
Rozmer, Katalin; Gao, Po; Araújo, Michelle G L; Khan, Muhammad Tahir; Liu, Juan; Rong, Weifang; Tang, Yong; Franke, Heike; Krügel, Ute; Fernandes, Maria José S; Illes, Peter
2017-07-01
Patch-clamp recordings indicated the presence of P2X7 receptors at neural progenitor cells (NPCs) in the subgranular zone of the dentate gyrus in hippocampal brain slices prepared from transgenic nestin reporter mice. The activation of these receptors caused inward current near the resting membrane potential of the NPCs, while P2Y1 receptor activation initiated outward current near the reversal potential of the P2X7 receptor current. Both receptors were identified by biophysical/pharmacological methods. When the brain slices were prepared from mice which underwent a pilocarpine-induced status epilepticus or when brain slices were incubated in pilocarpine-containing external medium, the sensitivity of P2X7 and P2Y1 receptors was invariably increased. Confocal microscopy confirmed the localization of P2X7 and P2Y1 receptor-immunopositivity at nestin-positive NPCs. A one-time status epilepticus in rats caused after a latency of about 5 days recurrent epileptic fits. The blockade of central P2X7 receptors increased the number of seizures and their severity. It is hypothesized that P2Y1 receptors after a status epilepticus may increase the ATP-induced proliferation/ectopic migration of NPCs; the P2X7 receptor-mediated necrosis/apoptosis might counteract these effects, which would otherwise lead to a chronic manifestation of recurrent epileptic fits. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Heightman, Tom D; Berdini, Valerio; Braithwaite, Hannah; Buck, Ildiko M; Cassidy, Megan; Castro, Juan; Courtin, Aurélie; Day, James E H; East, Charlotte; Fazal, Lynsey; Graham, Brent; Griffiths-Jones, Charlotte M; Lyons, John F; Martins, Vanessa; Muench, Sandra; Munck, Joanne M; Norton, David; O'Reilly, Marc; Palmer, Nick; Pathuri, Puja; Reader, Michael; Rees, David C; Rich, Sharna J; Richardson, Caroline; Saini, Harpreet; Thompson, Neil T; Wallis, Nicola G; Walton, Hugh; Wilsher, Nicola E; Woolford, Alison J-A; Cooke, Michael; Cousin, David; Onions, Stuart; Shannon, Jonathan; Watts, John; Murray, Christopher W
2018-05-31
Aberrant activation of the MAPK pathway drives cell proliferation in multiple cancers. Inhibitors of BRAF and MEK kinases are approved for the treatment of BRAF mutant melanoma, but resistance frequently emerges, often mediated by increased signaling through ERK1/2. Here, we describe the fragment-based generation of ERK1/2 inhibitors that block catalytic phosphorylation of downstream substrates such as RSK but also modulate phosphorylation of ERK1/2 by MEK without directly inhibiting MEK. X-ray crystallographic and biophysical fragment screening followed by structure-guided optimization and growth from the hinge into a pocket proximal to the C-α helix afforded highly potent ERK1/2 inhibitors with excellent kinome selectivity. In BRAF mutant cells, the lead compound suppresses pRSK and pERK levels and inhibits proliferation at low nanomolar concentrations. The lead exhibits tumor regression upon oral dosing in BRAF mutant xenograft models, providing a promising basis for further optimization toward clinical pERK1/2 modulating ERK1/2 inhibitors.
Aguirre, Adam; Shoji, Kenji F; Sáez, Juan C; Henríquez, Mauricio; Quest, Andrew F G
2013-02-01
Fas ligation via the ligand FasL activates the caspase-8/caspase-3-dependent extrinsic death pathway. In so-called type II cells, an additional mechanism involving tBid-mediated caspase-9 activation is required to efficiently trigger cell death. Other pathways linking FasL-Fas interaction to activation of the intrinsic cell death pathway remain unknown. However, ATP release and subsequent activation of purinergic P2X(7) receptors (P2X(7)Rs) favors cell death in some cells. Here, we evaluated the possibility that ATP release downstream of caspase-8 via pannexin1 hemichannels (Panx1 HCs) and subsequent activation of P2X(7)Rs participate in FasL-stimulated cell death. Indeed, upon FasL stimulation, ATP was released from Jurkat cells in a time- and caspase-8-dependent manner. Fas and Panx1 HCs colocalized and inhibition of the latter, but not connexin hemichannels, reduced FasL-induced ATP release. Extracellular apyrase, which hydrolyzes ATP, reduced FasL-induced death. Also, oxidized-ATP or Brilliant Blue G, two P2X(7)R blockers, reduced FasL-induced caspase-9 activation and cell death. These results represent the first evidence indicating that the two death receptors, Fas and P2X(7)R connect functionally via caspase-8 and Panx1 HC-mediated ATP release to promote caspase-9/caspase-3-dependent cell death in lymphoid cells. Thus, a hitherto unsuspected route was uncovered connecting the extrinsic to the intrinsic pathway to amplify death signals emanating from the Fas receptor in type II cells. Copyright © 2012 Wiley Periodicals, Inc.
Fischer, B; Yefidoff, R; Major, D T; Rutman-Halili, I; Shneyvays, V; Zinman, T; Jacobson, K A; Shainberg, A
1999-07-15
The design and synthesis of "mini-nucleotides", based on a xanthine-alkyl phosphate scaffold, are described. The physiological effects of the new compounds were evaluated in rat cardiac cell culture regarding Ca(2+) elevation and contractility. The results indicate biochemical and physiological profiles similar to those of ATP, although at higher concentrations. The biological target molecules of these "mini-nucleotides" were identified by using selective P2-R and A(1)-R antagonists and P2-R subtype selective agonists. On the basis of these results and of experiments in Ca(2+) free medium, in which [Ca(2+)](i) elevation was not observed, we concluded that interaction of the analogues is likely with P2X receptor subtypes, which causes Ca(2+) influx. Theoretical calculations analyzing electronic effects within the series of xanthine-alkyl phosphates were performed on reduced models at quantum mechanical levels. Calculated dipole moment vectors, electrostatic potential maps, and volume parameters suggest an explanation for the activity or inactivity of the synthesized derivatives and predict a putative binding site environment for the active agonists. Xanthine-alkyl phosphate analogues proved to be selective agents for activation of P2X-R subtypes, whereas ATP activated all P2-R subtypes in cardiac cells. Therefore, these analogues may serve as prototypes of selective drugs aiming at cardiac disorders mediated through P2X receptors.
Fujii, Shinya; Kano, Atsushi; Masuno, Hiroyuki; Songkram, Chalermkiat; Kawachi, Emiko; Hirano, Tomoya; Tanatani, Aya; Kagechika, Hiroyuki
2014-09-15
Vitamin D receptor (VDR), a nuclear receptor for 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3, 1), is a promising target for multiple clinical applications. We recently developed non-secosteroidal VDR ligands based on a carbon-containing boron cluster, 1,12-dicarba-closo-dodecaborane (p-carborane), and examined the binding of one of them to VDR by means of crystallographic analysis. Here, we utilized that X-ray structure to design novel p-carborane-based tetraol-type vitamin D analogs, and we examined the biological activities of the synthesized compounds. Structure-activity relationship study revealed that introduction of an ω-hydroxyalkoxy functionality enhanced the biological activity, and the configuration of the substituent significantly influenced the potency. Among the synthesized compounds, 4-hydroxybutoxy derivative 9a exhibited the most potent activity, which was equal to that of the secosteroidal vitamin D analog, 19-nor-1α,25-dihydroxyvitamin D3 (2). Copyright © 2014 Elsevier Ltd. All rights reserved.
Li, Lin; Sheng, Xuan; Zhao, Shanhong; Zou, Lifang; Han, Xinyao; Gong, Yingxin; Yuan, Huilong; Shi, Liran; Guo, Lili; Jia, Tianyu; Liu, Shuangmei; Wu, Bing; Yi, Zhihua; Liu, Hui; Gao, Yun; Li, Guilin; Li, Guodong; Zhang, Chunping; Xu, Hong; Liang, Shangdong
2017-12-01
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus (DM). More than 90% of all cases of DM belong to type 2 diabetes mellitus (T2DM). Emodin is the main active component of Radix et rhizoma rhei and has anti-bacterial, anti-viral, anti-ulcerogenic, anti-inflammatory, and anti-cancer effects. Nanoparticle encapsulation of drugs is beneficial for drug targeting and bioavailability as well as for lowering drug toxicity side effects. The aim of this study was to investigate the effects of nanoparticle-encapsulated emodin (nano emodin) on diabetic neuropathic pain (DNP) mediated by the Purin 2X3 (P2X3) receptor in the dorsal root ganglia (DRG). Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) values in T2DM rats were lower than those of control rats. MWT and TWL in T2DM rats treated with nano emodin were higher compared with those in T2DM rats. Expression levels of P2X3 protein and messenger RNA (mRNA) in the DRG of T2DM rats were higher than those of controls, while levels in T2DM rats treated with nano emodin were significantly lower than those of the T2DM rats. Phosphorylation and activation of ERK1/2 in the T2DM DRG were decreased by nano emodin treatment. Nano emodin significantly inhibited currents activated by the P2X3 agonist α,β-meATP in HEK293 cells transfected with the P2X3 receptor. Therefore, nano emodin treatment may relieve DNP by decreasing excitatory transmission mediated by the DRG P2X3 receptor in T2DM rats.
Kimm-Brinson, K L; Moeller, P D; Barbier, M; Glasgow, H; Burkholder, J M; Ramsdell, J S
2001-01-01
We examined the pharmacologic activity of a putative toxin (pPfTx) produced by Pfiesteria piscicida by characterizing the signaling pathways that induce the c-fos luciferase construct in GH(4)C(1) rat pituitary cells. Adenosine-5'-triphosphate (ATP) was determined to increase and, at higher concentrations, decrease luciferase activity in GH(4)C(1) rat pituitary cells that stably express c-fos luciferase. The inhibition of luciferase results from cytotoxicity, characteristic of the putative P. piscicida toxin (pPfTx). The actions of both pPfTx and ATP to induce c-fos luciferase were inhibited by the purinogenic receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). Further characterization of a P2X receptor on the GH(4)C(1) cell was determined by the analog selectivity of P2X agonists. The P2X1/P2X3 agonist alpha,beta-methylene ATP (alpha,beta-MeATP) failed to increase or decrease c-fos luciferase. However, the P2X7 agonist 2',3'-(4-benzoyl)benzoyl ATP (BzATP), which had a predominant cytotoxic effect, was more potent than ATP. Immunoblot analysis of GH(4)C(1) cell membranes confirmed the presence of a 70-kDa protein that was immunoreactive to an antibody directed against the carboxy-terminal domain unique to the P2X7 receptor. The P2X7 irreversible antagonist oxidized-ATP (oxATP) inhibited the action of ATP, BzATP, and pPfTx. These findings indicate that GH(4)C(1) cells express purinogenic receptors with selectivity consistent with the P2X7 subtype and that this receptor pathway mediates the induction of the c-fos luciferase reporter gene by ATP and the putative Pfiesteria toxin PMID:11401756
NASA Astrophysics Data System (ADS)
Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Le Coustumer, Phillippe; Constantin, Liliana Violeta; Predoi, Daniela
2012-06-01
Ag-doped nanocrystalline hydroxyapatite nanoparticles (Ag:HAp-NPs) (Ca10- x Ag x (PO4)6(OH)2, x Ag = 0.05, 0.2, and 0.3) with antibacterial properties are of great interest in the development of new products. Coprecipitation method is a promising route for obtaining nanocrystalline Ag:HAp with antibacterial properties. X-ray diffraction identified HAp as an unique crystalline phase in each sample. The calculated lattice constants of a = b = 9.435 Å, c = 6.876 Å for x Ag = 0.05, a = b = 9.443 Å, c = 6.875 Å for x Ag = 0.2, and a = b = 9.445 Å, c = 6.877 Å for x Ag = 0.3 are in good agreement with the standard of a = b = 9.418 Å, c = 6.884 Å (space group P63/m). The Fourier transform infrared and Raman spectra of the sintered HAp show the absorption bands characteristic to hydroxyapatite. The Ag:HAp nanoparticles are evaluated for their antibacterial activity against Staphylococcus aureus, Klebsiella pneumoniae, Providencia stuartii, Citrobacter freundii and Serratia marcescens. The results showed that the antibacterial activity of these materials, regardless of the sample types, was greatest against S. aureus, K. pneumoniae, P. stuartii, and C. freundii. The results of qualitative antibacterial tests revealed that the tested Ag:HAp-NPs had an important inhibitory activity on P. stuartii and C. freundii. The absorbance values measured at 490 nm of the P. stuartii and C. freundii in the presence of Ag:HAp-NPs decreased compared with those of organic solvent used (DMSO) for all the samples ( x Ag = 0.05, 0.2, and 0.3). Antibacterial activity increased with the increase of x Ag in the samples. The Ag:HAp-NP concentration had little influence on the bacterial growth ( P. stuartii).
Schmitz, Karl R.; Sauer, Robert T.
2014-01-01
Summary Mycobacterial Clp-family proteases function via collaboration of the heteromeric ClpP1P2 peptidase with a AAA+ partner, ClpX or ClpC1. These enzymes are essential for M. tuberculosis viability and are validated antibacterial drug targets, but the requirements for assembly and regulation of functional proteolytic complexes are poorly understood. Here, we report the reconstitution of protein degradation by mycobacterial Clp proteases in vitro and describe novel features of these enzymes that distinguish them from orthologs in other bacteria. Both ClpX and ClpC1 catalyze ATP-dependent unfolding and degradation of native protein substrates in conjunction with ClpP1P2, but neither mediates protein degradation with just ClpP1 or ClpP2. ClpP1P2 alone has negligible peptidase activity, but is strongly stimulated by translocation of protein substrates into ClpP1P2 by either AAA+ partner. Interestingly, our results support a model in which both binding of a AAA+ partner and protein-substrate delivery are required to stabilize active ClpP1P2. Our model has implications for therapeutically targeting ClpP1P2 in dormant M. tuberculosis, and our reconstituted systems should facilitate identification of novel Clp protease inhibitors and activators. PMID:24976069
Jarlbring, Mathias; Sandström, Dan E; Antzutkin, Oleg N; Forsling, Willis
2006-05-09
The chemically active phosphorus surface sites defined as PO(x), PO(x)H, and PO(x)H2, where x = 1, 2, or 3, and the bulk phosphorus groups of PO4(3-) at synthetic carbonate-free fluorapatite (Ca5(PO4)3F) have been studied by means of single-pulse 1H,31P, and 31P CP MAS NMR. The changes in composition and relative amounts of each surface species are evaluated as a function of pH. By combining spectra from single-pulse 1H and 31P MAS NMR and data from 31P CP MAS NMR experiments at varying contact times in the range 0.2-3.0 ms, it has been possible to distinguish between resonance lines in the NMR spectra originating from active surface sites and bulk phosphorus groups and also to assign the peaks in the NMR spectra to the specific phosphorus species. In the 31P CP MAS NMR experiments, the spinning frequency was set to 4.2 kHz; in the single-pulse 1H MAS NMR experiments, the spinning frequency was 10 kHz. The 31P CP MAS NMR spectrum of fluorapatite at pH 5.9 showed one dominating resonance line at 2.9 ppm assigned to originate from PO4(3-) groups and two weaker shoulder peaks at 5.4 and 0.8 ppm which were assigned to the unprotonated PO(x) (PO, PO2-, and PO3(2-)) and protonated PO(x)H (PO2H and PO3H-) surface sites. At pH 12.7, the intensity of the peak representing unprotonated PO(x) surface sites has increased 1.7% relative to the bulk peak, while the intensity of the peaks of the protonated species PO(x)H have decreased 1.4% relative to the bulk peak. At pH 3.5, a resonance peak at -4.5 ppm has appeared in the 31P CP MAS NMR spectrum assigned to the surface species PO(x)H2 (PO3H2). The results from the 1H MAS and 31P CP MAS NMR measurements indicated that H+, OH-, and physisorbed H2O at the surface were released during the drying process at 200 degrees C.
Structural basis for subtype-specific inhibition of the P2X7 receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karasawa, Akira; Kawate, Toshimitsu
The P2X7 receptor is a non-selective cation channel activated by extracellular adenosine triphosphate (ATP). Chronic activation of P2X7 underlies many health problems such as pathologic pain, yet we lack effective antagonists due to poorly understood mechanisms of inhibition. Here we present crystal structures of a mammalian P2X7 receptor complexed with five structurally-unrelated antagonists. Unexpectedly, these drugs all bind to an allosteric site distinct from the ATP-binding pocket in a groove formed between two neighboring subunits. This novel drug-binding pocket accommodates a diversity of small molecules mainly through hydrophobic interactions. Functional assays propose that these compounds allosterically prevent narrowing of themore » drug-binding pocket and the turret-like architecture during channel opening, which is consistent with a site of action distal to the ATP-binding pocket. These novel mechanistic insights will facilitate the development of P2X7-specific drugs for treating human diseases.« less
Aswad, Fred; Dennert, Gunther
2006-09-01
Contact of T lymphocytes with nicotinamide adenine dinucleotide (NAD) or ATP causes cell death that requires expression of purinergic receptor P2X(7) (P2X(7)R). T cell subsets differ in their responses to NAD and ATP, which awaits a mechanistic explanation. Here, we show that sensitivity to ATP correlates with P2X(7)R expression levels in CD4 cells, CD8 cells and CD4(+)CD25(+) cells from both C57BL/6 and BALB/c mice. But P2X(7)R ligands do not only induce cell death but also shedding of CD62L. It is shown here that in CD62L(high) T cells, CD62L shedding correlates with low expression of P2X(7)Rs and lower cell death, whereas in CD62L(low) cells P2X(7)R expression and death are higher. The possibility is therefore investigated that P2X(7)Rs induce T cell activation. Experiments show that spontaneous T cell proliferation is somewhat higher in cells expressing P2X(7)Rs, but this effect we suggest is caused by P2X(7)R expression on accessory cells.
Effects of naringin on learning and memory dysfunction induced by gp120 in rats.
Qin, Shanshan; Chen, Qiang; Wu, Hui; Liu, Chenglong; Hu, Jing; Zhang, Dalei; Xu, Changshui
2016-06-01
The aim of the present study was to investigate the effects of naringin on learning and memory dysfunction induced by HIV-1-enveloped protein gp120 in rats, and to identify its potential mechanisms of action. Learning and memory ability was evaluated via Morris water maze test, P2X7 receptor and P65 protein expressions in the rat hippocampus were detected by western blot analysis, and P2X7 mRNA expression in the hippocampus was measured by RT-PCR. We also recorded P2X7 agonist BzATP-activated current in the hippocampus via patch clamp technique. The results showed that naringin treatment (30mg/kg/day) markedly decreased the escape latency and target platform errors of rats treated with gp120 (50ng/day), and further, that naringin treatment significantly decreased the expression of P2X7 and P65 protein and P2X7 mRNA in the hippocampus of gp120-treated rats. In addition, naringin treatment reduced BzATP-activated current in the hippocampus of gp120-treated rats. These results altogether demonstrated that naringin can improve gp120-induced learning and memory dysfunction via mechanisms involving the inhibition of P2X7 expression in the hippocampus. Copyright © 2016 Elsevier Inc. All rights reserved.
Availability Equations for Redundant Systems, Both Single and Multiple Repair Capability
1987-10-01
roots of S2StAg)X AL 2 Having the denominator factored enables- Partial fraction expansion and hence finding the inverse transform . The Inverse ...S1 : Xl Tp S2 = x2 ŗ S3 x T The inverse transform for P0 is: Pot l = 6X3 x Sit Spt S t Vs S-)(S2S ’-SS(SS-S )e + iS 3 Si-S 3( e. _S(S 1 -S,)e...roots of S3 + S2 (6\\+6ý0+SMll(\\+2 )+6(1.+-03 S1 -(\\ + • S 2 : -2(X) + • S3 -3(X +0) "The Inverse transform is the same as for Case 3 except for the
Sophocleous, Reece A; Mullany, Phillip R F; Winter, Kelly M; Marks, Denese C; Sluyter, Ronald
2015-08-01
Phosphatidylserine (PS) exposure facilitates the removal of red blood cells (RBCs) from the circulation, potentially contributing to the loss of stored RBCs after transfusion, as well as senescent RBCs. Activation of the P2X7 receptor by extracellular adenosine 5'-triphosphate (ATP) can induce PS exposure on freshly isolated human RBCs, but whether this process occurs in stored RBCs or changes during RBC aging is unknown. RBCs were processed and stored according to Australian blood banking guidelines. PS exposure was determined by annexin V binding and flow cytometry. Efficacy of P2X antagonists was assessed by flow cytometric measurements of ATP-induced ethidium+ uptake in RPMI 8226 cells. Osmotic fragility was assessed by lysis in hypotonic saline. RBCs were fractionated by discontinuous density centrifugation. ATP (1 mmol/L) induced PS exposure on RBCs stored for less than 1 week. This process was near-completely inhibited by the P2X7 antagonists A438079 and AZ10606120 and the P2X1/P2X7 antagonist MRS2159 but not the P2X1 antagonist NF499. ATP-induced PS exposure on RBCs was not dependent on K+, Na+, or Cl- fluxes. ATP did not alter the osmotic fragility of stored RBCs. ATP-induced PS exposure was similar between RBCs of different densities. ATP-induced PS exposure was also similar between RBCs stored for less than 1 week or for 6 weeks. The propensity of RBCs to undergo P2X7-mediated PS exposure does not alter during in vivo and ex vivo aging. Thus, P2X7 activation is unlikely to be involved in the removal of senescent RBCs or stored RBCs after transfusion. © 2015 AABB.
Gao, Hongmei; Yin, Jie; Shi, Yugen; Hu, Hesheng; Li, Xiaolu; Xue, Mei; Cheng, Wenjuan; Wang, Ye; Li, Xinran; Li, Yongkang; Wang, Yu; Yan, Suhua
2017-04-01
Inflammation-dominated sympathetic sprouting adjacent to the necrotic region following myocardial infarction (MI) has been implicated in the etiology of arrhythmias resulting in sudden cardiac death; however, the mechanisms responsible remain to be elucidated. Although P2X 7 R is a key immune mediator, its role has yet to be explored. We investigated whether P2X 7 R regulates NF-κB and affects cardiac sympathetic reinnervation in rats undergoing MI. An adenoviral vector with a short hairpin RNA (shRNA) sequence inserted was adopted for the inhibition of P2X 7 R in vivo. Myocardial infarction was induced by left coronary artery ligation, and immediately after that, recombinant P2X 7 R-shRNA adenovirus, negative adenovirus (control), or normal saline solution (vehicle) was injected intramyocardially around the MI region and border areas. A high level of P2X 7 R was activated in the infarcted tissue at an early stage. The administration of P2X 7 R RNAi resulted in the inhibition of Akt and Erk1/2 phosphorylation and decreased the activation of NF-κB and macrophage infiltration, as well as attenuated the expression of nerve growth factor (NGF). Eventually, the NGF-induced sympathetic hyperinnervation was blunted, as assessed by the immunofluorescence of tyrosine hydroxylase (TH) and growth-associated protein 43 (GAP 43). At 7 days post-MI, the arrhythmia score of programmed electrical stimulation in the vehicle-treated infarcted rats was higher than the MI-shRNA group. Further amelioration of cardiac dysfunction was also detected. The administration of P2X 7 R RNAi during the acute inflammatory response phase prevented the process of sympathetic hyperinnervation after MI, which was associated in part with inhibiting the Akt and ERK1/2 pathways and NF-κB activation. © 2016 John Wiley & Sons Ltd.
Gentile, Daniela; Lazzerini, Pietro E.; Gamberucci, Alessandra; Natale, Mariarita; Selvi, Enrico; Vanni, Francesca; Alì, Alessandra; Taddeucci, Paolo; Del-Ry, Silvia; Cabiati, Manuela; Della-Latta, Veronica; Abraham, David J.; Morales, Maria A.; Fulceri, Rosella; Laghi-Pasini, Franco; Capecchi, Pier L.
2017-01-01
Objectives: Systemic sclerosis (SSc) is a connective tissue disorder presenting fibrosis of the skin and internal organs, for which no effective treatments are currently available. Increasing evidence indicates that the P2X7 receptor (P2X7R), a nucleotide-gated ionotropic channel primarily involved in the inflammatory response, may also have a key role in the development of tissue fibrosis in different body districts. This study was aimed at investigating P2X7R expression and function in promoting a fibrogenic phenotype in dermal fibroblasts from SSc patients, also analyzing putative underlying mechanistic pathways. Methods: Fibroblasts were isolated by skin biopsy from 9 SSc patients and 8 healthy controls. P2X7R expression, and function (cytosolic free Ca2+ fluxes, α-smooth muscle actin [α-SMA] expression, cell migration, and collagen release) were studied. Moreover, the role of cytokine (interleukin-1β, interleukin-6) and connective tissue growth factor (CTGF) production, and extracellular signal-regulated kinases (ERK) activation in mediating P2X7R-dependent pro-fibrotic effects in SSc fibroblasts was evaluated. Results: P2X7R expression and Ca2+ permeability induced by the selective P2X7R agonist 2′-3′-O-(4-benzoylbenzoyl)ATP (BzATP) were markedly higher in SSc than control fibroblasts. Moreover, increased αSMA expression, cell migration, CTGF, and collagen release were observed in lipopolysaccharides-primed SSc fibroblasts after BzATP stimulation. While P2X7-induced cytokine changes did not affect collagen production, it was completely abrogated by inhibition of the ERK pathway. Conclusion: In SSc fibroblasts, P2X7R is overexpressed and its stimulation induces Ca2+-signaling activation and a fibrogenic phenotype characterized by increased migration and collagen production. These data point to the P2X7R as a potential, novel therapeutic target for controlling exaggerated collagen deposition and tissue fibrosis in patients with SSc. PMID:28955239
Li, Kun-quan; Zheng, Zheng; Luo, Xing-zhang
2010-08-01
Low-cost and high surface area microporous activated carbons were prepared from Spartina alternilora and cotton stalk with KOH activation under the conditions of impregnation ratio of 3.0, activation temperature at 800 degrees C and activation time of 1.5 h. The adsorption behavior of p-nitroaniline on the activated carbons was investigated by batch sorption experiments. The influences of solution pH value, adsorbent dose and temperature were investigated. The adsorption isotherm and thermodynamic characteristics were also discussed. The Spartina alterniflora activated carbon (SA-AC) has a high surface area of 2825 m2 x g(-1) and a micropore volume of 1.192 cm3 x g(-1). The BET surface area and micropore volume of the cotton stalk activated carbon (CS-AC) are 2135 m2 x g(-1) and 1.011 cm3 x g(-1), respectively. The sorption experiments show that both the activated carbons have high sorption capacity for p-nitroaniline. The Langmuir maximum sorption amount was found to be 719 mg x g(-1) for SA-AC and 716 mg x g(-1) for CS-AC, respectively. The sorption was found to depend on solution pH, adsorbent dose, and temperature. The optimum pH for the removal of p-nitroaniline was found to be 7.0. The Freundlich model and Redlich-Peterson model can describe the experimental data effectively. The negative changes in free energy (delta G0) and enthalpy (delta H0) indicate that the sorption is a spontaneous and exothermic procedure. The negative values of the adsorption entropy delta S0 indicate that the mobility of p-nitroaniline on the carbon surface becomes more restricted as compared with that of those in solution.
Hallstrand, Teal S; Lai, Ying; Hooper, Kathryn A; Oslund, Rob C; Altemeier, William A; Matute-Bello, Gustavo; Gelb, Michael H
2016-01-01
Phospholipase A2s mediate the rate-limiting step in the formation of eicosanoids such as cysteinyl leukotrienes (CysLTs). Group IVA cytosolic PLA2α (cPLA2α) is thought to be the dominant PLA2 in eosinophils; however, eosinophils also have secreted PLA2 (sPLA2) activity that has not been fully defined. To examine the expression of sPLA2 group X (sPLA2-X) in eosinophils, the participation of sPLA2-X in the formation of CysLTs, and the mechanism by which sPLA2-X initiates the synthesis of CysLTs in eosinophils. Peripheral blood eosinophils were obtained from volunteers with asthma and/or allergy. A rabbit polyclonal anti-sPLA2-X antibody identified sPLA2-X by Western blot. We used confocal microscopy to colocalize the sPLA2-X to intracellular structures. An inhibitor of sPLA2-X (ROC-0929) that does not inhibit other mammalian sPLA2s, as well as inhibitors of the mitogen-activated kinase cascade (MAPK) and cPLA2α, was used to examine the mechanism of N-formyl-methionyl-leucyl-phenylalanine (fMLP)-mediated formation of CysLT. Eosinophils express the mammalian sPLA2-X gene (PLA2G10). The sPLA2-X protein is located in the endoplasmic reticulum, golgi, and granules of eosinophils and moves to the granules and lipid bodies during fMLP-mediated activation. Selective sPLA2-X inhibition attenuated the fMLP-mediated release of arachidonic acid and CysLT formation by eosinophils. Inhibitors of p38, extracellular-signal-regulated kinases 1/2 (p44/42 MAPK), c-Jun N-terminal kinase, and cPLA2α also attenuated the fMLP-mediated formation of CysLT. The sPLA2-X inhibitor reduced the phosphorylation of p38 and extracellular-signal-regulated kinases 1/2 (p44/42 MAPK) as well as cPLA2α during cellular activation, indicating that sPLA2-X is involved in activating the MAPK cascade leading to the formation of CysLT via cPLA2α. We further demonstrate that sPLA2-X is activated before secretion from the cell during activation. Short-term priming with IL-13 and TNF/IL-1β increased the expression of PLA2G10 by eosinophils. These results demonstrate that sPLA2-X plays a significant role in the formation of CysLTs by human eosinophils. The predominant role of the enzyme is the regulation of MAPK activation that leads to the phosphorylation of cPLA2α. The sPLA2-X protein is regulated by proteolytic cleavage, suggesting that an inflammatory environment may promote the formation of CysLTs through this mechanism. These results have important implications for the treatment of eosinophilic disorders such as asthma. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Silva, Isabel; Ferreirinha, Fátima; Magalhães-Cardoso, Maria Teresa; Silva-Ramos, Miguel; Correia-de-Sá, Paulo
2015-10-01
Deregulation of purinergic bladder signaling may contribute to persistent detrusor overactivity in patients with bladder outlet obstruction. Activation of uridine diphosphate sensitive P2Y6 receptors increases voiding frequency in rats indirectly by releasing adenosine triphosphate from the urothelium. To our knowledge this mechanism has never been tested in the human bladder. We examined the role of the uridine diphosphate sensitive P2Y6 receptor on tetrodotoxin insensitive nonneuronal adenosine triphosphate and [(3)H]acetylcholine release from the human urothelium with the lamina propria of control organ donors and patients with benign prostatic hyperplasia. The adenosine triphosphate-to-[(3)H]acetylcholine ratio was fivefold higher in mucosal urothelium/lamina propria strips from benign prostatic hyperplasia patients than control men. The selective P2Y6 receptor agonist PSB0474 (100 nM) augmented by a similar amount adenosine triphosphate and [(3)H]acetylcholine release from mucosal urothelium/lamina propria strips from both groups of individuals. The facilitatory effect of PSB0474 was prevented by MRS2578 (50 nM) and by carbenoxolone (10 μM), which block P2Y6 receptor and pannexin-1 hemichannels, respectively. Blockade of P2X3 (and/or P2X2/3) receptors with A317491 (100 nM) also attenuated release facilitation by PSB0474 in control men but not in patients with benign prostatic hyperplasia. Immunolocalization studies showed that P2Y6, P2X2 and P2X3 receptors were present in choline acetyltransferase positive urothelial cells. In contrast to P2Y6 staining, choline acetyltransferase, P2X2 and P2X3 immunoreactivity decreased in the urothelium of benign prostatic hyperplasia patients. Activation of P2Y6 receptor amplifies mucosal adenosine triphosphate release underlying bladder overactivity in patients with benign prostatic hyperplasia. Therefore, we propose selective P2Y6 receptor blockade as a novel therapeutic strategy to control persistent storage symptoms in obstructed patients. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Zhao, Yanyu; Luo, Huiying; Meng, Kun; Shi, Pengjun; Wang, Guozeng; Yang, Peilong; Yuan, Tiezheng; Yao, Bin
2011-09-01
A xylanase gene, aws-2x, was directly cloned from the genomic DNA of the alkaline wastewater sludge using degenerated PCR and modified TAIL-PCR. The deduced amino acid sequence of AWS-2x shared the highest identity (60%) with the xylanase from Chryseobacterium gleum belonging to the glycosyl hydrolase GH family 10. Recombinant AWS-2x was expressed in Escherichia coli BL21 (DE3) and purified to electrophoretic homogeneity. The enzyme showed maximal activity at pH 7.5 and 55 °C, maintained more than 50% of maximal activity when assayed at pH 9.0, and was stable over a wide pH range from 4.0 to 11.0. The specific activity of AWS-2x towards hardwood xylan (beechwood and birchwood xylan) was significantly higher than that to cereal xylan (oat spelt xylan and wheat arabinoxylan). These properties make AWS-2x a potential candidate for application in the pulp and paper industry.
Estimating Optimal Transformations for Multiple Regression and Correlation.
1982-07-01
algorithm; we minimize (2.4) e2 (,,, ...,) = E[e(Y) - 1I (X 2 j=l j 2holding EO =1, E6 = E0, =.-. =Ecp = 0, through a series of single function minimizations...X, x = INU = lIVe . Then (5.16) THEOREM. If 6*, p* is an optimal transformation for regression, then = ue*o Conversely, if e satisfies Xe = U6, Nll1...Stanford University, Tech. Report ORIONOO6. Gasser, T. and Rosenblatt, M. (eds.) (1979). Smoothing Techniques for Curve Estimation, in Lecture Notes in
[Protective effect of Tanreqing injection on acute hepatic injury induced by CCl4 in rats].
Lei, Yang; Zhou, Ai-Min; Guo, Tao; Tan, Ye; Tao, Yan-Yan; Liu, Cheng-Hai
2013-04-01
To observe the protective effect of Tanreqing injection(TRQ) on carbon tetrachloride-induced acute hepatic injury in rats. Rats were randomly divided into the normal group and the model group, and injected subcutaneously with 100% CCl4 5 mL x kg(-1) to establish the single CCl4 infection model, in order to observe the changes in rat liver injury after 3 h and 6 h. Subsequently, the multiple CCl4 infection liver injury model was reproduced by subcutaneously injecting 100% CCl4 (5 mL x kg(-1)), 50% CCl4 olive oil solution (2 mL x kg(-1)) and then 20% CCl4 olive oil solution (2 mL x kg(-1)). At 6 h after the first CCl4 injection, the rats were divided into six groups: the model group, the control group, the diammonium glycyrrhizinate-treated group, and TRQ high, middle and low dose groups. They were injected through caudal veins, while a normal control group was set up. Their weight and liver-body ratio were observed. Hepatic inflammation was observed with HE staining. Assay kits were adopted to detect ALT, AST, T. Bil, D. Bil, CHE, TBA, gamma-GT and Alb. According to the single injection model, serum AST and T. Bil of model rats were obviously increased at 6 h after single subcutaneous injection of CCl4, with disordered lobular structure in liver tissues, notable swollen liver cells and remarkable liver injury. According to the results of the multiple injection pharmacological experiment, compared with the normal group, the model group had higher serum ALT, AST, and gamma-GT activities (P < 0. 05), TBA and T. Bil contents (P < 0.05) and lower CHE activity (P < 0.05). HE staining showed disorganized lobular structure in liver tissues and notable ballooning degeneration in liver cells. Compared with the model group, TRQ high and middle dose groups and the diammonium glycyrrhizinate-treated group showed significant charges in serum liver function and inflammation in liver cells. Specifically, TRQ high and middle dose groups were superior to the diammonium glycyrrhizinate-treated group. Tanreqing injection has significant protective effect on CCl4-induced acute hepatic injury in rats.
Synergic effects of mycoplasmal lipopeptides and extracellular ATP on activation of macrophages.
Into, Takeshi; Fujita, Mari; Okusawa, Tsugumi; Hasebe, Akira; Morita, Manabu; Shibata, Ken-Ichiro
2002-07-01
Mycoplasmal lipopeptides S-(2,3-bispalmitoyloxypropyl)-CGDPKHSPKSF and S-(2,3-bispalmitoyloxypropyl)-CGNNDESNISFKEK activated a monocytic cell line, THP-1 cells, to produce tumor necrosis factor alpha. The activity of the lipopeptides was augmented by ATP in a dose-dependent manner. In addition, the level of expression of mRNAs for tumor necrosis factor alpha and interleukin-1 beta, -6, and -8 was also upregulated by the lipopeptides and/or extracellular ATP, but that of interleukin-10 was not. The P2X purinergic receptor antagonists pyridoxal phosphate 6-azophenyl 2',4'-disulfonic acid and periodate-oxidized ATP suppressed the activity of ATP to augment the activation of THP-1 cells by the lipopeptides, suggesting that P2X receptors play important roles in the activity of ATP. The nuclear factor kappa B inhibitor dexamethasone also suppressed the activity, suggesting that the activity of ATP is dependent upon the nuclear factor kappa B. Thus, these results suggest that the interaction of extracellular ATP with the P2X receptors is attributed to the activity of ATP to augment the activation of THP-1 cells by mycoplasmal lipopeptides.
Symmetric digit sets for elliptic curve scalar multiplication without precomputation
Heuberger, Clemens; Mazzoli, Michela
2014-01-01
We describe a method to perform scalar multiplication on two classes of ordinary elliptic curves, namely E:y2=x3+Ax in prime characteristic p≡1mod4, and E:y2=x3+B in prime characteristic p≡1mod3. On these curves, the 4-th and 6-th roots of unity act as (computationally efficient) endomorphisms. In order to optimise the scalar multiplication, we consider a width-w-NAF (Non-Adjacent Form) digit expansion of positive integers to the complex base of τ, where τ is a zero of the characteristic polynomial x2−tx+p of the Frobenius endomorphism associated to the curve. We provide a precomputationless algorithm by means of a convenient factorisation of the unit group of residue classes modulo τ in the endomorphism ring, whereby we construct a digit set consisting of powers of subgroup generators, which are chosen as efficient endomorphisms of the curve. PMID:25190900
Mahaut-Smith, Martyn P; Taylor, Kirk A; Evans, Richard J
2016-01-01
Ligand-gated ion channels on the cell surface are directly activated by the binding of an agonist to their extracellular domain and often referred to as ionotropic receptors. P2X receptors are ligand-gated non-selective cation channels with significant permeability to Ca(2+) whose principal physiological agonist is ATP. This chapter focuses on the mechanisms by which P2X1 receptors, a ubiquitously expressed member of the family of ATP-gated channels, can contribute to cellular responses in non-excitable cells. Much of the detailed information on the contribution of P2X1 to Ca(2+) signalling and downstream functional events has been derived from the platelet. The underlying primary P2X1-generated signalling event in non-excitable cells is principally due to Ca(2+) influx, although Na(+) entry will also occur along with membrane depolarization. P2X1 receptor stimulation can lead to additional Ca(2+) mobilization via a range of routes such as amplification of G-protein-coupled receptor-dependent Ca(2+) responses. This chapter also considers the mechanism by which cells generate extracellular ATP for autocrine or paracrine activation of P2X1 receptors. For example cytosolic ATP efflux can result from opening of pannexin anion-permeable channels or following damage to the cell membrane. Alternatively, ATP stored in specialised secretory vesicles can undergo quantal release via the process of exocytosis. Examples of physiological or pathophysiological roles of P2X1-dependent signalling in non-excitable cells are also discussed, such as thrombosis and immune responses.
Wang, Wei; Yi, Xiaosong; Ren, Yanfang; Xie, Qiufei
2016-10-01
Adenosine 5'-triphosphate (ATP) is a potent signaling molecule that regulates diverse biological activities in cells. Its effects on human dental pulp cells (HDPCs) remain unknown. This study aimed to examine the effects of ATP on proliferation and differentiation of HDPCs. Reverse transcription polymerase chain reaction was performed to explore the mRNA expression of P2 receptor subtypes. Cell Counting Kit-8 test and flow cytometry analysis were used to examine the effects of ATP on proliferation and cell cycle of HDPCs. The effects of ATP on differentiation of HDPCs were examined by using alizarin red S staining, energy-dispersive x-ray analysis, Western blot analysis, and real-time polymerase chain reaction. The purinoceptors P2X3, P2X4, P2X5, P2X7, and all P2Y receptor subtypes were confirmed to present in HDPCs. ATP enhanced HDPC proliferation at 10 μmol/L concentration. However, it inhibited cell proliferation by arresting the cell cycle in G0G1 phase (P < .05 versus control) and induced odontoblastic differentiation, ERK/MAPK activation, and dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP) mRNA transcriptions at 800 μmol/L concentration. Suramin, an ATP receptor antagonist, inhibited ERK/MAPK activation and HDPC odontoblastic differentiation (P < .05 versus control). Extracellular ATP activates P2 receptors and downstream signaling events that induce HDPC odontogenic differentiation. Thus, ATP may promote dental pulp tissue healing and repair through P2 signaling. Results provide new insights into the molecular regulation of pulpal wound healing. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
P2X7 Receptor as a Therapeutic Target.
De Marchi, Elena; Orioli, Elisa; Dal Ben, Diego; Adinolfi, Elena
2016-01-01
P2X7 receptor is an ATP-gated cation channel that upon agonist interaction leads to cellular influx of Na(+) and Ca(2+) and efflux of K(+). P2X7 is expressed by a wide variety of cells and its activation mediates a large number of biological processes like inflammation, neuromodulation, cell death or cell proliferation and it has been associated to related pathological conditions including infectious, inflammatory, autoimmune, neurological, and musculoskeletal disorders and, in the last years, to cancer. This chapter describes structural features of P2X7, chemical properties of its agonist, antagonist, and allosteric modulators and summarizes recent advances on P2X7 receptor as therapeutic target in the aforementioned diseases. We also give an overview on recent literature suggesting that P2X7 single-nucleotide polymorphisms could be exploited as diagnostic biomarkers for the development of tailored therapies. © 2016 Elsevier Inc. All rights reserved.
Sugiyama, Tetsuya; Kobayashi, Masato; Kawamura, Hajime; Li, Qing; Puro, Donald G; Kobayshi, Masato
2004-03-01
A sight-threatening complication of diabetes is cell death in retinal capillaries. Currently, the mechanisms responsible for this classic manifestation of diabetic retinopathy remain uncertain. The hypothesis for the current study is that diabetes increases the vulnerability of retinal microvessels to the potentially lethal consequences of having their P2X(7) purinoceptors activated. A pathophysiological role is suspected for these receptor-operated channels because, in addition to transducing retinovascular responses to extracellular adenosine triphosphate (ATP), the sustained opening of these channels can induce the formation of large transmembrane pores. In pericyte-containing retinal microvessels that were freshly isolated from nondiabetic and streptozotocin-injected rats, cells with pores were identified by the uptake of YO-PRO-1. Cell viability was assayed by trypan blue dye exclusion, and cleaved caspase-3 immunoreactivity, TUNEL positivity, and nuclear morphology were used to detect apoptotic cells. Patch-clamp recordings assessed electrophysiological parameters. Activation of P2X(7) receptors caused large pores to form and apoptosis to occur in retinal capillaries of nondiabetic and diabetic rats. Of importance to diabetes, the agonist concentration needed to open pores and trigger apoptosis decreased markedly soon after the onset of streptozotocin-induced hyperglycemia. However, despite this increased sensitivity, diabetes minimally affected the P2X(7)-induced ionic currents. Thus, rather than upregulate the number of functional P2X(7) receptor/channels, diabetes appears to facilitate the channel-to-pore transition that occurs during activation of these purinoceptors. In this way, normally nonlethal concentrations of P2X(7) ligands may trigger apoptosis in microvessels of the diabetic retina. A diabetes-induced increase in the vulnerability of retinal microvessels to the lethal effect of P2X(7) receptor activation may be a previously unrecognized mechanism by which diabetic retinopathy progresses.
Murphy, Niamh; Lynch, Marina A
2012-12-01
The P2X(7) receptor is an ion-gated channel, which is activated by high extracellular concentrations of adenosine triphosphate (ATP). Activation of P2X(7) receptors has been shown to induce neuroinflammatory changes associated with several neurological conditions. The matrix metalloproteinases (MMPs) are a family of endopeptidases that have several functions including degradation of the extracellular matrix, cell migration and modulation of bioactive molecules. The actions of MMPs are prevented by a family of protease inhibitors called tissue inhibitors of metalloproteinases (TIMPs). In this study, we show that ATP-treated glial cultures from neonatal C57BL/6 mice release and increase MMP-9 activity, which is coupled with a decrease in release of TIMP-1 and an increase in activated cathepsin B within the extracellular space. This process occurs independently of NLRP3-inflammasome formation. Treatment with a P2X(7) receptor antagonist prevents ATP-induced MMP-9 activity, inhibition of active cathepsin B release and allows for TIMP-1 to be released from the cell. We have shown that cathepsin B degrades TIMP-1, and inhibition of cathepsin B allows for release of TIMP-1 and inhibits MMP-9 activity. We also present data that indicate that ATP or cell damage induces glial cell migration, which is inhibited by P2X(7) antagonism, depletion of MMP-9 or inhibition of cathepsin B. © 2012 International Society for Neurochemistry.
Song, Li-Cheng; Han, Xiao-Feng; Chen, Wei; Li, Jia-Peng; Wang, Xu-Yong
2017-08-14
A new series of the structural and functional models for the active site of [NiFe]-H 2 ases has been prepared by a simple and convenient synthetic route. Thus, treatment of diphosphines RN(PPh 2 ) 2 (1a, R = p-MeC 6 H 4 CH 2 ; 1b, R = EtO 2 CCH 2 ) with an equimolar NiCl 2 ·6H 2 O, NiBr 2 ·3H 2 O, and NiI 2 in refluxing CH 2 Cl 2 /MeOH or EtOH gave the mononuclear Ni complexes RN(PPh 2 ) 2 NiX 2 (2a, R = p-MeC 6 H 4 CH 2 , X = Cl; 2b, R = EtO 2 CCH 2 , X = Cl; 3a, R = p-MeC 6 H 4 CH 2 , X = Br; 3b, R = EtO 2 CCH 2 , X = Br; 4a, R = p-MeC 6 H 4 CH 2 , X = I; 4b, R = EtO 2 CCH 2 , X = I) in 67-97% yields. Further treatment of complexes 2a,b-4a,b with an equimolar mononuclear Fe complex (dppv)(CO) 2 Fe(pdt) and NaBF 4 resulted in formation of the targeted model complexes [RN(PPh 2 ) 2 Ni(μ-pdt)(μ-X)Fe(CO)(dppv)](BF 4 ) (5a, R = p-MeC 6 H 4 CH 2 , X = Cl; 5b, R = EtO 2 CCH 2 , X = Cl; 6a, R = p-MeC 6 H 4 CH 2 , X = Br; 6b, R = EtO 2 CCH 2 , X = Br; 7a, R = p-MeC 6 H 4 CH 2 , X = I; 7b, R = EtO 2 CCH 2 , X = I) in 60-96% yields. All the new complexes 3a,b-4a,b and 5a,b-7a,b have been characterized by elemental analysis and spectroscopy, and particularly for some of them (3a,b/4a,b and 5b/6b) by X-ray crystallography. More interestingly, the electrochemical and electrocatalytic properties of such halogenido-bridged model complexes are first studied systematically and particularly they have been found to be pre-catalysts for proton reduction to H 2 under CV conditions.
Nociceptive transmission and modulation via P2X receptors in central pain syndrome.
Kuan, Yung-Hui; Shyu, Bai-Chuang
2016-05-26
Painful sensations are some of the most frequent complaints of patients who are admitted to local medical clinics. Persistent pain varies according to its causes, often resulting from local tissue damage or inflammation. Central somatosensory pathway lesions that are not adequately relieved can consequently cause central pain syndrome or central neuropathic pain. Research on the molecular mechanisms that underlie this pathogenesis is important for treating such pain. To date, evidence suggests the involvement of ion channels, including adenosine triphosphate (ATP)-gated cation channel P2X receptors, in central nervous system pain transmission and persistent modulation upon and following the occurrence of neuropathic pain. Several P2X receptor subtypes, including P2X2, P2X3, P2X4, and P2X7, have been shown to play diverse roles in the pathogenesis of central pain including the mediation of fast transmission in the peripheral nervous system and modulation of neuronal activity in the central nervous system. This review article highlights the role of the P2X family of ATP receptors in the pathogenesis of central neuropathic pain and pain transmission. We discuss basic research that may be translated to clinical application, suggesting that P2X receptors may be treatment targets for central pain syndrome.
Kongsui, Ratchaniporn; Beynon, Sarah B; Johnson, Sarah J; Mayhew, Jack; Kuter, Patrick; Nilsson, Michael; Walker, Frederick Rohan
2014-11-01
A number of studies have identified that mutations in the P2X7 receptor occur with a significantly higher incidence in individuals with major depression. Consistent with these findings, a number of preclinical studies have identified that mice in which the P2X7 receptor has been deleted exhibit a higher level of resilience-like behaviour to acutely aversive situations. At present, however, no studies have examined changes in P2X7 receptor expression in otherwise healthy animals exposed to persistently stressful situations. This is significant as several lines of evidence have demonstrated that it is exposure to persistently aversive, rather than acutely aversive, situations that is associated with the emergence of mood disturbance. Accordingly, the objective of the current study was to examine whether chronic exposure to restraint stress was associated with alterations in the expression of P2X7 within the hippocampal formation. The study involved three principal groups: acute stress (1 session), chronic stress (21 sessions, 1 per day) and a chronic stress with recovery group (21 sessions, 1 per day followed by 7days of no stress) and appropriate control groups. The results of the analysis indicate that all forms of stress, regardless of the duration, provoked a reduction in P2X7 receptor expression. Comparative analysis on normalised data indicated that the magnitude of the P2X7 reduction was significantly greater in the chronic stress relative to the acute stress group. We additionally found that there was a gradual rebound in P2X7 expression, in two of nine regions examined, in animals that were allowed to recover for 7days following the final stress session. Collectively, these findings provide the first evidence that exposure to chronic restraint stress produces a pronounced and relatively persistent suppression of the P2X7 receptor within the hippocampus. Copyright © 2014 Elsevier Inc. All rights reserved.
Knocking out P2X receptors reduces transmitter secretion in taste buds
Huang, Yijen A.; Stone, Leslie M.; Pereira, Elizabeth; Yang, Ruibiao; Kinnamon, John C.; Dvoryanchikov, Gennady; Chaudhari, Nirupa; Finger, Thomas E.; Kinnamon, Sue C.; Roper, Stephen D.
2011-01-01
In response to gustatory stimulation, taste bud cells release a transmitter, ATP, that activates P2X2 and P2X3 receptors on gustatory afferent fibers. Taste behavior and gustatory neural responses are largely abolished in mice lacking P2X2 and P2X3 receptors (P2X2 and P2X3 double knockout, or “DKO” mice). The assumption has been that eliminating P2X2 and P2X3 receptors only removes postsynaptic targets but that transmitter secretion in mice is normal. Using functional imaging, ATP biosensor cells, and a cell-free assay for ATP, we tested this assumption. Surprisingly, although gustatory stimulation mobilizes Ca2+ in taste Receptor (Type II) cells from DKO mice, as from wild type (WT) mice, taste cells from DKO mice fail to release ATP when stimulated with tastants. ATP release could be elicited by depolarizing DKO Receptor cells with KCl, suggesting that ATP-release machinery remains functional in DKO taste buds. To explore the difference in ATP release across genotypes, we employed reverse transcriptase (RT)-PCR, immunostaining, and histochemistry for key proteins underlying ATP secretion and degradation: Pannexin1, TRPM5, and NTPDase2 (ecto-ATPase) are indistinguishable between WT and DKO mice. The ultrastructure of contacts between taste cells and nerve fibers is also normal in the DKO mice. Finally, quantitative RT-PCR show that P2X4 and P2X7, potential modulators of ATP secretion, are similarly expressed in taste buds in WT and DKO taste buds. Importantly, we find that P2X2 is expressed in WT taste buds and appears to function as an autocrine, positive feedback signal to amplify taste-evoked ATP secretion. PMID:21940456
Knocking out P2X receptors reduces transmitter secretion in taste buds.
Huang, Yijen A; Stone, Leslie M; Pereira, Elizabeth; Yang, Ruibiao; Kinnamon, John C; Dvoryanchikov, Gennady; Chaudhari, Nirupa; Finger, Thomas E; Kinnamon, Sue C; Roper, Stephen D
2011-09-21
In response to gustatory stimulation, taste bud cells release a transmitter, ATP, that activates P2X2 and P2X3 receptors on gustatory afferent fibers. Taste behavior and gustatory neural responses are largely abolished in mice lacking P2X2 and P2X3 receptors [P2X2 and P2X3 double knock-out (DKO) mice]. The assumption has been that eliminating P2X2 and P2X3 receptors only removes postsynaptic targets but that transmitter secretion in mice is normal. Using functional imaging, ATP biosensor cells, and a cell-free assay for ATP, we tested this assumption. Surprisingly, although gustatory stimulation mobilizes Ca(2+) in taste Receptor (Type II) cells from DKO mice, as from wild-type (WT) mice, taste cells from DKO mice fail to release ATP when stimulated with tastants. ATP release could be elicited by depolarizing DKO Receptor cells with KCl, suggesting that ATP-release machinery remains functional in DKO taste buds. To explore the difference in ATP release across genotypes, we used reverse transcriptase (RT)-PCR, immunostaining, and histochemistry for key proteins underlying ATP secretion and degradation: Pannexin1, TRPM5, and NTPDase2 (ecto-ATPase) are indistinguishable between WT and DKO mice. The ultrastructure of contacts between taste cells and nerve fibers is also normal in the DKO mice. Finally, quantitative RT-PCR show that P2X4 and P2X7, potential modulators of ATP secretion, are similarly expressed in taste buds in WT and DKO taste buds. Importantly, we find that P2X2 is expressed in WT taste buds and appears to function as an autocrine, positive feedback signal to amplify taste-evoked ATP secretion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genetos, Damian C., E-mail: dgenetos@ucdavis.edu; Karin, Norman J.; Geist, Derik J.
2011-04-01
Fluid shear stress regulates gene expression in osteoblasts, in part by activation of the transcription factor NF-{kappa}B. We examined whether this process was under the control of purinoceptor activation. MC3T3-E1 osteoblasts under static conditions expressed the NF-{kappa}B inhibitory protein I{kappa}B{alpha} and exhibited cytosolic localization of NF-{kappa}B. Under fluid shear stress, I{kappa}B{alpha} levels decreased, and concomitant nuclear localization of NF-{kappa}B was observed. Cells exposed to fluid shear stress in ATP-depleted medium exhibited no significant reduction in I{kappa}B{alpha}, and NF-{kappa}B remained within the cytosol. Similar results were found using oxidized ATP or Brilliant Blue G, P2X{sub 7} receptor antagonists, indicating that themore » P2X{sub 7} receptor is responsible for fluid shear-stress-induced I{kappa}B{alpha} degradation and nuclear accumulation of NF-{kappa}B. Pharmacologic blockage of the P2Y6 receptor also prevented shear-induced I{kappa}B{alpha} degradation. These phenomena involved neither ERK1/2 signaling nor autocrine activation by P2X{sub 7}-generated lysophosphatidic acid. Our results suggest that fluid shear stress regulates NF-{kappa}B activity through the P2Y{sub 6} and P2X{sub 7} receptor.« less
Han, Xin; Song, Jian; Lian, Li-Hua; Yao, You-Li; Shao, Dan-Yang; Fan, Ying; Hou, Li-Shuang; Wang, Ge; Zheng, Shuang; Wu, Yan-Ling; Nan, Ji-Xing
2018-06-22
Ginseng is widely used in energy drinks, dietary supplements and herbal medicines, and its pharmacological actions are related with energy metabolism. As an important modulating energy metabolism pathway, liver X receptors (LXRs) can promote the resolving of hepatic fibrosis and inflammation. The present study aims to evaluate the regulation of 25-OCH3-PPD, a ginsenoside isolated from Panax ginseng, against hepatic fibrosis and inflammation in thioacetamide (TAA)-stimulated mice by activating LXRs pathway. 25-OCH3-PPD decreases serum ALT/AST levels and improves the histological pathology of liver in TAA-induced mice; attenuates transcripts of pro-fibrogenic markers associated with hepatic stellate cell activation; attenuates the levels of pro-Inflammatory cytokines and blocks apoptosis happened in liver; inhibits NLRP3 inflammasome by affecting P2X7R activation; regulates PI3K/Akt and LKB1/AMPK-SIRT1. 25-OCH3-PPD also facilitates LX25Rs and FXR activities decreased by TAA stimulation. 25-OCH3-PPD also decreases α-SMA via regulation of LXRs and P2X7R-NLRP3 in vitro. Our data suggest the possibility that 25-OCH3-PPD promotes activity of LXRs to ameliorate P2X7R-mediated NLRP3 inflammasome in the development of hepatic fibrosis.
P2X antagonists inhibit styryl dye entry into hair cells.
Crumling, M A; Tong, M; Aschenbach, K L; Liu, L Qian; Pipitone, C M; Duncan, R K
2009-07-21
The styryl pyridinium dyes, FM1-43 and AM1-43, are fluorescent molecules that can permeate the mechanotransduction channels of hair cells, the sensory receptors of the inner ear. When these dyes are applied to hair cells, they enter the cytoplasm rapidly, resulting in a readily detectable intracellular fluorescence that is often used as a molecular indication of mechanotransduction channel activity. However, such dyes can also permeate the ATP receptor, P2X(2). Therefore, we explored the contribution of P2X receptors to the loading of hair cells with AM1-43. The chick inner ear was found to express P2X receptors and to release ATP, similar to the inner ear of mammals, allowing for the endogenous stimulation of P2X receptors. The involvement of these receptors was evaluated pharmacologically, by exposing the sensory epithelium of the chick inner ear to 5 microM AM1-43 under different experimental conditions and measuring the fluorescence in hair cells after fixation of the tissue. Pre-exposure of the tissue to 5 mM EGTA for 15 min, which should eliminate most of the gating "tip links" of the mechanotransduction channels, deceased fluorescence by only 44%. In contrast, P2X receptor antagonists (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid [PPADS], suramin, 2',3'-O-(2,4,6-trinitrophenyl) ATP [TNP-ATP], and d-tubocurarine) had greater effects on dye loading. PPADS, suramin, and TNP-ATP all decreased intracellular AM1-43 fluorescence in hair cells by at least 69% when applied at a concentration of 100 microM. The difference between d-tubocurarine-treated and control fluorescence was statistically insignificant when d-tubocurarine was applied at a concentration that blocks the mechanotransduction channel (200 microM). At a concentration that also blocks P2X(2) receptors (2 mM), d-tubocurarine decreased dye loading by 72%. From these experiments, it appears that AM1-43 can enter hair cells through endogenously activated P2X receptors. Thus, the contribution of P2X receptors to dye entry should be considered when using styryl pyridinium dyes to detect hair cell mechanotransduction channel activity, especially in the absence of explicit mechanical stimulation of stereocilia.
Phosphoinositides Regulate P2X4 ATP-Gated Channels through Direct Interactions
Bernier, Louis-Philippe; Ase, Ariel R.; Chevallier, Stéphanie; Blais, Dominique; Zhao, Qi; Boué-Grabot, Éric; Logothetis, Diomedes; Séguéla, Philippe
2008-01-01
P2X receptors are ATP-gated nonselective cation channels highly permeable to calcium that contribute to nociception and inflammatory responses. The P2X4 subtype, upregulated in activated microglia, is thought to play a critical role in the development of tactile allodynia following peripheral nerve injury. Posttranslational regulation of P2X4 function is crucial to the cellular mechanisms of neuropathic pain, however it remains poorly understood. Here, we show that the phosphoinositides PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3), products of phosphorylation by wortmannin-sensitive phosphatidylinositol 4-kinases and phosphatidylinositol 3-kinases, can modulate the function of native and recombinant P2X4 receptor channels. In BV-2 microglial cells, depleting the intracellular levels of PIP2 and PIP3 with wortmannin significantly decreased P2X4 current amplitude and P2X4-mediated calcium entry measured in patch clamp recordings and ratiometric ion imaging, respectively. Wortmannin-induced depletion of phosphoinositides in Xenopus oocytes decreased the current amplitude of P2X4 responses by converting ATP into a partial agonist. It also decreased their recovery from desensitization and affected their kinetics. Injection of phosphoinositides in wortmannin-treated oocytes reversed these effects and application of PIP2 on excised inside-out macropatches rescued P2X4 currents from rundown. Moreover, we report the direct interaction of phospholipids with the proximal C-terminal domain of P2X4 subunit (Cys360-Val375) using an in vitro binding assay. These results demonstrate novel regulatory roles of the major signaling phosphoinositides PIP2 and PIP3 on P2X4 function through direct channel-lipid interactions. PMID:19036987
Shabir, Saqib; Cross, William; Kirkwood, Lisa A.; Pearson, Joanna F.; Appleby, Peter A.; Walker, Dawn; Eardley, Ian
2013-01-01
In addition to its role as a physical barrier, the urothelium is considered to play an active role in mechanosensation. A key mechanism is the release of transient mediators that activate purinergic P2 receptors and transient receptor potential (TRP) channels to effect changes in intracellular Ca2+. Despite the implied importance of these receptors and channels in urothelial tissue homeostasis and dysfunctional bladder disease, little is known about their functional expression by the human urothelium. To evaluate the expression and function of P2X and P2Y receptors and TRP channels, the human ureter and bladder were used to separate urothelial and stromal tissues for RNA isolation and cell culture. RT-PCR using stringently designed primer sets was used to establish which P2 and TRP species were expressed at the transcript level, and selective agonists/antagonists were used to confirm functional expression by monitoring changes in intracellular Ca2+ and in a scratch repair assay. The results confirmed the functional expression of P2Y4 receptors and excluded nonexpressed receptors/channels (P2X1, P2X3, P2X6, P2Y6, P2Y11, TRPV5, and TRPM8), while a dearth of specific agonists confounded the functional validation of expressed P2X2, P2X4, P2Y1, P2Y2, TRPV2, TRPV3, TRPV6 and TRPM7 receptors/channels. Although a conventional response was elicited in control stromal-derived cells, the urothelial cell response to well-characterized TRPV1 and TRPV4 agonists/antagonists revealed unexpected anomalies. In addition, agonists that invoked an increase in intracellular Ca2+ promoted urothelial scratch repair, presumably through the release of ATP. The study raises important questions about the ligand selectivity of receptor/channel targets expressed by the urothelium. These pathways are important in urothelial tissue homeostasis, and this opens the possibility of selective drug targeting. PMID:23720349
Toulmé, Estelle; Soto, Florentina; Garret, Maurice; Boué-Grabot, Eric
2006-02-01
Although P2X receptors within the central nervous system mediate excitatory ATP synaptic transmission, the identity of central ATP-gated channels has not yet been elucidated. P2X(4), the most widely expressed subunit in the brain, was previously shown to undergo clathrin-dependent constitutive internalization by direct interaction between activator protein (AP)2 adaptors and a tyrosine-based sorting signal specifically present in the cytosolic C-terminal tail of mammalian P2X(4) sequences. In this study, we first used internalization-deficient P2X(4) receptor mutants to show that suppression of the endocytosis motif significantly increased the apparent sensitivity to ATP and the ionic permeability of P2X(4) channels. These unique properties, observed at low channel density, suggest that interactions with AP2 complexes may modulate the function of P2X(4) receptors. In addition, ivermectin, an allosteric modulator of several receptor channels, including mammalian P2X(4), did not potentiate the maximal current of internalization-deficient rat or human P2X(4) receptors. We demonstrated that binding of ivermectin onto wild-type P2X(4) channels increased the fraction of plasma membrane P2X(4) receptors, whereas surface expression of internalization-deficient P2X(4) receptors remained unchanged. Disruption of the clathrin-mediated endocytosis with the dominant-negative mutants Eps15 or AP-50 abolished the ivermectin potentiation of wild-type P2X(4) channel currents. Likewise, ivermectin increased the membrane fraction of nicotinic alpha7 acetylcholine (nalpha7ACh) receptors and the potentiation of acetylcholine current by ivermectin was suppressed when the same dominant-negative mutants were expressed. These data showed that potentiation by ivermectin of both P2X(4) and nalpha7ACh receptors was primarily caused by an increase in the number of cell surface receptors resulting from a mechanism dependent on clathrin/AP2-mediated endocytosis.
Ye, Xinchun; Shen, Tong; Hu, Jinxia; Zhang, Liang; Zhang, Yunshan; Bao, Lei; Cui, Chengcheng; Jin, Guoliang; Zan, Kun; Zhang, Zuohui; Yang, Xinxin; Shi, Hongjuan; Zu, Jie; Yu, Ming; Song, Chengjie; Wang, Yulan; Qi, Suhua; Cui, Guiyun
2017-06-01
Previous research has shown that Purinergic 2X7 receptor (P2X7R) and NLRP3 inflammasome contribute to the inflammatory activation. In this study, we investigated whether P2X7R/NLRP3 pathway is involved in the caspase-3 dependent neuronal apoptosis after ischemic stroke by using a focal cortex ischemic stroke model. The expressions of P2X7R, NLRP3 inflammsome components, and cleaved caspase-3 were significantly enhanced in the ischemic brain tissue after stroke. However, the expression of cleaved caspase-3 was significantly attenuated after treatment of stroke with P2X7R antagonist (BBG) or NLRP3 inhibitor (MCC950). The treatment also significantly reduced the infarction volume, neuronal apoptosis, and neurological impairment. In addition, in vitro data also support the hypothesis that P2X7R/NLRP3 pathway plays a vital role in caspase-3 dependent neuronal apoptosis after ischemic stroke. Further investigation of effective regulation of P2X7R and NLRP3 in stroke is warranted. Copyright © 2017. Published by Elsevier Inc.
A novel tunable white light emitting multiphase phosphor obtained from Ba2TiP2O9 by introducing Eu3+
NASA Astrophysics Data System (ADS)
Zhou, Zhenzhen; Liu, Guanghui; Wan, Jieqiong; Ni, Jia; Lu, Zhouguang; Ma, Ruguang; Zhou, Yao; Wang, Jiacheng; Liu, Qian
2016-04-01
Tunable white light was realized in samples Ba2(1- x)TiP2O9:2 xEu ( x = 0-0.80) by introducing orange-red light emitting Eu3+ in self-activated blue-green light emitting matrix Ba2TiP2O9. The sample Ba2(1- x)TiP2O9:2 xEu is a multiphase system consisting of Ba2TiP2O9, EuPO4 and TiO2 when x is greater than or equal to 0.20. The tunable light from blue-green to bluish-white, to white, and eventually to pinky-white of samples Ba2(1- x)TiP2O9:2 xEu under UV light excitation is attributed to the light mixture of tunable blue-green light from Ti4+-O2- charge transfer transition in Ba2TiP2O9 and orange-red light from Eu3+ 4f-4f transition mostly in EuPO4. The Commission International de l'Eclairage chromaticity coordinates, correlated color temperature and color rendering index were tuned from (0.262, 0.339), 9492 K and 74 for matrix sample Ba2TiP2O9 to (0.324, 0.346), 5876 K and 87 for sample Ba2(1- x)TiP2O9:2 xEu ( x = 0.40) under UV light excitation. Therefore, a kind of promising UV-excited white light emitting multiphase phosphor was obtained.
Allosteric nature of P2X receptor activation probed by photoaffinity labelling
Bhargava, Y; Rettinger, J; Mourot, A
2012-01-01
BACKGROUND AND PURPOSE In P2X receptors, agonist binding at the interface between neighbouring subunits is efficiently transduced to ion channel gating. However, the relationship between binding and gating is difficult to study because agonists continuously bind and unbind. Here, we covalently incorporated agonists in the binding pocket of P2X receptors and examined how binding site occupancy affects the ability of the channel to gate. EXPERIMENTAL APPROACH We used a strategy for tethering agonists to their ATP-binding pocket, while simultaneously probing ion channel gating using electrophysiology. The agonist 2′,3′-O-(4-benzoylbenzoyl)-ATP (BzATP), a photoaffinity analogue of ATP, enabled us to trap rat homomeric P2X2 receptor and a P2X2/1 receptor chimera in different agonist-bound states. UV light was used to control the degree of covalent occupancy of the receptors. KEY RESULTS Irradiation of the P2X2/1 receptor chimera – BzATP complex resulted in a persistent current that lasted even after extensive washout, consistent with photochemical tethering of the agonist BzATP and trapping of the receptors in an open state. Partial labelling with BzATP primed subsequent agonist binding and modulated gating efficiency for both full and partial agonists. CONCLUSIONS AND IMPLICATIONS Our photolabelling strategy provides new molecular insights into the activation mechanism of the P2X receptor. We show here that priming with full agonist molecules leads to an increase in gating efficiency after subsequent agonist binding. PMID:22725669
Purinergic receptors P2RX4 and P2RX7 in familial multiple sclerosis
Sadovnick, A Dessa; Gu, Ben J; Traboulsee, Anthony L; Bernales, Cecily Q; Encarnacion, Mary; Yee, Irene M; Criscuoli, Maria G; Huang, Xin; Ou, Amber; Milligan, Carol J; Petrou, Steven; Wiley, James S; Vilariño-Güell, Carles
2017-01-01
Genetic variants in the purinergic receptors P2RX4 and P2RX7 have been shown to affect susceptibility to multiple sclerosis (MS). In this study we set out to evaluate whether rare coding variants of major effect could also be identified in these purinergic receptors. Sequencing analysis of P2RX4 and P2RX7 in 193 MS patients and 100 controls led to the identification of a rare three variant haplotype (P2RX7 rs140915863:C>T (p.T205M), P2RX7 rs201921967:A>G (p.N361S) and P2RX4 rs765866317:G>A (p.G135S)) segregating with disease in a multi-incident family with six family members diagnosed with MS (LOD=3.07). Functional analysis of this haplotype in HEK293 cells revealed impaired P2X7 surface expression (p<0.01), resulting in over 95% inhibition of ATP-induced pore function (p<0.001) and a marked reduction in phagocytic ability (p<0.05). In addition, transfected cells showed 40% increased peak ATP-induced inward current (p<0.01), and a greater Ca2+ response to the P2X4 135S variant compared to wild type (p<0.0001). Our study nominates rare genetic variants in P2RX4 and P2RX7 as major genetic contributors to disease, further supporting a role for these purinergic receptors in MS and suggesting the disruption of transmembrane cation channels leading to impairment of phagocytosis as the pathological mechanisms of disease. PMID:28326637
Involvement of P2X7 receptors in retinal ganglion cell apoptosis induced by activated Müller cells.
Xue, Bo; Xie, Yuting; Xue, Ying; Hu, Nan; Zhang, Guowei; Guan, Huaijin; Ji, Min
2016-12-01
Müller cell reactivation (gliosis) is an early response in glaucomatous retina. Previous studies have demonstrated that activation of P2X 7 receptors results in retinal ganglion cell (RGC) apoptosis. Here, the issues of whether and how activated Müller cells may contribute to RGC apoptosis through P2X 7 receptors were investigated. Either intravitreal injection of (S)-3,5-dihydroxyphenylglycine (DHPG), a group I metabotropic glutamate receptor (mGluR I) agonist, in normal rat retinas, or DHPG treatment of purified cultured rat retinal Müller cells induced an increase in glial fibrillary acidic protein (GFAP) expression, indicative of Müller cell gliosis. In addition, an increase in adenosine triphosphate (ATP) release from purified cultured Müller cells was detected during DHPG treatment (for 10 min to 48 h), which was mediated by the intracellular mGluR5/Gq/PI-PLC/PKC signaling pathway. Intravitreal injection of DHPG mimicked the reduction in the number of fluorogold retrogradely labeled RGCs in chronic ocular hypertension (COH) rats. Treatment with the conditioned culture medium (CM) obtained from the DHPG-activated Müller cell medium induced an increase in the number of TUNEL-positive cells in cultured RGCs, which was mimicked by benzoylbenzoyl adenosine triphosphate (BzATP), a P2X 7 receptor agonist, but was partially blocked by brilliant blue G (BBG), a P2X 7 receptor antagonist. Moreover, the CM treatment of cultured RGCs significantly increased Bax protein level and decreased Bcl-2 protein level, which was also mimicked by BzATP and partially blocked by BBG, respectively. These results suggest that reactivated Müller cells may release excessive ATP, in turn leading to RGC apoptosis through activating P2X 7 receptors in these cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
Solini, Anna; Menini, Stefano; Rossi, Chiara; Ricci, Carlo; Santini, Eleonora; Blasetti Fantauzzi, Claudia; Iacobini, Carla; Pugliese, Giuseppe
2013-11-01
Renal disease associated with type 2 diabetes and the metabolic syndrome is characterized by a distinct inflammatory phenotype. The purinergic 2X7 receptor (P2X7 R) and the nucleotide-binding and oligomerization domain-like receptor containing a pyrin domain 3 (NLRP3) inflammasome have been separately shown to play a role in two models of non-metabolic chronic kidney disease. Moreover, the NLRP3 inflammasome has been implicated in chronic low-grade sterile inflammation characterizing metabolic disorders, though the mechanism(s) involved in inflammasome activation under these conditions are still unknown. We investigated the role of P2X7 R (through activation of the NLRP3 inflammasome) in renal inflammation and injury induced by a high-fat diet, an established model of the metabolic syndrome. On a high-fat diet, mice lacking P2X7 R developed attenuated renal functional and structural alterations as well as reduced inflammation, fibrosis, and oxidative/carbonyl stress, as compared with wild-type animals, in the absence of significant differences in metabolic parameters. This was associated with blunted up-regulation of the NLRP3 inflammasome components NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), pro-caspase 1, pro-interleukin (IL)-1β, and pro-IL-18, as well as reduced inflammasome activation, as evidenced by decreased formation of mature caspase 1, whereas mature IL-1β and IL-18 were not detected. Up-regulated expression of NLRP3 and pro-caspase 1, post-translational processing of pro-caspase-1, and release of IL-18 in response to lipopolysaccharide + 2'(3')-O-(4-benzoylbenzoyl)ATP were attenuated by P2X7 R silencing in cultured mouse podocytes. Protein and mRNA expression of P2X7 R, NLRP3, and ASC were also increased in kidneys from subjects with type 2 diabetes and the metabolic syndrome, showing histologically documented renal disease. These data provide evidence of a major role for the purinergic system, at least in part through activation of the NLRP3 inflammasome, in the process driving 'metabolic' renal inflammation and injury and identify P2X7 R and NLRP3 as novel therapeutic targets. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Nascimento, Diana Sofia Marques; Potes, Catarina Soares; Soares, Miguel Luz; Ferreira, António Carlos; Malcangio, Marzia; Castro-Lopes, José Manuel; Neto, Fani Lourença Moreira
2018-05-01
Purinergic receptors (P2XRs) have been widely associated with pain states mostly due to their involvement in neuron-glia communication. Interestingly, we have previously shown that satellite glial cells (SGC), surrounding dorsal root ganglia (DRG) neurons, become activated and proliferate during monoarthritis (MA) in the rat. Here, we demonstrate that P2X7R expression increases in ipsilateral DRG after 1 week of disease, while P2X3R immunoreactivity decreases. We have also reported a significant induction of the activating transcriptional factor 3 (ATF3) in MA. In this study, we show that ATF3 knocked down in DRG cell cultures does not affect the expression of P2X7R, P2X3R, or glial fibrillary acidic protein (GFAP). We suggest that P2X7R negatively regulates P2X3R, which, however, is unlikely mediated by ATF3. Interestingly, we found that ATF3 knockdown in vitro induced significant decreases in the heat shock protein 90 (HSP90) expression. Thus, we evaluated in vivo the involvement of HSP90 in MA and demonstrated that the HSP90 messenger RNA levels increase in ipsilateral DRG of inflamed animals. We also show that HSP90 is mostly found in a cleaved form in this condition. Moreover, administration of a HSP90 inhibitor, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), attenuated MA-induced mechanical allodynia in the first hours. The drug also reversed the HSP90 upregulation and cleavage. 17-DMAG seemed to attenuate glial activation and neuronal sensitization (as inferred by downregulation of GFAP and P2X3R in ipsilateral DRG) which might correlate with the observed pain alleviation. Our data indicate a role of HSP90 in MA pathophysiology, but further investigation is necessary to clarify the underlying mechanisms.
EPA True NO2 ground site measurements ?? multiple sites - http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.tx-2013; TCEQ ground site measurements of meteorological and air pollution parameters ?? multiple sites - http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.tx-2013; GeoTASO NO2 Vertical Column - http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.tx-2013?FALCON=1This dataset is associated with the following publication:Nowlan, C., X. Lu, J. Leitch, K. Chance, G. González Abad, C. Lu, P. Zoogman, J. Cole, T. Delker, W. Good, F. Murcray, L. Ruppert, D. Soo, M. Follette-Cook, S. Janz, M. Kowalewski, C. Loughner, K. Pickering, J. Herman, M. Beaver, R. Long, J. Szykman, L. Judd, P. Kelley, W. Luke, X. Ren, and J. Al-Saadi. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013. Atmospheric Measurement Techniques. Copernicus Publications, Katlenburg-Lindau, GERMANY, 9(6): 2647-2668, (2016).
Liñán-Rico, A.; Wunderlich, JE.; Enneking, JT.; Tso, DR.; Grants, I.; Williams, KC.; Otey, A.; Michel, K.; Schemann, M.; Needleman, B.; Harzman, A.; Christofi, FL.
2015-01-01
Rationale The role of purinergic signaling in the human ENS is not well understood. We sought to further characterize the neuropharmacology of purinergic receptors in human ENS and test the hypothesis that endogenous purines are critical regulators of neurotransmission. Experimental Approach LSCM-Fluo-4-(Ca2+)-imaging of postsynaptic Ca2+ transients (PSCaTs) was used as a reporter of neural activity. Synaptic transmission was evoked by fiber tract electrical stimulation in human SMP surgical preparations. Pharmacological analysis of purinergic signaling was done in 1,556 neurons from 234 separate ganglia 107 patients; immunochemical labeling for P2XRs of neurons in ganglia from 19 patients. Real-time MSORT (Di-8-ANEPPS) imaging was used to test effects of adenosine on fast excitatory synaptic potentials (fEPSPs). Results Synaptic transmission is sensitive to pharmacological manipulations that alter accumulation of extracellular purines. Apyrase blocks PSCaTs in a majority of neurons. An ecto-NTPDase-inhibitor 6-N,N-diethyl-D-β,γ-dibromomethyleneATP or adenosine deaminase augments PSCaTs. Blockade of reuptake/deamination of eADO inhibits PSCaTs. Adenosine inhibits fEPSPs and PSCaTs (IC50=25μM), sensitive to MRS1220-antagonism (A3AR). A P2Y agonist ADPβS inhibits PSCaTs (IC50=111nM) in neurons without stimulatory ADPβS responses (EC50=960nM). ATP or a P2X1,2,2/3 (α,β-MeATP) agonist evokes fast, slow, biphasic Ca2+ transients or Ca2+ oscillations (EC50=400μM). PSCaTs are sensitive to P2X1 antagonist NF279. Low (20nM) or high (5μM) concentrations of P2X antagonist TNP-ATP block PSCaTs in different neurons; proportions of neurons with P2XR-ir follow the order P2X2>P2X1≫P2X3; P2X1+ P2X2 and P2X3+P2X2 are co-localized. RT-PCR identified mRNA-transcripts for P2X1-7,P2Y1,2,12-14R. Responsive neurons were also identified by HuC/D-ir. Conclusions Purines are critical regulators of neurotransmission in the human enteric nervous system. Purinergic signaling involves P2X1, P2X2, P2X3 channels, P2X1+P2X2 co-localization and inhibitory P2Y or A3 receptors. These are potential novel therapeutic targets for neurogastroenterology. PMID:25724083
Borba-Pinheiro, Cláudio Joaquim; de Alencar Carvalho, Mauro César Gurgel; da Silva, Nádia Souza Lima; Drigo, Alexandre Janotta; Bezerra, Jani Cléria Pereira; Dantas, Estélio Henrique Martin
2010-01-01
Background: The objective of this study was to determine the effects of different physical activity (PA) programs on bone density, balance and quality of Life of postmenopausaL women taking concomitant aLendronate. A quasi-experimental study was conducted with 35 volunteers divided into four groups: practitioners of resistance training (RTG, n = 9, 49.8±4.2 years), judo (JUG, n= 11, 52.2 ±5.3 years), water aerobics (WAG, n = 8, 57.1 ±7.4 years) and the control group (CG, n = 7, 53.8±4.4 years). Methods: The following assessment tools were used: bone mineral density (BMD) measured by dual X-ray absorptiometry of the spine and proximal femur, the ‘Osteoporosis Assessment Questionnaire’ (OPAQ) and the ‘Static Balance Test with Visual Control’. The physical activities were planned for 12 months in cycles with different intensities. A two-way analysis of variance (ANOVA) was used for analysis between groups, and a Scheffe post-hoc test was used for multiple comparisons. Results: The multiple comparisons results showed that the RTG and JUG groups were significantly more efficient in the variables studied, including: Lumbar BMD (Δ% = 6.8%, p = 0.001), balance (Δ% = 21.4%, p = 0.01), OPAQ (Δ% = 9.1%, p = 0.005) and Lumbar BMD (Δ% = 6.4%, p = 0.003), balance (Δ% = U%, p = 0.02) and OPAQ (Δ% = 16.8%, p =0.000) compared with the CG. Furthermore, the RTG (Δ% = 4.8%, p =0.02) was significantly better than the WAG for the neck of femur BMD, and the JUG (Δ% = 16.8, p = 0.0003) also demonstrated superiority to the WAG in the OPAQ. Conclusions: The physical activities studied appear to improve BMD, balance and quality of Life of postmenopausaL women taking a bisphosphonate. In this small sample, the RTG and the JUG groups were superior to the other groups. PMID:22870446
Possible neuroprotective role of P2X2 in the retina of diabetic rats.
Mancini, Jorge E; Ortiz, Gustavo; Potilinstki, Constanza; Salica, Juan P; Lopez, Emiliano S; Croxatto, J Oscar; Gallo, Juan E
2018-01-01
Purinergic receptors are expressed in different tissues including the retina. These receptors are involved in processes like cell growth, proliferation, activation and survival. ATP is the major activator of P2 receptors. In diabetes, there is a constant ATP production and this rise of ATP leads to a persistent activation of purinergic receptors. Antagonists of these receptors are used to evaluate their inhibition effects. Recently, the P2X2 has been reported to have a neuroprotective role. We carried out a study in groups of diabetic and non-diabetic rats (N = 5) treated with intraperitoneal injections of PPADS, at 9 and 24 weeks of diabetes. Control group received only the buffer. Animals were euthanized at 34 weeks of diabetes or at a matching age. Rat retinas were analyzed with immunohistochemistry and western blot using antibodies against GFAP, P2X2, P2Y2 and VEGF-A. Diabetic animals treated with PPADS disclosed a much more extended staining of VEGF-A than diabetics without treatment. A lower protein expression of VEGF-A was found at the retina of diabetic animals without treatment of purinergic antagonists compared to diabetics with the antagonist treatment. Inhibition of P2X2 receptor by PPADS decreases cell death in the diabetic rat retina. Results might be useful for better understanding the pathophysiology of diabetic retinopathy.
The sorption reactions of arsenate (As(V)) and arsenite (As(III)) on RuO2 x H2O were examined by X-ray Absorption Near Edge Spectroscopy (XANES) to elucidate the solid state speciation of sorbed As. At all pH values studied (pH 4-8), RuO2 x H
Piccini, Alessandra; Carta, Sonia; Tassi, Sara; Lasiglié, Denise; Fossati, Gianluca; Rubartelli, Anna
2008-06-10
IL-1beta and IL-18 are crucial mediators of inflammation, and a defective control of their release may cause serious diseases. Yet, the mechanisms regulating IL-1beta and IL-18 secretion are partially undefined. Both cytokines are produced as inactive cytoplasmic precursors. Processing to the active form is mediated by caspase-1, which is in turn activated by the multiprotein complex inflammasome. Here, we show that in primary human monocytes microbial components acting on different pathogen-sensing receptors and the danger-associated molecule uric acid are all competent to induce maturation and secretion of IL-1beta and IL-18 through a process that involves as a first event the extracellular release of endogenous ATP. ATP release is followed by autocrine stimulation of the purinergic receptors P2X(7). Indeed, antagonists of the P2X(7) receptor (P2X(7)R), or treatment with apyrase, prevent IL-1beta and IL-18 maturation and secretion triggered by the different stimuli. At variance, blocking P2X(7)R activity has no effects on IL-1beta secretion by monocytes carrying a mutated inflammasome that does not require exogenous ATP for activation. P2X(7)R engagement is followed by K+ efflux and activation of phospholipase A(2). Both events are required for processing and secretion induced by all of the stimuli. Thus, stimuli acting on different pathogen-sensing receptors converge on a common pathway where ATP externalization is the first step in the cascade of events leading to inflammasome activation and IL-1beta and IL-18 secretion.
Zhang, Hua; Chen, Hongsheng; Luo, Hunjin; An, Jing; Sun, Lin; Mei, Lingyun; He, Chufeng; Jiang, Lu; Jiang, Wen; Xia, Kun; Li, Jia-Da; Feng, Yong
2012-03-01
Waardenburg syndrome (WS) is an auditory-pigmentary disorder resulting from melanocyte defects, with varying combinations of sensorineural hearing loss and abnormal pigmentation of the hair, skin, and inner ear. WS is classified into four subtypes (WS1-WS4) based on additional symptoms. PAX3 and SOX10 are two transcription factors that can activate the expression of microphthalmia-associated transcription factor (MITF), a critical transcription factor for melanocyte development. Mutations of PAX3 are associated with WS1 and WS3, while mutations of SOX10 cause WS2 and WS4. Recently, we identified some novel WS-associated mutations in PAX3 and SOX10 in a cohort of Chinese WS patients. Here, we further identified an E248fsX30 SOX10 mutation in a family of WS2. We analyzed the subcellular distribution, expression and in vitro activity of two PAX3 mutations (p.H80D, p.H186fsX5) and four SOX10 mutations (p.E248fsX30, p.G37fsX58, p.G38fsX69 and p.R43X). Except H80D PAX3, which retained partial activity, the other mutants were unable to activate MITF promoter. The H80D PAX3 and E248fsX30 SOX10 were localized in the nucleus as wild type (WT) proteins, whereas the other mutant proteins were distributed in both cytoplasm and nucleus. Furthermore, E248fsX30 SOX10 protein retained the DNA-binding activity and showed dominant-negative effect on WT SOX10. However, E248fsX30 SOX10 protein seems to decay faster than the WT one, which may underlie the mild WS2 phenotype caused by this mutation.
P2X receptors, sensory neurons and pain.
Bele, Tanja; Fabbretti, Elsa
2015-01-01
Pain represents a very large social and clinical problem since the current treatment provides insufficient pain relief. Plasticity of pain receptors together with sensitisation of sensory neurons, and the role of soluble mediators released from non-neuronal cells render difficult to understand the spatial and temporal scale of pain development, neuronal responses and disease progression. In pathological conditions, ATP is one of the most powerful mediators that activates P2X receptors that behave as sensitive ATP-detectors, such as neuronal P2X3 receptor subtypes and P2X4 and P2X7 receptors expressed on non-neuronal cells. Dissecting the molecular mechanisms occurring in sensory neurons and in accessory cells allows to design appropriate tissue- and cell- targeted approaches to treat chronic pain.
Kobayashi, Junko; Ohki, Kazuhiro; Okimura, Keiko; Hashimoto, Tadashi; Sakura, Naoki
2006-06-01
Application of aqueous methanesulfonic acid (MSA) for selective chemical removal of pyroglutamic acid (pGlu) residue from five biologically active pyroglutamyl-peptides (pGlu-X-peptides, X=amino acid residue at position 2) was examined. Gonadotropin releasing hormone (Gn-RH), dog neuromedin U-8 (d-NMU-8), physalaemin (PH), a bradykinin potentiating peptide (BPP-5a) and neurotensin (NT) as pGlu-X-peptides were incubated in either 70% or 90% aqueous MSA at 25 degrees C. HPLC analysis of the incubation solutions showed that the main decomposition product was H-X-peptide derived from each pGlu-X-peptide by the removal of pGlu. The results revealed that the pGlu-X peptide bond had higher susceptibility than various internal amide bonds in the five peptides examined, including the Trp-Ser bond in Gn-RH, the C-terminal Asn-NH(2) in d-NMU-8, and the Asp-Pro bond in PH, whose acid susceptibility is well known. Thus, mild hydrolysis with high concentrations of aqueous MSA may be applicable to chemically selective removal of pGlu from pGlu-X-peptides for structural examinations.
Chen, Rong; Zhou, Jingjing; Qin, Lingyun; Chen, Yao; Huang, Yongqi; Liu, Huili; Su, Zhengding
2017-06-27
In nearly half of cancers, the anticancer activity of p53 protein is often impaired by the overexpressed oncoprotein Mdm2 and its homologue, MdmX, demanding efficient therapeutics to disrupt the aberrant p53-MdmX/Mdm2 interactions to restore the p53 activity. While many potent Mdm2-specific inhibitors have already undergone clinical investigations, searching for MdmX-specific inhibitors has become very attractive, requiring a more efficient screening strategy for evaluating potential scaffolds or leads. In this work, considering that the intrinsic fluorescence residue Trp23 in the p53 transaction domain (p53p) plays an important role in determining the p53-MdmX/Mdm2 interactions, we constructed a fusion protein to utilize this intrinsic fluorescence signal to monitor high-throughput screening of a compound library. The fusion protein was composed of the p53p followed by the N-terminal domain of MdmX (N-MdmX) through a flexible amino acid linker, while the whole fusion protein contained a sole intrinsic fluorescence probe. The fusion protein was then evaluated using fluorescence spectroscopy against model compounds. Our results revealed that the variation of the fluorescence signal was highly correlated with the concentration of the ligand within 65 μM. The fusion protein was further evaluated with respect to its feasibility for use in high-throughput screening using a model compound library, including controls. We found that the imidazo-indole scaffold was a bona fide scaffold for template-based design of MdmX inhibitors. Thus, the p53p-N-MdmX fusion protein we designed provides a convenient and efficient tool for high-throughput screening of new MdmX inhibitors. The strategy described in this work should be applicable for other protein targets to accelerate drug discovery.
Synergic Effects of Mycoplasmal Lipopeptides and Extracellular ATP on Activation of Macrophages
Into, Takeshi; Fujita, Mari; Okusawa, Tsugumi; Hasebe, Akira; Morita, Manabu; Shibata, Ken-Ichiro
2002-01-01
Mycoplasmal lipopeptides S-(2,3-bispalmitoyloxypropyl)-CGDPKHSPKSF and S-(2,3-bispalmitoyloxypropyl)-CGNNDESNISFKEK activated a monocytic cell line, THP-1 cells, to produce tumor necrosis factor alpha. The activity of the lipopeptides was augmented by ATP in a dose-dependent manner. In addition, the level of expression of mRNAs for tumor necrosis factor alpha and interleukin-1β, -6, and -8 was also upregulated by the lipopeptides and/or extracellular ATP, but that of interleukin-10 was not. The P2X purinergic receptor antagonists pyridoxal phosphate 6-azophenyl 2′,4′-disulfonic acid and periodate-oxidized ATP suppressed the activity of ATP to augment the activation of THP-1 cells by the lipopeptides, suggesting that P2X receptors play important roles in the activity of ATP. The nuclear factor κB inhibitor dexamethasone also suppressed the activity, suggesting that the activity of ATP is dependent upon the nuclear factor κB. Thus, these results suggest that the interaction of extracellular ATP with the P2X receptors is attributed to the activity of ATP to augment the activation of THP-1 cells by mycoplasmal lipopeptides. PMID:12065499
Henríquez, Mauricio; Herrera-Molina, Rodrigo; Valdivia, Alejandra; Alvarez, Alvaro; Kong, Milene; Muñoz, Nicolás; Eisner, Verónica; Jaimovich, Enrique; Schneider, Pascal; Quest, Andrew F. G.; Leyton, Lisette
2011-01-01
Thy-1, an abundant mammalian glycoprotein, interacts with αvβ3 integrin and syndecan-4 in astrocytes and thus triggers signaling events that involve RhoA and its effector p160ROCK, thereby increasing astrocyte adhesion to the extracellular matrix. The signaling cascade includes calcium-dependent activation of protein kinase Cα upstream of Rho; however, what causes the intracellular calcium transients required to promote adhesion remains unclear. Purinergic P2X7 receptors are important for astrocyte function and form large non-selective cation pores upon binding to their ligand, ATP. Thus, we evaluated whether the intracellular calcium required for Thy-1-induced cell adhesion stems from influx mediated by ATP-activated P2X7 receptors. Results show that adhesion induced by the fusion protein Thy-1-Fc was preceded by both ATP release and sustained intracellular calcium elevation. Elimination of extracellular ATP with Apyrase, chelation of extracellular calcium with EGTA, or inhibition of P2X7 with oxidized ATP, all individually blocked intracellular calcium increase and Thy-1-stimulated adhesion. Moreover, Thy-1 mutated in the integrin-binding site did not trigger ATP release, and silencing of P2X7 with specific siRNA blocked Thy-1-induced adhesion. This study is the first to demonstrate a functional link between αvβ3 integrin and P2X7 receptors, and to reveal an important, hitherto unanticipated, role for P2X7 in calcium-dependent signaling required for Thy-1-stimulated astrocyte adhesion. PMID:21502139
The effect of PO 4 doping on the luminescent properties of Sr 3-3zEu 2zV 2-xP xO 8
NASA Astrophysics Data System (ADS)
Cao, S.; Ma, Y. Q.; Yang, K.; Zhu, W. L.; Yin, W. J.; Zheng, G. H.; Wu, M. Z.; Sun, Z. Q.
2010-07-01
The luminescent properties of Sr 3V 2-xP xO 8 (0 ⩽ x ⩽ 2), Eu 3+ doped Sr 2.7Eu 0.2V 2-yP yO 8 (0 ⩽ y ⩽ 2) and Sr 3-3zEu 2zV 0.8P 1.2O 8 (0 < z ⩽ 0.3) have been investigated. For the Sr 3V 2-xP xO 8 (0 ⩽ x ⩽ 2) samples, the VO43- activation and emission intensity reaches the strongest as x = 1.6. For the Sr 2.7Eu 0.2V 2-yP yO 8 (0 ⩽ y ⩽ 2) samples, an appropriate amount of phosphorus doping enhances the Eu 3+ emission with the strongest emission occurring at y = 1.2. For the Sr 3-3zEu 2zV 0.8P 1.2O 8 (0 < z ⩽ 0.3) sample with the phosphorus content fixed at 1.2, it exhibits the most intense emission as Eu 3+ concentration reaches at z = 0.2. Our results indicate that the introduction of the PO43- plays an important role in the photoluminescence properties of the studied samples and the relevant mechanism has been discussed.
Altered renal FGF23-mediated activity involving MAPK and Wnt: effects of the Hyp mutation.
Farrow, Emily G; Summers, Lelia J; Schiavi, Susan C; McCormick, James A; Ellison, David H; White, Kenneth E
2010-10-01
Fibroblast growth factor-23 (FGF23), a hormone central to renal phosphate handling, is elevated in multiple hypophosphatemic disorders. Initial FGF23-dependent Erk1/2 activity in the kidney localizes to the distal convoluted tubule (DCT) with the co-receptor α-Klotho (KL), distinct from Npt2a in proximal tubules (PT). The Hyp mouse model of X-linked hypophosphatemic rickets (XLH) is characterized by hypophosphatemia with increased Fgf23, and patients with XLH elevate FGF23 following combination therapy of phosphate and calcitriol. The molecular signaling underlying renal FGF23 activity, and whether these pathways are altered in hypophosphatemic disorders, is unknown. To examine Npt2a in vivo, mice were injected with FGF23. Initial p-Erk1/2 activity in the DCT occurred within 10 min; however, Npt2a protein was latently reduced in the PT at 30-60 min, and was independent of Npt2a mRNA changes. KL-null mice had no DCT p-Erk1/2 staining following FGF23 delivery. Under basal conditions in Hyp mice, c-Fos and Egr1, markers of renal Fgf23 activity, were increased; however, KL mRNA was reduced 60% (P<0.05). Despite the prevailing hypophosphatemia and elevated Fgf23, FGF23 injections into Hyp mice activated p-Erk1/2 in the DCT. FGF23 injection also resulted in phospho-β-catenin (p-β-cat) co-localization with KL in wild-type mice, and Hyp mice demonstrated strong p-β-cat staining under basal conditions, indicating potential crosstalk between mitogen-activated protein kinase and Wnt signaling. Collectively, these studies refine the mechanisms for FGF23 bioactivity, and demonstrate novel suppression of Wnt signaling in a KL-dependent DCT-PT axis, which is likely altered in XLH. Finally, the current treatment of phosphate and calcitriol for hypophosphatemic disorders may increase FGF23 activity.
Elderly fall risk prediction using static posturography
2017-01-01
Maintaining and controlling postural balance is important for activities of daily living, with poor postural balance being predictive of future falls. This study investigated eyes open and eyes closed standing posturography with elderly adults to identify differences and determine appropriate outcome measure cut-off scores for prospective faller, single-faller, multi-faller, and non-faller classifications. 100 older adults (75.5 ± 6.7 years) stood quietly with eyes open and then eyes closed while Wii Balance Board data were collected. Range in anterior-posterior (AP) and medial-lateral (ML) center of pressure (CoP) motion; AP and ML CoP root mean square distance from mean (RMS); and AP, ML, and vector sum magnitude (VSM) CoP velocity were calculated. Romberg Quotients (RQ) were calculated for all parameters. Participants reported six-month fall history and six-month post-assessment fall occurrence. Groups were retrospective fallers (24), prospective all fallers (42), prospective fallers (22 single, 6 multiple), and prospective non-fallers (47). Non-faller RQ AP range and RQ AP RMS differed from prospective all fallers, fallers, and single fallers. Non-faller eyes closed AP velocity, eyes closed VSM velocity, RQ AP velocity, and RQ VSM velocity differed from multi-fallers. RQ calculations were particularly relevant for elderly fall risk assessments. Cut-off scores from Clinical Cut-off Score, ROC curves, and discriminant functions were clinically viable for multi-faller classification and provided better accuracy than single-faller classification. RQ AP range with cut-off score 1.64 could be used to screen for older people who may fall once. Prospective multi-faller classification with a discriminant function (-1.481 + 0.146 x Eyes Closed AP Velocity—0.114 x Eyes Closed Vector Sum Magnitude Velocity—2.027 x RQ AP Velocity + 2.877 x RQ Vector Sum Magnitude Velocity) and cut-off score 0.541 achieved an accuracy of 84.9% and is viable as a screening tool for older people at risk of multiple falls. PMID:28222191
Elderly fall risk prediction using static posturography.
Howcroft, Jennifer; Lemaire, Edward D; Kofman, Jonathan; McIlroy, William E
2017-01-01
Maintaining and controlling postural balance is important for activities of daily living, with poor postural balance being predictive of future falls. This study investigated eyes open and eyes closed standing posturography with elderly adults to identify differences and determine appropriate outcome measure cut-off scores for prospective faller, single-faller, multi-faller, and non-faller classifications. 100 older adults (75.5 ± 6.7 years) stood quietly with eyes open and then eyes closed while Wii Balance Board data were collected. Range in anterior-posterior (AP) and medial-lateral (ML) center of pressure (CoP) motion; AP and ML CoP root mean square distance from mean (RMS); and AP, ML, and vector sum magnitude (VSM) CoP velocity were calculated. Romberg Quotients (RQ) were calculated for all parameters. Participants reported six-month fall history and six-month post-assessment fall occurrence. Groups were retrospective fallers (24), prospective all fallers (42), prospective fallers (22 single, 6 multiple), and prospective non-fallers (47). Non-faller RQ AP range and RQ AP RMS differed from prospective all fallers, fallers, and single fallers. Non-faller eyes closed AP velocity, eyes closed VSM velocity, RQ AP velocity, and RQ VSM velocity differed from multi-fallers. RQ calculations were particularly relevant for elderly fall risk assessments. Cut-off scores from Clinical Cut-off Score, ROC curves, and discriminant functions were clinically viable for multi-faller classification and provided better accuracy than single-faller classification. RQ AP range with cut-off score 1.64 could be used to screen for older people who may fall once. Prospective multi-faller classification with a discriminant function (-1.481 + 0.146 x Eyes Closed AP Velocity-0.114 x Eyes Closed Vector Sum Magnitude Velocity-2.027 x RQ AP Velocity + 2.877 x RQ Vector Sum Magnitude Velocity) and cut-off score 0.541 achieved an accuracy of 84.9% and is viable as a screening tool for older people at risk of multiple falls.
P2X and P2Y receptors as possible targets of therapeutic manipulations in CNS illnesses.
Köles, Laszlo; Furst, Susanna; Illes, Peter
2005-03-01
Adenine and/or uridine nucleotide-sensitive receptors are classified into two types belonging to the ligand-gated ionotropic family (P2X) and the metabotropic, G-protein-coupled family (P2Y). In humans, seven different P2X receptors (P2X(1-7)) and eight different P2Y receptors (P2Y(1), P2Y(2), P2Y(4), P2Y(6), P2Y(11-14)) have been detected hitherto. All P2 receptors are expressed in the CNS, with the preferential expression of the P2X(2), P2X(4), P2X(6) and P2Y(1) receptors in neurons. In addition to the neurotransmitter and modulator functions, neurite outgrowth, proliferation of glial cells and the expression of transmitter receptors at target cells have also been suggested to be regulated by extracellular nucleotides in the nervous system. In spite of the expanding knowledge in the purinergic research field, the present therapeutic utilization of P2 receptor ligands is mostly related to peripheral diseases such as thromboembolic disorders and cystic fibrosis. In this review we provide some evidence that P2 receptors play an important role in the regulation of CNS functions related to hippocampal activity, the mesolimbic dopaminergic system and the nociceptive system. The role of purinergic receptors located on astrocytes/microglia and implications of these receptors for neurodegenerative/neuroinflammatory disorders, CNS injury and epilepsy will be highlighted as well. (c) 2005 Prous Science. All rights reserved.
Stolzenberger, Jessica; Lindner, Steffen N; Persicke, Marcus; Brautaset, Trygve; Wendisch, Volker F
2013-11-01
The genome of the facultative ribulose monophosphate (RuMP) cycle methylotroph Bacillus methanolicus encodes two bisphosphatases (GlpX), one on the chromosome (GlpX(C)) and one on plasmid pBM19 (GlpX(P)), which is required for methylotrophy. Both enzymes were purified from recombinant Escherichia coli and were shown to be active as fructose 1,6-bisphosphatases (FBPases). The FBPase-negative Corynebacterium glutamicum Δfbp mutant could be phenotypically complemented with glpX(C) and glpX(P) from B. methanolicus. GlpX(P) and GlpX(C) share similar functional properties, as they were found here to be active as homotetramers in vitro, activated by Mn(2+) ions and inhibited by Li(+), but differed in terms of the kinetic parameters. GlpX(C) showed a much higher catalytic efficiency and a lower Km for fructose 1,6-bisphosphate (86.3 s(-1) mM(-1) and 14 ± 0.5 μM, respectively) than GlpX(P) (8.8 s(-1) mM(-1) and 440 ± 7.6 μM, respectively), indicating that GlpX(C) is the major FBPase of B. methanolicus. Both enzymes were tested for activity as sedoheptulose 1,7-bisphosphatase (SBPase), since a SBPase variant of the ribulose monophosphate cycle has been proposed for B. methanolicus. The substrate for the SBPase reaction, sedoheptulose 1,7-bisphosphate, could be synthesized in vitro by using both fructose 1,6-bisphosphate aldolase proteins from B. methanolicus. Evidence for activity as an SBPase could be obtained for GlpX(P) but not for GlpX(C). Based on these in vitro data, GlpX(P) is a promiscuous SBPase/FBPase and might function in the RuMP cycle of B. methanolicus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Joonghoon; Park, Eok; Ahn, Bong-Hyun
2012-08-15
Oxidative stress is one of the causes of cardiomyopathy. In the present study, NecroXs, novel class of mitochondrial ROS/RNS scavengers, were evaluated for cardioprotection in in vitro and in vivo model, and the putative mechanism of the cardioprotection of NecroX-7 was investigated by global gene expression profiling and subsequent biochemical analysis. NecroX-7 prevented tert-butyl hydroperoxide (tBHP)-induced death of H9C2 rat cardiomyocytes at EC{sub 50} = 0.057 μM. In doxorubicin (DOX)-induced cardiomyopathy in rats, NecroX-7 significantly reduced the plasma levels of creatine kinase (CK-MB) and lactate dehydrogenase (LDH) which were increased by DOX treatment (p < 0.05). Microarray analysis revealed thatmore » 21 genes differentially expressed in tBHP-treated H9C2 cells were involved in ‘Production of reactive oxygen species’ (p = 0.022), and they were resolved by concurrent NecroX-7 treatment. Gene-to-gene networking also identified that NecroX-7 relieved cell death through Ncf1/p47phox and Rac2 modulation. In subsequent biochemical analysis, NecroX-7 inhibited NADPH oxidase (NOX) activity by 53.3% (p < 0.001). These findings demonstrate that NecroX-7, in part, provides substantial protection of cardiomyopathy induced by tBHP or DOX via NOX-mediated cell death. -- Highlights: ► NecroX-7 prevented tert-butyl hydroperoxide-induced in vitro cardiac cell death. ► NecroX-7 ameliorated doxorubicin-induced in vivo cardiomyopathy. ► NecroX-7 prevented oxidative stress and necrosis-enriched transcriptional changes. ► NecroX-7 effectively inhibited NADPH oxidase activation. ► Cardioprotection of Necro-7 was brought on by modulation of NADPH oxidase activity.« less
He, Yuan; Franchi, Luigi; Núñez, Gabriel
2013-01-01
On the basis of studies in mouse macrophages, activation of the nucleotide-binding oligomerization domain-like receptor (NLR) pyrin domain-containing 3 (Nlrp3) inflammasome is thought to require two signals. The first signal is provided by TLR stimulation and triggers the synthesis of the IL-1β precursor and Nlrp3. The second signal can be mediated by stimulation of the purinergic receptor P2X ligand-gated ion channel 7 (P2X7) by millimolar concentrations of ATP. However, these high concentrations of ATP are not found normally in the in vivo extracellular milieu, raising concern about the physiological relevance of the ATP-P2X7 pathway of inflammasome activation. In this article, we show that unlike macrophages, murine bone marrow-derived and splenic dendritic cells (DCs) can secrete substantial amounts of mature IL-1β upon stimulation with TLR ligands in the absence of ATP stimulation. The differential ability of DCs to release IL-1β and activate caspase-1 was associated with increased expression of Nlrp3 under steady-state conditions and of pro-IL-1β and Nlrp3 after stimulation with TLR agonists. IL-1β secretion from stimulated DCs was largely dependent on the Nlrp3 inflammasome, but independent of P2X7 and unaffected by incubation with apyrase. More importantly, i.p. administration of LPS induced IL-1β production in serum, which was abrogated in Nlrp3-null mice but was unaffected in P2X7-deficient mice. These results demonstrate differential regulation of the Nlrp3 inflammasome in macrophages and DCs. Furthermore, they challenge the idea that the ATP-P2X7 axis is critical for TLR-induced IL-1β production via the Nlrp3 inflammasome in vivo.
Immunocytochemical analysis of P2X2 in rat circumvallate taste buds.
Yang, Ruibiao; Montoya, Alana; Bond, Amanda; Walton, Jenna; Kinnamon, John C
2012-05-23
Our laboratory has shown that classical synapses and synaptic proteins are associated with Type III cells. Yet it is generally accepted that Type II cells transduce bitter, sweet and umami stimuli. No classical synapses, however, have been found associated with Type II cells. Recent studies indicate that the ionotropic purinergic receptors P2X2/P2X3 are present in rodent taste buds. Taste nerve processes express the ionotropic purinergic receptors (P2X2/P2X3). P2X2/P2X3(Dbl-/-) mice are not responsive to sweet, umami and bitter stimuli, and it has been proposed that ATP acts as a neurotransmitter in taste buds. The goal of the present study is to learn more about the nature of purinergic contacts in rat circumvallate taste buds by examining immunoreactivity to antisera directed against the purinergic receptor P2X2. P2X2-like immunoreactivity is present in intragemmal nerve processes in rat circumvallate taste buds. Intense immunoreactivity can also be seen in the subgemmal nerve plexuses located below the basal lamina. The P2X2 immunoreactive nerve processes also display syntaxin-1-LIR. The immunoreactive nerves are in close contact with the IP(3)R3-LIR Type II cells and syntaxin-1-LIR and/or 5-HT-LIR Type III cells. Taste cell synapses are observed only from Type III taste cells onto P2X2-LIR nerve processes. Unusually large, "atypical" mitochondria in the Type II taste cells are found only at close appositions with P2X2-LIR nerve processes. P2X2 immunogold particles are concentrated at the membranes of nerve processes at close appositions with taste cells. Based on our immunofluorescence and immunoelectron microscopical studies we believe that both perigemmal and most all intragemmal nerve processes display P2X2-LIR. Moreover, colloidal gold immunoelectron microscopy indicates that P2X2-LIR in nerve processes is concentrated at sites of close apposition with Type II cells. This supports the hypothesis that ATP may be a key neurotransmitter in taste transduction and that Type II cells release ATP, activating P2X2 receptors in nerve processes.
Gay, Sean C; Shah, Manish B; Talakad, Jyothi C; Maekawa, Keiko; Roberts, Arthur G; Wilderman, P Ross; Sun, Ling; Yang, Jane Y; Huelga, Stephanie C; Hong, Wen-Xu; Zhang, Qinghai; Stout, C David; Halpert, James R
2010-04-01
The structure of the K262R genetic variant of human cytochrome P450 2B6 in complex with the inhibitor 4-(4-chlorophenyl)imidazole (4-CPI) has been determined using X-ray crystallography to 2.0-A resolution. Production of diffraction quality crystals was enabled through a combination of protein engineering, chaperone coexpression, modifications to the purification protocol, and the use of unique facial amphiphiles during crystallization. The 2B6-4-CPI complex is virtually identical to the rabbit 2B4 structure bound to the same inhibitor with respect to the arrangement of secondary structural elements and the placement of active site residues. The structure supports prior P450 2B6 homology models based on other mammalian cytochromes P450 and is consistent with the limited site-directed mutagenesis studies on 2B6 and extensive studies on P450 2B4 and 2B1. Although the K262R genetic variant shows unaltered binding of 4-CPI, altered binding affinity, kinetics, and/or product profiles have been previously shown with several other ligands. On the basis of new P450 2B6 crystal structure and previous 2B4 structures, substitutions at residue 262 affect a hydrogen-bonding network connecting the G and H helices, where subtle differences could be transduced to the active site. Docking experiments indicate that the closed protein conformation allows smaller ligands such as ticlopidine to bind to the 2B6 active site in the expected orientation. However, it is unknown whether 2B6 undergoes structural reorganization to accommodate bulkier molecules, as previously inferred from multiple P450 2B4 crystal structures.
Cleavage sites in the polypeptide precursors of poliovirus protein P2-X
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selmer, B.L.; Hanecak, R.; Anderson, C.W.
1981-01-01
Partial amino-terminal sequence analysis has been performed on the three major polypeptide products (P2-3b, P2-5b, and P2-X) from the central region (P2) of the poliovirus polyprotein, and this analysis precisely locates the amino termini of these products with respect to the nucleotide sequence of the poliovirus RNA genome. Like most of the products of the replicase region (P3), the amino termini of P2-5b and P2-X are generated by cleavage between glutamine and glycine residues. Thus, P2-5b and P2-X are probably both produced by the action of a singly (virus-encoded.) proteinase. The amino terminus of P2-3b, on the other hand, ismore » produced by a cleavage between the carboxy-terminal tyrosine of VP1 and the glycine encoded by nucleotides 3381-3383. This result may suggest that more than one proteolytic activity is required for the complete processing of the poliovirus polyprotein.« less
An Approach to Measuring a System’s Attack Surface
2007-08-01
0.437 p = 0.177 ActiveX 1.522 0.480 p = 0.002 WMF 46.314 2.58e+09 p = 1.000 Doc -1.123 0.462 p = 0.015 Access Rights -0.310 0.078 p < 0.001 Table 14...results in Table 14. The p-values show that HTML, ActiveX , and Doc are significant and DHTML and WMF are insignificant in explaining the severity rating
Idzko, Marco; Dichmann, Stefan; Ferrari, Davide; Di Virgilio, Francesco; la Sala, Andrea; Girolomoni, Giampiero; Panther, Elisabeth; Norgauer, Johannes
2002-08-01
Dendritic cells (DCs) are considered the principal initiators of immune response because of their ability to migrate into peripheral tissues and lymphoid organs, process antigens, and activate naive T cells. There is evidence that extracellular nucleotides regulate certain functions of DCs via G-protein-coupled P2Y receptors (P2YR) and ion-channel-gated P2X receptors (P2XR). Here we investigated the chemotactic activity and analyzed the migration-associated intracellular signaling events such as actin reorganization and Ca(++) transients induced by common P2R agonists such as adenosine 5'-triphosphate (ATP) and 2-methylthioadenosine triphosphate, the P2YR agonists UTP and adenosine 5'-diphosphate (ADP), or the P2XR agonists alphabeta-methylenadenosine-5'-triphosphate and 2',3'-(4-benzoyl)benzoyl-ATP. The common P2R agonists and the selective P2YR agonists turned out to be potent chemotactic stimuli for immature DCs, but not for mature DCs. In contrast, P2XR agonists had only marginal chemotactic activity in both DC types. Chemotaxis was paralleled by a rise in the intracellular Ca(++) concentration and by actin polymerization. Studies with pertussis toxin implicated that intracellular signaling events such as actin polymerization, mobilization of intracellular Ca(++), and migration induced by nucleotides was mediated via G(i/o) protein-coupled P2YR. Moreover, functional studies revealed selective down-regulation of this G(i/o) protein-coupled chemotactic P2YR responsiveness during maturation, although immature and mature DCs expressed similar amounts of mRNA for the P2R subtypes (P2Y(2)R, P2Y(4)R, P2Y(5)R, P2Y(7)R, P2Y(11)R and P2X(1)R, P2X(4)R, P2X(7)R), and no major differences in respect to the mRNA expression of these receptors could be observed by semiquantitative reverse transcription and polymerase chain reaction (RT-PCR). In summary, our data describe a differential chemotactic response of immature and mature DCs to nucleotides, and lend further support to the hypothesis that P2R are a novel class of immunomodulatory plasma membrane receptors suitable for pharmacological intervention.
Inflammatory early events associated to the role of P2X7 receptor in acute murine toxoplasmosis.
Corrêa, Gladys; Almeida Lindenberg, Carolina de; Moreira-Souza, Aline Cristina de Abreu; Savio, Luiz Eduardo Baggio; Takiya, Christina Maeda; Marques-da-Silva, Camila; Vommaro, Rossiane Claudia; Coutinho-Silva, Robson
2017-04-01
Activation of the purinergic P2X7 receptor by extracellular ATP (eATP) potentiates proinflammatory responses during infections by intracellular pathogens. Extracellular ATP triggers an antimicrobial response in macrophages infected with Toxoplasma gondii in vitro, suggesting that purinergic signaling may stimulate host defense mechanisms against toxoplasmosis. Here, we provide in vivo evidence in support of this hypothesis, by showing that P2X7 -/- mice are more susceptible than P2X7 +/+ mice to acute infection by the RH strain of T. gondii, and that this phenomenon is associated with a deficient proinflammatory response. Four days post-infection, peritoneal washes from infected P2X7 -/- mice had no or little increase in the levels of the proinflammatory cytokines IL-12, IL-1β, IFN-γ, and TNF-α, whose levels increased markedly in samples from infected P2X7 +/+ mice. Infected P2X7 -/- mice displayed an increase in organ weight and histological alterations in some of the 'shock organs' in toxoplasmosis - the liver, spleen and mesenteric lymph nodes. The liver of infected P2X7 -/- mice had smaller granulomas, but increased parasite load/granuloma. Our results confirm that the P2X7 receptor is involved in containing T. gondii spread in vivo, by stimulating inflammation. Copyright © 2016 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Sica, F.; Adinolfi, S.; Berisio, R.; De Lorenzo, C.; Mazzarella, L.; Piccoli, R.; Vitagliano, L.; Zagari, A.
1999-01-01
Bovine seminal ribonuclease (BS-RNase) is an intriguing homodimeric enzyme which exists as two conformational isomers, characterized by distinct catalytic and biological properties, referred to as M×M and M=M. Reduction of inter-chain disulfide bridges produces a stable monomeric derivative (M) which is still active. This paper reports the screening and optimization of crystallization conditions for growing single diffraction-quality crystals for the various BS-RNase forms. The crystallization trials were performed using both the vapor diffusion and microbatch methods. The M×M dimer was crystallized in the free form from polyethylene glycol (PEG) 4000 at pH 8.5 and as a complex with the substrate analog uridylyl(2'- 5')guanosine (UpG) from an unbuffered ammonium sulfate (AS) solution. These two crystal types diffract X-rays to 2.5 and 1.9 Å resolution, respectively. Two different crystal types were obtained both for the M=M dimer and for the monomeric derivative. (M=M)a crystals, grown from PEG 4000 (8% w/v) at pH 5.6, diffract X-rays to 4.0 Å. At higher PEG concentration (15% w/v) a different crystal type was obtained, (M=M)b, which showed a better diffraction limit (2.5 Å). For the monomer, type (M)a and (M)b crystals, diffracting X-rays to 2.5 Å resolution, were obtained from AS at pH 6.5 and from PEG 4000 at pH 8.5, respectively. A comparison with previously crystallized forms of the dimer M×M and its complexes with uridylyl(2'-5')adenosine and 2'-deoxycytidylyl(3'-5')-2'-deoxyadenosine is also presented. The three-dimensional structure analysis of (M×M)·UpG and (M=M)b is in progress.
Huerta-Yepez, Sara; Vega, Mario; Jazirehi, Ali; Garban, Hermes; Hongo, Fumiya; Cheng, Genhong; Bonavida, Benjamin
2004-06-24
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to be selective in the induction of apoptosis in cancer cells with minimal toxicity to normal tissues and this prompted its potential therapeutic application in cancer. However, not all cancers are sensitive to TRAIL-mediated apoptosis and, therefore, TRAIL-resistant cancer cells must be sensitized first to become sensitive to TRAIL. Treatment of prostate cancer (CaP) cell lines (DU145, PC-3, CL-1, and LNCaP) with nitric oxide donors (e.g. (Z)-1-[2-(2-aminoethyl)-N-(2-ammonio-ethyl)amino]diazen-1-ium-1, 2-diolate (DETANONOate)) sensitized CaP cells to TRAIL-induced apoptosis and synergy was achieved. The mechanism by which DETANONOate mediated the sensitization was examined. DETANONOate inhibited the constitutive NF-kappa B activity as assessed by EMSA. Also, p50 was S-nitrosylated by DETANONOate resulting in inhibition of NF-kappa B. Inhibition of NF-kappa B activity by the chemical inhibitor Bay 11-7085, like DETANONOate, sensitized CaP to TRAIL apoptosis. In addition, DETANONOate downregulated the expression of Bcl-2 related gene (Bcl-(xL)) which is under the transcriptional regulation of NF-kappa B. The regulation of NF-kappa B and Bcl-(xL) by DETANONOate was corroborated by the use of Bcl-(xL) and Bcl-x kappa B reporter systems. DETANONOate inhibited luciferase activity in the wild type and had no effect on the mutant cells. Inhibition of NF-kappa B resulted in downregulation of Bcl-(xL) expression and sensitized CaP to TRAIL-induced apoptosis. The role of Bcl-(xL) in the regulation of TRAIL apoptosis was corroborated by inhibiting Bcl-(xL) function by the chemical inhibitor 2-methoxyantimycin A(3) and this resulted in sensitization of the cells to TRAIL apoptosis. Signaling by DETANONOate and TRAIL for apoptosis was examined. DETANONOate altered the mitochondria by inducing membrane depolarization and releasing modest amounts of cytochrome c and Smac/DIABLO in the absence of downstream activation of caspases 9 and 3. However, the combination of DETANONOate and TRAIL resulted in activation of the mitochondrial pathway and activation of caspases 9 and 3, and induction of apoptosis. These findings demonstrate that DETANONOate-mediated sensitization of CaP to TRAIL-induced apoptosis is via inhibition of constitutive NF-kappa B activity and Bcl-(xL) expression.
Liu, Yi; Liu, Ping; Lin, Lu; Zhao, Yueqin; Zhong, Wenjuan; Wu, Lunjie; Zhou, Zhemin; Sun, Weifeng
2016-09-01
The maturation mechanism of nitrile hydratase (NHase) of Pseudomonas putida NRRL-18668 was discovered and named as "self-subunit swapping." Since the NHase of Bordetella petrii DSM 12804 is similar to that of P. putida, the NHase maturation of B. petrii is proposed to be the same as that of P. putida. However, there is no further information on the application of NHase according to these findings. We successfully rapidly purified NHase and its activator through affinity his tag, and found that the cell extracts of NHase possessed multiple types of protein ingredients including α, β, α2β2, and α(P14K)2 who were in a state of chemical equilibrium. Furthermore, the activity was significantly enhanced through adding extra α(P14K)2 to the cell extracts of NHase according to the chemical equilibrium. Our findings are useful for the activity enhancement of multiple-subunit enzyme and for the first time significantly increased the NHase activity according to the chemical equilibrium.
Ahmadi, Mehdi; Shahlaei, Mohsen
2015-01-01
P2X7 antagonist activity for a set of 49 molecules of the P2X7 receptor antagonists, derivatives of purine, was modeled with the aid of chemometric and artificial intelligence techniques. The activity of these compounds was estimated by means of combination of principal component analysis (PCA), as a well-known data reduction method, genetic algorithm (GA), as a variable selection technique, and artificial neural network (ANN), as a non-linear modeling method. First, a linear regression, combined with PCA, (principal component regression) was operated to model the structure-activity relationships, and afterwards a combination of PCA and ANN algorithm was employed to accurately predict the biological activity of the P2X7 antagonist. PCA preserves as much of the information as possible contained in the original data set. Seven most important PC's to the studied activity were selected as the inputs of ANN box by an efficient variable selection method, GA. The best computational neural network model was a fully-connected, feed-forward model with 7-7-1 architecture. The developed ANN model was fully evaluated by different validation techniques, including internal and external validation, and chemical applicability domain. All validations showed that the constructed quantitative structure-activity relationship model suggested is robust and satisfactory.
Ahmadi, Mehdi; Shahlaei, Mohsen
2015-01-01
P2X7 antagonist activity for a set of 49 molecules of the P2X7 receptor antagonists, derivatives of purine, was modeled with the aid of chemometric and artificial intelligence techniques. The activity of these compounds was estimated by means of combination of principal component analysis (PCA), as a well-known data reduction method, genetic algorithm (GA), as a variable selection technique, and artificial neural network (ANN), as a non-linear modeling method. First, a linear regression, combined with PCA, (principal component regression) was operated to model the structure–activity relationships, and afterwards a combination of PCA and ANN algorithm was employed to accurately predict the biological activity of the P2X7 antagonist. PCA preserves as much of the information as possible contained in the original data set. Seven most important PC's to the studied activity were selected as the inputs of ANN box by an efficient variable selection method, GA. The best computational neural network model was a fully-connected, feed-forward model with 7−7−1 architecture. The developed ANN model was fully evaluated by different validation techniques, including internal and external validation, and chemical applicability domain. All validations showed that the constructed quantitative structure–activity relationship model suggested is robust and satisfactory. PMID:26600858
Multiplicities of charged hadrons in 280 GeV/c muon-proton scattering
NASA Astrophysics Data System (ADS)
Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Becks, K. H.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; De Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Callebaut, D.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Giubellino, P.; Grafström, P.; Grard, F.; Hass, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Hoppe, C.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Kesteman, J.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Manz, A.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Schröder, T.; Schouten, M.; Schultze, K.; Sholz, M.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; De La Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wahlen, H.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.; European Muon Collaboration
Properties of the hadron multiplicity distributions in 280 GeV/ c μ +p interactions have been investigated. The c.m. energy dependence in the range from 4 to 20 GeV of the total charged multiplicities are presented. No variation faster than logarithmic is seen in the energy range of this experiment. Comparison with νp and overlineνp data at lower energy has been made and shows good agreement between μ +p and overlineνp total charged multiplicities. It has been found that the average forward multiplicity (charged hadrons with xF > 0) exceeds the average backward multiplicity (charged hadrons with xF < 0) in the whole energy range and presents a different energy variation. The average forward multiplicity has been compared to e +e - data and shows a similar dependence on energy. Little correlation was observed between the forward and backward multiplicities indicating that the current and target regions fragment almost independently.
Gong, Jiang; Liu, Jie; Jiang, Zhiwei; Wen, Xin; Mijowska, Ewa; Tang, Tao; Chen, Xuecheng
2015-05-01
Novel porous cup-stacked carbon nanotube (P-CSCNT) with special stacked morphology consisting of many truncated conical graphene layers was synthesized by KOH activating CSCNT from polypropylene. The morphology, microstructure, textural property, phase structure, surface element composition and thermal stability of P-CSCNT were investigated by field-emission scanning electron microscope, transmission electron microscope (TEM), high-resolution TEM, N2 sorption, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and thermal gravimetric analysis. A part of oblique graphitic layers were etched by KOH, and many holes with a diameter of several to a doze of nanometers connecting inner tube with outside were formed, which endowed P-CSCNT with high specific surface area (558.7 m(2)/g), large pore volume (1.993 cm(3)/g) and abundant surface functional groups. Subsequently, P-CSCNT was used for adsorption of methylene blue (MB) from wastewater. Langmuir model closely fitted the adsorption results, and the maximum adsorption capacity of P-CSCNT was as high as 319.1mg/g. This was ascribed to multiple adsorption mechanisms including pore filling, hydrogen bonding, π-π and electrostatic interactions. Pseudo second-order kinetic model was more valid to describe the adsorption behavior. Besides, P-CSCNT showed good recyclablity and reusability. These results demonstrated that P-CSCNT had potential application in wastewater treatment. Copyright © 2015 Elsevier Inc. All rights reserved.
2012-01-01
Ag-doped nanocrystalline hydroxyapatite nanoparticles (Ag:HAp-NPs) (Ca10-xAgx(PO4)6(OH)2, xAg = 0.05, 0.2, and 0.3) with antibacterial properties are of great interest in the development of new products. Coprecipitation method is a promising route for obtaining nanocrystalline Ag:HAp with antibacterial properties. X-ray diffraction identified HAp as an unique crystalline phase in each sample. The calculated lattice constants of a = b = 9.435 Å, c = 6.876 Å for xAg = 0.05, a = b = 9.443 Å, c = 6.875 Å for xAg = 0.2, and a = b = 9.445 Å, c = 6.877 Å for xAg = 0.3 are in good agreement with the standard of a = b = 9.418 Å, c = 6.884 Å (space group P63/m). The Fourier transform infrared and Raman spectra of the sintered HAp show the absorption bands characteristic to hydroxyapatite. The Ag:HAp nanoparticles are evaluated for their antibacterial activity against Staphylococcus aureus, Klebsiella pneumoniae, Providencia stuartii, Citrobacter freundii and Serratia marcescens. The results showed that the antibacterial activity of these materials, regardless of the sample types, was greatest against S. aureus, K. pneumoniae, P. stuartii, and C. freundii. The results of qualitative antibacterial tests revealed that the tested Ag:HAp-NPs had an important inhibitory activity on P. stuartii and C. freundii. The absorbance values measured at 490 nm of the P. stuartii and C. freundii in the presence of Ag:HAp-NPs decreased compared with those of organic solvent used (DMSO) for all the samples (xAg = 0.05, 0.2, and 0.3). Antibacterial activity increased with the increase of xAg in the samples. The Ag:HAp-NP concentration had little influence on the bacterial growth (P. stuartii). PMID:22721352
Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Le Coustumer, Phillippe; Constantin, Liliana Violeta; Predoi, Daniela
2012-06-21
Ag-doped nanocrystalline hydroxyapatite nanoparticles (Ag:HAp-NPs) (Ca10-xAgx(PO4)6(OH)2, xAg = 0.05, 0.2, and 0.3) with antibacterial properties are of great interest in the development of new products. Coprecipitation method is a promising route for obtaining nanocrystalline Ag:HAp with antibacterial properties. X-ray diffraction identified HAp as an unique crystalline phase in each sample. The calculated lattice constants of a = b = 9.435 Å, c = 6.876 Å for xAg = 0.05, a = b = 9.443 Å, c = 6.875 Å for xAg = 0.2, and a = b = 9.445 Å, c = 6.877 Å for xAg = 0.3 are in good agreement with the standard of a = b = 9.418 Å, c = 6.884 Å (space group P63/m). The Fourier transform infrared and Raman spectra of the sintered HAp show the absorption bands characteristic to hydroxyapatite. The Ag:HAp nanoparticles are evaluated for their antibacterial activity against Staphylococcus aureus, Klebsiella pneumoniae, Providencia stuartii, Citrobacter freundii and Serratia marcescens. The results showed that the antibacterial activity of these materials, regardless of the sample types, was greatest against S. aureus, K. pneumoniae, P. stuartii, and C. freundii. The results of qualitative antibacterial tests revealed that the tested Ag:HAp-NPs had an important inhibitory activity on P. stuartii and C. freundii. The absorbance values measured at 490 nm of the P. stuartii and C. freundii in the presence of Ag:HAp-NPs decreased compared with those of organic solvent used (DMSO) for all the samples (xAg = 0.05, 0.2, and 0.3). Antibacterial activity increased with the increase of xAg in the samples. The Ag:HAp-NP concentration had little influence on the bacterial growth (P. stuartii).
Zhu, Gaochun; Chen, Zhenying; Dai, Bo; Zheng, Chaoran; Jiang, Huaide; Xu, Yurong; Sheng, Xuan; Guo, Jingjing; Dan, Yu; Liang, Shangdong; Li, Guilin
2018-06-01
Chronic lead exposure causes peripheral sympathetic nerve stimulation, including increased blood pressure and heart rate. Purinergic receptors are involved in the sympathoexcitatory response induced by myocardial ischemia injury. However, whether P2X4 receptor participates in sympathoexcitatory response induced by chronic lead exposure and the possible mechanisms are still unknown. The aim of this study was to explore the change of the sympathoexcitatory response induced by chronic lead exposure via the P2X4 receptor in the stellate ganglion (SG). Rats were given lead acetate through drinking water freely at doses of 0 g/L (control group), 0.5 g/L (low lead group), and 2 g/L (high lead group) for 1 year. Our results demonstrated that lead exposure caused autonomic nervous dysfunction, including blood pressure and heart rate increased and heart rate variability (HRV) decreased. Western blotting results indicated that after lead exposure, the protein expression levels in the SG of P2X4 receptor, IL-1β and Cx43 were up-regulated, the phosphorylation of p38 mitogen-activated protein kinase (MAPK) was activated. Real-time PCR results showed that the mRNA expression of P2X4 receptor in the SG was higher in lead exposure group than that in the control group. Double-labeled immunofluorescence results showed that P2X4 receptor was co-expressed with glutamine synthetase (GS), the marker of satellite glial cells (SGCs). These changes were positively correlated with the dose of lead exposure. The up-regulated expression of P2X4 receptor in SGCs of the SG maybe enhance the sympathoexcitatory response induced by chronic lead exposure. © 2018 Wiley Periodicals, Inc.
Gnanasekaran, Aswini; Bele, Tanja; Hullugundi, Swathi; Simonetti, Manuela; Ferrari, Michael D; van den Maagdenberg, Arn M J M; Nistri, Andrea; Fabbretti, Elsa
2013-12-02
ATP-gated P2X3 receptors of sensory ganglion neurons are important transducers of pain as they adapt their expression and function in response to acute and chronic nociceptive signals. The present study investigated the role of calcium/calmodulin-dependent serine protein kinase (CASK) in controlling P2X3 receptor expression and function in trigeminal ganglia from Cacna1a R192Q-mutated knock-in (KI) mice, a genetic model for familial hemiplegic migraine type-1. KI ganglion neurons showed more abundant CASK/P2X3 receptor complex at membrane level, a result that likely originated from gain-of-function effects of R192Q-mutated CaV2.1 channels and downstream enhanced CaMKII activity. The selective CaV2.1 channel blocker ω-Agatoxin IVA and the CaMKII inhibitor KN-93 were sufficient to return CASK/P2X3 co-expression to WT levels. After CASK silencing, P2X3 receptor expression was decreased in both WT and KI ganglia, supporting the role of CASK in P2X3 receptor stabilization. This process was functionally observed as reduced P2X3 receptor currents. We propose that, in trigeminal sensory neurons, the CASK/P2X3 complex has a dynamic nature depending on intracellular calcium and related signaling, that are enhanced in a transgenic mouse model of genetic hemiplegic migraine.
Xu, Jie; Yang, Yalin; Liu, Yang; Ran, Chao; Li, Juan; He, Suxu; Xu, Li; Ai, Xhunxiang; Zhou, Zhigang
2016-07-04
We isolated bacterial strains with chitin-degrading activity from the digesta of large yellow croakers (Pseudosciaena crocea) fed with chitin-enriched trash fish, and characterized potential chitinases thereof. Chitin-degrading strains were screened with colloidal chitin agar from the digesta of P. crocea fed with trash fish. The chitinase gene (chi-X) was cloned and expressed in Escherichia coli, and the enzymatic properties of the chitinase (CHI-X) were characterized. A Citrobacter freundii strain with chitin-degrading activity was isolated. The chitinase gene encodes a protein containing 493 amino acid residues, with a proposed glycoside hydrolase family-18 catalytic domain. CHI-X could hydrolyze colloidal chitin. The optimal pH for CHI-X was 4.0 at optimal temperature (60 ℃). CHI-X was active over a broad pH range, with around 90% of the activity maintained after incubation at pH between 3.0 and 11 for 1 h. The enzymatic activity of CHI-X was stimulated by Mn2+, Li+, and K+, but inhibited by Ag+. The enzyme was stable after treatment by proteases and grouper intestinal juice. CHI-X hydrolyzes colloidal chitin into GlcNAc and (GlcNAc)2. Furthermore, an synergic effect was observed between CHIX and ChiB565 (a chitinase from Aeromonas veronii B565) on colloidal chitin. CHI-X from intestinal bacterium may be potentially used as feed additive enzyme for warm water marine fish.
Zhou, Bing; Li, Ming-Hua; Wang, Wu; Xu, Hao-Wen; Cheng, Yong-De; Wang, Jue
2010-03-01
The authors conducted a study to evaluate the advantages of a 3D volume-rendering technique (VRT) in follow-up digital subtraction (DS) angiography of coil-embolized intracranial aneurysms. One hundred nine patients with 121 intracranial aneurysms underwent endovascular coil embolization and at least 1 follow-up DS angiography session at the authors' institution. Two neuroradiologists independently evaluated the conventional 2D DS angiograms, rotational angiograms, and 3D VRT images obtained at the interventional procedures and DS angiography follow-up. If multiple follow-up sessions were performed, the final follow-up was mainly considered. The authors compared the 3 techniques for their ability to detect aneurysm remnants (including aneurysm neck and sac remnants) and parent artery stenosis based on the angiographic follow-up. The Kruskal-Wallis test was used for group comparisons, and the kappa test was used to measure interobserver agreement. Statistical analyses were performed using commercially available software. There was a high statistical significance among 2D DS angiography, rotational angiography, and 3D VRT results (X(2) = 9.9613, p = 0.0069) when detecting an aneurysm remnant. Further comparisons disclosed a statistical significance between 3D VRT and rotational angiography (X(2) = 4.9754, p = 0.0257); a high statistical significance between 3D VRT and 2D DS angiography (X(2) = 8.9169, p = 0.0028); and no significant difference between rotational angiography and 2D DS angiography (X(2) = 0.5648, p = 0.4523). There was no statistical significance among the 3 techniques when detecting parent artery stenosis (X(2) = 2.5164, p = 0.2842). One case, in which parent artery stenosis was diagnosed by 2D DS angiography and rotational angiography, was excluded by 3D VRT following observations of multiple views. The kappa test showed good agreement between the 2 observers. The 3D VRT is more sensitive in detecting aneurysm remnants than 2D DS angiography and rotational angiography and is helpful for identifying parent artery stenosis. The authors recommend this technique for the angiographic follow-up of patients with coil-embolized aneurysms.
NASA Astrophysics Data System (ADS)
Liu, Huatao; Zhao, Yanming; Zhang, Hui; Lian, Xin; Dong, Youzhong; Kuang, Quan
2017-12-01
A series of Fe-doped Na2Mn3-xFex(P2O7)2 (x = 0.0, 0.5, 1.0, 1.5 and 2.0) compounds have been successfully prepared by using sol-gel method. Rietveld refinement results indicate that single phase Na2Mn3-xFex(P2O7)2 with triclinic structure can be obtained within 0 ≤ x ≤ 2 although no Na2Fe3(P2O7)2 existing under our experimental conditions, and the cell parameters (including a, b, c and V) are decreasing with the increasing of x. Our results reveal that Na2Mn3(P2O7)2 exhibits an electrochemical activity in the voltage range of 1.5 V-4.5 V vs. Na+/Na when using as the cathode material for SIBs although it gives a limited rate capability and poor capacity retention. However, the electrochemical performance of Fe-doped Na2Mn3-xFex(P2O7)2 (0 ≤ x ≤ 2) can be improved significantly where cycle performance and rate capability can be improved significantly than that of the pristine one. Sodium ion diffusion coefficient can be increased by about two orders of magnitude with the Fe-doping content higher than x = 0.5.
Rosenkranz, Richard R; Behrens, Timothy K; Dzewaltowski, David A
2010-02-19
Girl Scouting may offer a viable channel for health promotion and obesity prevention programs. This study evaluated the effectiveness of an intervention program delivered through Girl Scout Junior troops that was designed to foster healthful troop meeting environments and increase obesity prevention behaviors at home. Seven Girl Scout troops were randomized to intervention (n = 3, with 34 girls) or standard-care control (n = 4, with 42 girls) conditions. Girls ranged in age from 9 to 13 years (mean 10.5 years). Intervention troop leaders were trained to implement policies promoting physical activity (PA) and healthful eating opportunities at troop meetings, and to implement a curriculum promoting obesity-prevention behaviors at home. The primary outcome variable was child body mass index (BMI) z-score. Secondary outcomes included accelerometer-assessed PA levels in troop meetings, direct observations of snack offerings, time spent in physically active meeting content, and leader encouragement of PA and healthful eating. The intervention was delivered with good fidelity, and intervention troops provided greater opportunities for healthful eating and PA (x2 = 210.8, p < .001), relative to control troops. In troop meetings, intervention troop leaders promoted PA (x2 = 23.46, p < .001) and healthful eating (x2 = 18.14, p < .001) more frequently, and discouraged healthful eating and PA less frequently (x2 = 9.63, p = .002) compared to control troop leaders. Most effects of the intervention on individual-level variables of girls and parents were not significantly different from the control condition, including the primary outcome of child BMI z-score (F1, 5 = 0.42, p = .544), parent BMI (F1, 5 = 1.58, p = .264), and related behavioral variables. The notable exception was for objectively assessed troop PA, wherein girls in intervention troops accumulated significantly less sedentary (x2 = 6.3, p = .011), significantly more moderate (x2 = 8.2, p = .004), and more moderate-to-vigorous physical activity, (x2 = 18.4, p < .001), than girls in control troops. Implementing a health promotion curriculum and supporting policies to provide more healthful environments in Girl Scout troop meetings appears feasible on a broader scale. Additional work is needed to bridge health promotion from such settings to other environments if lasting individual-level behavior change and obesity prevention remain targeted outcomes. NCT00949637.
Chang, Yong S.; Graves, Bradford; Guerlavais, Vincent; Tovar, Christian; Packman, Kathryn; To, Kwong-Him; Olson, Karen A.; Kesavan, Kamala; Gangurde, Pranoti; Mukherjee, Aditi; Baker, Theresa; Darlak, Krzysztof; Elkin, Carl; Filipovic, Zoran; Qureshi, Farooq Z.; Cai, Hongliang; Berry, Pamela; Feyfant, Eric; Shi, Xiangguo E.; Horstick, James; Annis, D. Allen; Manning, Anthony M.; Fotouhi, Nader; Nash, Huw; Vassilev, Lyubomir T.; Sawyer, Tomi K.
2013-01-01
Stapled α−helical peptides have emerged as a promising new modality for a wide range of therapeutic targets. Here, we report a potent and selective dual inhibitor of MDM2 and MDMX, ATSP-7041, which effectively activates the p53 pathway in tumors in vitro and in vivo. Specifically, ATSP-7041 binds both MDM2 and MDMX with nanomolar affinities, shows submicromolar cellular activities in cancer cell lines in the presence of serum, and demonstrates highly specific, on-target mechanism of action. A high resolution (1.7-Å) X-ray crystal structure reveals its molecular interactions with the target protein MDMX, including multiple contacts with key amino acids as well as a role for the hydrocarbon staple itself in target engagement. Most importantly, ATSP-7041 demonstrates robust p53-dependent tumor growth suppression in MDM2/MDMX-overexpressing xenograft cancer models, with a high correlation to on-target pharmacodynamic activity, and possesses favorable pharmacokinetic and tissue distribution properties. Overall, ATSP-7041 demonstrates in vitro and in vivo proof-of-concept that stapled peptides can be developed as therapeutically relevant inhibitors of protein–protein interaction and may offer a viable modality for cancer therapy. PMID:23946421
NASA Astrophysics Data System (ADS)
Kholodnov, Viacheslav; Drugova, Albina; Nikitin, Mikhail; Chekanova, Galina
2012-10-01
Technology of infrared (IR) avalanche photodiodes (APDs) gradually moves from simple single element APD to 2D focal plane arrays (FPA). Spectral covering of APDs is expanded continuously from classic 1.3 μm to longer wavelengths due to using of narrow-gap semiconductor materials like Hg1-xCdxTe. APDs are of great interest to developers and manufacturers of different optical communication, measuring and 3D reconstruction thermal imaging systems. Major IR detector materials for manufacturing of high-performance APDs became heteroepitaxial structures InxGa1-xAsyP1-y and Hg1-xCdxTe. Progress in IR APD technology was achieved through serious improvement in material growing techniques enabling forming of multilayer heterostuctures with separate absorption and multiplication regions (SAM). Today SAM-APD design can be implemented both on InxGa1-xAsyP1-y and Hg1-xCdxTe multilayer heteroepitaxial structures. To create the best performance optimal design avalanche heterophotodiode (AHPD) it is necessary to carry out a detailed theoretical analysis of basic features of generation, avalanche breakdown and multiplication of charge carriers in proper heterostructure. Optimization of AHPD properties requires comprehensive estimation of AHPD's pixel performance depending on pixel's multi-layer structure design, layers doping, distribution of electric field in the structure and operating temperature. Objective of the present article is to compare some features of 1.55 μm SAM-AHPDs based on InxGa1-xAsyP1-y and Hg1-xCdxTe.
Rane, Smita; Prabhakar, Bala
2013-07-01
The aim of this study was to investigate the combined influence of 3 independent variables in the preparation of paclitaxel containing pH-sensitive liposomes. A 3 factor, 3 levels Box-Behnken design was used to derive a second order polynomial equation and construct contour plots to predict responses. The independent variables selected were molar ratio phosphatidylcholine:diolylphosphatidylethanolamine (X1), molar concentration of cholesterylhemisuccinate (X2), and amount of drug (X3). Fifteen batches were prepared by thin film hydration method and evaluated for percent drug entrapment, vesicle size, and pH sensitivity. The transformed values of the independent variables and the percent drug entrapment were subjected to multiple regression to establish full model second order polynomial equation. F was calculated to confirm the omission of insignificant terms from the full model equation to derive a reduced model polynomial equation to predict the dependent variables. Contour plots were constructed to show the effects of X1, X2, and X3 on the percent drug entrapment. A model was validated for accurate prediction of the percent drug entrapment by performing checkpoint analysis. The computer optimization process and contour plots predicted the levels of independent variables X1, X2, and X3 (0.99, -0.06, 0, respectively), for maximized response of percent drug entrapment with constraints on vesicle size and pH sensitivity.
Contribution of P2X4 receptors to ethanol intake in male C57BL/6 mice
Wyatt, Letisha R.; Finn, Deborah A.; Khoja, Sheraz; Yardley, Megan M; Asatryan, Liana; Alkana, Ronald L.; Davies, Daryl L.
2014-01-01
P2X receptors (P2XRs) are a family of cation-permeable ligand-gated ion channels activated by synaptically released extracellular ATP. The P2X4 subtype is abundantly expressed in the CNS and is sensitive to low intoxicating ethanol concentrations. Genetic meta-analyses identified the p2rx4 gene as a candidate gene for innate alcohol intake and/or preference. The current study used mice lacking the p2rx4 gene (knockout, KO) and wildtype (WT) C57BL/6 controls to test the hypothesis that P2X4Rs contribute to ethanol intake. The early acquisition and early maintenance phases of ethanol intake were measured with three different drinking procedures. Further, we tested the effects of ivermectin (IVM), a drug previously shown to reduce ethanol’s effects on P2X4Rs and to reduce ethanol intake and preference, for its ability to differentially alter stable ethanol intake in KO and WT mice. Depending on the procedure and the concentration of the ethanol solution, ethanol intake was transiently increased in P2X4R KO versus WT mice during the acquisition of 24-hr and limited access ethanol intake. IVM significantly reduced ethanol intake in P2X4R KO and WT mice, but the degree of reduction was 50% less in the P2X4R KO mice. Western blot analysis identified significant changes in -γ aminobutyric acidA receptor (GABAAR) α1 subunit expression in brain regions associated with the regulation of ethanol behaviors in P2X4R KO mice. These findings add to evidence that P2X4Rs contribute to ethanol intake and indicate that there is a complex interaction between P2X4Rs, ethanol, and other neurotransmitter receptor systems. PMID:24671605
Purinergic receptor immunoreactivity in the rostral ventromedial medulla.
Close, L N; Cetas, J S; Heinricher, M M; Selden, N R
2009-01-23
The rostral ventromedial medulla (RVM) has long been recognized to play a pivotal role in nociceptive modulation. Pro-nociception within the RVM is associated with a distinct functional class of neurons, ON-cells that begin to discharge immediately before nocifensive reflexes. Anti-nociceptive function within the RVM, including the analgesic response to opiates, is associated with another distinct class, OFF-cells, which pause immediately prior to nocifensive reflexes. A third class of RVM neurons, NEUTRAL-cells, does not alter firing in association with nocifensive reflexes. ON-, OFF- and NEUTRAL-cells show differential responsiveness to various behaviorally relevant neuromodulators, including purinergic ligands. Iontophoresis of semi-selective P2X ligands, which are associated with nociceptive transmission in the spinal cord and dorsal root ganglia, preferentially activate ON-cells. By contrast, P2Y ligands activate OFF-cells and P1 ligands suppress the firing of NEUTRAL cells. The current study investigates the distribution of P2X, P2Y and P1 receptor immunoreactivity in RVM neurons of Sprague-Dawley rats. Co-localization with tryptophan hydroxylase (TPH), a well-established marker for serotonergic neurons was also studied. Immunoreactivity for the four purinergic receptor subtypes examined was abundant in all anatomical subdivisions of the RVM. By contrast, TPH-immunoreactivity was restricted to a relatively small subset of RVM neurons concentrated in the nucleus raphe magnus and pallidus, as expected. There was a significant degree of co-localization of each purinergic receptor subtype with TPH-immunoreactivity. This co-localization was most pronounced for P2Y1 receptor immunoreactivity, although this was the least abundant among the different purinergic receptor subtypes examined. Immunoreactivity for multiple purinergic receptor subtypes was often co-localized in single neurons. These results confirm the physiological finding that purinergic receptors are widely expressed in the RVM. Purinergic neurotransmission in this region may play an important role in nociception and/or nociceptive modulation, as at other levels of the neuraxis.
Strause, Karl D; Zwiernik, Matthew J; Im, Sook Hyeon; Bradley, Patrick W; Moseley, Pamela P; Kay, Denise P; Park, Cyrus S; Jones, Paul D; Blankenship, Alan L; Newsted, John L; Giesy, John P
2007-07-01
The great horned owl (GHO; Bubo virginianus) was used in a multiple lines of evidence study of polychlorinated biphenyls (PCBs) and p,p'-dichlorodiphenyltrichloroethane (DDT) exposures at the Kalamazoo River Superfund Site (KRSS), Kalamazoo, Michigan, USA. The study examined risks from total PCBs, including 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TEQWorld Health Organization [WHO]-Avian Toxicity Equivalency Factor [TEF]), and total DDTs (sum of DDT, dichlorodiphenyldichloroethylene [DDE], and dichlorodiphenyldichloroethane [DDD]; sigmaDDT) by measuring concentrations in eggs and nestling blood plasma in two regions of the KRSS (upper, lower) and an upstream reference area (RA). An ecological risk assessment compared concentrations of the contaminants of concern (COCs) in eggs or plasma to toxicity reference values. Productivity and relative abundance measures for KRSS GHOs were compared with other GHO populations. Egg shell thickness was measured to assess effects of p,p'-DDE. The concentrations of PCBs in eggs were as great as 4.7 x 10(2) and 4.0 x 10(4) ng PCB/g, wet weight at the RA and combined KRSS sites, respectively. Egg TEQ(WHO-Avian) calculated from aryl hydrocarbon receptor-active PCB congeners and WHO TEFs ranged to 8.0 and 1.9 x 10(2) pg TEQ(WHO-Avian)/g, (wet wt) at the RA and combined KRSS, respectively. Egg sigmaDDT concentrations were as great as 4.2 x 10(2) and 5.0 x 10(3) ng sigmaDDT/g (wet wt) at the RA and combined KRSS, respectively. Hazard quotients (HQs) for the upper 95% confidence interval (UCI) (geometric mean) and least observable adverse effect concentration (LOAEC) for COCs in eggs were < or = 1.0 for all sites. Hazard quotient values based on the no observable adverse effect concentration (NOAEC) 95% UCI in eggs were < or = 1.0, except at the LKRSS (PCB HQ = 3.1; TEQ(WHO-Avian) HQ = 1.3). Productivity and relative abundance measures indicated no population level effects in the UKRSS.
SteamTables: An approach of multiple variable sets
NASA Astrophysics Data System (ADS)
Verma, Mahendra P.
2009-10-01
Using the IAPWS-95 formulation, an ActiveX component SteamTablesIIE in Visual Basic 6.0 is developed to calculate thermodynamic properties of pure water as a function of two independent intensive variables: (1) temperature ( T) or pressure ( P) and (2) T, P, volume ( V), internal energy ( U), enthalpy ( H), entropy ( S) or Gibbs free energy ( G). The second variable cannot be the same as variable 1. Additionally, it calculates the properties along the separation boundaries (i.e., sublimation, saturation, critical isochor, ice I melting, ice III to ice IIV melting and minimum volume curves) considering the input parameter as T or P for the variable 1. SteamTablesIIE is an extension of the ActiveX component SteamTables implemented earlier considering T (190 to 2000 K) and P (3.23×10 -8 to 10000 MPa) as independent variables. It takes into account the following 27 intensive properties: temperature ( T), pressure ( P), fraction, state, volume ( V), density ( Den), compressibility factor ( Z0), internal energy ( U), enthalpy ( H), Gibbs free energy ( G), Helmholtz free energy ( A), entropy ( S), heat capacity at constant pressure ( C p), heat capacity at constant volume ( C v), coefficient of thermal expansion ( CTE), isothermal compressibility ( Z iso), speed of sound ( VelS), partial derivative of P with T at constant V ( dPdT), partial derivative of T with V at constant P ( dTdV), partial derivative of V with P at constant T ( dVdP), Joule-Thomson coefficient ( JTC), isothermal throttling coefficient ( IJTC), viscosity ( Vis), thermal conductivity ( ThrmCond), surface tension ( SurfTen), Prandtl number ( PrdNum) and dielectric constant ( DielCons).
Stuart, Jeremy R; Haley, Kevin J; Swedzinski, Douglas; Lockner, Samuel; Kocian, Paul E; Merriman, Peter J; Simmons, Michael J
2002-01-01
P elements inserted at the left end of the Drosophila X chromosome were isolated genetically from wild-type P strains. Stocks carrying these elements were tested for repression of P-strain-induced gonadal dysgenesis in females and for repression of transposase-catalyzed P-element excision in males and females. Both traits were repressed by stocks carrying either complete or incomplete P elements inserted near the telomere of the X chromosome in cytological region 1A, but not by stocks carrying only nontelomeric X-linked P elements. All three of the telomeric P elements that were analyzed at the molecular level were inserted in one of the 1.8-kb telomere-associated sequence (TAS) repeats near the end of the X chromosome. Stocks with these telomeric P elements strongly repressed P-element excision induced in the male germline by a P strain or by the transposase-producing transgenes H(hsp/CP)2, H(hsp/CP)3, a combination of these two transgenes, and P(ry(+), delta2-3)99B. For H(hsp/CP)2 and P(ry(+), delta2-3)99B, the repression was also effective when the flies were subjected to heat-shock treatments. However, these stocks did not repress the somatic transposase activity of P(ry(+), delta2-3)99B. Repression of transposase activity in the germline required maternal transmission of the telomeric P elements themselves. Paternal transmission of these elements, or maternal transmission of the cytoplasm from carriers, both were insufficient to repress transposase activity. Collectively, these findings indicate that the regulatory abilities of telomeric P elements are similar to those of the P cytotype. PMID:12524339
Novel channel-mediated choline transport in cholinergic neurons of the mouse retina.
Ishii, Toshiyuki; Homma, Kohei; Mano, Asuka; Akagi, Takumi; Shigematsu, Yasuhide; Shimoda, Yukio; Inoue, Hiroyoshi; Kakinuma, Yoshihiko; Kaneda, Makoto
2017-10-01
Choline uptake into the presynaptic terminal of cholinergic neurons is mediated by the high-affinity choline transporter and is essential for acetylcholine synthesis. In a previous study, we reported that P2X 2 purinoceptors are selectively expressed in OFF-cholinergic amacrine cells of the mouse retina. Under specific conditions, P2X 2 purinoceptors acquire permeability to large cations, such as N -methyl-d-glucamine, and therefore potentially could act as a noncanonical pathway for choline entry into neurons. We tested this hypothesis in OFF-cholinergic amacrine cells of the mouse retina. ATP-induced choline currents were observed in OFF-cholinergic amacrine cells, but not in ON-cholinergic amacrine cells, in mouse retinal slice preparations. High-affinity choline transporters are expressed at higher levels in ON-cholinergic amacrine cells than in OFF-cholinergic amacrine cells. In dissociated preparations of cholinergic amacrine cells, ATP-activated cation currents arose from permeation of extracellular choline. We also examined the pharmacological properties of choline currents. Pharmacologically, α,β-methylene ATP did not produce a cation current, whereas ATPγS and benzoyl-benzoyl-ATP (BzATP) activated choline currents. However, the amplitude of the choline current activated by BzATP was very small. The choline current activated by ATP was strongly inhibited by pyridoxalphosphate-6-azophenyl-2',4'-sulfonic acid. Accordingly, P2X 2 purinoceptors expressed in HEK-293T cells were permeable to choline and similarly functioned as a choline uptake pathway. Our physiological and pharmacological findings support the hypothesis that P2 purinoceptors, including P2X 2 purinoceptors, function as a novel choline transport pathway and may provide a new regulatory mechanism for cholinergic signaling transmission at synapses in OFF-cholinergic amacrine cells of the mouse retina. NEW & NOTEWORTHY Choline transport across the membrane is exerted by both the high-affinity and low-affinity choline transporters. We found that choline can permeate P2 purinergic receptors, including P2X 2 purinoceptors, in cholinergic neurons of the retina. Our findings show the presence of a novel choline transport pathway in cholinergic neurons. Our findings also indicate that the permeability of P2X 2 purinergic receptors to choline observed in the heterologous expression system may have a physiological relevance in vivo. Copyright © 2017 the American Physiological Society.
Roy, Anand; Chhetri, Manjeet; Prasad, Suchitra; Waghmare, Umesh V; Rao, C N R
2018-01-24
Photochemical reduction of H 2 O and CO 2 has been investigated with a new family of catalysts of the formula Cd 4 P 2 X 3 (X= Cl, Br, I), obtained by the complete aliovalent substitution of the sulfide ions in CdS by P and X (Cl, Br, I). Unlike CdS, the Cd 4 P 2 X 3 compounds exhibit hydrogen evolution and CO 2 reduction from water even in the absence of a sacrificial agent or a cocatalyst. Use of Ni x P y as the cocatalyst, enhances hydrogen evolution, reaching 3870 (apparent quantum yield (AQY) = 4.11) and 9258 (AQY = 9.83) μmol h -1 g -1 , respectively, under artificial and natural (sunlight) irradiation, in the case of Cd 4 P 2 Br 3 /Ni x P y . Electrochemical and spectroscopic studies have been employed to understand the photocatalytic activity of this family of compounds. Unlike most of the semiconductor-based photocatalysts, Cd 4 P 2 X 3 catalysts reduce CO 2 to CO and CH 4 in the absence of sacrificial-agent or cocatalyst using water as the electron source. CO, CH 4 , and H 2 have been obtained with these catalysts under artificial as well as sun-light irradiation. First-principles, calculations have been carried out to understand the electronic structure and catalytic features of these new catalysts.
Effect of lappaconitine on neuropathic pain mediated by P2X3 receptor in rat dorsal root ganglion.
Ou, Shan; Zhao, Yan-Dong; Xiao, Zhi; Wen, Hui-Zhong; Cui, Jian; Ruan, Huai-Zhen
2011-04-01
ATP facilitates initiation and transmission of the neuropathic pain at the dorsal root ganglion (DRG) level via the P2X receptors, especially the subtype P2X(3). Lappaconitine (LA) is an active principle isolated from Chinese herbal medicine and possesses analgesic effect. The aim of this study was to investigate the effect of LA on chronic constriction injury (CCI)-induced neuropathic pain mediated by P2X(3) receptor in the DRG neurons. In the presence of CCI and/or LA, the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured and P2X(3) receptor expression in the DRG neurons was evaluated by immunohistochemistry and Western blotting. Following intrathecal administration of P2X(3) receptor oligonucleotide, the effect of LA on pain thresholds was assessed. Furthermore, the effect of LA on the P2X(3) receptor agonists ATP- and α,β-meATP-induced inward currents (I(ATP) and I(α,β-meATP)) in the acutely dissociated rat DRG neurons was investigated by whole cell patch-clamp. The results included: (1) There showed reduction of pain thresholds, enhancement of I(ATP) and I(α,β-meATP) and up-regulation of P2X(3) receptor expression in rat DRG neurons when neuropathic pain occurred. (2) In the presence of LA, the decreased pain thresholds, the up-regulated P2X(3) receptor expression and the enhanced I(ATP) and I(α,β-meATP) were reversible in the CCI rats. (3) The down-regulated P2X(3) receptor expression with pretreatment of P2X(3) receptor antisense oligonucleotide significantly attenuated the analgesic effect of LA. These results indicate that the analgesic effect of LA involves decrease of expression and sensitization of the P2X(3) receptors of the rat DRG neurons following CCI. Copyright © 2011 Elsevier Ltd. All rights reserved.
ACTIVE: Activity Concept Transitions in Video Event Classification (Open Access)
2014-03-03
responses are listed under each event. [2] R.- E . Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large linear...Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning realistic human actions from movies. In CVPR, 2008. 1 [11] L.-J. Li, H. Su, E . P. Xing, and F...invariant keypoints. IJCV, 60(2):91–110, 2004. 1, 2 [14] P. Natarajan, S. Vitaladevuni, U. Park, S. Wu, V. Manohar, X. Zhuang, S. Tsakalidis , R. Prasad, and P
Lee, Jae Hoon; Zhao, Youfu
2018-02-01
The bacterial enhancer binding protein (bEBP) HrpS is essential for Erwinia amylovora virulence by activating the type III secretion system (T3SS). However, how the hrpS gene is regulated remains poorly understood in E. amylovora. In this study, 5' rapid amplification of cDNA ends and promoter deletion analyses showed that the hrpS gene contains two promoters driven by HrpX/HrpY and the Rcs phosphorelay system, respectively. Electrophoretic mobility shift and gene expression assays demonstrated that integration host factor IHF positively regulates hrpS expression through directly binding the hrpX promoter and positively regulating hrpX/hrpY expression. Moreover, hrpX expression was down-regulated in the relA/spoT ((p)ppGpp-deficient) mutant and the dksA mutant, but up-regulated when the wild-type strain was treated with serine hydroxamate, which induced (p)ppGpp-mediated stringent response. Furthermore, the csrA mutant showed significantly reduced transcripts of major hrpS activators, including the hrpX/hrpY, rcsA and rcsB genes, indicating that CsrA is required for full hrpS expression. On the other hand, the csrB mutant exhibited up-regulation of the rcsA and rcsB genes, and hrpS expression was largely diminished in the csrB/rcsB mutant, indicating that the Rcs system is mainly responsible for the increased hrpS expression in the csrB mutant. These findings suggest that E. amylovora recruits multiple stimuli-sensing systems, including HrpX/HrpY, the Rcs phosphorelay system and the Gac-Csr system, to regulate hrpS and T3SS gene expression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Commodore, Adwoa, A.; Jannik, G. Timothy; Eddy, Teresa, P.
In this study we compare airborne radionuclide concentrations during prescribed burns at the Savannah River Site (SRS) and a sample of forests in the Southeastern United States. The spatial trends of airborne radionuclide concentrations from prescribed burn areas at SRS are also characterized. Total suspended particulate (TSP) samples were taken at three settings (subsequently termed burn sample populations): during prescribed burns at SRS (n = 34), on nonburn days at SRS (n = 12) and during prescribed burns at five offsite locations in the Southeastern United States (n = 2 per location). Mass concentrations of TSP were calculated and alpha,more » beta and gamma spectroscopy was performed to determine radionuclide activity concentrations. Spatial correlation in radionuclide concentration was assessed and ordinary kriging was used to create continuous surface maps across our study area. Median activity concentrations of natural radionuclides including {sup 40}K, thorium and uranium isotopes (n = 34) were higher in samples from SRS prescribed fires (p < 0.02) compared to offsite locations (n = 10) and nonburn days (n = 12). Median gross beta activity was also higher at SRS (p < 0.0001). Median concentrations of anthropogenic radionuclides did not significantly differ among burn sample populations except for {sup 238}Pu (p = 0.0022) and {sup 239,240}Pu (p = 0.014) with median concentrations of 8.41 x 10{sup -4} and 6.72 x 10{sup -5} pCi m{sup -3} at SRS compared to 1.55 x 10{sup -4} and -7.07 x 10{sup -6} pCi m{sup -3} (nonburn days) and 1.46 x 10{sup -4} and 2.78 x 10{sup -6} pCi m{sup 3} (offsite burns) respectively. Results from our spatial analysis found that only {sup 40}K demonstrated significant spatial correlation (X{sup 2} = 15.48, p = 0.0004) and spatial trends do not appear to directly link areas with higher activity concentrations with SRS facilities.« less
Foda, Khaled; Abdeldaeim, Hussein; Youssif, Mohamed; Assem, Akram
2013-11-01
To define the parameters that accompanied a successful extracorporeal shock wave lithotripsy (ESWL), namely the number of shock waves (SWs), expulsion time (ET), mean stone density (MSD), and the skin-to-stone distance (SSD). A total of 368 patients diagnosed with renal calculi using noncontrast computerized tomography had their MSD, diameter, and SSD recorded. All patients were treated using a Siemens lithotripter. ESWL success meant a stone-free status or presence of residual fragments <3 mm, ET was the time in days for the successful clearance of stone fragments. Correlation was performed between the stone characteristics, number of SWs, and ET. Two multiple regression analysis models defined the number of SWs and ET. Two receiver operating characteristic curves plotted the best MSD cutoff value and optimum SSD for a successful ESWL. Three hundred one patients were ESWL successes. A significant positive correlation was elicited between number of SWs and stone diameter, density and SSD; between ET and stone diameter and density. Multiple regressions concluded 2 equations: Number of SWs = 265.108 + 5.103 x1 + 22.39 x2 + 10.931 x3 ET (days) = -10.85 + 0.031 x1 + 2.11 x2 x1 = stone density (Hounsfield unit [HUs]), x2 = stone diameter (mm), and x3 = SSD (mm). Receiver operating characteristic curves demonstrated a cutoff value of ≤ 934 HUs with 94.4% sensitivity and 66.7% specificity and P = .0211. The SSD curve showed that a distance ≤ 99 mm was 85.7% sensitive, 87.5% specific, P <.0001. Stone disintegration is not recommended if MSD is >934 HUs and SSD >99 mm. The required number of SWs and the expected ET can be anticipated. Copyright © 2013 Elsevier Inc. All rights reserved.
Donovan, Jennifer L; DeVane, C Lindsay; Chavin, Kenneth D; Wang, Jun-Sheng; Gibson, Bryan B; Gefroh, Holly A; Markowitz, John S
2004-12-01
Valerian (Valeriana officinalis) is a popular dietary supplement. The objective of this study was to assess the influence of a valerian extract on the activity of the drug-metabolizing enzymes cytochrome P450 2D6 (CYP2D6) and 3A4. Probe drugs dextromethorphan (30 mg; CYP2D6 activity) and alprazolam (2 mg; CYP3A4 activity) were administered orally to healthy volunteers (n = 12) at baseline and again after exposure to two 500-mg valerian tablets (1000 mg) nightly for 14 days. The valerian supplement contained a total valerenic acid content of 5.51 mg/tablet. Dextromethorphan to dextorphan metabolic ratios (DMRs) and alprazolam pharmacokinetics were determined at baseline and after valerian treatment. The DMR was 0.214 +/- 0.025 at baseline and 0.254 +/- 0.026 after valerian supplementation (p > 0.05). For alprazolam, the maximum concentration in plasma was significantly increased after treatment with valerian (25 +/- 7 ng/ml versus 31 +/- 8 ng/ml; p < 0.05). There were no significant differences in other pharmacokinetic parameters at baseline and after valerian exposure (all p values > or = 0.05; time to reach maximum concentration in plasma, 3.0 +/- 3.2 versus 3.1 +/- 2.1 h; area under the plasma concentration versus time curve, 471 +/- 183 versus 539 +/- 240 hx ng x ml(-1); half-life of elimination, 13.5 +/- 4.3 versus 12.2 +/- 5.6 h). Our results indicate that although a modest increase was observed in the alprazolam Cmax, typical doses of valerian are unlikely to produce clinically significant effects on the disposition of medications dependent on the CYP2D6 or CYP3A4 pathways of metabolism.
Ahmadi, Mehdi; Nowroozi, Amin; Shahlaei, Mohsen
2015-09-01
The P2X purinoceptor 7 (P2X7R) is a trimeric ATP-activated ion channel gated by extracellular ATP. P2X7R has important role in numerous diseases including pain, neurodegeneration, and inflammatory diseases such as rheumatoid arthritis and osteoarthritis. In this prospective, the discovery of small-molecule inhibitors for P2X7R as a novel therapeutic target has received considerable attention in recent years. At first, 3D structure of P2X7R was built by using homology modeling (HM) and a 50ns molecular dynamics simulation (MDS). Ligand-based quantitative pharmacophore modeling methodology of P2X7R antagonists were developed based on training set of 49 compounds. The best four-feature pharmacophore model, includes two hydrophobic aromatic, one hydrophobic and one aromatic ring features, has the highest correlation coefficient (0.874), cost difference (368.677), low RMSD (2.876), as well as it shows a high goodness of fit and enrichment factor. Consequently, some hit compounds were introduced as final candidates by employing virtual screening and molecular docking procedure simultaneously. Among these compounds, six potential molecule were identified as potential virtual leads which, as such or upon further optimization, can be used to design novel P2X7R inhibitors. Copyright © 2015 Elsevier Inc. All rights reserved.
[Relationship between physical activity and hemodynamic parameters in adults].
Gómez-Sánchez, L; García-Ortiz, L; Recio-Rodríguez, J I; Patino-Alonso, M C; Agudo-Conde, C; Gómez-Marcos, M A
2015-01-01
To analyze the relationship between physical activity, as assessed by accelerometer, with central and peripheral augmentation index and carotid intima media thickness (IMT) in adults. This study analyzed 263 subjects who were included in the EVIDENT study. Physical activity was assessed during 7 days using the ActigraphGT3X accelerometer (counts/min). Carotid ultrasound was used to measure carotid IMT. The Sphygmo Cor System was used to measure central and peripheral augmentation index (CAIx and PAIx). Mean age 55.85±12 years; 59.30% female; 26.7 body mass index and blood pressure 120/77mmHg. Mean physician activity counts/min was 244.37 and 2.63±10.26min/day of vigorous or very vigorous activity. Physical activity showed an inverse correlation with PAIx (r=-0.179; P<.01) and vigorous activity day time with IMT(r=-0.174; P<.01), CAIx (r=-0.217; P<.01) and PAIx (r=-0.324; P<.01). After adjusting for confounding factors in the multiple regression analysis, the inverse association of CAIx with counts/min and the time spent in vigorous/very vigorous activity was maintained. The results suggest that both physical activity and time spent in vigorous or vigorous activity are associated with the central augmentation index in adults. Copyright © 2015 SEHLELHA. Published by Elsevier Espana. All rights reserved.
The Phospholipase C Isozymes and Their Regulation
Gresset, Aurelie; Sondek, John
2013-01-01
The physiological effects of many extracellular neurotransmitters, hormones, growth factors, and other stimuli are mediated by receptor-promoted activation of phospholipase C (PLC) and consequential activation of inositol lipid signaling pathways. These signaling responses include the classically described conversion of phosphatidylinositol(4,5)P2 to the Ca2+-mobilizing second messenger inositol(1,4,5)P3 and the protein kinase C-activating second messenger diacylglycerol as well as alterations in membrane association or activity of many proteins that harbor phosphoinositide binding domains. The 13 mammalian PLCs elaborate a minimal catalytic core typified by PLC-δ to confer multiple modes of regulation of lipase activity. PLC-β isozymes are activated by Gαq- and Gβγ-subunits of heterotrimeric G proteins, and activation of PLC-γ isozymes occurs through phosphorylation promoted by receptor and non-receptor tyrosine kinases. PLC-ε and certain members of the PLC-β and PLC-γ subclasses of isozymes are activated by direct binding of small G proteins of the Ras, Rho, and Rac subfamilies of GTPases. Recent high resolution three dimensional structures together with biochemical studies have illustrated that the X/Y linker region of the catalytic core mediates autoinhibition of most if not all PLC isozymes. Activation occurs as a consequence of removal of this autoinhibition. PMID:22403074
Scarapicchia, Tanya M F; Sabiston, Catherine M; Faulkner, Guy
2015-03-12
To examine the prevalence of students meeting physical activity, diet and smoking health recommendations and to examine the correlates of meeting these guidelines. Randomly selected students at the University of Toronto (N = 2,812; female = 71.60%, mean age = 22.11 ± 5.24 years, mean body mass index = 22.80 kg/m2) completed the National College Health Assessment-II survey in spring of 2013. Only 0.1% of the sample reported meeting physical activity, diet and non-smoking guidelines. Males were more likely than females to meet physical activity and both physical activity and fruit and vegetable guidelines (X2 [1, 2812] = 7.33, p < 0.05). Women were more likely than men to be nonsmokers (X2 [1, 2812] = 7.80, p < 0.05). Being overweight was associated with meeting physical activity guidelines. Being a healthy weight was associated with meeting both physical activity and fruit and vegetable guidelines (X2 [1, 2812] = 6.29, p < 0.05). Underweight participants were more likely to be nonsmokers (X2 [2, 2812] = 6.36, p < 0.05). In the logistic regression, being Caucasian and male and trying to change weight were correlated with meeting moderate-to-vigorous physical activity and strength training guidelines. Being older, Caucasian and trying to change weight were correlates of consuming greater than five fruits and vegetables per day. Beings Caucasian, female, and trying to change weight were correlates of being a non-smoker. University health promotion programs should be targeted to specific age, ethnicity and weight status groups, as there are distinct differences among those not meeting physical activity, diet and non-smoking guidelines.
Sleep quality and daytime function in adults with cystic fibrosis and severe lung disease.
Dancey, D R; Tullis, E D; Heslegrave, R; Thornley, K; Hanly, P J
2002-03-01
It was hypothesized that adult cystic fibrosis (CF) patients with severe lung disease have impaired daytime function related to nocturnal hypoxaemia and sleep disruption. Nineteen CF patients (forced expiratory volume in one second 28+/-7% predicted) and 10 healthy subjects completed sleep diaries, overnight polysomnography (PSG), and assessment of daytime sleepiness and neurocognitive function. CF patients tended to report more awakenings (0.7+/-0.5 versus 0.3+/-0.2 x h(-1), p=0.08), and PSG revealed reduced sleep efficiency (71+/-25 versus 93+/-4%, p=0.004) and a higher frequency of awakenings (4.2+/-2.7 versus 2.4+/-1.4 x h(-1), p=0.06). Mean arterial oxygen saturation during sleep was lower in CF patients (84.4+/-6.8 versus 94.3+/-1.5%, p<0.0001) and was associated with reduced sleep efficiency (regression coefficient (r)=0.57, p=0.014). CF patients had short sleep latency on the multiple sleep latency test (6.7+/-3 min). The CF group reported lower levels of activation and happiness and greater levels of fatigue (p<0.01), which correlated with indices of sleep loss, such as sleep efficiency (r=0.47, p=10.05). Objective neurocognitive performance was also impaired in CF patients, reflected by lower throughput for simple addition/subtraction, serial reaction and colour-word conflict. The authors concluded that adult cystic fibrosis patients with severe lung disease have impaired neurocognitive function and daytime sleepiness, which is partly related to chronic sleep loss and nocturnal hypoxaemia.
Sundström, Björn; Innala, Lena; Rantapää-Dahlqvist, Solbritt; Wållberg-Jonsson, Solveig
2017-01-01
The aim of this study was to analyse the change in aerobic capacity from disease onset of rheumatoid arthritis (RA) over 16.2 years, and its associations with disease activity and cardiovascular risk factors. Twenty-five patients (20 f/5 m), diagnosed with RA 1995-2002 were tested at disease onset and after mean 16.2 years. Parameters measured were: sub-maximal ergometer test for aerobic capacity, functional ability, self-efficacy, ESR, CRP and DAS28. At follow-up, cardiovascular risk factors were assessed as blood lipids, glucose concentrations, waist circumference, body mass index (BMI), body composition, pulse wave analysis and carotid intima-media thickness. Aerobic capacity [median (IQR)] was 32.3 (27.9-42.1) ml O2/kg x min at disease onset, and 33.2 (28.4-38.9) at follow-up (p>0.05). Baseline aerobic capacity was associated with follow-up values of: BMI (rs = -.401, p = .047), waist circumference (rs = -.498, p = .011), peripheral pulse pressure (rs = -.415, p = .039) self-efficacy (rs = .420, p = .037) and aerobic capacity (rs = .557, p = .004). In multiple regression models adjusted for baseline aerobic capacity, disease activity at baseline and over time predicted aerobic capacity at follow-up (AUC DAS28, 0-24 months; β = -.14, p = .004). At follow-up, aerobic capacity was inversely associated with blood glucose levels (rs = -.508, p = .016), BMI (rs = -.434, p = .030), body fat% (rs = -.419, p = .037), aortic pulse pressure (rs = -.405, p = .044), resting heart rate (rs = -.424, p = .034) and self-efficacy (rs = .464, p = .020) at follow-up. We conclude that the aerobic capacity was maintained over 16 years. High baseline aerobic capacity associated with favourable measures of cardiovascular risk factors at follow-up. Higher disease activity in early stages of RA predicted lower aerobic capacity after 16.2 years. PMID:29272303
Hörnberg, Kristina; Sundström, Björn; Innala, Lena; Rantapää-Dahlqvist, Solbritt; Wållberg-Jonsson, Solveig
2017-01-01
The aim of this study was to analyse the change in aerobic capacity from disease onset of rheumatoid arthritis (RA) over 16.2 years, and its associations with disease activity and cardiovascular risk factors. Twenty-five patients (20 f/5 m), diagnosed with RA 1995-2002 were tested at disease onset and after mean 16.2 years. Parameters measured were: sub-maximal ergometer test for aerobic capacity, functional ability, self-efficacy, ESR, CRP and DAS28. At follow-up, cardiovascular risk factors were assessed as blood lipids, glucose concentrations, waist circumference, body mass index (BMI), body composition, pulse wave analysis and carotid intima-media thickness. Aerobic capacity [median (IQR)] was 32.3 (27.9-42.1) ml O2/kg x min at disease onset, and 33.2 (28.4-38.9) at follow-up (p>0.05). Baseline aerobic capacity was associated with follow-up values of: BMI (rs = -.401, p = .047), waist circumference (rs = -.498, p = .011), peripheral pulse pressure (rs = -.415, p = .039) self-efficacy (rs = .420, p = .037) and aerobic capacity (rs = .557, p = .004). In multiple regression models adjusted for baseline aerobic capacity, disease activity at baseline and over time predicted aerobic capacity at follow-up (AUC DAS28, 0-24 months; β = -.14, p = .004). At follow-up, aerobic capacity was inversely associated with blood glucose levels (rs = -.508, p = .016), BMI (rs = -.434, p = .030), body fat% (rs = -.419, p = .037), aortic pulse pressure (rs = -.405, p = .044), resting heart rate (rs = -.424, p = .034) and self-efficacy (rs = .464, p = .020) at follow-up. We conclude that the aerobic capacity was maintained over 16 years. High baseline aerobic capacity associated with favourable measures of cardiovascular risk factors at follow-up. Higher disease activity in early stages of RA predicted lower aerobic capacity after 16.2 years.
NASA Astrophysics Data System (ADS)
Song, Hee Jo; Kim, Jae-Chan; Dar, Mushtaq Ahmad; Kim, Dong-Wan
2018-02-01
With the increasing demand for high energy density in energy-storage systems, a high-voltage cathode is essential in rechargeable Li-ion and Na-ion batteries. The operating voltage of a triclinic-polymorph Na2CoP2O7, also known as the rose form, is above 4.0 V (vs. Na/Na+), which is relatively high compared to that of other cathode materials. Thus, it can be employed as a potential high-voltage cathode material in Na-ion batteries. However, it is difficult to synthesize a pure rose phase because of its low phase stability, thus limiting its use in high-voltage applications. Herein, compositional-engineered, rose-phase Na2-2xCo1+xP2O7/C (x = 0, 0.1 and 0.2) nanopowder are prepared using a wet-chemical method. The Na2-2xCo1+xP2O7/C cathode shows high electrochemical reactivity with Na ions at 4.0 V, delivering high capacity and high energy density.
2013-01-01
Background ATP-gated P2X3 receptors of sensory ganglion neurons are important transducers of pain as they adapt their expression and function in response to acute and chronic nociceptive signals. The present study investigated the role of calcium/calmodulin-dependent serine protein kinase (CASK) in controlling P2X3 receptor expression and function in trigeminal ganglia from Cacna1a R192Q-mutated knock-in (KI) mice, a genetic model for familial hemiplegic migraine type-1. Results KI ganglion neurons showed more abundant CASK/P2X3 receptor complex at membrane level, a result that likely originated from gain-of-function effects of R192Q-mutated CaV2.1 channels and downstream enhanced CaMKII activity. The selective CaV2.1 channel blocker ω-Agatoxin IVA and the CaMKII inhibitor KN-93 were sufficient to return CASK/P2X3 co-expression to WT levels. After CASK silencing, P2X3 receptor expression was decreased in both WT and KI ganglia, supporting the role of CASK in P2X3 receptor stabilization. This process was functionally observed as reduced P2X3 receptor currents. Conclusions We propose that, in trigeminal sensory neurons, the CASK/P2X3 complex has a dynamic nature depending on intracellular calcium and related signaling, that are enhanced in a transgenic mouse model of genetic hemiplegic migraine. PMID:24294842
Rapid constitutive and ligand-activated endocytic trafficking of P2X receptor.
Vacca, Fabrizio; Giustizieri, Michela; Ciotti, Maria Teresa; Mercuri, Nicola Biagio; Volonté, Cinzia
2009-05-01
P2X receptors mediate a variety of physiological actions, including smooth muscle contraction, neuro-endocrine secretion and synaptic transmission. Among P2X receptors, the P2X(3) subtype is expressed in sensory neurons of dorsal root- and trigeminal-ganglia, where it performs a well-recognized role in sensory and pain transmission. Recent evidence indicates that the strength of P2X(3)-mediated responses is modulated in vivo by altering the number of receptors at the plasma membrane. In the present study, we investigate the trafficking properties of P2X(3) receptor in transfected HEK293 cells and in primary cultures of dorsal root ganglion neurons, finding that P2X(3) receptor undergoes rapid constitutive and cholesterol-dependent endocytosis. We also show that endocytosis is accompanied by preferential targeting of the receptor to late endosomes/lysosomes, with subsequent degradation. Furthermore, we observe that at steady state the receptor localizes predominantly in lamp1-positive intracellular structures, with a minor fraction present at the plasma membrane. Finally, the level of functional receptor expressed on the cell surface is rapidly up-regulated in response to agonist stimulation, which also augments receptor endocytosis. The findings presented in this work underscore a very dynamic trafficking behavior of P2X(3) receptor and disclose a possible mechanism for the rapid modulation of ATP-mediated responses potentially relevant during physiological and pathological conditions.
Muscle Signaling in Exercise Intolerance: Insights from the McArdle Mouse Model.
Fiuza-Luces, Carmen; Nogales-Gadea, Gisela; García-Consuegra, Inés; Pareja-Galeano, Helios; Rufián-Vázquez, Laura; Pérez, Laura M; Andreu, Antoni L; Arenas, Joaquín; Martín, Miguel Angel; Pinós, Tomàs; Lucia, Alejandro; Morán, María
2016-08-01
We recently generated a knock-in mouse model (PYGM p.R50X/p.R50X) of the McArdle disease (myophosphorylase deficiency). One mechanistic approach to unveil the molecular alterations caused by myophosphorylase deficiency, which is arguably the paradigm of "exercise intolerance," is to compare the skeletal muscle tissue of McArdle, heterozygous, and healthy (wild-type [wt]) mice. We analyzed in quadriceps muscle of p.R50X/p.R50X (n = 4), p.R50X/wt (n = 6), and wt/wt mice (n = 5) (all male, 8 wk old) molecular markers of energy-sensing pathways, oxidative phosphorylation and autophagy/proteasome systems, oxidative damage, and sarcoplasmic reticulum Ca handling. We found a significant group effect for total adenosine monophosphate-(AMP)-activated protein kinase (tAMPK) and ratio of phosphorylated (pAMPK)/tAMPK (P = 0.012 and 0.033), with higher mean values in p.R50X/p.R50X mice versus the other two groups. The absence of a massive accumulation of ubiquitinated proteins, autophagosomes, or lysosomes in p.R50X/p.R50X mice suggested no major alterations in autophagy/proteasome systems. Citrate synthase activity was lower in p.R50X/p.R50X mice versus the other two groups (P = 0.036), but no statistical effect existed for respiratory chain complexes. We found higher levels of 4-hydroxy-2-nonenal-modified proteins in p.R50X/p.R50X and p.R50X/wt mice compared with the wt/wt group (P = 0.011). Sarco(endo)plasmic reticulum ATPase 1 levels detected at 110 kDa tended to be higher in p.R50X/p.R50X and p.R50X/wt mice compared with wt/wt animals (P = 0.076), but their enzyme activity was normal. We also found an accumulation of phosphorylated sarco(endo)plasmic reticulum ATPase 1 in p.R50X/p.R50X animals. Myophosphorylase deficiency causes alterations in sensory energetic pathways together with some evidence of oxidative damage and alterations in Ca handling but with no major alterations in oxidative phosphorylation capacity or autophagy/ubiquitination pathways, which suggests that the muscle tissue of patients is likely to adapt overall favorably to exercise training interventions.
Cavaliere, Fabio; Nestola, Valeria; Amadio, Susanna; D'Ambrosi, Nadia; Angelini, Daniela F; Sancesario, Giuseppe; Bernardi, Giorgio; Volonté, Cinzia
2005-02-01
Extracellular nucleotides exert a variety of biological actions through different subtypes of P2 receptors. Here we characterized in the human neuroblastoma SH-SY5Y cells the simultaneous presence of various P2 receptors, belonging to the P2X ionotropic and P2Y metabotropic families. Western blot analysis detected the P2X1,2,4,5,6,7 and P2Y1,2,4,6, but not the P2X3 and P2Y12 receptors. We then investigated which biological effects were mediated by the P2Y4 subtype and its physiological pyrimidine agonist UTP. We found that neuronal differentiation of the SH-SY5Y cells with dibutiryl-cAMP increased the expression of the P2Y4 protein and that UTP itself was able to positively interfere with neuritogenesis. Moreover, transient transfection and activation of P2Y4 also facilitated neuritogenesis in SH-SY5Y cells, as detected by morphological phase contrast analysis and confocal examination of neurofilament proteins NFL. This was concurrent with increased transcription of immediate-early genes linked to differentiation such as cdk-5 and NeuroD6, and activity of AP-1 transcription family members such as c-fos, fos-B, and jun-D. Nevertheless, a prolonged activation of the P2Y4 receptor by UTP also induced cell death, both in naive, differentiated, and P2Y4-transfected SH-SY5Y cells, as measured by direct count of intact nuclei and cytofluorimetric analysis of damaged DNA. Taken together, our data indicate that the high expression and activation of the P2Y4 receptor participates in the neuronal differentiation and commitment to death of SH-SY5Y cells.
Effects of doping on photocatalytic activity for water splitting of metal oxides and nitride
NASA Astrophysics Data System (ADS)
Arai, Naoki; Saito, Nobuo; Nishiyama, Hiroshi; Kadowaki, Haruhiko; Kobayashi, Hisayoshi; Sato, Kazunori; Inoue, Yasunobu
2007-09-01
The effects of metal-ion doping or replacement on the photocatalytic performance for water splitting of d 10 and d 0 metal oxides and d 10 metal nitride were studied. The photocatalysts examined were (1) α-Ga 2-2xIn 2xO 3 and ZnGa 2-2xIn 2xO 4 in which In 3+ was added to Ga IIO 3 and ZnGa IIO 4, respectively, (2) Y xIn 2-xO 3 being a solid solution of In IIO 3 and Y IIO 3, (3) metal ion doped CeO II, and (4) metal ion doped GaN. The photocatalytic activity of 1 wt % RuO II-loaded α-Ga 2-2xIn 2xO 3 increased sharply with increasing x, reached a maximum at around x=0.02, and considerably decreased with further increase in x. The DFT calculation showed that the band structures of α-Ga 2-2xIn 2xO 3 had the contribution of In 4d orbital to the valence band and of In5s orbital to the conduction band. Similar effects were observed for ZnGa 2-2xIn 2xO 4. RuO II-dispersed Y xIn 2-xO 3 had a capability of producing H II and O II in the range x=1.0-1.5 in which the highest activity was obtained at x=1.3. The structures of both InO 6 and YO 6 octahedra were deformed in the solid solution,, and the hybridization of In5s5p and Y4d orbitals in the conduction band was enhanced. Undoped CeO II was photocatalytically inactive, but metal ion-doped CeO II showed a considerable photocatalytic activity. The activation occurred in the case that metal ions doped had larger ion sizes than that of Ce 4+. The small amount doping of divalent metal ions (Zn 2+ and Mg 2+) converted photocatalytically inactive GaN to an efficient photocatalyst. The doping was shown to produce p-type GaN which had the large concentration and high mobility of holes. The roles of metal ion doping and replacement in the photocatalytic properties are discussed.
2013-09-10
SL2-X9-747 (June 1973) --- Astronaut Paul J. Weitz, Skylab 2 pilot, mans the control and display console of the Apollo Telescope Mount (ATM) in this onboard view photographed in Earth orbit. The ATM C&D console is located in the Multiple Docking Adapter (MDA) of the Skylab 1/2 space station. Weitz, along with astronaut Charles Conrad Jr., commander, and scientist-astronaut Joseph P. Kerwin, science pilot, went on to successfully complete a 28-day mission in Earth orbit. Photo credit: NASA
Potential therapeutic targets for ATP-gated P2X receptor ion channels.
Li, Zhiyuan; Liang, Dong; Chen, Ling
2008-04-01
P2X receptors make up a novel family of ligand-gated ion channels that are activated by binding of extracellular ATP. These receptors can form a number of homomeric and heteromeric ion channels, which are widely distributed throughout the human body. They are thought to play an important role in many cellular processes, including synaptic transmission and thrombocyte aggregation. These ion channels are also involved in the pathology of several disease states, including chronic inflammation and neuropathic pain, and thus are the potential targets for drug development. The recent discovery of potent and highly selective antagonists for P2X(7) receptors, through the use of high-throughput screening, has helped to further understand the P2X receptor pharmacology and provided new evidence that P2X(7) receptors play a specific role in chronic pain states. In this review, we discuss how the P2X family of ion channels has distinguished itself as a potential new drug target. We are optimistic that safe and effective candidate drugs will be suitable for progression into clinical development.
Guo, Xin-Bin; Deng, Xin; Wei, Ying
2018-03-01
Endothelial precursor cells (EPCs) are involved in vasculogenesis of various physiological and pathological processes. The proliferation and survival mechanism of EPCs needs to be explored further for the purpose of developing an effective glioma treatment. Hematopoietic substrate-1-associated protein X-1 (HAX-1) has been reported as an anti-apoptotic protein that plays an important role in several malignant tumors. However, the effect and mechanism of HAX-1 on EPCs remains unknown. This study aims to investigate the effect of HAX-1 on the proliferation and apoptosis of EPCs and explore its mechanism. According to our results, HAX-1 was overexpressed in EPCs. The results of clone formation and 5-ethynyl-2'-deoxyuridine proliferation assay showed that HAX-1 promoted multiplication of EPCs. Flow cytometry showed HAX-1 knockout cell cycle arrest mainly in G0/G1 phase. Apoptosis analysis showed that HAX-1 could protect EPCs from apoptosis in oxidative stress. Western blot assay indicated that HAX-1 could inhibit the activation of caspase cascade and reduce the expression of p21, Bcl-2-associated X protein, and p53. HAX-1 also enhanced the degradation rate and ubiquitination of p53 through the promotion of phosphorylation of proteins MDM-2 and Akt1. Co-immunoprecipitation and immunofluorescent colocalization assays were performed to test the influence of HAX-1 on the interaction between Akt1 and heat shock protein 90 (Hsp90), which is crucial for the activity of Akt1. In conclusion, this novel study suggests that HAX-1 could facilitate the Akt1 pathway through Hsp90, which led to a decline in the levels of p53, and finally promoted the proliferation and inhibited the apoptosis of EPCs. Stem Cells 2018;36:406-419. © 2017 AlphaMed Press.
Self-organization in P_xGe_xSe_1-2x glasses^*
NASA Astrophysics Data System (ADS)
Chakravarty, Swapnajit; Georgiev, Daniel; Boolchand, Punit; Micoulaut, Matthieu
2003-03-01
Bulk glasses in the titled ternary, in the 0 < x < 0.26 composition range, are examined in MDSC and Raman scattering measurements. Both fresh and aged samples were studied. Bimodal endotherms are observed but only the high^T endotherm displays a reversing heat flow signal that represents a glass transition. The pre^_Tg endotherm is observed in quenched samples only, and represents an activation energy [1] associated with P4 units (Se^_P(Se_1/2)_3) converting to P3 (P(Se_1/2)_3) ones. T_g(x) accessed from the reversing heat flow are found to increase with x as a power^_law, displaying a cusp near x = 0.04. The non^_reversing enthalpy is found to display a global minimum in the 0.08 < x < 0.145 range identified with the self^_organized phase. Raman scattering reveals the isostatically rigid units ( P3 , P_4, CS and ES Ge(Se_1/2)_4) comprising building blocks of the self^_organized phase. These results are parallel to those encountered in the As^_Ge^_Se ternary [2,3]. ^*Supported by NSF grant DMR ^_01^_01808 1. D.G. Georgiev et al Phys. Rev. B 64,134204(2001) 2.Y. Wang et al Europhys. Lett. 52, 633 (2000) 3. T.Qu et al. companion abstract
Molecular recognition at adenine nucleotide (P2) receptors in platelets.
Jacobson, Kenneth A; Mamedova, Liaman; Joshi, Bhalchandra V; Besada, Pedro; Costanzi, Stefano
2005-04-01
Transmembrane signaling through P2Y receptors for extracellular nucleotides controls a diverse array of cellular processes, including thrombosis. Selective agonists and antagonists of the two P2Y receptors present on the platelet surface-the G (q)-coupled P2Y (1) subtype and the G (i)-coupled P2Y (12) subtype-are now known. High-affinity antagonists of each have been developed from nucleotide structures. The (N)-methanocarba bisphosphate derivatives MRS2279 and MRS2500 are potent and selective P2Y (1) receptor antagonists. The carbocyclic nucleoside AZD6140 is an uncharged, orally active P2Y (12) receptor antagonist of nM affinity. Another nucleotide receptor on the platelet surface, the P2X (1) receptor, the activation of which may also be proaggregatory, especially under conditions of high shear stress, has high-affinity ligands, although high selectivity has not yet been achieved. Although alpha,beta-methylene-adenosine triphosphate (ATP) is the classic agonist for the P2X (1) receptor, where it causes rapid desensitization, the agonist BzATP is among the most potent in activating this subtype. The aromatic sulfonates NF279 and NF449 are potent antagonists of the P2X (1) receptor. The structures of the two platelet P2Y receptors have been modeled, based on a rhodopsin template, to explain the basis for nucleotide recognition within the putative transmembrane binding sites. The P2Y (1) receptor model, especially, has been exploited in the design and optimization of antagonists targeted to interact selectively with that subtype.
Kumar, T Santhosh; Zhou, Si-Yuan; Joshi, Bhalchandra V; Balasubramanian, Ramachandran; Yang, Tiehong; Liang, Bruce T; Jacobson, Kenneth A
2010-03-25
P2X receptor activation protects in heart failure models. MRS2339 3, a 2-chloro-AMP derivative containing a (N)-methanocarba (bicyclo[3.1.0]hexane) system, activates this cardioprotective channel. Michaelis-Arbuzov and Wittig reactions provided phosphonate analogues of 3, expected to be stable in vivo due to the C-P bond. After chronic administration via a mini-osmotic pump (Alzet), some analogues significantly increased intact heart contractile function in calsequestrin-overexpressing mice (genetic model of heart failure) compared to vehicle-infused mice (all inactive at the vasodilatory P2Y(1) receptor). Two phosphonates, (1'S,2'R,3'S,4'R,5'S)-4'-(6-amino-2-chloropurin-9-yl)-2',3'-(dihydroxy)-1'-(phosphonomethylene)-bicyclo[3.1.0]hexane, 4 (MRS2775), and its homologue 9 (MRS2935), both 5'-saturated, containing a 2-Cl substitution, improved echocardiography-derived fractional shortening (20.25% and 19.26%, respectively, versus 13.78% in controls), while unsaturated 5'-extended phosphonates, all 2-H analogues, and a CH(3)-phosphonate were inactive. Thus, chronic administration of nucleotidase-resistant phosphonates conferred a beneficial effect, likely via cardiac P2X receptor activation. Thus, we have greatly expanded the range of carbocyclic nucleotide analogues that represent potential candidates for the treatment of heart failure.
Modeling Multi-Bunch X-band Photoinjector Challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsh, R A; Anderson, S G; Gibson, D J
An X-band test station is being developed at LLNL to investigate accelerator optimization for future upgrades to mono-energetic gamma-ray technology at LLNL. The test station will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. Of critical import to the functioning of the LLNL X-band system with multiple electron bunches is the performance of the photoinjector. In depth modeling of the Mark 1 LLNL/SLAC X-band rf photoinjector performance will be presented addressing important challenges that must be addressed in order to fabricate a multi-bunch Mark 2 photoinjector. Emittance performance is evaluated under different nominal electronmore » bunch parameters using electrostatic codes such as PARMELA. Wake potential is analyzed using electromagnetic time domain simulations using the ACE3P code T3P. Plans for multi-bunch experiments and implementation of photoinjector advances for the Mark 2 design will also be discussed.« less
Shiina, Yumi; Funabashi, Nobusada; Lee, Kwangho; Murayama, Taichi; Nakamura, Koki; Wakatsuki, Yu; Daimon, Masao; Komuro, Issei
2009-01-24
To assess the effects of the oral intake of flavonoid-rich dark chocolate on coronary circulation, we measured coronary flow velocity reserve (CFVR) by noninvasive transthoracic Doppler echocardiography (TTDE) in healthy adult subjects. The study was a randomized, single-blind design conducted for 2 weeks in 39 healthy men (mean age 29.7+/-3.9 years, range 23-40 years). Subjects were randomly assigned a daily intake of either flavonoid-rich dark chocolate (Meiji Black Chocolate 45 g, Meiji Seika kaisya Ltd, including cacao polyphenol 550 mg/day, 200 kcal) or non-flavonoid white chocolate (Meiji White Chocolate 35 g, Meiji Seika kaisya Ltd, including cacao polyphenol 0 mg/day, 140 kcal) as a control. CFVR was recorded by TTDE, and assessed before and after 2 weeks of intake. At the same time, we also assessed serum asymmetric dimethylarginine, 8-isoprostanes, and malondialdehyde-modified low-density lipoprotein (MDA-LDL) as markers of oxidative stress. Flavonoid-rich dark chocolate consumption significantly improved CFVR (3.38+/-0.49 before intake, 4.28+/-0.85 after intake; p<0.01), whereas non-flavonoid white chocolate consumption did not (3.28+/-0.49 before intake, 3.16+/-0.49 after intake; p=0.44). All predictor variables were used as dependent variables in a multiple regression model of the incremental change in CFVR after 2 weeks of chocolate intake. Intake of dark (but not white) chocolate, MDA-LDL, triglyceride (TG) and heart rate (HR) significantly influenced the change of CFVR after 2 weeks of intake (p<0.01) according to the multiple regression formula: Y=1.01X(1)-0.005X(2)-0.003X(3)-0.017X4 (Y=change in CFVR after 2 weeks of chocolate intake, X1=intake of dark (but not white) chocolate, X2=MDA-LDL, X3=TG, X4=HR). Flavonoid-rich dark chocolate intake significantly improved coronary circulation in healthy adults, independent of changes in oxidative stress parameters, blood pressure and lipid profile, whereas non-flavonoid white chocolate had no such effects.
Low temperature InP /Si wafer bonding using boride treated surface
NASA Astrophysics Data System (ADS)
Huang, Hui; Ren, Xiaomin; Wang, Wenjuan; Song, Hailan; Wang, Qi; Cai, Shiwei; Huang, Yongqing
2007-04-01
An approach for InP /Si wafer bonding based on boride-solution treatment was presented. The bonding energy is higher than the InP fracture energy by annealing at 280°C. An In0.53Ga0.47As/InP multiple-quantum-well (MQW) structure grown on InP was transferred onto Si substrate via the bonding process. X-ray diffraction and photoluminescence reveal that crystal quality of the bonded MQW was preserved. A thin B2O3-POx-SiO2 oxide layer of about 28nm thick at the bonding interface was detected. X-ray photoelectron spectroscopy and Raman analyses indicate that the formation of oxygen bridging bonds by boride treatment is responsible for the strong fusion obtained at such low temperature.
Dokas, Linda A.; Malone, Amy M.; Williams, Frederick E.; Nauli, Surya M.; Messer, William S.
2011-01-01
In SH-SY5Y human neuroblastoma cells, the cholinergic agonist, carbachol, stimulates phosphorylation of the small heat shock protein 27 (HSP27). Carbachol increases phosphorylation of both Ser-82 and Ser-78 while the phorbol ester, phorbol-12, 13-dibutyrate (PDB) affects only Ser-82. Muscarinic receptor activation by carbachol was confirmed by sensitivity of Ser-82 phosphorylation to hyoscyamine with no effect of nicotine or bradykinin. This response to carbachol is partially reduced by inhibition of protein kinase C (PKC) with GF 109203X and p38 mitogen-activated protein kinase (MAPK) with SB 203580. In contrast, phosphorylation produced by PDB is completely reversed by GF 109203X or CID 755673, an inhibitor of PKD. Inhibition of phosphatidylinositol 3-kinase or Akt with LY 294002 or Akti-1/2 stimulates HSP27 phosphorylation while rapamycin, which inhibits mTORC1, does not. The stimulatory effect of Akti-1/2 is reversed by SB 203580 and correlates with increased p38 MAPK phosphorylation. SH-SY5Y cells differentiated with a low concentration of PDB and basic fibroblast growth factor to a more neuronal phenotype retain carbachol-, PDB- and Akti-1/2-responsive HSP27 phosphorylation. Immunofluorescence microscopy confirms increased HSP27 phosphorylation in response to carbachol or PDB. At cell margins, PDB causes f-actin to reorganize forming lamellipodial structures from which phospho-HSP27 is segregated. The resultant phenotypic change in cell morphology is dependent upon PKC, but not PKD, activity. The major conclusion from this study is that the phosphorylated state of HSP27 in SH-SY5Y cells results from integrated signaling involving PKC, p38 MAPK and Akt. PMID:21338617
Antonioli, Luca; Giron, Maria Cecilia; Colucci, Rocchina; Pellegrini, Carolina; Sacco, Deborah; Caputi, Valentina; Orso, Genny; Tuccori, Marco; Scarpignato, Carmelo; Blandizzi, Corrado; Fornai, Matteo
2014-01-01
Recent evidence indicates an involvement of P2X7 purinergic receptor (P2X7R) in the fine tuning of immune functions, as well as in driving enteric neuron apoptosis under intestinal inflammation. However, the participation of this receptor in the regulation of enteric neuromuscular functions remains undetermined. This study was aimed at investigating the role of P2X7Rs in the control of colonic motility in experimental colitis. Colitis was induced in rats by 2,4-dinitrobenzenesulfonic acid. P2X7R distribution was examined by immunofluorescence analysis. The effects of A804598 (selective P2X7R antagonist) and BzATP (P2X7R agonist) were tested on contractions of longitudinal smooth muscle evoked by electrical stimulation or by carbachol in the presence of tetrodotoxin. P2X7Rs were predominantly located in myenteric neurons, but, in the presence of colitis, their expression increased in the neuromuscular layer. In normal preparations, A804598 elicited a negligible increase in electrically induced contractions, while a significant enhancement was recorded in inflamed tissues. In the presence of Nω-propyl-L-arginine (NPA, neuronal nitric oxide synthase inhibitor) the A804598 effects were lost. P2X7R stimulation with BzATP did not significantly affect electrical-induced contractions in normal colon, while a marked reduction was recorded under inflammation. The inhibitory effect of BzATP was antagonized by A804598, and it was also markedly blunted by NPA. Both P2X7R ligands did not affect carbachol-induced contractions. The purinergic system contributes to functional neuromuscular changes associated with bowel inflammation via P2X7Rs, which modulate the activity of excitatory cholinergic nerves through a facilitatory control on inhibitory nitrergic pathways.
Air pollution and activity during transportation by car, subway, and walking.
Morabia, Alfredo; Amstislavski, Philippe N; Mirer, Franklin E; Amstislavski, Tashia M; Eisl, Holger; Wolff, Mary S; Markowitz, Steven B
2009-07-01
Little evidence exists about the health risks and benefits associated with using public buses and subways rather than cars. The objective of the current study was to assess the magnitude and variance of personal exposure to particulate matter 2.5 microns or smaller (PM(2.5)) and concomitant physical activity energy expenditure (PAEE) for transportation by car, subway, or walking. Twenty nonsmoking volunteers from New York City traveled on predetermined routes by car, subway, and walking, for up to 8 hours on 3 different days, between October 2007 and February 2008. Outfitted with a personal monitor with PM(2.5) aerosol inlet, and a GPS receiver, they completed a detailed physical activity diary for each route. Both metabolic equivalent (MET) and PAEE rates (Kcal/min) were computed from GPS-derived activity durations and speeds, activity-specific METs, and measured body weight. Total PM(2.5) exposures did not differ among car, subway, and walking arms (respectively, 21.4, 30.6, and 26.5 microg/m(3) x min, p=0.19); but average MET values (respectively, 1.51, 2.03, and 2.60 Kcal/kg x hr, p<0.0001) and PAEE rates (1.74, 2.35, and 3.04 Kcal/min, p<0.0001) did. After correction for the humidity factor, exposure to PM(2.5) appeared to be lower for the car arm (13.1 microg/m(3) x min) than for the subway (19.6 microg/m(3) x min) or walking (23.9 microg/m(3) x min, p=0.004) arms. Driving cars was associated with less physical activity but not necessarily less exposure to PM(2.5) than riding subways or walking in an urban environment. These effect sizes and variances can be used to design larger experiments assessing the health effects of urban transportation.
Liu, Chenglong; Deng, Zeyu; Liu, Yang; Chen, Guoqiao; Liu, Baoyun
2017-01-01
Human immunodeficiency virus type-1 (HIV-1) envelope glycoprotein 120 has been shown to activate microglia, causing release of inflammatory and toxic factors. The P2X7 receptor, primarily expressed on microglia, is closely associated with inflammation. Naringin, a plant bioflavonoid, has anti-inflammatory and anti-oxidative properties. We hypothesized that P2X7 receptor mediated gp120-induced injury in primary cultured microglia, and that naringin would have a protective effect. We showed that HIV-1 gp120 peptide (V3 loop, fragment 308–331) appeared to induce apoptosis of primary cultured microglia. However, there was a decrease of microglia apoptosis in gp120+naringin group compared with gp120 group. Using qPCR, Western blot, and immunofluorescence, we showed that gp120 stimulated expression of P2X7 mRNA and receptor protein, and this stimulation was inhibited by naringin. Treatment with gp120 increased concentrations of eATP, TNFα and IL-1β, and these effects were inhibited by naringin. Taken together, these results suggested that gp120 contributed to microglial cell injury and neurotoxic activity by up-regulating expression of P2X7, in a naringin-protective manner. PMID:28832643
Chen, Qiang; Wu, Hui; Tao, Jia; Liu, Chenglong; Deng, Zeyu; Liu, Yang; Chen, Guoqiao; Liu, Baoyun; Xu, Changshui
2017-01-01
Human immunodeficiency virus type-1 (HIV-1) envelope glycoprotein 120 has been shown to activate microglia, causing release of inflammatory and toxic factors. The P2X7 receptor, primarily expressed on microglia, is closely associated with inflammation. Naringin, a plant bioflavonoid, has anti-inflammatory and anti-oxidative properties. We hypothesized that P2X7 receptor mediated gp120-induced injury in primary cultured microglia, and that naringin would have a protective effect. We showed that HIV-1 gp120 peptide (V3 loop, fragment 308-331) appeared to induce apoptosis of primary cultured microglia. However, there was a decrease of microglia apoptosis in gp120+naringin group compared with gp120 group. Using qPCR, Western blot, and immunofluorescence, we showed that gp120 stimulated expression of P2X7 mRNA and receptor protein, and this stimulation was inhibited by naringin. Treatment with gp120 increased concentrations of eATP, TNFα and IL-1β, and these effects were inhibited by naringin. Taken together, these results suggested that gp120 contributed to microglial cell injury and neurotoxic activity by up-regulating expression of P2X7, in a naringin-protective manner.
Current test results for the Athena radar responsive tag
NASA Astrophysics Data System (ADS)
Ormesher, Richard C.; Martinez, Ana; Plummer, Kenneth W.; Erlandson, David; Delaware, Sheri; Clark, David R.
2006-05-01
Sandia National Laboratories has teamed with General Atomics and Sierra Monolithics to develop the Athena tag for the Army's Radar Tag Engagement (RaTE) program. The radar-responsive Athena tag can be used for Blue Force tracking and Combat Identification (CID) as well as data collection, identification, and geolocation applications. The Athena tag is small (~4.5" x 2.4" x 4.2"), battery-powered, and has an integral antenna. Once remotely activated by a Synthetic Aperture Radar (SAR) or Moving Target Indicator (MTI) radar, the tag transponds modulated pulses to the radar at a low transmit power. The Athena tag can operate Ku-band and X-band airborne SAR and MTI radars. This paper presents results from current tag development testing activities. Topics covered include recent field tests results from the AN/APY-8 Lynx, F16/APG-66, and F15E/APG-63 V(1) radars and other Fire Control radars. Results show that the Athena tag successfully works with multiple radar platforms, in multiple radar modes, and for multiple applications. Radar-responsive tags such as Athena have numerous applications in military and government arenas. Military applications include battlefield situational awareness, combat identification, targeting, personnel recovery, and unattended ground sensors. Government applications exist in nonproliferation, counter-drug, search-and-rescue, and land-mapping activities.
X-ray structures define human P2X3 receptor gating cycle and antagonist action
Mansoor, Steven E.; Lü, Wei; Oosterheert, Wout; Shekhar, Mrinal; Tajkhorshid, Emad; Gouaux, Eric
2016-01-01
Summary P2X receptors are trimeric, non-selective cation channels activated by ATP that play important roles in cardiovascular, neuronal and immune systems. Despite their central function in human physiology and as potential targets of therapeutic agents, there are no structures of human P2X receptors. Mechanisms of receptor desensitization and ion permeation, principles of antagonism, and complete structure of the pore-forming transmembrane domains remain unclear. We report x-ray crystal structures of human P2X3 receptor in apo/resting, agonist-bound/open-pore, agonist-bound/desensitized and antagonist-bound closed states. The open state structure harbors an intracellular motif we term the “cytoplasmic cap”, that stabilizes the open state of the ion channel pore and creates lateral, phospholipid-lined cytoplasmic fenestrations for water and ion egress. Competitive antagonists TNP-ATP and A-317491 stabilize the apo/resting state and reveal the interactions responsible for competitive inhibition. These structures illuminate the conformational rearrangements underpinning P2X receptor gating and provide a foundation for development of new pharmacologic agents. PMID:27626375
Kwak, Seung-Hwa; Shin, Seungheon; Lee, Ji-Hyun; Shim, Jin-Kyoung; Kim, Minjeong; Lee, So-Deok; Lee, Aram; Bae, Jinsu; Park, Jin-Hee; Abdelrahman, Aliaa; Müller, Christa E; Cho, Steve K; Kang, Seok-Gu; Bae, Myung Ae; Yang, Jung Yoon; Ko, Hyojin; Goddard, William A; Kim, Yong-Chul
2018-05-10
Screening a compound library of quinolinone derivatives identified compound 11a as a new P2X7 receptor antagonist. To optimize its activity, we assessed structure-activity relationships (SAR) at three different positions, R 1 , R 2 and R 3 , of the quinolinone scaffold. SAR analysis suggested that a carboxylic acid ethyl ester group at the R 1 position, an adamantyl carboxamide group at R 2 and a 4-methoxy substitution at the R 3 position are the best substituents for the antagonism of P2X7R activity. However, because most of the quinolinone derivatives showed low inhibitory effects in an IL-1β ELISA assay, the core structure was further modified to a quinoline skeleton with chloride or substituted phenyl groups. The optimized antagonists with the quinoline scaffold included 2-chloro-5-adamantyl-quinoline derivative (16c) and 2-(4-hydroxymethylphenyl)-5-adamantyl-quinoline derivative (17k), with IC 50 values of 4 and 3 nM, respectively. In contrast to the quinolinone derivatives, the antagonistic effects of the quinoline compounds (16c and 17k) were paralleled by their ability to inhibit the release of the pro-inflammatory cytokine, IL-1β, from LPS/IFN-γ/BzATP-stimulated THP-1 cells (IC 50 of 7 and 12 nM, respectively). In addition, potent P2X7R antagonists significantly inhibited the sphere size of TS15-88 glioblastoma cells. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Andó, RD; Méhész, B; Gyires, K; Illes, P; Sperlágh, B
2010-01-01
Background and purpose: This study was undertaken to compare the analgesic activity of antagonists acting at P2X1, P2X7, and P2Y12 receptors and agonists acting at P2Y1, P2Y2, P2Y4, and P2Y6 receptors in neuropathic, acute, and inflammatory pain. Experimental approach: The effect of the wide spectrum P2 receptor antagonist PPADS, the selective P2X7 receptor antagonist Brilliant Blue G (BBG), the P2X1 receptor antagonist (4,4′,4″,4-[carbonylbis(imino-5,1,3-benzenetriyl-bis(carbonylimino))]tetrakis-1,3-benzenedisulfonic acid, octasodium salt (NF449) and (8,8′-[carbonylbis(imino-3,1-phenylenecarbonylimino)]bis-1,3,5-naphthalene-trisulphonic acid, hexasodium salt (NF023), the P2Y12 receptor antagonist (2,2-dimethyl-propionic acid 3-(2-chloro-6-methylaminopurin-9-yl)-2-(2,2-dimethyl-propionyloxymethyl)-propylester (MRS2395), the selective P2Y1 receptor agonist ([[(1R,2R,3S,4R,5S)-4-[6-amino-2-(methylthio)-9H-purin-9-yl]-2,3-dihydroxybicyclo[3.1.0]hex-1-yl]methyl] diphosphoric acid mono ester trisodium salt (MRS2365), the P2Y2/P2Y4 agonist uridine-5′-triphosphate (UTP), and the P2Y4/P2Y6 agonist uridine-5′-diphosphate (UDP) were examined on mechanical allodynia in the Seltzer model of neuropathic pain, on acute thermal nociception, and on the inflammatory pain and oedema induced by complete Freund's adjuvant (CFA). Key results: MRS2365, MRS2395 and UTP, but not the other compounds, significantly alleviated mechanical allodynia in the neuropathic pain model, with the following rank order of minimal effective dose (mED) values: MRS2365 > MRS2395 > UTP. All compounds had a dose-dependent analgesic action in acute pain except BBG, which elicited hyperalgesia at a single dose. The rank order of mED values in acute pain was the following: MRS2365 > MRS2395 > NF449 > NF023 > UDP = UTP > PPADS. MRS2365 and MRS2395 had a profound, while BBG had a mild effect on inflammatory pain, with a following rank order of mED values: MRS2395 > MRS2365 > BBG. None of the tested compounds had significant action on oedema evoked by intraplantar injection of CFA. Conclusions and implications: Our results show that antagonism at P2X1, P2Y12, and P2X7 receptors and agonism at P2Y1 receptors define promising therapeutic strategies in acute, neuropathic, and inflammatory pain respectively. PMID:20136836
Andó, R D; Méhész, B; Gyires, K; Illes, P; Sperlágh, B
2010-03-01
This study was undertaken to compare the analgesic activity of antagonists acting at P2X1, P2X7, and P2Y12 receptors and agonists acting at P2Y1, P2Y2, P2Y4, and P2Y6 receptors in neuropathic, acute, and inflammatory pain. The effect of the wide spectrum P2 receptor antagonist PPADS, the selective P2X7 receptor antagonist Brilliant Blue G (BBG), the P2X1 receptor antagonist (4,4',4'',4-[carbonylbis(imino-5,1,3-benzenetriyl-bis(carbonylimino))]tetrakis-1,3-benzenedisulfonic acid, octasodium salt (NF449) and (8,8'-[carbonylbis(imino-3,1-phenylenecarbonylimino)]bis-1,3,5-naphthalene-trisulphonic acid, hexasodium salt (NF023), the P2Y12 receptor antagonist (2,2-dimethyl-propionic acid 3-(2-chloro-6-methylaminopurin-9-yl)-2-(2,2-dimethyl-propionyloxymethyl)-propylester (MRS2395), the selective P2Y1 receptor agonist ([[(1R,2R,3S,4R,5S)-4-[6-amino-2-(methylthio)-9H-purin-9-yl]-2,3-dihydroxybicyclo[3.1.0]hex-1-yl]methyl] diphosphoric acid mono ester trisodium salt (MRS2365), the P2Y2/P2Y4 agonist uridine-5'-triphosphate (UTP), and the P2Y4/P2Y6 agonist uridine-5'-diphosphate (UDP) were examined on mechanical allodynia in the Seltzer model of neuropathic pain, on acute thermal nociception, and on the inflammatory pain and oedema induced by complete Freund's adjuvant (CFA). MRS2365, MRS2395 and UTP, but not the other compounds, significantly alleviated mechanical allodynia in the neuropathic pain model, with the following rank order of minimal effective dose (mED) values: MRS2365 > MRS2395 > UTP. All compounds had a dose-dependent analgesic action in acute pain except BBG, which elicited hyperalgesia at a single dose. The rank order of mED values in acute pain was the following: MRS2365 > MRS2395 > NF449 > NF023 > UDP = UTP > PPADS. MRS2365 and MRS2395 had a profound, while BBG had a mild effect on inflammatory pain, with a following rank order of mED values: MRS2395 > MRS2365 > BBG. None of the tested compounds had significant action on oedema evoked by intraplantar injection of CFA. Our results show that antagonism at P2X1, P2Y12, and P2X7 receptors and agonism at P2Y1 receptors define promising therapeutic strategies in acute, neuropathic, and inflammatory pain respectively.
Structure-Based Design of Potent Bcl-2/Bcl-xL Inhibitors with Strong in Vivo Antitumor Activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Haibin; Aguilar, Angelo; Chen, Jianfang
Bcl-2 and Bcl-xL are key apoptosis regulators and attractive cancer therapeutic targets. We have designed and optimized a class of small-molecule inhibitors of Bcl-2 and Bcl-xL containing a 4,5-diphenyl-1H-pyrrole-3-carboxylic acid core structure. A 1.4 {angstrom} resolution crystal structure of a lead compound, 12, complexed with Bcl-xL has provided a basis for our optimization. The most potent compounds, 14 and 15, bind to Bcl-2 and Bcl-xL with subnanomolar K{sub i} values and are potent antagonists of Bcl-2 and Bcl-xL in functional assays. Compounds 14 and 15 inhibit cell growth with low nanomolar IC{sub 50} values in multiple small-cell lung cancer cellmore » lines and induce robust apoptosis in cancer cells at concentrations as low as 10 nM. Compound 14 also achieves strong antitumor activity in an animal model of human cancer.« less
Molecular Recognition at Purine and Pyrimidine Nucleotide (P2) Receptors
Jacobson, Kenneth A.; Constanzi, Stefano; Ohno, Michihiro; Joshi, Bhalchandra V.; Besada, Pedro; Xu, Bin; Tchilibon, Susanna
2015-01-01
In comparison to other classes of cell surface receptors, the medicinal chemistry at P2X (ligand-gated ion channels) and P2Y (G protein-coupled) nucleotide receptors has been relatively slow to develop. Recent effort to design selective agonists and antagonists based on a combination of library screening, empirical modification of known ligands, and rational design have led to the introduction of potent antagonists of the P2X1 (derivatives of pyridoxal phosphates and suramin), P2X3 (A-317491), P2X7 (derivatives of the isoquinoline KN-62), P2Y1 (nucleotide analogues MRS 2179 and MRS 2279), P2Y2 (thiouracil derivatives such as AR-C126313), and P2Y12 (nucleotide/nucleoside analogues AR-C69931X and AZD6140) receptors. A variety of native agonist ligands (ATP, ADP, UTP, UDP, and UDP-glucose) are currently the subject of structural modification efforts to improve selectivity. MRS2365 is a selective agonist for P2Y1 receptors. The dinucleotide INS 37217 potently activates the P2Y2 receptor. UTP-γ-S and UDP-β-S are selective agonists for P2Y2/P2Y4 and P2Y6 receptors, respectively. The current knowledge of the structures of P2X and P2Y receptors, is derived mainly from mutagenesis studies. Site-directed mutagenesis has shown that ligand recognition in the human P2Y1 receptor involves individual residues of both the TMs (3, 5, 6, and 7), as well as EL 2 and 3. The binding of the negatively-charged phosphate moiety is dependent on positively charged lysine and arginine residues near the exofacial side of TMs 3 and 7. PMID:15078212
Do π-conjugative effects facilitate SN2 reactions?
Wu, Chia-Hua; Galabov, Boris; Wu, Judy I-Chia; Ilieva, Sonia; Schleyer, Paul von R; Allen, Wesley D
2014-02-26
Rigorous quantum chemical investigations of the SN2 identity exchange reactions of methyl, ethyl, propyl, allyl, benzyl, propargyl, and acetonitrile halides (X = F(-), Cl(-)) refute the traditional view that the acceleration of SN2 reactions for substrates with a multiple bond at Cβ (carbon adjacent to the reacting Cα center) is primarily due to π-conjugation in the SN2 transition state (TS). Instead, substrate-nucleophile electrostatic interactions dictate SN2 reaction rate trends. Regardless of the presence or absence of a Cβ multiple bond in the SN2 reactant in a series of analogues, attractive Cβ(δ(+))···X(δ(-)) interactions in the SN2 TS lower net activation barriers (E(b)) and enhance reaction rates, whereas repulsive Cβ(δ(-))···X(δ(-)) interactions increase E(b) barriers and retard SN2 rates. Block-localized wave function (BLW) computations confirm that π-conjugation lowers the net activation barriers of SN2 allyl (1t, coplanar), benzyl, propargyl, and acetonitrile halide identity exchange reactions, but does so to nearly the same extent. Therefore, such orbital interactions cannot account for the large range of E(b) values in these systems.
Latapiat, Verónica; Rodríguez, Felipe E.; Godoy, Francisca; Montenegro, Felipe A.; Barrera, Nelson P.; Huidobro-Toro, Juan P.
2017-01-01
Protein allosteric modulation is a pillar of metabolic regulatory mechanisms; this concept has been extended to include ion channel regulation. P2XRs are ligand-gated channels activated by extracellular ATP, sensitive to trace metals and other chemicals. By combining in silico calculations with electrophysiological recordings, we investigated the molecular basis of P2X4R modulation by Zn(II) and ivermectin, an antiparasite drug currently used in veterinary medicine. To this aim, docking studies, molecular dynamics simulations and non-bonded energy calculations for the P2X4R in the apo and holo states or in the presence of ivermectin and/or Zn(II) were accomplished. Based on the crystallized Danio rerio P2X4R, the rat P2X4R, P2X2R, and P2X7R structures were modeled, to determine ivermectin binding localization. Calculations revealed that its allosteric site is restricted to transmembrane domains of the P2X4R; the role of Y42 and W46 plus S341 and non-polar residues were revealed as essential, and are not present in the homologous P2X2R or P2X7R transmembrane domains. This finding was confirmed by preferential binding conformations and electrophysiological data, revealing P2X4R modulator specificity. Zn(II) acts in the P2X4R extracellular domain neighboring the SS3 bridge. Molecular dynamics in the different P2X4R states revealed allosterism-induced stability. Pore and lateral fenestration measurements of the P2X4R showed conformational changes in the presence of both modulators compatible with a larger opening of the extracellular vestibule. Electrophysiological studies demonstrated additive effects in the ATP-gated currents by joint applications of ivermectin plus Zn(II). The C132A P2X4R mutant was insensitive to Zn(II); but IVM caused a 4.9 ± 0.7-fold increase in the ATP-evoked currents. Likewise, the simultaneous application of both modulators elicited a 7.1 ± 1.7-fold increase in the ATP-gated current. Moreover, the C126A P2X4R mutant evoked similar ATP-gated currents comparable to those of wild-type P2X4R. Finally, a P2X4/2R chimera did not respond to IVM but Zn(II) elicited a 2.7 ± 0.6-fold increase in the ATP-gated current. The application of IVM plus Zn(II) evoked a 2.7 ± 0.9-fold increase in the ATP-gated currents. In summary, allosteric modulators caused additive ATP-gated currents; consistent with lateral fenestration enlargement. Energy calculations demonstrated a favorable transition of the holo receptor state following both allosteric modulators binding, as expected for allosteric interactions. PMID:29326590
Cardiac P2X purinergic receptors as a new pathway for increasing Na+ entry in cardiac myocytes
Shen, Jian-Bing; Yang, Ronghua; Pappano, Achilles
2014-01-01
P2X4 receptors (P2X4Rs) are ligand-gated ion channels capable of conducting cations such as Na+. Endogenous cardiac P2X4R can mediate ATP-activated current in adult murine cardiomyocytes. In the present study, we tested the hypothesis that cardiac P2X receptors can induce Na+ entry and modulate Na+ handling. We further determined whether P2X receptor-induced stimulation of the Na+/Ca2+ exchanger (NCX) has a role in modulating the cardiac contractile state. Changes in Na+-K+-ATPase current (Ip) and NCX current (INCX) after agonist stimulation were measured in ventricular myocytes of P2X4 transgenic mice using whole cell patch-clamp techniques. The agonist 2-methylthio-ATP (2-meSATP) increased peak Ip from a basal level of 0.52 ± 0.02 to 0.58 ± 0.03 pA/pF. 2-meSATP also increased the Ca2+ entry mode of INCX (0.55 ± 0.09 pA/pF under control conditions vs. 0.82 ± 0.14 pA/pF with 2-meSATP) at a membrane potential of +50 mV. 2-meSATP shifted the reversal potential of INCX from −14 ± 2.3 to −25 ± 4.1 mV, causing an estimated intracellular Na+ concentration increase of 1.28 ± 0.42 mM. These experimental results were closely mimicked by mathematical simulations based on previously established models. KB-R7943 or a structurally different agent preferentially opposing the Ca2+ entry mode of NCX, YM-244769, could inhibit the 2-meSATP-induced increase in cell shortening in transgenic myocytes. Thus, the Ca2+ entry mode of INCX participates in P2X agonist-stimulated contractions. In ventricular myocytes from wild-type mice, the P2X agonist could increase INCX, and KB-R7943 was able to inhibit the contractile effect of endogenous P2X4Rs, indicating a physiological role of these receptors in wild-type cells. The data demonstrate a novel Na+ entry pathway through ligand-gated P2X4Rs in cardiomyocytes. PMID:25239801
Cardiac P2X purinergic receptors as a new pathway for increasing Na⁺ entry in cardiac myocytes.
Shen, Jian-Bing; Yang, Ronghua; Pappano, Achilles; Liang, Bruce T
2014-11-15
P2X4 receptors (P2X4Rs) are ligand-gated ion channels capable of conducting cations such as Na(+). Endogenous cardiac P2X4R can mediate ATP-activated current in adult murine cardiomyocytes. In the present study, we tested the hypothesis that cardiac P2X receptors can induce Na(+) entry and modulate Na(+) handling. We further determined whether P2X receptor-induced stimulation of the Na(+)/Ca(2+) exchanger (NCX) has a role in modulating the cardiac contractile state. Changes in Na(+)-K(+)-ATPase current (Ip) and NCX current (INCX) after agonist stimulation were measured in ventricular myocytes of P2X4 transgenic mice using whole cell patch-clamp techniques. The agonist 2-methylthio-ATP (2-meSATP) increased peak Ip from a basal level of 0.52 ± 0.02 to 0.58 ± 0.03 pA/pF. 2-meSATP also increased the Ca(2+) entry mode of INCX (0.55 ± 0.09 pA/pF under control conditions vs. 0.82 ± 0.14 pA/pF with 2-meSATP) at a membrane potential of +50 mV. 2-meSATP shifted the reversal potential of INCX from -14 ± 2.3 to -25 ± 4.1 mV, causing an estimated intracellular Na(+) concentration increase of 1.28 ± 0.42 mM. These experimental results were closely mimicked by mathematical simulations based on previously established models. KB-R7943 or a structurally different agent preferentially opposing the Ca(2+) entry mode of NCX, YM-244769, could inhibit the 2-meSATP-induced increase in cell shortening in transgenic myocytes. Thus, the Ca(2+) entry mode of INCX participates in P2X agonist-stimulated contractions. In ventricular myocytes from wild-type mice, the P2X agonist could increase INCX, and KB-R7943 was able to inhibit the contractile effect of endogenous P2X4Rs, indicating a physiological role of these receptors in wild-type cells. The data demonstrate a novel Na(+) entry pathway through ligand-gated P2X4Rs in cardiomyocytes. Copyright © 2014 the American Physiological Society.
Rattan, Satish; Fan, Ya-Ping; Puri, Rajinder N
2002-03-22
Studies were performed to compare the actions of Ang II in the internal anal sphincter (IAS) vs. lower esophageal sphincter (LES) smooth muscles in vitro, in opossum and rabbit. Studies also were carried out in isolated smooth muscle cells. In opossum, Ang II produced no discernible effects in the IAS, but did produce a concentration-dependent contraction in the LES. Conversely, in the rabbit, while Ang II caused a modest response in the LES, it caused a significant contraction in the IAS. The contractile responses of Ang II in the opossum LES were mostly resistant to different neurohumoral antagonists but were antagonized by AT1 antagonist losartan. AT2 antagonist PD 123,319, rather than inhibiting, prolonged the contractile action of Ang II. The contractile actions of Ang II in the opossum LES were not modified by the tyrosine kinase inhibitors (genistein and tyrphostin 1 x 10(-6) M) but were partially attenuated by the PKC inhibitor H-7 (1 x 10(-6) M), Ca2+ channel blocker nicardipine (1 x 10(-5) M), Rho kinase inhibitor HA-1077 (1 x 10(-7) M) or p(44/42) MAP kinase inhibitor PD 98059 (5 x 10(-5) M). The combination of HA-1077 and H-7 did not cause an additive attenuation of Ang II responses. Western blot analyses revealed the presence of both AT1 and AT2 receptors. We conclude that Ang lI-induced contraction of sphincteric smooth muscle occurs primarily by the activation of AT1 receptors at the smooth muscle cells and involves multiple pathways, influx of Ca2+, and PKC, Rho kinase and p(44/42) MAP kinase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Shayan; Feng, Wenli; Yang, Xiao
Highlights: • We study the impact of leukemic microenvironment on P2X family receptors in Mφs. • Bone marrow and spleen Mφs are studied in Notch1-induced mouse leukemia model. • Increased expression of P2X7R is found in Mφs during the development of leukemia. • Elevated P2X7R-mediated calcium response is found in Mφs at late stage of leukemia. • More apoptotic Mφs are found in bone marrow and spleen at late stage of leukemia. - Abstract: Nucleotides are important players in intercellular signaling communication network. P2X family receptors (P2XRs) are ATP-gated plasma membrane ion channels with diverse biological functions. Macrophages are importantmore » components in the microenvironment of hematopoiesis participating in both physiological and pathological processes. However, the role of P2XRs in macrophages in leukemia has not been established. Here we investigated expression pattern and functions of P2XRs in macrophages from bone marrow (BM) and spleen of Notch1-induced T-ALL mice. Real-time PCR showed that P2XRs except P2X5R were expressed in BM and spleen macrophages. Furthermore, with the development of leukemia, the expression of P2X7R increased in both BM and spleen macrophages whereas expression of P2X1R increased in spleen macrophages. Live cell imaging recoding the Ca{sup 2+} response demonstrated that P2X7R expressed in macrophages was functional. TUNEL and electron microscopy analysis found that apoptotic macrophages were frequently observed in BM and spleen at late stage of leukemia, which was partly contributed by the activation of overexpressed P2X7R. Our results suggested that the intercellular communication mediated by nucleotides might orchestrate in the pathological process of leukemia and could be a potential target for the treatment of leukemia.« less
Moist-soil seed abundance in managed wetlands in the Mississippi Alluvial Valley
Kross, J.; Kaminski, R.M.; Reinecke, K.J.; Penny, E.J.; Pearse, A.T.
2008-01-01
Managed moist-soil units support early succession herbaceous vegetation that produces seeds, tubers, and other plant parts used by waterfowl in the Mississippi Alluvial Valley (MAV), USA. We conducted a stratified multi-stage sample survey on state and federal lands in the MAV of Arkansas, Louisiana, Mississippi, and Missouri during autumns 2002?2004 to generate a contemporary estimate of combined dry mass of seeds and tubers (herein seed abundance) in managed moist-soil units for use by the Lower Mississippi Valley Joint Venture (LMVJV) of the North American Waterfowl Management Plan. We also examined variation in mean seed abundance among moist-soil units in 2003 and 2004 in relation to management intensity (active or passive), soil pH and nutrient levels, proportional occurrence of plant life-forms (e.g., grass, flatsedge, and forb; vine; woody plants), and unit area. Estimates of mean seed abundance were similar in 2002 (X over bar = 537.1 kg/ha, SE = 100.1) and 2004 (X over bar = 555.2 kg/ha, SE = 105.2) but 35?40% less in 2003 (X over bar = 396.8 kg/ha, SE = 116.1). Averaged over years, seed abundance was 496.3 kg/ha (SE = 62.0; CV = 12.5%). Multiple regression analysis indicated seed abundance varied among moist-soil units inversely with proportional occurrence of woody vegetation and unit area and was greater in actively than passively managed units (R2adj = 0.37). Species of early succession grasses occurred more frequently in actively than passively managed units (P < 0.09), whereas mid- and late-succession plants occurred more often in passively managed units (P < 0.02). We recommend the LMVJV consider 556 kg/ha as a measure of seed abundance for use in estimating carrying capacity in managed moist-soil units on public lands in the MAV. We recommend active management of moist-soil units to achieve maximum potential seed production and further research to determine recovery rates of seeds of various sizes from core samples and the relationship between seed abundance and unit area.
Chen, Jing; Yang, Huan; Wang, Jing; Cheng, Shi-Bo
2018-05-30
We present an extensive density functional theory (DFT) calculations on the geometrical and electronic structures of the triatomic LaX 2 - (X=Al, Ga, In) clusters. Various trail structures and spin states have been attempted to determine the lowest-energy geometries of these La-doped metal clusters. The ground states of all three clusters are calculated to possess the trigonal structures with the singlet multiplicities. The calculations on molecular orbitals (MOs) and nucleus-independent chemical shift (NICS) values have been performed to examine the aromatic characteristics of the LaX 2 - (X=Al, Ga, In) clusters. The present calculations disclose that all these metal clusters are doubly aromatic, namely d-p hybridized σ and π aromaticity resulting from the effective overlap between the 5d atomic orbital of the La atom and the p orbitals of the IIIA group elements. Theoretical vertical detachment energies (VDEs) were also calculated to simulate the photoelectron spectra (PES) of the clusters. In addition, by adding the alkali cations (Li + and Na + ) into the LaX 2 - (X=Al, Ga, In) clusters, the geometries and electronic structures of the corresponding neutral salts have also been investigated to gain more insights in the potential of using these aromatic anions as building blocks. Copyright © 2018 Elsevier B.V. All rights reserved.
Kinin and Purine Signaling Contributes to Neuroblastoma Metastasis.
Ulrich, Henning; Ratajczak, Mariusz Z; Schneider, Gabriela; Adinolfi, Elena; Orioli, Elisa; Ferrazoli, Enéas G; Glaser, Talita; Corrêa-Velloso, Juliana; Martins, Poliana C M; Coutinho, Fernanda; Santos, Ana P J; Pillat, Micheli M; Sack, Ulrich; Lameu, Claudiana
2018-01-01
Bone marrow metastasis occurs in approximately 350,000 patients that annually die in the U.S. alone. In view of the importance of tumor cell migration into the bone marrow, we have here investigated effects of various concentrations of stromal cell-derived factor-1 (SDF-1), bradykinin- and ATP on bone marrow metastasis. We show for first time that bradykinin augmented chemotactic responsiveness of neuroblastoma cells to SDF-1 and ATP concentrations, encountered under physiological conditions. Bradykinin upregulated VEGF expression, increased metalloproteinase activity and induced adhesion of neuroblastoma cells. Bradykinin augmented SDF-1-induced intracellular Ca 2+ mobilization as well as resensitization and expression of ATP-sensing P2X7 receptors. Bradykinin treatment resulted in higher gene expression levels of the truncated P2X7B receptor compared to those of the P2X7A full-length isoform. Bradykinin as pro-metastatic factor induced tumor proliferation that was significantly decreased by P2X7 receptor antagonists; however, the peptide did not enhance cell death nor P2X7A receptor-related pore activity, promoting neuroblastoma growth. Furthermore, immunodeficient nude/nude mice transplanted with bradykinin-pretreated neuroblastoma cells revealed significantly higher metastasis rates compared to animals injected with untreated cells. In contrast, animals receiving Brilliant Blue G, a P2X7 receptor antagonist, did not show any specific dissemination of neuroblastoma cells to the bone marrow and liver, and metastasis rates were drastically reduced. Our data suggests correlated actions of kinins and purines in neuroblastoma dissemination, providing novel avenues for clinic research in preventing metastasis.
Rahmani, Mohamed; Aust, Mandy Mayo; Attkisson, Elisa; Williams, David C; Ferreira-Gonzalez, Andrea; Grant, Steven
2013-02-15
Effects of concomitant inhibition of the PI3K/AKT/mTOR pathway and Bcl-2/Bcl-xL (BCL2L1) were examined in human myeloid leukemia cells. Tetracycline-inducible Bcl-2 and Bcl-xL dual knockdown sharply increased PI3K/AKT/mTOR inhibitor lethality. Conversely, inducible knockdown or dominant-negative AKT increased, whereas constitutively active AKT reduced lethality of the Bcl-2/Bcl-xL inhibitor ABT-737. Furthermore, PI3K/mTOR inhibitors (e.g., BEZ235 and PI-103) synergistically increased ABT-737-mediated cell death in multiple leukemia cell lines and reduced colony formation in leukemic, but not normal, CD34+ cells. Notably, increased lethality was observed in four of six primary acute myelogenous leukemia (AML) specimens. Responding, but not nonresponding, samples exhibited basal AKT phosphorylation. PI3K/mTOR inhibitors markedly downregulated Mcl-1 but increased Bim binding to Bcl-2/Bcl-xL; the latter effect was abrogated by ABT-737. Combined treatment also markedly diminished Bax/Bak binding to Mcl-1, Bcl-2, or Bcl-xL. Bax, Bak, or Bim (BCL2L11) knockdown or Mcl-1 overexpression significantly diminished regimen-induced apoptosis. Interestingly, pharmacologic inhibition or short hairpin RNA knockdown of GSK3α/β significantly attenuated Mcl-1 downregulation and decreased apoptosis. In a systemic AML xenograft model, dual tetracycline-inducible knockdown of Bcl-2/Bcl-xL sharply increased BEZ235 antileukemic effects. In a subcutaneous xenograft model, BEZ235 and ABT-737 coadministration significantly diminished tumor growth, downregulated Mcl-1, activated caspases, and prolonged survival. Together, these findings suggest that antileukemic synergism between PI3K/AKT/mTOR inhibitors and BH3 mimetics involves multiple mechanisms, including Mcl-1 downregulation, release of Bim from Bcl-2/Bcl-xL as well as Bak and Bax from Mcl-1/Bcl-2/Bcl-xL, and GSK3α/β, culminating in Bax/Bak activation and apoptosis. They also argue that combining PI3K/AKT/mTOR inhibitors with BH3 mimetics warrants attention in AML, particularly in the setting of basal AKT activation and/or addiction.
Pinjari, Rahul V; Delcey, Mickaël G; Guo, Meiyuan; Odelius, Michael; Lundberg, Marcus
2014-09-28
The metal L-edge (2p → 3d) X-ray absorption spectra are affected by a number of different interactions: electron-electron repulsion, spin-orbit coupling, and charge transfer between metal and ligands, which makes the simulation of spectra challenging. The core restricted active space (RAS) method is an accurate and flexible approach that can be used to calculate X-ray spectra of a wide range of medium-sized systems without any symmetry constraints. Here, the applicability of the method is tested in detail by simulating three ferric (3d(5)) model systems with well-known electronic structure, viz., atomic Fe(3+), high-spin [FeCl6](3-) with ligand donor bonding, and low-spin [Fe(CN)6](3-) that also has metal backbonding. For these systems, the performance of the core RAS method, which does not require any system-dependent parameters, is comparable to that of the commonly used semi-empirical charge-transfer multiplet model. It handles orbitally degenerate ground states, accurately describes metal-ligand interactions, and includes both single and multiple excitations. The results are sensitive to the choice of orbitals in the active space and this sensitivity can be used to assign spectral features. A method has also been developed to analyze the calculated X-ray spectra using a chemically intuitive molecular orbital picture.
Bodhini, Dhanasekaran; Gaal, Szilvia; Shatwan, Israa; Ramya, Kandaswamy; Ellahi, Basma; Surendran, Shelini; Sudha, Vasudevan; Anjana, Mohan R.; Mohan, Viswanathan; Lovegrove, Julie A.; Radha, Venkatesan
2017-01-01
Recent evidence suggests that lifestyle factors influence the association between the Melanocortin 4 receptor (MC4R) and Transcription Factor 7-Like 2 (TCF7L2) gene variants and cardio-metabolic traits in several populations; however, the available research is limited among the Asian Indian population. Hence, the present study examined whether the association between the MC4R single nucleotide polymorphism (SNP) (rs17782313) and two SNPs of the TCF7L2 gene (rs12255372 and rs7903146) and cardio-metabolic traits is modified by dietary factors and physical activity. This cross sectional study included a random sample of normal glucose tolerant (NGT) (n = 821) and participants with type 2 diabetes (T2D) (n = 861) recruited from the urban part of the Chennai Urban Rural Epidemiology Study (CURES). A validated food frequency questionnaire (FFQ) was used for dietary assessment and self-reported physical activity measures were collected. The threshold for significance was set at P = 0.00023 based on Bonferroni correction for multiple testing [(0.05/210 (3 SNPs x 14 outcomes x 5 lifestyle factors)]. After Bonferroni correction, there was a significant interaction between the TCF7L2 rs12255372 SNP and fat intake (g/day) (Pinteraction = 0.0001) on high-density lipoprotein cholesterol (HDL-C), where the ‘T’ allele carriers in the lowest tertile of total fat intake had higher HDL-C (P = 0.008) and those in the highest tertile (P = 0.017) had lower HDL-C compared to the GG homozygotes. In a secondary analysis of SNPs with the subtypes of fat, there was also a significant interaction between the SNP rs12255372 and polyunsaturated fatty acids (PUFA, g/day) (Pinteraction<0.0001) on HDL-C, where the minor allele carriers had higher HDL-C in the lowest PUFA tertile (P = 0.024) and those in the highest PUFA tertile had lower HDL-C (P = 0.028) than GG homozygotes. In addition, a significant interaction was also seen between TCF7L2 SNP rs12255372 and fibre intake (g/day) on HDL-C (Pinteraction<0.0001). None of the other interactions between the SNPs and lifestyle factors were statistically significant after correction for multiple testing. Our findings indicate that the association between TCF7L2 SNP rs12255372 and HDL-C may be modified by dietary fat intake in this Asian Indian population. PMID:29182660
Xing, Shu; Grol, Matthew W.; Grutter, Peter H.; Dixon, S. Jeffrey; Komarova, Svetlana V.
2016-01-01
Extracellular ATP acts on the P2X family of ligand-gated ion channels and several members of the P2Y family of G protein-coupled receptors to mediate intercellular communication among many cell types including bone-forming osteoblasts. It is known that multiple P2 receptors are expressed on osteoblasts (P2X2,5,6,7 and P2Y1,2,4,6). In the current study, we investigated complex interactions within the P2 receptor network using mathematical modeling. To characterize individual P2 receptors, we extracted data from published studies of overexpressed human and rodent (rat and mouse) receptors and fit their dependencies on ATP concentration using the Hill equation. Next, we examined responses induced by an ensemble of endogenously expressed P2 receptors. Murine osteoblastic cells (MC3T3-E1 cells) were loaded with fluo-4 and stimulated with varying concentrations of extracellular ATP. Elevations in the concentration of cytosolic free calcium ([Ca2+]i) were monitored by confocal microscopy. Dependence of the calcium response on ATP concentration exhibited a complex pattern that was not explained by the simple addition of individual receptor responses. Fitting the experimental data with a combination of Hill equations from individual receptors revealed that P2Y1 and P2X7 mediated the rise in [Ca2+]i at very low and high ATP concentrations, respectively. Interestingly, to describe responses at intermediate ATP concentrations, we had to assume that a receptor with a K1∕2 in that range (e.g. P2Y4 or P2X5) exerts an inhibitory effect. This study provides new insights into the interactions among individual P2 receptors in producing an ensemble response to extracellular ATP. PMID:27468270
Ferrazoli, Enéas G.; De Souza, Héllio D.N.; Nascimento, Isis C.; Oliveira-Giacomelli, Ágatha; Schwindt, Telma T.; Britto, Luiz R.; Ulrich, Henning
2017-01-01
Parkinson's disease (PD) is a neurodegenerative disorder, characterized by the loss of dopaminergic neurons in the substantia nigra and their projections to the striatum. Several processes have been described as potential inducers of the dopaminergic neuron death, such as inflammation, oxidative stress, and mitochondrial dysfunction. However, the death of dopaminergic neurons seems to be multifactorial, and its cause remains unclear. ATP-activating purinergic receptors influence various physiological functions in the CNS, including neurotransmission. Purinergic signaling is also involved in pathological scenarios, where ATP is extensively released and promotes sustained purinergic P2X7 receptor (P2X7R) activation and consequent induction of cell death. This effect occurs, among other factors, by oxidative stress and during the inflammatory response. On the other hand, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) is involved in energy metabolism and mitochondrial biogenesis. Expression and activity upregulation of this protein has been related with reduction of oxidative stress and neuroprotection. Therefore, P2X7R and PGC-1α are potential targets in the treatment of PD. Here hemiparkinsonism was induced by unilateral stereotactic injection of 6-OHDA in a rat model. After 7 days, the establishment of PD was confirmed and followed by treatment with the P2X7R antagonist Brilliant Blue G (BBG) or PGC-1α agonist fenofibrate. BBG, but not fenofibrate, reverted hemiparkinsonian behavior accompanied by an increase in tyrosine hydroxylase immunoreactivity in the substantia nigra. Our results suggest that the P2X7R may be a therapeutic target in Parkinson's disease. PMID:28403913
Taguchi, Katsuyuki; Itoh, Toshihide; Fuld, Matthew K; Fournie, Eric; Lee, Okkyun; Noguchi, Kyo
2018-03-14
A novel imaging technique ("X-map") has been developed to identify acute ischemic lesions for stroke patients using non-contrast-enhanced dual-energy computed tomography (NE-DE-CT). Using the 3-material decomposition technique, the original X-map ("X-map 1.0") eliminates fat and bone from the images, suppresses the gray matter (GM)-white matter (WM) tissue contrast, and makes signals of edema induced by severe ischemia easier to detect. The aim of this study was to address the following 2 problems with the X-map 1.0: (1) biases in CT numbers (or artifacts) near the skull of NE-DE-CT images and (2) large intrapatient and interpatient variations in X-map 1.0 values. We improved both an iterative beam-hardening correction (iBHC) method and the X-map algorithm. The new iBHC (iBHC2) modeled x-ray physics more accurately. The new X-map ("X-map 2.0") estimated regional GM values-thus, maximizing the ability to suppress the GM-WM contrast, make edema signals quantitative, and enhance the edema signals that denote an increased water density for each pixel. We performed a retrospective study of 11 patients (3 men, 8 women; mean age, 76.3 years; range, 68-90 years) who presented to the emergency department with symptoms of acute stroke. Images were reconstructed with the old iBHC (iBHC1) and the iBHC2, and biases in CT numbers near the skull were measured. Both X-map 2.0 maps and X-map 1.0 maps were computed from iBHC2 images, both with and without a material decomposition-based edema signal enhancement (ESE) process. X-map values were measured at 5 to 9 locations on GM without infarct per patient; the mean value was calculated for each patient (we call it the patient-mean X-map value) and subtracted from the measured X-map values to generate zero-mean X-map values. The standard deviation of the patient-mean X-map values over multiple patients denotes the interpatient variation; the standard deviation over multiple zero-mean X-map values denotes the intrapatient variation. The Levene F test was performed to assess the difference in the standard deviations with different algorithms. Using 5 patient data who had diffusion weighted imaging (DWI) within 2 hours of NE-DE-CT, mean values at and near ischemic lesions were measured at 7 to 14 locations per patient with X-map images, CT images (low kV and high kV), and DWI images. The Pearson correlation coefficient was calculated between a normalized increase in DWI signals and either X-map or CT. The bias in CT numbers was lower with iBHC2 than with iBHC1 in both high- and low-kV images (2.5 ± 2.0 HU [95% confidence interval (CI), 1.3-3.8 HU] for iBHC2 vs 6.9 ± 2.3 HU [95% CI, 5.4-8.3 HU] for iBHC1 with high-kV images, P < 0.01; 1.5 ± 3.6 HU [95% CI, -0.8 to 3.7 HU] vs 12.8 ± 3.3 HU [95% CI, 10.7-14.8 HU] with low-kV images, P < 0.01). The interpatient variation was smaller with X-map 2.0 than with X-map 1.0, both with and without ESE (4.3 [95% CI, 3.0-7.6] for X-map 2.0 vs 19.0 [95% CI, 13.3-22.4] for X-map 1.0, both with ESE, P < 0.01; 3.0 [95% CI, 2.1-5.3] vs 12.0 [95% CI, 8.4-21.0] without ESE, P < 0.01). The intrapatient variation was also smaller with X-map 2.0 than with X-map 1.0 (6.2 [95% CI, 5.3-7.3] vs 8.5 [95% CI, 7.3-10.1] with ESE, P = 0.0122; 4.1 [95% CI, 3.6-4.9] vs 6.3 [95% CI, 5.5-7.6] without ESE, P < 0.01). The best 3 correlation coefficients (R) with DWI signals were -0.733 (95% CI, -0.845 to -0.560, P < 0.001) for X-map 2.0 with ESE, -0.642 (95% CI, -0.787 to -0.429, P < 0.001) for high-kV CT, and -0.609 (95% CI, -0.766 to -0.384, P < 0.001) for X-map 1.0 with ESE. Both of the 2 problems outlined in the objectives have been addressed by improving both iBHC and X-map algorithm. The iBHC2 improved the bias in CT numbers and the visibility of GM-WM contrast throughout the brain space. The combination of iBHC2 and X-map 2.0 with ESE decreased both intrapatient and interpatient variations of edema signals significantly and had a strong correlation with DWI signals in terms of the strength of edema signals.
FoxP2 directly regulates the reelin receptor VLDLR developmentally and by singing.
Adam, Iris; Mendoza, Ezequiel; Kobalz, Ursula; Wohlgemuth, Sandra; Scharff, Constance
2016-07-01
Mutations of the transcription factor FOXP2 cause a severe speech and language disorder. In songbirds, FoxP2 is expressed in the medium spiny neurons (MSNs) of the avian basal ganglia song nucleus, Area X, which is crucial for song learning and adult song performance. Experimental downregulation of FoxP2 in Area X affects spine formation, prevents neuronal plasticity induced by social context and impairs song learning. Direct target genes of FoxP2 relevant for song learning and song production are unknown. Here we show that a lentivirally mediated FoxP2 knockdown in Area X of zebra finches downregulates the expression of VLDLR, one of the two reelin receptors. Zebra finch FoxP2 binds to the promoter of VLDLR and activates it, establishing VLDLR as a direct FoxP2 target. Consistent with these findings, VLDLR expression is co-regulated with FoxP2 as a consequence of adult singing and during song learning. We also demonstrate that knockdown of FoxP2 affects glutamatergic transmission at the corticostriatal MSN synapse. These data raise the possibility that the regulatory relationship between FoxP2 and VLDLR guides structural plasticity towards the subset of FoxP2-positive MSNs in an activity dependent manner via the reelin pathway. Copyright © 2016 Elsevier Inc. All rights reserved.
Vázquez-Cuevas, F G; Cruz-Rico, A; Garay, E; García-Carrancá, A; Pérez-Montiel, D; Juárez, B; Arellano, R O
2013-01-01
Purinergic signalling has been proposed as an intraovarian regulatory mechanism. Of the receptors responsible for purinergic transmission, the P2X7 receptor is an ATP-gated cationic channel that displays a broad spectrum of cellular functions ranging from apoptosis to cell proliferation and tumourigenesis. In the present study, we investigated the functional expression of P2X7 receptors in ovarian surface epithelium (OSE). P2X7 protein was detected in the OSE layer of the mouse, both in situ and in primary cultures. In cultures, 2'(3')-O-(4-Benzoylbenzoyl)adenosine-5'-triphosphate (BzATP) activation of P2X7 receptors increased [Ca(2+)]i and induced apoptosis. The functionality of the P2X7 receptor was investigated in situ by intrabursal injection of BzATP on each day of the oestrous cycle and evaluation of apoptosis 24h using the terminal deoxyribonucleotidyl transferase-mediated dUTP-fluorescein nick end-labelling (TUNEL) assay. Maximum effects of BzATP were observed during pro-oestrus, with the effects being blocked by A438079, a specific P2X7 receptor antagonist. Immunofluorescence staining for P2X7 protein revealed more robust expression during pro-oestrus and in OSE regions behind the antral follicles, strongly supporting the notion that the differences in apoptosis can be explained by increased receptor expression, which is regulated during the oestrous cycle. Finally, P2X7 receptor expression was detected in the OSE layer of human ovaries, with receptor expression maintained in human ovaries diagnosed with cancer, as well as in the human ovarian carcinoma SKOV3 cell line.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hishida, T.; Ohbayashi, K.; Saitoh, T.
2013-01-28
Core-level electronic structure of La{sub 1-x}Sr{sub x}MnO{sub 3} has been studied by x-ray photoemission spectroscopy (XPS). We first report, by the conventional XPS, the well-screened shoulder structure in Mn 2p{sub 3/2} peak, which had been observed only by hard x-ray photoemission spectroscopy so far. Multiple-peak analysis revealed that the Mn{sup 4+} spectral weight was not proportional to the nominal hole concentration x, indicating that a simple Mn{sup 3+}/Mn{sup 4+} intensity ratio analysis may result in a wrong quantitative elemental analysis. Considerable weight of the shoulder at x = 0.0 and the fact that the shoulder weight was even slightly goingmore » down from x = 0.2 to 0.4 were not compatible with the idea that this weight simply represents the metallic behavior. Further analysis found that the whole Mn 2p{sub 3/2} peak can be decomposed into four portions, the Mn{sup 4+}, the (nominal) Mn{sup 3+}, the shoulder, and the other spectral weight located almost at the Mn{sup 3+} location. We concluded that this weight represents the well-screened final state at Mn{sup 4+} sites, whereas the shoulder is known as that of the Mn{sup 3+} states. We found that the sum of these two spectral weight has an empirical relationship to the conductivity evolution with x.« less
Effect of P2X7 Receptor Knockout on AQP-5 Expression of Type I Alveolar Epithelial Cells
Ebeling, Georg; Bläsche, Robert; Hofmann, Falk; Augstein, Antje; Kasper, Michael; Barth, Kathrin
2014-01-01
P2X7 receptors, ATP-gated cation channels, are specifically expressed in alveolar epithelial cells. The pathophysiological function of this lung cell type, except a recently reported putative involvement in surfactant secretion, is unknown. In addition, P2X7 receptor-deficient mice show reduced inflammation and lung fibrosis after exposure with bleomycin. To elucidate the role of the P2X7 receptor in alveolar epithelial type I cells we characterized the pulmonary phenotype of P2X7 receptor knockout mice by using immunohistochemistry, western blot analysis and real-time RT PCR. No pathomorphological signs of fibrosis were found. Results revealed, however, a remarkable loss of aquaporin-5 protein and mRNA in young knockout animals. Additional in vitro experiments with bleomycin treated precision cut lung slices showed a greater sensitivity of the P2X7 receptor knockout mice in terms of aquaporin-5 reduction as wild type animals. Finally, P2X7 receptor function was examined by using the alveolar epithelial cell lines E10 and MLE-12 for stimulation experiments with bleomycin. The in vitro activation of P2X7 receptor was connected with an increase of aquaporin-5, whereas the inhibition of the receptor with oxidized ATP resulted in down regulation of aquaporin-5. The early loss of aquaporin-5 which can be found in different pulmonary fibrosis models does not implicate a specific pathogenetic role during fibrogenesis. PMID:24941004
Auto-inhibition and phosphorylation-induced activation of PLC-γ isozymes
Hajicek, Nicole; Charpentier, Thomas H.; Rush, Jeremy R.; Harden, T. Kendall; Sondek, John
2013-01-01
Multiple extracellular stimuli, such as growth factors and antigens, initiate signaling cascades through tyrosine phosphorylation and activation of phospholipase C (PLC)-γ isozymes. Like most other PLCs, PLC-γ1 is basally auto-inhibited by its X-Y linker, which separates the X-and Y-boxes of the catalytic core. The C-terminal SH2 (cSH2) domain within the X-Y linker is the critical determinant for auto-inhibition of phospholipase activity. Release of auto-inhibition requires an intramolecular interaction between the cSH2 domain and a phosphorylated tyrosine, Tyr783, also located within the X-Y linker. The molecular mechanisms that mediate auto-inhibition and phosphorylation-induced activation have not been defined. Here, we describe structures of the cSH2 domain both alone and bound to a PLC-γ1 peptide encompassing phosphorylated Tyr783. The cSH2 domain remains largely unaltered by peptide engagement. Point mutations in the cSH2 domain located at the interface with the peptide were sufficient to constitutively activate PLC-γ1 suggesting that peptide engagement directly interferes with the capacity of the cSH2 domain to block the lipase active site. This idea is supported by mutations in a complimentary surface of the catalytic core that also enhanced phospholipase activity. PMID:23777354
Matsuoka, Satoshi; Seki, Takahiro; Matsumoto, Kouji; Hara, Hiroshi
2016-12-01
Glucolipids in Bacillus subtilis are synthesized by UgtP processively transferring glucose from UDP-glucose to diacylglycerol. Here we conclude that the abnormal morphology of a ugtP mutant is caused by lack of glucolipids, since the same morphology arises after abolition of glucolipid production by disruption of pgcA and gtaB, which are involved in UDP-glucose synthesis. Conversely, expression of a monoglucosyldiacylglycerol (MGlcDG) produced by 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawii (alMGS) almost completely suppressed the ugtP disruptant phenotype. Activation of extracytoplasmic function (ECF) sigmas (SigM, SigV, and SigX) in the ugtP mutant was decreased by alMGS expression, and was suppressed to low levels by MgSO 4 addition. When alMGS and alDGS (A. laidlawii 1,2-diacylglycerol-3-glucose (1-2)-glucosyltransferase producing diglucosyldiacylglycerol (DGlcDG)) were simultaneously expressed, SigX activation was repressed to wild type level. These observations suggest that MGlcDG molecules are required for maintenance of B. subtilis cell shape and regulation of ECF sigmas, and DGlcDG regulates SigX activity.
Iyer, Janaki Krishnamurthy; Shih, Norrapat; Majumder, Munmi; Mattaparthi, Venkata Satish Kumar; Mukhopadhyay, Rupak; Doley, Robin
2016-01-01
In the present study a major protein has been purified from the venom of Indian Daboia russelii russelii using gel filtration, ion exchange and Rp-HPLC techniques. The purified protein, named daboxin P accounts for ~24% of the total protein of the crude venom and has a molecular mass of 13.597 kDa. It exhibits strong anticoagulant and phospholipase A2 activity but is devoid of any cytotoxic effect on the tested normal or cancerous cell lines. Its primary structure was deduced by N-terminal sequencing and chemical cleavage using Edman degradation and tandem mass spectrometry. It is composed of 121 amino acids with 14 cysteine residues and catalytically active His48 -Asp49 pair. The secondary structure of daboxin P constitutes 42.73% of α-helix and 12.36% of β-sheet. It is found to be stable at acidic (pH 3.0) and neutral pH (pH 7.0) and has a Tm value of 71.59 ± 0.46°C. Daboxin P exhibits anticoagulant effect under in-vitro and in-vivo conditions. It does not inhibit the catalytic activity of the serine proteases but inhibits the activation of factor X to factor Xa by the tenase complexes both in the presence and absence of phospholipids. It also inhibits the tenase complexes when active site residue (His48) was alkylated suggesting its non-enzymatic mode of anticoagulant activity. Moreover, it also inhibits prothrombinase complex when pre-incubated with factor Xa prior to factor Va addition. Fluorescence emission spectroscopy and affinity chromatography suggest the probable interaction of daboxin P with factor X and factor Xa. Molecular docking analysis reveals the interaction of the Ca+2 binding loop; helix C; anticoagulant region and C-terminal region of daboxin P with the heavy chain of factor Xa. This is the first report of a phospholipase A2 enzyme from Indian viper venom which targets both factor X and factor Xa for its anticoagulant activity. PMID:27089306
De Roo, Mathias; Rodeau, Jean-Luc; Schlichter, Rémy
2003-01-01
We have studied the modulatory effect of dehydroepiandrosterone (DHEA), the most abundant neurosteroid produced by glial cells and neurones, on membrane currents induced by the activation of ionotropic ATP (P2X) receptors in neonatal rat dorsal root ganglion neurones. ATP (1 μm) induced three types of currents/responses termed F (fast and transient), S (slowly desensitizing) and M (mixed, sum of F- and S-type responses). DHEA (10 nm to 100 μm) concentration-dependently increased the amplitude of plateau-like currents of S- and M-type responses evoked by submaximal (1 μm) but not saturating (100 μm or 1 mM) concentrations of ATP. αβ-Methylene ATP (αβme-ATP, 5 μm) also evoked F-, S- and M-type responses, the plateau phases of which were potentiated by lowering external pH (6.3) and by ivermectin (IVM, 3 μm), indicating the presence heteromeric P2X2-containing receptors and possibly of functional native P2X4/6 receptors. There was a strict correlation between the potentiating effects of low pH and DHEA on αβme-ATP responses but not between that of IVM and DHEA, suggesting that DHEA selectively modulated P2X2-containing receptors. DHEA also potentiated putative homomeric P2X2 receptor responses recorded in the continuous presence of 1 μm 2′-(or 3′)-O-(2,4,6-trinitrophenyl) adenosine 5′-triphosphate (TNP-ATP). Our results constitute the first demonstration of a fast potentiation of P2X receptors by a neurosteroid and suggest that DHEA could be an endogenous modulator of P2X2-containing receptors thereby contributing to the facilitation of the detection and/or the transmission of nociceptive messages, particularly under conditions of inflammatory pain where the P2X receptor signalling pathway appears to be upregulated. PMID:12844512
Electromagnetic Dissociation Cross Sections for High LET Fragments
NASA Technical Reports Server (NTRS)
Norbury, John
2016-01-01
Nuclear interaction cross sections are used in space radiation transport codes to calculate the probability of fragment emission in high energy nucleus-nucleus collisions. Strong interactions usually dominate in these collisions, but electromagnetic (EM) interactions can also sometimes be important. Strong interactions typically occur when the projectile nucleus hits a target nucleus, with a small impact parameter. For impact parameters larger than the sum of the nuclear radii, EM reactions dominate and the process is called electromagnetic dissociation (EMD) if one of the nuclei undergo fragmentation. Previous models of EMD have been used to calculate single proton (p) production, single neutron (n) production or light ion production, where a light ion is defined as an isotope of hydrogen (H) or helium (He), such as a deuteron (2H), a triton (3H), a helion (3He) or an alpha particle (4He). A new model is described which can also account for multiple nucleon production, such as 2p, 2n, 1p1n, 2p1n, 2p2n, etc. in addition to light ion production. Such processes are important to include for the following reasons. Consider, for example, the EMD reaction 56Fe + Al --> 52Cr + X + Al, for a 56Fe projectile impacting Al, which produces the high linear energy transfer (LET) fragment 52Cr. In this reaction, the most probable particles representing X are either 2p2n or 4He. Therefore, production of the high LET fragment 52Cr, must include the multiple nucleon production of 2p2n in addition to the light ion production of 4He. Previous models, such as the NUCFRG3 model, could only account for the 4He production process in this reaction and could not account for 2p2n. The new EMD model presented in this work accounts for both the light ion and multiple nucleon processes, and is therefore able to correctly account for the production of high LET products such as 52Cr. The model will be described and calculations will be presented that show the importance of light ion and multiple nucleon production. The work will also show that EMD reactions contribute most to those fragments with the highest LET.
Resveratrol-decreased hyperalgesia mediated by the P2X7 receptor in gp120-treated rats.
Wu, Bing; Ma, Yucheng; Yi, Zhihua; Liu, Shuangmei; Rao, Shenqiang; Zou, Lifang; Wang, Shouyu; Xue, Yun; Jia, Tianyu; Zhao, Shanhong; Shi, Liran; Li, Lin; Yuan, Huilong; Liang, Shangdong
2017-01-01
Background Chronic pain is a common symptom in human immunodeficiency virus (HIV)-1 infection/acquired immunodeficiency syndrome patients. The literature shows that the HIV envelope glycoprotein 120 (gp120) can directly cause hyperalgesia by stimulating primary sensory afferent nerves. The P2X 7 receptor in the dorsal root ganglia (DRG) is closely related to neuropathic and inflammatory pain. In this study, we aimed to explore the effect of resveratrol (RES) on gp120-induced neuropathic pain that is mediated by the P2X 7 receptor in the rat DRG. Results Mechanical hyperalgesia in rats treated with gp120 was increased compared with that in the sham group. The P2X 7 expression levels in rats treated with gp120 were higher than those in the sham group. Co-localization of the P2X 7 receptor and glial fibrillary acidic protein (GFAP, a marker of satellite glial cells [SGCs]) in the DRG SGCs of the gp120 group exhibited more intense staining than that of the sham group. RES decreased the mechanical hyperalgesia and P2X 7 expression levels in gp120 treatment rats. Co-localization of the P2X 7 receptor and GFAP in the gp120+ RES group was significantly decreased compared to the gp120 group. RES decreased the IL-1β and TNF-α receptor (R) expression levels and ERK1/2 phosphorylation levels as well as increased IL-10 expression in the DRG of gp120-treated rats. Whole cell clamping demonstrated that RES significantly inhibited adenosine triphosphate-activated currents in HEK293 cells that were transfected with the P2X 7 plasmid. Conclusions RES relieved mechanical hyperalgesia in gp120-treated rats by inhibiting the P2X 7 receptor.
Liu, Dong-Mei; Adams, David J
2001-01-01
The relative permeability of the native P2X receptor channel to monovalent and divalent inorganic and organic cations was determined from reversal potential measurements of ATP-evoked currents in parasympathetic neurones dissociated from rat submandibular ganglia using the dialysed whole-cell patch clamp technique. The P2X receptor-channel exhibited weak selectivity among the alkali metals with a selectivity sequence of Na+ > Li+ > Cs+ > Rb+ > K+, and permeability ratios relative to Cs+ (PX/PCs) ranging from 1.11 to 0.86. The selectivity for the divalent alkaline earth cations was also weak with the sequence Ca2+ > Sr2+ > Ba2+ > Mn2+ > Mg2+. ATP-evoked currents were strongly inhibited when the extracellular divalent cation concentration was increased. The calculated permeability ratios of different ammonium cations are higher than those of the alkali metal cations. The permeability sequence obtained for the saturated organic cations is inversely correlated with the size of the cation. The unsaturated organic cations have a higher permeability than that predicted by molecular size. Acidification to pH 6.2 increased the ATP-induced current amplitude twofold, whereas alkalization to 8.2 and 9.2 markedly reduced current amplitude. Cell dialysis with either anti-P2X2 and/or anti-P2X4 but not anti-P2X1 antibodies attenuated the ATP-evoked current amplitude. Taken together, these data are consistent with homomeric and/or heteromeric P2X2 and P2X4 receptor subtypes expressed in rat submandibular neurones. The permeability ratios for the series of monovalent organic cations, with the exception of unsaturated cations, were approximately related to the ionic size. The relative permeabilities of the monovalent inoganic and organic cations tested are similar to those reported previously for cloned rat P2X2 receptors expressed in mammalian cells. PMID:11454961
Molecular mechanism of ATP binding and ion channel activation in P2X receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hattori, Motoyuki; Gouaux, Eric
P2X receptors are trimeric ATP-activated ion channels permeable to Na{sup +}, K{sup +} and Ca{sup 2+}. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure ofmore » the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body {beta}-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.« less
Peripheral Receptor Mechanisms Underlying Orofacial Muscle Pain and Hyperalgesia
NASA Astrophysics Data System (ADS)
Saloman, Jami L.
Musculoskeletal pain conditions, particularly those associated with temporomandibular joint and muscle disorders (TMD) are severely debilitating and affect approximately 12% of the population. Identifying peripheral nociceptive mechanisms underlying mechanical hyperalgesia, a prominent feature of persistent muscle pain, could contribute to the development of new treatment strategies for the management of TMD and other muscle pain conditions. This study provides evidence of functional interactions between ligand-gated channels, P2X3 and TRPV1/TRPA1, in trigeminal sensory neurons, and proposes that these interactions underlie the development of mechanical hyperalgesia. In the masseter muscle, direct P2X3 activation, via the selective agonist αβmeATP, induced a dose- and time-dependent hyperalgesia. Importantly, the αβmeATP-induced hyperalgesia was prevented by pretreatment of the muscle with a TRPV1 antagonist, AMG9810, or the TRPA1 antagonist, AP18. P2X3 was co-expressed with both TRPV1 and TRPA1 in masseter muscle afferents confirming the possibility for intracellular interactions. Moreover, in a subpopulation of P2X3 /TRPV1 positive neurons, capsaicin-induced Ca2+ transients were significantly potentiated following P2X3 activation. Inhibition of Ca2+-dependent kinases, PKC and CaMKII, prevented P2X3-mechanical hyperalgesia whereas blockade of Ca2+-independent PKA did not. Finally, activation of P2X3 induced phosphorylation of serine, but not threonine, residues in TRPV1 in trigeminal sensory neurons. Significant phosphorylation was observed at 15 minutes, the time point at which behavioral hyperalgesia was prominent. Similar data were obtained regarding another nonselective cation channel, the NMDA receptor (NMDAR). Our data propose P2X3 and NMDARs interact with TRPV1 in a facilitatory manner, which could contribute to the peripheral sensitization underlying masseter hyperalgesia. This study offers novel mechanisms by which individual pro-nociceptive ligand gated ion channels form functional complexes in nociceptors. It is also important to further elucidate peripheral anti-nociceptive mechanisms to improve clinical utilization of currently available analgesics and uncover additional therapeutic targets. A side project examined the mechanisms underlying sex differences in the anti-hyperalgesic effects of delta opioid receptors (DORs). This study provides evidence of a sex difference in the potency at DORs that is mediated by differences in the expression of ATP-sensitive potassium channels. Collectively, understanding detailed molecular events that underlie the development of pathological pain conditions could benefit future pharmacotherapies.
Pinus Roxburghii essential oil anticancer activity and chemical composition evaluation.
Sajid, Arfaa; Manzoor, Qaisar; Iqbal, Munawar; Tyagi, Amit Kumar; Sarfraz, Raja Adil; Sajid, Anam
2018-01-01
The present study was conducted to appraise the anticancer activity of Pinus roxburghii essential oil along with chemical composition evaluation. MTT assay revealed cytotoxicity induction in colon, leukemia, multiple myeloma, pancreatic, head and neck and lung cancer cells exposed to essential oil. Cancer cell death was also observed through live/dead cell viability assay and FACS analysis. Apoptosis induced by essential oil was confirmed by cleavage of PARP and caspase-3 that suppressed the colony-forming ability of tumor cells and 50 % inhibition occurred at a dose of 25 μg/mL. Moreover, essential oil inhibited the activation of inflammatory transcription factor NF-κB and inhibited expression of NF-κB regulated gene products linked to cell survival (survivin, c-FLIP, Bcl-2, Bcl-xL, c-Myc, c-IAP2), proliferation (Cyclin D1) and metastasis (MMP-9). P. roxburghii essential oil has considerable anticancer activity and could be used as anticancer agent, which needs further investigation to identify and purify the bioactive compounds followed by in vivo studies.
[Toxic effects of nano-TiO2 on Gymnodinium breve].
Li, Feng-Min; Zhao, Wei; Li, Yuan-Yuan; Tian, Zhi-Jia; Wang, Zhen-Yu
2012-01-01
In order to reveal the toxicity and mechanism of nano-TiO2 on algae, the inhibition effect, enzyme activity, oxygen free radicals of nano-TiO2 on the growth of G. breve were investigated. The results showed that G. breve was inhibited by nano-TiO2, and the 72 h-EC50 was 9.7 mg x L(-1). With the increasing concentration of nano-titanium dioxide, the activities of SOD decrease significantly (P < 0.05). The content of hydrogen peroxide radicals and the activities of CAT increase significantly (P < 0.05), and the content of superoxide anion shows the increasing trend. The content of hydrogen peroxide radicals was 0.083 U x mL(-1) in 0 mg x L(-1) nano-TiO2 suspension while that was 1.1 U x mL(-1) in control after 48 h. Through the study of 20 mg x L(-1) nano-titanium dioxide on G. breve at different times, the activities of SOD and CAT, the content of MDA are consistent, which the highest values is achieved at the exposure time of 12 hours and the lowest value is found at the exposure time of 48 hours. The content of hydroxyl radical increased significantly at the exposure time of 48 hours. The activity of SOD was 0.14 U x (10(7) cell x min)(-1) in G. breve at 12 h which was ten times higher than that at 48 h.
Beraldo, Flávio H; Garcia, Célia RS
2007-01-01
Background We have previously reported that a Teiid lizard red blood cells (RBCs) such as Ameiva ameiva and Tupinambis merianae controls intracellular calcium levels by displaying multiple mechanisms. In these cells, calcium stores could be discharged not only by: thapsigargin, but also by the Na+/H+ ionophore monensin, K+/H+ ionophore nigericin and the H+ pump inhibitor bafilomycin as well as ionomycin. Moreover, these lizards possess a P2Y-type purinoceptors that mobilize Ca2+ from intracellular stores upon ATP addition. Results Here we report, that RBCs from the tropidurid lizard Tropidurus torquatus store Ca2+ in endoplasmic reticulum (ER) pool but unlike in the referred Teiidae, these cells do not store calcium in monensin-nigericin sensitive pools. Moreover, mitochondria from T. torquatus RBCs accumulate Ca2+. Addition of ATP to a calcium-free medium does not increase the [Ca2+]c levels, however in a calcium medium we observe an increase in cytosolic calcium. This is an indication that purinergic receptors in these cells are P2X-like. Conclusion T. torquatus RBCs present different mechanisms from Teiid lizard red blood cells (RBCs), for controlling its intracellular calcium levels. At T. torquatus the ion is only stored at endoplasmic reticulum and mitochondria. Moreover activation of purinergic receptor, P2X type, was able to induce an influx of calcium from extracelullar medium. These studies contribute to the understanding of the evolution of calcium homeostasis and signaling in nucleated RBCs. PMID:17716375
Beraldo, Flávio H; Garcia, Célia R S
2007-08-23
We have previously reported that a Teiid lizard red blood cells (RBCs) such as Ameiva ameiva and Tupinambis merianae controls intracellular calcium levels by displaying multiple mechanisms. In these cells, calcium stores could be discharged not only by: thapsigargin, but also by the Na+/H+ ionophore monensin, K+/H+ ionophore nigericin and the H+ pump inhibitor bafilomycin as well as ionomycin. Moreover, these lizards possess a P2Y-type purinoceptors that mobilize Ca2+ from intracellular stores upon ATP addition. Here we report, that RBCs from the tropidurid lizard Tropidurus torquatus store Ca2+ in endoplasmic reticulum (ER) pool but unlike in the referred Teiidae, these cells do not store calcium in monensin-nigericin sensitive pools. Moreover, mitochondria from T. torquatus RBCs accumulate Ca2+. Addition of ATP to a calcium-free medium does not increase the [Ca2+]c levels, however in a calcium medium we observe an increase in cytosolic calcium. This is an indication that purinergic receptors in these cells are P2X-like. T. torquatus RBCs present different mechanisms from Teiid lizard red blood cells (RBCs), for controlling its intracellular calcium levels. At T. torquatus the ion is only stored at endoplasmic reticulum and mitochondria. Moreover activation of purinergic receptor, P2X type, was able to induce an influx of calcium from extracellular medium. These studies contribute to the understanding of the evolution of calcium homeostasis and signaling in nucleated RBCs.
Warner, Genoa R; Mills, Matthew R; Enslin, Clarissa; Pattanayak, Shantanu; Panda, Chakadola; Panda, Tamas Kumar; Gupta, Sayam Sen; Ryabov, Alexander D; Collins, Terrence J
2015-04-13
The catalytic activity of the N-tailed ("biuret") TAML (tetraamido macrocyclic ligand) activators [Fe{4-XC6 H3 -1,2-(NCOCMe2 NCO)2 NR}Cl](2-) (3; N atoms in boldface are coordinated to the central iron atom; the same nomenclature is used in for compounds 1 and 2 below), [X, R=H, Me (a); NO2 , Me (b); H, Ph (c)] in the oxidative bleaching of Orange II dye by H2 O2 in aqueous solution is mechanistically compared with the previously investigated activator [Fe{4-XC6 H3 -1,2-(NCOCMe2 NCO)2 CMe2 }OH2 ](-) (1) and the more aggressive analogue [Fe(Me2 C{CON(1,2-C6 H3 -4-X)NCO}2 )OH2 ](-) (2). Catalysis by 3 of the reaction between H2 O2 and Orange II (S) occurs according to the rate law found generally for TAML activators (v=kI kII [Fe(III) ][S][H2 O2 ]/(kI [H2 O2 ]+kII [S]) and the rate constants kI and kII at pH 7 both decrease within the series 3 b>3 a>3 c. The pH dependency of kI and kII was investigated for 3 a. As with all TAML activators studied to-date, bell-shaped profiles were found for both rate constants. For kI , the maximal activity was found at pH 10.7 marking it as having similar reactivity to 1 a. For kII , the broad bell pH profile exhibits a maximum at pH about 10.5. The condition kI ≪kII holds across the entire pH range studied. Activator 3 b exhibits pronounced activity in neutral to slightly basic aqueous solutions making it worthy of consideration on a technical performance basis for water treatment. The rate constants ki for suicidal inactivation of the active forms of complexes 3 a-c were calculated using the general formula ln([S0 ]/[S∞ ])=(kII /ki )[Fe(III) ]; here [Fe(III) ], [S0 ], and [S∞ ] are the total catalyst concentration and substrate concentration at time zero and infinity, respectively. The synthesis and X-ray characterization of 3 c are also described. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Hyunsoo; Walsh, Matthew C.; Takegahara, Noriko; ...
2017-03-15
Excessive bone resorption by osteoclasts (OCs) can result in serious clinical outcomes, including bone loss that may weaken skeletal or periodontal strength. Proper bone homeostasis and skeletal strength are maintained by balancing OC function with the bone-forming function of osteoblasts. Unfortunately, current treatments that broadly inhibit OC differentiation or function may also interfere with coupled bone formation. We therefore identified a factor, the purinergic receptor P2X5 that is highly expressed during the OC maturation phase, and which we show here plays no apparent role in early bone development and homeostasis, but which is required for osteoclast-mediated inflammatory bone loss andmore » hyper-multinucleation of OCs. We further demonstrate that P2X5 is required for ATP-mediated inflammasome activation and IL-1β production by OCs, and that P2X5-deficient OC maturation is rescued in vitro by addition of exogenous IL-1β. These findings identify a mechanism by which OCs react to inflammatory stimuli, and may identify purinergic signaling as a therapeutic target for bone loss related inflammatory conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyunsoo; Walsh, Matthew C.; Takegahara, Noriko
Excessive bone resorption by osteoclasts (OCs) can result in serious clinical outcomes, including bone loss that may weaken skeletal or periodontal strength. Proper bone homeostasis and skeletal strength are maintained by balancing OC function with the bone-forming function of osteoblasts. Unfortunately, current treatments that broadly inhibit OC differentiation or function may also interfere with coupled bone formation. We therefore identified a factor, the purinergic receptor P2X5 that is highly expressed during the OC maturation phase, and which we show here plays no apparent role in early bone development and homeostasis, but which is required for osteoclast-mediated inflammatory bone loss andmore » hyper-multinucleation of OCs. We further demonstrate that P2X5 is required for ATP-mediated inflammasome activation and IL-1β production by OCs, and that P2X5-deficient OC maturation is rescued in vitro by addition of exogenous IL-1β. These findings identify a mechanism by which OCs react to inflammatory stimuli, and may identify purinergic signaling as a therapeutic target for bone loss related inflammatory conditions.« less
Hullugundi, Swathi K.; Ferrari, Michel D.; van den Maagdenberg, Arn M. J. M.; Nistri, Andrea
2013-01-01
A knock-in (KI) mouse model of FHM-1 expressing the R192Q missense mutation of the Cacna1a gene coding for the α1 subunit of CaV2.1 channels shows, at the level of the trigeminal ganglion, selective functional up-regulation of ATP -gated P2X3 receptors of sensory neurons that convey nociceptive signals to the brainstem. Why P2X3 receptors are constitutively more responsive, however, remains unclear as their membrane expression and TRPV1 nociceptor activity are the same as in wildtype (WT) neurons. Using primary cultures of WT or KI trigeminal ganglia, we investigated whether soluble compounds that may contribute to initiating (or maintaining) migraine attacks, such as TNFα, CGRP, and BDNF, might be responsible for increasing P2X3 receptor responses. Exogenous application of TNFα potentiated P2X3 receptor-mediated currents of WT but not of KI neurons, most of which expressed both the P2X3 receptor and the TNFα receptor TNFR2. However, sustained TNFα neutralization failed to change WT or KI P2X3 receptor currents. This suggests that endogenous TNFα does not regulate P2X3 receptor responses. Nonetheless, on cultures made from both genotypes, exogenous TNFα enhanced TRPV1 receptor-mediated currents expressed by a few neurons, suggesting transient amplification of TRPV1 nociceptor responses. CGRP increased P2X3 receptor currents only in WT cultures, although prolonged CGRP receptor antagonism or BDNF neutralization reduced KI currents to WT levels. Our data suggest that, in KI trigeminal ganglion cultures, constitutive up-regulation of P2X3 receptors probably is already maximal and is apparently contributed by basal CGRP and BDNF levels, thereby rendering these neurons more responsive to extracellular ATP. PMID:23577145
Zakeri-Milani, Parvin; Barzegar-Jalali, Mohammad; Azimi, Mandana; Valizadeh, Hadi
2009-09-01
The solubility and dissolution rate of active ingredients are of major importance in preformulation studies of pharmaceutical dosage forms. In the present study, passively absorbed drugs are classified based on their intrinsic dissolution rate (IDR) and their intestinal permeabilities. IDR was determined by measuring the dissolution of a non-disintegrating disk of drug, and effective intestinal permeability of tested drugs in rat jejunum was determined using single perfusion technique. The obtained intrinsic dissolution rate values were in the range of 0.035-56.8 mg/min/cm(2) for tested drugs. The minimum and maximum intestinal permeabilities in rat intestine were determined to be 1.6 x 10(-5) and 2 x 10(-4)cm/s, respectively. Four classes of drugs were defined: Category I: P(eff,rat)>5 x 10(-5) (cm/s) or P(eff,human)>4.7 x 10(-5) (cm/s), IDR>1(mg/min/cm(2)), Category II: P(eff,rat)>5 x 10(-5) (cm/s) or P(eff,human)>4.7 x 10(-5) (cm/s), IDR<1(mg/min/cm(2)), Category III: P(eff,rat)<5 x 10(-5) (cm/s) or P(eff,human)<4.7 x 10(-5) (cm/s), IDR>1 (mg/min/cm(2)) and Category IV: P(eff,rat)<5 x 10(-5) (cm/s) or P(eff,human)<4.7 x 10(-5) (cm/s), IDR<1(mg/min/cm(2)). According to the results obtained and proposed classification of drugs, it is concluded that drugs could be categorized correctly based on their IDR and intestinal permeability values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onoda, Masashige, E-mail: onoda.masashige.ft@u.tsukuba.ac.jp; Inagaki, Makoto; Saito, Hiroaki
2014-11-15
For the Li{sub 9}V{sub 3}(P{sub 2}O{sub 7}){sub 3}(PO{sub 4}){sub 2} insertion electrode system with a multiple-electron reaction, the over-lithiated phase Li{sub x}V{sub 3}(P{sub 2}O{sub 7}){sub 3}(PO{sub 4}){sub 2} with 99) and Li{sub 9−y}Ag{sub y}V{sub 3}(P{sub 2}O{sub 7}){sub 3}(PO{sub 4}){sub 2} (0
Aaltonen, T; Álvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bauer, G; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Bentivegna, M; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Brisuda, A; Bromberg, C; Brucken, E; Bucciantonio, M; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; De Cecco, S; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Funakoshi, Y; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hidas, D; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirby, M; Klimenko, S; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lecompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, Q; Liu, T; Lockwitz, S; Lockyer, N S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Prokoshin, F; Pronko, A; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Rao, K; Redondo, I; Renton, P; Rescigno, M; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rubbo, F; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sartori, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shreyber, I; Simonenko, A; Sinervo, P; Sissakian, A; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Somalwar, S; Sorin, V; Squillacioti, P; Stancari, M; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Tu, Y; Ukegawa, F; Uozumi, S; Varganov, A; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamaoka, J; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zucchelli, S
2011-11-04
We present a search for a new particle T' decaying to a top quark via T' → t + X, where X goes undetected. We use a data sample corresponding to 5.7 fb(-1) of integrated luminosity of p p collisions with sqrt[s] = 1.96 TeV, collected at Fermilab Tevatron by the CDF II detector. Our search for pair production of T' is focused on the hadronic decay channel, pp → T'T' → tt + XX → bqq b qq + XX. We interpret our results in terms of a model where T' is an exotic fourth generation quark and X is a dark matter particle. The data are consistent with standard model expectations. We set a limit on the generic production of T'T' → tt + XX, excluding the fourth generation exotic quarks T' at 95% confidence level up to m(T') = 400 GeV/c(2) for m(X) ≤ 70 GeV/c(2).
Weng, Ju-Yun; Hsu, Tsan-Ting; Sun, Synthia H
2008-05-15
A physiological concentration of extracellular ATP stimulated biphasic Ca(2+) signal, and the Ca(2+) transient was decreased and the Ca(2+) sustain was eliminated immediately after removal of ATP and Ca(2+) in RBA-2 astrocytes. Reintroduction of Ca(2+) induced Ca(2+) sustain. Stimulation of P2Y(1) receptors with 2-methylthioadenosine 5'-diphosphate (2MeSADP) also induced a biphasic Ca(2+) signaling and the Ca(2+) sustains were eliminated using Ca(2+)-free buffer. The 2MeSADP-mediated biphasic Ca(2+) signals were inhibited by phospholipase C (PLC) inhibitor U73122, and completely blocked by P2Y(1) selective antagonist MRS2179 and protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) whereas enhanced by PKC inhibitors GF109203X and Go6979. Inhibition of capacitative Ca(2+) entry (CCE) decreased the Ca(2+)-induced Ca(2+) entry; nevertheless, ATP further enhanced the Ca(2+)-induced Ca(2+) entry in the intracellular Ca(2+) store-emptied and CCE-inhibited cells indicating that ATP stimulated Ca(2+) entry via CCE and ionotropic P2X receptors. Furthermore, the 2MeSADP-induced Ca(2+) sustain was eliminated by apyrase but potentiated by P2X(4) allosteric effector ivermectin (IVM). The agonist ADPbetaS stimulated a lesser P2Y(1)-mediated Ca(2+) signal and caused a two-fold increase in ATP release but that were not affected by IVM whereas inhibited by PMA, PLC inhibitor ET-18-OCH(3) and phospholipase D (PLD) inhibitor D609, and enhanced by removal of intra- or extracellular Ca(2+). Taken together, the P2Y(1)-mediated Ca(2+) sustain was at least in part via P2X receptors activated by the P2Y(1)-induced ATP release, and PKC played a pivotal role in desensitization of P2Y(1) receptors in RBA-2 astrocytes. Copyright 2007 Wiley-Liss, Inc.
Rankin, Matthew A; MacLean, Darren F; Schatte, Gabriele; McDonald, Robert; Stradiotto, Mark
2007-12-26
Treatment of Cp*RuCl(kappa2-P,N-2b) (2b = 2-NMe2-3-PiPr2-indene) with TlSO3CF3 produced the cyclometalated complex [4]+SO3CF3- in 94% isolated yield. Exposure of [4]+X- (X = B(C6F5)4 or SO3CF3) to Ph2SiH2 (10 equiv) or PhSiH3 afforded the corresponding [Cp*(mu-P,N-2b)(H)2Ru=SiRPh]+X- complexes, [5]+X- (R = Ph; X = B(C6F5)4, 82%; X = SO3CF3, 39%) and [6]+X- (R = H; X = B(C6F5)4, 94%; X = SO3CF3, 95%). Notably, these transformations represent the first documented examples of Ru-mediated silylene extrusion via double geminal Si-H bond activation of an organosilane-a key step in the recently proposed Glaser-Tilley (G-T) alkene hydrosilylation mechanism. Treatment of [5]+B(C6F5)4- with KN(SiMe3)2 or [6]+SO3CF3- with NaN(SiMe3)2 afforded the corresponding zwitterionic Cp*(mu-2-NMe2-3-PiPr2-indenide)(H)2Ru=SiRPh complex in 69% (R = Ph, 7) or 86% (R = H, 8) isolated yield. Both [6]+X- and 8 proved unreactive toward 1-hexene and styrene and provided negligible catalytic turnover in the attempted metal-mediated hydrosilylation of these substrates with PhSiH3, thereby providing further empirical evidence for the required intermediacy of base-free Ru=Si species in the G-T mechanism. Isomerization of the P,N-indene ligand backbone in [6]+X-, giving rise to [Cp*(mu-1-PiPr2-2-NMe2-indene)(H)2Ru=SiHPh]+X- ([9]+X-), was observed. In the case of [9]+SO3CF3-, net intramolecular addition of the Ru=Si-H group across the styrene-like C=C unit within the ligand backbone to give 10 (96% isolated yield) was observed. Crystallographic characterization data are provided for [4]+X-, [5]+X-, [6]+X-, 8, and 10.
McGaraughty, Steve; Honore, Prisca; Wismer, Carol T; Mikusa, Joseph; Zhu, Chang Z; McDonald, Heath A; Bianchi, Bruce; Faltynek, Connie R; Jarvis, Michael F
2005-09-01
P2X3/P2X2/3 receptors have emerged as important components of nociception. However, there is limited information regarding the neurochemical systems that are affected by antagonism of the P2X3/P2X2/3 receptor and that ultimately contribute to the ensuing antinociception. In order to determine if the endogenous opioid system is involved in this antinociception, naloxone was administered just prior to the injection of a selective P2X3/P2X2/3 receptor antagonist, A-317491, in rat models of neuropathic, chemogenic, and inflammatory pain. Naloxone (1-10 mg kg(-1), i.p.), dose-dependently reduced the antinociceptive effects of A-317491 (1-300 micromol kg(-1), s.c.) in the CFA model of thermal hyperalgesia and the formalin model of chemogenic pain (2nd phase), but not in the L5-L6 spinal nerve ligation model of neuropathic allodynia. In comparison experiments, the same doses of naloxone blocked or attenuated the actions of morphine (2 or 8 mg kg(-1), s.c.) in each of these behavioral models. Injection of a peripheral opioid antagonist, naloxone methiodide (10 mg kg(-1), i.p.), did not affect A-317491-induced antinociception in the CFA and formalin assays, suggesting that the opioid component of this antinociception occurred within the CNS. Furthermore, this utilization of the central opioid system could be initiated by antagonism of spinal P2X3/P2X2/3 receptors since the antinociceptive actions of intrathecally delivered A-317491 (30 nmol) in the formalin model were reduced by both intrathecally (10-50 nmol) and systemically (10 mg kg(-1), i.p.) administered naloxone. This utilization of the opioid system was not specific to A-317491 since suramin-, a nonselective P2X receptor antagonist, induced antinociception was also attenuated by naloxone. In in vitro studies, A-317491 (3-100 microM) did not produce any agonist response at delta opioid receptors expressed in NG108-15 cells. A-317491 had been previously shown to be inactive at the kappa and mu opioid receptors. Furthermore, naloxone, at concentrations up to 1 mM, did not compete for [3H] A-317491 binding in 1321N1 cells expressing human P2X3 receptors. Taken together, these results indicate that antagonism of spinal P2X3/P2X2/3 receptors results in an indirect activation of the opioid system to alleviate inflammatory hyperalgesia and chemogenic nociception.
Sung, Kie-Moon; Holm, R H
2002-04-24
The recent development of structural and functional analogues of the DMSO reductase family of isoenzymes allows mechanistic examination of the minimal oxygen atom transfer paradigm M(IV) + QO M(VI) O + Q with the biological metals M = Mo and W. Systematic variation of the electronic environment at the WIV center of desoxo bis(dithiolene) complexes is enabled by introduction of para-substituted phenyl groups in the equatorial (eq) dithiolene ligand and the axial (ax) phenolate ligand. The compounds [W(CO)2(S2C2(C6H4-p-X)2)2] (54-60%) have been prepared by ligand transfer from [Ni(S2C2(C6H4-p-X)2)2] to [W(CO)3(MeCN)3]. A series of 25 complexes [W(IV)(OC6H4-p-X')(S2C2(C6H4-p-X)2)2]1- ([X4,X'], X = Br, F, H, Me, OMe; X' = CN, Br, H, Me, NH2; 41-53%) has been obtained by ligand substitution of five dicarbonyl complexes with five phenolate ligands. Linear free energy relationships between E1/2 and Hammett constant p for the electron-transfer series [Ni(S2C2(C6H4-p-X)2)2]0,1-,2- and [W(CO)2(S2C2(C6H4-p-X)2)2]0,1-,2- demonstrate a substituent influence on electron density distribution at the metal center. The reactions [WIV(OC6H4-p-X')(S2C2(C6H4-p-X)2)2]1- + (CH2)4SO [W(VI)O(OC6H4-p-X')(S2C2(C6H4-p-X)2)2]1- + (CH2)4S with constant substrate are second order with large negative activation entropies indicative of an associative transition state. Rate constants at 298 K adhere to the Hammett equations log(k([X4,X']/k[X4,H]) = rho(ax)sigma(p) and log(k[X4,X']/k([H4,X']) = 4rho(eq)sigma(p). Electron-withdrawing groups (EWG) and electron-donating groups (EDG) have opposite effects on the rate such that k(EWG) > k(EDG). The effects of X' on reactivity are found to be approximately 5 times greater than that of X (rho(ax) = 2.1, rho(eq) = 0.44) in the Hammett equation. Using these and other findings, a stepwise oxo transfer reaction pathway is proposed in which an early transition state, of primary W(IV)-O(substrate) bond-making character, is rate-limiting. This is followed by a six-coordinate substrate complex and a second transition state proposed to involve atom and electron transfer leading to the development of the W(VI)=O group. This work is the most detailed mechanistic investigation of oxo transfer mediated by a biological metal.
Activation and Regulation of Purinergic P2X Receptor Channels
Coddou, Claudio; Yan, Zonghe; Obsil, Tomas; Huidobro-Toro, J. Pablo
2011-01-01
Mammalian ATP-gated nonselective cation channels (P2XRs) can be composed of seven possible subunits, denoted P2X1 to P2X7. Each subunit contains a large ectodomain, two transmembrane domains, and intracellular N and C termini. Functional P2XRs are organized as homomeric and heteromeric trimers. This review focuses on the binding sites involved in the activation (orthosteric) and regulation (allosteric) of P2XRs. The ectodomains contain three ATP binding sites, presumably located between neighboring subunits and formed by highly conserved residues. The detection and coordination of three ATP phosphate residues by positively charged amino acids are likely to play a dominant role in determining agonist potency, whereas an AsnPheArg motif may contribute to binding by coordinating the adenine ring. Nonconserved ectodomain histidines provide the binding sites for trace metals, divalent cations, and protons. The transmembrane domains account not only for the formation of the channel pore but also for the binding of ivermectin (a specific P2X4R allosteric regulator) and alcohols. The N- and C- domains provide the structures that determine the kinetics of receptor desensitization and/or pore dilation and are critical for the regulation of receptor functions by intracellular messengers, kinases, reactive oxygen species and mercury. The recent publication of the crystal structure of the zebrafish P2X4.1R in a closed state provides a major advance in the understanding of this family of receptor channels. We will discuss data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions. PMID:21737531
SEARCH FOR GAMMA-RAY EMISSION FROM X-RAY-SELECTED SEYFERT GALAXIES WITH FERMI-LAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, M.; Ajello, M.; Allafort, A.
We report on a systematic investigation of the {gamma}-ray properties of 120 hard X-ray-selected Seyfert galaxies classified as 'radio-quiet' objects, utilizing the three-year accumulation of Fermi Large Area Telescope (LAT) data. Our sample of Seyfert galaxies is selected using the Swift Burst Alert Telescope 58 month catalog, restricting the analysis to the bright sources with average hard X-ray fluxes F{sub 14-195keV} {>=} 2.5 Multiplication-Sign 10{sup -11} erg cm{sup -2} s{sup -1} at high Galactic latitudes (|b| > 10 Degree-Sign ). In order to remove 'radio-loud' objects from the sample, we use the 'hard X-ray radio loudness parameter', R{sub rX}, definedmore » as the ratio of the total 1.4 GHz radio to 14-195 keV hard X-ray energy fluxes. Among 120 X-ray bright Seyfert galaxies with R{sub rX} <10{sup -4}, we did not find a statistically significant {gamma}-ray excess (TS > 25) positionally coincident with any target Seyferts, with possible exceptions of ESO 323-G077 and NGC 6814. The mean value of the 95% confidence level {gamma}-ray upper limit for the integrated photon flux above 100 MeV from the analyzed Seyferts is {approx_equal} 4 Multiplication-Sign 10{sup -9} photons cm{sup -2} s{sup -1} , and the upper limits derived for several objects reach {approx_equal} 1 Multiplication-Sign 10{sup -9} photons cm{sup -2} s{sup -1} . Our results indicate that no prominent {gamma}-ray emission component related to active galactic nucleus activity is present in the spectra of Seyferts around GeV energies. The Fermi-LAT upper limits derived for our sample probe the ratio of {gamma}-ray to X-ray luminosities L{sub {gamma}}/L{sub X} < 0.1, and even <0.01 in some cases. The obtained results impose novel constraints on the models for high-energy radiation of 'radio-quiet' Seyfert galaxies.« less
Modulation of CYPs, P-gp, and PXR by Eschscholzia californica (California Poppy) and Its Alkaloids.
Manda, Vamshi K; Ibrahim, Mohamed A; Dale, Olivia R; Kumarihamy, Mallika; Cutler, Stephen J; Khan, Ikhlas A; Walker, Larry A; Muhammad, Ilias; Khan, Shabana I
2016-04-01
Eschscholzia californica, a native US plant, is traditionally used as a sedative, analgesic, and anxiolytic herb. With the rapid rise in the use of herbal supplements together with over-the-counter and prescription drugs, the risk for potential herb-drug interactions is also increasing. Most of the clinically relevant pharmacokinetic drug interactions occur due to modulation of cytochrome P450 enzymes (CYPs), P-glycoprotein, and the pregnane X receptor by concomitantly used herbs. This study aimed to determine the effects of an EtOH extract, aqueous extract (tea), basic CHCl3 fractions, and isolated major alkaloids, namely protopine (1), escholtzine (2), allocryptopine (3), and californidine (4), of E. californica on the activity of cytochrome P450s, P-glycoprotein and the pregnane X receptor. The EtOH extract and fractions showed strong time-dependent inhibition of CYP 3A4, CYP 2C9, and CYP 2C19, and reversible inhibition of CYP 2D6. Among the alkaloids, escholtzine (2) and allocryptopine (3) exhibited time-dependent inhibition of CYP 3A4, CYP 2C9, and CYP 2C19 (IC50 shift ratio > 2), while protopine (1) and allocryptopine (3) showed reversible inhibition of CYP 2D6 enzyme. A significant activation of the pregnane X receptor (> 2-fold) was observed with the EtOH extract, basic CHCl3 fraction, and alkaloids (except protopine), which resulted into an increased expression of mRNA and the activity of CYP 3A4 and CYP 1A2. The expression of P-glycoprotein was unaffected. However, aqueous extract (tea) and its main alkaloid californidine (4) did not affect cytochrome P450s, P-glycoprotein, or the pregnane X receptor. This data suggests that EtOH extract of E. californica and its major alkaloids have a potential of causing interactions with drugs that are metabolized by cytochrome P450s, while the tea seems to be safer. Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Zhao, Sha; Zhang, Zhena; Zhu, Kongying; Chen, Jixiang
2017-05-01
A series of Ni2P/AlMCM-41-x bifunctional catalysts with different Si/Al ratios (x) were synthesized by in situ phosphorization of Ni/AlMCM-41-x with triphenylphosphine (nominal Ni/P ratio of 0.75) at 300 °C on a fixed-bed reactor. For comparison, NiP/AlMCM-41-5-TPR was also prepared by the TPR method from the supported nickel phosphate with the Ni/P ratio of 1.0, during which metallic Ni rather than Ni2P formed. TEM images show that Ni and Ni2P particles uniformly distributed in Ni2P/AlMCM-41-x and NiP/AlMCM-41-5-TPR. The Ni2P/AlMCM-41-x acidity increased with decreasing the Si/Al ratio. In the hydroconversion of methyl laurate, the conversions were close to 100% on all catalysts at 360 °C, 3.0 MPa, methyl laurate WHSV of 2 h-1 and H2/methyl laurate ratio of 25. As to Ni2P/AlMCM-41-x, with decreasing the Si/Al ratio, the total selectivity to C11 and C12 hydrocarbons decreased, while the total selectivity to isoundecane and isododecane (Si-C11+i-C12) firstly increased and then decreased. Ni2P/AlMCM-41-5 gave the largest Si-C11+i-C12 of 43.2%. While NiP/AlMCM-41-5-TPR gave higher Si-C11+i-C12 than Ni2P/AlMCM-41-5, it was more active for the undesired Csbnd C bond cleavage and methanation. We propose that the in-situ phosphorization adopted here is a promising approach to preparing Ni2P-based bifunctional catalysts.
Yang, Chunyan; Sun, Yingying; Li, Xinjie; Li, Cheng; Tong, Junfeng; Li, Jianfeng; Zhang, Peng; Xia, Yangjun
2018-06-20
It has been reported that the performance of bulk heterojunction organic solar cells can be improved by incorporation of nano-heterostructures of metals, semiconductors, and dielectric materials in the active layer. In this manuscript, CdS or Sb 2 S 3 nanocrystals were in situ generated inside the poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid (P3HT:PC 61 BM) system by randomly mixing P3HT and PC 61 BM in the presence of cadmium or antimony xanthate precursor. Hybrid solar cells (HSCs) with the configurations of tin-doped indium oxide substrate (ITO)/CdS interface layer/P3HT:PC 61 BM: x wt.% CdS/MoO 3 /Ag and ITO/CdS interface layer /P3HT:PC 61 BM: x wt.% Sb 2 S 3 /MoO 3 /Ag were fabricated. Hybrid active layers (P3HT:PC 61 BM: x wt.% CdS or P3HT:PC 61 BM: x wt.% Sb 2 S 3 ) were formed completely by thermally annealing the film resulting in the decomposition of the cadmium or antimony xanthate precursor to CdS or Sb 2 S 3 nanocrystals, respectively. The effects of x wt.% CdS (or Sb 2 S 3 ) nanocrystals on the performance of the HSCs were studied. From UV-Vis absorption, hole mobilities, and surface morphological characterizations, it has been proved that incorporation of 3 wt.% CdS (or Sb 2 S 3 ) nanocrystals in the active layer of P3HT:PC 61 BM-based solar cells improved the optical absorption, the hole mobility, and surface roughness in comparison with P3HT:PC 61 BM-based solar cells, thus resulting in the improved power conversion efficiencies (PCEs) of the devices.
Total energy expenditure in adults with cerebral palsy as assessed by doubly labeled water.
Johnson, R K; Hildreth, H G; Contompasis, S H; Goran, M I
1997-09-01
To characterize total energy expenditure (TEE) in free-living adults with cerebral palsy (CP) using the doubly labeled water technique, and to determine those physiologic variables and characteristics of CP that were markers of TEE in adults with CP. TEE was measured using the doubly labeled water technique in 30 free-living adults with CP (12 women, 18 men). To determine the best markers of TEE, the following factors were examined: CP status, resting metabolic rate (RMR), anthropometric characteristics and body composition by means of dual-energy x-ray absorptiometry (DXA) and skinfold thickness measurements, energy cost of leisure-time activities, and oral-motor impairment. Means +/- standard deviations, t tests, Pearson product-moment correlation coefficients, Spearman rank correlation coefficients, chi 2, stepwise multiple-correlation regression analysis, and analysis of covariance were used to examine the relationships among variables of interest. TEE was highly variable in the sample (mean = 2,455 +/- 622 kcal/day for men and 1,986 +/- 363 kcal/day for women). Stepwise regression analysis showed that TEE was best predicted in the sample by RMR, percentage body fat determined by DXA, ambulation status, and sex (multiple R = .68, P = .003). When practical, easily measured variables were used, TEE was best predicted by height, ambulation status, percentage body fat by skinfold thickness measurements, and sex (multiple R = .61, P. = 018). The contribution of energy expended in physical activity to TEE was significantly higher in the ambulatory subjects than the nonambulatory subjects (25% vs 16%, respectively; P = .009). The high degree of variability in TEE, largely attributable to high interindividual variation in energy expended in physical activity, makes it difficult to provide general guidelines for energy requirements for adults with CP. Because ambulation status was an important predictor of TEE, it must be accounted for in estimating energy requirements in this population.
Pilkington, Rhiannon; Taylor, Anne W; Hugo, Graeme; Wittert, Gary
2014-01-01
To determine differences in sociodemographic and health related characteristics of Australian Baby Boomers and Generation X at the same relative age. The 1989/90 National Health Survey (NHS) for Boomers (1946-1965) and the 2007/08 NHS for Generation Xers (1966-1980) was used to compare the cohorts at the same age of 25-44 years. Generational differences for males and females in education, employment, smoking, physical activity, Body Mass Index (BMI), self-rated health, and diabetes were determined using Z tests. Prevalence estimates and p-values are reported. Logistic regression models examining overweight/obesity (BMI≥25) and diabetes prevalence as the dependent variables, with generation as the independent variable were adjusted for sex, age, education, physical activity, smoking and BMI(diabetes model only). Adjusted odds ratios (OR) and 95% confidence intervals are reported. At the same age, tertiary educational attainment was higher among Generation X males (27.6% vs. 15.2% p<0.001) and females (30.0% vs. 10.6% p<0.001). Boomer females had a higher rate of unemployment (5.6% vs. 2.5% p<0.001). Boomer males and females had a higher prevalence of "excellent" self-reported health (35.9% vs. 21.8% p<0.001; 36.3% vs. 25.1% p<0.001) and smoking (36.3% vs. 30.4% p<0.001; 28.3% vs. 22.3% p<0.001). Generation X males (18.3% vs. 9.4% p<0.001) and females (12.7% vs. 10.4% p = 0.015) demonstrated a higher prevalence of obesity (BMI>30). There were no differences in physical activity. Modelling indicated that Generation X were more likely than Boomers to be overweight/obese (OR:2.09, 1.77-2.46) and have diabetes (OR:1.79, 1.47-2.18). Self-rated health has deteriorated while obesity and diabetes prevalence has increased. This may impact workforce participation and health care utilization in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawyer, J.R.; North, P.E.; Hassed, S.J.
1997-04-14
We describe the cytogenetic evolution of multiple cell lines in the gonadal tissue of a 10-year-old girl with mosaic Ullrich-Turner syndrome (UTS) involving clonal telomeric associations (tas) of the Y chromosome. G-band analysis of all tissues showed at least 2 cell lines; 45,X and 46,X,tas(Y;21)(q12;p13). However, analysis of left gonadal tissue of this patient showed the evolution of 2 additional cell lines, one designated 45,X,tas(Y;21)(q12;p13),-22 and the other 46,X,tas(Y;21)(q12;p13),+tas(Y;14)(q12;p13),-22. Fluorescence in situ hybridization (FISH) analysis of interphase nuclei from uncultured gonadal tissue confirmed the findings of aneuploidy in the left gonadal tissue and extended the findings of aneuploidy to themore » tissue of the right gonad. The chromosome findings in the gonadal tissue of this patient suggest a preneoplastic karyotype relating to several distinct tumor associations. The clonal evolution of telomeric fusions indicates chromosome instability and suggests the extra copy of the Y chromosome may have resulted from a fusion-related malsegregation. In addition, the extra Y suggests low-level amplification of a putative gonadoblastoma gene, while the loss of chromosome 22 suggests the loss of heterozygosity for genes on chromosome 22. This case demonstrates the utility of the study of gonadal tissue in 45X46,XY UTS patients, and provides evidence that clonal telomeric fusions may, in rare cases, be associated with chromosomal malsegregation and with the subsequent evolution of unstable karyotypes. 27 refs., 3 figs.« less
P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions
Giroud, Charline; Marin, Mariana; Hammonds, Jason; Spearman, Paul
2015-01-01
ABSTRACT HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. IMPORTANCE Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1 receptor antagonist, NF279, is due to the blocking of virus interactions with both the CXCR4 and CCR5 coreceptors. The ability of NF279 to abrogate cellular calcium signaling induced by the respective chemokines showed that this compound acts as a dual-coreceptor antagonist. P2X1 receptor antagonists could thus represent a new class of dual-coreceptor inhibitors with a structure and a mechanism of action that are distinct from those of known HIV-1 coreceptor antagonists. PMID:26136569
P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions.
Giroud, Charline; Marin, Mariana; Hammonds, Jason; Spearman, Paul; Melikyan, Gregory B
2015-09-01
HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1 receptor antagonist, NF279, is due to the blocking of virus interactions with both the CXCR4 and CCR5 coreceptors. The ability of NF279 to abrogate cellular calcium signaling induced by the respective chemokines showed that this compound acts as a dual-coreceptor antagonist. P2X1 receptor antagonists could thus represent a new class of dual-coreceptor inhibitors with a structure and a mechanism of action that are distinct from those of known HIV-1 coreceptor antagonists. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Psychological impact of sports activity in spinal cord injury patients.
Gioia, M C; Cerasa, A; Di Lucente, L; Brunelli, S; Castellano, V; Traballesi, M
2006-12-01
To investigate whether sports activity is associated with better psychological profiles in patients with spinal cord injury (SCI) and to evaluate the effect of demographic factors on psychological benefits. The State-Trait Anxiety Inventory, Form X2 (STAI-X2), the Eysenck Personality Questionnaire for extraversion (EPQ-R (E)) and the questionnaire for depression (QD) were administered in a cross-sectional study of 137 males with spinal cord injury including 52 tetraplegics and 85 paraplegics. The subjects were divided into two groups according to sports activity participation (high frequency vs no sports participation). Moreover, multiple regression analysis was adopted to investigate the influence of demographic variables, such as age, educational level, occupational status and marital status, on psychological variables. Analysis of variance revealed significant differences among the groups for anxiety (STAI-X2), extraversion (EPQ-R (E)) and depression (QD). In particular, SCI patients who did not practice sports showed higher anxiety and depression scores and lower extraversion scores than sports participants. In addition, with respect to the paraplegics, the tetraplegic group showed the lowest depression scores. Following multiple regression analysis, only the sports activity factor remained as an independent factor of anxiety scores. These findings demonstrate that sports activity is associated with better psychological status in SCI patients, irrespective of tetraplegia and paraplegia, and that psychological benefits are not emphasized by demographic factors.
Lack of chemopreventive effects of P2X7R inhibitors against pancreatic cancer
Mohammed, Altaf; Janakiram, Naveena B.; Madka, Venkateshwar; Pathuri, Gopal; Li, Qian; Ritchie, Rebekah; Biddick, Laura; Kutche, Hannah; Zhang, Yuting; Singh, Anil; Gali, Hariprasad; Lightfoot, Stan; Steele, Vernon E.; Suen, Chen S.; Rao, Chinthalapally V.
2017-01-01
Pancreatic cancer (PC) is an almost uniformly lethal disease with inflammation playing an important role in its progression. Sustained stimulation of purinergic receptor P2X7 drives induction of NLRP inflammasome activation. To understand the role of P2X7 receptor and inflammasome, we performed transcriptomic analysis of p48Cre/+-LSL-KrasG12D/+ mice pancreatic tumors by next generation sequencing. Results showed that P2X7R's key inflammasome components, IL-1β and caspase-1 are highly expressed (p < 0.05) in pancreatic tumors. Hence, to target P2X7R, we tested effects of two P2X7R antagonists, A438079 and AZ10606120, on pancreatic intraepithelial neoplasms (PanINs) and their progression to PC in p48Cre/+-LSL-KrasG12D/+ mice. Following dose optimization studies, for chemoprevention efficacy, six-week-old p48Cre/+-LSL-KrasG12D/+ mice (24–36/group) were fed modified AIN-76A diets containing 0, 50 or 100 ppm A438079 and AZ10606120 for 38 weeks. Pancreata were collected, weighed, and evaluated for PanINs and PDAC. Control diet-fed male mice showed 50% PDAC incidence. Dietary A438079 and AZ10606120 showed 60% PDAC incidence. A marginal increase of PanIN 3 (carcinoma in-situ) was observed in drug-treated mice. Importantly, the carcinoma spread in untreated mice was 24% compared to 43–53% in treatment groups. Reduced survival rates were observed in mice exposed to P2X7R inhibitors. Both drugs showed a decrease in caspase-3, caspase-1, p21 and Cdc25c. Dietary A438079 showed modest inhibition of P2X7R, NLRP3, and IL-33, whereas AZ10606120 had no effects. In summary, targeting the P2X7R pathway by A438079 and AZ10606120 failed to show chemopreventive effects against PC and slightly enhanced PanIN progression to PDAC. Hence, caution is needed while treating high-risk individuals with P2X7R inhibitors. PMID:29228654
ATP-activated P2X2 current in mouse spermatozoa
Navarro, Betsy; Miki, Kiyoshi; Clapham, David E.
2011-01-01
Sperm cells acquire hyperactivated motility as they ascend the female reproductive tract, which enables them to overcome barriers and penetrate the cumulus and zona pellucida surrounding the egg. This enhanced motility requires Ca2+ entry via cation channel of sperm (CatSper) Ca2+-selective ion channels in the sperm tail. Ca2+ entry via CatSper is enhanced by the membrane hyperpolarization mediated by Slo3, a K+ channel also present in the sperm tail. To date, no transmitter-mediated currents have been reported in sperm and no currents have been detected in the head or midpiece of mature spermatozoa. We screened a number of neurotransmitters and biomolecules to examine their ability to induce ion channel currents in the whole spermatozoa. Surprisingly, we find that none of the previously reported neurotransmitter receptors detected by antibodies alone are functional in mouse spermatozoa. Instead, we find that mouse spermatozoa have a cation-nonselective current in the midpiece of spermatozoa that is activated by external ATP, consistent with an ATP-mediated increase in intracellular Ca2+ as previously reported. The ATP-dependent current is not detected in mice lacking the P2X2 receptor gene (P2rx2−/−). Furthermore, the slowly desensitizing and strongly outwardly rectifying ATP-gated current has the biophysical and pharmacological properties that mimic heterologously expressed mouse P2X2. We conclude that the ATP-induced current on mouse spermatozoa is mediated by the P2X2 purinergic receptor/channel. Despite the loss of ATP-gated current, P2rx2−/− spermatozoa have normal progressive motility, hyperactivated motility, and acrosome reactions. However, fertility of P2rx2−/− males declines with frequent mating over days, suggesting that P2X2 receptor adds a selection advantage under these conditions. PMID:21831833
X-ray structures define human P2X(3) receptor gating cycle and antagonist action.
Mansoor, Steven E; Lü, Wei; Oosterheert, Wout; Shekhar, Mrinal; Tajkhorshid, Emad; Gouaux, Eric
2016-10-06
P2X receptors are trimeric, non-selective cation channels activated by ATP that have important roles in the cardiovascular, neuronal and immune systems. Despite their central function in human physiology and although they are potential targets of therapeutic agents, there are no structures of human P2X receptors. The mechanisms of receptor desensitization and ion permeation, principles of antagonism, and complete structures of the pore-forming transmembrane domains of these receptors remain unclear. Here we report X-ray crystal structures of the human P2X 3 receptor in apo/resting, agonist-bound/open-pore, agonist-bound/closed-pore/desensitized and antagonist-bound/closed states. The open state structure harbours an intracellular motif we term the 'cytoplasmic cap', which stabilizes the open state of the ion channel pore and creates lateral, phospholipid-lined cytoplasmic fenestrations for water and ion egress. The competitive antagonists TNP-ATP and A-317491 stabilize the apo/resting state and reveal the interactions responsible for competitive inhibition. These structures illuminate the conformational rearrangements that underlie P2X receptor gating and provide a foundation for the development of new pharmacological agents.
Kaufmann, Kai B.; Al-Rifai, Nafisah; Ulbrich, Felix; Schallner, Nils; Rücker, Hannelore; Enzinger, Monika; Petkes, Hermina; Pitzl, Sebastian
2015-01-01
Cell protection against different noxious stimuli like oxidative stress or chemical toxins plays a central role in the treatment of many diseases. The inducible heme oxygenase isoform, heme oxygenase-1 (HO-1), is known to protect cells against a variety of harmful conditions including apoptosis. Because a number of medium strong electrophiles from a series of α-X-substituted 2’,3,4,4’-tetramethoxychalcones (α-X-TMCs, X = H, F, Cl, Br, I, CN, Me, p-NO2-C6H4, Ph, p-OMe-C6H4, NO2, CF3, COOEt, COOH) had proven to activate Nrf2 resulting in HO-1 induction and inhibit NF-κB downstream target genes, their protective effect against staurosporine induced apoptosis and reactive oxygen species (ROS) production was investigated. RAW264.7 macrophages treated with 19 different chalcones (15 α-X-TMCs, chalcone, 2’-hydroxychalcone, calythropsin and 2’-hydroxy-3,4,4’-trimethoxychalcone) prior to staurosporine treatment were analyzed for apoptosis and ROS production, as well as HO-1 protein expression and enzyme activity. Additionally, Nrf2 and NF-κB activity was assessed. We found that amongst all tested chalcones only E-α-(4-methoxyphenyl)-2’,3,4,4'-tetramethoxychalcone (E-α-p-OMe-C6H4-TMC) demonstrated a distinct, statistically significant antiapoptotic effect in a dose dependent manner, showing no toxic effects, while its double bond isomer Z-α-p-OMe-C6H4-TMC displayed no significant activity. Also, E-α-p-OMe-C6H4-TMC induced HO-1 protein expression and increased HO-1 activity, whilst inhibition of HO-1 by SnPP-IX abolished its antiapoptotic effect. The only weakly electrophilic chalcone E-α-p-OMe-C6H4-TMC reduced the staurosporine triggered formation of ROS, while inducing the translocation of Nrf2 into the nucleus. Furthermore, staurosporine induced NF-κB activity was attenuated following E-α-p-OMe-C6H4-TMC treatment. Overall, E-α-p-OMe-C6H4-TMC demonstrated its effective cytoprotective potential via a non-toxic induction of HO-1 in RAW264.7 macrophages. The observed cytoprotective effect may partly be related to both, the activation of the Nrf2- and inhibition of the NF-κB pathway. PMID:26565402
Identification of a small molecule that overcomes HdmX-mediated suppression of p53
Chakrabarti, Amit; Karan, Sukanya; Liu, Zhigang; Xia, Zhiqiang; Gundluru, Mahesh; Moreton, Stephen; Saunthararajah, Yogen; Jackson, Mark W; Agarwal, Mukesh K; Wald, David N
2016-01-01
Inactivation of the p53 tumor suppressor by mutation or overexpression of negative regulators occurs frequently in cancer. Since p53 plays a key role in regulating proliferation or apoptosis in response to DNA damaging chemotherapies, strategies aimed at reactivating p53 are increasingly being sought. Strategies to reactivate wild-type p53 include the use of small molecules capable of releasing wild-type p53 from key, cellular negative regulators, such as Hdm2 and HdmX. Derivatives of the Hdm2 antagonist Nutlin-3 are in clinical trials. However, Nutlin-3 specifically disrupts Hdm2-p53, leaving tumors harboring high levels of HdmX resistant to Nutlin-3 treatment. Here we identify CTX1, a novel small molecule that overcomes HdmX-mediated p53 repression. CTX1 binds directly to HdmX to prevent p53-HdmX complex formation, resulting in the rapidly induction of p53 in a DNA damage-independent manner. Treatment of a panel of cancer cells with CTX1 induced apoptosis or suppressed proliferation and importantly, CTX1 demonstrates promising activity as a single agent in a mouse model of circulating primary human leukemia. CTX1 is a small molecule HdmX inhibitor that demonstrates promise as a cancer therapeutic candidate. PMID:26883273
Saha, Manujendra N; Jiang, Hua; Mukai, Asuka; Chang, Hong
2010-11-01
Mutations or deletions of p53 are relatively rare in multiple myeloma (MM), at least in newly diagnosed patients. Thus, restoration of p53 tumor suppressor function in MM by blocking the inhibitory role of murine double minute 2 (MDM2) is a promising and applicable therapeutic strategy. RITA and nutlin are two new classes of small molecule MDM2 inhibitors that prevent the p53-MDM2 interaction. Earlier reports showed p53-dependent activity of RITA in solid tumors as well as in leukemias. We and others recently described nutlin-induced apoptosis in MM cells, but it remains unclear whether RITA exerts antimyeloma activity. Here, we found that RITA activates the p53 pathway and induces apoptosis in MM cell lines and primary MM samples, preferentially killing myeloma cells. The activation of p53 induced by RITA was mediated through modulation of multiple apoptotic regulatory proteins, including upregulation of a proapoptotic protein (NOXA), downregulation of an antiapoptotic protein, Mcl-1, and activation of caspases through extrinsic pathways. Moreover, a number of key p53-mediated apoptotic target genes were identified by gene expression profiling and further validated by quantitative real-time PCR. Importantly, the combination of RITA with nutlin displayed a strong synergism on growth inhibition with the combination index ranging from 0.56 to 0.82 in MM cells. Our data support further clinical evaluation of RITA as a potential novel therapeutic intervention in MM. ©2010 AACR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishiumi, Shin; Yabushita, Yoshiyuki; Furuyashiki, Takashi
2008-06-15
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has multiple toxic effects causing a wasting syndrome characterized by a loss of body weight accompanied by a decrease in adipose tissue weight. To elucidate the mechanism behind this syndrome, we investigated the changes in lipid metabolism 7 and 21 days after a single intraperitoneal injection of TCDD at 1 {mu}g/kg body weight to male guinea pigs. TCDD caused the symptoms of the syndrome, body weight loss with a decrease in adipose tissue weight, while it increased the levels of triacylglycerols, total cholesterols, and free fatty acids in plasma. On day 7, TCDD decreased the levels of CCAAT/enhancermore » binding protein (C/EBP) {alpha}, peroxisome proliferator activated receptor {gamma}, and glucose transporter 4, adipogenesis-related factors, in adipose tissue, whereas the levels of retinoid X receptor {alpha}, C/EBP{beta}, C/EBP{delta}, and c-Myc remained unchanged. TCDD also reduced the levels of both p125 precursor and p68 active forms of sterol regulatory element binding protein (SREBP)-1 and -2, the lypogenesis-related factors, and downregulated their DNA binding activity in adipose tissue, while it raised the levels of their p68 active forms and increased their DNA binding activity in the liver. TCDD decreased mRNA and protein levels of acetyl-CoA carboxylase and HMG-CoA synthase in the liver and adipose tissue. Similar results were obtained on day 21. These results suggest that TCDD disrupts lipid metabolism through changes in the expression levels of the adipogenesis-related and lipogenesis-related proteins in the liver and adipose tissue, and SREBPs would be involved in the development of the wasting syndrome.« less
Tomé, Angelo R; Castro, Enrique; Santos, Rosa M; Rosário, Luís M
2007-06-20
2-Methylthioadenosine 5'-triphosphate (2-MeSATP), formerly regarded as a specific P2Y (metabotropic) purinergic receptor agonist, stimulates Ca2+ influx and evokes catecholamine release from adrenal chromaffin cells. These cells express P2Y and P2X (ionotropic) purinoceptors, with the latter providing an important Ca2+ influx pathway. Using single cell calcium imaging techniques, we have determined whether 2-MeSATP might be a specific P2X receptor agonist in bovine chromaffin cells and assessed the relative role of P2X and P2Y receptors on catecholamine secretion from these cells. ATP raised the [Ca2+]i in ~50% of the cells. Removing extracellular Ca2+ suppressed the [Ca2+]i-raising ability of 2-MeSATP, observed in ~40% of the ATP-sensitive cells. This indicates that 2-MeSATP behaves as a specific ionotropic purinoceptor agonist in bovine chromaffin cells. The 2-MeSATP-induced [Ca2+]i-rises were suppressed by PPADS. UTP raised the [Ca2+]i in ~40% of the ATP-sensitive cells, indicating that these expressed Ca2+-mobilizing P2Y receptors. UTP-sensitive receptors may not be the only P2Y receptors present, as suggested by the observation that ~20% of the ATP-sensitive pool did not respond to either 2-MeSATP or UTP. The average sizes of the ATP- and 2-MeSATP-evoked [Ca2+]i responses were identical in UTP-insensitive cells. 2-MeSATP stimulated Ca2+ influx and evoked catecholamine release, whereas UTP elicited Ca2+ release from intracellular stores but did not evoke secretion. 2-MeSATP-induced secretion was strongly inhibited by Cd2+ and suppressed by extracellular Ca2+ or Na+ removal. TTX inhibited 2-MeSATP-evoked secretion by ~20%. 2-MeSATP is a specific P2X purinoceptor agonist and a potent secretagogue in bovine chromaffin cells. Activation of 2-MeSATP-sensitive receptors stimulates Ca2+ influx mainly via voltage-sensitive Ca2+ channels. For the most part, these are activated by the depolarization brought about by Na+ influx across P2X receptor pores.
Mosbah, Habib; Aissa, Imen; Hassad, Nahla; Farh, Dhaker; Bakhrouf, Amina; Achour, Sami
2016-07-01
To improve biomass production and glucoamylase activity (GA) by Candida famata, culture conditions were optimized. A 2(3) full factorial design (FFD) with a response surface model was used to evaluate the effects and interactions of pH (X1 ), time of cultivation (X2 ), and starch concentration (X3 ) on the biomass production and enzyme activity. A total of 16 experiments were conducted toward the construction of an empiric model and a first-order equation. It was found that all factors (X1 , X2 , and X3 ) and their interactions were significant at a certain confidence level (P < 0.05). Using this methodology, the optimum values of the three tested parameters were obtained as follows: pH 6; time of cultivation 24 H and starch concentration 7 g/L, respectively. Our results showed that the starch concentration (X3) has significantly influenced both dependent variables, biomass production and GA of C. famata. Under this optimized medium, the experimental biomass production and GA obtained were 1.8 ± 0.54 g/L and 0.078 ± 0.012 µmol/L/Min, about 1.5- and 1.8-fold, respectively, higher than those in basal medium. The (R(2) ) coefficients obtained were 0.997 and 0.990, indicating an adequate degree of reliability in the model. Approximately 99% of validity of the predicted value was achieved. © 2015 International Union of Biochemistry and Molecular Biology, Inc.
Cycloheximide: No Ordinary Bitter Stimulus
Hettinger, Thomas P.; Formaker, Bradley K.; Frank, Marion E.
2007-01-01
Cycloheximide (CyX), a toxic antibiotic with a unique chemical structure generated by the actinomycete, Streptomyces griseus, has emerged as a primary focus of studies on mammalian bitter taste. Rats and mice avoid it at concentrations well below the thresholds for most bitter stimuli and T2R G-protein-coupled receptors specific for CyX with appropriate sensitivity are identified for those species. Like mouse and rat, golden hamsters, Mesocricetus auratus, also detected and rejected micromolar levels of CyX, although 1 mM CyX failed to activate the hamster chorda tympani nerve. Hamsters showed an initial tolerance for 500 μM CyX, but after that, avoidance of CyX dramatically increased, plasticity not reported for rat or mouse. As the hamster lineage branches well before division of the mouse-rat lineage in evolutionary time, differences between hamster and mouse-rat reactions to CyX are not surprising. Furthermore, unlike hamster LiCl-induced learned aversions, the induced CyX aversion neither specifically nor robustly generalized to other non-ionic bitter stimuli; and unlike adverse reactions to other chemosensory stimuli, aversions to CyX were not mollified by adding a sweetener. Thus, CyX is unlike other bitter stimuli. The gene for the high-affinity CyX receptor is a member of a cluster of 5 orthologous T2R genes that are likely rodent specific; this “CyX clade” is found in the mouse, rat and probably hamster, but not in the human or rabbit genome. The rodent CyX-T2R interaction may be one of multiple lineage-specific stimulus-receptor interactions reflecting a response to a particular environmental toxin. The combination of T2R multiplicity, species divergence and gene duplication results in diverse ligands for multiple species-specific T2R receptors, which confounds definition of ‘bitter’ stimuli across species. PMID:17400304
Primitive ATP-activated P2X receptors: discovery, function and pharmacology
Fountain, Samuel J.
2013-01-01
Adenosine 5-triphosphate (ATP) is omnipresent in biology. It is therefore no surprise that organisms have evolved multifaceted roles for ATP, exploiting its abundance and restriction of passive diffusion across biological membranes. A striking role is the emergence of ATP as a bona fide transmitter molecule, whereby the movement of ATP across membranes serves as a chemical message through a direct ligand-receptor interaction. P2X receptors are ligand-gated ion channels that mediate fast responses to the transmitter ATP in mammalian cells including central and sensory neurons, vascular smooth muscle, endothelium, and leukocytes. Molecular cloning of P2X receptors and our understanding of structure-function relationships has provided sequence information with which to query an exponentially expanding wealth of genome sequence information including protist, early animal and human pathogen genomes. P2X receptors have now been cloned and characterized from a number of simple organisms. Such work has led to surprising new cellular roles for the P2X receptors family and an unusual phylogeny, with organisms such as Drosophila and C. elegans notably lacking P2X receptors despite retaining ionotropic receptors for other common transmitters that are present in mammals. This review will summarize current work on the evolutionary biology of P2X receptors and ATP as a signaling molecule, discuss what can be drawn from such studies when considering the action of ATP in higher animals and plants, and outline how simple organisms may be exploited experimentally to inform P2X receptor function in a wider context. PMID:24367292
Functional Properties of Five Dictyostelium discoideum P2X Receptors*
Baines, Abigail; Parkinson, Katie; Sim, Joan A.; Bragg, Laricia; Thompson, Christopher R. L.; North, R. Alan
2013-01-01
The Dictyostelium discoideum genome encodes five proteins that share weak sequence similarity with vertebrate P2X receptors. Unlike vertebrate P2X receptors, these proteins are not expressed on the surface of cells, but populate the tubules and bladders of the contractile vacuole. In this study, we expressed humanized cDNAs of P2XA, P2XB, P2XC, P2XD, and P2XE in human embryonic kidney cells and altered the ionic and proton environment in an attempt to reflect the situation in amoeba. Recording of whole-cell membrane currents showed that four receptors operated as ATP-gated channels (P2XA, P2XB, P2XD, and P2XE). At P2XA receptors, ATP was the only effective agonist of 17 structurally related putative ligands that were tested. Extracellular sodium, compared with potassium, strongly inhibited ATP responses in P2XB, P2XD, and P2XE receptors. Increasing the proton concentration (pH 6.2) accelerated desensitization at P2XA receptors and decreased currents at P2XD receptors, but increased the currents at P2XB and P2XE receptors. Dictyostelium lacking P2XA receptors showed impaired regulatory volume decrease in hypotonic solution. This phenotype was readily rescued by overexpression of P2XA and P2XD receptors, partially rescued by P2XB and P2XE receptors, and not rescued by P2XC receptors. The failure of the nonfunctional receptor P2XC to restore the regulatory volume decrease highlights the importance of ATP activation of P2X receptors for a normal response to hypo-osmotic shock, and the weak rescue by P2XB and P2XE receptors indicates that there is limited functional redundancy among Dictyostelium P2X receptors. PMID:23740252
Functional properties of five Dictyostelium discoideum P2X receptors.
Baines, Abigail; Parkinson, Katie; Sim, Joan A; Bragg, Laricia; Thompson, Christopher R L; North, R Alan
2013-07-19
The Dictyostelium discoideum genome encodes five proteins that share weak sequence similarity with vertebrate P2X receptors. Unlike vertebrate P2X receptors, these proteins are not expressed on the surface of cells, but populate the tubules and bladders of the contractile vacuole. In this study, we expressed humanized cDNAs of P2XA, P2XB, P2XC, P2XD, and P2XE in human embryonic kidney cells and altered the ionic and proton environment in an attempt to reflect the situation in amoeba. Recording of whole-cell membrane currents showed that four receptors operated as ATP-gated channels (P2XA, P2XB, P2XD, and P2XE). At P2XA receptors, ATP was the only effective agonist of 17 structurally related putative ligands that were tested. Extracellular sodium, compared with potassium, strongly inhibited ATP responses in P2XB, P2XD, and P2XE receptors. Increasing the proton concentration (pH 6.2) accelerated desensitization at P2XA receptors and decreased currents at P2XD receptors, but increased the currents at P2XB and P2XE receptors. Dictyostelium lacking P2XA receptors showed impaired regulatory volume decrease in hypotonic solution. This phenotype was readily rescued by overexpression of P2XA and P2XD receptors, partially rescued by P2XB and P2XE receptors, and not rescued by P2XC receptors. The failure of the nonfunctional receptor P2XC to restore the regulatory volume decrease highlights the importance of ATP activation of P2X receptors for a normal response to hypo-osmotic shock, and the weak rescue by P2XB and P2XE receptors indicates that there is limited functional redundancy among Dictyostelium P2X receptors.
Residual oxygen time model for oxygen partial pressure near 130 kPa (1.3 atm).
Shykoff, Barbara E
2015-01-01
A two-part residual oxygen time model predicts the probability of detectible pulmonary oxygen toxicity P(P[O2tox]) after dives with oxygen partial pressure (PO2) approximately 130 kPa, and provides a tool to plan dive series with selected risk of P[O2tox]. Data suggest that pulmonary oxygen injury at this PO2 is additive between dives. Recovery begins after a delay and continues during any following dive. A logistic relation expresses P(P[O2tox]) as a function of dive duration (T(dur)) [hours]: P(P[O2tox]) = 100/[1+exp (3.586-0.49 x T(dur))] This expression maps T(dur) to P(P[O2tox]) or, in the linear mid-portion of the curve, P(P[O2tox]) usefully to T(dur). For multiple dives or during recovery, it maps to an equivalent dive duration, T(eq). T(eq) was found after second dives of duration T(dur 2). Residual time from the first dive t(r) = T(eq) - T(dur2). With known t(r), t and T(dur) a recovery model was fitted. t(r) = T(dur) x exp [-k x((t-5)/T(dur)2], where t = t - 5 hours, k = 0.149 for resting, and 0.047 for exercising divers, and t represents time after surfacing. The fits were assessed for 1,352 man-dives. Standard deviations of the residuals were 8.5% and 18.3% probability for resting or exercise dives, respectively.
Huang, Bau-Lin; Brugger, Sean M; Lyons, Karen M
2010-09-03
CCN2/connective tissue growth factor is highly expressed in hypertrophic chondrocytes and is required for chondrogenesis. However, the transcriptional mechanisms controlling its expression in cartilage are largely unknown. The activity of the Ccn2 promoter was, therefore, investigated in osteochondro-progenitor cells and hypertrophic chondrocytes to ascertain these mechanisms. Sox9 and T-cell factor (TCF) x lymphoid enhancer factor (LEF) factors contain HMG domains and bind to related consensus sites. TCF x LEF factors are normally repressive but when bound to DNA in a complex with beta-catenin become activators of gene expression. In silico analysis of the Ccn2 proximal promoter identified multiple consensus TCF x LEF elements, one of which was also a consensus binding site for Sox9. Using luciferase reporter constructs, the TCF x LEF x Sox9 site was found to be involved in stage-specific expression of Ccn2. Luciferase, electrophoretic mobility shift assay (EMSA), and ChIP analysis revealed that Sox9 represses Ccn2 expression by binding to the consensus TCF x LEF x Sox9 site. On the other hand, the same assays showed that in hypertrophic chondrocytes, TCF x LEF x beta-catenin complexes occupy the consensus TCF x LEF x Sox9 site and activate Ccn2 expression. Furthermore, transgenic mice in which lacZ expression is driven under the control of the proximal Ccn2 promoter revealed that the proximal Ccn2 promoter responded to Wnt signaling in cartilage. Hence, we propose that differential occupancy of the TCF x LEF x Sox9 site by Sox9 versus beta-catenin restricts high levels of Ccn2 expression to hypertrophic chondrocytes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Bo; Jiang, Nan; Sheng, Meili
2015-11-05
The design of active, robust, and nonprecious electrocatalysts with both H 2 and O 2 evolution reaction (HER and OER) activities for overall water splitting is highly desirable but remains a grand challenge. Here in this article, we report a facile two-step method to synthesize porous Co-P/NC nanopolyhedrons composed of CoP x (a mixture of CoP and Co 2P) nanoparticles embedded in N-doped carbon matrices as electrocatalysts for overall water splitting. The Co-P/NC catalysts were prepared by direct carbonization of Co-based zeolitic imidazolate framework (ZIF-67) followed by phosphidation. Benefiting from the large specific surface area, controllable pore texture, and highmore » nitrogen content of ZIF (a subclass of metal–organic frameworks), the optimal Co-P/NC showed high specific surface area of 183 m 2 g -1 and large mesopores, and exhibited remarkable catalytic performance for both HER and OER in 1.0 M KOH, affording a current density of 10 mA cm -2 at low overpotentials of -154 mV for HER and 319 mV for OER, respectively. Furthermore, a Co-P/NC-based alkaline electrolyzer approached 165 mA cm -2 at 2.0 V, superior to that of Pt/IrO 2 couple, along with strong stability. Various characterization techniques including X-ray absorption spectroscopy (XAS) revealed that the superior activity and strong stability of Co-P/NC originated from its 3D interconnected mesoporosity with high specific surface area, high conductivity, and synergistic effect of CoP x encapsulated within N-doped carbon matrices.« less
Synthesis and activity study of phosphonamidate dipeptides as potential inhibitors of VanX.
Yang, Ke-Wu; Cheng, Xu; Zhao, Chuan; Liu, Cheng-Cheng; Jia, Chao; Feng, Lei; Xiao, Jian-Min; Zhou, Li-Sheng; Gao, Hui-Zhou; Yang, Xia; Zhai, Le
2011-12-01
In an effort to develop inhibitors of VanX, the phosphonamidate analogs of D-Ala-D-Ala dipeptides, N-[(1-aminoethyl) hydroxyphosphinyl]-glycine (1a), -alanine (1b), -valine (1c), -leucine (1d) and -phenylalanine (1e) were synthesized, characterized and evaluated using recombinant VanX. The crystal structure of the intermediate 6d was obtained (Deposition number: CCDC 839134), and structural analysis revealed that it is orthorhombic with a space group P2(1)2(1)2(1), the bond length of P-N is 1.62Å and angle of C-N-P is 123.6°. Phosphonamidate 1(a-e) showed to be inhibitors of VanX with IC(50) values of 0.39, 0.70, 1.12, 2.82, and 4.13mM, respectively, which revealed that the inhibition activities of the phosphonamidates were dependent on the size of R-substituent of them, with the best inhibitor 1a having the smallest substituent. Also, 1a showed antibacterial activity against Staphylococcus aureus (ATCC 25923) with a MIC value of 0.25 μg/ml. Copyright © 2011 Elsevier Ltd. All rights reserved.
Physicochemical characteristics and desulphurization activity of pyrolusite-blended activated coke.
Yang, Lin; Jiang, Xia; Huang, Tian; Jiang, Wenju
2015-01-01
In this study, a novel activated coke (AC-P) was prepared by the blending method using bituminous coal as the raw material and pyrolusite as the catalyst. The physicochemical properties of prepared activated coke (AC) were characterized by BET, Fourier-Transform Infrared Spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction. The results indicated that the blended pyrolusite had a slight effect on the structural properties of AC, while the oxygenated functional groups on AC were increased and MnO2 and Fe2O3 in pyrolusite were reduced to MnO and Fe on the AC-P samples, respectively. All the AC-P samples significantly improved the removal of SO2, with the highest sulphur capacity (153 mg/g) for the AC blended with 8 wt% pyrolusite, which was 57.7% higher than that of the blank activated cock. This could be mainly attributed to the change in surface chemical properties of the AC-P samples and the active catalytic components in pyrolusite for the catalytic oxidation of SO2 in desulphurization process.
Kawano, Ayumi; Kadomatsu, Remi; Ono, Miyu; Kojima, Shuji; Tsukimoto, Mitsutoshi; Sakamoto, Hikaru
2015-01-01
Extracellular nucleotides, such as ATP, are released from cells in response to various stimuli and act as intercellular signaling molecules through activation of P2 receptors. Exposure to the ultraviolet radiation A (UVA) component of sunlight causes molecular and cellular damage, and in this study, we investigated the involvement of extracellular nucleotides and P2 receptors in the UVA-induced cellular response. Human keratinocyte-derived HaCaT cells were irradiated with a single dose of UVA (2.5 J/cm2), and ATP release and interleukin (IL)-6 production were measured. ATP was released from cells in response to UVA irradiation, and the release was blocked by pretreatment with inhibitors of gap junction hemichannels or P2X7 receptor antagonist. IL-6 production was increased after UVA irradiation, and this increase was inhibited by ecto-nucleotidase or by antagonists of P2Y11 or P2Y13 receptor. These results suggest that UVA-induced IL-6 production is mediated by release of ATP through hemichannels and P2X7 receptor, followed by activation of P2Y11 and P2Y13 receptors. Interestingly, P2Y11 and P2Y13 were associated with the same pattern of IL-6 production, though they trigger different intracellular signaling cascades: Ca2+-dependent and PI3K-dependent, respectively. Thus, IL-6 production in response to UVA-induced ATP release involves at least two distinct pathways, mediated by activation of P2Y11 and P2Y13 receptors. PMID:26030257
Multiple Xanthomonas euvesicatoria Type III Effectors Inhibit flg22-Triggered Immunity.
Popov, Georgy; Fraiture, Malou; Brunner, Frederic; Sessa, Guido
2016-08-01
Xanthomonas euvesicatoria is the causal agent of bacterial spot disease in pepper and tomato. X. euvesicatoria bacteria interfere with plant cellular processes by injecting effector proteins into host cells through the type III secretion (T3S) system. About 35 T3S effectors have been identified in X. euvesicatoria 85-10, and a few of them were implicated in suppression of pattern-triggered immunity (PTI). We used an Arabidopsis thaliana pathogen-free protoplast-based assay to identify X. euvesicatoria 85-10 effectors that interfere with PTI signaling induced by the bacterial peptide flg22. Of 33 tested effectors, 17 inhibited activation of a PTI-inducible promoter. Among them, nine effectors also interfered with activation of an abscisic acid-inducible promoter. However, effectors that inhibited flg22-induced signaling did not affect phosphorylation of mitogen-activated protein (MAP) kinases acting downstream of flg22 perception. Further investigation of selected effectors revealed that XopAJ, XopE2, and XopF2 inhibited activation of a PTI-inducible promoter by the bacterial peptide elf18 in Arabidopsis protoplasts and by flg22 in tomato protoplasts. The effectors XopF2, XopE2, XopAP, XopAE, XopH, and XopAJ inhibited flg22-induced callose deposition in planta and enhanced disease symptoms caused by attenuated Pseudomonas syringae bacteria. Finally, selected effectors were found to localize to various plant subcellular compartments. These results indicate that X. euvesicatoria bacteria utilize multiple T3S effectors to suppress flg22-induced signaling acting downstream or in parallel to MAP kinase cascades and suggest they act through different molecular mechanisms.
Birkebaek, Niels Holtum; Patel, Leena; Wright, Neville Bryce; Grigg, John Russell; Sinha, Smeeta; Hall, Catherine Margaret; Price, David Anthony; Lloyd, Ian Christopher; Clayton, Peter Ellis
2004-10-01
To objectively define criteria for intracranial optic nerve (ON) size in ON hypoplasia (ONH) on magnetic resonance imaging (MRI) scans. Intracranial ON sizes from MRI were compared between 46 children with ONH diagnosed by ophthalmoscopy (group 1, isolated ONH, 8 children; and group 2, ONH associated with abnormalities of the hypothalamic-pituitary axis and septum pellucidum, 38 children) and children with multiple pituitary hormone deficiency (group 3, multiple pituitary hormone deficiency, 14 children), isolated growth hormone deficiency (group 4, isolated growth hormone deficiency, 15 children), and idiopathic short stature (group 5, idiopathic short stature, 10 children). Intracranial ON size was determined by the cross-sectional area, calculated as [pi x (1/2) height x (1/2) width]. Groups 1 and 2 had lower intracranial ON size than did groups 3, 4, and 5 (P < .001). No patients in groups 3 through 5 who had MRI after 12 months of age (when 95% adult size of ONs is attained) had ONs <2.9 mm 2 . Visual acuity correlated significantly with ON size (P < .01). Magnetic resonance imaging of the ONs with cross-sectional area <2.9 mm 2 in a short child more than 12 months of age, with or without hypothalamic-pituitary axis abnormalities, confirms the clinical diagnosis of ONH.
Fusagene vectors: a novel strategy for the expression of multiple genes from a single cistron.
Gäken, J; Jiang, J; Daniel, K; van Berkel, E; Hughes, C; Kuiper, M; Darling, D; Tavassoli, M; Galea-Lauri, J; Ford, K; Kemeny, M; Russell, S; Farzaneh, F
2000-12-01
Transduction of cells with multiple genes, allowing their stable and co-ordinated expression, is difficult with the available methodologies. A method has been developed for expression of multiple gene products, as fusion proteins, from a single cistron. The encoded proteins are post-synthetically cleaved and processed into each of their constituent proteins as individual, biologically active factors. Specifically, linkers encoding cleavage sites for the Golgi expressed endoprotease, furin, have been incorporated between in-frame cDNA sequences encoding different secreted or membrane bound proteins. With this strategy we have developed expression vectors encoding multiple proteins (IL-2 and B7.1, IL-4 and B7.1, IL-4 and IL-2, IL-12 p40 and p35, and IL-12 p40, p35 and IL-2 ). Transduction and analysis of over 100 individual clones, derived from murine and human tumour cell lines, demonstrate the efficient expression and biological activity of each of the encoded proteins. Fusagene vectors enable the co-ordinated expression of multiple gene products from a single, monocistronic, expression cassette.
Yoo, Je-Hyun; Kim, Ki-Tae; Kim, Tae-Young; Hwang, Ji-Hyo; Chang, Jun-Dong
2017-02-01
Displaced femoral neck fracture in elderly patients has been treated with hemiarthroplasty as the treatment of choice. Fever following HA is common in these elderly patients. The aim of this study was to determine which post-HA fever workup could be beneficial in this group of patients. A total of 272 consecutive patients aged ≥70 years undergoing HA for displaced femoral neck fracture were retrospectively investigated. Postoperative fever (POF) was defined as any recorded body temperature ≥38°C in the early postoperative period. POF in each patient was characterized by the maximum temperature, the day of the first fever, and frequency of fever, stratified as either single or multiple fever spikes. Medical records were reviewed to identify positive fever workups and febrile complications. Of 272 patients, 135 (49.6%) developed POF. A total of 428 routine diagnostic tests were performed in all patients with POF, of which only 57 tests (13.3%) were positive. Urinalysis showed the highest positive rate (21.9%), followed by urine culture (14.3%), chest x-ray (12.6%), and blood culture (1.1%). The most common febrile complication was pneumonia (12.6%), followed by urinary tract infection (8.1%). On multivariate logistic regression for positive workups, only fever after postoperative day (POD) 2 was a risk factor for positive chest x-ray (OR 3.86, p=0.016) and urine culture (OR 5.04, p=0.019). Moreover, fever after POD 2 (OR 6.93, p<0.0001) and multiple fever spikes (OR 2.92, p=0.026) were independent predictors of infectious febrile complications. Routine workup for POF following hemiarthroplasty in elderly patients with displaced femoral neck fracture is not warranted. However, for fever after POD 2 and multiple fever spikes, chest x-ray and urinalysis would be necessary to rule out the two most common febrile complications such as pneumonia and urinary tract infection. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kα resonance fluorescence in Al, Ti, Cu and potential applications for X-ray sources
NASA Astrophysics Data System (ADS)
Nahar, Sultana N.; Pradhan, Anil K.
2015-04-01
The Kα resonance fluorescence (RFL) effect via photoabsorptions of inner shell electrons as the element goes through multiple ionization states is studied. We demonstrate that the resonances observed recently in Kα (1s-2p) fluorescence in aluminum plasmas by using a high-intensity X-ray free-electron laser [1] are basically K-shell resonances in hollow atoms going through multiple ionization states at resonant energies as predicted earlier for gold and iron ions [2]. These resonances are formed below the K-shell ionization edge and shift toward higher energies with ionization states, as observed. Fluorescence emission intensities depend on transition probabilities for each ionization stage of the given element for all possible Kα (1 s → 2 p) transition arrays. The present calculations for resonant photoabsorptions of Kα photons in Al have reproduced experimentally observed features. Resonant cross sections and absorption coefficients are presented for possible observation of Kα RFL in the resonant energy ranges of 4.5-5.0 keV for Ti ions and 8.0-8.7 keV for Cu ions respectively. We suggest that theoretically the Kα RFL process may be driven to enhance the Auger cycle by a twin-beam monochromatic X-ray source, tuned to the K-edge and Kα energies, with potential applications such as the development of narrow-band biomedical X-ray devices.
Inhibition of Mdm2 Sensitizes Human Retinal Pigment Epithelial Cells to Apoptosis
Ray, Ramesh M.; Chaum, Edward; Johnson, Dianna A.; Johnson, Leonard R.
2011-01-01
Purpose. Because recent studies indicate that blocking the interaction between p53 and Mdm2 results in the nongenotoxic activation of p53, the authors sought to investigate whether the inhibition of p53-Mdm2 binding activates p53 and sensitizes human retinal epithelial cells to apoptosis. Methods. Apoptosis was evaluated by the activation of caspases and DNA fragmentation assays. The Mdm2 antagonist Nutlin-3 was used to dissociate p53 from Mdm2 and, thus, to increase p53 activity. Knockdown of p53 expression was accomplished by using p53 siRNA. Results. ARPE-19 and primary RPE cells expressed high levels of the antiapoptotic proteins Bcl-2 and Bcl-xL. Exposure of these cells to camptothecin (CPT) or TNF-α/ cycloheximide (CHX) failed to induce apoptosis. In contrast, treatment with the Mdm2 antagonist Nutlin-3 in the absence of CPT or TNF-α/CHX increased apoptosis. Activation of p53 in response to Nutlin-3 also increased levels of Noxa, p53-upregulated modulator of apoptosis (PUMA), and Siva-1, decreased expression of Bcl-2 and Bcl-xL, and simultaneously increased caspases-9 and -3 activities and DNA fragmentation. Knockdown of p53 decreased the basal expression of p21Cip1 and Bcl-2, inhibited the Nutlin-3–induced upregulation of Siva-1 and PUMA expression, and consequently inhibited caspase-3 activation. Conclusions. These results indicate that the normally available pool of intracellular p53 is predominantly engaged in the regulation of cell cycle checkpoints by p21Cip1 and does not trigger apoptosis in response to DNA-damaging agents. However, the blockage of p53 binding to Mdm2 frees a pool of p53 that is sufficient, even in the absence of DNA-damaging agents, to increase the expression of proapoptotic targets and to override the resistance of RPE cells to apoptosis. PMID:21345989
Program Merges SAR Data on Terrain and Vegetation Heights
NASA Technical Reports Server (NTRS)
Siqueira, Paul; Hensley, Scott; Rodriguez, Ernesto; Simard, Marc
2007-01-01
X/P Merge is a computer program that estimates ground-surface elevations and vegetation heights from multiple sets of data acquired by the GeoSAR instrument [a terrain-mapping synthetic-aperture radar (SAR) system that operates in the X and bands]. X/P Merge software combines data from X- and P-band digital elevation models, SAR backscatter magnitudes, and interferometric correlation magnitudes into a simplified set of output topographical maps of ground-surface elevation and tree height.
Fujiwara, Yuichiro; Kubo, Yoshihiro
2006-01-01
Phosphoinositides (PIPns) are known to regulate the activity of some ion channels. Here we determined that ATP-gated P2X2 channels also are regulated by PIPns, and investigated the structural background and the unique features of this regulation. We initially used two-electrode voltage clamp to analyse the electrophysiological properties of P2X2 channels expressed in Xenopus oocytes, and observed that preincubation with wortmannin or LY294002, two PI3K inhibitors, accelerated channel desensitization. K365Q or K369Q mutation of the conserved, positively charged, amino acid residues in the proximal region of the cytoplasmic C-terminal domain also accelerated desensitization, whereas a K365R or K369R mutation did not. We observed that the permeability of the channel to N-methyl-d-glucamine (NMDG) transiently increased and then decreased after ATP application, and that the speed of the decrease was accelerated by K365Q or K369Q mutation or PI3K inhibition. Using GST-tagged recombinant proteins spanning the proximal C-terminal region, we then analysed their binding of the P2X2 cytoplasmic domain to anionic lipids using PIPns-coated nitrocellulose membranes. We found that the recombinant proteins that included the positively charged region bound to PIPs and PIP2s, and that this binding was eliminated by the K365Q and K369Q mutations. We also used a fluorescence assay to confirm that fusion proteins comprising the proximal C-terminal region of P2X2 with EGFP expressed in COS-7 cells closely associated with the membrane. Taken together, these results show that membrane-bound PIPns play a key role in maintaining channel activity and regulating pore dilation through electrostatic interaction with the proximal region of the P2X2 cytoplasmic C-terminal domain. PMID:16857707
Donato, David I.
2013-01-01
A specialized technique is used to compute weighted ordinary least-squares (OLS) estimates of the parameters of the National Descriptive Model of Mercury in Fish (NDMMF) in less time using less computer memory than general methods. The characteristics of the NDMMF allow the two products X'X and X'y in the normal equations to be filled out in a second or two of computer time during a single pass through the N data observations. As a result, the matrix X does not have to be stored in computer memory and the computationally expensive matrix multiplications generally required to produce X'X and X'y do not have to be carried out. The normal equations may then be solved to determine the best-fit parameters in the OLS sense. The computational solution based on this specialized technique requires O(8p2+16p) bytes of computer memory for p parameters on a machine with 8-byte double-precision numbers. This publication includes a reference implementation of this technique and a Gaussian-elimination solver in preliminary custom software.
Suadicani, Sylvia O; Urban-Maldonado, Marcia; Tar, Moses T; Melman, Arnold; Spray, David C
2009-06-01
To investigate whether ageing and diabetes alter the expression of the gap junction protein connexin43 (Cx43) and of particular purinoceptor (P2R) subtypes in the corpus cavernosum and urinary bladder, and determine whether changes in expression of these proteins correlate with development of erectile and bladder dysfunction in diabetic and ageing rats. Erectile and bladder function of streptozotocin (STZ)-induced diabetic, insulin-treated and age-matched control Fischer-344 rats were evaluated 2, 4 and 8 months after diabetes induction by in vivo cystometry and cavernosometry. Corporal and bladder tissue were then isolated at each of these sample times and protein expression levels of Cx43 and of various P2R subtypes were determined by Western blotting. In the corpora of control rats ageing was accompanied by a significant decrease in Cx43 and P2X(1)R, and increase in P2X(7)R expression. There was decreased Cx43 and increased P2Y(4)R expression in the ageing control rat bladder. There was a significant negative correlation between erectile capacity and P2X(1)R expression levels, and a positive correlation between bladder spontaneous activity and P2Y(4)R expression levels. There was already development of erectile dysfunction and bladder overactivity at 2 months after inducing diabetes, the earliest sample measured in the study. The development of these urogenital complications was accompanied by significant decreases in Cx43, P2Y(2)R, P2X(4)R and increase in P2X(1)R expression in the corpora, and by a doubling in Cx43 and P2Y(2)R, and significant increase in P2Y(4)R expression in the bladder. Changes in Cx43 and P2R expression were largely prevented by insulin therapy. Ageing and diabetes mellitus markedly altered the expression of the gap junction protein Cx43 and of particular P2R subtypes in the rat penile corpora and urinary bladder. These changes in Cx43 and P2R expression provide the molecular substrate for altered gap junction and purinergic signalling in these tissues, and thus probably contribute to the early development of erectile dysfunction and higher detrusor activity in ageing and in diabetic rats.
Kulkarni, Aniruddha K; Praveen, C S; Sethi, Yogesh A; Panmand, Rajendra P; Arbuj, Sudhir S; Naik, Sonali D; Ghule, Anil V; Kale, Bharat B
2017-11-07
The synthesis of orthorhombic nitrogen-doped niobium oxide (Nb 2 O 5-x N x ) nanostructures was performed and a photocatalytic study carried out in their use in the conversion of toxic H 2 S and water into hydrogen under UV-Visible light. Nanostructured orthorhombic Nb 2 O 5-x N x was synthesized by a simple solid-state combustion reaction (SSCR). The nanostructural features of Nb 2 O 5-x N x were examined by FESEM and HRTEM, which showed they had a porous chain-like structure, with chains interlocked with each other and with nanoparticles sized less than 10 nm. Diffuse reflectance spectra depicted their extended absorbance in the visible region with a band gap of 2.4 eV. The substitution of nitrogen in place of oxygen atoms as well as Nb-N bond formation were confirmed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. A computational study (DFT) of Nb 2 O 5-x N x was also performed for investigation and conformation of the crystal and electronic structure. N-Substitution clearly showed a narrowing of the band gap due to N 2p bands cascading above the O 2p band. Considering the band gap in the visible region, Nb 2 O 5-x N x exhibited enhanced photocatalytic activity toward hydrogen evolution (3010 μmol h -1 g -1 ) for water splitting and (9358 μmol h -1 g -1 ) for H 2 S splitting under visible light. The enhanced photocatalytic activity of Nb 2 O 5-x N x was attributed to its extended absorbance in the visible region due to its electronic structure being modified upon doping, which in turn generates more electron-hole pairs, which are responsible for higher H 2 generation. More significantly, the mesoporous nanostructure accelerated the supression of electron and hole recombination, which also contributed to the enhancement of its activity.
Biological significance of PinX1 telomerase inhibitor in esophageal carcinoma treatment
Fan, Xiang-Kui; Yan, Rui-Hua; Geng, Xiang-Qun; Li, Jing-Shan; Chen, Xiang-Ming; Li, Jian-Zhe
2016-01-01
In the present study, to investigate the expression of PinX1 gene and its functional effects in human esophageal carcinoma (Eca)-109 cell line, expression vectors of human PinX1 (pEGFP-C3-PinX1) and its small interfering RNA (PinX1-FAM-siRNA) were constructed and transfected into Eca-109 cells using Lipofectamine 2000. Firstly, the mRNA expression level of PinX1 was examined using reverse transcription-polymerase chain reaction (RT-PCR). Once successful transfection was achieved, the effects on the mRNA level of human telomerase reverse transcriptase (hTERT), telomerase activity, cell proliferation and apoptosis were examined by semi-quantitative RT-PCR, stretch PCR, MTT assay and flow cytometry, respectively. Analysis of restriction and sequencing demonstrated that the recombining plasmids were successfully constructed. The results also indicated that transfection with pEGFP-C3-PinX1 and PinX1-FAM-siRNA into Eca-109 cells significantly increased PinX1 mRNA, decreased hTERT mRNA by 29.9% (P<0.05), and significantly reduced telomerase activity (P<0.05), inhibited cell growth, and increased the cell apoptotic index from 19.27±0.76 to 49.73±2%. The transfected PinX1-FAM-SiRNA exhibited PinX1 mRNA expression levels that were significantly decreased by 70% (P<0.05), whereas the remaining characteristics of Eca-109 cells, including cell growth, mRNA level of hTERT, telomerase activity and cell apoptotic index were not altered. Exogenous PinX1 has been demonstrated to be highly expressed in human Eca. PinX1 can inhibit human telomerase activity and the expression of hTERT mRNA, reduce tumor cell growth and induce apoptosis. Notably, these inhibitory functions were inhibited by silencing PinX1 in Eca with PinX1-FAM-siRNA. PinX1 was successfully increased and decreased in the present study, demonstrating that it may be a potential telomerase activity inhibitor. As PinX1 is an endogenous telomerase inhibitor, it may be used as a novel tumor-targeted gene therapy. PMID:27698711
Mizutani, Takeshi; Fowler, Benjamin J.; Kim, Younghee; Yasuma, Reo; Krueger, Laura A.; Gelfand, Bradley D.; Ambati, Jayakrishna
2015-01-01
Purpose To evaluate the efficacy of nucleoside reverse transcriptase inhibitors (NRTIs) in the laser-induced mouse model of choroidal neovascularization (CNV). Methods We evaluated the NRTIs lamivudine (3TC), zidovudine (AZT), and abacavir (ABC) and the P2X7 antagonist A438079. Choroidal neovascularization was induced by laser injury in C57BL/6J wild-type, Nlrp3−/−, and P2rx7−/− mice, and CNV volume was measured after 7 days by confocal microscopy. Drugs were administered by intravitreous injection immediately after the laser injury. Vascular endothelial growth factor-A in RPE-choroid lysates was measured 3 days after laser injury by ELISA. HEK293 cells expressing human and mouse P2X7 were exposed to the selective P2X7 receptor agonist 2′, 3′-(benzoyl-4-benzoyl)-ATP (Bz-ATP) with or without 3TC, and VEGF-A levels in media were measured by ELISA. Results Intravitreous injection of 3TC, AZT, and ABC significantly suppressed laser-induced CNV in C57BL/6J wild-type and Nlrp3−/− mice (P < 0.05) but not in P2rx7−/− mice. Intravitreous injection of A438079 also suppressed the laser-induced CNV (P < 0.05). The NRTIs 3TC, AZT, and ABC blocked VEGF-A levels in the RPE/choroid after laser injury in wild-type (P < 0.05) but not P2rx7−/− mice. Moreover, there was no additive effect of 3TC on CNV inhibition when coadministered with a neutralizing VEGF-A antibody. Stimulation of human and mouse P2X7-expressing HEK293 cells with Bz-ATP increased VEGF secretion (P < 0.001), which was abrogated by 3TC (P < 0.001). Stimulation of primary human RPE cells with Bz-ATP increased VEGFA and IL6 mRNA levels, which were abrogated by 3TC. Conclusions Multiple clinically relevant NRTIs suppressed laser-induced CNV and downregulated VEGF-A, via P2X7. PMID:26529046
Gicquel, Thomas; Victoni, Tatiana; Fautrel, Alain; Robert, Sacha; Gleonnec, Florence; Guezingar, Marie; Couillin, Isabelle; Catros, Véronique; Boichot, Elisabeth; Lagente, Vincent
2014-04-01
Adenosine triphosphate (ATP) has been described as a danger signal activating the NOD-like receptor-family protein 3 (NLRP3)-inflammasome leading to the pro-inflammatory cytokine, interleukin (IL)-1β, release in the lung. The NLRP3-inflammasome pathway has been previously described to be involved in experimental collagen deposition and the development of pulmonary fibrosis. The aim of the present study was to investigate the role of the NLRP3 inflammasome pathway and P2X7 purinergic receptor in the activation of human macrophages in vitro by ATP. We showed that adenosine 5'-[γ-thio]triphosphate tetralithium salt (ATPγS) and 2',3'-O-(4-benzoylbenzoyl) adenosine 5'-triphosphate (BzATP), two stable analogs of ATP, are able to potentiate the release of IL-1β from human monocyte-derived macrophages induced by low concentration of lipopolysaccharide (LPS). However, in the same conditions no increase in IL-1α and IL-6 was observed. Immunochemistry has shown that human macrophages natively express NLRP3 and purinergic P2X7 receptors (P2X7 R). NLRP3 and IL-1β mRNA expression were induced from LPS-primed macrophages, but also after 5-h treatment of BzATP as analysed by reverse transcription quantitative polymerase chain reaction. However, other inflammasome pathways (NLRP1, NLRP2, NLRC4, NLRP6 and AIM2) and P2X7 R were not induced by BzATP. We observed that P2X7 R antagonists, A-438079 and A-740003, were able to reduce the release of IL-1β, but not of IL-1α and IL-6 from macrophages stimulated by ATPγS or BzATP. The present results showed the involvement of the P2X7 R-NLRP3 inflammasome pathway in the secretion of IL-1β from ATP-stimulated human macrophages, and suggest that P2X7 R were not involved in IL-1α and IL-6 release. This study also points out that repression of the P2X7 R represents a novel potential therapeutic approach to control fibrosis in lung injury. © 2014 Wiley Publishing Asia Pty Ltd.
Minato, Yuichi; Suzuki, Shiho; Hara, Tomoaki; Kofuku, Yutaka; Kasuya, Go; Fujiwara, Yuichiro; Igarashi, Shunsuke; Suzuki, Ei-Ichiro; Nureki, Osamu; Hattori, Motoyuki; Ueda, Takumi; Shimada, Ichio
2016-04-26
Ligand-gated ion channels are partially activated by their ligands, resulting in currents lower than the currents evoked by the physiological full agonists. In the case of P2X purinergic receptors, a cation-selective pore in the transmembrane region expands upon ATP binding to the extracellular ATP-binding site, and the currents evoked by α,β-methylene ATP are lower than the currents evoked by ATP. However, the mechanism underlying the partial activation of the P2X receptors is unknown although the crystal structures of zebrafish P2X4 receptor in the apo and ATP-bound states are available. Here, we observed the NMR signals from M339 and M351, which were introduced in the transmembrane region, and the endogenous alanine and methionine residues of the zebrafish P2X4 purinergic receptor in the apo, ATP-bound, and α,β-methylene ATP-bound states. Our NMR analyses revealed that, in the α,β-methylene ATP-bound state, M339, M351, and the residues that connect the ATP-binding site and the transmembrane region, M325 and A330, exist in conformational equilibrium between closed and open conformations, with slower exchange rates than the chemical shift difference (<100 s(-1)), suggesting that the small population of the open conformation causes the partial activation in this state. Our NMR analyses also revealed that the transmembrane region adopts the open conformation in the state bound to the inhibitor trinitrophenyl-ATP, and thus the antagonism is due to the closure of ion pathways, except for the pore in the transmembrane region: i.e., the lateral cation access in the extracellular region.
Minato, Yuichi; Suzuki, Shiho; Hara, Tomoaki; Kofuku, Yutaka; Kasuya, Go; Fujiwara, Yuichiro; Igarashi, Shunsuke; Suzuki, Ei-ichiro; Nureki, Osamu; Hattori, Motoyuki; Ueda, Takumi; Shimada, Ichio
2016-01-01
Ligand-gated ion channels are partially activated by their ligands, resulting in currents lower than the currents evoked by the physiological full agonists. In the case of P2X purinergic receptors, a cation-selective pore in the transmembrane region expands upon ATP binding to the extracellular ATP-binding site, and the currents evoked by α,β-methylene ATP are lower than the currents evoked by ATP. However, the mechanism underlying the partial activation of the P2X receptors is unknown although the crystal structures of zebrafish P2X4 receptor in the apo and ATP-bound states are available. Here, we observed the NMR signals from M339 and M351, which were introduced in the transmembrane region, and the endogenous alanine and methionine residues of the zebrafish P2X4 purinergic receptor in the apo, ATP-bound, and α,β-methylene ATP-bound states. Our NMR analyses revealed that, in the α,β-methylene ATP-bound state, M339, M351, and the residues that connect the ATP-binding site and the transmembrane region, M325 and A330, exist in conformational equilibrium between closed and open conformations, with slower exchange rates than the chemical shift difference (<100 s−1), suggesting that the small population of the open conformation causes the partial activation in this state. Our NMR analyses also revealed that the transmembrane region adopts the open conformation in the state bound to the inhibitor trinitrophenyl-ATP, and thus the antagonism is due to the closure of ion pathways, except for the pore in the transmembrane region: i.e., the lateral cation access in the extracellular region. PMID:27071117
King, Brian F; Knowles, Ian D; Burnstock, Geoffrey; Ramage, Andrew G
2004-06-01
1 The effects of purinoceptor ligands for P2X1 and/or P2X3 receptors (alpha,beta-meATP, IP(5)I, TNP-ATP, MRS 2179, PPADS, Phenol red and RO116-6446/008; i.v., n=4-5) and for P2Y1 receptors (PPADS, MRS 2179 and MRS 2269; i.v., n=3-5) were investigated on the distension-evoked 'micturition reflex' in the urethane-anaesthetized female rat. 2 Alpha,beta-meATP (180 nmol kg(-1) min(-1)), IP5I (10, 30 and 100 nmol kg(-1)), TNP-ATP (1 micromol kg(-1)), MRS 2179 (1 micromol kg(-1)) and PPADS (17 micromol kg(-1)) each caused maintained bladder contractions to occur during the infusion of saline into the bladder. PPADS (17 micromol kg(-1) min(-1)) had a similar effect when infused intravesicularly. Regular bladder contractions were not observed until the infusion of saline was halted. For IP5I, TNP-ATP, MRS 2179 and PPADS, the magnitude of postinfusion isovolumetric contractions was significantly reduced and, for IP5I, this action was also associated with a significant reduction in urethral relaxation. Additionally, TNP-ATP caused a significant increase in the pressure and volume thresholds required to initiate a reflex. 3 Phenol red (a P2X1/P2X3 antagonist; 0.1 and 1 micromol kg(-1)) caused a significant increase in the pressure and volume thresholds required to initiate a reflex and, at the higher dose, also caused a reduction in postinfusion isovolumetric contractions. 4 RO116-6446/008 (a P2X1-selective antagonist; 1 and 10 micromol kg(-1)) only caused a reduction in postinfusion isovolumetric contractions. 5 It is concluded that P2X1 and P2X3 receptors play a fundamental role in the micturition reflex in urethane-anesthetized female rats. P2X3 receptor blockade raised the pressure and volume thresholds for the reflex, whereas P2X1 receptor blockade diminished motor activity associated with voiding. P2Y1 receptors may be involved in inhibition of rat detrusor tone.
Cheng, Jian; Di, Liu-Qing; Shan, Jin-Jun; Zhao, Xiao-Li; Kang, An; Bi, Xiao-Lin; Li, Jun-Song
2014-04-01
To study on the effects of Achyranthes bidentata on Tongsaimai pellets main active ingredients chlorogenic acid, isoliquiritin, harpagoside and glycyrrhizin in rats in vivo pharmacokinetic behaviors, a method for the simultaneous determination of chlorogenic acid, isoliquiritin, harpagoside and liquiritigenin in rat plasma was established by UPLC-MS/MS. The analysis was performed on a waters Acquity BEH C18 column (2.1 mm x 100 mm, 1.7 microm) with the mixture of acetonitrile and 0.1% formic acid/water as mobile phase, and the gradient elution at a flow rate of 0.3 mL x min(-1). The analytes were detected by tandem mass spectrometry with the electrospray ionization (ESI) source and in the multiple reaction monitoring (MRM) mode. It turned out that the analytes of Tongsaimai pellets groups C(max) and AUC(Q-infinity) values were higher than that with A. bidentata group, and the C(max) values of chlorogenic acid had significantly difference (P < 0.05), the AUC(0-infinity) values of chlorogenic acid and glycyrrhizin had significantly difference (P < 0.05); The T(max) and CL values of two groups had no significantly difference. Results showed that the established method was specific, rapid, accurate and sensitive for the studies of Tongsaimai pellets four main active ingredients in rat in vivo pharmacokinetic, and A. bidentata have varying degrees of effects on Tongsaimai pellets four main active ingredients in rat in vivo pharmacokinetic behaviors.
Effect of artemisinin on neuropathic pain mediated by P2X4 receptor in dorsal root ganglia.
Ying, Mofeng; Liu, Hui; Zhang, Tengling; Jiang, Chenxu; Gong, Yingxin; Wu, Bing; Zou, Lifang; Yi, Zhihua; Rao, Shenqiang; Li, Guilin; Zhang, Chunping; Jia, Tianyu; Zhao, Shanhong; Yuan, Huilong; Shi, Liran; Li, Lin; Liang, Shangdong; Liu, Shuangmei
2017-09-01
Neuropathic pain is a type of chronic pain caused by nervous system damage and dysfunction. The pathogenesis of chronic pain is complicated, and there are no effective therapies for neuropathic pain. Studies show that the P2X 4 receptor expressed in the satellite glial cells (SGCs) of dorsal root ganglia (DRG) is related to neuropathic pain. Artemisinin is a monomeric component extracted from traditional Chinese medicine and has a variety of important pharmacological effects and potential applications. This study observed the effect of artemisinin on neuropathic pain and delineated its possible mechanism. The chronic constriction injury (CCI) rat model was used in this study. The results demonstrated that artemisinin relieved pain behaviors in the CCI rats, inhibited the expression of P2X 4 receptor in the DRG, and decreased the ATP-activated currents in HEK293 cells transfected with P2X 4 plasmid. Dual-labeling immunofluorescence showed that the coexpression of P2X 4 receptor and glial fibrillary acidic protein (GFAP) in the DRG of CCI rats was increased compared to control rats. After CCI rats were treated with artemisinin, the coexpression of P2X 4 receptor and GFAP in the DRG was significantly decreased compared to the CCI group. This finding suggested that artemisinin could inhibit the nociceptive transmission mediated by P2X 4 receptor in the DRG SGCs and thus relieve pain behaviors in the CCI rats. Copyright © 2017 Elsevier Ltd. All rights reserved.
He, Jing; Su, Derong; Lv, Shihai; Diao, Zhaoyan; Ye, Shengxing; Zheng, Zhirong
2017-11-08
Phosphorus (P) flux potential can predict the trend of phosphorus release from wetland sediments to water and provide scientific parameters for further monitoring and management for phosphorus flux from wetland sediments to overlying water. Many studies have focused on factors affecting sediment P flux potential in sediment-water interface, but rarely on the relationship among these factors. In the present study, experiment on sediment P flux potential in sediment-water interface was conducted in six wetlands in Hulun Buir grassland, China and the relationships among sediment P flux potential in sediment-water interface, sediment physical properties, and sediment chemical characteristics were examined. Principal component analysis and path analysis were used to discuss these data in correlation coefficient, direct, and indirect effects on sediment P flux potential in sediment-water interface. Results indicated that the major factors affecting sediment P flux potential in sediment-water interface were amount of organophosphate-degradation bacterium in sediment, Ca-P content, and total phosphorus concentrations. The factors of direct influence sediment P flux potential were sediment Ca-P content, Olsen-P content, SOC content, and sediment Al-P content. The indirect influence sediment P flux potential in sediment-water interface was sediment Olsen-P content, sediment SOC content, sediment Ca-P content, and sediment Al-P content. And the standard multiple regression describing the relationship between sediment P flux potential in sediment-water interface and its major effect factors was Y = 5.849 - 1.025X 1 - 1.995X 2 + 0.188X 3 - 0.282X 4 (r = 0.9298, p < 0.01, n = 96), where Y is sediment P flux potential in sediment-water interface, X 1 is sediment Ca-P content, X 2 is sediment Olsen-P content, X 3 is sediment SOC content, and X 4 is sediment Al-P content. Therefore, future research will focus on these sediment properties to analyze the interrelation among sediment properties factors, main vegetable factors, and environment factors which influence the sediment P flux potential in sediment-water interface.
P2 receptor signaling in neurons and glial cells of the central nervous system.
Köles, Laszlo; Leichsenring, Anna; Rubini, Patrizia; Illes, Peter
2011-01-01
Purine and pyrimidine nucleotides are extracellular signaling molecules in the central nervous system (CNS) leaving the intracellular space of various CNS cell types via nonexocytotic mechanisms. In addition, ATP is a neuro-and gliotransmitter released by exocytosis from neurons and neuroglia. These nucleotides activate P2 receptors of the P2X (ligand-gated cationic channels) and P2Y (G protein-coupled receptors) types. In mammalians, seven P2X and eight P2Y receptor subunits occur; three P2X subtypes form homomeric or heteromeric P2X receptors. P2Y subtypes may also hetero-oligomerize with each other as well as with other G protein-coupled receptors. P2X receptors are able to physically associate with various types of ligand-gated ion channels and thereby to interact with them. The P2 receptor homomers or heteromers exhibit specific sensitivities against pharmacological ligands and have preferential functional roles. They may be situated at both presynaptic (nerve terminals) and postsynaptic (somatodendritic) sites of neurons, where they modulate either transmitter release or the postsynaptic sensitivity to neurotransmitters. P2 receptors exist at neuroglia (e.g., astrocytes, oligodendrocytes) and microglia in the CNS. The neuroglial P2 receptors subserve the neuron-glia cross talk especially via their end-feets projecting to neighboring synapses. In addition, glial networks are able to communicate through coordinated oscillations of their intracellular Ca(2+) over considerable distances. P2 receptors are involved in the physiological regulation of CNS functions as well as in its pathophysiological dysregulation. Normal (motivation, reward, embryonic and postnatal development, neuroregeneration) and abnormal regulatory mechanisms (pain, neuroinflammation, neurodegeneration, epilepsy) are important examples for the significance of P2 receptor-mediated/modulated processes. Copyright © 2011 Elsevier Inc. All rights reserved.
Immortalisation of a human diploid fibroblast cell strain: a DT-diaphorase paradox.
Kuehl, B. L.; Brezden, C. B.; Traver, R. D.; Siegel, D.; Ross, D.; Renzing, J.; Rauth, A. M.
1996-01-01
Transfection of a normal human diploid fibroblast cell strain, GM38, with a simian virus 40 (SV40) large T antigen containing plasmid, yielded an immortal cell line, G38-8X, which had a similar sensitivity as the parental cell strain to the quinone-containing chemotherapeutic agent mitomycin C (MMC), under both aerobic and hypoxic exposure conditions. The activity level of DT-diaphorase was similar in both the parental GM38 and G38-8X cells. Although DT-diaphorase could be detected by Western blot analysis, using two mouse anti-human monoclonal antibodies, in GM38 cells, it was not detected in the G38-8X cells. G38-8X cells have a slightly increased P450R activity (2-fold), and have elevated P-glycoprotein levels compared with the parental GM38 cell strain. The immortal G38-8X cell line is 2-fold more resistant to ionising radiation than the parental GM38 cell strain (D10 approximately 5 Gy). Although these SV40 large T antigen immortalised human diploid fibroblasts behaved similarly to their parental cell strain in terms of MMC sensitivity and DT-diaphorase activity, careful characterisation revealed that these cells had enhanced P-glycoprotein activity and had a decreased sensitivity to ionising radiation. Images Figure 3 PMID:8763839
Syed, Atiya; Khajuria, Ruchi; Kumar, Sandeep; Jassal, Amanpreet Kaur; Hundal, Maninder S; Pandey, Sushil K
2014-01-01
Diaryldithiophosphate complexes of mono- and dibutyltin(IV) corresponding to [(ArO)(2)PS(2)(n)Sn(nBu)xCl(4-x-n)] (Ar = o-CH(3)C(6)H(4), m-CH(3)C(6)H(4), p-CH(3)C(6)H(4), 4-Cl-3-CH(3)C(6)H(3), (3,5-CH(3))(2)C(6)H(3); n = 1, 2 for x = 1 and n = 2 for x = 2) were successfully isolated and characterized by elemental analyses, IR, multinuclear NMR ((1)H, (13)C, (31)P and (119)Sn) spectroscopy and X-ray analysis. The thermal properties of the complex [(3,5-CH(3))(2)C(6)H(3)O(2)PS(2)](2)Sn(nBu)(2) (12) have been examined by combined DTA/ DTG thermal analyses. Single crystal X-ray analysis of [(3,5-CH(3))(2)C(6)H(3)O(2)PS(2)](2)S(n)(nBu)(2) (12) revealed that two diaryldithiophosphate ions are coordinated to tin atom in an anisobidentate fashion through the sulfur atoms of each dithiophosphate moiety leading to distorted skew-trapezoidal bipyramidal geometry. The antifungal activity depicts that these complexes are active against fungus Penicillium chrysogenium.
Ghosh, Arun K; R Nyalapatla, Prasanth; Kovela, Satish; Rao, Kalapala Venkateswara; Brindisi, Margherita; Osswald, Heather L; Amano, Masayuki; Aoki, Manabu; Agniswamy, Johnson; Wang, Yuan-Fang; Weber, Irene T; Mitsuya, Hiroaki
2018-05-24
The design, synthesis, and biological evaluation of a new class of HIV-1 protease inhibitors containing stereochemically defined fused tricyclic polyethers as the P2 ligands and a variety of sulfonamide derivatives as the P2' ligands are described. A number of ring sizes and various substituent effects were investigated to enhance the ligand-backbone interactions in the protease active site. Inhibitors 5c and 5d containing this unprecedented fused 6-5-5 ring system as the P2 ligand, an aminobenzothiazole as the P2' ligand, and a difluorophenylmethyl as the P1 ligand exhibited exceptional enzyme inhibitory potency and maintained excellent antiviral activity against a panel of highly multidrug-resistant HIV-1 variants. The umbrella-like P2 ligand for these inhibitors has been synthesized efficiently in an optically active form using a Pauson-Khand cyclization reaction as the key step. The racemic alcohols were resolved efficiently using a lipase catalyzed enzymatic resolution. Two high resolution X-ray structures of inhibitor-bound HIV-1 protease revealed extensive interactions with the backbone atoms of HIV-1 protease and provided molecular insight into the binding properties of these new inhibitors.
Burgess, Samantha A; Kassie, Abebu; Baranowski, Sarah A; Fritzsching, Keith J; Schmidt-Rohr, Klaus; Brown, Craig M; Wade, Casey R
2016-02-17
A porous metal-organic framework Zr6O4(OH)4(L-PdX)3 (1-X) has been constructed from Pd diphosphinite pincer complexes ([L-PdX](4-) = [(2,6-(OPAr2)2C6H3)PdX](4-), Ar = p-C6H4CO2(-), X = Cl, I). Reaction of 1-X with PhI(O2CCF3)2 facilitates I(-)/CF3CO2(-) ligand exchange to generate 1-TFA and I2 as a soluble byproduct. 1-TFA is an active and recyclable catalyst for transfer hydrogenation of benzaldehydes using formic acid as a hydrogen source. In contrast, the homogeneous analogue (t)Bu(L-PdTFA) is an ineffective catalyst owing to decomposition under the catalytic conditions, highlighting the beneficial effects of immobilization.
Synthesis and characterization of Ag+ ion conducting glassy electrolytes
NASA Astrophysics Data System (ADS)
Chandra, Angesh; Bhatt, Alok; Chandra, Archana
2013-07-01
Synthesis and characterization of new Ag+ ion conducting glassy systems: x[0.75AgI:0.25AgC1]: (1 - x)[Ag2O:P2O5], where 0.1 < x < 1 in molar weight fraction, are reported. The present glassy electrolytes have been synthesized by melt-quench technique using a high-speed twin roller-quencher. An alternate host salt: "quenched [0.75AgI:0.25AgC1] mixed system/solid solution", has been used in place of the traditional host AgI. The compositional dependence conductivity studies on the glassy systems: x[0.75AgI:0.25AgC1]:(1 - x)[Ag2O:P2O5] as well as xAgI:(1 - x)[Ag2O:P2O5] prepared identically, indicated that the composition at x = 0.75 exhibited the highest room temperature conductivity (σ ~ 5.5 x 10-3 S cm-1). The composition: 0.75[0.75AgI:0.25AgC1]:0.25[Ag2O:P2O5] has been referred to as optimum conducting composition (OCC). The some basic ion transport parameters viz. ionic conductivity (σ), ionic mobility (μ), mobile ion concentration (n), ionic drift velocity (vd), ion transference number (tion) and activation energy (Ea) values have been characterized with the help of various experimental techniques. A solid state battery was fabricated and its basic cell parameters calculated.
Comparison of CYP1A2 and NAT2 Phenotypes between Black and White Smokers
Muscat, Joshua E.; Pittman, Brian; Kleinman, Wayne; Lazarus, Philip; Stellman, Steven D.; Richie, John P.
2008-01-01
The lower incidence rate of transitional cell carcinoma of the urinary bladder in blacks than in whites may be due to racial differences in the catalytic activity of enzymes that metabolize carcinogenic arylamines in tobacco smoke. To examine this, we compared cytochrome P4501A2 (CYP1A2) and N-acetyltransferase-2 activities (NAT2) in black and white smokers using urinary caffeine metabolites as a probe for enzyme activity in a community-based study of 165 black and 183 white cigarette smokers. The paraxanthine (1,7-dimethylxanthine, 17X)/caffeine (trimethylxanthine, 137X) ratio or [17X + 1,7-dimethyluric acid (17U)]/137X ratio was used as an indicator of CYP1A2 activity. The 5-acetyl-amino-6-formylamino-3-methyluracil (AFMU)/1-methylxanthine (1X) ratio indicated NAT2 activity. The odds ratio for the slow NAT2 phenotype associated with black race was 0.4; 95% confidence intervals 0.2–0.7. The putative combined low risk phenotype (slow CYP1A2/rapid NAT2) was more common in blacks than in whites (25% vs. 15%, P<0.02). There were no significant racial differences in slow and rapid CYP1A2 phenotypes, and in the combined slow NAT2/rapid CYP1A2 phenotype. Age, education, cigarette smoking amount, body mass index, GSTM1 and GSTM3 genotypes were unrelated to CYP1A2 and NAT2 activity. Intake of cruciferous vegetables (primarily broccoli), red meat, carrots, grapefruit and onions predicted CYP1A2 activity either for all subjects or in race-specific analyses. Carrot and grapefruit consumption was related to NAT2 activity. Collectively, these results indicated that phenotypic differences in NAT2 alone or in combination with CYP1A2 might help explain the higher incidence rates of transitional cell bladder cancer in whites. PMID:18703023
Hua, Wei; Liu, Huanyan; Wang, Jian-Gan; Wei, Bingqing
2017-12-06
Earth-abundant and low-cost catalysts with excellent electrocatalytic hydrogen evolution reaction (HER) activity in alkaline solution play an important role in the sustainable production of hydrogen energy. In this work, a catalyst of Ni(P, O) x ·MoO x nanowire array on nickel foam has been prepared via a facile route for efficient alkaline HER. Benefiting from the collaborative advantages of Ni(P, O) x and amorphous MoO x , as well as three-dimensional porous conductive nickel scaffold, the hybrid electrocatalyst shows high catalytic activity in 1 M KOH aqueous solution, including a small overpotential of 59 mV at 10 mA cm -2 , a low Tafel slope of 54 mV dec -1 , and excellent cycling stability.
Okai, Y; Higashi-Okai, K; Nakamura, S; Yano, Y; Otani, S
1996-06-12
Effects of retinoids, carotenoids and antioxidant vitamins were studied by mutagen-induced umu C gene expression system in Salmonella typhimurium (TA 1535/pSK 1002). Retinol (vitamin A), retinol acetate and retinoic acid showed remarkable inhibitory activities, whereas retinol palmitate exhibited significant but weak activity for umu C gene expression in tester bacteria induced by 3-amino-3,4-dimethyl-5H-pyrido[4.3-b]indol (Trp-P-1) in the presence of hepatic metabolizing enzymes (S9 mixture). Carotenoids having provitamin A activity (beta-carotene and canthaxanthin) exhibited moderate suppressive effects on the same experimental system. The ranks of suppressive activities were retinol > retinol acetate > retinoic acid > canthaxanthin > beta-carotene > retinol palmitate and their doses for inhibition by 50% (ID50) were estimated to be 1.2 x 10(-7), 3.0 x 10(-7), 5.4 x 10(-7), 1.5 x 10(-6), 4.0 x 10(-5) and 6.0 x 10(-5) M, respectively. However, they did not cause significant inhibition on umu C gene expression induced by direct-acting mutagen (adriamycin or mitomycin C) in the absence of S9 mixture. Inhibition of umu gene expression appears to be due to inhibition of P450-mediated metabolic activation of the heterocyclic amine Trp-P-1. Ascorbic acid (vitamin C) showed weak but significant suppressive activity at high-dose concentrations (3 x 10(-6) - 10(-4)M). However, alpha-tocopherol did not exhibit significant suppression at all dose concentrations. The significance of the experimental results is discussed from the viewpoint of the chemoprevention against genotoxicity associated with carcinogenesis.
Udeigwe, Theophilus K; Wang, Jim J; Zhang, Hailin
2007-01-01
This study was conducted to evaluate the relationships among total suspended solids (TSS) and particulate phosphorus (PP) in runoff and selected soil properties. Nine Louisiana soils were subjected to simulated rainfall events, and runoff collected and analyzed for various parameters. A highly significant relationship existed between runoff TSS and runoff turbidity. Both runoff TSS and turbidity were also significantly related to runoff PP, which on average accounted for more than 98% of total P (TP) in the runoff. Runoff TSS was closely and positively related to soil clay content in an exponential fashion (y=0.10e0.01x, R2=0.91, P<0.001) while it was inversely related to soil electrical conductivity (EC) (y=0.02 x(-3.95), R2=0.70, P<0.01). A newly-devised laboratory test, termed "soil suspension turbidity" (SST) which measures turbidity in a 1:200 soil/water suspension, exhibited highly significant linear relationships with runoff TSS (y=0.06x-4.38, R2=0.82, P<0.001) and PP (y=0.04x+2.68, R2=0.85, P<0.001). In addition, SST alone yielded similar R2 value to that of combining soil clay content and EC in a multiple regression, suggesting that SST was able to account for the integrated effect of clay content and electrolytic background on runoff TSS. The SST test could be used for assessment and management of sediment and particulate nutrient losses in surface runoff.
Zn1-xCdxSe/ZnSe multiple quantum well photomodulators
NASA Astrophysics Data System (ADS)
Tang, Jiuyao; Kawakami, Yoichi; Fujita, Shizuo; Fujita, Shigeo
1996-10-01
ZnCdSe/ZnSe multiple quantum well (MQW) transmission and reflection photomodulators operating at room temperature were fabricated employing quantum-confined Stark effect on the exciton absorption. Samples were grown on p-type GaAs substrates by MBE with an i-Zn0.87Cd0.13Se/ZnSe MQW heterostructure sandwiched by a ZnSe p-n junction. The transmission modulator was constructed with a Zn0.87Cd0.13Se/ZnSe MQW glued onto a piece of ITO film-covered glass with silver paste and epoxy. To avoid absorption in GaAs substrates, a window with a diameter of about 2 mm was opened using a selective etch. For the reflective use an Al mirror was deposited on the glass back surface, the device then operates in reflection with the light to be modulated making a double pass through the active quantum well region, thereby increasing the modulation amplitude. Measurement results are given in this paper for transmission, reflection, differential transmission, differential absorption, and differential reflection as a function of the incident photon wavelength and the applied field.
P2X7 receptor and klotho expressions in diabetic nephropathy progression.
Rodrigues, A M; Serralha, R S; Farias, C; Punaro, G R; Fernandes, M J S; Higa, Elisa Mieko Suemitsu
2018-06-01
Diabetes mellitus is characterized by increased levels of reactive oxygen species (ROS), leading to high levels of adenosine triphosphate (ATP) and the activation of purinergic receptors (P2X 7 ), which results in cell death. Klotho was recently described as a modulator of oxidative stress and as having anti-apoptotic properties, among others. However, the roles of P2X 7 and klotho in the progression of diabetic nephropathy are still unclear. In this context, the aim of the present study was to characterize P2X 7 and klotho in several stages of diabetes in rats. Diabetes was induced in Wistar rats by streptozotocin, while the control group rats received the drug vehicle. From the 1st to 8th weeks after the diabetes induction, the animals were placed in metabolic cages on the 1st day of each week for 24 h to analyze metabolic parameters and for the urine collection. Then, blood samples and the kidneys were collected for biochemical analysis, including Western blotting and qPCR for P2X 7 and klotho. Diabetic rats presented a progressive loss of renal function, with reduced nitric oxide and increased lipid peroxidation. The P2X 7 and klotho expressions were similar up to the 4th week; then, P2X 7 expression increased in diabetes mellitus (DM), but klotho expression presented an opposite behavior, until the 8th week. Our data show an inverse correlation between P2X 7 and klotho expressions through the development of DM, which suggests that the management of these molecules could be useful for controlling the progression of this disease and diabetic nephropathy.
Carré-Mlouka, A; Gaumer, S; Gay, P; Petitjean, A M; Coulondre, C; Dru, P; Bras, F; Dezélée, S; Contamine, D
2007-05-01
Ref(2)P has been described as one of the Drosophila proteins that interacts with the sigma virus cycle. We generated alleles to identify critical residues involved in the restrictive (inhibiting viral multiplication) or permissive (allowing viral multiplication) character of Ref(2)P. We demonstrate that permissive alleles increase the ability of the sigma virus to infect Drosophila when compared to null alleles and we confirm that restrictive alleles decrease this capacity. Moreover, we have created alleles unfunctional in viral cycling while functional for Ref(2)P fly functions. This type of allele had never been observed before and shows that fly- and virus-related activities of Ref(2)P are separable. The viral status of Ref(2)P variants is determined by the amino-terminal PB1 domain polymorphism. In addition, an isolated PB1 domain mimics virus-related functions even if it is similar to a loss of function toward fly-related activities. The evolutionary tree of the Ref(2)P PB1 domain that we could build on the basis of the natural allele sequences is in agreement with an evolution of PB1 domain due to successive transient selection waves.
Mercader, J M; Fernández-Aranda, F; Gratacòs, Mònica; Aguera, Zaida; Forcano, Laura; Ribasés, Marta; Villarejo, Cynthia; Estivill, Xavier
2010-04-01
Association studies and rodent models suggest a major role for BDNF (brain-derived neurotrophic factor) in feeding regulation. Altered BDNF blood levels have been associated with eating disorders (ED) and their related psychopathological traits. Since the influence of BDNF on self-reported eating disorder inventory scores (EDI) has not been tested, we investigated the correlation of EDI scales with BDNF plasma levels. BDNF levels were measured by (ELISA), and the EDI questionnaire was administered in a total of 81 ED patients. The relationship between BDNF levels and EDI scores was calculated using a general linear model. After correcting for multiple testing, BDNF plasma levels negatively correlated with the EDI total score (R (2) = 0.26; p = 4.09 x 10(-4)), interoceptive awareness (R (2) = 0.26; p = 1.96 x 10(-4)), and maturity fears (R (2) = 0.13; p = 6.92 x 10(-4)). When subdividing according to the main diagnoses, interoceptive awareness presented significant correlations with BDNF blood levels in both the anorexia nervosa (R (2) = 0.33, p = 0.0026) and bulimia nervosa groups (R (2) = 0.10; p = 0.008). Our data suggest that BDNF levels may influence the severity of the ED by modulating the associated psychopathology, in particular through the impairment of interoceptive awareness.
Baraldi, Pier Giovanni; del Carmen Nuñez, Maria; Morelli, Anna; Falzoni, Simonetta; Di Virgilio, Francesco; Romagnoli, Romeo
2003-04-10
The P2X(7) receptor is involved in several processes relevant to inflammation (cytokine release, NO generation, killing of intracellular pathogens, cytotoxicity); thus, it may be an appealing target for pharmacological intervention. The characterization of native and recombinant P2X(7) receptor continues to be hindered by the lack of specific and subtype-selective antagonists. However, a tyrosine derivative named KN-62 exhibits selective P2X(7) receptor-blocking properties. The present study was designed to evaluate the functional antagonistic properties of a novel series of KN-62-related compounds characterized by the presence of different phenyl-substituted piperazine moieties. Antagonistic activity of KN-62 derivatives was tested on HEK293 cells transduced with the human P2X(7) receptor and monocyte-derived human macrophages, a cell type well-known for the high level of expression of this receptor. The biological responses investigated were ATP-dependent Ca(2+) influx across the plasma membrane, ethidium bromide uptake, and secretion of the cytokine interleukin-1beta. KN-62 was characterized by the presence of a phenylpiperazine moiety, and the presence of a one-carbon linker between the piperazine nitrogen and the phenyl ring (compound 61) increases the activity, while a two-carbon linker (compound 62) decreases biological activity 10-fold. Also, the nature and the position of substituents on the phenyl ring tethered to the piperazine seemed to exert a fundamental influence on the biological activity. In the series of synthesized compounds, the presence of a fluorine in the para position gives the most potent compound (63), while the same atom in the ortho position reduces potency by 3-fold. When the p-fluorine was replaced in the same position with other halogens, such as chlorine (compound 64) or iodine (compound 65), the activity decreased dramatically. We then tested the activity of the four most potent KN-62 derivatives on ATP-stimulated secretion of IL-1beta from monocyte-derived human macrophages, a key cell type in inflammation and innate immunity. Interestingly, compound 68 and 71 caused a complete inhibition of IL-1beta release, while with KN-62, 63, and 85, there was a small residual cytokine secretion even at concentrations exceeding 100 nM. None of the compounds tested on IL-1beta release had any effect on isolated CaMII kinase activity up to 20 microM (not shown).
A taste for ATP: neurotransmission in taste buds
Kinnamon, Sue C.; Finger, Thomas E.
2013-01-01
Not only is ATP a ubiquitous source of energy but it is also used widely as an intercellular signal. For example, keratinocytes release ATP in response to numerous external stimuli including pressure, heat, and chemical insult. The released ATP activates purinergic receptors on nerve fibers to generate nociceptive signals. The importance of an ATP signal in epithelial-to-neuronal signaling is nowhere more evident than in the taste system. The receptor cells of taste buds release ATP in response to appropriate stimulation by tastants and the released ATP then activates P2X2 and P2X3 receptors on the taste nerves. Genetic ablation of the relevant P2X receptors leaves an animal without the ability to taste any primary taste quality. Of interest is that release of ATP by taste receptor cells occurs in a non-vesicular fashion, apparently via gated membrane channels. Further, in keeping with the crucial role of ATP as a neurotransmitter in this system, a subset of taste cells expresses a specific ectoATPase, NTPDase2, necessary to clear extracellular ATP which otherwise will desensitize the P2X receptors on the taste nerves. The unique utilization of ATP as a key neurotransmitter in the taste system may reflect the epithelial rather than neuronal origins of the receptor cells. PMID:24385952
Avcı, Mine; Özden Tuncer, Banu
2017-07-06
The purpose of this study was to determine the antimicrobial activity and occurrence of bacteriocin structural genes in Enterococcus spp. isolated from different cheeses and also investigate some of their virulence factors. Enterococcus strains were isolated from 33 different cheeses. Enterococcus faecium (6 strains) and Enterococcus faecalis (5 strains) enterocin-producing strains were identified by 16S rDNA analyses. Structural genes entA, entB, entP and entX were detected in some isolates. Multiple enterocin structural genes were found in 7 strains. None of the tested enterococci demonstrated anyβ-haemolytic activity and only one strain had gelatinase activity. Six strains showed multiple antibiotic resistance patterns and in addition, vanA and several virulence genes were detected in many strains. Only E. faecalis MBE1-9 showed tyrosine decarboxylase activity and tdc gene was detected only in this strain.
Amorim, Rebeca Padrão; Araújo, Michelle Gasparetti Leão; Valero, Jorge; Lopes-Cendes, Iscia; Pascoal, Vinicius Davila Bitencourt; Malva, João Oliveira; da Silva Fernandes, Maria José
2017-12-01
Cell signaling mediated by P2X7 receptors (P2X7R) has been suggested to be involved in epileptogenesis, via modulation of intracellular calcium levels, excitotoxicity, activation of inflammatory cascades, and cell death, among other mechanisms. These processes have been described to be involved in pilocarpine-induced status epilepticus (SE) and contribute to hyperexcitability, resulting in spontaneous and recurrent seizures. Here, we aimed to investigate the role of P2X7R in epileptogenesis in vivo using RNA interference (RNAi) to inhibit the expression of this receptor. Small interfering RNA (siRNA) targeting P2X7R mRNA was injected into the lateral ventricles (icv) 6 h after SE. Four groups were studied: Saline-Vehicle, Saline-siRNA, Pilo-Vehicle, and Pilo-siRNA. P2X7R was quantified by western blotting and neuronal death assessed by Fluoro-Jade B histochemistry. The hippocampal volume (edema) was determined 48 h following RNAi. Behavioral parameters as latency to the appearance of spontaneous seizures and the number of seizures were determined until 60 days after the SE onset. The Saline-siRNA and Pilo-siRNA groups showed a 43 and 37% reduction, respectively, in P2X7R protein levels compared to respective vehicle groups. Neuroprotection was observed in CA1 and CA3 of the Pilo-siRNA group compared to Pilo-Vehicle. P2X7R silencing in pilocarpine group reversed the increase in the edema detected in the hilus, suprapyramidal dentate gyrus, CA1, and CA3; reduced mortality rate following SE; increased the time to onset of spontaneous seizure; and reduced the number of seizures, when compared to the Pilo-Vehicle group. Therefore, our data highlights the potential of P2X7R as a therapeutic target for the adjunct treatment of epilepsy.
Pilutti, L A; Dlugonski, D; Sandroff, B M; Klaren, R; Motl, R W
2014-04-01
Exercise training is beneficial, but most persons with multiple sclerosis (MS) are sedentary and physically inactive. This has prompted a new focus on the promotion of lifestyle physical activity in MS. We previously designed, tested, and refined a behavioral intervention delivered through the Internet that successfully increased lifestyle physical activity in MS, but have not evaluated the effects on secondary symptomatic and health-related quality of life (HRQOL) outcomes. We conducted a 6-month randomized controlled trial (RCT) that examined the efficacy of an Internet-delivered, behavioral intervention for improving outcomes of fatigue, depression, anxiety, pain, sleep quality, and HRQOL in 82 ambulatory persons with MS. The secondary aim was to replicate previous results regarding change in free-living physical activity. There was a significant and positive effect of the intervention on fatigue severity (p=.001, η ρ (2)=.15) and its physical impact (p=.008, η ρ (2)=.09), depression (p=.006, η ρ (2)=.10), and anxiety (p=.006, η ρ (2)=.10). There were non-significant improvements in pain (p=.08, η ρ (2)=.04), sleep quality (p=.06, η ρ (2)=.05), and physical HRQOL (p=.06, η ρ (2)=.05). We replicated our previous results by demonstrating an increase in self-reported physical activity (p=.001, η ρ (2)=.13). Our results support behavioral interventions targeting lifestyle physical activity as an alternative approach for managing symptoms in MS.
Experimental Results of Multiple Scattering.
1980-07-01
error is seen to be less for targets with smaller IS()I/IS(O)Iratio like the softer particles made from expanded polystyrene and larger for harder...optical spectrum, we also notice marked differences from the P, Q plots of dylite ( expanded polystyrene ) particles in preceding sections. It was...spheres made of expanded polystyrene . As X is continuously varied for the display of if(e) , we notice a fairly symmetrical intensity profile about X = 8/2
Liu, Shude; Sankar, Kalimuthu Vijaya; Kundu, Aniruddha; Ma, Ming; Kwon, Jang-Yeon; Jun, Seong Chan
2017-07-05
Transition-metal-based heteronanoparticles are attracting extensive attention in electrode material design for supercapacitors owing to their large surface-to-volume ratios and inherent synergies of individual components; however, they still suffer from limited interior capacity and cycling stability due to simple geometric configurations, low electrochemical activity of the surface, and poor structural integrity. Developing an elaborate architecture that endows a larger surface area, high conductivity, and mechanically robust structure is a pressing need to tackle the existing challenges of electrode materials. This work presents a supercapacitor electrode consisting of honeycomb-like biphasic Ni 5 P 4 -Ni 2 P (Ni x P y ) nanosheets, which are interleaved by large quantities of nanoparticles. The optimized Ni x P y delivers an ultrahigh specific capacity of 1272 C g -1 at a current density of 2 A g -1 , high rate capability, and stability. An asymmetric supercapacitor employing as-synthesized Ni x P y as the positive electrode and activated carbon as the negative electrode exhibits significantly high power and energy densities (67.2 W h kg -1 at 0.75 kW kg -1 ; 20.4 W h kg -1 at 15 kW kg -1 ). These results demonstrate that the novel nanostructured Ni x P y can be potentially applied in high-performance supercapacitors.
de Bruijne-Admiraal, L G; Modderman, P W; Von dem Borne, A E; Sonnenberg, A
1992-07-01
Previous studies have shown that thrombin-activated platelets interact through the P-selectin with neutrophils and monocytes. To identify other types of leukocytes capable of such an interaction, eosinophils, basophils, and lymphocytes were isolated from whole blood. Binding of these cells to activated platelets was examined in a double immunofluorescence assay and the results show that activated platelets not only bind to neutrophils and monocytes, but also to eosinophils, basophils, and subpopulations of T lymphocytes. Using monoclonal antibodies (MoAbs) specific for subsets of T cells, we could further demonstrate that the T cells which bind activated platelets are natural killer (NK) cells and an undefined subpopulation of CD4+ and CD8+ cells. All these interactions were dependent on divalent cations and were completely inhibited by an MoAb against P-selectin. Thus, P-selectin mediates the binding of activated platelets to many different types of leukocytes. Studies with leukocytes treated with proteases or neuraminidase have shown that the structures recognized by P-selectin are glycoproteins carrying sialic acid residues. Because the loss of binding of activated platelets to neuraminidase-treated neutrophils was almost complete, but only partial to treated eosinophils, basophils, and monocytes, the latter cell types may have different P-selectin ligands in addition to those present on neutrophils. We found that two previously identified ligands for P-selectin, the oligosaccharides Le(x) and sialyl-Le(x), had little or no inhibitory effect on adhesion of activated platelets to leukocytes and that binding was not inhibited by MoAbs against these oligosaccharides. In addition, there was no correlation between the expression of Le(x) on several cell types and their capacity to bind activated platelets. In contrast, the expression of sialyl-Le(x) on cells was almost perfectly correlated with their ability to bind activated platelets. Thus, while Le(x) cannot be a major ligand for P-selectin, a possible role for sialyl-Le(x) in P-selectin-mediated adhesion processes cannot be dismissed. Finally, activated platelets were found to bind normally to monocytes and neutrophils of patients with paroxysmal nocturnal hemoglobulinuria (PNH) and to neutrophils from which phosphatidyl inositol (PI)-linked proteins had been removed by glycosylphosphatidyl inositol-specific phospholipase C (GPI-PLC) digestion. This suggests that at least part of the P-selectin ligands on these cells are not GPI-anchored.
Brault, Julie; Vaganay, Guillaume; Le Roy, Aline; Lenormand, Jean-Luc; Cortes, Sandra; Stasia, Marie José
2017-01-01
Chronic granulomatous disease (CGD) is a rare inherited immunodeficiency due to dysfunction of the phagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex leading to severe and recurrent infections in early childhood. The main genetic form is the X-linked CGD leading to the absence of cytochrome b558 composed of NOX2 and p22phox, the membrane partners of the NADPH oxidase complex. The first cause of death of CGD patients is pulmonary infections. Recombinant proteoliposome-based therapy is an emerging and innovative approach for membrane protein delivery, which could be an alternative local, targeted treatment to fight lung infections in CGD patients. We developed an enzyme therapy using recombinant NOX2/p22phox liposomes to supply the NADPH oxidase activity in X0-linked CGD (X0-CGD) macrophages. Using an optimized prokaryotic cell-free protein synthesis system, a recombinant cytochrome b558 containing functional hemes was produced and directly inserted into the lipid bilayer of specific liposomes. The size of the NOX2/p22phox liposomes was estimated to be around 700 nm. These proteoliposomes were able to generate reactive oxygen species (ROS) in an activated reconstituted cell-free NADPH oxidase activation assay in the presence of recombinant p47phox, p67phox and Rac, the cytosolic components of the NADPH oxidase complex. Furthermore, using flow cytometry and fluorescence microscopy, we demonstrated that cytochrome b558 was successfully delivered to the plasma membrane of X0-CGD-induced pluripotent stem cell (iPSC)-derived macrophages. In addition, NADPH oxidase activity was restored in X0-CGD iPSC-derived macrophages treated with NOX2/p22phox liposomes for 8 h without any toxicity. In conclusion, we confirmed that proteoliposomes provide a new promising technology for the delivery of functional proteins to the membrane of targeted cells. This efficient liposomal enzyme replacement therapy will be useful for future treatment of pulmonary infections in CGD patients refractory to conventional anti-infectious treatments. PMID:28356734
Blacker, Sam D; Horner, Fleur L; Brown, Peter I; Linnane, Denise M; Wilkinson, David M; Wright, Antony; Bluck, Les J; Rayson, Mark P
2011-12-01
To quantify the health, fitness, and physiological responses to military training of Officer Cadets from a Gulf Cooperation Council country. One hundred and nineteen Officer Cadets volunteered; body composition, core body temperature, aerobic fitness, hydration status (urine osmolality), cardiovascular strain, physical activity (3-dimensional accelerometry), and energy expenditure (doubly labelled water) were measured over 5-days of Basic Training (BT), Army Training (AT), Navy Training (NT), and Air Force Training (AFT). There were no differences between courses for body mass index (mean all courses: 24.1 +/- 4.1 kg x m2) or peak core body temperature (mean all courses: 38.1 +/- 0.4 degrees C) (p > 0.05). AT body fat (19.8 +/- 3.6%) and BT VO2 max (36.8 +/- 11.6 mL x kg(-1) x min(-1)) were lower than the other courses (BT, 26.1 +/- 8.1; NT, 26.0 +/- 6.0; AFT, 24.7 +/- 6.1%) and (AT, 44.8 +/- 9.6; NT, 45.0 +/- 7.5; AFT, 44.6 +/- 5.2 mL x kg(-1) x min(-1)), respectively (p < 0.05). NT urine osmolality (979 +/- 90 mOsmol x kg(-1)) was similar to BT (946 +/- 181 mOsmol x kg(-1) p > 0.05) but lower in AT (868 +/- 144 mOsmol x kg(-1), p < 0.05) and AFT (883 +/- 121 mOsmol x kg(-1), p < 0.05). Cardiovascular strain during NT (22 +/- 5% HRR) was lower than other courses (range, 25 +/- 4-29 +/- 3% Heart Rate Reserve) (p < 0.05). Physical activity level during AFT (1.70 +/- 0.18 AU) was lower than other courses (range, 1.86 +/- 0.21-1.92 +/- 0.18 AU) (p > 0.05). Positive developments were apparent from BT leading into other courses. Potential exists to increase physical training volume on all courses, which may improve participants' aerobic fitness, body composition, and health.
Qing, Si-han; Chang, Yun-feng; Dong, Xiao-ai; Li, Yuan; Chen, Xiao-gang; Shu, Yong-kang; Deng, Zhen-hua
2013-10-01
To establish the mathematical models of stature estimation for Sichuan Han female with measurement of lumbar vertebrae by X-ray to provide essential data for forensic anthropology research. The samples, 206 Sichuan Han females, were divided into three groups including group A, B and C according to the ages. Group A (206 samples) consisted of all ages, group B (116 samples) were 20-45 years old and 90 samples over 45 years old were group C. All the samples were examined lumbar vertebrae through CR technology, including the parameters of five centrums (L1-L5) as anterior border, posterior border and central heights (x1-x15), total central height of lumbar spine (x16), and the real height of every sample. The linear regression analysis was produced using the parameters to establish the mathematical models of stature estimation. Sixty-two trained subjects were tested to verify the accuracy of the mathematical models. The established mathematical models by hypothesis test of linear regression equation model were statistically significant (P<0.05). The standard errors of the equation were 2.982-5.004 cm, while correlation coefficients were 0.370-0.779 and multiple correlation coefficients were 0.533-0.834. The return tests of the highest correlation coefficient and multiple correlation coefficient of each group showed that the highest accuracy of the multiple regression equation, y = 100.33 + 1.489 x3 - 0.548 x6 + 0.772 x9 + 0.058 x12 + 0.645 x15, in group A were 80.6% (+/- lSE) and 100% (+/- 2SE). The established mathematical models in this study could be applied for the stature estimation for Sichuan Han females.
Physical self-esteem of adolescents with regard to physical activity and pubertal status.
Altintaş, Atahan; Aşçi, F Hülya
2008-05-01
The purpose of this study was to examine the physical activity and pubertal status differences in the multiple dimensions of physical self-esteem of Turkish adolescents. The current study also aimed to investigate the gender differences in the physical self-esteem. The pubertal status of participants was determined by a self-report questionnaire. The Children and Youth Physical Self-Perception Profile and a weekly activity checklist were administered to 803 adolescents (Mage = 13.10 +/- 0.93). Analysis revealed significant main effects of physical activity on the multiple dimensions of physical self-esteem for both boys and girls. Follow-up analysis indicated that physically active boys and girls scored higher on almost all subscales of physical self-esteem than less active counterparts. The main effect of pubertal status and physical activity x pubertal status interaction were not significant either for boys or girls. Analysis also revealed significant gender differences in perceived body attractiveness, physical strength, physical condition, and physical self-worth subscales in favor of boys (p < .05).
Yeh, C T; Shen, C H; Tai, D I; Chu, C M; Liaw, Y F
2000-11-02
The aim of this study was to investigate whether there was a particular hepatitis B virus (HBV) X protein (HBx) mutant associated with Taiwanese patients with hepatocellular carcinoma (HCC). Initially, the entire coding region of HBx gene from the serum samples of 14 Taiwanese patients were sequenced. A novel mutant, HBx-A31, was preferentially found in patients with HCC. Sera from 67 patients with HCC and 100 patients with chronic hepatitis B were thus subjected for codon 31 analysis using a dual amplification created restriction site method. HBx-A31 was detected more frequently in patients with HCC (52% versus 12%; P<0.001) and in patients with liver cirrhosis (44% versus 6%; P<0.001). Site directed mutagenesis experiment revealed that HBx-A31 was less effective in transactivating HBV enhancer I-X promoter complex, less efficient in supporting HBV replication, and less potent in enhancing TNF-alpha induced increment of CPP32/caspase 3 activities in HepG2 cells. In conclusion, a prevalent HBx mutant was identified in Taiwanese patients with hepatocellular carcinoma. Development of this mutant might represent a strategy of the virus to escape immune surveillance and thus contribute to the process of multiple-step hepatocarcinogenesis.
Asahara, T; Nomoto, K; Watanuki, M; Yokokura, T
2001-06-01
The antimicrobial activity of the intraurethrally administered probiotic Lactobacillus casei strain Shirota against Escherichia coli in a murine urinary tract infection (UTI) model was examined. UTI was induced by intraurethral administration of Escherichia coli strain HU-1 (a clinical isolate from a UTI patient, positive for type 1 and P fimbriae), at a dose of 1 x 10(6) to 2 x 10(6) CFU in 20 microl of saline, into a C3H/HeN mouse bladder which had been traumatized with 0.1 N HCl followed immediately by neutralization with 0.1 N NaOH 24 h before the challenge infection. Chronic infection with the pathogen at 10(6) CFU in the urinary tract (bladder and kidneys) was maintained for more than 3 weeks after the challenge, and the number of polymorphonuclear leukocytes and myeloperoxidase activity in the urine were markedly elevated during the infection period. A single administration of L. casei Shirota at a dose of 10(8) CFU 24 h before the challenge infection dramatically inhibited E. coli growth and inflammatory responses in the urinary tract. Multiple daily treatments with L. casei Shirota during the postinfection period also showed antimicrobial activity in this UTI model. A heat-killed preparation of L. casei Shirota exerted significant antimicrobial effects not only with a single pretreatment (100 microg/mouse) but also with multiple daily treatments during the postinfection period. The other Lactobacillus strains tested, i.e., L. fermentum ATCC 14931(T), L. jensenii ATCC 25258(T), L. plantarum ATCC 14917(T), and L. reuteri JCM 1112(T), had no significant antimicrobial activity. Taken together, these results suggest that the probiotic L. casei strain Shirota is a potent therapeutic agent for UTI.
A Mechanism of Intracellular P2X Receptor Activation*
Sivaramakrishnan, Venketesh; Fountain, Samuel J.
2012-01-01
P2X receptors (P2XRs) are ATP-activated calcium-permeable ligand-gated ion channels traditionally viewed as sensors of extracellular ATP during diverse physiological processes including pain, inflammation, and taste. However, in addition to a cell surface residency P2XRs also populate the membranes of intracellular compartments, including mammalian lysosomes, phagosomes, and the contractile vacuole (CV) of the amoeba Dictyostelium. The function of intracellular P2XRs is unclear and represents a major gap in our understanding of ATP signaling. Here, we exploit the genetic versatility of Dictyostelium to investigate the effects of physiological concentrations of ATP on calcium signaling in isolated CVs. Within the CV, an acidic calcium store, P2XRs are orientated to sense luminal ATP. Application of ATP to isolated vacuoles leads to luminal translocation of ATP and release of calcium. Mechanisms of luminal ATP translocation and ATP-evoked calcium release share common pharmacology, suggesting that they are linked processes. The ability of ATP to mobilize stored calcium is reduced in vacuoles isolated from P2XAR knock-out amoeba and ablated in cells devoid of P2XRs. Pharmacological inhibition of luminal ATP translocation or depletion of CV calcium attenuates CV function in vivo, manifesting as a loss of regulatory cell volume decrease following osmotic swelling. We propose that intracellular P2XRs regulate vacuole activity by acting as calcium release channels, activated by translocation of ATP into the vacuole lumen. PMID:22736763
NASA Astrophysics Data System (ADS)
Tolpygo, Sergey K.; Bolkhovsky, Vladimir; Oates, Daniel E.; Rastogi, Ravi; Zarr, Scott; Day, Alexandra L.; Weir, Tarence J.; Wynn, Alex; Johnson, Leonard M.
2018-06-01
Recent progress in superconductor electronics fabrication has enabled single-flux-quantum (SFQ) digital circuits with close to one million Josephson junctions (JJs) on 1-cm$^2$ chips. Increasing the integration scale further is challenging because of the large area of SFQ logic cells, mainly determined by the area of resistively shunted Nb/AlO$_x$-Al/Nb JJs and geometrical inductors utilizing multiple layers of Nb. To overcome these challenges, we are developing a fabrication process with self-shunted high-J$_c$ JJs and compact thin-film MoN$_x$ kinetic inductors instead of geometrical inductors. We present fabrication details and properties of MoN$_x$ films with a wide range of T$_c$, including residual stress, electrical resistivity, critical current, and magnetic field penetration depth {\\lambda}$_0$. As kinetic inductors, we implemented Mo$_2$N films with T$_c$ about 8 K, {\\lambda}$_0$ about 0.51 {\\mu}m, and inductance adjustable in the range from 2 to 8 pH/sq. We also present data on fabrication and electrical characterization of Nb-based self-shunted JJs with AlO$_x$ tunnel barriers and J$_c$ = 0.6 mA/{\\mu}m$^2$, and with 10-nm thick Si$_{1-x}$Nb$_x$ barriers, with x from 0.03 to 0.15, fabricated on 200-mm wafers by co-sputtering. We demonstrate that the electron transport mechanism in Si$_{1-x}$Nb$_x$ barriers at x < 0.08 is inelastic resonant tunneling via chains of multiple localized states. At larger x, their Josephson characteristics are strongly dependent on x and residual stress in Nb electrodes, and in general are inferior to AlO$_x$ tunnel barriers.
Effects of P and C inputs on microbial activities in P limiting bulk and rhizosphere soil
NASA Astrophysics Data System (ADS)
Bilyera, Nataliya
2017-04-01
Keywords: phosphorus, soil ATP, phosphatase, microbial biomass, Cambisol. Phosphorus (P) is the second important nutrient for plants and limiting element in many ecosystems. P is a non-renewable resource, and based on its current rate of use, it has been estimated that the worlds known reserves of P rocks may be depleted within the current century. Soils with high-sorption P capacity require higher P additions, but, do not provide plants with sufficient available P. Therefore, it is necessary to reduce P application rates, but facilitate soil microbiological activity to maintain good P availability for plants. We aimed to study soil adenosine triphosphate (ATP), microbial biomass (MBC) and phosphatase activity as microbial response to contrasting P input in a low P Cambisol in a 5 days incubation experiment. The treatments were i) bulk soil (no C), ii) rhizosphere soil (10 μg C g-1 soil day-1 - root exudates imitation) and iii) glucose addition to soil (50 μg C g-1 soil - for microbial activation). Three rates of P as KH2PO4 were applied at each C treatments: i) no P (P0) - for P severe limitation; ii) 10% P from initial extractable soil P (P10) - low P input; and iii) 50% P from initial extractable soil P (P50) - high P input. We tested the following hypotheses: 1) the better response of MBC and ATP to P is expected to be in the rhizosphere soil, as continuous C input resulted in gradual microbial activation; 2) phosphatase activity will decrease with increasing P rates in all soils. Microbial biomass grew linear (R2=0.99) and simultaneously with incremental P addition in bulk soil. In rhizosphere and C-amended soils, on contrary, the MBC response to P level was represented by quadratic model (y=-0.06x2+2.84x+37.03; R2=0.93). This model shows the highest MBC value at P23, which indicates optimal and the most effective application rate for this soil type. The correlation between soil ATP content and P rates ascended in the order bulk soil (R2=0.34) > C-amended soil (R2=0.51) > rhizosphere soil (R2=0.97). That proves our hypothesis that continuous C input (similar to root exudations) stimulates gradual microorganism activation. The soil ATP content per gram of microbial biomass C increased linearly (y=5.09x + 21.4; R2= 0.99) with increasing P rates in rhizosphere, whereas in bulk and C-amendment soils the effect of P was less pronounced. Phosphatase activity declined (57 and 64%) exponentially with increasing P rates for rhizosphere (R2=0.84) and C-amended (R2=0.98) soils, that complies with our hypothesis. In bulk soil, on contrary, phosphatase activity increased (35%) at P10 and remained constant at P50. P0 was resulted in 5-folds higher phosphatase activity in rhizosphere and C-amended soils compared to bulk soil. This proves the significance of root exudates in facilitation of microbial phosphatase production. Our results show that P (re)cycling can be accelerated in P-deficient soils by C addition and so, excessive P fertilization can be avoided to maintain ecosystem sustainability.
Tian, Feng-Yu; Hou, Dongfang; Zhang, Wei-Min; Qiao, Xiu-Qing; Li, Dong-Sheng
2017-10-24
A novel heterostructure catalyst of Ni 2 P/Ni 12 P 5 has been fabricated through a simple solvothermal method by modifying the molar ratio of the initial raw materials. The products are characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), nitrogen adsorption and X-ray photoelectron spectroscopy (XPS). It is found that the two phases, Ni 2 P and Ni 12 P 5 , are interlaced with one another in the as-formed nanocomposite, resulting in more interfaces. The bi-phase catalyst exhibits a markedly enhanced catalytic activity in the reduction of 4-nitrophenol, as compared to that of single Ni 2 P or Ni 12 P 5 . The enhanced catalytic activity can be attributed to the unique n-n series effects, which result in the increased ease of electron transfer over the Ni 2 P/Ni 12 P 5 bi-phase catalyst.
NASA Astrophysics Data System (ADS)
Padmaraj, O.; Suthanthiraraj, S. Austin
2018-04-01
A novel stable electrospun gel polymer electrolyte [(100-x)% P(VdF-co-HFP)+(x)% P(TFE), (x = 5, 10, 15, 20, 25 & 30)/1 M Li(CF3SO2)2N-] fibrous membranes with an addition of various concentrations of hydrophobic P(TFE) polymer were prepared by an electrospinning technique. All the prepared electrospun polymer blend fibrous membranes were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, high resolution scanning electron microscopy techniques and water contact angle measurements. The newly developed electrospun pure and hydrophobic P(TFE) blend fibrous membranes were activated into separator-cum gel polymer electrolyte fibrous membranes by soaking in an electrolyte solution contains 1 M Li(CF3SO2)2N- in EC: PC (1:1, v/v) in an argon filled glove box. Among the various concentrations of hydrophobic P(TFE) blend polymer fibrous membranes, the electrospun gel polymer blend electrolyte with 5% P(TFE) showed low crystallinity, high thermal stability, high electrolyte uptake, good hydrophobicity and high ionic conductivity (2.680×10-2 S cm-1) at room temperature.
High-level heterologous expression and properties of a novel lipase from Ralstonia sp. M1.
Quyen, Dinh Thi; Giang Le, Thi Thu; Nguyen, Thi Thao; Oh, Tae-Kwang; Lee, Jung-Kee
2005-01-01
The mature lipase LipA and its 56aa-truncated chaperone DeltaLipBhis (with 6xhis-tag) from Ralstonia sp. M1 were over-expressed in Escherichia coli BL21 under the control of T7 promoter with a high level of 70 and 12mg protein per gram of wet cells, respectively. The simply purified lipase LipA was effectively refolded by Ni-NTA purified chaperone DeltaLipBhis in molar ratio 1:1 at 4 degrees C for 24 hours in H2O. The in vitro refolded lipase LipA had an optimal activity in the temperature range of 50-55 degrees C and was stable up to 45 degrees C with more than 84% activity retention. The maximal activity was observed at pH 10.75 for hydrolysis of olive oil and found to be stable over alkaline pH range 8.0-10.5 with more than 52% activity retention. The enzyme was found to be highly resistant to many organic solvents especially induced by ethanolamine (remaining activity 137-334%), but inhibited by 1-butanol and acetonitrile (40-86%). Metal ions Cu2+, Sn2+, Mn2+, Mg2+, and Ca2+ stimulated the lipase slightly with increase in activity by up to 22%, whereas Zn2+ significantly inhibited the enzyme with the residual activity of 30-65% and Fe3+ to a lesser degree (activity retention of 77-86%). Tween 80, Tween 60, and Tween 40 induced the activation of the lipase LipA (222-330%) and 0.2-1% (w/v) of Triton X-100, X-45, and SDS increased the lipase activity by up to 52%. However, 5% (w/v) of Triton X-100, X-45, and SDS inhibited strongly the activity by 31-89%. The inhibitors including DEPC, EDTA, PMSF, and 2-mercaptoethanol (0.1-10mM) inhibited moderately the lipase with remaining activity of 57-105%. The lipase LipA hydrolyzed a wide range of triglycerides, but preferentially short length acyl chains (C4 and C6). In contrast to the triglycerides, medium length acyl chains (C8 and C14) of p-nitrophenyl (p-NP) esters were preferential substrates of this lipase. The enzyme preferentially catalyzed the hydrolysis of cottonseed oil (317%), cornoil (227%), palm oil (222%), and wheatgerm oil (210%) in comparison to olive oil (100%).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanecak, R.; Semler, B.L.; Anderson, C.W.
1982-07-01
Proteolytic processing of poliovirus polypeptides was examined by the addition of antibodies directed against the viral proteins P3-7c and P2-X to a cell-free translation extract prepared from infected HeLa cells. Antisera to P3-7c specifically inhibited in vitro processing at Gln-Gly pairs. Partial amino acid sequence analysis revealed a second Tyr-Gly pair that is utilized in protein processing. Neither Tyr-Gly cleavage is affected by antibody to P3-7C. Anti-P3-7c antibodies react not only with P3-7c but also with P3-6a and P3-2, two viral polypeptides NH/sub 2/-coterminal with P3-7c. Preimmune and anti-P2-X antibodies had no effect on the processing of poliovirus proteins inmore » vitro. The authors conclude that the activity responsible for processing poliovirus polypeptides at Gln-Gly pairs resides in the primary structure of P3-7c and not in P2-X.« less
Podocyte Purinergic P2X4 Channels Are Mechanotransducers That Mediate Cytoskeletal Disorganization.
Forst, Anna-Lena; Olteanu, Vlad Sorin; Mollet, Géraldine; Wlodkowski, Tanja; Schaefer, Franz; Dietrich, Alexander; Reiser, Jochen; Gudermann, Thomas; Mederos y Schnitzler, Michael; Storch, Ursula
2016-03-01
Podocytes are specialized, highly differentiated epithelial cells in the kidney glomerulus that are exposed to glomerular capillary pressure and possible increases in mechanical load. The proteins sensing mechanical forces in podocytes are unconfirmed, but the classic transient receptor potential channel 6 (TRPC6) interacting with the MEC-2 homolog podocin may form a mechanosensitive ion channel complex in podocytes. Here, we observed that podocytes respond to mechanical stimulation with increased intracellular calcium concentrations and increased inward cation currents. However, TRPC6-deficient podocytes responded in a manner similar to that of control podocytes, and mechanically induced currents were unaffected by genetic inactivation of TRPC1/3/6 or administration of the broad-range TRPC blocker SKF-96365. Instead, mechanically induced currents were significantly decreased by the specific P2X purinoceptor 4 (P2X4) blocker 5-BDBD. Moreover, mechanical P2X4 channel activation depended on cholesterol and podocin and was inhibited by stabilization of the actin cytoskeleton. Because P2X4 channels are not intrinsically mechanosensitive, we investigated whether podocytes release ATP upon mechanical stimulation using a fluorometric approach. Indeed, mechanically induced ATP release from podocytes was observed. Furthermore, 5-BDBD attenuated mechanically induced reorganization of the actin cytoskeleton. Altogether, our findings reveal a TRPC channel-independent role of P2X4 channels as mechanotransducers in podocytes. Copyright © 2016 by the American Society of Nephrology.
Guo, B Z; Zhang, Z J; Li, R G; Widstrom, N W; Snook, M E; Lynch, R E; Plaisted, D
2001-04-01
Maysin, a C-glycosylflavone in maize silk, has insecticidal activity against corn earworm, Helicoverpa zea (Boddie), larvae. Sweet corn, Zea mays L., is a vulnerable crop to ear-feeding insects and requires pesticide protection from ear damage. This study was conducted to identify maize chromosome regions associated with silk maysin concentration and eventually to transfer and develop high silk maysin sweet corn lines with marker-assisted selection (MAS). Using an F2 population derived from SC102 (high maysin dent corn) and B31857 (low maysin sh2 sweet corn), we detected two major quantitative trait loci (QTL). It was estimated that 25.6% of the silk maysin variance was associated with segregation in the genomic region of npi286 (flanking to p1) on chromosome 1S. We also demonstrated that a1 on chromosome 3L had major contribution to silk maysin (accounted for 15.7% of the variance). Locus a1 has a recessive gene action for high maysin with the presence of functional p1 allele. Markers umc66a (near c2) and umc105a on chromosome 9S also were detected in this analysis with minor contribution. A multiple-locus model, which included npi286, a1, csu3 (Bin 1.05), umc245 (Bin 7.05), agrr21 (Bin 8.09), umc105a, and the epistatic interactions npi286 x a1, a1 x agrr21, csu3 x umc245, and umc105a x umc245, accounted for 76.3% of the total silk maysin variance. Tester crosses showed that at the a1 locus, SC102 has functional A1 alleles and B31857 has homozygous recessive a1 alleles. Individuals of (SC102 x B31857) x B31857 were examined with MAS and plants with p1 allele from SC102 and homozygous a1 alleles from B31857 had consistent high silk maysin. Marker-assisted selection seems to be a suitable method to transfer silk maysin to sweet corn lines to reduce pesticide application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thi, Trinh Cham, E-mail: s1240009@jaist.ac.jp; Koyama, Koichi; Ohdaira, Keisuke
We improve the passivation property of n-type crystalline silicon (c-Si) surface passivated with a catalytic chemical vapor deposited (Cat-CVD) Si nitride (SiN{sub x}) film by inserting a phosphorous (P)-doped layer formed by exposing c-Si surface to P radicals generated by the catalytic cracking of PH{sub 3} molecules (Cat-doping). An extremely low surface recombination velocity (SRV) of 2 cm/s can be achieved for 2.5 Ω cm n-type (100) floating-zone Si wafers passivated with SiN{sub x}/P Cat-doped layers, both prepared in Cat-CVD systems. Compared with the case of only SiN{sub x} passivated layers, SRV decreases from 5 cm/s to 2 cm/s. The decrease in SRVmore » is the result of field effect created by activated P atoms (donors) in a shallow P Cat-doped layer. Annealing process plays an important role in improving the passivation quality of SiN{sub x} films. The outstanding results obtained imply that SiN{sub x}/P Cat-doped layers can be used as promising passivation layers in high-efficiency n-type c-Si solar cells.« less
Adenosine triphosphate as a molecular mediator of the vascular response to injury.
Guth, Christy M; Luo, Weifung; Jolayemi, Olukemi; Chadalavada, Kalyan S; Komalavilas, Padmini; Cheung-Flynn, Joyce; Brophy, Colleen M
2017-08-01
Human saphenous veins used for arterial bypass undergo stretch injury at the time of harvest and preimplant preparation. Vascular injury promotes intimal hyperplasia, the leading cause of graft failure, but the molecular events leading to this response are largely unknown. This study investigated adenosine triphosphate (ATP) as a potential molecular mediator in the vascular response to stretch injury, and the downstream effects of the purinergic receptor, P2X7R, and p38 MAPK activation. A subfailure stretch rat aorta model was used to determine the effect of stretch injury on release of ATP and vasomotor responses. Stretch-injured tissues were treated with apyrase, the P2X7R antagonist, A438079, or the p38 MAPK inhibitor, SB203580, and subsequent contractile forces were measured using a muscle bath. An exogenous ATP (eATP) injury model was developed and the experiment repeated. Change in p38 MAPK phosphorylation after stretch and eATP tissue injury was determined using Western blotting. Noninjured tissue was incubated in the p38 MAPK activator, anisomycin, and subsequent contractile function and p38 MAPK phosphorylation were analyzed. Stretch injury was associated with release of ATP. Contractile function was decreased in tissue subjected to subfailure stretch, eATP, and anisomycin. Contractile function was restored by apyrase, P2X7R antagonism, and p38-MAPK inhibition. Stretch, eATP, and anisomycin-injured tissue demonstrated increased phosphorylation of p38 MAPK. Taken together, these data suggest that the vascular response to stretch injury is associated with release of ATP and activation of the P2X7R/P38 MAPK pathway, resulting in contractile dysfunction. Modulation of this pathway in vein grafts after harvest and before implantation may reduce the vascular response to injury. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhu, Huan-Feng; Yan, Peng-Wei; Wang, Li-Jun; Liu, Ya-Tian; Wen, Jing; Zhang, Qian; Fan, Yan-Xin; Luo, Yan-Hong
2018-06-22
Huperzine A (HupA), derived from Huperzia Serrata, has exhibited a variety of biological actions, in particular neuroprotective effect. However, the protective activities of HupA on murine embryonic fibroblast NIH3T3 cells after X-rays radiation have not been fully elucidated. Herein, HupA treatment dramatically promoted cell viability, abated a G0/G1 peak accumulation, and ameliorated increase of cell apoptosis in NIH3T3 cells after X-rays radiation. Simultaneously, HupA notably enhanced activities of anti-oxidant enzymes, inhibited activity of lipid peroxide, and efficiently eliminated production of reactive oxygen species in NIH3T3 cells after X-rays radiation. Dose-dependent increase of antioxidant genes by HupA were associated with up-regulated Nrf2 and down-regulated Keap-1 expression, which was confirmed by increasing nuclear accumulation, and inhibiting of degradation of Nrf2. Notably, augmented luciferase activity of ARE may explained Nrf2/ARE-mediated signaling pathways behind HupA protective properties. Moreover, expression of Nrf2 HupA-mediated was significant attenuated by AKT inhibitor (LY294002), p38 MAPK inhibitor (SB202190) and ERK inhibitor (PD98059). Besides, HupA-mediated cell viability, and ROS production were dramatically bated by LY294002, SB202190, and PD98059. Taken together, HupA effectively ameliorated X-rays radiation-induced damage Nrf2-ARE-mediated transcriptional response via activation AKT, p38, and ERK signaling in NIH3T3 cells. © 2018 Wiley Periodicals, Inc.
Song, Ci; Nutile, Teresa; Vernon Smith, Albert; Concas, Maria Pina; Traglia, Michela; Barbieri, Caterina; Ndiaye, Ndeye Coumba; Stathopoulou, Maria G.; Lagou, Vasiliki; Maestrale, Giovanni Battista; Sala, Cinzia; Debette, Stephanie; Kovacs, Peter; Lind, Lars; Lamont, John; Fitzgerald, Peter; Tönjes, Anke; Gudnason, Vilmundur; Toniolo, Daniela; Pirastu, Mario; Bellenguez, Celine; Vasan, Ramachandran S.; Ingelsson, Erik; Leutenegger, Anne-Louise; Johnson, Andrew D.; DeStefano, Anita L.; Visvikis-Siest, Sophie; Seshadri, Sudha; Ciullo, Marina
2016-01-01
Vascular endothelial growth factor (VEGF) is an angiogenic and neurotrophic factor, secreted by endothelial cells, known to impact various physiological and disease processes from cancer to cardiovascular disease and to be pharmacologically modifiable. We sought to identify novel loci associated with circulating VEGF levels through a genome-wide association meta-analysis combining data from European-ancestry individuals and using a dense variant map from 1000 genomes imputation panel. Six discovery cohorts including 13,312 samples were analyzed, followed by in-silico and de-novo replication studies including an additional 2,800 individuals. A total of 10 genome-wide significant variants were identified at 7 loci. Four were novel loci (5q14.3, 10q21.3, 16q24.2 and 18q22.3) and the leading variants at these loci were rs114694170 (MEF2C, P = 6.79x10-13), rs74506613 (JMJD1C, P = 1.17x10-19), rs4782371 (ZFPM1, P = 1.59x10-9) and rs2639990 (ZADH2, P = 1.72x10-8), respectively. We also identified two new independent variants (rs34528081, VEGFA, P = 1.52x10-18; rs7043199, VLDLR-AS1, P = 5.12x10-14) at the 3 previously identified loci and strengthened the evidence for the four previously identified SNPs (rs6921438, LOC100132354, P = 7.39x10-1467; rs1740073, C6orf223, P = 2.34x10-17; rs6993770, ZFPM2, P = 2.44x10-60; rs2375981, KCNV2, P = 1.48x10-100). These variants collectively explained up to 52% of the VEGF phenotypic variance. We explored biological links between genes in the associated loci using Ingenuity Pathway Analysis that emphasized their roles in embryonic development and function. Gene set enrichment analysis identified the ERK5 pathway as enriched in genes containing VEGF associated variants. eQTL analysis showed, in three of the identified regions, variants acting as both cis and trans eQTLs for multiple genes. Most of these genes, as well as some of those in the associated loci, were involved in platelet biogenesis and functionality, suggesting the importance of this process in regulation of VEGF levels. This work also provided new insights into the involvement of genes implicated in various angiogenesis related pathologies in determining circulating VEGF levels. The understanding of the molecular mechanisms by which the identified genes affect circulating VEGF levels could be important in the development of novel VEGF-related therapies for such diseases. PMID:26910538
Disk Disruptions and X-ray Intensity Excursions in Cyg X-2, LMC X-3 and Cyg X-3
NASA Astrophysics Data System (ADS)
Boyd, P. T.; Smale, A. P.
2001-05-01
The RXTE All Sky Monitor soft X-ray light curves of many X-ray binaries show long-term intensity variations (a.k.a "superorbital periodicities") that have been ascribed to precession of a warped, tilted accretion disk around the X-ray source. We have found that the excursion times between X-ray minima in Cyg X-2 can be characterized as a series of integer multiples of the 9.8 binary orbital period, (as opposed to the previously reported stable 77.7 day single periodicity, or a single modulation whose period changes slowly with time). While the data set is too short for a proper statistical analysis, it is clear that the length of any given intensity excursion cannot be used to predict the next (integer) excursion length in the series. In the black hole candidate system LMC X-3, the excursion times are shown to be related to each other by rational fractions. We find that the long term light curve of the unusual galactic X-ray jet source Cyg X-3 can also be described as a series of intensity excursions related to each other by integer multiples of a fundamental underlying clock. In the latter cases, the clock is apparently not related to the known binary periods. A unified physical model, involving both an inclined accretion disk and a fixed-probability disk disruption mechanism is presented, and compared with three-body scattering results. Each time the disk passes through the orbital plane it experiences a fixed probability P that it will disrupt. This model has testable predictions---the distribution of integers should resemble that of an atomic process with a characteristic half life. Further analysis can support or refute the model, and shed light on what system parameters effectively set the value of P.
NASA Astrophysics Data System (ADS)
Raja, N.; Ramesh, R.
2010-02-01
Mononuclear ruthenium(III) complexes of the type [RuX(EPh 3) 2(L)] (E = P or As; X = Cl or Br; L = dibasic terdentate dehydroacetic acid thiosemicarbazones) have been synthesized from the reaction of thiosemicarbazone ligands with ruthenium(III) precursors, [RuX 3(EPh 3) 3] (where E = P, X = Cl; E = As, X = Cl or Br) and [RuBr 3(PPh 3) 2(CH 3OH)] in benzene. The compositions of the complexes have been established by elemental analysis, magnetic susceptibility measurement, FT-IR, UV-vis and EPR spectral data. These complexes are paramagnetic and show intense d-d and charge transfer transitions in dichloromethane. The complexes show rhombic EPR spectra at LNT which are typical of low-spin distorted octahedral ruthenium(III) species. All the complexes are redox active and display an irreversible metal centered redox processes. Complex [RuCl(PPh 3) 2(DHA-PTSC)] ( 5) was used as catalyst for transfer hydrogenation of ketones in the presence of isopropanol/KOH and was found to be the active species.
NASA Astrophysics Data System (ADS)
Glenn, A. M.; Nagle, J. L.; Molnar, Denes
2007-01-01
Coherent multiple scatterings of ccbar quark pairs in the environment of heavy ion collisions have been used in a previous work by Qiu et al. [J. Qiu, J.P. Vary, X. Zhang, Phys. Rev. Lett. 88 (2002) 232301; J. Qiu, J.P. Vary, X. Zhang, Nucl. Phys. A 698 (2002) 571, nucl-th/0106040] to study J / ψ suppression. That model suggests that heavy quark re-scatterings in a cold nuclear medium can completely explain the centrality dependence of the observed J / ψ suppression in Pb + Pb collisions at the SPS [M.C. Abreu, et al., NA50 Collaboration, Phys. Lett. B 521 (2001) 195]. Their calculations also revealed significant differences under the assumptions of a color singlet or color octet production mechanism. A more recent analytic calculation [H. Fujii, Phys. Rev. C 67 (2003) 031901], which includes incoherent final-state re-scatterings with explicit momentum transfer fluctuations in three dimensions, indicates much less suppression and little sensitivity to the production mechanism. In this Letter, we study simultaneously both the J / ψ suppression and pT modifications, at SPS and RHIC energies. We mainly focus on incoherent momentum transfer fluctuations in two dimensions, which is more appropriate for the heavy-ion collision kinematics. Our analytic and Monte Carlo calculations reinforce the analytic results in [H. Fujii, Phys. Rev. C 67 (2003) 031901]. Additionally, we find that the experimental J / ψ suppression and
Purinergic signaling in kidney disease.
Menzies, Robert I; Tam, Frederick W; Unwin, Robert J; Bailey, Matthew A
2017-02-01
Nucleotides are key subunits for nucleic acids and provide energy for intracellular metabolism. They can also be released from cells to act physiologically as extracellular messengers or pathologically as danger signals. Extracellular nucleotides stimulate membrane receptors in the P2 and P1 family. P2X are ATP-activated cation channels; P2Y and P1 are G-protein coupled receptors activated by ATP, ADP, UTP, and UDP in the case of P2 or adenosine for P1. Renal P2 receptors influence both vascular contractility and tubular function. Renal cells also express ectonucleotidases that rapidly hydrolyze extracellular nucleotides. These enzymes integrate this multireceptor purinergic-signaling complex by determining the nucleotide milieu to titrate receptor activation. Purinergic signaling also regulates immune cell function by modulating the synthesis and release of various cytokines such as IL1-β and IL-18 as part of inflammasome activation. Abnormal or excessive stimulation of this intricate paracrine system can be pro- or anti-inflammatory, and is also linked to necrosis and apoptosis. Kidney tissue injury causes a localized increase in ATP concentration, and sustained activation of P2 receptors can lead to renal glomerular, tubular, and vascular cell damage. Purinergic receptors also regulate the activity and proliferation of fibroblasts, promoting both inflammation and fibrosis in chronic disease. In this short review we summarize some of the recent findings related to purinergic signaling in the kidney. We focus predominantly on the P2X7 receptor, discussing why antagonists have so far disappointed in clinical trials and how advances in our understanding of purinergic signaling might help to reposition these compounds as potential treatments for renal disease. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Lee, Hanwool; Baek, Seung Ho; Lee, Jong Hyun; Kim, Chulwon; Ko, Jeong-Hyeon; Lee, Seok-Geun; Chinnathambi, Arunachalam; Alharbi, Sulaiman Ali; Yang, Woong Mo; Um, Jae-Young; Sethi, Gautam; Ahn, Kwang Seok
2017-01-01
Isorhynchophylline (Rhy) is an active pharmacological component of Uncaria rhynchophylla that has been reported previously to exert significant antihypertensive and neuroprotective effects. However, very little is known about its potential anti-cancer activities. This study was carried out to evaluate the anticancer effects of Rhy against various human carcinoma cell lines. We found that Rhy exhibited substantial cytotoxic effect against human hepatocellular carcinoma HepG2 cells when compared with other human carcinoma cell lines including those of lung, pancreas, prostate, head and neck, breast, multiple myeloma, brain and renal cell carcinoma. Rhy induced apoptosis as characterized by accumulation of cells in sub G1 phase; positive Annexin V binding; activation of caspase-8, -9, and -3; and cleavage of PARP (poly-ADP ribose polymerase). This effect of Rhy correlated with the down-regulation of various proteins that mediated cell proliferation, cell survival, metastasis, and angiogenesis. Moreover, cell proliferation, migration, and constitutive CXCR4 (C-X-C chemokine receptor type 4), MMP-9 (Matrix metallopeptidase-9), and MMP-2 expression were inhibited upon Rhy treatment. We further investigated the effect of Rhy on the oncogenic cell signaling cascades through phospho-kinase array profiling assay. Rhy was found to abrogate phospho-p38, ERK, JNK, CREB, c-Jun, Akt, and STAT3 signals, but interestingly enhanced phospho-p53 signal. Overall, our results indicate, for the first time, that Rhy could exert anticancer and anti-metastatic effects through regulation of multiple signaling cascades in hepatocellular carcinoma cells. PMID:28534824
Lee, Hanwool; Baek, Seung Ho; Lee, Jong Hyun; Kim, Chulwon; Ko, Jeong-Hyeon; Lee, Seok-Geun; Chinnathambi, Arunachalam; Alharbi, Sulaiman Ali; Yang, Woong Mo; Um, Jae-Young; Sethi, Gautam; Ahn, Kwang Seok
2017-05-19
Isorhynchophylline (Rhy) is an active pharmacological component of Uncaria rhynchophylla that has been reported previously to exert significant antihypertensive and neuroprotective effects. However, very little is known about its potential anti-cancer activities. This study was carried out to evaluate the anticancer effects of Rhy against various human carcinoma cell lines. We found that Rhy exhibited substantial cytotoxic effect against human hepatocellular carcinoma HepG2 cells when compared with other human carcinoma cell lines including those of lung, pancreas, prostate, head and neck, breast, multiple myeloma, brain and renal cell carcinoma. Rhy induced apoptosis as characterized by accumulation of cells in sub G1 phase; positive Annexin V binding; activation of caspase-8, -9, and -3; and cleavage of PARP (poly-ADP ribose polymerase). This effect of Rhy correlated with the down-regulation of various proteins that mediated cell proliferation, cell survival, metastasis, and angiogenesis. Moreover, cell proliferation, migration, and constitutive CXCR4 (C-X-C chemokine receptor type 4), MMP-9 (Matrix metallopeptidase-9), and MMP-2 expression were inhibited upon Rhy treatment. We further investigated the effect of Rhy on the oncogenic cell signaling cascades through phospho-kinase array profiling assay. Rhy was found to abrogate phospho-p38, ERK, JNK, CREB, c-Jun, Akt, and STAT3 signals, but interestingly enhanced phospho-p53 signal. Overall, our results indicate, for the first time, that Rhy could exert anticancer and anti-metastatic effects through regulation of multiple signaling cascades in hepatocellular carcinoma cells.
Pilkington, Rhiannon; Taylor, Anne W.; Hugo, Graeme; Wittert, Gary
2014-01-01
Background To determine differences in sociodemographic and health related characteristics of Australian Baby Boomers and Generation X at the same relative age. Methods The 1989/90 National Health Survey (NHS) for Boomers (1946–1965) and the 2007/08 NHS for Generation Xers (1966–1980) was used to compare the cohorts at the same age of 25–44 years. Generational differences for males and females in education, employment, smoking, physical activity, Body Mass Index (BMI), self-rated health, and diabetes were determined using Z tests. Prevalence estimates and p-values are reported. Logistic regression models examining overweight/obesity (BMI≥25) and diabetes prevalence as the dependent variables, with generation as the independent variable were adjusted for sex, age, education, physical activity, smoking and BMI(diabetes model only). Adjusted odds ratios (OR) and 95% confidence intervals are reported. Results At the same age, tertiary educational attainment was higher among Generation X males (27.6% vs. 15.2% p<0.001) and females (30.0% vs. 10.6% p<0.001). Boomer females had a higher rate of unemployment (5.6% vs. 2.5% p<0.001). Boomer males and females had a higher prevalence of “excellent” self-reported health (35.9% vs. 21.8% p<0.001; 36.3% vs. 25.1% p<0.001) and smoking (36.3% vs. 30.4% p<0.001; 28.3% vs. 22.3% p<0.001). Generation X males (18.3% vs. 9.4% p<0.001) and females (12.7% vs. 10.4% p = 0.015) demonstrated a higher prevalence of obesity (BMI>30). There were no differences in physical activity. Modelling indicated that Generation X were more likely than Boomers to be overweight/obese (OR:2.09, 1.77–2.46) and have diabetes (OR:1.79, 1.47–2.18). Conclusion Self-rated health has deteriorated while obesity and diabetes prevalence has increased. This may impact workforce participation and health care utilization in the future. PMID:24671114
Liao, Hsiang-Ruei; Chen, Ih-Sheng; Liu, Fu-Chao; Lin, Shinn-Zhi; Tseng, Ching-Ping
2018-06-15
This study investigates the effect and the underlying mechanism of 2',3-dihydroxy-5-methoxybiphenyl (RIR-2), a lignan extracted from the roots of Rhaphiolepis indica (L.) Lindl. ex Ker var. tashiroi Hayata ex Matsum. & Hayata (Rosaceae), on N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP)-induced respiratory burst and cathepsin G in human neutrophils. Signaling pathways regulated by RIR-2 which modulated fMLP-induced respiratory burst were evaluated by an interaction between β subunit of G-protein (Gβ) with downstream signaling induced by fMLP and by immunoblotting analysis of the downstream targets of Gβ-protein. RIR-2 inhibited fMLP-induced superoxide anion production (IC 50 :2.57 ± 0.22 μM), cathepsin G release (IC 50 :18.72 ± 3.76 μM) and migration in a concentration dependent manner. RIR-2 specifically suppresses fMLP-induced Src family kinases phosphorylation by inhibiting the interaction between Gβ-protein with Src kinases without inhibiting Src kinases activities, therefore, RIR-2 attenuated the downstream targets of Src kinase, such as phosphorylation of Raf/ERK, AKT, P38, PLCγ2, PKC and translocation Tec, p47 ph ° x and P40 ph ° x from the cytosol to the inner leaflet of the plasma membrane. Furthermore, RIR-2 attenuated fMLP-induced intracellular calcium mobilization by inhibiting the interaction between Gβ-protein with PLCβ2. RIR-2 was not a competitive or allosteric antagonist of fMLP. On the contrary, phorbol 12-myristate 13-acetate (PMA)-induced phosphorylation of Src, AKT, P38, PKC and membrane localization of p47 ph ° x and P40 ph ° x remained unaffected. RIR-2 specifically modulates fMLP-mediated neutrophil superoxide anion production and cathepsin G release by inhibiting the interaction between Gβ-protein with downstream signaling which subsequently interferes with the activation of intracellular calcium, PLCγ2, AKT, p38, PKC, ERK, p47 ph ° x and p40 phox . Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, W; Ma, C Y; Chen, W; Ma, H Y; Zhang, H; Meng, Y Y; Ni, Y; Ma, L B
2016-08-19
Determining correlations between certain traits of economic importance constitutes an essential component of selective activities. In this study, our aim was to provide effective indicators for breeding programs of Lateolabrax maculatus, an important aquaculture species in China. We analyzed correlations between 20 morphometric traits and body weight, using correlation and path analyses. The results indicated that the correlations among all 21 traits were highly significant, with the highest correlation coefficient identified between total length and body weight. The path analysis indicated that total length (X 1 ), body width (X 5 ), distance from first dorsal fin origin to anal fin origin (X 10 ), snout length (X 16 ), eye diameter (X 17 ), eye cross (X 18 ), and slanting distance from snout tip to first dorsal fin origin (X 19 ) significantly affected body weight (Y) directly. The following multiple-regression equation was obtained using stepwise multiple-regression analysis: Y = -472.108 + 1.065X 1 + 7.728X 5 + 1.973X 10 - 7.024X 16 - 4.400X 17 - 3.338X 18 + 2.138X 19 , with an adjusted multiple-correlation coefficient of 0.947. Body width had the largest determinant coefficient, as well as the highest positive direct correlation with body weight. At the same time, high indirect effects with six other morphometric traits on L. maculatus body weight, through body width, were identified. Hence, body width could be a key factor that efficiently indicates significant effects on body weight in L. maculatus.
Novel, high-activity hydroprocessing catalysts: Iron group phosphides
NASA Astrophysics Data System (ADS)
Wang, Xianqin
A series of iron, cobalt and nickel transition metal phosphides was synthesized by means of temperature-programmed reduction (TPR) of the corresponding phosphates. The same materials, Fe2P, CoP and NO, were also prepared on a silica (SiO2) support. The phase purity of these catalysts was established by x-ray diffraction (XRD), and the surface properties were determined by N2 BET specific surface area (Sg) measurements and CO chemisorption. The activities of the silica-supported catalysts were tested in a three-phase trickle bed reactor for the simultaneous hydrodenitrogenation (HDN) of quinoline and hydrodesulfurization (HDS) of dibenzothiophene using a model liquid feed at realistic conditions (30 atm, 370°C). The reactivity studies showed that the nickel phosphide (Ni2P/SiO2) was the most active of the catalysts. Compared with a commercial Ni-Mo-S/gamma-Al 2O3 catalyst at the same conditions, Ni2P/silica had a substantially higher HDS activity (100% vs. 76%) and HDN activity (82% vs. 38%). Because of their good hydrotreating activity, an extensive study of the preparation of silica supported nickel phosphides, Ni2P/SiO 2, was carried out. The parameters investigated were the phosphorus content and the weight loading of the active phase. The most active composition was found to have a starting synthesis Ni/P ratio close to 1/2, and the best loading of this sample on silica was observed to be 18 wt.%. Extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge spectroscopy (XANES) measurements were employed to determine the structures of the supported samples. The main phase before and after reaction was found to be Ni2P, but some sulfur was found to be retained after reaction. A comprehensive scrutiny of the HDN reaction mechanism was also made over the Ni2P/SiO2 sample (Ni/P = 1/2) by comparing the HDN activity of a series of piperidine derivatives of different structure. It was found that piperidine adsorption involved an alpha-H activation and nitrogen removal proceeded mainly by means of a beta-H activation though an elimination (E2) mechanism. The relative elimination rates depended on the type and number of beta-hydrogen atoms. Elimination of beta-H atoms attached to tertiary carbon atoms occurred faster than those attached to secondary carbon atoms. Also, the greater the number of the beta-H atoms, the higher the elimination rates. The nature of the adsorbed intermediates was probed by Fourier transform infrared spectroscopy (FTIR) and temperature-programmed desorption (TPD) of the probe molecule, ethylamine. This measurement allowed the determination of the likely steps in the hydrodenitrogenation reaction.
Bruzzone, Santina; Basile, Giovanna; Chothi, Madhu Parakkottil; Nobbio, Lucilla; Usai, Cesare; Jacchetti, Emanuela; Schenone, Angelo; Guse, Andreas H.; Di Virgilio, Francesco; De Flora, Antonio; Zocchi, Elena
2010-01-01
ADP-ribosyl cyclases from both vertebrates and invertebrates were previously shown to produce two isomers of P1,P2 diadenosine 5′,5′"-P1, P2-diphosphate, P18 and P24, from cyclic ADP-ribose (cADPR) and adenine. P18 and P24 are characterized by an unusual N-glycosidic linkage in one of the adenylic mononucleotides (Basile, G., Taglialatela-Scafati, O., Damonte, G., Armirotti, A., Bruzzone, S., Guida, L., Franco, L., Usai, C., Fattorusso, E., De Flora, A., and Zocchi, E. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 14509–14514). P24, but not P18, proved to increase the intracellular Ca2+ concentration ([Ca2+]i) in HeLa cells and to negatively affect mitochondrial function. Here we show that micromolar P24, but not P18, triggers a slow and sustained influx of extracellular Ca2+ through the opening of the purinergic receptor/channel P2X7. On the other hand, P18 inhibits the Ca2+ influx induced by 0.6 mm ATP in HEK293 cells stably transfected with P2X7, with an IC50 of ∼1 μm. Thus, P18 is devoid of intrinsic P2X7 stimulatory activity and behaves as an ATP antagonist. A P2X7-mediated increase of the basal [Ca2+]i has been demonstrated to negatively affect Schwann cell (SC) function in rats with the inherited, peripheral neuropathy Charcot-Marie-Tooth 1A (CMT1A) (Nobbio, L., Sturla, L., Fiorese, F., Usai, C., Basile, G., Moreschi, I., Benvenuto, F., Zocchi, E., De Flora, A., Schenone, A., and Bruzzone S. (2009) J. Biol. Chem. 284, 23146–23158). Preincubation of CMT1A SC with 200 nm P18 restored the basal [Ca2+]i to values similar to those recorded in wild-type SC. These results identify P18 as a new P2X7 antagonist, potentially useful in the treatment of CMT1A. PMID:20439466
Cai, Z; Li, X; Katsumura, Y
1999-10-01
The reaction rate constants and transient spectra of 11 flavonoids and 4 phenolic acids reacting with e(aq)- at neutral pH were measured. Absorption bands of the transients of e(aq)- reacting with the above compounds all located at a wavelength shorter than 400 nm. The e(aq)- scavenging abilities were divided into three groups: (+)catechin ((1.2 +/-0.1) x 10(8) M(-1)s(-1)) < 4-chromanol ((4.4 +/- 0.4) x 10(8) M(-1)s(-1)) < genistein ((6.2+/-0.4) x 10(9) M (-1) s(-1) approximately genistin ((8 +/- 1) x 10(9) M(-1)s(-1)) approximately rutin ((7.6 +/- 0.4) x M(-1)s(-1) approximately caffeic acid ((8.3 +/- 0.5) x 10(9)M(-1)s(-1)) < transcinnamic acid((1.1 +/- 0.1) x 10(10) M(-1)s(-1)) approximately p-coumaric acid ((1.1 +/- 0.1) x 10(10) M(-1)s(-1) approximately 2,4,6-trihydroxylbenzoic acid((1.1 +/- 0.1) x 10(10) M(-1)s(-1)) approximately baicalein ((1.1 +/- 0.5) x 10(10) M(-1)s(-1)) approximately baicalin((1.3 + 0.1) X 10(10) M(-1)s(-1)) approximately naringenin ((1.2 +/- 0.1) x 10(10) M(-1)s(-1)) approximately naringin ((1.0 +/- 0.1) x 10(10) M(-1)s(-1)) approximately gossypin((1.2 +/- 0.1) x 10(10) M(-1)s(-1)) approximately quercetin((1.3 +/- 0.5) x 10(10) M(-1)s(-1)). These results suggested that C4 keto group is the active site for e(aq)- to attack on flavonoids and phenolic acids, whereas the o-dihydroxy structure in B ring, the C2,3 double bond, the C3-OH group, and glucosylation, which are key structures that influence the antioxidant activities of flavonoids and phenolic acids, have little effects on the e(aq)- scavenging activities.
Veazey, Ronald S; Ketas, Thomas A; Klasse, Per Johan; Davison, Donna K; Singletary, Morgan; Green, Linda C; Greenberg, Michael L; Moore, John P
2008-07-29
We have assessed the potential of the fusion inhibitory peptide T-1249 for development as a vaginal microbicide to prevent HIV-1 sexual transmission. When formulated as a simple gel, T-1249 provided dose-dependent protection to macaques against high-dose challenge with three different SHIVs that used either CCR5 or CXCR4 for infection (the R5 virus SHIV-162P3, the X4 virus SHIV-KU1 and the R5X4 virus SHIV-89.6P), and it also protected against SIVmac251 (R5). Protection of half of the test animals was estimated by interpolation to occur at T-1249 concentrations of approximately 40-130 muM, whereas complete protection was observed at 0.1-2 mM. In vitro, T-1249 had substantial breadth of activity against HIV-1 strains from multiple genetic subtypes and in a coreceptor-independent manner. Thus, at 1 muM in a peripheral blood mononuclear cell-based replication assay, T-1249 inhibited all 29 R5 viruses, all 12 X4 viruses and all 7 R5X4 viruses in the test panel, irrespective of their genetic subtype. Combining lower concentrations of T-1249 with other entry inhibitors (CMPD-167, BMS-C, or AMD3465) increased the proportion of test viruses that could be blocked. In the PhenoSense assay, T-1249 was active against 636 different HIV-1 Env-pseudotyped viruses of varying tropism and derived from clinical samples, with IC(50) values typically clustered in a 10-fold range approximately 10 nM. Overall, these results support the concept of using T-1249 as a component of an entry inhibitor-based combination microbicide to prevent the sexual transmission of diverse HIV-1 variants.
Recent progress in high gain InAs avalanche photodiodes (Presentation Recording)
NASA Astrophysics Data System (ADS)
Bank, Seth; Maddox, Scott J.; Sun, Wenlu; Nair, Hari P.; Campbell, Joe C.
2015-08-01
InAs possesses nearly ideal material properties for the fabrication of near- and mid-infrared avalanche photodiodes (APDs), which result in strong electron-initiated impact ionization and negligible hole-initiated impact ionization [1]. Consequently, InAs multiplication regions exhibit several appealing characteristics, including extremely low excess noise factors and bandwidth independent of gain [2], [3]. These properties make InAs APDs attractive for a number of near- and mid-infrared sensing applications including remote gas sensing, light detection and ranging (LIDAR), and both active and passive imaging. Here, we discuss our recent advances in the growth and fabrication of high gain, low noise InAs APDs. Devices yielded room temperature multiplication gains >300, with much reduced (~10x) lower dark current densities. We will also discuss a likely key contributor to our current performance limitations: silicon diffusion into the intrinsic (multiplication) region from the underlying n-type layer during growth. Future work will focus on increasing the intrinsic region thickness, targeting gains >1000. This work was supported by the Army Research Office (W911NF-10-1-0391). [1] A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, "Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes," Applied Physics Letters, vol. 93, p. 111107, 2008. [2] A. R. J. Marshall, A. Krysa, S. Zhang, A. S. Idris, S. Xie, J. P. R. David, and C. H. Tan, "High gain InAs avalanche photodiodes," in 6th EMRS DTC Technical Conference, Edinburgh, Scotland, UK, 2009. [3] S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, "Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping," Applied Physics Letters, vol. 101, no. 15, pp. 151124-151124-3, Oct. 2012.
Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: Implications for therapy
Tovar, Christian; Rosinski, James; Filipovic, Zoran; Higgins, Brian; Kolinsky, Kenneth; Hilton, Holly; Zhao, Xiaolan; Vu, Binh T.; Qing, Weiguo; Packman, Kathryn; Myklebost, Ola; Heimbrook, David C.; Vassilev, Lyubomir T.
2006-01-01
The p53 tumor suppressor retains its wild-type conformation and transcriptional activity in half of all human tumors, and its activation may offer a therapeutic benefit. However, p53 function could be compromised by defective signaling in the p53 pathway. Using a small-molecule MDM2 antagonist, nutlin-3, to probe downstream p53 signaling we find that the cell-cycle arrest function of the p53 pathway is preserved in multiple tumor-derived cell lines expressing wild-type p53, but many have a reduced ability to undergo p53-dependent apoptosis. Gene array analysis revealed attenuated expression of multiple apoptosis-related genes. Cancer cells with mdm2 gene amplification were most sensitive to nutlin-3 in vitro and in vivo, suggesting that MDM2 overexpression may be the only abnormality in the p53 pathway of these cells. Nutlin-3 also showed good efficacy against tumors with normal MDM2 expression, suggesting that many of the patients with wild-type p53 tumors may benefit from antagonists of the p53–MDM2 interaction. PMID:16443686
Jimenez, Nelson Lopez; Flannick, Jason; Yahyavi, Mani; Li, Jiang; Bardakjian, Tanya; Tonkin, Leath; Schneider, Adele; Sherr, Elliott H; Slavotinek, Anne M
2011-12-28
Anophthalmia/microphthalmia (A/M) is caused by mutations in several different transcription factors, but mutations in each causative gene are relatively rare, emphasizing the need for a testing approach that screens multiple genes simultaneously. We used next-generation sequencing to screen 15 A/M patients for mutations in 9 pathogenic genes to evaluate this technology for screening in A/M. We used a pooled sequencing design, together with custom single nucleotide polymorphism (SNP) calling software. We verified predicted sequence alterations using Sanger sequencing. We verified three mutations - c.542delC in SOX2, resulting in p.Pro181Argfs*22, p.Glu105X in OTX2 and p.Cys240X in FOXE3. We found several novel sequence alterations and SNPs that were likely to be non-pathogenic - p.Glu42Lys in CRYBA4, p.Val201Met in FOXE3 and p.Asp291Asn in VSX2. Our analysis methodology gave one false positive result comprising a mutation in PAX6 (c.1268A > T, predicting p.X423LeuextX*15) that was not verified by Sanger sequencing. We also failed to detect one 20 base pair (bp) deletion and one 3 bp duplication in SOX2. Our results demonstrated the power of next-generation sequencing with pooled sample groups for the rapid screening of candidate genes for A/M as we were correctly able to identify disease-causing mutations. However, next-generation sequencing was less useful for small, intragenic deletions and duplications. We did not find mutations in 10/15 patients and conclude that there is a need for further gene discovery in A/M.
2011-01-01
Background Anophthalmia/microphthalmia (A/M) is caused by mutations in several different transcription factors, but mutations in each causative gene are relatively rare, emphasizing the need for a testing approach that screens multiple genes simultaneously. We used next-generation sequencing to screen 15 A/M patients for mutations in 9 pathogenic genes to evaluate this technology for screening in A/M. Methods We used a pooled sequencing design, together with custom single nucleotide polymorphism (SNP) calling software. We verified predicted sequence alterations using Sanger sequencing. Results We verified three mutations - c.542delC in SOX2, resulting in p.Pro181Argfs*22, p.Glu105X in OTX2 and p.Cys240X in FOXE3. We found several novel sequence alterations and SNPs that were likely to be non-pathogenic - p.Glu42Lys in CRYBA4, p.Val201Met in FOXE3 and p.Asp291Asn in VSX2. Our analysis methodology gave one false positive result comprising a mutation in PAX6 (c.1268A > T, predicting p.X423LeuextX*15) that was not verified by Sanger sequencing. We also failed to detect one 20 base pair (bp) deletion and one 3 bp duplication in SOX2. Conclusions Our results demonstrated the power of next-generation sequencing with pooled sample groups for the rapid screening of candidate genes for A/M as we were correctly able to identify disease-causing mutations. However, next-generation sequencing was less useful for small, intragenic deletions and duplications. We did not find mutations in 10/15 patients and conclude that there is a need for further gene discovery in A/M. PMID:22204637
Franceschini, Alessia; Nair, Asha; Bele, Tanja; van den Maagdenberg, Arn Mjm; Nistri, Andrea; Fabbretti, Elsa
2012-11-21
Enhanced activity of trigeminal ganglion neurons is thought to underlie neuronal sensitization facilitating the onset of chronic pain attacks, including migraine. Recurrent headache attacks might establish a chronic neuroinflammatory ganglion profile contributing to the hypersensitive phenotype. Since it is difficult to study this process in vivo, we investigated functional crosstalk between macrophages and sensory neurons in primary cultures from trigeminal sensory ganglia of wild-type (WT) or knock-in (KI) mice expressing the Cacna1a gene mutation (R192Q) found in familial hemiplegic migraine-type 1. After studying the number and morphology of resident macrophages in culture, the consequences of adding host macrophages on macrophage phagocytosis and membrane currents mediated by pain-transducing P2X3 receptors on sensory neurons were examined. KI ganglion cultures constitutively contained a larger number of active macrophages, although no difference in P2X3 receptor expression was found. Co-culturing WT or KI ganglia with host macrophages (active as much as resident cells) strongly stimulated single cell phagocytosis. The same protocol had no effect on P2X3 receptor expression in WT or KI co-cultures, but it largely enhanced WT neuron currents that grew to the high amplitude constitutively seen for KI neurons. No further potentiation of KI neuronal currents was observed. Trigeminal ganglion cultures from a genetic mouse model of migraine showed basal macrophage activation together with enhanced neuronal currents mediated by P2X3 receptors. This phenotype could be replicated in WT cultures by adding host macrophages, indicating an important functional crosstalk between macrophages and sensory neurons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Arun K.; Brindisi, Margherita; Nyalapatla, Prasanth R.
Based upon molecular insights from the X-ray structures of inhibitor-bound HIV-1 protease complexes, we have designed a series of isophthalamide-derived inhibitors incorporating substituted pyrrolidines, piperidines and thiazolidines as P2-P3 ligands for specific interactions in the S2-S3 extended site. Compound 4b has shown an enzyme Ki of 0.025 nM and antiviral IC50 of 69 nM. An X-ray crystal structure of inhibitor 4b-HIV-1 protease complex was determined at 1.33 Å resolution. We have also determined X-ray structure of 3b-bound HIV-1 protease at 1.27 Å resolution. These structures revealed important molecular insight into the inhibitor–HIV-1 protease interactions in the active site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S.H.; Song, B.
The reoxidation behavior of steels by slag in the secondary steelmaking process was addressed by investigating the thermodynamic equilibria between the liquid iron containing Mn and P and CaO-MgO-SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}-MnO-Fe{sub t}O ladle slag at 1873 K. The activity coefficient of Fe{sub t}O shows a maximum value in the vicinity of the basicity ((X{sub CaO} + X{sub MgO} + X{sub MnO})/(X{sub SiO{sub 2}} + X{sub Al{sub 2}O{sub 3}} + XP{sub 2}O{sub 5})) = 2.5 at the specific mole fraction range of Fe{sub t}O, while that of MnO seems to increase gradually with increasing the basicity. However, themore » values of {gamma}{sub Fe{sub t}O} and {gamma}{sub MnO} showed minima with respect to P{sub 2}O{sub 5} content of slag. In addition, the values of {gamma}{sub Fe{sub t}O} and {gamma}{sub MnO} increased as (pct CaO)/(pct Al{sub 2}O{sub 3}) ratio increased at given SiO{sub 2}, MgO, and P{sub 2}O{sub 5} contents. The conversion equations between the Fe{sub t}O and MnO activities and their calculated activities via regular solution model were derived by the correlation between the measured and calculated activities over the limited ranges of Fe{sub t}O and MnO contents. The regular solution model was used to estimate the oxygen potential in the slag. For MgO saturated slags, a{sub Fe{sub t}O{sub (l)}} = 0.864a{sub FeO{sub (R.S.)}}, a{sub MnO{sub (l)}} = 6.38a{sub MnO{sub (R.S.)}}. For Al{sub 2}O{sub 3} saturated slags, a{sub Fe{sub t}O{sub (l)}} = 2.086a{sub FeO{sub (R.S.)}}, a{sub MnO{sub (l)}} = 14.39a{sub MnO{sub (R.S.)}}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hui; Mustafi, Sourajit M.; LeMaster, David M.
Two crystal forms of unligated FKBP12.6 exhibit multiple conformations in the active site and in the 80s loop, the primary site for known protein-recognition interactions. The previously unreported NMR backbone assignment of FKBP12.6 revealed extensive doubling of amide resonances, which reflects a slow conformational transition centered in the 80s loop. The primary known physiological function of FKBP12.6 involves its role in regulating the RyR2 isoform of ryanodine receptor Ca{sup 2+} channels in cardiac muscle, pancreatic β islets and the central nervous system. With only a single previously reported X-ray structure of FKBP12.6, bound to the immunosuppressant rapamycin, structural inferences formore » this protein have been drawn from the more extensive studies of the homologous FKBP12. X-ray structures at 1.70 and 1.90 Å resolution from P2{sub 1} and P3{sub 1}21 crystal forms are reported for an unligated cysteine-free variant of FKBP12.6 which exhibit a notable diversity of conformations. In one monomer from the P3{sub 1}21 crystal form, the aromatic ring of Phe59 at the base of the active site is rotated perpendicular to its typical orientation, generating a steric conflict for the immunosuppressant-binding mode. The peptide unit linking Gly89 and Val90 at the tip of the protein-recognition ‘80s loop’ is flipped in the P2{sub 1} crystal form. Unlike the >30 reported FKBP12 structures, the backbone conformation of this loop closely follows that of the first FKBP domain of FKBP51. The NMR resonances for 21 backbone amides of FKBP12.6 are doubled, corresponding to a slow conformational transition centered near the tip of the 80s loop, as recently reported for 31 amides of FKBP12. The comparative absence of doubling for residues along the opposite face of the active-site pocket in FKBP12.6 may in part reflect attenuated structural coupling owing to increased conformational plasticity around the Phe59 ring.« less
Pinus Roxburghii essential oil anticancer activity and chemical composition evaluation
Sajid, Arfaa; Manzoor, Qaisar; Iqbal, Munawar; Tyagi, Amit Kumar; Sarfraz, Raja Adil; Sajid, Anam
2018-01-01
The present study was conducted to appraise the anticancer activity of Pinus roxburghii essential oil along with chemical composition evaluation. MTT assay revealed cytotoxicity induction in colon, leukemia, multiple myeloma, pancreatic, head and neck and lung cancer cells exposed to essential oil. Cancer cell death was also observed through live/dead cell viability assay and FACS analysis. Apoptosis induced by essential oil was confirmed by cleavage of PARP and caspase-3 that suppressed the colony-forming ability of tumor cells and 50 % inhibition occurred at a dose of 25 μg/mL. Moreover, essential oil inhibited the activation of inflammatory transcription factor NF-κB and inhibited expression of NF-κB regulated gene products linked to cell survival (survivin, c-FLIP, Bcl-2, Bcl-xL, c-Myc, c-IAP2), proliferation (Cyclin D1) and metastasis (MMP-9). P. roxburghii essential oil has considerable anticancer activity and could be used as anticancer agent, which needs further investigation to identify and purify the bioactive compounds followed by in vivo studies. PMID:29743861
On the dielectric dispersion and absorption in nanosized manganese zinc mixed ferrites.
Veena Gopalan, E; Malini, K A; Sakthi Kumar, D; Yoshida, Yasuhiko; Al-Omari, I A; Saravanan, S; Anantharaman, M R
2009-04-08
The temperature and frequency dependence of dielectric permittivity and dielectric loss of nanosized Mn(1-x)Zn(x)Fe(2)O(4) (for x = 0, 0.2, 0.4, 0.6, 0.8, 1) were investigated. The impact of zinc substitution on the dielectric properties of the mixed ferrite is elucidated. Strong dielectric dispersion and broad relaxation were exhibited by Mn(1-x)Zn(x)Fe(2)O(4). The variation of dielectric relaxation time with temperature suggests the involvement of multiple relaxation processes. Cole-Cole plots were employed as an effective tool for studying the observed phenomenon. The activation energies were calculated from relaxation peaks and Cole-Cole plots and found to be consistent with each other and indicative of a polaron conduction.
2015-07-01
Improvements & Traffic Signal Activation RF C-32 UoG UoG Wind Turbine University Drive 2013 Complete A 70-foot (21.3 m) wind turbine RC C-33 UoG... turbine Talofofo 2013 Contract approved 15 MW solar / wind turbine farm to help power 2,200 homes P S-5 GovGuam GWA Santa Rita Springs Booster...Rehabilitation of Asan Springs P B X X B B B C-31 GovGuam Route 26/25 Intersection Improvements RF B B X X B B B C-32 UoG Wind Turbine P
Suadicani, Sylvia O.; Urban–Maldonado, Marcia; Tar, Moses T.; Melman, Arnold; Spray, David C.
2012-01-01
OBJECTIVE To investigate whether ageing and diabetes alter the expression of the gap junction protein connexin43 (Cx43) and of particular purinoceptor (P2R) subtypes in the corpus cavernosum and urinary bladder, and determine whether changes in expression of these proteins correlate with development of erectile and bladder dysfunction in diabetic and ageing rats. MATERIALS AND METHODS Erectile and bladder function of streptozotocin (STZ)-induced diabetic, insulin-treated and age-matched control Fischer-344 rats were evaluated 2, 4 and 8 months after diabetes induction by in vivo cystometry and cavernosometry. Corporal and bladder tissue were then isolated at each of these sample times and protein expression levels of Cx43 and of various P2R subtypes were determined by Western blotting. RESULTS In the corpora of control rats ageing was accompanied by a significant decrease in Cx43 and P2X1R, and increase in P2X7R expression. There was decreased Cx43 and increased P2Y4R expression in the ageing control rat bladder. There was a significant negative correlation between erectile capacity and P2X1R expression levels, and a positive correlation between bladder spontaneous activity and P2Y4R expression levels. There was already development of erectile dysfunction and bladder overactivity at 2 months after inducing diabetes, the earliest sample measured in the study. The development of these urogenital complications was accompanied by significant decreases in Cx43, P2Y2R, P2X4R and increase in P2X1R expression in the corpora, and by a doubling in Cx43 and P2Y2R, and significant increase in P2Y4R expression in the bladder. Changes in Cx43 and P2R expression were largely prevented by insulin therapy. CONCLUSION Ageing and diabetes mellitus markedly altered the expression of the gap junction protein Cx43 and of particular P2R subtypes in the rat penile corpora and urinary bladder. These changes in Cx43 and P2R expression provide the molecular substrate for altered gap junction and purinergic signalling in these tissues, and thus probably contribute to the early development of erectile dysfunction and higher detrusor activity in ageing and in diabetic rats. PMID:19154470
NASA Astrophysics Data System (ADS)
Kraka, Elfi; Gauss, Jürgen; Cremer, Dieter
1993-10-01
Coupled cluster calculations at the CCSD(T)/[5s4p3d/4s3p] and CCSD(T)/[5s4p3d2 f1g/4s3p2d] level of theory are reported for reactions X+H2→XH+H [X=F (1a), OH (1b), NH2 (1c), and CH3 (1d)] utilizing analytical energy gradients for geometry, frequency, charge distribution, and dipole moment calculations of reactants, transition states, and products. A careful analysis of vibrational corrections leads to reaction enthalpies at 300 K, which are within 0.04, 0.15, 0.62, and 0.89 kcal/mol of experimental values. For reaction (1a) a bent transition state and for reactions (1b) and (1c) transition states with a cis arrangement of the reactants are calculated. The cis forms of transition states (1b) and (1c) are energetically favored because of electrostatic interactions, in particular dipole-dipole attraction as is revealed by calculated charge distributions. For reactions (1a)-(1d), the CCSD(T)/[5s4p3d2 f1g/4s3p2d] activation energies at 300 K are 1.1, 5.4, 10.8, and 12.7 kcal/mol which differ by just 0.1, 1.4, 2.3, and 1.8 kcal/mol, respectively, from the corresponding experimental values of 1±0.1, 4±0.5, 8.5±0.5, and 10.9±0.5 kcal/mol. For reactions (1), this is the best agreement between experiment and theory that has been obtained from ab initio calculations not including any empirically based corrections. Agreement is achieved after considering basis set effects, basis set superposition errors, spin contamination, tunneling effect and, in particular, zero-point energies as well as temperature corrections. Net corrections for the four activation energies are -1.05, -0.2, 1.25, and 0.89 kcal/mol, which shows that for high accuracy calculations a direct comparison of classical barriers and activation energies is misleading.
[Effect of gross saponins of Tribulus terrestris on cardiocytes impaired by adriamycin].
Zhang, Shuang; Li, Hong; Xu, Hui; Yang, Shi-Jie
2010-01-01
This study is to observe the protection of gross saponins of Tribulus terrestris (GSTT) on cardiocytes impaired by adriamycin (ADR) and approach its mechanism of action. Cardiocytes of neonate rat were cultivated for 72 hours and divided into normal control group, model (ADR 2 mg x L(-1)) group, and GSTT (100, 30, and 10 mg x L(-1)) groups. MTT colorimetric method was deployed to detect cardiocyte survival rate, activities of CK, LDH, AST, SOD, MDA and NO were detected, and apoptosis was detected with flow cytometry. Effect of GSTT on caspase-3 was detected with Western blotting. Compared with control group, contents of CK, LDH, AST, MDA and NO were increased, and activity of SOD was reduced (P < 0.05, P < 0.01, P < 0.001) by ADR. Numbers of survival cells were increased (P < 0.05, P < 0.001), contents of CK, LDH, AST, MDA and NO were decreased, and activity of SOD was increased (P < 0.05, P < 0.01, P < 0.001) by GSTT (100 and 30 mg x L(-1)). Apoptosis of cardiocytes and concentration of caspase-3 can be reduced by GSTT (100 and 30 mg x L(-1)). GSTT can protect cardiocytes impaired by ADR, which are possible involved with its effect of resisting oxygen free radical.
A critical analysis of the degree of conversion of resin-based luting cements.
Noronha Filho, Jaime Dutra; Brandão, Natasha Lamego; Poskus, Laiza Tatiana; Guimarães, José Guilherme Antunes; Silva, Eduardo Moreira da
2010-01-01
This study analyzed the degree of conversion (DC%) of four resin-based cements (All Ceram, Enforce, Rely X ARC and Variolink II) activated by two modes (chemical and dual), and evaluated the decrease of DC% in the dual mode promoted by the interposition of a 2.0-mm-thick IPS Empress 2 disc. In the chemical activation, the resin-based cements were prepared by mixing equal amounts of base and catalyst pastes. In the dual activation, after mixing, the cements were light-activated at 650 mW/cm² for 40 s. In a third group, the cements were light-activated through a 2.0-mm-thick IPS Empress 2 disc. The DC% was evaluated in a FT-IR spectrometer equipped with an attenuated total reflectance crystal (ATR). The data were analyzed by two-way ANOVA and Tukey's HSD test. For all resin-based cements, the DC% was significantly higher with dual activation, followed by dual activation through IPS Empress 2, and chemical activation (p<0.05). Irrespective of the activation mode, Rely X presented the highest DC% (p<0.05). Chemically activated Variolink and All Ceram showed the worst results (p<0.05). The DC% decreased significantly when activation was performed through a 2.0-mm-thick IPS Empress 2 disc (p<0.05). The results of the present study suggest that resin-based cements could present low DC% when the materials are dually activated through 2.0 mm of reinforced ceramic materials with translucency equal to or less than that of IPS-Empress 2.
Interactions of Pannexin1 channels with purinergic and NMDA receptor channels.
Li, Shuo; Bjelobaba, Ivana; Stojilkovic, Stanko S
2018-01-01
Pannexins are a three-member family of vertebrate plasma membrane spanning molecules that have homology to the invertebrate gap junction forming proteins, the innexins. However, pannexins do not form gap junctions but operate as plasma membrane channels. The best-characterized member of these proteins, Pannexin1 (Panx1) was suggested to be functionally associated with purinergic P2X and N-methyl-D-aspartate (NMDA) receptor channels. Activation of these receptor channels by their endogenous ligands leads to cross-activation of Panx1 channels. This in turn potentiates P2X and NMDA receptor channel signaling. Two potentiation concepts have been suggested: enhancement of the current responses and/or sustained receptor channel activation by ATP released through Panx1 pore and adenosine generated by ectonucleotidase-dependent dephosphorylation of ATP. Here we summarize the current knowledge and hypotheses about interactions of Panx1 channels with P2X and NMDA receptor channels. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve. Published by Elsevier B.V.
A critical analysis of the degree of conversion of resin-based luting cements
NORONHA FILHO, Jaime Dutra; BRANDÃO, Natasha Lamego; POSKUS, Laiza Tatiana; GUIMARÃES, José Guilherme Antunes; da SILVA, Eduardo Moreira
2010-01-01
Objective This study analyzed the degree of conversion (DC%) of four resin-based cements (All Ceram, Enforce, Rely X ARC and Variolink II) activated by two modes (chemical and dual), and evaluated the decrease of DC% in the dual mode promoted by the interposition of a 2.0-mm-thick IPS Empress 2 disc. Material and Methods In the chemical activation, the resin-based cements were prepared by mixing equal amounts of base and catalyst pastes. In the dual activation, after mixing, the cements were light-activated at 650 mW/cm2 for 40 s. In a third group, the cements were lightactivated through a 2.0-mm-thick IPS Empress 2 disc. The DC% was evaluated in a FT-IR spectrometer equipped with an attenuated total reflectance crystal (ATR). The data were analyzed by two-way ANOVA and Tukey's HSD test. Results For all resin-based cements, the DC% was significantly higher with dual activation, followed by dual activation through IPS Empress 2, and chemical activation (p<0.05). Irrespective of the activation mode, Rely X presented the highest DC% (p<0.05). Chemically activated Variolink and All Ceram showed the worst results (p<0.05). The DC% decreased significantly when activation was performed through a 2.0-mm-thick IPS Empress 2 disc (p<0.05). Conclusions The results of the present study suggest that resin-based cements could present low DC% when the materials are dually activated through 2.0 mm of reinforced ceramic materials with translucency equal to or less than that of IPS-Empress 2. PMID:21085798
Carcillo, Joseph A; Halstead, E Scott; Hall, Mark W; Nguyen, Trung C; Reeder, Ron; Aneja, Rajesh; Shakoory, Bita; Simon, Dennis
2017-06-01
We hypothesize that three inflammation pathobiology phenotypes are associated with increased inflammation, proclivity to develop features of macrophage activation syndrome, and multiple organ failure-related death in pediatric severe sepsis. Prospective cohort study comparing children with severe sepsis and any of three phenotypes: 1) immunoparalysis-associated multiple organ failure (whole blood ex vivo tumor necrosis factor response to endotoxin < 200 pg/mL), 2) thrombocytopenia-associated multiple organ failure (new onset thrombocytopenia with acute kidney injury and a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 activity < 57%), and/or 3) sequential multiple organ failure with hepatobiliary dysfunction (respiratory distress followed by liver dysfunction with soluble Fas ligand > 200 pg/mL), to those without any of these phenotypes. Tertiary children's hospital PICU. One hundred consecutive severe sepsis admissions. Clinical data were recorded daily, and blood was collected twice weekly. Multiple organ failure developed in 75 cases and eight died. Multiple organ failure cases with any of the three inflammation phenotypes (n = 37) had higher inflammation (C-reactive protein, p = 0.009 and ferritin, p < 0.001) than multiple organ failure cases without any of these phenotypes (n = 38) or cases with only single organ failure (n = 25). Development of features of macrophage activation syndrome and death were more common among multiple organ failure cases with any of the phenotypes (macrophage activation syndrome: 10/37, 27%; death: 8/37, 22%) compared to multiple organ failure cases without any phenotype (macrophage activation syndrome: 1/38, 3%; p = 0.003 and death: 0/38, 0%; p = 0.002). Our approach to phenotype categorization remains hypothetical, and the phenotypes identified need to be confirmed in multicenter studies of pediatric multiple organ dysfunction syndrome.
Molecular dissection of purinergic P2X receptor channels.
Stojilkovic, Stanko S; Tomic, Melanija; He, Mu-Lan; Yan, Zonghe; Koshimizu, Taka-Aki; Zemkova, Hana
2005-06-01
The P2X receptors (P2XRs) are a family of ATP-gated channels expressed in the plasma membrane of numerous excitable and nonexcitable cells and play important roles in control of cellular functions, such as neurotransmission, hormone secretion, transcriptional regulation, and protein synthesis. P2XRs are homomeric or heteromeric proteins, formed by assembly of at least three of seven subunits named P2X(1)-P2X(7). All subunits possess intracellular N- and C-termini, two transmembrane domains, and a relatively large extracellular ligand-binding loop. ATP binds to still an unidentified extracellular domain, leading to a sequence of conformational transitions between closed, open, and desensitized states. Removal of extracellular ATP leads to deactivation and resensitization of receptors. Activated P2XRs generate inward currents caused by Na(+) and Ca(2+) influx through the pore of channels, and thus mediate membrane depolarization and facilitation of voltage-gated calcium entry in excitable cells. No crystal structures are available for P2XRs and these receptors have no obvious similarity to other ion channels or ATP binding proteins, which limits the progress in understanding the relationship between molecular structure and conformational transitions of receptor in the presence of agonist and after its washout. We summarize here the alternative approaches in studies on molecular properties of P2XRs, including heteromerization, chimerization, mutagenesis, and biochemical studies.
NASA Astrophysics Data System (ADS)
Botchwey, Christian
This thesis summarizes the methods and major findings of Ni-W(P)/gamma-Al 2O3 nitride catalyst synthesis, characterization, hydrotreating activity, kinetic analysis and correlation of the catalysts' activities to their synthesis parameters and properties. The range of parameters for catalyst synthesis were W (15-40 wt%), Ni (0-8 wt%), P (0-5 wt%) and nitriding temperature (TN) (500-900 °C). Characterization techniques used included: N2 sorption studies, chemisorption, elemental analysis, temperature programmed studies, x-ray diffraction, scanning electron microscopy, energy dispersive x-ray, infrared spectroscopy, transmission electron microscopy and x-ray absorption near edge structure. Hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatization (HDA) were performed at: temperature (340-380 °C), pressure (6.2-9.0 MPa), liquid hourly space velocity (1-3 h-1) and hydrogen to oil ratio (600 ml/ml, STP). The predominant species on the catalyst surface were Ni3N, W2N and bimetallic Ni2W3N. The bimetallic Ni-W nitride species was more active than the individual activities of the Ni3N and W2N. P increased weak acid sites while nitriding temperature decreased amount of strong acid sites. Low nitriding temperature enhanced dispersion of metal particles. P interacted with Al 2O3 which increased the dispersion of metal nitrides on the catalyst surface. HDN activity increased with Ni and P loading but decreased with increase in nitriding temperature (optimum conversion; 60 wt%). HDS and HDA activities went through a maximum with increase in the synthesis parameters (optimum conversions; 88. wt% for HDS and 47 wt% for HDA). Increase in W loading led to increase in catalyst activity. The catalysts were stable to deactivation and had the nitride structure conserved during hydrotreating in the presence of hydrogen sulfide. The results showed good correlation between hydrotreating activities (HDS and HDN) and the catalyst nitrogen content, number of exposed active sites, catalyst particle size and BET surface area. HDS and HDN kinetic analyses, using Langmuir-Hinshelwood models, gave activation energies of 66 and 32 kJ/mol, respectively. There were no diffusion limitations in the reaction process. Two active sites were involved in HDS reaction while one site was used for HDN. HDS and HDN activities of the Ni-W(P)/gamma-Al 2O3 nitride catalysts were comparable to the corresponding sulfides.
Mendoza, Ezequiel; Tokarev, Kirill; Düring, Daniel N; Retamosa, Eva Camarillo; Weiss, Michael; Arpenik, Nshdejan; Scharff, Constance
2015-06-15
Heterozygous disruptions of the Forkhead transcription factor FoxP2 impair acquisition of speech and language. Experimental downregulation in brain region Area X of the avian ortholog FoxP2 disrupts song learning in juvenile male zebra finches. In vitro, transcriptional activity of FoxP2 requires dimerization with itself or with paralogs FoxP1 and FoxP4. Whether this is the case in vivo is unknown. To provide the means for future functional studies we cloned FoxP4 from zebra finches and compared regional and cellular coexpression of FoxP1, FoxP2, and FoxP4 mRNA and protein in brains of juvenile and adult male zebra finches. In the telencephalic song nuclei HVC, RA, and Area X, the three investigated FoxPs were either expressed alone or occurred in specific combinations with each other, as shown by double in situ hybridization and triple immunohistochemistry. FoxP1 and FoxP4 but not FoxP2 were expressed in RA and in the HVCRA and HVCX projection neurons. In Area X and the surrounding striatum the density of neurons expressing all three FoxPs together or FoxP1 and FoxP4 together was significantly higher than the density of neurons expressing other combinations. Interestingly, the proportions of Area X neurons expressing particular combinations of FoxPs remained constant at all ages. In addition, FoxP-expressing neurons in adult Area X express dopamine receptors 1A, 1B, and 2. Together, these data provide the first evidence that Area X neurons can coexpress all avian FoxP subfamily members, thus allowing for a variety of regulatory possibilities via heterodimerization that could impact song behavior in zebra finches. © 2014 Wiley Periodicals, Inc.
Shen, Congxiang; Liu, Yanhui; Wen, Zhong; Yang, Keke; Li, Guanxue; Zhang, Shenhua; Zhang, Xinyu
2015-06-23
To explore the influence and mechanism of PinX1 gene on the chemotherapy sensitivity of nasopharyngeal carcinoma cells in response to Cisplatin. Transfected nasopharyngeal carcinoma 5-8F cell lines with pCDH-CMV-PinX1-copGFP vector constructed by lentivirus to generate Lenti-PinX1-5-8F cells containing PinX1 gene, using Lenti-Ctrl-5-8F cell (blank vector without PinX1 gene was used to transfect 5-8F cell lines) and 5-8F cell as controls. Expression of PinX1 gene, telomerase activity, the inhibition of cancer cells proliferation, combined anticancer effect with Cisplatin and the expression of lung resistance protein (LRP) and Bcl-2 were detected with fluorescent quantitation polymerase chain reaction (PCR), flow cytometry, thiazolyl blue (MTT) method, areole test, Western blot and drug sensitivity test, respectively, in four groups (Lenti-PinX1-5-8F cell + Cisplatin, Lenti-PinX1-5-8F cell, Cisplatin and 5-8F cell) so as to explore the influence and mechanism of PinX1 gene on the chemotherapy sensitivity of nasopharyngeal carcinoma cells in response to Cisplatin. The telomerase activity in Lenti-PinX1-5-8F cell (0.146 ± 0.004) was lower than those in the other two control cells (Lenti-Ctrl-5-8F cell: 0.967 ± 0.016, 5-8F cell: 1.000 ± 0.034, both P < 0.01). The cancer cell biological activity could be intensively inhibited by 16 µg/ml Cisplatin after lower level telomerase activity induced by PinX1 gene. Proliferation index (PI) (%) in Lenti-PinX1-5-8F cell + Cisplatin (14.39 ± 3.66) was also less than the other groups (Lenti-PinX1-5-8F cell, Cisplatin and 5-8F cell groups, 32.97 ± 3.00, 31.18 ± 4.24 and 47.19 ± 4.19, all P < 0.01). And same time, the expressions of LRP (0.64 ± 0.14) and Bcl-2 (0.57 ± 0.12) protein in Lenti-PinX1-5-8F cells were obviously reduced than those in other two group cells (Lenti-Ctrl-5-8F cell: 0.84 ± 0.19 and 0.81 ± 0.16; 5-8F cell: 0.83 ± 0.35 and 0.78 ± 0.27; all P < 0.01). PinX1 gene can enhance the chemotherapy sensitivity of nasopharyngeal carcinoma cells in response to Cisplatin, which may be mediated by the down-regulation of telomerase activity and the inhibition of LRP and Bcl-2 gene in nasopharyngeal carcinoma cells.
Parida, K M; Naik, Brundabana
2009-05-01
The article presents preparation, characterization and catalytic activity evaluation of an efficient nitrogen doped mesoporous titania sphere photo-catalyst for degradation of methylene blue (MB) and methyl orange (MO) under visible light illumination. Nitrogen doped titania was prepared by soft chemical route i.e. template free, slow and controlled homogeneous co-precipitation from titanium oxysulfate sulfuric acid complex hydrate, urea, ethanol and water. The molar composition of TiOSO(4) to urea was varied to prepare different atomic % nitrogen doped titania. Mesoporous anatase TiO(2-x)N(x) spheres with average crystallite size of 10 nm and formation of titanium oxynitride center were confirmed from HRTEM, XRD and XPS study. UV-vis DRS showed a strong absorption in the range of 400-500 nm which supports its use in visible spectrum of light. Nitrogen adsorption-desorption study supports the porous nature of the doped material. All the TiO(2-x)N(x) samples showed higher photo-catalytic activity than Degussa P(25) and undoped mesoporous titania. Sample containing around one atomic % nitrogen showed highest activity among the TiO(2-x)N(x) samples.
NASA Astrophysics Data System (ADS)
Liu, Fujian; Kong, Weiping; Wang, Liang; Noshadi, Iman; Zhang, Zhonghua; Qi, Chenze
2015-02-01
Visible light active and stable nanoporous polymeric base-crystalline TiO2 nanocomposites were solvothermally synthesized from in situ copolymerization of divinylbenzene (DVB) with 1-vinylimidazolate (VI) or 4-vinylpyridine (Py) in the presence of tetrabutyl titanate without the use of any other additives (PDVB-VI-TiO2-x, PDVB-Py-TiO2-x, where x stands for the molar ratio of TiO2 to VI or Py), which showed excellent activity with respect to catalyzing the degradation of organic pollutants of p-nitrophenol (PNP) and rhodamine-B (RhB). TEM and SEM images show that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x have abundant nanopores, and TiO2 nanocrystals with a high degree of crystallinity were homogeneously embedded in the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x, forming a stable ‘brick-and-mortar’ nanostructure. PDVB-VI and PDVB-Py supports act as the glue linking TiO2 nanocrystals to form nanopores and constraining the agglomeration of TiO2 nanocrystals. XPS spectra show evidence of unique interactions between TiO2 and basic sites in these samples. UV diffuse reflectance shows that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x exhibit a unique response to visible light. Catalytic tests show that the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were active in catalyzing the degradation of PNP and RhB organic pollutants under visible light irradiation. The enhanced activities of the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were ascribed to synergistic effects between abundant nanopores and the unique optical adsorption of visible light in the samples.
Liu, Fujian; Kong, Weiping; Wang, Liang; Noshadi, Iman; Zhang, Zhonghua; Qi, Chenze
2015-02-27
Visible light active and stable nanoporous polymeric base-crystalline TiO2 nanocomposites were solvothermally synthesized from in situ copolymerization of divinylbenzene (DVB) with 1-vinylimidazolate (VI) or 4-vinylpyridine (Py) in the presence of tetrabutyl titanate without the use of any other additives (PDVB-VI-TiO2-x, PDVB-Py-TiO2-x, where x stands for the molar ratio of TiO2 to VI or Py), which showed excellent activity with respect to catalyzing the degradation of organic pollutants of p-nitrophenol (PNP) and rhodamine-B (RhB). TEM and SEM images show that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x have abundant nanopores, and TiO2 nanocrystals with a high degree of crystallinity were homogeneously embedded in the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x, forming a stable 'brick-and-mortar' nanostructure. PDVB-VI and PDVB-Py supports act as the glue linking TiO2 nanocrystals to form nanopores and constraining the agglomeration of TiO2 nanocrystals. XPS spectra show evidence of unique interactions between TiO2 and basic sites in these samples. UV diffuse reflectance shows that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x exhibit a unique response to visible light. Catalytic tests show that the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were active in catalyzing the degradation of PNP and RhB organic pollutants under visible light irradiation. The enhanced activities of the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were ascribed to synergistic effects between abundant nanopores and the unique optical adsorption of visible light in the samples.
NASA Astrophysics Data System (ADS)
Sorokin, N. I.
2018-05-01
The electrical conductivity of crystals of artificial cancrinite Na8 - 2 x Ca x [Al6Si6O24][CO3] · 2H2O ( x ≤ 0.03) has been studied in the temperature range of 498-604 K. These crystals were grown by hydrothermal synthesis on a seed in the Na2O-Al2O3-SiO2-H2O system ( t = 380-420°C, P = 3 × 107-9 × 107 Pa). The ionic conductivity of a single-crystal sample (sp. gr. P63), measured along the crystallographic axis c, is low: σ = 8 × 10-7 S/cm at 300°C. The electric transport activation energy is E a = 0.81 ± 0.05 eV. The relationship between the ionic conductivity and specific features of the atomic structure of cancrinites is discussed.
Jacobson, K A; Kim, Y C; King, B F
2000-07-03
1,4-Dihydropyridines are regarded as privileged structures for drug design, i.e. they tend to bind to a wide variety of receptor sites. We have shown that upon appropriate manipulation of the substituent groups on a 1,4-dihydropyridine template, high affinity and selectivity for the A(3) subtype of adenosine receptors ('P1 receptors') may be attained. In the present study we have begun to extend this approach to P2 receptors which are activated by ATP and other nucleotides. Nicardipine, a representative dihydropyridine, used otherwise as an L-type calcium channel blocker, was shown to be an antagonist at recombinant rat P2X(2) (IC(50)=25 microM) and P2X(4) (IC(50) approximately 220 microM) receptors expressed in Xenopus oocytes. Thus, this class of compounds represents a suitable lead for enhancement of affinity through chemical synthesis. In an attempt to modify the 1,4-dihydropyridine structure with a predicted P2 receptor recognition moiety, we have replaced one of the ester groups with a negatively charged phosphonate group. Several 4-phenyl-5-phosphonato-1,4-dihydropyridine derivatives, MRS 2154 (2, 6-dimethyl), MRS 2155 (6-methyl-2-phenyl), and MRS 2156 (2-methyl-6-phenyl), were synthesized through three component condensation reactions. These derivatives were not pure antagonists of the effects of ATP at P2X(2) receptors, rather were either inactive (MRS 2156) or potentiated the effects of ATP in a concentration-dependent manner (MRS 2154 in the 0.3-10 microM range and MRS 2155 at >1 microM). Antagonism of the effects of ATP at P2X(2) receptor superimposed on the potentiation was also observed at >10 microM (MRS 2154) or 0.3-1 microM (MRS 2155). Thus, while a conventional dihydropyridine, nicardipine, was found to antagonize rat P2X(2) receptors ninefold more potently than P2X(4) receptors, the effects of novel, anionic 5-phosphonate analogues at the receptor were more complex.
Nielsen, D.; Eriksen, J.; Maare, C.; Jakobsen, A. H.; Skovsgaard, T.
1998-01-01
Fluctuation analysis experiments were performed to assess whether selection or induction determines expression of P-glycoprotein and resistance in the murine Ehrlich ascites tumour cell line (EHR2) after exposure to daunorubicin. Thirteen expanded populations of EHR2 cells were exposed to daunorubicin 7.5 x 10(-9) M or 10(-8) M for 2 weeks. Surviving clones were scored and propagated. Only clones exposed to daunorubicin 7.5 x 10(-9) M could be expanded for investigation. Drug resistance was assessed by the tetrazolium dye (MTT) cytotoxicity assay. Western blot was used for determination of P-glycoprotein. Compared with EHR2, the variant cells were 2.5- to 5.2-fold resistant to daunorubicin (mean 3.6-fold). P-glycoprotein was significantly increased in 11 of 25 clones (44%). Analysis of variance supported the hypothesis that spontaneous mutations conferred drug resistance in EHR2 cells exposed to daunorubicin 7.5 x 10(-9) M. At this level (5 log cell killing) of drug exposure, the mutation rate was estimated at 4.1 x 10(-6) per cell generation. In contrast, induction seemed to determine resistance in EHR2 cells in vitro exposed to daunorubicin 10(-8) M. The revertant EHR2/0.8/R was treated in vivo with daunorubicin for 24 h. After treatment, P-glycoprotein increased in EHR2/0.8/R (sevenfold) and the cell line developed resistance to daunorubicin (12-fold), suggesting that in EHR2/0.8/R the mdr1 gene was activated by induction. In conclusion, our study demonstrates that P-glycoprotein expression and daunorubicin resistance are primarily acquired by selection of spontaneously arising mutants. However, under certain conditions the mdr1 gene may be activated by induction. PMID:9820176
Saen-oon, Suwipa; Lee, Soon Goo; Jez, Joseph M.; Guallar, Victor
2014-01-01
The phosphobase methylation pathway catalyzed by the phosphoethanolamine methyltransferase in Plasmodium falciparum (PfPMT), the malaria parasite, offers an attractive target for anti-parasitic drug development. PfPMT methylates phosphoethanolamine (pEA) to phosphocholine for use in membrane biogenesis. Quantum mechanics and molecular mechanics (QM/MM) calculations tested the proposed reaction mechanism for methylation of pEA involving the previously identified Tyr-19–His-132 dyad, which indicated an energetically unfavorable mechanism. Instead, the QM/MM calculations suggested an alternative mechanism involving Asp-128. The reaction coordinate involves the stepwise transfer of a proton to Asp-128 via a bridging water molecule followed by a typical Sn2-type methyl transfer from S-adenosylmethionine to pEA. Functional analysis of the D128A, D128E, D128Q, and D128N PfPMT mutants shows a loss of activity with pEA but not with the final substrate of the methylation pathway. X-ray crystal structures of the PfPMT-D128A mutant in complex with S-adenosylhomocysteine and either pEA or phosphocholine reveal how mutation of Asp-128 disrupts a hydrogen bond network in the active site. The combined QM/MM, biochemical, and structural studies identify a key role for Asp-128 in the initial step of the phosphobase methylation pathway in Plasmodium and provide molecular insight on the evolution of multiple activities in the active site of the PMT. PMID:25288796
Saen-oon, Suwipa; Lee, Soon Goo; Jez, Joseph M.; ...
2014-10-06
Here, the phosphobase methylation pathway catalyzed by the phosphoethanolamine methyltransferase in Plasmodium falciparum (PfPMT), the malaria parasite, offers an attractive target for anti-parasitic drug development. PfPMT methylates phosphoethanolamine (pEA) to phosphocholine for use in membrane biogenesis. Quantum mechanics and molecular mechanics (QM/MM) calculations tested the proposed reaction mechanism for methylation of pEA involving the previously identified Tyr-19–His-132 dyad, which indicated an energetically unfavorable mechanism. Instead, the QM/MM calculations suggested an alternative mechanism involving Asp-128. The reaction coordinate involves the stepwise transfer of a proton to Asp-128 via a bridging water molecule followed by a typical S n2-type methyl transfer frommore » S-adenosylmethionine to pEA. Functional analysis of the D128A, D128E, D128Q, and D128N PfPMT mutants shows a loss of activity with pEA but not with the final substrate of the methylation pathway. X-ray crystal structures of the PfPMT-D128A mutant in complex with S-adenosylhomocysteine and either pEA or phosphocholine reveal how mutation of Asp-128 disrupts a hydrogen bond network in the active site. The combined QM/MM, biochemical, and structural studies identify a key role for Asp-128 in the initial step of the phosphobase methylation pathway in Plasmodium and provide molecular insight on the evolution of multiple activities in the active site of the PMT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saen-oon, Suwipa; Lee, Soon Goo; Jez, Joseph M.
Here, the phosphobase methylation pathway catalyzed by the phosphoethanolamine methyltransferase in Plasmodium falciparum (PfPMT), the malaria parasite, offers an attractive target for anti-parasitic drug development. PfPMT methylates phosphoethanolamine (pEA) to phosphocholine for use in membrane biogenesis. Quantum mechanics and molecular mechanics (QM/MM) calculations tested the proposed reaction mechanism for methylation of pEA involving the previously identified Tyr-19–His-132 dyad, which indicated an energetically unfavorable mechanism. Instead, the QM/MM calculations suggested an alternative mechanism involving Asp-128. The reaction coordinate involves the stepwise transfer of a proton to Asp-128 via a bridging water molecule followed by a typical S n2-type methyl transfer frommore » S-adenosylmethionine to pEA. Functional analysis of the D128A, D128E, D128Q, and D128N PfPMT mutants shows a loss of activity with pEA but not with the final substrate of the methylation pathway. X-ray crystal structures of the PfPMT-D128A mutant in complex with S-adenosylhomocysteine and either pEA or phosphocholine reveal how mutation of Asp-128 disrupts a hydrogen bond network in the active site. The combined QM/MM, biochemical, and structural studies identify a key role for Asp-128 in the initial step of the phosphobase methylation pathway in Plasmodium and provide molecular insight on the evolution of multiple activities in the active site of the PMT.« less
1981-10-02
Northern Paiute, Shoshone, Ute, and Southern Paiute peoples developed solutions to natural limitations based upon botanical and zoological expertise and...Land Management and the Forest Service. Other Land-based Activities (3.1.5.2.2) The tribe intends to build a hydroponic greenhouse which will utilize the...other development goals--notably the development of a hydroponic greenhouse utilizing flow from natural wdrm springs on the reservation, and development
Skare, Øivind; Lie, Rolv T; Haaland, Øystein A; Gjerdevik, Miriam; Romanowska, Julia; Gjessing, Håkon K; Jugessur, Astanand
2018-01-01
Background: Although both the mother's and father's alleles are present in the offspring, they may not operate at the same level. These parent-of-origin (PoO) effects have not yet been explored on the X chromosome, which motivated us to develop new methods for detecting such effects. Orofacial clefts (OFCs) exhibit sex-specific differences in prevalence and are examples of traits where a search for various types of effects on the X chromosome might be relevant. Materials and Methods: We upgraded our R-package Haplin to enable genome-wide analyses of PoO effects, as well as power simulations for different statistical models. 14,486 X-chromosome SNPs in 1,291 Asian and 1,118 European case-parent triads of isolated OFCs were available from a previous GWAS. For each ethnicity, cleft lip with or without cleft palate (CL/P) and cleft palate only (CPO) were analyzed separately using two X-inactivation models and a sliding-window approach to haplotype analysis. In addition, we performed analyses restricted to female offspring. Results: Associations were identified in "Dystrophin" ( DMD , Xp21.2-p21.1), "Fibroblast growth factor 13" ( FGF13 , Xq26.3-q27.1) and "EGF-like domain multiple 6" ( EGFL6 , Xp22.2), with biologically plausible links to OFCs. Unlike EGFL6 , the other associations on chromosomal region Xp22.2 had no apparent connections to OFCs. However, the Xp22.2 region itself is of potential interest because it contains genes for clefting syndromes [for example, "Oral-facial-digital syndrome 1" ( OFD1 ) and "Midline 1" ( MID1 )]. Overall, the identified associations were highly specific for ethnicity, cleft subtype and X-inactivation model, except for DMD in which associations were identified in both CPO and CL/P, in the model with X-inactivation and in Europeans only. Discussion/Conclusion: The specificity of the associations for ethnicity, cleft subtype and X-inactivation model underscores the utility of conducting subanalyses, despite the ensuing need to adjust for additional multiple testing. Further investigations are needed to confirm the associations with DMD, EGF16 , and FGF13 . Furthermore, chromosomal region Xp22.2 appears to be a hotspot for genes implicated in clefting syndromes and thus constitutes an exciting direction to pursue in future OFCs research. More generally, the new methods presented here are readily adaptable to the study of X-linked PoO effects in other outcomes that use a family-based design.
Potential Virulence Role of the Legionella pneumophila ptsP Ortholog
Higa, Futoshi; Edelstein, Paul H.
2001-01-01
We previously identified the Legionella pneumophila ptsP (phosphoenolpyruvate phosphotransferase) ortholog gene as a putative virulence factor in a study of signature-tagged mutagenesis using a guinea pig pneumonia model. In this study, we further defined the phenotypic properties of L. pneumophila ptsP and its complete sequence. The L. pneumophila ptsP was 2,295 bases in length. Its deduced amino acid sequence had high similarity with ptsP orthologs of Pseudomonas aeruginosa, Azotobacter vinelandii, and Escherichia coli, with nearly identical lengths. Here we show that while the mutant grew well in laboratory media, it was defective in both lung and spleen multiplication in guinea pigs. It grew slowly in guinea pig alveolar macrophages despite good uptake into the cells. Furthermore, there was minimal growth in a human alveolar epithelial cell line (A549). Transcomplementation of the L. pneumophila ptsP mutant almost completely rescued its growth in alveolar macrophages, in A549 cells, and in guinea pig lung and spleen. The L. pneumophila ptsP mutant was capable of evasion of phagosome-lysosome fusion and resided in ribosome-studded phagosomes. Pore formation activity of the mutant was normal. The L. pneumophila ptsP mutant expressed DotA and IcmX in apparently normal amounts, suggesting that the ptsP mutation did not affect dotA and icmX regulation. In addition, the mutant was resistant to serum and neutrophil killing. Taken together, these findings show that L. pneumophila ptsP is required for full in vivo virulence of L. pneumophila, most probably by affecting intracellular growth. PMID:11447151
Yue, Tian-li; Bao, Weike; Jucker, Beat M; Gu, Juan-li; Romanic, Anne M; Brown, Peter J; Cui, Jianqi; Thudium, Douglas T; Boyce, Rogely; Burns-Kurtis, Cynthia L; Mirabile, Rosanna C; Aravindhan, Karpagam; Ohlstein, Eliot H
2003-11-11
Peroxisome proliferator-activated receptor-alpha (PPAR-alpha) is expressed in the heart and regulates genes involved in myocardial fatty acid oxidation (FAO). The role of PPAR-alpha in acute ischemia/reperfusion myocardial injury remains unclear. The coronary arteries of male mice were ligated for 30 minutes. After reperfusion for 24 hours, ischemic and infarct sizes were determined. A highly selective and potent PPAR-alpha agonist, GW7647, was administered by mouth for 2 days, and the third dose was given 1 hour before ischemia. GW7647 at 1 and 3 mg x kg(-1) x d(-1) reduced infarct size by 28% and 35%, respectively (P<0.01), and myocardial contractile dysfunction was also improved. Cardioprotection by GW7647 was completely abolished in PPAR-alpha-null mice. Ischemia/reperfusion downregulated mRNA expression of cardiac PPAR-alpha and FAO enzyme genes, decreased myocardial FAO enzyme activity and in vivo cardiac fat oxidation, and increased serum levels of free fatty acids. All of these changes were reversed by GW7647. Moreover, GW7647 attenuated ischemia/reperfusion-induced release of multiple proinflammatory cytokines and inhibited neutrophil accumulation and myocardial expression of matrix metalloproteinases-9 and -2. Furthermore, GW7647 inhibited nuclear factor-kappaB activation in the heart, accompanied by enhanced levels of inhibitor-kappaBalpha. Activation of PPAR-alpha protected the heart from reperfusion injury. This cardioprotection might be mediated through metabolic and antiinflammatory mechanisms. This novel effect of the PPAR-alpha agonist could provide an added benefit to patients treated with PPAR-alpha activators for dyslipidemia.
NASA Astrophysics Data System (ADS)
Wang, Chun-yu; He, Lin; Li, Yan; Shuai, Chang-geng
2018-01-01
In engineering applications, ship machinery vibration may be induced by multiple rotational machines sharing a common vibration isolation platform and operating at the same time, and multiple sinusoidal components may be excited. These components may be located at frequencies with large differences or at very close frequencies. A multi-reference filtered-x Newton narrowband (MRFx-Newton) algorithm is proposed to control these multiple sinusoidal components in an MIMO (multiple input and multiple output) system, especially for those located at very close frequencies. The proposed MRFx-Newton algorithm can decouple and suppress multiple sinusoidal components located in the same narrow frequency band even though such components cannot be separated from each other by a narrowband-pass filter. Like the Fx-Newton algorithm, good real-time performance is also achieved by the faster convergence speed brought by the 2nd-order inverse secondary-path filter in the time domain. Experiments are also conducted to verify the feasibility and test the performance of the proposed algorithm installed in an active-passive vibration isolation system in suppressing the vibration excited by an artificial source and air compressor/s. The results show that the proposed algorithm not only has comparable convergence rate as the Fx-Newton algorithm but also has better real-time performance and robustness than the Fx-Newton algorithm in active control of the vibration induced by multiple sound sources/rotational machines working on a shared platform.
Vivoli, Elisa; Cappon, Andrea; Milani, Stefano; Piombanti, Benedetta; Provenzano, Angela; Novo, Erica; Masi, Alessio; Navari, Nadia; Narducci, Roberto; Mannaioni, Guido; Moneti, Gloriano; Oliveira, Claudia P; Parola, Maurizio; Marra, Fabio
2016-10-01
Berberine (BRB) is commonly used in herbal medicine, but its mechanisms of action are poorly understood. In the present study, we tested BRB in steatohepatitis induced by a methionine- and choline-deficient (MCD) diet, in acute acetaminophen intoxication and in cultured murine macrophages. BRB markedly improved parameters of liver injury and necroinflammation induced by the MCD diet, although increased mortality was observed by mechanisms independent of bacterial infections or plasma levels of BRB. The MCD diet induced up-regulation of all components of the NLRP3 (NACHT, LRR and PYD domain-containing protein 3) inflammasome, and increased hepatic levels of mature IL-1β (interleukin 1β). All of these parameters were significantly reduced in mice treated with BRB. In mice administered an acetaminophen overdose, a model dependent on inflammasome activation, BRB reduced mortality and ALT (alanine aminotransferase) elevation, and limited the expression of inflammasome components. In vitro, LPS (lipopolysaccharide)-induced activation of NLRP3 inflammasome in RAW264.7 murine macrophages was markedly decreased by pre-incubation with BRB. BRB significantly limited the activation of the purinergic receptor P2X7, involved in the late phases of inflammasome activation. Upon P2X7 knockdown, the ability of BRB to block LPS-induced secretion of IL-1β was lost. These data indicate that administration of BRB ameliorates inflammation and injury in two unrelated murine models of liver damage. We demonstrate for the first time that BRB interferes with activation of the NLRP3 inflammasome pathway in vivo and in vitro, through a mechanism based on interference with activation of P2X7, a purinergic receptor involved in inflammasome activation. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Matthias J.; Bedford, Nicholas M.; Jiang, Naisheng
The ability to generate new electrochemically active materials for energy generation and storage with improved properties will likely be derived from an understanding of atomic-scale structure/function relationships during electrochemical events. Here, the design and implementation of a new capillary electrochemical cell designed specifically forin situhigh-energy X-ray diffraction measurements is described. By increasing the amount of electrochemically active material in the X-ray path while implementing low-Zcell materials with anisotropic scattering profiles, an order of magnitude enhancement in diffracted X-ray signal over traditional cell geometries for multiple electrochemically active materials is demonstrated. This signal improvement is crucial for high-energy X-ray diffraction measurementsmore » and subsequent Fourier transformation into atomic pair distribution functions for atomic-scale structural analysis. As an example, clear structural changes in LiCoO 2under reductive and oxidative conditions using the capillary cell are demonstrated, which agree with prior studies. Accurate modeling of the LiCoO 2diffraction data using reverse Monte Carlo simulations further verifies accurate background subtraction and strong signal from the electrochemically active material, enabled by the capillary working electrode geometry.« less
Heme induces IL-1β secretion through activating NLRP3 in kidney inflammation.
Li, Qianwei; Fu, Weihua; Yao, Jiwei; Ji, Zheng; Wang, Yongquan; Zhou, Zhansong; Yan, Junan; Li, Weibing
2014-07-01
To produce proinflammatory master cytokine IL-1β in macrophages, two stimulation pathways are needed including TLRs-NF-κB axis and NLRPs/ASC-caspase-1 axis. Different signals including exogenous and endogenous trigger inflammatory response distinctly. Among them, the role of endogenous stimulators of inflammation is poorly understood. As a component of hemoglobin, free heme is released when hemolysis or extensive cell damage occur which results in inflammatory response. Here, we find that heme induces IL-1β secretion through activating NLRP3 inflammasome in macrophages. Heme activates NLRP3 through P2X receptors, especially the P2X7R and P2X4R. Most importantly, significantly enhancement of heme level and activation of NLRPs/ASC-caspase-1 axis were observed in mice kidney after unilateral ureteral obstruction which could be inhibited by enforced expression of heme oxygenase-1 (HO-1). Our study proves that heme is a potential danger activator of NLRP3 inflammasome that plays an essential role in IL-1β secretion during kidney inflammation and provides new insight into the mechanism of innate immune initiation. Further investigation will be beneficial to develop new molecular target and molecular diagnosis indicator in therapy of kidney inflammation.
Johnston, Jeanne D.; Massey, Anne P.; Marker-Hoffman, Rickie Lee
2012-01-01
Background This quasi-experimental study investigated a game intervention—specifically, an alternate reality game (ARG)—as a means to influence college students’ physical activity (PA). An ARG is an interactive narrative that takes place in the real world and uses multiple media to reveal a story. Method Three sections of a college health course (n = 115 freshman students) were assigned either to a game group that played the ARG or to a comparison group that learned how to use exercise equipment in weekly laboratory sessions. Pre- and post-intervention measures included weight, waist circumference, body mass index (BMI), percentage body fat (PBF), and self-reported moderate physical activity (MPA) and vigorous physical activity (VPA), and PA (steps/week). Results A significant group x time interaction (p = .001) was detected for PA, with a significant increase in PA for the game (p < .001) versus a significant decrease (p = .001) for the comparison group. Significant within-group increases for weight (p = .001), BMI (p = .001), and PBF (p = .001) were detected. A significant group x time interaction (p = .001) was detected when analyzing self-reported VPA, with both groups reporting decreases in VPA over time; however, the decrease was only significant for the comparison group (p < .001). No significant group differences were found for MPA. Conclusions It is important that any intervention meet the needs and interests of its target population. Here, the ARG was designed in light of the learning preferences of today’s college students—collaborative and social, experiential and media-rich. Our results provide preliminary evidence that a game intervention can positively influence PA within the college student population. PMID:22920809
Johnston, Jeanne D; Massey, Anne P; Marker-Hoffman, Rickie Lee
2012-07-01
This quasi-experimental study investigated a game intervention--specifically, an alternate reality game (ARG)--as a means to influence college students' physical activity (PA). An ARG is an interactive narrative that takes place in the real world and uses multiple media to reveal a story. Three sections of a college health course (n = 115 freshman students) were assigned either to a game group that played the ARG or to a comparison group that learned how to use exercise equipment in weekly laboratory sessions. Pre- and post-intervention measures included weight, waist circumference, body mass index (BMI), percentage body fat (PBF), and self-reported moderate physical activity (MPA) and vigorous physical activity (VPA), and PA (steps/week). A significant group x time interaction (p = .001) was detected for PA, with a significant increase in PA for the game (p < .001) versus a significant decrease (p = .001) for the comparison group. Significant within-group increases for weight (p = .001), BMI (p = .001), and PBF (p = .001) were detected. A significant group x time interaction (p = .001) was detected when analyzing self-reported VPA, with both groups reporting decreases in VPA over time; however, the decrease was only significant for the comparison group (p < .001). No significant group differences were found for MPA. It is important that any intervention meet the needs and interests of its target population. Here, the ARG was designed in light of the learning preferences of today's college students--collaborative and social, experiential and media-rich. Our results provide preliminary evidence that a game intervention can positively influence PA within the college student population. © 2012 Diabetes Technology Society.
New structures of power density spectra for four Kepler active galactic nuclei
NASA Astrophysics Data System (ADS)
Dobrotka, A.; Antonuccio-Delogu, V.; Bajčičáková, I.
2017-09-01
Many nearby active galactic nuclei display a significant short-term variability. In this work, we reanalyse photometric data of four active galactic nuclei observed by Kepler in order to study the flickering activity, with our main goal to search for multiple components in the power density spectra. We find that all four objects have similar characteristics, with two break frequencies at approximately log( f /Hz) = -5.2 and -4.7. We consider some physical phenomena whose characteristic time-scales are consistent with those observed, in particular mass accretion fluctuations in the inner geometrically thick disc (hot X-ray corona) and unstable relativistic Rayleigh-Taylor modes. The former is supported by detection of the same break frequencies in the Swift X-ray data of ZW229-15. We also discuss rms-flux relations, and we detect a possible typical linear trend at lower flux levels. Our findings support the hypothesis of a multiplicative character of variability, in agreement with the propagating accretion fluctuation model.
Ikaite crystals in melting sea ice - implications for pCO2 and pH levels in Arctic surface waters
NASA Astrophysics Data System (ADS)
Rysgaard, S.; Glud, R. N.; Lennert, K.; Cooper, M.; Halden, N.; Leakey, R. J. G.; Hawthorne, F. C.; Barber, D.
2012-03-01
A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (CaCO3·6H2O) in Arctic and Antarctic sea ice, which indicate that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from an actively melting 1.7 km2 (0.5-1 m thick) drifting ice floe in the Fram Strait during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures gradually disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced the ice flow thickness by ca. 0.2 m per week and resulted in an estimated 1.6 ppm decrease of pCO2 in the ocean surface mixed layer. This corresponds to an air-sea CO2 uptake of 11 mmol m-2 sea ice d-1 or to 3.5 ton km-2 ice floe week-1.
High resolution crystal structure of the Grb2 SH2 domain with a phosphopeptide derived from CD28.
Higo, Kunitake; Ikura, Teikichi; Oda, Masayuki; Morii, Hisayuki; Takahashi, Jun; Abe, Ryo; Ito, Nobutoshi
2013-01-01
Src homology 2 (SH2) domains play a critical role in cellular signal transduction. They bind to peptides containing phosphotyrosine (pY) with various specificities that depend on the flanking amino-acid residues. The SH2 domain of growth-factor receptor-bound protein 2 (Grb2) specifically recognizes pY-X-N-X, whereas the SH2 domains in phosphatidylinositol 3-kinase (PI3K) recognize pY-X-X-M. Binding of the pY site in CD28 (pY-M-N-M) by PI3K and Grb2 through their SH2 domains is a key step that triggers the CD28 signal transduction for T cell activation and differentiation. In this study, we determined the crystal structure of the Grb2 SH2 domain in complex with a pY-containing peptide derived from CD28 at 1.35 Å resolution. The peptide was found to adopt a twisted U-type conformation, similar to, but distinct from type-I β-turn. In all previously reported crystal structures, the peptide bound to the Grb2 SH2 domains adopts a type-I β-turn conformation, except those with a proline residue at the pY+3 position. Molecular modeling also suggests that the same peptide bound to PI3K might adopt a very different conformation.
Granstein, Richard D; Ding, Wanhong; Huang, Jing; Holzer, Aton; Gallo, Richard L; Di Nardo, Anna; Wagner, John A
2005-06-15
Extracellular nucleotides activate ligand-gated P2XR ion channels and G protein-coupled P2YRs. In this study we report that intradermal administration of ATPgammaS, a hydrolysis-resistant P2 agonist, results in an enhanced contact hypersensitivity response in mice. Furthermore, ATPgammaS enhanced the induction of delayed-type hypersensitivity to a model tumor vaccine in mice and enhanced the Ag-presenting function of Langerhans cells (LCs) in vitro. Exposure of a LC-like cell line to ATPgammaS in the presence of LPS and GM-CSF augmented the induction of I-A, CD80, CD86, IL-1beta, and IL-12 p40 while inhibiting the expression of IL-10, suggesting that the immunostimulatory activities of purinergic agonists in the skin are mediated at least in part by P2Rs on APCs. In this regard, an LC-like cell line was found to express mRNA for P2X(1), P2X(7), P2Y(1), P2Y(2), P2Y(4), P2Y(9), and P2Y(11) receptors. We suggest that ATP, when released after trauma or infection, may act as an endogenous adjuvant to enhance the immune response, and that P2 agonists may augment the efficacy of vaccines.
Bernstein, R; Jenkins, T; Dawson, B; Wagner, J; Dewald, G; Koo, G C; Wachtel, S S
1980-01-01
A mentally retarded female child with multiple congenital abnormalities had an abnormal X chromosome and a Y chromosome; the karyotype was interpreted as 46,dup(X)(p21 leads to pter)Y. Prenatal chromosome studies in a later pregnancy indicated the same chromosomal abnormality in the fetus. The fetus and proband had normal female genitalia and ovarian tissue. H--Y antigen was virtually absent in both sibs, a finding consistent with the view that testis-determining genes of the Y chromosome may be suppressed by regulatory elements of the X. The abnormal X chromosome was present in the mother, the maternal grandmother, and a female sib: all were phenotypically normal and showed the karyotype 46,Xdup(X)(p21 leads to pter) with non-random inactivation of the abnormal X. Anomalous segregation of the Xga allele suggests that the Xg locus was involved in the inactivation process or that crossing-over at meiosis occurred. Images PMID:7193738
McGuigan, John A S; Kay, James W; Elder, Hugh Y
2016-09-01
In Ca(2+) and Mg(2+) buffer solutions the ionised concentrations ([X(2+)]) are either calculated or measured. Calculated values vary by up to a factor of seven due to the following four problems: 1) There is no agreement amongst the tabulated constants in the literature. These constants have usually to be corrected for ionic strength and temperature. 2) The ionic strength correction entails the calculation of the single ion activity coefficient, which involves non-thermodynamic assumptions; the data for temperature correction is not always available. 3) Measured pH is in terms of activity i.e. pHa. pHa measurements are complicated by the change in the liquid junction potentials at the reference electrode making an accurate conversion from H(+) activity to H(+) concentration uncertain. 4) Ligands such as EGTA bind water and are not 100% pure. Ligand purity has to be measured, even when the [X(2+)] are calculated. The calculated [X(2+)] in buffers are so inconsistent that calculation is not an option. Until standards are available, the [X(2+)] in the buffers must be measured. The Ligand Optimisation Method is an accurate and independently verified method of doing this (McGuigan & Stumpff, Anal. Biochem. 436, 29, 2013). Lack of standards means it is not possible to compare the published [Ca(2+)] in the nmolar range, and the apparent constant (K(/)) values for Ca(2+) and Mg(2+) binding to intracellular ligands amongst different laboratories. Standardisation of Ca(2+)/Mg(2+) buffers is now essential. The parameters to achieve this are proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stability of CoP x Electrocatalysts in Continuous and Interrupted Acidic Electrolysis of Water.
Goryachev, Andrey; Gao, Lu; Zhang, Yue; Rohling, Roderigh Y; Vervuurt, René H J; Bol, Ageeth A; Hofmann, Jan P; Hensen, Emiel J M
2018-04-11
Cobalt phosphides are an emerging earth-abundant alternative to platinum-group-metal-based electrocatalysts for the hydrogen evolution reaction (HER). Yet, their stability is inferior to platinum and compromises the large-scale applicability of CoP x in water electrolyzers. In the present study, we employed flat, thin CoP x electrodes prepared through the thermal phosphidation (PH 3 ) of Co 3 O 4 films made by plasma-enhanced atomic layer deposition to evaluate their stability in acidic water electrolysis by using a multi-technique approach. The films were found to be composed of two phases: CoP in the bulk and a P-rich surface CoP x (P/Co>1). Their performance was evaluated in the HER and the exchange current density was determined to be j 0 =-8.9 ⋅ 10 -5 A/cm 2 . The apparent activation energy of HER on CoP x ( E a =81±15 kJ/mol) was determined for the first time. Dissolution of the material in 0.5 M H 2 SO 4 was observed, regardless of the constantly applied cathodic potential, pointing towards a chemical instead of an electrochemical origin of the observed cathodic instability. The current density and HER faradaic efficiency (FE) were found to be stable during chronoamperometric treatment, as the chemical composition of the HER-active phase remained unchanged. On the contrary, a dynamic potential change performed in a repeated way facilitated dissolution of the film, yielding its complete degradation within 5 h. There, the FE was also found to be changing. An oxidative route of CoP x dissolution has also been proposed.
a Search for Nucleon Decay with Multiple Muon Decays
NASA Astrophysics Data System (ADS)
Phillips, Thomas James
A search was made for nucleon decays which result in multiple delayed muon decays using the HPW (Harvard -Purdue-Wisconsin) water Cerenkov detector. The HPW detector consists of 680 metric tons of purified water instrumented with 704 five-inch photomultiplier tubes. The phototubes are situated on a volume array with a lattice spacing of approximately one meter, and the inside walls of the detector are lined with mirrors. This combination of mirrors and a volume array of phototubes gives the HPW detector a low trigger energy threshold and a high muon decay detection efficiency. The detector is surrounded by wire chambers to provide an active shield, and is located at a depth of 1500 meters-of-water-equivalent in the Silver King Mine in Park City, Utah. The entire HPW data set, consisting of 17.2 million events collec- ted during 282 live days between May 1983 and October 1984, was analyzed. No contained events with multiple muon decays were found in a 180 ton fiducial volume. This is consistent with the background rate from neutrino interactions, which is expected to be 0.7 (+OR-) 0.2 events. The calculated lower lifetime limit for the decay mode p (--->) (mu)('+)(mu)('+)(mu)('-) is: (tau)/B.R. = 1 x 10('31) years (90% C.L.). Limits are calculated for ten other proton decay modes and five bound neutron decay modes, most of which are around 4 x 10('30) years (90% C.L.). No previous studies have reported results from direct searches for eight of these modes.
Kudo, S; Okumura, H; Miyamoto, G; Ishizaki, T
1999-02-01
Cytochrome P-450 (CYP) isoforms responsible for the cleavage of Hantzsch pyridine ester at the 3-position of pranidipine were studied in vitro using cDNA-expressed human CYP enzymes. CYP1A1, 1A2, 2D6, and 3A4 cleaved the ester with a catalytic activity of 5.5, 0. 93, 13.1, and 22.4 nmol/30 min/nmol P-450, respectively. CYP2A6, 2B6, 2C8, 2C9, 2C19, and 2E1 were not involved in the de-esterification. The Km and Vmax values for the de-esterification were 11.8 microM and 0.47 nmol/min/nmol P-450 in the CYP2D6-catalyzed reaction and 8. 7 microM and 0.84 nmol/min/nmol P-450 in the CYP3A4-catalyzed reaction. The intrinsic clearance (Vmax/Km) of the de-esterification by CYP3A4 was 2-fold greater than that by CYP2D6. Quinidine almost completely inhibited the CYP2D6-mediated de-esterification at the concentration of 1 x 10(-6) M. Ketoconazole and troleandomycin inhibited the CYP3A4-mediated reaction in a dose-related manner. The results indicate that although the multiple CYP isoforms can catalyze the de-esterification, CYP3A4 and 2D6 are the major isoforms.
Fokina, K V; Dainyak, M B; Nagradova, N K; Muronetz, V I
1997-09-15
The ability of D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzing the reaction of 1,3-diphosphoglycerate synthesis in human erythrocytes to form complexes with enzymes which use this metabolite as substrate (3-phosphoglycerate kinase (3-PGK) or 2,3-diphosphoglycerate mutase (2,3-DPGM)) was studied. It was found that highly active 2,3-DPGM can be extracted from human erythrocyte hemolysates in a complex with GAPDH adsorbed on Sepharose-bound anti-GAPDH antibodies at pH 6.5, the molar ratio being one 2,3-GPGM subunit per subunit of GAPDH. No complexation was, however, detected at pH 8.0. The opposite was true for the interaction between GAPDH and 3-PGK, which could be observed at pH 8.0. In experiments carried out at pH 7.4, both GAPDH x 2,3-DPGM and GAPGH x 3-PGK complexes were detected. The Kd values of the complexes determined with purified enzyme preparations were in the range 2.40-2.48 microM for both the GAPDH x 2,3-DPGM and GAPGH x 3-PGK enzyme pairs, when titrations of GAPDH covalently bound to CNBr-activated Sepharose were performed by the soluble 2,3-DPGM or 3-PGK. If, however, GAPDH adsorbed on the specific antibodies covalently bound to Sepharose was used in the titration experiments, the Kd for the GAPDH x 2,3-DPGM complex was found to be 0.54 microM, and the Kd for the GAPDH x 3-PGK complex was 0.49 microM. The concentration of 2,3-diphosphoglycerate determined after 1 h of incubation of erythrocytes in the presence of glucose was found to increase 1.5-fold if the incubation was carried out at pH 6.5, but did not change upon incubation at pH 8.0. On the other hand, the concentration of 3-phosphoglycerate after incubation at pH 8.0 was twice as large as that found after incubation at pH 6.5. The results are interpreted on the hypothesis that specific protein-protein interactions between GAPDH and 2,3-DPGM or between GAPDH and 3-PGK may play a role in determining the fate of 1,3-diphosphoglycerate produced in the GAPDH-catalyzed reaction.
In vitro anti-glycation and anti-oxidant properties of synthesized Schiff bases.
Jhaumeer-Laulloo, Sabina; Bhowon, Minu Gupta; Mungur, Shabneez; Mahomoodally, Mohamad Fawzi; Subratty, Anwar Hussein
2012-05-01
A series of mono, bis and mixed Schiff bases (1-7) were synthesised and evaluated for potential anti-glycation and anti-oxidant activities using the bovine serum albumin-glucose assay and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical assay respectively. All compounds showed significant (p<0.05) antiglycating activities with IC50 values (4.02x10(-24)±0.1-2.88x10(-1)±1.35 mM) which were lower than the standard positive control aminoguanidine (IC50: 1.51x10(-3)±2.11 mM). Moreover, compounds 1-7 were found to possess significant (p<0.05) DPPH radical scavenging properties with SC50 values (1.31x10(-19)±0.05 to 2.25x10(-1)±1.24 mM) lower than the standard ascorbic acid (SC50: 5.50x10(-3)±2.11 mM). Compound 6 was found to be the most potent anti-glycating molecule (IC50 value: 4.02x10(-24)±0.1 mM) while compound 5 was the most potent anti-oxidant molecule (SC50: 1.31x10(-19)±0.05 mM); both being significantly lower (p<0.05) than the respective positive controls used. The present data showed that the number of phenolic OH together with structural changes influence both the anti-glycation and anti-oxidant observed herein. This study provides for the first time a series of potential template molecules for possible pharmaceutical applications that warrant further investigation as potential anti-glycation and anti-oxidant agents which could be of importance in metabolic diseases including diabetes mellitus.
Electrical characterization of 6H crystalline silicon carbide. M.S. Thesis Final Report
NASA Technical Reports Server (NTRS)
Lempner, Stephen E.
1994-01-01
Crystalline silicon carbide (SiC) substrates and epilayers, undoped as well as n- and p-doped, have been electrically characterized by performing Hall effect and resistivity measurements (van der Pauw) over the temperature range of approximately 85 K to 650 K (200 K to 500 K for p-type sample). By fitting the measured temperature dependent carrier concentration data to the single activation energy theoretical model: (1) the activation energy for the nitrogen donor ranged from 0.078 eV to 0.101 eV for a doping concentration range of 10(exp 17) cm(exp -3) to 10(exp 18) cm(exp -3) and (2) the activation energy for the aluminum acceptor was 0.252 eV for a doping concentration of 4.6 x 10(exp 18) cm(exp -3). By fitting the measured temperature dependent carrier concentration data to the double activation energy level theoretical model for the nitrogen donor: (1) the activation energy for the hexagonal site was 0.056 eV and 0.093 eV corresponding to doping concentrations of 3.33 x 10 (exp 17) cm(exp -3) and 1.6 x 10(exp 18) cm(exp -3) and (2) the activation energy for the cubic site was 0.113 and 0.126 eV corresponding to doping concentrations of 4.2 x 10(exp 17) cm(exp -3) and 5.4 x 10(exp 18) cm(exp -3).
Influences of mass Chlorophyll-a blends using P3HT:PCBM for efficiency of organic solar cells
NASA Astrophysics Data System (ADS)
Lestari, E.; Supriyanto, A.; Iriani, Y.; Ramelan, A. H.; Nurosyid, F.
2017-02-01
Organic solar cells have been made using the material poly (3-hexylthiophene)(P3HT), [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM), and Chlorophyll-a with blend metods. Active layer of P3HT:PCBM:Chlorophyll-a are deposited using spin coating with rotary speed of 2500 rpm for 10 seconds and subsequently heated at 1000C for 10 min. Mass of chlorophyll-a are 0.1 mg, 0.2 mg, and 0.3 mg. Thin layers are characterized by UV-Visible Spectrometer Lamda 25 for optical properties and Keithley 2602 for electrical properties. From the UV-Vis showed that absorbance of P3HT:PCBM:Chlorophyll-a are 400-614nm and 620-700 nm. Efficiency of P3HT:PCBM:Chlorophyll-a for mass chlorophyll 0.1 mg, 0.2 mg, and 0.3 mg are 2.68 x 10-2 %, 3.93 x 10-2 %, and 8.79 x 10-2 % respectively.
14 CFR Section 22 - General Reporting Instructions
Code of Federal Regulations, 2014 CFR
2014-01-01
... aircraft engines A X X X P-1.1 Statement of operations SA (2) NA NA P-1.2 Statement of operations Q (1) X X P-1(a) Interim operations report M X X X P-2 Notes to RSPA Form 41 report Q (1) X X P-5.1 Aircraft operating expenses Q(1), SA(2) X NA NA P-5.2 Aircraft operating expenses Q NA X X P-6 Operating expenses by...
14 CFR Section 22 - General Reporting Instructions
Code of Federal Regulations, 2011 CFR
2011-01-01
... aircraft engines A X X X P-1.1 Statement of operations SA (2) NA NA P-1.2 Statement of operations Q (1) X X P-1(a) Interim operations report M X X X P-2 Notes to RSPA Form 41 report Q (1) X X P-5.1 Aircraft operating expenses Q(1), SA(2) X NA NA P-5.2 Aircraft operating expenses Q NA X X P-6 Operating expenses by...
14 CFR Section 22 - General Reporting Instructions
Code of Federal Regulations, 2013 CFR
2013-01-01
... aircraft engines A X X X P-1.1 Statement of operations SA (2) NA NA P-1.2 Statement of operations Q (1) X X P-1(a) Interim operations report M X X X P-2 Notes to RSPA Form 41 report Q (1) X X P-5.1 Aircraft operating expenses Q(1), SA(2) X NA NA P-5.2 Aircraft operating expenses Q NA X X P-6 Operating expenses by...
14 CFR 22 - General Reporting Instructions
Code of Federal Regulations, 2012 CFR
2012-01-01
... aircraft engines A X X X P-1.1 Statement of operations SA (2) NA NA P-1.2 Statement of operations Q (1) X X P-1(a) Interim operations report M X X X P-2 Notes to RSPA Form 41 report Q (1) X X P-5.1 Aircraft operating expenses Q(1), SA(2) X NA NA P-5.2 Aircraft operating expenses Q NA X X P-6 Operating expenses by...
Mayer, E A; Loo, D D; Snape, W J; Sachs, G
1990-01-01
1. The regulation of Ca2(+)-activated K+ channels by the agonist substance P in freshly dissociated smooth muscle cells from the rabbit longitudinal colonic muscle was characterized using the patch clamp technique. 2. In the cell-attached recording mode, when pipette and bath solutions contained equal [K+] (126 mM), the Ca2(+)-activated K+ channels showed a linear current-voltage relationship (between -50 mV and 50 mV) with a slope conductance of 210 +/- 35 pS (n = 12). Reversal potential measurements indicated that the channel was highly selective for K+ over Na+ (PK/PNa = 110). 3. Channels were activated by depolarizing membrane voltages and cytosolic Ca2+, and in inside-out patches channel activation depended sigmoidally on voltage and [Ca2+]. The potential for half-activation at a cytosolic [Ca2+] of 5 x 10(-6) M was 0 mV. A tenfold increase in cytosolic Ca2+ resulted in a 60 mV shift of the sigmoidal voltage activation curve to more negative potentials. 4. Threshold concentrations of substance P (10(-12) M), which did not result in cell contraction, caused a prolonged activation of K+ channels. The K+ channels were observed to open in clusters: simultaneous opening of multiple channels was interrupted by complete, prolonged channel closure. 5. Lowering bath [Ca2+] to submicromolar concentrations abolished the effect of substance P. The activation of K+ channels by substance P (10(-12) M) was also inhibited by the dihydropyridine nifedipine (10(-6) M), a blocker of L-type Ca2+ channels. 6. In the whole-cell recording mode, with the pipette solution containing 126 mM-KCl, 0.77 mM-EGTA and 1 mM-ATP, depolarization from a holding potential of -70 mV elicited outward currents which increased to steady-state values. These were K+ currents as they were blocked by TEA (tetraethylammonium, 30 mM) and Ba2+ (1 mM) and were abolished when pipette K+ was replaced by Cs+. 7. The depolarization-activated outward current was not affected by lowering extracellular [Ca2+] or by the Ca2+ channel antagonists Cd2+ (200 microM), nifedipine (10(-6)-10(-5) M) or verapamil (10(-6) M). The current was greatly reduced when the EGTA concentration in the pipette solution was increased from 0.77 to 10 mM. 8. When the pipette solution contained CsCl, membrane depolarization activated inward currents. The peak inward current was identified as current through L-type Ca2+ channels based on its voltage- and time-dependent kinetics, and its modulation by dihydropyridines.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1691293
Phosphorylation of Bem2p and Bem3p may contribute to local activation of Cdc42p at bud emergence
Knaus, Michèle; Pelli-Gulli, Marie-Pierre; van Drogen, Frank; Springer, Sander; Jaquenoud, Malika; Peter, Matthias
2007-01-01
Site-specific activation of the Rho-type GTPase Cdc42p is critical for the establishment of cell polarity. Here we investigated the role and regulation of the GTPase-activating enzymes (GAPs) Bem2p and Bem3p for Cdc42p activation and actin polarization at bud emergence in Saccharomyces cerevisiae. Bem2p and Bem3p are localized throughout the cytoplasm and the cell cortex in unbudded G1 cells, but accumulate at sites of polarization after bud emergence. Inactivation of Bem2p results in hyperactivation of Cdc42p and polarization toward multiple sites. Bem2p and Bem3p are hyperphosphorylated at bud emergence most likely by the Cdc28p-Cln2p kinase. This phosphorylation appears to inhibit their GAP activity in vivo, as non-phosphorylatable Bem3p mutants are hyperactive and interfere with Cdc42p activation. Taken together, our results indicate that Bem2p and Bem3p may function as global inhibitors of Cdc42p activation during G1, and their inactivation by the Cdc28p/Cln kinase contributes to site-specific activation of Cdc42p at bud emergence. PMID:17914457
Evaluation of audit of medical inpatient records in a district general hospital.
Gabbay, J; Layton, A J
1992-01-01
OBJECTIVE--To evaluate an audit of medical inpatient records. DESIGN--Retrospective comparison of the quality of recording in inpatients' notes over three years (1988, 1989, 1990). SETTING--Central Middlesex Hospital. MATERIALS--Random sample of 188 notes per year drawn systematically from notes from four selected one month periods and audited by two audit nurses and most hospital physicians. MAIN MEASURES--General quality of routine clerking, assessment, clinical management, and discharge, according to a standardised, criterion based questionnaire developed in the hospital. RESULTS--1988 was the year preceding the start of audit in the hospital, 1989 the year of active audit with implicit and loosely defined criteria, and 1990 the year after introduction and circulation of explicit criteria for note keeping. There was a significant trend over the three years in 21/56 items of the questionnaire, including recording of alcohol intake (x2 = 8.4, df = 1, p = 0.01), ethnic origin (x2 = 57, df = 1, p = 0.001), allergies and drug reactions (x2 = 10, df = 1, p = 0.01) at admission and of chest x ray findings (x2 = 8, df = 1, p = 0.01), final diagnosis (x2 = 5.6, df = 1, p = 0.025), and signed entries (x2 = 11.3, df = 1, p = 0.001). Documentation of discharge and notification of discharge to general practitioners was not significantly improved. CONCLUSIONS--Extended audit of note keeping failed to sustain an initial improvement in practice; this may be due to coincidental decline in feedback to doctors about their performance. PMID:10136829
NASA Astrophysics Data System (ADS)
Demircioğlu, Zeynep; Özdemir, Fethi Ahmet; Dayan, Osman; Şerbetçi, Zafer; Özdemir, Namık
2018-06-01
Synthesized compounds of N-(2-aminophenyl)benzenesulfonamide 1 and (Z)-N-(2-((2-nitrobenzylidene)amino)phenyl)benzenesulfonamide 2 were characterized by antimicrobial activity, FT-IR, 1H and 13C NMR. Two new Schiff base ligands containing aromatic sulfonamide fragment of (Z)-N-(2-((3-nitrobenzylidene)amino)phenyl)benzenesulfonamide 3 and (Z)-N-(2-((4-nitrobenzylidene)amino)phenyl)benzenesulfonamide 4 were synthesized and investigated by spectroscopic techniques including 1H and 13C NMR, FT-IR, single crystal X-ray diffraction, Hirshfeld surface, theoretical method analyses and by antimicrobial activity. The molecular geometry obtained from the X-ray structure determination was optimized Density Functional Theory (DFT/B3LYP) method with the 6-311++G(d,p) basis set in ground state. From the optimized geometry of the molecules of 3 and 4, the geometric parameters, vibrational wavenumbers and chemical shifts were computed. The optimized geometry results, which were well represented the X-ray data, were shown that the chosen of DFT/B3LYP 6-311G++(d,p) was a successful choice. After a successful optimization, frontier molecular orbitals, chemical activity, non-linear optical properties (NLO), molecular electrostatic mep (MEP), Mulliken population method, natural population analysis (NPA) and natural bond orbital analysis (NBO), which cannot be obtained experimentally, were calculated and investigated.
Fernández-de-las-Peñas, César; Caminero, Ana B; Madeleine, Pascal; Guillem-Mesado, Amparo; Ge, Hong-You; Arendt-Nielsen, Lars; Pareja, Juan A
2009-01-01
To describe the common locations of active trigger points (TrPs) in the temporalis muscle and their referred pain patterns in chronic tension type headache (CTTH), and to determine if pressure sensitivity maps of this muscle can be used to describe the spatial distribution of active TrPs. Forty women with CTTH were included. An electronic pressure algometer was used to assess pressure pain thresholds (PPT) from 9 points over each temporalis muscle: 3 points in the anterior, medial and posterior part, respectively. Both muscles were examined for the presence of active TrPs over each of the 9 points. The referred pain pattern of each active TrP was assessed. Two-way analysis of variance detected significant differences in mean PPT levels between the measurement points (F=30.3; P<0.001), but not between sides (F=2.1; P=0.2). PPT scores decreased from the posterior to the anterior column (P<0.001). No differences were found in the number of active TrPs (F=0.3; P=0.9) between the dominant side the nondominant side. Significant differences were found in the distribution of the active TrPs (chi2=12.2; P<0.001): active TrPs were mostly found in the anterior column and in the middle of the muscle belly. The analysis of variance did not detect significant differences in the referred pain pattern between active TrPs (F=1.1, P=0.4). The topographical pressure pain sensitivity maps showed the distinct distribution of the TrPs indicated by locations with low PPTs. Multiple active TrPs in the temporalis muscle were found, particularly in the anterior column and in the middle of the muscle belly. Bilateral posterior to anterior decreased distribution of PPTs in the temporalis muscle in women with CTTH was found. The locations of active TrPs in the temporalis muscle corresponded well to the muscle areas with lower PPT, supporting the relationship between multiple active muscle TrPs and topographical pressure sensitivity maps in the temporalis muscle in women with CTTH.
Gunn, Natalie J; Gorman, Michael A; Dobson, Renwick C J; Parker, Michael W; Mulhern, Terrence D
2011-03-01
The C-terminal Src kinase (Csk) and Csk-homologous kinase (CHK) are endogenous inhibitors of the proto-oncogenic Src family of protein tyrosine kinases (SFKs). Phosphotyrosyl peptide binding to their Src-homology 2 (SH2) domains activates Csk and CHK, enhancing their ability to suppress SFK signalling; however, the detailed mechanistic basis of this activation event is unclear. The CHK SH2 was expressed in Escherichia coli and the purified protein was characterized as monomeric by synchrotron small-angle X-ray scattering in-line with size-exclusion chromatography. The CHK SH2 crystallized in 0.2 M sodium bromide, 0.1 M bis-Tris propane pH 6.5 and 20% polyethylene glycol 3350 and the best crystals diffracted to ∼1.6 Å resolution. The crystals belonged to space group P2, with unit-cell parameters a=25.8, b=34.6, c=63.2 Å, β=99.4°.
Behavior of the Ru-bda water oxidation catalyst covalently anchored on glassy carbon electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matheu, Roc; Francàs, Laia; Chernev, Petko
Electrochemical reduction of the dizaonium complex, [Ru II(bda)(NO)(N–N 2) 2] 3+, 2 3+ (N–N 2 2+ is 4-(pyridin-4-yl) benzenediazonium and bda 2– is [2,2'-bipyridine]-6,6'-dicarboxylate), in acetone produces the covalent grafting of this molecular complex onto glassy carbon (GC) electrodes. Multiple cycling voltammetric experiments on the GC electrode generates hybrid materials labeled as GC-4, with the corresponding Ru-aqua complex anchored on the graphite surface. GC-4 has been characterized at pH = 7.0 by electrochemical techniques and X-ray absorption spectroscopy (XAS) and has been shown to act as an active catalyst for the oxidation of water to dioxygen. This new hybrid materialmore » has a lower catalytic performance than its counterpart in homogeneous phase and progressively decomposes to form RuO 2 at the electrode surface. The resulting metal oxide attached at the GC electrode surface, GC-RuO 2, is a very fast and rugged heterogeneous water oxidation catalyst with TOF is of 300 s –1 and TONs >45000. The observed performance is comparable to the best electrocatalysts reported so far, at neutral pH.« less
Behavior of the Ru-bda water oxidation catalyst covalently anchored on glassy carbon electrodes
Matheu, Roc; Francàs, Laia; Chernev, Petko; ...
2015-05-07
Electrochemical reduction of the dizaonium complex, [Ru II(bda)(NO)(N–N 2) 2] 3+, 2 3+ (N–N 2 2+ is 4-(pyridin-4-yl) benzenediazonium and bda 2– is [2,2'-bipyridine]-6,6'-dicarboxylate), in acetone produces the covalent grafting of this molecular complex onto glassy carbon (GC) electrodes. Multiple cycling voltammetric experiments on the GC electrode generates hybrid materials labeled as GC-4, with the corresponding Ru-aqua complex anchored on the graphite surface. GC-4 has been characterized at pH = 7.0 by electrochemical techniques and X-ray absorption spectroscopy (XAS) and has been shown to act as an active catalyst for the oxidation of water to dioxygen. This new hybrid materialmore » has a lower catalytic performance than its counterpart in homogeneous phase and progressively decomposes to form RuO 2 at the electrode surface. The resulting metal oxide attached at the GC electrode surface, GC-RuO 2, is a very fast and rugged heterogeneous water oxidation catalyst with TOF is of 300 s –1 and TONs >45000. The observed performance is comparable to the best electrocatalysts reported so far, at neutral pH.« less
Horikoshi, Satoshi; Shirasaka, Yutaro; Uchida, Hiroshi; Horikoshi, Natsuko; Serpone, Nick
2016-08-04
To date syntheses of nitrogen-doped TiO2 photocatalysts (TiO2-xNx) have been carried out under high temperatures and high pressures with either NH3 or urea as the nitrogen sources. This article reports for the first time the facile preparation of N-doped TiO2 (P25 titania) in aqueous media at ambient temperature and pressure under inert conditions (Ar- and N2-purged dispersions) with 4-nitrophenol (or 4-nitrobenzaldehyde) as the nitrogen source. The resulting N-doped P25 TiO2 materials were characterized by UV/Vis and X-ray photoelectron spectroscopies (XPS) that confirmed the presence of nitrogen within the photocatalyst; X-ray diffraction (XRD) techniques confirmed the crystalline phases of the doped material. The photocatalytic activity of N-doped TiO2 was assessed through examining the photodegradation of 4-chlorophenol in aqueous media and iso-propanol as a volatile pollutant under UV/Vis and visible-light irradiation. Under visible light irradiation, undoped P25 was inactive contrary to N-doped P25 that successfully degraded 95% of the 4-chlorophenol (after 10 h) and 23% of iso-propanol (after 2.5 h).
The firehose instability during multiple reconnection in the Earth's magnetotail
NASA Astrophysics Data System (ADS)
Alexandrova, Alexandra; Divin, Andrey; Retino, Alessandro; Deca, Jan; Catapano, Filomena; Cozzani, Giulia
2017-04-01
We found unique events in the Cluster spacecraft observations of the Earth's magnetotail which correspond to the case of multiple reconnection sites. The ion temperature anisotropy of more energized ions in the direction parallel to the magnetic field, rather than in the perpendicular direction, is observed in the region of dynamical interaction between two active X-lines. The magnetic field and plasma parameters associated with the anisotropy correspond to the firehose instability conditions. We discuss possible scenarios of development of the firehose instability in multiple reconnection by comparing the observations with numerical simulations. Conventional Particle-in-Cell simulations of 2D magnetic reconnection starting from Harris equilibria are performed using implicit PIC code iPIC3D [Markidis, 2010]. At earlier stages the evolution creates fronts which push the weakly magnetized current sheet plasma away from the X-line. Fronts accelerate and reflect particles, producing parallel ion beams and increasing parallel ion temperature ahead of the front. If multiple X-lines are present, then the counterstreaming ion beams appear inside the original current sheet between colliding reconnection jet fronts. For large enough parallel ion pressure anisotropy, the firehose-like mode is excited inside the original current sheet with a flapping-like appearance along the X GSM direction but not Y GSM (current) direction. One should note that our simulations do not include the Bz magnetic field component (normal to the current sheet), hence ion beams cannot escape into the lobes and the whole region between two colliding fronts is unstable to firehose-like instability. In the Earth's magnetotail such configuration likely occurs when two active X-lines are close enough to each other, similar to a few cases we found in the Cluster observations.
Kelly, Mark W; Richley, James C; Western, Colin M; Ashfold, Michael N R; Mankelevich, Yuri A
2012-09-27
Microwave (MW)-activated CH(4)/CO(2)/H(2) gas mixtures operating under conditions relevant to diamond chemical vapor deposition (i.e., X(C/Σ) = X(elem)(C)/(X(elem)(C) + X(elem)(O)) ≈ 0.5, H(2) mole fraction = 0.3, pressure, p = 150 Torr, and input power, P = 1 kW) have been explored in detail by a combination of spatially resolved absorption measurements (of CH, C(2)(a), and OH radicals and H(n = 2) atoms) within the hot plasma region and companion 2-dimensional modeling of the plasma. CO and H(2) are identified as the dominant species in the plasma core. The lower thermal conductivity of such a mixture (cf. the H(2)-rich plasmas used in most diamond chemical vapor deposition) accounts for the finding that CH(4)/CO(2)/H(2) plasmas can yield similar maximal gas temperatures and diamond growth rates at lower input powers than traditional CH(4)/H(2) plasmas. The plasma chemistry and composition is seen to switch upon changing from oxygen-rich (X(C/Σ) < 0.5) to carbon-rich (X(C/Σ) > 0.5) source gas mixtures and, by comparing CH(4)/CO(2)/H(2) (X(C/Σ) = 0.5) and CO/H(2) plasmas, to be sensitive to the choice of source gas (by virtue of the different prevailing gas activation mechanisms), in contrast to C/H process gas mixtures. CH(3) radicals are identified as the most abundant C(1)H(x) [x = 0-3] species near the growing diamond surface within the process window for successful diamond growth (X(C/Σ) ≈ 0.5-0.54) identified by Bachmann et al. (Diamond Relat. Mater.1991, 1, 1). This, and the findings of similar maximal gas temperatures (T(gas) ~2800-3000 K) and H atom mole fractions (X(H)~5-10%) to those found in MW-activated C/H plasmas, points to the prevalence of similar CH(3) radical based diamond growth mechanisms in both C/H and C/H/O plasmas.
Arnous, Anis; Meyer, Anne S
2009-12-01
The ability of grape skins to catalyze in vitro conversion of p-coumaric acid to the more potent antioxidant caffeic acid was studied. Addition of different concentrations of p-coumaric to red grape skins (Cabernet Sauvignon) resulted in formation of caffeic acid. This caffeic acid formation (Y) correlated positively and linearly to p-coumaric acid consumption (X): Y = 0.5 X + 9.5; R (2) = 0.96, P < 0.0001. The kinetics of caffeic acid formation with time in response to initial p-coumaric acid levels and at different grape skin concentrations, indicated that the grape skins harboured an o-hydroxylation activity, proposedly a monophenol- or a flavonoid 3'-monooxygenase activity (EC 1.14.18.1 or EC 1.14.13.21). The K (m) of this crude o-hydroxylation activity in the red grape skin was 0.5 mM with p-coumaric acid.
NASA Technical Reports Server (NTRS)
Worrall, Diana M.
1994-01-01
This report summarizes the activities related to two ROSAT investigations: (1) x-ray properties of radio galaxies thought to contain BL Lac type nuclei; and (2) x-ray spectra of a complete sample of flat-spectrum radio sources. The following papers describing the research are provided as attachments: Multiple X-ray Emission Components in Low Power Radio Galaxies; New X-ray Results on Radio Galaxies; Analysis Techniques for a Multiwavelength Study of Radio Galaxies; Separation of X-ray Emission Components in Radio Galaxies; X-ray Emission in Powerful Radio Galaxies and Quasars; Extended and Compact X-ray Emission in Powerful Radio Galaxies; and X-ray Spectra of a Complete Sample of Extragalactic Core-dominated Radio Sources.
Cho, Young Rae; Jang, Hyeon Soon; Kim, Won; Park, Sun Young; Sohn, Uy Dong
2010-10-01
It is well-known that electrical field stimulation (EFS)-induced contraction is mediated by a cholinergic mechanism and other neurotransmitters. NO, ATP, calcitonin gene-related peptide (CGRP), and substance P are released by EFS. To investigate the purinergic mechanism involved in the EFS-induced contraction, purinegic receptors antagonists were used. Suramine, a non-selective P2 receptor antagonist, reduced the contraction induced by EFS. NF023 (10(-7)~10(-4) M), a selective P2X antagonist, inhibited the contraction evoked by EFS. Reactive blue (10(-6)~10(-4) M), selective P2Y antagonist, also blocked the contraction in a dose-dependent manner. In addition, P2X agonist α,β-methylene 5'-adenosine triphosphate (αβMeATP, 10(-7)~10(-5) M) potentiated EFS-induced contraction in a dose-dependent manner. P2Y agonist adenosine 5'-[β-thio]diphosphate trilithium salt (ADPβS, 10(-7)~10(-5) M) also potentiated EFS-induced contractions in a dose-dependent manner. Ecto-ATPase activator apyrase (5 and 10 U/ml) reduced EFS-induced contractions. Inversely, 6-N,N-diethyl-D-β,γ-dibromomethylene 5'-triphosphate triammonium (ARL 67156, 10(-4) M) increased EFS-induced contraction. These data suggest that endogenous ATP plays a role in EFS-induced contractions which are mediated through both P2X-receptors and P2Y-receptors stimulation in cat esophageal smooth muscle.